WorldWideScience

Sample records for human activity pattern

  1. A Multiscale Survival Process for Modeling Human Activity Patterns.

    Science.gov (United States)

    Zhang, Tianyang; Cui, Peng; Song, Chaoming; Zhu, Wenwu; Yang, Shiqiang

    2016-01-01

    Human activity plays a central role in understanding large-scale social dynamics. It is well documented that individual activity pattern follows bursty dynamics characterized by heavy-tailed interevent time distributions. Here we study a large-scale online chatting dataset consisting of 5,549,570 users, finding that individual activity pattern varies with timescales whereas existing models only approximate empirical observations within a limited timescale. We propose a novel approach that models the intensity rate of an individual triggering an activity. We demonstrate that the model precisely captures corresponding human dynamics across multiple timescales over five orders of magnitudes. Our model also allows extracting the population heterogeneity of activity patterns, characterized by a set of individual-specific ingredients. Integrating our approach with social interactions leads to a wide range of implications.

  2. Exploring Human Activity Patterns Using Taxicab Static Points

    Directory of Open Access Journals (Sweden)

    Bin Jiang

    2012-06-01

    Full Text Available This paper explores the patterns of human activities within a geographical space by adopting the taxicab static points which refer to the locations with zero speed along the tracking trajectory. We report the findings from both aggregated and individual aspects. Results from the aggregated level indicate the following: (1 Human activities exhibit an obvious regularity in time, for example, there is a burst of activity during weekend nights and a lull during the week. (2 They show a remarkable spatial drifting pattern, which strengthens our understanding of the activities in any given place. (3 Activities are heterogeneous in space irrespective of their drifting with time. These aggregated results not only help in city planning, but also facilitate traffic control and management. On the other hand, investigations on an individual level suggest that (4 activities witnessed by one taxicab will have different temporal regularity to another, and (5 each regularity implies a high level of prediction with low entropy by applying the Lempel-Ziv algorithm.

  3. a Three-Step Spatial-Temporal Clustering Method for Human Activity Pattern Analysis

    Science.gov (United States)

    Huang, W.; Li, S.; Xu, S.

    2016-06-01

    How people move in cities and what they do in various locations at different times form human activity patterns. Human activity pattern plays a key role in in urban planning, traffic forecasting, public health and safety, emergency response, friend recommendation, and so on. Therefore, scholars from different fields, such as social science, geography, transportation, physics and computer science, have made great efforts in modelling and analysing human activity patterns or human mobility patterns. One of the essential tasks in such studies is to find the locations or places where individuals stay to perform some kind of activities before further activity pattern analysis. In the era of Big Data, the emerging of social media along with wearable devices enables human activity data to be collected more easily and efficiently. Furthermore, the dimension of the accessible human activity data has been extended from two to three (space or space-time) to four dimensions (space, time and semantics). More specifically, not only a location and time that people stay and spend are collected, but also what people "say" for in a location at a time can be obtained. The characteristics of these datasets shed new light on the analysis of human mobility, where some of new methodologies should be accordingly developed to handle them. Traditional methods such as neural networks, statistics and clustering have been applied to study human activity patterns using geosocial media data. Among them, clustering methods have been widely used to analyse spatiotemporal patterns. However, to our best knowledge, few of clustering algorithms are specifically developed for handling the datasets that contain spatial, temporal and semantic aspects all together. In this work, we propose a three-step human activity clustering method based on space, time and semantics to fill this gap. One-year Twitter data, posted in Toronto, Canada, is used to test the clustering-based method. The results show that the

  4. A THREE-STEP SPATIAL-TEMPORAL-SEMANTIC CLUSTERING METHOD FOR HUMAN ACTIVITY PATTERN ANALYSIS

    Directory of Open Access Journals (Sweden)

    W. Huang

    2016-06-01

    Full Text Available How people move in cities and what they do in various locations at different times form human activity patterns. Human activity pattern plays a key role in in urban planning, traffic forecasting, public health and safety, emergency response, friend recommendation, and so on. Therefore, scholars from different fields, such as social science, geography, transportation, physics and computer science, have made great efforts in modelling and analysing human activity patterns or human mobility patterns. One of the essential tasks in such studies is to find the locations or places where individuals stay to perform some kind of activities before further activity pattern analysis. In the era of Big Data, the emerging of social media along with wearable devices enables human activity data to be collected more easily and efficiently. Furthermore, the dimension of the accessible human activity data has been extended from two to three (space or space-time to four dimensions (space, time and semantics. More specifically, not only a location and time that people stay and spend are collected, but also what people “say” for in a location at a time can be obtained. The characteristics of these datasets shed new light on the analysis of human mobility, where some of new methodologies should be accordingly developed to handle them. Traditional methods such as neural networks, statistics and clustering have been applied to study human activity patterns using geosocial media data. Among them, clustering methods have been widely used to analyse spatiotemporal patterns. However, to our best knowledge, few of clustering algorithms are specifically developed for handling the datasets that contain spatial, temporal and semantic aspects all together. In this work, we propose a three-step human activity clustering method based on space, time and semantics to fill this gap. One-year Twitter data, posted in Toronto, Canada, is used to test the clustering-based method. The

  5. Prediction of Human Activity by Discovering Temporal Sequence Patterns.

    Science.gov (United States)

    Li, Kang; Fu, Yun

    2014-08-01

    Early prediction of ongoing human activity has become more valuable in a large variety of time-critical applications. To build an effective representation for prediction, human activities can be characterized by a complex temporal composition of constituent simple actions and interacting objects. Different from early detection on short-duration simple actions, we propose a novel framework for long -duration complex activity prediction by discovering three key aspects of activity: Causality, Context-cue, and Predictability. The major contributions of our work include: (1) a general framework is proposed to systematically address the problem of complex activity prediction by mining temporal sequence patterns; (2) probabilistic suffix tree (PST) is introduced to model causal relationships between constituent actions, where both large and small order Markov dependencies between action units are captured; (3) the context-cue, especially interactive objects information, is modeled through sequential pattern mining (SPM), where a series of action and object co-occurrence are encoded as a complex symbolic sequence; (4) we also present a predictive accumulative function (PAF) to depict the predictability of each kind of activity. The effectiveness of our approach is evaluated on two experimental scenarios with two data sets for each: action-only prediction and context-aware prediction. Our method achieves superior performance for predicting global activity classes and local action units.

  6. Neural Activity Patterns in the Human Brain Reflect Tactile Stickiness Perception

    Science.gov (United States)

    Kim, Junsuk; Yeon, Jiwon; Ryu, Jaekyun; Park, Jang-Yeon; Chung, Soon-Cheol; Kim, Sung-Phil

    2017-01-01

    Our previous human fMRI study found brain activations correlated with tactile stickiness perception using the uni-variate general linear model (GLM) (Yeon et al., 2017). Here, we conducted an in-depth investigation on neural correlates of sticky sensations by employing a multivoxel pattern analysis (MVPA) on the same dataset. In particular, we statistically compared multi-variate neural activities in response to the three groups of sticky stimuli: A supra-threshold group including a set of sticky stimuli that evoked vivid sticky perception; an infra-threshold group including another set of sticky stimuli that barely evoked sticky perception; and a sham group including acrylic stimuli with no physically sticky property. Searchlight MVPAs were performed to search for local activity patterns carrying neural information of stickiness perception. Similar to the uni-variate GLM results, significant multi-variate neural activity patterns were identified in postcentral gyrus, subcortical (basal ganglia and thalamus), and insula areas (insula and adjacent areas). Moreover, MVPAs revealed that activity patterns in posterior parietal cortex discriminated the perceptual intensities of stickiness, which was not present in the uni-variate analysis. Next, we applied a principal component analysis (PCA) to the voxel response patterns within identified clusters so as to find low-dimensional neural representations of stickiness intensities. Follow-up clustering analyses clearly showed separate neural grouping configurations between the Supra- and Infra-threshold groups. Interestingly, this neural categorization was in line with the perceptual grouping pattern obtained from the psychophysical data. Our findings thus suggest that different stickiness intensities would elicit distinct neural activity patterns in the human brain and may provide a neural basis for the perception and categorization of tactile stickiness. PMID:28936171

  7. Effects of Age, Season, Gender and Urban-Rural Status on Time-Activity: Canadian Human Activity Pattern Survey 2 (CHAPS 2)

    OpenAIRE

    Matz, Carlyn J.; Stieb, David M.; Davis, Karelyn; Egyed, Marika; Rose, Andreas; Chou, Benedito; Brion, Orly

    2014-01-01

    Estimation of population exposure is a main component of human health risk assessment for environmental contaminants. Population-level exposure assessments require time-activity pattern distributions in relation to microenvironments where people spend their time. Societal trends may have influenced time-activity patterns since previous Canadian data were collected 15 years ago. The Canadian Human Activity Pattern Survey 2 (CHAPS 2) was a national survey conducted in 2010–2011 to collect time-...

  8. Understanding the Functionality of Human Activity Hotspots from Their Scaling Pattern Using Trajectory Data

    Directory of Open Access Journals (Sweden)

    Tao Jia

    2017-11-01

    Full Text Available Human activity hotspots are the clusters of activity locations in space and time, and a better understanding of their functionality would be useful for urban land use planning and transportation. In this article, using trajectory data, we aim to infer the functionality of human activity hotspots from their scaling pattern in a reliable way. Specifically, a large number of stopping locations are extracted from trajectory data, which are then aggregated into activity hotspots. Activity hotspots are found to display scaling patterns in terms of the sublinear scaling relationships between the number of stopping locations and the number of points of interest (POIs, which indicates economies of scale of human interactions with urban land use. Importantly, this scaling pattern remains stable over time. This finding inspires us to devise an allometric ruler to identify the activity hotspots, whose functionality could be reliably estimated using the stopping locations. Thereafter, a novel Bayesian inference model is proposed to infer their urban functionality, which examines the spatial and temporal information of stopping locations covering 75 days. Experimental results suggest that the functionality of identified activity hotspots are reliably inferred by stopping locations, such as the railway station.

  9. Classifying Human Activity Patterns from Smartphone Collected GPS data: a Fuzzy Classification and Aggregation Approach.

    Science.gov (United States)

    Wan, Neng; Lin, Ge

    2016-12-01

    Smartphones have emerged as a promising type of equipment for monitoring human activities in environmental health studies. However, degraded location accuracy and inconsistency of smartphone-measured GPS data have limited its effectiveness for classifying human activity patterns. This study proposes a fuzzy classification scheme for differentiating human activity patterns from smartphone-collected GPS data. Specifically, a fuzzy logic reasoning was adopted to overcome the influence of location uncertainty by estimating the probability of different activity types for single GPS points. Based on that approach, a segment aggregation method was developed to infer activity patterns, while adjusting for uncertainties of point attributes. Validations of the proposed methods were carried out based on a convenient sample of three subjects with different types of smartphones. The results indicate desirable accuracy (e.g., up to 96% in activity identification) with use of this method. Two examples were provided in the appendix to illustrate how the proposed methods could be applied in environmental health studies. Researchers could tailor this scheme to fit a variety of research topics.

  10. The Human Central Pattern Generator for Locomotion.

    Science.gov (United States)

    Minassian, Karen; Hofstoetter, Ursula S; Dzeladini, Florin; Guertin, Pierre A; Ijspeert, Auke

    2017-03-01

    The ability of dedicated spinal circuits, referred to as central pattern generators (CPGs), to produce the basic rhythm and neural activation patterns underlying locomotion can be demonstrated under specific experimental conditions in reduced animal preparations. The existence of CPGs in humans is a matter of debate. Equally elusive is the contribution of CPGs to normal bipedal locomotion. To address these points, we focus on human studies that utilized spinal cord stimulation or pharmacological neuromodulation to generate rhythmic activity in individuals with spinal cord injury, and on neuromechanical modeling of human locomotion. In the absence of volitional motor control and step-specific sensory feedback, the human lumbar spinal cord can produce rhythmic muscle activation patterns that closely resemble CPG-induced neural activity of the isolated animal spinal cord. In this sense, CPGs in humans can be defined by the activity they produce. During normal locomotion, CPGs could contribute to the activation patterns during specific phases of the step cycle and simplify supraspinal control of step cycle frequency as a feedforward component to achieve a targeted speed. Determining how the human CPGs operate will be essential to advance the theory of neural control of locomotion and develop new locomotor neurorehabilitation paradigms.

  11. Unraveling dynamics of human physical activity patterns in chronic pain conditions

    Science.gov (United States)

    Paraschiv-Ionescu, Anisoara; Buchser, Eric; Aminian, Kamiar

    2013-06-01

    Chronic pain is a complex disabling experience that negatively affects the cognitive, affective and physical functions as well as behavior. Although the interaction between chronic pain and physical functioning is a well-accepted paradigm in clinical research, the understanding of how pain affects individuals' daily life behavior remains a challenging task. Here we develop a methodological framework allowing to objectively document disruptive pain related interferences on real-life physical activity. The results reveal that meaningful information is contained in the temporal dynamics of activity patterns and an analytical model based on the theory of bivariate point processes can be used to describe physical activity behavior. The model parameters capture the dynamic interdependence between periods and events and determine a `signature' of activity pattern. The study is likely to contribute to the clinical understanding of complex pain/disease-related behaviors and establish a unified mathematical framework to quantify the complex dynamics of various human activities.

  12. Effects of Age, Season, Gender and Urban-Rural Status on Time-Activity: Canadian Human Activity Pattern Survey 2 (CHAPS 2

    Directory of Open Access Journals (Sweden)

    Carlyn J. Matz

    2014-02-01

    Full Text Available Estimation of population exposure is a main component of human health risk assessment for environmental contaminants. Population-level exposure assessments require time-activity pattern distributions in relation to microenvironments where people spend their time. Societal trends may have influenced time-activity patterns since previous Canadian data were collected 15 years ago. The Canadian Human Activity Pattern Survey 2 (CHAPS 2 was a national survey conducted in 2010–2011 to collect time-activity information from Canadians of all ages. Five urban and two rural locations were sampled using telephone surveys. Infants and children, key groups in risk assessment activities, were over-sampled. Survey participants (n = 5,011 provided time-activity information in 24-hour recall diaries and responded to supplemental questionnaires concerning potential exposures to specific pollutants, dwelling characteristics, and socio-economic factors. Results indicated that a majority of the time was spent indoors (88.9%, most of which was indoors at home, with limited time spent outdoors (5.8% or in a vehicle (5.3%. Season, age, gender and rurality were significant predictors of time activity patterns. Compared to earlier data, adults reported spending more time indoors at home and adolescents reported spending less time outdoors, which could be indicative of broader societal trends. These findings have potentially important implications for assessment of exposure and risk. The CHAPS 2 data also provide much larger sample sizes to allow for improved precision and are more representative of infants, children and rural residents.

  13. Effects of age, season, gender and urban-rural status on time-activity: CanadianHuman Activity Pattern Survey 2 (CHAPS 2).

    Science.gov (United States)

    Matz, Carlyn J; Stieb, David M; Davis, Karelyn; Egyed, Marika; Rose, Andreas; Chou, Benedito; Brion, Orly

    2014-02-19

    Estimation of population exposure is a main component of human health risk assessment for environmental contaminants. Population-level exposure assessments require time-activity pattern distributions in relation to microenvironments where people spend their time. Societal trends may have influenced time-activity patterns since previous Canadian data were collected 15 years ago. The Canadian Human Activity Pattern Survey 2 (CHAPS 2) was a national survey conducted in 2010-2011 to collect time-activity information from Canadians of all ages. Five urban and two rural locations were sampled using telephone surveys. Infants and children, key groups in risk assessment activities, were over-sampled. Survey participants (n = 5,011) provided time-activity information in 24-hour recall diaries and responded to supplemental questionnaires concerning potential exposures to specific pollutants, dwelling characteristics, and socio-economic factors. Results indicated that a majority of the time was spent indoors (88.9%), most of which was indoors at home, with limited time spent outdoors (5.8%) or in a vehicle (5.3%). Season, age, gender and rurality were significant predictors of time activity patterns. Compared to earlier data, adults reported spending more time indoors at home and adolescents reported spending less time outdoors, which could be indicative of broader societal trends. These findings have potentially important implications for assessment of exposure and risk. The CHAPS 2 data also provide much larger sample sizes to allow for improved precision and are more representative of infants, children and rural residents.

  14. Effects of Age, Season, Gender and Urban-Rural Status on Time-Activity: Canadian Human Activity Pattern Survey 2 (CHAPS 2)

    Science.gov (United States)

    Matz, Carlyn J.; Stieb, David M.; Davis, Karelyn; Egyed, Marika; Rose, Andreas; Chou, Benedito; Brion, Orly

    2014-01-01

    Estimation of population exposure is a main component of human health risk assessment for environmental contaminants. Population-level exposure assessments require time-activity pattern distributions in relation to microenvironments where people spend their time. Societal trends may have influenced time-activity patterns since previous Canadian data were collected 15 years ago. The Canadian Human Activity Pattern Survey 2 (CHAPS 2) was a national survey conducted in 2010–2011 to collect time-activity information from Canadians of all ages. Five urban and two rural locations were sampled using telephone surveys. Infants and children, key groups in risk assessment activities, were over-sampled. Survey participants (n = 5,011) provided time-activity information in 24-hour recall diaries and responded to supplemental questionnaires concerning potential exposures to specific pollutants, dwelling characteristics, and socio-economic factors. Results indicated that a majority of the time was spent indoors (88.9%), most of which was indoors at home, with limited time spent outdoors (5.8%) or in a vehicle (5.3%). Season, age, gender and rurality were significant predictors of time activity patterns. Compared to earlier data, adults reported spending more time indoors at home and adolescents reported spending less time outdoors, which could be indicative of broader societal trends. These findings have potentially important implications for assessment of exposure and risk. The CHAPS 2 data also provide much larger sample sizes to allow for improved precision and are more representative of infants, children and rural residents. PMID:24557523

  15. Application of GPS Trajectory Data for Investigating the Interaction between Human Activity and Landscape Pattern: A Case Study of the Lijiang River Basin, China

    Directory of Open Access Journals (Sweden)

    Jun Li

    2016-06-01

    Full Text Available The interaction between human activity and landscape pattern has been a hot research topic during the last few decades. However, scholars used to measure human activity by social, economic and humanistic indexes. These indexes cannot directly reflect human activity and are not suitable for fine-grained analysis due to the coarse spatial resolution. In view of the above problems, this paper proposes a method that obtains the intensity of human activity from GPS trajectory data, collects landscape information from remote sensing images and further analyzes the interaction between human activity and landscape pattern at a fine-grained scale. The Lijiang River Basin is selected as the study area. Experimental results show that human activity and landscape pattern interact synergistically in this area. Built-up land and water boost human activity, while woodland restrains human activity. The effect of human activity on landscape pattern differs by the land cover category. Overall, human activities make natural land, such as woodland and water, scattered and fragmented, but cause man-built land, such as built-up land and farmland, clustered and regular. Nevertheless, human activities inside and outside urban areas are the opposite. The research findings in this paper are helpful for designing and implementing sustainable management plans.

  16. Tracking urban human activity from mobile phone calling patterns.

    Science.gov (United States)

    Monsivais, Daniel; Ghosh, Asim; Bhattacharya, Kunal; Dunbar, Robin I M; Kaski, Kimmo

    2017-11-01

    Timings of human activities are marked by circadian clocks which in turn are entrained to different environmental signals. In an urban environment the presence of artificial lighting and various social cues tend to disrupt the natural entrainment with the sunlight. However, it is not completely understood to what extent this is the case. Here we exploit the large-scale data analysis techniques to study the mobile phone calling activity of people in large cities to infer the dynamics of urban daily rhythms. From the calling patterns of about 1,000,000 users spread over different cities but lying inside the same time-zone, we show that the onset and termination of the calling activity synchronizes with the east-west progression of the sun. We also find that the onset and termination of the calling activity of users follows a yearly dynamics, varying across seasons, and that its timings are entrained to solar midnight. Furthermore, we show that the average mid-sleep time of people living in urban areas depends on the age and gender of each cohort as a result of biological and social factors.

  17. Tracking urban human activity from mobile phone calling patterns.

    Directory of Open Access Journals (Sweden)

    Daniel Monsivais

    2017-11-01

    Full Text Available Timings of human activities are marked by circadian clocks which in turn are entrained to different environmental signals. In an urban environment the presence of artificial lighting and various social cues tend to disrupt the natural entrainment with the sunlight. However, it is not completely understood to what extent this is the case. Here we exploit the large-scale data analysis techniques to study the mobile phone calling activity of people in large cities to infer the dynamics of urban daily rhythms. From the calling patterns of about 1,000,000 users spread over different cities but lying inside the same time-zone, we show that the onset and termination of the calling activity synchronizes with the east-west progression of the sun. We also find that the onset and termination of the calling activity of users follows a yearly dynamics, varying across seasons, and that its timings are entrained to solar midnight. Furthermore, we show that the average mid-sleep time of people living in urban areas depends on the age and gender of each cohort as a result of biological and social factors.

  18. Contrasting activity patterns of sympatric and allopatric black and grizzly bears

    Science.gov (United States)

    Schwartz, C.C.; Cain, S.L.; Podruzny, S.; Cherry, S.; Frattaroli, L.

    2010-01-01

    The distribution of grizzly (Ursus arctos) and American black bears (U. americanus) overlaps in western North America. Few studies have detailed activity patterns where the species are sympatric and no studies contrasted patterns where populations are both sympatric and allopatric. We contrasted activity patterns for sympatric black and grizzly bears and for black bears allopatric to grizzly bears, how human influences altered patterns, and rates of grizzlyblack bear predation. Activity patterns differed between black bear populations, with those sympatric to grizzly bears more day-active. Activity patterns of black bears allopatric with grizzly bears were similar to those of female grizzly bears; both were crepuscular and day-active. Male grizzly bears were crepuscular and night-active. Both species were more night-active and less day-active when ???1 km from roads or developments. In our sympatric study area, 2 of 4 black bear mortalities were due to grizzly bear predation. Our results suggested patterns of activity that allowed for intra- and inter-species avoidance. National park management often results in convergence of locally high human densities in quality bear habitat. Our data provide additional understanding into how bears alter their activity patterns in response to other bears and humans and should help park managers minimize undesirable bearhuman encounters when considering needs for temporal and spatial management of humans and human developments in bear habitats. ?? 2010 The Wildlife Society.

  19. Exploring associations between gaze patterns and putative human mirror neuron system activity.

    Science.gov (United States)

    Donaldson, Peter H; Gurvich, Caroline; Fielding, Joanne; Enticott, Peter G

    2015-01-01

    The human mirror neuron system (MNS) is hypothesized to be crucial to social cognition. Given that key MNS-input regions such as the superior temporal sulcus are involved in biological motion processing, and mirror neuron activity in monkeys has been shown to vary with visual attention, aberrant MNS function may be partly attributable to atypical visual input. To examine the relationship between gaze pattern and interpersonal motor resonance (IMR; an index of putative MNS activity), healthy right-handed participants aged 18-40 (n = 26) viewed videos of transitive grasping actions or static hands, whilst the left primary motor cortex received transcranial magnetic stimulation. Motor-evoked potentials recorded in contralateral hand muscles were used to determine IMR. Participants also underwent eyetracking analysis to assess gaze patterns whilst viewing the same videos. No relationship was observed between predictive gaze and IMR. However, IMR was positively associated with fixation counts in areas of biological motion in the videos, and negatively associated with object areas. These findings are discussed with reference to visual influences on the MNS, and the possibility that MNS atypicalities might be influenced by visual processes such as aberrant gaze pattern.

  20. Exploring associations between gaze patterns and putative human mirror neuron system activity

    Directory of Open Access Journals (Sweden)

    Peter Hugh Donaldson

    2015-07-01

    Full Text Available The human mirror neuron system (MNS is hypothesised to be crucial to social cognition. Given that key MNS-input regions such as the superior temporal sulcus are involved in biological motion processing, and mirror neuron activity in monkeys has been shown to vary with visual attention, aberrant MNS function may be partly attributable to atypical visual input. To examine the relationship between gaze pattern and interpersonal motor resonance (IMR; an index of putative MNS activity, healthy right-handed participants aged 18-40 (n = 26 viewed videos of transitive grasping actions or static hands, whilst the left primary motor cortex received transcranial magnetic stimulation (TMS. Motor-evoked potentials (MEPs recorded in contralateral hand muscles were used to determine IMR. Participants also underwent eyetracking analysis to assess gaze patterns whilst viewing the same videos. No relationship was observed between predictive gaze (PG and IMR. However, IMR was positively associated with fixation counts in areas of biological motion in the videos, and negatively associated with object areas. These findings are discussed with reference to visual influences on the MNS, and the possibility that MNS atypicalities might be influenced by visual processes such as aberrant gaze pattern.

  1. Analysis of Gait Pattern to Recognize the Human Activities

    Directory of Open Access Journals (Sweden)

    Jay Prakash Gupta

    2014-09-01

    Full Text Available Human activity recognition based on the computer vision is the process of labelling image sequences with action labels. Accurate systems for this problem are applied in areas such as visual surveillance, human computer interaction and video retrieval. The challenges are due to variations in motion, recording settings and gait differences. Here we propose an approach to recognize the human activities through gait. Activity recognition through Gait is the process of identifying an activity by the manner in which they walk. The identification of human activities in a video, such as a person is walking, running, jumping, jogging etc are important activities in video surveillance. We contribute the use of Model based approach for activity recognition with the help of movement of legs only. Experimental results suggest that our method are able to recognize the human activities with a good accuracy rate and robust to shadows present in the videos.

  2. Patterned control of human locomotion

    Science.gov (United States)

    Lacquaniti, Francesco; Ivanenko, Yuri P; Zago, Myrka

    2012-01-01

    There is much experimental evidence for the existence of biomechanical constraints which simplify the problem of control of multi-segment movements. In addition, it has been hypothesized that movements are controlled using a small set of basic temporal components or activation patterns, shared by several different muscles and reflecting global kinematic and kinetic goals. Here we review recent studies on human locomotion showing that muscle activity is accounted for by a combination of few basic patterns, each one timed at a different phase of the gait cycle. Similar patterns are involved in walking and running at different speeds, walking forwards or backwards, and walking under different loading conditions. The corresponding weights of distribution to different muscles may change as a function of the condition, allowing highly flexible control. Biomechanical correlates of each activation pattern have been described, leading to the hypothesis that the co-ordination of limb and body segments arises from the coupling of neural oscillators between each other and with limb mechanical oscillators. Muscle activations need only intervene during limited time epochs to force intrinsic oscillations of the system when energy is lost. PMID:22411012

  3. Patterned control of human locomotion.

    Science.gov (United States)

    Lacquaniti, Francesco; Ivanenko, Yuri P; Zago, Myrka

    2012-05-15

    There is much experimental evidence for the existence of biomechanical constraints which simplify the problem of control of multi-segment movements. In addition, it has been hypothesized that movements are controlled using a small set of basic temporal components or activation patterns, shared by several different muscles and reflecting global kinematic and kinetic goals. Here we review recent studies on human locomotion showing that muscle activity is accounted for by a combination of few basic patterns, each one timed at a different phase of the gait cycle. Similar patterns are involved in walking and running at different speeds, walking forwards or backwards, and walking under different loading conditions. The corresponding weights of distribution to different muscles may change as a function of the condition, allowing highly flexible control. Biomechanical correlates of each activation pattern have been described, leading to the hypothesis that the co-ordination of limb and body segments arises from the coupling of neural oscillators between each other and with limb mechanical oscillators. Muscle activations need only intervene during limited time epochs to force intrinsic oscillations of the system when energy is lost.

  4. Influence of human activity patterns on epidemiology of plague in Western Usambara Mountains, Tanzania.

    Science.gov (United States)

    Hubeau, Marianne; Gulinck, Hubert; Kimaro, Didas N; Hieronimo, Proches; Meliyo, Joel

    2014-07-01

    Human plague has been a recurring public health threat in some villages in the Western Usambara Mountains, Tanzania, in the period between 1980 and 2004. Despite intensive past biological and medical research, the reasons for the plague outbreaks in the same set of villages remain unknown. Plague research needs to broaden its scope and formulate new hypotheses. This study was carried out to establish relationships between the nature and the spatial extent of selected human activities on one hand, and the reported plague cases on the other hand. Three outdoor activities namely, fetching water, collecting firewood and going to the market, were selected. Through enquiries the activity patterns related to these activities were mapped in 14 villages. Standard deviation ellipses represent the extent of action spaces. Over 130 activity types were identified and listed. Of these, fetching water, collecting firewood and going to the market were used for further analysis. The results indicate a significant correlation between the plague frequency and the size of these action spaces. Different characteristics of land use and related human activities were correlated with the plague frequency at village and hamlet levels. Significant relationships were found between plague frequency and specific sources of firewood and water, and specific market places.

  5. Cascading walks model for human mobility patterns.

    Science.gov (United States)

    Han, Xiao-Pu; Wang, Xiang-Wen; Yan, Xiao-Yong; Wang, Bing-Hong

    2015-01-01

    Uncovering the mechanism behind the scaling laws and series of anomalies in human trajectories is of fundamental significance in understanding many spatio-temporal phenomena. Recently, several models, e.g. the explorations-returns model (Song et al., 2010) and the radiation model for intercity travels (Simini et al., 2012), have been proposed to study the origin of these anomalies and the prediction of human movements. However, an agent-based model that could reproduce most of empirical observations without priori is still lacking. In this paper, considering the empirical findings on the correlations of move-lengths and staying time in human trips, we propose a simple model which is mainly based on the cascading processes to capture the human mobility patterns. In this model, each long-range movement activates series of shorter movements that are organized by the law of localized explorations and preferential returns in prescribed region. Based on the numerical simulations and analytical studies, we show more than five statistical characters that are well consistent with the empirical observations, including several types of scaling anomalies and the ultraslow diffusion properties, implying the cascading processes associated with the localized exploration and preferential returns are indeed a key in the understanding of human mobility activities. Moreover, the model shows both of the diverse individual mobility and aggregated scaling displacements, bridging the micro and macro patterns in human mobility. In summary, our model successfully explains most of empirical findings and provides deeper understandings on the emergence of human mobility patterns.

  6. Optimizing human activity patterns using global sensitivity analysis.

    Science.gov (United States)

    Fairchild, Geoffrey; Hickmann, Kyle S; Mniszewski, Susan M; Del Valle, Sara Y; Hyman, James M

    2014-12-01

    Implementing realistic activity patterns for a population is crucial for modeling, for example, disease spread, supply and demand, and disaster response. Using the dynamic activity simulation engine, DASim, we generate schedules for a population that capture regular (e.g., working, eating, and sleeping) and irregular activities (e.g., shopping or going to the doctor). We use the sample entropy (SampEn) statistic to quantify a schedule's regularity for a population. We show how to tune an activity's regularity by adjusting SampEn, thereby making it possible to realistically design activities when creating a schedule. The tuning process sets up a computationally intractable high-dimensional optimization problem. To reduce the computational demand, we use Bayesian Gaussian process regression to compute global sensitivity indices and identify the parameters that have the greatest effect on the variance of SampEn. We use the harmony search (HS) global optimization algorithm to locate global optima. Our results show that HS combined with global sensitivity analysis can efficiently tune the SampEn statistic with few search iterations. We demonstrate how global sensitivity analysis can guide statistical emulation and global optimization algorithms to efficiently tune activities and generate realistic activity patterns. Though our tuning methods are applied to dynamic activity schedule generation, they are general and represent a significant step in the direction of automated tuning and optimization of high-dimensional computer simulations.

  7. Correlations between human mobility and social interaction reveal general activity patterns.

    Science.gov (United States)

    Mollgaard, Anders; Lehmann, Sune; Mathiesen, Joachim

    2017-01-01

    A day in the life of a person involves a broad range of activities which are common across many people. Going beyond diurnal cycles, a central question is: to what extent do individuals act according to patterns shared across an entire population? Here we investigate the interplay between different activity types, namely communication, motion, and physical proximity by analyzing data collected from smartphones distributed among 638 individuals. We explore two central questions: Which underlying principles govern the formation of the activity patterns? Are the patterns specific to each individual or shared across the entire population? We find that statistics of the entire population allows us to successfully predict 71% of the activity and 85% of the inactivity involved in communication, mobility, and physical proximity. Surprisingly, individual level statistics only result in marginally better predictions, indicating that a majority of activity patterns are shared across our sample population. Finally, we predict short-term activity patterns using a generalized linear model, which suggests that a simple linear description might be sufficient to explain a wide range of actions, whether they be of social or of physical character.

  8. Relationship between BOLD amplitude and pattern classification of orientation-selective activity in the human visual cortex

    Science.gov (United States)

    Tong, Frank; Harrison, Stephenie A.; Dewey, John A.; Kamitani, Yukiyasu

    2012-01-01

    Orientation-selective responses can be decoded from fMRI activity patterns in the human visual cortex, using multivariate pattern analysis (MVPA). To what extent do these feature-selective activity patterns depend on the strength and quality of the sensory input, and might the reliability of these activity patterns be predicted by the gross amplitude of the stimulus-driven BOLD response? Observers viewed oriented gratings that varied in luminance contrast (4, 20 or 100%) or spatial frequency (0.25, 1.0 or 4.0 cpd). As predicted, activity patterns in early visual areas led to better discrimination of orientations presented at high than low contrast, with greater effects of contrast found in area V1 than in V3. A second experiment revealed generally better decoding of orientations at low or moderate as compared to high spatial frequencies. Interestingly however, V1 exhibited a relative advantage at discriminating high spatial frequency orientations, consistent with the finer scale of representation in the primary visual cortex. In both experiments, the reliability of these orientation-selective activity patterns was well predicted by the average BOLD amplitude in each region of interest, as indicated by correlation analyses, as well as decoding applied to a simple model of voxel responses to simulated orientation columns. Moreover, individual differences in decoding accuracy could be predicted by the signal-to-noise ratio of an individual's BOLD response. Our results indicate that decoding accuracy can be well predicted by incorporating the amplitude of the BOLD response into simple simulation models of cortical selectivity; such models could prove useful in future applications of fMRI pattern classification. PMID:22917989

  9. Dynamic response and transfer function of social systems: A neuro-inspired model of collective human activity patterns.

    Science.gov (United States)

    Lymperopoulos, Ilias N

    2017-10-01

    The interaction of social networks with the external environment gives rise to non-stationary activity patterns reflecting the temporal structure and strength of exogenous influences that drive social dynamical processes far from an equilibrium state. Following a neuro-inspired approach, based on the dynamics of a passive neuronal membrane, and the firing rate dynamics of single neurons and neuronal populations, we build a state-of-the-art model of the collective social response to exogenous interventions. In this regard, we analyze online activity patterns with a view to determining the transfer function of social systems, that is, the dynamic relationship between external influences and the resulting activity. To this end, first we estimate the impulse response (Green's function) of collective activity, and then we show that the convolution of the impulse response with a time-varying external influence field accurately reproduces empirical activity patterns. To capture the dynamics of collective activity when the generating process is in a state of statistical equilibrium, we incorporate into the model a noisy input convolved with the impulse response function, thus precisely reproducing the fluctuations of stationary collective activity around a resting value. The outstanding goodness-of-fit of the model results to empirical observations, indicates that the model explains human activity patterns generated by time-dependent external influences in various socio-economic contexts. The proposed model can be used for inferring the temporal structure and strength of external influences, as well as the inertia of collective social activity. Furthermore, it can potentially predict social activity patterns. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Human activity recognition and prediction

    CERN Document Server

    2016-01-01

    This book provides a unique view of human activity recognition, especially fine-grained human activity structure learning, human-interaction recognition, RGB-D data based action recognition, temporal decomposition, and causality learning in unconstrained human activity videos. The techniques discussed give readers tools that provide a significant improvement over existing methodologies of video content understanding by taking advantage of activity recognition. It links multiple popular research fields in computer vision, machine learning, human-centered computing, human-computer interaction, image classification, and pattern recognition. In addition, the book includes several key chapters covering multiple emerging topics in the field. Contributed by top experts and practitioners, the chapters present key topics from different angles and blend both methodology and application, composing a solid overview of the human activity recognition techniques. .

  11. Geographical patterns of the standing and active human gut microbiome in health and IBD.

    Science.gov (United States)

    Rehman, Ateequr; Rausch, Philipp; Wang, Jun; Skieceviciene, Jurgita; Kiudelis, Gediminas; Bhagalia, Ketan; Amarapurkar, Deepak; Kupcinskas, Limas; Schreiber, Stefan; Rosenstiel, Philip; Baines, John F; Ott, Stephan

    2016-02-01

    A global increase of IBD has been reported, especially in countries that previously had low incidence rates. Also, the knowledge of the human gut microbiome is steadily increasing, however, limited information regarding its variation on a global scale is available. In the light of the microbial involvement in IBDs, we aimed to (1) identify shared and distinct IBD-associated mucosal microbiota patterns from different geographical regions including Europe (Germany, Lithuania) and South Asia (India) and (2) determine whether profiling based on 16S rRNA transcripts provides additional resolution, both of which may hold important clinical relevance. In this study, we analyse a set of 89 mucosal biopsies sampled from individuals of German, Lithuanian and Indian origins, using bacterial community profiling of a roughly equal number of healthy controls, patients with Crohn's disease and UC from each location, and analyse 16S rDNA and rRNA as proxies for standing and active microbial community structure, respectively. We find pronounced population-specific as well as general disease patterns in the major phyla and patterns of diversity, which differ between the standing and active communities. The geographical origin of samples dominates the patterns of β diversity with locally restricted disease clusters and more pronounced effects in the active microbial communities. However, two genera belonging to the Clostridium leptum subgroup, Faecalibacteria and Papillibacter, display consistent patterns with respect to disease status and may thus serve as reliable 'microbiomarkers'. These analyses reveal important interactions of patients' geographical origin and disease in the interpretation of disease-associated changes in microbial communities and highlight the added value of analysing communities on both the 16S rRNA gene (DNA) and transcript (RNA) level. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go

  12. Correlations between human mobility and social interaction reveal general activity patterns

    DEFF Research Database (Denmark)

    Mollgaard, Anders; Jørgensen, Sune Lehmann; Mathiesen, Joachim

    2017-01-01

    activity types, namely communication, motion, and physical proximity by analyzing data collected from smartphones distributed among 638 individuals. We explore two central questions: Which underlying principles govern the formation of the activity patterns? Are the patterns specific to each individual...... or shared across the entire population? We find that statistics of the entire population allows us to successfully predict 71% of the activity and 85% of the inactivity involved in communication, mobility, and physical proximity. Surprisingly, individual level statistics only result in marginally better...... they be of social or of physical character....

  13. A Pattern Mining Approach to Sensor-based Human Activity Recognition

    DEFF Research Database (Denmark)

    Gu, Tao; Wang, Liang; Wu, Zhanqing

    2011-01-01

    Recognizing human activities from sensor readings has recently attracted much research interest in pervasive computing due to its potential in many applications such as assistive living and healthcare. This task is particularly challenging because human activities are often performed in not only...

  14. Estimating repetitive spatiotemporal patterns from resting-state brain activity data.

    Science.gov (United States)

    Takeda, Yusuke; Hiroe, Nobuo; Yamashita, Okito; Sato, Masa-Aki

    2016-06-01

    Repetitive spatiotemporal patterns in spontaneous brain activities have been widely examined in non-human studies. These studies have reported that such patterns reflect past experiences embedded in neural circuits. In human magnetoencephalography (MEG) and electroencephalography (EEG) studies, however, spatiotemporal patterns in resting-state brain activities have not been extensively examined. This is because estimating spatiotemporal patterns from resting-state MEG/EEG data is difficult due to their unknown onsets. Here, we propose a method to estimate repetitive spatiotemporal patterns from resting-state brain activity data, including MEG/EEG. Without the information of onsets, the proposed method can estimate several spatiotemporal patterns, even if they are overlapping. We verified the performance of the method by detailed simulation tests. Furthermore, we examined whether the proposed method could estimate the visual evoked magnetic fields (VEFs) without using stimulus onset information. The proposed method successfully detected the stimulus onsets and estimated the VEFs, implying the applicability of this method to real MEG data. The proposed method was applied to resting-state functional magnetic resonance imaging (fMRI) data and MEG data. The results revealed informative spatiotemporal patterns representing consecutive brain activities that dynamically change with time. Using this method, it is possible to reveal discrete events spontaneously occurring in our brains, such as memory retrieval. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Impact of Bursty Human Activity Patterns on the Popularity of Online Content

    Directory of Open Access Journals (Sweden)

    Qiang Yan

    2012-01-01

    Full Text Available The dynamics of online content popularity has attracted more and more researches in recent years. In this paper, we provide a quantitative, temporal analysis about the dynamics of online content popularity in a massive system: Sina Microblog. We use time-stamped data to investigate the impact of bursty human comment patterns on the popularity of online microblog news. Statistical results indicate that the number of news and comments exhibits an exponential growth. The strength of forwarding and comment is characterized by bursts, displaying fat-tailed distribution. In order to characterize the dynamics of popularity, we explore the distribution of the time interval Δt between consecutive comment bursts and find that it also follows a power-law. Bursty patterns of human comment are responsible for the power-law decay of popularity. These results are well supported by both the theoretical analysis and empirical data.

  16. Human activity spaces and plague risks in three contrasting ...

    African Journals Online (AJOL)

    Since 1980 plague has been a human threat in the Western Usambara Mountains in Tanzania. However, the spatial-temporal pattern of plague occurrence remains poorly understood. The main objective of this study was to gain understanding of human activity patterns in relation to spatial distribution of fleas in Lushoto ...

  17. Human activities affecting trace gases and climate

    International Nuclear Information System (INIS)

    Braatz, B.; Ebert, C.

    1990-01-01

    The Earth's climate has been in a constant state of change throughout geologic time due to natural perturbations in the global geobiosphere. However, various human activities have the potential to cause future global warming over a relatively short amount of time. These activities, which affect the Earth's climate by altering the concentrations of trace gases in the atmosphere, include energy consumption, particularly fossil-fuel consumption; industrial processes (production and use of chlorofluorocarbons, halons, and chlorocarbons, landfilling of wastes, and cement manufacture); changes in land use patterns, particularly deforestation and biomass burning; and agricultural practices (waste burning, fertilizer usage, rice production, and animal husbandry). Population growth is an important underlying factor affecting the level of growth in each activity. This paper describes how the human activities listed above contribute to atmospheric change, the current pattern of each activity, and how levels of each activity have changed since the early part of this century

  18. Brain Activity and Human Unilateral Chewing

    Science.gov (United States)

    Quintero, A.; Ichesco, E.; Myers, C.; Schutt, R.; Gerstner, G.E.

    2012-01-01

    Brain mechanisms underlying mastication have been studied in non-human mammals but less so in humans. We used functional magnetic resonance imaging (fMRI) to evaluate brain activity in humans during gum chewing. Chewing was associated with activations in the cerebellum, motor cortex and caudate, cingulate, and brainstem. We also divided the 25-second chew-blocks into 5 segments of equal 5-second durations and evaluated activations within and between each of the 5 segments. This analysis revealed activation clusters unique to the initial segment, which may indicate brain regions involved with initiating chewing. Several clusters were uniquely activated during the last segment as well, which may represent brain regions involved with anticipatory or motor events associated with the end of the chew-block. In conclusion, this study provided evidence for specific brain areas associated with chewing in humans and demonstrated that brain activation patterns may dynamically change over the course of chewing sequences. PMID:23103631

  19. The relationship between landscape patterns and human-caused fire occurrence in Spain

    Energy Technology Data Exchange (ETDEWEB)

    Castafreda-Aumedes, S.; Garcia-Martin, A.; Vega-Garcia, C.

    2013-05-01

    Aim of study: Human settlements and activities have completely modified landscape structure in the Mediterranean region. Vegetation patterns show the interactions between human activities and natural processes on the territory, and allow understanding historical ecological processes and socioeconomic factors. The arrangement of land uses in the rural landscape can be perceived as a proxy for human activities that often lead to the use, and escape, of fire, the most important disturbance in our forest landscapes. In this context, we tried to predict human-caused fire occurrence in a 5-year period by quantifying landscape patterns. Area of study: This study analyses the Spanish territory included in the Iberian Peninsula and Balearic Islands (497,166 km{sup 2}). Material and Methods: We evaluated spatial pattern applying a set of commonly used landscape ecology metrics to landscape windows of 10x10 sq km (4751 units in the UTM grid) overlaid on the Forest Map of Spain, MFE200. Main results: The best logistic regression model obtained included Shannon's Diversity Index, Mean Patch Edge and Mean Shape Index as explicative variables and the global percentage of correct predictions was 66.3 %. Research highlights: Our results suggested that the highest probability of fire occurrence at that time was associated with areas with a greater diversity of land uses and with more compact patches with fewer edges. (Author) 58 refs.

  20. Immediate effect of occlusal contact pattern in lateral jaw position on the EMG activity in jaw-elevator muscles in humans.

    Science.gov (United States)

    Baba, K; Yugami, K; Akishige, S; Ai, M

    2000-01-01

    The aim of this study was to investigate the effect of experimental alterations of nonworking-side occlusal contacts on jaw-elevator muscle activity. Individual devices were fabricated to simulate various lateral occlusal relationships. Twelve human subjects were asked to carry out submaximal lateral clenching, and electromyographic (EMG) activity of the masseter and anterior and posterior temporalis muscles was measured. Clenching in a lateral mandibular position under natural conditions induced an activity pattern with a clear dominance of the anterior and posterior temporalis muscles on the working side. Working-side dominance in the anterior temporalis was reduced moderately when an experimental nonworking-side occlusal contact was added. Dominance decreased dramatically when an experimental nonworking-side interference was added. The working-side activity in the posterior temporalis was also reduced dramatically by an experimental nonworking-side interference, but not by a nonworking-side occlusal contact. None of the experimental contact patterns had a significant effect on the masseter activity. These results suggest that the nonworking-side occlusal contacts have a significant effect on clenching-induced temporalis muscle activity.

  1. Mining Emerging Patterns for Recognizing Activities of Multiple Users in Pervasive Computing

    DEFF Research Database (Denmark)

    Gu, Tao; Wu, Zhanqing; Wang, Liang

    2009-01-01

    Understanding and recognizing human activities from sensor readings is an important task in pervasive computing. Existing work on activity recognition mainly focuses on recognizing activities for a single user in a smart home environment. However, in real life, there are often multiple inhabitants...... activity models, and propose an Emerging Pattern based Multi-user Activity Recognizer (epMAR) to recognize both single-user and multiuser activities. We conduct our empirical studies by collecting real-world activity traces done by two volunteers over a period of two weeks in a smart home environment...... sensor readings in a home environment, and propose a novel pattern mining approach to recognize both single-user and multi-user activities in a unified solution. We exploit Emerging Pattern – a type of knowledge pattern that describes significant changes between classes of data – for constructing our...

  2. Association of PM2.5 pollution with the pattern of human activity: A case study of a developed city in eastern China.

    Science.gov (United States)

    Bao, Chengzhen; Chai, Pengfei; Lin, Hongbo; Zhang, Zhenyu; Ye, Zhenhua; Gu, Mengjia; Lu, Huaichu; Shen, Peng; Jin, Mingjuan; Wang, Jianbing; Chen, Kun

    2016-12-01

    Recently, air pollution has attracted a substantial amount of attention in China, which can be influenced by a variety of factors, but the association between air pollution and human activity is not quite clear. Based on real-time online data (January 1, 2014, to December 31, 2014) of air pollution and meteorology reported by official sites, and demographic, economic, and environmental reform data in a statistical yearbook, the influences of meteorological factors (temperature, relative humidity, precipitation intensity, and wind force) and human activities on PM 2.5 pollution were explored. After correlation analysis, logistic regression analysis, and a nonparametric test, weak negative correlations between temperature and PM 2.5 pollution were found. In most cases, festival and morning peak hours were protection and risk factors of PM 2.5 pollution, respectively. In addition, government actions, such as an afforestation project and increasing financial expenditure for energy saving and environmental protection, could greatly contribute to alleviating pollution of PM 2.5 . The findings could help officials formulate effective laws and regulations, and then PM 2.5 pollution related to the pattern of human activity would be ameliorated. Most of the time, festival and morning peak hours are protection and risk factors for PM 2.5 pollution, respectively. Increasing the percentage of afforestation area and financial expenditure for energy saving and environmental protection could significantly reduce PM 2.5 pollution. The findings can help officials formulate effective laws and regulations, and then PM 2.5 pollution related to the pattern of human activity, especially government action, will be ameliorated.

  3. It's about time: a comparison of Canadian and American time-activity patterns.

    Science.gov (United States)

    Leech, Judith A; Nelson, William C; Burnett, Richard T; Aaron, Shawn; Raizenne, Mark E

    2002-11-01

    This study compares two North American time-activity data bases: the National Human Activity Pattern Survey (NHAPS) of 9386 interviewees in 1992-1994 in the continental USA with the Canadian Human Activity Pattern Survey (CHAPS) of 2381 interviewees in 1996-1997 in four major Canadian cities. Identical surveys and methodology were used to collect this data: random sample telephone selection within the identified telephone exchanges, computer-assisted telephone interviews, overselection of children and weekends in the 24-h recall diary and the same interviewers. Very similar response rates were obtained: 63% (NHAPS) and 64.5% (CHAPS). Results of comparisons by age within major activity and location groups suggest activity and location patterns are very similar (most differences being less than 1% or 14 min in a 24-h day) with the exception of seasonal differences. Canadians spend less time outdoors in winter and less time indoors in summer than their U.S. counterparts. When exposure assessments use time of year or outdoor/indoor exposure gradients, these differences may result in significant differences in exposure assessments. Otherwise, the 24-h time activity patterns of North Americans are remarkably similar and use of the combined data set for some exposure assessments may be feasible.

  4. An introduction to the indirect exposure assessment approach: modeling human exposure using microenvironmental measurements and the recent National Human Activity Pattern Survey.

    Science.gov (United States)

    Klepeis, N E

    1999-01-01

    Indirect exposure approaches offer a feasible and accurate method for estimating population exposures to indoor pollutants, including environmental tobacco smoke (ETS). In an effort to make the indirect exposure assessment approach more accessible to people in the health and risk assessment fields, this paper provides examples using real data from (italic>a(/italic>) a week-long personal carbon monoxide monitoring survey conducted by the author; and (italic>b(/italic>) the 1992 to 1994 National Human Activity Pattern Survey (NHAPS) for the United States. The indirect approach uses measurements of exposures in specific microenvironments (e.g., homes, bars, offices), validated microenvironmental models (based on the mass balance equation), and human activity pattern data obtained from questionnaires to predict frequency distributions of exposure for entire populations. This approach requires fewer resources than the direct approach to exposure assessment, for which the distribution of monitors to a representative sample of a given population is necessary. In the indirect exposure assessment approach, average microenvironmental concentrations are multiplied by the total time spent in each microenvironment to give total integrated exposure. By assuming that the concentrations encountered in each of 10 location categories are the same for different members of the U.S. population (i.e., the NHAPS respondents), the hypothetical contribution that ETS makes to the average 24-hr respirable suspended particle exposure for Americans working their main job is calculated in this paper to be 18 microg/m3. This article is an illustrative review and does not contain an actual exposure assessment or model validation. Images Figure 3 Figure 4 PMID:10350522

  5. Micro-patterned graphene-based sensing skins for human physiological monitoring

    Science.gov (United States)

    Wang, Long; Loh, Kenneth J.; Chiang, Wei-Hung; Manna, Kausik

    2018-03-01

    Ultrathin, flexible, conformal, and skin-like electronic transducers are emerging as promising candidates for noninvasive and nonintrusive human health monitoring. In this work, a wearable sensing membrane is developed by patterning a graphene-based solution onto ultrathin medical tape, which can then be attached to the skin for monitoring human physiological parameters and physical activity. Here, the sensor is validated for monitoring finger bending/movements and for recognizing hand motion patterns, thereby demonstrating its future potential for evaluating athletic performance, physical therapy, and designing next-generation human-machine interfaces. Furthermore, this study also quantifies the sensor’s ability to monitor eye blinking and radial pulse in real-time, which can find broader applications for the healthcare sector. Overall, the printed graphene-based sensing skin is highly conformable, flexible, lightweight, nonintrusive, mechanically robust, and is characterized by high strain sensitivity.

  6. Reconstruction of human brain spontaneous activity based on frequency-pattern analysis of magnetoencephalography data

    Directory of Open Access Journals (Sweden)

    Rodolfo R Llinas

    2015-10-01

    Full Text Available A new method for the analysis and localization of brain activity has been developed, based on multichannel magnetic field recordings, over minutes, superimposed on the MRI of the individual. Here, a high resolution Fourier Transform is obtained over the entire recording period, leading to a detailed multi-frequency spectrum. Further analysis implements a total decomposition of the frequency components into functionally invariant entities, each having an invariant field pattern localizable in recording space. The method, addressed as functional tomography, makes it possible to find the distribution of magnetic field sources in space. Here, the method is applied to the analysis of simulated data, to oscillating signals activating a physical current dipoles phantom, and to recordings of spontaneous brain activity in ten healthy adults. In the analysis of simulated data, 61 dipoles are localized with 0.7 mm precision. Concerning the physical phantom the method is able to localize three simultaneously activated current dipoles with 1 mm precision. Spatial resolution 3 mm was attained when localizing spontaneous alpha rhythm activity in ten healthy adults, where the alpha peak was specified for each subject individually. Co-registration of the functional tomograms with each subject’s head MRI localized alpha range activity to the occipital and/or posterior parietal brain region. This is the first application of this new functional tomography to human brain activity. The method successfully provides an overall view of brain electrical activity, a detailed spectral description and, combined with MRI, the localization of sources in anatomical brain space.

  7. Reconstruction of human brain spontaneous activity based on frequency-pattern analysis of magnetoencephalography data

    Science.gov (United States)

    Llinás, Rodolfo R.; Ustinin, Mikhail N.; Rykunov, Stanislav D.; Boyko, Anna I.; Sychev, Vyacheslav V.; Walton, Kerry D.; Rabello, Guilherme M.; Garcia, John

    2015-01-01

    A new method for the analysis and localization of brain activity has been developed, based on multichannel magnetic field recordings, over minutes, superimposed on the MRI of the individual. Here, a high resolution Fourier Transform is obtained over the entire recording period, leading to a detailed multi-frequency spectrum. Further analysis implements a total decomposition of the frequency components into functionally invariant entities, each having an invariant field pattern localizable in recording space. The method, addressed as functional tomography, makes it possible to find the distribution of magnetic field sources in space. Here, the method is applied to the analysis of simulated data, to oscillating signals activating a physical current dipoles phantom, and to recordings of spontaneous brain activity in 10 healthy adults. In the analysis of simulated data, 61 dipoles are localized with 0.7 mm precision. Concerning the physical phantom the method is able to localize three simultaneously activated current dipoles with 1 mm precision. Spatial resolution 3 mm was attained when localizing spontaneous alpha rhythm activity in 10 healthy adults, where the alpha peak was specified for each subject individually. Co-registration of the functional tomograms with each subject's head MRI localized alpha range activity to the occipital and/or posterior parietal brain region. This is the first application of this new functional tomography to human brain activity. The method successfully provides an overall view of brain electrical activity, a detailed spectral description and, combined with MRI, the localization of sources in anatomical brain space. PMID:26528119

  8. Understanding Activation Patterns in Shared Circuits: Toward a Value Driven Model

    Directory of Open Access Journals (Sweden)

    Lisa Aziz-Zadeh

    2018-05-01

    Full Text Available Over the past decade many studies indicate that we utilize our own motor system to understand the actions of other people. This mirror neuron system (MNS has been proposed to be involved in social cognition and motor learning. However, conflicting findings regarding the underlying mechanisms that drive these shared circuits make it difficult to decipher a common model of their function. Here we propose adapting a “value-driven” model to explain discrepancies in the human mirror system literature and to incorporate this model with existing models. We will use this model to explain discrepant activation patterns in multiple shared circuits in the human data, such that a unified model may explain reported activation patterns from previous studies as a function of value.

  9. The landscape pattern characteristics of coastal wetlands in Jiaozhou Bay under the impact of human activities.

    Science.gov (United States)

    Gu, Dongqi; Zhang, Yuanzhi; Fu, Jun; Zhang, Xuliang

    2007-01-01

    In this study, we interpreted coastal wetland types from an ASTER satellite image in 2002, and then compared the results with the land-use status of coastal wetlands in 1952 to determine the wetland loss and degradation around Jiaozhou Bay. Seven types of wetland landscape were classified, namely: shallow open water, inter-tidal flats, estuarine water, brackish marshes, salt ponds, fishery ponds and ports. Several landscape pattern indices were analysed: the results indicate that the coastal wetlands have been seriously degraded. More and more natural wetlands have been transformed into artificial wetlands, which covered about 33.7% of the total wetlands in 2002. In addition, we used a defined model to assess the impacts of human activities on coastal wetlands. The results obtained show that the coastal wetlands of Jiaozhou Bay have suffered severe human disturbance. Effective coastal management and control is therefore needed to solve the issues of the coastal wetland loss and degradation existing in this area.

  10. Sherlock Holmes and the Curious Case of the Human Locomotor Central Pattern Generator.

    Science.gov (United States)

    Klarner, Taryn; Zehr, E Paul

    2018-03-14

    Evidence first described in reduced animal models over 100 years ago led to deductions about the control of locomotion through spinal locomotor central pattern generating (CPG) networks. These discoveries in nature were contemporaneous with another form of deductive reasoning found in popular culture-that of Arthur Conan Doyle's detective "Sherlock Holmes". Since the invasive methods used in reduced non-human animal preparations are not amenable to study in humans, we are left instead with deducing from other measures and observations. Using the deductive reasoning approach of Sherlock Holmes as a metaphor for framing research into human CPGs, we speculate and weigh the evidence that should be observable in humans based on knowledge from other species. This review summarizes indirect inference to assess "observable evidence" of pattern generating activity which leads to the logical deduction of CPG contributions to arm and leg activity during locomotion in humans. The question of where a CPG may be housed in the human nervous system remains incompletely resolved at this time. Ongoing understanding, elaboration and application of functioning locomotor CPGs in humans is important for gait rehabilitation strategies in those with neurological injuries.

  11. Spatiotemporal Patterns of Urban Human Mobility

    Science.gov (United States)

    Hasan, Samiul; Schneider, Christian M.; Ukkusuri, Satish V.; González, Marta C.

    2013-04-01

    The modeling of human mobility is adopting new directions due to the increasing availability of big data sources from human activity. These sources enclose digital information about daily visited locations of a large number of individuals. Examples of these data include: mobile phone calls, credit card transactions, bank notes dispersal, check-ins in internet applications, among several others. In this study, we consider the data obtained from smart subway fare card transactions to characterize and model urban mobility patterns. We present a simple mobility model for predicting peoples' visited locations using the popularity of places in the city as an interaction parameter between different individuals. This ingredient is sufficient to reproduce several characteristics of the observed travel behavior such as: the number of trips between different locations in the city, the exploration of new places and the frequency of individual visits of a particular location. Moreover, we indicate the limitations of the proposed model and discuss open questions in the current state of the art statistical models of human mobility.

  12. Correlations between human mobility and social interaction reveal general activity patterns

    DEFF Research Database (Denmark)

    Mollgaard, Anders; Jørgensen, Sune Lehmann; Mathiesen, Joachim

    2017-01-01

    A day in the life of a person involves a broad range of activities which are common across many people. Going beyond diurnal cycles, a central question is: to what extent do individuals act according to patterns shared across an entire population? Here we investigate the interplay between differe...... they be of social or of physical character....

  13. Robust Indoor Human Activity Recognition Using Wireless Signals.

    Science.gov (United States)

    Wang, Yi; Jiang, Xinli; Cao, Rongyu; Wang, Xiyang

    2015-07-15

    Wireless signals-based activity detection and recognition technology may be complementary to the existing vision-based methods, especially under the circumstance of occlusions, viewpoint change, complex background, lighting condition change, and so on. This paper explores the properties of the channel state information (CSI) of Wi-Fi signals, and presents a robust indoor daily human activity recognition framework with only one pair of transmission points (TP) and access points (AP). First of all, some indoor human actions are selected as primitive actions forming a training set. Then, an online filtering method is designed to make actions' CSI curves smooth and allow them to contain enough pattern information. Each primitive action pattern can be segmented from the outliers of its multi-input multi-output (MIMO) signals by a proposed segmentation method. Lastly, in online activities recognition, by selecting proper features and Support Vector Machine (SVM) based multi-classification, activities constituted by primitive actions can be recognized insensitive to the locations, orientations, and speeds.

  14. Robust Indoor Human Activity Recognition Using Wireless Signals

    Directory of Open Access Journals (Sweden)

    Yi Wang

    2015-07-01

    Full Text Available Wireless signals–based activity detection and recognition technology may be complementary to the existing vision-based methods, especially under the circumstance of occlusions, viewpoint change, complex background, lighting condition change, and so on. This paper explores the properties of the channel state information (CSI of Wi-Fi signals, and presents a robust indoor daily human activity recognition framework with only one pair of transmission points (TP and access points (AP. First of all, some indoor human actions are selected as primitive actions forming a training set. Then, an online filtering method is designed to make actions’ CSI curves smooth and allow them to contain enough pattern information. Each primitive action pattern can be segmented from the outliers of its multi-input multi-output (MIMO signals by a proposed segmentation method. Lastly, in online activities recognition, by selecting proper features and Support Vector Machine (SVM based multi-classification, activities constituted by primitive actions can be recognized insensitive to the locations, orientations, and speeds.

  15. Activity Patterns and Pollution Exposure. A Case Study of Melbourne

    International Nuclear Information System (INIS)

    Marquez, L.; Smith, N.; Trinidad, G.; Guo, J.

    2001-01-01

    In recent times there has been increasing interest in modelling policies to limit impacts of air pollution due to motor vehicles. Impacts of air pollution on human health and comfort depend on the relationship between the distribution of pollutants and the spatial distribution of the urban population. As emissions, weather conditions and the location of the population vary with time of day, day of month and season of the year, the problem is complex. Travel demand models with activity-based approaches and a focus on the overall structure of activity/travel relations, not only spatially, but temporally can make a valuable contribution. They are often used to estimate emissions due to the travel patterns of city populations but may equally be used to provide distributions of urban populations during the day. A case study for Melbourne, Australia demonstrates the use of activity data in the estimation of population exposure. Additionally the study shows some marked differences in activity between seasons and even greater the differences in effect of that activity on exposure to air pollution. Numbers of cities will have seasonal pollutant patterns similar to Melbourne and others will benefit from exploring such patterns

  16. Pneumatic Muscles Actuated Lower-Limb Orthosis Model Verification with Actual Human Muscle Activation Patterns

    Directory of Open Access Journals (Sweden)

    Dzahir M.A.M

    2017-01-01

    Full Text Available A review study was conducted on existing lower-limb orthosis systems for rehabilitation which implemented pneumatic muscle type of actuators with the aim to clarify the current and on-going research in this field. The implementation of pneumatic artificial muscle will play an important role for the development of the advanced robotic system. In this research a derivation model for the antagonistic mono- and bi-articular muscles using pneumatic artificial muscles of a lower limb orthosis will be verified with actual human’s muscle activities models. A healthy and young male 29 years old subject with height 174cm and weight 68kg was used as a test subject. Two mono-articular muscles Vastus Medialis (VM and Vastus Lateralis (VL were selected to verify the mono-articular muscle models and muscle synergy between anterior muscles. Two biarticular muscles Rectus Femoris (RF and Bicep Femoris (BF were selected to verify the bi-articular muscle models and muscle co-contraction between anterior-posterior muscles. The test was carried out on a treadmill with a speed of 4.0 km/h, which approximately around 1.25 m/s for completing one cycle of walking motion. The data was collected for about one minute on a treadmill and 20 complete cycles of walking motion were successfully recorded. For the evaluations, the mathematical model obtained from the derivation and the actual human muscle activation patterns obtained using the surface electromyography (sEMG system were compared and analysed. The results shown that, high correlation values ranging from 0.83 up to 0.93 were obtained in between the derivation model and the actual human muscle’s model for both mono- and biarticular muscles. As a conclusion, based on the verification with the sEMG muscle activities data and its correlation values, the proposed derivation models of the antagonistic mono- and bi-articular muscles were suitable to simulate and controls the pneumatic muscles actuated lower limb

  17. Sleep/wake firing patterns of human genioglossus motor units.

    Science.gov (United States)

    Bailey, E Fiona; Fridel, Keith W; Rice, Amber D

    2007-12-01

    Although studies of the principal tongue protrudor muscle genioglossus (GG) suggest that whole muscle GG electromyographic (EMG) activities are preserved in nonrapid eye movement (NREM) sleep, it is unclear what influence sleep exerts on individual GG motor unit (MU) activities. We characterized the firing patterns of human GG MUs in wakefulness and NREM sleep with the aim of determining 1) whether the range of MU discharge patterns evident in wakefulness is preserved in sleep and 2) what effect the removal of the "wakefulness" input has on the magnitude of the respiratory modulation of MU activities. Microelectrodes inserted into the extrinsic tongue protrudor muscle, the genioglossus, were used to follow the discharge of single MUs. We categorized MU activities on the basis of the temporal relationship between the spike train and the respiration cycle and quantified the magnitude of the respiratory modulation of each MU using the eta (eta(2)) index, in wakefulness and sleep. The majority of MUs exhibited subtle increases or decreases in respiratory modulation but were otherwise unaffected by NREM sleep. In contrast, 30% of MUs exhibited marked sleep-associated changes in discharge frequency and respiratory modulation. We suggest that GG MUs should not be considered exclusively tonic or phasic; rather, the discharge pattern appears to be a flexible feature of GG activities in healthy young adults. Whether such flexibility is important in the response to changes in the chemical and/or mechanical environment and whether it is preserved as a function of aging or in individuals with obstructive sleep apnea are critical questions for future research.

  18. Pattern activation/recognition theory of mind.

    Science.gov (United States)

    du Castel, Bertrand

    2015-01-01

    In his 2012 book How to Create a Mind, Ray Kurzweil defines a "Pattern Recognition Theory of Mind" that states that the brain uses millions of pattern recognizers, plus modules to check, organize, and augment them. In this article, I further the theory to go beyond pattern recognition and include also pattern activation, thus encompassing both sensory and motor functions. In addition, I treat checking, organizing, and augmentation as patterns of patterns instead of separate modules, therefore handling them the same as patterns in general. Henceforth I put forward a unified theory I call "Pattern Activation/Recognition Theory of Mind." While the original theory was based on hierarchical hidden Markov models, this evolution is based on their precursor: stochastic grammars. I demonstrate that a class of self-describing stochastic grammars allows for unifying pattern activation, recognition, organization, consistency checking, metaphor, and learning, into a single theory that expresses patterns throughout. I have implemented the model as a probabilistic programming language specialized in activation/recognition grammatical and neural operations. I use this prototype to compute and present diagrams for each stochastic grammar and corresponding neural circuit. I then discuss the theory as it relates to artificial network developments, common coding, neural reuse, and unity of mind, concluding by proposing potential paths to validation.

  19. Human Brain Activity Patterns beyond the Isoelectric Line of Extreme Deep Coma

    Science.gov (United States)

    Kroeger, Daniel; Florea, Bogdan; Amzica, Florin

    2013-01-01

    The electroencephalogram (EEG) reflects brain electrical activity. A flat (isoelectric) EEG, which is usually recorded during very deep coma, is considered to be a turning point between a living brain and a deceased brain. Therefore the isoelectric EEG constitutes, together with evidence of irreversible structural brain damage, one of the criteria for the assessment of brain death. In this study we use EEG recordings for humans on the one hand, and on the other hand double simultaneous intracellular recordings in the cortex and hippocampus, combined with EEG, in cats. They serve to demonstrate that a novel brain phenomenon is observable in both humans and animals during coma that is deeper than the one reflected by the isoelectric EEG, and that this state is characterized by brain activity generated within the hippocampal formation. This new state was induced either by medication applied to postanoxic coma (in human) or by application of high doses of anesthesia (isoflurane in animals) leading to an EEG activity of quasi-rhythmic sharp waves which henceforth we propose to call ν-complexes (Nu-complexes). Using simultaneous intracellular recordings in vivo in the cortex and hippocampus (especially in the CA3 region) we demonstrate that ν-complexes arise in the hippocampus and are subsequently transmitted to the cortex. The genesis of a hippocampal ν-complex depends upon another hippocampal activity, known as ripple activity, which is not overtly detectable at the cortical level. Based on our observations, we propose a scenario of how self-oscillations in hippocampal neurons can lead to a whole brain phenomenon during coma. PMID:24058669

  20. Velocity-curvature patterns limit human-robot physical interaction.

    Science.gov (United States)

    Maurice, Pauline; Huber, Meghan E; Hogan, Neville; Sternad, Dagmar

    2018-01-01

    Physical human-robot collaboration is becoming more common, both in industrial and service robotics. Cooperative execution of a task requires intuitive and efficient interaction between both actors. For humans, this means being able to predict and adapt to robot movements. Given that natural human movement exhibits several robust features, we examined whether human-robot physical interaction is facilitated when these features are considered in robot control. The present study investigated how humans adapt to biological and non-biological velocity patterns in robot movements. Participants held the end-effector of a robot that traced an elliptic path with either biological (two-thirds power law) or non-biological velocity profiles. Participants were instructed to minimize the force applied on the robot end-effector. Results showed that the applied force was significantly lower when the robot moved with a biological velocity pattern. With extensive practice and enhanced feedback, participants were able to decrease their force when following a non-biological velocity pattern, but never reached forces below those obtained with the 2/3 power law profile. These results suggest that some robust features observed in natural human movements are also a strong preference in guided movements. Therefore, such features should be considered in human-robot physical collaboration.

  1. Pattern Recognition as a Human Centered non-Euclidean Problem

    NARCIS (Netherlands)

    Duin, R.P.W.

    2010-01-01

    Regularities in the world are human defined. Patterns in the observed phenomena are there because we define and recognize them as such. Automatic pattern recognition tries to bridge the gap between human judgment and measurements made by artificial sensors. This is done in two steps: representation

  2. Temporal components of the motor patterns expressed by the human spinal cord reflect foot kinematics.

    Science.gov (United States)

    Ivanenko, Yuri P; Grasso, Renato; Zago, Myrka; Molinari, Marco; Scivoletto, Giorgio; Castellano, Vincenzo; Macellari, Velio; Lacquaniti, Francesco

    2003-11-01

    What are the building blocks with which the human spinal cord constructs the motor patterns of locomotion? In principle, they could correspond to each individual activity pattern in dozens of different muscles. Alternatively, there could exist a small set of constituent temporal components that are common to all activation patterns and reflect global kinematic goals. To address this issue, we studied patients with spinal injury trained to step on a treadmill with body weight support. Patients learned to produce foot kinematics similar to that of healthy subjects but with activity patterns of individual muscles generally different from the control group. Hidden in the muscle patterns, we found a basic set of five temporal components, whose flexible combination accounted for the wide range of muscle patterns recorded in both controls and patients. Furthermore, two of the components were systematically related to foot kinematics across different stepping speeds and loading conditions. We suggest that the components are related to control signals output by spinal pattern generators, normally under the influence of descending and afferent inputs.

  3. Patterns recognition of electric brain activity using artificial neural networks

    Science.gov (United States)

    Musatov, V. Yu.; Pchelintseva, S. V.; Runnova, A. E.; Hramov, A. E.

    2017-04-01

    An approach for the recognition of various cognitive processes in the brain activity in the perception of ambiguous images. On the basis of developed theoretical background and the experimental data, we propose a new classification of oscillating patterns in the human EEG by using an artificial neural network approach. After learning of the artificial neural network reliably identified cube recognition processes, for example, left-handed or right-oriented Necker cube with different intensity of their edges, construct an artificial neural network based on Perceptron architecture and demonstrate its effectiveness in the pattern recognition of the EEG in the experimental.

  4. Visual image reconstruction from human brain activity: A modular decoding approach

    International Nuclear Information System (INIS)

    Miyawaki, Yoichi; Uchida, Hajime; Yamashita, Okito; Sato, Masa-aki; Kamitani, Yukiyasu; Morito, Yusuke; Tanabe, Hiroki C; Sadato, Norihiro

    2009-01-01

    Brain activity represents our perceptual experience. But the potential for reading out perceptual contents from human brain activity has not been fully explored. In this study, we demonstrate constraint-free reconstruction of visual images perceived by a subject, from the brain activity pattern. We reconstructed visual images by combining local image bases with multiple scales, whose contrasts were independently decoded from fMRI activity by automatically selecting relevant voxels and exploiting their correlated patterns. Binary-contrast, 10 x 10-patch images (2 100 possible states), were accurately reconstructed without any image prior by measuring brain activity only for several hundred random images. The results suggest that our approach provides an effective means to read out complex perceptual states from brain activity while discovering information representation in multi-voxel patterns.

