WorldWideScience

Sample records for human ace2 binding

  1. Structural determinants for binding to angiotensin converting enzyme 2 (ACE2 and angiotensin receptors

    Directory of Open Access Journals (Sweden)

    Daniel eClayton

    2015-01-01

    Full Text Available Angiotensin converting enzyme 2 (ACE2 is a zinc carboxypeptidase involved in the renin angiotensin system (RAS and inactivates the potent vasopressive peptide angiotensin II (Ang II by removing the C-terminal phenylalanine residue to yield Ang1-7. This conversion inactivates the vasoconstrictive action of Ang II and yields a peptide that acts as a vasodilatory molecule at the Mas receptor and potentially other receptors. Given the growing complexity of RAS and level of cross-talk between ligands and their corresponding enzymes and receptors, the design of molecules with selectivity for the major RAS binding partners to control cardiovascular tone is an on-going challenge. In previous studies we used single β-amino acid substitutions to modulate the structure of Ang II and its selectivity for ACE2, AT1R and angiotensin type 2 (AT2R receptor. We showed that modification at the C-terminus of Ang II generally resulted in more pronounced changes to secondary structure and ligand binding, and here we further explore this region for the potential to modulate ligand specificity. In this study, 1 a library of forty-seven peptides derived from the C-terminal tetra-peptide sequence (-IHPF of Ang II was synthesised and assessed for ACE2 binding, 2 the terminal group requirements for high affinity ACE2 binding were explored by and N- and C-terminal modification, 3 high affinity ACE2 binding chimeric AngII analogues were then synthesized and assessed, 4 the structure of the full-length Ang II analogues were assessed by circular dichroism, and 5 the Ang II analogues were assessed for AT1R/AT2R selectivity by cell-based assays. Studies on the C-terminus of Ang II demonstrated varied specificity at different residue positions for ACE2 binding and four Ang II chimeric peptides were identified as selective ligands for the AT2 receptor. Overall, these results provide insight into the residue and structural requirements for ACE2 binding and angiotensin receptor

  2. Human intestine luminal ACE2 and amino acid transporter expression increased by ACE-inhibitors.

    Science.gov (United States)

    Vuille-dit-Bille, Raphael N; Camargo, Simone M; Emmenegger, Luca; Sasse, Tom; Kummer, Eva; Jando, Julia; Hamie, Qeumars M; Meier, Chantal F; Hunziker, Schirin; Forras-Kaufmann, Zsofia; Kuyumcu, Sena; Fox, Mark; Schwizer, Werner; Fried, Michael; Lindenmeyer, Maja; Götze, Oliver; Verrey, François

    2015-04-01

    Sodium-dependent neutral amino acid transporter B(0)AT1 (SLC6A19) and imino acid (proline) transporter SIT1 (SLC6A20) are expressed at the luminal membrane of small intestine enterocytes and proximal tubule kidney cells where they exert key functions for amino acid (re)absorption as documented by their role in Hartnup disorder and iminoglycinuria, respectively. Expression of B(0)AT1 was shown in rodent intestine to depend on the presence of the carboxypeptidase angiotensin-converting enzyme 2 (ACE2). This enzyme belongs to the renin-angiotensin system and its expression is induced by treatment with ACE-inhibitors (ACEIs) or angiotensin II AT1 receptor blockers (ARBs) in many rodent tissues. We show here in the Xenopus laevis oocyte expression system that human ACE2 also functionally interacts with SIT1. To investigate in human intestine the potential effect of ACEIs or ARBs on ACE2, we analysed intestinal biopsies taken during routine gastroduodenoscopy and ileocolonoscopy from 46 patients of which 9 were under ACEI and 13 ARB treatment. Analysis of transcript expression by real-time PCR and of proteins by immunofluorescence showed a co-localization of SIT1 and B(0)AT1 with ACE2 in the brush-border membrane of human small intestine enterocytes and a distinct axial expression pattern of the tested gene products along the intestine. Patients treated with ACEIs displayed in comparison with untreated controls increased intestinal mRNA levels of ACE2, peptide transporter PEPT1 (SLC15A1) and AA transporters B(0)AT1 and PAT1 (SLC36A1). This study unravels in human intestine the localization and distribution of intestinal transporters involved in amino acid absorption and suggests that ACEIs impact on their expression.

  3. Characterization and significance of ACE2 and Mas receptor in human colon adenocarcinoma.

    Science.gov (United States)

    Bernardi, Stella; Zennaro, Cristina; Palmisano, Silvia; Velkoska, Elena; Sabato, Nicoletta; Toffoli, Barbara; Giacomel, Greta; Buri, Luigi; Zanconati, Fabrizio; Bellini, Giuseppe; Burrell, Louise M; De Manzini, Nicolò; Fabris, Bruno

    2012-03-01

    A new arm of the renin-angiotensin system (RAS) has been recently characterized; this includes angiotensin converting enzyme (ACE)2 and angiotensin (Ang)1-7, a heptapeptide acting through the Mas receptor (MasR). Recent studies show that Ang1-7 has an antiproliferative action on lung adenocarcinoma cells. The aim of this study was to characterize RAS expression in human colon adenocarcinoma and to investigate whether Ang1-7 exerts an antiproliferative effect on human colon adenocarcinoma cells. Gene, protein expression and enzymatic activity of the main components of the RAS were determined on non-neoplastic colon mucosa as well as on the tumor mass and the mucosa taken 5 cm distant from it, both collected from patients with colon adenocarcinoma. Two different human colon cancer cell lines were treated with AngII and Ang1-7. The novel finding of this study was that MasR was significantly upregulated in colon adenocarcinoma compared with non-neoplastic colon mucosa, which showed little or no expression of it. ACE gene expression and enzymatic activity were also increased in the tumors. However, AngII and Ang1-7 did not have any pro-/antiproliferative effects in the cell lines studied. The data suggest that upregulation of the MasR could be used as a diagnostic marker of colon adenocarcinoma.

  4. The transcription factor HNF1α induces expression of angiotensin-converting enzyme 2 (ACE2) in pancreatic islets from evolutionarily conserved promoter motifs.

    Science.gov (United States)

    Pedersen, Kim Brint; Chhabra, Kavaljit H; Nguyen, Van K; Xia, Huijing; Lazartigues, Eric

    2013-11-01

    Pancreatic angiotensin-converting enzyme 2 (ACE2) has previously been shown to be critical for maintaining glycemia and β-cell function. Efforts to maintain or increase ACE2 expression in pancreatic β-cells might therefore have therapeutic potential for treating diabetes. In our study, we investigated the transcriptional role of hepatocyte nuclear factor 1α (HNF1α) and hepatocyte nuclear factor 1β (HNF1β) in induction of ACE2 expression in insulin-secreting cells. A deficient allele of HNF1α or HNF1β causes maturity-onset diabetes of the young (MODY) types 3 and 5, respectively, in humans. We found that ACE2 is primarily transcribed from the proximal part of the ACE2 promoter in the pancreas. In the proximal part of the human ACE2 promoter, we further identified three functional HNF1 binding sites, as they have binding affinity for HNF1α and HNF1β and are required for induction of promoter activity by HNF1β in insulinoma cells. These three sites are well-conserved among mammalian species. Both HNF1α and HNF1β induce expression of ACE2 mRNA and lead to elevated levels of ACE2 protein and ACE2 enzymatic activity in insulinoma cells. Furthermore, HNF1α dose-dependently increases ACE2 expression in primary pancreatic islet cells. We conclude that HNF1α can induce the expression of ACE2 in pancreatic islet cells via evolutionarily conserved HNF1 binding sites in the ACE2 promoter. Potential therapeutics aimed at counteracting functional HNF1α depletion in diabetes and MODY3 will thus have ACE2 induction in pancreatic islets as a likely beneficial effect. © 2013.

  5. Heterozygote loss of ACE2 is sufficient to increase the susceptibility to heart disease.

    Science.gov (United States)

    Wang, Wang; Patel, Vaibhav B; Parajuli, Nirmal; Fan, Dong; Basu, Ratnadeep; Wang, Zuocheng; Ramprasath, Tharmarajan; Kassiri, Zamaneh; Penninger, Josef M; Oudit, Gavin Y

    2014-08-01

    Angiotensin-converting enzyme 2 (ACE2) metabolizes Ang II into Ang 1-7 thereby negatively regulating the renin-angiotensin system. However, heart disease in humans and in animal models is associated with only a partial loss of ACE2. ACE2 is an X-linked gene; and as such, we tested the clinical relevance of a partial loss of ACE2 by using female ACE2(+/+) (wildtype) and ACE2(+/-) (heterozygote) mice. Pressure overload in ACE2(+/-) mice resulted in greater LV dilation and worsening systolic and diastolic dysfunction. These changes were associated with increased myocardial fibrosis, hypertrophy, and upregulation of pathological gene expression. In response to Ang II infusion, there was increased NADPH oxidase activity and myocardial fibrosis resulting in the worsening of Ang II-induced diastolic dysfunction with a preserved systolic function. Ang II-mediated cellular effects in cultured adult ACE2(+/-) cardiomyocytes and cardiofibroblasts were exacerbated. Ang II-mediated pathological signaling worsened in ACE2(+/-) hearts characterized by an increase in the phosphorylation of ERK1/2 and JNK1/2 and STAT-3 pathways. The ACE2(+/-) mice showed an exacerbated pressor response with increased vascular fibrosis and stiffness. Vascular superoxide and nitrotyrosine levels were increased in ACE2(+/-) vessels consistent with increased vascular oxidative stress. These changes occurred with increased renal fibrosis and superoxide production. Partial heterozygote loss of ACE2 is sufficient to increase the susceptibility to heart disease secondary to pressure overload and Ang II infusion. Heart disease in humans with idiopathic dilated cardiomyopathy is associated with a partial loss of ACE2. Heterozygote female ACE2 mutant mice showed enhanced susceptibility to pressure overload-induced heart disease. Heterozygote female ACE2 mutant mice showed enhanced susceptibility to Ang II-induced heart and vascular diseases. Partial loss of ACE2 is sufficient to enhance the susceptibility to

  6. Angiotensin-converting enzyme-2 (ACE2): comparative modeling of the active site, specificity requirements, and chloride dependence.

    Science.gov (United States)

    Guy, Jodie L; Jackson, Richard M; Acharya, K Ravi; Sturrock, Edward D; Hooper, Nigel M; Turner, Anthony J

    2003-11-18

    Angiotensin-converting enzyme 2 (ACE2), a homologue of ACE, represents a new and potentially important target in cardio-renal disease. A model of the active site of ACE2, based on the crystal structure of testicular ACE, has been developed and indicates that the catalytic mechanism of ACE2 resembles that of ACE. Structural differences exist between the active site of ACE (dipeptidyl carboxypeptidase) and ACE2 (carboxypeptidase) that are responsible for the differences in specificity. The main differences occur in the ligand-binding pockets, particularly at the S2' subsite and in the binding of the peptide carboxy-terminus. The model explains why the classical ACE inhibitor lisinopril is unable to bind to ACE2. On the basis of the ability of ACE2 to cleave a variety of biologically active peptides, a consensus sequence of Pro-X-Pro-hydrophobic/basic for the protease specificity of ACE2 has been defined that is supported by the ACE2 model. The dipeptide, Pro-Phe, completely inhibits ACE2 activity at 180 microM with angiotensin II as the substrate. As with ACE, the chloride dependence of ACE2 is substrate-specific such that the hydrolysis of angiotensin I and the synthetic peptide substrate, Mca-APK(Dnp), are activated in the presence of chloride ions, whereas the cleavage of angiotensin II is inhibited. The ACE2 model is also suggestive of a possible mechanism for chloride activation. The structural insights provided by these analyses for the differences in inhibition pattern and substrate specificity among ACE and its homologue ACE2 and for the chloride dependence of ACE/ACE2 activity are valuable in understanding the function and regulation of ACE2.

  7. ACE2 is augmented in dystrophic skeletal muscle and plays a role in decreasing associated fibrosis.

    Directory of Open Access Journals (Sweden)

    Cecilia Riquelme

    Full Text Available Duchenne muscular dystrophy (DMD is the most common inherited neuromuscular disease and is characterized by absence of the cytoskeletal protein dystrophin, muscle wasting, and fibrosis. We previously demonstrated that systemic infusion or oral administration of angiotensin-(1-7 (Ang-(1-7, a peptide with opposing effects to angiotensin II, normalized skeletal muscle architecture, decreased local fibrosis, and improved muscle function in mdx mice, a dystrophic model for DMD. In this study, we investigated the presence, activity, and localization of ACE2, the enzyme responsible for Ang-(1-7 production, in wild type (wt and mdx skeletal muscle and in a model of induced chronic damage in wt mice. All dystrophic muscles studied showed higher ACE2 activity than wt muscle. Immunolocalization studies indicated that ACE2 was localized mainly at the sarcolemma and, to a lesser extent, associated with interstitial cells. Similar results were observed in the model of chronic damage in the tibialis anterior (TA muscle. Furthermore, we evaluated the effect of ACE2 overexpression in mdx TA muscle using an adenovirus containing human ACE2 sequence and showed that expression of ACE2 reduced the fibrosis associated with TA dystrophic muscles. Moreover, we observed fewer inflammatory cells infiltrating the mdx muscle. Finally, mdx gastrocnemius muscles from mice infused with Ang-(1-7, which decreases fibrosis, contain less ACE2 associated with the muscle. This is the first evidence supporting ACE2 as an important therapeutic target to improve the dystrophic skeletal muscle phenotype.

  8. ACE2 Deficiency Worsens Epicardial Adipose Tissue Inflammation and Cardiac Dysfunction in Response to Diet-Induced Obesity.

    Science.gov (United States)

    Patel, Vaibhav B; Mori, Jun; McLean, Brent A; Basu, Ratnadeep; Das, Subhash K; Ramprasath, Tharmarajan; Parajuli, Nirmal; Penninger, Josef M; Grant, Maria B; Lopaschuk, Gary D; Oudit, Gavin Y

    2016-01-01

    Obesity is increasing in prevalence and is strongly associated with metabolic and cardiovascular disorders. The renin-angiotensin system (RAS) has emerged as a key pathogenic mechanism for these disorders; angiotensin (Ang)-converting enzyme 2 (ACE2) negatively regulates RAS by metabolizing Ang II into Ang 1-7. We studied the role of ACE2 in obesity-mediated cardiac dysfunction. ACE2 null (ACE2KO) and wild-type (WT) mice were fed a high-fat diet (HFD) or a control diet and studied at 6 months of age. Loss of ACE2 resulted in decreased weight gain but increased glucose intolerance, epicardial adipose tissue (EAT) inflammation, and polarization of macrophages into a proinflammatory phenotype in response to HFD. Similarly, human EAT in patients with obesity and heart failure displayed a proinflammatory macrophage phenotype. Exacerbated EAT inflammation in ACE2KO-HFD mice was associated with decreased myocardial adiponectin, decreased phosphorylation of AMPK, increased cardiac steatosis and lipotoxicity, and myocardial insulin resistance, which worsened heart function. Ang 1-7 (24 µg/kg/h) administered to ACE2KO-HFD mice resulted in ameliorated EAT inflammation and reduced cardiac steatosis and lipotoxicity, resulting in normalization of heart failure. In conclusion, ACE2 plays a novel role in heart disease associated with obesity wherein ACE2 negatively regulates obesity-induced EAT inflammation and cardiac insulin resistance.

  9. Effect of captopril on the expression of angiotensin-converting enzyme (ACE)/ ACE2 induced by albumin in human proximal tubular cells%卡托普利对白蛋白引起HK-2细胞ACE/ACE2表达的影响

    Institute of Scientific and Technical Information of China (English)

    高珺; 刘必成; 王艳丽; 李青; 张晓良

    2008-01-01

    目的 观察血管紧张素转换酶抑制剂(ACEI)卡托普利 (captopril, CAP)对白蛋白引起的肾小管上皮细胞表达ACE、 ACE2及其作用产物Ang Ⅱ的影响. 方法实验分组:对照组(未干预的人近端肾小管上皮细胞株,HK-2);牛血清白蛋白(BSA)组(10 mg·ml-1); CAP组(10 μmol·L-1);BSA加CAP组.分别采用实时定量RT-PCR和Western Blot检测ACE、ACE2 mRNA和蛋白的表达水平;采用放射免疫法(RIA)检测细胞上清液中Ang Ⅱ的浓度. 结果实时定量RT-PCR显示,与对照组比较(相对表达量为0), CAP组ACE mRNA表达差异无统计学意义(0.27±0.09 vs 0,P>0.05);CAP能显著抑制BSA引起的ACE mRNA表达上调[(BSA+CAP)组∶BSA组为(0.80±0.05) vs (1.58±0.20),P<0.05].同时,由BSA引起的ACE2 mRNA表达下调作用也被显著抑制[(BSA+CAP)组∶BSA组为(-0.59±0.08) vs (0.24±0.11),P<0.05].Western Blot显示BSA引起的ACE蛋白表达增加被显著抑制[(BSA+CAP)组∶BSA组为(0.85±0.09) vs (1.2±0.10),P< 0.05],而ACE2蛋白表达的减少也明显减轻[(BSA+CAP)组∶BSA组为(0.49±0.09) vs (0.35±0.09),P<0.05].RIA结果显示CAP可显著抑制BSA引起的细胞上清液中Ang Ⅱ浓度增加 [(BSA+CAP)组∶BSA组为(55.25±4.8) vs (97.25±10.4)pg·ml-1,P<0.05]. 结论 CAP可通过抑制ACE和增加ACE2表达而抑制白蛋白所引起的HK-2细胞肾素-血管紧张素系统激活.

  10. Efg1 directly regulates ACE2 expression to mediate cross talk between the cAMP/PKA and RAM pathways during Candida albicans morphogenesis.

    Science.gov (United States)

    Saputo, Sarah; Kumar, Anuj; Krysan, Damian J

    2014-09-01

    The cyclic AMP/protein kinase A (cAMP/PKA) and regulation of Ace2 and morphogenesis (RAM) pathways are important regulators of the yeast-to-hypha transition in Candida albicans that interact genetically during this process. To further understand this interaction, we have characterized the expression of ACE2 during morphogenesis. In normoxic, planktonic conditions, ACE2 expression is very low in stationary-phase cells at both the mRNA and protein levels. Upon shifting to Spider medium, ACE2/Ace2p levels increase. Although Ace2 is not absolutely required for hypha formation, ace2Δ/Δ mutants show delayed hypha formation in Spider medium (but not others) and morphological changes to the hyphal tip and lateral yeast. We also show that Efg1 directly binds the promoter of Ace2 in stationary phase, and ACE2 levels are increased in strains lacking Efg1 and the protein kinase A proteins Tpk1 and Tpk2, indicating that the PKA pathway directly regulates ACE2 expression. ACE2 expression is positively regulated by Tec1 and Brg1, which bind the promoters of ACE2 in hyphal cells but not in the yeast phase. Under embedded conditions, Efg1 is dispensable for filamentation and Ace2 is required. We have found that ACE2 expression is much higher in embedded cells than in planktonic cells, providing a potential rationale for this observation. Taken together, our observations indicate that the PKA pathway directly regulates the RAM pathway under specific conditions and are consistent with a model where the two pathways carry out similar functions that depend on the specific environmental context.

  11. Tissue-specific amino acid transporter partners ACE2 and collectrin differentially interact with hartnup mutations.

    Science.gov (United States)

    Camargo, Simone M R; Singer, Dustin; Makrides, Victoria; Huggel, Katja; Pos, Klaas M; Wagner, Carsten A; Kuba, Keiji; Danilczyk, Ursula; Skovby, Flemming; Kleta, Robert; Penninger, Josef M; Verrey, François

    2009-03-01

    Hartnup amino acid transporter B(0)AT1 (SLC6A19) is the major luminal sodium-dependent neutral amino acid transporter of small intestine and kidney proximal tubule. The expression of B(0)AT1 in kidney was recently shown to depend on its association with collectrin (Tmem27), a protein homologous to the membrane-anchoring domain of angiotensin-converting enzyme (ACE) 2. Because collectrin is almost absent from small intestine, we tested the hypothesis that it is ACE2 that interacts with B(0)AT1 in enterocytes. Furthermore, because B(0)AT1 expression depends on an associated protein, we tested the hypothesis that Hartnup-causing B(0)AT1 mutations differentially impact on B(0)AT1 interaction with intestinal and kidney accessory proteins. Immunofluorescence, coimmunoprecipitation, and functional experiments using wild-type and ace2-null mice showed that expression of B(0)AT1 in small intestine critically depends on ACE2. Coexpressing new and previously identified Hartnup disorder-causing missense mutations of B(0)AT1 with either collectrin or ACE2 in Xenopus laevis oocytes showed that the high-frequency D173N and the newly identified P265L mutant B(0)AT1 transporters can still be activated by ACE2 but not collectrin coexpression. In contrast, the human A69T and R240Q B(0)AT1 mutants cannot be activated by either of the associated proteins, although they function as wild-type B(0)AT1 when expressed alone. We thus show that ACE2 is necessary for the expression of the Hartnup transporter in intestine and suggest that the differential functional association of mutant B(0)AT1 transporters with ACE2 and collectrin in intestine and kidney, respectively, participates in the phenotypic heterogeneity of human Hartnup disorder.

  12. The role of ACE2 in cardiovascular physiology.

    Science.gov (United States)

    Oudit, Gavin Y; Crackower, Michael A; Backx, Peter H; Penninger, Josef M

    2003-04-01

    The renin-angiotensin system (RAS) is critically involved in cardiovascular and renal function and in disease conditions, and has been shown to be a far more complex system than initially thought. A recently discovered homologue of angiotensin-converting enzyme (ACE)--ACE2--appears to negatively regulate the RAS. ACE2 cleaves Ang I and Ang II into the inactive Ang 1-9 and Ang 1-7, respectively. ACE2 is highly expressed in kidney and heart and is especially confined to the endothelium. With quantitative trait locus (QTL) mapping, ACE2 was defined as a QTL on the X chromosome in rat models of hypertension. In these animal models, kidney ACE2 messenger RNA and protein expression were markedly reduced, making ACE2 a candidate gene for this QTL. Targeted disruption of ACE2 in mice failed to elicit hypertension, but resulted in severe impairment in myocardial contractility with increased angiotensin II levels. Genetic ablation of ACE in the ACE2 null mice rescued the cardiac phenotype. These genetic data show that ACE2 is an essential regulator of heart function in vivo. Basal renal morphology and function were not altered by the inactivation of ACE2. The novel role of ACE2 in hydrolyzing several other peptides-such as the apelin peptides, opioids, and kinin metabolites-raises the possibility that peptide systems other than angiotensin and its derivatives also may have an important role in regulating cardiovascular and renal function.

  13. Role of the ACE2/Angiotensin 1-7 Axis of the Renin-Angiotensin System in Heart Failure.

    Science.gov (United States)

    Patel, Vaibhav B; Zhong, Jiu-Chang; Grant, Maria B; Oudit, Gavin Y

    2016-04-15

    Heart failure (HF) remains the most common cause of death and disability, and a major economic burden, in industrialized nations. Physiological, pharmacological, and clinical studies have demonstrated that activation of the renin-angiotensin system is a key mediator of HF progression. Angiotensin-converting enzyme 2 (ACE2), a homolog of ACE, is a monocarboxypeptidase that converts angiotensin II into angiotensin 1-7 (Ang 1-7) which, by virtue of its actions on the Mas receptor, opposes the molecular and cellular effects of angiotensin II. ACE2 is widely expressed in cardiomyocytes, cardiofibroblasts, and coronary endothelial cells. Recent preclinical translational studies confirmed a critical counter-regulatory role of ACE2/Ang 1-7 axis on the activated renin-angiotensin system that results in HF with preserved ejection fraction. Although loss of ACE2 enhances susceptibility to HF, increasing ACE2 level prevents and reverses the HF phenotype. ACE2 and Ang 1-7 have emerged as a key protective pathway against HF with reduced and preserved ejection fraction. Recombinant human ACE2 has been tested in phase I and II clinical trials without adverse effects while lowering and increasing plasma angiotensin II and Ang 1-7 levels, respectively. This review discusses the transcriptional and post-transcriptional regulation of ACE2 and the role of the ACE2/Ang 1-7 axis in cardiac physiology and in the pathophysiology of HF. The pharmacological and therapeutic potential of enhancing ACE2/Ang 1-7 action as a novel therapy for HF is highlighted.

  14. Regulation of urinary ACE2 in diabetic mice.

    Science.gov (United States)

    Wysocki, Jan; Garcia-Halpin, Laura; Ye, Minghao; Maier, Christoph; Sowers, Kurt; Burns, Kevin D; Batlle, Daniel

    2013-08-15

    Angiotensin-converting enzyme-2 (ACE2) enhances the degradation of ANG II and its expression is altered in diabetic kidneys, but the regulation of this enzyme in the urine is unknown. Urinary ACE2 was studied in the db/db model of type 2 diabetes and stretozotocin (STZ)-induced type 1 diabetes during several physiological and pharmacological interventions. ACE2 activity in db/db mice was increased in the serum and to a much greater extent in the urine compared with db/m controls. Neither a specific ANG II blocker, telmisartan, nor an ACE inhibitor, captopril, altered the levels of urinary ACE2 in db/db or db/m control mice. High-salt diet (8%) increased whereas low-salt diet (0.1%) decreased urinary ACE2 activity in the urine of db/db mice. In STZ mice, urinary ACE2 was also increased, and insulin decreased it partly but significantly after several weeks of administration. The increase in urinary ACE2 activity in db/db mice reflected an increase in enzymatically active protein with two bands identified of molecular size at 110 and 75 kDa and was associated with an increase in kidney cortex ACE2 protein at 110 kDa but not at 75 kDa. ACE2 activity was increased in isolated tubular preparations but not in glomeruli from db/db mice. Administration of soluble recombinant ACE2 to db/m and db/db mice resulted in a marked increase in serum ACE2 activity, but no gain in ACE2 activity was detectable in the urine, further demonstrating that urinary ACE2 is of kidney origin. Increased urinary ACE2 was associated with more efficient degradation of exogenous ANG II (10(-9) M) in urine from db/db compared with that from db/m mice. Urinary ACE2 could be a potential biomarker of increased metabolism of ANG II in diabetic kidney disease.

  15. Circulating ACE2 activity correlates with cardiovascular disease development

    Directory of Open Access Journals (Sweden)

    Katalin Úri

    2016-12-01

    Full Text Available It was shown recently that angiotensin-converting enzyme activity is limited by endogenous inhibition in vivo, highlighting the importance of angiotensin II (ACE2 elimination. The potential contribution of the ACE2 to cardiovascular disease progression was addressed. Serum ACE2 activities were measured in different clinical states (healthy, n=45; hypertensive, n=239; heart failure (HF with reduced ejection fraction (HFrEF n=141 and HF with preserved ejection fraction (HFpEF n=47. ACE2 activity was significantly higher in hypertensive patients (24.8±0.8 U/ml than that in healthy volunteers (16.2±0.8 U/ml, p=0.01. ACE2 activity further increased in HFrEF patients (43.9±2.1 U/ml, p=0.001 but not in HFpEF patients (24.6±1.9 U/ml when compared with hypertensive patients. Serum ACE2 activity negatively correlated with left ventricular systolic function in HFrEF, but not in hypertensive, HFpEF or healthy populations. Serum ACE2 activity had a fair diagnostic value to differentiate HFpEF from HFrEF patients in this study. Serum ACE2 activity correlates with cardiovascular disease development: it increases when hypertension develops and further increases when the cardiovascular disease further progresses to systolic dysfunction, suggesting that ACE2 metabolism plays a role in these processes. In contrast, serum ACE2 activity does not change when hypertension progresses to HFpEF, suggesting a different pathomechanism for HFpEF, and proposing a biomarker-based identification of these HF forms.

  16. A single nucleotide polymorphism uncovers a novel function for the transcription factor Ace2 during Candida albicans hyphal development.

    Directory of Open Access Journals (Sweden)

    Diana M Calderón-Noreña

    2015-04-01

    Full Text Available Candida albicans is a major invasive fungal pathogen in humans. An important virulence factor is its ability to switch between the yeast and hyphal forms, and these filamentous forms are important in tissue penetration and invasion. A common feature for filamentous growth is the ability to inhibit cell separation after cytokinesis, although it is poorly understood how this process is regulated developmentally. In C. albicans, the formation of filaments during hyphal growth requires changes in septin ring dynamics. In this work, we studied the functional relationship between septins and the transcription factor Ace2, which controls the expression of enzymes that catalyze septum degradation. We found that alternative translation initiation produces two Ace2 isoforms. While full-length Ace2, Ace2L, influences septin dynamics in a transcription-independent manner in hyphal cells but not in yeast cells, the use of methionine-55 as the initiation codon gives rise to Ace2S, which functions as the nuclear transcription factor required for the expression of cell separation genes. Genetic evidence indicates that Ace2L influences the incorporation of the Sep7 septin to hyphal septin rings in order to avoid inappropriate activation of cell separation during filamentous growth. Interestingly, a natural single nucleotide polymorphism (SNP present in the C. albicans WO-1 background and other C. albicans commensal and clinical isolates generates a stop codon in the ninth codon of Ace2L that mimics the phenotype of cells lacking Ace2L. Finally, we report that Ace2L and Ace2S interact with the NDR kinase Cbk1 and that impairing activity of this kinase results in a defect in septin dynamics similar to that of hyphal cells lacking Ace2L. Together, our findings identify Ace2L and the NDR kinase Cbk1 as new elements of the signaling system that modify septin ring dynamics in hyphae to allow cell-chain formation, a feature that appears to have evolved in specific C

  17. ACE-2 HILLCLOUD. An overview of the ACE-2 ground-based cloud experiment

    DEFF Research Database (Denmark)

    Bower, B.K.N.; Choularton, T.W.; Gallagher, M.W.

    2000-01-01

    The ACE-2 HILLCLOUD experiment was carried out on the island of Tenerife in June-July 1997 to investigate the interaction of the boundary layer aerosol with a hill cap cloud forming over a ridge to the north-east of the island. The cloud was used as a natural flow through reactor to investigate......, (nocturnally for seven of the eight runs) and were carried out in a wide range of airmass conditions from clean maritime to polluted continental. Polluted air was characterised by higher than average concentrations of ozone (> 50 ppbv), fine and accumulation mode aerosols (>3000 and >1500 cm-3, respectively...... and hydrochloric acids were present as a result of outgassing from aerosol, the HNO3 from nitrate rich aerosol transported into the region from upwind of Tenerife, and HCl from sea salt aerosol newly formed at the sea surface. The oxidants hydrogen peroxide and ozone were abundant (i.e., were well in excess over...

  18. Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor.

    Science.gov (United States)

    Ge, Xing-Yi; Li, Jia-Lu; Yang, Xing-Lou; Chmura, Aleksei A; Zhu, Guangjian; Epstein, Jonathan H; Mazet, Jonna K; Hu, Ben; Zhang, Wei; Peng, Cheng; Zhang, Yu-Ji; Luo, Chu-Ming; Tan, Bing; Wang, Ning; Zhu, Yan; Crameri, Gary; Zhang, Shu-Yi; Wang, Lin-Fa; Daszak, Peter; Shi, Zheng-Li

    2013-11-28

    The 2002-3 pandemic caused by severe acute respiratory syndrome coronavirus (SARS-CoV) was one of the most significant public health events in recent history. An ongoing outbreak of Middle East respiratory syndrome coronavirus suggests that this group of viruses remains a key threat and that their distribution is wider than previously recognized. Although bats have been suggested to be the natural reservoirs of both viruses, attempts to isolate the progenitor virus of SARS-CoV from bats have been unsuccessful. Diverse SARS-like coronaviruses (SL-CoVs) have now been reported from bats in China, Europe and Africa, but none is considered a direct progenitor of SARS-CoV because of their phylogenetic disparity from this virus and the inability of their spike proteins to use the SARS-CoV cellular receptor molecule, the human angiotensin converting enzyme II (ACE2). Here we report whole-genome sequences of two novel bat coronaviruses from Chinese horseshoe bats (family: Rhinolophidae) in Yunnan, China: RsSHC014 and Rs3367. These viruses are far more closely related to SARS-CoV than any previously identified bat coronaviruses, particularly in the receptor binding domain of the spike protein. Most importantly, we report the first recorded isolation of a live SL-CoV (bat SL-CoV-WIV1) from bat faecal samples in Vero E6 cells, which has typical coronavirus morphology, 99.9% sequence identity to Rs3367 and uses ACE2 from humans, civets and Chinese horseshoe bats for cell entry. Preliminary in vitro testing indicates that WIV1 also has a broad species tropism. Our results provide the strongest evidence to date that Chinese horseshoe bats are natural reservoirs of SARS-CoV, and that intermediate hosts may not be necessary for direct human infection by some bat SL-CoVs. They also highlight the importance of pathogen-discovery programs targeting high-risk wildlife groups in emerging disease hotspots as a strategy for pandemic preparedness.

  19. ACE2,diabetes mellitns and its complications%ACE2与糖尿病及其并发症

    Institute of Scientific and Technical Information of China (English)

    卜乐; 刘志民

    2010-01-01

    Angiotensin-converting enzyme (ACE) 2 is a novel discovered mono-carboxypeptidase and the first homolog of ACE.It inhibits Ang Ⅱ signaling cascades mostly by cleaving Ang Ⅱ to generate Ang(1-7),which is mediated by the Mas receptor.The combined reduction in cell apoptosis and increment in islet blood flow caused by ACE2 could increase insulin secretion and preserve the islet function in diabetes.Besides,it is believed that ACE2 acts in a counter-regulatory manner to ACE in the pathogenesis of diabetic microvascular and macrovascular complications.The discovery of ACE2,its activator and antagonist may have considerable clinical value in the prevention and treatment of diabetes mellitus and its complications.%血管紧张素转换酶(ACE)2是近年来新发现的一种单羧肽酶,是已知的第一个ACE同系物.ACE2催化血管紧张素(Ang)Ⅱ生成Ang(1-7),后者与Mas受体结合,从而启动对AngⅡ信号级联反应的抑制作用.ACE2能够通过增加胰岛血流灌注、抑制细胞凋亡,促进胰岛素分泌,有效延缓糖尿病患者胰岛素功能衰退的发展.此外,在糖尿病微血管和大血管病变的病理生理过程中,ACE2发挥抗ACE效应,调控心脏、视网膜和肾脏的缩、扩血管的平衡.ACE2及其激活剂、拮抗剂,可能在糖尿病及其并发症的防治领域具有极其广阔的临床应用前景.

  20. Defective intestinal amino acid absorption in Ace2 null mice.

    Science.gov (United States)

    Singer, Dustin; Camargo, Simone M R; Ramadan, Tamara; Schäfer, Matthias; Mariotta, Luca; Herzog, Brigitte; Huggel, Katja; Wolfer, David; Werner, Sabine; Penninger, Josef M; Verrey, François

    2012-09-15

    Mutations in the main intestinal and kidney luminal neutral amino acid transporter B(0)AT1 (Slc6a19) lead to Hartnup disorder, a condition that is characterized by neutral aminoaciduria and in some cases pellagra-like symptoms. These latter symptoms caused by low-niacin are thought to result from defective intestinal absorption of its precursor L-tryptophan. Since Ace2 is necessary for intestinal B(0)AT1 expression, we tested the impact of intestinal B(0)AT1 absence in ace2 null mice. Their weight gain following weaning was decreased, and Na(+)-dependent uptake of B(0)AT1 substrates measured in everted intestinal rings was defective. Additionally, high-affinity Na(+)-dependent transport of L-proline, presumably via SIT1 (Slc6a20), was absent, whereas glucose uptake via SGLT1 (Slc5a1) was not affected. Measurements of small intestine luminal amino acid content following gavage showed that more L-tryptophan than other B(0)AT1 substrates reach the ileum in wild-type mice, which is in line with its known lower apparent affinity. In ace2 null mice, the absorption defect was confirmed by a severalfold increase of L-tryptophan and of other neutral amino acids reaching the ileum lumen. Furthermore, plasma and muscle levels of glycine and L-tryptophan were significantly decreased in ace2 null mice, with other neutral amino acids displaying a similar trend. A low-protein/low-niacin diet challenge led to differential changes in plasma amino acid levels in both wild-type and ace2 null mice, but only in ace2 null mice to a stop in weight gain. Despite the combination of low-niacin with a low-protein diet, plasma niacin concentrations remained normal in ace2 null mice and no pellagra symptoms, such as photosensitive skin rash or ataxia, were observed. In summary, mice lacking Ace2-dependent intestinal amino acid transport display no total niacin deficiency nor clear pellagra symptoms, even under a low-protein and low-niacin diet, despite gross amino acid homeostasis alterations.

  1. Cloning and phylogenetic analysis of ACE2 gene in the kidney of the soft-shelled turtle,Pelodiscus sinensis%中华鳖肾脏ACE2基因克隆及其遗传进化分析

    Institute of Scientific and Technical Information of China (English)

    徐春生; 姚一琳; 杨平; JAMEEL Ahmed Gandahi; 包慧君; 卞勋光; 邬丽; 陈秋生

    2011-01-01

    Angiotensin-convertingenzyme 2 ( ACE2) is an important regulatory factor in salt and water metabolism of kidney. which can affect renal function by regulating the renal blood flow. According to the consensu s sequence of ACE2 gene from human, zebrafish and chicken in GenBank, a pair of primers was designed. The total RNA was extracted from the kidney of Pelodiscus sinensis. ACE2 gene was amplified and identified by RT-PCR. ACE2 gene in soft-shelled turtle was 355 nucleotides in length. The sequence analysis showed 70. 3% , 80% and 65. 1% of identities with those in human, chicken and zebrafish, respectively. The sequence similarities in amino acids were 63.8% ,79. 3% and 56. 9% , respectively. The phylogenetic analysis showed that the renal ACE2 in the turtle were highly homologous to those of chicken and human, whereas showed the highest homology with that of chicken. It suggested that ACE2 of turtle has the closest relationship with the birds, which is consistent with the evolution theory of species.%血管紧张素转换酶2(ACE2)为肾脏水盐代谢的重要调控因子,其通过调节肾脏局部血流量影响肾脏功能.为了证明爬行动物是否存在ACE2基因,本研究以中华鳌作为实验材料,应用RT-PCR方法扩增并克隆ACE2基因.结果表明,克隆的这段中华鳌ACE2序列长度为355 bp,与人、鸡和斑马鱼ACE2核苷酸序列的同源性分别达到70.3%、80%和65.1%,推导的氨基酸序列同源性分别为63.8%、79.3%和56.9%.表明中华鳌肾脏ACE2与鸡、人的ACE2均有较高的同源性,其中,与鸡的同源性最高.通过遗传进化分析发现,中华鳌肾脏ACE2与鸟类亲缘关系最近,符合物种进化理论.

  2. [Pyr1]Apelin-13(1–12) Is a Biologically Active ACE2 Metabolite of the Endogenous Cardiovascular Peptide [Pyr1]Apelin-13

    Science.gov (United States)

    Yang, Peiran; Kuc, Rhoda E.; Brame, Aimée L.; Dyson, Alex; Singer, Mervyn; Glen, Robert C.; Cheriyan, Joseph; Wilkinson, Ian B.; Davenport, Anthony P.; Maguire, Janet J.