  5. Soil Landscape Pattern Changes in Response to Rural Anthropogenic Activity across Tiaoxi Watershed, China

    Science.gov (United States)

    Xiao, Rui; Jiang, Diwei; Christakos, George; Fei, Xufeng; Wu, Jiaping

    2016-01-01

    Soil sealing (loss of soil resources due to extensive land covering for the purpose of house building, road construction etc.) and subsequent soil landscape pattern changes constitute typical environmental problems in many places worldwide. Previous studies concentrated on soil sealing in urbanized regions, whereas rural areas have not been given sufficient attention. Accordingly, this paper studies soil landscape pattern dynamics (i.e., landscape pattern changes in response to rural anthropogenic activities) in the Tiaoxi watershed (Zhejiang province, eastern China), in which surface sealing is by far the predominant component of human forcing with respect to environmental change. A novel approach of quantifying the impacts of rural anthropogenic activities on soil resources is presented. Specifically, quantitative relationships were derived between five soil landscape pattern metrics (patch density, edge density, shape index, Shannon’s diversity index and aggregation index) and three rural anthropogenic activity indicators (anthropogenic activity intensity, distance to towns, and distance to roads) at two landscape block scales (3 and 5 km) between 1985 and 2010. The results showed that the Tiaoxi watershed experienced extensive rural settlement expansion and high rates of soil sealing. Soil landscapes became more fragmented, more irregular, more isolated, and less diverse. Relationships between soil landscape pattern changes and rural anthropogenic activities differed with the scale (spatial and temporal) and variable considered. In particular, the anthropogenic activity intensity was found to be the most important indicator explaining social development intensity, whereas the other two proximity indicators had a significant impact at certain temporal interval. In combination with scale effects, spatial dependency (correlation) was shown to play a key role that should be carefully taken into consideration in any relevant environmental study. Overall, the

  6. The Canadian Human Activity Pattern Survey: report of methods and population surveyed.

    Science.gov (United States)

    Leech, J A; Wilby, K; McMullen, E; Laporte, K

    1996-01-01

    The assessment of health risk due to environmental contaminants depends upon accurate estimates of the distribution of population exposures. Exposure assessment, in turn, requires information on the time people spend in micro-environments and their activities during periods of exposure. This paper describes preliminary results including study methodology and population sampled in a large Canadian survey of time-activity patterns. A 24-hour diary recall survey was performed in 2381 households (representing a 65% response rate) to describe in detail the timing, location and activity pattern of one household member (the adult or child with the next birthday). Four cities (Toronto, Vancouver, Edmonton and Saint John, NB) and their suburbs were sampled by random-digit dialling over a nine-month period in 1994/1995. Supplemental questionnaires inquiring about sociodemographic information, house and household characteristics and potential exposure to toxins in the air and water were also administered. In general, the results show that respondents spend the majority of their time indoors (88.6%) with smaller proportions of time outdoors (6.1%) and in vehicles (5.3%). Children under the age of 12 spend more time both indoors and outdoors and less time in transit than do adults. The data from this study will be used to define more accurately the exposure of Canadians to a variety of toxins in exposure assessment models and to improve upon the accuracy of risk assessment for a variety of acute and chronic health effects known or suspected to be related to environmental exposures.

  7. Dusk to dawn activity patterns of anopheline mosquitoes in West Timor and Java, Indonesia.

    Science.gov (United States)

    Ndoen, Ermi; Wild, Clyde; Dale, Pat; Sipe, Neil; Dale, Mike

    2011-05-01

    Malaria is a serious health issue in Indonesia. We investigated the dusk to dawn anopheline mosquito activity patterns, host-seeking and resting locations in coastal plain, hilly and highland areas in West Timor and Java. Adult mosquitoes were captured landing on humans or resting in houses or animal barns. Data analyzed were: mosquito night-time activities; period of peak activity; night-time activity in specific periods of time and for mosquito resting locations. Eleven species were recorded; data were sparse for some species therefore detailed analyses were performed for four species only. In Java Anopheles vagus was common, with a bimodal pattern of high activity. In West Timor, its activity peaked around midnight. Other species with peak activity around the middle of the night were An. barbirostris and An. subpictus. Most species showed no biting and resting preference for indoors or outdoors, although An. barbirostris preferred indoors in West Timor, but outdoors in Java. An. aconitus and An. annularis preferred resting in human dwellings; An. subpictus and An. vagus preferred resting in animal barns. An. barbirostris preferred resting in human dwellings in West Timor and in animal barns in Java. The information is useful for planning the mosquito control aspect of malaria management. For example, where mosquito species have peak activity at night indoors, bednets and indoor residual spraying should reduce malaria risk, but where mosquitoes are most active outdoors, other options may be more effective.

  8. Understanding Spatiotemporal Patterns of Human Convergence and Divergence Using Mobile Phone Location Data

    Directory of Open Access Journals (Sweden)

    Xiping Yang

    2016-09-01

    Full Text Available Investigating human mobility patterns can help researchers and agencies understand the driving forces of human movement, with potential benefits for urban planning and traffic management. Recent advances in location-aware technologies have provided many new data sources (e.g., mobile phone and social media data for studying human space-time behavioral regularity. Although existing studies have utilized these new datasets to characterize human mobility patterns from various aspects, such as predicting human mobility and monitoring urban dynamics, few studies have focused on human convergence and divergence patterns within a city. This study aims to explore human spatial convergence and divergence and their evolutions over time using large-scale mobile phone location data. Using a dataset from Shenzhen, China, we developed a method to identify spatiotemporal patterns of human convergence and divergence. Eight distinct patterns were extracted, and the spatial distributions of these patterns are discussed in the context of urban functional regions. Thus, this study investigates urban human convergence and divergence patterns and their relationships with the urban functional environment, which is helpful for urban policy development, urban planning and traffic management.

  9. Patterning human neuronal networks on photolithographically engineered silicon dioxide substrates functionalized with glial analogues.

    Science.gov (United States)

    Hughes, Mark A; Brennan, Paul M; Bunting, Andrew S; Cameron, Katherine; Murray, Alan F; Shipston, Mike J

    2014-05-01

    Interfacing neurons with silicon semiconductors is a challenge being tackled through various bioengineering approaches. Such constructs inform our understanding of neuronal coding and learning and ultimately guide us toward creating intelligent neuroprostheses. A fundamental prerequisite is to dictate the spatial organization of neuronal cells. We sought to pattern neurons using photolithographically defined arrays of polymer parylene-C, activated with fetal calf serum. We used a purified human neuronal cell line [Lund human mesencephalic (LUHMES)] to establish whether neurons remain viable when isolated on-chip or whether they require a supporting cell substrate. When cultured in isolation, LUHMES neurons failed to pattern and did not show any morphological signs of differentiation. We therefore sought a cell type with which to prepattern parylene regions, hypothesizing that this cellular template would enable secondary neuronal adhesion and network formation. From a range of cell lines tested, human embryonal kidney (HEK) 293 cells patterned with highest accuracy. LUHMES neurons adhered to pre-established HEK 293 cell clusters and this coculture environment promoted morphological differentiation of neurons. Neurites extended between islands of adherent cell somata, creating an orthogonally arranged neuronal network. HEK 293 cells appear to fulfill a role analogous to glia, dictating cell adhesion, and generating an environment conducive to neuronal survival. We next replaced HEK 293 cells with slower growing glioma-derived precursors. These primary human cells patterned accurately on parylene and provided a similarly effective scaffold for neuronal adhesion. These findings advance the use of this microfabrication-compatible platform for neuronal patterning. Copyright © 2013 Wiley Periodicals, Inc.

  10. Delineating Spatial Patterns in Human Settlements Using VIIRS Nighttime Light Data: A Watershed-Based Partition Approach

    Directory of Open Access Journals (Sweden)

    Ting Ma

    2018-03-01

    Full Text Available As an informative proxy measure for a range of urbanization and socioeconomic variables, satellite-derived nighttime light data have been widely used to investigate diverse anthropogenic activities in human settlements over time and space from the regional to the national scale. With a higher spatial resolution and fewer over-glow and saturation effects, nighttime light data derived from the Visible Infrared Imaging Radiometer Suite (VIIRS instrument with day/night band (DNB, which is on the Suomi National Polar-Orbiting Partnership satellite (Suomi-NPP, may further improve our understanding of spatiotemporal dynamics and socioeconomic activities, particularly at the local scale. Capturing and identifying spatial patterns in human settlements from VIIRS images, however, is still challenging due to the lack of spatially explicit texture characteristics, which are usually crucial for general image classification methods. In this study, we propose a watershed-based partition approach by combining a second order exponential decay model for the spatial delineation of human settlements with VIIRS-derived nighttime light images. Our method spatially partitions the human settlement into five different types of sub-regions: high, medium-high, medium, medium-low and low lighting areas with different degrees of human activity. This is primarily based on the local coverage of locally maximum radiance signals (watershed-based and the rank and magnitude of the nocturnal radiance signal across the whole region, as well as remotely sensed building density data and social media-derived human activity information. The comparison results for the relationship between sub-regions with various density nighttime brightness levels and human activities, as well as the densities of different types of interest points (POIs, show that our method can distinctly identify various degrees of human activity based on artificial nighttime radiance and ancillary data. Furthermore

  11. Neuron-Enriched Gene Expression Patterns are Regionally Anti-Correlated with Oligodendrocyte-Enriched Patterns in the Adult Mouse and Human Brain.

    Science.gov (United States)

    Tan, Powell Patrick Cheng; French, Leon; Pavlidis, Paul

    2013-01-01

    An important goal in neuroscience is to understand gene expression patterns in the brain. The recent availability of comprehensive and detailed expression atlases for mouse and human creates opportunities to discover global patterns and perform cross-species comparisons. Recently we reported that the major source of variation in gene transcript expression in the adult normal mouse brain can be parsimoniously explained as reflecting regional variation in glia to neuron ratios, and is correlated with degree of connectivity and location in the brain along the anterior-posterior axis. Here we extend this investigation to two gene expression assays of adult normal human brains that consisted of over 300 brain region samples, and perform comparative analyses of brain-wide expression patterns to the mouse. We performed principal components analysis (PCA) on the regional gene expression of the adult human brain to identify the expression pattern that has the largest variance. As in the mouse, we observed that the first principal component is composed of two anti-correlated patterns enriched in oligodendrocyte and neuron markers respectively. However, we also observed interesting discordant patterns between the two species. For example, a few mouse neuron markers show expression patterns that are more correlated with the human oligodendrocyte-enriched pattern and vice-versa. In conclusion, our work provides insights into human brain function and evolution by probing global relationships between regional cell type marker expression patterns in the human and mouse brain.

  12. Evidence of Levy walk foraging patterns in human hunter-gatherers.

    Science.gov (United States)

    Raichlen, David A; Wood, Brian M; Gordon, Adam D; Mabulla, Audax Z P; Marlowe, Frank W; Pontzer, Herman

    2014-01-14

    When searching for food, many organisms adopt a superdiffusive, scale-free movement pattern called a Lévy walk, which is considered optimal when foraging for heterogeneously located resources with little prior knowledge of distribution patterns [Viswanathan GM, da Luz MGE, Raposo EP, Stanley HE (2011) The Physics of Foraging: An Introduction to Random Searches and Biological Encounters]. Although memory of food locations and higher cognition may limit the benefits of random walk strategies, no studies to date have fully explored search patterns in human foraging. Here, we show that human hunter-gatherers, the Hadza of northern Tanzania, perform Lévy walks in nearly one-half of all foraging bouts. Lévy walks occur when searching for a wide variety of foods from animal prey to underground tubers, suggesting that, even in the most cognitively complex forager on Earth, such patterns are essential to understanding elementary foraging mechanisms. This movement pattern may be fundamental to how humans experience and interact with the world across a wide range of ecological contexts, and it may be adaptive to food distribution patterns on the landscape, which previous studies suggested for organisms with more limited cognition. Additionally, Lévy walks may have become common early in our genus when hunting and gathering arose as a major foraging strategy, playing an important role in the evolution of human mobility.

  13. Discharge patterns of human genioglossus motor units during arousal from sleep.

    Science.gov (United States)

    Wilkinson, Vanessa; Malhotra, Atul; Nicholas, Christian L; Worsnop, Christopher; Jordan, Amy S; Butler, Jane E; Saboisky, Julian P; Gandevia, Simon C; White, David P; Trinder, John

    2010-03-01

    Single motor unit recordings of the human genioglossus muscle reveal motor units with a variety of discharge patterns. Integrated multiunit electromyographic recordings of genioglossus have demonstrated an abrupt increase in the muscle's activity at arousal from sleep. The aim of the present study was to determine the effect of arousal from sleep on the activity of individual motor units as a function of their particular discharge pattern. Genioglossus activity was measured using intramuscular fine-wire electrodes inserted via a percutaneous approach. Arousals from sleep were identified using the ASDA criterion and the genioglossus electromyogram recordings analyzed for single motor unit activity. Sleep research laboratory. Sleep and respiratory data were collected in 8 healthy subjects (6 men). 138 motor units were identified during prearousalarousal sleep: 25% inspiratory phasic, 33% inspiratory tonic, 4% expiratory phasic, 3% expiratory tonic, and 35% tonic. At arousal from sleep inspiratory phasic units significantly increased the proportion of a breath over which they were active, but did not appreciably increase their rate of firing. 80 new units were identified at arousals, 75% were inspiratory, many of which were active for only 1 or 2 breaths. 22% of units active before arousal, particularly expiratory and tonic units, stopped at the arousal. Increased genioglossus muscle activity at arousal from sleep is primarily due to recruitment of inspiratory phasic motor units. Further, activity within the genioglossus motoneuron pool is reorganized at arousal as, in addition to recruitment, approximately 20% of units active before arousals stopped firing.

  14. MotionFlow: Visual Abstraction and Aggregation of Sequential Patterns in Human Motion Tracking Data.

    Science.gov (United States)

    Jang, Sujin; Elmqvist, Niklas; Ramani, Karthik

    2016-01-01

    Pattern analysis of human motions, which is useful in many research areas, requires understanding and comparison of different styles of motion patterns. However, working with human motion tracking data to support such analysis poses great challenges. In this paper, we propose MotionFlow, a visual analytics system that provides an effective overview of various motion patterns based on an interactive flow visualization. This visualization formulates a motion sequence as transitions between static poses, and aggregates these sequences into a tree diagram to construct a set of motion patterns. The system also allows the users to directly reflect the context of data and their perception of pose similarities in generating representative pose states. We provide local and global controls over the partition-based clustering process. To support the users in organizing unstructured motion data into pattern groups, we designed a set of interactions that enables searching for similar motion sequences from the data, detailed exploration of data subsets, and creating and modifying the group of motion patterns. To evaluate the usability of MotionFlow, we conducted a user study with six researchers with expertise in gesture-based interaction design. They used MotionFlow to explore and organize unstructured motion tracking data. Results show that the researchers were able to easily learn how to use MotionFlow, and the system effectively supported their pattern analysis activities, including leveraging their perception and domain knowledge.

  15. Seasonal patterns in human A (H5N1 virus infection: analysis of global cases.

    Directory of Open Access Journals (Sweden)

    Maya B Mathur

    Full Text Available Human cases of highly pathogenic avian influenza (HPAI A (H5N1 have high mortality. Despite abundant data on seasonal patterns in influenza epidemics, it is unknown whether similar patterns exist for human HPAI H5N1 cases worldwide. Such knowledge could help decrease avian-to-human transmission through increased prevention and control activities during peak periods.We performed a systematic search of published human HPAI H5N1 cases to date, collecting month, year, country, season, hemisphere, and climate data. We used negative binomial regression to predict changes in case incidence as a function of season. To investigate hemisphere as a potential moderator, we used AIC and the likelihood-ratio test to compare the season-only model to nested models including a main effect or interaction with hemisphere. Finally, we visually assessed replication of seasonal patterns across climate groups based on the Köppen-Geiger climate classification.We identified 617 human cases (611 with complete seasonal data occurring in 15 countries in Southeast Asia, Africa, and the Middle East. Case occurrence was much higher in winter (n = 285, p = 0.03 than summer (n = 64, and the winter peak occurred across diverse climate groups. There was no significant interaction between hemisphere and season.Across diverse climates, HPAI H5N1 virus infection in humans increases significantly in winter. This is consistent with increased poultry outbreaks and HPAI H5N1 virus transmission during cold and dry conditions. Prioritizing prevention and control activities among poultry and focusing public health messaging to reduce poultry exposures during winter months may help to reduce zoonotic transmission of HPAI H5N1 virus in resource-limited settings.

  16. Default activity patterns at the neocortical microcircuit level

    Directory of Open Access Journals (Sweden)

    Artur eLuczak

    2012-06-01

    Full Text Available Even in absence of sensory stimuli cortical networks exhibit complex, self-organized activity patterns. While the function of those spontaneous patterns of activation remains poorly understood, recent studies both in vivo and in vitro have demonstrated that neocortical neurons activate in a surprisingly similar sequential order both spontaneously and following input into cortex. For example, neurons that tend to fire earlier within spontaneous bursts of activity also fire earlier than other neurons in response to sensory stimuli. These 'default patterns' can last hundreds of milliseconds and are strongly conserved under a variety of conditions. In this paper we will review recent evidence for these default patterns at the local cortical level. We speculate that cortical architecture imposes common constraints on spontaneous and evoked activity flow, which result in the similarity of the patterns.

  17. Seasonal and daily activity patterns of leopard tortoises ...

    African Journals Online (AJOL)

    Seasonal and daily activity patterns of leopard tortoises ( Stigmochelys pardalis Bell, 1828) on farmland in the Nama-Karoo, South Africa. ... that activity is also initiated by the time since sunrise. Key words: Stigmochelys pardalis, leopard tortoise, activity patterns, activity behaviour, Nama-Karoo Biome, time of day, season.

  18. First human hNT neurons patterned on parylene-C/silicon dioxide substrates: Combining an accessible cell line and robust patterning technology for the study of the pathological adult human brain.

    Science.gov (United States)

    Unsworth, C P; Graham, E S; Delivopoulos, E; Dragunow, M; Murray, A F

    2010-12-15

    In this communication, we describe a new method which has enabled the first patterning of human neurons (derived from the human teratocarcinoma cell line (hNT)) on parylene-C/silicon dioxide substrates. We reveal the details of the nanofabrication processes, cell differentiation and culturing protocols necessary to successfully pattern hNT neurons which are each key aspects of this new method. The benefits in patterning human neurons on silicon chip using an accessible cell line and robust patterning technology are of widespread value. Thus, using a combined technology such as this will facilitate the detailed study of the pathological human brain at both the single cell and network level. Copyright © 2010 Elsevier B.V. All rights reserved.

  19. Brain activity patterns induced by interrupting the cognitive processes with online advertising.

    Science.gov (United States)

    Rejer, Izabela; Jankowski, Jarosław

    2017-11-01

    As a result of the increasing role of online advertising and strong competition among advertisers, intrusive techniques are commonly used to attract web users' attention. Moreover, since marketing content is usually delivered to the target audience when they are performing typical online tasks, like searching for information or reading online content, its delivery interrupts the web user's current cognitive process. The question posed by many researchers in the field of online advertising is: how should we measure the influence of interruption of cognitive processes on human behavior and emotional state? Much research has been conducted in this field; however, most of this research has focused on monitoring activity in the simulated environment, or processing declarative responses given by users in prepared questionnaires. In this paper, a more direct real-time approach is taken, and the effect of the interruption on a web user is analyzed directly by studying the activity of his brain. This paper presents the results of an experiment that was conducted to find the brain activity patterns associated with interruptions of the cognitive process by showing internet advertisements during a text-reading task. Three specific aspects were addressed in the experiment: individual patterns, the consistency of these patterns across trials, and the intra-subject correlation of the individual patterns. Two main effects were observed for most subjects: a drop in activity in the frontal and prefrontal cortical areas across all frequency bands, and significant changes in the frontal/prefrontal asymmetry index.

  20. Leisure Activity Patterns and Marital Conflict in Iran.

    Science.gov (United States)

    Ahmadi, Khodabakhsh; Saadat, Hassan; Noushad, Siena

    2016-01-01

    Over the past few decades, the association between leisure activity patterns and marital conflict or satisfaction has been studied extensively. However, most studies to date have been limited to middle-class families of developed societies, and an investigation of the issue, from a developing country perspective like Iran, is non-existent. In an observational, analytical, cross-sectional study we aimed to investigate the relationship between leisure activity patterns and marital conflict in a nationally representative sample of Iranian married males. Using the cluster sampling method, a representative sample of 400 Iranian married individuals from seven provinces of Iran was surveyed. Self-administered surveys included a checklist collecting demographic and socioeconomic characteristics of the enrolled participants, leisure time questionnaire, and marital conflict questionnaire. The main patterns of leisure activity were derived from principal component analysis. For each pattern, factor scores were calculated. The relationship between factor scores and marital conflict were assessed using multivariate linear regression models accounting for the potential confounding effects of age, education, socioeconomic status, job status, number of children, duration of marriage, and time spent for leisure. Two hundred and ninety-nine respondents completed the leisure time and marital conflict questionnaires. Five major leisure patterns were identified accounting for 60.3% of the variance in data. The most dominant pattern was family-oriented activities (e.g. spending time with family outdoors and spending time with family indoors) and was negatively linked to marital conflict (standardized beta= -0.154, P = 0.013). Of the four remaining patterns, three only included individual activities and one was a family-individual composite. Individual patterns exhibited discrepant behavior; while the pattern involving activities like 'watching TV', 'non-purposive time spending', and

  1. Superior Pattern Processing is the Essence of the Evolved Human Brain

    Directory of Open Access Journals (Sweden)

    Mark eMattson

    2014-08-01

    Full Text Available Humans have long pondered the nature of their mind/brain and, particularly why its capacities for reasoning, communication and abstract thought are far superior to other species, including closely related anthropoids. This article considers superior pattern processing (SPP as the fundamental basis of most, if not all, unique features of the human brain including intelligence, language, imagination, invention, and the belief in imaginary entities such as ghosts and gods. SPP involves the electrochemical, neuronal network-based, encoding, integration, and transfer to other individuals of perceived or mentally-fabricated patterns. During human evolution, pattern processing capabilities became increasingly sophisticated as the result of expansion of the cerebral cortex, particularly the prefrontal cortex and regions involved in processing of images. Specific patterns, real or imagined, are reinforced by emotional experiences, indoctrination and even psychedelic drugs. Impaired or dysregulated SPP is fundamental to cognitive and psychiatric disorders. A broader understanding of SPP mechanisms, and their roles in normal and abnormal function of the human brain, may enable the development of interventions that reduce irrational decisions and destructive behaviors.

  2. Leisure Activity Patterns and Marital Conflict in Iran

    Science.gov (United States)

    Ahmadi, Khodabakhsh; Saadat, Hassan; Noushad, Siena

    2016-01-01

    Background: Over the past few decades, the association between leisure activity patterns and marital conflict or satisfaction has been studied extensively. However, most studies to date have been limited to middle-class families of developed societies, and an investigation of the issue, from a developing country perspective like Iran, is non-existent. Objectives: In an observational, analytical, cross-sectional study we aimed to investigate the relationship between leisure activity patterns and marital conflict in a nationally representative sample of Iranian married males. Patients and Methods: Using the cluster sampling method, a representative sample of 400 Iranian married individuals from seven provinces of Iran was surveyed. Self-administered surveys included a checklist collecting demographic and socioeconomic characteristics of the enrolled participants, leisure time questionnaire, and marital conflict questionnaire. The main patterns of leisure activity were derived from principal component analysis. For each pattern, factor scores were calculated. The relationship between factor scores and marital conflict were assessed using multivariate linear regression models accounting for the potential confounding effects of age, education, socioeconomic status, job status, number of children, duration of marriage, and time spent for leisure. Results: Two hundred and ninety-nine respondents completed the leisure time and marital conflict questionnaires. Five major leisure patterns were identified accounting for 60.3% of the variance in data. The most dominant pattern was family-oriented activities (e.g. spending time with family outdoors and spending time with family indoors) and was negatively linked to marital conflict (standardized beta= −0.154, P = 0.013). Of the four remaining patterns, three only included individual activities and one was a family-individual composite. Individual patterns exhibited discrepant behavior; while the pattern involving activities

  3. Evaluation of perfluoroalkyl acid activity using primary mouse and human hepatocytes

    International Nuclear Information System (INIS)

    Rosen, Mitchell B.; Das, Kaberi P.; Wood, Carmen R.; Wolf, Cynthia J.; Abbott, Barbara D.; Lau, Christopher

    2013-01-01

    dataset. In mouse hepatocytes, the pattern was similar to that previously observed in the COS-1 reporter cell assay. With the exception of PFHxA, longer chain PFAA carboxylates were the most active. The pattern was similar in human hepatocytes, although PFDA and PFOS showed higher activity than previously observed while PFOA showed somewhat less activity. These data reflect inherent challenges in using primary hepatocytes to predict toxicological response

  4. Longitudinal variability of time-location/activity patterns of population at different ages: a longitudinal study in California

    Directory of Open Access Journals (Sweden)

    Cassady Diana L

    2011-09-01

    Full Text Available Abstract Background Longitudinal time-activity data are important for exposure modeling, since the extent to which short-term time-activity data represent long-term activity patterns is not well understood. This study was designed to evaluate longitudinal variations in human time-activity patterns. Method We report on 24-hour recall diaries and questionnaires collected via the internet from 151 parents of young children (mostly under age 55, and from 55 older adults of ages 55 and older, for both a weekday and a weekend day every three months over an 18-month period. Parents also provided data for their children. The self-administrated diary and questionnaire distinguished ~30 frequently visited microenvironments and ~20 activities which we selected to represent opportunities for exposure to toxic environmental compounds. Due to the non-normal distribution of time-location/activity data, we employed generalized linear mixed-distribution mixed-effect models to examine intra- and inter-individual variations. Here we describe variation in the likelihood of and time spent engaging in an activity or being in a microenvironment by age group, day-type (weekday/weekend, season (warm/cool, sex, employment status, and over the follow-up period. Results As expected, day-type and season influence time spent in many location and activity categories. Longitudinal changes were also observed, e.g., young children slept less with increasing follow-up, transit time increased, and time spent on working and shopping decreased during the study, possibly related to human physiological changes with age and changes in macro-economic factors such as gas prices and the economic recession. Conclusions This study provides valuable new information about time-activity assessed longitudinally in three major age groups and greatly expands our knowledge about intra- and inter-individual variations in time-location/activity patterns. Longitudinal variations beyond weekly and

  5. Defense Human Resources Activity > PERSEREC

    Science.gov (United States)

    Skip to main content (Press Enter). Toggle navigation Defense Human Resources Activity Search Search Defense Human Resources Activity: Search Search Defense Human Resources Activity: Search Defense Human Resources Activity U.S. Department of Defense Defense Human Resources Activity Overview

  6. Pattern Analyses Reveal Separate Experience-Based Fear Memories in the Human Right Amygdala.

    Science.gov (United States)

    Braem, Senne; De Houwer, Jan; Demanet, Jelle; Yuen, Kenneth S L; Kalisch, Raffael; Brass, Marcel

    2017-08-23

    Learning fear via the experience of contingencies between a conditioned stimulus (CS) and an aversive unconditioned stimulus (US) is often assumed to be fundamentally different from learning fear via instructions. An open question is whether fear-related brain areas respond differently to experienced CS-US contingencies than to merely instructed CS-US contingencies. Here, we contrasted two experimental conditions where subjects were instructed to expect the same CS-US contingencies while only one condition was characterized by prior experience with the CS-US contingency. Using multivoxel pattern analysis of fMRI data, we found CS-related neural activation patterns in the right amygdala (but not in other fear-related regions) that dissociated between whether a CS-US contingency had been instructed and experienced versus merely instructed. A second experiment further corroborated this finding by showing a category-independent neural response to instructed and experienced, but not merely instructed, CS presentations in the human right amygdala. Together, these findings are in line with previous studies showing that verbal fear instructions have a strong impact on both brain and behavior. However, even in the face of fear instructions, the human right amygdala still shows a separable neural pattern response to experience-based fear contingencies. SIGNIFICANCE STATEMENT In our study, we addressed a fundamental problem of the science of human fear learning and memory, namely whether fear learning via experience in humans relies on a neural pathway that can be separated from fear learning via verbal information. Using two new procedures and recent advances in the analysis of brain imaging data, we localized purely experience-based fear processing and memory in the right amygdala, thereby making a direct link between human and animal research. Copyright © 2017 the authors 0270-6474/17/378116-15$15.00/0.

  7. Patterns of differences in brain morphology in humans as compared to extant apes.

    Science.gov (United States)

    Aldridge, Kristina

    2011-01-01

    Although human evolution is characterized by a vast increase in brain size, it is not clear whether or not certain regions of the brain are enlarged disproportionately in humans, or how this enlargement relates to differences in overall neural morphology. The aim of this study is to determine whether or not there are specific suites of features that distinguish the morphology of the human brain from that of apes. The study sample consists of whole brain, in vivo magnetic resonance images (MRIs) of anatomically modern humans (Homo sapiens sapiens) and five ape species (gibbons, orangutans, gorillas, chimpanzees, bonobos). Twenty-nine 3D landmarks, including surface and internal features of the brain were located on 3D MRI reconstructions of each individual using MEASURE software. Landmark coordinate data were scaled for differences in size and analyzed using Euclidean Distance Matrix Analysis (EDMA) to statistically compare the brains of each non-human ape species to the human sample. Results of analyses show both a pattern of brain morphology that is consistently different between all apes and humans, as well as patterns that differ among species. Further, both the consistent and species-specific patterns include cortical and subcortical features. The pattern that remains consistent across species indicates a morphological reorganization of 1) relationships between cortical and subcortical frontal structures, 2) expansion of the temporal lobe and location of the amygdala, and 3) expansion of the anterior parietal region. Additionally, results demonstrate that, although there is a pattern of morphology that uniquely defines the human brain, there are also patterns that uniquely differentiate human morphology from the morphology of each non-human ape species, indicating that reorganization of neural morphology occurred at the evolutionary divergence of each of these groups. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. Effect of the pattern of food intake on human energy metabolism.

    Science.gov (United States)

    Verboeket-van de Venne, W P; Westerterp, K R; Kester, A D

    1993-07-01

    The pattern of food intake can affect the regulation of body weight and lipogenesis. We studied the effect of meal frequency on human energy expenditure (EE) and its components. During 1 week ten male adults (age 25-61 years, body mass index 20.7-30.4 kg/m2) were fed to energy balance at two meals/d (gorging pattern) and during another week at seven meals/d (nibbling pattern). For the first 6 d of each week the food was provided at home, followed by a 36 h stay in a respiration chamber. O2 consumption and CO2 production (and hence EE) were calculated over 24 h. EE in free-living conditions was measured over the 2 weeks with doubly-labelled water (average daily metabolic rate, ADMR). The three major components of ADMR are basal metabolic rate (BMR), diet-induced thermogenesis (DIT) and EE for physical activity (ACT). There was no significant effect of meal frequency on 24 h EE or ADMR. Furthermore, BMR and ACT did not differ between the two patterns. DIT was significantly elevated in the gorging pattern, but this effect was neutralized by correction for the relevant time interval. With the method used for determination of DIT no significant effect of meal frequency on the contribution of DIT to ADMR could be demonstrated.

  9. Angiogenesis interactome and time course microarray data reveal the distinct activation patterns in endothelial cells.

    Directory of Open Access Journals (Sweden)

    Liang-Hui Chu

    Full Text Available Angiogenesis involves stimulation of endothelial cells (EC by various cytokines and growth factors, but the signaling mechanisms are not completely understood. Combining dynamic gene expression time-course data for stimulated EC with protein-protein interactions associated with angiogenesis (the "angiome" could reveal how different stimuli result in different patterns of network activation and could implicate signaling intermediates as points for control or intervention. We constructed the protein-protein interaction networks of positive and negative regulation of angiogenesis comprising 367 and 245 proteins, respectively. We used five published gene expression datasets derived from in vitro assays using different types of blood endothelial cells stimulated by VEGFA (vascular endothelial growth factor A. We used the Short Time-series Expression Miner (STEM to identify significant temporal gene expression profiles. The statistically significant patterns between 2D fibronectin and 3D type I collagen substrates for telomerase-immortalized EC (TIME show that different substrates could influence the temporal gene activation patterns in the same cell line. We investigated the different activation patterns among 18 transmembrane tyrosine kinase receptors, and experimentally measured the protein level of the tyrosine-kinase receptors VEGFR1, VEGFR2 and VEGFR3 in human umbilical vein EC (HUVEC and human microvascular EC (MEC. The results show that VEGFR1-VEGFR2 levels are more closely coupled than VEGFR1-VEGFR3 or VEGFR2-VEGFR3 in HUVEC and MEC. This computational methodology can be extended to investigate other molecules or biological processes such as cell cycle.

  10. Evaluating the effect of human activity patterns on air pollution exposure using an integrated field-based and agent-based modelling framework

    Science.gov (United States)

    Schmitz, Oliver; Beelen, Rob M. J.; de Bakker, Merijn P.; Karssenberg, Derek

    2015-04-01

    Constructing spatio-temporal numerical models to support risk assessment, such as assessing the exposure of humans to air pollution, often requires the integration of field-based and agent-based modelling approaches. Continuous environmental variables such as air pollution are best represented using the field-based approach which considers phenomena as continuous fields having attribute values at all locations. When calculating human exposure to such pollutants it is, however, preferable to consider the population as a set of individuals each with a particular activity pattern. This would allow to account for the spatio-temporal variation in a pollutant along the space-time paths travelled by individuals, determined, for example, by home and work locations, road network, and travel times. Modelling this activity pattern requires an agent-based or individual based modelling approach. In general, field- and agent-based models are constructed with the help of separate software tools, while both approaches should play together in an interacting way and preferably should be combined into one modelling framework, which would allow for efficient and effective implementation of models by domain specialists. To overcome this lack in integrated modelling frameworks, we aim at the development of concepts and software for an integrated field-based and agent-based modelling framework. Concepts merging field- and agent-based modelling were implemented by extending PCRaster (http://www.pcraster.eu), a field-based modelling library implemented in C++, with components for 1) representation of discrete, mobile, agents, 2) spatial networks and algorithms by integrating the NetworkX library (http://networkx.github.io), allowing therefore to calculate e.g. shortest routes or total transport costs between locations, and 3) functions for field-network interactions, allowing to assign field-based attribute values to networks (i.e. as edge weights), such as aggregated or averaged

  11. Similar Fracture Patterns in Human Nose and Gothic Cathedral.

    Science.gov (United States)

    Lee, Shu Jin; Tse, Kwong Ming; Lee, Heow Pueh

    2015-10-01

    This study proposes that the bony anatomy of the human nose and masonry structure of the Gothic cathedral are geometrically similar, and have common fracture patterns. We also aim to correlate the fracture patterns observed in patients' midface structures with those seen in the Gothic cathedral using computational approach. CT scans of 33 patients with facial fractures were examined and compared with computer simulations of both the Gothic cathedral and human nose. Three similar patterns were found: (1) Cracks of the nasal arch with crumpling of the vertical buttresses akin to the damage seen during minor earthquakes; (2) lateral deviation of the central nasal arch and collapse of the vertical buttresses akin to those due to lateral forces from wind and in major earthquakes; and (3) Central arch collapse seen as a result of collapse under excessive dead weight. Interestingly, the finding of occult nasal and septal fractures in the mandible fractures with absence of direct nasal trauma highlights the possibility of transmission of forces from the foundation to the arch leading to structural failure. It was also found that the structural buttresses of the Gothic cathedral delineate the vertical buttresses in the human midface structure. These morphologic similarities between the human nose and Gothic cathedral will serve as a basis to study the biomechanics of nasal fractures. Identification of structural buttresses in a skeletal structure has important implications for reconstruction as reestablishment of structural continuity restores normal anatomy and architectural stability of the human midface structure. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  12. Differential patterns of cortical activation as a function of fluid reasoning complexity.

    Science.gov (United States)

    Perfetti, Bernardo; Saggino, Aristide; Ferretti, Antonio; Caulo, Massimo; Romani, Gian Luca; Onofrj, Marco

    2009-02-01

    Fluid intelligence (gf) refers to abstract reasoning and problem solving abilities. It is considered a human higher cognitive factor central to general intelligence (g). The regions of the cortex supporting gf have been revealed by recent bioimaging studies and valuable hypothesis on the neural correlates of individual differences have been proposed. However, little is known about the interaction between individual variability in gf and variation in cortical activity following task complexity increase. To further investigate this, two samples of participants (high-IQ, N = 8; low-IQ, N = 10) with significant differences in gf underwent two reasoning (moderate and complex) tasks and a control task adapted from the Raven progressive matrices. Functional magnetic resonance was used and the recorded signal analyzed between and within the groups. The present study revealed two opposite patterns of neural activity variation which were probably a reflection of the overall differences in cognitive resource modulation: when complexity increased, high-IQ subjects showed a signal enhancement in some frontal and parietal regions, whereas low-IQ subjects revealed a decreased activity in the same areas. Moreover, a direct comparison between the groups' activation patterns revealed a greater neural activity in the low-IQ sample when conducting moderate task, with a strong involvement of medial and lateral frontal regions thus suggesting that the recruitment of executive functioning might be different between the groups. This study provides evidence for neural differences in facing reasoning complexity among subjects with different gf level that are mediated by specific patterns of activation of the underlying fronto-parietal network.

  13. Patterns of interhemispheric correlation during human communication.

    Science.gov (United States)

    Grinberg-Zylberbaum, J; Ramos, J

    1987-09-01

    Correlation patterns between the electroencephalographic activity of both hemispheres in adult subjects were obtained. The morphology of these patterns for one subject was compared with another subject's patterns during control situations without communication, and during sessions in which direct communication was stimulated. Neither verbalization nor visual or physical contact are necessary for direct communication to occur. The interhemispheric correlation patterns for each subject were observed to become similar during the communication sessions as compared to the control situations. These effects are not due to nonspecific factors such as habituation or fatigue. The results support the syntergic theory proposed by one of the authors (Grinberg-Zylberbaum).

  14. Human movement activity classification approaches that use wearable sensors and mobile devices

    Science.gov (United States)

    Kaghyan, Sahak; Sarukhanyan, Hakob; Akopian, David

    2013-03-01

    Cell phones and other mobile devices become part of human culture and change activity and lifestyle patterns. Mobile phone technology continuously evolves and incorporates more and more sensors for enabling advanced applications. Latest generations of smart phones incorporate GPS and WLAN location finding modules, vision cameras, microphones, accelerometers, temperature sensors etc. The availability of these sensors in mass-market communication devices creates exciting new opportunities for data mining applications. Particularly healthcare applications exploiting build-in sensors are very promising. This paper reviews different approaches of human activity recognition.

  15. Wnt/Yes-Associated Protein Interactions During Neural Tissue Patterning of Human Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Bejoy, Julie; Song, Liqing; Zhou, Yi; Li, Yan

    2018-04-01

    Human induced pluripotent stem cells (hiPSCs) have special ability to self-assemble into neural spheroids or mini-brain-like structures. During the self-assembly process, Wnt signaling plays an important role in regional patterning and establishing positional identity of hiPSC-derived neural progenitors. Recently, the role of Wnt signaling in regulating Yes-associated protein (YAP) expression (nuclear or cytoplasmic), the pivotal regulator during organ growth and tissue generation, has attracted increasing interests. However, the interactions between Wnt and YAP expression for neural lineage commitment of hiPSCs remain poorly explored. The objective of this study is to investigate the effects of Wnt signaling and YAP expression on the cellular population in three-dimensional (3D) neural spheroids derived from hiPSCs. In this study, Wnt signaling was activated using CHIR99021 for 3D neural spheroids derived from human iPSK3 cells through embryoid body formation. Our results indicate that Wnt activation induces nuclear localization of YAP and upregulates the expression of HOXB4, the marker for hindbrain/spinal cord. By contrast, the cells exhibit more rostral forebrain neural identity (expression of TBR1) without Wnt activation. Cytochalasin D was then used to induce cytoplasmic YAP and the results showed the decreased HOXB4 expression. In addition, the incorporation of microparticles in the neural spheroids was investigated for the perturbation of neural patterning. This study may indicate the bidirectional interactions of Wnt signaling and YAP expression during neural tissue patterning, which have the significance in neurological disease modeling, drug screening, and neural tissue regeneration.

  16. In silico pattern-based analysis of the human cytomegalovirus genome.

    Science.gov (United States)

    Rigoutsos, Isidore; Novotny, Jiri; Huynh, Tien; Chin-Bow, Stephen T; Parida, Laxmi; Platt, Daniel; Coleman, David; Shenk, Thomas

    2003-04-01

    More than 200 open reading frames (ORFs) from the human cytomegalovirus genome have been reported as potentially coding for proteins. We have used two pattern-based in silico approaches to analyze this set of putative viral genes. With the help of an objective annotation method that is based on the Bio-Dictionary, a comprehensive collection of amino acid patterns that describes the currently known natural sequence space of proteins, we have reannotated all of the previously reported putative genes of the human cytomegalovirus. Also, with the help of MUSCA, a pattern-based multiple sequence alignment algorithm, we have reexamined the original human cytomegalovirus gene family definitions. Our analysis of the genome shows that many of the coded proteins comprise amino acid combinations that are unique to either the human cytomegalovirus or the larger group of herpesviruses. We have confirmed that a surprisingly large portion of the analyzed ORFs encode membrane proteins, and we have discovered a significant number of previously uncharacterized proteins that are predicted to be G-protein-coupled receptor homologues. The analysis also indicates that many of the encoded proteins undergo posttranslational modifications such as hydroxylation, phosphorylation, and glycosylation. ORFs encoding proteins with similar functional behavior appear in neighboring regions of the human cytomegalovirus genome. All of the results of the present study can be found and interactively explored online (http://cbcsrv.watson.ibm.com/virus/).

  17. Investigation into Seasonal Scavenging Patterns of Raccoons on Human Decomposition.

    Science.gov (United States)

    Jeong, Yangseung; Jantz, Lee Meadows; Smith, Jake

    2016-03-01

    Although raccoons are known as one of the most common scavengers in the U.S., scavenging by these animals has seldom been studied in terms of forensic significance. In this research, the seasonal pattern of raccoon scavenging and its effect on human decomposition was investigated using 178 human cadavers placed at the Anthropological Research Facility (ARF) of the University of Tennessee, Knoxville (UTK) between February 2011 and December 2013. The results reveal that (i) the frequency of scavenging increases during summer, (ii) scavenging occurs relatively immediately and lasts shorter in summer months, and (iii) scavenging influences the decomposition process by hollowing limbs and by disturbing insect activities, both of which eventually increases the chance of mummification on the affected body. This information is expected to help forensic investigators identify raccoon scavenging as well as make a more precise interpretation of the effect of raccoon scavenging on bodies at crime scenes. © 2015 American Academy of Forensic Sciences.

  18. Modeling activity patterns of wildlife using time-series analysis.

    Science.gov (United States)

    Zhang, Jindong; Hull, Vanessa; Ouyang, Zhiyun; He, Liang; Connor, Thomas; Yang, Hongbo; Huang, Jinyan; Zhou, Shiqiang; Zhang, Zejun; Zhou, Caiquan; Zhang, Hemin; Liu, Jianguo

    2017-04-01

    The study of wildlife activity patterns is an effective approach to understanding fundamental ecological and evolutionary processes. However, traditional statistical approaches used to conduct quantitative analysis have thus far had limited success in revealing underlying mechanisms driving activity patterns. Here, we combine wavelet analysis, a type of frequency-based time-series analysis, with high-resolution activity data from accelerometers embedded in GPS collars to explore the effects of internal states (e.g., pregnancy) and external factors (e.g., seasonal dynamics of resources and weather) on activity patterns of the endangered giant panda ( Ailuropoda melanoleuca ). Giant pandas exhibited higher frequency cycles during the winter when resources (e.g., water and forage) were relatively poor, as well as during spring, which includes the giant panda's mating season. During the summer and autumn when resources were abundant, pandas exhibited a regular activity pattern with activity peaks every 24 hr. A pregnant individual showed distinct differences in her activity pattern from other giant pandas for several months following parturition. These results indicate that animals adjust activity cycles to adapt to seasonal variation of the resources and unique physiological periods. Wavelet coherency analysis also verified the synchronization of giant panda activity level with air temperature and solar radiation at the 24-hr band. Our study also shows that wavelet analysis is an effective tool for analyzing high-resolution activity pattern data and its relationship to internal and external states, an approach that has the potential to inform wildlife conservation and management across species.

  19. Human area MT+ shows load-dependent activation during working memory maintenance with continuously morphing stimulation.

    Science.gov (United States)

    Galashan, Daniela; Fehr, Thorsten; Kreiter, Andreas K; Herrmann, Manfred

    2014-07-11

    Initially, human area MT+ was considered a visual area solely processing motion information but further research has shown that it is also involved in various different cognitive operations, such as working memory tasks requiring motion-related information to be maintained or cognitive tasks with implied or expected motion.In the present fMRI study in humans, we focused on MT+ modulation during working memory maintenance using a dynamic shape-tracking working memory task with no motion-related working memory content. Working memory load was systematically varied using complex and simple stimulus material and parametrically increasing retention periods. Activation patterns for the difference between retention of complex and simple memorized stimuli were examined in order to preclude that the reported effects are caused by differences in retrieval. Conjunction analysis over all delay durations for the maintenance of complex versus simple stimuli demonstrated a wide-spread activation pattern. Percent signal change (PSC) in area MT+ revealed a pattern with higher values for the maintenance of complex shapes compared to the retention of a simple circle and with higher values for increasing delay durations. The present data extend previous knowledge by demonstrating that visual area MT+ presents a brain activity pattern usually found in brain regions that are actively involved in working memory maintenance.

  20. Adaptable neighbours: movement patterns of GPS-collared leopards in human dominated landscapes in India.

    Science.gov (United States)

    Odden, Morten; Athreya, Vidya; Rattan, Sandeep; Linnell, John D C

    2014-01-01

    Understanding the nature of the interactions between humans and wildlife is of vital importance for conflict mitigation. We equipped five leopards with GPS-collars in Maharashtra (4) and Himachal Pradesh (1), India, to study movement patterns in human-dominated landscapes outside protected areas. An adult male and an adult female were both translocated 52 km, and exhibited extensive, and directional, post release movements (straight line movements: male = 89 km in 37 days, female = 45 km in 5 months), until they settled in home ranges of 42 km2 (male) and 65 km2 (female). The three other leopards, two adult females and a young male were released close to their capture sites and used small home ranges of 8 km2 (male), 11 km2 and 15 km2 (females). Movement patterns were markedly nocturnal, with hourly step lengths averaging 339±9.5 m (SE) during night and 60±4.1 m during day, and night locations were significantly closer to human settlements than day locations. However, more nocturnal movements were observed among those three living in the areas with high human population densities. These visited houses regularly at nighttime (20% of locations human settlements both day and night. The small home ranges of the leopards indicate that anthropogenic food resources may be plentiful although wild prey is absent. The study provides clear insights into the ability of leopards to live and move in landscapes that are extremely modified by human activity.

  1. Analyzing the distribution of human activity space from mobile phone usage - An individual and urban-oriented study

    OpenAIRE

    Yuan Y.; Raubal M.

    2016-01-01

    Travel activities are embodied as people’s needs to be physically present at certain locations. The development of Information and Communication Technologies (ICTs such as mobile phones) has introduced new data sources for modeling human activities. Based on the scattered spatiotemporal points provided in mobile phone datasets it is feasible to study the patterns (e.g. the scale shape and regularity) of human activities. In this paper we propose methods for analyzing the distribution of human...

  2. Cortical activity patterns predict robust speech discrimination ability in noise

    Science.gov (United States)

    Shetake, Jai A.; Wolf, Jordan T.; Cheung, Ryan J.; Engineer, Crystal T.; Ram, Satyananda K.; Kilgard, Michael P.

    2012-01-01

    The neural mechanisms that support speech discrimination in noisy conditions are poorly understood. In quiet conditions, spike timing information appears to be used in the discrimination of speech sounds. In this study, we evaluated the hypothesis that spike timing is also used to distinguish between speech sounds in noisy conditions that significantly degrade neural responses to speech sounds. We tested speech sound discrimination in rats and recorded primary auditory cortex (A1) responses to speech sounds in background noise of different intensities and spectral compositions. Our behavioral results indicate that rats, like humans, are able to accurately discriminate consonant sounds even in the presence of background noise that is as loud as the speech signal. Our neural recordings confirm that speech sounds evoke degraded but detectable responses in noise. Finally, we developed a novel neural classifier that mimics behavioral discrimination. The classifier discriminates between speech sounds by comparing the A1 spatiotemporal activity patterns evoked on single trials with the average spatiotemporal patterns evoked by known sounds. Unlike classifiers in most previous studies, this classifier is not provided with the stimulus onset time. Neural activity analyzed with the use of relative spike timing was well correlated with behavioral speech discrimination in quiet and in noise. Spike timing information integrated over longer intervals was required to accurately predict rat behavioral speech discrimination in noisy conditions. The similarity of neural and behavioral discrimination of speech in noise suggests that humans and rats may employ similar brain mechanisms to solve this problem. PMID:22098331

  3. Human preferences for colorful birds: Vivid colors or pattern?

    Science.gov (United States)

    Lišková, Silvie; Landová, Eva; Frynta, Daniel

    2015-04-29

    In a previous study, we found that the shape of a bird, rather than its color, plays a major role in the determination of human preferences. Thus, in the present study, we asked whether the preferences of human respondents towards uniformly shaped, colorful birds are determined by pattern rather than color. The experimental stimuli were pictures of small passerine birds of the family Pittidae possessing uniform shape but vivid coloration. We asked 200 participants to rank 43 colored and 43 identical, but grayscaled, pictures of birds. To find the traits determining human preferences, we performed GLM analysis in which we tried to explain the mean preference ranks and PC axes by the following explanatory variables: the overall lightness and saturation, edges (pattern), and the portion of each of the basic color hues. The results showed that the mean preference ranks of the grayscale set is explained mostly by the birds' pattern, whereas the colored set ranking is mostly determined by the overall lightness. The effect of colors was weaker, but still significant, and revealed that people liked blue and green birds. We found no significant role of the color red, the perception of which was acquired relatively recently in evolution.

  4. Human Preferences for Colorful Birds: Vivid Colors or Pattern?

    Directory of Open Access Journals (Sweden)

    Silvie Lišková

    2015-04-01

    Full Text Available In a previous study, we found that the shape of a bird, rather than its color, plays a major role in the determination of human preferences. Thus, in the present study, we asked whether the preferences of human respondents towards uniformly shaped, colorful birds are determined by pattern rather than color. The experimental stimuli were pictures of small passerine birds of the family Pittidae possessing uniform shape but vivid coloration. We asked 200 participants to rank 43 colored and 43 identical, but grayscaled, pictures of birds. To find the traits determining human preferences, we performed GLM analysis in which we tried to explain the mean preference ranks and PC axes by the following explanatory variables: the overall lightness and saturation, edges (pattern, and the portion of each of the basic color hues. The results showed that the mean preference ranks of the grayscale set is explained mostly by the birds' pattern, whereas the colored set ranking is mostly determined by the overall lightness. The effect of colors was weaker, but still significant, and revealed that people liked blue and green birds. We found no significant role of the color red, the perception of which was acquired relatively recently in evolution.

  5. Are muscle activation patterns altered during shod and barefoot running with a forefoot footfall pattern?

    Science.gov (United States)

    Ervilha, Ulysses Fernandes; Mochizuki, Luis; Figueira, Aylton; Hamill, Joseph

    2017-09-01

    This study aimed to investigate the activation of lower limb muscles during barefoot and shod running with forefoot or rearfoot footfall patterns. Nine habitually shod runners were asked to run straight for 20 m at self-selected speed. Ground reaction forces and thigh and shank muscle surface electromyographic (EMG) were recorded. EMG outcomes (EMG intensity [iEMG], latency between muscle activation and ground reaction force, latency between muscle pairs and co-activation index between muscle pairs) were compared across condition (shod and barefoot), running cycle epochs (pre-strike, strike, propulsion) and footfall (rearfoot and forefoot) by ANOVA. Condition affected iEMG at pre-strike epoch. Forefoot and rearfoot strike patterns induced different EMG activation time patterns affecting co-activation index for pairs of thigh and shank muscles. All these timing changes suggest that wearing shoes or not is less important for muscle activation than the way runners strike the foot on the ground. In conclusion, the guidance for changing external forces applied on lower limbs should be pointed to the question of rearfoot or forefoot footfall patterns.

  6. Suboptimal Muscle Synergy Activation Patterns Generalize their Motor Function across Postures.

    Science.gov (United States)

    Sohn, M Hongchul; Ting, Lena H

    2016-01-01

    We used a musculoskeletal model to investigate the possible biomechanical and neural bases of using consistent muscle synergy patterns to produce functional motor outputs across different biomechanical conditions, which we define as generalizability. Experimental studies in cats demonstrate that the same muscle synergies are used during reactive postural responses at widely varying configurations, producing similarly-oriented endpoint force vectors with respect to the limb axis. However, whether generalizability across postures arises due to similar biomechanical properties or to neural selection of a particular muscle activation pattern has not been explicitly tested. Here, we used a detailed cat hindlimb model to explore the set of feasible muscle activation patterns that produce experimental synergy force vectors at a target posture, and tested their generalizability by applying them to different test postures. We used three methods to select candidate muscle activation patterns: (1) randomly-selected feasible muscle activation patterns, (2) optimal muscle activation patterns minimizing muscle effort at a given posture, and (3) generalizable muscle activation patterns that explicitly minimized deviations from experimentally-identified synergy force vectors across all postures. Generalizability was measured by the deviation between the simulated force direction of the candidate muscle activation pattern and the experimental synergy force vectors at the test postures. Force angle deviations were the greatest for the randomly selected feasible muscle activation patterns (e.g., >100°), intermediate for effort-wise optimal muscle activation patterns (e.g., ~20°), and smallest for generalizable muscle activation patterns (e.g., synergy force vector was reduced by ~45% when generalizability requirements were imposed. Muscles recruited in the generalizable muscle activation patterns had less sensitive torque-producing characteristics to changes in postures. We

  7. Patterns, Entropy, and Predictability of Human Mobility and Life

    Science.gov (United States)

    Qin, Shao-Meng; Verkasalo, Hannu; Mohtaschemi, Mikael; Hartonen, Tuomo; Alava, Mikko

    2012-01-01

    Cellular phones are now offering an ubiquitous means for scientists to observe life: how people act, move and respond to external influences. They can be utilized as measurement devices of individual persons and for groups of people of the social context and the related interactions. The picture of human life that emerges shows complexity, which is manifested in such data in properties of the spatiotemporal tracks of individuals. We extract from smartphone-based data for a set of persons important locations such as “home”, “work” and so forth over fixed length time-slots covering the days in the data-set (see also [1], [2]). This set of typical places is heavy-tailed, a power-law distribution with an exponent close to −1.7. To analyze the regularities and stochastic features present, the days are classified for each person into regular, personal patterns. To this are superimposed fluctuations for each day. This randomness is measured by “life” entropy, computed both before and after finding the clustering so as to subtract the contribution of a number of patterns. The main issue that we then address is how predictable individuals are in their mobility. The patterns and entropy are reflected in the predictability of the mobility of the life both individually and on average. We explore the simple approaches to guess the location from the typical behavior, and of exploiting the transition probabilities with time from location or activity A to B. The patterns allow an enhanced predictability, at least up to a few hours into the future from the current location. Such fixed habits are most clearly visible in the working-day length. PMID:23300542

  8. Habitat Selection and Activity Pattern of GPS Collared Sumateran Tigers

    Directory of Open Access Journals (Sweden)

    Dolly Priatna

    2012-12-01

    Full Text Available Although translocation has been used in mitigating human-carnivore conflict for decades, few studies have been conducted on the behavioral ecology of released animals. Such information is necessary in the context of sustainable forest management. In this study we determine the type of land cover used as main habitat and examine the activity pattern of translocated tigers. Between 2008 and 2010 we captured six conflict tigers and translocated them 74-1,350 km from their capture sites in Sumatera. All tigers were fitted with global positioning system (GPS collars. The collars were set to fix 24-48 location coordinates per day.  All translocated tigers showed a preference for a certain habitat type within their new home range, and tended to select the majority of natural land cover type within the landscape as their main habitat, but the availability of natural forest habitat within the landscape remains essensial for their survival. The activity of male translocated tigers differed significantly between the six time intervals of 24 hours, and their most active periods were in the afternoon (14:00-18:00 hours and in the evening (18:00-22:00 hours. Despite being preliminary, the findings of this study-which was the first such study conducted in Sumatera-highlight the conservation value of tiger translocation and provide valuable information for improving future management of conflict tigers.Keywords: activity pattern, GPS collars, habitat selection, sumateran tiger, translocation

  9. Uncovering stable and occasional human mobility patterns: A case study of the Beijing subway

    Science.gov (United States)

    Yong, Nuo; Ni, Shunjiang; Shen, Shifei; Chen, Peng; Ji, Xuewei

    2018-02-01

    There have generally been two kinds of approaches to the empirical study of human mobility. At the group level, some valuable information might be submerged in statistical noise, while due to the diversity of individual purpose and preference, there is still no general statistical regularity of human mobility at the individual level. In this paper, we considered group-level human mobility as the combination of several basic patterns and analyzed the collective mobility by category. Utilizing matrix factorization and correlation analysis, we extracted some of the stable/occasional components from the collective human mobility in the Beijing subway and found that the departure and arrival mobility patterns have different characteristics, both in time and space, under various conditions. We classified individual records into different patterns and analyzed the most likely trip distance by category. The proposed method can decompose stable/occasional mobility patterns from the collective mobility and identify passengers belonging to different patterns, helping us to better understand the origin of different mobility patterns and provide guidance for emergency management of large crowds.

  10. Hormone patterns in early human gestation

    International Nuclear Information System (INIS)

    Mishell, D.R. Jr.; Thorneycroft, I.H.; Nagata, Y.; Murata, T.; Nakamura, R.M.

    1974-01-01

    Accurate measurement of the low concentration of gonadotropins and steroid hormones present in human serum has been made possible by the development of sensitive radioimmunoassay (RIA) techniques. With the use of RIA FSH and LH, progesterone and 17OH-progesterone have been previously measured in early normal pregnancy. In order to determine the daily pattern of hormone levels in early normal pregnancy, gonadotropins as well as steroid hormone levels were measured in serum samples obtained daily from three women from the time of the last menstrual period prior to conception throughout the first few months of gestation. To further identify the steroid hormone pattern in early normal pregnancy, concentrations of estradiol, progesterone, and 17OH-progesterone were measured in individual serum samples obtained from a group of 158 women with apparently normal gestations who subsequently had therapeutic abortions. (auth)

  11. Time allocation shifts and pollutant exposure due to traffic congestion: an analysis using the national human activity pattern survey.

    Science.gov (United States)

    Zhang, Kai; Batterman, Stuart A

    2009-10-15

    Traffic congestion increases air pollutant exposures of commuters and urban populations due to the increased time spent in traffic and the increased vehicular emissions that occur in congestion, especially "stop-and-go" traffic. Increased time in traffic also decreases time in other microenvironments, a trade-off that has not been considered in previous time activity pattern (TAP) analyses conducted for exposure assessment purposes. This research investigates changes in time allocations and exposures that result from traffic congestion. Time shifts were derived using data from the National Human Activity Pattern Survey (NHAPS), which was aggregated to nine microenvironments (six indoor locations, two outdoor locations and one transport location). After imputing missing values, handling outliers, and conducting other quality checks, these data were stratified by respondent age, employment status and period (weekday/weekend). Trade-offs or time-shift coefficients between time spent in vehicles and the eight other microenvironments were then estimated using robust regression. For children and retirees, congestion primarily reduced the time spent at home; for older children and working adults, congestion shifted the time spent at home as well as time in schools, public buildings, and other indoor environments. Changes in benzene and PM(2.5) exposure were estimated for the current average travel delay in the U.S. (9 min day(-1)) and other scenarios using the estimated time shifts coefficients, concentrations in key microenvironments derived from the literature, and a probabilistic analysis. Changes in exposures depended on the duration of the congestion and the pollutant. For example, a 30 min day(-1) travel delay was determined to account for 21+/-12% of current exposure to benzene and 14+/-8% of PM(2.5) exposure. The time allocation shifts and the dynamic approach to TAPs improve estimates of exposure impacts from congestion and other recurring events.

  12. Mining continuous activity patterns from animal trajectory data

    Science.gov (United States)

    Wang, Y.; Luo, Ze; Baoping, Yan; Takekawa, John Y.; Prosser, Diann J.; Newman, Scott H.

    2014-01-01

    The increasing availability of animal tracking data brings us opportunities and challenges to intuitively understand the mechanisms of animal activities. In this paper, we aim to discover animal movement patterns from animal trajectory data. In particular, we propose a notion of continuous activity pattern as the concise representation of underlying similar spatio-temporal movements, and develop an extension and refinement framework to discover the patterns. We first preprocess the trajectories into significant semantic locations with time property. Then, we apply a projection-based approach to generate candidate patterns and refine them to generate true patterns. A sequence graph structure and a simple and effective processing strategy is further developed to reduce the computational overhead. The proposed approaches are extensively validated on both real GPS datasets and large synthetic datasets.

  13. Integration of active pauses and pattern of muscular activity during computer work.

    Science.gov (United States)

    St-Onge, Nancy; Samani, Afshin; Madeleine, Pascal

    2017-09-01

    Submaximal isometric muscle contractions have been reported to increase variability of muscle activation during computer work; however, other types of active contractions may be more beneficial. Our objective was to determine which type of active pause vs. rest is more efficient in changing muscle activity pattern during a computer task. Asymptomatic regular computer users performed a standardised 20-min computer task four times, integrating a different type of pause: sub-maximal isometric contraction, dynamic contraction, postural exercise and rest. Surface electromyographic (SEMG) activity was recorded bilaterally from five neck/shoulder muscles. Root-mean-square decreased with isometric pauses in the cervical paraspinals, upper trapezius and middle trapezius, whereas it increased with rest. Variability in the pattern of muscular activity was not affected by any type of pause. Overall, no detrimental effects on the level of SEMG during active pauses were found suggesting that they could be implemented without a cost on activation level or variability. Practitioner Summary: We aimed to determine which type of active pause vs. rest is best in changing muscle activity pattern during a computer task. Asymptomatic computer users performed a standardised computer task integrating different types of pauses. Muscle activation decreased with isometric pauses in neck/shoulder muscles, suggesting their implementation during computer work.

  14. Human activity spaces and plague risks in three contrasting landscapes in Lushoto District, Tanzania.

    Science.gov (United States)

    Hieronimo, Proches; Gulinck, Hubert; Kimaro, Didas N; Mulungu, Loth S; Kihupi, Nganga I; Msanya, Balthazar M; Leirs, Herwig; Deckers, Jozef A

    2014-07-01

    Since 1980 plague has been a human threat in the Western Usambara Mountains in Tanzania. However, the spatial-temporal pattern of plague occurrence remains poorly understood. The main objective of this study was to gain understanding of human activity patterns in relation to spatial distribution of fleas in Lushoto District. Data were collected in three landscapes differing in plague incidence. Field survey coupled with Geographic Information System (GIS) and physical sample collections were used to collect data in wet (April to June 2012) and dry (August to October 2012) seasons. Data analysis was done using GIS, one-way ANOVA and nonparametric statistical tools. The degree of spatial co-occurrence of potential disease vectors (fleas) and humans in Lushoto focus differs significantly (p ≤ 0.05) among the selected landscapes, and in both seasons. This trend gives a coarse indication of the possible association of the plague outbreaks and the human frequencies of contacting environments with fleas. The study suggests that plague surveillance and control programmes at landscape scale should consider the existence of plague vector contagion risk gradient from high to low incidence landscapes due to human presence and intensity of activities.

  15. Physical activity, obesity and mortality: does pattern of physical activity have stronger epidemiological associations?

    DEFF Research Database (Denmark)

    Bauman, Adrian E.; Grunseit, Anne C.; Rangul, Vegar

    2017-01-01

    Background: Most studies of physical activity (PA) epidemiology use behaviour measured at a single time-point. We examined whether 'PA patterns' (consistently low, consistently high or inconsistent PA levels over time) showed different epidemiological relationships for anthropometric and mortality...... and time 3, and sport and active travel at times 1 and 2 with BMI, waist, hip circumference and mortality (death from coronary heart disease (CHD) and cardiovascular disease (CVD)) were compared to 'PA patterns' spanning multiple time points. PA pattern classified participants' PA as either 1) inactive......: The moderately and highly active groups for PA at times 1 and 3 had up to 1.7 cm lower increase in waist circumference compared with the inactive/low active group. Across 'PA patterns', 'active maintainers' had a 2.0 cm lower waist circumference than 'inactive/low maintainers'. Waist circumference was inversely...

  16. Human activity and rest in situ.

    Science.gov (United States)

    Roenneberg, Till; Keller, Lena K; Fischer, Dorothee; Matera, Joana L; Vetter, Céline; Winnebeck, Eva C

    2015-01-01

    Our lives are structured by the daily alternation of activity and rest, of wake and sleep. Despite significant advances in circadian and sleep research, we still lack answers to many of the most fundamental questions about this conspicuous behavioral pattern. We strongly believe that investigating this pattern in entrained conditions, real-life and daily contexts-in situ-will help the field to elucidate some of these central questions. Here, we present two common approaches for in situ investigation of human activity and rest: the Munich ChronoType Questionnaire (MCTQ) and actimetry. In the first half of this chapter, we provide detailed instructions on how to use and interpret the MCTQ. In addition, we give an overview of the main insights gained with this instrument over the past 10 years, including some new findings on the interaction of light and age on sleep timing. In the second half of this chapter, we introduce the reader to the method of actimetry and share our experience in basic analysis techniques, including visualization, smoothing, and cosine model fitting of in situ recorded data. Additionally, we describe our new approach to automatically detect sleep from activity recordings. Our vision is that the broad use of such easy techniques in real-life settings combined with automated analyses will lead to the creation of large databases. The resulting power of big numbers will promote our understanding of such fundamental biological phenomena as sleep. © 2015 Elsevier Inc. All rights reserved.

  17. Application of Human-Autonomy Teaming (HAT) Patterns to Reduce Crew Operations (RCO)

    Science.gov (United States)

    Shively, R. Jay; Brandt, Summer L.; Lachter, Joel; Matessa, Mike; Sadler, Garrett; Battiste, Henri

    2016-01-01

    Unmanned aerial systems, robotics, advanced cockpits, and air traffic management are all examples of domains that are seeing dramatic increases in automation. While automation may take on some tasks previously performed by humans, humans will still be required, for the foreseeable future, to remain in the system. The collaboration with humans and these increasingly autonomous systems will begin to resemble cooperation between teammates, rather than simple task allocation. It is critical to understand this human-autonomy teaming (HAT) to optimize these systems in the future. One methodology to understand HAT is by identifying recurring patterns of HAT that have similar characteristics and solutions. This paper applies a methodology for identifying HAT patterns to an advanced cockpit project.

  18. Diurnal Human Activity and Introduced Species Affect Occurrence of Carnivores in a Human-Dominated Landscape.

    Directory of Open Access Journals (Sweden)

    Dario Moreira-Arce

    Full Text Available Diurnal human activity and domestic dogs in agro-forestry mosaics should theoretically modify the diurnal habitat use patterns of native carnivores, with these effects being scale-dependent. We combined intensive camera trapping data with Bayesian occurrence probability models to evaluate both diurnal and nocturnal patterns of space use by carnivores in a mosaic of land-use types in southern Chile. A total of eight carnivores species were recorded, including human-introduced dogs. During the day the most frequently detected species were the culpeo fox and the cougar. Conversely, during the night, the kodkod and chilla fox were the most detected species. The best supported models showed that native carnivores responded differently to landscape attributes and dogs depending on both the time of day as well as the spatial scale of landscape attributes. The positive effect of native forest cover at 250 m and 500 m radius buffers was stronger during the night for the Darwin's fox and cougar. Road density at 250 m scale negatively affected the diurnal occurrence of Darwin´s fox, whereas at 500 m scale roads had a stronger negative effect on the diurnal occurrence of Darwin´s foxes and cougars. A positive effect of road density on dog occurrence was evidenced during both night and day. Patch size had a positive effect on cougar occurrence during night whereas it affected negatively the occurrence of culpeo foxes and skunks during day. Dog occurrence had a negative effect on Darwin's fox occurrence during day-time and night-time, whereas its negative effect on the occurrence of cougar was evidenced only during day-time. Carnivore occurrences were not influenced by the proximity to a conservation area. Our results provided support for the hypothesis that diurnal changes to carnivore occurrence were associated with human and dog activity. Landscape planning in our study area should be focused in reducing both the levels of diurnal human activity in

  19. Diurnal Human Activity and Introduced Species Affect Occurrence of Carnivores in a Human-Dominated Landscape.

    Science.gov (United States)

    Moreira-Arce, Dario; Vergara, Pablo M; Boutin, Stan

    2015-01-01

    Diurnal human activity and domestic dogs in agro-forestry mosaics should theoretically modify the diurnal habitat use patterns of native carnivores, with these effects being scale-dependent. We combined intensive camera trapping data with Bayesian occurrence probability models to evaluate both diurnal and nocturnal patterns of space use by carnivores in a mosaic of land-use types in southern Chile. A total of eight carnivores species were recorded, including human-introduced dogs. During the day the most frequently detected species were the culpeo fox and the cougar. Conversely, during the night, the kodkod and chilla fox were the most detected species. The best supported models showed that native carnivores responded differently to landscape attributes and dogs depending on both the time of day as well as the spatial scale of landscape attributes. The positive effect of native forest cover at 250 m and 500 m radius buffers was stronger during the night for the Darwin's fox and cougar. Road density at 250 m scale negatively affected the diurnal occurrence of Darwin´s fox, whereas at 500 m scale roads had a stronger negative effect on the diurnal occurrence of Darwin´s foxes and cougars. A positive effect of road density on dog occurrence was evidenced during both night and day. Patch size had a positive effect on cougar occurrence during night whereas it affected negatively the occurrence of culpeo foxes and skunks during day. Dog occurrence had a negative effect on Darwin's fox occurrence during day-time and night-time, whereas its negative effect on the occurrence of cougar was evidenced only during day-time. Carnivore occurrences were not influenced by the proximity to a conservation area. Our results provided support for the hypothesis that diurnal changes to carnivore occurrence were associated with human and dog activity. Landscape planning in our study area should be focused in reducing both the levels of diurnal human activity in native forest remnants

  20. Shared activity patterns arising at genetic susceptibility loci reveal underlying genomic and cellular architecture of human disease.

    Science.gov (United States)

    Baillie, J Kenneth; Bretherick, Andrew; Haley, Christopher S; Clohisey, Sara; Gray, Alan; Neyton, Lucile P A; Barrett, Jeffrey; Stahl, Eli A; Tenesa, Albert; Andersson, Robin; Brown, J Ben; Faulkner, Geoffrey J; Lizio, Marina; Schaefer, Ulf; Daub, Carsten; Itoh, Masayoshi; Kondo, Naoto; Lassmann, Timo; Kawai, Jun; Mole, Damian; Bajic, Vladimir B; Heutink, Peter; Rehli, Michael; Kawaji, Hideya; Sandelin, Albin; Suzuki, Harukazu; Satsangi, Jack; Wells, Christine A; Hacohen, Nir; Freeman, Thomas C; Hayashizaki, Yoshihide; Carninci, Piero; Forrest, Alistair R R; Hume, David A

    2018-03-01

    Genetic variants underlying complex traits, including disease susceptibility, are enriched within the transcriptional regulatory elements, promoters and enhancers. There is emerging evidence that regulatory elements associated with particular traits or diseases share similar patterns of transcriptional activity. Accordingly, shared transcriptional activity (coexpression) may help prioritise loci associated with a given trait, and help to identify underlying biological processes. Using cap analysis of gene expression (CAGE) profiles of promoter- and enhancer-derived RNAs across 1824 human samples, we have analysed coexpression of RNAs originating from trait-associated regulatory regions using a novel quantitative method (network density analysis; NDA). For most traits studied, phenotype-associated variants in regulatory regions were linked to tightly-coexpressed networks that are likely to share important functional characteristics. Coexpression provides a new signal, independent of phenotype association, to enable fine mapping of causative variants. The NDA coexpression approach identifies new genetic variants associated with specific traits, including an association between the regulation of the OCT1 cation transporter and genetic variants underlying circulating cholesterol levels. NDA strongly implicates particular cell types and tissues in disease pathogenesis. For example, distinct groupings of disease-associated regulatory regions implicate two distinct biological processes in the pathogenesis of ulcerative colitis; a further two separate processes are implicated in Crohn's disease. Thus, our functional analysis of genetic predisposition to disease defines new distinct disease endotypes. We predict that patients with a preponderance of susceptibility variants in each group are likely to respond differently to pharmacological therapy. Together, these findings enable a deeper biological understanding of the causal basis of complex traits.

  1. Spatial and temporal patterns of human Puumala virus (PUUV infections in Germany

    Directory of Open Access Journals (Sweden)

    Sarah Cunze

    2018-02-01

    Full Text Available Background Worldwide, the number of recorded human hantavirus infections as well as the number of affected countries is on the rise. In Europe, most human hantavirus infections are caused by the Puumala virus (PUUV, with bank voles (Myodes glareolus as reservoir hosts. Generally, infection outbreaks have been related to environmental conditions, particularly climatic conditions, food supply for the reservoir species and land use. However, although attempts have been made, the insufficient availability of environmental data is often hampering accurate temporal and spatially explicit models of human hantavirus infections. Methods In the present study, dynamics of human PUUV infections between 2001 and 2015 were explored using ArcGIS in order to identify spatio-temporal patterns. Results Percentage cover of forest area was identified as an important factor for the spatial pattern, whereas beech mast was found explaining temporal patterns of human PUUV infections in Germany. High numbers of infections were recorded in 2007, 2010 and 2012 and areas with highest records were located in Baden-Wuerttemberg (southwest Germany and North Rhine-Westphalia (western Germany. Conclusion More reliable data on reservoir host distribution, pathogen verification as well as an increased awareness of physicians are some of the factors that should improve future human infection risk assessments in Germany.

  2. Muscle activity pattern dependent pain development and alleviation

    DEFF Research Database (Denmark)

    Sjøgaard, Gisela; Søgaard, Karen

    2014-01-01

    Muscle activity is for decades considered to provide health benefits irrespectively of the muscle activity pattern performed and whether it is during e.g. sports, transportation, or occupational work tasks. Accordingly, the international recommendations for public health-promoting physical activity...... do not distinguish between occupational and leisure time physical activity. However, in this body of literature, attention has not been paid to the extensive documentation on occupational physical activity imposing a risk of impairment of health - in particular musculoskeletal health in terms...... during physical activities at leisure and sport the motor recruitment patterns are more dynamic including regularly relatively high muscle forces - also activating type 2 muscles fibers - as well as periods of full relaxation even of the type 1 muscle fibers. Such activity is unrelated to muscle pain...

  3. Who's afraid of Patterns?: The Particular versus the Universal and the Meaning of Humanities 3.0

    Directory of Open Access Journals (Sweden)

    Rens Bod

    2013-12-01

    Full Text Available The advent of Digital Humanities has enabled scholars to identify previously unknown patterns in the arts and letters; but the notion of pattern has also been subject to debate. In my response to the authors of this Forum, I argue that ‘pattern’ should not be confused with universal pattern. The term pattern itself is neutral with respect to being either particular or universal. Yet the testing and discovery of patterns – be they local or global – is greatly aided by digital tools. While such tools have been beneficial for the humanities, numerous scholars lack a sufficient grasp of the underlying assumptions and methods of these tools. I argue that in order to criticise and interpret the results of digital humanities properly, scholars must acquire a good working knowledge of the underlying tools and methods. Only then can digital humanities be fully integrated (humanities 3.0 with time-honoured (humanities 1.0 tools of hermeneutics and criticism.