    2017-01-01

    Aims: Apelin is a predicted substrate for ACE2, a novel therapeutic target. Our aim was to demonstrate the endogenous presence of the putative ACE2 product [Pyr1]apelin-13(1–12) in human cardiovascular tissues and to confirm it retains significant biological activity for the apelin receptor in vitro and in vivo. The minimum active apelin fragment was also investigated. Methods and Results: [Pyr1]apelin-13 incubated with recombinant human ACE2 resulted in de novo generation of [Pyr1]apelin-13(1–12) identified by mass spectrometry. Endogenous [Pyr1]apelin-13(1–12) was detected by immunostaining in human heart and lung localized to the endothelium. Expression was undetectable in lung from patients with pulmonary arterial hypertension. In human heart [Pyr1]apelin-13(1–12) (pKi = 8.04 ± 0.06) and apelin-13(F13A) (pKi = 8.07 ± 0.24) competed with [125I]apelin-13 binding with nanomolar affinity, 4-fold lower than for [Pyr1]apelin-13 (pKi = 8.83 ± 0.06) whereas apelin-17 exhibited highest affinity (pKi = 9.63 ± 0.17). The rank order of potency of peptides to inhibit forskolin-stimulated cAMP was apelin-17 (pD2 = 10.31 ± 0.28) > [Pyr1]apelin-13 (pD2 = 9.67 ± 0.04) ≥ apelin-13(F13A) (pD2 = 9.54 ± 0.05) > [Pyr1]apelin-13(1–12) (pD2 = 9.30 ± 0.06). The truncated peptide apelin-13(R10M) retained nanomolar potency (pD2 = 8.70 ± 0.04) but shorter fragments exhibited low micromolar potency. In a β-arrestin recruitment assay the rank order of potency was apelin-17 (pD2 = 10.26 ± 0.09) >> [Pyr1]apelin-13 (pD2 = 8.43 ± 0.08) > apelin-13(R10M) (pD2 = 8.26 ± 0.17) > apelin-13(F13A) (pD2 = 7.98 ± 0.04) ≥ [Pyr1]apelin-13(1–12) (pD2 = 7.84 ± 0.06) >> shorter fragments (pD2 < 6). [Pyr1]apelin-13(1–12) and apelin-13(F13A) contracted human saphenous vein with similar sub-nanomolar potencies and [Pyr1]apelin-13(1–12) was a potent inotrope in paced mouse right ventricle and human atria. [Pyr1]apelin-13(1–12) elicited a dose-dependent decrease in blood

  3. Protective Role of the ACE2/Ang-(1–9 Axis in Cardiovascular Remodeling

    Directory of Open Access Journals (Sweden)

    María Paz Ocaranza

    2012-01-01

    Full Text Available Despite reduction in cardiovascular (CV events and end-organ damage with the current pharmacologic strategies, CV disease remains the primary cause of death in the world. Pharmacological therapies based on the renin angiotensin system (RAS blockade are used extensively for the treatment of hypertension, heart failure, and CV remodeling but in spite of their success the prevalence of end-organ damage and residual risk remain still high. Novel approaches must be discovered for a more effective treatment of residual CV remodeling and risk. The ACE2/Ang-(1–9 axis is a new and important target to counterbalance the vasoconstrictive/proliferative RAS axis. Ang-(1–9 is hydrolyzed slower than Ang-(1–7 and is able to bind the Ang II type 2 receptor. We review here the current experimental evidence suggesting that activation of the ACE2/Ang-(1–9 axis protects the heart and vessels (and possibly the kidney from adverse cardiovascular remodeling in hypertension as well as in heart failure.

  4. ACE2/Ang-(1-7)/Mas axis stimulates vascular repair-relevant functions of CD34+ cells.

    Science.gov (United States)

    Singh, Neha; Joshi, Shrinidh; Guo, Lirong; Baker, Matthew B; Li, Yan; Castellano, Ronald K; Raizada, Mohan K; Jarajapu, Yagna P R

    2015-11-15

    CD34(+) stem/progenitor cells have been identified as a promising cell population for the autologous cell-based therapies in patients with cardiovascular disease. The counter-regulatory axes of renin angiotensin system, angiotensin converting enzyme (ACE)/Ang II/angiotensin type 1 (AT1) receptor and ACE2/Ang-(1-7)/Mas receptor, play an important role in the cardiovascular repair. This study evaluated the expression and vascular repair-relevant functions of these two pathways in human CD34(+) cells. CD34(+) cells were isolated from peripheral blood mononuclear cells (MNCs), obtained from healthy volunteers. Expression of ACE, ACE2, AT1, and angiotensin type 2 and Mas receptors were determined. Effects of Ang II, Ang-(1-7), Norleu(3)-Ang-(1-7), and ACE2 activators, xanthenone (XNT) and diminazene aceturate (DIZE) on proliferation, migration, and adhesion of CD34(+) cells were evaluated. ACE2 and Mas were relatively highly expressed in CD34(+) cells compared with MNCs. Ang-(1-7) or its analog, Norleu(3)-Ang-(1-7), stimulated proliferation of CD34(+) cells that was associated with decrease in phosphatase and tensin homologue deleted on chromosome 10 levels and was inhibited by triciribin, an AKT inhibitor. Migration of CD34(+) cells was enhanced by Ang-(1-7) or Norleu(3)-Ang-(1-7) that was decreased by a Rho-kinase inhibitor, Y-27632. In the presence of Ang II, XNT or DIZE enhanced proliferation and migration that were blocked by DX-600, an ACE2 inhibitor. Treatment of MNCs with Ang II, before the isolation of CD34(+) cells, attenuated the proliferation and migration to stromal derived factor-1α. This attenuation was reversed by apocynin, an NADPH oxidase inhibitor. Adhesion of MNCs or CD34(+) cells to fibronectin was enhanced by Ang II and was unaffected by Ang-(1-7). This study suggests that ACE2/Ang-(1-7)/Mas pathway stimulates functions of CD34(+) cells that are cardiovascular protective, whereas Ang II attenuates these functions by acting on MNCs. These findings

  5. The ACE2/Ang-(1-7)/Mas axis can inhibit hepatic insulin resistance.

    Science.gov (United States)

    Cao, Xi; Yang, Fang-Yuan; Xin, Zhong; Xie, Rong-Rong; Yang, Jin-Kui

    2014-08-05

    Blocking the renin-angiotensin system (RAS) can reduce the risk of diabetes. Meanwhile, the angiotensin (Ang)-converting enzyme-2 (ACE2)/Ang-(1-7)/Mas axis has recently been proposed to function as a negative regulator of the RAS. In previous studies, we first demonstrated that ACE2 knockout (ACE2(-/)(y)) mice exhibit impaired glucose tolerance or diabetes. However the precise roles of ACE2 on glucose metabolism are unknown. Here we show that the ACE2/Ang-(1-7)/Mas axis can ameliorate insulin resistance in the liver. Activation of the ACE2/Ang-(1-7)/Mas axis increases glucose uptake and decreases glycogen synthesis in the liver accompanied by increased expression of glucose transporters, insulin receptor substrates and decreased expression of enzymes for glycogen synthesis. ACE2 knockout mice displayed elevated levels of oxidative stress and exposure to Ang-(1-7) reduced the stress in hepatic cells. As a consequence of anti-oxidative stress, activation of the ACE2/Ang-(1-7)/Mas axis led to improved hepatic insulin resistance through the Akt/PI3K/IRS-1/JNK insulin signaling pathway. This is the first time documented that the ACE2/Ang-(1-7)/Mas axis can ameliorate insulin resistance in the liver. As insulin resistance in the liver is considered to be the primary cause of the development of type 2 diabetes, this axis may serve as a new diabetes target. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  6. CD36/Sirtuin 1 Axis Impairment Contributes to Hepatic Steatosis in ACE2-Deficient Mice

    Science.gov (United States)

    Qadri, Fatimunnisa; Penninger, Josef M.; Santos, Robson Augusto S.; Bader, Michael

    2016-01-01

    Background and Aims. Angiotensin converting enzyme 2 (ACE2) is an important component of the renin-angiotensin system. Since angiotensin peptides have been shown to be involved in hepatic steatosis, we aimed to evaluate the hepatic lipid profile in ACE2-deficient (ACE2−/y) mice. Methods. Male C57BL/6 and ACE2−/y mice were analyzed at the age of 3 and 6 months for alterations in the lipid profiles of plasma, faeces, and liver and for hepatic steatosis. Results. ACE2−/y mice showed lower body weight and white adipose tissue at all ages investigated. Moreover, these mice had lower levels of cholesterol, triglycerides, and nonesterified fatty acids in plasma. Strikingly, ACE2−/y mice showed high deposition of lipids in the liver. Expression of CD36, a protein involved in the uptake of triglycerides in liver, was increased in ACE2−/y mice. Concurrently, these mice exhibited an increase in hepatic oxidative stress, evidenced by increased lipid peroxidation and expression of uncoupling protein 2, and downregulation of sirtuin 1. ACE2−/y mice also showed impairments in glucose metabolism and insulin signaling in the liver. Conclusions. Deletion of ACE2 causes CD36/sirtuin 1 axis impairment and thereby interferes with lipid homeostasis, leading to lipodystrophy and steatosis. PMID:28101297

  7. Calmodulin interacts with angiotensin-converting enzyme-2 (ACE2) and inhibits shedding of its ectodomain.

    Science.gov (United States)

    Lambert, Daniel W; Clarke, Nicola E; Hooper, Nigel M; Turner, Anthony J

    2008-01-23

    Angiotensin-converting enzyme-2 (ACE2) is a regulatory protein of the renin-angiotensin system (RAS) and a receptor for the causative agent of severe-acute respiratory syndrome (SARS), the SARS-coronavirus. We have previously shown that ACE2 can be shed from the cell surface in response to phorbol esters by a process involving TNF-alpha converting enzyme (TACE; ADAM17). In this study, we demonstrate that inhibitors of calmodulin also stimulate shedding of the ACE2 ectodomain, a process at least partially mediated by a metalloproteinase. We also show that calmodulin associates with ACE2 and that this interaction is decreased by calmodulin inhibitors.

  8. The Aspergillus fumigatus Transcription Factor Ace2 Governs Pigment Production, Conidiation and Virulence

    Science.gov (United States)

    Ejzykowicz, Daniele E.; Cunha, Marcel M.; Rozental, Sonia; Solis, Norma V.; Gravelat, Fabrice N.; Sheppard, Donald C.; Filler, Scott G.

    2009-01-01

    Summary Aspergillus fumigatus causes serious and frequently fatal infections in immunocompromised patients. To investigate the regulation of virulence of this fungus, we constructed and analyzed an A. fumigatus mutant that lacked the transcription factor Ace2, which influences virulence in other fungi. The Δace2 mutant had dysmorphic conidiophores, reduced conidia production, and abnormal conidial cell wall architecture. This mutant produced an orange pigment when grown on solid media, although its conidia had normal pigmentation. Conidia of the Δace2 mutant were larger and had accelerated germination. The resulting germlings were resistant to hydrogen peroxide, but not other stressors. Non-neutropenic mice that were immunosuppressed with cortisone acetate and infected with the Δace2 mutant had accelerated mortality, greater pulmonary fungal burden, and increased pulmonary inflammatory responses compared to mice infected with the wild-type or Δace2ace2 complemented strains. The Δace2 mutant had reduced ppoC, ecm33, and ags3 mRNA expression. It is known that A. fumigatus mutants with absent or reduced expression of these genes have increased virulence in mice, as well as other phenotypic similarities to the Δace2 mutant. Therefore, reduced expression of these genes likely contributes to the increased virulence of the Δace2 mutant. PMID:19220748

  9. ACE2/ANG-(1-7)/Mas pathway in the brain: the axis of good

    National Research Council Canada - National Science Library

    Xu, Ping; Sriramula, Srinivas; Lazartigues, Eric

    2011-01-01

    ...). Among them, angiotensin converting enzyme-2 (ACE2) and the Mas receptor have forced a reevaluation of the original cascade and led to the emergence of a new arm of the RAS: the ACE2/ANG-(1-7)/Mas axis...

  10. Human plasminogen binding protein tetranectin

    DEFF Research Database (Denmark)

    Kastrup, J S; Rasmussen, H; Nielsen, B B;

    1997-01-01

    The recombinant human plasminogen binding protein tetranectin (TN) and the C-type lectin CRD of this protein (TN3) have been crystallized. TN3 crystallizes in the tetragonal space group P4(2)2(1)2 with cell dimensions a = b = 64.0, c = 75.7 A and with one molecule per asymmetric unit. The crystals...... to at least 2.5 A. A full data set has been collected to 3.0 A. The asymmetric unit contains one monomer of TN. Molecular replacement solutions for TN3 and TN have been obtained using the structure of the C-type lectin CRD of rat mannose-binding protein as search model. The rhombohedral space group indicates...

  11. Downregulation of ACE2/Ang-(1-7)/Mas axis promotes breast cancer metastasis by enhancing store-operated calcium entry.

    Science.gov (United States)

    Yu, Changhui; Tang, Wei; Wang, Yuhao; Shen, Qiang; Wang, Bin; Cai, Chunqing; Meng, Xiaojing; Zou, Fei

    2016-07-01

    The renin-angiotensin system (RAS) is an important component of the tumor microenvironment and plays a key role in promoting cancer cell proliferation, angiogenesis, metabolism, migration and invasion. Meanwhile, the arm of angiotensin-converting enzyme (ACE)2/angiotensin-(1-7) [Ang-(1-7)]/Mas axis in connection with RAS is associated with anti-proliferative, vasodilatory and anti-metastatic properties. Previous studies have shown that Ang-(1-7) reduces the proliferation of orthotopic human breast tumor growth by inhibiting cancer-associated fibroblasts. However, the role of ACE/Ang-(1-7)/Mas axis in the metastasis of breast cancer cells is still unknown. In the present study, we found that ACE2 protein level is negatively correlated with the metastatic ability of breast cancer cells and breast tumor grade. Upregulation of ACE2/Ang-(1-7)/Mas axis inhibits breast cancer cell migration and invasion in vivo and in vitro. Mechanistically, ACE2/Ang-(1-7)/Mas axis activation inhibits store-operated calcium entry (SOCE) and PAK1/NF-κB/Snail1 pathways, and induces E-cadherin expression. In summary, our results demonstrate that downregulation of ACE2/Ang-(1-7)/Mas axis stimulates breast cancer metastasis through the activation of SOCE and PAK1/NF-κB/Snail1 pathways. These results provide new mechanisms by which breast cancer develop metastasis and shed light on developing novel anti-metastasis therapeutics for metastatic breast cancer by modulating ACE2/Ang-(1-7)/Mas axis. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. 肾素-血管紧张素系统的新调节分子:ACE2%New regulator in renin angiotensin system: ACE2

    Institute of Scientific and Technical Information of China (English)

    李怡棠; 程桂芳

    2006-01-01

    血管紧张素转化酶(angiotensin-converting enzyme,ACE)为含锌的金属蛋白酶,是肾素-血管紧张素系统(renin-angiotensin system,RAS)重要的调节分子.血管紧张素转化酶2(angiotensin-converting enzyme 2,ACE2)是迄今发现的唯一的ACE同系物(homologue),它主要分布于睾丸、肾脏和心脏.ACE2可水解血管紧张素Ⅰ(angiotensin Ⅰ,Ang Ⅰ)和血管紧张素Ⅱ(angiotensin Ⅱ,Ang Ⅱ)羧基端的1个氨基酸残基,分别形成Ang1-9和有血管舒张作用的Ang1-7.ACE 2的生理病理作用还不甚明了,传统的ACE抑制剂不能抑制ACE2的活性.ACE2在心血管、肾脏系统的作用可能与ACE相反,与ACE共同调节心脏、肾脏等脏器的正常功能.

  13. Alteration of cardiac ACE2/Mas expression and cardiac remodelling in rats with aortic constriction.

    Science.gov (United States)

    Zhang, Yanling; Li, Bing; Wang, Bingxiangi; Zhang, Jingjun; Wu, Junyan; Morgan, Trefor

    2014-12-31

    The recent discovery of the new components of the renin-angiotensin system (RAS) suggests the importance of the maintenance of cardiovascular structure and functions. To assess the role of the angiotensin-converting enzyme 2 (ACE2)-Mas receptor axis in the regulation of cardiac structure and function, the present work investigated the expression of ACE2 and Mas receptor in the heart in the cardiac remodeling that occurs in aortic constricted rats. Partial abdominal aortic ligation was carried out in Sprague-Dawley rats. Angiotensin AT1 receptor blockade and ACE inhibition were achieved by losartan and enalapril treatment, respectively. Results showed that aortic constriction increased left ventricular hypertrophy, fibrosis, mean arterial pressure (MAP), plasma renin activity (PRA) and cardiac ACE levels, but decreased the expression of cardiac ACE2 and Mas receptor. Losartan treatment significantly decreased MAP, left ventricle hypertrophy (LVH), fibrosis, and increased cardiac ACE2 and Mas expression. Enalapril also improved the cardiac parameters with a rise in cardiac ACE2, but did not change the Mas level. In conclusion, aortic constriction results in cardiac hypertrophy, fibrosis and a rise of cardiac ACE expression. Both AT1 receptor blocker and ACE inhibitor play a cardioprotective role in aortic constriction. However, AT1 receptor blocker particularly promotes cardiac ACE2 and Mas receptor levels. ACE inhibitor is associated with the inhibition of ACE and normalization of cardiac ACE2 activity.

  14. Hydronephrosis alters cardiac ACE2 and Mas receptor expression in mice.

    Science.gov (United States)

    Zhang, Yanling; Ma, Lulu; Wu, Junyan; Chen, Tingting

    2015-06-01

    Hydronephrosis is characterized by substantial loss of tubules and affects renin secretion in the kidney. However, whether alterations of angiotensin-converting enzyme (ACE), ACE2 and Mas receptor in the heart are observed in hydronephrosis is unknown. Thus, we assessed these components in hydronephrotic mice treated with AT1 receptor blockade and ACE inhibitor. Hydronephrosis was induced by left ureteral ligation in Balb/C mice except sham-operated animals. The levels of cardiac ACE, ACE2 and Mas receptor were measured after treatment of losartan or enalapril. Hydronephrosis led to an increase of ACE level and a decrease of ACE2 and Mas receptor in the heart. Losartan decreased cardiac ACE level, but ACE2 and Mas receptor levels significantly increased in hydronephrotic mice (p Mas receptor in the heart. Plasma renin activity (PRA) and Ang II decreased in hydronephrotic mice, but significantly increased after treatment with losartan or enalapril. Hydronephrosis increased cardiac ACE and suppressed ACE2 and Mas receptor levels. AT1 blockade caused sustained activation of cardiac ACE2 and Mas receptor, but ACE inhibitor had the limitation of such activation of Mas receptor in hydronephrotic animals. © The Author(s) 2015.

  15. ACE/ACE2 Ratio and MMP-9 Activity as Potential Biomarkers in Tuberculous Pleural Effusions

    Science.gov (United States)

    Hsieh, Wen-Yeh; Kuan, Tang-Ching; Cheng, Kun-Shan; Liao, Yan-Chiou; Chen, Mu-Yuan; Lin, Pei-Heng; Hsu, Yuan-Chang; Huang, Chen-Yi; Hsu, Wei-Hua; Yu, Sheng-Yao; Lin, Chih-Sheng

    2012-01-01

    Objective: Pleural effusion is common problem, but the rapid and reliable diagnosis for specific pathogenic effusions are lacking. This study aimed to identify the diagnosis based on clinical variables to differentiate pleural tuberculous exudates from other pleural effusions. We also investigated the role of renin-angiotensin system (RAS) and matrix metalloproteinase (MMPs) in the pathogenesis of pleural exudates. Experimental design: The major components in RAS and extracellular matrix metabolism, including angiotensin converting enzyme (ACE), ACE2, MMP-2 and MMP-9 activities, were measured and compared in the patients with transudative (n = 45) and exudative (n = 80) effusions. The exudative effusions were come from the patients with tuberculosis (n = 20), pneumonia (n = 32), and adenocarcinoma (n = 28). Results: Increased ACE and equivalent ACE2 activities, resulting in a significantly increased ACE/ACE2 ratio in exudates, were detected compared to these values in transudates. MMP-9 activity in exudates was significantly higher than that in transudates. The significant correlation between ACE and ACE2 activity that was found in transudates was not found in exudates. Advanced analyses showed significantly increased ACE and MMP-9 activities, and decreased ACE2 activity in tuberculous pleural effusions compared with those in pneumonia and adenocarcinoma effusions. The results indicate that increased ACE and MMP-9 activities found in the exudates were mainly contributed from a higher level of both enzyme activities in the tuberculous pleural effusions. Conclusion: Interplay between ACE and ACE2, essential functions in the RAS, and abnormal regulation of MMP-9 probably play a pivotal role in the development of exudative effusions. Moreover, the ACE/ACE2 ratio combined with MMP-9 activity in pleural fluid may be potential biomarkers for diagnosing tuberculous pleurisy. PMID:23091417

  16. Short-term treatment with diminazene aceturate ameliorates the reduction in kidney ACE2 activity in rats with subtotal nephrectomy.

    Directory of Open Access Journals (Sweden)

    Elena Velkoska

    Full Text Available Angiotensin converting enzyme (ACE 2 is an important modulator of the renin angiotensin system (RAS through its role to degrade angiotensin (Ang II. Depletion of kidney ACE2 occurs following kidney injury due to renal mass reduction and may contribute to progressive kidney disease. This study assessed the effect of diminazine aceturate (DIZE, which has been described as an ACE2 activator, on kidney ACE2 mRNA and activity in rats with kidney injury due to subtotal nephrectomy (STNx. Sprague Dawley rats were divided into Control groups or underwent STNx; rats then received vehicle or the DIZE (s.c. 15 mg/kg/day for 2 weeks. STNx led to hypertension (P<0.01, kidney hypertrophy (P<0.001 and impaired kidney function (P<0.001 compared to Control rats. STNx was associated with increased kidney cortical ACE activity, and reduced ACE2 mRNA in the cortex (P<0.01, with reduced cortical and medullary ACE2 activity (P<0.05, and increased urinary ACE2 excretion (P<0.05 compared to Control rats. Urinary ACE2 activity correlated positively with urinary protein excretion (P<0.001, and negatively with creatinine clearance (P=0.04. In STNx rats, DIZE had no effect on blood pressure or kidney function, but was associated with reduced cortical ACE activity (P<0.01, increased cortical ACE2 mRNA (P<0.05 and increased cortical and medullary ACE2 activity (P<0.05. The precise in vivo mechanism of action of DIZE is not clear, and its effects to increase ACE2 activity may be secondary to an increase in ACE2 mRNA abundance. In ex vivo studies, DIZE did not increase ACE2 activity in either Control or STNx kidney cortical membranes. It is not yet known if chronic administration of DIZE has long-term benefits to slow the progression of kidney disease.

  17. Research Progress of ACE2 against Cardiac Remodeling%ACE2抗心室重构作用的研究进展

    Institute of Scientific and Technical Information of China (English)

    张培勇

    2013-01-01

    心室重构是心脏对损伤或室壁压力增高的适应性变化,病理性心室重构导致心功能进行性恶化,最终导致心力衰竭.肾素-血管紧张素系统(RAS)通过间接和直接作用在心室重构的发生、发展中发挥重要作用.血管紧张素转换酶2(ACE2)可水解血管紧张素Ⅱ生成血管紧张素-(1-7),负性调节RAS,延缓或逆转病理型心室重构.现对近年来ACE2抗心室重构作用的研究进展进行综述.%Remodeling of the heart which occurs in response to injury and/or an increase in wall stress plays a key role in the progressive deterioration of cardiac function that leads to heart failure. The renin-angiotensin system ( RAS ) is a key regulator in the progress of pathological remodeling, through indirect and direct effects on cells of heart. Angiotensin converting enzyme 2( ACE2 ), which can break down Ang Ⅱ while generating angiotensin-( 1 -7 ), can down-regulate RAS and have an important role against cardiac remodeling. Here is to make a review focusing on advances made in understanding the effects of ACE2 against cardiac remodeling.

  18. Tissue-specific amino acid transporter partners ACE2 and collectrin differentially interact with hartnup mutations

    DEFF Research Database (Denmark)

    Camargo, Simone M R; Singer, Dustin; Makrides, Victoria

    2008-01-01

    BACKGROUND & AIMS: Hartnup amino acid transporter B(0)AT1 (SLC6A19) is the major luminal sodium-dependent neutral amino acid transporter of small intestine and kidney proximal tubule. The expression of B(0)AT1 in kidney was recently shown to depend on its association with collectrin (Tmem27...... on an associated protein, we tested the hypothesis that Hartnup-causing B(0)AT1 mutations differentially impact on B(0)AT1 interaction with intestinal and kidney accessory proteins. RESULTS: Immunofluorescence, coimmunoprecipitation, and functional experiments using wild-type and ace2-null mice showed...... that expression of B(0)AT1 in small intestine critically depends on ACE2. Coexpressing new and previously identified Hartnup disorder-causing missense mutations of B(0)AT1 with either collectrin or ACE2 in Xenopus laevis oocytes showed that the high-frequency D173N and the newly identified P265L mutant B(0)AT1...

  19. Angiotensin-II mediates ACE2 Internalization and Degradation through an Angiotensin-II type I receptor-dependent mechanism

    OpenAIRE

    Deshotels, Matthew R.; Xia, Huijing; Lazartigues, Eric; Filipeanu, Catalin M.

    2014-01-01

    Angiotensin Converting Enzyme type 2 (ACE2) is a pivotal component of the renin-angiotensin system, promoting the conversion of Angiotensin (Ang)-II to Ang-(1-7). We previously reported that decreased ACE2 expression and activity contribute to the development of Ang-II-mediated hypertension in mice. The present study aimed to investigate the mechanisms involved in ACE2 down-regulation during neurogenic hypertension. In ACE2-transfected Neuro-2A cells, Ang-II treatment resulted in a significan...

  20. Downregulation of the ACE2/Ang-(1-7)/Mas axis in transgenic mice overexpressing GH.

    Science.gov (United States)

    Muñoz, Marina C; Burghi, Valeria; Miquet, Johanna G; Giani, Jorge F; Banegas, Ricardo D; Toblli, Jorge E; Fang, Yimin; Wang, Feiya; Bartke, Andrzej; Dominici, Fernando P

    2014-05-01

    The renin-angiotensin system (RAS) plays a crucial role in the regulation of physiological homeostasis and diseases such as hypertension, coronary artery disease, and chronic renal failure. In this cascade, the angiotensin-converting enzyme (ACE)/angiotensin II (Ang II)/AT1 receptor axis induces pathological effects, such as vasoconstriction, cell proliferation, and fibrosis, while the ACE2/Ang-(1-7)/Mas receptor axis is protective for end-organ damage. The altered function of the RAS could be a contributing factor to the cardiac and renal alterations induced by GH excess. To further explore this issue, we evaluated the consequences of chronic GH exposure on the in vivo levels of Ang II, Ang-(1-7), ACE, ACE2, and Mas receptor in the heart and the kidney of GH-transgenic mice (bovine GH (bGH) mice). At the age of 7-8 months, female bGH mice displayed increased systolic blood pressure (SBP), a high degree of both cardiac and renal fibrosis, as well as increased levels of markers of tubular and glomerular damage. Angiotensinogen abundance was increased in the liver and the heart of bGH mice, along with a concomitant increase in cardiac Ang II levels. Importantly, the levels of ACE2, Ang-(1-7), and Mas receptor were markedly decreased in both tissues. In addition, Ang-(1-7) administration reduced SBP to control values in GH-transgenic mice, indicating that the ACE2/Ang-(1-7)/Mas axis is involved in GH-mediated hypertension. The data indicate that the altered expression profile of the ACE2/Ang-(1-7)/Mas axis in the heart and the kidney of bGH mice could contribute to the increased incidence of hypertension, cardiovascular, and renal alterations observed in these animals.

  1. Ace2, rather than ace1, is the major acetylcholinesterase in the silkworm, Bombyx moil

    Institute of Scientific and Technical Information of China (English)

    Hui-Juan Chen; Zhen Liao; Xiao-Ming Hui; Guo-Qing Li; Fei Li; Zhao-Jun Han

    2009-01-01

    Two acetylcholinesterase (ace) genes have been reported in many insect species. In pests such as Helicoverpa assulta and Plutella xylostellas, acel gene encodes the predominant synaptic enzyme that is the main target of organophosphorus (OP) and carbamate pesticides. It has been reported that pesticide selection has an impact on the ace gene evolution. The domesticated silkworm, Bombyx mori, also has two ace genes. We studied ace gene expression and enzyme activities in silkworm as this has not faced pesticide selection over the past decades. The expression levels of two ace genes, Bm-acel and Bin-ace2, were estimated by quantitative real-time polymerase chain reaction. Bm-ace2 was expressed more highly than Bm-acel in all tested samples of different developmental stages or tissues, suggesting ace2, rather than ace 1, is the major type of acetylcholinesterase (ACHE) in Bombyx mori. This is inconsistent with the aforementioned lepidopterons agricultural pests, partly be due to the widespread use of pesticides that may induce high expression of the acel gene in these pests. Besides high expression in the head, Bm-acel also expresses highly in the silk glands and Bm-ace2 is abundant in the germline, implying both ace genes may have potential non-hydrolytic roles in development. Furthermore, we found that the m_RNA levels of two ace genes and their ratios (ace2/ace1) change day to day in the first and third instars. This challenges the conventional method of estimating enzymatic activity using crude extract as an enzyme solution, as it is a mixture of ACHE1 and ACHE2. An efficient and simple method for separating different ACHEs is necessary for reliable toxicological analyses.

  2. Imidazole binding to human serum albumin.

    Science.gov (United States)

    Rodrigo, M C; Ceballos, A; Mariño, E; Cachaza, J M; Domínguez-Gil, A; Kuemmerle, H P

    1988-06-01

    Imidazole is a substance released by the organism when a new salicylate derivative, imidazole salicylate is administered. A study was made of the binding of imidazole to human serum albumin by an in vitro assay employing an ultrafiltration technique. For the concentration range that imidazole was found in plasma following administration of the drug to healthy volunteers, the mean binding percentages were: 12.1 +/- 1.8 and 19.7 +/- 3.1 at 37 degrees C and 25 degrees C, respectively. The results obtained in the study follow a model entailing three equal and independent binding sites of imidazole to serum albumin and the values of the corresponding constants were determined. Apparently, the presence in the plasma samples of sodium salicylate at a concentration of 100 micrograms/ml does not affect the binding of imidazole to human serum albumin.

  3. Endocytosis of Integrin-Binding Human Picornaviruses

    Directory of Open Access Journals (Sweden)

    Pirjo Merilahti

    2012-01-01

    Full Text Available Picornaviruses that infect humans form one of the largest virus groups with almost three hundred virus types. They include significant enteroviral pathogens such as rhino-, polio-, echo-, and coxsackieviruses and human parechoviruses that cause wide range of disease symptoms. Despite the economic importance of picornaviruses, there are no antivirals. More than ten cellular receptors are known to participate in picornavirus infection, but experimental evidence of their role in cellular infection has been shown for only about twenty picornavirus types. Three enterovirus types and one parechovirus have experimentally been shown to bind and use integrin receptors in cellular infection. These include coxsackievirus A9 (CV-A9, echovirus 9, and human parechovirus 1 that are among the most common and epidemic human picornaviruses and bind to αV-integrins via RGD motif that resides on virus capsid. In contrast, echovirus 1 (E-1 has no RGD and uses integrin α2β1 as cellular receptor. Endocytosis of CV-A9 has recently been shown to occur via a novel Arf6- and dynamin-dependent pathways, while, contrary to collagen binding, E-1 binds inactive β1 integrin and enters via macropinocytosis. In this paper, we review what is known about receptors and endocytosis of integrin-binding human picornaviruses.

  4. Endocytosis of integrin-binding human picornaviruses.

    Science.gov (United States)

    Merilahti, Pirjo; Koskinen, Satu; Heikkilä, Outi; Karelehto, Eveliina; Susi, Petri

    2012-01-01

    Picornaviruses that infect humans form one of the largest virus groups with almost three hundred virus types. They include significant enteroviral pathogens such as rhino-, polio-, echo-, and coxsackieviruses and human parechoviruses that cause wide range of disease symptoms. Despite the economic importance of picornaviruses, there are no antivirals. More than ten cellular receptors are known to participate in picornavirus infection, but experimental evidence of their role in cellular infection has been shown for only about twenty picornavirus types. Three enterovirus types and one parechovirus have experimentally been shown to bind and use integrin receptors in cellular infection. These include coxsackievirus A9 (CV-A9), echovirus 9, and human parechovirus 1 that are among the most common and epidemic human picornaviruses and bind to αV-integrins via RGD motif that resides on virus capsid. In contrast, echovirus 1 (E-1) has no RGD and uses integrin α2β1 as cellular receptor. Endocytosis of CV-A9 has recently been shown to occur via a novel Arf6- and dynamin-dependent pathways, while, contrary to collagen binding, E-1 binds inactive β1 integrin and enters via macropinocytosis. In this paper, we review what is known about receptors and endocytosis of integrin-binding human picornaviruses.

  5. Neuroprotective Mechanisms of the ACE2-Angiotensin-(1-7)-Mas Axis in Stroke

    DEFF Research Database (Denmark)

    Bennion, Douglas M; Haltigan, Emily; Regenhardt, Robert W

    2015-01-01

    The discovery of beneficial neuroprotective effects of the angiotensin converting enzyme 2-angiotensin-(1-7)-Mas axis [ACE2-Ang-(1-7)-Mas] in ischemic and hemorrhagic stroke has spurred interest in a more complete characterization of its mechanisms of action. Here, we summarize findings...... that describe the protective role of the ACE2-Ang-(1-7)-Mas axis in stroke, along with a focused discussion on the potential mechanisms of neuroprotective effects of Ang-(1-7) in stroke. The latter incorporates evidence describing the actions of Ang-(1-7) to counter the deleterious effects of angiotensin II...... complete understanding of the mechanisms of action of Ang-(1-7) to elicit neuroprotection will serve as an essential step toward research into potential targeted therapeutics in the clinical setting....

  6. Shipboard measurements of concentrations and properties of carbonaceous aerosols during ACE-2

    OpenAIRE

    2011-01-01

    Mass concentrations of total, organic and black carbon were derived by analyzing the supermicron and submicron aerosol fractions of shipboard collected samples in the easternAtlantic Ocean as part of the second Aerosol Characterization Experiment (ACE-2). These analyses were complemented by experiments intended to estimate the water-soluble fraction of the submicron carbonaceous material. Our results can be summarized as follows. Depending on the sample, between 35% and 80% of total aerosol c...

  7. 醛固酮通过调节ACE2-Ang(1-7)-Mas受体轴诱导内皮细胞凋亡的研究%Aldosterone induced endothelial cell apoptosis via modulation of ACE2-Ang (1-7)-Mas receptor axis

    Institute of Scientific and Technical Information of China (English)

    张霞; 潘瑜; 金惠敏

    2013-01-01

    目的 探讨醛固酮对内皮细胞ACE2-Ang(1-7)-Mas受体轴的影响及其与凋亡的关系.方法 将体外培养的人脐静脉内皮细胞(HUVEC)分为对照组(DMEM/F12培养基)、醛固酮组(10、100、1 000 nmol/L醛固酮干预)和醛固酮拮抗组(100 nmol/L醛固酮+1μmol/L醛固酮受体拮抗剂共同干预).采用免疫荧光细胞化学染色法观察细胞ACE2蛋白的表达;Western blotting检测细胞中ACE2和Mas受体的表达;酶联免疫吸附实验(ELISA)检测细胞培养上清中AngⅡ和Ang(1-7)蛋白的含量以及凋亡相关蛋白caspase-3的活性;流式细胞术结合FITC-Annexin V/PI荧光染色检测细胞凋亡.结果 与对照组比较,醛固酮组细胞ACE2和Mas受体的表达明显下调(P<0.01),并呈浓度依赖性.在100 nmol/L醛固酮组,随着干预时间的延长,细胞ACE2和Mas受体的表达明显下调(P<0.01),呈时间依赖性;而醛固酮拮抗组细胞ACE2和Mas受体的表达显著高于100 nmol/L醛固酮组(P<0.01).ELISA检测结果显示,随着干预时间的延长,醛固酮组细胞培养上清中AngⅡ浓度和caspase-3活性均显著升高,而Ang(1-7)浓度降低.流式细胞术检测结果显示:醛固酮组细胞凋亡率显著高于对照组,醛固酮拮抗组细胞凋亡率显著低于醛固酮组(P<0.05).结论 醛固酮具有调节ACE2-Ang(1-7)-Mas受体轴的作用,并可能通过此轴诱导内皮细胞凋亡.%Objective To investigate the effect of aldosterone on ACE2 - Ang ( 1 -7) - Mas receptor axis of endothelial cells, and explore its association with apoptosis. Methods Human umbilical vein endothelial cells ( HUVEC) cultured in vitro were divided into control group ( DMEM/F12 culture medium), aldosterone group (treatment with 10, 100, 1 000 nmol/L aldosterone) and aldosterone antagonist group ( 100 nmol/L aldosterone + 1 μmol/L aldosterone antagonist) . The expression of ACE2 protein in cells was observed with immunofluorescence cytochemical staining, the expression of

  8. Angiotensin metabolism in renal proximal tubules, urine, and serum of sheep: evidence for ACE2-dependent processing of angiotensin II.

    Science.gov (United States)

    Shaltout, Hossam A; Westwood, Brian M; Averill, David B; Ferrario, Carlos M; Figueroa, Jorge P; Diz, Debra I; Rose, James C; Chappell, Mark C

    2007-01-01

    Despite the evidence that angiotensin-converting enzyme (ACE)2 is a component of the renin-angiotensin system (RAS), the influence of ACE2 on angiotensin metabolism within the kidney is not well known, particularly in experimental models other than rats or mice. Therefore, we investigated the metabolism of the angiotensins in isolated proximal tubules, urine, and serum from sheep. Radiolabeled [(125)I]ANG I was hydrolyzed primarily to ANG II and ANG-(1-7) by ACE and neprilysin, respectively, in sheep proximal tubules. The ACE2 product ANG-(1-9) from ANG I was not detected in the absence or presence of ACE and neprilysin inhibition. In contrast, the proximal tubules contained robust ACE2 activity that converted ANG II to ANG-(1-7). Immunoblots utilizing an NH(2) terminal-directed ACE2 antibody revealed a single 120-kDa band in proximal tubule membranes. ANG-(1-7) was not a stable product in the tubule preparation and was rapidly hydrolyzed to ANG-(1-5) and ANG-(1-4) by ACE and neprilysin, respectively. Comparison of activities in the proximal tubules with nonsaturating concentrations of substrate revealed equivalent activities for ACE (ANG I to ANG II: 248 +/- 17 fmol x mg(-1) x min(-1)) and ACE2 [ANG II to ANG-(1-7): 253 +/- 11 fmol x mg(-1) x min(-1)], but lower neprilysin activity [ANG II to ANG-(1-4): 119 +/- 24 fmol x mg(-1) x min(-1); P < 0.05 vs. ACE or ACE2]. Urinary metabolism of ANG I and ANG II was similar to the proximal tubules; soluble ACE2 activity was also detectable in sheep serum. In conclusion, sheep tissues contain abundant ACE2 activity that converts ANG II to ANG-(1-7) but does not participate in the processing of ANG I into ANG-(1-9).