  4. Physical activity patterns in Greenland: a country in transition.

    Science.gov (United States)

    Dahl-Petersen, Inger K; Jørgensen, Marit E; Bjerregaard, Peter

    2011-11-01

    To examine differences in physical activity patterns among Inuit in Greenland in relation to social transition. The Inuit in Greenland are an indigenous population in the circumpolar north who are experiencing rapid social transition. Physical activity patterns were assessed by the International Physical Activity Questionnaire (long version). The population was divided into six groups according to different stages of social change, measured on the basis of education, current residence and occupation. Data were collected in a country-wide cross-sectional population survey among adult Inuit in Greenland from 2005 to 2009. Men with long vocational or academic education living in towns (latest stage of social change) spent significantly less time on occupational physical activity (p = 0.001) compared with hunters and fishermen in villages (earliest stage of social change) (trend test p = 0.01). Women in the latest stage of change spent significantly less time on domestic physical activity (p physical activity during transportation (p = 0.02 and p = 0.01 for men and women, respectively). No significant difference was found for leisure time physical activity. Men and women in the latest stage of social change spent more time on sedentary activity (p physical activity patterns among Inuit in Greenland included decreasing time spent on domestic and occupational physical activity and increasing time spent on sedentary activities along with social change. Knowledge of changes in physical activity patterns in relation to social transition is important in prevention of obesity, type 2 diabetes and lifestyle diseases.

  5. Modeling Patterns of Activities using Activity Curves.

    Science.gov (United States)

    Dawadi, Prafulla N; Cook, Diane J; Schmitter-Edgecombe, Maureen

    2016-06-01

    Pervasive computing offers an unprecedented opportunity to unobtrusively monitor behavior and use the large amount of collected data to perform analysis of activity-based behavioral patterns. In this paper, we introduce the notion of an activity curve , which represents an abstraction of an individual's normal daily routine based on automatically-recognized activities. We propose methods to detect changes in behavioral routines by comparing activity curves and use these changes to analyze the possibility of changes in cognitive or physical health. We demonstrate our model and evaluate our change detection approach using a longitudinal smart home sensor dataset collected from 18 smart homes with older adult residents. Finally, we demonstrate how big data-based pervasive analytics such as activity curve-based change detection can be used to perform functional health assessment. Our evaluation indicates that correlations do exist between behavior and health changes and that these changes can be automatically detected using smart homes, machine learning, and big data-based pervasive analytics.

  6. Context-dependent spatially periodic activity in the human entorhinal cortex.

    Science.gov (United States)

    Nadasdy, Zoltan; Nguyen, T Peter; Török, Ágoston; Shen, Jason Y; Briggs, Deborah E; Modur, Pradeep N; Buchanan, Robert J

    2017-04-25

    The spatially periodic activity of grid cells in the entorhinal cortex (EC) of the rodent, primate, and human provides a coordinate system that, together with the hippocampus, informs an individual of its location relative to the environment and encodes the memory of that location. Among the most defining features of grid-cell activity are the 60° rotational symmetry of grids and preservation of grid scale across environments. Grid cells, however, do display a limited degree of adaptation to environments. It remains unclear if this level of environment invariance generalizes to human grid-cell analogs, where the relative contribution of visual input to the multimodal sensory input of the EC is significantly larger than in rodents. Patients diagnosed with nontractable epilepsy who were implanted with entorhinal cortical electrodes performing virtual navigation tasks to memorized locations enabled us to investigate associations between grid-like patterns and environment. Here, we report that the activity of human entorhinal cortical neurons exhibits adaptive scaling in grid period, grid orientation, and rotational symmetry in close association with changes in environment size, shape, and visual cues, suggesting scale invariance of the frequency, rather than the wavelength, of spatially periodic activity. Our results demonstrate that neurons in the human EC represent space with an enhanced flexibility relative to neurons in rodents because they are endowed with adaptive scalability and context dependency.

  7. Assessment of human respiration patterns via noncontact sensing using Doppler multi-radar system.

    Science.gov (United States)

    Gu, Changzhan; Li, Changzhi

    2015-03-16

    Human respiratory patterns at chest and abdomen are associated with both physical and emotional states. Accurate measurement of the respiratory patterns provides an approach to assess and analyze the physical and emotional states of the subject persons. Not many research efforts have been made to wirelessly assess different respiration patterns, largely due to the inaccuracy of the conventional continuous-wave radar sensor to track the original signal pattern of slow respiratory movements. This paper presents the accurate assessment of different respiratory patterns based on noncontact Doppler radar sensing. This paper evaluates the feasibility of accurately monitoring different human respiration patterns via noncontact radar sensing. A 2.4 GHz DC coupled multi-radar system was used for accurate measurement of the complete respiration patterns without any signal distortion. Experiments were carried out in the lab environment to measure the different respiration patterns when the subject person performed natural breathing, chest breathing and diaphragmatic breathing. The experimental results showed that accurate assessment of different respiration patterns is feasible using the proposed noncontact radar sensing technique.

  8. Longitudinal Physical Activity Patterns Among Older Adults: A Latent Transition Analysis.

    Science.gov (United States)

    Mooney, Stephen J; Joshi, Spruha; Cerdá, Magdalena; Kennedy, Gary J; Beard, John R; Rundle, Andrew G

    2018-05-14

    Most epidemiologic studies of physical activity measure either total energy expenditure or engagement in a single activity type, such as walking. These approaches may gloss over important nuances in activity patterns. We performed a latent transition analysis to identify patterns of activity types as well as neighborhood and individual determinants of changes in those activity patterns over two years in a cohort of 2,023 older adult residents of New York City, NY, surveyed between 2011 and 2013. We identified seven latent classes: 1) Mostly Inactive, 2) Walking, 3) Exercise, 4) Household Activities and Walking, 5) Household Activities and Exercise, 6) Gardening and Household Activities, and 7) Gardening, Household Activities, and Exercise. The majority of subjects retained the same activity patterns between waves (54% unchanged between waves 1 and 2, 66% unchanged between waves 2 and 3).Most latent class transitions were between classes distinguished only by one form of activity, and only neighborhood unemployment was consistently associated with changing between activity latent classes. Future latent transition analyses of physical activity would benefit from larger cohorts and longer follow-up periods to assess predictors of and long-term impacts of changes in activity patterns.

  9. Patterns and predictors of physical activity among pregnant women ...

    African Journals Online (AJOL)

    The patterns and predictors of physical activity (PA) in pregnant women is poorly understood. This study described the patterns of physical activity (PA) in specific domains (home, occupation, transport and exercise/sport) and intensities (light, moderate and vigorous), and determined the factors associated with achieving ...

  10. A Biophysical Model of Electrical Activity in Human β-Cells.

    OpenAIRE

    Pedersen, Morten Gram

    2010-01-01

    Electrical activity in pancreatic β-cells plays a pivotal role in glucose-stimulated insulin secretion by coupling metabolism to calcium-triggered exocytosis. Mathematical models based on rodent data have helped in understanding the mechanisms underlying the electrophysiological patterns observed in laboratory animals. However, human β-cells differ in several aspects, and in particular in their electrophysiological characteristics, from rodent β-cells. Hence, from a clinical perspective and t...

  11. HANPP Collection: Global Patterns in Human Appropriation of Net Primary Productivity (HANPP)

    Data.gov (United States)

    National Aeronautics and Space Administration — The Global Patterns in Human Appropriation of Net Primary Productivity (HANPP) portion of the HANPP Collection represents a digital map of human appropriation of net...

  12. Vision drives correlated activity without patterned spontaneous activity in developing Xenopus retina.

    Science.gov (United States)

    Demas, James A; Payne, Hannah; Cline, Hollis T

    2012-04-01

    Developing amphibians need vision to avoid predators and locate food before visual system circuits fully mature. Xenopus tadpoles can respond to visual stimuli as soon as retinal ganglion cells (RGCs) innervate the brain, however, in mammals, chicks and turtles, RGCs reach their central targets many days, or even weeks, before their retinas are capable of vision. In the absence of vision, activity-dependent refinement in these amniote species is mediated by waves of spontaneous activity that periodically spread across the retina, correlating the firing of action potentials in neighboring RGCs. Theory suggests that retinorecipient neurons in the brain use patterned RGC activity to sharpen the retinotopy first established by genetic cues. We find that in both wild type and albino Xenopus tadpoles, RGCs are spontaneously active at all stages of tadpole development studied, but their population activity never coalesces into waves. Even at the earliest stages recorded, visual stimulation dominates over spontaneous activity and can generate patterns of RGC activity similar to the locally correlated spontaneous activity observed in amniotes. In addition, we show that blocking AMPA and NMDA type glutamate receptors significantly decreases spontaneous activity in young Xenopus retina, but that blocking GABA(A) receptor blockers does not. Our findings indicate that vision drives correlated activity required for topographic map formation. They further suggest that developing retinal circuits in the two major subdivisions of tetrapods, amphibians and amniotes, evolved different strategies to supply appropriately patterned RGC activity to drive visual circuit refinement. Copyright © 2011 Wiley Periodicals, Inc.

  13. A periodic pattern of SNPs in the human genome

    DEFF Research Database (Denmark)

    Madsen, Bo Eskerod; Villesen, Palle; Wiuf, Carsten

    2007-01-01

    By surveying a filtered, high-quality set of SNPs in the human genome, we have found that SNPs positioned 1, 2, 4, 6, or 8 bp apart are more frequent than SNPs positioned 3, 5, 7, or 9 bp apart. The observed pattern is not restricted to genomic regions that are known to cause sequencing...... periodic DNA. Our results suggest that not all SNPs in the human genome are created by independent single nucleotide mutations, and that care should be taken in analysis of SNPs from periodic DNA. The latter may have important consequences for SNP and association studies....... or alignment errors, for example, transposable elements (SINE, LINE, and LTR), tandem repeats, and large duplicated regions. However, we found that the pattern is almost entirely confined to what we define as "periodic DNA." Periodic DNA is a genomic region with a high degree of periodicity in nucleotide usage...

  14. Why men matter: mating patterns drive evolution of human lifespan.

    Directory of Open Access Journals (Sweden)

    Shripad D Tuljapurkar

    2007-08-01

    Full Text Available Evolutionary theory predicts that senescence, a decline in survival rates with age, is the consequence of stronger selection on alleles that affect fertility or mortality earlier rather than later in life. Hamilton quantified this argument by showing that a rare mutation reducing survival is opposed by a selective force that declines with age over reproductive life. He used a female-only demographic model, predicting that female menopause at age ca. 50 yrs should be followed by a sharp increase in mortality, a "wall of death." Human lives obviously do not display such a wall. Explanations of the evolution of lifespan beyond the age of female menopause have proven difficult to describe as explicit genetic models. Here we argue that the inclusion of males and mating patterns extends Hamilton's theory and predicts the pattern of human senescence. We analyze a general two-sex model to show that selection favors survival for as long as men reproduce. Male fertility can only result from matings with fertile females, and we present a range of data showing that males much older than 50 yrs have substantial realized fertility through matings with younger females, a pattern that was likely typical among early humans. Thus old-age male fertility provides a selective force against autosomal deleterious mutations at ages far past female menopause with no sharp upper age limit, eliminating the wall of death. Our findings illustrate the evolutionary importance of males and mating preferences, and show that one-sex demographic models are insufficient to describe the forces that shape human senescence.

  15. Transposable element activity, genome regulation and human health.

    Science.gov (United States)

    Wang, Lu; Jordan, I King

    2018-03-02

    A convergence of novel genome analysis technologies is enabling population genomic studies of human transposable elements (TEs). Population surveys of human genome sequences have uncovered thousands of individual TE insertions that segregate as common genetic variants, i.e. TE polymorphisms. These recent TE insertions provide an important source of naturally occurring human genetic variation. Investigators are beginning to leverage population genomic data sets to execute genome-scale association studies for assessing the phenotypic impact of human TE polymorphisms. For example, the expression quantitative trait loci (eQTL) analytical paradigm has recently been used to uncover hundreds of associations between human TE insertion variants and gene expression levels. These include population-specific gene regulatory effects as well as coordinated changes to gene regulatory networks. In addition, analyses of linkage disequilibrium patterns with previously characterized genome-wide association study (GWAS) trait variants have uncovered TE insertion polymorphisms that are likely causal variants for a variety of common complex diseases. Gene regulatory mechanisms that underlie specific disease phenotypes have been proposed for a number of these trait associated TE polymorphisms. These new population genomic approaches hold great promise for understanding how ongoing TE activity contributes to functionally relevant genetic variation within and between human populations. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Physical Activity, Sedentary Behavior, and Dietary Patterns among Children

    OpenAIRE

    Gubbels, Jessica S.; van Assema, Patricia; Kremers, Stef P. J.

    2013-01-01

    Energy balance-related behavioral patterns find their origin in early childhood. The current paper provides an overview of studies that have examined such behavioral patterns, i.e., the clustering of dietary behaviors, physical activity, and/or sedentary behavior. The paper discusses the importance of examining energy balance-related behavioral patterns in children, outlines methods to examine these patterns, and provides examples of patterns that have been found (e.g., the universal sedentar...

  17. Physical Activity, Sedentary Behavior, and Dietary Patterns among Children.

    Science.gov (United States)

    Gubbels, Jessica S; van Assema, Patricia; Kremers, Stef P J

    2013-06-01

    Energy balance-related behavioral patterns find their origin in early childhood. The current paper provides an overview of studies that have examined such behavioral patterns, i.e., the clustering of dietary behaviors, physical activity, and/or sedentary behavior. The paper discusses the importance of examining energy balance-related behavioral patterns in children, outlines methods to examine these patterns, and provides examples of patterns that have been found (e.g., the universal sedentary-snacking and healthy intake patterns, as well as more unique or local patterns), child and parental characteristics predicting such patterns (e.g., child gender and maternal educational level), and the relationship of these patterns with overweight and related measures.

  18. Evaluation of camouflage pattern performance of textiles by human observers and CAMAELEON

    Science.gov (United States)

    Heinrich, Daniela H.; Selj, Gorm K.

    2017-10-01

    Military textiles with camouflage pattern are an important part of the protection measures for soldiers. Military operational environments differ a lot depending on climate and vegetation. This requires very different camouflage pattern to achieve good protection. To find the best performing pattern for given environments we have in earlier evaluations mainly applied observer trials as evaluation method. In these camouflage evaluation test human observers were asked to search for targets (in natural settings) presented on a high resolution PC screen, and the corresponding detection times were recorded. Another possibility is to base the evaluation on simulations. CAMAELEON is a licensed tool that ranks camouflaged targets by their similarity with local backgrounds. The similarity is estimated through the parameters local contrast, orientation of structures in the pattern and spatial frequency, by mimicking the response and signal processing in the visual cortex of the human eye. Simulations have a number of advantages over observer trials, for example, that they are more flexible, cheaper, and faster. Applying these two methods to the same images of camouflaged targets we found that CAMAELEON simulation results didn't match observer trial results for targets with disruptive patterns. This finding now calls for follow up studies in order to learn more about the advantages and pitfalls of CAMAELEON. During recent observer trials we studied new camouflage patterns and the effect of additional equipment, such as combat vests. In this paper we will present the results from a study comparing evaluation results of human based observer trials and CAMAELEON.

  19. Capturing human movement patterns in public spaces

    DEFF Research Database (Denmark)

    Nielsen, Søren Zebitz; Gade, Rikke

    2014-01-01

    Non-intrusive and non-privacy violating tracking of people by the use of thermal cameras and Computer Vision The video shows examples of data collection of pedestrian tracks in an urban plaza using a thermal camera. The data is used in my PhD project on Human Movement Patterns in Smart Cities....... The recording and analysis of the thermal videos has been made in collaboration with Rikke Gade from the Visual Analytics of People Lab at Aalborg University....

  20. Changing patterns of brain activation during maze learning.

    Science.gov (United States)

    Van Horn, J D; Gold, J M; Esposito, G; Ostrem, J L; Mattay, V; Weinberger, D R; Berman, K F

    1998-05-18

    Recent research has found that patterns of brain activation involving the frontal cortex during novel task performance change dramatically following practice and repeat performance. Evidence for differential left vs. right frontal lobe activation, respectively, during episodic memory encoding and retrieval has also been reported. To examine these potentially related issues regional cerebral blood flow (rCBF) was measured in 15 normal volunteers using positron emission tomography (PET) during the naive and practiced performance of a maze task paradigm. SPM analysis indicated a largely right-sided, frontal lobe activation during naive performance. Following training and practice, performance of the same maze task elicited a more posterior pattern of rCBF activation involving posterior cingulate and precuneus. The change in the pattern of rCBF activation between novel and practiced task conditions agrees with results found in previous studies using repeat task methodology, and indicates that the neural circuitry required for encoding novel task information differs from that required when the same task has become familiar and information is being recalled. The right-sided preponderance of activation during naive performance may relate to task novelty and the spatially-based nature of the stimuli, whereas posterior areas activated during repeat performance are those previously found to be associated with visuospatial memory recall. Activation of these areas, however, does not agree with previously reported findings of left-sided activation during verbal episodic memory encoding and right-sided activation during retrieval, suggesting different neural substrates for verbal and visuospatial processing within memory. Copyright 1998 Elsevier Science B.V.

  1. Exploring Entrainment Patterns of Human Emotion in Social Media.

    Science.gov (United States)

    He, Saike; Zheng, Xiaolong; Zeng, Daniel; Luo, Chuan; Zhang, Zhu

    2016-01-01

    Emotion entrainment, which is generally defined as the synchronous convergence of human emotions, performs many important social functions. However, what the specific mechanisms of emotion entrainment are beyond in-person interactions, and how human emotions evolve under different entrainment patterns in large-scale social communities, are still unknown. In this paper, we aim to examine the massive emotion entrainment patterns and understand the underlying mechanisms in the context of social media. As modeling emotion dynamics on a large scale is often challenging, we elaborate a pragmatic framework to characterize and quantify the entrainment phenomenon. By applying this framework on the datasets from two large-scale social media platforms, we find that the emotions of online users entrain through social networks. We further uncover that online users often form their relations via dual entrainment, while maintain it through single entrainment. Remarkably, the emotions of online users are more convergent in nonreciprocal entrainment. Building on these findings, we develop an entrainment augmented model for emotion prediction. Experimental results suggest that entrainment patterns inform emotion proximity in dyads, and encoding their associations promotes emotion prediction. This work can further help us to understand the underlying dynamic process of large-scale online interactions and make more reasonable decisions regarding emergency situations, epidemic diseases, and political campaigns in cyberspace.

  2. The Virtual Teacher (VT) Paradigm: Learning New Patterns of Interpersonal Coordination Using the Human Dynamic Clamp.

    Science.gov (United States)

    Kostrubiec, Viviane; Dumas, Guillaume; Zanone, Pier-Giorgio; Kelso, J A Scott

    2015-01-01

    The Virtual Teacher paradigm, a version of the Human Dynamic Clamp (HDC), is introduced into studies of learning patterns of inter-personal coordination. Combining mathematical modeling and experimentation, we investigate how the HDC may be used as a Virtual Teacher (VT) to help humans co-produce and internalize new inter-personal coordination pattern(s). Human learners produced rhythmic finger movements whilst observing a computer-driven avatar, animated by dynamic equations stemming from the well-established Haken-Kelso-Bunz (1985) and Schöner-Kelso (1988) models of coordination. We demonstrate that the VT is successful in shifting the pattern co-produced by the VT-human system toward any value (Experiment 1) and that the VT can help humans learn unstable relative phasing patterns (Experiment 2). Using transfer entropy, we find that information flow from one partner to the other increases when VT-human coordination loses stability. This suggests that variable joint performance may actually facilitate interaction, and in the long run learning. VT appears to be a promising tool for exploring basic learning processes involved in social interaction, unraveling the dynamics of information flow between interacting partners, and providing possible rehabilitation opportunities.

  3. Infra-red laser ablative micromachining of parylene-C on SiO2 substrates for rapid prototyping, high yield, human neuronal cell patterning

    International Nuclear Information System (INIS)

    Raos, B J; Unsworth, C P; Costa, J L; Rohde, C A; Simpson, M C; Doyle, C S; Dickinson, M E; Bunting, A S; Murray, A F; Delivopoulos, E; Graham, E S

    2013-01-01

    Cell patterning commonly employs photolithographic methods for the micro fabrication of structures on silicon chips. These require expensive photo-mask development and complex photolithographic processing. Laser based patterning of cells has been studied in vitro and laser ablation of polymers is an active area of research promising high aspect ratios. This paper disseminates how 800 nm femtosecond infrared (IR) laser radiation can be successfully used to perform laser ablative micromachining of parylene-C on SiO 2 substrates for the patterning of human hNT astrocytes (derived from the human teratocarcinoma cell line (hNT)) whilst 248 nm nanosecond ultra-violet laser radiation produces photo-oxidization of the parylene-C and destroys cell patterning. In this work, we report the laser ablation methods used and the ablation characteristics of parylene-C for IR pulse fluences. Results follow that support the validity of using IR laser ablative micromachining for patterning human hNT astrocytes cells. We disseminate the variation in yield of patterned hNT astrocytes on parylene-C with laser pulse spacing, pulse number, pulse fluence and parylene-C strip width. The findings demonstrate how laser ablative micromachining of parylene-C on SiO 2 substrates can offer an accessible alternative for rapid prototyping, high yield cell patterning with broad application to multi-electrode arrays, cellular micro-arrays and microfluidics. (paper)

  4. Psychophysics of human vision: The key to improved camouflage pattern design

    CSIR Research Space (South Africa)

    Baumbach, J

    2010-11-01

    Full Text Available determined by the factors mentioned above, but also by the (possible) observer/enemy. The human visual system (which includes the brain) is one of the most powerful observation systems. This paper examined the eye-brain interaction, and how... these properties could aid camouflage pattern development. 2. The Human Visual System The human visual system is very complex, therefore this study was undertaken in order to better understand the human eye-brain interaction. It also assisted in forming a...

  5. Spontaneous Plasticity of Multineuronal Activity Patterns in Activated Hippocampal Networks

    Directory of Open Access Journals (Sweden)

    Atsushi Usami

    2008-01-01

    Full Text Available Using functional multineuron imaging with single-cell resolution, we examined how hippocampal networks by themselves change the spatiotemporal patterns of spontaneous activity during the course of emitting spontaneous activity. When extracellular ionic concentrations were changed to those that mimicked in vivo conditions, spontaneous activity was increased in active cell number and activity frequency. When ionic compositions were restored to the control conditions, the activity level returned to baseline, but the weighted spatial dispersion of active cells, as assessed by entropy-based metrics, did not. Thus, the networks can modify themselves by altering the internal structure of their correlated activity, even though they as a whole maintained the same level of activity in space and time.

  6. Time activity patterns: a case of south Durban, South Africa

    CSIR Research Space (South Africa)

    Matooane, M

    2010-08-01

    Full Text Available Exposure modelling in south Durban is constrained by a lack of population specific time-activity patterns data. We argue that the application of time-activity patterns from elsewhere in the world in exposure modelling in south Durban would...

  7. Inferring human mobility using communication patterns

    Science.gov (United States)

    Palchykov, Vasyl; Mitrović, Marija; Jo, Hang-Hyun; Saramäki, Jari; Pan, Raj Kumar

    2014-08-01

    Understanding the patterns of mobility of individuals is crucial for a number of reasons, from city planning to disaster management. There are two common ways of quantifying the amount of travel between locations: by direct observations that often involve privacy issues, e.g., tracking mobile phone locations, or by estimations from models. Typically, such models build on accurate knowledge of the population size at each location. However, when this information is not readily available, their applicability is rather limited. As mobile phones are ubiquitous, our aim is to investigate if mobility patterns can be inferred from aggregated mobile phone call data alone. Using data released by Orange for Ivory Coast, we show that human mobility is well predicted by a simple model based on the frequency of mobile phone calls between two locations and their geographical distance. We argue that the strength of the model comes from directly incorporating the social dimension of mobility. Furthermore, as only aggregated call data is required, the model helps to avoid potential privacy problems.

  8. Application of Human-Autonomy Teaming (HAT) Patterns to Reduced Crew Operations (RCO)

    Science.gov (United States)

    Shively, R. Jay; Brandt, Summer L.; Lachter, Joel; Matessa, Mike; Sadler, Garrett; Battiste, Henri

    2016-01-01

    As part of the Air Force - NASA Bi-Annual Research Council Meeting, slides will be presented on recent Reduced Crew Operations (RCO) work. Unmanned aerial systems, robotics, advanced cockpits, and air traffic management are all examples of domains that are seeing dramatic increases in automation. While automation may take on some tasks previously performed by humans, humans will still be required, for the foreseeable future, to remain in the system. The collaboration with humans and these increasingly autonomous systems will begin to resemble cooperation between teammates, rather than simple task allocation. It is critical to understand this human-autonomy teaming (HAT) to optimize these systems in the future. One methodology to understand HAT is by identifying recurring patterns of HAT that have similar characteristics and solutions. A methodology for identifying HAT patterns to an advanced cockpit project is discussed.

  9. Exploiting Human Resource Requirements to Infer Human Movement Patterns for Use in Modelling Disease Transmission Systems: An Example from Eastern Province, Zambia.

    Directory of Open Access Journals (Sweden)

    Simon Alderton

    Full Text Available In this research, an agent-based model (ABM was developed to generate human movement routes between homes and water resources in a rural setting, given commonly available geospatial datasets on population distribution, land cover and landscape resources. ABMs are an object-oriented computational approach to modelling a system, focusing on the interactions of autonomous agents, and aiming to assess the impact of these agents and their interactions on the system as a whole. An A* pathfinding algorithm was implemented to produce walking routes, given data on the terrain in the area. A* is an extension of Dijkstra's algorithm with an enhanced time performance through the use of heuristics. In this example, it was possible to impute daily activity movement patterns to the water resource for all villages in a 75 km long study transect across the Luangwa Valley, Zambia, and the simulated human movements were statistically similar to empirical observations on travel times to the water resource (Chi-squared, 95% confidence interval. This indicates that it is possible to produce realistic data regarding human movements without costly measurement as is commonly achieved, for example, through GPS, or retrospective or real-time diaries. The approach is transferable between different geographical locations, and the product can be useful in providing an insight into human movement patterns, and therefore has use in many human exposure-related applications, specifically epidemiological research in rural areas, where spatial heterogeneity in the disease landscape, and space-time proximity of individuals, can play a crucial role in disease spread.

  10. Exploiting Human Resource Requirements to Infer Human Movement Patterns for Use in Modelling Disease Transmission Systems: An Example from Eastern Province, Zambia.

    Science.gov (United States)

    Alderton, Simon; Noble, Jason; Schaten, Kathrin; Welburn, Susan C; Atkinson, Peter M

    2015-01-01

    In this research, an agent-based model (ABM) was developed to generate human movement routes between homes and water resources in a rural setting, given commonly available geospatial datasets on population distribution, land cover and landscape resources. ABMs are an object-oriented computational approach to modelling a system, focusing on the interactions of autonomous agents, and aiming to assess the impact of these agents and their interactions on the system as a whole. An A* pathfinding algorithm was implemented to produce walking routes, given data on the terrain in the area. A* is an extension of Dijkstra's algorithm with an enhanced time performance through the use of heuristics. In this example, it was possible to impute daily activity movement patterns to the water resource for all villages in a 75 km long study transect across the Luangwa Valley, Zambia, and the simulated human movements were statistically similar to empirical observations on travel times to the water resource (Chi-squared, 95% confidence interval). This indicates that it is possible to produce realistic data regarding human movements without costly measurement as is commonly achieved, for example, through GPS, or retrospective or real-time diaries. The approach is transferable between different geographical locations, and the product can be useful in providing an insight into human movement patterns, and therefore has use in many human exposure-related applications, specifically epidemiological research in rural areas, where spatial heterogeneity in the disease landscape, and space-time proximity of individuals, can play a crucial role in disease spread.

  11. Beagle: an appropriate experimental animal for extrapolating the organ distribution pattern of Th in humans

    International Nuclear Information System (INIS)

    Singh, N.P.; Zimmerman, C.J.; Taylor, G.N.; Wrenn, M.E.

    1988-01-01

    The concentrations and the organ distribution patterns of 228Th, 230Th and 232Th in two 9-y-old dogs of our beagle colony were determined. The dogs were exposed only to background environmental levels of Th isotopes through ingestion (food and water) and inhalation as are humans. The organ distribution patterns of the isotopes in the beagles were compared to the organ distribution patterns in humans to determine if it is appropriate to extrapolate the beagle organ burden data to humans. Among soft tissues, only the lungs, lymph nodes, kidney and liver, and skeleton contained measurable amounts of Th isotopes. The organ distribution pattern of Th isotopes in humans and dog are similar, the majority of Th being in the skeleton of both species. The average skeletal concentrations of 228Th in dogs were 30 to 40 times higher than the average skeletal concentrations of the parent 232Th, whereas the concentration of 228Th in human skeleton was only four to five times higher than 232Th. This suggests that dogs have a higher intake of 228Ra through food than humans. There is a similar trend in the accumulations of 232Th, 230Th and 228Th in the lungs of dog and humans. The percentages of 232Th, 230Th and 228Th in human lungs are 26, 9.7 and 4.8, respectively, compared to 4.2, 2.6 and 0.48, respectively, in dog lungs. The larger percentages of Th isotopes in human lungs may be due simply to the longer life span of humans. If the burdens of Th isotopes in human lungs are normalized to an exposure time of 9.2 y (mean age of dogs at the time of sacrifice), the percent burden of 232Th, 230Th and 228Th in human lungs are estimated to be 3.6, 1.3 and 0.66, respectively. These results suggest that the beagle may be an appropriate experimental animal for extrapolating the organ distribution pattern of Th in humans

  12. A Similarity Analysis of Audio Signal to Develop a Human Activity Recognition Using Similarity Networks

    Directory of Open Access Journals (Sweden)

    Alejandra García-Hernández

    2017-11-01

    Full Text Available Human Activity Recognition (HAR is one of the main subjects of study in the areas of computer vision and machine learning due to the great benefits that can be achieved. Examples of the study areas are: health prevention, security and surveillance, automotive research, and many others. The proposed approaches are carried out using machine learning techniques and present good results. However, it is difficult to observe how the descriptors of human activities are grouped. In order to obtain a better understanding of the the behavior of descriptors, it is important to improve the abilities to recognize the human activities. This paper proposes a novel approach for the HAR based on acoustic data and similarity networks. In this approach, we were able to characterize the sound of the activities and identify those activities looking for similarity in the sound pattern. We evaluated the similarity of the sounds considering mainly two features: the sound location and the materials that were used. As a result, the materials are a good reference classifying the human activities compared with the location.

  13. Individual, Social, and Environmental Correlates of Active Transportation Patterns in French Women.

    Science.gov (United States)

    Perchoux, Camille; Enaux, Christophe; Oppert, Jean-Michel; Menai, Mehdi; Charreire, Hélène; Salze, Paul; Weber, Christiane; Hercberg, Serge; Feuillet, Thierry; Hess, Franck; Roda, Célina; Simon, Chantal; Nazare, Julie-Anne

    2017-01-01

    The objectives were (1) to define physical activity (PA) and sedentary behaviors (SB) patterns in daily life contexts (work, leisure, and transportation) in French working women from NutriNet-Santé web-cohort and (2) to identify pattern(s) of active transportation and their individual, social, and environmental correlates. 23,432 participants completed two questionnaires to evaluate PA and SB in daily life contexts and individual representations of residential neighborhood and transportation modes. Hierarchical cluster analysis was performed which identified 6 distinct movement behavior patterns: (i) active occupation, high sedentary leisure, (ii) sedentary occupation, low leisure, (iii) sedentary transportation, (iv) sedentary occupation and leisure, (v) active transportation, and (vi) active leisure. Multinomial logistic regressions were performed to identify correlates of the "active transportation" cluster. The perceived environmental characteristics positively associated with "active transportation" included "high availability of destinations around home," "presence of bicycle paths," and "low traffic." A "positive image of walking/cycling," the "individual feeling of being physically active," and a "high use of active transport modes by relatives/friends" were positively related to "active transportation," identified as a unique pattern regarding individual and environmental correlates. Identification of PA and SB context-specific patterns will help to understand movement behaviors' complexity and to design interventions to promote active transportation in specific subgroups.

  14. Collective human mobility pattern from taxi trips in urban area

    KAUST Repository

    Peng, Chengbin

    2012-04-18

    We analyze the passengers\\' traffic pattern for 1.58 million taxi trips of Shanghai, China. By employing the non-negative matrix factorization and optimization methods, we find that, people travel on workdays mainly for three purposes: commuting between home and workplace, traveling from workplace to workplace, and others such as leisure activities. Therefore, traffic flow in one area or between any pair of locations can be approximated by a linear combination of three basis flows, corresponding to the three purposes respectively. We name the coefficients in the linear combination as traffic powers, each of which indicates the strength of each basis flow. The traffic powers on different days are typically different even for the same location, due to the uncertainty of the human motion. Therefore, we provide a probability distribution function for the relative deviation of the traffic power. This distribution function is in terms of a series of functions for normalized binomial distributions. It can be well explained by statistical theories and is verified by empirical data. These findings are applicable in predicting the road traffic, tracing the traffic pattern and diagnosing the traffic related abnormal events. These results can also be used to infer land uses of urban area quite parsimoniously. 2012 Peng et al.

  15. Mining Emerging Sequential Patterns for Activity Recognition in Body Sensor Networks

    DEFF Research Database (Denmark)

    Gu, Tao; Wang, Liang; Chen, Hanhua

    2010-01-01

    Body Sensor Networks oer many applications in healthcare, well-being and entertainment. One of the emerging applications is recognizing activities of daily living. In this paper, we introduce a novel knowledge pattern named Emerging Sequential Pattern (ESP)|a sequential pattern that discovers...... signicant class dierences|to recognize both simple (i.e., sequential) and complex (i.e., interleaved and concurrent) activities. Based on ESPs, we build our complex activity models directly upon the sequential model to recognize both activity types. We conduct comprehensive empirical studies to evaluate...

  16. Pattern of human chorionic gonadotropin binding in the polycystic ovary

    International Nuclear Information System (INIS)

    Brawer, J.; Richard, M.; Farookhi, R.

    1989-01-01

    The histologic evolution of polycystic ovaries in the estradiol valerate-treated rat coincides with the development of a unique plasma pattern of luteinizing hormone. To assess the role of luteinizing hormone in polycystic ovaries, it is necessary to evaluate the luteinizing hormone sensitivity of the specific tissues in the polycystic ovary. Therefore, we examined the pattern of luteinizing hormone binding sites in polycystic ovaries. Rats at 4 or 8 weeks after estradiol valerate treatment each received an intrajugular injection of iodine 125-labeled human chorionic gonadotropin. Some rats also received a 1000-fold excess of unlabeled human chorionic gonadotropin in the same injection. Ovaries were prepared for autoradiography. Dense accumulations of grains occurred over the theca of normal and atretic secondary follicles in all ovaries and over clusters of secondary interstitial cells. The iodine label was variable over the typically hypertrophied theca of precystic follicles. The theca of definitive cysts showed little or no label. These results indicate that cyst formation coincides with the loss of luteinizing hormone/human chorionic gonadotropin binding to the affected follicles

  17. Pattern of human chorionic gonadotropin binding in the polycystic ovary

    Energy Technology Data Exchange (ETDEWEB)

    Brawer, J.; Richard, M.; Farookhi, R. (McGill Univ., Montreal, Quebec (Canada))

    1989-08-01

    The histologic evolution of polycystic ovaries in the estradiol valerate-treated rat coincides with the development of a unique plasma pattern of luteinizing hormone. To assess the role of luteinizing hormone in polycystic ovaries, it is necessary to evaluate the luteinizing hormone sensitivity of the specific tissues in the polycystic ovary. Therefore, we examined the pattern of luteinizing hormone binding sites in polycystic ovaries. Rats at 4 or 8 weeks after estradiol valerate treatment each received an intrajugular injection of iodine 125-labeled human chorionic gonadotropin. Some rats also received a 1000-fold excess of unlabeled human chorionic gonadotropin in the same injection. Ovaries were prepared for autoradiography. Dense accumulations of grains occurred over the theca of normal and atretic secondary follicles in all ovaries and over clusters of secondary interstitial cells. The iodine label was variable over the typically hypertrophied theca of precystic follicles. The theca of definitive cysts showed little or no label. These results indicate that cyst formation coincides with the loss of luteinizing hormone/human chorionic gonadotropin binding to the affected follicles.

  18. Human Mobility Patterns and Cholera Epidemics: a Spatially Explicit Modeling Approach

    Science.gov (United States)

    Mari, L.; Bertuzzo, E.; Righetto, L.; Casagrandi, R.; Gatto, M.; Rodriguez-Iturbe, I.; Rinaldo, A.

    2010-12-01

    Cholera is an acute enteric disease caused by the ingestion of water or food contaminated by the bacterium Vibrio cholerae. Although most infected individuals do not develop severe symptoms, their stool may contain huge quantities of V.~cholerae cells. Therefore, while traveling or commuting, asymptomatic carriers can be responsible for the long-range dissemination of the disease. As a consequence, human mobility is an alternative and efficient driver for the spread of cholera, whose primary propagation pathway is hydrological transport through river networks. We present a multi-layer network model that accounts for the interplay between epidemiological dynamics, hydrological transport and long-distance dissemination of V.~cholerae due to human movement. In particular, building on top of state-of-the-art spatially explicit models for cholera spread through surface waters, we describe human movement and its effects on the propagation of the disease by means of a gravity-model approach borrowed from transportation theory. Gravity-like contact processes have been widely used in epidemiology, because they can satisfactorily depict human movement when data on actual mobility patterns are not available. We test our model against epidemiological data recorded during the cholera outbreak occurred in the KwaZulu-Natal province of South Africa during years 2000--2001. We show that human mobility does actually play an important role in the formation of the spatiotemporal patterns of cholera epidemics. In particular, long-range human movement may determine inter-catchment dissemination of V.~cholerae cells, thus in turn explaining the emergence of epidemic patterns that cannot be produced by hydrological transport alone. We also show that particular attention has to be devoted to study how heterogeneously distributed drinking water supplies and sanitation conditions may affect cholera transmission.

  19. Distributed patterns of activity in sensory cortex reflect the precision of multiple items maintained in visual short-term memory.

    Science.gov (United States)

    Emrich, Stephen M; Riggall, Adam C; Larocque, Joshua J; Postle, Bradley R

    2013-04-10

    Traditionally, load sensitivity of sustained, elevated activity has been taken as an index of storage for a limited number of items in visual short-term memory (VSTM). Recently, studies have demonstrated that the contents of a single item held in VSTM can be decoded from early visual cortex, despite the fact that these areas do not exhibit elevated, sustained activity. It is unknown, however, whether the patterns of neural activity decoded from sensory cortex change as a function of load, as one would expect from a region storing multiple representations. Here, we use multivoxel pattern analysis to examine the neural representations of VSTM in humans across multiple memory loads. In an important extension of previous findings, our results demonstrate that the contents of VSTM can be decoded from areas that exhibit a transient response to visual stimuli, but not from regions that exhibit elevated, sustained load-sensitive delay-period activity. Moreover, the neural information present in these transiently activated areas decreases significantly with increasing load, indicating load sensitivity of the patterns of activity that support VSTM maintenance. Importantly, the decrease in classification performance as a function of load is correlated with within-subject changes in mnemonic resolution. These findings indicate that distributed patterns of neural activity in putatively sensory visual cortex support the representation and precision of information in VSTM.

  20. Theoretical and Methodological Approaches to Understanding Human Migration Patterns and their Utility in Forensic Human Identification Cases

    Directory of Open Access Journals (Sweden)

    Anastasia Holobinko

    2012-06-01

    Full Text Available Human migration patterns are of interest to scientists representing many fields. Theories have been posited to explain modern human evolutionary expansion, the diversity of human culture, and the motivational factors underlying an individual or group decision to migrate. Although the research question and subsequent approach may vary between disciplines, one thread is ubiquitous throughout most migration studies: why do humans migrate and what is the result of such an event? While the determination of individual attributes such as age, sex, and ancestry is often integral to migration studies, the positive identification of human remains is usually irrelevant. However, the positive identification of a deceased is paramount to a forensic investigation in which human remains have been recovered and must be identified. What role, if any, might the study of human movement patterns play in the interpretation of evidence associated with unidentified human remains? Due to increasing global mobility in the world's populations, it is not inconceivable that an individual might die far away from his or her home. If positive identification cannot immediately be made, investigators may consider various theories as to how or why a deceased ended up in a particular geographic location. While scientific evidence influences the direction of forensic investigations, qualitative evaluation can be an important component of evidence interpretation. This review explores several modern human migration theories and the methodologies utilized to identify evidence of human migratory movement before addressing the practical application of migration theory to forensic cases requiring the identification of human remains.

  1. PHYSIOLOGIC PATTERNS OF SLEEP ON EEG, MASKING OF EPILEPTIFORM ACTIVITY

    Directory of Open Access Journals (Sweden)

    L. Yu. Glukhova

    2013-01-01

    Full Text Available Physiologic patterns of sleep on EEG can sometimes be similar to epileptiform activity and even to the EEG pattern of epileptic seizures, but they have no connection to epilepsy and their incorrect interpretation may lead to overdiagnosis of epilepsy. These sleep patterns include vertex transients, K-complexes, hypnagogic hypersynchrony, 14 and 6 Hz positive bursts, wicket-potentials, etc. The main distinctive features of acute physiological phenomena of sleep unlike epileptiform activity are stereotyped, monomorphic morphology of waves, which frequently has rhythmic, arcuate pattern, often with change of lateralization, mainly dominated in the first stages of sleep (N1-N2, with their reduction in the deeper stages and transition to delta sleep (N3. The correct interpretation of physiological sharp-wave phenomena of sleep on EEG requires considerable training and experience of the physician. Our review includes a variety of physiological sleep patterns, which can mimic epileptiform activity on EEG, their criteria of diagnostic with demonstration of own illustrations of EEG.

  2. Emergence of long-range correlations and bursty activity patterns in online communication

    Science.gov (United States)

    Panzarasa, Pietro; Bonaventura, Moreno

    2015-12-01

    Research has suggested that the activity occurring in a variety of social, economic, and technological systems exhibits long-range fluctuations in time. Pronounced levels of rapidly occurring events are typically observed over short periods of time, followed by long periods of inactivity. Relatively few studies, however, have shed light on the degree to which inhomogeneous temporal processes can be detected at, and emerge from, different levels of analysis. Here we investigate patterns of human activity within an online forum in which communication can be assessed at three intertwined levels: the micro level of the individual users; the meso level of discussion groups and continuous sessions; and the macro level of the whole system. To uncover the relation between different levels, we conduct a number of numerical simulations of a zero-crossing model in which users' behavior is constrained by progressively richer and more realistic rules of social interaction. Results indicate that, when users are solipsistic, their bursty behavior is not sufficient for generating heavy-tailed interevent time distributions at a higher level. However, when users are socially interdependent, the power spectra and interevent time distributions of the simulated and real forums are remarkably similar at all levels of analysis. Social interaction is responsible for the aggregation of multiple bursty activities at the micro level into an emergent bursty activity pattern at a higher level. We discuss the implications of the findings for an emergentist account of burstiness in complex systems.

  3. Individual, Social, and Environmental Correlates of Active Transportation Patterns in French Women

    Directory of Open Access Journals (Sweden)

    Camille Perchoux

    2017-01-01

    Full Text Available The objectives were (1 to define physical activity (PA and sedentary behaviors (SB patterns in daily life contexts (work, leisure, and transportation in French working women from NutriNet-Santé web-cohort and (2 to identify pattern(s of active transportation and their individual, social, and environmental correlates. 23,432 participants completed two questionnaires to evaluate PA and SB in daily life contexts and individual representations of residential neighborhood and transportation modes. Hierarchical cluster analysis was performed which identified 6 distinct movement behavior patterns: (i active occupation, high sedentary leisure, (ii sedentary occupation, low leisure, (iii sedentary transportation, (iv sedentary occupation and leisure, (v active transportation, and (vi active leisure. Multinomial logistic regressions were performed to identify correlates of the “active transportation” cluster. The perceived environmental characteristics positively associated with “active transportation” included “high availability of destinations around home,” “presence of bicycle paths,” and “low traffic.” A “positive image of walking/cycling,” the “individual feeling of being physically active,” and a “high use of active transport modes by relatives/friends” were positively related to “active transportation,” identified as a unique pattern regarding individual and environmental correlates. Identification of PA and SB context-specific patterns will help to understand movement behaviors’ complexity and to design interventions to promote active transportation in specific subgroups.

  4. Evaluation of potential protective factors against metabolic syndrome in bottlenose dolphins:feeding and activity patterns of dolphins in Sarasota Bay, Florida

    Science.gov (United States)

    Wells, Randall S.; McHugh, Katherine A.; Douglas, David C.; Shippee, Steve; McCabe, Elizabeth Berens; Barros, Nélio B.; Phillips, Goldie T.

    2014-01-01

    Free-ranging bottlenose dolphins (Tursiops truncatus) living in Sarasota Bay, Florida appear to have a lower risk of developing insulin resistance and metabolic syndrome compared to a group of dolphins managed under human care. Similar to humans, differences in diet and activity cycles between these groups may explain why Sarasota dolphins have lower insulin, glucose, and lipids. To identify potential protective factors against metabolic syndrome, existing and new data were incorporated to describe feeding and activity patterns of the Sarasota Bay wild dolphin community. Sarasota dolphins eat a wide variety of live fish and spend 10–20% of daylight hours foraging and feeding. Feeding occurs throughout the day, with the dolphins eating small proportions of their total daily intake in brief bouts. The natural pattern of wild dolphins is to feed as necessary and possible at any time of the day or night. Wild dolphins rarely eat dead fish or consume large amounts of prey in concentrated time periods. Wild dolphins are active throughout the day and night; they may engage in bouts of each key activity category at any time during daytime. Dive patterns of radio-tagged dolphins varied only slightly with time of day. Travel rates may be slightly lower at night, suggesting a diurnal rhythm, albeit not one involving complete, extended rest. In comparison, the managed dolphins are older; often fed a smaller variety of frozen-thawed fish types; fed fish species not in their natural diet; feedings and engaged activities are often during the day; and they are fed larger but fewer meals. In summary, potential protective factors against metabolic syndrome in dolphins may include young age, activity, and small meals fed throughout the day and night, and specific fish nutrients. These protective factors against insulin resistance and type 2 diabetes are similar to those reported in humans. Further studies may benefit humans and dolphins.

  5. Evaluation of potential protective factors against metabolic syndrome in bottlenose dolphins: feeding and activity patterns of dolphins in Sarasota Bay, Florida

    Directory of Open Access Journals (Sweden)

    Randall eWells

    2013-10-01

    Full Text Available Free-ranging bottlenose dolphins (Tursiops truncatus living in Sarasota Bay, Florida appear to have a lower risk of developing insulin resistance and metabolic syndrome compared to a group of dolphins managed under human care. Similar to humans, differences in diet and activity cycles between these groups may explain why Sarasota dolphins have lower insulin, glucose, and lipids. To identify potential protective factors against metabolic syndrome, existing and new data were incorporated to describe feeding and activity patterns of the Sarasota Bay wild dolphin community. Sarasota dolphins eat a wide variety of live fish and spend 10-20% of daylight hours foraging and feeding. Feeding occurs throughout the day, with the dolphins eating small proportions of their total daily intake in brief bouts. The natural pattern of wild dolphins is to feed as necessary and possible at any time of the day or night. Wild dolphins rarely eat dead fish or consume large amounts of prey in concentrated time periods. Wild dolphins are active throughout the day and night; they may engage in bouts of each key activity category at any time during daytime. Dive patterns of radio-tagged dolphins varied only slightly with time of day. Travel rates may be slightly lower at night, suggesting a diurnal rhythm, albeit not one involving complete, extended rest. In comparison, the managed dolphins are older; often fed a smaller variety of frozen-thawed fish types; fed fish species not in their natural diet; feedings and engaged activities are often during the day; and they are fed larger but fewer meals. In summary, potential protective factors against metabolic syndrome in dolphins may include young age, activity and small meals fed throughout the day and night, and specific fish nutrients. These protective factors against insulin resistance and type 2 diabetes are similar to those reported in humans. Further studies may benefit humans and dolphins.

  6. Physical activity patterns in Greenland: A country in transition

    DEFF Research Database (Denmark)

    Dahl-Petersen, Inger; Jørgensen, Marit E; Bjerregaard, Peter

    2011-01-01

    To examine differences in physical activity patterns among Inuit in Greenland in relation to social transition. The Inuit in Greenland are an indigenous population in the circumpolar north who are experiencing rapid social transition.......To examine differences in physical activity patterns among Inuit in Greenland in relation to social transition. The Inuit in Greenland are an indigenous population in the circumpolar north who are experiencing rapid social transition....

  7. Environmental Health in Relation to Urban Planning and Human Physical Activity

    International Nuclear Information System (INIS)

    Oliver, L.H.L.; Siti Nur Afiqah Mohamed Musthafa; Dasimah Omar

    2015-01-01

    The world is changing everyday in a fast pace that makes majority of the urbanized areas becoming more congested and polluted by the development. The planning of the urban world has brought about a great impact towards the environment and health. With the large number of human population, urban areas will have various kinds of activities that contributed to the higher rate of pollutants compared to areas with less development. In a car oriented urban development pattern, majority of the population will choose automobiles as their transportation modes rather than walking or cycling. Due to that, the air emission in urban areas will increase rapidly, and reduce the physical activity. Air pollutants contribute to various health problems, especially respiratory infection. Besides, lacking of physical activities also increase the health risk. However, there is limited study on the relationship between urban land use setting and health in developing country. Thus, a study had been carried out to establish the relationship between urban setting and human health. It involved air quality data collection, observation on land use setting, and questionnaire survey on human health and the lifestyle. Findings from the relationship analysis had been discussed with suitable recommendation and conclusion. (author)

  8. Exploring Entrainment Patterns of Human Emotion in Social Media

    Science.gov (United States)

    Luo, Chuan; Zhang, Zhu

    2016-01-01

    Emotion entrainment, which is generally defined as the synchronous convergence of human emotions, performs many important social functions. However, what the specific mechanisms of emotion entrainment are beyond in-person interactions, and how human emotions evolve under different entrainment patterns in large-scale social communities, are still unknown. In this paper, we aim to examine the massive emotion entrainment patterns and understand the underlying mechanisms in the context of social media. As modeling emotion dynamics on a large scale is often challenging, we elaborate a pragmatic framework to characterize and quantify the entrainment phenomenon. By applying this framework on the datasets from two large-scale social media platforms, we find that the emotions of online users entrain through social networks. We further uncover that online users often form their relations via dual entrainment, while maintain it through single entrainment. Remarkably, the emotions of online users are more convergent in nonreciprocal entrainment. Building on these findings, we develop an entrainment augmented model for emotion prediction. Experimental results suggest that entrainment patterns inform emotion proximity in dyads, and encoding their associations promotes emotion prediction. This work can further help us to understand the underlying dynamic process of large-scale online interactions and make more reasonable decisions regarding emergency situations, epidemic diseases, and political campaigns in cyberspace. PMID:26953692

  9. Exploring Entrainment Patterns of Human Emotion in Social Media.

    Directory of Open Access Journals (Sweden)

    Saike He

    Full Text Available Emotion entrainment, which is generally defined as the synchronous convergence of human emotions, performs many important social functions. However, what the specific mechanisms of emotion entrainment are beyond in-person interactions, and how human emotions evolve under different entrainment patterns in large-scale social communities, are still unknown. In this paper, we aim to examine the massive emotion entrainment patterns and understand the underlying mechanisms in the context of social media. As modeling emotion dynamics on a large scale is often challenging, we elaborate a pragmatic framework to characterize and quantify the entrainment phenomenon. By applying this framework on the datasets from two large-scale social media platforms, we find that the emotions of online users entrain through social networks. We further uncover that online users often form their relations via dual entrainment, while maintain it through single entrainment. Remarkably, the emotions of online users are more convergent in nonreciprocal entrainment. Building on these findings, we develop an entrainment augmented model for emotion prediction. Experimental results suggest that entrainment patterns inform emotion proximity in dyads, and encoding their associations promotes emotion prediction. This work can further help us to understand the underlying dynamic process of large-scale online interactions and make more reasonable decisions regarding emergency situations, epidemic diseases, and political campaigns in cyberspace.

  10. A Review of Human Activity Recognition Methods

    Directory of Open Access Journals (Sweden)

    Michalis eVrigkas

    2015-11-01

    Full Text Available Recognizing human activities from video sequences or still images is a challenging task due to problems such as background clutter, partial occlusion, changes in scale, viewpoint, lighting, and appearance. Many applications, including video surveillance systems, human-computer interaction, and robotics for human behavior characterization, require a multiple activity recognition system. In this work, we provide a detailed review of recent and state-of-the-art research advances in the field of human activity classification. We propose a categorization of human activity methodologies and discuss their advantages and limitations. In particular, we divide human activity classification methods into two large categories according to whether they use data from different modalities or not. Then, each of these categories is further analyzed into sub-categories, which reflect how they model human activities and what type of activities they are interested in. Moreover, we provide a comprehensive analysis of the existing, publicly available human activity classification datasets and examine the requirements for an ideal human activity recognition dataset. Finally, we report the characteristics of future research directions and present some open issues on human activity recognition.

  11. Spatial point pattern analysis of human settlements and geographical associations in eastern coastal China - a case study.

    Science.gov (United States)

    Zhang, Zhonghao; Xiao, Rui; Shortridge, Ashton; Wu, Jiaping

    2014-03-10

    Understanding the spatial point pattern of human settlements and their geographical associations are important for understanding the drivers of land use and land cover change and the relationship between environmental and ecological processes on one hand and cultures and lifestyles on the other. In this study, a Geographic Information System (GIS) approach, Ripley's K function and Monte Carlo simulation were used to investigate human settlement point patterns. Remotely sensed tools and regression models were employed to identify the effects of geographical determinants on settlement locations in the Wen-Tai region of eastern coastal China. Results indicated that human settlements displayed regular-random-cluster patterns from small to big scale. Most settlements located on the coastal plain presented either regular or random patterns, while those in hilly areas exhibited a clustered pattern. Moreover, clustered settlements were preferentially located at higher elevations with steeper slopes and south facing aspects than random or regular settlements. Regression showed that influences of topographic factors (elevation, slope and aspect) on settlement locations were stronger across hilly regions. This study demonstrated a new approach to analyzing the spatial patterns of human settlements from a wide geographical prospective. We argue that the spatial point patterns of settlements, in addition to the characteristics of human settlements, such as area, density and shape, should be taken into consideration in the future, and land planners and decision makers should pay more attention to city planning and management. Conceptual and methodological bridges linking settlement patterns to regional and site-specific geographical characteristics will be a key to human settlement studies and planning.

  12. Acquisition, extinction, and recall of opiate reward memory are signaled by dynamic neuronal activity patterns in the prefrontal cortex.

    Science.gov (United States)

    Sun, Ninglei; Chi, Ning; Lauzon, Nicole; Bishop, Stephanie; Tan, Huibing; Laviolette, Steven R

    2011-12-01

    The medial prefrontal cortex (mPFC) comprises an important component in the neural circuitry underlying drug-related associative learning and memory processing. Neuronal activation within mPFC circuits is correlated with the recall of opiate-related drug-taking experiences in both humans and other animals. Using an unbiased associative place conditioning procedure, we recorded mPFC neuronal populations during the acquisition, recall, and extinction phases of morphine-related associative learning and memory. Our analyses revealed that mPFC neurons show increased activity both in terms of tonic and phasic activity patterns during the acquisition phase of opiate reward-related memory and demonstrate stimulus-locked associative activity changes in real time, during the recall of opiate reward memories. Interestingly, mPFC neuronal populations demonstrated divergent patterns of bursting activity during the acquisition versus recall phases of newly acquired opiate reward memory, versus the extinction of these memories, with strongly increased bursting during the recall of an extinction memory and no associative bursting during the recall of a newly acquired opiate reward memory. Our results demonstrate that neurons within the mPFC are involved in both the acquisition, recall, and extinction of opiate-related reward memories, showing unique patterns of tonic and phasic activity patterns during these separate components of the opiate-related reward learning and memory recall.

  13. Sow-activity classification from acceleration patterns

    DEFF Research Database (Denmark)

    Escalante, Hugo Jair; Rodriguez, Sara V.; Cordero, Jorge

    2013-01-01

    sow-activity classification can be approached with standard machine learning methods for pattern classification. Individual predictions for elements of times series of arbitrary length are combined to classify it as a whole. An extensive comparison of representative learning algorithms, including......This paper describes a supervised learning approach to sow-activity classification from accelerometer measurements. In the proposed methodology, pairs of accelerometer measurements and activity types are considered as labeled instances of a usual supervised classification task. Under this scenario...... neural networks, support vector machines, and ensemble methods, is presented. Experimental results are reported using a data set for sow-activity classification collected in a real production herd. The data set, which has been widely used in related works, includes measurements from active (Feeding...

  14. The role of human outdoor recreation in shaping patterns of grizzly bear-black bear co-occurrence.

    Directory of Open Access Journals (Sweden)

    Andrew Ladle

    Full Text Available Species' distributions are influenced by a combination of landscape variables and biotic interactions with other species, including people. Grizzly bears and black bears are sympatric, competing omnivores that also share habitats with human recreationists. By adapting models for multi-species occupancy analysis, we analyzed trail camera data from 192 trail camera locations in and around Jasper National Park, Canada to estimate grizzly bear and black bear occurrence and intensity of trail use. We documented (a occurrence of grizzly bears and black bears relative to habitat variables (b occurrence and intensity of use relative to competing bear species and motorised and non-motorised recreational activity, and (c temporal overlap in activity patterns among the two bear species and recreationists. Grizzly bears were spatially separated from black bears, selecting higher elevations and locations farther from roads. Both species co-occurred with motorised and non-motorised recreation, however, grizzly bears reduced their intensity of use of sites with motorised recreation present. Black bears showed higher temporal activity overlap with recreational activity than grizzly bears, however differences in bear daily activity patterns between sites with and without motorised and non-motorised recreation were not significant. Reduced intensity of use by grizzly bears of sites where motorised recreation was present is a concern given off-road recreation is becoming increasingly popular in North America, and can negatively influence grizzly bear recovery by reducing foraging opportunities near or on trails. Camera traps and multi-species occurrence models offer non-invasive methods for identifying how habitat use by animals changes relative to sympatric species, including humans. These conclusions emphasise the need for integrated land-use planning, access management, and grizzly bear conservation efforts to consider the implications of continued access for

  15. The role of human outdoor recreation in shaping patterns of grizzly bear-black bear co-occurrence.

    Science.gov (United States)

    Ladle, Andrew; Steenweg, Robin; Shepherd, Brenda; Boyce, Mark S

    2018-01-01

    Species' distributions are influenced by a combination of landscape variables and biotic interactions with other species, including people. Grizzly bears and black bears are sympatric, competing omnivores that also share habitats with human recreationists. By adapting models for multi-species occupancy analysis, we analyzed trail camera data from 192 trail camera locations in and around Jasper National Park, Canada to estimate grizzly bear and black bear occurrence and intensity of trail use. We documented (a) occurrence of grizzly bears and black bears relative to habitat variables (b) occurrence and intensity of use relative to competing bear species and motorised and non-motorised recreational activity, and (c) temporal overlap in activity patterns among the two bear species and recreationists. Grizzly bears were spatially separated from black bears, selecting higher elevations and locations farther from roads. Both species co-occurred with motorised and non-motorised recreation, however, grizzly bears reduced their intensity of use of sites with motorised recreation present. Black bears showed higher temporal activity overlap with recreational activity than grizzly bears, however differences in bear daily activity patterns between sites with and without motorised and non-motorised recreation were not significant. Reduced intensity of use by grizzly bears of sites where motorised recreation was present is a concern given off-road recreation is becoming increasingly popular in North America, and can negatively influence grizzly bear recovery by reducing foraging opportunities near or on trails. Camera traps and multi-species occurrence models offer non-invasive methods for identifying how habitat use by animals changes relative to sympatric species, including humans. These conclusions emphasise the need for integrated land-use planning, access management, and grizzly bear conservation efforts to consider the implications of continued access for motorised

  16. Predesigned surface patterns and topological defects control the active matter.

    Science.gov (United States)

    Turiv, Taras; Peng, Chenhui; Guo, Yubing; Wei, Qi-Huo; Lavrentovich, Oleg

    Active matter exhibits remarkable patterns of never-ending dynamics with giant fluctuations of concentration, varying order, nucleating and annihilating topological defects. These patterns can be seen in active systems of both biological and artificial origin. A fundamental question is whether and how one can control this chaotic out-of-equilibrium behavior. We demonstrate a robust control of local concentration, trajectories of active self-propelled units and the net flows of active bacteria Bacillus Substilis by imposing pre-designed surface patterns of orientational order in a water-based lyotropic chromonic liquid crystal. The patterns force the bacteria to gather into dynamic swarms with spatially modulated concentration and well-defined polarity of motion. Topological defects produce net motion of bacteria with a unidirectional circulation, while pairs of defects induce a pumping action. The qualitative features of the dynamics can be explained by interplay of curvature and activity, in particular, by ability of mixed splay-bend curvatures to generate threshold-less active flows. The demonstrated level of control opens opportunities in engineering materials and devices that mimic rich functionality of living systems. This work was supported by NSF Grants DMR-1507637, DMS-1434185, CMMI-1436565, by the Petroleum Research Grant PRF# 56046-ND7 administered by the American Chemical Society.

  17. IgE-dependent activation of human mast cells and fMLP-mediated activation of human eosinophils is controlled by the circadian clock.

    Science.gov (United States)

    Baumann, Anja; Feilhauer, Katharina; Bischoff, Stephan C; Froy, Oren; Lorentz, Axel

    2015-03-01

    Symptoms of allergic attacks frequently exhibit diurnal variations. Accordingly, we could recently demonstrate that mast cells and eosinophils - known as major effector cells of allergic diseases - showed an intact circadian clock. Here, we analyzed the role of the circadian clock in the functionality of mast cells and eosinophils. Human intestinal mast cells (hiMC) were isolated from intestinal mucosa; human eosinophils were isolated from peripheral blood. HiMC and eosinophils were synchronized by dexamethasone before stimulation every 4h around the circadian cycle by FcɛRI crosslinking or fMLP, respectively. Signaling molecule activation was examined using Western blot, mRNA expression by real-time RT-PCR, and mediator release by multiplex analysis. CXCL8 and CCL2 were expressed and released in a circadian manner by both hiMC and eosinophils in response to activation. Moreover, phosphorylation of ERK1/2, known to be involved in activation of hiMC and eosinophils, showed circadian rhythms in both cell types. Interestingly, all clock genes hPer1, hPer2, hCry1, hBmal1, and hClock were expressed in a similar circadian pattern in activated and unstimulated cells indicating that the local clock controls hiMC and eosinophils and subsequently allergic reactions but not vice versa. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Automated classification of immunostaining patterns in breast tissue from the human protein atlas.

    Science.gov (United States)

    Swamidoss, Issac Niwas; Kårsnäs, Andreas; Uhlmann, Virginie; Ponnusamy, Palanisamy; Kampf, Caroline; Simonsson, Martin; Wählby, Carolina; Strand, Robin

    2013-01-01

    The Human Protein Atlas (HPA) is an effort to map the location of all human proteins (http://www.proteinatlas.org/). It contains a large number of histological images of sections from human tissue. Tissue micro arrays (TMA) are imaged by a slide scanning microscope, and each image represents a thin slice of a tissue core with a dark brown antibody specific stain and a blue counter stain. When generating antibodies for protein profiling of the human proteome, an important step in the quality control is to compare staining patterns of different antibodies directed towards the same protein. This comparison is an ultimate control that the antibody recognizes the right protein. In this paper, we propose and evaluate different approaches for classifying sub-cellular antibody staining patterns in breast tissue samples. The proposed methods include the computation of various features including gray level co-occurrence matrix (GLCM) features, complex wavelet co-occurrence matrix (CWCM) features, and weighted neighbor distance using compound hierarchy of algorithms representing morphology (WND-CHARM)-inspired features. The extracted features are used into two different multivariate classifiers (support vector machine (SVM) and linear discriminant analysis (LDA) classifier). Before extracting features, we use color deconvolution to separate different tissue components, such as the brownly stained positive regions and the blue cellular regions, in the immuno-stained TMA images of breast tissue. We present classification results based on combinations of feature measurements. The proposed complex wavelet features and the WND-CHARM features have accuracy similar to that of a human expert. Both human experts and the proposed automated methods have difficulties discriminating between nuclear and cytoplasmic staining patterns. This is to a large extent due to mixed staining of nucleus and cytoplasm. Methods for quantification of staining patterns in histopathology have many

  19. Automated classification of immunostaining patterns in breast tissue from the human protein Atlas

    Directory of Open Access Journals (Sweden)

    Issac Niwas Swamidoss

    2013-01-01

    Full Text Available Background: The Human Protein Atlas (HPA is an effort to map the location of all human proteins (http://www.proteinatlas.org/. It contains a large number of histological images of sections from human tissue. Tissue micro arrays (TMA are imaged by a slide scanning microscope, and each image represents a thin slice of a tissue core with a dark brown antibody specific stain and a blue counter stain. When generating antibodies for protein profiling of the human proteome, an important step in the quality control is to compare staining patterns of different antibodies directed towards the same protein. This comparison is an ultimate control that the antibody recognizes the right protein. In this paper, we propose and evaluate different approaches for classifying sub-cellular antibody staining patterns in breast tissue samples. Materials and Methods: The proposed methods include the computation of various features including gray level co-occurrence matrix (GLCM features, complex wavelet co-occurrence matrix (CWCM features, and weighted neighbor distance using compound hierarchy of algorithms representing morphology (WND-CHARM-inspired features. The extracted features are used into two different multivariate classifiers (support vector machine (SVM and linear discriminant analysis (LDA classifier. Before extracting features, we use color deconvolution to separate different tissue components, such as the brownly stained positive regions and the blue cellular regions, in the immuno-stained TMA images of breast tissue. Results: We present classification results based on combinations of feature measurements. The proposed complex wavelet features and the WND-CHARM features have accuracy similar to that of a human expert. Conclusions: Both human experts and the proposed automated methods have difficulties discriminating between nuclear and cytoplasmic staining patterns. This is to a large extent due to mixed staining of nucleus and cytoplasm. Methods for

  20. [-25]A Similarity Analysis of Audio Signal to Develop a Human Activity Recognition Using Similarity Networks.

    Science.gov (United States)

    García-Hernández, Alejandra; Galván-Tejada, Carlos E; Galván-Tejada, Jorge I; Celaya-Padilla, José M; Gamboa-Rosales, Hamurabi; Velasco-Elizondo, Perla; Cárdenas-Vargas, Rogelio

    2017-11-21

    Human Activity Recognition (HAR) is one of the main subjects of study in the areas of computer vision and machine learning due to the great benefits that can be achieved. Examples of the study areas are: health prevention, security and surveillance, automotive research, and many others. The proposed approaches are carried out using machine learning techniques and present good results. However, it is difficult to observe how the descriptors of human activities are grouped. In order to obtain a better understanding of the the behavior of descriptors, it is important to improve the abilities to recognize the human activities. This paper proposes a novel approach for the HAR based on acoustic data and similarity networks. In this approach, we were able to characterize the sound of the activities and identify those activities looking for similarity in the sound pattern. We evaluated the similarity of the sounds considering mainly two features: the sound location and the materials that were used. As a result, the materials are a good reference classifying the human activities compared with the location.

  1. Salivary Proteome Patterns Affecting Human Salt Taste Sensitivity.

    Science.gov (United States)

    Stolle, Theresa; Grondinger, Freya; Dunkel, Andreas; Meng, Chen; Médard, Guillaume; Kuster, Bernhard; Hofmann, Thomas

    2017-10-25

    To investigate the role of perireceptor events in inter-individual variability in salt taste sensitivity, 31 volunteers were monitored in their detection functions for sodium chloride (NaCl) and classified into sensitive (0.6-1.7 mmol/L), medium-sensitive (1.8-6.9 mmol/L), and nonsensitive (7.0-11.2 mmol/L) subjects. Chemosensory intervention of NaCl-sensitive (S + ) and nonsensitive (S - ) panellists with potassium chloride, ammonium chloride, and sodium gluconate showed the salt taste sensitivity to be specific for NaCl. As no significant differences were found between S + and S - subjects in salivary sodium and protein content, salivary proteome differences and their stimulus-induced dynamic changes were analyzed by tryptic digestion, iTRAQ labeling, and liquid chromatography-tandem mass spectrometry analysis. Differences in the salivary proteome between S + and S - subjects were found primarily in resting saliva and were largely independent of the dynamic alterations observed upon salt stimulation. Gene ontology enrichment analysis of key proteins, i.e., immunoglobulin heavy constant y1, myeloblastin, cathepsin G, and kallikrein, revealed significantly increased serine-type endopeptidase activity for the S + group, while the S - group exhibited augmented cysteine-type endopeptidase inhibitor activity by increased abundances in lipocalin-1 and cystatin-D, -S, and -SN, respectively. As proteases have been suggested to facilitate transepithelial sodium transport by cleaving the y-subunit of the epithelial sodium channel (ENaC) and protease inhibitors have been shown to reduce ENaC-mediated sodium transport, the differentially modulated proteolytic activity patterns observed in vivo for S + and S - subjects show evidence of them playing a crucial role in affecting human NaCl sensitivity.

  2. Agricultural activity shapes the communication and migration patterns in Senegal

    Science.gov (United States)

    Martin-Gutierrez, S.; Borondo, J.; Morales, A. J.; Losada, J. C.; Tarquis, A. M.; Benito, R. M.

    2016-06-01

    The communication and migration patterns of a country are shaped by its socioeconomic processes. The economy of Senegal is predominantly rural, as agriculture employs over 70% of the labor force. In this paper, we use mobile phone records to explore the impact of agricultural activity on the communication and mobility patterns of the inhabitants of Senegal. We find two peaks of phone calls activity emerging during the growing season. Moreover, during the harvest period, we detect an increase in the migration flows throughout the country. However, religious holidays also shape the mobility patterns of the Senegalese people. Hence, in the light of our results, agricultural activity and religious holidays are the primary drivers of mobility inside the country.

  3. Instabilities and patterns in an active nematic film

    Science.gov (United States)

    Srivastava, Pragya; Marchetti, Cristina

    2015-03-01

    Experiments on microtubule bundles confined to an oil-water interface have motivated extensive theoretical studies of two-dimensional active nematics. Theoretical models taking into account the interplay between activity, flow and order have remarkably reproduced several experimentally observed features of the defect-dynamics in these ``living'' nematics. Here, we derive minimal description of a two-dimensional active nematic film confined between walls. At high friction, we eliminate the flow to obtain closed equations for the nematic order parameter, with renormalized Frank elastic constants. Active processes can render the ``Frank'' constants negative, resulting in the instability of the uniformly ordered nematic state. The minimal model yields emergent patterns of growing complexity with increasing activity, including bands and turbulent dynamics with a steady density of topological defects, as obtained with the full hydrodynamic equations. We report on the scaling of the length scales of these patterns and of the steady state number of defects with activity and system size. National Science Foundation grant DMR-1305184 and Syracuse Soft Matter Program.

  4. Patterns of adolescent physical activity and dietary behaviours

    Directory of Open Access Journals (Sweden)

    Gorely Trish

    2009-07-01

    Full Text Available Abstract Background The potential synergistic effects of multiple dietary and physical activity behaviours on the risk of chronic conditions and health outcomes is a key issue for public health. This study examined the prevalence and clustering patterns of multiple health behaviours among a sample of adolescents in the UK. Methods Cross-sectional survey of 176 adolescents aged 12–16 years (49% boys. Adolescents wore accelerometers for seven days and completed a questionnaire assessing fruit, vegetable, and breakfast consumption. The prevalence of adolescents meeting the physical activity (≥ 60 minutes moderate-to-vigorous physical activity/day, fruit and vegetable (≥ 5 portions of FV per day and breakfast recommendations (eating breakfast on ≥ 5 days per week, and clustering patterns of these health behaviours are described. Results Boys were more active than girls (p Conclusion Many adolescents fail to meet multiple diet and physical activity recommendations, highlighting that physical activity and dietary behaviours do not occur in isolation. Future research should investigate how best to achieve multiple health behaviour change in adolescent boys and girls.

  5. The Human Release Hypothesis for biological invasions: human activity as a determinant of the abundance of invasive plant species [v1; ref status: indexed, http://f1000r.es/33c

    Directory of Open Access Journals (Sweden)

    Heike Zimmermann

    2014-05-01

    Full Text Available Research on biological invasions has increased rapidly over the past 30 years, generating numerous explanations of how species become invasive. While the mechanisms of invasive species establishment are well studied, the mechanisms driving abundance patterns (i.e. patterns of population density remain poorly understood. Invasive species typically have higher abundances in their new environments than in their native ranges, and patterns of invasive species abundance differ between invaded regions. To explain differences in invasive species abundance, we propose the Human Release Hypothesis. In parallel to the established Enemy Release Hypothesis, this hypothesis states that the abundance of invasive species may be partly explained by the level of human activity or landscape maintenance, with intermediate levels of human activity providing optimal conditions for high abundance. The Human Release Hypothesis does not negate other important drivers of species invasions, but rather should be considered as a potentially important additional or complementary mechanism. We illustrate the hypothesis via a case study on an invasive rose species, and hypothesize which locations globally may be most likely to support high abundances of invasive species. We propose that more extensive empirical work on the Human Release Hypothesis could be useful to test its general applicability.

  6. Enhanced stimulus-induced gamma activity in humans during propofol-induced sedation.

    Directory of Open Access Journals (Sweden)

    Neeraj Saxena

    Full Text Available Stimulus-induced gamma oscillations in the 30-80 Hz range have been implicated in a wide number of functions including visual processing, memory and attention. While occipital gamma-band oscillations can be pharmacologically modified in animal preparations, pharmacological modulation of stimulus-induced visual gamma oscillations has yet to be demonstrated in non-invasive human recordings. Here, in fifteen healthy humans volunteers, we probed the effects of the GABAA agonist and sedative propofol on stimulus-related gamma activity recorded with magnetoencephalography, using a simple visual grating stimulus designed to elicit gamma oscillations in the primary visual cortex. During propofol sedation as compared to the normal awake state, a significant 60% increase in stimulus-induced gamma amplitude was seen together with a 94% enhancement of stimulus-induced alpha suppression and a simultaneous reduction in the amplitude of the pattern-onset evoked response. These data demonstrate, that propofol-induced sedation is accompanied by increased stimulus-induced gamma activity providing a potential window into mechanisms of gamma-oscillation generation in humans.

  7. Human activities as a driver of spatial variation in the trophic structure of fish communities on Pacific coral reefs.

    Science.gov (United States)

    Ruppert, Jonathan L W; Vigliola, Laurent; Kulbicki, Michel; Labrosse, Pierre; Fortin, Marie-Josée; Meekan, Mark G

    2018-01-01

    Anthropogenic activities such as land-use change, pollution and fishing impact the trophic structure of coral reef fishes, which can influence ecosystem health and function. Although these impacts may be ubiquitous, they are not consistent across the tropical Pacific Ocean. Using an extensive database of fish biomass sampled using underwater visual transects on coral reefs, we modelled the impact of human activities on food webs at Pacific-wide and regional (1,000s-10,000s km) scales. We found significantly lower biomass of sharks and carnivores, where there were higher densities of human populations (hereafter referred to as human activity); however, these patterns were not spatially consistent as there were significant differences in the trophic structures of fishes among biogeographic regions. Additionally, we found significant changes in the benthic structure of reef environments, notably a decline in coral cover where there was more human activity. Direct human impacts were the strongest in the upper part of the food web, where we found that in a majority of the Pacific, the biomass of reef sharks and carnivores were significantly and negatively associated with human activity. Finally, although human-induced stressors varied in strength and significance throughout the coral reef food web across the Pacific, socioeconomic variables explained more variation in reef fish trophic structure than habitat variables in a majority of the biogeographic regions. Notably, economic development (measured as GDP per capita) did not guarantee healthy reef ecosystems (high coral cover and greater fish biomass). Our results indicate that human activities are significantly shaping patterns of trophic structure of reef fishes in a spatially nonuniform manner across the Pacific Ocean, by altering processes that organize communities in both "top-down" (fishing of predators) and "bottom-up" (degradation of benthic communities) contexts. © 2017 John Wiley & Sons Ltd.

  8. Physical Activity, Sedentary Behavior, and Dietary Patterns among Children

    NARCIS (Netherlands)

    Gubbels, J.S.; van Assema, P.; Kremers, S.P.

    2013-01-01

    Energy balance-related behavioral patterns find their origin in early The current paper provides an overview of studies that have examined behavioral patterns, i.e., the clustering of dietary behaviors, physical activity, and/or sedentary behavior. The paper discusses the importance examining energy

  9. Co-residence patterns in hunter-gatherer societies show unique human social structure.

    Science.gov (United States)

    Hill, Kim R; Walker, Robert S; Bozicević, Miran; Eder, James; Headland, Thomas; Hewlett, Barry; Hurtado, A Magdalena; Marlowe, Frank; Wiessner, Polly; Wood, Brian

    2011-03-11

    Contemporary humans exhibit spectacular biological success derived from cumulative culture and cooperation. The origins of these traits may be related to our ancestral group structure. Because humans lived as foragers for 95% of our species' history, we analyzed co-residence patterns among 32 present-day foraging societies (total n = 5067 individuals, mean experienced band size = 28.2 adults). We found that hunter-gatherers display a unique social structure where (i) either sex may disperse or remain in their natal group, (ii) adult brothers and sisters often co-reside, and (iii) most individuals in residential groups are genetically unrelated. These patterns produce large interaction networks of unrelated adults and suggest that inclusive fitness cannot explain extensive cooperation in hunter-gatherer bands. However, large social networks may help to explain why humans evolved capacities for social learning that resulted in cumulative culture.

  10. Categorizing Pedagogical Patterns by Teaching Activities and Pedagogical Value

    DEFF Research Database (Denmark)

    Eriksen, Ole

    2006-01-01

    The main contribution of this paper is a proposal for a universal pedagogical pattern categorization based on teaching values and activities. This categorization would be more sustainable than the arbitrary categorization implied by pedagogical pattern language themes. Pedagogical patterns from two...... central patterns languages are analyzed and categorized, and the result is a catalogue theoretically founded and practical in its application. The teaching values are derived from learning theories, implying the theoretical foundation of the catalogue. In order to increase the usability of the value...

  11. Genes expressed in specific areas of the human fetal cerebral cortex display distinct patterns of evolution.

    Directory of Open Access Journals (Sweden)

    Nelle Lambert

    2011-03-01

    Full Text Available The developmental mechanisms through which the cerebral cortex increased in size and complexity during primate evolution are essentially unknown. To uncover genetic networks active in the developing cerebral cortex, we combined three-dimensional reconstruction of human fetal brains at midgestation and whole genome expression profiling. This novel approach enabled transcriptional characterization of neurons from accurately defined cortical regions containing presumptive Broca and Wernicke language areas, as well as surrounding associative areas. We identified hundreds of genes displaying differential expression between the two regions, but no significant difference in gene expression between left and right hemispheres. Validation by qRTPCR and in situ hybridization confirmed the robustness of our approach and revealed novel patterns of area- and layer-specific expression throughout the developing cortex. Genes differentially expressed between cortical areas were significantly associated with fast-evolving non-coding sequences harboring human-specific substitutions that could lead to divergence in their repertoires of transcription factor binding sites. Strikingly, while some of these sequences were accelerated in the human lineage only, many others were accelerated in chimpanzee and/or mouse lineages, indicating that genes important for cortical development may be particularly prone to changes in transcriptional regulation across mammals. Genes differentially expressed between cortical regions were also enriched for transcriptional targets of FoxP2, a key gene for the acquisition of language abilities in humans. Our findings point to a subset of genes with a unique combination of cortical areal expression and evolutionary patterns, suggesting that they play important roles in the transcriptional network underlying human-specific neural traits.

  12. Revisiting the daily human birth pattern: time of delivery at Casa de Maternidad in Madrid (1887-1892).

    Science.gov (United States)

    Varea, Carlos; Fernández-Cerezo, Susana

    2014-01-01

    Among the ancestral characteristics of the primate group to which Homo sapiens belongs we find a pattern of daytime physical activity, but one notable exception is birthing which usually begins with night-time labor. In populations with a moderate or high level of medicalized labor, there is evidence that the medical preferences interfere with the underlying biological mechanism for the circadian pattern of human birth. This study analyses the hourly patterns of 4,599 single live births in the House of Maternity in Madrid between 1887 and 1892, a period of very limited obstetric intervention and without the influence of artificial lighting. In order to determine the influence of natural light on labor, two periods of maximum and minimum light have been established around the summer and winter solstices of the years in question. A clear circadian pattern of births emerges, with very early morning and early morning births dominating, and a sharp drop from midday until nightfall. The hourly distribution on both solstices follows this pattern, but with a clear peak shift: in winter, there is a greater concentration of deliveries in the early morning, whereas in the summer, the highest concentration is between 8 and 12 in the morning. The results confirm that non-intervened human birth has a clear diurnal cycle, with a higher incidence of deliveries in the early morning or morning. The shift in distribution during the winter and summer solstices seems to confirm the effect of light on the labor process. © 2014 Wiley Periodicals, Inc.

  13. Unloaded shortening velocity of voluntarily and electrically activated human dorsiflexor muscles in vivo.

    Directory of Open Access Journals (Sweden)

    Kazushige Sasaki

    Full Text Available We have previously shown that unloaded shortening velocity (V(0 of human plantar flexors can be determined in vivo, by applying the "slack test" to submaximal voluntary contractions (J Physiol 567:1047-1056, 2005. In the present study, to investigate the effect of motor unit recruitment pattern on V(0 of human muscle, we modified the slack test and applied this method to both voluntary and electrically elicited contractions of dorsiflexors. A series of quick releases (i.e., rapid ankle joint rotation driven by an electrical dynamometer was applied to voluntarily activated dorsiflexor muscles at three different contraction intensities (15, 50, and 85% of maximal voluntary contraction; MVC. The quick-release trials were also performed on electrically activated dorsiflexor muscles, in which three stimulus conditions were used: submaximal (equal to 15%MVC 50-Hz stimulation, supramaximal 50-Hz stimulation, and supramaximal 20-Hz stimulation. Modification of the slack test in vivo resulted in good reproducibility of V(0, with an intraclass correlation coefficient of 0.87 (95% confidence interval: 0.68-0.95. Regression analysis showed that V(0 of voluntarily activated dorsiflexor muscles significantly increased with increasing contraction intensity (R(2 = 0.52, P<0.001. By contrast, V(0 of electrically activated dorsiflexor muscles remained unchanged (R(2<0.001, P = 0.98 among three different stimulus conditions showing a large variation of tetanic torque. These results suggest that the recruitment pattern of motor units, which is quite different between voluntary and electrically elicited contractions, plays an important role in determining shortening velocity of human skeletal muscle in vivo.

  14. Inspiratory flow pattern in humans.

    Science.gov (United States)

    Lafortuna, C L; Minetti, A E; Mognoni, P

    1984-10-01

    The theoretical estimation of the mechanical work of breathing during inspiration at rest is based on the common assumption that the inspiratory airflow wave is a sine function of time. Different analytical studies have pointed out that from an energetic point of view a rectangular wave is more economical than a sine wave. Visual inspection of inspiratory flow waves recorded during exercise in humans and various animals suggests that a trend toward a rectangular flow wave may be a possible systematic response of the respiratory system. To test this hypothesis, the harmonic content of inspiratory flow waves that were recorded in six healthy subjects at rest, during exercise hyperventilation, and during a maximum voluntary ventilation (MVV) maneuver were evaluated by a Fourier analysis, and the results were compared with those obtained on sinusoidal and rectangular models. The dynamic work inherent in the experimental waves and in the sine-wave model was practically the same at rest; during exercise hyperventilation and MVV, the experimental wave was approximately 16-20% more economical than the sinusoidal one. It was concluded that even though at rest the sinusoidal model is a reasonably good approximation of inspiratory flow, during exercise and MVV, a physiological controller is probably operating in humans that can select a more economical inspiratory pattern. Other peculiarities of airflow wave during hyperventilation and some optimization criteria are also discussed.

  15. The spatial structure of transnational human activity.

    Science.gov (United States)

    Deutschmann, Emanuel

    2016-09-01

    Starting from conflictive predictions of hitherto disconnected debates in the natural and social sciences, this article examines the spatial structure of transnational human activity (THA) worldwide (a) across eight types of mobility and communication and (b) in its development over time. It is shown that the spatial structure of THA is similar to that of animal displacements and local-scale human motion in that it can be approximated by Lévy flights with heavy tails that obey power laws. Scaling exponent and power-law fit differ by type of THA, being highest in refuge-seeking and tourism and lowest in student exchange. Variance in the availability of resources and opportunities for satisfying associated needs appears to explain these differences. Over time (1960-2010), the Lévy-flight pattern remains intact and remarkably stable, contradicting the popular notion that socio-technological trends lead to a "death of distance." Humans have not become more "global" over time, they rather became more mobile in general, i.e. they move and communicate more at all distances. Hence, it would be more adequate to speak of "mobilization" than of "globalization." Longitudinal change occurs only in some types of THA and predominantly at short distances, indicating regional rather than global shifts. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Toward Multimodal Human-Robot Interaction to Enhance Active Participation of Users in Gait Rehabilitation.

    Science.gov (United States)

    Gui, Kai; Liu, Honghai; Zhang, Dingguo

    2017-11-01

    Robotic exoskeletons for physical rehabilitation have been utilized for retraining patients suffering from paraplegia and enhancing motor recovery in recent years. However, users are not voluntarily involved in most systems. This paper aims to develop a locomotion trainer with multiple gait patterns, which can be controlled by the active motion intention of users. A multimodal human-robot interaction (HRI) system is established to enhance subject's active participation during gait rehabilitation, which includes cognitive HRI (cHRI) and physical HRI (pHRI). The cHRI adopts brain-computer interface based on steady-state visual evoked potential. The pHRI is realized via admittance control based on electromyography. A central pattern generator is utilized to produce rhythmic and continuous lower joint trajectories, and its state variables are regulated by cHRI and pHRI. A custom-made leg exoskeleton prototype with the proposed multimodal HRI is tested on healthy subjects and stroke patients. The results show that voluntary and active participation can be effectively involved to achieve various assistive gait patterns.

  17. Human-Wildlife Conflicts in Nepal: Patterns of Human Fatalities and Injuries Caused by Large Mammals.

    Science.gov (United States)

    Acharya, Krishna Prasad; Paudel, Prakash Kumar; Neupane, Prem Raj; Köhl, Michael

    2016-01-01

    Injury and death from wildlife attacks often result in people feeling violent resentment and hostility against the wildlife involved and, therefore, may undermine public support for conservation. Although Nepal, with rich biodiversity, is doing well in its conservation efforts, human-wildlife conflicts have been a major challenge in recent years. The lack of detailed information on the spatial and temporal patterns of human-wildlife conflicts at the national level impedes the development of effective conflict mitigation plans. We examined patterns of human injury and death caused by large mammals using data from attack events and their spatiotemporal dimensions collected from a national survey of data available in Nepal over five years (2010-2014). Data were analyzed using logistic regression and chi-square or Fisher's exact tests. The results show that Asiatic elephants and common leopards are most commonly involved in attacks on people in terms of attack frequency and fatalities. Although one-horned rhinoceros and bears had a higher frequency of attacks than Bengal tigers, tigers caused more fatalities than each of these two species. Attacks by elephants peaked in winter and most frequently occurred outside protected areas in human settlements. Leopard attacks occurred almost entirely outside protected areas, and a significantly greater number of attacks occurred in human settlements. Attacks by one-horned rhinoceros and tigers were higher in the winter, mainly in forests inside protected areas; similarly, attacks by bears occurred mostly within protected areas. We found that human settlements are increasingly becoming conflict hotspots, with burgeoning incidents involving elephants and leopards. We conclude that species-specific conservation strategies are urgently needed, particularly for leopards and elephants. The implications of our findings for minimizing conflicts and conserving these imperiled species are discussed.

  18. Human-Wildlife Conflicts in Nepal: Patterns of Human Fatalities and Injuries Caused by Large Mammals

    Science.gov (United States)

    Acharya, Krishna Prasad; Paudel, Prakash Kumar; Neupane, Prem Raj; Köhl, Michael

    2016-01-01

    Injury and death from wildlife attacks often result in people feeling violent resentment and hostility against the wildlife involved and, therefore, may undermine public support for conservation. Although Nepal, with rich biodiversity, is doing well in its conservation efforts, human-wildlife conflicts have been a major challenge in recent years. The lack of detailed information on the spatial and temporal patterns of human-wildlife conflicts at the national level impedes the development of effective conflict mitigation plans. We examined patterns of human injury and death caused by large mammals using data from attack events and their spatiotemporal dimensions collected from a national survey of data available in Nepal over five years (2010–2014). Data were analyzed using logistic regression and chi-square or Fisher's exact tests. The results show that Asiatic elephants and common leopards are most commonly involved in attacks on people in terms of attack frequency and fatalities. Although one-horned rhinoceros and bears had a higher frequency of attacks than Bengal tigers, tigers caused more fatalities than each of these two species. Attacks by elephants peaked in winter and most frequently occurred outside protected areas in human settlements. Leopard attacks occurred almost entirely outside protected areas, and a significantly greater number of attacks occurred in human settlements. Attacks by one-horned rhinoceros and tigers were higher in the winter, mainly in forests inside protected areas; similarly, attacks by bears occurred mostly within protected areas. We found that human settlements are increasingly becoming conflict hotspots, with burgeoning incidents involving elephants and leopards. We conclude that species-specific conservation strategies are urgently needed, particularly for leopards and elephants. The implications of our findings for minimizing conflicts and conserving these imperiled species are discussed. PMID:27612174

  19. Virulence-associated gene pattern of porcine and human Yersinia enterocolitica biotype 4 isolates.

    Science.gov (United States)

    Schneeberger, M; Brodard, I; Overesch, G

    2015-04-02

    Yersinia enterocolitica 4/O:3 is the most important human pathogenic bioserotype in Europe and the predominant pathogenic bioserotype in slaughter pigs. Although many studies on the virulence of Y. enterocolitica strains have showed a broad spectrum of detectable factors in pigs and humans, an analysis based on a strict comparative approach and serving to verify the virulence capability of porcine Y. enterocolitica as a source for human yersiniosis is lacking. Therefore, in the present study, strains of biotype (BT) 4 isolated from Swiss slaughter pig tonsils and feces and isolates from human clinical cases were compared in terms of their spectrum of virulence-associated genes (yadA, virF, ail, inv, rovA, ymoA, ystA, ystB and myfA). An analysis of the associated antimicrobial susceptibility pattern completed the characterization. All analyzed BT 4 strains showed a nearly similar pattern, comprising the known fundamental virulence-associated genes yadA, virF, ail, inv, rovA, ymoA, ystA and myfA. Only ystB was not detectable among all analyzed isolates. Importantly, neither the source of the isolates (porcine tonsils and feces, humans) nor the serotype (ST) had any influence on the gene pattern. From these findings, it can be concluded that the presence of the full complement of virulence genes necessary for human infection is common among porcine BT 4 strains. Swiss porcine BT 4 strains not only showed antimicrobial susceptibility to chloramphenicol, cefotaxime, ceftazidime, ciprofloxacin, colistin, florfenicol, gentamicin, kanamycin, nalidixic acid, sulfamethoxazole, streptomycin, tetracycline and trimethoprim but also showed 100% antibiotic resistance to ampicillin. The human BT 4 strains revealed comparable results. However, in addition to 100% antibiotic resistance to ampicillin, 2 strains were resistant to chloramphenicol and nalidixic acid. Additionally, 1 of these strains was resistant to sulfamethoxazole. The results demonstrated that Y. enterocolitica BT 4

  20. Differential effects of human activity on Hawaiian spinner dolphins in their resting bays

    Directory of Open Access Journals (Sweden)

    Heather L. Heenehan

    2017-04-01

    Full Text Available Hawaiian spinner dolphins display predictable daily behavior, using shallow bays to rest during the daytime, bays that are also frequented by humans. All previous research on the potential response of Hawaiian spinner dolphins to human activity has been conducted visually, at the surface. In this study we take a different approach by using passive acoustic monitoring to analyze dolphin behavior and assess whether human activity affects the behavior of the animals. We used days (n=99 and hours (n=641 when dolphins were confirmed present in visual surveys between January 9, 2011 and August 15, 2012 and metrics generated from concomitant 30-second sound recordings (n=9615. Previous research found that the dolphins were predictably silent during rest and that acoustic activity matched general activity of the dolphins with higher acoustic activity before and after rest, and silence during rest. The daily pattern of dolphin whistle activity in Bay 2 and 4 (Kealakekua and Kauhako matched what would be expected from this earlier work. However, in Bay 1 and 3 (Makako and Honaunau there was no drop in dolphin whistle activity during rest. After assessing the relationship between time of day and dolphin acoustic activity, data on human presence were used to determine how variability in the dolphins’ acoustic activity might be explained by human activity (i.e. the number of vessels, kayaks and swimmer snorkelers present. Bay 2, the bay with the most human activity, showed no relationship between dolphin whistle activity and human presence (either vessels, kayaks, or swimmer/snorkelers. Although the relationships were weak, Bay 1 displayed a positive relationship between dolphin whistle activity and the number of vessels and swimmer/snorkelers present in the bay. Bay 4 also showed a positive relationship between dolphin whistle activity and the number of swimmer snorkelers. We also documented less sound being added to the soundscape with each additional

  1. Physical Activity and Pattern of Blood Pressure

    African Journals Online (AJOL)

    GB

    2014-04-02

    Apr 2, 2014 ... This study investigated physical activity (PA) and pattern of blood ... values of SBP, DBP, BMI and WHR were higher among participants with low PA compared to those ..... nervous system is associated with abdominal visceral ...

  2. Analysing the influence of human activity on runoff in the Weihe River basin

    Directory of Open Access Journals (Sweden)

    C. Shen

    2015-05-01

    Full Text Available Changing runoff patterns can have profound effects on the economic development of river basins. To assess the impact of human activity on runoff in the Weihe River basin, principal component analysis (PCA was applied to a set of 17 widely used indicators of economic development to construct general combined indicators reflecting different types of human activity. Grey relational analysis suggested that the combined indicator associated with agricultural activity was most likely to have influenced the changes in runoff observed within the river basin during 1994–2011. Curve fitting was then performed to characterize the relationship between the general agricultural indicator and the measured runoff, revealing a reasonably high correlation (R2 = 0.393 and an exponential relationship. Finally, a sensitivity analysis was performed to assess the influence of the 17 individual indicators on the measured runoff, confirming that indicators associated with agricultural activity had profound effects whereas those associated with urbanization had relatively little impact.

  3. Spatial Point Pattern Analysis of Human Settlements and Geographical Associations in Eastern Coastal China — A Case Study

    Science.gov (United States)

    Zhang, Zhonghao; Xiao, Rui; Shortridge, Ashton; Wu, Jiaping

    2014-01-01

    Understanding the spatial point pattern of human settlements and their geographical associations are important for understanding the drivers of land use and land cover change and the relationship between environmental and ecological processes on one hand and cultures and lifestyles on the other. In this study, a Geographic Information System (GIS) approach, Ripley’s K function and Monte Carlo simulation were used to investigate human settlement point patterns. Remotely sensed tools and regression models were employed to identify the effects of geographical determinants on settlement locations in the Wen-Tai region of eastern coastal China. Results indicated that human settlements displayed regular-random-cluster patterns from small to big scale. Most settlements located on the coastal plain presented either regular or random patterns, while those in hilly areas exhibited a clustered pattern. Moreover, clustered settlements were preferentially located at higher elevations with steeper slopes and south facing aspects than random or regular settlements. Regression showed that influences of topographic factors (elevation, slope and aspect) on settlement locations were stronger across hilly regions. This study demonstrated a new approach to analyzing the spatial patterns of human settlements from a wide geographical prospective. We argue that the spatial point patterns of settlements, in addition to the characteristics of human settlements, such as area, density and shape, should be taken into consideration in the future, and land planners and decision makers should pay more attention to city planning and management. Conceptual and methodological bridges linking settlement patterns to regional and site-specific geographical characteristics will be a key to human settlement studies and planning. PMID:24619117

  4. Resting-state brain activity in the motor cortex reflects task-induced activity: A multi-voxel pattern analysis.

    Science.gov (United States)

    Kusano, Toshiki; Kurashige, Hiroki; Nambu, Isao; Moriguchi, Yoshiya; Hanakawa, Takashi; Wada, Yasuhiro; Osu, Rieko

    2015-08-01

    It has been suggested that resting-state brain activity reflects task-induced brain activity patterns. In this study, we examined whether neural representations of specific movements can be observed in the resting-state brain activity patterns of motor areas. First, we defined two regions of interest (ROIs) to examine brain activity associated with two different behavioral tasks. Using multi-voxel pattern analysis with regularized logistic regression, we designed a decoder to detect voxel-level neural representations corresponding to the tasks in each ROI. Next, we applied the decoder to resting-state brain activity. We found that the decoder discriminated resting-state neural activity with accuracy comparable to that associated with task-induced neural activity. The distribution of learned weighted parameters for each ROI was similar for resting-state and task-induced activities. Large weighted parameters were mainly located on conjunctive areas. Moreover, the accuracy of detection was higher than that for a decoder whose weights were randomly shuffled, indicating that the resting-state brain activity includes multi-voxel patterns similar to the neural representation for the tasks. Therefore, these results suggest that the neural representation of resting-state brain activity is more finely organized and more complex than conventionally considered.

  5. An epidemiological study of physical activity patterns and weight ...

    African Journals Online (AJOL)

    Physical activity during pregnancy has been investigated for its potential benefits which includes weight control. Physical activity patterns of pregnant women in Tshwane, South Africa, were investigated using the EPIC–Norfolk Physical Activity Questionnaire (EPAQ-2) in an epidemiological cross-sectional study. Differences ...

  6. Time Pattern Locking Scheme for Secure Multimedia Contents in Human-Centric Device

    Directory of Open Access Journals (Sweden)

    Hyun-Woo Kim

    2014-01-01

    Full Text Available Among the various smart multimedia devices, multimedia smartphones have become the most widespread due to their convenient portability and real-time information sharing, as well as various other built-in features. Accordingly, since personal and business activities can be carried out using multimedia smartphones without restrictions based on time and location, people have more leisure time and convenience than ever. However, problems such as loss, theft, and information leakage because of convenient portability have also increased proportionally. As a result, most multimedia smartphones are equipped with various built-in locking features. Pattern lock, personal identification numbers, and passwords are the most used locking features on current smartphones, but these are vulnerable to shoulder surfing and smudge attacks, allowing malicious users to bypass the security feature easily. In particular, the smudge attack technique is a convenient way to unlock multimedia smartphones after they have been stolen. In this paper, we propose the secure locking screen using time pattern (SLSTP focusing on improved security and convenience for users to support human-centric multimedia device completely. The SLSTP can provide a simple interface to users and reduce the risk factors pertaining to security leakage to malicious third parties.

  7. Time pattern locking scheme for secure multimedia contents in human-centric device.

    Science.gov (United States)

    Kim, Hyun-Woo; Kim, Jun-Ho; Park, Jong Hyuk; Jeong, Young-Sik

    2014-01-01

    Among the various smart multimedia devices, multimedia smartphones have become the most widespread due to their convenient portability and real-time information sharing, as well as various other built-in features. Accordingly, since personal and business activities can be carried out using multimedia smartphones without restrictions based on time and location, people have more leisure time and convenience than ever. However, problems such as loss, theft, and information leakage because of convenient portability have also increased proportionally. As a result, most multimedia smartphones are equipped with various built-in locking features. Pattern lock, personal identification numbers, and passwords are the most used locking features on current smartphones, but these are vulnerable to shoulder surfing and smudge attacks, allowing malicious users to bypass the security feature easily. In particular, the smudge attack technique is a convenient way to unlock multimedia smartphones after they have been stolen. In this paper, we propose the secure locking screen using time pattern (SLSTP) focusing on improved security and convenience for users to support human-centric multimedia device completely. The SLSTP can provide a simple interface to users and reduce the risk factors pertaining to security leakage to malicious third parties.

  8. HER/ErbB Receptor Interactions and Signaling Patterns in Human Mammary Epithelial Cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yi; Opresko, Lee K.; Shankaran, Harish; Chrisler, William B.; Wiley, H. S.; Resat, Haluk

    2009-10-31

    Knowledge about signaling pathways is typically compiled based on data gathered using different cell lines. This approach implicitly assumes that cell line dependence is not important, which can be misleading because different cell lines do not always respond to a particular stimulus in the same way. The lack of coherent data collected from closely related cellular systems can be detrimental to the efforts to understand the regulation of biological processes. In this study, we report the development of a library of human mammary epithelial (HME) cell lines which express endogenous levels of the cell surface receptor EGFR/HER1, and different levels of HER2 and HER3. Using our clone library, we have quantified the interactions among the HER1-3 receptors and systematically investigated the existing hypotheses about their interaction patterns. Contrary to earlier suggestions, we find that lateral interactions with HER2 do not lead to strong transactivation between EGFR and HER3. Our study identified HER2 as the dominant dimerization partner for both EGFR and HER3, and revealed that EGFR and HER3 activations are only weakly linked in HME cells. We have also quantified the time-dependent activation patterns of the downstream effectors Erk and Akt. We found that HER3 signaling makes the strongest contribution to Akt activation and that, stimulation of either EGFR or HER3 pathways activate Erk at significant levels. Our study shows that cell libraries formed from closely related clones can be a powerful resource for pursuing the quantitative investigations that are necessary for developing a systems level understanding of cell signaling.

  9. The anti-tumor drug bleomycin preferentially cleaves at the transcription start sites of actively transcribed genes in human cells.

    Science.gov (United States)

    Murray, Vincent; Chen, Jon K; Galea, Anne M

    2014-04-01

    The genome-wide pattern of DNA cleavage at transcription start sites (TSSs) for the anti-tumor drug bleomycin was examined in human HeLa cells using next-generation DNA sequencing. It was found that actively transcribed genes were preferentially cleaved compared with non-transcribed genes. The 143,600 identified human TSSs were split into non-transcribed genes (82,596) and transcribed genes (61,004) for HeLa cells. These transcribed genes were further split into quintiles of 12,201 genes comprising the top 20, 20-40, 40-60, 60-80, and 80-100 % of expressed genes. The bleomycin cleavage pattern at highly transcribed gene TSSs was greatly enhanced compared with purified DNA and non-transcribed gene TSSs. The top 20 and 20-40 % quintiles had a very similar enhanced cleavage pattern, the 40-60 % quintile was intermediate, while the 60-80 and 80-100 % quintiles were close to the non-transcribed and purified DNA profiles. The pattern of bleomycin enhanced cleavage had peaks that were approximately 200 bp apart, and this indicated that bleomycin was identifying the presence of phased nucleosomes at TSSs. Hence bleomycin can be utilized to detect chromatin structures that are present at actively transcribed genes. In this study, for the first time, the pattern of DNA damage by a clinically utilized cancer chemotherapeutic agent was performed on a human genome-wide scale at the nucleotide level.

  10. Relationships between hippocampal activity and breathing patterns

    DEFF Research Database (Denmark)

    Harper, R M; Poe, G R; Rector, D M

    1998-01-01

    Single cell discharge, EEG activity, and optical changes accompanying alterations in breathing patterns, as well as the knowledge that respiratory musculature is heavily involved in movement and other behavioral acts, implicate hippocampal regions in some aspects of breathing control. The control...... is unlikely to reside in oscillatory breathing movements, because such patterns emerge in preparations retaining only the medulla (and perhaps only the spinal cord). However, momentary changes in breathing patterns induced by affect, startle, whole-body movement changes, or compensatory ventilatory changes...... of hippocampal contributions to breathing control should be viewed in the context that significant interactions exist between blood pressure changes and ventilation, and that modest breathing challenges, such as exposure to hypercapnia or to increased resistive loads, bring into action a vast array of brain...

  11. Labeling Residential Community Characteristics from Collective Activity Patterns Using Taxi Trip Data

    Science.gov (United States)

    Zhou, Y.; Fang, Z.

    2017-09-01

    There existing a significant social and spatial differentiation in the residential communities in urban city. People live in different places have different socioeconomic background, resulting in various geographically activity patterns. This paper aims to label the characteristics of residential communities in a city using collective activity patterns derived from taxi trip data. Specifically, we first present a method to allocate the O/D (Origin/Destination) points of taxi trips to the land use parcels where the activities taken place in. Then several indices are employed to describe the collective activity patterns, including both activity intensity, travel distance, travel time, and activity space of residents by taking account of the geographical distribution of all O/Ds of the taxi trip related to that residential community. Followed by that, an agglomerative hierarchical clustering algorithm is introduced to cluster the residential communities with similar activity patterns. In the case study of Wuhan, the residential communities are clearly divided into eight clusters, which could be labelled as ordinary communities, privileged communities, old isolated communities, suburban communities, and so on. In this paper, we provide a new perspective to label the land use under same type from people's mobility patterns with the support of big trajectory data.

  12. Modular organization of muscle activity patterns in the leading and trailing limbs during obstacle clearance in healthy adults.

    Science.gov (United States)

    MacLellan, Michael J

    2017-07-01

    Human locomotor patterns require precise adjustments to successfully navigate complex environments. Studies suggest that the central nervous system may control such adjustments through supraspinal signals modifying a basic locomotor pattern at the spinal level. To explore this proposed control mechanism in the leading and trailing limbs during obstructed walking, healthy young adults stepped over obstacles measuring 0.1 and 0.2 m in height. Unobstructed walking with no obstacle present was also performed as a baseline. Full body three-dimensional kinematic data were recorded and electromyography (EMG) was collected from 14 lower limb muscles on each side of the body. EMG data were analyzed using two techniques: by mapping the EMG data to the approximate location of the motor neuron pools on the lumbosacral enlargement of the spinal cord and by applying a nonnegative matrix factorization algorithm to unilateral and bilateral muscle activations separately. Results showed that obstacle clearance may be achieved not only with the addition of a new activation pattern in the leading limb, but with a temporal shift of a pattern present during unobstructed walking in both the leading and trailing limbs. An investigation of the inter-limb coordination of these patterns suggested a strong bilateral linkage between lower limbs. These results highlight the modular organization of muscle activation in the leading and trailing limbs, as well as provide a mechanism of control when implementing a locomotor adjustment when stepping over an obstacle.

  13. Human Activity in the Web

    OpenAIRE

    Radicchi, Filippo

    2009-01-01

    The recent information technology revolution has enabled the analysis and processing of large-scale datasets describing human activities. The main source of data is represented by the Web, where humans generally use to spend a relevant part of their day. Here we study three large datasets containing the information about Web human activities in different contexts. We study in details inter-event and waiting time statistics. In both cases, the number of subsequent operations which differ by ta...

  14. Patterns of muscle activity underlying object-specific grasp by the macaque monkey.

    Science.gov (United States)

    Brochier, T; Spinks, R L; Umilta, M A; Lemon, R N

    2004-09-01

    During object grasp, a coordinated activation of distal muscles is required to shape the hand in relation to the physical properties of the object. Despite the fundamental importance of the grasping action, little is known of the muscular activation patterns that allow objects of different sizes and shapes to be grasped. In a study of two adult macaque monkeys, we investigated whether we could distinguish between EMG activation patterns associated with grasp of 12 differently shaped objects, chosen to evoke a wide range of grasping postures. Each object was mounted on a horizontal shuttle held by a weak spring (load force 1-2 N). Objects were located in separate sectors of a "carousel," and inter-trial rotation of the carousel allowed sequential presentation of the objects in pseudorandom order. EMG activity from 10 to 12 digit, hand, and arm muscles was recorded using chronically implanted electrodes. We show that the grasp of different objects was characterized by complex but distinctive patterns of EMG activation. Cluster analysis shows that these object-related EMG patterns were specific and consistent enough to identify the object unequivocally from the EMG recordings alone. EMG-based object identification required a minimum of six EMGs from simultaneously recorded muscles. EMG patterns were consistent across recording sessions in a given monkey but showed some differences between animals. These results identify the specific patterns of activity required to achieve distinct hand postures for grasping, and they open the way to our understanding of how these patterns are generated by the central motor network.

  15. Spatial Point Pattern Analysis of Human Settlements and Geographical Associations in Eastern Coastal China — A Case Study

    Directory of Open Access Journals (Sweden)

    Zhonghao Zhang

    2014-03-01

    Full Text Available Understanding the spatial point pattern of human settlements and their geographical associations are important for understanding the drivers of land use and land cover change and the relationship between environmental and ecological processes on one hand and cultures and lifestyles on the other. In this study, a Geographic Information System (GIS approach, Ripley’s K function and Monte Carlo simulation were used to investigate human settlement point patterns. Remotely sensed tools and regression models were employed to identify the effects of geographical determinants on settlement locations in the Wen-Tai region of eastern coastal China. Results indicated that human settlements displayed regular-random-cluster patterns from small to big scale. Most settlements located on the coastal plain presented either regular or random patterns, while those in hilly areas exhibited a clustered pattern. Moreover, clustered settlements were preferentially located at higher elevations with steeper slopes and south facing aspects than random or regular settlements. Regression showed that influences of topographic factors (elevation, slope and aspect on settlement locations were stronger across hilly regions. This study demonstrated a new approach to analyzing the spatial patterns of human settlements from a wide geographical prospective. We argue that the spatial point patterns of settlements, in addition to the characteristics of human settlements, such as area, density and shape, should be taken into consideration in the future, and land planners and decision makers should pay more attention to city planning and management. Conceptual and methodological bridges linking settlement patterns to regional and site-specific geographical characteristics will be a key to human settlement studies and planning.

  16. Finding purchase activity patterns in small & medium enterprises

    NARCIS (Netherlands)

    Vegter, Geert J.

    2015-01-01

    Finding purchase activity patterns in Small & Medium Enterprises in a research program to enable SMEs to improve their purchase and company performance. Posterpresentatie KCO conferentie, 16 november 2015.

  17. Individual Differences in Spatial Pattern Separation Performance Associated with Healthy Aging in Humans

    Science.gov (United States)

    Stark, Shauna M.; Yassa, Michael A.; Stark, Craig E. L.

    2010-01-01

    Rodent studies have suggested that "pattern separation," the ability to distinguish among similar experiences, is diminished in a subset of aged rats. We extended these findings to the human using a task designed to assess spatial pattern separation behavior (determining at time of test whether pairs of pictures shown during the study were in the…

  18. Organ involvement in Argentinian systemic sclerosis patients with "late" pattern as compared to patients with "early/active" pattern by nailfold capillaroscopy.

    Science.gov (United States)

    Marino Claverie, Lucila; Knobel, Elizabeth; Takashima, Lorena; Techera, Lorena; Oliver, Marina; Gonzalez, Paula; Romanini, Félix E; Fonseca, María L; Mamani, Marta N

    2013-06-01

    Changes in nailfold capillaroscopy in systemic sclerosis patients could be related to the disease severity. The aim of this study was to investigate whether patients with "late" scleroderma (SD) pattern have more organ involvement than patients with "early/active" SD pattern. Forty-six Argentinian patients (44 women and 2 men), with a diagnosis of systemic sclerosis, were distributed in two groups based on the presence of late and early/active patterns. Organ involvement was assessed as follows: pulmonary function by chest radiography, high-resolution chest tomography (HRCT), lung volume tests, and diffusing capacity for carbon monoxide (DLCO); esophageal involvement by manometry; and pulmonary arterial hypertension (PAH) by Doppler echocardiography and six-minute walk test. Honeycombing of the lungs evaluated by HRCT was more frequently present in patients with late pattern compared with early/active patients (p = 0.01). We also found statistically significant differences in lung volume tests (p = 0.03) and DLCO (p = 0.02) between the two SD pattern groups. Esophageal manometry showed a significantly higher frequency of motility disorders in the group with late pattern (p = 0.0024). In this study, patients with late pattern had higher frequency of pulmonary and esophageal involvement compared with patients with early/active pattern.

  19. Activity patterns of free-ranging koalas (Phascolarctos cinereus revealed by accelerometry.

    Directory of Open Access Journals (Sweden)

    Michelle A Ryan

    Full Text Available An understanding of koala activity patterns is important for measuring the behavioral response of this species to environmental change, but to date has been limited by the logistical challenges of traditional field methodologies. We addressed this knowledge gap by using tri-axial accelerometer data loggers attached to VHF radio collars to examine activity patterns of adult male and female koalas in a high-density population at Cape Otway, Victoria, Australia. Data were obtained from 27 adult koalas over two 7-d periods during the breeding season: 12 in the early-breeding season in November 2010, and 15 in the late-breeding season in January 2011. Multiple 15 minute observation blocks on each animal were used for validation of activity patterns determined from the accelerometer data loggers. Accelerometry was effective in distinguishing between inactive (sleeping, resting and active (grooming, feeding and moving behaviors. Koalas were more active during the early-breeding season with a higher index of movement (overall dynamic body acceleration [ODBA] for both males and females. Koalas showed a distinct temporal pattern of behavior, with most activity occurring from mid-afternoon to early morning. Accelerometry has potential for examining fine-scale behavior of a wide range of arboreal and terrestrial species.

  20. Activity patterns of free-ranging koalas (Phascolarctos cinereus) revealed by accelerometry.

    Science.gov (United States)

    Ryan, Michelle A; Whisson, Desley A; Holland, Greg J; Arnould, John P Y

    2013-01-01

    An understanding of koala activity patterns is important for measuring the behavioral response of this species to environmental change, but to date has been limited by the logistical challenges of traditional field methodologies. We addressed this knowledge gap by using tri-axial accelerometer data loggers attached to VHF radio collars to examine activity patterns of adult male and female koalas in a high-density population at Cape Otway, Victoria, Australia. Data were obtained from 27 adult koalas over two 7-d periods during the breeding season: 12 in the early-breeding season in November 2010, and 15 in the late-breeding season in January 2011. Multiple 15 minute observation blocks on each animal were used for validation of activity patterns determined from the accelerometer data loggers. Accelerometry was effective in distinguishing between inactive (sleeping, resting) and active (grooming, feeding and moving) behaviors. Koalas were more active during the early-breeding season with a higher index of movement (overall dynamic body acceleration [ODBA]) for both males and females. Koalas showed a distinct temporal pattern of behavior, with most activity occurring from mid-afternoon to early morning. Accelerometry has potential for examining fine-scale behavior of a wide range of arboreal and terrestrial species.

  1. M-ficolin, an innate immune defence molecule, binds patterns of acetyl groups and activates complement

    DEFF Research Database (Denmark)

    Frederiksen, Pernille Dorthea; Thiel, Steffen; Larsen, Claus Bindslev

    2005-01-01

    Ficolins play a role in the innate immune defence as pathogen-associated molecular pattern recognition molecules. Three ficolins are found in humans: H-ficolin, L-ficolin and M-ficolin. L-ficolin and H-ficolin circulate in blood in complexes with mannan-binding lectin-associated serine proteases...... (MASPs) and are capable of activating the complement system. L-ficolin shows affinity for acetylated compounds and binds to various capsulated strains of bacteria. H-ficolin has been shown to bind Aerococcus viridans. Less is known about M-ficolin, but it is thought to be present only on monocytes. We...... system. We developed a monoclonal rat anti-human-M/L-ficolin antibody and verified by flow cytometric analysis the presence of ficolin on the surface of peripheral blood monocytes....

  2. Influence of the active layer pattern on the electrical characteristics of organic inverters

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae-Hyun; Kwon, Jin-Hyuk; Bae, Jin-Hyuk [Kyungpook National University, Daegu (Korea, Republic of); Park, Jae-Hoon; Baang, Sung-Keun [Hallym University, Chuncheon (Korea, Republic of)

    2014-12-15

    We describe the importance of a patterned active layer for the fine driving of organic inverters. In the case of a non-patterned inverter, the capacitance as a function of the applied bias in an organic capacitor structure exhibits a slow saturation nature due to the slow movement of charge carriers. Hence, during the operation of organic inverters with non-patterned active layers, the voltage gains inevitably exhibit lower values whereas higher gains are achieved in the case of sharply-patterned pentacene layers. These results suggest that the patterning of the active layer can be a decisive factor for realizing high-performance electronic circuits based on organic semiconductors.

  3. Exotic high activity surface patterns in PtAu nanoclusters

    KAUST Repository

    Mokkath, Junais Habeeb; Schwingenschlö gl, Udo

    2013-01-01

    of the truncated octahedron cluster motif. Exotic surface patterns are obtained particularly for Pt-rich compositions, where Pt atoms are being surrounded by Au atoms. These surface arrangements boost the catalytic activity by creating a large number of active

  4. Impact of Sliding Window Length in Indoor Human Motion Modes and Pose Pattern Recognition Based on Smartphone Sensors

    Directory of Open Access Journals (Sweden)

    Gaojing Wang

    2018-06-01

    Full Text Available Human activity recognition (HAR is essential for understanding people’s habits and behaviors, providing an important data source for precise marketing and research in psychology and sociology. Different approaches have been proposed and applied to HAR. Data segmentation using a sliding window is a basic step during the HAR procedure, wherein the window length directly affects recognition performance. However, the window length is generally randomly selected without systematic study. In this study, we examined the impact of window length on smartphone sensor-based human motion and pose pattern recognition. With data collected from smartphone sensors, we tested a range of window lengths on five popular machine-learning methods: decision tree, support vector machine, K-nearest neighbor, Gaussian naïve Bayesian, and adaptive boosting. From the results, we provide recommendations for choosing the appropriate window length. Results corroborate that the influence of window length on the recognition of motion modes is significant but largely limited to pose pattern recognition. For motion mode recognition, a window length between 2.5–3.5 s can provide an optimal tradeoff between recognition performance and speed. Adaptive boosting outperformed the other methods. For pose pattern recognition, 0.5 s was enough to obtain a satisfactory result. In addition, all of the tested methods performed well.

  5. Modelling human mobility patterns using photographic data shared online.

    Science.gov (United States)

    Barchiesi, Daniele; Preis, Tobias; Bishop, Steven; Moat, Helen Susannah

    2015-08-01

    Humans are inherently mobile creatures. The way we move around our environment has consequences for a wide range of problems, including the design of efficient transportation systems and the planning of urban areas. Here, we gather data about the position in space and time of about 16 000 individuals who uploaded geo-tagged images from locations within the UK to the Flickr photo-sharing website. Inspired by the theory of Lévy flights, which has previously been used to describe the statistical properties of human mobility, we design a machine learning algorithm to infer the probability of finding people in geographical locations and the probability of movement between pairs of locations. Our findings are in general agreement with official figures in the UK and on travel flows between pairs of major cities, suggesting that online data sources may be used to quantify and model large-scale human mobility patterns.

  6. Motor unit activation patterns during concentric wrist flexion in humans with different muscle fibre composition.

    Science.gov (United States)

    Søgaard, K; Christensen, H; Fallentin, N; Mizuno, M; Quistorff, B; Sjøgaard, G

    1998-10-01

    Muscle activity was recorded from the flexor carpi radialis muscle during static and dynamic-concentric wrist flexion in six subjects, who had exhibited large differences in histochemically identified muscle fibre composition. Motor unit recruitment patterns were identified by sampling 310 motor units and counting firing rates in pulses per second (pps). During concentric wrist flexion at 30% of maximal exercise intensity the mean firing rate was 27 (SD 13) pps. This was around twice the value of 12 (SD 5) pps recorded during sustained static contraction at 30% of maximal voluntary contraction, despite a larger absolute force level during the static contraction. A similar pattern of higher firing rates during dynamic exercise was seen when concentric wrist flexion at 60% of maximal exercise intensity [30 (SD 14) pps] was compared with sustained static contraction at 60% of maximal voluntary contraction [19 (SD 8) pps]. The increase in dynamic exercise intensity was accomplished by recruitment of additional motor units rather than by increasing the firing rate as during static contractions. No difference in mean firing rates was found among subjects with different muscle fibre composition, who had previously exhibited marked differences in metabolic response during corresponding dynamic contractions. It was concluded that during submaximal dynamic contractions motor unit firing rate cannot be deduced from observations during static contractions and that muscle fibre composition may play a minor role.

  7. A Comparison of Non-Typhoidal Salmonella from Humans and Food Animals Using Pulsed-Field Gel Electrophoresis and Antimicrobial Susceptibility Patterns

    Science.gov (United States)

    Sandt, Carol H.; Fedorka-Cray, Paula J.; Tewari, Deepanker; Ostroff, Stephen; Joyce, Kevin; M’ikanatha, Nkuchia M.

    2013-01-01

    Salmonellosis is one of the most important foodborne diseases affecting humans. To characterize the relationship between Salmonella causing human infections and their food animal reservoirs, we compared pulsed-field gel electrophoresis (PFGE) and antimicrobial susceptibility patterns of non-typhoidal Salmonella isolated from ill humans in Pennsylvania and from food animals before retail. Human clinical isolates were received from 2005 through 2011 during routine public health operations in Pennsylvania. Isolates from cattle, chickens, swine and turkeys were recovered during the same period from federally inspected slaughter and processing facilities in the northeastern United States. We found that subtyping Salmonella isolates by PFGE revealed differences in antimicrobial susceptibility patterns and, for human Salmonella, differences in sources and invasiveness that were not evident from serotyping alone. Sixteen of the 20 most common human Salmonella PFGE patterns were identified in Salmonella recovered from food animals. The most common human Salmonella PFGE pattern, Enteritidis pattern JEGX01.0004 (JEGX01.0003ARS), was associated with more cases of invasive salmonellosis than all other patterns. In food animals, this pattern was almost exclusively (99%) found in Salmonella recovered from chickens and was present in poultry meat in every year of the study. Enteritidis pattern JEGX01.0004 (JEGX01.0003ARS) was associated with susceptibility to all antimicrobial agents tested in 94.7% of human and 97.2% of food animal Salmonella isolates. In contrast, multidrug resistance (resistance to three or more classes of antimicrobial agents) was observed in five PFGE patterns. Typhimurium patterns JPXX01.0003 (JPXX01.0003 ARS) and JPXX01.0018 (JPXX01.0002 ARS), considered together, were associated with resistance to five or more classes of antimicrobial agents: ampicillin, chloramphenicol, streptomycin, sulfonamides and tetracycline (ACSSuT), in 92% of human and 80% of food

  8. Weighted Local Active Pixel Pattern (WLAPP for Face Recognition in Parallel Computation Environment

    Directory of Open Access Journals (Sweden)

    Gundavarapu Mallikarjuna Rao

    2013-10-01

    Full Text Available Abstract  - The availability of multi-core technology resulted totally new computational era. Researchers are keen to explore available potential in state of art-machines for breaking the bearer imposed by serial computation. Face Recognition is one of the challenging applications on so ever computational environment. The main difficulty of traditional Face Recognition algorithms is lack of the scalability. In this paper Weighted Local Active Pixel Pattern (WLAPP, a new scalable Face Recognition Algorithm suitable for parallel environment is proposed.  Local Active Pixel Pattern (LAPP is found to be simple and computational inexpensive compare to Local Binary Patterns (LBP. WLAPP is developed based on concept of LAPP. The experimentation is performed on FG-Net Aging Database with deliberately introduced 20% distortion and the results are encouraging. Keywords — Active pixels, Face Recognition, Local Binary Pattern (LBP, Local Active Pixel Pattern (LAPP, Pattern computing, parallel workers, template, weight computation.  

  9. ActivityNet: A Large-Scale Video Benchmark for Human Activity Understanding

    KAUST Repository

    Heilbron, Fabian Caba

    2015-06-02

    In spite of many dataset efforts for human action recognition, current computer vision algorithms are still severely limited in terms of the variability and complexity of the actions that they can recognize. This is in part due to the simplicity of current benchmarks, which mostly focus on simple actions and movements occurring on manually trimmed videos. In this paper we introduce ActivityNet, a new largescale video benchmark for human activity understanding. Our benchmark aims at covering a wide range of complex human activities that are of interest to people in their daily living. In its current version, ActivityNet provides samples from 203 activity classes with an average of 137 untrimmed videos per class and 1.41 activity instances per video, for a total of 849 video hours. We illustrate three scenarios in which ActivityNet can be used to compare algorithms for human activity understanding: untrimmed video classification, trimmed activity classification and activity detection.

  10. ActivityNet: A Large-Scale Video Benchmark for Human Activity Understanding

    KAUST Repository

    Heilbron, Fabian Caba; Castillo, Victor; Ghanem, Bernard; Niebles, Juan Carlos

    2015-01-01

    In spite of many dataset efforts for human action recognition, current computer vision algorithms are still severely limited in terms of the variability and complexity of the actions that they can recognize. This is in part due to the simplicity of current benchmarks, which mostly focus on simple actions and movements occurring on manually trimmed videos. In this paper we introduce ActivityNet, a new largescale video benchmark for human activity understanding. Our benchmark aims at covering a wide range of complex human activities that are of interest to people in their daily living. In its current version, ActivityNet provides samples from 203 activity classes with an average of 137 untrimmed videos per class and 1.41 activity instances per video, for a total of 849 video hours. We illustrate three scenarios in which ActivityNet can be used to compare algorithms for human activity understanding: untrimmed video classification, trimmed activity classification and activity detection.

  11. Activities pattern of planned settlement’s residence and its influence toward settlement design

    Science.gov (United States)

    Nirfalini Aulia, Dwira

    2018-03-01

    Everyday activity of residents in a housing area will create activities pattern. Utilization of public spaces in a housing area with repeating activities pattern will affect the design of public spaces. Changes in public space usage in a housing area happen as a result of residents’ activities pattern. The goal of this paper is to identify residents’ activity pattern and connect its influence towards public spaces utilization in planned housing in micro and urban area in macro. Housing residents classified into four respondent groups based on marriage status which is unmarried, single parents, the family without child and family with a child. The method used in this research is the qualitative descriptive approach. Research finding showed that housing area with housing facilities capable of creating happiness and convenience for its residents doing their activities in public spaces.

  12. Biomechanical effects of robot assisted walking on knee joint kinematics and muscle activation pattern.

    Science.gov (United States)

    Thangavel, Pavithra; Vidhya, S; Li, Junhua; Chew, Effie; Bezerianos, Anastasios; Yu, Haoyong

    2017-07-01

    Since manual rehabilitation therapy can be taxing for both the patient and the physiotherapist, a gait rehabilitation robot has been built to reduce the physical strain and increase the efficacy of the rehabilitation therapy. The prototype of the gait rehabilitation robot is designed to provide assistance while walking for patients with abnormal gait pattern and it can also be used for rehabilitation therapy to restore an individual's normal gait pattern by aiding motor recovery. The Gait Rehabilitation Robot uses gait event based synchronization, which enables the exoskeleton to provide synchronous assistance during walking that aims to reduce the lower-limb muscle activation. This study emphasizes on the biomechanical effects of assisted walking on the lower limb by analyzing the EMG signal, knee joint kinematics data that was collected from the right leg during the various experimental conditions. The analysis of the measured data shows an improved knee joint trajectory and reduction in muscle activity with assistance. The result of this study does not only assess the functionality of the exoskeleton but also provides a profound understanding of the human-robot interaction by studying the effects of assistance on the lower limb.

  13. Pattern Matching for Volcano Status Assessment: what monitoring data alone can say about Mt. Etna activity

    Science.gov (United States)

    Cannavo, F.; Cannata, A.; Cassisi, C.

    2017-12-01

    The importance of assessing the ongoing status of active volcanoes is crucial not only for exposures to the local population but due to possible presence of tephra also for airline traffic. Adequately monitoring of active volcanoes, hence, plays a key role for civil protection purposes. In last decades, in order to properly monitor possible threats, continuous measuring networks have been designed and deployed on most of potentially hazardous volcanos. Nevertheless, at the present, volcano real-time surveillance is basically delegated to one or more human experts in volcanology, who interpret data coming from different kind of monitoring networks using their experience and non-measurable information (e.g. information from the field) to infer the volcano status. In some cases, raw data are used in some models to obtain more clues on the ongoing activity. In the last decades, with the development of volcano monitoring networks, huge amount of data of different geophysical, geochemical and volcanological types have been collected and stored in large databases. Having such big data sets with many examples of volcanic activity allows us to study volcano monitoring from a machine learning perspective. Thus, exploiting opportunities offered by the abundance of volcano monitoring time-series data we can try to address the following questions: Are the monitored parameters sufficient to discriminate the volcano status? Is it possible to infer/distinguish the volcano status only from the multivariate patterns of measurements? Are all the kind of measurements in the pattern equally useful for status assessment? How accurate would be an automatic system of status inference based only on pattern recognition of data? Here we present preliminary results of the data analysis we performed on a set of data and activity covering the period 2011-2017 at Mount Etna (Italy). In the considered period, we had 52 events of lava fountaining and long periods of Strombolian activity. We

  14. Reflections of Prehistoric and Medieval human activities in floodplain deposits of the Únanovka Stream, South Moravia, Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Petřík, J.; Petr, L.; Šabatová, K.; Doláková, N.; Lukšíková, H.; Dohnalová, A.; Chadimová, Leona; Blaško, D.; Milo, P.

    2015-01-01

    Roč. 59, č. 3 (2015), s. 393-412 ISSN 0372-8854 Institutional support: RVO:67985831 Keywords : Holocene * floodplain * paleoecology * human activities * settlement pattern Subject RIV: DB - Geology ; Mineralogy Impact factor: 1.103, year: 2015

  15. Reproducible pattern of microRNA in normal human skin

    DEFF Research Database (Denmark)

    Holst, Line; Kaczkowski, Bogumil; Gniadecki, Robert

    2010-01-01

    RNA expression pattern in normal human skin. Here we investigated miRNA expression profiles from skin biopsies of 8 healthy volunteers taken from sun protected and mildly photo damaged skin using the modified protocol for miRNA extraction. We were able to show a constant pattern of miRNA expression between......MicroRNAs (miRNAs) regulate cell growth, differentiation and apoptosis via specific targeting of messenger RNA (mRNA). Aberrant mRNA expression contributes to pathological processes such as carcinogenesis. To take advantage of miRNA profiling in skin disease it is essential to investigate mi...... different individuals. We did not find any significant differences in miRNA expression between sun protected and mildly photodamaged skin. These results may be valuable for future design of studies on miRNA expression in skin disease....

  16. Reproducible pattern of microRNA in normal human skin

    DEFF Research Database (Denmark)

    Holst, Line; Kaczkowski, Bogumil; Gniadecki, Robert

    2010-01-01

    RNA expression pattern in normal human skin. Here we investigated miRNA expression profiles from skin biopsies of 8 healthy volunteers taken from sun protected and mildly photo damaged skin using the modified protocol for miRNA extraction. We were able to show a constant pattern of miRNA expression between...... different individuals. We did not find any significant differences in miRNA expression between sun protected and mildly photodamaged skin. These results may be valuable for future design of studies on miRNA expression in skin disease.......MicroRNAs (miRNAs) regulate cell growth, differentiation and apoptosis via specific targeting of messenger RNA (mRNA). Aberrant mRNA expression contributes to pathological processes such as carcinogenesis. To take advantage of miRNA profiling in skin disease it is essential to investigate mi...

  17. Daily physical activity patterns from hip- and wrist-worn accelerometers

    DEFF Research Database (Denmark)

    Shiroma, Eric J; Schepps, M A; Harezlak, J

    2016-01-01

    Accelerometer wear location may influence physical activity estimates. This study investigates this relationship through the examination of activity patterns throughout the day. Participants from the aging research evaluating accelerometry (AREA) study (n men = 37, n women = 47, mean age (SD) = 78...... activity accrual provide support that each location is capable of estimating total physical activity volume. The examination of activity patterns over time may provide a more detailed way to examine differences in wear location and different subpopulations. © 2016 Institute of Physics and Engineering.......9 (5.5) years) were asked to wear accelerometers in a free-living environment for 7 d at three different wear locations; one on each wrist and one on the right hip. During waking hours, wrist-worn accelerometers consistently produced higher median activity counts, about 5 × higher, as well as wider...

  18. Muscle activity pattern dependent pain development and alleviation.

    Science.gov (United States)

    Sjøgaard, Gisela; Søgaard, Karen

    2014-12-01

    Muscle activity is for decades considered to provide health benefits irrespectively of the muscle activity pattern performed and whether it is during e.g. sports, transportation, or occupational work tasks. Accordingly, the international recommendations for public health-promoting physical activity do not distinguish between occupational and leisure time physical activity. However, in this body of literature, attention has not been paid to the extensive documentation on occupational physical activity imposing a risk of impairment of health - in particular musculoskeletal health in terms of muscle pain. Focusing on muscle activity patterns and musculoskeletal health it is pertinent to elucidate the more specific aspects regarding exposure profiles and body regional pain. Static sustained muscle contraction for prolonged periods often occurs in the neck/shoulder area during occupational tasks and may underlie muscle pain development in spite of rather low relative muscle load. Causal mechanisms include a stereotype recruitment of low threshold motor units (activating type 1 muscle fibers) characterized by a lack of temporal as well as spatial variation in recruitment. In contrast during physical activities at leisure and sport the motor recruitment patterns are more dynamic including regularly relatively high muscle forces - also activating type 2 muscles fibers - as well as periods of full relaxation even of the type 1 muscle fibers. Such activity is unrelated to muscle pain development if adequate recovery is granted. However, delayed muscle soreness may develop following intensive eccentric muscle activity (e.g. down-hill skiing) with peak pain levels in thigh muscles 1-2 days after the exercise bout and a total recovery within 1 week. This acute pain profile is in contrast to the chronic muscle pain profile related to repetitive monotonous work tasks. The painful muscles show adverse functional, morphological, hormonal, as well as metabolic characteristics. Of

  19. Application of activity sensors for estimating behavioral patterns

    Science.gov (United States)

    Roberts, Caleb P.; Cain, James W.; Cox, Robert D.

    2016-01-01

    The increasing use of Global Positioning System (GPS) collars in habitat selection studies provides large numbers of precise location data points with reduced field effort. However, inclusion of activity sensors in many GPS collars also grants the potential to remotely estimate behavioral state. Thus, only using GPS collars to collect location data belies their full capabilities. Coupling behavioral state with location data would allow researchers and managers to refine habitat selection models by using diel behavioral state changes to partition fine-scale temporal shifts in habitat selection. We tested the capability of relatively unsophisticated GPS-collar activity sensors to estimate behavior throughout diel periods using free-ranging female elk (Cervus canadensis) in the Jemez Mountains of north-central New Mexico, USA, 2013–2014. Collars recorded cumulative number of movements (hits) per 15-min recording period immediately preceding GPS fixes at 0000, 0600, 1200, and 1800 hr. We measured diel behavioral patterns of focal elk, categorizing active (i.e., foraging, traveling, vigilant, grooming) and inactive (i.e., resting) states. Active behaviors (foraging, traveling) produced more average hits (0.87 ± 0.69 hits/min, 4.0 ± 2.2 hits/min, respectively; 95% CI) and inactive (resting) behavior fewer hits (−1.1 ± 0.61 95% CI). We differentiated active and inactive behavioral states with a bootstrapped threshold of 5.9 ± 3.9 hits/15-min recording period. Mean cumulative activity-sensor hits corresponded with observed diel behavioral patterns: hits increased during crepuscular (0600, 1800 hr) observations when elk were most active (0000–0600 hr: d = 0.19; 1200–1800 hr: d = 0.64) and decreased during midday and night (0000 hr, 1200 hr) when elk were least active (1800–0000 hr: d = −0.39; 0600–1200 hr: d = −0.43). Even using relatively unsophisticated GPS-collar activity sensors, managers can

  20. Activity pattern of medium and large sized mammals and density estimates of Cuniculus paca (Rodentia: Cuniculidae in the Brazilian Pampa

    Directory of Open Access Journals (Sweden)

    C. Leuchtenberger

    2018-02-01

    Full Text Available Abstract Between July 2014 and April 2015, we conducted weekly inventories of the circadian activity patterns of mammals in Passo Novo locality, municipality of Alegrete, southern Brazil. The vegetation is comprised by a grassy-woody steppe (grassland. We used two camera traps alternately located on one of four 1 km transects, each separated by 1 km. We classified the activity pattern of species by the percentage of photographic records taken in each daily period. We identify Cuniculus paca individuals by differences in the patterns of flank spots. We then estimate the density 1 considering the area of riparian forest present in the sampling area, and 2 through capture/recapture analysis. Cuniculus paca, Conepatus chinga and Hydrochoerus hydrochaeris were nocturnal, Cerdocyon thous had a crepuscular/nocturnal pattern, while Mazama gouazoubira was cathemeral. The patterns of circadian activity observed for medium and large mammals in this Pampa region (southern grasslands may reflect not only evolutionary, biological and ecological affects, but also human impacts not assessed in this study. We identified ten individuals of C. paca through skin spot patterns during the study period, which were recorded in different transects and months. The minimum population density of C. paca was 3.5 individuals per km2 (resident animals only and the total density estimates varied from 7.1 to 11.8 individuals per km2, when considering all individuals recorded or the result of the capture/recapture analysis, respectively.

  1. Activity pattern of medium and large sized mammals and density estimates of Cuniculus paca (Rodentia: Cuniculidae) in the Brazilian Pampa.

    Science.gov (United States)

    Leuchtenberger, C; de Oliveira, Ê S; Cariolatto, L P; Kasper, C B

    2018-02-22

    Between July 2014 and April 2015, we conducted weekly inventories of the circadian activity patterns of mammals in Passo Novo locality, municipality of Alegrete, southern Brazil. The vegetation is comprised by a grassy-woody steppe (grassland). We used two camera traps alternately located on one of four 1 km transects, each separated by 1 km. We classified the activity pattern of species by the percentage of photographic records taken in each daily period. We identify Cuniculus paca individuals by differences in the patterns of flank spots. We then estimate the density 1) considering the area of riparian forest present in the sampling area, and 2) through capture/recapture analysis. Cuniculus paca, Conepatus chinga and Hydrochoerus hydrochaeris were nocturnal, Cerdocyon thous had a crepuscular/nocturnal pattern, while Mazama gouazoubira was cathemeral. The patterns of circadian activity observed for medium and large mammals in this Pampa region (southern grasslands) may reflect not only evolutionary, biological and ecological affects, but also human impacts not assessed in this study. We identified ten individuals of C. paca through skin spot patterns during the study period, which were recorded in different transects and months. The minimum population density of C. paca was 3.5 individuals per km2 (resident animals only) and the total density estimates varied from 7.1 to 11.8 individuals per km2, when considering all individuals recorded or the result of the capture/recapture analysis, respectively.

  2. The Pattern of Tyrosine Phosphorylation in Human Sperm in Response to Binding to Zona Pellucida or Hyaluronic Acid

    Science.gov (United States)

    Sati, Leyla; Cayli, Sevil; Delpiano, Elena; Sakkas, Denny

    2014-01-01

    In mammalian species, acquisition of sperm fertilization competence is dependent on the phenomenon of sperm capacitation. One of the key elements of capacitation is protein tyrosine phosphorylation (TP) in various sperm membrane regions. In previous studies performed, the pattern of TP was examined in human sperm bound to zona pellucida of oocytes. In the present comparative study, TP patterns upon sperm binding to the zona pellucida or hyaluronic acid (HA) were investigated in spermatozoa arising from the same semen samples. Tyrosine phosphorylation, visualized by immunofluorescence, was localized within the acrosomal cap, equatorial head region, neck, and the principal piece. Tyrosine phosphorylation has increased in a time-related manner as capacitation progressed, and the phosphorylation pattern was identical within the principal piece and neck, regardless of the sperm bound to the zona pellucida or HA. Thus, the data demonstrated that the patterns of sperm activation-related TP were similar regardless of the spermatozoa bound to zona pellucida or HA. Further, sperm with incomplete development, as detected by excess cytoplasmic retention, failed to exhibit TP. PMID:24077441

  3. Replication Banding Patterns in Human Chromosomes Detected Using 5-ethynyl-2'-deoxyuridine Incorporation

    International Nuclear Information System (INIS)

    Hoshi, Osamu; Ushiki, Tatsuo

    2011-01-01

    A novel technique using the incorporation of 5-ethynyl-2'-deoxyuridine (EdU) into replicating DNA is described for the analysis of replicating banding patterns of human metaphase chromosomes. Human lymphocytes were synchronized with excess thymidine and treated with EdU during the late S phase of the cell cycle. The incorporated EdU was then detected in metaphase chromosomes using Alexa Fluor® 488 azides, through the 1,3-dipolar cycloaddition reaction of organic azides with the terminal acetylene group of EdU. Chromosomes with incorporated EdU showed a banding pattern similar to G-banding of normal human chromosomes. Imaging by atomic force microscopy (AFM) in liquid conditions showed that the structure of the chromosomes was well preserved even after EdU treatment. Comparison between fluorescence microscopy and AFM images of the same chromosome 1 indicated the presence of ridges and grooves in the chromatid arm, features that have been previously reported in relation to G-banding. These results suggest an intimate relationship between EdU-induced replication bands and G- or R-bands in human chromosomes. This technique is thus useful for analyzing the structure of chromosomes in relation to their banding patterns following DNA replication in the S phase

  4. Simian Immunodeficiency Virus and Human Immunodeficiency Virus Type 1 Nef Proteins Show Distinct Patterns and Mechanisms of Src Kinase Activation

    Science.gov (United States)

    Greenway, Alison L.; Dutartre, Hélène; Allen, Kelly; McPhee, Dale A.; Olive, Daniel; Collette, Yves

    1999-01-01

    The nef gene from human and simian immunodeficiency viruses (HIV and SIV) regulates cell function and viral replication, possibly through binding of the nef product to cellular proteins, including Src family tyrosine kinases. We show here that the Nef protein encoded by SIVmac239 interacts with and also activates the human Src kinases Lck and Hck. This is in direct contrast to the inhibitory effect of HIV type 1 (HIV-1) Nef on Lck catalytic activity. Unexpectedly, however, the interaction of SIV Nef with human Lck or Hck is not mediated via its consensus proline motif, which is known to mediate HIV-1 Nef binding to Src homology 3 (SH3) domains, and various experimental analyses failed to show significant interaction of SIV Nef with the SH3 domain of either kinase. Instead, SIV Nef can bind Lck and Hck SH2 domains, and its N-terminal 50 amino acid residues are sufficient for Src kinase binding and activation. Our results provide evidence for multiple mechanisms by which Nef binds to and regulates Src kinases. PMID:10364375

  5. Plutonium detection in humans using octagonal computer-generated color patterns

    International Nuclear Information System (INIS)

    Phillips, W.G.; Curtis, S.P.

    1985-01-01

    Routine analysis of humans for plutonium lung burdens is accomplished with two phoswich low-energy gamma detectors. The analysis of data from each detector provides the spectroscopist with a total of eight parameters. These parameters are normalized and displayed as an octagonal histogram over laid against the historical analyses of uncontaminated humans similar in body geometry, i.e., weight, height, and chest thickness. Subjects containing lung burdens of plutonium within (one standard deviation) of the historical average yield data which are displayed on a color graphics terminal as a green octagon. Analyses which yield values greater than 1 sigma above the historical average produce a distorted yellow, orange, or red display. Thus, through color and pattern recognition, the analyst may see at a glance if the current data statistically indicate human contamination

  6. Linking dynamic patterns of neural activity in orbitofrontal cortex with decision making.

    Science.gov (United States)

    Rich, Erin L; Stoll, Frederic M; Rudebeck, Peter H

    2018-04-01

    Humans and animals demonstrate extraordinary flexibility in choice behavior, particularly when deciding based on subjective preferences. We evaluate options on different scales, deliberate, and often change our minds. Little is known about the neural mechanisms that underlie these dynamic aspects of decision-making, although neural activity in orbitofrontal cortex (OFC) likely plays a central role. Recent evidence from studies in macaques shows that attention modulates value responses in OFC, and that ensembles of OFC neurons dynamically signal different options during choices. When contexts change, these ensembles flexibly remap to encode the new task. Determining how these dynamic patterns emerge and relate to choices will inform models of decision-making and OFC function. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Cell pattern in adult human corneal endothelium.

    Directory of Open Access Journals (Sweden)

    Carlos H Wörner

    Full Text Available A review of the current data on the cell density of normal adult human endothelial cells was carried out in order to establish some common parameters appearing in the different considered populations. From the analysis of cell growth patterns, it is inferred that the cell aging rate is similar for each of the different considered populations. Also, the morphology, the cell distribution and the tendency to hexagonallity are studied. The results are consistent with the hypothesis that this phenomenon is analogous with cell behavior in other structures such as dry foams and grains in polycrystalline materials. Therefore, its driving force may be controlled by the surface tension and the mobility of the boundaries.

  8. The debt of nations and the distribution of ecological impacts from human activities.

    Science.gov (United States)

    Srinivasan, U Thara; Carey, Susan P; Hallstein, Eric; Higgins, Paul A T; Kerr, Amber C; Koteen, Laura E; Smith, Adam B; Watson, Reg; Harte, John; Norgaard, Richard B

    2008-02-05

    As human impacts to the environment accelerate, disparities in the distribution of damages between rich and poor nations mount. Globally, environmental change is dramatically affecting the flow of ecosystem services, but the distribution of ecological damages and their driving forces has not been estimated. Here, we conservatively estimate the environmental costs of human activities over 1961-2000 in six major categories (climate change, stratospheric ozone depletion, agricultural intensification and expansion, deforestation, overfishing, and mangrove conversion), quantitatively connecting costs borne by poor, middle-income, and rich nations to specific activities by each of these groups. Adjusting impact valuations for different standards of living across the groups as commonly practiced, we find striking imbalances. Climate change and ozone depletion impacts predicted for low-income nations have been overwhelmingly driven by emissions from the other two groups, a pattern also observed for overfishing damages indirectly driven by the consumption of fishery products. Indeed, through disproportionate emissions of greenhouse gases alone, the rich group may have imposed climate damages on the poor group greater than the latter's current foreign debt. Our analysis provides prima facie evidence for an uneven distribution pattern of damages across income groups. Moreover, our estimates of each group's share in various damaging activities are independent from controversies in environmental valuation methods. In a world increasingly connected ecologically and economically, our analysis is thus an early step toward reframing issues of environmental responsibility, development, and globalization in accordance with ecological costs.

  9. Unsupervised classification of neocortical activity patterns in neonatal and pre-juvenile rodents

    Directory of Open Access Journals (Sweden)

    Nicole eCichon

    2014-05-01

    Full Text Available Flexible communication within the brain, which relies on oscillatory activity, is not confined to adult neuronal networks. Experimental evidence has documented the presence of discontinuous patterns of oscillatory activity already during early development. Their highly variable spatial and time-frequency organization has been related to region specificity. However, it might be equally due to the absence of unitary criteria for classifying the early activity patterns, since they have been mainly characterized by visual inspection. Therefore, robust and unbiased methods for categorizing these discontinuous oscillations are needed for increasingly complex data sets from different labs. Here, we introduce an unsupervised detection and classification algorithm for the discontinuous activity patterns of rodents during early development. For this, firstly time windows with discontinuous oscillations vs. epochs of network silence were identified. In a second step, the major features of detected events were identified and processed by principal component analysis for deciding on their contribution to the classification of different oscillatory patterns. Finally, these patterns were categorized using an unsupervised cluster algorithm. The results were validated on manually characterized neonatal spindle bursts, which ubiquitously entrain neocortical areas of rats and mice, and prelimbic nested gamma spindle bursts. Moreover, the algorithm led to satisfactory results for oscillatory events that, due to increased similarity of their features, were more difficult to classify, e.g. during the pre-juvenile developmental period. Based on a linear classification, the optimal number of features to consider increased with the difficulty of detection. This algorithm allows the comparison of neonatal and pre-juvenile oscillatory patterns in their spatial and temporal organization. It might represent a first step for the unbiased elucidation of activity patterns

  10. [Mammals' camera-trapping in Sierra Nanchititla, Mexico: relative abundance and activity patterns].