  9. Human DC-SIGN binds specific human milk glycans.

    Science.gov (United States)

    Noll, Alexander J; Yu, Ying; Lasanajak, Yi; Duska-McEwen, Geralyn; Buck, Rachael H; Smith, David F; Cummings, Richard D

    2016-05-15

    Human milk glycans (HMGs) are prebiotics, pathogen receptor decoys and regulators of host physiology and immune responses. Mechanistically, human lectins (glycan-binding proteins, hGBP) expressed by dendritic cells (DCs) are of major interest, as these cells directly contact HMGs. To explore such interactions, we screened many C-type lectins and sialic acid-binding immunoglobulin-like lectins (Siglecs) expressed by DCs for glycan binding on microarrays presenting over 200 HMGs. Unexpectedly, DC-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN) showed robust binding to many HMGs, whereas other C-type lectins failed to bind, and Siglec-5 and Siglec-9 showed weak binding to a few glycans. By contrast, most hGBP bound to multiple glycans on other microarrays lacking HMGs. An α-linked fucose residue was characteristic of HMGs bound by DC-SIGN. Binding of DC-SIGN to the simple HMGs 2'-fucosyl-lactose (2'-FL) and 3-fucosyl-lactose (3-FL) was confirmed by flow cytometry to beads conjugated with 2'-FL or 3-FL, as well as the ability of the free glycans to inhibit DC-SIGN binding. 2'-FL had an IC50 of ∼1 mM for DC-SIGN, which is within the physiological concentration of 2'-FL in human milk. These results demonstrate that DC-SIGN among the many hGBP expressed by DCs binds to α-fucosylated HMGs, and suggest that such interactions may be important in influencing immune responses in the developing infant.

  10. The ACE2-angiotensin-(1-7)-Mas axis protects against pancreatic cell damage in cell culture.

    Science.gov (United States)

    Wang, Jing; Liu, Ruixia; Qi, Haiyu; Wang, Yan; Cui, Lijian; Wen, Yan; Li, Huihui; Yin, Chenghong

    2015-03-01

    Angiotensin-converting enzyme 2 (ACE2), its product angiotensin-(1-7), and its receptor Mas have been shown to moderate the adverse effects of the ACE-angiotensin II-AT1 axis in many diseases. The aim of this study was to determine whether the ACE2-Ang-(1-7)-Mas axis could have similar effects in a cell culture model of pancreatic damage. AR42J cells were stimulated with 10 nmol/L cerulein to simulate acute pancreatitis. ACE2, Ang-(1-7), Mas receptor, and PI3K/AKT pathway were measured by quantitative real-time polymerase chain reaction and Western blot analysis. ACE2 and Mas receptor protein levels in AR42J cells were significantly increased (P Mas receptor gene expression was significantly increased (P Mas axis significantly inhibits pancreatitis in response to decreased inflammatory factors by the activation of endothelial nitric oxide synthase and NO signaling pathways.

  11. STUDY OF ESTROGEN BINDING SITE ON HUMAN EJACULATED SPERMATOZOA

    Institute of Scientific and Technical Information of China (English)

    CHUJin-Shong; WANGYi-Fei

    1989-01-01

    The specific estrogen binding site for 17β-estradiol has been investigated on human spermatozoa by electron microscopec autoradiography. The results show that the binding sites were distributed over the surface of human spermatozoa: acrosomal cap, equatorial

  12. Enhanced human receptor binding by H5 haemagglutinins

    OpenAIRE

    Xiong, Xiaoli; Xiao, Haixia; Martin, Stephen R.; Coombs, Peter J.; Liu, Junfeng; Collins, Patrick J.; Vachieri, Sebastien G.; Walker, Philip A.; Lin, Yi Pu; McCauley, John W.; Gamblin, Steven J.; John J Skehel

    2014-01-01

    Mutant H5N1 influenza viruses have been isolated from humans that have increased human receptor avidity. We have compared the receptor binding properties of these mutants with those of wild-type viruses, and determined the structures of their haemagglutinins in complex with receptor analogues. Mutants from Vietnam bind tighter to human receptor by acquiring basic residues near the receptor binding site. They bind more weakly to avian receptor because they lack specific interactions between As...

  13. Cellular and molecular mechanisms of ACE2/Ang1-7/Mas in ALI/ARDS%ACE2/Ang1-7/Mas在ALI/ARDS中作用机制研究

    Institute of Scientific and Technical Information of China (English)

    孙佳; 朱彪

    2016-01-01

    Renin-angiotensin system(RAS)plays important roles in the pathogenesis of acute lung injury(ALI)/acute respiratory distress syndrome(ARDS).About 60% of ARDS patients are shown to develop pulmonary fibrosis with increased mortality rate.Recent researches have demonstrated potent inhibitory of angiotensin-converting enzyme 2 (ACE2)/angiotensin 1-7 (Ang1-7)/Mas axis on ALI/ARDS.This review summarizes the beneficial action of ACE2/Ang1-7/Mas on ALI/ARDS and research progress on relative signaling pathway.%肾素-血管紧张素系统在 ALI/ARDS的病理过程中有重要作用。大约60% ARDS患者进展成肺纤维化且其病死率明显增加。目前研究显示 ACE/AngⅡ/AT1 R 与 ALI/ARDS 发病机制有关,而ACE2/Ang1-7/Mas起负向调节作用———ACE2和Ang1-7对ALI/ARDS有保护作用。因此,本文就 ACE2/Ang1-7/Mas在 ALI/ARDS中的保护作用和相关信号传导通路等方面最新研究进展作一阐述。

  14. Antioxidant flavonoids bind human serum albumin

    Science.gov (United States)

    Kanakis, C. D.; Tarantilis, P. A.; Polissiou, M. G.; Diamantoglou, S.; Tajmir-Riahi, H. A.

    2006-10-01

    Human serum albumin (HSA) is a principal extracellular protein with a high concentration in blood plasma and carrier for many drugs to different molecular targets. Flavonoids are powerful antioxidants and prevent DNA damage. The antioxidative protections are related to their binding modes to DNA duplex and complexation with free radicals in vivo. However, flavonoids are known to inhibit the activities of several enzymes such as calcium phospholipid-dependent protein kinase, tyrosine protein kinase from rat lung, phosphorylase kinase, phosphatidylinositol 3-kinase and DNA topoisomerases that exhibit the importance of flavonoid-protein interaction. This study was designed to examine the interaction of human serum albumin (HSA) with quercetin (que), kaempferol (kae) and delphinidin (del) in aqueous solution at physiological conditions, using constant protein concentration of 0.25 mM (final) and various drug contents of 1 μM-1 mM. FTIR and UV-vis spectroscopic methods were used to determine the polyphenolic binding mode, the binding constant and the effects of flavonoid complexation on protein secondary structure. The spectroscopic results showed that flavonoids are located along the polypeptide chains through H-bonding interactions with overall affinity constant of Kque = 1.4 × 10 4 M -1, Kkae = 2.6 × 10 5 M -1 and Kdel = 4.71 × 10 5 M -1. The protein secondary structure showed no alterations at low pigment concentration (1 μM), whereas at high flavonoid content (1 mM), major reduction of α-helix from 55% (free HSA) to 42-46% and increase of β-sheet from 15% (free HSA) to 17-19% and β-anti from 7% (free HSA) to 10-20% occurred in the flavonoid-HSA adducts. The major reduction of HSA α-helix is indicative of a partial protein unfolding upon flavonoid interaction.

  15. Clinical studie in patients with acute serum ACE2 change%急性胰腺炎患者血ACE2变化的临床研究

    Institute of Scientific and Technical Information of China (English)

    赵云华; 王艳; 王国兴; 谢苗荣

    2016-01-01

    目的:探讨血管紧张素转化酶2(ACE2)在急性胰腺炎疾病中的表达及其临床意义。方法选取2015年2月至2015年11月健康体检者30例及急性胰腺炎患者60例,分为正常对照组、急性中重度胰腺炎组[( M)SAP)组]和急性轻度胰腺炎组( MAP组),胰腺炎组按照《中国急性胰腺炎诊治指南》进行规范化治疗,采用酶联免疫吸附方法测量患者第1、3、7天的ACE2表达,分析( M)SAP组和MAP组 ACE2水平与正常对照组、急性生理与慢性健康评分 II ( APACHEII)、改良的CT严重指数( MCTSI)、C反应蛋白、淀粉酶之间的关系。结果 AP组ACE2明显低于正常对照组,差异有统计学意义( P ﹤0.05)。ACE2在(M)SAP组随时间变化呈逐步下降趋势,在MAP组中随时间变化早期下降后期成上升趋势,ACE2与APACHII评分呈弱线性相关,ACE2与CRP无线性相关性,ACE2与AMY呈弱线性相关。结论 ACE2在急性胰腺炎患者血清中明显下降,说明ACE2与急性胰腺炎的发生、发展有一定的关系,可能与其表达降低后舒张血管、提高氧供、调节血管损伤作用减弱有关。%Objective To discuss serum ACE2 in acute pancreatitis( Acute pancreatitis,AP)disease and its clinical significance. Methods From February 2015 to November 2015,90 cases were divided into normal control group(30 healthy cases)and pancreatitis group(60 cases)including severe acute pancreatitis group(( Moderately)severe acute pancreatitis,( M)SAP)and acute mild pancreatitis group( mild a-cute pancreatitis,MAP). The treatment of pancreatitis was according to the "Guide to Chinese diagnosis and treatment of acute pancreatitis"standardized treatment. Enzyme-linked immunosorbent assay( Enzyme-Linked immunosorbent Assay,ELISA)method was used for measuring ACE2 expression in the first,3,7 days. Analysis the relationship between the levels of ACE2(M)SAP and MAP groups and the normal control group

  16. Collectrin and ACE2 in renal and intestinal amino acid transport.

    Science.gov (United States)

    Singer, Dustin; Camargo, Simone M R

    2011-01-01

    Neutral amino acid transporters of the SLC6 family are expressed at the apical membrane of kidney and/or small intestine, where they (re-)absorb amino acids into the body. In this review we present the results concerning the dependence of their apical expression with their association to partner proteins. We will in particular focus on the situation of B0AT1 and B0AT3, that associate with members of the renin-angiotensin system (RAS), namely Tmem27 and angiotensin-converting enzyme 2 (ACE2), in a tissue specific manner. The role of this association in relation to the formation of a functional unit related to Na+ or amino acid transport will be assessed. We will conclude with some remarks concerning the relevance of this association to Hartnup disorder, where some mutations have been shown to differentially interact with the partner proteins.

  17. Binding of disodium cromoglycate to human serum albumin

    Science.gov (United States)

    Ochoa de Aspuru, Eduardo; Zatón, Ana M. L.

    1998-07-01

    The binding of several benzopiranone derivatives to human serum albumin was determined. The antiallergic drug disodium cromoglycate binds weakly to serum albumin. However, its precursors, chromones of smaller size, were able to bind in a hydrophobic pocket in the protein, and are carried by serum albumin in blood.

  18. Perinatally administered losartan augments renal ACE2 expression but not cardiac or renal Mas receptor in spontaneously hypertensive rats.

    Science.gov (United States)

    Klimas, Jan; Olvedy, Michael; Ochodnicka-Mackovicova, Katarina; Kruzliak, Peter; Cacanyiova, Sona; Kristek, Frantisek; Krenek, Peter; Ochodnicky, Peter

    2015-08-01

    Since the identification of the alternative angiotensin converting enzyme (ACE)2/Ang-(1-7)/Mas receptor axis, renin-angiotensin system (RAS) is a new complex target for a pharmacological intervention. We investigated the expression of RAS components in the heart and kidney during the development of hypertension and its perinatal treatment with losartan in young spontaneously hypertensive rats (SHR). Expressions of RAS genes were studied by the RT-PCR in the left ventricle and kidney of rats: normotensive Wistar, untreated SHR, SHR treated with losartan since perinatal period until week 9 of age (20 mg/kg/day) and SHR treated with losartan only until week 4 of age and discontinued until week 9. In the hypertrophied left ventricle of SHR, cardiac expressions of Ace and Mas were decreased while those of AT1 receptor (Agtr1a) and Ace2 were unchanged. Continuous losartan administration reduced LV weight (0.43 ± 0.02; P Mas and with an increase in ACE2. Continuous losartan administration lowered blood pressure to control levels (105 ± 3 mmHg; P Mas. Increased renal Ace2, and its further increase by losartan suggests the influence of locally generated Ang-(1-7) in organ response to the developing hypertension in SHRs. © 2015 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  19. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis

    NARCIS (Netherlands)

    Hamming, [No Value; Timens, W; Bulthuis, MLC; Lely, AT; Navis, GJ; van Goor, H

    2004-01-01

    Severe acute respiratory syndrome (SARS) is an acute infectious disease that spreads mainly via the respiratory route. A distinct coronavirus (SARS-CoV) has been identified as the aetiological agent of SARS. Recently, a metallopeptidase named angiotensin-converting enzyme 2 (ACE2) has been identifie

  20. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis

    NARCIS (Netherlands)

    Hamming, [No Value; Timens, W; Bulthuis, MLC; Lely, AT; Navis, GJ; van Goor, H

    Severe acute respiratory syndrome (SARS) is an acute infectious disease that spreads mainly via the respiratory route. A distinct coronavirus (SARS-CoV) has been identified as the aetiological agent of SARS. Recently, a metallopeptidase named angiotensin-converting enzyme 2 (ACE2) has been

  1. Shipboard Sunphotometer Measurements of Aerosol Optical Depth During ACE-2 and Comparison with Selected Ship, Aircraft and Satellite Measurements

    Science.gov (United States)

    Livingston, J. M.; Kapustin, V. N.; Schmid, B.; Russell, P. B.; Quinn, P. K.; Bates, T. S.; Durkee, P. A.; Nielsen, K.; Freudenthaler, V.; Wiegner, M.; Covert, D. S.

    2000-01-01

    We present analyses of aerosol optical depth (AOD) measurements taken with a shipboard six-channel tracking sunphotometer during ACE-2. For 10 July 1997, results are also shown for measurements acquired 70 km from the ship with a fourteen-channel airborne tracking sunphotometer.

  2. Investigation of ACE, ACE2 and AGTR1 genes for association with nephropathy in Type 1 diabetes mellitus.

    Science.gov (United States)

    Currie, D; McKnight, A J; Patterson, C C; Sadlier, D M; Maxwell, A P

    2010-10-01

    Polymorphisms in ACE and AGTR1 genes have been assessed in multiple studies for association with diabetic nephropathy; however, results are conflicting. The ACE2 gene has not been studied extensively for association with diabetic nephropathy. We investigated variants in ACE, ACE2 and AGTR1 for association with nephropathy in a case-control group (1467 participants with Type1 diabetes, case subjects n=718; control subjects n=749) of white descent with grandparents born in the British Isles. All recruited individuals were carefully phenotyped and genotyping was performed using Sequenom, Taqman and gel electrophoresis methods. The χ(2) -test for contingency tables was used to compare genotype and allele frequencies in case and control groups. No departure from Hardy-Weinberg equilibrium was observed in cases or controls. Two variants within the ACE gene (rs4293, P(allelic) =0.02, P(genotypic) =0.008; rs4309, P(allelic) =0.02, P(genotypic) =0.01) were significantly associated with nephropathy at the 5% level. No variant remained statistically significant following adjustment for multiple comparisons. No single nucleotide polymorphisms in the ACE2 or AGTR1 genes were significantly associated with nephropathy when analysed either by genotype or allele frequencies. Our independent case-control study provides no evidence that common variants in ACE, ACE2 and AGTR1 play a major role in genetic susceptibility to diabetic nephropathy in a white population with Type1 diabetes. © 2010 The Authors. Diabetic Medicine © 2010 Diabetes UK.

  3. Norfloxacin binds to human fecal material.

    Science.gov (United States)

    Edlund, C; Lindqvist, L; Nord, C E

    1988-01-01

    Earlier studies have reported very high (120 to 2,700 mg/kg) concentrations of norfloxacin in feces after therapeutic doses. MICs for fecal microorganisms are with few exceptions far below these levels. Nevertheless, clinical investigations show that the main part of the aerobic gram-positive and the anaerobic microflora remains unaffected after norfloxacin administration. In this study, the binding of [14C]norfloxacin to fecal material was analyzed. The binding of a group of nonlabeled quinolones to feces and the interactions between Enterococcus faecium, Bacteroides fragilis, and norfloxacin were also investigated. The results showed that norfloxacin has the ability to bind to feces. The specific binding was reversible, saturated after 90 min of incubation at 37 degrees C, and increased linearly with fecal concentration. Scatchard plots and nonlinear regression computer analyses revealed two different binding classes. The primary specific binding had a dissociation constant (KD) of 1.0 microM and a maximal binding capacity (Bmax) of 0.12 mumol/g of feces. The KD and Bmax of the secondary, more unspecific binding were 450 microM and 11.8 mumol/g of feces, respectively. The binding of unlabeled ciprofloxacin, enoxacin, ofloxacin, pefloxacin, and norfloxacin to feces was comparable to that of [14C]norfloxacin. The results of norfloxacin binding to suspensions of B. fragilis suggested that the main part of the binding is to the bacterial fraction of feces. In the presence of 8.0 g (dry weight) of B. fragilis per liter, the MBC of norfloxacin for E. faecium increased from 8 to 256 micrograms/ml. The finding of the present study indicated that binding of norfloxacin to feces may explain the paradox of high fecal concentrations of norfloxacin versus the actual effect on the normal gastrointestinal microflora. PMID:2854456

  4. Differential regulation of renal angiotensin-converting enzyme (ACE) and ACE2 during ACE inhibition and dietary sodium restriction in healthy rats

    NARCIS (Netherlands)

    Hamming, I.; van Goor, H.; Turner, A. J.; Rushworth, C. A.; Michaud, A. A.; Corvol, P.; Navis, G.

    2008-01-01

    Angiotensin-converting enzyme (ACE) 2 is thought to counterbalance ACE by breakdown of angiotensin (Ang) II and formation of Ang(1-7). Both enzymes are highly expressed in the kidney, but reports on their regulation differ. To enhance our understanding of the regulation of renal ACE and ACE2, we inv

  5. ACE2 activation by xanthenone prevents leptin-induced increases in blood pressure and proteinuria during pregnancy in Sprague-Dawley rats.

    Science.gov (United States)

    Ibrahim, Hisham Saleh; Froemming, Gabrielle Ruth Anisah; Omar, Effat; Singh, Harbindar Jeet

    2014-11-01

    This study investigates the effect of ACE2 activation on leptin-induced changes in systolic blood pressure (SBP), proteinuria, endothelial activation and ACE2 expression during pregnancy in Sprague-Dawley rats. Pregnant rats were given subcutaneous injection of either saline, or leptin, or leptin plus xanthenone (ACE2 activator), or xanthenone (XTN) alone. SBP, serum ACE, ACE2, endothelin-1, E-selectin and ICAM-1 levels were estimated; also their gene expressions were determined in the kidney and aorta respectively. Compared to control, SBP was higher in the leptin-only treated group (Pleptin-only treated rats (Pleptin-only treated rats when compared to controls (Pleptin administration during pregnancy significantly increases SBP, proteinuria, endothelial activation, but decreases ACE2 level and expression. These effects are prevented by concurrent administration of xanthenone.

  6. Multiple binding modes of ibuprofen in human serum albumin identified by absolute binding free energy calculations

    KAUST Repository

    Evoli, Stefania

    2016-11-10

    Human serum albumin possesses multiple binding sites and transports a wide range of ligands that include the anti-inflammatory drug ibuprofen. A complete map of the binding sites of ibuprofen in albumin is difficult to obtain in traditional experiments, because of the structural adaptability of this protein in accommodating small ligands. In this work, we provide a set of predictions covering the geometry, affinity of binding and protonation state for the pharmaceutically most active form (S-isomer) of ibuprofen to albumin, by using absolute binding free energy calculations in combination with classical molecular dynamics (MD) simulations and molecular docking. The most favorable binding modes correctly reproduce several experimentally identified binding locations, which include the two Sudlow\\'s drug sites (DS2 and DS1) and the fatty acid binding sites 6 and 2 (FA6 and FA2). Previously unknown details of the binding conformations were revealed for some of them, and formerly undetected binding modes were found in other protein sites. The calculated binding affinities exhibit trends which seem to agree with the available experimental data, and drastically degrade when the ligand is modeled in a protonated (neutral) state, indicating that ibuprofen associates with albumin preferentially in its charged form. These findings provide a detailed description of the binding of ibuprofen, help to explain a wide range of results reported in the literature in the last decades, and demonstrate the possibility of using simulation methods to predict ligand binding to albumin.

  7. The ACE2/Ang-(1-7)/Mas Axis Regulates the Development of Pancreatic Endocrine Cells in Mouse Embryos.

    Science.gov (United States)

    Wang, Lin; Liang, Juan; Leung, Po Sing

    2015-01-01

    Angiotensin-converting enzyme 2 (ACE2), its product Angiotensin-(1-7) [Ang-(1-7)], and Ang-(1-7) receptor Mas, have been shown to regulate organogenesis during embryonic development in various species. However, it is not known whether a local ACE2/Ang-(1-7)/Mas axis is present in the fetal pancreas. It is hypothesized that there is a local ACE2/Ang-(1-7)/Mas axis in the embryonic pancreas in mice that is involved in regulating islet cell development. To address this issue, the endogenous expression profile of axis constituents in embryonic mouse pancreata was examined. Involvement of the ACE2 axis in the regulation of pancreatic development was also examined. The present experiments showed in an in vivo animal model that endogenous expression levels of ACE2 and the Mas receptor were upregulated in mouse pancreata in late embryogenesis, peaking on embryonic day E16.5, when it reached 3 folds compared to that seen at E12.5. Consistently, endogenous expression of Ang-(1-7) also peaked at E16.5. Treatment with the ACE2 inhibitor DX600 did not alter islet development. However, prenatal treatment with A779, a Mas receptor antagonist, reduced the β-cell to α-cell ratio in neonatal islets, impaired islet insulin secretory function, and impaired the pups' glucose tolerance. In ex vivo pancreas explant cultures, A779 again decreased the β-cell to α-cell ratio, apparently through its effects on β-cell proliferation (reduced proliferation shown with Ki67 staining), and also decreased Insulin and Ngn3 mRNA expression. Furthermore, treatment of explant cultures with Ang-(1-7) increased mRNA levels of Insulin and pancreatic progenitor marker Ngn3, as well as Nox4, the ROS generation enzyme; these stimulatory effects were attenuated by co-treatment with A779, suggesting that Ang-(1-7), via Mas receptor signaling, may promote differentiation of pancreatic progenitors into insulin-producing cells via modulation of reactive oxygen species. These data together suggest that a Mas

  8. DNA-binding specificities of human transcription factors.

    Science.gov (United States)

    Jolma, Arttu; Yan, Jian; Whitington, Thomas; Toivonen, Jarkko; Nitta, Kazuhiro R; Rastas, Pasi; Morgunova, Ekaterina; Enge, Martin; Taipale, Mikko; Wei, Gonghong; Palin, Kimmo; Vaquerizas, Juan M; Vincentelli, Renaud; Luscombe, Nicholas M; Hughes, Timothy R; Lemaire, Patrick; Ukkonen, Esko; Kivioja, Teemu; Taipale, Jussi

    2013-01-17

    Although the proteins that read the gene regulatory code, transcription factors (TFs), have been largely identified, it is not well known which sequences TFs can recognize. We have analyzed the sequence-specific binding of human TFs using high-throughput SELEX and ChIP sequencing. A total of 830 binding profiles were obtained, describing 239 distinctly different binding specificities. The models represent the majority of human TFs, approximately doubling the coverage compared to existing systematic studies. Our results reveal additional specificity determinants for a large number of factors for which a partial specificity was known, including a commonly observed A- or T-rich stretch that flanks the core motifs. Global analysis of the data revealed that homodimer orientation and spacing preferences, and base-stacking interactions, have a larger role in TF-DNA binding than previously appreciated. We further describe a binding model incorporating these features that is required to understand binding of TFs to DNA.

  9. Examination of the aerosol indirect effect under contrasting environments during the ACE-2 experiment

    Directory of Open Access Journals (Sweden)

    H. Guo

    2007-01-01

    Full Text Available The Active Tracer High-resolution Atmospheric Model (ATHAM has been adopted to examine the aerosol indirect effect in contrasting clean and polluted cloudy boundary layers during the Second Aerosol Characterization Experiment (ACE-2. Model results are in good agreement with available in-situ observations, which provides confidence in the results of ATHAM. Sensitivity tests have been conducted to examine the response of the cloud fraction (CF, cloud liquid water path (LWP, and cloud optical depth (COD to changes in aerosols in the clean and polluted cases. It is shown for two cases that CF and LWP would decrease or remain nearly constant with an increase in aerosols, a result which shows that the second aerosol indirect effect is positive or negligibly small in these cases. Further investigation indicates that the background meteorological conditions play a critical role in the response of CF and LWP to aerosols. When large-scale subsidence is weak as in the clean case, the dry overlying air above the cloud is more efficiently entrained into the cloud, and in so doing, removes cloud water more efficiently, and results in lower CF and LWP when aerosol burden increases. However, when the large-scale subsidence is strong as in the polluted case, the growth of the cloud top is suppressed and the entrainment drying makes no significant difference when aerosol burden increases. Therefore, the CF and LWP remain nearly constant. In both the clean and polluted cases, the COD tends to increase with aerosols, and the total aerosol indirect effect (AIE is negative even when the CF and LWP decrease with an increase in aerosols. Therefore, the first AIE dominates the response of the cloud to aerosols.

  10. Effects of felodipine combined with puerarin on ACE2-Ang (1-7)-Mas axis in renovascular hypertensive rat.

    Science.gov (United States)

    Bai, Song; Huang, Zheng-Gui; Chen, Li; Wang, Jiang-Tao; Ding, Bo-Ping

    2013-06-10

    This study aimed to investigate the effect of combination of felodipine+puerarin on ACE2-Ang (1-7)-Mas axis, and to explore the protective effect of the combination against kidney in renovascular hypertensive rats. Goldblatt rats were randomly divided into 5 groups as follows: 4 groups which were treated with felodipine (Felo), puerarin (Pue), Felo+Pue, and Felo+captopril (Cap), respectively, and a control group of animals that were administrated with distilled water. Contents of Ang II and Ang (1-7) in renal tissues were determined by ELISA kit. The mRNA expression of ACE2/Mas and ACE/AT1 in kidneys was analyzed by RT-PCR. After 8weeks of treatment, compared with Goldblatt group, Felo+Pue reduced SBP, DBP and HR (pword, a combination of Felo+Pue has a more efficient therapeutic effect on DBP and HR, and contributes to a better protection against renal interstitial fibrosis.

  11. Captopril improves postresuscitation hemodynamics protective against pulmonary embolism by activating the ACE2/Ang-(1-7)/Mas axis.

    Science.gov (United States)

    Xiao, Hong-Li; Li, Chun-Sheng; Zhao, Lian-Xing; Yang, Jun; Tong, Nan; An, Le; Liu, Qi-Tong

    2016-11-01

    Acute pulmonary embolism (APE) has a very high mortality rate, especially at cardiac arrest and even after the return of spontaneous circulation (ROSC). This study investigated the protective effect of the angiotensin-converting enzyme (ACE) inhibitor captopril on postresuscitation hemodynamics, in a porcine model of cardiac arrest established by APE. Twenty-nine Beijing Landrace pigs were infused with an autologous thrombus leading to cardiac arrest and subjected to standard cardiopulmonary resuscitation and thrombolysis. Ten resuscitated pigs were randomly and equally apportioned to receive either captopril (22.22 mg/kg) infusion or the same volume saline, 30 min after ROSC. Hemodynamic changes and ACE-Ang II-angiotensin II type 1 receptor (AT1R) and ACE2/Ang-(1-7)/Mas receptor axis levels were determined. APE was associated with a decline in mean arterial pressure and a dramatic increase in pulmonary artery pressure and mean right ventricular pressure. After ROSC, captopril infusion was associated with significantly lower mean right ventricular pressure and systemic and pulmonary vascular resistance, faster heart rate, and higher Ang-(1-7) levels, ACE2/ACE, and Ang-(1-7)/Ang II, compared with the saline infusion. The ACE2/Ang-(1-7)/Mas pathway correlated negatively with external vascular lung water and pulmonary vascular permeability and positively with the right cardiac index. In conclusion, in a pig model of APE leading to cardiac arrest, captopril infusion was associated with less mean right ventricular pressure overload after resuscitation, compared with saline infusion. The reduction in systemic and pulmonary vascular resistance associated with captopril may be by inhibiting the ACE-Ang II-AT1R axis and activating the ACE2/Ang-(1-7)/Mas axis.

  12. Molecular and cellular mechanisms of the inhibitory effects of ACE-2/ANG1-7/Mas axis on lung injury.

    Science.gov (United States)

    Gopallawa, Indiwari; Uhal, Bruce D

    2014-01-01

    An established body of recent literature has demonstrated potent inhibitory effects of the angiotensin converting enzyme-2 (ACE-2)/ANG1-7/ Mas axis on acute lung injury and lung fibrogenesis. One of the mechanisms of this inhibition is the enzymatic action of ACE-2 to degrade its main substrate angiotensin (ANG) II, thereby reducing the injurious and profibrotic activities of this octapeptide. Another, potentially more important mechanism is the production by ACE-2 of the heptapeptide ANG1-7, which inhibits the actions of ANGII through its own receptor Mas, the product of the oncogene of the same name. Very recent efforts to define the molecular and cellular mechanisms of ANG1-7/Mas action have revealed a number of similar, but mechanistically distinct, pathways by which ANG1-7 and Mas act on various lung cell types to inhibit lung injury and fibrosis. In this review we summarize the beneficial actions of the ANG1-7/Mas pathway, specifically on lung cells in non-neoplastic lung injury. We also review the currently known downstream signaling mechanisms of the ANG1-7/Mas pathway in various lung cell types known to be key in acute injury and fibrogenesis.

  13. Cardiac ACE2/angiotensin 1-7/Mas receptor axis is activated in thyroid hormone-induced cardiac hypertrophy.

    Science.gov (United States)

    Diniz, Gabriela P; Senger, Nathalia; Carneiro-Ramos, Marcela S; Santos, Robson A S; Barreto-Chaves, Maria Luiza M

    2016-08-01

    Thyroid hormone (TH) promotes marked effects on the cardiovascular system, including the development of cardiac hypertrophy. Some studies have demonstrated that the renin-angiotensin system (RAS) is a key mediator of the cardiac growth in response to elevated TH levels. Although some of the main RAS components are changed in cardiac tissue on hyperthyroid state, the potential modulation of the counter regulatory components of the RAS, such as angiotensin-converting enzyme type 2 (ACE2), angiotensin 1-7 (Ang 1-7) levels and Mas receptor induced by hyperthyroidism is unknown. The aim of this study was to investigate the effect of hyperthyroidism on cardiac Ang 1-7, ACE2 and Mas receptor levels. Hyperthyroidism was induced in Wistar rats by daily intraperitoneal injections of T4 for 14 days. Although plasma Ang 1-7 levels were unchanged by hyperthyroidism, cardiac Ang 1-7 levels were increased in TH-induced cardiac hypertrophy. ACE2 enzymatic activity was significantly increased in hearts from hyperthyroid animals, which may be contributing to the higher Ang 1-7 levels observed in the T4 group. Furthermore, elevated cardiac levels of Ang 1-7 levels were accompanied by increased Mas receptor protein levels. The counter-regulatory components of the RAS are activated in hyperthyroidism and may be contributing to modulate the cardiac hypertrophy in response to TH. © The Author(s), 2015.

  14. Protective role of ACE2-Ang-(1-7)-Mas in myocardial fibrosis by downregulating KCa3.1 channel via ERK1/2 pathway.

    Science.gov (United States)

    Wang, Li-Ping; Fan, Su-Jing; Li, Shu-Min; Wang, Xiao-Jun; Gao, Jun-Ling; Yang, Xiu-Hong

    2016-11-01

    The intermediate-conductance Ca(2+)-activated K(+) (KCa3.1) channel plays a vital role in myocardial fibrosis induced by angiotensin (Ang) II. However, as the antagonists of Ang II, the effect of angiotensin-converting enzyme 2 (ACE2)-angiotensin-(1-7)-Mas axis on KCa3.1 channel during myocardial fibrosis remains unknown. This study was designed to explore the function of KCa3.1 channel in the cardioprotective role of ACE2-Ang-(1-7)-Mas. Wild-type (WT) mice, hACE2 transgenic mice (Tg), and ACE2 deficiency mice (ACE2(-/-)) were administrated with Ang II by osmotic mini-pumps. As the activator of ACE2, diminazene aceturate (DIZE) inhibited increase of blood pressure, collagen deposition, and KCa3.1 protein expression in myocardium of WT mice induced by Ang II. In Tg and ACE2(-/-) mice, besides the elevation of blood pressure, Ang II induced transformation of cardiac fibroblast into myofibroblast and resulted in augmentation of hydroxyproline concentration and collagen deposition, as well as KCa3.1 protein expression, but the changes in ACE2(-/-) mice were more obvious than those in Tg mice. Mas antagonist A779 reduced blood pressure, myocardium fibrosis, and myocardium KCa3.1 protein expression by Ang II in Tg mice, but activation of KCa3.1 with SKA-31 in Tg mice promoted the pro-fibrogenic effects of Ang II. Respectively, in ACE2(-/-) mice, TRAM-34, the KCa3.1 blocker, and Ang-(1-7) inhibited increase of blood pressure, collagen deposition, and KCa3.1 protein expression by Ang II. Moreover, DIZE and Ang-(1-7) depressed p-ERK1/2/t-ERK increases by Ang II in WT mice, and after blockage of ERK1/2 pathway with PD98059, the KCa3.1 protein expression was reduced in WT mice. In conclusion, the present study demonstrates that ACE2-Ang-(1-7)-Mas protects the myocardium from hypertension-induced injury, which is related to its inhibiting effect on KCa3.1 channels through ERK1/2 pathway. Our results reveal that KCa3.1 channel is likely to be a critical target on the ACE2-Ang

  15. Correlation between polymorphism of ACE gene I/D and ACE2 gene A9570G and atrial fibrillation

    Directory of Open Access Journals (Sweden)

    Ya-zhu WANG

    2011-09-01

    Full Text Available Objective To investigate the correlation between the polymorphism of angiotensin converting enzyme(ACE gene I/D and angiotensin converting enzyme 2(ACE2 gene A9570G and atrial fibrillation.Methods In chronological order of hospitalization,305 patients were selected and divided into two groups: atrial fibrillation group(148 cases and control group(157cases without atrial fibrillation.The control group was matched with the atrial fibrillation group in terms of age,gender,and presence of left ventricular dysfunction,coronary heart disease,diabetes,and primary hypertension.The polymorphisms of the ACE gene I/D and ACE2 gene A9570G were genotyped with polymerase chain reaction-restriction fragment length polymorphism(PCR-RFLP and gene sequencing approach.Results There were no statistical differences between the atrial fibrillation group and the control group in genotype distribution and allele frequencies of the ACE gene I/D(P=0.841;OR=0.948,95% CI 0.680-1.322,P=0.755.Moreover,there was no significant difference among the different genotypes of ACE gene I/D in the left and right atrial dimensions(P=0.887 and P=0.664,respectively.In the male subgroup,there was no statistical difference in the ACE2 gene A9570G polymorphism between the two groups(OR=1.631,95% CI 0.880-3.023,P=0.119.However,in the subgroup of males with atrial fibrillation,the left and right atrial dimensions of subjects with G genotype(40.1±6.4 and 40.1±5.7mm,respectively were larger than those with A genotype(37.0±4.4 and 36.5±4.4mm,respectively,indicating a statistical difference(P=0.028,P=0.010.In the female subgroup,there were no statistical differences between the atrial fibrillation group and the control group in the genotype distribution and allele frequencies of the ACE2 gene A9570G polymorphism(P=0.286;OR=1.415,95% CI 0.885-2.264,P=0.146.In the subgroup of females with atrial fibrillation,no significant difference was found in the left or right atrial dimension among the

  16. Binding of chemical carcinogens to macromolecules in cultured human colon

    DEFF Research Database (Denmark)

    1977-01-01

    Metabolic activation of different chemical classes of carcinogens was studied in cultured human colon epithelia. Human colon epithelia were maintained in explant culture up to 4 days. Binding of benzo(a)pyrene, dimethylnitrosamine, and 1,2- dimethylhydrazine was found in both cell DNA and protein....... 1,2-Dimethylhydrazine methylated DNA at both N·7 and 0-6 positions of guanin....

  17. Covalent binding of the flavonoid quercetin to human serum albumin

    NARCIS (Netherlands)

    Kaldas, M.I.; Walle, U.K.; Woude, van der H.; McMillan, J.M.; Walle, T.

    2005-01-01

    Quercetin is an abundant flavonoid in the human diet with numerous biological activities, which may contribute to the prevention of human disease but also may be potentially harmful. Quercetin is oxidized in cells to products capable of covalently binding to cellular proteins, a process that may be

  18. Binding of (/sup 3/H)imipramine to human platelet membranes with compensation for saturable binding to filters and its implication for binding studies with brain membranes

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, O.M.; Wood, K.M.; Williams, D.C.

    1984-08-01

    Apparent specific binding of (/sup 3/H)imipramine to human platelet membranes at high concentrations of imipramine showed deviation from that expected of a single binding site, a result consistent with a low-affinity binding site. The deviation was due to displaceable, saturable binding to the glass fibre filters used in the assays. Imipramine, chloripramine, desipramine, and fluoxetine inhibited binding to filters whereas 5-hydroxytryptamine and ethanol were ineffective. Experimental conditions were developed that eliminated filter binding, allowing assay of high- and low-affinity binding to membranes. Failure to correct for filter binding may lead to overestimation of binding parameters, Bmax and KD for high-affinity binding to membranes, and may also be misinterpreted as indicating a low-affinity binding component in both platelet and brain membranes. Low-affinity binding (KD less than 2 microM) of imipramine to human platelet membranes was demonstrated and its significance discussed.

  19. Controller for the Power Converters of the O/OMOTOR Prototype Switched Reluctance Machine of the ACE2 Project; Controlador de los Convertidores Electronicos de Potencia de la Maquina Variable Prototipo O/OMOTOR del Proyecto ACE2

    Energy Technology Data Exchange (ETDEWEB)

    Vazquez, C.

    2006-12-19

    The ACE2 project deals with the development of a kynetic energy storage (KES) system for power peak shaving in high speed railway substations. This KES system consists in a double power converter which drives a switched reluctance machine (SRM) along with a flywheel operating in a wide speed range. This document presents from a technical point of view the features of the controller of the power converters for the U and UMOTOR SRM prototypes of that project. Hardware and software issues are treated in detail and the guide for the final user managing the KES module is introduced. (Author) 3 refs.

  20. Human norovirus binding to select bacteria representative of the human gut microbiota

    Science.gov (United States)

    Almand, Erin A.; Outlaw, Janie; Jaykus, Lee-Ann

    2017-01-01

    Recent reports describe the ability of select bacterial strains to bind human norovirus, although the specificity of such interactions is unknown. The purpose of this work was to determine if a select group of bacterial species representative of human gut microbiota bind to human norovirus, and if so, to characterize the intensity and location of that binding. The bacteria screened included naturally occurring strains isolated from human stool (Klebsiella spp., Citrobacter spp., Bacillus spp., Enterococcus faecium and Hafnia alvei) and select reference strains (Staphylococcus aureus and Enterobacter cloacae). Binding in PBS was evaluated to three human norovirus strains (GII.4 New Orleans 2009 and Sydney 2012, GI.6) and two surrogate viruses (Tulane virus and Turnip Crinkle Virus (TCV)) using a suspension assay format linked to RT-qPCR for quantification. The impact of different overnight culture media prior to washing on binding efficiency in PBS was also evaluated, and binding was visualized using transmission electron microscopy. All bacteria tested bound the representative human norovirus strains with high efficiency (90% binding efficiency) (p>0.05); there was selective binding for Tulane virus and no binding observed for TCV. Binding efficiency was highest when bacteria were cultured in minimal media (90% bound), but notably decreased when cultured in enriched media (1–3 log10 unbound or 0.01 –structures, without apparent localization. The findings reported here further elucidate and inform the dynamics between human noroviruses and enteric bacteria with implications for norovirus pathogenesis. PMID:28257478

  1. The transcription factor Ace2 and its paralog Swi5 regulate ethanol production during static fermentation through their targets Cts1 and Rps4a in Saccharomyces cerevisiae.

    Science.gov (United States)

    Wu, Yao; Du, Jie; Xu, Guoqiang; Jiang, Linghuo

    2016-05-01

    Saccharomyces cerevisiae is the most widely used fermentation organism for ethanol production. However, the gene expression regulatory networks behind the ethanol fermentation are still not fully understood. Using a static fermentation model, we examined the ethanol yields on biomass of deletion mutants for 77 yeast genes encoding nonessential transcription factors, and found that deletion mutants for ACE2 and SWI5 showed dramatically increased ethanol yields. Overexpression of ACE2 or SWI5 in wild type cells reduced their ethanol yields. Furthermore, among the 34 target genes regulated by Ace2 and Swi5, deletion of CTS1,RPS4a,SIC1,EGT2,DSE2, or SCP160 led to increased ethanol yields, with the former two showing higher effects. Overexpression of CTS1 or RPS4a in both ace2/ace2 and swi5/swi5 mutants reduced their ethanol yields. In contrast, deletion of MCR1 or HO significantly decreased ethanol yields, with the former one showing the highest effect. Therefore, Ace2 and Swi5 are two negative regulators of ethanol yield during static fermentation of yeast cells, and both CTS1 and RPS4a are major effectors mediating these two transcription factors in regulating ethanol production.

  2. Autoradiographic localization of estrogen binding sites in human mammary lesions

    Energy Technology Data Exchange (ETDEWEB)

    Buell, R.H.

    1984-01-01

    The biochemical assay of human mammary carcinomas for estrogen receptors is of proven clinical utility, but the cellular localization of estrogen binding sites within these lesions is less certain. The author describes the identification of estrogen binding sites as visualized by thaw-mount autoradiography after in vitro incubation in a series of 17 benign and 40 malignant human female mammary lesions. The results on the in vitro incubation method compared favorably with data from in vivo studies in mouse uterus, a well-characterized estrogen target organ. In noncancerous breast biopsies, a variable proportion of epithelial cells contained specific estrogen binding sites. Histologically identifiable myoepithelial and stromal cells were, in general, unlabeled. In human mammary carcinomas, biochemically estrogen receptor-positive, labeled and unlabeled neoplastic epithelial cells were identified by autoradiography. Quantitative results from the autoradiographic method compared favorably with biochemical data.

  3. Calcium-binding proteins from human platelets

    Energy Technology Data Exchange (ETDEWEB)

    Gogstad, G.O.; Krutnes, M.B.; Solum, N.O.

    1983-06-01

    Calcium-binding platelet proteins were examined by crossed immunoelectrophoresis of solubilized platelets against antibodies to whole platelets followed by incubation of the immunoplates with /sup 45/Ca/sup 2 +/ and autoradiography. When the immunoplates had been pretreated with EDTA at pH 9.0 in order to remove divalent cations, three immunoprecipitates were markedly labelled with /sup 45/Ca/sup 2 +/. These corresponded to the glycoprotein IIb-IIIa complex, glycoprotein Ia and a presently unidentified antigen termed G18. These antigens were membrane-bound and surface-oriented. When an excess of EDTA was introduced in the incubation media the results revealed that the glycoprotein IIb-IIIa complex and antigen G18, but not glycoprotein Ia, contained sites with a stronger affinity for calcium than has EDTA at pH 7.4. Immunoprecipitates of the separate glycoproteins IIb and IIIa both bound calcium in the same manner as the glycoprotein IIb-IIIa complex. As another approach, platelet-rich plasma was incubated with /sup 45/Ca/sup 2 +/ prior to crossed immunoelectrophoresis of the solubilized platelets. A single immunoprecipitate was weakly labelled. This did not correspond to any of the immunoprecipitates which were visible after staining with Coomassie blue. The labelling of this antigen was markedly increased when the platelet-rich plasma had been preincubated with EDTA and in this case a weak labelling of the glycoprotein IIB-IIIa precipitate also became apparent. No increased incorporation of calcium occured in any of these immunoprecipitates when the platelets were aggregated with ADP in the presence of /sup 45/Ca/sup 2 +/.

  4. Objective models for steroid binding sites of human globulins

    Science.gov (United States)

    Schnitker, Jurgen; Gopalaswamy, Ramesh; Crippen, Gordon M.

    1997-01-01

    We report the application of a recently developed alignment-free 3D QSAR method [Crippen,G.M., J. Comput. Chem., 16 (1995) 486] to a benchmark-type problem. The test systeminvolves the binding of 31 steroid compounds to two kinds of human carrier protein. Themethod used not only allows for arbitrary binding modes, but also avoids the problems oftraditional least-squares techniques with regard to the implicit neglect of informative outlyingdata points. It is seen that models of considerable predictive power can be obtained even witha very vague binding site description. Underlining a systematic, but usually ignored, problemof the QSAR approach, there is not one unique type of model but, rather, an entire manifoldof distinctly different models that are all compatible with the experimental information. Fora given model, there is also a considerable variation in the found binding modes, illustratingthe problems that are inherent in the need for 'correct` molecular alignment in conventional3D QSAR methods.

  5. [Effect of Astragali Radix in improving early renal damage in metabolic syndrome rats through ACE2/Mas pathway].

    Science.gov (United States)

    Wang, Qiong-ying; Liang, Wei; Jiang, Cheng; Li, Ning-yin; Xu, Han; Yang, Mi-na; Lin, Xin; Yu, Heng; Chang, Peng; Yu, Jing

    2015-11-01

    To study the expression of angiotensin converting enzyme 2 (ACE2) and angiotensin (Ang) 1-7 specific receptor Mas protain in renal blood vessels of metabolic syndrome ( MS) rats and its anti-oxidative effect. A total of 80 male SD rats were divided into four groups: the normal control group (NC, the same volume of normal saline), the MS group (high fat diet), the MS + Astragali Radix group (MS + HQ, 6 g x kg(-1) x d(-1) in gavage) and the MS + Valsartan group (MS + XST, 30 mg x kg(-1) x d(-1) in gavage). After four weeks of intervention, their general indexes, biochemical indexes and blood pressure were measured; plasma and renal tissue Ang II, malondialdehyde (MDA) and superoxide demutase (SOD) levels were measured with radioimmunoassay. The protein expressions of Mas receptor, AT1R, ACE and ACE2 were detected by western blot analysis. According to the result, compared with the NC group, the MS group and the MS + HQ group showed significant increases in systolic and diastolic pressures, body weight, fasting glucose, fasting insulin, triglycerides, free fatty acid and Ang II level of MS rats (P Mas receptor expressions (all P Mas receptor expression in renal tissues, whereas the MS + XST group showed notable decrease in AT1R (all P Mas receptor expressions in renal tissues, decrease ACE expression and change local Ang II, MDA, NO and SOD in kidneys, so as to protect early damages in renal tissues.

  6. Identification of actin binding protein, ABP-280, as a binding partner of human Lnk adaptor protein.

    Science.gov (United States)

    He, X; Li, Y; Schembri-King, J; Jakes, S; Hayashi, J

    2000-08-01

    Human Lnk (hLnk) is an adaptor protein with multiple functional domains that regulates T cell activation signaling. In order to identify cellular Lnk binding partners, a yeast two-hybrid screening of human spleen cDNA library was carried out using human hLnk as bait. A polypeptide sequence identical to the C-terminal segment of the actin binding protein (ABP-280) was identified as a hLnk binding protein. The expressed hLnk and the FLAG tagged C-terminal 673 amino acid residues of ABP-280 or the endogenous ABP-280 in COS-7 cells could be co-immunoprecipitated using antibodies either to hLnk, FLAG or ABP-280, respectively. Furthermore, immunofluorescence confocal microscope showed that hLnk and ABP-280 co-localized at the plasma membrane and at juxtanuclear region of COS-7 cells. In Jurkat cells, the endogenous hLnk also associates with the endogenous ABP-280 indicating that the association of these two proteins is physiological. The interacting domains of both proteins were mapped using yeast two-hybrid assays. Our results indicate that hLnk binds to the residues 2006-2454 (repeats 19-23C) of ABP-280. The domain in hLnk that associates with ABP-280 was mapped to an interdomain region of 56 amino acids between pleckstrin homology and Src homology 2 domains. These results suggest that hLnk may exert its regulatory role through its association with ABP-280.

  7. Cobalt uptake and binding in human red blood cells

    DEFF Research Database (Denmark)

    Simonsen, Lars Ole; Brown, Anthony M; Harbak, Henrik

    2011-01-01

    The basal uptake and cytoplasmic binding of cobalt was studied in human red cells using (57)Co as tracer. The basal uptake is linear with time, at a rate of about 10 µmol (l cells)(-1) h(-1) at 100 µM [Co(2+)](o), and is almost irreversible, as there is hardly any efflux into excess EDTA. Ionophore...

  8. Structural and Histone Binding Ability Characterizations of Human PWWP Domains

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Hong; Zeng, Hong; Lam, Robert; Tempel, Wolfram; Amaya, Maria F.; Xu, Chao; Dombrovski, Ludmila; Qiu, Wei; Wang, Yanming; Min, Jinrong (Toronto); (Penn)

    2013-09-25

    The PWWP domain was first identified as a structural motif of 100-130 amino acids in the WHSC1 protein and predicted to be a protein-protein interaction domain. It belongs to the Tudor domain 'Royal Family', which consists of Tudor, chromodomain, MBT and PWWP domains. While Tudor, chromodomain and MBT domains have long been known to bind methylated histones, PWWP was shown to exhibit histone binding ability only until recently. The PWWP domain has been shown to be a DNA binding domain, but sequence analysis and previous structural studies show that the PWWP domain exhibits significant similarity to other 'Royal Family' members, implying that the PWWP domain has the potential to bind histones. In order to further explore the function of the PWWP domain, we used the protein family approach to determine the crystal structures of the PWWP domains from seven different human proteins. Our fluorescence polarization binding studies show that PWWP domains have weak histone binding ability, which is also confirmed by our NMR titration experiments. Furthermore, we determined the crystal structures of the BRPF1 PWWP domain in complex with H3K36me3, and HDGF2 PWWP domain in complex with H3K79me3 and H4K20me3. PWWP proteins constitute a new family of methyl lysine histone binders. The PWWP domain consists of three motifs: a canonical {beta}-barrel core, an insertion motif between the second and third {beta}-strands and a C-terminal {alpha}-helix bundle. Both the canonical {beta}-barrel core and the insertion motif are directly involved in histone binding. The PWWP domain has been previously shown to be a DNA binding domain. Therefore, the PWWP domain exhibits dual functions: binding both DNA and methyllysine histones.

  9. Myxoma and vaccinia viruses bind differentially to human leukocytes.

    Science.gov (United States)

    Chan, Winnie M; Bartee, Eric C; Moreb, Jan S; Dower, Ken; Connor, John H; McFadden, Grant

    2013-04-01

    Myxoma virus (MYXV) and vaccinia virus (VACV), two distinct members of the family Poxviridae, are both currently being developed as oncolytic virotherapeutic agents. Recent studies have demonstrated that ex vivo treatment with MYXV can selectively recognize and kill contaminating cancerous cells from autologous bone marrow transplants without perturbing the engraftment of normal CD34(+) hematopoietic stem and progenitor cells. However, the mechanism(s) by which MYXV specifically recognizes and eliminates the cancer cells in the autografts is not understood. While little is known about the cellular attachment factor(s) exploited by MYXV for entry into any target cells, VACV has been shown to utilize cell surface glycosaminoglycans such as heparan sulfate (HS), the extracellular matrix protein laminin, and/or integrin β1. We have constructed MYXV and VACV virions tagged with the Venus fluorescent protein and compared their characteristics of binding to various human cancer cell lines as well as to primary human leukocytes. We report that the binding of MYXV or VACV to some adherent cell lines could be partially inhibited by heparin, but laminin blocked only VACV binding. In contrast to cultured fibroblasts, the binding of MYXV and VACV to a wide spectrum of primary human leukocytes could not be competed by either HS or laminin. Additionally, MYXV and VACV exhibited very different binding characteristics against certain select human leukocytes, suggesting that the two poxviruses utilize different cell surface determinants for the attachment to these cells. These results indicate that VACV and MYXV can exhibit very different oncolytic tropisms against some cancerous human leukocytes.

  10. Effects of glycation on meloxicam binding to human serum albumin

    Science.gov (United States)

    Trynda-Lemiesz, Lilianna; Wiglusz, Katarzyna

    2011-05-01

    The current study reports a binding of meloxicam a pharmacologically important new generation, non-steroidal anti-inflammatory drug to glycated form of the human serum albumin (HSA). The interaction of the meloxicam with nonglycated and glycated albumin has been studied at pH 7.4 in 0.05 M sodium phosphate buffer with 0.1 M NaCl, using fluorescence quenching technique and circular dichroism spectroscopy. Results of the present study have shown that the meloxicam could bind both forms of albumin glycated and nonglycated at a site, which was close to the tryptophan residues. Similarly, how for native albumin glycated form has had one high affinity site for the drug with association constants of the order of 10 5 M -1. The glycation process of the HSA significantly has affected the impact of the meloxicam on the binding of other ligands such as warfarin and bilirubin. The affinity of the glycated albumin for bilirubin as for native albumin has been reduced by meloxicam but observed effect was weaker by half (about 20%) compared with nonglycated albumin. In contrast to the native albumin meloxicam binding to glycated form of the protein only slightly affected the binding of warfarin. It seemed possible that the effects on warfarin binding might be entirely attributable to the Lys 199 modification which was in site I.

  11. Specific binding of benzodiazepines to human breast cancer cell lines.

    Science.gov (United States)

    Beinlich, A; Strohmeier, R; Kaufmann, M; Kuhl, H

    1999-01-01

    Binding of [3H]Ro5-4864, a peripheral benzodiazepine receptor (PBR) agonist, to BT-20 human, estrogen- (ER) and progesterone- (PR) receptor negative breast cancer cells was characterized. It was found to be specific, dose-dependent and saturable with a single population of binding sites. Dissociation constant (K(D)) was 8.5 nM, maximal binding capacity (Bmax) 339 fM/10(6) cells. Ro5-4864 (IC50 17.3 nM) and PK 11195 (IC50 12.3 nM) were able to compete with [3H]Ro5-4864 for binding, indicating specificity of interaction with PBR. Diazepam was able to displace [3H]Ro5-4864 from binding only at high concentrations (>1 microM), while ODN did not compete for PBR binding. Thymidine-uptake assay showed a biphasic response of cell proliferation. While low concentrations (100 nM) of Ro5-4864, PK 11195 and diazepam increased cell growth by 10 to 20%, higher concentrations (10-100 microM) significantly inhibited cell proliferation. PK 11195, a potent PBR ligand, was able to attenuate growth of BT-20 cells stimulated by 100 nM Ro5-4864 and to reverse growth reduction caused by 1 and 10 microM Ro5-4864, but not by 50 microM and 100 microM. This indicates that the antimitotic activity of higher concentrations of Ro5-4864 is independent of PBR binding. It is suggested, that PBR are involved in growth regulation of certain human breast cancer cell lines, possibly by supplying proliferating cells with energy, as their endogenous ligand is a polypeptide transporting Acyl-CoA.

  12. Thermodynamic analysis of allosamidin binding to the human chitotriosidase

    Energy Technology Data Exchange (ETDEWEB)

    Eide, Kristine Bistrup; Lundmark, Silje Thoresen [Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, N-1432 Ås (Norway); Sakuda, Shohei [Department of Applied Biological Chemistry, University of Tokyo, Bunkyo-Ku, Tokyo 113 (Japan); Sørlie, Morten, E-mail: morten.sorlie@umb.no [Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, N-1432 Ås (Norway)

    2013-08-10

    Highlights: • Large differences in thermodynamic signatures for family 18 chitinase inhibition. • Allosamidin binds tight to HCHT. • Binding driven by enthalpy change and desolvation. - Abstract: Human chitotriosidase (HCHT) is one of two active family 18 chitinases produced by humans, the other being acidic mammalian chitinase (AMCase). The enzyme is thought to be part of the innate human defense mechanism against fungal parasites. Recently, it has been shown that levels of HCHT bioactivity and protein are significantly increased in the circulation and lungs of systemic sclerosis patients and for this reason is a suggested therapeutic target. For this reason, we have undertaken a detailed thermodynamic investigation using isothermal titration calorimetry of the binding interaction of HCHT with the well-known family 18 chitinase inhibitor allosamidin. The binding is shown to be strong (K{sub d} = 0.20 ± 0.03 μM and ΔG{sub r}° = −38.9 ± 0.4 kJ/mol) and driven by favorable changes in enthalpy (ΔH{sub r}° = −50.2 ± 1.2 kJ/mol) and solvation entropy (−TΔS{sub solv}° = −41.8 ± 4.4 kJ/mol). It is accompanied with a large penalty in conformational entropy change (−TΔS{sub conf}° = 43.1 ± 4.2 kJ/mol)

  13. Expression of muscarinic binding sites in primary human brain tumors.

    Science.gov (United States)

    Gurwitz, D; Razon, N; Sokolovsky, M; Soreq, H

    1984-05-01

    The expression of muscarinic binding sites was examined in a collection of primary brain tumors of different cellular origins and various degrees of dedifferentiation, as compared to control specimens. Eleven gliogenous tumors were examined, all of which contained substantial amounts of muscarinic binding sites. Most of the other tumor types examined did not display detectable binding of [3H]N-methyl-4-piperidyl benzilate ([3H]4NMPB). Scatchard analysis indicated the existence of homogeneous antagonist sites in both normal forebrain and glioblastoma multiforme, with Kd values of 1.2 nM and 0.9 nM, respectively. The density of muscarinic binding sites varied between tumors from different patients, and also between specimens prelevated from different areas of the same tumor. This variability, as well as the average density of binding sites, appeared to be larger in highly malignant tumors than in less malignant ones. In contrast, the density of muscarinic receptors from control specimens was invariably high, but within the same order of magnitude. To test whether the muscarinic binding activity in the brain tumors is correlated to other cholinoceptive properties, cholinesterase activity was also examined. Individual data for density of [3H]4NMPB binding sites were then plotted against corresponding values of cholinesterase activity. The pattern of distribution of these values was clearly different in tumor specimens, when compared to that observed in samples derived from non-malignant brain. Our observations indicate that human brain cells of gliogenous origin are capable of expressing muscarinic binding sites, and that, if a correlation exists between muscarinic receptors and cholinesterase levels in gliogenous tumors, it differs from that of non-malignant brain tissue.

  14. Mutations in Acetylcholinesterase2 (ace2) increase the insensitivity of acetylcholinesterase to fosthiazate in the root-knot nematode Meloidogyne incognita.

    Science.gov (United States)

    Huang, Wen-Kun; Wu, Qin-Song; Peng, Huan; Kong, Ling-An; Liu, Shi-Ming; Yin, Hua-Qun; Cui, Ru-Qiang; Zhan, Li-Ping; Cui, Jiang-Kuan; Peng, De-Liang

    2016-11-29

    The root-knot nematode Meloidogyne incognita causes severe damage to continuously cropping vegetables. The control of this nematode relies heavily on organophosphate nematicides in China. Here, we described resistance to the organophosphate nematicide fosthiazate in a greenhouse-collected resistant population (RP) and a laboratory susceptible population (SP) of M. incognita. Fosthiazate was 2.74-fold less toxic to nematodes from RP than that from SP. Quantitative real-time PCR revealed that the acetylcholinesterase2 (ace2) transcription level in the RP was significantly higher than that in the SP. Eighteen nonsynonymous amino acid differences in ace2 were observed between the cDNA fragments of the RP and SP. The acetylcholinesterase (AChE) protein activity in the RP was significantly reduced compared with that in the SP. After knocking down the ace2 gene, the ace2 transcription level was significantly decreased, but no negative impact on the infection of juveniles was observed. The 50% lethal concentration of the RNAi RP population decreased 40%, but the inhibition rate of fosthiazate against AChE activity was significantly increased in RP population. Thus, the increased fosthiazate insensitivity in the M. incognita resistant population was strongly associated with mutations in ace2. These results provide valuable insights into the resistance mechanism of root-knot nematode to organophosphate nematicides.

  15. ACE-2/Ang1-7/Mas cascade mediates ACE inhibitor, captopril, protective effects in estrogen-deficient osteoporotic rats.

    Science.gov (United States)

    Abuohashish, Hatem M; Ahmed, Mohammed M; Sabry, Dina; Khattab, Mahmoud M; Al-Rejaie, Salim S

    2017-08-01

    The local role of the renin angiotensin system (RAS) was documented recently beside its conventional systemic functions. Studies showed that the effector angiotensin II (AngII) alters bone health, while inhibition of the angiotensin converting enzyme (ACE-1) preserved these effects. The newly identified Ang1-7 exerts numerous beneficial effects opposing the AngII. Thus, the current study examines the role of Ang1-7 in mediating the osteo-preservative effects of ACEI (captopril) through the G-protein coupled Mas receptor using an ovariectomized (OVX) rat model of osteoporosis. 8 weeks after the surgical procedures, captopril was administered orally (40mgkg(-1) d(-1)), while the specific Mas receptor blocker (A-779) was delivered at infusion rate of 400ngkg(-1)min(-1) for 6 weeks. Bone metabolic markers were measured in serum and urine. Minerals concentrations were quantified in serum, urine and femoral bones by inductive coupled plasma mass spectroscopy (ICP-MS). Trabecular and cortical morphometry was analyzed in the right distal femurs using micro-CT. Finally, the expressions of RAS peptides, enzymes and receptors along with the receptor activator of NF-κB ligand (RANKL) and osteoprotegerin (OPG) were determined femurs heads. OVX animals markedly showed altered bone metabolism and mineralization along with disturbed bone micro-structure. Captopril significantly restored the metabolic bone bio-markers and corrected Ca(2+) and P values in urine and bones of estrogen deficient rats. Moreover, the trabecular and cortical morphometric features were repaired by captopril in OVX groups. Captopril also improved the expressions of ACE-2, Ang1-7, Mas and OPG, while abolished OVX-induced up-regulation of ACE-1, AngII, Ang type 1 receptor (AT1R) and RANKL. Inhibition of Ang1-7 cascade by A-779 significantly eradicated captopril protective effects on bone metabolism, mineralization and micro-structure. A-779 also restored OVX effects on RANKL expression and ACE-1/AngII/AT1R

  16. Human pentraxin 3 binds to the complement regulator c4b-binding protein.

    Directory of Open Access Journals (Sweden)

    Anne Braunschweig

    Full Text Available The long pentraxin 3 (PTX3 is a soluble recognition molecule with multiple functions including innate immune defense against certain microbes and the clearance of apoptotic cells. PTX3 interacts with recognition molecules of the classical and lectin complement pathways and thus initiates complement activation. In addition, binding of PTX3 to the alternative complement pathway regulator factor H was shown. Here, we show that PTX3 binds to the classical and lectin pathway regulator C4b-binding protein (C4BP. A PTX3-binding site was identified within short consensus repeats 1-3 of the C4BP α-chain. PTX3 did not interfere with the cofactor activity of C4BP in the fluid phase and C4BP maintained its complement regulatory activity when bound to PTX3 on surfaces. While C4BP and factor H did not compete for PTX3 binding, the interaction of C4BP with PTX3 was inhibited by C1q and by L-ficolin. PTX3 bound to human fibroblast- and endothelial cell-derived extracellular matrices and recruited functionally active C4BP to these surfaces. Whereas PTX3 enhanced the activation of the classical/lectin pathway and caused enhanced C3 deposition on extracellular matrix, deposition of terminal pathway components and the generation of the inflammatory mediator C5a were not increased. Furthermore, PTX3 enhanced the binding of C4BP to late apoptotic cells, which resulted in an increased rate of inactivation of cell surface bound C4b and a reduction in the deposition of C5b-9. Thus, in addition to complement activators, PTX3 interacts with complement inhibitors including C4BP. This balanced interaction on extracellular matrix and on apoptotic cells may prevent excessive local complement activation that would otherwise lead to inflammation and host tissue damage.

  17. Binding of Natural and Synthetic Polyphenols to Human Dihydrofolate Reductase

    Directory of Open Access Journals (Sweden)

    José Neptuno Rodríguez-López

    2009-12-01

    Full Text Available Dihydrofolate reductase (DHFR is the subject of intensive investigation since it appears to be the primary target enzyme for antifolate drugs. Fluorescence quenching experiments show that the ester bond-containing tea polyphenols (--epigallocatechin gallate (EGCG and (--epicatechin gallate (ECG are potent inhibitors of DHFR with dissociation constants (KD of 0.9 and 1.8 μM, respectively, while polyphenols lacking the ester bound gallate moiety [e.g., (--epigallocatechin (EGC and (--epicatechin (EC] did not bind to this enzyme. To avoid stability and bioavailability problems associated with tea catechins we synthesized a methylated derivative of ECG (3-O-(3,4,5-trimethoxybenzoyl-(--epicatechin; TMECG, which effectively binds to DHFR (KD = 2.1 μM. In alkaline solution, TMECG generates a stable quinone methide product that strongly binds to the enzyme with a KD of 8.2 nM. Quercetin glucuronides also bind to DHFR but its effective binding was highly dependent of the sugar residue, with quercetin-3-xyloside being the stronger inhibitor of the enzyme with a KD of 0.6 μM. The finding that natural polyphenols are good inhibitors of human DHFR could explain the epidemiological data on their prophylactic effects for certain forms of cancer and open a possibility for the use of natural and synthetic polyphenols in cancer chemotherapy.

  18. Structural and histone binding ability characterizations of human PWWP domains.

    Directory of Open Access Journals (Sweden)

    Hong Wu

    Full Text Available BACKGROUND: The PWWP domain was first identified as a structural motif of 100-130 amino acids in the WHSC1 protein and predicted to be a protein-protein interaction domain. It belongs to the Tudor domain 'Royal Family', which consists of Tudor, chromodomain, MBT and PWWP domains. While Tudor, chromodomain and MBT domains have long been known to bind methylated histones, PWWP was shown to exhibit histone binding ability only until recently. METHODOLOGY/PRINCIPAL FINDINGS: The PWWP domain has been shown to be a DNA binding domain, but sequence analysis and previous structural studies show that the PWWP domain exhibits significant similarity to other 'Royal Family' members, implying that the PWWP domain has the potential to bind histones. In order to further explore the function of the PWWP domain, we used the protein family approach to determine the crystal structures of the PWWP domains from seven different human proteins. Our fluorescence polarization binding studies show that PWWP domains have weak histone binding ability, which is also confirmed by our NMR titration experiments. Furthermore, we determined the crystal structures of the BRPF1 PWWP domain in complex with H3K36me3, and HDGF2 PWWP domain in complex with H3K79me3 and H4K20me3. CONCLUSIONS: PWWP proteins constitute a new family of methyl lysine histone binders. The PWWP domain consists of three motifs: a canonical β-barrel core, an insertion motif between the second and third β-strands and a C-terminal α-helix bundle. Both the canonical β-barrel core and the insertion motif are directly involved in histone binding. The PWWP domain has been previously shown to be a DNA binding domain. Therefore, the PWWP domain exhibits dual functions: binding both DNA and methyllysine histones. ENHANCED VERSION: This article can also be viewed as an enhanced version in which the text of the article is integrated with interactive 3D representations and animated transitions. Please note that a web

  19. Bile salt recognition by human liver fatty acid binding protein.

    Science.gov (United States)

    Favretto, Filippo; Santambrogio, Carlo; D'Onofrio, Mariapina; Molinari, Henriette; Grandori, Rita; Assfalg, Michael

    2015-04-01

    Fatty acid binding proteins (FABPs) act as intracellular carriers of lipid molecules, and play a role in global metabolism regulation. Liver FABP (L-FABP) is prominent among FABPs for its wide ligand repertoire, which includes long-chain fatty acids as well as bile acids (BAs). In this work, we performed a detailed molecular- and atomic-level analysis of the interactions established by human L-FABP with nine BAs to understand the binding specificity for this important class of cholesterol-derived metabolites. Protein-ligand complex formation was monitored using heteronuclear NMR, steady-state fluorescence spectroscopy, and mass spectrometry. BAs were found to interact with L-FABP with dissociation constants in the narrow range of 0.6-7 μm; however, the diverse substitution patterns of the sterol nucleus and the presence of side-chain conjugation resulted in complexes endowed with various degrees of conformational heterogeneity. Trihydroxylated BAs formed monomeric complexes in which single ligand molecules occupied similar internal binding sites, based on chemical-shift perturbation data. Analysis of NMR line shapes upon progressive addition of taurocholate indicated that the binding mechanism departed from a simple binary association equilibrium, and instead involved intermediates along the binding path. The co-linear chemical shift behavior observed for L-FABP complexes with cholate derivatives added insight into conformational dynamics in the presence of ligands. The observed spectroscopic features of L-FABP/BA complexes, discussed in relation to ligand chemistry, suggest possible molecular determinants of recognition, with implications regarding intracellular BA transport. Our findings suggest that human L-FABP is a poorly selective, universal BA binder.

  20. Loss of cargo binding in the human myosin VI deafness mutant (R1166X) leads to increased actin filament binding.

    Science.gov (United States)

    Arden, Susan D; Tumbarello, David A; Butt, Tariq; Kendrick-Jones, John; Buss, Folma

    2016-10-01

    Mutations in myosin VI have been associated with autosomal-recessive (DFNB37) and autosomal-dominant (DFNA22) deafness in humans. Here, we characterise an myosin VI nonsense mutation (R1166X) that was identified in a family with hereditary hearing loss in Pakistan. This mutation leads to the deletion of the C-terminal 120 amino acids of the myosin VI cargo-binding domain, which includes the WWY-binding motif for the adaptor proteins LMTK2, Tom1 as well as Dab2. Interestingly, compromising myosin VI vesicle-binding ability by expressing myosin VI with the R1166X mutation or with single point mutations in the adaptor-binding sites leads to increased F-actin binding of this myosin in vitro and in vivo As our results highlight the importance of cargo attachment for regulating actin binding to the motor domain, we perform a detailed characterisation of adaptor protein binding and identify single amino acids within myosin VI required for binding to cargo adaptors. We not only show that the adaptor proteins can directly interact with the cargo-binding tail of myosin VI, but our in vitro studies also suggest that multiple adaptor proteins can bind simultaneously to non-overlapping sites in the myosin VI tail. In conclusion, our characterisation of the human myosin VI deafness mutant (R1166X) suggests that defects in cargo binding may leave myosin VI in a primed/activated state with an increased actin-binding ability.

  1. Mycoplasmal lipoprotein p37 binds human protein HER2.

    Science.gov (United States)

    Wu, Jun; Wu, Lijuan; Fang, Cheng; Nie, Rong; Wang, Jiamou; Wang, Xuan; Liu, Wenbin

    2016-11-01

    Mycoplasmas are a group of microbes that can cause human diseases. The mycoplasmal lipoprotein p37 promotes cancer metastasis, at least in part, by interacting with EGFR. In this study, we show that the p37 lipoprotein binds another member of the EGFR family, HER2, through the HER2 extracellular domain. The binding of p37-HER2 promotes phosphorylation of HER2 and activates the downstream signaling molecule Erk1/2. Because the HER2 signaling pathway contributes to breast tumor metastasis, our results imply that the mycoplasmal lipoprotein p37 may also be involved in breast cancer metastasis. This study contributes to our understanding of mycoplasmal lipoprotein p37 function and its potential involvement in tumorigenesis. Copyright © 2016. Published by Elsevier GmbH.

  2. Comprehensive human transcription factor binding site map for combinatory binding motifs discovery.

    Directory of Open Access Journals (Sweden)

    Arnoldo J Müller-Molina

    Full Text Available To know the map between transcription factors (TFs and their binding sites is essential to reverse engineer the regulation process. Only about 10%-20% of the transcription factor binding motifs (TFBMs have been reported. This lack of data hinders understanding gene regulation. To address this drawback, we propose a computational method that exploits never used TF properties to discover the missing TFBMs and their sites in all human gene promoters. The method starts by predicting a dictionary of regulatory "DNA words." From this dictionary, it distills 4098 novel predictions. To disclose the crosstalk between motifs, an additional algorithm extracts TF combinatorial binding patterns creating a collection of TF regulatory syntactic rules. Using these rules, we narrowed down a list of 504 novel motifs that appear frequently in syntax patterns. We tested the predictions against 509 known motifs confirming that our system can reliably predict ab initio motifs with an accuracy of 81%-far higher than previous approaches. We found that on average, 90% of the discovered combinatorial binding patterns target at least 10 genes, suggesting that to control in an independent manner smaller gene sets, supplementary regulatory mechanisms are required. Additionally, we discovered that the new TFBMs and their combinatorial patterns convey biological meaning, targeting TFs and genes related to developmental functions. Thus, among all the possible available targets in the genome, the TFs tend to regulate other TFs and genes involved in developmental functions. We provide a comprehensive resource for regulation analysis that includes a dictionary of "DNA words," newly predicted motifs and their corresponding combinatorial patterns. Combinatorial patterns are a useful filter to discover TFBMs that play a major role in orchestrating other factors and thus, are likely to lock/unlock cellular functional clusters.

  3. Pattern of human chorionic gonadotropin binding in the polycystic ovary

    Energy Technology Data Exchange (ETDEWEB)

    Brawer, J.; Richard, M.; Farookhi, R. (McGill Univ., Montreal, Quebec (Canada))

    1989-08-01

    The histologic evolution of polycystic ovaries in the estradiol valerate-treated rat coincides with the development of a unique plasma pattern of luteinizing hormone. To assess the role of luteinizing hormone in polycystic ovaries, it is necessary to evaluate the luteinizing hormone sensitivity of the specific tissues in the polycystic ovary. Therefore, we examined the pattern of luteinizing hormone binding sites in polycystic ovaries. Rats at 4 or 8 weeks after estradiol valerate treatment each received an intrajugular injection of iodine 125-labeled human chorionic gonadotropin. Some rats also received a 1000-fold excess of unlabeled human chorionic gonadotropin in the same injection. Ovaries were prepared for autoradiography. Dense accumulations of grains occurred over the theca of normal and atretic secondary follicles in all ovaries and over clusters of secondary interstitial cells. The iodine label was variable over the typically hypertrophied theca of precystic follicles. The theca of definitive cysts showed little or no label. These results indicate that cyst formation coincides with the loss of luteinizing hormone/human chorionic gonadotropin binding to the affected follicles.

  4. Crystal Structure of Human Retinoblastoma Binding Protein 9

    Energy Technology Data Exchange (ETDEWEB)

    Vorobiev, S.; Su, M; Seetharaman, J; Huang, Y; Chen, C; Maglaqui, M; Janjua, H; Montelione, G; Tong, L; et. al.

    2009-01-01

    As a step towards better integrating protein three-dimensional (3D) structural information in cancer systems biology, the Northeast Structural Genomics Consortium (NESG) (www.nesg.org) has constructed a Human Cancer Pathway Protein Interaction Network (HCPIN) by analysis of several classical cancer-associated signaling pathways and their physical protein-protein interactions. Many well-known cancer-associated proteins play central roles as hubs or bottlenecks in the HCPIN (http://nmr.cabm.rutgers.edu/hcpin). NESG has selected more than 1000 human proteins and protein domains from the HCPIN for sample production and 3D structure determination. The long-range goal of this effort is to provide a comprehensive 3D structure-function database for human cancer-associated proteins and protein complexes, in the context of their interaction networks. Human retinoblastoma binding protein 9 (RBBP9) is one of the HCPIN proteins targeted by NESG. RBBP9 was initially identified as the product of a new gene, Bog (for B5T over-expressed gene), in several transformed rat liver epithelial cell lines resistant to the growth-inhibitory effect of TGF-1 as well as in primary human liver tumors. RBBP9 contains the retinoblastoma (Rb) binding motif LxCxE in its sequence, and was shown to interact with Rb by yeast two-hybrid and coimmunoprecipitation experiments. Mutation of the Leu residue in this motif to Gln blocked the binding to Rb. RBBP9 can displace E2F1 from E2F1-Rb complexes, and over expression of RBBP9 overcomes TGF-1 induced growth arrest and results in transformation of rat liver epithelial cells leading to hepatoblastoma-like tumors in nude mice. RBBP9 may also play a role in cellular responses to chronic low dose radiation. A close homolog of RBBP9, sharing 93% amino acid sequence identity and also known as RBBP10, interacts with a protein with sua5-yciO-yrdC domains.

  5. Binding of transcobalamin II by human mammary epithelial cells.

    Science.gov (United States)

    Adkins, Y; Lönnerdal, B

    2001-01-01

    The presence of nutrient binders in milk may have an important role during milk production and may influence the nutrient's bioavailability to the infant. Human milk and plasma contain at least two types of vitamin B12 binders: transcobalamin II (TCII) and haptocorrin (Hc). Vitamin B12 in milk is exclusively bound to Hc (Hc-B12). In plasma, the major vitamin B12 binding protein that is responsible for delivering absorbed vitamin B12 to most tissues and cells is TCII (TCII-B12). Currently, little is known about the route of secretion of vitamin B12 into human milk. It is possible that a receptor-mediated pathway is involved, since maternal vitamin B12 supplementation increases the amount of the vitamin secreted into human milk if the mother's vitamin B12 consumption is low, but remains unchanged if her intake is adequate. In this study, we investigated the process by which the mammary gland acquires vitamin B12 from maternal circulation, whether as a free vitamin or as a Hc-B12 or TCII-B12 complex. TCII was purified from plasma incubated with [57Co]vit B12 (B12*), while Hc was purified from whey incubated with B12*. Both proteins were separated by fast protein liquid chromatography using gel filtration and anion-exchange columns. Purity of the separated proteins was assessed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Binding studies were carried out on a monolayer of normal human mammary epithelial cells (HMEC) at 4 degrees C using free B12* and TCII-B12* and Hc-B12* complexes. Minimal binding of free B12* and Hc-B12* to HMEC was observed; however, HMEC exhibited a high affinity for the TCII-B12* complex. This study suggests that a specific cell surface receptor for the TCII-B12 complex exists in the mammary gland. It is possible that once vitamin B12 is in the mammary gland it is transferred to Hc (which may be synthesized by the mammary gland) and then secreted into milk as a Hc-B12 complex.

  6. Human growth hormone binding and stimulation of insulin biosynthesis in cloned rat insulinoma cells

    DEFF Research Database (Denmark)

    Billestrup, Nils

    1985-01-01

    Binding of 125I labelled human growth hormone to cloned insulin producing RIN-5AH cells is described. Binding was specific for somatotropic hormones since both human and rat growth hormone could compete for binding sites, whereas much higher concentrations of lactogenic hormones were needed...

  7. Predicting DNA-binding proteins and binding residues by complex structure prediction and application to human proteome.