    Science.gov (United States)

    Monroy-Vilchis, Octavio; Zarco-González, Martha M; Rodríguez-Soto, Clarita; Soria-Díaz, Leroy; Urios, Vicente

    2011-03-01

    Species conservation and their management depend on the availability of their population behavior and changes in time. This way, population studies include aspects such as species abundance and activity pattern, among others, with the advantage that nowadays new technologies can be applied, in addition to common methods. In this study, we used camera-traps to obtain the index of relative abundance and to establish activity pattern of medium and large mammals in Sierra Nanchititla, Mexico. The study was conducted from December 2003 to May 2006, with a total sampling effort of 4 305 trap-days. We obtained 897 photographs of 19 different species. Nasua narica, Sylvilagus floridanus and Urocyon cinereoargenteus were the most abundant, in agreement with the relative abundance index (RAI, number of independent records/100 trap-days), and according to previous studies with indirect methods in the area. The activity patterns of the species showed that 67% of them are nocturnal, except Odocoileus virginianus, Nasua narica and others. Some species showed differences with previously reported patterns, which are related with seasonality, resources availability, organism sex, principally. The applied method contributed with reliable data about relative abundance and activity patterns.

  11. Low cost, patterning of human hNT brain cells on parylene-C with UV & IR laser machining.

    Science.gov (United States)

    Raos, Brad J; Unsworth, C P; Costa, J L; Rohde, C A; Doyle, C S; Delivopoulos, E; Murray, A F; Dickinson, M E; Simpson, M C; Graham, E S; Bunting, A S

    2013-01-01

    This paper describes the use of 800nm femtosecond infrared (IR) and 248nm nanosecond ultraviolet (UV) laser radiation in performing ablative micromachining of parylene-C on SiO2 substrates for the patterning of human hNT astrocytes. Results are presented that support the validity of using IR laser ablative micromachining for patterning human hNT astrocytes cells while UV laser radiation produces photo-oxidation of the parylene-C and destroys cell patterning. The findings demonstrate how IR laser ablative micromachining of parylene-C on SiO2 substrates can offer a low cost, accessible alternative for rapid prototyping, high yield cell patterning.

  12. Changes in shoulder muscle activity pattern on surface electromyography after breast cancer surgery.

    Science.gov (United States)

    Yang, Eun Joo; Kwon, YoungOk

    2018-02-01

    Alterations in muscle activation and restricted shoulder mobility, which are common in breast cancer patients, have been found to affect upper limb function. The purpose of this study was to determine muscle activity patterns, and to compare the prevalence of abnormal patterns among the type of breast surgery. In total, 274 breast cancer patients were recruited after surgery. Type of breast surgery was divided into mastectomy without reconstruction (Mastectomy), reconstruction with tissue expander/implant (TEI), latissimus dorsi (LD) flap, or transverse rectus abdominis flap (TRAM). Activities of shoulder muscles were measured using surface electromyography. Experimental analysis was conducted using a Gaussian filter smoothing method with regression. Patients demonstrated different patterns of muscle activation, such as normal, lower muscle electrical activity, and tightness. After adjusting for BMI and breast surgery, the odds of lower muscle electrical activity and tightness in the TRAM are 40.2% and 38.4% less than in the Mastectomy only group. The prevalence of abnormal patterns was significantly greater in the ALND than SLNB in all except TRAM. Alterations in muscle activity patterns differed by breast surgery and reconstruction type. For breast cancer patients with ALND, TRAM may be the best choice for maintaining upper limb function. © 2017 Wiley Periodicals, Inc.

  13. HUMAN ACTIVITY MONITORING USING SMARTPHONE

    OpenAIRE

    TOKALA, SAI SUJIT; ROKALA, RANADEEP

    2014-01-01

    The main aim of the project is to develop an algorithm which will classify the activity performed by a human who is carrying a smart phone. The day to day life made humans very busy at work and during daily activities, mostly elderly people who are at home have an important need to monitor their activity by others when they are alone, if they are inactive for a long time without movement, or in some situations like if they have fallen down, became unconscious for sometime or seized with a car...

  14. Patterns and Limitations of Urban Human Mobility Resilience under the Influence of Multiple Types of Natural Disaster.

    Science.gov (United States)

    Wang, Qi; Taylor, John E

    2016-01-01

    Natural disasters pose serious threats to large urban areas, therefore understanding and predicting human movements is critical for evaluating a population's vulnerability and resilience and developing plans for disaster evacuation, response and relief. However, only limited research has been conducted into the effect of natural disasters on human mobility. This study examines how natural disasters influence human mobility patterns in urban populations using individuals' movement data collected from Twitter. We selected fifteen destructive cases across five types of natural disaster and analyzed the human movement data before, during, and after each event, comparing the perturbed and steady state movement data. The results suggest that the power-law can describe human mobility in most cases and that human mobility patterns observed in steady states are often correlated with those in perturbed states, highlighting their inherent resilience. However, the quantitative analysis shows that this resilience has its limits and can fail in more powerful natural disasters. The findings from this study will deepen our understanding of the interaction between urban dwellers and civil infrastructure, improve our ability to predict human movement patterns during natural disasters, and facilitate contingency planning by policymakers.

  15. Influence of human activity patterns on epidemiology of plague in ...

    African Journals Online (AJOL)

    Human plague has been a recurring public health threat in some villages in the Western Usambara Mountains, Tanzania, in the period between 1980 and 2004. Despite intensive past biological and medical research, the reasons for the plague outbreaks in the same set of villages remain unknown. Plague research needs ...

  16. Does sex matter? Temporal and spatial patterns of cougar-human conflict in British Columbia.

    Science.gov (United States)

    Teichman, Kristine J; Cristescu, Bogdan; Nielsen, Scott E

    2013-01-01

    Wildlife-human conflicts occur wherever large carnivores overlap human inhabited areas. Conflict mitigation can be facilitated by understanding long-term dynamics and examining sex-structured conflict patterns. Predicting areas with high probability of conflict helps focus management strategies in order to proactively decrease carnivore mortality. We investigated the importance of cougar (Puma concolor) habitat, human landscape characteristics and the combination of habitat and human features on the temporal and spatial patterns of cougar-human conflicts in British Columbia. Conflicts (n = 1,727; 1978-2007) involved similar numbers of male and female cougars with conflict rate decreasing over the past decade. Conflicts were concentrated within the southern part of the province with the most conflicts per unit area occurring on Vancouver Island. For both sexes, the most supported spatial models for the most recent (1998-2007) conflicts contained both human and habitat variables. Conflicts were more likely to occur close to roads, at intermediate elevations and far from the northern edge of the cougar distribution range in British Columbia. Male cougar conflicts were more likely to occur in areas of intermediate human density. Unlike cougar conflicts in other regions, cattle density was not a significant predictor of conflict location. With human populations expanding, conflicts are expected to increase. Conservation tools, such as the maps predicting conflict hotspots from this study, can help focus management efforts to decrease carnivore-human conflict.

  17. Learning new gait patterns: Exploratory muscle activity during motor learning is not predicted by motor modules

    Science.gov (United States)

    Ranganathan, Rajiv; Krishnan, Chandramouli; Dhaher, Yasin Y.; Rymer, William Z.

    2018-01-01

    The motor module hypothesis in motor control proposes that the nervous system can simplify the problem of controlling a large number of muscles in human movement by grouping muscles into a smaller number of modules. Here, we tested one prediction of the modular organization hypothesis by examining whether there is preferential exploration along these motor modules during the learning of a new gait pattern. Healthy college-aged participants learned a new gait pattern which required increased hip and knee flexion during the swing phase while walking in a lower-extremity robot (Lokomat). The new gait pattern was displayed as a foot trajectory in the sagittal plane and participants attempted to match their foot trajectory to this template. We recorded EMG from 8 lower-extremity muscles and we extracted motor modules during both baseline walking and target-tracking using non-negative matrix factorization (NMF). Results showed increased trajectory variability in the first block of learning, indicating that participants were engaged in exploratory behavior. Critically, when we examined the muscle activity during this exploratory phase, we found that the composition of motor modules changed significantly within the first few strides of attempting the new gait pattern. The lack of persistence of the motor modules under even short time scales suggests that motor modules extracted during locomotion may be more indicative of correlated muscle activity induced by the task constraints of walking, rather than reflecting a modular control strategy. PMID:26916510

  18. Evolution of Daily Activity Patterns from 1971 to 1981: A Study of the Halifax Activity Panel Survey

    Directory of Open Access Journals (Sweden)

    Andrew S. Harvey

    2001-12-01

    similarity measures between character strings, which can be used to measure the similarity of two persons’ daily activities, to measure change over time, or to determine the relative similarity of three or more activity diaries. The results of the research showed that both pure activities and activity-settings identified broadly the same behvioural groupings: employed workers, domestic workers, and weekend activities. The similarity of activity patterns of individuals was greater over the ten-year analysis period than the average similarity of the sample in either 1971 or 1981. The average similarity of activity and activitysetting patterns rose from 1971 to 1981, which contradicts observations that daily routines are becoming more complex and diverse.

  19. Probing the reaching-grasping network in humans through multivoxel pattern decoding.

    Science.gov (United States)

    Di Bono, Maria Grazia; Begliomini, Chiara; Castiello, Umberto; Zorzi, Marco

    2015-11-01

    The quest for a putative human homolog of the reaching-grasping network identified in monkeys has been the focus of many neuropsychological and neuroimaging studies in recent years. These studies have shown that the network underlying reaching-only and reach-to-grasp movements includes the superior parieto-occipital cortex (SPOC), the anterior part of the human intraparietal sulcus (hAIP), the ventral and the dorsal portion of the premotor cortex, and the primary motor cortex (M1). Recent evidence for a wider frontoparietal network coding for different aspects of reaching-only and reach-to-grasp actions calls for a more fine-grained assessment of the reaching-grasping network in humans by exploiting pattern decoding methods (multivoxel pattern analysis--MVPA). Here, we used MPVA on functional magnetic resonance imaging (fMRI) data to assess whether regions of the frontoparietal network discriminate between reaching-only and reach-to-grasp actions, natural and constrained grasping, different grasp types, and object sizes. Participants were required to perform either reaching-only movements or two reach-to-grasp types (precision or whole hand grasp) upon spherical objects of different sizes. Multivoxel pattern analysis highlighted that, independently from the object size, all the selected regions of both hemispheres contribute in coding for grasp type, with the exception of SPOC and the right hAIP. Consistent with recent neurophysiological findings on monkeys, there was no evidence for a clear-cut distinction between a dorsomedial and a dorsolateral pathway that would be specialized for reaching-only and reach-to-grasp actions, respectively. Nevertheless, the comparison of decoding accuracy across brain areas highlighted their different contributions to reaching-only and grasping actions. Altogether, our findings enrich the current knowledge regarding the functional role of key brain areas involved in the cortical control of reaching-only and reach-to-grasp actions

  20. Spatiotemporal organization of alpha-motoneuron activity in the human spinal cord during different gaits and gait transitions.

    Science.gov (United States)

    Ivanenko, Y P; Cappellini, G; Poppele, R E; Lacquaniti, F

    2008-06-01

    Here we studied the spatiotemporal organization of motoneuron (MN) activity during different human gaits. We recorded the electromyographic (EMG) activity patterns in 32 ipsilateral limb and trunk muscles from normal subjects while running and walking on a treadmill (3-12 km/h). In addition, we recorded backward walking and skipping, a distinct human gait that comprises the features of both walking and running. We mapped the recorded EMG activity patterns onto the spinal cord in approximate rostrocaudal locations of the MN pools. The activation of MNs tends to occur in bursts and be segregated by spinal segment in a gait-specific manner. In particular, sacral and cervical activation timings were clearly gait-dependent. Swing-related activity constituted an appreciable fraction (> 30%) of the total MN activity of leg muscles. Locomoting at non-preferred speeds (running and walking at 5 and 9 km/h, respectively) showed clear differences relative to preferred speeds. Running at low speeds was characterized by wider sacral activation. Walking at high non-preferred speeds was accompanied by an 'atypical' locus of activation in the upper lumbar spinal cord during late stance and by a drastically increased activation of lumbosacral segments. The latter findings suggest that the optimal speed of gait transitions may be related to an optimal intensity of the total MN activity, in addition to other factors previously described. The results overall support the idea of flexibility and adaptability of spatiotemporal activity in the spinal circuitry with constraints on the temporal functional connectivity of hypothetical pulsatile burst generators.

  1. Estimating Activity Patterns Using Spatio-temporal Data of Cellphone Networks

    Directory of Open Access Journals (Sweden)

    Zahedi Seyedmostafa

    2016-01-01

    Full Text Available The tendency towards using activity-based models to predict trip demand has increased dramatically over recent years, but these models have suffered insufficient data for calibration. This paper discusses ways to process the cellphone spatio-temporal data in a manner that makes it comprehensible for traffic interpretations and proposes methods on how to infer urban mobility and activity patterns from the aforementioned data. Movements of each subscriber is described by a sequence of stays and trips and each stay is labeled by an activity. The type of activities are estimated using features such as land use, duration of stay, frequency of visit, arrival time to that activity and its distance from home. Finally, the chains of trips are identified and different patterns that citizens follow to participate in activities are determined. The data comprises 144 million records of the location of 300,000 citizens of Shiraz at five-minute intervals.

  2. Cerebral Activity Changes in Different Traditional Chinese Medicine Patterns of Psychogenic Erectile Dysfunction Patients

    Directory of Open Access Journals (Sweden)

    Qi Liu

    2015-01-01

    Full Text Available Background. Pattern differentiation is the foundation of traditional Chinese medicine (TCM treatment for erectile dysfunction (ED. This study aims to investigate the differences in cerebral activity in ED patients with different TCM patterns. Methods. 27 psychogenic ED patients and 27 healthy subjects (HS were enrolled in this study. Each participant underwent an fMRI scan in resting state. The fractional amplitude of low-frequency fluctuation (fALFF was used to detect the brain activity changes in ED patients with different patterns. Results. Compared to HS, ED patients showed an increased cerebral activity in bilateral cerebellum, insula, globus pallidus, parahippocampal gyrus, orbitofrontal cortex (OFC, and middle cingulate cortex (MCC. Compared to the patients with liver-qi stagnation and spleen deficiency pattern (LSSDP, the patients with kidney-yang deficiency pattern (KDP showed an increased activity in bilateral brainstem, cerebellum, hippocampus, and the right insula, thalamus, MCC, and a decreased activity in bilateral putamen, medial frontal gyrus, temporal pole, and the right caudate nucleus, OFC, anterior cingulate cortex, and posterior cingulate cortex (P<0.005. Conclusions. The ED patients with different TCM patterns showed different brain activities. The differences in cerebral activity between LSSDP and KDP were mainly in the emotion-related regions, including prefrontal cortex and cingulated cortex.

  3. Time-Elastic Generative Model for Acceleration Time Series in Human Activity Recognition.

    Science.gov (United States)

    Munoz-Organero, Mario; Ruiz-Blazquez, Ramona

    2017-02-08

    Body-worn sensors in general and accelerometers in particular have been widely used in order to detect human movements and activities. The execution of each type of movement by each particular individual generates sequences of time series of sensed data from which specific movement related patterns can be assessed. Several machine learning algorithms have been used over windowed segments of sensed data in order to detect such patterns in activity recognition based on intermediate features (either hand-crafted or automatically learned from data). The underlying assumption is that the computed features will capture statistical differences that can properly classify different movements and activities after a training phase based on sensed data. In order to achieve high accuracy and recall rates (and guarantee the generalization of the system to new users), the training data have to contain enough information to characterize all possible ways of executing the activity or movement to be detected. This could imply large amounts of data and a complex and time-consuming training phase, which has been shown to be even more relevant when automatically learning the optimal features to be used. In this paper, we present a novel generative model that is able to generate sequences of time series for characterizing a particular movement based on the time elasticity properties of the sensed data. The model is used to train a stack of auto-encoders in order to learn the particular features able to detect human movements. The results of movement detection using a newly generated database with information on five users performing six different movements are presented. The generalization of results using an existing database is also presented in the paper. The results show that the proposed mechanism is able to obtain acceptable recognition rates ( F = 0.77) even in the case of using different people executing a different sequence of movements and using different hardware.

  4. The climatic change induced by human activities

    International Nuclear Information System (INIS)

    Balairon Ruiz, L.

    2004-01-01

    The climate of the Earth is a changing climate. Along their history many natural climate changes have existed in all time scales. At the present time we use the term climate changes have existed in all time scales. At the present time we use the term climate change in a restricted way, understanding that we have referring to a singular change that has their origin in the modification of the natural composition of the atmosphere. The increase of greenhouse gases from the second half the XVIII century, is due to the human activities of fossil fuels burning to obtain energy and to industrial and agricultural activities needing for the development of a world which population has been duplicated between 1960 and 2000, until overcoming the 6,000 million inhabitants. In particular, the concentrations of carbon dioxide-CO 2 have increased in a 34%. The more recent emission scenarios proposed by the IPCC (SRES, 2000) are based on hypothesis about the population evolution, the energy consumption and the word patterns of development, which are grouped in four families dominated as A1, A2, B1 and B2. The answer for these scenarios from a range of climate models results in an increase of the world average surface atmospheric temperature between 1,4 degree centigrade and 5,8 degree centigrade and a corresponding sea level rise understood between 9 cm and 88 cm. The changes in the precipitation patterns show us that could be above to the current one in high and media latitudes and below in subtropical latitudes, with exceptions highly depending of the model used. (Author)

  5. Human stem cell-derived retinal epithelial cells activate complement via collectin 11 in response to stress

    DEFF Research Database (Denmark)

    Fanelli, Giorgia; Gonzalez-Cordero, Anai; Gardner, Peter J

    2017-01-01

    induced-pluripotent stem cell (iPSC)-derived RPE cells, particularly with regard to the complement pathway. We focused on collectin-11 (CL-11), a pattern recognition molecule that can trigger complement activation in renal epithelial tissue. We found evidence of constitutive and hypoxia-induced expression......, failed to activate complement. The presence of CL-11 in healthy murine and human retinal tissues confirmed the biological relevance of CL-11. Our data describe a new trigger mechanism of complement activation that could be important in disease pathogenesis and therapeutic interventions....

  6. Virulent Type A Francisella tularensis actively suppresses cytokine responses in human monocytes

    Science.gov (United States)

    Gillette, Devyn D.; Curry, Heather M.; Cremer, Thomas; Ravneberg, David; Fatehchand, Kavin; Shah, Prexy A.; Wewers, Mark D.; Schlesinger, Larry S.; Butchar, Jonathan P.; Tridandapani, Susheela; Gavrilin, Mikhail A.

    2014-01-01

    Background: Human monocyte inflammatory responses differ between virulent and attenuated Francisella infection. Results: A mixed infection model showed that the virulent F. tularensis Schu S4 can attenuate inflammatory cytokine responses to the less virulent F. novicida in human monocytes. Conclusion: F. tularensis dampens inflammatory response by an active process. Significance: This suppression may contribute to enhanced pathogenicity of F. tularensis. Francisella tularensis is a Gram-negative facultative bacterium that can cause the disease tularemia, even upon exposure to low numbers of bacteria. One critical characteristic of Francisella is its ability to dampen or subvert the host immune response. Previous work has shown that monocytes infected with highly virulent F. tularensis subsp. tularensis strain Schu S4 responded with a general pattern of quantitatively reduced pro-inflammatory signaling pathway genes and cytokine production in comparison to those infected with the less virulent related F. novicida. However, it has been unclear whether the virulent Schu S4 was merely evading or actively suppressing monocyte responses. By using mixed infection assays with F. tularensis and F. novicida, we show that F. tularensis actively suppresses monocyte pro-inflammatory responses. Additional experiments show that this suppression occurs in a dose-dependent manner and is dependent upon the viability of F. tularensis. Importantly, F. tularensis was able to suppress pro-inflammatory responses to earlier infections with F. novicida. These results lend support that F. tularensis actively dampens human monocyte responses and this likely contributes to its enhanced pathogenicity. PMID:24783062

  7. Human Walking Pattern Recognition Based on KPCA and SVM with Ground Reflex Pressure Signal

    Directory of Open Access Journals (Sweden)

    Zhaoqin Peng

    2013-01-01

    Full Text Available Algorithms based on the ground reflex pressure (GRF signal obtained from a pair of sensing shoes for human walking pattern recognition were investigated. The dimensionality reduction algorithms based on principal component analysis (PCA and kernel principal component analysis (KPCA for walking pattern data compression were studied in order to obtain higher recognition speed. Classifiers based on support vector machine (SVM, SVM-PCA, and SVM-KPCA were designed, and the classification performances of these three kinds of algorithms were compared using data collected from a person who was wearing the sensing shoes. Experimental results showed that the algorithm fusing SVM and KPCA had better recognition performance than the other two methods. Experimental outcomes also confirmed that the sensing shoes developed in this paper can be employed for automatically recognizing human walking pattern in unlimited environments which demonstrated the potential application in the control of exoskeleton robots.

  8. Weather Effects on the Patterns of People's Everyday Activities: A Study Using GPS Traces of Mobile Phone Users

    Science.gov (United States)

    Leong, Tuck W.; Sekimoto, Yoshihide; Shibasaki, Ryosuke

    2013-01-01

    This study explores the effects that the weather has on people's everyday activity patterns. Temperature, rainfall, and wind speed were used as weather parameters. People's daily activity patterns were inferred, such as place visited, the time this took place, the duration of the visit, based on the GPS location traces of their mobile phones overlaid upon Yellow Pages information. Our analysis of 31,855 mobile phone users allowed us to infer that people were more likely to stay longer at eateries or food outlets, and (to a lesser degree) at retail or shopping areas when the weather is very cold or when conditions are calm (non-windy). When compared to people's regular activity patterns, certain weather conditions affected people's movements and activities noticeably at different times of the day. On cold days, people's activities were found to be more diverse especially after 10AM, showing greatest variations between 2PM and 6PM. A similar trend is observed between 10AM and midnight on rainy days, with people's activities found to be most diverse on days with heaviest rainfalls or on days when the wind speed was stronger than 4 km/h, especially between 10AM–1AM. Finally, we observed that different geographical areas of a large metropolis were impacted differently by the weather. Using data of urban infrastructure to characterize areas, we found strong correlations between weather conditions upon people's accessibility to trains. This study sheds new light on the influence of weather conditions on human behavior, in particular the choice of daily activities and how mobile phone data can be used to investigate the influence of environmental factors on urban dynamics. PMID:24367481

  9. SME purchasing activity patterns delphi study : Recognizing patterns in the way Small and Medium Enterprises (SMEs) organize their procurement activities

    NARCIS (Netherlands)

    Vegter, Geert

    2015-01-01

    This survey is about recognizing patterns in the way Small and Medium Enterprises (SMEs) organize their procurement activities. The scope of the survey is limited to the key commodities of the SME. A key commodity is defined as the purchased product or service group which is essential for realizing

  10. Activations of human auditory cortex to phonemic and nonphonemic vowels during discrimination and memory tasks.

    Science.gov (United States)

    Harinen, Kirsi; Rinne, Teemu

    2013-08-15

    We used fMRI to investigate activations within human auditory cortex (AC) to vowels during vowel discrimination, vowel (categorical n-back) memory, and visual tasks. Based on our previous studies, we hypothesized that the vowel discrimination task would be associated with increased activations in the anterior superior temporal gyrus (STG), while the vowel memory task would enhance activations in the posterior STG and inferior parietal lobule (IPL). In particular, we tested the hypothesis that activations in the IPL during vowel memory tasks are associated with categorical processing. Namely, activations due to categorical processing should be higher during tasks performed on nonphonemic (hard to categorize) than on phonemic (easy to categorize) vowels. As expected, we found distinct activation patterns during vowel discrimination and vowel memory tasks. Further, these task-dependent activations were different during tasks performed on phonemic or nonphonemic vowels. However, activations in the IPL associated with the vowel memory task were not stronger during nonphonemic than phonemic vowel blocks. Together these results demonstrate that activations in human AC to vowels depend on both the requirements of the behavioral task and the phonemic status of the vowels. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Does sex matter? Temporal and spatial patterns of cougar-human conflict in British Columbia.

    Directory of Open Access Journals (Sweden)

    Kristine J Teichman

    Full Text Available Wildlife-human conflicts occur wherever large carnivores overlap human inhabited areas. Conflict mitigation can be facilitated by understanding long-term dynamics and examining sex-structured conflict patterns. Predicting areas with high probability of conflict helps focus management strategies in order to proactively decrease carnivore mortality. We investigated the importance of cougar (Puma concolor habitat, human landscape characteristics and the combination of habitat and human features on the temporal and spatial patterns of cougar-human conflicts in British Columbia. Conflicts (n = 1,727; 1978-2007 involved similar numbers of male and female cougars with conflict rate decreasing over the past decade. Conflicts were concentrated within the southern part of the province with the most conflicts per unit area occurring on Vancouver Island. For both sexes, the most supported spatial models for the most recent (1998-2007 conflicts contained both human and habitat variables. Conflicts were more likely to occur close to roads, at intermediate elevations and far from the northern edge of the cougar distribution range in British Columbia. Male cougar conflicts were more likely to occur in areas of intermediate human density. Unlike cougar conflicts in other regions, cattle density was not a significant predictor of conflict location. With human populations expanding, conflicts are expected to increase. Conservation tools, such as the maps predicting conflict hotspots from this study, can help focus management efforts to decrease carnivore-human conflict.

  12. Patterns of adolescent physical activity and dietary behaviours

    Science.gov (United States)

    Pearson, Natalie; Atkin, Andrew J; Biddle, Stuart JH; Gorely, Trish; Edwardson, Charlotte

    2009-01-01

    Background The potential synergistic effects of multiple dietary and physical activity behaviours on the risk of chronic conditions and health outcomes is a key issue for public health. This study examined the prevalence and clustering patterns of multiple health behaviours among a sample of adolescents in the UK. Methods Cross-sectional survey of 176 adolescents aged 12–16 years (49% boys). Adolescents wore accelerometers for seven days and completed a questionnaire assessing fruit, vegetable, and breakfast consumption. The prevalence of adolescents meeting the physical activity (≥ 60 minutes moderate-to-vigorous physical activity/day), fruit and vegetable (≥ 5 portions of FV per day) and breakfast recommendations (eating breakfast on ≥ 5 days per week), and clustering patterns of these health behaviours are described. Results Boys were more active than girls (p < 0.001) and younger adolescents were more active than older adolescents (p < 0.01). Boys ate breakfast on more days per week than girls (p < 0.01) and older adolescents ate more fruit and vegetables than younger adolescents (p < 0.01). Almost 54% of adolescents had multiple risk behaviours and only 6% achieved all three of the recommendations. Girls had significantly more risk factors than boys (p < 0.01). For adolescents with two risk behaviours, the most prevalent cluster was formed by not meeting the physical activity and fruit and vegetable recommendations. Conclusion Many adolescents fail to meet multiple diet and physical activity recommendations, highlighting that physical activity and dietary behaviours do not occur in isolation. Future research should investigate how best to achieve multiple health behaviour change in adolescent boys and girls. PMID:19624822

  13. Broad-scale recombination patterns underlying proper disjunction in humans.

    Directory of Open Access Journals (Sweden)

    Adi Fledel-Alon

    2009-09-01

    Full Text Available Although recombination is essential to the successful completion of human meiosis, it remains unclear how tightly the process is regulated and over what scale. To assess the nature and stringency of constraints on human recombination, we examined crossover patterns in transmissions to viable, non-trisomic offspring, using dense genotyping data collected in a large set of pedigrees. Our analysis supports a requirement for one chiasma per chromosome rather than per arm to ensure proper disjunction, with additional chiasmata occurring in proportion to physical length. The requirement is not absolute, however, as chromosome 21 seems to be frequently transmitted properly in the absence of a chiasma in females, a finding that raises the possibility of a back-up mechanism aiding in its correct segregation. We also found a set of double crossovers in surprisingly close proximity, as expected from a second pathway that is not subject to crossover interference. These findings point to multiple mechanisms that shape the distribution of crossovers, influencing proper disjunction in humans.

  14. Children's organized physical activity patterns from childhood into adolescence.

    Science.gov (United States)

    Findlay, Leanne C; Garner, Rochelle E; Kohen, Dafna E

    2009-11-01

    Few longitudinal studies of physical activity have included young children or used nationally representative datasets. The purpose of the current study was to explore patterns of organized physical activity for Canadian children aged 4 through 17 years. Data from 5 cycles of the National Longitudinal Survey of Children and Youth were analyzed separately for boys (n = 4463) and girls (n = 4354) using multiple trajectory modeling. Boys' and girls' organized physical activity was best represented by 3 trajectory groups. For boys, these groups were labeled: high stable, high decreasing, and low decreasing participation. For girls, these groups were labeled: high decreasing, moderate stable, and low decreasing participation. Risk factors (parental education, household income, urban/rural dwelling, and single/dual parent) were explored. For boys and girls, having a parent with postsecondary education and living in a higher income household were associated with a greater likelihood of weekly participation in organized physical activity. Living in an urban area was also significantly associated with a greater likelihood of weekly participation for girls. Results suggest that Canadian children's organized physical activity is best represented by multiple patterns of participation that tend to peak in middle childhood and decline into adolescence.

  15. fMRI activation patterns in an analytic reasoning task: consistency with EEG source localization

    Science.gov (United States)

    Li, Bian; Vasanta, Kalyana C.; O'Boyle, Michael; Baker, Mary C.; Nutter, Brian; Mitra, Sunanda

    2010-03-01

    Functional magnetic resonance imaging (fMRI) is used to model brain activation patterns associated with various perceptual and cognitive processes as reflected by the hemodynamic (BOLD) response. While many sensory and motor tasks are associated with relatively simple activation patterns in localized regions, higher-order cognitive tasks may produce activity in many different brain areas involving complex neural circuitry. We applied a recently proposed probabilistic independent component analysis technique (PICA) to determine the true dimensionality of the fMRI data and used EEG localization to identify the common activated patterns (mapped as Brodmann areas) associated with a complex cognitive task like analytic reasoning. Our preliminary study suggests that a hybrid GLM/PICA analysis may reveal additional regions of activation (beyond simple GLM) that are consistent with electroencephalography (EEG) source localization patterns.

  16. West African spatial patterns of economic activities

    DEFF Research Database (Denmark)

    Walther, Olivier; Howard, Allen; Retaillé, Denis

    2015-01-01

    Over the last 30 years, two different bodies of literature developed by both US historians and francophone geographers have moved toward similar conclusions regarding West African economic spatial patterns. Despite their different backgrounds, both the ‘spatial factor’ approach promoted by histor......Over the last 30 years, two different bodies of literature developed by both US historians and francophone geographers have moved toward similar conclusions regarding West African economic spatial patterns. Despite their different backgrounds, both the ‘spatial factor’ approach promoted...... by historians and the ‘mobile space’ approach developed by geographers view exchange centres as nodes of transnational trade networks and places in production territories, and perceive spatial dynamics as highly dependent on shifts of trade flows and production activities. The objective of this article...

  17. Muscle activation patterns when passively stretching spastic lower limb muscles of children with cerebral palsy.

    Directory of Open Access Journals (Sweden)

    Lynn Bar-On

    Full Text Available The definition of spasticity as a velocity-dependent activation of the tonic stretch reflex during a stretch to a passive muscle is the most widely accepted. However, other mechanisms are also thought to contribute to pathological muscle activity and, in patients post-stroke and spinal cord injury can result in different activation patterns. In the lower-limbs of children with spastic cerebral palsy (CP these distinct activation patterns have not yet been thoroughly explored. The aim of the study was to apply an instrumented assessment to quantify different muscle activation patterns in four lower-limb muscles of children with CP. Fifty-four children with CP were included (males/females n = 35/19; 10.8 ± 3.8 yrs; bilateral/unilateral involvement n =  32/22; Gross Motor Functional Classification Score I-IV of whom ten were retested to evaluate intra-rater reliability. With the subject relaxed, single-joint, sagittal-plane movements of the hip, knee, and ankle were performed to stretch the lower-limb muscles at three increasing velocities. Muscle activity and joint motion were synchronously recorded using inertial sensors and electromyography (EMG from the adductors, medial hamstrings, rectus femoris, and gastrocnemius. Muscles were visually categorised into activation patterns using average, normalized root mean square EMG (RMS-EMG compared across increasing position zones and velocities. Based on the visual categorisation, quantitative parameters were defined using stretch-reflex thresholds and normalized RMS-EMG. These parameters were compared between muscles with different activation patterns. All patterns were dominated by high velocity-dependent muscle activation, but in more than half, low velocity-dependent activation was also observed. Muscle activation patterns were found to be both muscle- and subject-specific (p<0.01. The intra-rater reliability of all quantitative parameters was moderate to good. Comparing RMS-EMG between

  18. How They Move Reveals What Is Happening: Understanding the Dynamics of Big Events from Human Mobility Pattern

    Directory of Open Access Journals (Sweden)

    Jean Damascène Mazimpaka

    2017-01-01

    Full Text Available The context in which a moving object moves contributes to the movement pattern observed. Likewise, the movement pattern reflects the properties of the movement context. In particular, big events influence human mobility depending on the dynamics of the events. However, this influence has not been explored to understand big events. In this paper, we propose a methodology for learning about big events from human mobility pattern. The methodology involves extracting and analysing the stopping, approaching, and moving-away interactions between public transportation vehicles and the geographic context. The analysis is carried out at two different temporal granularity levels to discover global and local patterns. The results of evaluating this methodology on bus trajectories demonstrate that it can discover occurrences of big events from mobility patterns, roughly estimate the event start and end time, and reveal the temporal patterns of arrival and departure of event attendees. This knowledge can be usefully applied in transportation and event planning and management.

  19. Patterns of brain activation when mothers view their own child and dog: an fMRI study.

    Directory of Open Access Journals (Sweden)

    Luke E Stoeckel

    Full Text Available Neural substrates underlying the human-pet relationship are largely unknown. We examined fMRI brain activation patterns as mothers viewed images of their own child and dog and an unfamiliar child and dog. There was a common network of brain regions involved in emotion, reward, affiliation, visual processing and social cognition when mothers viewed images of both their child and dog. Viewing images of their child resulted in brain activity in the midbrain (ventral tegmental area/substantia nigra involved in reward/affiliation, while a more posterior cortical brain activation pattern involving fusiform gyrus (visual processing of faces and social cognition characterized a mother's response to her dog. Mothers also rated images of their child and dog as eliciting similar levels of excitement (arousal and pleasantness (valence, although the difference in the own vs. unfamiliar child comparison was larger than the own vs. unfamiliar dog comparison for arousal. Valence ratings of their dog were also positively correlated with ratings of the attachment to their dog. Although there are similarities in the perceived emotional experience and brain function associated with the mother-child and mother-dog bond, there are also key differences that may reflect variance in the evolutionary course and function of these relationships.

  20. Patterns of brain activation when mothers view their own child and dog: an fMRI study.

    Science.gov (United States)

    Stoeckel, Luke E; Palley, Lori S; Gollub, Randy L; Niemi, Steven M; Evins, Anne Eden

    2014-01-01

    Neural substrates underlying the human-pet relationship are largely unknown. We examined fMRI brain activation patterns as mothers viewed images of their own child and dog and an unfamiliar child and dog. There was a common network of brain regions involved in emotion, reward, affiliation, visual processing and social cognition when mothers viewed images of both their child and dog. Viewing images of their child resulted in brain activity in the midbrain (ventral tegmental area/substantia nigra involved in reward/affiliation), while a more posterior cortical brain activation pattern involving fusiform gyrus (visual processing of faces and social cognition) characterized a mother's response to her dog. Mothers also rated images of their child and dog as eliciting similar levels of excitement (arousal) and pleasantness (valence), although the difference in the own vs. unfamiliar child comparison was larger than the own vs. unfamiliar dog comparison for arousal. Valence ratings of their dog were also positively correlated with ratings of the attachment to their dog. Although there are similarities in the perceived emotional experience and brain function associated with the mother-child and mother-dog bond, there are also key differences that may reflect variance in the evolutionary course and function of these relationships.

  1. Bedtime activities, sleep environment, and sleep/wake patterns of Japanese elementary school children.

    Science.gov (United States)

    Oka, Yasunori; Suzuki, Shuhei; Inoue, Yuich

    2008-01-01

    Bedtime activities, sleep environment, and their impact on sleep/wake patterns were assessed in 509 elementary school children (6-12 years of age; 252 males and 257 females). Television viewing, playing video games, and surfing the Internet had negative impact on sleep/wake parameters. Moreover, presence of a television set or video game in the child's bedroom increased their activity before bedtime. Time to return home later than 8 p.m. from after-school activity also had a negative impact on sleep/wake patterns. Health care practitioners should be aware of the potential negative impact of television, video games, and the Internet before bedtime, and also the possibility that late after-school activity can disturb sleep/wake patterns.

  2. A cluster analysis of patterns of objectively measured physical activity in Hong Kong.

    Science.gov (United States)

    Lee, Paul H; Yu, Ying-Ying; McDowell, Ian; Leung, Gabriel M; Lam, T H

    2013-08-01

    The health benefits of exercise are clear. In targeting interventions it would be valuable to know whether characteristic patterns of physical activity (PA) are associated with particular population subgroups. The present study used cluster analysis to identify characteristic hourly PA patterns measured by accelerometer. Cross-sectional design. Objectively measured PA in Hong Kong adults. Four-day accelerometer data were collected during 2009 to 2011 for 1714 participants in Hong Kong (mean age 44?2 years, 45?9% male). Two clusters were identified, one more active than the other. The ‘active cluster’ (n 480) was characterized by a routine PA pattern on weekdays and a more active and varied pattern on weekends; the other, the ‘less active cluster’ (n 1234), by a consistently low PA pattern on both weekdays and weekends with little variation from day to day. Demographic, lifestyle, PA level and health characteristics of the two clusters were compared. They differed in age, sex, smoking, income and level of PA required at work. The odds of having any chronic health conditions was lower for the active group (adjusted OR50?62, 95% CI 0?46, 0?84) but the two groups did not differ in terms of specific chronic health conditions or obesity. Implications are drawn for targeting exercise promotion programmes at the population level.

  3. Operant conditioning of synaptic and spiking activity patterns in single hippocampal neurons.

    Science.gov (United States)

    Ishikawa, Daisuke; Matsumoto, Nobuyoshi; Sakaguchi, Tetsuya; Matsuki, Norio; Ikegaya, Yuji

    2014-04-02

    Learning is a process of plastic adaptation through which a neural circuit generates a more preferable outcome; however, at a microscopic level, little is known about how synaptic activity is patterned into a desired configuration. Here, we report that animals can generate a specific form of synaptic activity in a given neuron in the hippocampus. In awake, head-restricted mice, we applied electrical stimulation to the lateral hypothalamus, a reward-associated brain region, when whole-cell patch-clamped CA1 neurons exhibited spontaneous synaptic activity that met preset criteria. Within 15 min, the mice learned to generate frequently the excitatory synaptic input pattern that satisfied the criteria. This reinforcement learning of synaptic activity was not observed for inhibitory input patterns. When a burst unit activity pattern was conditioned in paired and nonpaired paradigms, the frequency of burst-spiking events increased and decreased, respectively. The burst reinforcement occurred in the conditioned neuron but not in other adjacent neurons; however, ripple field oscillations were concomitantly reinforced. Neural conditioning depended on activation of NMDA receptors and dopamine D1 receptors. Acutely stressed mice and depression model mice that were subjected to forced swimming failed to exhibit the neural conditioning. This learning deficit was rescued by repetitive treatment with fluoxetine, an antidepressant. Therefore, internally motivated animals are capable of routing an ongoing action potential series into a specific neural pathway of the hippocampal network.

  4. Micro-flock patterns and macro-clusters in chiral active Brownian disks

    Science.gov (United States)

    Levis, Demian; Liebchen, Benno

    2018-02-01

    Chiral active particles (or self-propelled circle swimmers) feature a rich collective behavior, comprising rotating macro-clusters and micro-flock patterns which consist of phase-synchronized rotating clusters with a characteristic self-limited size. These patterns emerge from the competition of alignment interactions and rotations suggesting that they might occur generically in many chiral active matter systems. However, although excluded volume interactions occur naturally among typical circle swimmers, it is not yet clear if macro-clusters and micro-flock patterns survive their presence. The present work shows that both types of pattern do survive but feature strongly enhance fluctuations regarding the size and shape of the individual clusters. Despite these fluctuations, we find that the average micro-flock size still follows the same characteristic scaling law as in the absence of excluded volume interactions, i.e. micro-flock sizes scale linearly with the single-swimmer radius.

  5. Human NLRP3 inflammasome activation is Nox1-4 independent

    NARCIS (Netherlands)

    van Bruggen, Robin; Köker, M. Yavuz; Jansen, Machiel; van Houdt, Michel; Roos, Dirk; Kuijpers, Taco W.; van den Berg, Timo K.

    2010-01-01

    The NLRP3 inflammasome can be activated by pathogen-associated molecular patterns or endogenous danger-associated molecular patterns. The activation of the NLRP3 inflammasome results in proteolytic activation and secretion of cytokines of the interleukin-1 (IL-1) family. The precise mode of

  6. Patterns for election of active computing nodes in high availability distributed data acquisition systems

    International Nuclear Information System (INIS)

    Nair, Preetha; Padmini, S.; Diwakar, M.P.; Gohel, Nilesh

    2013-01-01

    Computer based systems for power plant and research reactors are expected to have high availability. Redundancy is a common approach to improve the availability of a system. In redundant configuration the challenge is to select one node as active, and in case of failure of current active node provide automatic fast switchover by electing another node to function as active and restore normal operation. Additional constraints include: exactly one node should be elected as active in an n-way redundant architecture. This paper discusses various high availability configurations developed by Electronics Division and deployed in power and research reactors and patterns followed to elect active nodes of distributed data acquisition systems. The systems are categorized into two: Active/Passive where changeover takes effect only on the failure of Active node, and Active/Active, where changeover is effective in alternate cycles. A novel concept of priority driven state based Active (Master) node election pattern is described for Active/Passive systems which allows multiple redundancy and dynamic election of single master. The paper also discusses the Active/Active pattern, which uncovers failure early by activating all the nodes alternatively in a redundant system. This pattern can be extended to multiple redundant nodes. (author)

  7. Response of human corneal fibroblasts on silk film surface patterns.

    Science.gov (United States)

    Gil, Eun Seok; Park, Sang-Hyug; Marchant, Jeff; Omenetto, Fiorenzo; Kaplan, David L

    2010-06-11

    Transparent, biodegradable, mechanically robust, and surface-patterned silk films were evaluated for the effect of surface morphology on human corneal fibroblast (hCF) cell proliferation, orientation, and ECM deposition and alignment. A series of dimensionally different surface groove patterns were prepared from optically graded glass substrates followed by casting poly(dimethylsiloxane) (PDMS) replica molds. The features on the patterned silk films showed an array of asymmetric triangles and displayed 37-342 nm depths and 445-3 582 nm widths. hCF DNA content on all patterned films were not significantly different from that on flat silk films after 4 d in culture. However, the depth and width of the grooves influenced cell alignment, while the depth differences affected cell orientation; overall, deeper and narrower grooves induced more hCF orientation. Over 14 d in culture, cell layers and actin filament organization demonstrated that confluent hCFs and their cytoskeletal filaments were oriented along the direction of the silk film patterned groove axis. Collagen type V and proteoglycans (decorin and biglycan), important markers of corneal stromal tissue, were highly expressed with alignment. Understanding corneal stromal fibroblast responses to surface features on a protein-based biomaterial applicable in vivo for corneal repair potential suggests options to improve corneal tissue mimics. Further, the approaches provide fundamental biomaterial designs useful for bioengineering oriented tissue layers, an endemic feature in most biological tissue structures that lead to critical tissue functions.

  8. Dietary patterns as compared with physical activity in relation to metabolic syndrome among Chinese adults.

    Science.gov (United States)

    He, Y; Li, Y; Lai, J; Wang, D; Zhang, J; Fu, P; Yang, X; Qi, L

    2013-10-01

    To examine the nationally-representative dietary patterns and their joint effects with physical activity on the likelihood of metabolic syndrome (MS) among 20,827 Chinese adults. CNNHS was a nationally representative cross-sectional observational study. Metabolic syndrome was defined according to the Joint Interim Statement definition. The "Green Water" dietary pattern, characterized by high intakes of rice and vegetables and moderate intakes in animal foods was related to the lowest prevalence of MS (15.9%). Compared to the "Green Water" dietary pattern, the "Yellow Earth" dietary pattern, characterized by high intakes of refined cereal products, tubers, cooking salt and salted vegetable was associated with a significantly elevated odds of MS (odds ratio 1.66, 95%CI: 1.40-1.96), after adjustment of age, sex, socioeconomic status and lifestyle factors. The "Western/new affluence" dietary pattern characterized by higher consumption of beef/lamb, fruit, eggs, poultry and seafood also significantly associated with MS (odds ratio: 1.37, 95%CI: 1.13-1.67). Physical activity showed significant interactions with the dietary patterns in relation to MS risk (P for interaction = 0.008). In the joint analysis, participants with the combination of sedentary activity with the "Yellow Earth" dietary pattern or the "Western/new affluence" dietary pattern both had more than three times (95%CI: 2.8-6.1) higher odds of MS than those with active activity and the "Green Water" dietary pattern. Our findings from the large Chinese national representative data indicate that dietary patterns affect the likelihood of MS. Combining healthy dietary pattern with active lifestyle may benefit more in prevention of MS. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Post-fire recovery of torpor and activity patterns of a small mammal.

    Science.gov (United States)

    Stawski, Clare; Hume, Taylor; Körtner, Gerhard; Currie, Shannon E; Nowack, Julia; Geiser, Fritz

    2017-05-01

    To cope with the post-fire challenges of decreased availability of food and shelter, brown antechinus ( Antechinus stuartii ), a small marsupial mammal, increase the use of energy-conserving torpor and reduce activity. However, it is not known how long it takes for animals to resume pre-fire torpor and activity patterns during the recovery of burnt habitat. Therefore, we tested the hypothesis that antechinus will adjust torpor use and activity after a fire depending on vegetation recovery. We simultaneously quantified torpor and activity patterns for female antechinus from three adjacent areas: (i) the area of a management burn 1 year post-fire, (ii) an area that was burned 2 years prior, and (iii) a control area. In comparison to shortly after the management burn, antechinus in all three groups displayed less frequent and less pronounced torpor while being more active. We provide the first evidence that only 1 year post-fire antechinus resume pre-fire torpor and activity patterns, probably in response to the return of herbaceous ground cover and foraging opportunities. © 2017 The Author(s).

  10. Theories of Person Perception Predict Patterns of Neural Activity During Mentalizing.

    Science.gov (United States)

    Thornton, Mark A; Mitchell, Jason P

    2017-08-22

    Social life requires making inferences about other people. What information do perceivers spontaneously draw upon to make such inferences? Here, we test 4 major theories of person perception, and 1 synthetic theory that combines their features, to determine whether the dimensions of such theories can serve as bases for describing patterns of neural activity during mentalizing. While undergoing functional magnetic resonance imaging, participants made social judgments about well-known public figures. Patterns of brain activity were then predicted using feature encoding models that represented target people's positions on theoretical dimensions such as warmth and competence. All 5 theories of person perception proved highly accurate at reconstructing activity patterns, indicating that each could describe the informational basis of mentalizing. Cross-validation indicated that the theories robustly generalized across both targets and participants. The synthetic theory consistently attained the best performance-approximately two-thirds of noise ceiling accuracy--indicating that, in combination, the theories considered here can account for much of the neural representation of other people. Moreover, encoding models trained on the present data could reconstruct patterns of activity associated with mental state representations in independent data, suggesting the use of a common neural code to represent others' traits and states. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  11. Thoracic posture, shoulder muscle activation patterns and isokinetic ...

    African Journals Online (AJOL)

    Background. Shoulder injuries are the most severe injuries in rugby union players, accounting for almost 20% of injuries related to the sport and resulting in lost playing hours. Objective. To profile the thoracic posture, scapular muscle activation patterns and rotator cuff muscle isokinetic strength of semi-professional

  12. Activity patterns of elderly men and women.

    Science.gov (United States)

    Sidney, K H; Shephard, R J

    1977-01-01

    The activity patterns of elderly men and women (greater than 60 years) were examined by diaries, ECG taperecorders, and electro-chemical integrators. Although the subjects thought that they were active relative to others of their age, both activity measurements and initial assessments of fitness indicated an inactive life style. At different periods of the day, the heart rate averaged 70-90 beats per minute, and the physical training threshold was rarely approached. During the week, the women engaged in 90 min. more physical activity than the men. However, at the weekend the men added an average of 100 min. of physical activity, whereas the women carried out 30 min. less physical work. Introduction of a 1-hour physical activity class four times per week increased the average daily energy expenditure by 150-200 kCal, to 2500 kCal in the men and 2200 kCal in the women. The added activity was sufficient to augment aerobic power, to induce favorable changes in body composition and to initiate change in other areas of life style, including a diminished use of the car.

  13. Interevent time distributions of human multi-level activity in a virtual world

    Science.gov (United States)

    Mryglod, O.; Fuchs, B.; Szell, M.; Holovatch, Yu.; Thurner, S.

    2015-02-01

    Studying human behavior in virtual environments provides extraordinary opportunities for a quantitative analysis of social phenomena with levels of accuracy that approach those of the natural sciences. In this paper we use records of player activities in the massive multiplayer online game Pardus over 1238 consecutive days, and analyze dynamical features of sequences of actions of players. We build on previous work where temporal structures of human actions of the same type were quantified, and provide an empirical understanding of human actions of different types. This study of multi-level human activity can be seen as a dynamic counterpart of static multiplex network analysis. We show that the interevent time distributions of actions in the Pardus universe follow highly non-trivial distribution functions, from which we extract action-type specific characteristic 'decay constants'. We discuss characteristic features of interevent time distributions, including periodic patterns on different time scales, bursty dynamics, and various functional forms on different time scales. We comment on gender differences of players in emotional actions, and find that while males and females act similarly when performing some positive actions, females are slightly faster for negative actions. We also observe effects on the age of players: more experienced players are generally faster in making decisions about engaging in and terminating enmity and friendship, respectively.

  14. Anti-complement activities of human breast-milk.

    Science.gov (United States)

    Ogundele, M O

    1999-08-01

    It has long been observed that the human milk possesses significant anti-inflammatory properties, while simultaneously protecting the infant against many intestinal and respiratory pathogens. There is, however, a paucity of information on the degree and extent of this anti-inflammatory activity. In the present study, the inhibitory effects of different fractions of human milk on serum complement activity were analysed. Colostrum and milk samples from healthy voluntary lactating donors at different postpartum ages were obtained and pooled normal human serum was used as source of complement in a modified CH50 assay. Inherent complement activity in human milk was also investigated by measuring the deposition of an activated C3 fragment on a serum-sensitive bacteria, and by haemolytic assays. Most whole- and defatted-milk samples consistently showed a dose-dependent inhibition of the serum complement activity. This inhibition was greater in mature milk compared to transitional milk samples. It was enhanced by inactivation of milk complement, and diminished by centrifugation of milk samples, which partly removed fat and larger protein components including casein micelles. Inherent complement activity in human milk was also demonstrated by haemolysis of sensitised sheep erythrocytes and deposition of C3 fragments on solid-phase bacteria. These activities were highest in the colostrum and gradually decreased as lactation proceeded. Several natural components abundant in the fluid phase of the human breast-milk have been shown to be inhibitors of complement activation in vitro. Their physiological significance probably reside in their ability to prevent inflammatory-induced tissue damage of the delicate immature gastrointestinal tract of the new-born as well as the mammary gland itself, which may arise from ongoing complement activation.

  15. ASSESSMENT OF HUMAN RESOURCES FOR REGIONAL INNOVATION ACTIVITY

    Directory of Open Access Journals (Sweden)

    R. R. Lukyanova

    2010-03-01

    Full Text Available The paper deals with the issues of human resource development regarding an innovation activity. Concepts of labor and human resources have been surveyed. An integral index for assessment of human resources for regional innovation activity has been developed and assessment of the Russian regions has been made on the basis of it. Development tendencies of modern human resources for innovation activity in Russia have been revealed.

  16. The binding patterns of antisera to sex steroids and human gonadotropins on human and rhesus monkey spermatozoa.

    Science.gov (United States)

    Allag, I S; Das, R P; Roy, S

    1983-01-01

    The presence of different hormones on the surface of ejaculated spermatozoa was determined by immunofluorescence studies of the binding patterns of specific antisera to these hormones. There were striking similarities in the binding pattern of antisera to steroid hormones found on human and monkey spermatozoa. Assuming the intensity of fluorescence is proportional to the concentration of the hormone, concentrations of testosterone on the acrosomal and the postacrosomal regions were higher than levels of progesterone and estrogens. Spermatozoa with a "tapering head" had more hCG bound on the acrosomal and postacrosomal regions than spermatozoa with "normal head" (oval shaped). Correlating these findings to the functions of spermatozoa will require further studies.

  17. Cerebral Activity Changes in Different Traditional Chinese Medicine Patterns of Psychogenic Erectile Dysfunction Patients.

    Science.gov (United States)

    Liu, Qi; Zhang, Peihai; Pan, Junjie; Li, Zhengjie; Liu, Jixin; Li, Guangsen; Qin, Wei; You, Yaodong; Yu, Xujun; Sun, Jinbo; Dong, Minghao; Gong, Qiyong; Guo, Jun; Chang, Degui

    2015-01-01

    Background. Pattern differentiation is the foundation of traditional Chinese medicine (TCM) treatment for erectile dysfunction (ED). This study aims to investigate the differences in cerebral activity in ED patients with different TCM patterns. Methods. 27 psychogenic ED patients and 27 healthy subjects (HS) were enrolled in this study. Each participant underwent an fMRI scan in resting state. The fractional amplitude of low-frequency fluctuation (fALFF) was used to detect the brain activity changes in ED patients with different patterns. Results. Compared to HS, ED patients showed an increased cerebral activity in bilateral cerebellum, insula, globus pallidus, parahippocampal gyrus, orbitofrontal cortex (OFC), and middle cingulate cortex (MCC). Compared to the patients with liver-qi stagnation and spleen deficiency pattern (LSSDP), the patients with kidney-yang deficiency pattern (KDP) showed an increased activity in bilateral brainstem, cerebellum, hippocampus, and the right insula, thalamus, MCC, and a decreased activity in bilateral putamen, medial frontal gyrus, temporal pole, and the right caudate nucleus, OFC, anterior cingulate cortex, and posterior cingulate cortex (P emotion-related regions, including prefrontal cortex and cingulated cortex.

  18. Monetary reward activates human prefrontal cortex

    International Nuclear Information System (INIS)

    Thut, G.; Roelcke, U.; Nienhusmeier, M.; Missimer, J.; Maguire, R.P.; Leenders, K.L.; Schultz, W.

    1997-01-01

    We present a rCBF PET activation study, in which we demonstrated that reward processing in humans activates a cortical-subcortical network including dorsolateral prefrontal, orbital frontal, thalamic and midbrain regions. It is suggested that, as found for non-human primates, the basal ganglia-thalamo-cortical system is implicated in reward processing. (author) 1 fig., 3 refs

  19. Physical activity patterns of youth with Down syndrome.

    Science.gov (United States)

    Esposito, Phil E; MacDonald, Megan; Hornyak, Joseph E; Ulrich, Dale A

    2012-04-01

    The purpose of this study was to examine the physical activity patterns of children with Down syndrome. A cross-sectional approach and accelerometry were used to measure the time children with Down syndrome (N = 104) spent in sedentary, light, and moderate-to-vigorous physical activity. Results indicated that adolescents from ages 14 to 15 years were the most sedentary and spent the least amount of time in light and moderate-to-vigorous physical activity. A general trend of decreasing physical activity as children increase in age was found. This trend is similar to that found among typically developing youth. Participants in this study were found to spend a majority of their day engaged in sedentary activities. Results indicate that most participants were not accumulating the recommended 60 minutes of moderate or vigorous physical activity.

  20. Spatial-temporal patterns of retinal waves underlying activity-dependent refinement of retinofugal projections.

    Science.gov (United States)

    Stafford, Ben K; Sher, Alexander; Litke, Alan M; Feldheim, David A

    2009-10-29

    During development, retinal axons project coarsely within their visual targets before refining to form organized synaptic connections. Spontaneous retinal activity, in the form of acetylcholine-driven retinal waves, is proposed to be necessary for establishing these projection patterns. In particular, both axonal terminations of retinal ganglion cells (RGCs) and the size of receptive fields of target neurons are larger in mice that lack the beta2 subunit of the nicotinic acetylcholine receptor (beta2KO). Here, using a large-scale, high-density multielectrode array to record activity from hundreds of RGCs simultaneously, we present analysis of early postnatal retinal activity from both wild-type (WT) and beta2KO retinas. We find that beta2KO retinas have correlated patterns of activity, but many aspects of these patterns differ from those of WT retina. Quantitative analysis suggests that wave directionality, coupled with short-range correlated bursting patterns of RGCs, work together to refine retinofugal projections.

  1. A Review on Video-Based Human Activity Recognition

    Directory of Open Access Journals (Sweden)

    Shian-Ru Ke

    2013-06-01

    Full Text Available This review article surveys extensively the current progresses made toward video-based human activity recognition. Three aspects for human activity recognition are addressed including core technology, human activity recognition systems, and applications from low-level to high-level representation. In the core technology, three critical processing stages are thoroughly discussed mainly: human object segmentation, feature extraction and representation, activity detection and classification algorithms. In the human activity recognition systems, three main types are mentioned, including single person activity recognition, multiple people interaction and crowd behavior, and abnormal activity recognition. Finally the domains of applications are discussed in detail, specifically, on surveillance environments, entertainment environments and healthcare systems. Our survey, which aims to provide a comprehensive state-of-the-art review of the field, also addresses several challenges associated with these systems and applications. Moreover, in this survey, various applications are discussed in great detail, specifically, a survey on the applications in healthcare monitoring systems.

  2. Aural localization of silent objects by active human biosonar: neural representations of virtual echo-acoustic space.

    Science.gov (United States)

    Wallmeier, Ludwig; Kish, Daniel; Wiegrebe, Lutz; Flanagin, Virginia L

    2015-03-01

    Some blind humans have developed the remarkable ability to detect and localize objects through the auditory analysis of self-generated tongue clicks. These echolocation experts show a corresponding increase in 'visual' cortex activity when listening to echo-acoustic sounds. Echolocation in real-life settings involves multiple reflections as well as active sound production, neither of which has been systematically addressed. We developed a virtualization technique that allows participants to actively perform such biosonar tasks in virtual echo-acoustic space during magnetic resonance imaging (MRI). Tongue clicks, emitted in the MRI scanner, are picked up by a microphone, convolved in real time with the binaural impulse responses of a virtual space, and presented via headphones as virtual echoes. In this manner, we investigated the brain activity during active echo-acoustic localization tasks. Our data show that, in blind echolocation experts, activations in the calcarine cortex are dramatically enhanced when a single reflector is introduced into otherwise anechoic virtual space. A pattern-classification analysis revealed that, in the blind, calcarine cortex activation patterns could discriminate left-side from right-side reflectors. This was found in both blind experts, but the effect was significant for only one of them. In sighted controls, 'visual' cortex activations were insignificant, but activation patterns in the planum temporale were sufficient to discriminate left-side from right-side reflectors. Our data suggest that blind and echolocation-trained, sighted subjects may recruit different neural substrates for the same active-echolocation task. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  3. An association of genotypes and antimicrobial resistance patterns among Salmonella isolates from pigs and humans in Taiwan.

    Directory of Open Access Journals (Sweden)

    Hung-Chih Kuo

    Full Text Available We collected 110 Salmonella enterica isolates from sick pigs and determined their serotypes, genotypes using pulsed-field gel electrophoresis (PFGE, and antimicrobial susceptibility to 12 antimicrobials and compared the data with a collection of 18,280 isolates obtained from humans. The pig isolates fell into 12 common serovars for human salmonellosis in Taiwan; S. Typhimurium, S. Choleraesuis, S. Derby, S. Livingstone, and S. Schwarzengrund were the 5 most common serovars and accounted for a total of 84% of the collection. Of the 110 isolates, 106 (96% were multidrug resistant (MDR and 48 (44% had PFGE patterns found in human isolates. S. Typhimurium, S. Choleraesuis, and S. Schwarzengrund were among the most highly resistant serovars. The majority of the 3 serovars were resistant to 8-11 of the tested antimicrobials. The isolates from pigs and humans sharing a common PFGE pattern displayed identical or very similar resistance patterns and Salmonella strains that caused severe infection in pigs were also capable of causing infections in humans. The results indicate that pigs are one of the major reservoirs to human salmonellosis in Taiwan. Almost all of the pig isolates were MDR, which highlights the necessity of strictly regulating the use of antimicrobials in the agriculture sector in Taiwan.

  4. An association of genotypes and antimicrobial resistance patterns among Salmonella isolates from pigs and humans in Taiwan.

    Science.gov (United States)

    Kuo, Hung-Chih; Lauderdale, Tsai-Ling; Lo, Dan-Yuan; Chen, Chiou-Lin; Chen, Pei-Chen; Liang, Shiu-Yun; Kuo, Jung-Che; Liao, Ying-Shu; Liao, Chun-Hsing; Tsao, Chi-Sen; Chiou, Chien-Shun

    2014-01-01

    We collected 110 Salmonella enterica isolates from sick pigs and determined their serotypes, genotypes using pulsed-field gel electrophoresis (PFGE), and antimicrobial susceptibility to 12 antimicrobials and compared the data with a collection of 18,280 isolates obtained from humans. The pig isolates fell into 12 common serovars for human salmonellosis in Taiwan; S. Typhimurium, S. Choleraesuis, S. Derby, S. Livingstone, and S. Schwarzengrund were the 5 most common serovars and accounted for a total of 84% of the collection. Of the 110 isolates, 106 (96%) were multidrug resistant (MDR) and 48 (44%) had PFGE patterns found in human isolates. S. Typhimurium, S. Choleraesuis, and S. Schwarzengrund were among the most highly resistant serovars. The majority of the 3 serovars were resistant to 8-11 of the tested antimicrobials. The isolates from pigs and humans sharing a common PFGE pattern displayed identical or very similar resistance patterns and Salmonella strains that caused severe infection in pigs were also capable of causing infections in humans. The results indicate that pigs are one of the major reservoirs to human salmonellosis in Taiwan. Almost all of the pig isolates were MDR, which highlights the necessity of strictly regulating the use of antimicrobials in the agriculture sector in Taiwan.

  5. Adaptive Human aware Navigation based on Motion Pattern Analysis

    DEFF Research Database (Denmark)

    Tranberg, Søren; Svenstrup, Mikael; Andersen, Hans Jørgen

    2009-01-01

    Respecting people’s social spaces is an important prerequisite for acceptable and natural robot navigation in human environments. In this paper, we describe an adaptive system for mobile robot navigation based on estimates of whether a person seeks to interact with the robot or not. The estimates...... are based on run-time motion pattern analysis compared to stored experience in a database. Using a potential field centered around the person, the robot positions itself at the most appropriate place relative to the person and the interaction status. The system is validated through qualitative tests...

  6. Real-time Human Activity Recognition

    Science.gov (United States)

    Albukhary, N.; Mustafah, Y. M.

    2017-11-01

    The traditional Closed-circuit Television (CCTV) system requires human to monitor the CCTV for 24/7 which is inefficient and costly. Therefore, there’s a need for a system which can recognize human activity effectively in real-time. This paper concentrates on recognizing simple activity such as walking, running, sitting, standing and landing by using image processing techniques. Firstly, object detection is done by using background subtraction to detect moving object. Then, object tracking and object classification are constructed so that different person can be differentiated by using feature detection. Geometrical attributes of tracked object, which are centroid and aspect ratio of identified tracked are manipulated so that simple activity can be detected.

  7. Systematic analysis of gene expression patterns associated with postmortem interval in human tissues.

    Science.gov (United States)

    Zhu, Yizhang; Wang, Likun; Yin, Yuxin; Yang, Ence

    2017-07-14

    Postmortem mRNA degradation is considered to be the major concern in gene expression research utilizing human postmortem tissues. A key factor in this process is the postmortem interval (PMI), which is defined as the interval between death and sample collection. However, global patterns of postmortem mRNA degradation at individual gene levels across diverse human tissues remain largely unknown. In this study, we performed a systematic analysis of alteration of gene expression associated with PMI in human tissues. From the Genotype-Tissue Expression (GTEx) database, we evaluated gene expression levels of 2,016 high-quality postmortem samples from 316 donors of European descent, with PMI ranging from 1 to 27 hours. We found that PMI-related mRNA degradation is tissue-specific, gene-specific, and even genotype-dependent, thus drawing a more comprehensive picture of PMI-associated gene expression across diverse human tissues. Additionally, we also identified 266 differentially variable (DV) genes, such as DEFB4B and IFNG, whose expression is significantly dispersed between short PMI (S-PMI) and long PMI (L-PMI) groups. In summary, our analyses provide a comprehensive profile of PMI-associated gene expression, which will help interpret gene expression patterns in the evaluation of postmortem tissues.

  8. Listening to sound patterns as a dynamic activity

    Science.gov (United States)

    Jones, Mari Riess

    2003-04-01

    The act of listening to a series of sounds created by some natural event is described as involving an entrainmentlike process that transpires in real time. Some aspects of this dynamic process are suggested. In particular, real-time attending is described in terms of an adaptive synchronization activity that permits a listener to target attending energy to forthcoming elements within an acoustical pattern (e.g., music, speech, etc.). Also described are several experiments that illustrate features of this approach as it applies to attending to musiclike patterns. These involve listeners' responses to changes in either the timing or the pitch structure (or both) of various acoustical sequences.

  9. Factors influencing the seasonal patterns of infectious diseases

    Directory of Open Access Journals (Sweden)

    Auda Fares

    2013-01-01

    Full Text Available The recognition of seasonal patterns in infectious disease occurrence dates back at least as far as the hippocratic era, but the mechanisms underlying these fluctuations remain poorly understood. Many classes of mechanistic hypotheses have been proposed to explain seasonality of various directly transmitted diseases, including at least the following; human activity, seasonal variability in human immune system function, seasonal variations in vitamin D levels, seasonality of melatonin, and pathogen infectivity. In this short paper will briefly discuss the role of these factors in the seasonal patterns of infectious diseases.

  10. Local activity determines functional connectivity in the resting human brain: a simultaneous FDG-PET/fMRI study.

    Science.gov (United States)

    Riedl, Valentin; Bienkowska, Katarzyna; Strobel, Carola; Tahmasian, Masoud; Grimmer, Timo; Förster, Stefan; Friston, Karl J; Sorg, Christian; Drzezga, Alexander

    2014-04-30

    Over the last decade, synchronized resting-state fluctuations of blood oxygenation level-dependent (BOLD) signals between remote brain areas [so-called BOLD resting-state functional connectivity (rs-FC)] have gained enormous relevance in systems and clinical neuroscience. However, the neural underpinnings of rs-FC are still incompletely understood. Using simultaneous positron emission tomography/magnetic resonance imaging we here directly investigated the relationship between rs-FC and local neuronal activity in humans. Computational models suggest a mechanistic link between the dynamics of local neuronal activity and the functional coupling among distributed brain regions. Therefore, we hypothesized that the local activity (LA) of a region at rest determines its rs-FC. To test this hypothesis, we simultaneously measured both LA (glucose metabolism) and rs-FC (via synchronized BOLD fluctuations) during conditions of eyes closed or eyes open. During eyes open, LA increased in the visual system, and the salience network (i.e., cingulate and insular cortices) and the pattern of elevated LA coincided almost exactly with the spatial pattern of increased rs-FC. Specifically, the voxelwise regional profile of LA in these areas strongly correlated with the regional pattern of rs-FC among the same regions (e.g., LA in primary visual cortex accounts for ∼ 50%, and LA in anterior cingulate accounts for ∼ 20% of rs-FC with the visual system). These data provide the first direct evidence in humans that local neuronal activity determines BOLD FC at rest. Beyond its relevance for the neuronal basis of coherent BOLD signal fluctuations, our procedure may translate into clinical research particularly to investigate potentially aberrant links between local dynamics and remote functional coupling in patients with neuropsychiatric disorders.

  11. Human body contour data based activity recognition.

    Science.gov (United States)

    Myagmarbayar, Nergui; Yuki, Yoshida; Imamoglu, Nevrez; Gonzalez, Jose; Otake, Mihoko; Yu, Wenwei

    2013-01-01

    This research work is aimed to develop autonomous bio-monitoring mobile robots, which are capable of tracking and measuring patients' motions, recognizing the patients' behavior based on observation data, and providing calling for medical personnel in emergency situations in home environment. The robots to be developed will bring about cost-effective, safe and easier at-home rehabilitation to most motor-function impaired patients (MIPs). In our previous research, a full framework was established towards this research goal. In this research, we aimed at improving the human activity recognition by using contour data of the tracked human subject extracted from the depth images as the signal source, instead of the lower limb joint angle data used in the previous research, which are more likely to be affected by the motion of the robot and human subjects. Several geometric parameters, such as, the ratio of height to weight of the tracked human subject, and distance (pixels) between centroid points of upper and lower parts of human body, were calculated from the contour data, and used as the features for the activity recognition. A Hidden Markov Model (HMM) is employed to classify different human activities from the features. Experimental results showed that the human activity recognition could be achieved with a high correct rate.

  12. A Tale of Many Cities: Universal Patterns in Human Urban Mobility

    Science.gov (United States)

    Noulas, Anastasios; Scellato, Salvatore; Lambiotte, Renaud; Pontil, Massimiliano; Mascolo, Cecilia

    2012-01-01

    The advent of geographic online social networks such as Foursquare, where users voluntarily signal their current location, opens the door to powerful studies on human movement. In particular the fine granularity of the location data, with GPS accuracy down to 10 meters, and the worldwide scale of Foursquare adoption are unprecedented. In this paper we study urban mobility patterns of people in several metropolitan cities around the globe by analyzing a large set of Foursquare users. Surprisingly, while there are variations in human movement in different cities, our analysis shows that those are predominantly due to different distributions of places across different urban environments. Moreover, a universal law for human mobility is identified, which isolates as a key component the rank-distance, factoring in the number of places between origin and destination, rather than pure physical distance, as considered in some previous works. Building on our findings, we also show how a rank-based movement model accurately captures real human movements in different cities. PMID:22666339

  13. A tale of many cities: universal patterns in human urban mobility.

    Directory of Open Access Journals (Sweden)

    Anastasios Noulas

    Full Text Available The advent of geographic online social networks such as Foursquare, where users voluntarily signal their current location, opens the door to powerful studies on human movement. In particular the fine granularity of the location data, with GPS accuracy down to 10 meters, and the worldwide scale of Foursquare adoption are unprecedented. In this paper we study urban mobility patterns of people in several metropolitan cities around the globe by analyzing a large set of Foursquare users. Surprisingly, while there are variations in human movement in different cities, our analysis shows that those are predominantly due to different distributions of places across different urban environments. Moreover, a universal law for human mobility is identified, which isolates as a key component the rank-distance, factoring in the number of places between origin and destination, rather than pure physical distance, as considered in some previous works. Building on our findings, we also show how a rank-based movement model accurately captures real human movements in different cities.

  14. The ultimate intrinsic signal-to-noise ratio of loop- and dipole-like current patterns in a realistic human head model.

    Science.gov (United States)

    Pfrommer, Andreas; Henning, Anke

    2018-03-13

    The ultimate intrinsic signal-to-noise ratio (UISNR) represents an upper bound for the achievable SNR of any receive coil. To reach this threshold a complete basis set of equivalent surface currents is required. This study systematically investigated to what extent either loop- or dipole-like current patterns are able to reach the UISNR threshold in a realistic human head model between 1.5 T and 11.7 T. Based on this analysis, we derived guidelines for coil designers to choose the best array element at a given field strength. Moreover, we present ideal current patterns yielding the UISNR in a realistic body model. We distributed generic current patterns on a cylindrical and helmet-shaped surface around a realistic human head model. We excited electromagnetic fields in the human head by using eigenfunctions of the spherical and cylindrical Helmholtz operator. The electromagnetic field problem was solved by a fast volume integral equation solver. At 7 T and above, adding curl-free current patterns to divergence-free current patterns substantially increased the SNR in the human head (locally >20%). This was true for the helmet-shaped and the cylindrical surface. On the cylindrical surface, dipole-like current patterns had high SNR performance in central regions at ultra-high field strength. The UISNR increased superlinearly with B0 in most parts of the cerebrum but only sublinearly in the periphery of the human head. The combination of loop and dipole elements could enhance the SNR performance in the human head at ultra-high field strength. © 2018 International Society for Magnetic Resonance in Medicine.

  15. Publication patterns in the social sciences and humanities: evidence from eight European countries

    DEFF Research Database (Denmark)

    Kulczycki, Emanuel; Engels, Tim; Polonen, Janne

    2018-01-01

    This study investigates patterns in the language and type of social sciences and humanities (SSH) publications in non-English speaking European countries to demonstrate that such patterns are related not only to discipline but also to each country’s cultural and historic heritage. We investigate...... publication patterns that occur across SSH publications of the whole of the SSH and of economics and business, law, and philosophy and theology publications in the Czech Republic, Denmark, Finland, Flanders (Belgium), Norway, Poland, Slovakia, and Slovenia. We use data from 74,022 peer-reviewed publications...... from 2014registered in at least one of the eight countries’ national databases and for 272,376 peer- reviewed publications from the period of 2011–2014 registered in at least one of the seven countries’ national databases (for all countries except Slovakia). Our findings show that publication patterns...

  16. Peak-valley-peak pattern of histone modifications delineates active regulatory elements and their directionality

    DEFF Research Database (Denmark)

    Pundhir, Sachin; Bagger, Frederik Otzen; Lauridsen, Felicia Kathrine Bratt

    2016-01-01

    Formation of nucleosome free region (NFR) accompanied by specific histone modifications at flanking nucleosomes is an important prerequisite for enhancer and promoter activity. Due to this process, active regulatory elements often exhibit a distinct shape of histone signal in the form of a peak......-valley-peak (PVP) pattern. However, different features of PVP patterns and their robustness in predicting active regulatory elements have never been systematically analyzed. Here, we present PARE, a novel computational method that systematically analyzes the H3K4me1 or H3K4me3 PVP patterns to predict NFRs. We show...... four ENCODE cell lines and four hematopoietic differentiation stages, we identified several enhancers whose regulatory activity is stage specific and correlates positively with the expression of proximal genes in a particular stage. In conclusion, our results demonstrate that PVP patterns delineate...