    Directory of Open Access Journals (Sweden)

    Huiying Zhao

    Full Text Available As more and more protein sequences are uncovered from increasingly inexpensive sequencing techniques, an urgent task is to find their functions. This work presents a highly reliable computational technique for predicting DNA-binding function at the level of protein-DNA complex structures, rather than low-resolution two-state prediction of DNA-binding as most existing techniques do. The method first predicts protein-DNA complex structure by utilizing the template-based structure prediction technique HHblits, followed by binding affinity prediction based on a knowledge-based energy function (Distance-scaled finite ideal-gas reference state for protein-DNA interactions. A leave-one-out cross validation of the method based on 179 DNA-binding and 3797 non-binding protein domains achieves a Matthews correlation coefficient (MCC of 0.77 with high precision (94% and high sensitivity (65%. We further found 51% sensitivity for 82 newly determined structures of DNA-binding proteins and 56% sensitivity for the human proteome. In addition, the method provides a reasonably accurate prediction of DNA-binding residues in proteins based on predicted DNA-binding complex structures. Its application to human proteome leads to more than 300 novel DNA-binding proteins; some of these predicted structures were validated by known structures of homologous proteins in APO forms. The method [SPOT-Seq (DNA] is available as an on-line server at http://sparks-lab.org.

  8. Design of meningococcal factor H binding protein mutant vaccines that do not bind human complement factor H.

    Science.gov (United States)

    Pajon, Rolando; Beernink, Peter T; Granoff, Dan M

    2012-08-01

    Meningococcal factor H binding protein (fHbp) is a human species-specific ligand for the complement regulator, factor H (fH). In recent studies, fHbp vaccines in which arginine at position 41 was replaced by serine (R41S) had impaired fH binding. The mutant vaccines elicited bactericidal responses in human fH transgenic mice superior to those elicited by control fHbp vaccines that bound human fH. Based on sequence similarity, fHbp has been classified into three variant groups. Here we report that although R41 is present in fHbp from variant groups 1 and 2, the R41S substitution eliminated fH binding only in variant group 1 proteins. To identify mutants in variant group 2 with impaired fH binding, we generated fHbp structural models and predicted 63 residues influencing fH binding. From these, we created 11 mutants with one or two amino acid substitutions in a variant group 2 protein and identified six that decreased fH binding. Three of these six mutants retained conformational epitopes recognized by all six anti-fHbp monoclonal antibodies (MAbs) tested and elicited serum complement-mediated bactericidal antibody titers in wild-type mice that were not significantly different from those obtained with the control vaccine. Thus, fHbp amino acid residues that affect human fH binding differ across variant groups. This result suggests that fHbp sequence variation induced by immune selection also affects fH binding motifs via coevolution. The three new fHbp mutants from variant group 2, which do not bind human fH, retained important epitopes for eliciting bactericidal antibodies and may be promising vaccine candidates.

  9. Cooperative binding of drugs on human serum albumin

    Science.gov (United States)

    Varela, L. M.; Pérez-Rodríguez, M.; García, M.

    In order to explain the adsorption isotherms of the amphiphilic penicillins nafcillin and cloxacillin onto human serum albumin (HSA), a cooperative multilayer adsorption model is introduced, combining the Brunauer-Emmet-Teller (BET) adsorption isotherm with an amphiphilic ionic adsorbate, whose chemical potential is derived from Guggenheim's theory. The non-cooperative model has been previously proved to qualitatively predict the measured adsorption maxima of these drugs [Varela, L. M., García, M., Pérez-Rodríguez, M., Taboada, P., Ruso, J. M., and Mosquera, V., 2001, J. chem. Phys., 114, 7682]. The surface interactions among adsorbed drug molecules are modelled in a mean-field fashion, so the chemical potential of the adsorbate is assumed to include a term proportional to the surface coverage, the constant of proportionality being the lateral interaction energy between bound molecules. The interaction energies obtained from the empirical binding isotherms are of the order of tenths of the thermal energy, therefore suggesting the principal role of van der Waals forces in the binding process.

  10. Binding 3-D object perception in the human visual cortex.

    Science.gov (United States)

    Jiang, Yang; Boehler, C N; Nönnig, Nina; Düzel, Emrah; Hopf, Jens-Max; Heinze, Hans-Jochen; Schoenfeld, Mircea Ariel

    2008-04-01

    How do visual luminance, shape, motion, and depth bind together in the brain to represent the coherent percept of a 3-D object within hundreds of milliseconds (msec)? We provide evidence from simultaneous magnetoencephalographic (MEG) and electroencephalographic (EEG) data that perception of 3-D objects defined by luminance or motion elicits sequential activity in human visual cortices within 500 msec. Following activation of the primary visual cortex around 100 msec, 3-D objects elicited sequential activity with only little overlap (dynamic 3-D shapes: MT-LO-Temp; stationary 3-D shapes: LO-Temp). A delay of 80 msec, both in MEG/EEG responses and in reaction times (RTs), was found when additional motion information was processed. We also found significant positive correlations between RT, and MEG and EEG responses in the right temporal location. After about 400 msec, long-lasting activity was observed in the parietal cortex and concurrently in previously activated regions. Novel time-frequency analyses indicate that the activity in the lateral occipital (LO) complex is associated with an increase of induced power in the gamma band, a hallmark of binding. The close correspondence of an induced gamma response with concurrent sources located in the LO in both experimental conditions at different points in time ( approximately 200 msec for luminance and approximately 300 msec for dynamic cues) strongly suggests that the LO is the key region for the assembly of object features. The assembly is fed forward to achieve coherent perception of a 3-D object within 500 msec.

  11. Deoxyribonucleic-binding homeobox proteins are augmented in human cancer

    DEFF Research Database (Denmark)

    Wewer, U M; Mercurio, A M; Chung, S Y;

    1990-01-01

    the highly conserved 60 amino acid homeodomain. This peptide antiserum recognized a protein species of molecular weight 63,000 in immunoblots of nuclear extracts obtained from several tumor cell lines. The predominant molecular weight 63,000 nuclear protein recognized by the peptide antiserum...... the same patients exhibited little immunoreactivity. Both the peptide antiserum and the polyclonal antiserum against the native protein immunoblotted a molecular weight 63,000 protein in nuclear extracts of tumor tissue, but not significantly in extracts of normal tissue. At the molecular level......Homeobox genes encode sequence-specific DNA-binding proteins that are involved in the regulation of gene expression during embryonic development. In this study, we examined the expression of homeobox proteins in human cancer. Antiserum was obtained against a synthetic peptide derived from...

  12. Marine and continental aerosol effects on the upwelling solar radiation flux in Southern Portugal during the ACE-2 experiment

    Directory of Open Access Journals (Sweden)

    U. Bonafé

    2003-06-01

    Full Text Available An overall number of 447 spectral series of aerosol optical depth were determined in the 0.4-3.7 mm wavelength range by examining the IR-RAD sun-radiometer measurements carried out at Sagres (Portugal on six clear-sky days, during the CLEARCOLUMN (ACE-2 experiment in June and July 1997. These spectral series were then analysed with the King inversion method to defi ne the size-distribution curves of columnar aerosol particle total number and volume, assuming values of both real and imaginary parts of the particulate refractive index obtained on the six days by combining our measurements with simultaneous sky-brightness measurements taken by the Leipzig University group. For these results, we then calculated the daily time-patterns of the average single scattering albedo of the columnar aerosols, fi nding instantaneous values ranging between 0.70 and 0.96 on those days, with daily mean values varying from 0.83 to 0.95. Furthermore, for each spectral series of aerosol optical depth, we determined the instantaneous change DF^ induced by the columnar aerosols on the upwelling solar radiation fl ux leaving the atmosphere, over oceanic areas presenting low surface albedo. The 24-h average values of DF^ obtained on the six days were found to increase as a function of the daily mean value of aerosol optical depth at the 0.55 mm wavelength, following relationship curves whose positive slope coeffi cients decrease gradually with the single scattering albedo of the columnar aerosols. The said curves can be used to achieve reliable estimates of change DF^ directly from daily ground-based multispectral measurements of aerosol optical depth and skybrightness at different angular distances from the Sun.An overall number of 447 spectral series of aerosol optical depth were determined in the 0.4-3.7 mm wavelength range by examining the IR-RAD sun-radiometer measurements carried out at Sagres (Portugal on six clear-sky days, during the

  13. Angiotensin (1-7) ameliorates the structural and biochemical alterations of ovariectomy-induced osteoporosis in rats via activation of ACE-2/Mas receptor axis.

    Science.gov (United States)

    Abuohashish, Hatem M; Ahmed, Mohammed M; Sabry, Dina; Khattab, Mahmoud M; Al-Rejaie, Salim S

    2017-05-23

    The local and systemic renin angiotensin system (RAS) influences the skeletal system micro-structure and metabolism. Studies suggested angiotensin 1-7 (Ang(1-7)) as the beneficial RAS molecule via Mas receptor activation. This study examines the function of Ang(1-7) in bone micro-architecture and metabolism in an ovariectomized (OVX) rodent model of osteoporosis. OVX rats showed structural and bone metabolic degeneration in parallel with suppressed expressions of the angiotensin converting enzyme-2 (ACE-2)/Ang(1-7)/Mas components. The infusion of Ang(1-7) markedly alleviated the altered bone metabolism and significantly enhanced both trabecular (metaphyseal) and cortical (metaphyseal-diaphyseal) morphometry. Urinary and bones minerals were also improved in OVX rats by Ang(1-7). The infusion of the heptapeptide enhanced ACE-2/Mas receptor expressions, while down-regulated AngII, ACE, and AngII type-1 receptor (AT1R) in OVX animals. Moreover, Ang(1-7) markedly improved osteoprotegerin (OPG) and lowered receptor activator NF-κB ligand (RANKL) expressions. The defensive properties of Ang(1-7) on bone metabolism, structure and minerals were considerably eradicated after blockage of Mas receptor with A-779. Ang(1-7)-induced up-regulated ACE-2/Ang(1-7)/Mas cascade and OPG expressions were abolished and the expressions of ACE/AngII/AT1R and RANKL were provoked by A-779. These findings shows for the first time the novel valuable therapeutic role of Ang(1-7) on bone health and metabolism through the ACE-2/Mas cascade.

  14. Polymorphisms of angiotensin-converting enzyme (ACE) and ACE2 are not associated with orthostatic blood pressure dysregulation in hypertensive patients

    Institute of Scientific and Technical Information of China (English)

    Xiaohan FAN; Yi-bo WANG; Hu WANG; Kai SUN; Wei-li ZHANG; Xiao-dong SONG; Jing-zhou CHENG; Hai-ying WU; Xiang-liang ZHOU; Ru-tai HUI

    2009-01-01

    Aim: The genetic background of orthostatic blood pressure dysregulation remains poorly understood. Since the renin-angiotensin sys-tem plays an important role in blood pressure regulation and response to position change, we hypothesized that angiotensin-convert-ing enzyme (ACE) and ACE2 genetic polymorphisms might contribute, at least partially, to orthostatic blood pressure dysregulation in hypertensive patients. Methods: Two tag single nucleotide polymorphisms (SNPs) of ACE2 and ACE I/D were genotyped in 3630 untreated hypertensive patients and 826 normotensive subjects. Orthostatic hypertension was defined as an increase in systolic blood pressure of 20 mmHg or more and orthostatic hypotension as a drop in blood pressure of 20/10 mmHg or more within three minutes of assumption of upright posture. Results: Female and male patients had similar rates of orthostatic hypertension (16.5% vs 15.3%) and hypotension (22.5% vs 23.8%). No significant differences were detected in the minor allele frequency of ACE2 rs2106809, rs2285666, or ACE I/D in either female or male patients with orthostatic hypertension (15.1%, 22.7%, 19.6%, respectively), hypotension (13.8%, 25%, 16.5%), or normal ortho-static blood pressure response (14.4%, 21.9%, 15.8%) in additive, dominant or recessive models after adjustment for confounders (all P>0.05). The orthostatic changes in systolic and diastolic blood pressure were also comparable among patients carrying different genotypes. Similar results were observed in normotensive subjects. Conclusion: These data provide no support for the involvement of ACE or ACE2 in the genetic predisposition to orthostatic hypotension or hypertension.

  15. Identification of factors in human urine that inhibit the binding of Escherichia coli adhesins.

    OpenAIRE

    1988-01-01

    Earlier studies on the binding of Escherichia coli adhesins to the human urinary tract have indicated that the ability to recognize binding sites on the urinary tract epithelial cells is not a characteristic for P fimbriae only, but is also shared by some other adhesins that are not associated with pyelonephritis, especially S fimbriae. In the present study we have investigated whether human urine contains inhibitors of the binding of E. coli adhesins. Normal human urine was found to inhibit ...

  16. Mutations and binding sites of human transcription factors

    KAUST Repository

    Kamanu, Frederick Kinyua

    2012-06-01

    Mutations in any genome may lead to phenotype characteristics that determine ability of an individual to cope with adaptation to environmental challenges. In studies of human biology, among the most interesting ones are phenotype characteristics that determine responses to drug treatments, response to infections, or predisposition to specific inherited diseases. Most of the research in this field has been focused on the studies of mutation effects on the final gene products, peptides, and their alterations. Considerably less attention was given to the mutations that may affect regulatory mechanism(s) of gene expression, although these may also affect the phenotype characteristics. In this study we make a pilot analysis of mutations observed in the regulatory regions of 24,667 human RefSeq genes. Our study reveals that out of eight studied mutation types, insertions are the only one that in a statistically significant manner alters predicted transcription factor binding sites (TFBSs). We also find that 25 families of TFBSs have been altered by mutations in a statistically significant manner in the promoter regions we considered. Moreover, we find that the related transcription factors are, for example, prominent in processes related to intracellular signaling; cell fate; morphogenesis of organs and epithelium; development of urogenital system, epithelium, and tube; neuron fate commitment. Our study highlights the significance of studying mutations within the genes regulatory regions and opens way for further detailed investigations on this topic, particularly on the downstream affected pathways. 2012 Kamanu, Medvedeva, Schaefer, Jankovic, Archer and Bajic.

  17. Influence of humidity on the aerosol scattering coefficient and its effect on the upwelling radiance during ACE-2[Special issue with manuscripts related to the second Aerosol Characterization Experiment (ACE-2), 16 June-25 July 1997

    Energy Technology Data Exchange (ETDEWEB)

    Gasso, S. [Washington Univ., Seattle, WA (United States). Geophysics Program; Hegg, D.A.; Covert, D.S. [Washington Univ., Seattle, WA (United States). Dept. of Atmospheric Science; Collins, D. [California Inst. of Tech., Pasadena, CA (United States); Noone, K.J.; Oestroem, E. [Stockholm Univ. (Sweden). Dept. of Meteorology; Schmid, B. [Bay Area Environmental Research Inst., San Francisco, CA (United States); Russell, P.B. [National Aeronautics and Space Administration, Moffett Field, CA (United States). Ames Research Center; Livingston, J.M. [SRI International, Menlo Park, CA (United States); Durkee, P.A.; Jonsson, H.H. [Naval Postgraduate School, Monterey, CA (United States)

    2000-04-01

    Aerosol scattering coefficients ({sigma}{sub sp}) have been measured over the ocean at different relative humidities (RH) as a function of altitude in the region surrounding the Canary Islands during the Second Aerosol Characterization Experiment (ACE-2) in June and July 1997. The data were collected by the University of Washington passive humidigraph (UWPH) mounted on the Pelican research aircraft. Concurrently, particle size distributions, absorption coefficients and aerosol optical depth were measured throughout 17 flights. A parameterization of {sigma}{sub sp} as a function of RH was utilized to assess the impact of aerosol hydration on the upwelling radiance (normalized to the solar constant and cosine of zenith angle). The top of the atmosphere radiance signal was simulated at wavelengths corresponding to visible and near-infrared bands of the EOS-AM ('Terra') detectors, MODIS and MISR. The UWPH measured {sigma}{sub sp} at 2 RHs, one below and the other above ambient conditions. Ambient {sigma}{sub sp} was obtained by interpolation of these 2 measurements. The data were stratified in terms of 3 types of aerosols: Saharan dust, clean marine (marine boundary layer background) and polluted marine aerosols (i.e., 2- or 1-day old polluted aerosols advected from Europe). An empirical relation for the dependence of {sigma}{sub sp} on RH, defined by {sigma}{sub sp} P(RH)= k. (1 - RH/100){sup -{gamma}}, was used with the hygroscopic exponent {gamma} derived from the data. The following {gamma} values were obtained for the 3 aerosol types: {gamma}(dust) = 0.23 {+-} 0.05, {gamma}(clean marine) = 0.69 {+-} 0.06 and {gamma}(polluted marine) = 0.57 {+-} 0.06. Based on the measured {gamma}'s, the above equation was utilized to derive aerosol models with different hygroscopicities. The satellite simulation signal code 6S was used to compute the upwelling radiance corresponding to each of those aerosol models at several ambient humidities. For the prelaunch

  18. Binding of human serum albumin to PEGylated liposomes: insights into binding numbers and dynamics by fluorescence correlation spectroscopy

    DEFF Research Database (Denmark)

    Kristensen, Kasper; Urquhart, Andrew; Thormann, Esben

    2016-01-01

    understood. For example, there is generally a lack of knowledge about the liposome binding affinities and dynamics of common types of blood plasma proteins. Fluorescence correlation spectroscopy (FCS) is a powerful experimental technique that potentially can provide such knowledge. In this study, we have...... used FCS to investigate the binding of human serum albumin (HSA) to standard types of PEGylated fluid-phase liposomes (consisting of DOPC and DOPE-PEG2k) and PEGylated gel-phase liposomes (consisting of DSPC and DSPE-PEG2k) with various PEG chain surface densities. We detected no significant binding...

  19. Cobalt uptake and binding in human red blood cells.

    Science.gov (United States)

    Simonsen, Lars Ole; Brown, Anthony M; Harbak, Henrik; Kristensen, Berit I; Bennekou, Poul

    2011-04-15

    The basal uptake and cytoplasmic binding of cobalt was studied in human red cells using (57)Co as tracer. The basal uptake is linear with time, at a rate of about 10 μmol (l cells)(-1) h(-1) at 100 μM [Co(2+)](o), and is almost irreversible, as there is hardly any efflux into excess EDTA. Ionophore A23187 mediates a rapid equilibration of Co(2+) across the cell membrane leading to a marked accumulation, reflecting effective cytoplasmic buffering. The fraction (α(Co)) of total cell cobalt being present as free, ionized Co(2+) is estimated at α(Co)=0.01 from the equilibrium distribution of cobalt, and also from the initial slope of the cobalt buffering curve. The cobalt accumulation is similar in fed and ATP-depleted cells. The buffering curve for [Co(T)](c) can be fitted by a Michaelis type function with B(max)=24 mmol (l cells)(-1) and half-saturation at 240 μM [Co(2+)](c). The tracer influx curves are adequately fitted by single exponentials, whereas the net influx curves all require at least double exponential fits, probably due to non-stationary A23187 kinetics. The rate of tracer influx decreases with increasing cobalt concentration, and increases with delayed addition of (57)Co tracer during net uptake. This might be explained by an 'auto-inhibition' by cobalt. The kinetics for A23187-mediated net and tracer influx of (54)Mn is very similar to that of (57)Co, whereas the net influx of (65)Zn can be fitted by single exponentials. In cobalt-loaded cells the cobalt is partly reversibly bound, being releasable by excess extracellular EGTA in the presence of A23187, and partly tightly bound, remaining in the cells even at high ionophore concentrations. The tightly bound fraction builds up over time, and is larger and develops earlier in fed cells compared to ATP-depleted cells. However, all cell cobalt appears to exchange with (57)Co during tracer influx. It is speculated that oxidation of Co(2+) to Co(3+) could lead to the high affinity binding. Tight binding

  20. Solution Structure and Backbone Dynamics of Human Liver Fatty Acid Binding Protein: Fatty Acid Binding Revisited

    OpenAIRE

    Cai, Jun; Lücke, Christian; Chen, Zhongjing; Qiao, Ye; Klimtchuk, Elena; Hamilton, James A.

    2012-01-01

    Liver fatty acid binding protein (L-FABP), a cytosolic protein most abundant in liver, is associated with intracellular transport of fatty acids, nuclear signaling, and regulation of intracellular lipolysis. Among the members of the intracellular lipid binding protein family, L-FABP is of particular interest as it can i), bind two fatty acid molecules simultaneously and ii), accommodate a variety of bulkier physiological ligands such as bilirubin and fatty acyl CoA. To better understand the p...

  1. A single rainbow trout cobalamin-binding protein stands in for three human binders

    DEFF Research Database (Denmark)

    Greibe, Eva; Fedosov, Sergey; Sorensen, Boe S

    2012-01-01

    -binding proteins of the rainbow trout (Oncorhynchus mykiss) and to compare their properties with those of the three human cobalamin-binding proteins. High cobalamin-binding capacity was found in trout stomach (210 pmol/g), roe (400 pmol/g), roe fluid (390 nmol/liter), and plasma (2500 nmol/liter). In all cases...

  2. Genome-wide binding and transcriptome analysis of human farnesoid X receptor in primary human hepatocytes.

    Directory of Open Access Journals (Sweden)

    Le Zhan

    Full Text Available Farnesoid X receptor (FXR, NR1H4 is a ligand-activated transcription factor, belonging to the nuclear receptor superfamily. FXR is highly expressed in the liver and is essential in regulating bile acid homeostasis. FXR deficiency is implicated in numerous liver diseases and mice with modulation of FXR have been used as animal models to study liver physiology and pathology. We have reported genome-wide binding of FXR in mice by chromatin immunoprecipitation - deep sequencing (ChIP-seq, with results indicating that FXR may be involved in regulating diverse pathways in liver. However, limited information exists for the functions of human FXR and the suitability of using murine models to study human FXR functions.In the current study, we performed ChIP-seq in primary human hepatocytes (PHHs treated with a synthetic FXR agonist, GW4064 or DMSO control. In parallel, RNA deep sequencing (RNA-seq and RNA microarray were performed for GW4064 or control treated PHHs and wild type mouse livers, respectively.ChIP-seq showed similar profiles of genome-wide FXR binding in humans and mice in terms of motif analysis and pathway prediction. However, RNA-seq and microarray showed more different transcriptome profiles between PHHs and mouse livers upon GW4064 treatment.In summary, we have established genome-wide human FXR binding and transcriptome profiles. These results will aid in determining the human FXR functions, as well as judging to what level the mouse models could be used to study human FXR functions.

  3. Thermodynamic study of 5-(/sup 3/H)hydroxytryptamine binding to human cortex membranes

    Energy Technology Data Exchange (ETDEWEB)

    Todd, R.D.; Babinski, J.

    1987-11-01

    Kinetic and equilibrium measurements of (/sup 3/H)-serotonin (5-hydroxytryptamine) binding to human frontal cortex membranes have been made between 4 and 30 degrees C. The effects of spiperone and ascorbate on binding have also been determined. Under the conditions used, binding was saturable and reversible. Affinity constants derived from kinetic and equilibrium data were comparable. Serotonin binding to several sites had substantial enthalpic as well as entropic components.

  4. Binding interactions of pefloxacin mesylate with bovine lactoferrin and human serum albumin

    Institute of Scientific and Technical Information of China (English)

    FAN Ji-cai; CHEN Xiang; WANG Yun; FAN Cheng-ping; SHANG Zhi-cai

    2006-01-01

    The binding of pefloxacin mesylate (PFLX) to bovine lactoferrin (BLf) and human serum albumin (HSA) in dilute aqueous solution was studied using fluorescence spectra and absorbance spectra. The binding constant K and the binding sites n were obtained by fluorescence quenching method. The binding distance r and energy-transfer efficiency E between pefloxacin mesylate and bovine lactoferrin as well as human serum albumin were also obtained according to the mechanism of Forster-type dipole-dipole nonradiative energy-transfer. The effects of pefloxacin mesylate on the conformations of bovine lactoferrin and human serum albumin were also analyzed using synchronous fluorescence spectroscopy.

  5. Reevaluation of ANS binding to human and bovine serum albumins: key role of equilibrium microdialysis in ligand - receptor binding characterization.

    Directory of Open Access Journals (Sweden)

    Irina M Kuznetsova

    Full Text Available In this work we return to the problem of the determination of ligand-receptor binding stoichiometry and binding constants. In many cases the ligand is a fluorescent dye which has low fluorescence quantum yield in free state but forms highly fluorescent complex with target receptor. That is why many researchers use dye fluorescence for determination of its binding parameters with receptor, but they leave out of account that fluorescence intensity is proportional to the part of the light absorbed by the solution rather than to the concentration of bound dye. We showed how ligand-receptor binding parameters can be determined by spectrophotometry of the solutions prepared by equilibrium microdialysis. We determined the binding parameters of ANS - human serum albumin (HSA and ANS - bovine serum albumin (BSA interaction, absorption spectra, concentration and molar extinction coefficient, as well as fluorescence quantum yield of the bound dye. It was found that HSA and BSA have two binding modes with significantly different affinity to ANS. Correct determination of the binding parameters of ligand-receptor interaction is important for fundamental investigations and practical aspects of molecule medicine and pharmaceutics. The data obtained for albumins are important in connection with their role as drugs transporters.

  6. In vitro characterization of cocaine binding sites in human hair.

    Science.gov (United States)

    Joseph, R E; Tsai, W J; Tsao, L I; Su, T P; Cone, E J

    1997-09-01

    In vitro studies were performed to characterize [3H]cocaine binding to dark and light ethnic hair types. In vitro binding to hair was selective, was reversible and increased linearly with increasing hair concentration. Scatchard analyses revealed high-affinity (6-112 nM) and low-affinity (906-4433 nM) binding in hair. Competition studies demonstrated that the potencies of 3beta-(4-bromophenyl)tropane-2beta-carboxylic acid methyl ester, and 5-(4-chlorophenyl)-2,5-dihydro-3H-imidazol[2,1-alpha]isoindole-5-ol and 2beta-carbomethoxy-3beta-(4-fluorophenyl)tropane were similar to or less than that of (-)-cocaine. The potency of (-)-cocaine was 10-fold greater than that of (+)-cocaine at inhibiting radioligand specific binding to hair. Multivariate analysis indicated that significantly greater nonspecific and specific radioligand binding occurred in dark hair than in light hair. Multivariate analysis also demonstrated a significant ethnicity x sex effect on specific and nonspecific binding to hair. Greater radioligand binding occurred in male Africoid hair than in female Africoid hair and in all Caucasoid hair types. Melanin was considered the most likely binding site for cocaine in hair. Typically, the concentration of melanin is much greater in dark than in light hair. Scatchard analysis indicated that dark hair had a 5- to 43-fold greater binding capacity than light hair. Differences in radioligand binding between hair types appeared to be due to differences in the density of binding sites formed by melanin in hair.

  7. Binding of anthracycline derivatives to human serum lipoproteins.

    Science.gov (United States)

    Chassany, O; Urien, S; Claudepierre, P; Bastian, G; Tillement, J P

    1994-01-01

    The binding of eight anthracycline analogues (including mitoxantrone) to isolated serum lipoproteins (high, low and very low density lipoproteins) was studied in order to elucidate some determinants of their interaction with lipidic structures. Serum lipoproteins were isolated by ultracentrifugation. Drug binding experiments were run by ultrafiltration at 37 degrees C and pH 7.4. Anthracycline concentrations (total and free) were determined by HPLC with fluorometric detection. All the ligands were significantly bound to the three lipoprotein classes, and for each ligand the binding increased as the lipidic fraction of lipoprotein increased. From doxorubicin to iododoxorubicin, there was a tenfold increase in lipoprotein binding (doxorubicin < mitoxantrone < epirubicin < daunorubicin < pirarubicin < aclarubicin < zorubicin < iododoxorubicin). For all the ligands studied, the extent of lipoprotein binding appears to be related to chemical determinants of lipophilicity.

  8. Recombinant human MDM2 oncoprotein shows sequence composition selectivity for binding to both RNA and DNA.

    Science.gov (United States)

    Challen, Christine; Anderson, John J; Chrzanowska-Lightowlers, Zofia M A; Lightowlers, Robert N; Lunec, John

    2012-03-01

    MDM2 is a 90 kDa nucleo-phosphoprotein that binds p53 and other proteins contributing to its oncogenic properties. Its structure includes an amino proximal p53 binding site, a central acidic domain and a carboxy region which incorporates Zinc and Ring Finger domains suggestive of nucleic acid binding or transcription factor function. It has previously been reported that a bacculovirus expressed MDM2 protein binds RNA in a sequence-specific manner through the Ring Finger domain, however, its ability to bind DNA has yet to be examined. We report here that a bacterially expressed human MDM2 protein binds both DNA as well as the previously defined RNA consensus sequence. DNA binding appears selective and involves the carboxy-terminal domain of the molecule. RNA binding is inhibited by an MDM2 specific antibody, which recognises an epitope within the carboxy region of the protein. Selection cloning and sequence analysis of MDM2 DNA binding sequences, unlike RNA binding sequences, revealed no obvious DNA binding consensus sequence, but preferential binding to oligopurine:pyrimidine-rich stretches. Our results suggest that the observed preferential DNA binding may occur through the Zinc Finger or in a charge-charge interaction through the Ring Finger, thereby implying potentially different mechanisms for DNA and RNA MDM2 binding.

  9. Inhibition of RNA Polymerase II Transcription in Human Cells by Synthetic DNA-Binding Ligands

    Science.gov (United States)

    Dickinson, Liliane A.; Gulizia, Richard J.; Trauger, John W.; Baird, Eldon E.; Mosier, Donald E.; Gottesfeld, Joel M.; Dervan, Peter B.

    1998-10-01

    Sequence-specific DNA-binding small molecules that can permeate human cells potentially could regulate transcription of specific genes. Multiple cellular DNA-binding transcription factors are required by HIV type 1 for RNA synthesis. Two pyrrole--imidazole polyamides were designed to bind DNA sequences immediately adjacent to binding sites for the transcription factors Ets-1, lymphoid-enhancer binding factor 1, and TATA-box binding protein. These synthetic ligands specifically inhibit DNA-binding of each transcription factor and HIV type 1 transcription in cell-free assays. When used in combination, the polyamides inhibit virus replication by >99% in isolated human peripheral blood lymphocytes, with no detectable cell toxicity. The ability of small molecules to target predetermined DNA sequences located with RNA polymerase II promoters suggests a general approach for regulation of gene expression, as well as a mechanism for the inhibition of viral replication.

  10. Deficiency of ACE2 in Bone-Marrow-Derived Cells Increases Expression of TNF-α in Adipose Stromal Cells and Augments Glucose Intolerance in Obese C57BL/6 Mice

    Directory of Open Access Journals (Sweden)

    Sean E. Thatcher

    2012-01-01

    Full Text Available Deficiency of ACE2 in macrophages has been suggested to promote the development of an inflammatory M1 macrophage phenotype. We evaluated effects of ACE2 deficiency in bone-marrow-derived stem cells on adipose inflammation and glucose tolerance in C57BL/6 mice fed a high fat (HF diet. ACE2 activity was increased in the stromal vascular fraction (SVF isolated from visceral, but not subcutaneous adipose tissue of HF-fed mice. Deficiency of ACE2 in bone marrow cells significantly increased mRNA abundance of F4/80 and TNF-α in the SVF isolated from visceral adipose tissue of HF-fed chimeric mice, supporting increased presence of inflammatory macrophages in adipose tissue. Moreover, deficiency of ACE2 in bone marrow cells modestly augmented glucose intolerance in HF-fed chimeric mice and increased blood levels of glycosylated hemoglobin. In summary, ACE2 deficiency in bone marrow cells promotes inflammation in adipose tissue and augments obesity-induced glucose intolerance.

  11. Inhibitors of serotonin reuptake and specific imipramine binding in human blood plasma

    Energy Technology Data Exchange (ETDEWEB)

    Brusov, O.S.; Fomenko, A.M.; Katasonov, A.B.; Lidemann, R.R.

    1985-12-01

    This paper describes a method of extraction of endogenous inhibitors of specific IMI binding and of 5-HT reuptake, from human blood plasma and the heterogeneity of these compounds is demonstrated. Specific binding was determined as the difference between binding of /sup 3/H-IMI in the absence and in the presence of 50 microM IMI. Under these conditions, specific binding amounted to 70-80% of total binding of /sup 3/H-IMI. It is shown that extract obtained from human blood contains a material which inhibits dose-dependently both 5-HT reuptake and specific binding of /sup 3/H-IMI. Gel-chromatography of extracts of human blood plasma on Biogel P-2 is also shown.

  12. Expression and function of the ACE2/angiotensin(1-7)/Mas axis in osteosarcoma cell lines U-2 OS and MNNG-HOS.

    Science.gov (United States)

    Ender, Stephan Albrecht; Dallmer, Andrea; Lässig, Florian; Lendeckel, Uwe; Wolke, Carmen

    2014-08-01

    The renin-angiotensin-system (RAS), via its classical angiotensin-converting enzyme (ACE)/angiotensin II/angiotensin II type 1 receptor (AT1R)-axis, is associated with proliferation and metastasis of numerous types of solid tumor. AT1R blockers reduce tumor volume and decrease liver and lung metastasis in murine models of osteosarcoma. Expression and function of the alternative ACE2/Ang(1-7)/Mas axis in osteosarcoma is yet to be studied. In the present study, the basic and interleukin (IL)-1β-stimulated expression of components of this alternative RAS axis were analyzed and the impact of Mas on proliferation and/or migration of U-2 OS and MNNG-HOS osteosarcoma cells was studied. Quantitative polymerase chain reaction revealed that the two cell lines expressed the Ang(1‑7)-generating peptidases ACE2, neutral endopeptidase 24.11 and prolyl-endopeptidase together with the putative receptor for Ang(1-7), Mas. IL-1β provoked an induction of Mas mRNA and protein expression which was associated with a reduction of proliferation and migration. By contrast, small interfering RNA-mediated knockdown of Mas expression led to increased cell proliferation. In conclusion, osteosarcoma cells express a functional active alternative ACE2/Ang(1-7)/Mas axis. The induction and reinforcement of this axis may be beneficial for the treatment of osteosarcoma by reducing growth and preventing cancer metastasis. These effects may be achieved directly by the administration of Mas agonists or, indirectly, via blocking the classical AngII RAS axis via ACE inhibitors or AT1R antagonists.

  13. Machupo Virus Glycoprotein Determinants for Human Transferrin Receptor 1 Binding and Cell Entry

    Science.gov (United States)

    2011-07-01

    and form enveloped virions [1]. Seven arenaviruses cause viral hemorrhagic fever in humans: the Old World arenaviruses Lassa and ‘Lujo,’ and the New...hemorrhagic fever in humans. MACV, as well as other pathogenic New World arenaviruses, enter cells after their GP1 attachment glycoprotein binds to... fever in humans. MACV, as well as other pathogenic New World arenaviruses, enter cells after their GP1 attachment glycoprotein binds to their cellular

  14. Palmitate and stearate binding to human serum albumin. Determination of relative binding constants

    DEFF Research Database (Denmark)

    Vorum, H; Fisker, K; Honoré, B

    1997-01-01

    . The experimental data were analysed by a computerised curve fitting procedure using equilibrium equations for multiple binding of ligands, containing relative binding constants, valid whether the ligands are truly insoluble or are slightly soluble and irrespective of aggregation in aqueous solution. A best-fit set...... of relative binding constants was found, and subsequently 30 sets of acceptable constants for each set of data in order to evaluate the variation. The data were first fitted by the relative Scatchard's equation, then by the relative, stoichiometric equation. Scatchard's equation is deduced on the presumption...... that cooperativity is absent while the stoichiometric equation is valid even when cooperativity is present. It was found with palmitate as well as with stearate that the two equations fitted the data equally well, and it was concluded that the observations were compatible with absence of cooperativity. The relative...

  15. The human fatty acid-binding protein family: Evolutionary divergences and functions

    Directory of Open Access Journals (Sweden)

    Smathers Rebecca L

    2011-03-01

    Full Text Available Abstract Fatty acid-binding proteins (FABPs are members of the intracellular lipid-binding protein (iLBP family and are involved in reversibly binding intracellular hydrophobic ligands and trafficking them throughout cellular compartments, including the peroxisomes, mitochondria, endoplasmic reticulum and nucleus. FABPs are small, structurally conserved cytosolic proteins consisting of a water-filled, interior-binding pocket surrounded by ten anti-parallel beta sheets, forming a beta barrel. At the superior surface, two alpha-helices cap the pocket and are thought to regulate binding. FABPs have broad specificity, including the ability to bind long-chain (C16-C20 fatty acids, eicosanoids, bile salts and peroxisome proliferators. FABPs demonstrate strong evolutionary conservation and are present in a spectrum of species including Drosophila melanogaster, Caenorhabditis elegans, mouse and human. The human genome consists of nine putatively functional protein-coding FABP genes. The most recently identified family member, FABP12, has been less studied.

  16. Escherichia coli lipoprotein binds human plasminogen via an intramolecular domain

    Directory of Open Access Journals (Sweden)

    Tammy eGonzalez

    2015-10-01

    Full Text Available Escherichia coli lipoprotein (Lpp is a major cellular component that exists in two distinct states, bound-form and free-form. Bound-form Lpp is known to interact with the periplasmic bacterial cell wall, while free-form Lpp is localized to the bacterial cell surface. A function for surface-exposed Lpp has yet to be determined. We hypothesized that the presence of C-terminal lysines in the surface-exposed region of Lpp would facilitate binding to the host zymogen plasminogen, a protease commandeered by a number of clinically important bacteria. Recombinant Lpp was synthesized and the binding of Lpp to plasminogen, the effect of various inhibitors on this binding, and the effects of various mutations of Lpp on Lpp-plasminogen interactions were examined. Additionally, the ability of Lpp-bound plasminogen to be converted to active plasmin was analyzed. We determined that Lpp binds plasminogen via an atypical domain located near the center of mature Lpp that may not be exposed on the surface of intact E. coli according to the current localization model. Finally, we found that plasminogen bound by Lpp can be converted to active plasmin. While the consequences of Lpp binding plasminogen are unclear, these results prompt further investigation of the ability of surface exposed Lpp to interact with host molecules such as extracellular matrix components and complement regulators, and the role of these interactions in infections caused by E. coli and other bacteria.

  17. An insulin-induced DNA-binding protein for the human growth hormone gene.

    OpenAIRE

    Prager, D; Gebremedhin, S; Melmed, S

    1990-01-01

    The control of gene transcription is usually mediated by transacting transcriptional factors that bind to upstream regulatory elements. As insulin regulates transcription of the growth hormone (GH) gene, we tested nuclear extracts from unstimulated and insulin-stimulated Chinese hamster ovarian (CHO) cells for binding to four human GH (hGH) gene promoter oligonucleotide fragments identified as target-binding sequences by DNAse I footprinting. Using a mobility shift assay, an insulin-induced D...

  18. Determination of energies and sites of binding of PFOA and PFOS to human serum albumin.

    Science.gov (United States)

    Salvalaglio, Matteo; Muscionico, Isabella; Cavallotti, Carlo

    2010-11-25

    Structure and energies of the binding sites of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) to human serum albumin (HSA) were determined through molecular modeling. The calculations consisted of a compound approach based on docking, followed by molecular dynamics simulations and by the estimation of the free binding energies adopting WHAM-umbrella sampling and semiempirical methodologies. The binding sites so determined are common either to known HSA fatty acids sites or to other HSA sites known to bind to pharmaceutical compounds such as warfarin, thyroxine, indole, and benzodiazepin. Among the PFOA binding sites, five have interaction energies in excess of -6 kcal/mol, which become nine for PFOS. The calculated binding free energy of PFOA to the Trp 214 binding site is the highest among the PFOA complexes, -8.0 kcal/mol, in good agreement with literature experimental data. The PFOS binding site with the highest energy, -8.8 kcal/mol, is located near the Trp 214 binding site, thus partially affecting its activity. The maximum number of ligands that can be bound to HSA is 9 for PFOA and 11 for PFOS. The calculated data were adopted to predict the level of complexation of HSA as a function of the concentration of PFOA and PFOS found in human blood for different levels of exposition. The analysis of the factors contributing to the complex binding energy permitted to outline a set of guidelines for the rational design of alternative fluorinated surfactants with a lower bioaccumulation potential.

  19. CRITERIA FOR AN UPDATED CLASSIFICATION OF HUMAN TRANSCRIPTION FACTOR DNA-BINDING DOMAINS

    NARCIS (Netherlands)

    Wingender, Edgar

    2013-01-01

    By binding to cis-regulatory elements in a sequence-specific manner, transcription factors regulate the activity of nearby genes. Here, we discuss the criteria for a comprehensive classification of human TFs based on their DNA-binding domains. In particular, classification of basic leucine zipper (b

  20. CRITERIA FOR AN UPDATED CLASSIFICATION OF HUMAN TRANSCRIPTION FACTOR DNA-BINDING DOMAINS

    NARCIS (Netherlands)

    Wingender, Edgar

    By binding to cis-regulatory elements in a sequence-specific manner, transcription factors regulate the activity of nearby genes. Here, we discuss the criteria for a comprehensive classification of human TFs based on their DNA-binding domains. In particular, classification of basic leucine zipper

  1. Interindividual variation in binding of benzo[a]pyrene to DNA in cultured human Bronchi

    DEFF Research Database (Denmark)

    Harris, C.C.; Autrup, Herman; Connor, R.

    1976-01-01

    The binding of benzo[a]pyrene to DNA in cultured human bronchus was measured in specimens from 37 patients. The binding values ranged from 2 to 151 picomoles of benzo[a]pyrene per milligram of DNA with an overall mean +/- standard error of 34.2 +/- 5.2. This 75-fold interindividual variation in t...

  2. The roles of histidine residues at the starch-binding site in streptococcal-binding activities of human salivary amylase.

    Science.gov (United States)

    Tseng, C C; Miyamoto, M; Ramalingam, K; Hemavathy, K C; Levine, M J; Ramasubbu, N

    1999-02-01

    Human salivary alpha-amylase participates in the initial digestion of starch and may be involved in the colonization of viridans streptococci in the mouth. To elucidate the role of histidine residues located near the starch-binding site on the streptococcal-binding activity, the wild type and three histidine mutants, H52A, H299A and H305A were constructed and expressed in a baculovirus system. While His52 is located near the non-reducing end of the starch-binding pocket (subsite S3/S4), the residues His299 and His305 are located near the subsites S1/S1'. For the wild type, the cDNA encoding the leader and secreted sequences of human salivary amylase was amplified by polymerase chain reaction from a human submandibular salivary-gland cDNA library, and subcloned into the baculovirus shuttle vector pVL1392 downstream of the polyhedrin promoter. Oligonucleotide-based, site-directed mutagenesis was used to generate the mutants expressed in the baculovirus system. Replacing His52 or His299 or His305 to Ala residue did not alter the bacterial-binding activity significantly, but these mutants did show differences in their catalytic activities. The mutant H52A showed negligible reduction in enzymatic activity compared to that of wild type for the hydrolysis of starch and oligosaccharides. In contrast, the H299A and H305A mutants showed a 12 to 13-fold reduction (90-92%) in starch-hydrolysing activity. In addition, the k(cat) for the hydrolysis of oligosaccharides by H299A decreased by as much as 11-fold for maltoheptaoside. This reduction was even higher (40-fold) for the hydrolysis of p-nitrophenyl maltoside, with a significant change in K(M). The mutant H305A, however, exhibited a reduction in k(cat) only, with no changes in the K(M) for the hydrolysis of oligosaccharides. The reduction in the k(cat) for the H305A mutant was almost 93% for maltoheptaoside hydrolysis. The pH activity profile for the H305A mutant was also significantly different from that of the wild type

  3. Targeting Human Cancer by a Glycosaminoglycan Binding Malaria Protein

    DEFF Research Database (Denmark)

    Salanti, Ali; Clausen, Thomas M.; Agerbæk, Mette Ø.

    2015-01-01

    Plasmodium falciparum engineer infected erythrocytes to present the malarial protein, VAR2CSA, which binds a distinct type chondroitin sulfate (CS) exclusively expressed in the placenta. Here, we show that the same CS modification is present on a high proportion of malignant cells and that it can...

  4. Structures and receptor binding of hemagglutinins from human-infecting H7N9 influenza viruses.

    Science.gov (United States)

    Shi, Yi; Zhang, Wei; Wang, Fei; Qi, Jianxun; Wu, Ying; Song, Hao; Gao, Feng; Bi, Yuhai; Zhang, Yanfang; Fan, Zheng; Qin, Chengfeng; Sun, Honglei; Liu, Jinhua; Haywood, Joel; Liu, Wenjun; Gong, Weimin; Wang, Dayan; Shu, Yuelong; Wang, Yu; Yan, Jinghua; Gao, George F

    2013-10-11

    An avian-origin human-infecting influenza (H7N9) virus was recently identified in China. We have evaluated the viral hemagglutinin (HA) receptor-binding properties of two human H7N9 isolates, A/Shanghai/1/2013 (SH-H7N9) (containing the avian-signature residue Gln(226)) and A/Anhui/1/2013 (AH-H7N9) (containing the mammalian-signature residue Leu(226)). We found that SH-H7N9 HA preferentially binds the avian receptor analog, whereas AH-H7N9 HA binds both avian and human receptor analogs. Furthermore, an AH-H7N9 mutant HA (Leu(226) → Gln) was found to exhibit dual receptor-binding property, indicating that other amino acid substitutions contribute to the receptor-binding switch. The structures of SH-H7N9 HA, AH-H7N9 HA, and its mutant in complex with either avian or human receptor analogs show how AH-H7N9 can bind human receptors while still retaining the avian receptor-binding property.

  5. The Binding Site of Human Adenosine Deaminase for Cd26/Dipeptidyl Peptidase IV

    Science.gov (United States)

    Richard, Eva; Arredondo-Vega, Francisco X.; Santisteban, Ines; Kelly, Susan J.; Patel, Dhavalkumar D.; Hershfield, Michael S.

    2000-01-01

    Human, but not murine, adenosine deaminase (ADA) forms a complex with the cell membrane protein CD26/dipeptidyl peptidase IV. CD26-bound ADA has been postulated to regulate extracellular adenosine levels and to modulate the costimulatory function of CD26 on T lymphocytes. Absence of ADA–CD26 binding has been implicated in causing severe combined immunodeficiency due to ADA deficiency. Using human–mouse ADA hybrids and ADA point mutants, we have localized the amino acids critical for CD26 binding to the helical segment 126–143. Arg142 in human ADA and Gln142 in mouse ADA largely determine the capacity to bind CD26. Recombinant human ADA bearing the R142Q mutation had normal catalytic activity per molecule, but markedly impaired binding to a CD26+ ADA-deficient human T cell line. Reduced CD26 binding was also found with ADA from red cells and T cells of a healthy individual whose only expressed ADA has the R142Q mutation. Conversely, ADA with the E217K active site mutation, the only ADA expressed by a severely immunodeficient patient, showed normal CD26 binding. These findings argue that ADA binding to CD26 is not essential for immune function in humans. PMID:11067872

  6. Fucose-binding lectin from opportunistic pathogen Burkholderia ambifaria binds to both plant and human oligosaccharidic epitopes.

    Science.gov (United States)

    Audfray, Aymeric; Claudinon, Julie; Abounit, Saïda; Ruvoën-Clouet, Nathalie; Larson, Göran; Smith, David F; Wimmerová, Michaela; Le Pendu, Jacques; Römer, Winfried; Varrot, Annabelle; Imberty, Anne

    2012-02-03

    Burkholderia ambifaria is generally associated with the rhizosphere of plants where it has biocontrol effects on other microorganisms. It is also a member of the Burkholderia cepacia complex, a group of closely related bacteria that cause lung infections in immunocompromised patients as well as in patients with granulomatous disease or cystic fibrosis. Our previous work indicated that fucose on human epithelia is a frequent target for lectins and adhesins of lung pathogens (Sulák, O., Cioci, G., Lameignère, E., Balloy, V., Round, A., Gutsche, I., Malinovská, L., Chignard, M., Kosma, P., Aubert, D. F., Marolda, C. L., Valvano, M. A., Wimmerová, M., and Imberty, A. (2011) PLoS Pathog. 7, e1002238). Analysis of the B. ambifaria genome identified BambL as a putative fucose-binding lectin. The 87-amino acid protein was produced recombinantly and demonstrated to bind to fucosylated oligosaccharides with a preference for αFuc1-2Gal epitopes. Crystal structures revealed that it associates as a trimer with two fucose-binding sites per monomer. The overall fold is a six-bladed β-propeller formed by oligomerization as in the Ralstonia solanacearum lectin and not by sequential domains like the fungal fucose lectin from Aleuria aurantia. The affinity of BambL for small fucosylated glycans is very high as demonstrated by microcalorimetry (K(D) < 1 μM). Plant cell wall oligosaccharides and human histo-blood group oligosaccharides H-type 2 and Lewis Y are bound with equivalent efficiency. Binding to artificial glycosphingolipid-containing vesicles, human saliva, and lung tissues confirmed that BambL could recognize a wide spectrum of fucosylated epitopes, albeit with a lower affinity for biological material from nonsecretor individuals.

  7. Elucidation of binding mechanism and identification of binding site for an anti HIV drug, stavudine on human blood proteins.

    Science.gov (United States)

    Sandhya, B; Hegde, Ashwini H; Seetharamappa, J

    2013-05-01

    The binding of stavudine (STV) to two human blood proteins [human hemoglobin (HHb) and human serum albumin (HSA)] was studied in vitro under simulated physiological conditions by spectroscopic methods viz., fluorescence, UV absorption, resonance light scattering, synchronous fluorescence, circular dichroism (CD) and three-dimensional fluorescence. The binding parameters of STV-blood protein were determined from fluorescence quenching studies. Stern-Volmer plots indicated the presence of static quenching mechanism in the interaction of STV with blood proteins. The values of n close to unity indicated that one molecule of STV bound to one molecule of blood protein. The binding process was found to be spontaneous. Analysis of thermodynamic parameters revealed the presence of hydrogen bond and van der Waals forces between protein and STV. Displacement experiments indicated the binding of STV to Sudlow's site I on HSA. Secondary structures of blood proteins have undergone changes upon interaction with STV as evident from the reduction of α-helices (from 46.11% in free HHb to 38.34% in STV-HHb, and from 66.44% in free HSA to 52.26% in STV-HSA). Further, the alterations in secondary structures of proteins in the presence of STV were confirmed by synchronous and 3D-fluorescence spectral data. The distance between the blood protein (donor) and acceptor (STV) was found to be 5.211 and 5.402 nm for STV-HHb and STV-HSA, respectively based on Föster's non-radiative energy transfer theory. Effect of some metal ions was also investigated. The fraction of STV bound to HSA was found to be 87.8%.

  8. The replication of a mouse adapted SARS-CoV in a mouse cell line stably expressing the murine SARS-CoV receptor mACE2 efficiently induces the expression of proinflammatory cytokines.

    Science.gov (United States)

    Regla-Nava, Jose A; Jimenez-Guardeño, Jose M; Nieto-Torres, Jose L; Gallagher, Thomas M; Enjuanes, Luis; DeDiego, Marta L

    2013-11-01

    Infection of conventional mice with a mouse adapted (MA15) severe acute respiratory syndrome (SARS) coronavirus (CoV) reproduces many aspects of human SARS such as pathological changes in lung, viremia, neutrophilia, and lethality. However, established mouse cell lines highly susceptible to mouse-adapted SARS-CoV infection are not available. In this work, efficiently transfectable mouse cell lines stably expressing the murine SARS-CoV receptor angiotensin converting enzyme 2 (ACE2) have been generated. These cells yielded high SARS-CoV-MA15 titers and also served as excellent tools for plaque assays. In addition, in these cell lines, SARS-CoV-MA15 induced the expression of proinflammatory cytokines and IFN-β, mimicking what has been observed in experimental animal models infected with SARS-CoV and SARS patients. These cell lines are valuable tools to perform in vitro studies in a mouse cell system that reflects the species used for in vivo studies of SARS-CoV-MA15 pathogenesis. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Differential binding of thyroxine and triiodothyronine to acidic isoforms of thyroid hormone binding globulin in human serum

    Energy Technology Data Exchange (ETDEWEB)

    Terasaki, T.; Pardridge, W.M.

    1988-05-17

    The differential availability of thyroxine (T/sub 4/) and 3,5,3'-triiodothyronine (T/sub 3/) to liver from the circulating thyroid hormone binding globulin (TBG)-bound pool suggests that the two thyroid hormones may bind to different TBG isoforms in human serum. In the present study, the binding of (/sup 125/I)T/sub 4/ and (/sup 125/I)T/sub 3/ to human serum proteins was investigated by using slab gel isoelectric focusing and chromatofocusing. In normal human male serum, (/sup 125/I)T/sub 4/ was localized to four isoforms of TBG called TBG-I, -II, -III, and -IV, with isoelectric points (pI's) of 4.30, 4.35, 4.45, and 4.55, respectively. (/sup 125/I)T/sub 3/ was localized to only two isoforms of TBG, TBG-III, and -IV, with pI's that were identical with those for (/sup 125/I)T/sub 4/. In normal female serum, (/sup 125/I)T/sub 4/ was localized to the same four isoforms of TBG as those of normal male serum, while (/sup 125/I)T/sub 3/ was localized to TBG-II, -III, -IV, and -V (pI = 4.65). In pregnant female serum, (/sup 125/I)T/sub 4/ was localized to five isoforms, whereas (/sup 125/I)T/sub 3/ was localized to four. IEF was also performed with male serum loaded with various concentrations of unlabeled T/sub 3/. The K/sub i/ values of T/sub 3/ binding to TBG-I, -II, -III, and -IV were 5.0, 2.4, 0.86, and 0.46 nM, respectively. The TBG isoforms in normal male serum were also separated by sequential concanavalin A-Sepharose affinity chromatography and the chromatofocusing (pH range of 3.5-5.0). T/sub 4/ preferentially bound to the most acidic isoforms of TBG in the pI range of 3.8-4.0, whereas the less acidic fractions (pH 4.0-4.2) bound both T/sub 4/ and T/sub 3/. In conclusion, this study shows that T/sub 4/ and T/sub 3/ do not bind to a single competitive binding site on TBG. Instead, T/sub 4/ is preferentially bound by the most acidic TBG isoforms owing to a 10-fold lower affinity of T/sub 3/ for these proteins.

  10. Cryo-electron microscopy structures of the SARS-CoV spike glycoprotein reveal a prerequisite conformational state for receptor binding.

    Science.gov (United States)

    Gui, Miao; Song, Wenfei; Zhou, Haixia; Xu, Jingwei; Chen, Silian; Xiang, Ye; Wang, Xinquan

    2017-01-01

    The global outbreak of SARS in 2002-2003 was caused by the infection of a new human coronavirus SARS-CoV. The infection of SARS-CoV is mediated mainly through the viral surface glycoproteins, which consist of S1 and S2 subunits and form trimer spikes on the envelope of the virions. Here we report the ectodomain structures of the SARS-CoV surface spike trimer in different conformational states determined by single-particle cryo-electron microscopy. The conformation 1 determined at 4.3 Å resolution is three-fold symmetric and has all the three receptor-binding C-terminal domain 1 (CTD1s) of the S1 subunits in "down" positions. The binding of the "down" CTD1s to the SARS-CoV receptor ACE2 is not possible due to steric clashes, suggesting that the conformation 1 represents a receptor-binding inactive state. Conformations 2-4 determined at 7.3, 5.7 and 6.8 Å resolutions are all asymmetric, in which one RBD rotates away from the "down" position by different angles to an "up" position. The "up" CTD1 exposes the receptor-binding site for ACE2 engagement, suggesting that the conformations 2-4 represent a receptor-binding active state. This conformational change is also required for the binding of SARS-CoV neutralizing antibodies targeting the CTD1. This phenomenon could be extended to other betacoronaviruses utilizing CTD1 of the S1 subunit for receptor binding, which provides new insights into the intermediate states of coronavirus pre-fusion spike trimer during infection.

  11. 126Gln is the residue of human IL-2 binding to IL-2R γ subunit

    Institute of Scientific and Technical Information of China (English)

    王志勇; 郑仲承; 孙兰英; 刘新垣

    1997-01-01

    The 126Gln of human interleukin-2 (IL-2) is a conserved amino acid residue. After substitution of 126Gln with Asp, the binding abilities of this mutant to different composites of IL-2 receptor (R) subunits have been determined. Results show that 126Asp-IL-2 has higher affinity to IL-2R α βγ complex and normal affinity to IL-2R α β complex, but loses its binding ability to IL-2R β γ complex, demonstrating that the 126Gln is the residue of human IL-2 which binds to IL-2R 7 subunit.

  12. Binding, uptake, and release of nicotine by human gingival fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Hanes, P.J.; Schuster, G.S.; Lubas, S. (Medical College of Georgia, Augusta (USA))

    1991-02-01

    Previous studies of the effects of nicotine on fibroblasts have reported an altered morphology and attachment of fibroblasts to substrates and disturbances in protein synthesis and secretion. This altered functional and attachment response may be associated with changes in the cell membrane resulting from binding of the nicotine, or to disturbances in cell metabolism as a result of high intracellular levels of nicotine. The purpose of the present study, therefore, was to (1) determine whether gingival fibroblasts bound nicotine and if any binding observed was specific or non-specific in nature; (2) determine whether gingival fibroblasts internalized nicotine, and if so, at what rate; (3) determine whether gingival fibroblasts also released nicotine back into the extracellular environment; and (4) if gingival fibroblasts release nicotine intact or as a metabolite. Cultures of gingival fibroblasts were prepared from gingival connective tissue biopsies. Binding was evaluated at 4{degree}C using a mixture of {sup 3}H-nicotine and unlabeled nicotine. Specific binding was calculated as the difference between {sup 3}H-nicotine bound in the presence and absence of unlabeled nicotine. The cells bound 1.44 (+/- 0.42) pmols/10(6) cells in the presence of unlabeled nicotine and 1.66 (+/- 0.55) pmols/10(6) cells in the absence of unlabeled nicotine. The difference was not significant. Uptake of nicotine was measured at 37{degree}C after treating cells with {sup 3}H-nicotine for time periods up to 4 hours. Uptake in pmols/10(6) cells was 4.90 (+/- 0.34) at 15 minutes, 8.30 (+/- 0.75) at 30 minutes, 12.28 (+/- 2.62) at 1 hour and 26.31 (+/- 1.15) at 4 hours.

  13. Thermodynamic parameters for binding of fatty acids to human serum albumin

    DEFF Research Database (Denmark)

    Pedersen, A O; Honoré, B; Brodersen, R

    1990-01-01

    Binding of laurate and myristate anions to human serum albumin has been studied over a range of temperatures, 5-37 degrees C, at pH 7.4. The binding curves indicate that the strength of binding of the first few molecules of fatty acid to albumin (r less than 5) decreases with increasing temperature...... constant, it was possible to calculate values for the changes in enthalpy and entropy during the initial binding step. For the medium-chain fatty acids, laurate and myristate, binding of the first molecule to albumin appeared to be enthalpic, with a tendency to an increasing contribution of entropy...... to binding energy with increasing chain length of the fatty acid. Udgivelsesdato: 1990-Jul-5...

  14. Kinetics of fatty acid binding ability of glycated human serum albumin

    Indian Academy of Sciences (India)

    Eiji Yamazaki; Minoru Inagaki; Osamu Kurita; Tetsuji Inoue

    2005-09-01

    Kinetics of fatty acid binding ability of glycated human serum albumin (HSA) were investigated by fluorescent displacement technique with 1-anilino-8-naphtharene sulphonic acid (ANS method), and photometric detection of nonesterified-fatty-acid (NEFA method). Changing of binding affinities of glycated HSA toward oleic acid, linoleic acid, lauric acid, and caproic acid, were not observed by the ANS method. However, decreases of binding capacities after 55 days glycation were confirmed by the NEFA method in comparison to control HSA. The decrease in binding affinities was: oleic acid (84%), linoleic acid (84%), lauric acid (87%), and caproic acid (90%), respectively. The decreases were consistent with decrease of the intact lysine residues in glycated HSA. The present observation indicates that HSA promptly loses its binding ability to fatty acid as soon as the lysine residues at fatty acid binding sites are glycated.

  15. Water-Restructuring Mutations Can Reverse the Thermodynamic Signature of Ligand Binding to Human Carbonic Anhydrase.

    Science.gov (United States)

    Fox, Jerome M; Kang, Kyungtae; Sastry, Madhavi; Sherman, Woody; Sankaran, Banumathi; Zwart, Peter H; Whitesides, George M

    2017-03-27

    This study uses mutants of human carbonic anhydrase (HCAII) to examine how changes in the organization of water within a binding pocket can alter the thermodynamics of protein-ligand association. Results from calorimetric, crystallographic, and theoretical analyses suggest that most mutations strengthen networks of water-mediated hydrogen bonds and reduce binding affinity by increasing the enthalpic cost and, to a lesser extent, the entropic benefit of rearranging those networks during binding. The organization of water within a binding pocket can thus determine whether the hydrophobic interactions in which it engages are enthalpy-driven or entropy-driven. Our findings highlight a possible asymmetry in protein-ligand association by suggesting that, within the confines of the binding pocket of HCAII, binding events associated with enthalpically favorable rearrangements of water are stronger than those associated with entropically favorable ones. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Decorin is a novel VEGFR-2-binding antagonist for the human extravillous trophoblast.

    Science.gov (United States)

    Khan, Gausal A; Girish, Gannareddy V; Lala, Neena; Di Guglielmo, Gianni M; Lala, Peeyush K

    2011-08-01

    Extravillous trophoblasts (EVT) of the human placenta invade the uterine decidua and its arteries to ensure successful placentation. We previously identified two decidua-derived molecules, TGF-β and a TGF-β-binding proteoglycan decorin (DCN), as negative regulators of EVT proliferation, migration, and invasiveness and reported that DCN acts via multiple tyrosine kinase receptors [epidermal growth factor-receptor (EGF-R), IGF receptor-1 (IGFR1), and vascular endothelial growth factor 2 receptor (VEGFR-2)]. Because binding of DCN to VEGFR-2 has never been reported earlier, present study explored this binding, the approximate location of VEGFR-2-binding site in DCN, and its functional role in our human first trimester EVT cell line HTR-8/SVneo. Based on far-Western blotting and coimmunoprecipitation studies, we report that DCN binds both native (EVT expressed) and recombinant VEGFR-2 and that this binding is abrogated with a VEGFR-2 blocking antibody, indicating an overlap between the ligand-binding and the DCN-binding domains of VEGFR-2. We determined that (125)I-labeled VEGF-E (a VEGFR-2 specific ligand) binds EVT with a dissociation constant (K(d)) of 566 pM, and DCN displaced this binding with an inhibition constant (K(i)) of 3.93-5.78 nM, indicating a 7- to 10-fold lower affinity of DCN for VEGFR-2. DCN peptide fragments derived from the leucine rich repeat 5 domain that blocked DCN-VEGFR-2 interactions or VEGF-E binding in EVT cells also blocked VEGF-A- and VEGF-E-induced EVT cell proliferation and migration, indicative of functional VEGFR-2-binding sites of DCN. Finally, DCN inhibited VEGF-E-induced EVT migration by interfering with ERK1/2 activation. Our findings reveal a novel role of DCN as an antagonistic ligand for VEGFR-2, having implications for pathophysiology of preeclampsia, a trophoblast hypoinvasive disorder in pregnancy, and explain its antiangiogenic function.

  17. A GBP 130 derived peptide from Plasmodium falciparum binds to human erythrocytes and inhibits merozoite invasion in vitro

    Directory of Open Access Journals (Sweden)

    Suarez Jorge E

    2000-01-01

    Full Text Available The malarial GBP 130 protein binds weakly to intact human erythrocytes; the binding sites seem to be located in the repeat region and this region's antibodies block the merozoite invasion. A peptide from this region (residues from 701 to 720 which binds to human erythrocytes was identified. This peptide named 2220 did not bind to sialic acid; the binding site on human erythrocyte was affected by treatment with trypsin but not by chymotrypsin. The peptide was able to inhibit Plasmodium falciparum merozoite invasion of erythrocytes. The residues F701, K703, L705, T706, E713 (FYKILTNTDPNDEVERDNAD were found to be critical for peptide binding to erythrocytes.

  18. Ligand-binding sites in human serum amyloid P component

    DEFF Research Database (Denmark)

    Heegaard, N.H.H.; Heegaard, Peter M. H.; Roepstorff, P.;

    1996-01-01

    Amyloid P component (AP) is a naturally occurring glycoprotein that is found in serum and basement membranes, AP is also a component of all types of amyloid, including that found in individuals who suffer from Alzheimer's disease and Down's syndrome. Because AP has been found to bind strongly...... of 25 mu M, while the IC50 of AP-(27-38)-peptide and AP-(33-38)-peptide are 10 mu M and 2 mu M, respectively, The understanding of the structure and function of active AP peptides will be useful for development of amyloid-targeted diagnostics and therapeutics....

  19. Methyl-triclosan binding to human serum albumin: multi-spectroscopic study and visualized molecular simulation.

    Science.gov (United States)

    Lv, Wenjuan; Chen, Yonglei; Li, Dayong; Chen, Xingguo; Leszczynski, Jerzy

    2013-10-01

    Methyl-triclosan (MTCS), a transformation product and metabolite of triclosan, has been widely spread in environment through the daily use of triclosan which is a commonly used anti-bacterial and anti-fungal substance in consumer products. Once entering human body, MTCS could affect the conformation of human serum albumin (HSA) by forming MTCS-HSA complex and alter function of protein and endocrine in human body. To evaluate the potential toxicity of MTCS, the binding mechanism of HSA with MTCS was investigated by UV-vis absorption, circular dichroism and Fourier transform infrared spectroscopy. Binding constants, thermodynamic parameters, the binding forces and the specific binding site were studied in detail. Binding constant at room tempreture (T = 298K) is 6.32 × 10(3)L mol(-1); ΔH(0), ΔS(0) and ΔG(0) were 22.48 kJ mol(-1), 148.16 J mol(-1)K(-1) and -21.68 kJ mol(-1), respectively. The results showed that the interactions between MTCS and HSA are mainly hydrophobic forces. The effects of MTCS on HSA conformation were also discussed. The binding distance (r = 1.2 nm) for MTCS-HSA system was calculated by the efficiency of fluorescence resonance energy transfer. The visualized binding details were also exhibited by molecular modeling method and the results could agree well with that from the experimental study.

  20. Trichinella spiralis Paramyosin Binds Human Complement C1q and Inhibits Classical Complement Activation.

    Directory of Open Access Journals (Sweden)

    Ran Sun

    2015-12-01

    Full Text Available Trichinella spiralis expresses paramyosin (Ts-Pmy as a defense mechanism. Ts-Pmy is a functional protein with binding activity to human complement C8 and C9 and thus plays a role in evading the attack of the host's immune system. In the present study, the binding activity of Ts-Pmy to human complement C1q and its ability to inhibit classical complement activation were investigated.The binding of recombinant and natural Ts-Pmy to human C1q were determined by ELISA, Far Western blotting and immunoprecipitation, respectively. Binding of recombinant Ts-Pmy (rTs-Pmy to C1q inhibited C1q binding to IgM and consequently inhibited C3 deposition. The lysis of antibody-sensitized erythrocytes (EAs elicited by the classical complement pathway was also inhibited in the presence of rTs-Pmy. In addition to inhibiting classical complement activation, rTs-Pmy also suppressed C1q binding to THP-1-derived macrophages, thereby reducing C1q-induced macrophages migration.Our results suggest that T. spiralis paramyosin plays an important role in immune evasion by interfering with complement activation through binding to C1q in addition to C8 and C9.

  1. The presence of gonadotropin binding sites in the intracellular organelles of human ovaries.

    Science.gov (United States)

    Rao, C V; Mitra, S; Sanfilippo, J; Carman, F R

    1981-03-15

    The nuclei (N), plasma membranes (PM), mitochondria-lysosomes, rough endoplasmic reticulum, and combined (light, medium, and heavy) Golgi (G) fractions were isolated from human ovaries. The purities of these fractions were evaluated by assays of appropriate marker enzymes, which revealed that some fractions were very pure but that others had minor contamination. When tested, all of the fractions exhibited 125I-labeled human chorionic gonadotropin (125I-hCG)-specific binding. This intracellular 125I-hCG binding was not due to PM contamination because: (1) N, which had no detectable 5'-nucleotidase (5'-NE) activity, a marker for PM, exhibited 125I-hCG-specific binding; (2) the G, which had only a fraction of the 5'-NE activity of PM, exhibited as much binding as PM; and (3) the ratios between specific 125I-hCG binding and 5'-NE activity in other fractions were not the same as for PM. They should have been the same if PM contamination was responsible for the 125I-hCG binding observed in other organelles. In conclusion, our results demonstrate that gonadotropin-binding sites are present in various intracellular organelles as well as in PM of human ovaries.

  2. Ivermectin binding sites in human and invertebrate Cys-loop receptors

    DEFF Research Database (Denmark)

    Lynagh, Timothy Peter; Lynch, Joseph W

    2012-01-01

    Ivermectin is a gold standard antiparasitic drug that has been used successfully to treat billions of humans, livestock and pets. Until recently, the binding site on its Cys-loop receptor target had been a mystery. Recent protein crystal structures, site-directed mutagenesis data and molecular mo...... for a wide variety of human neurological disorders....

  3. BINDING OF GONADOTROPHIN-RELEASING HORMONE WITH ITS RECEPTORS ON HUMAN PLACENTAL MEMBRANES

    Institute of Scientific and Technical Information of China (English)

    QIUXiu-Di; WANGHan-Zheng; GONGYue-Ting

    1989-01-01

    Theeffects of gonadotrophin--relensing hormone (GnRH) onthe bindingof125I-labelled GnRH agonist to human placental membranes were studied. The GnRH binding sites of human plaoenta had a high specificity but low affinity. The natural GnRH had a slightly

  4. International Validation of Two Human Recombinant Estrogen Receptor (ERa) Binding Assays

    Science.gov (United States)

    An international validation study has been successfully completed for 2 competitive binding assays using human recombinant ERa. Assays evaluated included the Freyberger-Wilson (FW) assay using a full length human ER, and the Chemical Evaluation and Research Institute (CERI) assay...

  5. The ACE-2/Ang1-7/Mas cascade enhances bone structure and metabolism following angiotensin-II type 1 receptor blockade.

    Science.gov (United States)

    Abuohashish, Hatem M; Ahmed, Mohammed M; Sabry, Dina; Khattab, Mahmoud M; Al-Rejaie, Salim S

    2017-07-15

    The renin angiotensin system (RAS) regulates numerous systemic functions and is expressed locally in skeletal tissues. Angiotensin1-7 (Ang1-7) is a beneficial member of the RAS, and the therapeutic effects of a large number of angiotensin receptors blockers (ARBs) are mediated by an Ang1-7-dependent cascade. This study examines whether the reported osteo-preservative effects of losartan are mediated through the angiotensin converting enzyme2 (ACE-2)/Ang1-7/Mas pathway in ovariectomized (OVX) rats. Sham and OVX animals received losartan (10mg/kg/d p.o.) for 6 weeks. A specific Mas receptor blocker (A-779) was delivered via mini-osmotic pumps during the losartan treatment period. Serum and urine bone metabolism biomarker levels were measured. Bone trabecular and cortical morphometry were quantified in distal femurs, whereas mineral contents were estimated in ashed bones, serum and urine. Finally, the expression of RAS components, the receptor activator of NF-κB ligand (RANKL) and osteoprotegerin (OPG) was determined. Losartan significantly improved the elevated bone metabolism marker levels and altered trabecular and cortical structures in OVX animals, and restored normal urinary and skeletal mineral levels. Mas receptor inhibition significantly abolished all osteo-protective effects of losartan and enhanced the deleterious effects of OVX. Losartan enhanced OVX-induced up-regulation of ACE-1, AngII, angiotensin type 1 (AT1) receptor and RANKL expression, and increased ACE-2, Ang1-7, Mas and OPG expression in OVX animals. However, A-779 significantly eradicated the effects of losartan on RAS components and RANKL/OPG expression. Thus, Ang1-7 are involved in the osteo-preservative effects of losartan via Mas receptor, which may add therapeutic value to this well-known antihypertensive agent. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Backbone resonance assignments of the micro-RNA precursor binding region of human TRBP.

    Science.gov (United States)

    Benoit, Matthieu P M H; Plevin, Michael J

    2013-10-01

    TAR-RNA binding protein (TRBP) is a multidomain human protein involved in micro-RNA (miRNA) biogenesis. TRBP is a component of both the Dicer complex, which processes precursor miRNAs, and the RNA-induced silencing complex-loading complex. In addition, TRBP is implicated in the human immunodeficiency virus replication cycle and interferon-protein kinase R activity. TRBP contains 3 double-stranded RNA binding domains the first two of which have been shown to interact with miRNA precursors. Here we present the backbone resonance assignments and secondary structure of residues 19-228 of human TRBP2.

  7. Structure-activity relations in binding of perfluoroalkyl compounds to human thyroid hormone T3 receptor.

    Science.gov (United States)

    Ren, Xiao-Min; Zhang, Yin-Feng; Guo, Liang-Hong; Qin, Zhan-Fen; Lv, Qi-Yan; Zhang, Lian-Ying

    2015-02-01

    Perfluoroalkyl compounds (PFCs) have been shown to disrupt thyroid functions through thyroid hormone receptor (TR)-mediated pathways, but direct binding of PFCs with TR has not been demonstrated. We investigated the binding interactions of 16 structurally diverse PFCs with human TR, their activities on TR in cells, and the activity of perfluorooctane sulfonate (PFOS) in vivo. In fluorescence competitive binding assays, most of the 16 PFCs were found to bind to TR with relative binding potency in the range of 0.0003-0.05 compared with triiodothyronine (T3). A structure-binding relationship for PFCs was observed, where fluorinated alkyl chain length longer than ten, and an acid end group were optimal for TR binding. In thyroid hormone (TH)-responsive cell proliferation assays, PFOS, perfluorohexadecanoic acid, and perfluorooctadecanoic acid exhibited agonistic activity by promoting cell growth. Furthermore, similar to T3, PFOS exposure promoted expression of three TH upregulated genes and inhibited three TH downregulated genes in amphibians. Molecular docking analysis revealed that most of the tested PFCs efficiently fit into the T3-binding pocket in TR and formed a hydrogen bond with arginine 228 in a manner similar to T3. The combined in vitro, in vivo, and computational data strongly suggest that some PFCs disrupt the normal activity of TR pathways by directly binding to TR.

  8. Targeting Human Cancer by a Glycosaminoglycan Binding Malaria Protein.

    Science.gov (United States)

    Salanti, Ali; Clausen, Thomas M; Agerbæk, Mette Ø; Al Nakouzi, Nader; Dahlbäck, Madeleine; Oo, Htoo Z; Lee, Sherry; Gustavsson, Tobias; Rich, Jamie R; Hedberg, Bradley J; Mao, Yang; Barington, Line; Pereira, Marina A; LoBello, Janine; Endo, Makoto; Fazli, Ladan; Soden, Jo; Wang, Chris K; Sander, Adam F; Dagil, Robert; Thrane, Susan; Holst, Peter J; Meng, Le; Favero, Francesco; Weiss, Glen J; Nielsen, Morten A; Freeth, Jim; Nielsen, Torsten O; Zaia, Joseph; Tran, Nhan L; Trent, Jeff; Babcook, John S; Theander, Thor G; Sorensen, Poul H; Daugaard, Mads

    2015-10-12

    Plasmodium falciparum engineer infected erythrocytes to present the malarial protein, VAR2CSA, which binds a distinct type chondroitin sulfate (CS) exclusively expressed in the placenta. Here, we show that the same CS modification is present on a high proportion of malignant cells and that it can be specifically targeted by recombinant VAR2CSA (rVAR2). In tumors, placental-like CS chains are linked to a limited repertoire of cancer-associated proteoglycans including CD44 and CSPG4. The rVAR2 protein localizes to tumors in vivo and rVAR2 fused to diphtheria toxin or conjugated to hemiasterlin compounds strongly inhibits in vivo tumor cell growth and metastasis. Our data demonstrate how an evolutionarily refined parasite-derived protein can be exploited to target a common, but complex, malignancy-associated glycosaminoglycan modification.

  9. Investigation of ketoprofen binding to human serum albumin by spectral methods

    Science.gov (United States)

    Bi, Shuyun; Yan, Lili; Sun, Yantao; Zhang, Hanqi

    2011-01-01

    The binding of ketoprofen with human serum albumin (HSA) was studied by fluorescence and absorption spectroscopic methods. Quenching of fluorescence of HSA was found to be a static quenching process. At 288.15, 298.15, 308.15 and 318.15 K, the binding constants and binding sites were obtained. The effects of Cu 2+, Al 3+, Ca 2+, Pb 2+ and K + on the binding at 288.15 K were also studied. The thermodynamic parameters, Δ H, Δ G and Δ S were got and the main sort of acting force between ketoprofen and HSA was studied. Based on the Förster's theory of non-radiation energy transfer, the binding average distance, r, between the acceptor (ketoprofen) and the donor (HSA) was calculated.

  10. Diverse role of three tyrosines in binding of the RNA 5' cap to the human nuclear cap binding complex.

    Science.gov (United States)

    Worch, Remigiusz; Jankowska-Anyszka, Marzena; Niedzwiecka, Anna; Stepinski, Janusz; Mazza, Catherine; Darzynkiewicz, Edward; Cusack, Stephen; Stolarski, Ryszard

    2009-01-16

    The heterodimeric nuclear cap-binding complex (CBC) specifically recognizes the monomethylguanosine 5' cap structure of the eukaryotic RNA polymerase II transcripts such as mRNA and U snRNA. The binding is essential for nuclear maturation of mRNA, for nuclear export of U snRNA in metazoans, and for nonsense-mediated decay of mRNA and the pioneer round of translation. We analysed the recognition of the cap by native human CBC and mutants in which each tyrosine that stacks with the 7-methylguanosine moiety was replaced by phenylalanine or alanine and both tyrosines were replaced by phenylalanines. The equilibrium association constants (K(as)) for two selected cap analogues, P(1)-7-methylguanosine-5' P(3)-guanosine-5' triphosphate and 7-methylguanosine triphosphate, were determined by two independent methods, fluorescence titration and surface plasmon resonance. We could distinguish two tyrosines, Y43 and Y20, in stabilization of the cap inside the CBC-binding pocket. In particular, lack of Y20 in CBC leads to a greater affinity of the mono- than the dinucleotide cap analogue, in contrast to the wild-type protein. A crucial role of cation-pi stacking in the mechanism of the specific cap recognition by CBC was postulated from the comparison of the experimentally derived Gibbs free binding energy (DeltaG degrees) with the stacking energy (DeltaE) of the 7-methylguanosine/Y binary and ternary complexes calculated by the Møller-Plesset second-order perturbation method. The resulting kinetic model of the association between the capped RNA and CBC, based on the experimental data and quantum calculations, is discussed with respect to the "CBC-to-eukaryotic initiation factor 4E handoff" of mRNA.