  17. Motor control patterns during an active straight leg raise in pain-free subjects.

    Science.gov (United States)

    Beales, Darren John; O'Sullivan, Peter Bruce; Briffa, N Kathryn

    2009-01-01

    Repeated measures. To investigate motor control (MC) patterns of normal subjects during the low level physical load of the active straight leg raise (ASLR). Aberrant MC patterns, as observed with the ASLR test, are considered to be a mechanism for ongoing pain and disability in subjects with chronic musculoskeletal pelvic girdle pain. These patterns may not only affect the provision of lumbopelvic stability, but also respiration and the control of continence. Greater understanding of MC patterns in pain-free subjects may improve the management of pelvic girdle pain. METHODS.: Fourteen pain-free nulliparous women were examined during the ASLR. Electromyography of the anterior abdominal wall, right chest wall and the anterior scaleni, intraabdominal pressure (IAP), intrathoracic pressure (ITP), respiratory rate, pelvic floor kinematics, and downward leg pressure of the nonlifted leg were compared between a left and right ASLR. There was greater activation of obliquus internus abdominis and obliquus externus abdominis on the side of the ASLR. The predominant pattern of activation for the chest wall was tonic activation during an ipsilateral ASLR, and phasic respiratory activation lifting the contralateral leg. Respiratory fluctuation of both IAP and ITP did not differ lifting either leg. The baseline shifts of these pressure variables in response to the physical demand of lifting the leg was also the same either side. There was no difference in respiratory rate, pelvic floor kinematics, or downward leg pressure. Pain-free subjects demonstrate a predominant pattern of greater ipsilateral tonic activation of the abdominal wall and chest wall on the side of the ASLR. This was achieved with minimal apparent disruption to IAP and ITP. The findings of this study demonstrate the plastic nature of the abdominal cylinder and the flexibility of the neuromuscular system in controlling load transference during an ASLR.

  18. Precise shape reconstruction by active pattern in total-internal-reflection-based tactile sensor.

    Science.gov (United States)

    Saga, Satoshi; Taira, Ryosuke; Deguchi, Koichiro

    2014-03-01

    We are developing a total-internal-reflection-based tactile sensor in which the shape is reconstructed using an optical reflection. This sensor consists of silicone rubber, an image pattern, and a camera. It reconstructs the shape of the sensor surface from an image of a pattern reflected at the inner sensor surface by total internal reflection. In this study, we propose precise real-time reconstruction by employing an optimization method. Furthermore, we propose to use active patterns. Deformation of the reflection image causes reconstruction errors. By controlling the image pattern, the sensor reconstructs the surface deformation more precisely. We implement the proposed optimization and active-pattern-based reconstruction methods in a reflection-based tactile sensor, and perform reconstruction experiments using the system. A precise deformation experiment confirms the linearity and precision of the reconstruction.

  19. Modelling large scale human activity in San Francisco

    Science.gov (United States)

    Gonzalez, Marta

    2010-03-01

    Diverse group of people with a wide variety of schedules, activities and travel needs compose our cities nowadays. This represents a big challenge for modeling travel behaviors in urban environments; those models are of crucial interest for a wide variety of applications such as traffic forecasting, spreading of viruses, or measuring human exposure to air pollutants. The traditional means to obtain knowledge about travel behavior is limited to surveys on travel journeys. The obtained information is based in questionnaires that are usually costly to implement and with intrinsic limitations to cover large number of individuals and some problems of reliability. Using mobile phone data, we explore the basic characteristics of a model of human travel: The distribution of agents is proportional to the population density of a given region, and each agent has a characteristic trajectory size contain information on frequency of visits to different locations. Additionally we use a complementary data set given by smart subway fare cards offering us information about the exact time of each passenger getting in or getting out of the subway station and the coordinates of it. This allows us to uncover the temporal aspects of the mobility. Since we have the actual time and place of individual's origin and destination we can understand the temporal patterns in each visited location with further details. Integrating two described data set we provide a dynamical model of human travels that incorporates different aspects observed empirically.

  20. Androstenol--a steroid derived odor activates the hypothalamus in women.

    Directory of Open Access Journals (Sweden)

    Ivanka Savic

    Full Text Available BACKGROUND: Whether pheromone signaling exists in humans is still a matter of intense discussion. In the present study we tested if smelling of Androstenol, a steroid produced by the human body and reported to affect human behavior, may elicit cerebral activation. A further issue was to evaluate whether the pattern of activation resembles the pattern of common odors. METHODOLOGY: PET measurements of regional cerebral blood flow (rCBF were conducted in 16 healthy heterosexual women during passive smelling of Androstenol, four ordinary odors (OO, and odorless air (the base line condition. PRINCIPAL FINDINGS: Smelling Androstenol caused activation of a portion of the hypothalamus, which according to animal data mediates the pheromone triggered mating behavior. Smelling of OO, on the other hand, engaged only the classical olfactory regions (the piriform cortex, lateral amygdala, anterior insular and anterior cingulate cortex. CONCLUSIONS: The observed pattern of activation is very similar to the pattern previously detected with 4,16-androstadien-3-one in heterosexual females. It suggests that several compounds released by human body may activate cerebral networks involved in human reproduction.

  1. Root activity patterns of some tree crops

    International Nuclear Information System (INIS)

    1975-01-01

    A coordinated research programme was followed using a soil injection method which employed 32 P-labelled superphosphate solution. The technique was applied for determining the root activity distribution of various crops. Field experiments were carried out in Uganda on bananas, Spain and Taiwan on citrus, Ghana on cocoa, Columbia and Kenya on coffee, and Ivory Coast and Malaysia on oil palms, to study the patterns of root activity as a function of depth and distance from the tree base, soil type, tree age and season. A few weeks after injection, leaf samples of similar age were taken from well-defined morphological positions on the tree and analyzed for 32 P. The activity of the label in the sample reflects the root activity at the various positions in the soil. Some preliminary experiments were also carried out using 32 P-superphosphate to evaluate the efficiency of different methods of fertilizer placement in relation to phosphate uptake by the plantation as a whole

  2. Scaling behavior of online human activity

    Science.gov (United States)

    Zhao, Zhi-Dan; Cai, Shi-Min; Huang, Junming; Fu, Yan; Zhou, Tao

    2012-11-01

    The rapid development of the Internet technology enables humans to explore the web and record the traces of online activities. From the analysis of these large-scale data sets (i.e., traces), we can get insights about the dynamic behavior of human activity. In this letter, the scaling behavior and complexity of human activity in the e-commerce, such as music, books, and movies rating, are comprehensively investigated by using the detrended fluctuation analysis technique and the multiscale entropy method. Firstly, the interevent time series of rating behaviors of these three types of media show similar scaling properties with exponents ranging from 0.53 to 0.58, which implies that the collective behaviors of rating media follow a process embodying self-similarity and long-range correlation. Meanwhile, by dividing the users into three groups based on their activities (i.e., rating per unit time), we find that the scaling exponents of the interevent time series in the three groups are different. Hence, these results suggest that a stronger long-range correlations exist in these collective behaviors. Furthermore, their information complexities vary in the three groups. To explain the differences of the collective behaviors restricted to the three groups, we study the dynamic behavior of human activity at the individual level, and find that the dynamic behaviors of a few users have extremely small scaling exponents associated with long-range anticorrelations. By comparing the interevent time distributions of four representative users, we can find that the bimodal distributions may bring forth the extraordinary scaling behaviors. These results of the analysis of the online human activity in the e-commerce may not only provide insight into its dynamic behaviors but may also be applied to acquire potential economic interest.

  3. Activation of peroxisome proliferator-activated receptor-α enhances fatty acid oxidation in human adipocytes

    International Nuclear Information System (INIS)

    Lee, Joo-Young; Hashizaki, Hikari; Goto, Tsuyoshi; Sakamoto, Tomoya; Takahashi, Nobuyuki; Kawada, Teruo

    2011-01-01

    Highlights: → PPARα activation increased mRNA expression levels of adipocyte differentiation marker genes and GPDH activity in human adipocytes. → PPARα activation also increased insulin-dependent glucose uptake in human adipocytes. → PPARα activation did not affect lipid accumulation in human adipocytes. → PPARα activation increased fatty acid oxidation through induction of fatty acid oxidation-related genes in human adipocytes. -- Abstract: Peroxisome proliferator-activated receptor-α (PPARα) is a key regulator for maintaining whole-body energy balance. However, the physiological functions of PPARα in adipocytes have been unclarified. We examined the functions of PPARα using human multipotent adipose tissue-derived stem cells as a human adipocyte model. Activation of PPARα by GW7647, a potent PPARα agonist, increased the mRNA expression levels of adipocyte differentiation marker genes such as PPARγ, adipocyte-specific fatty acid-binding protein, and lipoprotein lipase and increased both GPDH activity and insulin-dependent glucose uptake level. The findings indicate that PPARα activation stimulates adipocyte differentiation. However, lipid accumulation was not changed, which is usually observed when PPARγ is activated. On the other hand, PPARα activation by GW7647 treatment induced the mRNA expression of fatty acid oxidation-related genes such as CPT-1B and AOX in a PPARα-dependent manner. Moreover, PPARα activation increased the production of CO 2 and acid soluble metabolites, which are products of fatty acid oxidation, and increased oxygen consumption rate in human adipocytes. The data indicate that activation of PPARα stimulates both adipocyte differentiation and fatty acid oxidation in human adipocytes, suggesting that PPARα agonists could improve insulin resistance without lipid accumulation in adipocytes. The expected effects of PPARα activation are very valuable for managing diabetic conditions accompanied by obesity, because

  4. Interactions between posture and locomotion: motor patterns in humans walking with bent posture versus erect posture.

    Science.gov (United States)

    Grasso, R; Zago, M; Lacquaniti, F

    2000-01-01

    Human erect locomotion is unique among living primates. Evolution selected specific biomechanical features that make human locomotion mechanically efficient. These features are matched by the motor patterns generated in the CNS. What happens when humans walk with bent postures? Are normal motor patterns of erect locomotion maintained or completely reorganized? Five healthy volunteers walked straight and forward at different speeds in three different postures (regular, knee-flexed, and knee- and trunk-flexed) while their motion, ground reaction forces, and electromyographic (EMG) activity were recorded. The three postures imply large differences in the position of the center of body mass relative to the body segments. The elevation angles of the trunk, pelvis, and lower limb segments relative to the vertical in the sagittal plane, the ground reaction forces and the rectified EMGs were analyzed over the gait cycle. The waveforms of the elevation angles along the gait cycle remained essentially unchanged irrespective of the adopted postures. The first two harmonics of these kinematic waveforms explain >95% of their variance. The phase shift but not the amplitude ratio between the first harmonic of the elevation angle waveforms of adjacent pairs was affected systematically by changes in posture. Thigh, shank, and foot angles covaried close to a plane in all conditions, but the plane orientation was systematically different in bent versus erect locomotion. This was explained by the changes in the temporal coupling among the three segments. For walking speeds >1 m s(-1), the plane orientation of bent locomotion indicates a much lower mechanical efficiency relative to erect locomotion. Ground reaction forces differed prominently in bent versus erect posture displaying characteristics intermediate between those typical of walking and those of running. Mean EMG activity was greater in bent postures for all recorded muscles independent of the functional role. The waveforms

  5. Physical activity levels and patterns of 11-14 year-old Turkish adolescents.

    Science.gov (United States)

    Kin-Isler, Ayse; Asci, F Hulya; Altintas, Atakan; Guven-Karahan, Bengu

    2009-01-01

    This study examined age and gender differences in physical activity levels and various physical activity patterns of 11-14-year-old Turkish adolescents and also determined if these differ between genders. Six hundred and fifty girls and 666 boys between the ages of 11 and 14 years constituted the sample of this study. Participants self-reported physical activity levels and patterns were determined by a Weekly Activity Checklist. A 2 x 4 (Gender x Age) MANOVA revealed overall significant main effect of gender and age on the physical activity level of adolescents; however, gender x age interaction effect was not significant. The findings indicated an interaction effect was not significant. The findings indicated an age-related decline in physical activity level, an increase in participation in low activities, and a decrease in participation in moderate and vigorous activities in 11-14-year-old Turkish adolescents. In addition it was found that boys were more active than girls and participated more in moderate and vigorous activities.

  6. Human rights education (HRE) and transnational activism

    NARCIS (Netherlands)

    Mihr, A.; Schmitz, Hans-Peter

    2007-01-01

    Transnational human rights activism occupies today a significant place in the practice and scholarship of current global affairs. This article reviews the past successes and limits of this activism and suggests Human Rights Education (HRE) as a strategic tool currently underutilized by activists and

  7. Actigraphy-Derived Daily Rest-Activity Patterns and Body Mass Index in Community-Dwelling Adults.

    Science.gov (United States)

    Cespedes Feliciano, Elizabeth M; Quante, Mirja; Weng, Jia; Mitchell, Jonathan A; James, Peter; Marinac, Catherine R; Mariani, Sara; Redline, Susan; Kerr, Jacqueline; Godbole, Suneeta; Manteiga, Alicia; Wang, Daniel; Hipp, J Aaron

    2017-12-01

    To examine associations between 24-hour rest-activity patterns and body mass index (BMI) among community-dwelling US adults. Rest-activity patterns provide a field method to study exposures related to circadian rhythms. Adults (N = 578) wore an actigraph on their nondominant wrist for 7 days. Intradaily variability and interdaily stability (IS), M10 (most active 10-hours), L5 (least active 5-hours), and relative amplitude (RA) were derived using nonparametric rhythm analysis. Mesor, acrophase, and amplitude were calculated from log-transformed count data using the parametric cosinor approach. Participants were 80% female and mean (standard deviation) age was 52 (15) years. Participants with higher BMI had lower values for magnitude, RA, IS, total sleep time (TST), and sleep efficiency. In multivariable analyses, less robust 24-hour rest-activity patterns as represented by lower RA were consistently associated with higher BMI: comparing the bottom quintile (least robust) to the top quintile (most robust 24-hour rest-activity pattern) of RA, BMI was 3-kg/m2 higher (p = .02). Associations were similar in magnitude to an hour less of TST (1-kg/m2 higher BMI) or a 10% decrease in sleep efficiency (2-kg/m2 higher BMI), and independent of age, sex, race, education, and the duration of rest and/or activity. Lower RA, reflecting both higher night activity and lower daytime activity, was associated with higher BMI. Independent of the duration of rest or activity during the day or night, 24-hour rest, and activity patterns from actigraphy provide aggregated measures of activity that associate with BMI in community-dwelling adults. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  8. Towards a physiology-based measure of pain: patterns of human brain activity distinguish painful from non-painful thermal stimulation.

    Directory of Open Access Journals (Sweden)

    Justin E Brown

    Full Text Available Pain often exists in the absence of observable injury; therefore, the gold standard for pain assessment has long been self-report. Because the inability to verbally communicate can prevent effective pain management, research efforts have focused on the development of a tool that accurately assesses pain without depending on self-report. Those previous efforts have not proven successful at substituting self-report with a clinically valid, physiology-based measure of pain. Recent neuroimaging data suggest that functional magnetic resonance imaging (fMRI and support vector machine (SVM learning can be jointly used to accurately assess cognitive states. Therefore, we hypothesized that an SVM trained on fMRI data can assess pain in the absence of self-report. In fMRI experiments, 24 individuals were presented painful and nonpainful thermal stimuli. Using eight individuals, we trained a linear SVM to distinguish these stimuli using whole-brain patterns of activity. We assessed the performance of this trained SVM model by testing it on 16 individuals whose data were not used for training. The whole-brain SVM was 81% accurate at distinguishing painful from non-painful stimuli (p<0.0000001. Using distance from the SVM hyperplane as a confidence measure, accuracy was further increased to 84%, albeit at the expense of excluding 15% of the stimuli that were the most difficult to classify. Overall performance of the SVM was primarily affected by activity in pain-processing regions of the brain including the primary somatosensory cortex, secondary somatosensory cortex, insular cortex, primary motor cortex, and cingulate cortex. Region of interest (ROI analyses revealed that whole-brain patterns of activity led to more accurate classification than localized activity from individual brain regions. Our findings demonstrate that fMRI with SVM learning can assess pain without requiring any communication from the person being tested. We outline tasks that should be

  9. Time-Elastic Generative Model for Acceleration Time Series in Human Activity Recognition

    Directory of Open Access Journals (Sweden)

    Mario Munoz-Organero

    2017-02-01

    Full Text Available Body-worn sensors in general and accelerometers in particular have been widely used in order to detect human movements and activities. The execution of each type of movement by each particular individual generates sequences of time series of sensed data from which specific movement related patterns can be assessed. Several machine learning algorithms have been used over windowed segments of sensed data in order to detect such patterns in activity recognition based on intermediate features (either hand-crafted or automatically learned from data. The underlying assumption is that the computed features will capture statistical differences that can properly classify different movements and activities after a training phase based on sensed data. In order to achieve high accuracy and recall rates (and guarantee the generalization of the system to new users, the training data have to contain enough information to characterize all possible ways of executing the activity or movement to be detected. This could imply large amounts of data and a complex and time-consuming training phase, which has been shown to be even more relevant when automatically learning the optimal features to be used. In this paper, we present a novel generative model that is able to generate sequences of time series for characterizing a particular movement based on the time elasticity properties of the sensed data. The model is used to train a stack of auto-encoders in order to learn the particular features able to detect human movements. The results of movement detection using a newly generated database with information on five users performing six different movements are presented. The generalization of results using an existing database is also presented in the paper. The results show that the proposed mechanism is able to obtain acceptable recognition rates (F = 0.77 even in the case of using different people executing a different sequence of movements and using different

  10. Characteristics of diurnal pattern of global photosynthetically-active ...

    African Journals Online (AJOL)

    A two year data (September 1992 August 1994) on photosynhetically-active radiation (PAR) measured at Ilorin (Lat.: 832´N. Long.:434´E) using LI-190SA quantum sensor are analysed both on daily and monthly mean diurnal bases. This was done with the aim of characterizing the diurnal pattern of this radiation at this ...

  11. Human midsagittal brain shape variation: patterns, allometry and integration

    Science.gov (United States)

    Bruner, Emiliano; Martin-Loeches, Manuel; Colom, Roberto

    2010-01-01

    Midsagittal cerebral morphology provides a homologous geometrical reference for brain shape and cortical vs. subcortical spatial relationships. In this study, midsagittal brain shape variation is investigated in a sample of 102 humans, in order to describe and quantify the major patterns of correlation between morphological features, the effect of size and sex on general anatomy, and the degree of integration between different cortical and subcortical areas. The only evident pattern of covariation was associated with fronto-parietal cortical bulging. The allometric component was weak for the cortical profile, but more robust for the posterior subcortical areas. Apparent sex differences were evidenced in size but not in brain shape. Cortical and subcortical elements displayed scarcely integrated changes, suggesting a modular separation between these two areas. However, a certain correlation was found between posterior subcortical and parietal cortical variations. These results should be directly integrated with information ranging from functional craniology to wiring organization, and with hypotheses linking brain shape and the mechanical properties of neurons during morphogenesis. PMID:20345859

  12. T-pattern analysis for the study of temporal structure of animal and human behavior: a comprehensive review.

    Science.gov (United States)

    Casarrubea, M; Jonsson, G K; Faulisi, F; Sorbera, F; Di Giovanni, G; Benigno, A; Crescimanno, G; Magnusson, M S

    2015-01-15

    A basic tenet in the realm of modern behavioral sciences is that behavior consists of patterns in time. For this reason, investigations of behavior deal with sequences that are not easily perceivable by the unaided observer. This problem calls for improved means of detection, data handling and analysis. This review focuses on the analysis of the temporal structure of behavior carried out by means of a multivariate approach known as T-pattern analysis. Using this technique, recurring sequences of behavioral events, usually hard to detect, can be unveiled and carefully described. T-pattern analysis has been successfully applied in the study of various aspects of human or animal behavior such as behavioral modifications in neuro-psychiatric diseases, route-tracing stereotypy in mice, interaction between human subjects and animal or artificial agents, hormonal-behavioral interactions, patterns of behavior associated with emesis and, in our laboratories, exploration and anxiety-related behaviors in rodents. After describing the theory and concepts of T-pattern analysis, this review will focus on the application of the analysis to the study of the temporal characteristics of behavior in different species from rodents to human beings. This work could represent a useful background for researchers who intend to employ such a refined multivariate approach to the study of behavior. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Atoll-scale patterns in coral reef community structure: Human signatures on Ulithi Atoll, Micronesia.

    Science.gov (United States)

    Crane, Nicole L; Nelson, Peter; Abelson, Avigdor; Precoda, Kristin; Rulmal, John; Bernardi, Giacomo; Paddack, Michelle

    2017-01-01

    The dynamic relationship between reefs and the people who utilize them at a subsistence level is poorly understood. This paper characterizes atoll-scale patterns in shallow coral reef habitat and fish community structure, and correlates these with environmental characteristics and anthropogenic factors, critical to conservation efforts for the reefs and the people who depend on them. Hierarchical clustering analyses by site for benthic composition and fish community resulted in the same 3 major clusters: cluster 1-oceanic (close proximity to deep water) and uninhabited (low human impact); cluster 2-oceanic and inhabited (high human impact); and cluster 3-lagoonal (facing the inside of the lagoon) and inhabited (highest human impact). Distance from village, reef exposure to deep water and human population size had the greatest effect in predicting the fish and benthic community structure. Our study demonstrates a strong association between benthic and fish community structure and human use across the Ulithi Atoll (Yap State, Federated States of Micronesia) and confirms a pattern observed by local people that an 'opportunistic' scleractinian coral (Montipora sp.) is associated with more highly impacted reefs. Our findings suggest that small human populations (subsistence fishing) can nevertheless have considerable ecological impacts on reefs due, in part, to changes in fishing practices rather than overfishing per se, as well as larger global trends. Findings from this work can assist in building local capacity to manage reef resources across an atoll-wide scale, and illustrates the importance of anthropogenic impact even in small communities.

  14. Growth activity in human septal cartilage: age-dependent incorporation of labeled sulfate in different anatomic locations

    International Nuclear Information System (INIS)

    Vetter, U.; Pirsig, W.; Heinze, E.

    1983-01-01

    Growth activity in different areas of human septal cartilage was measured by the in vitro incorporation of 35 S-labeled NaSO 4 into chondroitin sulfate. Septal cartilage without perichondrium was obtained during rhinoplasty from 36 patients aged 6 to 35 years. It could be shown that the anterior free end of the septum displays high growth activity in all age groups. The supra-premaxillary area displayed its highest growth activity during prepuberty, showing thereafter a continuous decline during puberty and adulthood. A similar age-dependent pattern in growth activity was found in the caudal prolongation of the septal cartilage. No age-dependent variations could be detected in the posterior area of the septal cartilage

  15. Extraction and characterization of essential discharge patterns from multisite recordings of spiking ongoing activity.

    Directory of Open Access Journals (Sweden)

    Riccardo Storchi

    Full Text Available Neural activation patterns proceed often by schemes or motifs distributed across the involved cortical networks. As neurons are correlated, the estimate of all possible dependencies quickly goes out of control. The complex nesting of different oscillation frequencies and their high non-stationariety further hamper any quantitative evaluation of spiking network activities. The problem is exacerbated by the intrinsic variability of neural patterns.Our technique introduces two important novelties and enables to insulate essential patterns on larger sets of spiking neurons and brain activity regimes. First, the sampling procedure over N units is based on a fixed spike number k in order to detect N-dimensional arrays (k-sequences, whose sum over all dimension is k. Then k-sequences variability is greatly reduced by a hierarchical separative clustering, that assigns large amounts of distinct k-sequences to few classes. Iterative separations are stopped when the dimension of each cluster comes to be smaller than a certain threshold. As threshold tuning critically impacts on the number of classes extracted, we developed an effective cost criterion to select the shortest possible description of our dataset. Finally we described three indexes (C,S,R to evaluate the average pattern complexity, the structure of essential classes and their stability in time.We validated this algorithm with four kinds of surrogated activity, ranging from random to very regular patterned. Then we characterized a selection of ongoing activity recordings. By the S index we identified unstable, moderatly and strongly stable patterns while by the C and the R indices we evidenced their non-random structure. Our algorithm seems able to extract interesting and non-trivial spatial dynamics from multisource neuronal recordings of ongoing and potentially stimulated activity. Combined with time-frequency analysis of LFPs could provide a powerful multiscale approach linking population

  16. Cortisol patterns are associated with T cell activation in HIV.

    Directory of Open Access Journals (Sweden)

    Sarah Patterson

    Full Text Available The level of T cell activation in untreated HIV disease is strongly and independently associated with risk of immunologic and clinical progression. The factors that influence the level of activation, however, are not fully defined. Since endogenous glucocorticoids are important in regulating inflammation, we sought to determine whether less optimal diurnal cortisol patterns are associated with greater T cell activation.We studied 128 HIV-infected adults who were not on treatment and had a CD4(+ T cell count above 250 cells/µl. We assessed T cell activation by CD38 expression using flow cytometry, and diurnal cortisol was assessed with salivary measurements.Lower waking cortisol levels correlated with greater T cell immune activation, measured by CD38 mean fluorescent intensity, on CD4(+ T cells (r = -0.26, p = 0.006. Participants with lower waking cortisol also showed a trend toward greater activation on CD8(+ T cells (r = -0.17, p = 0.08. A greater diurnal decline in cortisol, usually considered a healthy pattern, correlated with less CD4(+ (r = 0.24, p = 0.018 and CD8(+ (r = 0.24, p = 0.017 activation.These data suggest that the hypothalamic-pituitary-adrenal (HPA axis contributes to the regulation of T cell activation in HIV. This may represent an important pathway through which psychological states and the HPA axis influence progression of HIV.

  17. Human brain networks function in connectome-specific harmonic waves.

    Science.gov (United States)

    Atasoy, Selen; Donnelly, Isaac; Pearson, Joel

    2016-01-21

    A key characteristic of human brain activity is coherent, spatially distributed oscillations forming behaviour-dependent brain networks. However, a fundamental principle underlying these networks remains unknown. Here we report that functional networks of the human brain are predicted by harmonic patterns, ubiquitous throughout nature, steered by the anatomy of the human cerebral cortex, the human connectome. We introduce a new technique extending the Fourier basis to the human connectome. In this new frequency-specific representation of cortical activity, that we call 'connectome harmonics', oscillatory networks of the human brain at rest match harmonic wave patterns of certain frequencies. We demonstrate a neural mechanism behind the self-organization of connectome harmonics with a continuous neural field model of excitatory-inhibitory interactions on the connectome. Remarkably, the critical relation between the neural field patterns and the delicate excitation-inhibition balance fits the neurophysiological changes observed during the loss and recovery of consciousness.

  18. Global dispersal pattern of HIV type 1 subtype CRF01-AE : A genetic trace of human mobility related to heterosexual sexual activities centralized in southeast Asia

    NARCIS (Netherlands)

    Angelis, Konstantinos; Albert, Jan; Mamais, Ioannis; Magiorkinis, Gkikas; Hatzakis, Angelos; Hamouda, Osamah; Struck, Daniel; Vercauteren, Jurgen; Wensing, Annemarie M J; Alexiev, Ivailo; Åsjö, Birgitta; Balotta, Claudia; Camacho, Ricardo J.; Coughlan, Suzie; Griskevicius, Algirdas; Grossman, Zehava; Horban, Andrzej; Kostrikis, Leondios G.; Lepej, Snjezana; Liitsola, Kirsi; Linka, Marek; Nielsen, Claus; Otelea, Dan; Paredes, Roger; Poljak, Mario; Puchhammer-Stöckl, Elisabeth; Schmit, Jean Claude; Sönnerborg, Anders; Staneková, Danica; Stanojevic, Maja; Boucher, Charles A B; Kaplan, Lauren; Vandamme, Anne Mieke; Paraskevis, Dimitrios

    2015-01-01

    Background. Human immunodeficiency virus type 1 (HIV-1) subtype CRF01-AE originated in Africa and then passed to Thailand, where it established a major epidemic. Despite the global presence of CRF01-AE, little is known about its subsequent dispersal pattern. Methods. We assembled a global data set

  19. How consumer physical activity monitors could transform human physiology research

    Science.gov (United States)

    Hall Brown, Tyish S.; Collier, Scott R.; Sandberg, Kathryn

    2017-01-01

    A sedentary lifestyle and lack of physical activity are well-established risk factors for chronic disease and adverse health outcomes. Thus, there is enormous interest in measuring physical activity in biomedical research. Many consumer physical activity monitors, including Basis Health Tracker, BodyMedia Fit, DirectLife, Fitbit Flex, Fitbit One, Fitbit Zip, Garmin Vivofit, Jawbone UP, MisFit Shine, Nike FuelBand, Polar Loop, Withings Pulse O2, and others have accuracies similar to that of research-grade physical activity monitors for measuring steps. This review focuses on the unprecedented opportunities that consumer physical activity monitors offer for human physiology and pathophysiology research because of their ability to measure activity continuously under real-life conditions and because they are already widely used by consumers. We examine current and potential uses of consumer physical activity monitors as a measuring or monitoring device, or as an intervention in strategies to change behavior and predict health outcomes. The accuracy, reliability, reproducibility, and validity of consumer physical activity monitors are reviewed, as are limitations and challenges associated with using these devices in research. Other topics covered include how smartphone apps and platforms, such as the Apple ResearchKit, can be used in conjunction with consumer physical activity monitors for research. Lastly, the future of consumer physical activity monitors and related technology is considered: pattern recognition, integration of sleep monitors, and other biosensors in combination with new forms of information processing. PMID:28052867

  20. How consumer physical activity monitors could transform human physiology research.

    Science.gov (United States)

    Wright, Stephen P; Hall Brown, Tyish S; Collier, Scott R; Sandberg, Kathryn

    2017-03-01

    A sedentary lifestyle and lack of physical activity are well-established risk factors for chronic disease and adverse health outcomes. Thus, there is enormous interest in measuring physical activity in biomedical research. Many consumer physical activity monitors, including Basis Health Tracker, BodyMedia Fit, DirectLife, Fitbit Flex, Fitbit One, Fitbit Zip, Garmin Vivofit, Jawbone UP, MisFit Shine, Nike FuelBand, Polar Loop, Withings Pulse O 2 , and others have accuracies similar to that of research-grade physical activity monitors for measuring steps. This review focuses on the unprecedented opportunities that consumer physical activity monitors offer for human physiology and pathophysiology research because of their ability to measure activity continuously under real-life conditions and because they are already widely used by consumers. We examine current and potential uses of consumer physical activity monitors as a measuring or monitoring device, or as an intervention in strategies to change behavior and predict health outcomes. The accuracy, reliability, reproducibility, and validity of consumer physical activity monitors are reviewed, as are limitations and challenges associated with using these devices in research. Other topics covered include how smartphone apps and platforms, such as the Apple ResearchKit, can be used in conjunction with consumer physical activity monitors for research. Lastly, the future of consumer physical activity monitors and related technology is considered: pattern recognition, integration of sleep monitors, and other biosensors in combination with new forms of information processing. Copyright © 2017 the American Physiological Society.

  1. Physical Activity and Pattern of Blood Pressure in Postmenopausal ...

    African Journals Online (AJOL)

    Background: Hormonal changes during menopause have been attributed to hypertension-a common public health concern. This study investigated physical activity (PA) and pattern of blood pressure (BP) in postmenopausal women newly diagnosed with hypertension and referred for treatment at the medicine outpatient ...

  2. Nocturnal activity patterns of northern myotis (Myotis septentrionalis) during the maternity season in West Virginia (USA)

    Science.gov (United States)

    Johnson, J.B.; Edwards, J.W.; Ford, W.M.

    2011-01-01

    Nocturnal activity patterns of northern myotis (Myotis septentrionalis) at diurnal roost trees remain largely uninvestigated. For example, the influence of reproductive status, weather, and roost tree and surrounding habitat characteristics on timing of emergence, intra-night activity, and entrance at their roost trees is poorly known. We examined nocturnal activity patterns of northern myotis maternity colonies during pregnancy and lactation at diurnal roost trees situated in areas that were and were not subjected to recent prescribed fires at the Fernow Experimental Forest, West Virginia from 2007 to 2009. According to exit counts and acoustic data, northern myotis colony sizes were similar between reproductive periods and roost tree settings. However, intra-night activity patterns differed slightly between reproductive periods and roost trees in burned and non-burned areas. Weather variables poorly explained variation in activity patterns during pregnancy, but precipitation and temperature were negatively associated with activity patterns during lactation. ?? Museum and Institute of Zoology PAS.

  3. Human oocyte calcium analysis predicts the response to assisted oocyte activation in patients experiencing fertilization failure after ICSI.

    Science.gov (United States)

    Ferrer-Buitrago, M; Dhaenens, L; Lu, Y; Bonte, D; Vanden Meerschaut, F; De Sutter, P; Leybaert, L; Heindryckx, B

    2018-01-10

    Can human oocyte calcium analysis predict fertilization success after assisted oocyte activation (AOA) in patients experiencing fertilization failure after ICSI? ICSI-AOA restores the fertilization rate only in patients displaying abnormal Ca2+ oscillations during human oocyte activation. Patients capable of activating mouse oocytes and who showed abnormal Ca2+ profiles after mouse oocyte Ca2+ analysis (M-OCA), have variable responses to ICSI-AOA. It remains unsettled whether human oocyte Ca2+ analysis (H-OCA) would yield an improved accuracy to predict fertilization success after ICSI-AOA. Sperm activation potential was first evaluated by MOAT. Subsequently, Ca2+ oscillatory patterns were determined with sperm from patients showing moderate to normal activation potential based on the capacity of human sperm to generate Ca2+ responses upon microinjection in mouse and human oocytes. Altogether, this study includes a total of 255 mouse and 122 human oocytes. M-OCA was performed with 16 different sperm samples before undergoing ICSI-AOA treatment. H-OCA was performed for 11 patients who finally underwent ICSI-AOA treatment. The diagnostic accuracy to predict fertilization success was calculated based on the response to ICSI-AOA. Patients experiencing low or total failed fertilization after conventional ICSI were included in the study. All participants showed moderate to high rates of activation after MOAT. Metaphase II (MII) oocytes from B6D2F1 mice were used for M-OCA. Control fertile sperm samples were used to obtain a reference Ca2+ oscillation profile elicited in human oocytes. Donated human oocytes, non-suitable for IVF treatments, were collected and vitrified at MII stage for further analysis by H-OCA. M-OCA and H-OCA predicted the response to ICSI-AOA in 8 out of 11 (73%) patients. Compared to M-OCA, H-OCA detected the presence of sperm activation deficiencies with greater sensitivity (75 vs 100%, respectively). ICSI-AOA never showed benefit to overcome

  4. The handyman's brain: a neuroimaging meta-analysis describing the similarities and differences between grip type and pattern in humans.

    Science.gov (United States)

    King, M; Rauch, H G; Stein, D J; Brooks, S J

    2014-11-15

    Handgrip is a ubiquitous human movement that was critical in our evolution. However, the differences in brain activity between grip type (i.e. power or precision) and pattern (i.e. dynamic or static) are not fully understood. In order to address this, we performed Activation Likelihood Estimation (ALE) analysis between grip type and grip pattern using functional magnetic resonance imaging (fMRI) data. ALE provides a probabilistic summary of the BOLD response in hundreds of subjects, which is often beyond the scope of a single fMRI experiment. We collected data from 28 functional magnetic resonance data sets, which included a total of 398 male and female subjects. Using ALE, we analyzed the BOLD response during power, precision, static and dynamic grip in a range of forces and age in right handed healthy individuals without physical impairment, cardiovascular or neurological dysfunction using a variety of grip tools, feedback and experimental training. Power grip generates unique activation in the postcentral gyrus (areas 1 and 3b) and precision grip generates unique activation in the supplementary motor area (SMA, area 6) and precentral gyrus (area 4a). Dynamic handgrip generates unique activation in the precentral gyrus (area 4p) and SMA (area 6) and of particular interest, both dynamic and static grip share activation in the area 2 of the postcentral gyrus, an area implicated in the evolution of handgrip. According to effect size analysis, precision and dynamic grip generates stronger activity than power and static, respectively. Our study demonstrates specific differences between grip type and pattern. However, there was a large degree of overlap in the pre and postcentral gyrus, SMA and areas of the frontal-parietal-cerebellar network, which indicates that other mechanisms are potentially involved in regulating handgrip. Further, our study provides empirically based regions of interest, which can be downloaded here within, that can be used to more effectively

  5. Dynamic Stimuli And Active Processing In Human Visual Perception

    Science.gov (United States)

    Haber, Ralph N.

    1990-03-01

    Theories of visual perception traditionally have considered a static retinal image to be the starting point for processing; and has considered processing both to be passive and a literal translation of that frozen, two dimensional, pictorial image. This paper considers five problem areas in the analysis of human visually guided locomotion, in which the traditional approach is contrasted to newer ones that utilize dynamic definitions of stimulation, and an active perceiver: (1) differentiation between object motion and self motion, and among the various kinds of self motion (e.g., eyes only, head only, whole body, and their combinations); (2) the sources and contents of visual information that guide movement; (3) the acquisition and performance of perceptual motor skills; (4) the nature of spatial representations, percepts, and the perceived layout of space; and (5) and why the retinal image is a poor starting point for perceptual processing. These newer approaches argue that stimuli must be considered as dynamic: humans process the systematic changes in patterned light when objects move and when they themselves move. Furthermore, the processing of visual stimuli must be active and interactive, so that perceivers can construct panoramic and stable percepts from an interaction of stimulus information and expectancies of what is contained in the visual environment. These developments all suggest a very different approach to the computational analyses of object location and identification, and of the visual guidance of locomotion.

  6. Nogo-receptor gene activity: cellular localization and developmental regulation of mRNA in mice and humans.

    Science.gov (United States)

    Josephson, Anna; Trifunovski, Alexandra; Widmer, Hans Ruedi; Widenfalk, Johan; Olson, Lars; Spenger, Christian

    2002-11-18

    Nogo (reticulon-4) is a myelin-associated protein that is expressed in three different splice variants, Nogo-A, Nogo-B, and Nogo-C. Nogo-A inhibits neurite regeneration in the central nervous system. Messenger RNA encoding Nogo is expressed in oligodendrocytes and central and peripheral neurons, but not in astrocytes or Schwann cells. Nogo is a transmembraneous protein; the extracellular domain is termed Nogo-66, and a Nogo-66-receptor (Nogo-R) has been identified. We performed in situ hybridization in human and mouse nervous tissues to map the cellular distribution of Nogo-R gene activity patterns in fetal and adult human spinal cord and sensory ganglia, adult human brain, and the nervous systems of developing and adult mice. In the human fetus Nogo-R was transcribed in the ventral horn of the spinal cord and in dorsal root ganglia. In adult human tissues Nogo-R gene activity was found in neocortex, hippocampus, amygdala, and a subset of large and medium-sized neurons of the dorsal root ganglia. Nogo-R mRNA was not expressed in the adult human spinal cord at detectable levels. In the fetal mouse, Nogo-R was diffusely expressed in brain, brainstem, trigeminal ganglion, spinal cord, and dorsal root ganglia at all stages. In the adult mouse strong Nogo-R mRNA expression was found in neurons in neocortex, hippocampus, amygdala, habenula, thalamic nuclei, brainstem, the granular cell layer of cerebellum, and the mitral cell layer of the olfactory bulb. Neurons in the adult mouse striatum, the medial septal nucleus, and spinal cord did not express Nogo-R mRNA at detectable levels. In summary, Nogo-66-R mRNA expression in humans and mice was observed in neurons of the developing nervous system Expression was downregulated in the adult spinal cord of both species, and specific expression patterns were seen in the adult brain. Copyright 2002 Wiley-Liss, Inc.

  7. Human V4 Activity Patterns Predict Behavioral Performance in Imagery of Object Color.

    Science.gov (United States)

    Bannert, Michael M; Bartels, Andreas

    2018-04-11

    Color is special among basic visual features in that it can form a defining part of objects that are engrained in our memory. Whereas most neuroimaging research on human color vision has focused on responses related to external stimulation, the present study investigated how sensory-driven color vision is linked to subjective color perception induced by object imagery. We recorded fMRI activity in male and female volunteers during viewing of abstract color stimuli that were red, green, or yellow in half of the runs. In the other half we asked them to produce mental images of colored, meaningful objects (such as tomato, grapes, banana) corresponding to the same three color categories. Although physically presented color could be decoded from all retinotopically mapped visual areas, only hV4 allowed predicting colors of imagined objects when classifiers were trained on responses to physical colors. Importantly, only neural signal in hV4 was predictive of behavioral performance in the color judgment task on a trial-by-trial basis. The commonality between neural representations of sensory-driven and imagined object color and the behavioral link to neural representations in hV4 identifies area hV4 as a perceptual hub linking externally triggered color vision with color in self-generated object imagery. SIGNIFICANCE STATEMENT Humans experience color not only when visually exploring the outside world, but also in the absence of visual input, for example when remembering, dreaming, and during imagery. It is not known where neural codes for sensory-driven and internally generated hue converge. In the current study we evoked matching subjective color percepts, one driven by physically presented color stimuli, the other by internally generated color imagery. This allowed us to identify area hV4 as the only site where neural codes of corresponding subjective color perception converged regardless of its origin. Color codes in hV4 also predicted behavioral performance in an

  8. The gestational age pattern of human mortality

    DEFF Research Database (Denmark)

    Schöley, Jonas; Vaupel, James W.; Jacobsen, Rune

    -infant lifetable by gestational age spanning week 23 until week 100 after the last menstrual period of the mother. This joint lifetable shows a remarkable regularity in the gestational age profile of fetal- and infant mortality: Mortality rates are declining over the whole observed age range with the exception......In order to check hypotheses about the cause for "ontogenescense" -- the phenomenon of a declining force of mortality prior to maturity -- I analyse data on human mortality by gestational age. Based on extensive microdata on births, fetal- and infant deaths in the US 2009 I calculate a joint fetal...... of a "birth hump" peaking week 38. The absolute rate of decline slows down over age. The observed gestational age pattern of the force of mortality is consistent with three hypotheses concerning the causes for ontogenescense: 1) Adaptation: as the organism growths it becomes more resilient towards death, 2...

  9. Autogenic training alters cerebral activation patterns in fMRI.

    Science.gov (United States)

    Schlamann, Marc; Naglatzki, Ryan; de Greiff, Armin; Forsting, Michael; Gizewski, Elke R

    2010-10-01

    Cerebral activation patterns during the first three auto-suggestive phases of autogenic training (AT) were investigated in relation to perceived experiences. Nineteen volunteers trained in AT and 19 controls were studied with fMRI during the first steps of autogenic training. FMRI revealed activation of the left postcentral areas during AT in those with experience in AT, which also correlated with the level of AT experience. Activation of prefrontal and insular cortex was significantly higher in the group with experience in AT while insular activation was correlated with number years of simple relaxation exercises. Specific activation in subjects experienced in AT may represent a training effect. Furthermore, the correlation of insular activation suggests that these subjects are different from untrained subjects in emotional processing or self-awareness.

  10. A General Model of Negative Frequency Dependent Selection Explains Global Patterns of Human ABO Polymorphism.

    Directory of Open Access Journals (Sweden)

    Fernando A Villanea

    Full Text Available The ABO locus in humans is characterized by elevated heterozygosity and very similar allele frequencies among populations scattered across the globe. Using knowledge of ABO protein function, we generated a simple model of asymmetric negative frequency dependent selection and genetic drift to explain the maintenance of ABO polymorphism and its loss in human populations. In our models, regardless of the strength of selection, models with large effective population sizes result in ABO allele frequencies that closely match those observed in most continental populations. Populations must be moderately small to fall out of equilibrium and lose either the A or B allele (N(e ≤ 50 and much smaller (N(e ≤ 25 for the complete loss of diversity, which nearly always involved the fixation of the O allele. A pattern of low heterozygosity at the ABO locus where loss of polymorphism occurs in our model is consistent with small populations, such as Native American populations. This study provides a general evolutionary model to explain the observed global patterns of polymorphism at the ABO locus and the pattern of allele loss in small populations. Moreover, these results inform the range of population sizes associated with the recent human colonization of the Americas.

  11. Activation of human factor V by factor Xa and thrombin

    International Nuclear Information System (INIS)

    Monkovic, D.D.; Tracy, P.B.

    1990-01-01

    The activation of human factor V by factor Xa and thrombin was studied by functional assessment of cofactor activity and sodium dodecyl sulfate-polycarylamide gel electrophoresis followed by either autoradiography of 125 I-labeled factor V activation products or Western blot analyses of unlabeled factor V activation products. Cofactor activity was measured by the ability of the factor V/Va peptides to support the activation of prothrombin. The factor Xa catalyzed cleavage of factor V was observed to be time, phospholipid, and calcium ion dependent, yielding a cofactor with activity equal to that of thrombin-activated factor V (factor Va). The cleavage pattern differed markedly from the one observed in the bovine system. The factor Xa activated factor V subunits expressing cofactor activity were isolated and found to consist of peptides of M r 220,000 and 105,000. Although thrombin cleaved the M r 220,000 peptide to yield peptides previously shown to be products of thrombin activation, cofactor activity did not increase. N-Terminal sequence analysis confirmed that both factor Xa and thrombin cleave factor V at the same bond to generate the M r 220,000 peptide. The factor Xa dependent functional assessment of 125 I-labeled factor V coupled with densitometric analyses of the cleavage products indicated that the cofactor activity of factor Xa activated factor V closely paralleled the appearance of the M r 220,000 peptide. The data indicate that factor Xa is as efficient an enzyme toward factor V as thrombin

  12. Activation of peroxisome proliferator-activated receptor-{alpha} enhances fatty acid oxidation in human adipocytes

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Joo-Young; Hashizaki, Hikari; Goto, Tsuyoshi; Sakamoto, Tomoya; Takahashi, Nobuyuki [Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011 (Japan); Kawada, Teruo, E-mail: fat@kais.kyoto-u.ac.jp [Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011 (Japan)

    2011-04-22

    Highlights: {yields} PPAR{alpha} activation increased mRNA expression levels of adipocyte differentiation marker genes and GPDH activity in human adipocytes. {yields} PPAR{alpha} activation also increased insulin-dependent glucose uptake in human adipocytes. {yields} PPAR{alpha} activation did not affect lipid accumulation in human adipocytes. {yields} PPAR{alpha} activation increased fatty acid oxidation through induction of fatty acid oxidation-related genes in human adipocytes. -- Abstract: Peroxisome proliferator-activated receptor-{alpha} (PPAR{alpha}) is a key regulator for maintaining whole-body energy balance. However, the physiological functions of PPAR{alpha} in adipocytes have been unclarified. We examined the functions of PPAR{alpha} using human multipotent adipose tissue-derived stem cells as a human adipocyte model. Activation of PPAR{alpha} by GW7647, a potent PPAR{alpha} agonist, increased the mRNA expression levels of adipocyte differentiation marker genes such as PPAR{gamma}, adipocyte-specific fatty acid-binding protein, and lipoprotein lipase and increased both GPDH activity and insulin-dependent glucose uptake level. The findings indicate that PPAR{alpha} activation stimulates adipocyte differentiation. However, lipid accumulation was not changed, which is usually observed when PPAR{gamma} is activated. On the other hand, PPAR{alpha} activation by GW7647 treatment induced the mRNA expression of fatty acid oxidation-related genes such as CPT-1B and AOX in a PPAR{alpha}-dependent manner. Moreover, PPAR{alpha} activation increased the production of CO{sub 2} and acid soluble metabolites, which are products of fatty acid oxidation, and increased oxygen consumption rate in human adipocytes. The data indicate that activation of PPAR{alpha} stimulates both adipocyte differentiation and fatty acid oxidation in human adipocytes, suggesting that PPAR{alpha} agonists could improve insulin resistance without lipid accumulation in adipocytes. The expected

  13. Cholesterol esterase activity of human intestinal mucosa

    International Nuclear Information System (INIS)

    Ponz de Leon, M.; Carubbi, F.; Di Donato, P.; Carulli, N.

    1985-01-01

    It has been suggested that cholesterol absorption in humans is dependent on bile acid pool composition and that expansion of the cholic acid pool size is followed by an increase of the absorption values. Similar observations were reported in rats. In the present study, therefore, the authors investigated some general properties of human intestinal cholesterol esterase, with particular emphasis on the effect of bile acids on this enzymatic activity. Twenty-nine segments of small intestine were taken during operations; the enzymatic activity was studied by using mucosal homogenate as a source of enzyme and oleic acid, cholesterol, and 14 C-labeled cholesterol as substrates. The time-activity relationship was linear within the first two hours; optimal pH for esterification ranged between 5 and 6.2. There was little difference between the esterifying activity of the jejunal and ileal mucosa. Esterification of cholesterol was observed with all the investigated fatty acids but was maximal with oleic acid. Bile acids did not affect cholesterol esterase activity when present in the incubation mixture at 0.1 and 1.0 mM; the enzymatic activity, however, was significantly inhibited when bile acids were added at 20 mM. In conclusion, this study has shown that the human intestinal mucosa possesses a cholesterol esterase activity; at variance with the rat, however, the human enzyme does not seem to be stimulated by trihydroxy bile acids

  14. Deposition Pattern of Inhaled Thoron Progeny Size Distribution in Human Lung

    International Nuclear Information System (INIS)

    Mohamed, A.

    2005-01-01

    One of the important factors controlling the distribution of radiation dose to the different portions of the human respiratory tract is the deposition pattern of thoron progeny containing aerosol. Based on the activity size distribution parameters of thoron progeny, which were measured in El-Minia University, the deposition behavior of thoron progeny (attached and unattached) has been studied by using a stochastic deposition model. The measurements were performed with a wire screen diffusion battery and a low pressure cascade impactor (type Berner). The bronchial deposition efficiencies of particles in the size range of attached thoron progeny were found to be lower than those of unattached progeny. The effect of thoron progeny deposition by adult male has been also studied for various levels of physical exertion. An increase in the breathing rate was found to decrease the efficiencies with which inhaled progeny were deposited in the bronchi. As the ventilation rate increases from 0.54 to 1.5 m3 h-1, the average deposition efficiencies of airway generation 1 through 8 are expected to decrease by 22 % for 1.4 nm particles and by 38 % for 150 nm particles

  15. The activity pattern of shoulder muscles in subjects with and without subacromial impingement

    DEFF Research Database (Denmark)

    Diederichsen, Louise Pyndt; Nørregaard, Jesper; Dyhre-Poulsen, Poul

    2009-01-01

    Altered shoulder muscle activity is frequently believed to be a pathogenetic factor of subacromial impingement (SI) and therapeutic interventions have been directed towards restoring normal motor patterns. Still, there is a lack of scientific evidence regarding the changes in muscle activity in p...... that the different motor patterns might be a pathogenetic factor of SI, perhaps due to inappropriate neuromuscular strategies affecting both shoulders....

  16. Variation of gunshot injury patterns in mortality associated with human rights abuses and armed conflict: an exploratory study.

    Science.gov (United States)

    Baraybar, Jose Pablo

    2015-09-01

    The analysis of the distribution of gunshot injuries in a sample of 777 sets of human remains of proven human rights abuse from Somaliland, the Balkans and Peru is compared to frequencies of injuries sustained by combatants in contemporary conflicts reported in the literature. Principal Component Analysis (PCA) reduced the data to three components accounting for 82.94% of the variance. The first component with 38.31% of variance shows segments Arms and thorax/abdomen to be positively correlated (0.887 and 0.662, respectively); the segment head/neck is strongly correlated (0.951) to the second component while the segment thorax/abdomen shows a low, negative correlation (-0.388). Finally in the third component only the legs are strongly correlated (0.991). Data was further subjected to a K-means cluster analysis to determine the likely groupings combining the four types of injuries. Each of the three clusters reproduced similar patterns observed in the PCA: Cluster 1 shows the prevalence of injuries to the thorax/abdomen and extremities in addition to injuries to the head/neck; Cluster 2 shows injuries to the head/neck and Cluster 3 injuries to the thorax/abdomen and a lower representation of the arms and legs. Most of the cases (70.5%), irrespective of geography and type of site (attack or detention), were grouped into Cluster 2. Such comparison shows that in human rights abuse, irrespective of their geography, gunshot injuries tend to follow a pattern favouring the head/neck and thorax/abdomen areas over the extremities, the reverse pattern observed in contemporary combat operations. In those settings gunshot wound trauma is the second cause of mortality/morbidity (after fragmenting ammunition) and its distribution concentrates on the extremities, thorax/abdomen and head; following the pattern of protective armour when it is used. Considering that human rights abuses are often presented as encounters between two armed groups in the context of counter

  17. Entropic measures of individual mobility patterns

    International Nuclear Information System (INIS)

    Gallotti, Riccardo; Bazzani, Armando; Rambaldi, Sandro; Esposti, Mirko Degli

    2013-01-01

    Understanding human mobility from a microscopic point of view may represent a fundamental breakthrough for the development of a statistical physics for cognitive systems and it can shed light on the applicability of macroscopic statistical laws for social systems. Even if the complexity of individual behaviors prevents a true microscopic approach, the introduction of mesoscopic models allows the study of the dynamical properties for the non-stationary states of the considered system. We propose to compute various entropy measures of the individual mobility patterns obtained from GPS data that record the movements of private vehicles in the Florence district, in order to point out new features of human mobility related to the use of time and space and to define the dynamical properties of a stochastic model that could generate similar patterns. Moreover, we can relate the predictability properties of human mobility to the distribution of time passed between two successive trips. Our analysis suggests the existence of a hierarchical structure in the mobility patterns which divides the performed activities into three different categories, according to the time cost, with different information contents. We show that a Markov process defined by using the individual mobility network is not able to reproduce this hierarchy, which seems the consequence of different strategies in the activity choice. Our results could contribute to the development of governance policies for a sustainable mobility in modern cities. (paper)

  18. Non-Negative Tensor Factorization for Human Behavioral Pattern Mining in Online Games

    Directory of Open Access Journals (Sweden)

    Anna Sapienza

    2018-03-01

    Full Text Available Multiplayer online battle arena is a genre of online games that has become extremely popular. Due to their success, these games also drew the attention of our research community, because they provide a wealth of information about human online interactions and behaviors. A crucial problem is the extraction of activity patterns that characterize this type of data, in an interpretable way. Here, we leverage the Non-negative Tensor Factorization to detect hidden correlated behaviors of playing in a well-known game: League of Legends. To this aim, we collect the entire gaming history of a group of about 1000 players, which accounts for roughly 100K matches. By applying our framework we are able to separate players into different groups. We show that each group exhibits similar features and playing strategies, as well as similar temporal trajectories, i.e., behavioral progressions over the course of their gaming history. We surprisingly discover that playing strategies are stable over time and we provide an explanation for this observation.

  19. Quantify environmental effects in shaping the genetic diversification pattern of Oncomelania hupensis and its implications in surveillance of human susceptibility to Schistosomiasis

    Science.gov (United States)

    Liang, L.; Liao, J. S.; Gong, P.

    2012-12-01

    The transmission and distribution of schistomiasis, one of the most serious infectious diseases in East and Southeast Asia, tied closely to its unique intermediate snail host Oncomelania hupensis. The coevolved relationships of O. hupensis populations with its parasite Schistosoma japonisum are important in understanding the mechanism of disease spread. The genetic diversification pattern within population is supposed to influence the amount of parasite loads, and the susceptibility of snails determined the chance for human or mammals to get infected. Meanwhile, intervening environmental features had been long suggested to affect snail population dynamics and evolutionary trajectories of species. However, no comprehensive study referring to the above topics has been carried out on O.hupensis populations before. In this study, we reanalyzed published data in mainland China to evaluate whether human infection rate and genetic diversification patterns are related under natural environment. Besides that, we used an array of remotely sensed image derived environmental variables to quantify the amount of variation in population genetic structure that could be explained by those factors by landscape genetic analysis. We found that human schistosomiasis infection rate is positively correlated with intra-population genetic diversification and inter-population genetic exchange, which is contradictory with the Red Queen hypothesis. The patterns of genetic diversification are better revealed when non-Euclidean, environmentally determined distance measures or features are used in large heterogeneous landscape. The impact of stream connectivity on the snail inter-population genetic distances does not so evident unless taking wetlands into calculation, and thus control activities planned solely along river systems may be suboptimal. Climate features have a stronger impact on genetic structure of snails than topology, and precipitation seasonality dominates the highest proportion

  20. Physical Activity Patterns among U.S. Adults with Disabilities

    Science.gov (United States)

    Chiu, Chung-Yi; An, Ruopeng

    2016-01-01

    Purpose: To characterize physical activity patterns among people with disabilities using data from a nationally representative health survey. Method: Individual-level data came from the Behavioral Risk Factor Surveillance System 2011 survey. Pearson's chi-squared tests were conducted to assess the difference in the proportion distribution of…

  1. Antibiotics and heavy metals resistance patterns of Enterococcus faecalis and faecium bacteria isolated from the human and the livestock sources

    Directory of Open Access Journals (Sweden)

    Yaser Sharifi

    2015-12-01

    Full Text Available Background: Enterococci have emerged as a major cause of nosocomial infections and within this group, Enterococcus faecalis and Enterococcus faecium cause the majority of human and livestock enterococcal infections. In this article, we tried to determine antibiotics and metals resistance patterns of E. faecalis and E. faecium strains. Methods: One hundred sixty different strains of E. faecalis and E. faecium were collected from livestock sewage and the human fecal waste during 15 months. Then bacterial antibiotics sensitivity tests were carried out using the Agar disc diffusion method. Results: Generally, 100% of E. faecalis strains separated from human and livestock sources (i.e. sheep showed penicillin (P/ kanamycin (K/ nitrofurantoin (N/ loracarbef (L/ Ciprofloxacin (Cc/ ampicillin (AN/ nalidixic acid (NA/ sulfamethoxazole (S antibiotics resistance patterns. In addition, 55% of isolated E. faecium showed P/S/AN/NA antibiotics resistance patterns. Each strain showed a resistance to at least two aminoglycoside antibiotics. However, E. faecalis strains from human and the livestock sources showed 94% and 100% of resistance to nitrofurantoin, respectively. The effects of different metal concentrations was evaluated in both strains. The agar dilution method was applied in this stage. Hg at 0.05 mmol/L of minimum inhibitory concentration (MIC showed toxicity to both the human and livestock Enterococcus strains. Cadmium at 1 mmol/L and 0.5 mmol/L concentrations had the most toxicity to E. faecalis and E. faecium strains, respectively. Obviously, toxicity to bacteria is less than other metals. As a result, Zn/Ni/Cu/Co resistance pattern is suggested for both strains. Finally, antibiotics and heavy metals resistance patterns were monitored simultaneously. Conclusion: Almost all E. faecalis strains isolated from humans and livestock showed antibiotics and heavy metals resistance patterns of P/K/L/Cc/S/AN/NA/Zn/Cu/Co simultaneously. Moreover, 55% of E

  2. Similar patterns of neural activity predict memory function during encoding and retrieval.

    Science.gov (United States)

    Kragel, James E; Ezzyat, Youssef; Sperling, Michael R; Gorniak, Richard; Worrell, Gregory A; Berry, Brent M; Inman, Cory; Lin, Jui-Jui; Davis, Kathryn A; Das, Sandhitsu R; Stein, Joel M; Jobst, Barbara C; Zaghloul, Kareem A; Sheth, Sameer A; Rizzuto, Daniel S; Kahana, Michael J

    2017-07-15

    Neural networks that span the medial temporal lobe (MTL), prefrontal cortex, and posterior cortical regions are essential to episodic memory function in humans. Encoding and retrieval are supported by the engagement of both distinct neural pathways across the cortex and common structures within the medial temporal lobes. However, the degree to which memory performance can be determined by neural processing that is common to encoding and retrieval remains to be determined. To identify neural signatures of successful memory function, we administered a delayed free-recall task to 187 neurosurgical patients implanted with subdural or intraparenchymal depth electrodes. We developed multivariate classifiers to identify patterns of spectral power across the brain that independently predicted successful episodic encoding and retrieval. During encoding and retrieval, patterns of increased high frequency activity in prefrontal, MTL, and inferior parietal cortices, accompanied by widespread decreases in low frequency power across the brain predicted successful memory function. Using a cross-decoding approach, we demonstrate the ability to predict memory function across distinct phases of the free-recall task. Furthermore, we demonstrate that classifiers that combine information from both encoding and retrieval states can outperform task-independent models. These findings suggest that the engagement of a core memory network during either encoding or retrieval shapes the ability to remember the past, despite distinct neural interactions that facilitate encoding and retrieval. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Decoding of visual activity patterns from fMRI responses using multivariate pattern analyses and convolutional neural network.

    Science.gov (United States)

    Zafar, Raheel; Kamel, Nidal; Naufal, Mohamad; Malik, Aamir Saeed; Dass, Sarat C; Ahmad, Rana Fayyaz; Abdullah, Jafri M; Reza, Faruque

    2017-01-01

    Decoding of human brain activity has always been a primary goal in neuroscience especially with functional magnetic resonance imaging (fMRI) data. In recent years, Convolutional neural network (CNN) has become a popular method for the extraction of features due to its higher accuracy, however it needs a lot of computation and training data. In this study, an algorithm is developed using Multivariate pattern analysis (MVPA) and modified CNN to decode the behavior of brain for different images with limited data set. Selection of significant features is an important part of fMRI data analysis, since it reduces the computational burden and improves the prediction performance; significant features are selected using t-test. MVPA uses machine learning algorithms to classify different brain states and helps in prediction during the task. General linear model (GLM) is used to find the unknown parameters of every individual voxel and the classification is done using multi-class support vector machine (SVM). MVPA-CNN based proposed algorithm is compared with region of interest (ROI) based method and MVPA based estimated values. The proposed method showed better overall accuracy (68.6%) compared to ROI (61.88%) and estimation values (64.17%).

  4. Visualizing Dynamic Bitcoin Transaction Patterns.

    Science.gov (United States)

    McGinn, Dan; Birch, David; Akroyd, David; Molina-Solana, Miguel; Guo, Yike; Knottenbelt, William J

    2016-06-01

    This work presents a systemic top-down visualization of Bitcoin transaction activity to explore dynamically generated patterns of algorithmic behavior. Bitcoin dominates the cryptocurrency markets and presents researchers with a rich source of real-time transactional data. The pseudonymous yet public nature of the data presents opportunities for the discovery of human and algorithmic behavioral patterns of interest to many parties such as financial regulators, protocol designers, and security analysts. However, retaining visual fidelity to the underlying data to retain a fuller understanding of activity within the network remains challenging, particularly in real time. We expose an effective force-directed graph visualization employed in our large-scale data observation facility to accelerate this data exploration and derive useful insight among domain experts and the general public alike. The high-fidelity visualizations demonstrated in this article allowed for collaborative discovery of unexpected high frequency transaction patterns, including automated laundering operations, and the evolution of multiple distinct algorithmic denial of service attacks on the Bitcoin network.

  5. Visualizing Dynamic Bitcoin Transaction Patterns

    Science.gov (United States)

    McGinn, Dan; Birch, David; Akroyd, David; Molina-Solana, Miguel; Guo, Yike; Knottenbelt, William J.

    2016-01-01

    Abstract This work presents a systemic top-down visualization of Bitcoin transaction activity to explore dynamically generated patterns of algorithmic behavior. Bitcoin dominates the cryptocurrency markets and presents researchers with a rich source of real-time transactional data. The pseudonymous yet public nature of the data presents opportunities for the discovery of human and algorithmic behavioral patterns of interest to many parties such as financial regulators, protocol designers, and security analysts. However, retaining visual fidelity to the underlying data to retain a fuller understanding of activity within the network remains challenging, particularly in real time. We expose an effective force-directed graph visualization employed in our large-scale data observation facility to accelerate this data exploration and derive useful insight among domain experts and the general public alike. The high-fidelity visualizations demonstrated in this article allowed for collaborative discovery of unexpected high frequency transaction patterns, including automated laundering operations, and the evolution of multiple distinct algorithmic denial of service attacks on the Bitcoin network. PMID:27441715

  6. Recurrence analysis of ant activity patterns.

    Directory of Open Access Journals (Sweden)

    Felipe Marcel Neves

    Full Text Available In this study, we used recurrence quantification analysis (RQA and recurrence plots (RPs to compare the movement activity of individual workers of three ant species, as well as a gregarious beetle species. RQA and RPs quantify the number and duration of recurrences of a dynamical system, including a detailed quantification of signals that could be stochastic, deterministic, or both. First, we found substantial differences between the activity dynamics of beetles and ants, with the results suggesting that the beetles have quasi-periodic dynamics and the ants do not. Second, workers from different ant species varied with respect to their dynamics, presenting degrees of predictability as well as stochastic signals. Finally, differences were found among minor and major caste of the same (dimorphic ant species. Our results underscore the potential of RQA and RPs in the analysis of complex behavioral patterns, as well as in general inferences on animal behavior and other biological phenomena.

  7. Atoll-scale patterns in coral reef community structure: Human signatures on Ulithi Atoll, Micronesia.

    Directory of Open Access Journals (Sweden)

    Nicole L Crane

    Full Text Available The dynamic relationship between reefs and the people who utilize them at a subsistence level is poorly understood. This paper characterizes atoll-scale patterns in shallow coral reef habitat and fish community structure, and correlates these with environmental characteristics and anthropogenic factors, critical to conservation efforts for the reefs and the people who depend on them. Hierarchical clustering analyses by site for benthic composition and fish community resulted in the same 3 major clusters: cluster 1-oceanic (close proximity to deep water and uninhabited (low human impact; cluster 2-oceanic and inhabited (high human impact; and cluster 3-lagoonal (facing the inside of the lagoon and inhabited (highest human impact. Distance from village, reef exposure to deep water and human population size had the greatest effect in predicting the fish and benthic community structure. Our study demonstrates a strong association between benthic and fish community structure and human use across the Ulithi Atoll (Yap State, Federated States of Micronesia and confirms a pattern observed by local people that an 'opportunistic' scleractinian coral (Montipora sp. is associated with more highly impacted reefs. Our findings suggest that small human populations (subsistence fishing can nevertheless have considerable ecological impacts on reefs due, in part, to changes in fishing practices rather than overfishing per se, as well as larger global trends. Findings from this work can assist in building local capacity to manage reef resources across an atoll-wide scale, and illustrates the importance of anthropogenic impact even in small communities.

  8. Mechanochemical pattern formation in simple models of active viscoelastic fluids and solids

    Science.gov (United States)

    Alonso, Sergio; Radszuweit, Markus; Engel, Harald; Bär, Markus

    2017-11-01

    The cytoskeleton of the organism Physarum polycephalum is a prominent example of a complex active viscoelastic material wherein stresses induce flows along the organism as a result of the action of molecular motors and their regulation by calcium ions. Experiments in Physarum polycephalum have revealed a rich variety of mechanochemical patterns including standing, traveling and rotating waves that arise from instabilities of spatially homogeneous states without gradients in stresses and resulting flows. Herein, we investigate simple models where an active stress induced by molecular motors is coupled to a model describing the passive viscoelastic properties of the cellular material. Specifically, two models for viscoelastic fluids (Maxwell and Jeffrey model) and two models for viscoelastic solids (Kelvin-Voigt and Standard model) are investigated. Our focus is on the analysis of the conditions that cause destabilization of spatially homogeneous states and the related onset of mechano-chemical waves and patterns. We carry out linear stability analyses and numerical simulations in one spatial dimension for different models. In general, sufficiently strong activity leads to waves and patterns. The primary instability is stationary for all active fluids considered, whereas all active solids have an oscillatory primary instability. All instabilities found are of long-wavelength nature reflecting the conservation of the total calcium concentration in the models studied.

  9. Effect of Frustration on Brain Activation Pattern in Subjects with Different Temperament.

    Science.gov (United States)

    Bierzynska, Maria; Bielecki, Maksymilian; Marchewka, Artur; Debowska, Weronika; Duszyk, Anna; Zajkowski, Wojciech; Falkiewicz, Marcel; Nowicka, Anna; Strelau, Jan; Kossut, Malgorzata

    2015-01-01

    In spite of the prevalence of frustration in everyday life, very few neuroimaging studies were focused on this emotional state. In the current study we aimed to examine effects of frustration on brain activity while performing a well-learned task in participants with low and high tolerance for arousal. Prior to the functional magnetic resonance imaging session, the subjects underwent 2 weeks of Braille reading training. Frustration induction was obtained by using a novel highly difficult tactile task based on discrimination of Braille-like raised dots patterns and negative feedback. Effectiveness of this procedure has been confirmed in a pilot study using galvanic skin response and questionnaires. Brain activation pattern during tactile discrimination task before and after frustration were compared directly. Results revealed changes in brain activity in structures mostly reported in acute stress studies: striatum, cingulate cortex, insula, middle frontal gyrus and precuneus and in structures engaged in tactile Braille discrimination: SI and SII. Temperament type affected activation pattern. Subjects with low tolerance for arousal showed higher activation in the posterior cingulate gyrus, precuneus, and inferior parietal lobule than high reactivity group. Even though performance in the discrimination trials following frustration was unaltered, we observed increased activity of primary and secondary somatosensory cortex processing the tactile information. We interpret this effect as an indicator of additional involvement required to counteract the effects of frustration.

  10. Distributed patterns of brain activity that lead to forgetting

    Directory of Open Access Journals (Sweden)

    Ilke eOztekin

    2011-08-01

    Full Text Available Proactive interference (PI, in which irrelevant information from prior learning disrupts memory performance, is widely viewed as a major cause of forgetting. However, the hypothesized spontaneous recovery (i.e. automatic retrieval of interfering information presumed to be at the base of PI remains to be demonstrated directly. Moreover, it remains unclear at what point during learning and/or retrieval interference impacts memory performance. In order to resolve these open questions, we employed a machine-learning algorithm to identify distributed patterns of brain activity associated with retrieval of interfering information that engenders PI and causes forgetting. Participants were scanned using functional magnetic resonance imaging during an item recognition task. We induced PI by constructing sets of three consecutive study lists from the same semantic category. The classifier quantified the magnitude of category-related activity at encoding and retrieval. Category-specific activity during retrieval increased across lists, consistent with the category information becoming increasingly available and producing interference. Critically, this increase was correlated with individual differences in forgetting and the deployment of frontal lobe mechanisms that resolve interference. Collectively, these findings suggest that distributed patterns of brain activity pertaining to the interfering information during retrieval contribute to forgetting. The prefrontal cortex mediates the relationship between the spontaneous recovery of interfering information at retrieval and individual differences in memory performance.

  11. Objective measurements of daily physical activity patterns and sedentary behaviour in older adults

    DEFF Research Database (Denmark)

    Arnardottir, Nanna Yr; Koster, Annemarie; Van Domelen, Dane R

    2013-01-01

    objectively measured population physical activity (PA) data from older persons is lacking. The aim of this study was to describe free-living PA patterns and sedentary behaviours in Icelandic older men and women using accelerometer.......objectively measured population physical activity (PA) data from older persons is lacking. The aim of this study was to describe free-living PA patterns and sedentary behaviours in Icelandic older men and women using accelerometer....

  12. Merlin : microsimulation system for predicting leisure activity-travel patterns

    NARCIS (Netherlands)

    Middelkoop, van M.; Borgers, A.W.J.; Timmermans, H.J.P.

    2004-01-01

    Development of a model of annual activity-travel patterns of leisure and vacation travel is reported. The simulation system, called Merlin, is a hybrid model system consisting of discrete choice models and rule-based models. It predicts the annual number of day trips and vacations, and the profile

  13. Physical Activity Behavior Patterns during School Leisure Time in Children

    Directory of Open Access Journals (Sweden)

    Chad Smith

    2016-01-01

    Full Text Available Optimizing physical activity (PA in children is paramount to attenuate the incidence of chronic disease and to improve social and cognitive health. Limited research exists examining the observed PA patterns during school leisure times in children from the U.S. The purpose of this study was to examine the observed PA patterns of children during three school leisure times: before school, during lunch, and after school. The SOPLAY instrument was used to observe PA during the three leisure times across six weeks at four elementary schools in the U.S. Observer PA counts were stratified by sex, PA intensity (sedentary, walking, and very active, and leisure time. Multi-level models were employed to examine the effect of leisure time and PA intensity on observer PA counts, adjusting for day and school-level clustering. Lunch displayed the greatest number of counts for sedentary, walking, and very active PA intensities (p 0.05. After school displayed the fewest counts for walking and very active PA in both sexes (p < 0.05. An emphasis should be placed on increasing walking and very active PA intensities before school and during lunch in girls and after school in both sexes. Keywords: after school, before school, lunch, SOPLAY, systematic observation

  14. Associations among handgrip strength, dietary pattern, and physical activity level in Physical Education students.

    Directory of Open Access Journals (Sweden)

    Cem KURT

    2017-06-01

    Full Text Available Aim: The purpose of this study was to determine the relationships among handgrip strength (HGS, dietary pattern, and physical activity level in students from a physical education and sport department. Material and Methods: In this study, 124 men and 77 women aged 18–29 y participated. HGS was evaluated in the dominant hand by using an adjustable handgrip dynamometer and expressed in Newton. Dietary pattern was evaluated by using the Dietary Pattern Index (DPI adapted into the Turkish. Physical activity level was measured by using the short version of the International Physical Activity Questionnaire (IPAQ. Results: The Spearman correlation coefficient showed that HGS positively correlated with IPAQ score (r=0.204, p=0.004, body mass index (r=0.559, p<0.001, and age (r=0.205, p=0.003, but negatively correlated with DPI score (r=−0.179, p=0.01. Conclusion: HGS is a useful, simple, and objective assessment tool for monitoring the physical activity levels and dietary patterns of young subjects.

  15. Fire, Climate, and Human Activity: A Combustive Combination

    Science.gov (United States)

    Kehrwald, N. M.; Battistel, D.; Argiriadis, E.; Barbante, C.; Barber, L. B.; Fortner, S. K.; Jasmann, J.; Kirchgeorg, T.; Zennaro, P.

    2017-12-01

    Ice and lake core records demonstrate that fires caused by human activity can dominate regional biomass burning records in the Common Era. These major increases in fires are often associated with extensive land use change such as an expansion in agriculture. Regions with few humans, relatively stable human populations and/or unvarying land use often have fire histories that are dominated by climate parameters such as temperature and precipitation. Here, we examine biomass burning recorded in ice cores from northern Greenland (NEEM, (77°27'N; 51°3.6'W), Alaska (Juneau Icefield, 58° 35' N; 134° 29'W) and East Antarctica (EPICA DOME C; 75°06'S; 123°21'E), along with New Zealand lake cores to investigate interactions between climate, fire and human activity. Biomarkers such as levoglucosan, and its isomers mannosan and galactosan, can only be produced by cellulose combustion and therefore are specific indicators of past fire activity archived in ice and lake cores. These fire histories add another factor to climate proxies from the same core, and provide a comparison to regional fire syntheses from charcoal records and climate models. For example, fire data from the JSBACH-Spitfire model for the past 2000 years demonstrates that a climate-only scenario would not increase biomass burning in high northern latitudes for the past 2000 years, while NEEM ice core and regional pollen records demonstrate both increased fire activity and land use change that may be ascribed to human activity. Additional biomarkers such as fecal sterols in lake sediments can determine when people were in an area, and can help establish if an increased human presence in an area corresponds with intensified fire activity. This combination of specific biomarkers, other proxy data, and model output can help determine the relative impact of humans versus climate factors on regional fire activity.

  16. Multimodal Imaging of Human Brain Activity: Rational, Biophysical Aspects and Modes of Integration

    Science.gov (United States)

    Blinowska, Katarzyna; Müller-Putz, Gernot; Kaiser, Vera; Astolfi, Laura; Vanderperren, Katrien; Van Huffel, Sabine; Lemieux, Louis

    2009-01-01

    Until relatively recently the vast majority of imaging and electrophysiological studies of human brain activity have relied on single-modality measurements usually correlated with readily observable or experimentally modified behavioural or brain state patterns. Multi-modal imaging is the concept of bringing together observations or measurements from different instruments. We discuss the aims of multi-modal imaging and the ways in which it can be accomplished using representative applications. Given the importance of haemodynamic and electrophysiological signals in current multi-modal imaging applications, we also review some of the basic physiology relevant to understanding their relationship. PMID:19547657

  17. The in vitro isolated whole guinea pig brain as a model to study epileptiform activity patterns.

    Science.gov (United States)

    de Curtis, Marco; Librizzi, Laura; Uva, Laura

    2016-02-15

    Research on ictogenesis is based on the study of activity between seizures and during seizures in animal models of epilepsy (chronic condition) or in in vitro slices obtained from naïve non-epileptic brains after treatment with pro-convulsive drugs, manipulations of the extracellular medium and specific stimulation protocols. The in vitro isolated guinea pig brain retains the functional connectivity between brain structures and maintains interactions between neuronal, glial and vascular compartments. It is a close-to-in vivo preparation that offers experimental advantages not achieved with the use of other experimental models. Neurophysiological and imaging techniques can be utilized in this preparation to study brain activity during and between seizures induced by pharmacological or functional manipulations. Cellular and network determinants of interictal and ictal discharges that reproduce abnormal patterns observed in human focal epilepsies and the associated changes in extracellular ion and blood-brain permeability can be identified and analyzed in the isolated guinea pig brain. Ictal and interictal patterns recorded in in vitro slices may show substantial differences from seizure activity recorded in vivo due to slicing procedure itself. The isolated guinea pig brain maintained in vitro by arterial perfusion combines the typical facilitated access of in vitro preparations, that are difficult to approach during in vivo experiments, with the preservation of larger neuronal networks. The in vitro whole isolated guinea pig brain preparation offers an unique experimental model to study systemic and neurovascular changes during ictogenesis. Published by Elsevier B.V.

  18. Vigilance and activity time-budget adjustments of wintering hooded cranes, Grus monacha, in human-dominated foraging habitats.

    Science.gov (United States)

    Li, Chunlin; Zhou, Lizhi; Xu, Li; Zhao, Niannian; Beauchamp, Guy

    2015-01-01

    Due to loss and degradation of natural wetlands, waterbirds increasingly rely on surrounding human-dominated habitats to obtain food. Quantifying vigilance patterns, investigating the trade-off among various activities, and examining the underlying mechanisms will help us understand how waterbirds adapt to human-caused disturbances. During two successive winters (November-February of 2012-13 and 2013-14), we studied the hooded crane, Grus monacha, in the Shengjin Lake National Nature Reserve (NNR), China, to investigate how the species responds to human disturbances through vigilance and activity time-budget adjustments. Our results showed striking differences in the behavior of the cranes when foraging in the highly disturbed rice paddy fields found in the buffer zone compared with the degraded natural wetlands in the core area of the NNR. Time spent vigilant decreased with flock size and cranes spent more time vigilant in the human-dominated buffer zone. In the rice paddy fields, the birds were more vigilant but also fed more at the expense of locomotion and maintenance activities. Adult cranes spent more time vigilant and foraged less than juveniles. We recommend habitat recovery in natural wetlands and community co-management in the surrounding human-dominated landscape for conservation of the hooded crane and, generally, for the vast numbers of migratory waterbirds wintering in the middle and lower reaches of the Yangtze River floodplain.

  19. Brain Activation During Singing: "Clef de Sol Activation" Is the "Concert" of the Human Brain.

    Science.gov (United States)

    Mavridis, Ioannis N; Pyrgelis, Efstratios-Stylianos

    2016-03-01

    Humans are the most complex singers in nature, and the human voice is thought by many to be the most beautiful musical instrument. Aside from spoken language, singing represents a second mode of acoustic communication in humans. The purpose of this review article is to explore the functional anatomy of the "singing" brain. Methodologically, the existing literature regarding activation of the human brain during singing was carefully reviewed, with emphasis on the anatomic localization of such activation. Relevant human studies are mainly neuroimaging studies, namely functional magnetic resonance imaging and positron emission tomography studies. Singing necessitates activation of several cortical, subcortical, cerebellar, and brainstem areas, served and coordinated by multiple neural networks. Functionally vital cortical areas of the frontal, parietal, and temporal lobes bilaterally participate in the brain's activation process during singing, confirming the latter's role in human communication. Perisylvian cortical activity of the right hemisphere seems to be the most crucial component of this activation. This also explains why aphasic patients due to left hemispheric lesions are able to sing but not speak the same words. The term clef de sol activation is proposed for this crucial perisylvian cortical activation due to the clef de sol shape of the topographical distribution of these cortical areas around the sylvian fissure. Further research is needed to explore the connectivity and sequence of how the human brain activates to sing.

  20. Plasmonic modulator optimized by patterning of active layer and tuning permittivity

    DEFF Research Database (Denmark)

    Babicheva, Viktoriia; Lavrinenko, Andrei

    2012-01-01

    as electrodes. External field changes carrier density in the ultra-thin ITO layer, which influences the permittivity. The metal-insulator-metal system possesses a plasmon resonance, and it is strongly affected by changes in the permittivity of the active layer. To improve performance of the structure we propose...... several optimizations. We examine influence of the ITO permittivity on the modulator's performance and point out appropriate values. We analyze eigenmodes of the waveguide structure and specify the range for its efficient operation. We show that substituting the continuous active layer by a one......-dimension periodic stripes increases transmittance through the device and keeps the modulator's performance at the same level. The dependence on the pattern size and filling factor of the active material is analyzed and optimum parameters are found. Patterned ITO layers allow us to design a Bragg grating inside...

  1. Patterns of Human Plague in Uganda, 2008-2016.

    Science.gov (United States)

    Forrester, Joseph D; Apangu, Titus; Griffith, Kevin; Acayo, Sarah; Yockey, Brook; Kaggwa, John; Kugeler, Kiersten J; Schriefer, Martin; Sexton, Christopher; Ben Beard, C; Candini, Gordian; Abaru, Janet; Candia, Bosco; Okoth, Jimmy Felix; Apio, Harriet; Nolex, Lawrence; Ezama, Geoffrey; Okello, Robert; Atiku, Linda; Mpanga, Joseph; Mead, Paul S

    2017-09-01

    Plague is a highly virulent fleaborne zoonosis that occurs throughout many parts of the world; most suspected human cases are reported from resource-poor settings in sub-Saharan Africa. During 2008-2016, a combination of active surveillance and laboratory testing in the plague-endemic West Nile region of Uganda yielded 255 suspected human plague cases; approximately one third were laboratory confirmed by bacterial culture or serology. Although the mortality rate was 7% among suspected cases, it was 26% among persons with laboratory-confirmed plague. Reports of an unusual number of dead rats in a patient's village around the time of illness onset was significantly associated with laboratory confirmation of plague. This descriptive summary of human plague in Uganda highlights the episodic nature of the disease, as well as the potential that, even in endemic areas, illnesses of other etiologies might be being mistaken for plague.

  2. Human action pattern monitor for telecare system utilizing magnetic thin film infrared sensor

    International Nuclear Information System (INIS)

    Osada, H.; Chiba, S.; Oka, H.; Seki, K.

    2002-01-01

    The magnetic thin film infrared sensor (MFI) is an infrared sensing device utilizing a temperature-sensitive magnetic thin film with marked temperature dependence in the room temperature range. We propose a human action pattern monitor (HPM) constructed with the MFI, without a monitor camera to save the clients' privacy, as a telecare system

  3. Urinary Lactate Dehydrogenase Activity and Its Isozyme Patterns in Kawasaki Disease

    Directory of Open Access Journals (Sweden)

    Yoichi Kawamura

    2017-01-01

    Full Text Available Abnormal urinary findings, such as sterile pyuria, proteinuria, and microscopic hematuria, are often seen in the acute phase of Kawasaki disease (KD. We investigated the potential significance of urinary lactate dehydrogenase (U-LDH activity and its isozyme patterns in KD. Total U-LDH activity and its isozymes (U-LDH1-5 levels were compared among 120 patients with KD, 18 patients with viral infection (VI, and 43 patients with upper urinary tract infection (UTI and additionally compared between intravenous immunoglobulin (IVIG responders (n=89 and nonresponders (n=31 with KD. Total U-LDH activity was higher in KD (35.4±4.8 IU/L, P<0.05 and UTI patients (66.0±8.0 IU/L, P<0.01 than in VI patients (17.0±6.2 IU/L. In the isozyme pattern analysis, KD patients had high levels of U-LDH1 and U-LDH2, while UTI patients had high levels of U-LDH3, U-LDH4, and U-LDH5. Furthermore, IVIG nonresponders of KD had significantly higher levels of total U-LDH activity (45.1±4.7 IU/L, P<0.05, especially U-LDH1 and U-LDH2 (P<0.05, than IVIG responders (32.0±2.8 IU/L. KD patients have increased levels of total U-LDH activity, especially U-LDH-1 and U-LDH2, indicating a unique pattern of U-LDH isozymes different from that in UTI patients.

  4. Quantifying over-activity in bipolar and schizophrenia patients in a human open field paradigm.

    Science.gov (United States)

    Perry, William; Minassian, Arpi; Henry, Brook; Kincaid, Meegin; Young, Jared W; Geyer, Mark A

    2010-06-30

    It has been suggested that a cardinal symptom of mania is over-activity and exaggerated goal-directed behavior. Nevertheless, few attempts have been made to quantify this behavior objectively in a laboratory environment. Having a methodology to assess over-activity reliably might be useful in distinguishing manic bipolar disorder (BD) from schizophrenia (SCZ) during highly activated states. In the current study, quantifiable measures of object interaction were assessed using a multivariate approach. Additionally, symptom correlates of over-activity were assessed. Patients admitted to an acute care psychiatric hospital for either BD with mania or SCZ (paranoid and non-paranoid subtypes) as well as non-patient comparison (NC) participants were assessed in an open field setting referred to as the human Behavioral Pattern Monitor (hBPM). Activity and interactions with novel and engaging objects were recorded for 15min via a concealed video camera and rated for exploratory behavior. Both BD and SCZ patients spent more time near the objects and exhibited more overall walking compared to NC. In contrast, BD patients exhibited greater physical contact with objects (number of object interactions and time spent with objects) relative to SCZ patients or NC participants, as well as more perseverative and socially disinhibited behaviors, indicating a unique pattern of over-activity and goal-directed behavior. Further analyses revealed a distinction between SCZ patients according to their subtype. The current study extends our methodology for quantifying exploration and over-activity in a controlled laboratory setting and aids in assessing the overlap and distinguishing characteristics of BD and SCZ.

  5. Multivariate Cholesky models of human female fertility patterns in the NLSY.

    Science.gov (United States)

    Rodgers, Joseph Lee; Bard, David E; Miller, Warren B

    2007-03-01

    Substantial evidence now exists that variables measuring or correlated with human fertility outcomes have a heritable component. In this study, we define a series of age-sequenced fertility variables, and fit multivariate models to account for underlying shared genetic and environmental sources of variance. We make predictions based on a theory developed by Udry [(1996) Biosocial models of low-fertility societies. In: Casterline, JB, Lee RD, Foote KA (eds) Fertility in the United States: new patterns, new theories. The Population Council, New York] suggesting that biological/genetic motivations can be more easily realized and measured in settings in which fertility choices are available. Udry's theory, along with principles from molecular genetics and certain tenets of life history theory, allow us to make specific predictions about biometrical patterns across age. Consistent with predictions, our results suggest that there are different sources of genetic influence on fertility variance at early compared to later ages, but that there is only one source of shared environmental influence that occurs at early ages. These patterns are suggestive of the types of gene-gene and gene-environment interactions for which we must account to better understand individual differences in fertility outcomes.

  6. User Activity Recognition in Smart Homes Using Pattern Clustering Applied to Temporal ANN Algorithm.

    Science.gov (United States)

    Bourobou, Serge Thomas Mickala; Yoo, Younghwan

    2015-05-21

    This paper discusses the possibility of recognizing and predicting user activities in the IoT (Internet of Things) based smart environment. The activity recognition is usually done through two steps: activity pattern clustering and activity type decision. Although many related works have been suggested, they had some limited performance because they focused only on one part between the two steps. This paper tries to find the best combination of a pattern clustering method and an activity decision algorithm among various existing works. For the first step, in order to classify so varied and complex user activities, we use a relevant and efficient unsupervised learning method called the K-pattern clustering algorithm. In the second step, the training of smart environment for recognizing and predicting user activities inside his/her personal space is done by utilizing the artificial neural network based on the Allen's temporal relations. The experimental results show that our combined method provides the higher recognition accuracy for various activities, as compared with other data mining classification algorithms. Furthermore, it is more appropriate for a dynamic environment like an IoT based smart home.

  7. User Activity Recognition in Smart Homes Using Pattern Clustering Applied to Temporal ANN Algorithm

    Directory of Open Access Journals (Sweden)

    Serge Thomas Mickala Bourobou

    2015-05-01

    Full Text Available This paper discusses the possibility of recognizing and predicting user activities in the IoT (Internet of Things based smart environment. The activity recognition is usually done through two steps: activity pattern clustering and activity type decision. Although many related works have been suggested, they had some limited performance because they focused only on one part between the two steps. This paper tries to find the best combination of a pattern clustering method and an activity decision algorithm among various existing works. For the first step, in order to classify so varied and complex user activities, we use a relevant and efficient unsupervised learning method called the K-pattern clustering algorithm. In the second step, the training of smart environment for recognizing and predicting user activities inside his/her personal space is done by utilizing the artificial neural network based on the Allen’s temporal relations. The experimental results show that our combined method provides the higher recognition accuracy for various activities, as compared with other data mining classification algorithms. Furthermore, it is more appropriate for a dynamic environment like an IoT based smart home.

  8. The use of census migration data to approximate human movement patterns across temporal scales.

    Science.gov (United States)

    Wesolowski, Amy; Buckee, Caroline O; Pindolia, Deepa K; Eagle, Nathan; Smith, David L; Garcia, Andres J; Tatem, Andrew J

    2013-01-01

    Human movement plays a key role in economies and development, the delivery of services, and the spread of infectious diseases. However, it remains poorly quantified partly because reliable data are often lacking, particularly for low-income countries. The most widely available are migration data from human population censuses, which provide valuable information on relatively long timescale relocations across countries, but do not capture the shorter-scale patterns, trips less than a year, that make up the bulk of human movement. Census-derived migration data may provide valuable proxies for shorter-term movements however, as substantial migration between regions can be indicative of well connected places exhibiting high levels of movement at finer time scales, but this has never been examined in detail. Here, an extensive mobile phone usage data set for Kenya was processed to extract movements between counties in 2009 on weekly, monthly, and annual time scales and compared to data on change in residence from the national census conducted during the same time period. We find that the relative ordering across Kenyan counties for incoming, outgoing and between-county movements shows strong correlations. Moreover, the distributions of trip durations from both sources of data are similar, and a spatial interaction model fit to the data reveals the relationships of different parameters over a range of movement time scales. Significant relationships between census migration data and fine temporal scale movement patterns exist, and results suggest that census data can be used to approximate certain features of movement patterns across multiple temporal scales, extending the utility of census-derived migration data.

  9. A microRNA activity map of human mesenchymal tumors: connections to oncogenic pathways; an integrative transcriptomic study

    Directory of Open Access Journals (Sweden)

    Fountzilas Elena

    2012-07-01

    Full Text Available Abstract Background MicroRNAs (miRNAs are nucleic acid regulators of many human mRNAs, and are associated with many tumorigenic processes. miRNA expression levels have been used in profiling studies, but some evidence suggests that expression levels do not fully capture miRNA regulatory activity. In this study we integrate multiple gene expression datasets to determine miRNA activity patterns associated with cancer phenotypes and oncogenic pathways in mesenchymal tumors – a very heterogeneous class of malignancies. Results Using a computational method, we identified differentially activated miRNAs between 77 normal tissue specimens and 135 sarcomas and we validated many of these findings with microarray interrogation of an independent, paraffin-based cohort of 18 tumors. We also showed that miRNA activity is imperfectly correlated with miRNA expression levels. Using next-generation miRNA sequencing we identified potential base sequence alterations which may explain differential activity. We then analyzed miRNA activity changes related to the RAS-pathway and found 21 miRNAs that switch from silenced to activated status in parallel with RAS activation. Importantly, nearly half of these 21 miRNAs were predicted to regulate integral parts of the miRNA processing machinery, and our gene expression analysis revealed significant reductions of these transcripts in RAS-active tumors. These results suggest an association between RAS signaling and miRNA processing in which miRNAs may attenuate their own biogenesis. Conclusions Our study represents the first gene expression-based investigation of miRNA regulatory activity in human sarcomas, and our findings indicate that miRNA activity patterns derived from integrated transcriptomic data are reproducible and biologically informative in cancer. We identified an association between RAS signaling and miRNA processing, and demonstrated sequence alterations as plausible causes for differential miRNA activity

  10. A Theoretical Basis for Entropy-Scaling Effects in Human Mobility Patterns.

    Science.gov (United States)

    Osgood, Nathaniel D; Paul, Tuhin; Stanley, Kevin G; Qian, Weicheng

    2016-01-01

    Characterizing how people move through space has been an important component of many disciplines. With the advent of automated data collection through GPS and other location sensing systems, researchers have the opportunity to examine human mobility at spatio-temporal resolution heretofore impossible. However, the copious and complex data collected through these logging systems can be difficult for humans to fully exploit, leading many researchers to propose novel metrics for encapsulating movement patterns in succinct and useful ways. A particularly salient proposed metric is the mobility entropy rate of the string representing the sequence of locations visited by an individual. However, mobility entropy rate is not scale invariant: entropy rate calculations based on measurements of the same trajectory at varying spatial or temporal granularity do not yield the same value, limiting the utility of mobility entropy rate as a metric by confounding inter-experimental comparisons. In this paper, we derive a scaling relationship for mobility entropy rate of non-repeating straight line paths from the definition of Lempel-Ziv compression. We show that the resulting formulation predicts the scaling behavior of simulated mobility traces, and provides an upper bound on mobility entropy rate under certain assumptions. We further show that this formulation has a maximum value for a particular sampling rate, implying that optimal sampling rates for particular movement patterns exist.

  11. Effect of frustration on brain activation pattern in subjects with different temperament.

    Directory of Open Access Journals (Sweden)

    Maria eBierzynska

    2016-01-01

    Full Text Available In spite of the prevalence of frustration in everyday life, very few neuroimaging studies were focused on this emotional state. In the current study we aimed to examine effects of frustration on brain activity while performing a well-learned task in participants with low and high tolerance for arousal. Prior to the functional magnetic resonance imaging (fMRI session, the subjects underwent two weeks of Braille reading training. Frustration induction was obtained by using a novel highly difficult tactile task based on discrimination of Braille-like raised dots patterns and negative feedback. Effectiveness of this procedure has been confirmed in a pilot study using galvanic skin response (GSR and questionnaires. Brain activation pattern during tactile discrimination task before and after frustration were compared directly. Results revealed changes in brain activity in structures mostly reported in acute stress studies: striatum, cingulate cortex, insula, middle frontal gyrus and precuneus and in structures engaged in tactile Braille discrimination: SI and SII. Temperament type affected activation pattern. Subjects with low tolerance for arousal showed higher activation in the posterior cingulate gyrus, precuneus and inferior parietal lobule (IPL than high reactivity group. Even though performance in the discrimination trials following frustration was unaltered, we observed increased activity of primary and secondary somatosensory cortex processing the tactile information. We interpret this effect as an indicator of additional involvement required to counteract the effects of frustration.

  12. Patterns of physical activity and obesity indices among white-collar men in Taiwan.

    Science.gov (United States)

    Liou, Yiing Mei

    2007-06-01

    The purposes of this study were to identify patterns of physical activity among white-collar men in Taiwan and to analyze the relationships between physical activity patterns and obesity indices. This cross-sectional survey included 350 subjects (between 21 and 75 years old). The Monitoring Trends and Determinants of Cardiovascular Disease Optional Study of Physical Activity Questionnaire (MOSPA-Q), developed and published by the World Health Organization (WHO) was used to measure subjects' daily energy expenditures attributed to physical activity. Obesity indices included body weight, body mass index (BMI), waist/hip ratio (WHR), body fat percentage, total cholesterol, triglycerides, high-density lipoprotein (HDL), and low-density lipoprotein (LDL). Three patterns of physical activity, namely work-oriented, active, and light-active lifestyles, were identified through cluster analysis. The work-oriented group reported spending the most amount of time on work-related activities (10.5 hours/week). The active group spent the most time (1 hour/day) of the three groups on leisure activities. The light-active group spent the most time (7 hours/day) of the three groups on light activities. Referencing the 150 minutes/week of moderate- intensity physical activity recommended by the US Centers for Disease Control and prevention (CDC) for health gain as a cut-off point, 1.1%, 15.2%, and 29.1% of subjects in the active, light-active and work-oriented groups, respectively, failed to achieve this minimal level. Those in the work-oriented group categorized in high work-overload and prevalent inactivity situations returned the worst obesity indices (Body weight, BMI, WHR, and body fat percentages) adjusted by age.

  13. Human Activity Recognition in AAL Environments Using Random Projections

    Directory of Open Access Journals (Sweden)

    Robertas Damaševičius

    2016-01-01

    Full Text Available Automatic human activity recognition systems aim to capture the state of the user and its environment by exploiting heterogeneous sensors attached to the subject’s body and permit continuous monitoring of numerous physiological signals reflecting the state of human actions. Successful identification of human activities can be immensely useful in healthcare applications for Ambient Assisted Living (AAL, for automatic and intelligent activity monitoring systems developed for elderly and disabled people. In this paper, we propose the method for activity recognition and subject identification based on random projections from high-dimensional feature space to low-dimensional projection space, where the classes are separated using the Jaccard distance between probability density functions of projected data. Two HAR domain tasks are considered: activity identification and subject identification. The experimental results using the proposed method with Human Activity Dataset (HAD data are presented.

  14. Human Activity Recognition in AAL Environments Using Random Projections.

    Science.gov (United States)

    Damaševičius, Robertas; Vasiljevas, Mindaugas; Šalkevičius, Justas; Woźniak, Marcin

    2016-01-01

    Automatic human activity recognition systems aim to capture the state of the user and its environment by exploiting heterogeneous sensors attached to the subject's body and permit continuous monitoring of numerous physiological signals reflecting the state of human actions. Successful identification of human activities can be immensely useful in healthcare applications for Ambient Assisted Living (AAL), for automatic and intelligent activity monitoring systems developed for elderly and disabled people. In this paper, we propose the method for activity recognition and subject identification based on random projections from high-dimensional feature space to low-dimensional projection space, where the classes are separated using the Jaccard distance between probability density functions of projected data. Two HAR domain tasks are considered: activity identification and subject identification. The experimental results using the proposed method with Human Activity Dataset (HAD) data are presented.

  15. Axi-symmetric patterns of active polar filaments on spherical and composite surfaces

    Science.gov (United States)

    Srivastava, Pragya; Rao, Madan

    2014-03-01

    Experiments performed on Fission Yeast cells of cylindrical and spherical shapes, rod-shaped bacteria and reconstituted cylindrical liposomes suggest the influence of cell geometry on patterning of cortical actin. A theoretical model based on active hydrodynamic description of cortical actin that includes curvature-orientation coupling predicts spontaneous formation of acto-myosin rings, cables and nodes on cylindrical and spherical geometries [P. Srivastava et al, PRL 110, 168104(2013)]. Stability and dynamics of these patterns is also affected by the cellular shape and has been observed in experiments performed on Fission Yeast cells of spherical shape. Motivated by this, we study the stability and dynamics of axi-symmetric patterns of active polar filaments on the surfaces of spherical, saddle shaped and conical geometry and classify the stable steady state patterns on these surfaces. Based on the analysis of the fluorescence images of Myosin-II during ring slippage we propose a simple mechanical model for ring-sliding based on force balance and make quantitative comparison with the experiments performed on Fission Yeast cells. NSF Grant DMR-1004789 and Syracuse Soft Matter Program.

  16. Smartphone-based human activity recognition

    OpenAIRE

    Reyes Ortiz, Jorge Luis

    2014-01-01

    Cotutela Universitat Politècnica de Catalunya i Università degli Studi di Genova Human Activity Recognition (HAR) is a multidisciplinary research field that aims to gather data regarding people's behavior and their interaction with the environment in order to deliver valuable context-aware information. It has nowadays contributed to develop human-centered areas of study such as Ambient Intelligence and Ambient Assisted Living, which concentrate on the improvement of people's Quality of Lif...

  17. Localization of spontaneous bursting neuronal activity in the preterm human brain with simultaneous EEG-fMRI.

    Science.gov (United States)

    Arichi, Tomoki; Whitehead, Kimberley; Barone, Giovanni; Pressler, Ronit; Padormo, Francesco; Edwards, A David; Fabrizi, Lorenzo

    2017-09-12

    Electroencephalographic recordings from the developing human brain are characterized by spontaneous neuronal bursts, the most common of which is the delta brush. Although similar events in animal models are known to occur in areas of immature cortex and drive their development, their origin in humans has not yet been identified. Here, we use simultaneous EEG-fMRI to localise the source of delta brush events in 10 preterm infants aged 32-36 postmenstrual weeks. The most frequent patterns were left and right posterior-temporal delta brushes which were associated in the left hemisphere with ipsilateral BOLD activation in the insula only; and in the right hemisphere in both the insular and temporal cortices. This direct measure of neural and hemodynamic activity shows that the insula, one of the most densely connected hubs in the developing cortex, is a major source of the transient bursting events that are critical for brain maturation.

  18. Degalactosylated/desialylated human serum containing GcMAF induces macrophage phagocytic activity and in vivo antitumor activity.

    Science.gov (United States)

    Kuchiike, Daisuke; Uto, Yoshihiro; Mukai, Hirotaka; Ishiyama, Noriko; Abe, Chiaki; Tanaka, Daichi; Kawai, Tomohito; Kubo, Kentaro; Mette, Martin; Inui, Toshio; Endo, Yoshio; Hori, Hitoshi

    2013-07-01

    The group-specific component protein-derived macrophage-activating factor (GcMAF) has various biological activities, such as macrophage activation and antitumor activity. Clinical trials of GcMAF have been carried out for metastatic breast cancer, prostate cancer, and metastatic colorectal cancer. In this study, despite the complicated purification process of GcMAF, we used enzymatically-treated human serum containing GcMAF with a considerable macrophage-stimulating activity and antitumor activity. We detected GcMAF in degalactosylated/desialylated human serum by western blotting using an anti-human Gc globulin antibody, and Helix pomatia agglutinin lectin. We also found that GcMAF-containing human serum significantly enhanced the phagocytic activity of mouse peritoneal macrophages and extended the survival time of mice bearing Ehrlich ascites tumors. We demonstrated that GcMAF-containing human serum can be used as a potential macrophage activator for cancer immunotherapy.

  19. Impact of urban setting on activity-travel patterns : comparison of performance indicators with quasi-experimental design data

    NARCIS (Netherlands)

    Snellen, D.M.E.G.W.; Arentze, T.A.; Borgers, A.W.J.; Timmermans, H.J.P.

    2001-01-01

    The interest in activity-travel patterns has gained huge moment um lately. Most studies focus on analysis of particular aspects of such patterns and examine the relationships between aspects of activity patterns and sociodemographic variables. To complement this work, a study was conducted to

  20. Dietary and physical activity patterns in French children are related to overweight and socioeconomic status.

    Science.gov (United States)

    Lioret, Sandrine; Touvier, Mathilde; Lafay, Lionel; Volatier, Jean-Luc; Maire, Bernard

    2008-01-01

    Sedentary behavior (SED) has already been identified as a risk factor of childhood overweight (OW) but less is known about the dietary patterns related to adiposity. Our objective was to investigate if lifestyle patterns combining overall diet and physical activity were associated with childhood OW and if they were involved in the reverse association between socioeconomic status (SES) and OW. Dietary intake was assessed using a 7-d food record in 748 French children aged 3-11 y from the 1998-1999 cross-sectional French Enquête Individuelle et Nationale sur les Consommations Alimentaires national food consumption survey. Weight and height, leisure time physical activity, SED (television viewing), and SES were reported by parents or children by answering questionnaires. Scores for lifestyle patterns were assessed with factor analysis and their relationship with OW was explored by logistic regression analysis. Two similar lifestyle patterns were identified in children aged 3-6 y and 7-11 y: "snacking and sedentary" and "varied food and physically active." The snacking and sedentary pattern was positively associated with OW in the youngest children (P-trend = 0.0161) and partly mediated the negative association of SES to OW. The varied food and physically active pattern was inversely correlated with OW in the eldest children only (P-trend = 0.0401). A third pattern called "big eaters at main meals" was derived in children aged 7-11 y and was positively correlated with OW (P-trend = 0.0165). From a public health perspective, the combinations of identifiable dietary and physical activity behaviors may be useful as a basis for recommendations on preventing OW.

  1. A novel in vitro model for studying quiescence and activation of primary isolated human myoblasts

    DEFF Research Database (Denmark)

    Sellathurai, Jeeva; Cheedipudi, Sirisha; Dhawan, Jyotsna

    2013-01-01

    term exponentially proliferating cultures normally used for in vitro studies. Human myoblasts cultured through many passages inevitably consist of a mixture of proliferating and non-proliferating cells, while cells activated from G0 are in a synchronously proliferating phase, and therefore may...... be a better model for in vivo proliferating satellite cells. Furthermore, the temporal propagation of proliferation in these synchronized cultures resembles the pattern seen in vivo during regeneration. We therefore present this culture model as a useful and novel condition for molecular analysis...

  2. EMG patterns during assisted walking in the exoskeleton

    Science.gov (United States)

    Sylos-Labini, Francesca; La Scaleia, Valentina; d'Avella, Andrea; Pisotta, Iolanda; Tamburella, Federica; Scivoletto, Giorgio; Molinari, Marco; Wang, Shiqian; Wang, Letian; van Asseldonk, Edwin; van der Kooij, Herman; Hoellinger, Thomas; Cheron, Guy; Thorsteinsson, Freygardur; Ilzkovitz, Michel; Gancet, Jeremi; Hauffe, Ralf; Zanov, Frank; Lacquaniti, Francesco; Ivanenko, Yuri P.

    2014-01-01

    Neuroprosthetic technology and robotic exoskeletons are being developed to facilitate stepping, reduce muscle efforts, and promote motor recovery. Nevertheless, the guidance forces of an exoskeleton may influence the sensory inputs, sensorimotor interactions and resulting muscle activity patterns during stepping. The aim of this study was to report the muscle activation patterns in a sample of intact and injured subjects while walking with a robotic exoskeleton and, in particular, to quantify the level of muscle activity during assisted gait. We recorded electromyographic (EMG) activity of different leg and arm muscles during overground walking in an exoskeleton in six healthy individuals and four spinal cord injury (SCI) participants. In SCI patients, EMG activity of the upper limb muscles was augmented while activation of leg muscles was typically small. Contrary to our expectations, however, in neurologically intact subjects, EMG activity of leg muscles was similar or even larger during exoskeleton-assisted walking compared to normal overground walking. In addition, significant variations in the EMG waveforms were found across different walking conditions. The most variable pattern was observed in the hamstring muscles. Overall, the results are consistent with a non-linear reorganization of the locomotor output when using the robotic stepping devices. The findings may contribute to our understanding of human-machine interactions and adaptation of locomotor activity patterns. PMID:24982628

  3. EMG patterns during assisted walking in the exoskeleton

    Directory of Open Access Journals (Sweden)

    Francesca eSylos-Labini

    2014-06-01

    Full Text Available Neuroprosthetic technology and robotic exoskeletons are being developed to facilitate stepping, reduce muscle efforts and promote motor recovery. Nevertheless, the guidance forces of an exoskeleton may influence the sensory inputs, sensorimotor interactions and resulting muscle activity patterns during stepping. The aim of this study was to report the muscle activation patterns in a sample of intact and injured subjects while walking with a robotic exoskeleton and, in particular, to quantify the level of muscle activity during assisted gait. We recorded electromyographic (EMG activity of different leg and arm muscles during overground walking in an exoskeleton in six healthy individuals and four spinal cord injury (SCI participants. In SCI patients, EMG activity of the upper limb muscles was augmented while activation of leg muscles was typically small. Contrary to our expectations, however, in neurologically intact subjects, EMG activity of leg muscles was similar or even larger during exoskeleton-assisted walking compared to normal overground walking. In addition, significant variations in the EMG waveforms were found across different walking conditions. The most variable pattern was observed in the hamstring muscles. Overall, the results are consistent with a non-linear reorganization of the locomotor output when using the robotic stepping devices. The findings may contribute to our understanding of human-machine interactions and adaptation of locomotor activity patterns.

  4. Structural organization and pattern of innervations of human Meissner’s corpuscle: a light microscopic study

    OpenAIRE

    Gh. Mohd. Bhat; Naseer Ahmad Shah; Mohd. Saleem Itoo; Bashir Ahmad Shah; Shaheen Shahdad; Javeed Ahmad Khan

    2013-01-01

    Background: Human glabrous skin has very rich nerve supply in the form of specialized nerve endings like Meissner’s corpuscles, Pacinian corpuscles, Krause end bulbs etc for carrying sensory information to brain. Aim of study: To study the structure, pattern of innervations and nerve terminations of human Meissner’s corpuscle. Methods: Skin samples from sixty human beings (age range 2 to 72 years) were taken, sections prepared and stained with a cytological (Haematoxylin – Eosi...

  5. Leisure time physical activity in Saudi Arabia: prevalence, pattern and determining factors.

    Science.gov (United States)

    Amin, Tarek Tawfik; Al Khoudair, Ali Salah; Al Harbi, Mohammad Abdulwahab; Al Ali, Ahmed Radi

    2012-01-01

    Identification of reliable predictors of leisure time physical activity (LTPA) will enable healthcare providers to intervene and change the patterns of LTPA in the population to improve community health. The objectives of this study were to determine prevalence and pattern of LTPA among adult Saudis aged 18-65 years, and to define the socio-demographic determinants that correlate with LTPA in Al-Hassa, Saudi Arabia. A cross-sectional study of 2176 adult Saudis attending urban and rural primary health care centers were selected using a multistage proportionate sampling method. Participants were personally interviewed to gather information regarding socio-demographics, physical activity pattern using the Global Physical Activity Questionnaire (GPAQ). Physical activity (PA) in each domain was expressed in metabolic equivalents (METs). The median total METs minutes/week for LTPA for both genders was 256, higher for men (636 METs minutes/week) compared to women (249 METs minutes/week). Overall, only 19.8% of the total PA was derived from LTPA. Of the sampled population 50.0% reported doing no leisure activity. Using the cut off of 600 METs-minutes/day or 150 minutes of moderate intensity over 5 or more days/week, only 21.0% of the included sample were considered as being sufficiently active and 10.4% were in the high active category with beneficial health effects. Multivariate regression analysis showed that male, younger age (active in the LTPA domain. The prevalence and intensity of LTPA among the included sample demonstrated low levels. Nearly 80% of the included sample population did not achieve the recommended LTPA level with beneficial health effects. Female gender, urban residence and associated chronic diseases correlated with a low LTPA.

  6. Improved Volitional Recall of Motor-Imagery-Related Brain Activation Patterns Using Real-Time Functional MRI-Based Neurofeedback.

    Science.gov (United States)

    Bagarinao, Epifanio; Yoshida, Akihiro; Ueno, Mika; Terabe, Kazunori; Kato, Shohei; Isoda, Haruo; Nakai, Toshiharu

    2018-01-01

    Motor imagery (MI), a covert cognitive process where an action is mentally simulated but not actually performed, could be used as an effective neurorehabilitation tool for motor function improvement or recovery. Recent approaches employing brain-computer/brain-machine interfaces to provide online feedback of the MI during rehabilitation training have promising rehabilitation outcomes. In this study, we examined whether participants could volitionally recall MI-related brain activation patterns when guided using neurofeedback (NF) during training. The participants' performance was compared to that without NF. We hypothesized that participants would be able to consistently generate the relevant activation pattern associated with the MI task during training with NF compared to that without NF. To assess activation consistency, we used the performance of classifiers trained to discriminate MI-related brain activation patterns. Our results showed significantly higher predictive values of MI-related activation patterns during training with NF. Additionally, this improvement in the classification performance tends to be associated with the activation of middle temporal gyrus/inferior occipital gyrus, a region associated with visual motion processing, suggesting the importance of performance monitoring during MI task training. Taken together, these findings suggest that the efficacy of MI training, in terms of generating consistent brain activation patterns relevant to the task, can be enhanced by using NF as a mechanism to enable participants to volitionally recall task-related brain activation patterns.

  7. Improved Volitional Recall of Motor-Imagery-Related Brain Activation Patterns Using Real-Time Functional MRI-Based Neurofeedback

    Directory of Open Access Journals (Sweden)

    Epifanio Bagarinao

    2018-04-01

    Full Text Available Motor imagery (MI, a covert cognitive process where an action is mentally simulated but not actually performed, could be used as an effective neurorehabilitation tool for motor function improvement or recovery. Recent approaches employing brain–computer/brain–machine interfaces to provide online feedback of the MI during rehabilitation training have promising rehabilitation outcomes. In this study, we examined whether participants could volitionally recall MI-related brain activation patterns when guided using neurofeedback (NF during training. The participants’ performance was compared to that without NF. We hypothesized that participants would be able to consistently generate the relevant activation pattern associated with the MI task during training with NF compared to that without NF. To assess activation consistency, we used the performance of classifiers trained to discriminate MI-related brain activation patterns. Our results showed significantly higher predictive values of MI-related activation patterns during training with NF. Additionally, this improvement in the classification performance tends to be associated with the activation of middle temporal gyrus/inferior occipital gyrus, a region associated with visual motion processing, suggesting the importance of performance monitoring during MI task training. Taken together, these findings suggest that the efficacy of MI training, in terms of generating consistent brain activation patterns relevant to the task, can be enhanced by using NF as a mechanism to enable participants to volitionally recall task-related brain activation patterns.

  8. A MULTIDISCIPLINARY ANALYTICAL FRAMEWORK FOR STUDYING ACTIVE MOBILITY PATTERNS

    Directory of Open Access Journals (Sweden)

    D. Orellana

    2016-06-01

    Full Text Available Intermediate cities are urged to change and adapt their mobility systems from a high energy-demanding motorized model to a sustainable low-motorized model. In order to accomplish such a model, city administrations need to better understand active mobility patterns and their links to socio-demographic and cultural aspects of the population. During the last decade, researchers have demonstrated the potential of geo-location technologies and mobile devices to gather massive amounts of data for mobility studies. However, the analysis and interpretation of this data has been carried out by specialized research groups with relatively narrow approaches from different disciplines. Consequently, broader questions remain less explored, mainly those relating to spatial behaviour of individuals and populations with their geographic environment and the motivations and perceptions shaping such behaviour. Understanding sustainable mobility and exploring new research paths require an interdisciplinary approach given the complex nature of mobility systems and their social, economic and environmental impacts. Here, we introduce the elements for a multidisciplinary analytical framework for studying active mobility patterns comprised of three components: a Methodological, b Behavioural, and c Perceptual. We demonstrate the applicability of the framework by analysing mobility patterns of cyclists and pedestrians in an intermediate city integrating a range of techniques, including: GPS tracking, spatial analysis, auto-ethnography, and perceptual mapping. The results demonstrated the existence of non-evident spatial behaviours and how perceptual features affect mobility. This knowledge is useful for developing policies and practices for sustainable mobility planning.

  9. a Multidisciplinary Analytical Framework for Studying Active Mobility Patterns

    Science.gov (United States)

    Orellana, D.; Hermida, C.; Osorio, P.

    2016-06-01

    Intermediate cities are urged to change and adapt their mobility systems from a high energy-demanding motorized model to a sustainable low-motorized model. In order to accomplish such a model, city administrations need to better understand active mobility patterns and their links to socio-demographic and cultural aspects of the population. During the last decade, researchers have demonstrated the potential of geo-location technologies and mobile devices to gather massive amounts of data for mobility studies. However, the analysis and interpretation of this data has been carried out by specialized research groups with relatively narrow approaches from different disciplines. Consequently, broader questions remain less explored, mainly those relating to spatial behaviour of individuals and populations with their geographic environment and the motivations and perceptions shaping such behaviour. Understanding sustainable mobility and exploring new research paths require an interdisciplinary approach given the complex nature of mobility systems and their social, economic and environmental impacts. Here, we introduce the elements for a multidisciplinary analytical framework for studying active mobility patterns comprised of three components: a) Methodological, b) Behavioural, and c) Perceptual. We demonstrate the applicability of the framework by analysing mobility patterns of cyclists and pedestrians in an intermediate city integrating a range of techniques, including: GPS tracking, spatial analysis, auto-ethnography, and perceptual mapping. The results demonstrated the existence of non-evident spatial behaviours and how perceptual features affect mobility. This knowledge is useful for developing policies and practices for sustainable mobility planning.

  10. Haemophilus ducreyi infection induces activation of the NLRP3 inflammasome in nonpolarized but not in polarized human macrophages.

    Science.gov (United States)

    Li, Wei; Katz, Barry P; Bauer, Margaret E; Spinola, Stanley M

    2013-08-01

    Recognition of microbial infection by certain intracellular pattern recognition receptors leads to the formation of a multiprotein complex termed the inflammasome. Inflammasome assembly activates caspase-1 and leads to cleavage and secretion of the proinflammatory cytokines interleukin-1 beta (IL-1β) and IL-18, which help control many bacterial pathogens. However, excessive inflammation mediated by inflammasome activation can also contribute to immunopathology. Here, we investigated whether Haemophilus ducreyi, a Gram-negative bacterium that causes the genital ulcer disease chancroid, activates inflammasomes in experimentally infected human skin and in monocyte-derived macrophages (MDM). Although H. ducreyi is predominantly extracellular during human infection, several inflammasome-related components were transcriptionally upregulated in H. ducreyi-infected skin. Infection of MDM with live, but not heat-killed, H. ducreyi induced caspase-1- and caspase-5-dependent processing and secretion of IL-1β. Blockage of H. ducreyi uptake by cytochalasin D significantly reduced the amount of secreted IL-1β. Knocking down the expression of the inflammasome components NLRP3 and ASC abolished IL-1β production. Consistent with NLRP3-dependent inflammasome activation, blocking ATP signaling, K(+) efflux, cathepsin B activity, and lysosomal acidification all inhibited IL-1β secretion. However, inhibition of the production and function of reactive oxygen species did not decrease IL-1β production. Polarization of macrophages to classically activated M1 or alternatively activated M2 cells abrogated IL-1β secretion elicited by H. ducreyi. Our study data indicate that H. ducreyi induces NLRP3 inflammasome activation via multiple mechanisms and suggest that the heterogeneity of macrophages within human lesions may modulate inflammasome activation during human infection.

  11. Developmental heterogeneity in DNA packaging patterns influences T-cell activation and transmigration.

    Directory of Open Access Journals (Sweden)

    Soumya Gupta

    Full Text Available Cellular differentiation programs are accompanied by large-scale changes in nuclear organization and gene expression. In this context, accompanying transitions in chromatin assembly that facilitates changes in gene expression and cell behavior in a developmental system are poorly understood. Here, we address this gap and map structural changes in chromatin organization during murine T-cell development, to describe an unusual heterogeneity in chromatin organization and associated functional correlates in T-cell lineage. Confocal imaging of DNA assembly in cells isolated from bone marrow, thymus and spleen reveal the emergence of heterogeneous patterns in DNA organization in mature T-cells following their exit from the thymus. The central DNA pattern dominated in immature precursor cells in the thymus whereas both central and peripheral DNA patterns were observed in naïve and memory cells in circulation. Naïve T-cells with central DNA patterns exhibited higher mechanical pliability in response to compressive loads in vitro and transmigration assays in vivo, and demonstrated accelerated expression of activation-induced marker CD69. T-cell activation was characterized by marked redistribution of DNA assembly to a central DNA pattern and increased nuclear size. Notably, heterogeneity in DNA patterns recovered in cells induced into quiescence in culture, suggesting an internal regulatory mechanism for chromatin reorganization. Taken together, our results uncover an important component of plasticity in nuclear organization, reflected in chromatin assembly, during T-cell development, differentiation and transmigration.

  12. The measurement of sedentary patterns and behaviors using the activPAL™ Professional physical activity monitor

    International Nuclear Information System (INIS)

    Dowd, Kieran P; Bourke, Alan K; Nelson, John; Donnelly, Alan E; Harrington, Deirdre M

    2012-01-01

    Epidemiological studies have associated the negative effects of sedentary time and sedentary patterns on health indices. However, these studies have used methodologies that do not directly measure the sedentary state. Recent technological developments in the area of motion sensors have incorporated inclinometers, which can measure the inclination of the body directly, without relying on self-report or count thresholds. This paper aims to provide a detailed description of methodologies used to examine a range of relevant variables, including sedentary levels and patterns from an inclinometer-based motion sensor. The activPAL Professional physical activity logger provides an output which can be interpreted and used without the need for further processing and additional variables were derived using a custom designed MATLAB® computer program. The methodologies described have been implemented on a sample of 44 adolescent females, and the results of a range of daily physical activity and sedentary variables are described and presented. The results provide a range of objectively measured and objectively processed variables, including total time spent sitting/lying, standing and stepping, number and duration of daily sedentary bouts and both bed hours and non-bed hours, which may be of interest when making association between physical activity, sedentary behaviors and health indices. (paper)

  13. Generation of activity-rest patterns by dual circadian pacemaker systems : a model

    NARCIS (Netherlands)

    Beersma, Domien G.M.; Daan, Serge

    1992-01-01

    Activity-rest patterns displayed by an animal under various circumstances are suggested to result from the combined influences of two virtually identical circadian pacemaker components. Increased output of each component proportionally increases the probability of activity of the animal. Such a dual

  14. CASAnova: a multiclass support vector machine model for the classification of human sperm motility patterns.

    Science.gov (United States)

    Goodson, Summer G; White, Sarah; Stevans, Alicia M; Bhat, Sanjana; Kao, Chia-Yu; Jaworski, Scott; Marlowe, Tamara R; Kohlmeier, Martin; McMillan, Leonard; Zeisel, Steven H; O'Brien, Deborah A

    2017-11-01

    The ability to accurately monitor alterations in sperm motility is paramount to understanding multiple genetic and biochemical perturbations impacting normal fertilization. Computer-aided sperm analysis (CASA) of human sperm typically reports motile percentage and kinematic parameters at the population level, and uses kinematic gating methods to identify subpopulations such as progressive or hyperactivated sperm. The goal of this study was to develop an automated method that classifies all patterns of human sperm motility during in vitro capacitation following the removal of seminal plasma. We visually classified CASA tracks of 2817 sperm from 18 individuals and used a support vector machine-based decision tree to compute four hyperplanes that separate five classes based on their kinematic parameters. We then developed a web-based program, CASAnova, which applies these equations sequentially to assign a single classification to each motile sperm. Vigorous sperm are classified as progressive, intermediate, or hyperactivated, and nonvigorous sperm as slow or weakly motile. This program correctly classifies sperm motility into one of five classes with an overall accuracy of 89.9%. Application of CASAnova to capacitating sperm populations showed a shift from predominantly linear patterns of motility at initial time points to more vigorous patterns, including hyperactivated motility, as capacitation proceeds. Both intermediate and hyperactivated motility patterns were largely eliminated when sperm were incubated in noncapacitating medium, demonstrating the sensitivity of this method. The five CASAnova classifications are distinctive and reflect kinetic parameters of washed human sperm, providing an accurate, quantitative, and high-throughput method for monitoring alterations in motility. © The Authors 2017. Published by Oxford University Press on behalf of Society for the Study of Reproduction. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Similarity of hydrolyzing activity of human and rat small intestinal disaccharidases

    Directory of Open Access Journals (Sweden)

    Oku T

    2011-06-01

    Full Text Available Tsuneyuki Oku¹, Kenichi Tanabe¹, Shigeharu Ogawa², Naoki Sadamori¹, Sadako Nakamura¹¹Graduate School of Human Health Science, University of Nagasaki, Siebold, Nagayo, Japan; ²Juzenkai Hospital, Kagomachi, Nagasaki, JapanBackground: The purpose of this study was to clarify whether it is possible to extrapolate results from studies of the hydrolyzing activity of disaccharidases from rats to humans.Materials and methods: We measured disaccharidase activity in humans and rats using identical preparation and assay methods, and investigated the similarity in hydrolyzing activity. Small intestinal samples without malignancy were donated by five patients who had undergone bladder tumor surgery, and homogenates were prepared to measure disaccharidase activity. Adult rat homogenates were prepared using small intestine.Results: Maltase activity was the highest among the five disaccharidases, followed by sucrase and then palatinase in humans and rats. Trehalase activity was slightly lower than that of palatinase in humans and was similar to that of sucrase in rats. Lactase activity was the lowest in humans, but was similar to that of palatinase in rats. Thus, the hydrolyzing activity of five disaccharidases was generally similar in humans and rats. The relative activity of sucrose and palatinase versus maltase was generally similar between humans and rats. The ratio of rat to human hydrolyzing activity of maltase, sucrase, and palatinase was 1.9–3.1, but this was not a significant difference. Leaf extract from Morus alba strongly inhibited the activity of maltase, sucrase, and palatinase, but not trehalase and lactase, and the degree of inhibition was similar in humans and rats. L-arabinose mildly inhibited sucrase activity, but hardly inhibited the activity of maltase, palatinase, trehalase and lactase in humans and rats. The digestibility of 1-kestose, galactosylsucrose, and panose by small intestinal enzymes was very similar between humans and

  16. E6-associated transcription patterns in human papilloma virus 16-positive cervical tissues.

    Science.gov (United States)

    Lin, Kezhi; Lu, Xulian; Chen, Jun; Zou, Ruanmin; Zhang, Lifang; Xue, Xiangyang

    2015-01-01

    The change in transcription pattern induced by post-transcriptional RNA splicing is an important mechanism in the regulation of the early gene expression of human papilloma virus (HPV). The present study was conducted to establish a method to specifically amplify HPV-16 E6-associated transcripts. The E6-related transcripts from 63 HPV-16-positive cervical tumor tissue samples were amplified, consisting of eight cases of low-risk intraepithelial lesions, 38 cases of high-risk intraepithelial lesions and 17 cases of cervical cancer (CxCa). The appropriate amplified segments were recovered following agarose gel electrophoresis, and subjected to further sequencing and sequence alignment analysis. Six groups of E6 transcription patterns were identified from HPV-16-positive cervical tumor tissue, including five newly-discovered transcripts. Different HPV-16 E6-associated transcription patterns were detected during the development of CxCa. Over the course of the progression of the low-grade squamous intraepithelial lesions to CxCa, the specific HPV-16 E6-associated transcription patterns and the dominant transcripts were all different. As indicated by this study, the transcription pattern of the E6 early gene of HPV-16 was closely associated with the stages of cervical carcinogenesis, and may also be involved in the development of CxCa.

  17. Physical activity levels and patterns of thirteen to fifteen year old ...

    African Journals Online (AJOL)

    There is worldwide concern over the decline in physical activity (PA) levels among school children. The purpose of this study was to investigate the (PA) levels and PA patterns of thirteen to fifteen year old boys from different race groups in the North- West Province and to determine to what degree this physical activity profile ...

  18. Predicting Neural Activity Patterns Associated with Sentences Using a Neurobiologically Motivated Model of Semantic Representation.

    Science.gov (United States)

    Anderson, Andrew James; Binder, Jeffrey R; Fernandino, Leonardo; Humphries, Colin J; Conant, Lisa L; Aguilar, Mario; Wang, Xixi; Doko, Donias; Raizada, Rajeev D S

    2017-09-01

    We introduce an approach that predicts neural representations of word meanings contained in sentences then superposes these to predict neural representations of new sentences. A neurobiological semantic model based on sensory, motor, social, emotional, and cognitive attributes was used as a foundation to define semantic content. Previous studies have predominantly predicted neural patterns for isolated words, using models that lack neurobiological interpretation. Fourteen participants read 240 sentences describing everyday situations while undergoing fMRI. To connect sentence-level fMRI activation patterns to the word-level semantic model, we devised methods to decompose the fMRI data into individual words. Activation patterns associated with each attribute in the model were then estimated using multiple-regression. This enabled synthesis of activation patterns for trained and new words, which were subsequently averaged to predict new sentences. Region-of-interest analyses revealed that prediction accuracy was highest using voxels in the left temporal and inferior parietal cortex, although a broad range of regions returned statistically significant results, showing that semantic information is widely distributed across the brain. The results show how a neurobiologically motivated semantic model can decompose sentence-level fMRI data into activation features for component words, which can be recombined to predict activation patterns for new sentences. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  19. Benzo[a]pyrene, Aflatoxine B1 and Acetaldehyde Mutational Patterns in TP53 Gene Using a Functional Assay: Relevance to Human Cancer Aetiology

    Science.gov (United States)

    Paget, Vincent; Lechevrel, Mathilde; André, Véronique; Le Goff, Jérémie; Pottier, Didier; Billet, Sylvain; Garçon, Guillaume; Shirali, Pirouz; Sichel, François

    2012-01-01

    Mutations in the TP53 gene are the most common alterations in human tumours. TP53 mutational patterns have sometimes been linked to carcinogen exposure. In hepatocellular carcinoma, a specific G>T transversion on codon 249 is classically described as a fingerprint of aflatoxin B1 exposure. Likewise G>T transversions in codons 157 and 158 have been related to tobacco exposure in human lung cancers. However, controversies remain about the interpretation of TP53 mutational pattern in tumours as the fingerprint of genotoxin exposure. By using a functional assay, the Functional Analysis of Separated Alleles in Yeast (FASAY), the present study depicts the mutational pattern of TP53 in normal human fibroblasts after in vitro exposure to well-known carcinogens: benzo[a]pyrene, aflatoxin B1 and acetaldehyde. These in vitro patterns of mutations were then compared to those found in human tumours by using the IARC database of TP53 mutations. The results show that the TP53 mutational patterns found in human tumours can be only partly ascribed to genotoxin exposure. A complex interplay between the functional impact of the mutations on p53 phenotype and the cancer natural history may affect these patterns. However, our results strongly support that genotoxins exposure plays a major role in the aetiology of the considered cancers. PMID:22319594

  20. Transcriptomic analysis of human polarized macrophages: more than one role of alternative activation?

    Directory of Open Access Journals (Sweden)

    Eleonora Derlindati

    Full Text Available Macrophages are a heterogeneous cell population which in response to the cytokine milieu polarize in either classically activated macrophages (M1 or alternatively activated macrophages (M2. This plasticity makes macrophages essential in regulating inflammation, immune response and tissue remodeling and a novel therapeutic target in inflammatory diseases such as atherosclerosis. The aim of the study was to describe the transcriptomic profiles of differently polarized human macrophages to generate new hypotheses on the biological function of the different macrophage subtypes.Polarization of circulating monocytes/macrophages of blood donors was induced in vitro by IFN-γ and LPS (M1, by IL-4 (M2a, and by IL-10 (M2c. Unstimulated cells (RM served as time controls. Gene expression profile of M1, M2a, M2c and RM was assessed at 6, 12 and 24h after polarization with Whole Human Genome Agilent Microarray technique. When compared to RM, M1 significantly upregulated pathways involved in immunity and inflammation, whereas M2a did the opposite. Conversely, decreased and increased expression of mitochondrial metabolism, consistent with insulin resistant and insulin sensitive patterns, was seen in M1 and M2a, respectively. The time sequence in the expression of some pathways appeared to have some specific bearing on M1 function. Finally, canonical and non-canonical Wnt genes and gene groups, promoting inflammation and tissue remodeling, were upregulated in M2a compared to RM.Our data in in vitro polarized human macrophages: 1. confirm and extend known inflammatory and anti-inflammatory gene expression patterns; 2. demonstrate changes in mitochondrial metabolism associated to insulin resistance and insulin sensitivity in M1 and M2a, respectively; 3. highlight the potential relevance of gene expression timing in M1 function; 4. unveil enhanced expression of Wnt pathways in M2a suggesting a potential dual (pro-inflammatory and anti-inflammatory role of M2a in

  1. Real-time classification of auditory sentences using evoked cortical activity in humans

    Science.gov (United States)

    Moses, David A.; Leonard, Matthew K.; Chang, Edward F.

    2018-06-01

    Objective. Recent research has characterized the anatomical and functional basis of speech perception in the human auditory cortex. These advances have made it possible to decode speech information from activity in brain regions like the superior temporal gyrus, but no published work has demonstrated this ability in real-time, which is necessary for neuroprosthetic brain-computer interfaces. Approach. Here, we introduce a real-time neural speech recognition (rtNSR) software package, which was used to classify spoken input from high-resolution electrocorticography signals in real-time. We tested the system with two human subjects implanted with electrode arrays over the lateral brain surface. Subjects listened to multiple repetitions of ten sentences, and rtNSR classified what was heard in real-time from neural activity patterns using direct sentence-level and HMM-based phoneme-level classification schemes. Main results. We observed single-trial sentence classification accuracies of 90% or higher for each subject with less than 7 minutes of training data, demonstrating the ability of rtNSR to use cortical recordings to perform accurate real-time speech decoding in a limited vocabulary setting. Significance. Further development and testing of the package with different speech paradigms could influence the design of future speech neuroprosthetic applications.

  2. The BDNF Val66Met Polymorphism Influences Reading Ability and Patterns of Neural Activation in Children.

    Directory of Open Access Journals (Sweden)

    Kaja K Jasińska

    Full Text Available Understanding how genes impact the brain's functional activation for learning and cognition during development remains limited. We asked whether a common genetic variant in the BDNF gene (the Val66Met polymorphism modulates neural activation in the young brain during a critical period for the emergence and maturation of the neural circuitry for reading. In animal models, the bdnf variation has been shown to be associated with the structure and function of the developing brain and in humans it has been associated with multiple aspects of cognition, particularly memory, which are relevant for the development of skilled reading. Yet, little is known about the impact of the Val66Met polymorphism on functional brain activation in development, either in animal models or in humans. Here, we examined whether the BDNF Val66Met polymorphism (dbSNP rs6265 is associated with children's (age 6-10 neural activation patterns during a reading task (n = 81 using functional magnetic resonance imaging (fMRI, genotyping, and standardized behavioral assessments of cognitive and reading development. Children homozygous for the Val allele at the SNP rs6265 of the BDNF gene outperformed Met allele carriers on reading comprehension and phonological memory, tasks that have a strong memory component. Consistent with these behavioral findings, Met allele carriers showed greater activation in reading-related brain regions including the fusiform gyrus, the left inferior frontal gyrus and left superior temporal gyrus as well as greater activation in the hippocampus during a word and pseudoword reading task. Increased engagement of memory and spoken language regions for Met allele carriers relative to Val/Val homozygotes during reading suggests that Met carriers have to exert greater effort required to retrieve phonological codes.

  3. The BDNF Val66Met Polymorphism Influences Reading Ability and Patterns of Neural Activation in Children.

    Science.gov (United States)

    Jasińska, Kaja K; Molfese, Peter J; Kornilov, Sergey A; Mencl, W Einar; Frost, Stephen J; Lee, Maria; Pugh, Kenneth R; Grigorenko, Elena L; Landi, Nicole

    2016-01-01

    Understanding how genes impact the brain's functional activation for learning and cognition during development remains limited. We asked whether a common genetic variant in the BDNF gene (the Val66Met polymorphism) modulates neural activation in the young brain during a critical period for the emergence and maturation of the neural circuitry for reading. In animal models, the bdnf variation has been shown to be associated with the structure and function of the developing brain and in humans it has been associated with multiple aspects of cognition, particularly memory, which are relevant for the development of skilled reading. Yet, little is known about the impact of the Val66Met polymorphism on functional brain activation in development, either in animal models or in humans. Here, we examined whether the BDNF Val66Met polymorphism (dbSNP rs6265) is associated with children's (age 6-10) neural activation patterns during a reading task (n = 81) using functional magnetic resonance imaging (fMRI), genotyping, and standardized behavioral assessments of cognitive and reading development. Children homozygous for the Val allele at the SNP rs6265 of the BDNF gene outperformed Met allele carriers on reading comprehension and phonological memory, tasks that have a strong memory component. Consistent with these behavioral findings, Met allele carriers showed greater activation in reading-related brain regions including the fusiform gyrus, the left inferior frontal gyrus and left superior temporal gyrus as well as greater activation in the hippocampus during a word and pseudoword reading task. Increased engagement of memory and spoken language regions for Met allele carriers relative to Val/Val homozygotes during reading suggests that Met carriers have to exert greater effort required to retrieve phonological codes.

  4. Complementary Gli activity mediates early patterning of the mouse visual system.

    Science.gov (United States)

    Furimsky, Marosh; Wallace, Valerie A

    2006-03-01

    The Sonic hedgehog (Shh) signaling pathway plays a key role in the development of the vertebrate central nervous system, including the eye. This pathway is mediated by the Gli transcription factors (Gli1, Gli2, and Gli3) that differentially activate and repress the expression of specific downstream target genes. In this study, we investigated the roles of the three vertebrate Glis in mediating midline Shh signaling in early ocular development. We examined the ocular phenotypes of Shh and Gli combination mutant mouse embryos and monitored proximodistal and dorsoventral patterning by the expression of specific eye development regulatory genes using in situ hybridization. We show that midline Shh signaling relieves the repressor activity of Gli3 adjacent to the midline and then promotes eye pattern formation through the nonredundant activities of all three Gli proteins. Gli3, in particular, is required to specify the dorsal optic stalk and to define the boundary between the optic stalk and the optic cup.

  5. Bilateral versus ipsilesional cortico-subcortical activity patterns in stroke show hemispheric dependence.

    Science.gov (United States)

    Vidal, Ana C; Banca, Paula; Pascoal, Augusto G; Cordeiro, Gustavo; Sargento-Freitas, João; Gouveia, Ana; Castelo-Branco, Miguel

    2018-01-01

    Background Understanding of interhemispheric interactions in stroke patients during motor control is an important clinical neuroscience quest that may provide important clues for neurorehabilitation. In stroke patients bilateral overactivation in both hemispheres has been interpreted as a poor prognostic indicator of functional recovery. In contrast, ipsilesional patterns have been linked with better motor outcomes. Aim We investigated the pathophysiology of hemispheric interactions during limb movement without and with contralateral restraint, to mimic the effects of constraint-induced movement therapy. We used neuroimaging to probe brain activity with such a movement-dependent interhemispheric modulation paradigm. Methods We used a functional magnetic resonance imaging block design during which the plegic/paretic upper limb was recruited/mobilized to perform unilateral arm elevation, as a function of presence versus absence of contralateral limb restriction (n = 20, with balanced left/right lesion sites). Results Analysis of 10 right hemispheric stroke participants yielded bilateral sensorimotor cortex activation in all movement phases in contrast with the unilateral dominance seen in the 10 left hemispheric stroke participants. Superimposition of contralateral restriction led to a prominent shift from activation to deactivation response patterns, in particular in cortical and basal ganglia motor areas in right hemispheric stroke. Left hemispheric stroke was, in general, characterized by reduced activation patterns, even in the absence of restriction, which induced additional cortical silencing. Conclusion The observed hemispheric-dependent activation/deactivation shifts is novel and these pathophysiological observations suggest short-term neuroplasticity that may be useful for hemisphere-tailored neurorehabilitation.

  6. The use of census migration data to approximate human movement patterns across temporal scales.

    Directory of Open Access Journals (Sweden)

    Amy Wesolowski

    Full Text Available Human movement plays a key role in economies and development, the delivery of services, and the spread of infectious diseases. However, it remains poorly quantified partly because reliable data are often lacking, particularly for low-income countries. The most widely available are migration data from human population censuses, which provide valuable information on relatively long timescale relocations across countries, but do not capture the shorter-scale patterns, trips less than a year, that make up the bulk of human movement. Census-derived migration data may provide valuable proxies for shorter-term movements however, as substantial migration between regions can be indicative of well connected places exhibiting high levels of movement at finer time scales, but this has never been examined in detail. Here, an extensive mobile phone usage data set for Kenya was processed to extract movements between counties in 2009 on weekly, monthly, and annual time scales and compared to data on change in residence from the national census conducted during the same time period. We find that the relative ordering across Kenyan counties for incoming, outgoing and between-county movements shows strong correlations. Moreover, the distributions of trip durations from both sources of data are similar, and a spatial interaction model fit to the data reveals the relationships of different parameters over a range of movement time scales. Significant relationships between census migration data and fine temporal scale movement patterns exist, and results suggest that census data can be used to approximate certain features of movement patterns across multiple temporal scales, extending the utility of census-derived migration data.

  7. A genome-wide study of DNA methylation patterns and gene expression levels in multiple human and chimpanzee tissues.

    Directory of Open Access Journals (Sweden)

    Athma A Pai

    2011-02-01

    Full Text Available The modification of DNA by methylation is an important epigenetic mechanism that affects the spatial and temporal regulation of gene expression. Methylation patterns have been described in many contexts within and across a range of species. However, the extent to which changes in methylation might underlie inter-species differences in gene regulation, in particular between humans and other primates, has not yet been studied. To this end, we studied DNA methylation patterns in livers, hearts, and kidneys from multiple humans and chimpanzees, using tissue samples for which genome-wide gene expression data were also available. Using the multi-species gene expression and methylation data for 7,723 genes, we were able to study the role of promoter DNA methylation in the evolution of gene regulation across tissues and species. We found that inter-tissue methylation patterns are often conserved between humans and chimpanzees. However, we also found a large number of gene expression differences between species that might be explained, at least in part, by corresponding differences in methylation levels. In particular, we estimate that, in the tissues we studied, inter-species differences in promoter methylation might underlie as much as 12%-18% of differences in gene expression levels between humans and chimpanzees.

  8. Global patterns of diversity and selection in human tyrosinase gene.

    Science.gov (United States)

    Hudjashov, Georgi; Villems, Richard; Kivisild, Toomas

    2013-01-01

    Global variation in skin pigmentation is one of the most striking examples of environmental adaptation in humans. More than two hundred loci have been identified as candidate genes in model organisms and a few tens of these have been found to be significantly associated with human skin pigmentation in genome-wide association studies. However, the evolutionary history of different pigmentation genes is rather complex: some loci have been subjected to strong positive selection, while others evolved under the relaxation of functional constraints in low UV environment. Here we report the results of a global study of the human tyrosinase gene, which is one of the key enzymes in melanin production, to assess the role of its variation in the evolution of skin pigmentation differences among human populations. We observe a higher rate of non-synonymous polymorphisms in the European sample consistent with the relaxation of selective constraints. A similar pattern was previously observed in the MC1R gene and concurs with UV radiation-driven model of skin color evolution by which mutations leading to lower melanin levels and decreased photoprotection are subject to purifying selection at low latitudes while being tolerated or even favored at higher latitudes because they facilitate UV-dependent vitamin D production. Our coalescent date estimates suggest that the non-synonymous variants, which are frequent in Europe and North Africa, are recent and have emerged after the separation of East and West Eurasian populations.

  9. Firing patterns of spontaneously active motor units in spinal cord-injured subjects

    NARCIS (Netherlands)

    Zijdewind, Inge; Thomas, Christine K.

    Involuntary motor unit activity at low rates is common in hand muscles paralysed by spinal cord injury. Our aim was to describe these patterns of motor unit behaviour in relation to motoneurone and motor unit properties. Intramuscular electromyographic activity (EMG), surface EMG and force were

  10. Molecular cloning, characterization, and expression of human ADP-ribosylation factors: Two guanine nucleotide-dependent activators of cholera toxin

    International Nuclear Information System (INIS)

    Bobak, D.A.; Nightingale, M.S.; Murtagh, J.J.; Price, S.R.; Moss, J.; Vaughan, M.

    1989-01-01

    ADP-ribosylation factors (ARFs) are small guanine nucleotide-binding proteins that enhance the enzymatic activities of cholera toxin. Two ARF cDNAs, ARF1 and ARF3, were cloned from a human cerebellum library. Based on deduced amino acid sequences and patterns of hybridization of cDNA and oligonucleotide probes with mammalian brain poly(A) + RNA, human ARF1 is the homologue of bovine ARF1. Human ARF3, which differs from bovine ARF1 and bovine ARF2, appears to represent a newly identified third type of ARF. Hybridization patterns of human ARF cDNA and clone-specific oligonucleotides with poly(A) + RNA are consistent with the presence of at least two, and perhaps four, separate ARF messages in human brain. In vitro translation of ARF1, ARF2, and ARF3 produced proteins that behaved, by SDS/PAGE, similar to a purified soluble brain ARF. Deduced amino acid sequences of human ARF1 and ARF3 contain regions, similar to those in other G proteins, that are believed to be involved in GTP binding and hydrolysis. ARFS also exhibit a modest degree of homology with a bovine phospholipase C. The observations reported here support the conclusion that the ARFs are members of a multigene family of small guanine nucleotide-binding proteins. Definition of the regulation of ARF mRNAs and of function(s) of recombinant ARF proteins will aid in the elucidation of the physiologic role(s) of ARFs

  11. Reproduction of overall spontaneous pain pattern by manual stimulation of active myofascial trigger points in fibromyalgia patients

    DEFF Research Database (Denmark)

    Ge, Hong-You; Wang, Ying; Fernandez-de-las-Penas, Cesar

    2011-01-01

    It has previously been reported that local and referred pain from active myofascial trigger points (MTPs) in the neck and shoulder region contribute to fibromyalgia (FM) pain and that the pain pattern induced from active MTPs can reproduce parts of the spontaneous clinical FM pain pattern....... The current study investigated whether the overall spontaneous FM pain pattern can be reproduced by local and referred pain from active MTPs located in different muscles....

  12. Sleep pattern and locomotor activity are impaired by doxorubicin in non-tumor-bearing rats.

    Science.gov (United States)

    Lira, Fabio Santos; Esteves, Andrea Maculano; Pimentel, Gustavo Duarte; Rosa, José Cesar; Frank, Miriam Kannebley; Mariano, Melise Oliveira; Budni, Josiane; Quevedo, João; Santos, Ronaldo Vagner Dos; de Mello, Marco Túlio

    2016-01-01

    We sought explore the effects of doxorubicin on sleep patterns and locomotor activity. To investigate these effects, two groups were formed: a control group and a Doxorubicin (DOXO) group. Sixteen rats were randomly assigned to either the control or DOXO groups. The sleep patterns were examined by polysomnographic recording and locomotor activity was evaluated in an open-field test. In the light period, the total sleep time and slow wave sleep were decreased, while the wake after sleep onset and arousal were increased in the DOXO group compared with the control group (plocomotor activity.

  13. High-resolution recombination patterns in a region of human chromosome 21 measured by sperm typing.

    Directory of Open Access Journals (Sweden)

    Irene Tiemann-Boege

    2006-05-01

    Full Text Available For decades, classical crossover studies and linkage disequilibrium (LD analysis of genomic regions suggested that human meiotic crossovers may not be randomly distributed along chromosomes but are focused instead in "hot spots." Recent sperm typing studies provided data at very high resolution and accuracy that defined the physical limits of a number of hot spots. The data were also used to test whether patterns of LD can predict hot spot locations. These sperm typing studies focused on several small regions of the genome already known or suspected of containing a hot spot based on the presence of LD breakdown or previous experimental evidence of hot spot activity. Comparable data on target regions not specifically chosen using these two criteria is lacking but is needed to make an unbiased test of whether LD data alone can accurately predict active hot spots. We used sperm typing to estimate recombination in 17 almost contiguous ~5 kb intervals spanning 103 kb of human Chromosome 21. We found two intervals that contained new hot spots. The comparison of our data with recombination rates predicted by statistical analyses of LD showed that, overall, the two datasets corresponded well, except for one predicted hot spot that showed little crossing over. This study doubles the experimental data on recombination in men at the highest resolution and accuracy and supports the emerging genome-wide picture that recombination is localized in small regions separated by cold areas. Detailed study of one of the new hot spots revealed a sperm donor with a decrease in recombination intensity at the canonical recombination site but an increase in crossover activity nearby. This unique finding suggests that the position and intensity of hot spots may evolve by means of a concerted mechanism that maintains the overall recombination intensity in the region.