  11. Mannosylerythritol lipid, a yeast extracellular glycolipid, shows high binding affinity towards human immunoglobulin G

    Directory of Open Access Journals (Sweden)

    Ikegami Toru

    2001-09-01

    Full Text Available Abstract Background There have been many attempts to develop new materials with stability and high affinity towards immunoglobulins. Some of glycolipids such as gangliosides exhibit a high affinity toward immunoglobulins. However, it is considerably difficult to develop these glycolipids into the practical separation ligand due to their limited amounts. We thus focused our attention on the feasible use of "mannosylerythritol lipid A", a yeast glycolipid biosurfactant, as an alternative ligand for immunoglobulins, and undertook the investigation on the binding between mannosylerythritol lipid A (MEL-A and human immunoglobulin G (HIgG. Results In ELISA assay, MEL-A showed nearly the same binding affinity towards HIgG as that of bovine ganglioside GM1. Fab of human IgG was considered to play a more important role than Fc in the binding of HIgG by MEL-A. The bound amount of HIgG increased depending on the attached amount of MEL-A onto poly (2-hydroxyethyl methacrylate (polyHEMA beads, whereas the amount of human serum albumin slightly decreased. Binding-amount and -selectivity of HIgG towards MEL-A were influenced by salt species, salt concentration and pH in the buffer solution. The composite of MEL-A and polyHEMA, exhibited a significant binding constant of 1.43 × 106 (M-1 for HIgG, which is approximately 4-fold greater than that of protein A reported. Conclusions MEL-A shows high binding-affinity towards HIgG, and this is considered to be due to "multivalent effect" based on the binding molar ratio. This is the first report on the binding of a natural human antibody towards a yeast glycolipid.

  12. MCP-1 binds to oxidized LDL and is carried by lipoprotein(a) in human plasma

    Science.gov (United States)

    Wiesner, Philipp; Tafelmeier, Maria; Chittka, Dominik; Choi, Soo-Ho; Zhang, Li; Byun, Young Sup; Almazan, Felicidad; Yang, Xiaohong; Iqbal, Navaid; Chowdhury, Punam; Maisel, Alan; Witztum, Joseph L.; Handel, Tracy M.; Tsimikas, Sotirios; Miller, Yury I.

    2013-01-01

    Lipoprotein oxidation plays an important role in pathogenesis of atherosclerosis. Oxidized low density lipoprotein (OxLDL) induces profound inflammatory responses in vascular cells, such as production of monocyte chemoattractant protein-1 (MCP-1) [chemokine (C-C motif) ligand 2], a key chemokine in the initiation and progression of vascular inflammation. Here we demonstrate that OxLDL also binds MCP-1 and that the OxLDL-bound MCP-1 retains its ability to recruit monocytes. A human MCP-1 mutant in which basic amino acids Arg-18 and Lys-19 were replaced with Ala did not bind to OxLDL. The MCP-1 binding to OxLDL was inhibited by the monoclonal antibody E06, which binds oxidized phospholipids (OxPLs) in OxLDL. Because OxPLs are carried by lipoprotein(a) [Lp(a)] in human plasma, we tested to determine whether Lp(a) binds MCP-1. Recombinant wild-type but not mutant MCP-1 added to human plasma bound to Lp(a), and its binding was inhibited by E06. Lp(a) captured from human plasma contained MCP-1 and the Lp(a)-associated endogenous MCP-1 induced monocyte migration. These results demonstrate that OxLDL and Lp(a) bind MCP-1 in vitro and in vivo and that OxPLs are major determinants of the MCP-1 binding. The association of MCP-1 with OxLDL and Lp(a) may play a role in modulating monocyte trafficking during atherogenesis. PMID:23667177

  13. Calcium binding protein-mediated regulation of voltage-gated calcium channels linked to human diseases

    Institute of Scientific and Technical Information of China (English)

    Nasrin NFJATBAKHSH; Zhong-ping FENG

    2011-01-01

    Calcium ion entry through voltage-gated calcium channels is essential for cellular signalling in a wide variety of cells and multiple physiological processes. Perturbations of voltage-gated calcium channel function can lead to pathophysiological consequences. Calcium binding proteins serve as calcium sensors and regulate the calcium channel properties via feedback mechanisms. This review highlights the current evidences of calcium binding protein-mediated channel regulation in human diseases.

  14. Nuclear Localization and DNA Binding Properties of a Protein Expressed by Human c-myc Oncogene

    Science.gov (United States)

    Persson, Hakan; Leder, Philip

    1984-08-01

    Antisera to the human cellular myc oncogene product were used to identify a human c-myc specific protein with a molecular weight of 65,000. Subcellular fractionation showed that the human c-myc protein is predominantly found in the cell nucleus. The p65 Kc-myc protein binds to double- and single-stranded DNA as measured by a DNA affinity chromatography assay.

  15. Two DNA-binding and Nick Recognition Modules in Human DNA Ligase III*

    OpenAIRE

    Cotner-Gohara, Elizabeth; Kim, In-Kwon; Tomkinson, Alan E.; Ellenberger, Tom

    2008-01-01

    Human DNA ligase III contains an N-terminal zinc finger domain that binds to nicks and gaps in DNA. This small domain has been described as a DNA nick sensor, but it is not required for DNA nick joining activity in vitro. In light of new structural information for mammalian ligases, we measured the DNA binding affinity and specificity of each domain of DNA ligase III. These studies identified two separate, independent DNA-binding modules in DNA ligase III that each bin...

  16. The human olfactory receptor 17-40: requisites for fitting into the binding pocket.

    Science.gov (United States)

    Anselmi, Cecilia; Buonocore, Anna; Centini, Marisanna; Facino, Roberto Maffei; Hatt, Hanns

    2011-06-01

    To gain structural insight on the interactions between odorants and the human olfactory receptor, we did homology modelling of the receptor structure, followed by molecular docking simulation with ligands. Molecular dynamics simulation on the structures resulting from docking served to estimate the binding free energy of the various odorant families. A correlation with the odorous properties of the ligands is proposed. We also investigated which residues were involved in the binding of a set of properly synthesised ligands and which were required for fitting inside the binding pocket. Olfactive stimulation of the olfactory receptor with odorous molecules was also investigated, using calcium imaging or electrophysiological recordings.

  17. Structural Insights into the Phospholipid Binding Specificity of Human Evectin-2

    Science.gov (United States)

    Okazaki, Seiji; Kato, Ryuichi; Wakatsuki, Soichi; Uchida, Yasunori; Taguchi, Tomohiko; Arai, Hiroyuki

    Evectin-2 is a recycling endosomal protein and plays an essential role in retrograde transport from recycling endosomes to the trans-Golgi network. The pleckstrin homology (PH) domain of Evectin-2 can specifically binds to phosphatidylserine (PS), which is enriched in recycling endosomes. To elucidate the molecular mechanism how it specifically binds to PS, we solved the crystal structures of human Evectin-2 PH domain for apo and O-phospho-L-serine complexed forms at 1.75 and 1.00 Å resolution, respectively. These structural analyses clearly show that PS-induced conformational change of Evectin-2 PH domain effectively explains the strict phospholipid binding specificity.

  18. Reduced binding of human antibodies to cells from GGTA1/CMAH KO pigs.

    Science.gov (United States)

    Burlak, C; Paris, L L; Lutz, A J; Sidner, R A; Estrada, J; Li, P; Tector, M; Tector, A J

    2014-08-01

    Xenotransplantation using genetically modified pig organs could solve the donor organ shortage problem. Two inactivated genes that make humans unique from pigs are GGTA1 and CMAH, the products of which produce the carbohydrate epitopes, aGal and Neu5Gc that attract preformed human antibody. When the GGTA1 and CMAH genes were deleted in pigs, human antibody binding was reduced in preliminary analysis. We analyzed the binding of human IgM and IgG from 121 healthy human serum samples for binding to GGTA1 KO and GGTA1/CMAH KO peripheral blood mononuclear cells (PBMCs). We analyzed a sub population for reactivity toward genetically modified pig PBMCs as compared to chimpanzee and human PBMCs. Deletion of the GGTA1 and CMAH genes in pigs improved the crossmatch results beyond those observed with chimpanzees. Sorting the 121 human samples tested against the GGTA1/CMAH KO pig PBMCs did not reveal a distinguishing feature such as blood group, age or gender. Modification of genes to make pig carbohydrates more similar to humans has improved the crossmatch with human serum significantly.

  19. Mn(II) binding to human serum albumin: a ¹H-NMR relaxometric study.

    Science.gov (United States)

    Fanali, Gabriella; Cao, Yu; Ascenzi, Paolo; Fasano, Mauro

    2012-12-01

    Human serum albumin (HSA) displays several metal binding sites, participating to essential and toxic metal ions disposal and transport. The major Zn(II) binding site, called Site A, is located at the I/II domain interface, with residues His67, Asn99, His247, and Asp249 contributing with five donor atoms to the metal ion coordination. Additionally, one water molecule takes part of the octahedral coordination geometry. The occurrence of the metal-coordinated water molecule allows the investigation of the metal complex geometry by water (1)H-NMR relaxation, provided that the diamagnetic Zn(II) is replaced by the paramagnetic Mn(II). Here, the (1)H-NMR relaxometric study of Mn(II) binding to HSA is reported. Mn(II) binding to HSA is modulated by Zn(II), pH, and myristate through competitive inhibition and allosteric mechanisms. The body of results indicates that the primary binding site of Zn(II) corresponds to the secondary binding site of Mn(II), i.e. the multimetal binding site A. Excess Zn(II) completely displaces Mn(II) from its primary site suggesting that the primary Mn(II) site corresponds to the secondary Zn(II) site. This uncharacterized site is functionally-linked to FA1; moreover, metal ion binding is modulated by myristate and pH. Noteworthy, water (1)H-NMR relaxometry allowed a detailed analysis of thermodynamic properties of HSA-metal ion complexes.

  20. The binding sites on human heme oxygenase-1 for cytochrome p450 reductase and biliverdin reductase.

    Science.gov (United States)

    Wang, Jinling; de Montellano, Paul R Ortiz

    2003-05-30

    Human heme oxygenase-1 (hHO-1) catalyzes the NADPH-cytochrome P450 reductase-dependent oxidation of heme to biliverdin, CO, and free iron. The biliverdin is subsequently reduced to bilirubin by biliverdin reductase. Earlier kinetic studies suggested that biliverdin reductase facilitates the release of biliverdin from hHO-1 (Liu, Y., and Ortiz de Montellano, P. R. (2000) J. Biol. Chem. 275, 5297-5307). We have investigated the binding of P450 reductase and biliverdin reductase to truncated, soluble hHO-1 by fluorescence resonance energy transfer and site-specific mutagenesis. P450 reductase and biliverdin reductase bind to truncated hHO-1 with Kd = 0.4 +/- 0.1 and 0.2 +/- 0.1 microm, respectively. FRET experiments indicate that biliverdin reductase and P450 reductase compete for binding to truncated hHO-1. Mutation of surface ionic residues shows that hHO-1 residues Lys18, Lys22, Lys179, Arg183, Arg198, Glu19, Glu127, and Glu190 contribute to the binding of cytochrome P450 reductase. The mutagenesis results and a computational analysis of the protein surfaces partially define the binding site for P450 reductase. An overlapping binding site including Lys18, Lys22, Lys179, Arg183, and Arg185 is similarly defined for biliverdin reductase. These results confirm the binding of biliverdin reductase to hHO-1 and define binding sites of the two reductases.

  1. A spectroscopic and molecular docking approach on the binding of tinzaparin sodium with human serum albumin

    Science.gov (United States)

    Abdullah, Saleh M. S.; Fatma, Sana; Rabbani, Gulam; Ashraf, Jalaluddin M.

    2017-01-01

    Protein bound toxins are poorly removed by conventional extracorporeal therapies. Venous thromboembolism (VTE) is a major cause of morbidity and mortality in patients with cancer. The interaction between tinzaparin, an inhibitor of angiotensin converting enzyme and human serum albumin, a principal plasma protein in the liver has been investigated in vitro under a simulated physiological condition by UV-vis spectrophotometry and fluorescence spectrometry. The intrinsic fluorescence intensity of human serum albumin was strongly quenched by tinzaparin (TP). The binding constants and binding stoichiometry can be calculated from the data obtained from fluorescence quenching experiments. The negative value of ΔG° reveals that the binding process is a spontaneous process. Thermodynamic analysis shows that the HSA-TP complex formation occurs via hydrogen bonds, hydrophobic interactions and undergoes slight structural changes as evident by far-UV CD. It indicated that the hydrophobic interactions play a main role in the binding of TP to human serum albumin. In addition, the distance between TP (acceptor) and tryptophan residues of human serum albumin (donor) was estimated to be 2.21 nm according to the Förster's resonance energy transfer theory. For the deeper understanding of the interaction, thermodynamic, and molecular docking studies were performed as well. Our docking results suggest that TP forms stable complex with HSA (Kb ∼ 104) and its primary binding site is located in subdomain IIA (Sudlow Site I). The results obtained herein will be of biological significance in pharmacology and clinical medicine.

  2. Mapping cocaine binding sites in human and baboon brain in vivo.

    Science.gov (United States)

    Fowler, J S; Volkow, N D; Wolf, A P; Dewey, S L; Schlyer, D J; Macgregor, R R; Hitzemann, R; Logan, J; Bendriem, B; Gatley, S J

    1989-01-01

    The first direct measurements of cocaine binding in the brain of normal human volunteers and baboons have been made by using positron emission tomography (PET) and tracer doses of [N-11C-methyl]-(-)-cocaine ([11C]cocaine). Cocaine's binding and release from brain are rapid with the highest regional uptake of carbon-11 occurring in the corpus striatum at 4-10 minutes after intravenous injection of labeled cocaine. This was followed by a clearance to half the peak value at about 25 minutes with the overall time course paralleling the previously documented time course of the euphoria experienced after intravenous cocaine administration. Blockade of the dopamine reuptake sites with nomifensine reduced the striatal but not the cerebellar uptake of [11C]cocaine in baboons indicating that cocaine binding is associated with the dopamine reuptake site in the corpus striatum. A comparison of labeled metabolites of cocaine in human and baboon plasma showed that while cocaine is rapidly metabolized in both species, the profile of labeled metabolites is different, with baboon plasma containing significant amounts of labeled carbon dioxide, and human plasma containing no significant labeled carbon dioxide. These studies demonstrate the feasibility of using [11C]cocaine and PET to map binding sites for cocaine in human brain, to monitor its kinetics, and to characterize its binding mechanism by using appropriate pharmacological challenges.

  3. Reciprocal allosteric modulation of carbon monoxide and warfarin binding to ferrous human serum heme-albumin.

    Directory of Open Access Journals (Sweden)

    Alessio Bocedi

    Full Text Available Human serum albumin (HSA, the most abundant protein in human plasma, could be considered as a prototypic monomeric allosteric protein, since the ligand-dependent conformational adaptability of HSA spreads beyond the immediate proximity of the binding site(s. As a matter of fact, HSA is a major transport protein in the bloodstream and the regulation of the functional allosteric interrelationships between the different binding sites represents a fundamental information for the knowledge of its transport function. Here, kinetics and thermodynamics of the allosteric modulation: (i of carbon monoxide (CO binding to ferrous human serum heme-albumin (HSA-heme-Fe(II by warfarin (WF, and (ii of WF binding to HSA-heme-Fe(II by CO are reported. All data were obtained at pH 7.0 and 25°C. Kinetics of CO and WF binding to the FA1 and FA7 sites of HSA-heme-Fe(II, respectively, follows a multi-exponential behavior (with the same relative percentage for the two ligands. This can be accounted for by the existence of multiple conformations and/or heme-protein axial coordination forms of HSA-heme-Fe(II. The HSA-heme-Fe(II populations have been characterized by resonance Raman spectroscopy, indicating the coexistence of different species characterized by four-, five- and six-coordination of the heme-Fe atom. As a whole, these results suggest that: (i upon CO binding a conformational change of HSA-heme-Fe(II takes place (likely reflecting the displacement of an endogenous ligand by CO, and (ii CO and/or WF binding brings about a ligand-dependent variation of the HSA-heme-Fe(II population distribution of the various coordinating species. The detailed thermodynamic and kinetic analysis here reported allows a quantitative description of the mutual allosteric effect of CO and WF binding to HSA-heme-Fe(II.

  4. Human platelets as a model for the binding and degradation of thrombopoietin.

    Science.gov (United States)

    Fielder, P J; Hass, P; Nagel, M; Stefanich, E; Widmer, R; Bennett, G L; Keller, G A; de Sauvage, F J; Eaton, D

    1997-04-15

    Recent studies have shown that plasma thrombopoietin (TPO) levels appear to be directly regulated by platelet mass and that removal of plasma TPO by platelets via binding to the c-Mpl receptor is involved in the clearance of TPO in rodents. To help elucidate the role of platelets in the clearance of TPO in humans, we studied the in vitro specific binding of recombinant human TPO (rhTPO) to human platelet-rich plasma (PRP), washed platelets (WP), and cloned c-Mpl. Using a four-parameter fit and/or Scatchard analysis, the approximate affinity of rhTPO for its receptor, which was calculated from multiple experiments using different PRP preparations, was between 128 and 846 pmol/L, with approximately 25 to 224 receptors per platelet. WP preparations gave an affinity of 260 to 540 pmol/L, with approximately 25 to 35 receptors per platelet, and erythropoietin failed to compete with 125I-rhTPO for binding to WP. Binding and dissociation studies conducted with a BiaCore apparatus yielded an affinity of 350 pmol/L for rhTPO binding to cloned c-Mpl receptors. The ability of PRP to bind and degrade 125I-rhTPO was both time- and temperature-dependent and was blocked by the addition of excess cold rhTPO. Analysis of platelet pellets by sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that 125I-rhTPO was degraded into a major fragment of approximately 45 to 50 kD. When 125I-rhTPO was incubated with a platelet homogenate at pH = 7.4, a degradation pattern similar to intact platelets was observed. Together, these data show that human platelets specifically bind rhTPO with high affinity, internalize, and then degrade the rhTPO.

  5. Thermodynamics and kinetics of inhibitor binding to human equilibrative nucleoside transporter subtype-1.

    Science.gov (United States)

    Rehan, Shahid; Ashok, Yashwanth; Nanekar, Rahul; Jaakola, Veli-Pekka

    2015-12-15

    Many nucleoside transport inhibitors are in clinical use as anti-cancer, vasodilator and cardioprotective drugs. However, little is known about the binding energetics of these inhibitors to nucleoside transporters (NTs) due to their low endogenous expression levels and difficulties in the biophysical characterization of purified protein with ligands. Here, we present kinetics and thermodynamic analyses of inhibitor binding to the human equilibrative nucleoside transporter-1 (hENT1), also known as SLC29A1. Using a radioligand binding assay, we obtained equilibrium binding and kinetic rate constants of well-known NT inhibitors--[(3)H]nitrobenzylmercaptopurine ribonucleoside ([(3)H]NBMPR), dilazep, and dipyridamole--and the native permeant, adenosine, to hENT1. We observed that the equilibrium binding affinities for all inhibitors decreased whereas, the kinetic rate constants increased with increasing temperature. Furthermore, we found that binding is enthalpy driven and thus, an exothermic reaction, implying that the transporter does not discriminate between its inhibitors and substrates thermodynamically. This predominantly enthalpy-driven binding by four chemically distinct ligands suggests that the transporter may not tolerate diversity in the type of interactions that lead to high affinity binding. Consistent with this, the measured activation energy of [(3)H]NBMPR association was relatively large (20 kcal mol(-1)) suggesting a conformational change upon inhibitor binding. For all three inhibitors the enthalpy (ΔH°) and entropy (ΔS°) contributions to the reaction energetics were determined by van't Hoff analysis to be roughly similar (25-75% ΔG°). Gains in enthalpy with increasing polar surface area of inhibitors suggest that the binding is favored by electrostatic or polar interactions between the ligands and the transporter.

  6. Structure-dependent activity of phthalate esters and phthalate monoesters binding to human constitutive androstane receptor.

    Science.gov (United States)

    Zhang, Hong; Zhang, Zhaobin; Nakanishi, Tsuyoshi; Wan, Yi; Hiromori, Youhei; Nagase, Hisamistu; Hu, Jianying

    2015-06-15

    The present study investigated the human constitutive androstane receptor (CAR) binding activities of 23 phthalate esters and 10 phthalate monoesters using a fast and sensitive human CAR yeast two-hybrid assay. Of 23 phthalate esters, 16 were evaluated as positive, and the 10% relative effective concentrations (REC10) ranged from 0.28 (BBP) to 29.51 μM (DEHP), whereas no obvious binding activities were found for the phthalate esters having alkyl chains more than six carbons in length. Of 10 phthalate monoesters, only monoethyl phthalate (MEP), monoisobutyl phthalate (MIBP), and mono-(2-ethyhexyl) tetrabromophthalate (TBMEHP) elicited human CAR binding activities. The REC10 values of MEP and MIBP were 4.27 and 14.13 μM, respectively, higher than those of their corresponding phthalate esters (1.45 μM for DEP and 0.83 μM for DIBP), whereas TBMEHP (0.66 μM) was much lower than TBHP (>10(2) μM). A molecular docking method was performed to simulate the interaction modes between phthalates and human CAR, and active phthalates were found to lie at almost the same site in the human CAR pocket. The docking results suggest that the strong binding of phthalates to human CAR arises primarily from hydrophobic interactions, π-π interactions, and steric effects and that weak hydrogen bonds and weak halogen bonds greatly contribute to the high binding activity of TBMEHP. In conclusion, the current study clarified that an extensive array of phthalates are activators of human CAR.

  7. Human Islet Amyloid Polypeptide Fibril Binding to Catalase: A Transmission Electron Microscopy and Microplate Study

    Directory of Open Access Journals (Sweden)

    Nathaniel G. N. Milton

    2010-01-01

    Full Text Available The diabetes-associated human islet amyloid polypeptide (IAPP is a 37-amino-acid peptide that forms fibrils in vitro and in vivo. Human IAPP fibrils are toxic in a similar manner to Alzheimer's amyloid-β (Aβ and prion protein (PrP fibrils. Previous studies have shown that catalase binds to Aβ fibrils and appears to recognize a region containing the Gly-Ala-Ile-Ile sequence that is similar to the Gly-Ala-Ile-Leu sequence found in human IAPP residues 24-27. This study presents a transmission electron microscopy (TEM—based analysis of fibril formation and the binding of human erythrocyte catalase to IAPP fibrils. The results show that human IAPP 1-37, 8-37, and 20-29 peptides form fibrils with diverse and polymorphic structures. All three forms of IAPP bound catalase, and complexes of IAPP 1-37 or 8-37 with catalase were identified by immunoassay. The binding of biotinylated IAPP to catalase was high affinity with a KD of 0.77nM, and could be inhibited by either human or rat IAPP 1-37 and 8-37 forms. Fibrils formed by the PrP 118-135 peptide with a Gly-Ala-Val-Val sequence also bound catalase. These results suggest that catalase recognizes a Gly-Ala-Ile-Leu—like sequence in amyloid fibril-forming peptides. For IAPP 1-37 and 8-37, the catalase binding was primarily directed towards fibrillar rather than ribbon-like structures, suggesting differences in the accessibility of the human IAPP 24-27 Gly-Ala-Ile-Leu region. This suggests that catalase may be able to discriminate between different structural forms of IAPP fibrils. The ability of catalase to bind IAPP, Aβ, and PrP fibrils demonstrates the presence of similar accessible structural motifs that may be targets for antiamyloid therapeutic development.

  8. Soluble Human Intestinal Lactoferrin Receptor: Ca(2+)-Dependent Binding to Sepharose-Based Matrices.

    Science.gov (United States)

    Oshima, Yuta; Seki, Kohei; Shibuya, Masataka; Naka, Yuki; Yokoyama, Tatsuya; Sato, Atsushi

    2016-01-01

    A soluble form of human intestinal lactoferrin receptor (shLFR) is identical to human intelectin-1 (hITLN-1), a galactofuranose-binding protein that acts as a host defense against invading pathogenic microorganisms. We found that recombinant shLFR, expressed in mammalian cells (CHO DG44, COS-1, and RK13), binds tightly to Sepharose 4 Fast Flow (FF)-based matrices in a Ca(2+)-dependent manner. This binding of shLFR to Sepharose 4 FF-based matrices was inhibited by excess D-galactose, but not by D-glucose, suggesting that shLFR recognizes repeating units of α-1,6-linked D-galactose in Sepharose 4 FF. Furthermore, shLFR could bind to both Sepharose 4B- and Sepharose 6B-based matrices that were not crosslinked in a similar manner as to Sepharose 4 FF-based matrices. Therefore, shLFR (hITLN-1) binds to Sepharose-based matrices in a Ca(2+)-dependent manner. This binding property is most likely related to the ability, as host defense lectins, to recognize sepharose (agarobiose)-like structures present on the surface of invading pathogenic microorganisms.

  9. Human immunodeficiency virus type 1 efficiently binds to human fetal astrocytes and induces neuroinflammatory responses independent of infection

    Directory of Open Access Journals (Sweden)

    Potash Mary

    2007-05-01

    Full Text Available Abstract Background HIV-1 infects human astrocytes in vitro and in vivo but the frequency of infected cells is low and its biological significance is unknown. In studies in vitro, recombinant gp120 alone can induce profound effects on astrocyte biology, suggesting that HIV-1 interaction with astrocytes and its functional consequences extend beyond the limited levels of infection in these cells. Here we determined the relative efficiencies of HIV-1 binding and infection in human fetal astrocytes (HFA, mainly at the single cell level, using HIV-1 tagged with green fluorescence protein (GFP-Vpr fusion proteins, termed HIV-GFP, to detect virus binding and HIV-1 expressing Rev and NefGFP fusion proteins to detect productive infection. Results Essentially all HFA in a population bound HIV-GFP specifically and independently of CCR5 and CXCR4. The dynamics of this binding at 37°C resembled binding of an HIV fusion mutant to CD4-positive cells, indicating that most of HIV-GFP arrested infection of HFA at the stage of virus-cell fusion. Despite extensive binding, only about 1% of HFA were detectably infected by HIV-RevGFP or HIV-NefGFP, but this proportion increased to the majority of HFA when the viruses were pseudotyped with vesicular stomatitis virus envelope glycoprotein G, confirming that HFA impose a restriction upon HIV-1 entry. Exposure of HFA to HIV-1 through its native proteins rapidly induced synthesis of interleukin-6 and interleukin-8 with increased mRNA detected within 3 h and increased protein detected within 18 h of exposure. Conclusion Our results indicate that HIV-1 binding to human astrocytes, although extensive, is not generally followed by virus entry and replication. Astrocytes respond to HIV-1 binding by rapidly increased cytokine production suggesting a role of this virus-brain cell interaction in HIV-1 neuropathogenesis.

  10. Probing the binding of fluoxetine hydrochloride to human serum albumin by multispectroscopic techniques

    Science.gov (United States)

    Katrahalli, Umesha; Jaldappagari, Seetharamappa; Kalanur, Shankara S.

    2010-01-01

    The interaction between human serum albumin (HSA) and fluoxetine hydrochloride (FLX) have been studied by using different spectroscopic techniques viz., fluorescence, UV-vis absorption, circular dichroism and FTIR under simulated physiological conditions. Fluorescence results revealed the presence of static type of quenching mechanism in the binding of FLX to HSA. The values of binding constant, K of FLX-HSA were evaluated at 289, 300 and 310 K and were found to be 1.90 × 10 3, 1.68 × 10 3 and 1.45 × 10 3 M -1, respectively. The number of binding sites, n was noticed to be almost equal to unity thereby indicating the presence of a single class of binding site for FLX on HSA. Based on the thermodynamic parameters, Δ H0 and Δ S0 nature of binding forces operating between HSA and FLX were proposed. Spectral results revealed the conformational changes in protein upon interaction. Displacement studies indicated the site I as the main binding site for FLX on HSA. The effect of common ions on the binding of FLX to HSA was also investigated.

  11. Structural and functional analysis of the YAP-binding domain of human TEAD2

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Wei; Yu, Jianzhong; Tomchick, Diana R.; Pan, Duojia; Luo, Xuelian (JHU-MED); (UTSMC)

    2010-06-15

    The Hippo pathway controls organ size and suppresses tumorigenesis in metazoans by blocking cell proliferation and promoting apoptosis. The TEAD1-4 proteins (which contain a DNA-binding domain but lack an activation domain) interact with YAP (which lacks a DNA-binding domain but contains an activation domain) to form functional heterodimeric transcription factors that activate proliferative and prosurvival gene expression programs. The Hippo pathway inhibits the YAP-TEAD hybrid transcription factors by phosphorylating and promoting cytoplasmic retention of YAP. Here we report the crystal structure of the YAP-binding domain (YBD) of human TEAD2. TEAD2 YBD adopts an immunoglobulin-like {beta}-sandwich fold with two extra helix-turn-helix inserts. NMR studies reveal that the TEAD-binding domain of YAP is natively unfolded and that TEAD binding causes localized conformational changes in YAP. In vitro binding and in vivo functional assays define an extensive conserved surface of TEAD2 YBD as the YAP-binding site. Therefore, our studies suggest that a short segment of YAP adopts an extended conformation and forms extensive contacts with a rigid surface of TEAD. Targeting a surface-exposed pocket of TEAD might be an effective strategy to disrupt the YAP-TEAD interaction and to reduce the oncogenic potential of YAP.

  12. Structural and functional analysis of the YAP-binding domain of human TEAD2.

    Science.gov (United States)

    Tian, Wei; Yu, Jianzhong; Tomchick, Diana R; Pan, Duojia; Luo, Xuelian

    2010-04-20

    The Hippo pathway controls organ size and suppresses tumorigenesis in metazoans by blocking cell proliferation and promoting apoptosis. The TEAD1-4 proteins (which contain a DNA-binding domain but lack an activation domain) interact with YAP (which lacks a DNA-binding domain but contains an activation domain) to form functional heterodimeric transcription factors that activate proliferative and prosurvival gene expression programs. The Hippo pathway inhibits the YAP-TEAD hybrid transcription factors by phosphorylating and promoting cytoplasmic retention of YAP. Here we report the crystal structure of the YAP-binding domain (YBD) of human TEAD2. TEAD2 YBD adopts an immunoglobulin-like beta-sandwich fold with two extra helix-turn-helix inserts. NMR studies reveal that the TEAD-binding domain of YAP is natively unfolded and that TEAD binding causes localized conformational changes in YAP. In vitro binding and in vivo functional assays define an extensive conserved surface of TEAD2 YBD as the YAP-binding site. Therefore, our studies suggest that a short segment of YAP adopts an extended conformation and forms extensive contacts with a rigid surface of TEAD. Targeting a surface-exposed pocket of TEAD might be an effective strategy to disrupt the YAP-TEAD interaction and to reduce the oncogenic potential of YAP.

  13. Structural delineation of stem-loop RNA binding by human TAF15 protein.

    Science.gov (United States)

    Kashyap, Maruthi; Ganguly, Akshay Kumar; Bhavesh, Neel Sarovar

    2015-11-27

    Human TATA binding protein associated factor 2 N (TAF15) and Fused in sarcoma (FUS) are nucleic acid binding proteins belonging to the conserved FET family of proteins. They are involved in diverse processes such as pre-mRNA splicing, mRNA transport, and DNA binding. The absence of information regarding the structural mechanism employed by the FET family in recognizing and discriminating their cognate and non-cognate RNA targets has hampered the attainment of consensus on modes of protein-RNA binding for this family. Our study provides a molecular basis of this RNA recognition using a combination of solution-state NMR spectroscopy, calorimetry, docking and molecular dynamics simulation. Analysis of TAF15-RRM solution structure and its binding with stem-loop RNA has yielded conclusive evidence of a non-canonical mode of RNA recognition. Rather than classical stacking interactions that occur across nitrogen bases and aromatic amino acids on ribonucleoprotein sites, moderate-affinity hydrogen bonding network between the nitrogen bases in the stem-loop RNA and a concave face on the RRM surface primarily mediate TAF15-RRM RNA interaction. We have compared the binding affinities across a set of single-stranded RNA oligonucleotides to conclusively establish that RNA binding is dependent upon structural elements in the RNA rather than sequence.

  14. The human enhancer blocker CTC-binding factor interacts with the transcription factor Kaiso.

    Science.gov (United States)

    Defossez, Pierre-Antoine; Kelly, Kevin F; Filion, Guillaume J P; Pérez-Torrado, Roberto; Magdinier, Frédérique; Menoni, Hervé; Nordgaard, Curtis L; Daniel, Juliet M; Gilson, Eric

    2005-12-30

    CTC-binding factor (CTCF) is a DNA-binding protein of vertebrates that plays essential roles in regulating genome activity through its capacity to act as an enhancer blocker. We performed a yeast two-hybrid screen to identify protein partners of CTCF that could regulate its activity. Using full-length CTCF as bait we recovered Kaiso, a POZ-zinc finger transcription factor, as a specific binding partner. The interaction occurs through a C-terminal region of CTCF and the POZ domain of Kaiso. CTCF and Kaiso are co-expressed in many tissues, and CTCF was specifically co-immunoprecipitated by several Kaiso monoclonal antibodies from nuclear lysates. Kaiso is a bimodal transcription factor that recognizes methylated CpG dinucleotides or a conserved unmethylated sequence (TNGCAGGA, the Kaiso binding site). We identified one consensus unmethylated Kaiso binding site in close proximity to the CTCF binding site in the human 5' beta-globin insulator. We found, in an insulation assay, that the presence of this Kaiso binding site reduced the enhancer-blocking activity of CTCF. These data suggest that the Kaiso-CTCF interaction negatively regulates CTCF insulator activity.

  15. Studies on the binding of vinpocetine to human serum albumin by molecular spectroscopy and modeling

    Institute of Scientific and Technical Information of China (English)

    Hua Jiang; Rong Rong Chen; Hong Cui Wang; Han Lin Pu

    2012-01-01

    The interaction between vinpocetine (VPC) and human serum albumin (HSA) in physiological buffer (pH 7.40) was investigated by fluorescence,FT-IR,UV-vis absorption and molecular modeling.VPC effectively quenched the intrinsic fluorescence of HSA via static quenching.The binding site number n and apparent binding constant Ka,corresponding thermodynamic parameters △G,△H and △S at different temperatures were calculated.The synchronous fluorescence and FT-IR spectra were used to investigate the structural change of HSA molecules with addition of VPC.Molecular modeling indicated that VPC could bind to the site I of HSA and hydrophobic interaction was the major acting force,which was in agreement with the binding mode study.

  16. Specific binding of [3H]phenytoin in the human brain.

    Science.gov (United States)

    Spero, L

    1985-05-01

    Competition between cold phenytoin and [3H]phenytoin binding was observed in normal human brain. Binding was observed in all areas examined. The highest number of sites was in the amygdala (a total of 717.71 fmol/mg protein) and the lowest in the Brodman area (BA) 4 of the motor cortex (153.91 fmol/mg protein) and cerebellar cortex (154.4 fmol/mg protein). In three areas, amygdala, cortex area BA 38 (inferior parietal lobe), and cortex area BA 8 (premotor cortex), two sets of binding sites were observed. In these areas the Kd for the higher affinity sites ranged from 35 to 116 nM, and for the lower affinity site, from 328 to 866 nM. In the four areas where only one binding site was observed the KdS ranged from 164 to 311 nM and the Scatchard plot was linear.

  17. Study of caffeine binding to human serum albumin using optical spectroscopic methods

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The binding of caffeine to human serum albumin (HSA) under physiological conditions has been stud-ied by the methods of fluorescence,UV-vis absorbance and circular dichroism (CD) spectroscopy. The mechanism of quenching of HSA fluorescence by caffeine was shown to involve a dynamic quenching procedure. The number of binding sites n and apparent binding constant Kb were measured by the fluorescence quenching method and the thermodynamic parameters △H,△G,△S were calculated. The results indicate that the binding is mainly enthalpy-driven,with van der Waals interactions and hydrogen bonding playing major roles in the reaction. The distance r between donor (HSA) and acceptor (caffeine) was obtained according to the Frster theory of non-radiative energy transfer. Synchronous fluorescence,CD and three-dimensional fluorescence spectroscopy showed that the microenvironment and conformation of HSA were altered during the reaction.

  18. Attenuation of myocardial fibrosis with curcumin is mediated by modulating expression of angiotensin II AT1/AT2 receptors and ACE2 in rats

    Directory of Open Access Journals (Sweden)

    Pang XF

    2015-11-01

    Full Text Available Xue-Fen Pang,1 Li-Hui Zhang,2 Feng Bai,1 Ning-Ping Wang,3 Ron E Garner,3 Robert J McKallip,4 Zhi-Qing Zhao1,3 1Department of Physiology, Shanxi Medical University, Taiyuan, Shanxi, People’s Republic of China; 2Department of Cardiology, Shanxi Academy of Medical Sciences and Shanxi Dayi Hospital, Shanxi Medical University, Taiyuan, Shanxi, People’s Republic of China; 3Department of Basic Biomedical Sciences, Mercer University School of Medicine, Savannah, GA, USA; 4Division of Basic Biomedical Sciences, Mercer University School of Medicine, Macon, GA, USA Abstract: Curcumin is known to improve cardiac function by balancing degradation and synthesis of collagens after myocardial infarction. This study tested the hypothesis that inhibition of myocardial fibrosis by curcumin is associated with modulating expression of angiotensin II (Ang II receptors and angiotensin-converting enzyme 2 (ACE2. Male Sprague Dawley rats were subjected to Ang II infusion (500 ng/kg/min using osmotic minipumps for 2 and 4 weeks, respectively, and curcumin (150 mg/kg/day was fed by gastric gavage during Ang II infusion. Compared to the animals with Ang II infusion, curcumin significantly decreased the mean arterial blood pressure during the course of the observation. The protein level of the Ang II type 1 (AT1 receptor was reduced, and the Ang II type 2 (AT2 receptor was up-regulated, evidenced by an increased ratio of the AT2 receptor over the AT1 receptor in the curcumin group (1.2±0.02% vs in the Ang II group (0.7±0.03%, P<0.05. These changes were coincident with less locally expressed AT1 receptor and enhanced AT2 receptor in the intracardiac vessels and intermyocardium. Along with these modulations, curcumin significantly decreased the populations of macrophages and alpha smooth muscle actin-expressing myofibroblasts, which were accompanied by reduced expression of transforming growth factor beta 1 and phosphorylated-Smad2/3. Collagen I synthesis was

  19. Binding of fluorescently labeled cholera toxin subunit B to glycolipids in the human submandibular gland and inhibition of binding by periodate oxidation and by galactose

    DEFF Research Database (Denmark)

    Kirkeby, S

    2016-01-01

    FITC-labeled cholera toxin subunit B (CTB) stained the surfaces of cells of mucous acini in the submandibular gland. CTB, also called choleragenoid, binds to the GM1 glycolipid in the cell membrane. The binding in most acini was inhibited by periodic acid oxidation of the sections, while some acini...... to the internal galactose residue linked to GalNAc, as in the GM1 glycolipid. Inhibition of the GM1 receptor binding to cholera toxin has potential for protection of humans against cholera. Galactose and agents that modify sialic acid inhibit the accessibility of the toxin to the GM1 carbohydrate receptor. Human...