  14. School and class-level variations and patterns of physical activity

    DEFF Research Database (Denmark)

    Steenholt, Carina Bjørnskov; Pisinger, Veronica Sofie Clara; Danquah, Ida Høgstedt

    2018-01-01

    is to describe patterns of PA and assess variations between schools and classes in PA, in a large cohort of Danish high school students. METHODS: Self-reported cross-sectional data came from The Danish National Youth Study, comprising a total of 70,674 students attending 119 different schools and 3213 classes....... Multilevel logistic regressions were applied to evaluate the association between socio-demographic variables and patterns of PA, and to assess the impact of schools and classes on PA measures. RESULTS: Students whose parents have achieved a lower level of education, older students and girls of perceived......BACKGROUND: There is limited knowledge of physical activity (PA) patterns among high school students. High schools plays an important role as context for the students, but it is uncertain to what extent schools influence student participation in PA during leisure time. The purpose of this study...

  15. Geographic patterns and environmental factors associated with human yellow fever presence in the Americas.

    Science.gov (United States)

    Hamrick, Patricia Najera; Aldighieri, Sylvain; Machado, Gustavo; Leonel, Deise Galan; Vilca, Luz Maria; Uriona, Sonia; Schneider, Maria Cristina

    2017-09-01

    In the Americas, yellow fever virus transmission is a latent threat due to the proximity between urban and wild environments. Although yellow fever has nearly vanished from North and Central America, there are still 13 countries in the Americas considered endemic by the World Health Organization. Human cases usually occur as a result of the exposure to sylvatic yellow fever in tropical forested environments; but urban outbreaks reported during the last decade demonstrate that the risk in this environment still exists. The objective of this study was to identify spatial patterns and the relationship between key geographic and environmental factors with the distribution of yellow fever human cases in the Americas. An ecological study was carried out to analyze yellow fever human cases reported to the Pan American Health Organization from 2000 to 2014, aggregated by second administrative level subdivisions (counties). Presence of yellow fever by county was used as the outcome variable and eight geo-environmental factors were used as independent variables. Spatial analysis was performed to identify and examine natural settings per county. Subsequently, a multivariable logistic regression model was built. During the study period, 1,164 cases were reported in eight out of the 13 endemic countries. Nearly 83.8% of these cases were concentrated in three countries: Peru (37.4%), Brazil (28.1%) and Colombia (18.4%); and distributed in 57 states/provinces, specifically in 286 counties (3.4% of total counties). Yellow fever presence was significantly associated with altitude, rain, diversity of non-human primate hosts and temperature. A positive spatial autocorrelation revealed a clustered geographic pattern in 138/286 yellow fever positive counties (48.3%). A clustered geographic pattern of yellow fever was identified mostly along the Andes eastern foothills. This risk map could support health policies in endemic countries. Geo-environmental factors associated with presence

  16. Physical Activity Patterns and Psychological Correlates of Physical Activity among Singaporean Primary, Secondary, and Junior College Students

    Science.gov (United States)

    Wang, C. K. John; Koh, K. T.; Biddle, Stuart J. H.; Liu, W. C.; Chye, Stefanie

    2011-01-01

    The purpose of this research was to examine physical activity patterns and psychological correlates of physical activity among primary, secondary, and junior college students in Singapore. A sample of 3,333 school students aged 10 to 18 years took part in the study. Results showed that the younger students had significantly higher physical…

  17. Associations between dietary patterns, physical activity (leisure-time and occupational) and television viewing in middle-aged French adults.

    Science.gov (United States)

    Charreire, Hélène; Kesse-Guyot, Emmanuelle; Bertrais, Sandrine; Simon, Chantal; Chaix, Basile; Weber, Christiane; Touvier, Mathilde; Galan, Pilar; Hercberg, Serge; Oppert, Jean-Michel

    2011-03-01

    Diet and physical activity are considered to be major components of a healthy lifestyle. However, few studies have examined in detail the relationships between specific types of physical activity, sedentary behaviour and diet in adults. The objective of the present study was to assess differential relationships between dietary patterns, leisure-time and occupational physical activities and time spent watching television (TV), as an indicator of sedentary behaviour, in middle-aged French subjects. We performed a cross-sectional analysis using data from 1359 participants in the SUpplémentation en VItamines et Minéraux AntioXydants study, who completed a detailed physical activity questionnaire and at least six 24 h dietary records. Sex-specific dietary patterns were derived using factor analysis; their relationships with leisure-time and occupational physical activities and TV viewing were assessed using ANCOVA, after adjustment for age, educational level and smoking status. Three dietary patterns were identified in each sex. After adjustment for potential confounders, leisure-time physical activity was positively associated with a 'healthy' food pattern in both men (P for trend trend trend convenience' pattern in men and with a 'alcohol-appetiser' pattern in women. In conclusion, identification of relationships between dietary patterns, physical activity and sedentary behaviour can enable identification of different types of lifestyle and should help to target at-risk groups in nutrition prevention programmes.

  18. Detailed semantic analyses of human error incidents occurring at nuclear power plants. Extraction of periodical transition of error occurrence patterns by applying multivariate analysis

    International Nuclear Information System (INIS)

    Hirotsu, Yuko; Suzuki, Kunihiko; Takano, Kenichi; Kojima, Mitsuhiro

    2000-01-01

    It is essential for preventing the recurrence of human error incidents to analyze and evaluate them with the emphasis on human factor. Detailed and structured analyses of all incidents at domestic nuclear power plants (NPPs) reported during last 31 years have been conducted based on J-HPES, in which total 193 human error cases are identified. Results obtained by the analyses have been stored into the J-HPES database. In the previous study, by applying multivariate analysis to above case studies, it was suggested that there were several occurrence patterns identified of how errors occur at NPPs. It was also clarified that the causes related to each human error are different depending on age of their occurrence. This paper described the obtained results in respects of periodical transition of human error occurrence patterns. By applying multivariate analysis to the above data, it was suggested there were two types of error occurrence patterns as to each human error type. First type is common occurrence patterns, not depending on the age, and second type is the one influenced by periodical characteristics. (author)

  19. Helicobacter pylori Infection Causes Characteristic DNA Damage Patterns in Human Cells

    Directory of Open Access Journals (Sweden)

    Max Koeppel

    2015-06-01

    Full Text Available Infection with the human pathogen Helicobacter pylori (H. pylori is a major risk factor for gastric cancer. Since the bacterium exerts multiple genotoxic effects, we examined the circumstances of DNA damage accumulation and identified regions within the host genome with high susceptibility to H. pylori-induced damage. Infection impaired several DNA repair factors, the extent of which depends on a functional cagPAI. This leads to accumulation of a unique DNA damage pattern, preferentially in transcribed regions and proximal to telomeres, in both gastric cell lines and primary gastric epithelial cells. The observed pattern correlates with focal amplifications in adenocarcinomas of the stomach and partly overlaps with known cancer genes. We thus demonstrate an impact of a bacterial infection directed toward specific host genomic regions and describe underlying characteristics that make such regions more likely to acquire heritable changes during infection, which could contribute to cellular transformation.

  20. Neighborhood walkability, income, and hour-by-hour physical activity patterns.

    Science.gov (United States)

    Arvidsson, Daniel; Eriksson, Ulf; Lönn, Sara Larsson; Sundquist, Kristina

    2013-04-01

    This study aimed to investigate both the mean daily physical activity and the hour-by-hour physical activity patterns across the day using accelerometry and how they are associated with neighborhood walkability and individual income. Moderate physical activity (MPA) was assessed by accelerometry in 2252 adults in the city of Stockholm, Sweden. Neighborhood walkability (residential density, street connectivity, and land use mix) was objectively assessed within 1000m network buffers around the participants' residence and individual income was self-reported. Living in a high walkability neighborhood was associated with more mean daily MPA compared with living in a low walkability neighborhood on weekdays and weekend days. Hour-by-hour analyses showed that this association appeared mainly in the afternoon/early evening during weekdays, whereas it appeared across the middle of the day during weekend days. Individual income was associated with mean daily MPA on weekend days. On weekdays, the hour-by-hour analyses showed that high income was associated with more MPA around noon and in late afternoon/early evening, whereas low income was associated with more MPA at the hours before noon and in the early afternoon. During the weekend, high income was more consistently associated with higher MPA. Hour-by-hour accelerometry physical activity patterns provides a more comprehensive picture of the associations between neighborhood walkability and individual income and physical activity and the variability of these associations across the day.

  1. Prevalence and patterns of physical activity among medical students in Bangalore, India

    OpenAIRE

    Padmapriya, Krishnakumar; Krishna, Pushpa; Rasu, Thenna

    2013-01-01

    Background: Physical activity is one of the leading health indicators. The objective was to study the prevalence and patterns of physical activity among young adults. Methods: 259 Medical students (Men: Women = 116:143) in the age group of 18?22 yrs were interviewed using the official English long version of the International Physical Activity Questionnaire (IPAQ). The total level of physical activity and activity in each of the 4 life domains ? work, transport, domestic and gardening and lei...

  2. Bursty communication patterns facilitate spreading in a threshold-based epidemic dynamics.

    Science.gov (United States)

    Takaguchi, Taro; Masuda, Naoki; Holme, Petter

    2013-01-01

    Records of social interactions provide us with new sources of data for understanding how interaction patterns affect collective dynamics. Such human activity patterns are often bursty, i.e., they consist of short periods of intense activity followed by long periods of silence. This burstiness has been shown to affect spreading phenomena; it accelerates epidemic spreading in some cases and slows it down in other cases. We investigate a model of history-dependent contagion. In our model, repeated interactions between susceptible and infected individuals in a short period of time is needed for a susceptible individual to contract infection. We carry out numerical simulations on real temporal network data to find that bursty activity patterns facilitate epidemic spreading in our model.

  3. Bursty communication patterns facilitate spreading in a threshold-based epidemic dynamics.

    Directory of Open Access Journals (Sweden)

    Taro Takaguchi

    Full Text Available Records of social interactions provide us with new sources of data for understanding how interaction patterns affect collective dynamics. Such human activity patterns are often bursty, i.e., they consist of short periods of intense activity followed by long periods of silence. This burstiness has been shown to affect spreading phenomena; it accelerates epidemic spreading in some cases and slows it down in other cases. We investigate a model of history-dependent contagion. In our model, repeated interactions between susceptible and infected individuals in a short period of time is needed for a susceptible individual to contract infection. We carry out numerical simulations on real temporal network data to find that bursty activity patterns facilitate epidemic spreading in our model.

  4. Physical activity patterns in morbidly obese and normal-weight women.

    Science.gov (United States)

    Kwon, Soyang; Mohammad, Jamal; Samuel, Isaac

    2011-01-01

    To compare physical activity patterns between morbidly obese and normal-weight women. Daily physical activity of 18 morbidly obese and 7 normal-weight women aged 30-58 years was measured for 2 days using the Intelligent Device for Energy Expenditure and Activity (IDEEA) device. The obese group spent about 2 hr/day less standing and 30 min/day less walking than did the normal-weight group. Time spent standing (standing time) was positively associated with time spent walking (walking time). Age- and walking time-adjusted standing time did not differ according to weight status. Promoting standing may be a strategy to increase walking.

  5. Relationship between structure and the stress pattern in the human mandible.

    Science.gov (United States)

    Mongini, F; Calderale, P M; Barberi, G

    1979-12-01

    The internal bony structure of ten dentate human mandibles was examined on lateral radiograms, and the condylar shape measured with a digital electronic machine. The external surface was coated with photoelastic material. Each mandible was then placed in centric occlusion with brass replicas of the upper arch and the glenoid fossae and set in a supporting frame. Occlusal loads were simulated and the isoclinics recorded in plane-polarized light. The isostatic flow lines were constructed for each mandible. A relation was found between the mandibular structure and the distribution pattern of these lines.

  6. Cerebral Activity Changes in Different Traditional Chinese Medicine Patterns of Psychogenic Erectile Dysfunction Patients

    OpenAIRE

    Liu, Qi; Zhang, Peihai; Pan, Junjie; Li, Zhengjie; Liu, Jixin; Li, Guangsen; Qin, Wei; You, Yaodong; Yu, Xujun; Sun, Jinbo; Dong, Minghao; Gong, Qiyong; Guo, Jun; Chang, Degui

    2015-01-01

    Background. Pattern differentiation is the foundation of traditional Chinese medicine (TCM) treatment for erectile dysfunction (ED). This study aims to investigate the differences in cerebral activity in ED patients with different TCM patterns. Methods. 27 psychogenic ED patients and 27 healthy subjects (HS) were enrolled in this study. Each participant underwent an fMRI scan in resting state. The fractional amplitude of low-frequency fluctuation (fALFF) was used to detect the brain activity ...

  7. Lateralization of brain activity pattern during unilateral movement in Parkinson's disease.

    Science.gov (United States)

    Wu, Tao; Hou, Yanan; Hallett, Mark; Zhang, Jiarong; Chan, Piu

    2015-05-01

    We investigated the lateralization of brain activity pattern during performance of unilateral movement in drug-naïve Parkinson's disease (PD) patients with only right hemiparkinsonian symptoms. Functional MRI was obtained when the subjects performed strictly unilateral right hand movement. A laterality index was calculated to examine the lateralization. Patients had decreased activity in the left putamen and left supplementary motor area, but had increased activity in the right primary motor cortex, right premotor cortex, left postcentral gyrus, and bilateral cerebellum. The laterality index was significantly decreased in PD patients compared with controls (0.41 ± 0.14 vs. 0.84 ± 0.09). The connectivity from the left putamen to cortical motor regions and cerebellum was decreased, while the interactions between the cortical motor regions, cerebellum, and right putamen were increased. Our study demonstrates that in early PD, the lateralization of brain activity during unilateral movement is significantly reduced. The dysfunction of the striatum-cortical circuit, decreased transcallosal inhibition, and compensatory efforts from cortical motor regions, cerebellum, and the less affected striatum are likely reasons contributing to the reduced motor lateralization. The disruption of the lateralized brain activity pattern might be a reason underlying some motor deficits in PD, like mirror movements or impaired bilateral motor coordination. © 2015 Wiley Periodicals, Inc.

  8. CARMA2sh and ULK2 control pathogen-associated molecular patterns recognition in human keratinocytes: psoriasis-linked CARMA2sh mutants escape ULK2 censorship.

    Science.gov (United States)

    Scudiero, Ivan; Mazzone, Pellegrino; D'Andrea, Luca E; Ferravante, Angela; Zotti, Tiziana; Telesio, Gianluca; De Rubis, Gabriele; Reale, Carla; Pizzulo, Maddalena; Muralitharan, Shanmugakonar; Vito, Pasquale; Stilo, Romania

    2017-02-23

    The molecular complexes formed by specific members of the family of CARMA proteins, the CARD domain-containing adapter molecule BCL10 and MALT1 (CBM complex) represent a central hub in regulating activation of the pleiotropic transcription factor NF-κB. Recently, missense mutations in CARMA2sh have been shown to cause psoriasis in a dominant manner and with high penetrancy. Here, we demonstrate that in human keratinocytes CARMA2sh plays an essential role in the signal transduction pathway that connects pathogen-associated molecular patterns recognition to NF-κB activation. We also find that the serine/threonine kinase ULK2 binds to and phosphorylates CARMA2sh, thereby inhibiting its capacity to activate NF-κB by promoting lysosomal degradation of BCL10, which is essential for CARMA2sh-mediated NF-κB signaling. Remarkably, CARMA2sh mutants associated with psoriasis escape ULK2 inhibition. Finally, we show that a peptide blocking CARD-mediated BCL10 interactions reduces the capacity of psoriasis-linked CARMA2sh mutants to activate NF-κB. Our work elucidates a fundamental signaling mechanism operating in human keratinocytes and opens to novel potential tools for the therapeutical treatment of human skin disorders.

  9. Differential patterns of prefrontal MEG activation during verbal & visual encoding and retrieval.

    Science.gov (United States)

    Prendergast, Garreth; Limbrick-Oldfield, Eve; Ingamells, Ed; Gathercole, Susan; Baddeley, Alan; Green, Gary G R

    2013-01-01

    The spatiotemporal profile of activation of the prefrontal cortex in verbal and non-verbal recognition memory was examined using magnetoencephalography (MEG). Sixteen neurologically healthy right-handed participants were scanned whilst carrying out a modified version of the Doors and People Test of recognition memory. A pattern of significant prefrontal activity was found for non-verbal and verbal encoding and recognition. During the encoding, verbal stimuli activated an area in the left ventromedial prefrontal cortex, and non-verbal stimuli activated an area in the right. A region in the left dorsolateral prefrontal cortex also showed significant activation during the encoding of non-verbal stimuli. Both verbal and non-verbal stimuli significantly activated an area in the right dorsomedial prefrontal cortex and the right anterior prefrontal cortex during successful recognition, however these areas showed temporally distinct activation dependent on material, with non-verbal showing activation earlier than verbal stimuli. Additionally, non-verbal material activated an area in the left anterior prefrontal cortex during recognition. These findings suggest a material-specific laterality in the ventromedial prefrontal cortex during encoding for verbal and non-verbal but also support the HERA model for verbal material. The discovery of two process dependent areas during recognition that showed patterns of temporal activation dependent on material demonstrates the need for the application of more temporally sensitive techniques to the involvement of the prefrontal cortex in recognition memory.

  10. [Principles and methodology for ecological rehabilitation and security pattern design in key project construction].

    Science.gov (United States)

    Chen, Li-Ding; Lu, Yi-He; Tian, Hui-Ying; Shi, Qian

    2007-03-01

    Global ecological security becomes increasingly important with the intensive human activities. The function of ecological security is influenced by human activities, and in return, the efficiency of human activities will also be affected by the patterns of regional ecological security. Since the 1990s, China has initiated the construction of key projects "Yangtze Three Gorges Dam", "Qinghai-Tibet Railway", "West-to-East Gas Pipeline", "West-to-East Electricity Transmission" and "South-to-North Water Transfer" , etc. The interaction between these projects and regional ecological security has particularly attracted the attention of Chinese government. It is not only important for the regional environmental protection, but also of significance for the smoothly implementation of various projects aimed to develop an ecological rehabilitation system and to design a regional ecological security pattern. This paper made a systematic analysis on the types and characteristics of key project construction and their effects on the environment, and on the basis of this, brought forward the basic principles and methodology for ecological rehabilitation and security pattern design in this construction. It was considered that the following issues should be addressed in the implementation of a key project: 1) analysis and evaluation of current regional ecological environment, 2) evaluation of anthropogenic disturbances and their ecological risk, 3) regional ecological rehabilitation and security pattern design, 4) scenario analysis of environmental benefits of regional ecological security pattern, 5) re-optimization of regional ecological system framework, and 6) establishment of regional ecosystem management plan.

  11. Acute caffeine administration effect on brain activation patterns in mild cognitive impairment.

    Science.gov (United States)

    Haller, Sven; Montandon, Marie-Louise; Rodriguez, Cristelle; Moser, Dominik; Toma, Simona; Hofmeister, Jeremy; Sinanaj, Indrit; Lovblad, Karl-Olof; Giannakopoulos, Panteleimon

    2014-01-01

    Previous studies showed that acute caffeine administration enhances task-related brain activation in elderly individuals with preserved cognition. To explore the effects of this widely used agent on cognition and brain activation in early phases of cognitive decline, we performed a double-blinded, placebo-controlled functional magnetic resonance imaging (fMRI) study during an n-back working memory task in 17 individuals with mild cognitive impairment (MCI) compared to 17 age-matched healthy controls (HC). All individuals were regular caffeine consumers with an overnight abstinence and given 200 mg caffeine versus placebo tablets 30 minutes before testing. Analyses included assessment of task-related activation (general linear model), functional connectivity (tensorial-independent component analysis, TICA), baseline perfusion (arterial spin labeling, ASL), grey matter density (voxel-based morphometry, VBM), and white matter microstructure (tract-based spatial statistics, TBSS). Acute caffeine administration induced a focal activation of the prefrontal areas in HC with a more diffuse and posteromedial activation pattern in MCI individuals. In MCI, TICA documented a significant caffeine-related enhancement in the prefrontal cortex, supplementary motor area, ventral premotor and parietal cortex as well as the basal ganglia and cerebellum. The absence of significant group differences in baseline ASL perfusion patterns supports a neuronal rather than a purely vascular origin of these differences. The VBM and TBSS analyses excluded potentially confounding differences in grey matter density and white matter microstructure between MCI and HC. The present findings suggest a posterior displacement of working memory-related brain activation patterns after caffeine administration in MCI that may represent a compensatory mechanism to counterbalance a frontal lobe dysfunction.

  12. Pattern recognition and string matching

    CERN Document Server

    Cheng, Xiuzhen

    2002-01-01

    The research and development of pattern recognition have proven to be of importance in science, technology, and human activity. Many useful concepts and tools from different disciplines have been employed in pattern recognition. Among them is string matching, which receives much theoretical and practical attention. String matching is also an important topic in combinatorial optimization. This book is devoted to recent advances in pattern recognition and string matching. It consists of twenty eight chapters written by different authors, addressing a broad range of topics such as those from classifica­ tion, matching, mining, feature selection, and applications. Each chapter is self-contained, and presents either novel methodological approaches or applications of existing theories and techniques. The aim, intent, and motivation for publishing this book is to pro­ vide a reference tool for the increasing number of readers who depend upon pattern recognition or string matching in some way. This includes student...

  13. Temporal coding of brain patterns for direct limb control in humans

    Directory of Open Access Journals (Sweden)

    Gernot Mueller-Putz

    2010-06-01

    Full Text Available For individuals with a high spinal cord injury (SCI not only the lower limbs, but also the upper extremities are paralyzed. A neuroprosthesis can be used to restore the lost hand and arm function in those tetraplegics. The main problem for this group of individuals, however, is the reduced ability to voluntarily operate device controllers. A Brain-Computer Interface provides a non-manual alternative to conventional input devices by translating brain activity patterns into control commands. We show that the temporal coding of individual mental imagery pattern can be used to control two independent degrees of freedom – grasp and elbow function - of an artificial robotic arm by utilizing a minimum number of EEG scalp electrodes. We describe the procedure from the initial screening to the final application. From eight naïve subjects participating on-line feedback experiments, four were able to voluntarily control an artificial arm by inducing one motor imagery pattern derived from one EEG derivation only.

  14. Dynamic Changes of Landscape Pattern and Vulnerability Analysis in Qingyi River Basin

    Science.gov (United States)

    Li, Ziwei; Xie, Chaoying; He, Xiaohui; Guo, Hengliang; Wang, Li

    2017-11-01

    Environmental vulnerability research is one of the core areas of global environmental change research. Over the past 10 years, ecologically fragile zones or transition zones had been significantly affected by environmental degradation and climate change and human activities. In this paper, we analyzed the spatial and temporal changes of landscape pattern and landscape vulnerability degree in Qingyi River Basin by calculating the landscape sensitivity index and landscape restoration degree index based on Landsat images of 2005, 2010 and 2015. The results showed that: (1) The top conversion area was farmland, woodland and grassland area decreased, city land and rural residential land increased fastest. (2) The fragility of the landscape pattern along the Qingyi River gradually increased between 2005 and 2015, the downstream area was influenced by the influence of human activities. (3) Landscape pattern changes and fragility are mainly affected by urbanization. These findings are helpful for understanding the evolution of landscape pattern as well as urban ecology, which both have significant implications for urban planning and minimize the potential environmental impacts of urbanization in Qingyi River Basin.

  15. Patterns of cis regulatory variation in diverse human populations.

    Directory of Open Access Journals (Sweden)

    Barbara E Stranger

    Full Text Available The genetic basis of gene expression variation has long been studied with the aim to understand the landscape of regulatory variants, but also more recently to assist in the interpretation and elucidation of disease signals. To date, many studies have looked in specific tissues and population-based samples, but there has been limited assessment of the degree of inter-population variability in regulatory variation. We analyzed genome-wide gene expression in lymphoblastoid cell lines from a total of 726 individuals from 8 global populations from the HapMap3 project and correlated gene expression levels with HapMap3 SNPs located in cis to the genes. We describe the influence of ancestry on gene expression levels within and between these diverse human populations and uncover a non-negligible impact on global patterns of gene expression. We further dissect the specific functional pathways differentiated between populations. We also identify 5,691 expression quantitative trait loci (eQTLs after controlling for both non-genetic factors and population admixture and observe that half of the cis-eQTLs are replicated in one or more of the populations. We highlight patterns of eQTL-sharing between populations, which are partially determined by population genetic relatedness, and discover significant sharing of eQTL effects between Asians, European-admixed, and African subpopulations. Specifically, we observe that both the effect size and the direction of effect for eQTLs are highly conserved across populations. We observe an increasing proximity of eQTLs toward the transcription start site as sharing of eQTLs among populations increases, highlighting that variants close to TSS have stronger effects and therefore are more likely to be detected across a wider panel of populations. Together these results offer a unique picture and resource of the degree of differentiation among human populations in functional regulatory variation and provide an estimate for

  16. Early patterns of commercial activity in graphene

    International Nuclear Information System (INIS)

    Shapira, Philip; Youtie, Jan; Arora, Sanjay

    2012-01-01

    Graphene, a novel nanomaterial consisting of a single layer of carbon atoms, has attracted significant attention due to its distinctive properties, including great strength, electrical and thermal conductivity, lightness, and potential benefits for diverse applications. The commercialization of scientific discoveries such as graphene is inherently uncertain, with the lag time between the scientific development of a new technology and its adoption by corporate actors revealing the extent to which firms are able to absorb knowledge and engage in learning to implement applications based on the new technology. From this perspective, we test for the existence of three different corporate learning and activity patterns: (1) a linear process where patenting follows scientific discovery; (2) a double-boom phenomenon where corporate (patenting) activity is first concentrated in technological improvements and then followed by a period of technology productization; and (3) a concurrent model where scientific discovery in publications occurs in parallel with patenting. By analyzing corporate publication and patent activity across country and application lines, we find that, while graphene as a whole is experiencing concurrent scientific development and patenting growth, country- and application-specific trends offer some evidence of the linear and double-boom models.

  17. Human impacts on regional avian diversity and abundance

    Science.gov (United States)

    Christopher A. Lepczyk; Curtis H. Flather; Volker C. Radeloff; Anna M. Pidgeon; Roger B. Hammer; Jianguo Liu

    2008-01-01

    Patterns of association between humans and biodiversity typically show positive, negative, or negative quadratic relationships and can be described by 3 hypotheses: biologically rich areas that support high human population densities co-occur with areas of high biodiversity (productivity); biodiversity decreases monotonically with increasing human activities (ecosystem...

  18. Pattern Recognition by Humans and Machines

    International Nuclear Information System (INIS)

    Versino, C.; )

    2015-01-01

    Data visualization is centred on new ways of processing and displaying large data sets to support pattern recognition by humans rather than by machines. The motivation for approaches based on data visualization is to encourage data exploration and curiosity by analysts. They should help formulating the right question more than addressing specific predefined issues or expectations. Translated into IAEA's terms, they should help verify the completeness of information declared to the IAEA more than their correctness. Data visualization contrasts with traditional information retrieval where one needs first to formulate a query in order to get to a narrow slice of data. Using traditional information retrieval, no one knows what is missed out. The system may fail to recall relevant data due to the way the query was formulated, or the query itself may not be the most relevant one to be asked in the first place. Examples of data visualizations relevant to safeguards will be illustrated, including new approaches for the review of surveillance images and for trade analysis. Common to these examples is the attempt to enlarge the view of the analyst on a universe of data, where context or detailed data is presented on-demand and by levels of abstraction. The paper will make reference to ongoing research and to enabling information technologies. (author)

  19. The nocturnal bottleneck and the evolution of activity patterns in mammals

    Science.gov (United States)

    Gerkema, Menno P.; Davies, Wayne I. L.; Foster, Russell G.; Menaker, Michael; Hut, Roelof A.

    2013-01-01

    In 1942, Walls described the concept of a ‘nocturnal bottleneck’ in placental mammals, where these species could survive only by avoiding daytime activity during times in which dinosaurs were the dominant taxon. Walls based this concept of a longer episode of nocturnality in early eutherian mammals by comparing the visual systems of reptiles, birds and all three extant taxa of the mammalian lineage, namely the monotremes, marsupials (now included in the metatherians) and placentals (included in the eutherians). This review describes the status of what has become known as the nocturnal bottleneck hypothesis, giving an overview of the chronobiological patterns of activity. We review the ecological plausibility that the activity patterns of (early) eutherian mammals were restricted to the night, based on arguments relating to endothermia, energy balance, foraging and predation, taking into account recent palaeontological information. We also assess genes, relating to light detection (visual and non-visual systems) and the photolyase DNA protection system that were lost in the eutherian mammalian lineage. Our conclusion presently is that arguments in favour of the nocturnal bottleneck hypothesis in eutherians prevail. PMID:23825205

  20. Spatio-Temporal Pattern Mining on Trajectory Data Using Arm

    Science.gov (United States)

    Khoshahval, S.; Farnaghi, M.; Taleai, M.

    2017-09-01

    Preliminary mobile was considered to be a device to make human connections easier. But today the consumption of this device has been evolved to a platform for gaming, web surfing and GPS-enabled application capabilities. Embedding GPS in handheld devices, altered them to significant trajectory data gathering facilities. Raw GPS trajectory data is a series of points which contains hidden information. For revealing hidden information in traces, trajectory data analysis is needed. One of the most beneficial concealed information in trajectory data is user activity patterns. In each pattern, there are multiple stops and moves which identifies users visited places and tasks. This paper proposes an approach to discover user daily activity patterns from GPS trajectories using association rules. Finding user patterns needs extraction of user's visited places from stops and moves of GPS trajectories. In order to locate stops and moves, we have implemented a place recognition algorithm. After extraction of visited points an advanced association rule mining algorithm, called Apriori was used to extract user activity patterns. This study outlined that there are useful patterns in each trajectory that can be emerged from raw GPS data using association rule mining techniques in order to find out about multiple users' behaviour in a system and can be utilized in various location-based applications.

  1. Influence of food consumption patterns and Galician lifestyle on human gut microbiota.

    Science.gov (United States)

    Castro-Penalonga, María; Roca-Saavedra, Paula; Miranda, Jose Manuel; Porto-Arias, Jose Julio; Nebot, Carolina; Cardelle-Cobas, Alejandra; Franco, Carlos Manuel; Cepeda, Alberto

    2018-02-01

    The proportion of different microbial populations in the human gut is an important factor that in recent years has been linked to obesity and numerous metabolic diseases. Because there are many factors that can affect the composition of human gut microbiota, it is of interest to have information about what is the composition of the gut microbiota in different populations in order to better understand the possibilities for improving nutritional management. A group of 31 volunteers were selected according to established inclusion and exclusion criteria and were asked about their diet history, lifestyle patterns, and adherence to the Southern European Atlantic Diet. Fecal samples were taken and subsequently analyzed by real-time PCR. The results indicated different dietary patterns for subjects who consumed a higher amount of fruits, vegetables, legumes, and fish and a lower amount of bakery foods and precooked foods and snacks compared to Spanish consumption data. Most participants showed intermediate or high adherence to Southern European Atlantic Diet, and an analysis of gut microbiota showed high numbers of total bacteria and Actinobacteria, as well as high amounts of bacteria belonging to the genera Lactobacillus spp. and Bifidobacterium spp. A subsequent statistical comparison also revealed differences in gut microbiota depending on the subject's body weight, age, or degree of adherence to the Southern European Atlantic Diet.

  2. Food Patterns According to Sociodemographics, Physical Activity, Sleeping and Obesity in Portuguese Children

    Science.gov (United States)

    Moreira, Pedro; Santos, Susana; Padrão, Patrícia; Cordeiro, Tânia; Bessa, Mariana; Valente, Hugo; Barros, Renata; Teixeira, Vitor; Mitchell, Vanessa; Lopes, Carla; Moreira, André

    2010-01-01

    Our study aimed to describe the association between food patterns and gender, parental education, physical activity, sleeping and obesity in 1976 children aged 5−10 years old. Dietary intake was measured by a semi quantitative food frequency questionnaire; body mass index was calculated and categorized according to the IOTF classification. Factor analysis and generalized linear models were applied to identify food patterns and their associations. TV viewing and male gender were significant positive predictors for fast-food, sugar sweetened beverages and pastry pattern, while a higher level of maternal education and longer sleeping duration were positively associated with a dietary patterns that included fruit and vegetables. PMID:20617022

  3. Food Patterns According to Sociodemographics, Physical Activity, Sleeping and Obesity in Portuguese Children

    Directory of Open Access Journals (Sweden)

    Carla Lopes

    2010-03-01

    Full Text Available Our study aimed to describe the association between food patterns and gender, parental education, physical activity, sleeping and obesity in 1976 children aged 5−10 years old. Dietary intake was measured by a semi quantitative food frequency questionnaire; body mass index was calculated and categorized according to the IOTF classification. Factor analysis and generalized linear models were applied to identify food patterns and their associations. TV viewing and male gender were significant positive predictors for fast-food, sugar sweetened beverages and pastry pattern, while a higher level of maternal education and longer sleeping duration were positively associated with a dietary patterns that included fruit and vegetables.

  4. epSICAR: An Emerging Patterns based Approach to Sequential, Interleaved and Concurrent Activity Recognition

    DEFF Research Database (Denmark)

    Gu, Tao; Wu, Zhanqing; Tao, Xianping

    2009-01-01

    Recognizing human activity from sensor readings has recently attracted much research interest in pervasive computing. Human activity recognition is particularly challenging because activities are often performed in not only simple (i.e., sequential), but also complex (i.e., interleaved...

  5. Assessing the importance of human activities for the establishment of the invasive Poa annua in Antarctica

    Directory of Open Access Journals (Sweden)

    Marco A. Molina-Montenegro

    2014-06-01

    Full Text Available Because of its harsh environmental conditions and remoteness, Antarctica is often considered to be at low risk of plant invasion. However, an increasing number of reports have shown the presence and spread of non-native plants in Antarctica; it is therefore important to study which factors control the invasion process in this ecosystem. Here, we assessed the role of different human activities on the presence and abundance of the invasive Poa annua. In addition, we performed a reciprocal transplant experiment in the field, and a manipulative experiment of germination with P. annua and the natives Colobanthus quitensis and Deschampsia antarctica, in order to unravel the effects of physical soil disturbance on the establishment and survival of P. annua. We found a positive correlation between abundance of P. annua and level of soil disturbance, and that survival of P. annua was 33% higher in sites with disturbed soil than non-disturbed. Finally, we found that disturbance conditions increased germination for P. annua, whereas for native species germination in experimentally disturbed soil was either unchanged or reduced compared to undisturbed soil. Our results indicate that human activities that modify abiotic soil characteristics could play an important role in the abundance of this invasive species. If the current patterns of human activities are maintained in Antarctica, the establishment success and spread of P. annua could increase, negatively affecting native flora.

  6. Modeling and Classification of Kinetic Patterns of Dynamic Metabolic Biomarkers in Physical Activity.

    Directory of Open Access Journals (Sweden)

    Marc Breit

    2015-08-01

    Full Text Available The objectives of this work were the classification of dynamic metabolic biomarker candidates and the modeling and characterization of kinetic regulatory mechanisms in human metabolism with response to external perturbations by physical activity. Longitudinal metabolic concentration data of 47 individuals from 4 different groups were examined, obtained from a cycle ergometry cohort study. In total, 110 metabolites (within the classes of acylcarnitines, amino acids, and sugars were measured through a targeted metabolomics approach, combining tandem mass spectrometry (MS/MS with the concept of stable isotope dilution (SID for metabolite quantitation. Biomarker candidates were selected by combined analysis of maximum fold changes (MFCs in concentrations and P-values resulting from statistical hypothesis testing. Characteristic kinetic signatures were identified through a mathematical modeling approach utilizing polynomial fitting. Modeled kinetic signatures were analyzed for groups with similar behavior by applying hierarchical cluster analysis. Kinetic shape templates were characterized, defining different forms of basic kinetic response patterns, such as sustained, early, late, and other forms, that can be used for metabolite classification. Acetylcarnitine (C2, showing a late response pattern and having the highest values in MFC and statistical significance, was classified as late marker and ranked as strong predictor (MFC = 1.97, P < 0.001. In the class of amino acids, highest values were shown for alanine (MFC = 1.42, P < 0.001, classified as late marker and strong predictor. Glucose yields a delayed response pattern, similar to a hockey stick function, being classified as delayed marker and ranked as moderate predictor (MFC = 1.32, P < 0.001. These findings coincide with existing knowledge on central metabolic pathways affected in exercise physiology, such as β-oxidation of fatty acids, glycolysis, and glycogenolysis. The presented modeling

  7. A specific metabolic pattern related to the hallucinatory activity in schizophrenia

    International Nuclear Information System (INIS)

    Huret, J.D.; Martinot, J.L.; Lesur, A.; Mazoyer, B.; Pappata, S.; Syrota, A.; Baron, J.C.; Lemperiere, T.

    1988-01-01

    A clinical and PEI study using 18 F - fluorodesoxyglucose for measuring local cerebral glucose metabolism with the aim of showing a specific pattern related to the hallucinatory activity, is presented in schizophrenic patients all experiencing hallucinations or pseudo-halluccinations

  8. Determination of root activity pattern in citrus under irrigation (Tumbaco)

    International Nuclear Information System (INIS)

    Aizaga, Jorge; Calvache, Marcelo

    1992-01-01

    This experiment was carried out in Tumbaco, province of Pichincha, from january to april 1991. The objective of the study was to determine the root activity patterns in citrus. Tangerine plants of two varieties(common and willowleaf on rugged lemon pattern) three years old were used. A solution of Na H 2 PO 4 labeled with 3 2 P was applied at four distances: 0.30, 0.60, 0.90 and 1.20 m, distributed in a circle around the trees. Leaf samples were taken at 20,37 and 64 days after application and 3 2 P activity was determined. Statistical analysis of the data showed a highly significant variation between treatments and two ranges of significance were defined: the first one included the treatments at 0.30 and 0.60 m, and the second, the treatments at 0.90 and 1.20 m. At the same time soil moisture data were collected. These data demonstrated the relation between soil moisture and root activity and efficiency. With the obtained information it can be concluded that in trees over three years old, and in Tumbaco conditions of citrus management and ecology, the best distance to apply fertilizer is in circles located at 0.30 to 0.60 . from the trunck of tree

  9. Patterns of Human Plague in Uganda, 2008–2016

    Science.gov (United States)

    Forrester, Joseph D.; Apangu, Titus; Griffith, Kevin; Acayo, Sarah; Yockey, Brook; Kaggwa, John; Kugeler, Kiersten J.; Schriefer, Martin; Sexton, Christopher; Ben Beard, C.; Candini, Gordian; Abaru, Janet; Candia, Bosco; Okoth, Jimmy Felix; Apio, Harriet; Nolex, Lawrence; Ezama, Geoffrey; Okello, Robert; Atiku, Linda; Mpanga, Joseph

    2017-01-01

    Plague is a highly virulent fleaborne zoonosis that occurs throughout many parts of the world; most suspected human cases are reported from resource-poor settings in sub-Saharan Africa. During 2008–2016, a combination of active surveillance and laboratory testing in the plague-endemic West Nile region of Uganda yielded 255 suspected human plague cases; approximately one third were laboratory confirmed by bacterial culture or serology. Although the mortality rate was 7% among suspected cases, it was 26% among persons with laboratory-confirmed plague. Reports of an unusual number of dead rats in a patient’s village around the time of illness onset was significantly associated with laboratory confirmation of plague. This descriptive summary of human plague in Uganda highlights the episodic nature of the disease, as well as the potential that, even in endemic areas, illnesses of other etiologies might be being mistaken for plague. PMID:28820134

  10. Effects of Individual Health Topic Familiarity on Activity Patterns During Health Information Searches

    Science.gov (United States)

    Moriyama, Koichi; Fukui, Ken–ichi; Numao, Masayuki

    2015-01-01

    Background Non-medical professionals (consumers) are increasingly using the Internet to support their health information needs. However, the cognitive effort required to perform health information searches is affected by the consumer’s familiarity with health topics. Consumers may have different levels of familiarity with individual health topics. This variation in familiarity may cause misunderstandings because the information presented by search engines may not be understood correctly by the consumers. Objective As a first step toward the improvement of the health information search process, we aimed to examine the effects of health topic familiarity on health information search behaviors by identifying the common search activity patterns exhibited by groups of consumers with different levels of familiarity. Methods Each participant completed a health terminology familiarity questionnaire and health information search tasks. The responses to the familiarity questionnaire were used to grade the familiarity of participants with predefined health topics. The search task data were transcribed into a sequence of search activities using a coding scheme. A computational model was constructed from the sequence data using a Markov chain model to identify the common search patterns in each familiarity group. Results Forty participants were classified into L1 (not familiar), L2 (somewhat familiar), and L3 (familiar) groups based on their questionnaire responses. They had different levels of familiarity with four health topics. The video data obtained from all of the participants were transcribed into 4595 search activities (mean 28.7, SD 23.27 per session). The most frequent search activities and transitions in all the familiarity groups were related to evaluations of the relevancy of selected web pages in the retrieval results. However, the next most frequent transitions differed in each group and a chi-squared test confirmed this finding (Pinformation search patterns

  11. Comparison of trunk activity during gait initiation and walking in humans.

    Directory of Open Access Journals (Sweden)

    Jean-Charles Ceccato

    Full Text Available To understand the role of trunk muscles in maintenance of dynamic postural equilibrium we investigate trunk movements during gait initiation and walking, performing trunk kinematics analysis, Erector spinae muscle (ES recordings and dynamic analysis. ES muscle expressed a metachronal descending pattern of activity during walking and gait initiation. In the frontal and horizontal planes, lateroflexion and rotation occur before in the upper trunk and after in the lower trunk. Comparison of ES muscle EMGs and trunk kinematics showed that trunk muscle activity precedes corresponding kinematics activity, indicating that the ES drive trunk movement during locomotion and thereby allowing a better pelvis mobilization. EMG data showed that ES activity anticipates propulsive phases in walking with a repetitive pattern, suggesting a programmed control by a central pattern generator. Our findings also suggest that the programs for gait initiation and walking overlap with the latter beginning before the first has ended.

  12. Decision Support System Development for Human Extravehicular Activity

    Data.gov (United States)

    National Aeronautics and Space Administration — The extension of human presence into deep space will depend on how successfully human planetary extravehicular activities (EVAs) are conducted without real-time...

  13. Time budgets and activity patterns of sub-Antarctic fur seals at ...

    African Journals Online (AJOL)

    1993-04-15

    Apr 15, 1993 ... tially influence the activity patterns of fur seals when they are ashore, and their relatively ... modified by cloud cover and shade (which advanced pro- gressively across the ..... Influence of climate on the distri- bution of walruses ...

  14. Modeling and Visualization of Human Activities for Multicamera Networks

    Directory of Open Access Journals (Sweden)

    Aswin C. Sankaranarayanan

    2009-01-01

    Full Text Available Multicamera networks are becoming complex involving larger sensing areas in order to capture activities and behavior that evolve over long spatial and temporal windows. This necessitates novel methods to process the information sensed by the network and visualize it for an end user. In this paper, we describe a system for modeling and on-demand visualization of activities of groups of humans. Using the prior knowledge of the 3D structure of the scene as well as camera calibration, the system localizes humans as they navigate the scene. Activities of interest are detected by matching models of these activities learnt a priori against the multiview observations. The trajectories and the activity index for each individual summarize the dynamic content of the scene. These are used to render the scene with virtual 3D human models that mimic the observed activities of real humans. In particular, the rendering framework is designed to handle large displays with a cluster of GPUs as well as reduce the cognitive dissonance by rendering realistic weather effects and illumination. We envision use of this system for immersive visualization as well as summarization of videos that capture group behavior.

  15. Trend and pattern analysis of human performance problems at the swedish nuclear power plants

    International Nuclear Information System (INIS)

    Bento, J.P.

    1990-01-01

    The last six years of operation of all Swedish nuclear power plants have been studied with respect to human performance problems by analysing all scrams and licensee event reports (LERs). The present paper is an updated version of a previous report to which the analysis results of the year 1988's events have been added. The study covers 197 scrams and 1759 LERs. As general results, 38% of the scrams and 27% of the LERs, as an average for the years 1983-1988, are caused by human performance problems. Among the items studied, emphasis has been put on the analysis of the causal categories involved in human performance problems resulting in plant events. The most significant causal categories appear to be Work organization, Work place ergonomics, Procedures not followed, Training and Human variability. The trend and pattern of the dominating causal categories are discussed

  16. Differential patterns of prefrontal MEG activation during verbal & visual encoding and retrieval.

    Directory of Open Access Journals (Sweden)

    Garreth Prendergast

    Full Text Available The spatiotemporal profile of activation of the prefrontal cortex in verbal and non-verbal recognition memory was examined using magnetoencephalography (MEG. Sixteen neurologically healthy right-handed participants were scanned whilst carrying out a modified version of the Doors and People Test of recognition memory. A pattern of significant prefrontal activity was found for non-verbal and verbal encoding and recognition. During the encoding, verbal stimuli activated an area in the left ventromedial prefrontal cortex, and non-verbal stimuli activated an area in the right. A region in the left dorsolateral prefrontal cortex also showed significant activation during the encoding of non-verbal stimuli. Both verbal and non-verbal stimuli significantly activated an area in the right dorsomedial prefrontal cortex and the right anterior prefrontal cortex during successful recognition, however these areas showed temporally distinct activation dependent on material, with non-verbal showing activation earlier than verbal stimuli. Additionally, non-verbal material activated an area in the left anterior prefrontal cortex during recognition. These findings suggest a material-specific laterality in the ventromedial prefrontal cortex during encoding for verbal and non-verbal but also support the HERA model for verbal material. The discovery of two process dependent areas during recognition that showed patterns of temporal activation dependent on material demonstrates the need for the application of more temporally sensitive techniques to the involvement of the prefrontal cortex in recognition memory.

  17. Patterns of cerebral activation during lexical and phonological reading in Portuguese

    Directory of Open Access Journals (Sweden)

    Senaha M.L.H.

    2005-01-01

    Full Text Available According to the concepts of cognitive neuropsychology, there are two principal routes of reading processing: a lexical route, in which global reading of words occurs and a phonological route, responsible for the conversion of the graphemes into their respective phonemes. In the present study, functional magnetic resonance imaging (fMRI was used to investigate the patterns of cerebral activation in lexical and phonological reading by 13 healthy women with a formal educational level greater than 11 years. Participants were submitted to a silent reading task containing three types of stimuli: real words (irregular and foreign words, nonwords and illegitimate graphic stimuli. An increased number of activated voxels were identified by fMRI in the word reading (lexical processing than in the nonword reading (phonological processing task. In word reading, activation was greater than for nonwords in the following areas: superior, middle and inferior frontal gyri, and bilateral superior temporal gyrus, right cerebellum and the left precentral gyrus, as indicated by fMRI. In the reading of nonwords, the activation was predominant in the right cerebellum and in the left superior temporal gyrus. The results of the present study suggest the existence of differences in the patterns of cerebral activation during lexical and phonological reading, with greater involvement of the right hemisphere in reading words than nonwords.

  18. Pattern recognition in complex activity travel patterns : comparison of Euclidean distance, signal-processing theoretical, and multidimensional sequence alignment methods

    NARCIS (Netherlands)

    Joh, C.H.; Arentze, T.A.; Timmermans, H.J.P.

    2001-01-01

    The application of a multidimensional sequence alignment method for classifying activity travel patterns is reported. The method was developed as an alternative to the existing classification methods suggested in the transportation literature. The relevance of the multidimensional sequence alignment

  19. Activity patterns in malformed fetuses.

    Science.gov (United States)

    Rayburn, W F; Barr, M

    1982-04-15

    Knowledge of a malformed fetus before the onset of labor would assist the physician in preparing the expectant parents, managing the timing and method of delivery, and preparing for the immediate care of a salvageable infant. This 3-year prospective investigation compared the activity patterns of fetuses who were later found to have major malformation with those of fetuses who had no apparent defects. Fetal motion over prolonged periods was determined by daily charting of fetal movement by the mother. Although not a reliable predictor for all malformations, evidence of fetal inactivity was found to be more common (p less than 0.0001) among fetuses with anomalies (16 of 58 cases, 28%) than among those with no defects (39 of 1,098 cases, 4%). All malformations associated with fetal inactivity were strongly suspected ultrasonographically and included hydrocephalus, gastroschisis, nonimmune hydrops, bilateral renal agenesis, and bilateral dislocation of the hips. Documentation of fetal inactivity is helpful in recognizing certain major malformations and constitutes grounds for more detailed study by ultrasonography.

  20. Active ultrasound pattern injection system (AUSPIS for interventional tool guidance.

    Directory of Open Access Journals (Sweden)

    Xiaoyu Guo

    Full Text Available Accurate tool tracking is a crucial task that directly affects the safety and effectiveness of many interventional medical procedures. Compared to CT and MRI, ultrasound-based tool tracking has many advantages, including low cost, safety, mobility and ease of use. However, surgical tools are poorly visualized in conventional ultrasound images, thus preventing effective tool tracking and guidance. Existing tracking methods have not yet provided a solution that effectively solves the tool visualization and mid-plane localization accuracy problem and fully meets the clinical requirements. In this paper, we present an active ultrasound tracking and guiding system for interventional tools. The main principle of this system is to establish a bi-directional ultrasound communication between the interventional tool and US imaging machine within the tissue. This method enables the interventional tool to generate an active ultrasound field over the original imaging ultrasound signals. By controlling the timing and amplitude of the active ultrasound field, a virtual pattern can be directly injected into the US machine B mode display. In this work, we introduce the time and frequency modulation, mid-plane detection, and arbitrary pattern injection methods. The implementation of these methods further improves the target visualization and guiding accuracy, and expands the system application beyond simple tool tracking. We performed ex vitro and in vivo experiments, showing significant improvements of tool visualization and accurate localization using different US imaging platforms. An ultrasound image mid-plane detection accuracy of ±0.3 mm and a detectable tissue depth over 8.5 cm was achieved in the experiment. The system performance is tested under different configurations and system parameters. We also report the first experiment of arbitrary pattern injection to the B mode image and its application in accurate tool tracking.

  1. Ramadan major nutrient patterns are associated with anthropometric measurements and physical activity in Tehran, Iran

    Directory of Open Access Journals (Sweden)

    Mahdieh Akhoundan

    2015-05-01

    Full Text Available During Ramadan fasting quantity and quality of dietary intake may change. There was no data on nutrient patterns in Ramadan fasting. The purpose of this study was to identify Ramadan major nutrient patterns among those who fast in Tehran, Iran. 510 fasting people aged 18-65 years and BMI 18.5-40 Kg/m2 were recruited in our study by 2-stage cluster sampling method in June-July 2014. Data on the socio-demographic and physical activity level were collected by questionnaire. Usual diet during Ramadan was estimated by valid and reliable food frequency questionnaire. BMI was calculated based on measured height and weight. Three nutrient patterns derived by conducting principal component factor analysis on 30 major nutrients. Micronutrient and fiber pattern which characterized by high intake of vitamin K, total fiber, iron, manganese, magnesium, β-carotene, folate, vitamin B12, potassium and calcium was adversely associated with weight (b=-0.16, P= 0.004. High protein pattern had great loadings on protein, riboflavin, phosphorous and zinc which physical activity level was decreased by tertiles of this pattern (b=0.13, P=0.02. High carbohydrate pattern which presented high positive loadings on carbohydrate and thiamin and negative loading on total fat, poly unsaturated fatty acids and monounsaturated fatty acids was positively associated with BMI (b= 0.12, P=0.03. Adherence to different Ramadan nutrient patterns is associated with weight, BMI and physical activity level. People on high in carbohydrate may have a higher BMI and low micronutrient density diet that should be considered in Ramadan fasting nutrition educational programs.

  2. Physical activity patterns in patients with early and late age-related macular degeneration

    DEFF Research Database (Denmark)

    Subhi, Yousif; Sørensen, Torben Lykke

    2016-01-01

    INTRODUCTION: Age-related macular degeneration (AMD) leads to visual impairment that affects visual functioning and thereby the ability to be physically active. We investigated physical activity patterns in patients with AMD. METHODS: Patients with early and late AMD and elderly controls were...

  3. Analysis on the time/activity curve of salivary gland scintigraphy in salivary gland diseases; The correlation between the pattern of time/activity curve and the amount of saliva

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Kazufumi; Hosokawa, Yoichiro; Kaneko, Masanori; Ohmori, Keiichi; Minowa, Kazuyuki; Fukuda, Hiroshi; Yamasaki, Michio (Hokkaido Univ., Sapporo (Japan). School of Dentistry)

    1992-04-01

    Salivary gland scintigraphy with {sup 99m}TcO{sub 4}{sup -} is a simple method to evaluate salivary gland function and has been available as a technique using a time/activity curve for a number of years. But, there were few reports on the relationship between the various patterns of the time/activity curves and the salivary flow rate from the gland. This presents correlation between the time/activity curve pattern and the salivary flow rate from the parotid gland. Sixty-five patients complaining of xerostomia were examined. Sixty-two were female and 3 male (average age 45.6 years, range 17-69 years). Their diagnosis were 26 Sjoegren Syndrome, 28 suspicion of Sjoegren Syndrome and 11 parotiditis. The salivary flow rate from parotid gland was measured by stimulation with 10% citric acid using modified Carlson crittenden cup every 10 seconds for 5 min. 185 MBq {sup 99m}TcO{sub 4}{sup -} was injected intravenously and sequential scintigraphy was performed. Time/activity curves were recorded on film. Six kinds of basic patterns were as follows: normal pattern, median pattern, flat pattern and sloped pattern (Mita et al 1981), reaccumulation flat pattern and poor secretion (Stimulant secretory ratio: less than 70%) pattern by us. The amount of saliva was as follows: normal pattern (n=31), 5.4+0.4 ml; reaccumulation flat pattern (n=3), 4.2+0.6 ml; poor secretion pattern (n=18), 4.1+0.5 ml; median pattern (n=20), 3.5+0.5 ml; flat pattern (n=11), 2.6+0.5 ml and sloped pattern (n=1), 1.5 ml. Normal pattern versus poor secretion pattern, median pattern and flat pattern in the salivary flow rate were statistically significant as determined by Students' t-test. We assessed the correlation between the pattern of time/activity curve in the salivary gland scintigraphy and the amount of saliva. (author).

  4. Neural signatures of attention: insights from decoding population activity patterns.

    Science.gov (United States)

    Sapountzis, Panagiotis; Gregoriou, Georgia G

    2018-01-01

    Understanding brain function and the computations that individual neurons and neuronal ensembles carry out during cognitive functions is one of the biggest challenges in neuroscientific research. To this end, invasive electrophysiological studies have provided important insights by recording the activity of single neurons in behaving animals. To average out noise, responses are typically averaged across repetitions and across neurons that are usually recorded on different days. However, the brain makes decisions on short time scales based on limited exposure to sensory stimulation by interpreting responses of populations of neurons on a moment to moment basis. Recent studies have employed machine-learning algorithms in attention and other cognitive tasks to decode the information content of distributed activity patterns across neuronal ensembles on a single trial basis. Here, we review results from studies that have used pattern-classification decoding approaches to explore the population representation of cognitive functions. These studies have offered significant insights into population coding mechanisms. Moreover, we discuss how such advances can aid the development of cognitive brain-computer interfaces.

  5. Human neuroimaging studies on the hippocampal CA3 region – integrating evidence for pattern separation and completion

    Directory of Open Access Journals (Sweden)

    Lorena eDeuker

    2014-03-01

    Full Text Available Human functional magnetic imaging (fMRI studies have long investigated the hippocampus without differentiating between its subfields, even though theoretical models and rodent studies suggest that subfields support different and potentially even opposite functions. The CA3 region of the hippocampus has been ascribed a pivotal role both in initially forming associations during encoding and in reconstructing a memory representation based on partial cues during retrieval. These functions have been related to pattern separation and pattern completion, respectively. In recent years, studies using high-resolution fMRI in humans have begun to separate different hippocampal subregions and identify the role of the CA3 subregion relative to the other subregions. However, some of these findings have been inconsistent with theoretical models and findings from electrophysiology. In this review, we describe selected recent studies and highlight how their results might help to define different processes and functions that are presumably carried out by the CA3 region, in particular regarding the seemingly opposing functions of pattern separation and pattern completion. We also describe how these subfield-specific processes are related to behavioral, functional and structural alterations in patients with mild cognitive impairment and Alzheimer’s disease. We conclude with discussing limitations of functional imaging and briefly outline possible future developments of the field.

  6. Human brain basis of musical rhythm perception: common and distinct neural substrates for meter, tempo, and pattern.

    Science.gov (United States)

    Thaut, Michael H; Trimarchi, Pietro Davide; Parsons, Lawrence M

    2014-06-17

    Rhythm as the time structure of music is composed of distinct temporal components such as pattern, meter, and tempo. Each feature requires different computational processes: meter involves representing repeating cycles of strong and weak beats; pattern involves representing intervals at each local time point which vary in length across segments and are linked hierarchically; and tempo requires representing frequency rates of underlying pulse structures. We explored whether distinct rhythmic elements engage different neural mechanisms by recording brain activity of adult musicians and non-musicians with positron emission tomography (PET) as they made covert same-different discriminations of (a) pairs of rhythmic, monotonic tone sequences representing changes in pattern, tempo, and meter, and (b) pairs of isochronous melodies. Common to pattern, meter, and tempo tasks were focal activities in right, or bilateral, areas of frontal, cingulate, parietal, prefrontal, temporal, and cerebellar cortices. Meter processing alone activated areas in right prefrontal and inferior frontal cortex associated with more cognitive and abstract representations. Pattern processing alone recruited right cortical areas involved in different kinds of auditory processing. Tempo processing alone engaged mechanisms subserving somatosensory and premotor information (e.g., posterior insula, postcentral gyrus). Melody produced activity different from the rhythm conditions (e.g., right anterior insula and various cerebellar areas). These exploratory findings suggest the outlines of some distinct neural components underlying the components of rhythmic structure.

  7. Optimized temporal pattern of brain stimulation designed by computational evolution.

    Science.gov (United States)

    Brocker, David T; Swan, Brandon D; So, Rosa Q; Turner, Dennis A; Gross, Robert E; Grill, Warren M

    2017-01-04

    Brain stimulation is a promising therapy for several neurological disorders, including Parkinson's disease. Stimulation parameters are selected empirically and are limited to the frequency and intensity of stimulation. We varied the temporal pattern of deep brain stimulation to ameliorate symptoms in a parkinsonian animal model and in humans with Parkinson's disease. We used model-based computational evolution to optimize the stimulation pattern. The optimized pattern produced symptom relief comparable to that from standard high-frequency stimulation (a constant rate of 130 or 185 Hz) and outperformed frequency-matched standard stimulation in a parkinsonian rat model and in patients. Both optimized and standard high-frequency stimulation suppressed abnormal oscillatory activity in the basal ganglia of rats and humans. The results illustrate the utility of model-based computational evolution of temporal patterns to increase the efficiency of brain stimulation in treating Parkinson's disease and thereby reduce the energy required for successful treatment below that of current brain stimulation paradigms. Copyright © 2017, American Association for the Advancement of Science.

  8. Relationship between eye dominance and pattern electroretinograms in normal human subjects.

    Science.gov (United States)

    Kamis, Umit; Gunduz, Kemal; Okudan, Nilsel; Gokbel, Hakki; Bodur, Sait; Tan, Uner

    2005-02-01

    The authors conducted a study in 100 non-smoker healthy normal human subjects to find a relationship between eye dominance and macular function as tested by using transient stimulus and electroretinography. Eye preference procedure was carried out using two reference points and pattern electroretinograms (PERGs) were recorded using black and white checks, each check subtending 23'. Trace averager was retriggered every 300 milliseconds (ms) with data collection time of 150 ms. The difference in PERG P50 amplitudes between right and left eyes was analyzed using Student's t test. There was no significant difference in PERG P50 amplitudes between the right and left eye dominant subjects as well as no significant differences between the right and left eyes in right eye dominants and left eye dominants, but in the left-eye dominant group the left eye PERG P50 amplitudes were significantly higher in females than males. Although pattern-reversal visual evoked potentials of healthy subjects provide electrophysiological evidence of lateralization in the nervous system, sensory eye dominance seems to have no correlation with macular function.

  9. Weekly patterns, diet quality and energy balance.

    Science.gov (United States)

    McCarthy, Sinéad

    2014-07-01

    Human behaviour is made up of many repeated patterns and habitual behaviours. Our day to day lives are punctuated by work, education, domestic chores, sleep and food. Changes in daily patterns such as not working in paid employment or attending school on the weekend contribute significantly to changes in dietary patterns of food consumption, patterns of physical activity and ultimately energy balance. The aim of this paper is to adopt a life-course perspective and explore the changes in dietary quality and physical activity patterns across the week from young children to elderly adults with a focus on Western cultures. Research literature indicates that the dietary quality is somewhat poorer on the weekends, characterised by higher fat intakes, higher alcohol intakes and consequently higher energy intakes. This increase in energy intake is not necessarily offset by an increase in activity, rather an increase in sedentary behaviours. Some research has observed an increase of more than 100 cal per day over the weekend in American adults. Over the course of one year, this can result in a significant increase in body mass. Some of the interventions in tackling obesity and diet related behaviours must focus on the changes in the weekend behaviour of consumers in terms of both food and activity. These efforts should also focus on increasing consumer awareness of the long term consequences of the short lived weekend excess as well as putting in place practical measures and interventions that are evidence based and targeted to consumer needs. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Human, Nature, Dynamism: The Effects of Content and Movement Perception on Brain Activations during the Aesthetic Judgment of Representational Paintings.

    Science.gov (United States)

    Di Dio, Cinzia; Ardizzi, Martina; Massaro, Davide; Di Cesare, Giuseppe; Gilli, Gabriella; Marchetti, Antonella; Gallese, Vittorio

    2015-01-01

    Movement perception and its role in aesthetic experience have been often studied, within empirical aesthetics, in relation to the human body. No such specificity has been defined in neuroimaging studies with respect to contents lacking a human form. The aim of this work was to explore, through functional magnetic imaging (f MRI), how perceived movement is processed during the aesthetic judgment of paintings using two types of content: human subjects and scenes of nature. Participants, untutored in the arts, were shown the stimuli and asked to make aesthetic judgments. Additionally, they were instructed to observe the paintings and to rate their perceived movement in separate blocks. Observation highlighted spontaneous processes associated with aesthetic experience, whereas movement judgment outlined activations specifically related to movement processing. The ratings recorded during aesthetic judgment revealed that nature scenes received higher scored than human content paintings. The imaging data showed similar activation, relative to baseline, for all stimuli in the three tasks, including activation of occipito-temporal areas, posterior parietal, and premotor cortices. Contrast analyses within aesthetic judgment task showed that human content activated, relative to nature, precuneus, fusiform gyrus, and posterior temporal areas, whose activation was prominent for dynamic human paintings. In contrast, nature scenes activated, relative to human stimuli, occipital and posterior parietal cortex/precuneus, involved in visuospatial exploration and pragmatic coding of movement, as well as central insula. Static nature paintings further activated, relative to dynamic nature stimuli, central and posterior insula. Besides insular activation, which was specific for aesthetic judgment, we found a large overlap in the activation pattern characterizing each stimulus dimension (content and dynamism) across observation, aesthetic judgment, and movement judgment tasks. These

  11. Binding activity of patterned concanavalin A studied by atomic force microscopy

    International Nuclear Information System (INIS)

    Lebed, Kateryna; Pyka-Fosciak, Grazyna; Raczkowska, Joanna; Lekka, Malgorzata; Styczen, Jan

    2005-01-01

    The mode of protein immobilization plays a crucial role in the preparation of protein microarrays used for a wide spectrum of applications in analytical biochemistry. The microcontact printing technique was used to form a protein pattern using concanavalin A (Con A) since Con A belongs to a group of proteins widely used in analytical assays due to their selectivity as regards different kinds of carbohydrates. Atomic force microscopy was used to image surface topography, delivering information about the quality of the protein pattern. The force spectroscopy mode was used to verify the functional activity of deposited proteins via determination of the forces of interaction between Con A and carboxypeptidase Y bearing carbohydrate structure recognized by Con A. The calculated binding force between Con A and CaY was 105 ± 2 pN and it was compared with that measured for Con A deposited directly from the protein solution. The similarity of the value obtained for the interaction force was independent of the mode of protein deposition, thereby verifying that the microcontact printing technique did not influence the carbohydrate binding activity of Con A. The correlation between the surface topography of patterned samples and adhesion maps obtained showed the possible use of AFM for studying the chemical properties of different regions of the micropatterns produced

  12. Objective assessment of levels and patterns of physical activity in preschool children

    DEFF Research Database (Denmark)

    Brasholt, Martin; Chawes, Bo; Kreiner-Møller, Eskil

    2013-01-01

    Background:To study in detail levels and patterns of physical activity in preschool children and the effect of gender and body mass index on this activity.Methods:Two hundred and fifty-three children aged 5 years participating in the Copenhagen Prospective Studies on Asthma in Childhood (COPSAC20....... A high body mass index tended to be associated with lower levels of physical activity.Pediatric Research (2013); doi:10.1038/pr.2013.99....

  13. Dynamical patterns in nematic active matter on a sphere

    Science.gov (United States)

    Henkes, Silke; Marchetti, M. Cristina; Sknepnek, Rastko

    2018-04-01

    Using simulations of self-propelled agents with short-range repulsion and nematic alignment, we explore the dynamical phases of a dense active nematic confined to the surface of a sphere. We map the nonequilibrium phase diagram as a function of curvature, alignment strength, and activity. Our model reproduces several phases seen in recent experiments on active microtubule bundles confined the surfaces of vesicles. At low driving, we recover the equilibrium nematic ground state with four +1 /2 defects. As the driving is increased, geodesic forces drive the transition to a polar band wrapping around an equator, with large empty spherical caps corresponding to two +1 defects at the poles. Upon further increasing activity, the bands fold onto themselves, and the system eventually transitions to a turbulent state marked by the proliferation of pairs of topological defects. We highlight the key role of the nematic persistence length in controlling pattern formation in these confined systems with positive Gaussian curvature.

  14. The relative role of climate change and human activities in the desertification process in Yulin region of northwest China.

    Science.gov (United States)

    Wang, Tao; Sun, Jian-Guo; Han, Hui; Yan, Chang-Zhen

    2012-12-01

    To overcome the shortcoming of existing studies, this paper put forward a statistical vegetation-climate relationship model with integrated temporal and spatial characteristics. Based on this model, we quantitatively discriminated on the grid scale the relative role of climate change and human activities in the desertification dynamics from 1986 to 2000 in Yulin region. Yulin region's desertification development occurred mainly in the southern hilly and gully area and its reverse in the northwest sand and marsh area. This spatial pattern was especially evident and has never changed thoroughly. From the first time section (1986-1990) to the second (1991-1995), the desertification was developing as a whole, and either in the desertification development district or in the reverse district human activities' role was always occupying an overwhelmingly dominant position (they were 98.7% and 101.4%, respectively), the role of climate change was extremely slight. From the second time section (1991-1995) to the third (1996-2000), the desertification process was reaching a state of stability, in the desertification development district the role of climate change was nearly equivalent to that of human activities (they were 46.2% and 53.8% separately), and yet in the desertification reverse district, the role of human activities came up to 119.0%, the role of climate change amounted to -19.0%. In addition, the relative role of climate change and human activities possessed great spatial heterogeneity. The above conclusion rather coincides with the qualitative analysis in many literatures, which indicates that this method has certain rationality and can be utilized as a reference for the monitoring and studying of desertification in other areas.

  15. Palatability, adherence and prescribing patterns of antiretroviral drugs for children with human immunodeficiency virus infection in Canada.

    Science.gov (United States)

    Lin, Daren; Seabrook, Jamie A; Matsui, Doreen M; King, Susan M; Rieder, Michael J; Finkelstein, Yaron

    2011-12-01

    To assess the impact of perceived palatability of antiretroviral drugs on adherence to therapy of children infected by human immunodeficiency virus and on prescribing patterns by their caring physicians. Two arms--retrospective chart review and a cross-sectional survey. Tertiary-care pediatric human immunodeficiency virus clinic during a 17-year period. Children with human immunodeficiency virus infection and physicians actively caring for children with human immunodeficiency virus infection in seven provinces in Canada were surveyed regarding their perception of the palatability of 8-liquid and 15 non-liquid antiretroviral medications and its effect on drug selection. Effect of taste preferences of antiretroviral drugs on adherence to treatment by infected children and on drug selection by their caring physicians. Forty of 119 children (34%) refused at least once to an antiretroviral medication. In 5%, treatment was discontinued because of poor palatability. Ritonavir was the least palatable drug (50% of children; p = 0.01). Ritonavir use (OR 4.80 [95%CI 1.34-17.20]) and male gender (OR 7.25 [95%CI 2.30-22.90]) were independent predictors of drug discontinuation because of poor taste. Physicians also perceived liquid ritonavir as the least palatable (p = 0.01) and the most likely to be discontinued (p = 0.01). However, they commonly prescribed it as first-line therapy (p = 0.06). A third of children infected with human immunodeficiency virus fail to adhere to their treatment because of poor drug taste. Physicians are aware of that, but this does not prevent them from selecting the least palatable drugs as first-line therapy. Copyright © 2011 John Wiley & Sons, Ltd.

  16. Mistimed food intake and sleep alters 24-hour time-of-day patterns of the human plasma proteome.

    Science.gov (United States)

    Depner, Christopher M; Melanson, Edward L; McHill, Andrew W; Wright, Kenneth P

    2018-06-05

    Proteomics holds great promise for understanding human physiology, developing health biomarkers, and precision medicine. However, how much the plasma proteome varies with time of day and is regulated by the master circadian suprachiasmatic nucleus brain clock, assessed here by the melatonin rhythm, is largely unknown. Here, we assessed 24-h time-of-day patterns of human plasma proteins in six healthy men during daytime food intake and nighttime sleep in phase with the endogenous circadian clock (i.e., circadian alignment) versus daytime sleep and nighttime food intake out of phase with the endogenous circadian clock (i.e., circadian misalignment induced by simulated nightshift work). We identified 24-h time-of-day patterns in 573 of 1,129 proteins analyzed, with 30 proteins showing strong regulation by the circadian cycle. Relative to circadian alignment, the average abundance and/or 24-h time-of-day patterns of 127 proteins were altered during circadian misalignment. Altered proteins were associated with biological pathways involved in immune function, metabolism, and cancer. Of the 30 circadian-regulated proteins, the majority peaked between 1400 hours and 2100 hours, and these 30 proteins were associated with basic pathways involved in extracellular matrix organization, tyrosine kinase signaling, and signaling by receptor tyrosine-protein kinase erbB-2. Furthermore, circadian misalignment altered multiple proteins known to regulate glucose homeostasis and/or energy metabolism, with implications for altered metabolic physiology. Our findings demonstrate the circadian clock, the behavioral wake-sleep/food intake-fasting cycle, and interactions between these processes regulate 24-h time-of-day patterns of human plasma proteins and help identify mechanisms of circadian misalignment that may contribute to metabolic dysregulation.

  17. A human activity approach to User Interfaces

    DEFF Research Database (Denmark)

    Bødker, Susanne

    1989-01-01

    the work situations in which computer-based artifacts are used: The framework deals with the role of the user interface in purposeful human work. Human activity theory is used in this analysis. The purpose of this article is to make the reader curious and hopefully open his or her eyes to a somewhat...

  18. Temporal integration of sequential auditory events: silent period in sound pattern activates human planum temporale.

    Science.gov (United States)

    Mustovic, Henrietta; Scheffler, Klaus; Di Salle, Francesco; Esposito, Fabrizio; Neuhoff, John G; Hennig, Jürgen; Seifritz, Erich

    2003-09-01

    Temporal integration is a fundamental process that the brain carries out to construct coherent percepts from serial sensory events. This process critically depends on the formation of memory traces reconciling past with present events and is particularly important in the auditory domain where sensory information is received both serially and in parallel. It has been suggested that buffers for transient auditory memory traces reside in the auditory cortex. However, previous studies investigating "echoic memory" did not distinguish between brain response to novel auditory stimulus characteristics on the level of basic sound processing and a higher level involving matching of present with stored information. Here we used functional magnetic resonance imaging in combination with a regular pattern of sounds repeated every 100 ms and deviant interspersed stimuli of 100-ms duration, which were either brief presentations of louder sounds or brief periods of silence, to probe the formation of auditory memory traces. To avoid interaction with scanner noise, the auditory stimulation sequence was implemented into the image acquisition scheme. Compared to increased loudness events, silent periods produced specific neural activation in the right planum temporale and temporoparietal junction. Our findings suggest that this area posterior to the auditory cortex plays a critical role in integrating sequential auditory events and is involved in the formation of short-term auditory memory traces. This function of the planum temporale appears to be fundamental in the segregation of simultaneous sound sources.

  19. Human activities threatening the biodiversity of the Uzungwa Scarp ...

    African Journals Online (AJOL)

    Studies of human activities in the Uzungwa Scarp Forest Reserve, Udzungwa Mountains, were conducted in March-April and September 1997, in the western and southern parts of the forest. Different human activities, such as timber and pole cutting and withies harvesting, as well as the collection of non-timber forest ...

  20. Virulent Type A Francisella tularensis actively suppresses cytokine responses in human monocytes

    Directory of Open Access Journals (Sweden)

    Devyn D Gilette

    2014-04-01

    Full Text Available Francisella tularensis is a Gram-negative facultative bacterium that can cause the disease tularemia, even upon exposure to low numbers of bacteria. One critical characteristic of Francisella is its ability to dampen or subvert the host immune response. Previous work has shown that monocytes infected with highly virulent F. tularensis subsp. tularensis strain Schu S4 responded with a general pattern of quantitatively reduced pro-inflammatory signaling pathway genes and cytokine production in comparison to those infected with the less virulent related F. novicida. However, it has been unclear whether the virulent Schu S4 was merely evading or actively suppressing monocyte responses. By using mixed infection assays with F. tularensis and F. novicida, we show that F. tularensis actively suppresses monocyte pro-inflammatory responses. Additional experiments show that this suppression occurs in a dose-dependent manner and is dependent upon the viability of F. tularensis. Importantly, F. tularensis was able to suppress pro-inflammatory responses to earlier infections with F. novicida. These results lend support that F. tularensis actively dampens human monocyte responses and this likely contributes to its enhanced pathogenicity.