  20. Analysis of the binding interaction in uric acid - Human hemoglobin system by spectroscopic techniques

    Science.gov (United States)

    Makarska-Bialokoz, Magdalena

    2017-05-01

    The binding interaction between human hemoglobin and uric acid has been studied for the first time, by UV-vis absorption and steady-state, synchronous and three-dimensional fluorescence techniques. Characteristic effects observed for human hemoglobin intrinsic fluorescence during interaction with uric acid at neutral pH point at the formation of stacking non-covalent and non-fluorescent complexes. All the calculated parameters, the binding, fluorescence quenching and bimolecular quenching rate constants, as well as Förster resonance energy transfer parameters confirm the existence of static quenching. The results of synchronous fluorescence measurements indicate that the fluorescence quenching of human hemoglobin originates both from Trp and Tyr residues and that the addition of uric acid could significantly hinder the physiological functions of human hemoglobin.

  1. Nuclear thyroid hormone receptor binding in human mononuclear blood cells after goitre resection

    DEFF Research Database (Denmark)

    Kvetny, J; Matzen, L E; Blichert-Toft, M

    1989-01-01

    Nuclear thyroxine and triiodothyronine receptor-binding in human mononuclear blood cells were examined in 14 euthyroid persons prior to and 1, 6, 24 and 53 weeks after goitre resection. One week after resection decreased serum T3 from 1.47 nmol/l to 1.14 nmol/l (P less than 0.05), FT4I from 103 a...

  2. Covalent binding of nitrogen mustards to the cysteine-34 residue in human serum albumin

    NARCIS (Netherlands)

    Noort, D.; Hulst, A.G.; Jansen, R.

    2002-01-01

    Covalent binding of various clinically important nitrogen mustards to the cysteine-34 residue of human serum albumin, in vitro and in vivo, is demonstrated. A rapid method for detection of these adducts is presented, based on liquid chromatography-tandem mass spectrometry analysis of the adducted

  3. Description and prediction of peptide-MHC binding: the 'human MHC project'

    DEFF Research Database (Denmark)

    Buus, S

    1999-01-01

    MHC molecules are crucially involved in controlling the specific immune system. They are highly polymorphic receptors sampling peptides from the cellular environment and presenting these peptides for scrutiny by immune cells. Recent advances in combinatorial peptide chemistry have improved the de...... the description and prediction of peptide-MHC binding. It is envisioned that a complete mapping of human immune reactivities will be possible....

  4. Use of computational modeling approaches in studying the binding interactions of compounds with human estrogen receptors.

    Science.gov (United States)

    Wang, Pan; Dang, Li; Zhu, Bao-Ting

    2016-01-01

    Estrogens have a whole host of physiological functions in many human organs and systems, including the reproductive, cardiovascular, and central nervous systems. Many naturally-occurring compounds with estrogenic or antiestrogenic activity are present in our environment and food sources. Synthetic estrogens and antiestrogens are also important therapeutic agents. At the molecular level, estrogen receptors (ERs) mediate most of the well-known actions of estrogens. Given recent advances in computational modeling tools, it is now highly practical to use these tools to study the interaction of human ERs with various types of ligands. There are two common categories of modeling techniques: one is the quantitative structure activity relationship (QSAR) analysis, which uses the structural information of the interacting ligands to predict the binding site properties of a macromolecule, and the other one is molecular docking-based computational analysis, which uses the 3-dimensional structural information of both the ligands and the receptor to predict the binding interaction. In this review, we discuss recent results that employed these and other related computational modeling approaches to characterize the binding interaction of various estrogens and antiestrogens with the human ERs. These examples clearly demonstrate that the computational modeling approaches, when used in combination with other experimental methods, are powerful tools that can precisely predict the binding interaction of various estrogenic ligands and their derivatives with the human ERs.

  5. In vitro mutagen binding and antimutagenic activity of human Lactobacillus rhamnosus 231.

    Science.gov (United States)

    Ambalam, Padma; Dave, J M; Nair, Baboo M; Vyas, B R M

    2011-10-01

    In vitro mutagen binding ability of human Lactobacillus rhamnosus 231 (Lr 231) was evaluated against acridine orange (AO), N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), 2-amino-3, 8-dimethylimidazo-[4,5-f]-quinoxaline (MeIQx) and 4-nitro-o-phenylenediamine (NPD). Binding of AO by Lr 231 is due to adsorption, thereby leading to removal of mutagen in solution and is instantaneous, pH- and concentration-dependent. Whereas, binding of MNNG and MeIQx by Lr 231 results into biotransformation leading to detoxification with subsequent loss of mutagenicity as determined by spectral analysis, thin layer chromatography and Ames test. Binding of mutagen by Lr 231 was dependent on culture age and optimum binding of AO, MNNG and MeIQx was observed to occur with 24 h old culture. Cells of Lr 231 were subjected to different chemical treatments prior to binding studies. Results indicated cell wall component such as cell wall polysaccharide, peptidoglycan, carbohydrates and proteins plays an important role in adsorption of AO, also involving hydrophilic and ionic interactions. Binding, biotransformation and detoxification of MNNG and MeIQx by Lr 231 was dependent on cell surface characteristics mainly involving carbohydrates, proteins, teichoic acid/lipoteichoic acid, hydrophobic interaction and presence of thiol group. L. rhamnosus 231 bound MNNG instantaneously. More than 96 (p mutagen binding and various pretreatments respectively. This study shows Lr 231 exhibits ability to bind and detoxify potent mutagens, and this property can be useful in formulating fermented foods for removal of potent mutagens.

  6. Mapping the interfacial binding surface of human secretory group IIa phospholipase A2.

    Science.gov (United States)

    Snitko, Y; Koduri, R S; Han, S K; Othman, R; Baker, S F; Molini, B J; Wilton, D C; Gelb, M H; Cho, W

    1997-11-25

    Human secretory group IIa phospholipase A2 (hIIa-PLA2) contains a large number of prominent cationic patches on its molecular surface and has exceptionally high affinity for anionic surfaces, including anionic membranes. To identify the cationic amino acid residues that support binding of hIIa-PLA2 to anionic membranes, we have performed extensive site-directed mutagenesis of this protein and measured vesicle binding and interfacial kinetic properties of the mutants using polymerized liposomes and nonpolymerized anionic vesicles. Unlike other secretory PLA2s, which have a few cationic residues that support binding of enzyme to anionic membranes, interfacial binding of hIIa-PLA2 is driven in part by electrostatic interactions involving a number of cationic residues forming patches on the putative interfacial binding surface. Among these residues, the amino-terminal patch composed of Arg-7, Lys-10, and Lys-16 makes the most significant contribution to interfacial adsorption, and this is supplemented by contributions from other patches, most notably Lys-74/Lys-87/Arg-92 and Lys-124/Arg-127. For these mutants, complete vesicle binding occurs in the presence of high vesicle concentrations, and under these conditions the mutants display specific activities comparable to that of wild-type enzyme. These studies indicate that electrostatic interactions between surface lysine and arginine residues and the interface contribute to interfacial binding of hIIa-PLA2 to anionic vesicles and that cationic residues closest to the opening of the active-site slot make the most important interactions with the membrane. However, because the wild type binds extremely tightly to anionic vesicles, it was not possible to exactly determine what fraction of the total interfacial binding energy is due to electrostatics.

  7. Multiplexed massively parallel SELEX for characterization of human transcription factor binding specificities

    Science.gov (United States)

    Jolma, Arttu; Kivioja, Teemu; Toivonen, Jarkko; Cheng, Lu; Wei, Gonghong; Enge, Martin; Taipale, Mikko; Vaquerizas, Juan M.; Yan, Jian; Sillanpää, Mikko J.; Bonke, Martin; Palin, Kimmo; Talukder, Shaheynoor; Hughes, Timothy R.; Luscombe, Nicholas M.; Ukkonen, Esko; Taipale, Jussi

    2010-01-01

    The genetic code—the binding specificity of all transfer-RNAs—defines how protein primary structure is determined by DNA sequence. DNA also dictates when and where proteins are expressed, and this information is encoded in a pattern of specific sequence motifs that are recognized by transcription factors. However, the DNA-binding specificity is only known for a small fraction of the ∼1400 human transcription factors (TFs). We describe here a high-throughput method for analyzing transcription factor binding specificity that is based on systematic evolution of ligands by exponential enrichment (SELEX) and massively parallel sequencing. The method is optimized for analysis of large numbers of TFs in parallel through the use of affinity-tagged proteins, barcoded selection oligonucleotides, and multiplexed sequencing. Data are analyzed by a new bioinformatic platform that uses the hundreds of thousands of sequencing reads obtained to control the quality of the experiments and to generate binding motifs for the TFs. The described technology allows higher throughput and identification of much longer binding profiles than current microarray-based methods. In addition, as our method is based on proteins expressed in mammalian cells, it can also be used to characterize DNA-binding preferences of full-length proteins or proteins requiring post-translational modifications. We validate the method by determining binding specificities of 14 different classes of TFs and by confirming the specificities for NFATC1 and RFX3 using ChIP-seq. Our results reveal unexpected dimeric modes of binding for several factors that were thought to preferentially bind DNA as monomers. PMID:20378718

  8. Combined fluorescence and electrochemical investigation on the binding interaction between organic acid and human serum albumin

    Institute of Scientific and Technical Information of China (English)

    CHEN Yan-Min; GUO Liang-Hong

    2009-01-01

    Human serum albumin (HSA) is a plasma protein responsible for the binding and transport of fatty acids and a variety of exogenous chemicals such as drugs and environmental pollutants. Such binding plays a crucial role in determining the ADME (absorption, distribution, metabolism, and excretion) and bioavailability of the pollutants. We report investigation on the binding interaction between HSA and acetic acid (C2), octanoic acid (C8) and dodecanoic acid (C12) by the combination of site-specific fluorescent probe, tryptophan intrinsic fluorescence and tyrosine electrochemistry. Two fluorescent probes, dansylamide and dansyl-L-proline, were employed in the displacement measurement to study fatty acid interaction with the two drug-binding sites on HSA. Intrinsic fluorescence of tryptophan in HSA was monitored upon addition of the fatty acids into HSA. Electrocatalyzed response of the tyrosine residues in HSA by a redox mediator was used to investigate the binding interaction. Qualitatively, observations made by the three approaches are very similar. HSA did not show any change in either fluorescence or electrochemistry after mixing with C2, suggesting there is no significant interaction with the short-chain fatty acid. For C8, the measured signal dropped in a single-exponential fashion, indicative of independent and non-cooperative binding. The calculated association constant and binding ratio is 3.1×106 L/mol and 1 with drug binding Site I, 1.1×107 L/mol and 1 with Site II, and 7.0×104 L/mol and 4 with the tryptophan site. The measurement with C12 displayed multiple phases of fluorescence change, suggesting cooperativity and allosteric effect of C12 binding. These results correlate well with those obtained by the established methods, and validate the new approach as a viable tool to study the interactions of environmental pollutants with biological molecules.

  9. Ligand specificity and conformational stability of human fatty acid-binding proteins.

    Science.gov (United States)

    Zimmerman, A W; van Moerkerk, H T; Veerkamp, J H

    2001-09-01

    Fatty acid binding proteins (FABPs) are small cytosolic proteins with virtually identical backbone structures that facilitate the solubility and intracellular transport of fatty acids. At least eight different types of FABP occur, each with a specific tissue distribution and possibly with a distinct function. To define the functional characteristics of all eight human FABPs, viz. heart (H), brain (B), myelin (M), adipocyte (A), epidermal (E), intestinal (I), liver (L) and ileal lipid-binding protein (I-LBP), we studied their ligand specificity, their conformational stability and their immunological crossreactivity. Additionally, binding of bile acids to I-LBP was studied. The FABP types showed differences in fatty acid binding affinity. Generally, the affinity for palmitic acid was lower than for oleic and arachidonic acid. All FABP types, except E-FABP, I-FABP and I-LBP interacted with 1-anilinonaphtalene-8-sulphonic acid (ANS). Only L-FABP, I-FABP and M-FABP showed binding of 11-((5-dimethylaminonaphtalene-1-sulfonyl)amino)undecanoic acid (DAUDA). I-LBP showed increasing binding of bile acids in the order taurine-conjugated>glycine-conjugated>unconjugated bile acids. A hydroxylgroup of bile acids at position 7 decreased and at position 12 increased the binding affinity to I-LBP. The fatty acid-binding affinity and the conformation of FABP types were differentially affected in the presence of urea. Our results demonstrate significant differences in ligand binding, conformational stability and surface properties between different FABP types which may point to a specific function in certain cells and tissues. The preference of I-LBP (but not L-FABP) for conjugated bile acids is in accordance with a specific role in bile acid reabsorption in the ileum.

  10. Receptor binding properties of human and animal H1 influenza virus isolates.

    Science.gov (United States)

    Rogers, G N; D'Souza, B L

    1989-11-01

    It has been previously reported that several human H1 influenza viruses isolated prior to 1956, in contrast to human H3 isolates which are quite specific for SA alpha 2,6Gal sequences, apparently recognize both SA alpha 2,3Gal and SA alpha 2,6Gal sequences (Rogers, G.N., and Paulson, J.C., Virology 127, 361-373, 1983). In this report human H1 isolates representative of two epidemic periods, from 1934 to 1957 and from 1977 to 1986, and H1 influenza isolated from pigs, ducks, and turkeys were compared for their ability to utilize sialyloligosaccharide structures containing terminal SA alpha 2,3Gal or SA alpha 2,6Gal sequences as receptor determinants. Five of the eight human isolates from the first epidemic period recognize both SA alpha 2,3Gal and SA alpha 2,6Gal linkages, in agreement with our previous results. Of the remaining three strains, all isolated towards the end of the first epidemic, two appear to prefer SA alpha 2,6Gal sequences while the third preferentially binds SA alpha 2,3Gal sequences. In contrast to the early isolates, 11 of 13 human strains isolated during the second epidemic period preferentially bind SA alpha 2,6Gal containing oligosaccharides. On the basis of changes in receptor binding associated with continued passage in the laboratory for some of these later strains, it seems likely that human H1 isolates preferentially bind SA alpha 2,6Gal sequences in nature, and that acquisition of SA alpha 2,3Gal-binding is associated with laboratory passage. Influenza H1 viruses isolated from pigs were predominantly SA alpha 2,6Gal-specific while those isolated from ducks were primarily SA alpha 2,3Gal-specific. Thus, as has been previously reported for H3 influenza isolates, receptor specificity for influenza H1 viruses appears to be influenced by the species from which they were isolated, human isolates binding preferentially to SA alpha 2,6Gal-containing oligosaccharides while those isolated from ducks prefer SA alpha 2,3Gal

  11. Receptor binding specificity of recent human H3N2 influenza viruses

    Directory of Open Access Journals (Sweden)

    Cummings Richard D

    2007-05-01

    Full Text Available Abstract Background Human influenza viruses are known to bind to sialic acid linked α2-6 to galactose, but the binding specificity beyond that linkage has not been systematically examined. H3N2 human influenza isolates lost binding to chicken red cells in the 1990s but viruses isolated since 2003 have re-acquired the ability to agglutinate chicken erythrocytes. We have investigated specificity of binding, changes in hemagglutinin sequence of the recent viruses and the role of sialic acid in productive infection. Results Viruses that agglutinate, or do not agglutinate, chicken red cells show identical binding to a Glycan Array of 264 oligosaccharides, binding exclusively to a subset of α2-6-sialylsaccharides. We identified an amino acid change in hemagglutinin that seemed to correlate with chicken red cell binding but when tested by mutagenesis there was no effect. Recombinant hemagglutinins expressed on Sf-9 cells bound chicken red cells but the released recombinant baculoviruses agglutinated only human red cells. Similarly, an isolate that does not agglutinate chicken red cells show hemadsorption of chicken red cells to infected MDCK cells. We suggest that binding of chicken red cells to cell surface hemagglutinin but not to virions is due to a more favorable hemagglutinin density on the cell surface. We investigated whether a virus specific for α2-6 sialyloligosaccharides shows differential entry into cells that have varying proportions of α2-6 and α2-3 sialic acids, including human A549 and HeLa cells with high levels of α2-6 sialic acid, and CHO cells that have only α2-3 sialic acid. We found that the virus enters all cell types tested and synthesizes viral nucleoprotein, localized in the nucleus, and hemagglutinin, transported to the cell surface, but infectious progeny viruses were released only from MDCK cells. Conclusion Agglutination of chicken red cells does not correlate with altered binding to any oligosaccharide on the Glycan

  12. Differential ligand binding affinities of human estrogen receptor-α isoforms.

    Directory of Open Access Journals (Sweden)

    Amanda H Y Lin

    Full Text Available Rapid non-genomic effects of 17β-estradiol are elicited by the activation of different estrogen receptor-α isoforms. Presence of surface binding sites for estrogen have been identified in cells transfected with full-length estrogen receptor-α66 (ER66 and the truncated isoforms, estrogen receptor-α46 (ER46 and estrogen receptor-α36 (ER36. However, the binding affinities of the membrane estrogen receptors (mERs remain unknown due to the difficulty of developing of stable mER-transfected cell lines with sufficient mER density, which has largely hampered biochemical binding studies. The present study utilized cell-free expression systems to determine the binding affinities of 17β-estradiol to mERs, and the relationship among palmitoylation, membrane insertion and binding affinities. Saturation binding assays of human mERs revealed that [³H]-17β-estradiol bound ER66 and ER46 with Kd values of 68.81 and 60.72 pM, respectively, whereas ER36 displayed no specific binding within the tested concentration range. Inhibition of palmitoylation or removal of the nanolipoprotein particles, used as membrane substitute, reduced the binding affinities of ER66 and ER46 to 17β-estradiol. Moreover, ER66 and ER46 bound differentially with some estrogen receptor agonists and antagonists, and phytoestrogens. In particular, the classical estrogen receptor antagonist, ICI 182,780, had a higher affinity for ER66 than ER46. In summary, the present study defines the binding affinities for human estrogen receptor-α isoforms, and demonstrates that ER66 and ER46 show characteristics of mERs. The present data also indicates that palmitoylation and membrane insertion of mERs are important for proper receptor conformation allowing 17β-estradiol binding. The differential binding of ER66 and ER46 with certain compounds substantiates the prospect of developing mER-selective drugs.

  13. Altitude Differentiated Aerosol Extinction Over Tenerife (North Atlantic Coast) During ACE-2 by Means of Ground and Airborne Photometry and Lidar Measurements

    Science.gov (United States)

    Formenti, P.; Elias, T.; Welton, J.; Diaz, J. P.; Exposito, F.; Schmid, B.; Powell, D.; Holben, B. N.; Smirnov, A.; Andreae, M. O.; Devaux, C.; Voss, K.; Lelieveld, J.; Livingston, J. M.; Russell, P. B.; Durkee, P. A.

    2000-01-01

    Retrievals of spectral aerosol optical depths (tau(sub a)) by means of sun photometers have been undertaken in Tenerife (28 deg 16' N, 16 deg 36' W) during ACE-2 (June-July 1997). Five ground-based sites were located at four different altitudes in the marine boundary layer and in the free troposphere, from 0 to 3570 m asl. The goal of the investigation was to provide estimates of the vertical aerosol extinction over the island, both under clean and turbid conditions. Inversion of spectral tau(sub a) allowed to retrieve size distributions, from which the single scattering albedo omega(sub 0) and the asymmetry factor g could be estimated as a function of altitude. These parameters were combined to calculate aerosol forcing in the column. Emphasis is put on episodes of increased turbidity, which were observed at different locations simultaneously, and attributed to outbreaks of mineral dust from North Africa. Differentiation of tau(sub a) as a function of altitude provided the vertical profile of the extinction coefficient sigma(sub e). For dust outbreaks, aerosol extinction is concentrated in two distinct layers above and below the strong subsidence inversion around 1200 m asl. Vertical profiles of tau(sub a) and sigma(sub e) are shown for July 8. In some occasions, vertical profiles are compared to LIDAR observations, performed both at sea level and in the low free troposphere, and to airborne measurements of aerosol optical depths.

  14. Characterization of the Binding Site of Aspartame in the Human Sweet Taste Receptor.

    Science.gov (United States)

    Maillet, Emeline L; Cui, Meng; Jiang, Peihua; Mezei, Mihaly; Hecht, Elizabeth; Quijada, Jeniffer; Margolskee, Robert F; Osman, Roman; Max, Marianna

    2015-10-01

    The sweet taste receptor, a heterodimeric G protein-coupled receptor comprised of T1R2 and T1R3, binds sugars, small molecule sweeteners, and sweet proteins to multiple binding sites. The dipeptide sweetener, aspartame binds in the Venus Flytrap Module (VFTM) of T1R2. We developed homology models of the open and closed forms of human T1R2 and human T1R3 VFTMs and their dimers and then docked aspartame into the closed form of T1R2's VFTM. To test and refine the predictions of our model, we mutated various T1R2 VFTM residues, assayed activity of the mutants and identified 11 critical residues (S40, Y103, D142, S144, S165, S168, Y215, D278, E302, D307, and R383) in and proximal to the binding pocket of the sweet taste receptor that are important for ligand recognition and activity of aspartame. Furthermore, we propose that binding is dependent on 2 water molecules situated in the ligand pocket that bridge 2 carbonyl groups of aspartame to residues D142 and L279. These results shed light on the activation mechanism and how signal transmission arising from the extracellular domain of the T1R2 monomer of the sweet receptor leads to the perception of sweet taste.

  15. Thyrotropin receptors in normal human thyroid. Nonclassical binding kinetics not explained by the negative cooperativity model.

    Science.gov (United States)

    Powell-Jones, C H; Thomas, C G; Nayfeh, S N

    1980-05-10

    Saturation analysis of equilibrium binding of iodinated thyrotropin (125I-TSH) to normal human thyroid preparations yielded linear Scatchard plots under non-physiological conditions of pH 6.0 or 20 mM Tris/acetate buffer, pH 7.4. The apparent equilibrium dissociation constant of this binding was approximately 10(-8) M. By contrast, nonlinear plots were obtained under standard conditions of pH 7.4 and 40 mM Tris/acetate buffer. Resolution of the components of these curves by computer analysis revealed the presence of at least two classes of binding sites, one of which is of a low capacity and high affinity (approximately 10(-10) M) consistent with receptor binding. The other component is of a high capacity and lower affinity. Binding to non-target tissues of muscle, parathyroid, mammary carcinoma, and placenta was only demonstrable at pH 6.0 or in 20 mM Tris/acetate buffer, pH 7.4, yielding linear Scatchard plots with similar binding affinity (approximately 10(-8)M) to normal thyroid but much reduced capacity. Preincubation of thyroid tissue at 50 degrees C resulted in an apparent selective loss of the high affinity component of binding measured under standard conditions. Kinetic experiments on the dissociation of bound 125I-TSH were undertaken to determine whether the non-linearity of Scatchard plots was due to two or more classes of binding sites or negative cooperativity. It was found that the experimental determinant that is presently ascribed to a negative cooperativity phenomenon regulating receptor affinity (i.e. an enhanced dilution-induced dissociation rate in the presence of excess native hormone), although apparently hormone-specific, was demonstrated under nonphysiological binding conditions and in non-target tissue. Significantly, the phenomenon was found under conditions of pH 6.0 or 20 mM Tris where a linear Scatchard plot was obtained. The evidence thus suggests that 125I-TSH binds to heterogeneous binding sites (of which the high affinity is

  16. Effect of pH and temperature on the binding of bilirubin to human erythrocyte membranes

    Indian Academy of Sciences (India)

    H Rashid; Mohammad K Ali; S Tayyab

    2000-06-01

    Effect of pH and temperature on the binding of bilirubin to human erythrocyte membranes was studied by incubating the membranes at different pH and temperatures and determining the bound bilirubin. At all pH values, the amount of membrane-bound bilirubin increased with the increase in bilirubin-to-albumin molar ratios (B/As), being highest at lower pH values in all cases. Further, linear increase in bound bilirubin with the increase in bilirubin concentration in the incubate was observed at a constant B/A and at all pH values. However, the slope value increased with the decrease in pH suggesting more bilirubin binding to membranes at lower pH values. Increase in bilirubin binding at lower pH can be explained on the basis of increased free bilirubin concentration as well as more conversion of bilirubin dianion to monoanion. Temperature dependence of bilirubin binding to membranes was observed within the temperature range of 7°–60°C, showing minimum binding at 27°C and 37°C which increased on either side. Increase in bilirubin binding at temperatures lower than 20°C and higher than 40°C can be ascribed to the change in membrane topography as well as bilirubin-albumin interaction.

  17. Interactions Between Sirolimus and Anti-Inflammatory Drugs: Competitive Binding for Human Serum Albumin

    Science.gov (United States)

    Khodaei, Arash; Bolandnazar, Soheila; Valizadeh, Hadi; Hasani, Leila; Zakeri-Milani, Parvin

    2016-01-01

    Purpose: The aim of the present study was investigating the effects of three anti-inflammatory drugs, on Sirolimus protein biding. The binding site of Sirolimus on human serum albumin (HSA) was also determined. Methods: Six different concentrations of Sirolimus were separately exposed to HSA at pH 7.4 and 37°C. Ultrafiltration method was used for separating free drug; then free drug concentrations were measured by HPLC. Finally, Sirolimus protein binding parameters was calculated using Scatchard plots. The same processes were conducted in the presence of NSAIDs at lower concentration of albumin and different pH conditions. To characterize the binding site of Sirolimus on albumin, the free concentration of warfarin sodium and Diazepam, site I and II specific probes, bound to albumin were measured upon the addition of increasing Sirolimus concentrations. Results: Based on the obtained results presence of Diclofenac, Piroxicam and Naproxen, could significantly decrease the percentage of Sirolimus protein binding. The Binding reduction was the most in the presence of Piroxicam. Sirolimus-NSAIDs interactions were increased in higher pH values and also in lower albumin concentrations. Probe displacement study showed that Sirolimus may mainly bind to site I on albumin molecule. Conclusion: More considerations in co-administration of NSAIDs and Sirolimus is recommended. PMID:27478785

  18. DNA end binding activity and Ku70/80 heterodimer expression in human colorectal tumor

    Institute of Scientific and Technical Information of China (English)

    Paola Mazzarelli; Carolina Gravina; Marco Caricato; Maria Luana Poeta; Monica Rinaldi; Sergio Valeri; Roberto Coppola; Vito Michele Fazio; Paola Parrella; Davide Seripa; Emanuela Signori; Giuseppe Perrone; Carla Rabitti; Domenico Borzomati; Armando Gabbrielli; Maria Giovanna Matera

    2005-01-01

    AIM: To determine the DNA binding activity and protein levels of the Ku70/80 heterodimer, the functional mediator of the NHEJ activity, in human colorectal carcinogenesis.METHODS: The Ku70/80 DNA-binding activity was determined by electrophoretic mobility shift assays in 20 colon adenoma and 15 colorectal cancer samples as well as matched normal colonic tissues. Nuclear and cytoplasmic protein expression was determined by immunohistochemistry and Western blot analysis.RESULTS: A statistically significant difference was found in both adenomas and carcinomas as compared to matched normal colonic mucosa (P<0.00). However,changes in binding activity were not homogenous with approximately 50% of the tumors showing a clear increase in the binding activity, 30% displaying a modest increase and 15% showing a decrease of the activity.Tumors, with increased DNA-binding activity, also showed a statistically significant increase in Ku70 and Ku86nuclear expression, as determined by Western blot and immunohistochemical analyses (P<0.001). Cytoplasmic protein expression was found in pathological samples,but not in normal tissues either from tumor patients or from healthy subjects.CONCLUSION: Overall, our DNA-binding activity and protein level are consistent with a substantial activation of the NHEJ pathway in colorectal tumors. Since the NHEJ is an error prone mechanism, its abnormal activation can result in chromosomal instability and ultimately lead to tumorigenesis.

  19. Membrane androgen binding sites are preferentially expressed in human prostate carcinoma cells

    Directory of Open Access Journals (Sweden)

    Delakas Dimitrios

    2003-01-01

    Full Text Available Abstract Background Prostate cancer is one of the most frequent malignancies in males. Nevertheless, to this moment, there is no specific routine diagnostic marker to be used in clinical practice. Recently, the identification of a membrane testosterone binding site involved in the remodeling of actin cytoskeleton structures and PSA secretion, on LNCaP human prostate cancer cells has been reported. We have investigated whether this membrane testosterone binding component could be of value for the identification of prostate cancer. Methods Using a non-internalizable testosterone-BSA-FITC analog, proven to bind on membrane sites only in LNCaP cells, we have investigated the expression of membrane testosterone binding sites in a series of prostate carcinomas (n = 14, morphologically normal epithelia, taken from areas of the surgical specimens far from the location of the carcinomas (n = 8 and benign prostate hyperplasia epithelia (n = 10. Isolated epithelial cells were studied by flow cytometry, and touching preparations, after 10-min incubation. In addition, routine histological slides were assayed by confocal laser microscopy. Results We show that membrane testosterone binding sites are preferentially expressed in prostate carcinoma cells, while BPH and non-malignant epithelial cells show a low or absent binding. Conclusions Our results indicate that membrane testosterone receptors might be of use for the rapid routine identification of prostate cancer, representing a new diagnostic marker of the disease.

  20. Multispectroscopic and calorimetric studies on the binding of the food colorant tartrazine with human hemoglobin.

    Science.gov (United States)

    Basu, Anirban; Suresh Kumar, Gopinatha

    2016-11-15

    Interaction of the food colorant tartrazine with human hemoglobin was studied using multispectroscopic and microcalorimetric techniques to gain insights into the binding mechanism and thereby the toxicity aspects. Hemoglobin spectrum showed hypochromic changes in the presence of tartrazine. Quenching of the fluorescence of hemoglobin occurred and the quenching mechanism was through a static mode as revealed from temperature dependent and time-resolved fluorescence studies. According to the FRET theory the distance between β-Trp37 of hemoglobin and bound tartrazine was evaluated to be 3.44nm. Synchronous fluorescence studies showed that tartrazine binding led to alteration of the microenvironment around the tryptophans more in comparison to tyrosines. 3D fluorescence and FTIR data provided evidence for conformational changes in the protein on binding. Circular dichroism studies revealed that the binding led to significant loss in the helicity of hemoglobin. The esterase activity assay further complemented the circular dichroism data. Microcalorimetric study using isothermal titration calorimetry revealed the binding to be exothermic and driven largely by positive entropic contribution. Dissection of the Gibbs energy change proposed the protein-dye complexation to be dominated by non-polyelectrolytic forces. Negative heat capacity change also corroborated the involvement of hydrophobic forces in the binding process.

  1. Thermodynamic parameters for binding of some halogenated inhibitors of human protein kinase CK2

    Energy Technology Data Exchange (ETDEWEB)

    Winiewska, Maria; Makowska, Małgorzata [Institute of Biochemistry and Biophysics PAS, Warszawa (Poland); Maj, Piotr [Institute of Biochemistry and Biophysics PAS, Warszawa (Poland); Nencki Institute of Experimental Biology PAS, Warszawa (Poland); Wielechowska, Monika; Bretner, Maria [Warsaw University of Technology, Faculty of Chemistry, Warszawa (Poland); Poznański, Jarosław, E-mail: jarek@ibb.waw.pl [Institute of Biochemistry and Biophysics PAS, Warszawa (Poland); Shugar, David [Institute of Biochemistry and Biophysics PAS, Warszawa (Poland)

    2015-01-02

    Highlights: • Two new compounds being potential human CK2a inhibitors are studied. • Their IC50 values were determined in vitro. • The heats of binding and kbind were estimated using DSC. • The increased stability of protein–ligand complexes was followed by fluorescence. • Methylated TBBt derivative (MeBr3Br) is almost as active as TBBt. - Abstract: The interaction of human CK2α with a series of tetrabromobenzotriazole (TBBt) and tetrabromobenzimidazole (TBBz) analogs, in which one of the bromine atoms proximal to the triazole/imidazole ring is replaced by a methyl group, was studied by biochemical (IC{sub 50}) and biophysical methods (thermal stability of protein–ligand complex monitored by DSC and fluorescence). Two newly synthesized tri-bromo derivatives display inhibitory activity comparable to that of the reference compounds, TBBt and TBBz, respectively. DSC analysis of the stability of protein–ligand complexes shows that the heat of ligand binding (H{sub bind}) is driven by intermolecular electrostatic interactions involving the triazole/imidazole ring, as indicated by a strong correlation between H{sub bind} and ligand pK{sub a}. Screening, based on fluorescence-monitored thermal unfolding of protein–ligand complexes, gave comparable results, clearly identifying ligands that most strongly bind to the protein. Overall results, additionally supported by molecular modeling, confirm that a balance of hydrophobic and electrostatic interactions contribute predominantly, relative to possible intermolecular halogen bonding, in binding of the ligands to the CK2α ATP-binding site.

  2. 连续性血液透析滤过治疗犬多器官功能不全综合征对心房肌RAS及ACE2-Ang(1-7)-Mas轴的影响及作用机制%The changes of atrial muscle RAS and ACE2-Ang(1-7)-Mas axis in MODS dogs treated by CVVHDF and the mechanism

    Institute of Scientific and Technical Information of China (English)

    吕雯雯; 俞婧; 叶蕾; 刘红艳; 刘曾华; 陈继红

    2014-01-01

    Objective To observe the members' dynamic change of renin-angiotensin system (RAS) and angiotensin converting enzyme 2(ACE2)-Ang(1-7)-Mas axis during the continuous venovenous hemodiafiltration (CVVHDF) treating the dogs with multiple organ dysfunction syndrome (MODS),and to investigate the efficacy mechanism on cardiac function.Methods Dogs were subjected to hemorrhagic shock plus resuscitation and endotoxemia to establish MODS model,then they were randomly divided into 2 groups:CVVHDF group (n=8) and MODS group (n=6).After endotoxin injection completion,the CVVHDF group received CVVHDF for 12 h,MODS group didn't.Radioimmunoassay,euzymelinked mmunosorbent assay (ELISA) were used to detect the content of renin,Ang Ⅰ,Ang Ⅱ,Ang (1-7).Real-time PCR was used to detect the expression of renin mRNA and ACE2 mRNA.Western blotting was used to detect the protein content of renin,Ang Ⅱ,ACE2 and Ang (1-7).Results (1) Organ function:Compared with the MODS group,the vital signs,heart,lung and renal function were significantly ameliorated in the CVVHDF group,the difference had statistical significance (P< 0.05).(2) RAS changes:To detect index from the level of organs,genetic and molecular in arterial tissue,the results displayed that the content of renin,Ang Ⅰ,Ang Ⅱ,the expression of renin mRNA,the protein content of renin,Ang Ⅱ in CVVHDF group were lower than that in MODS group,the difference had statistical significance (P < 0.01).(3)ACE2-Ang(1-7)-Mas axis's changes:Using the same methods above to detect corresponding indicators,the results displayed that the content of ACE2,Ang(1-7),the expression of ACE2 mRNA and the protein content of ACE2,Ang(1-7) in CVVHDF group were significantly improved than that in MODS group,the difference had statistical significance (P < 0.01).Conclusions In the process of CVVHDF treating MODS,the ACE2 -Ang(1-7)-Mas axis plays the role which antagonizes the RAS system,and to protect the cardiac function.This research may be

  3. Equatorial segment protein (ESP) is a human alloantigen involved in sperm-egg binding and fusion.

    Science.gov (United States)

    Wolkowicz, M J; Digilio, L; Klotz, K; Shetty, J; Flickinger, C J; Herr, J C

    2008-01-01

    The equatorial segment of the sperm head is known to play a role in fertilization; however, the specific sperm molecules contributing to the integrity of the equatorial segment and in binding and fusion at the oolemma remain incomplete. Moreover, identification of molecular mediators of fertilization that are also immunogenic in humans is predicted to advance both the diagnosis and treatment of immune infertility. We previously reported the cloning of Equatorial Segment Protein (ESP), a protein localized to the equatorial segment of ejaculated human sperm. ESP is a biomarker for a subcompartment of the acrosomal matrix that can be traced through all stages of acrosome biogenesis (Wolkowicz et al, 2003). In the present study, ESP immunoreacted on Western blots with 4 (27%) of 15 antisperm antibody (ASA)-positive serum samples from infertile male patients and 2 (40%) of 5 ASA-positive female sera. Immunofluorescent studies revealed ESP in the equatorial segment of 89% of acrosome-reacted sperm. ESP persisted as a defined equatorial segment band on 100% of sperm tightly bound to the oolemma of hamster eggs. Antisera to recombinant human ESP inhibited both oolemmal binding and fusion of human sperm in the hamster egg penetration assay. The results indicate that ESP is a human alloantigen involved in sperm-egg binding and fusion. Defined recombinant sperm immunogens, such as ESP, may offer opportunities for differential diagnosis of immune infertility.

  4. A novel human polycomb binding site acts as a functional polycomb response element in Drosophila.

    Directory of Open Access Journals (Sweden)

    Suresh Cuddapah

    Full Text Available Polycomb group (PcG proteins are key chromatin regulators implicated in multiple processes including embryonic development, tissue homeostasis, genomic imprinting, X-chromosome inactivation, and germ cell differentiation. The PcG proteins recognize target genomic loci through cis DNA sequences known as Polycomb Response Elements (PREs, which are well characterized in Drosophila. However, mammalian PREs have been elusive until two groups reported putative mammalian PREs recently. Consistent with the existence of mammalian PREs, here we report the identification and characterization of a potential PRE from human T cells. The putative human PRE has enriched binding of PcG proteins, and such binding is dependent on a key PcG component SUZ12. We demonstrate that the putative human PRE carries both genetic and molecular features of Drosophila PRE in transgenic flies, implying that not only the trans PcG proteins but also certain features of the cis PREs are conserved between mammals and Drosophila.

  5. Binding of insulin-like growth factors to Tera-2 human embryonal carcinoma cells during differentiation.

    Science.gov (United States)

    Fleck, J F; Sledge, G W; Benenati, S V; Frolik, C A; Roth, B J; Hirsch, K S

    1991-08-15

    Differentiation of Tera-2 human embryonal carcinoma cells by exposure to 2.1 mM alpha-difluoromethylornithine resulted in changes in morphology, a decrease in growth rate, and changes in the expression of SSEA-1 differentiation antigen. While the binding of 125I-insulin-like growth factor I (IGF-I) remained relatively constant during differentiation, binding of 125I-IGF-II increased 2-3-fold. Further, the binding of IGF-II was 87 times greater than IGF-I in both undifferentiated and differentiated cells. Undifferentiated Tera-2 cells exhibited a single class of binding sites for both IGF-I (KD = 1.2 nM, 7.0 x 10(3) sites/cell) and IGF-II (KD = 8.3 nM, 3.4 x 10(5) sites/cell). Following differentiation, IGF-I continued to bind to a single class of binding sites (KD 1.0 nM, 6.7 x 10(3) sites/cell) whereas IGF-II bound to both high-affinity sites (KDH 0.3 nM, 2.2 x 10(5) sites/cell) and low-affinity sites (KDL 15.1 nM, 1.6 x 10(7) sites/cell). The binding of iodinated IGF-II was blocked by unlabeled IGF-II but not IGF-I. In contrast, 125I-IGF-I binding was prevented by either IGF-I or IGF-II. Affinity cross-linking experiments demonstrated the presence of both type I and type II IGF receptors along with a number of IGF binding proteins. IGF-I failed to stimulate the incorporation of [3H]thymidine in both undifferentiated and differentiated cells. Although IGF-II caused a significant increase in [3H]thymidine incorporation in both undifferentiated and differentiated Tera-2 cells, the magnitude of the response and the sensitivity of the cells to IGF-II stimulation was diminished following differentiation. The observed changes in IGF-II binding, which occur in conjunction with cellular differentiation, may be an important feature of the expression of the differentiated phenotype by human germ cell tumors.

  6. DIFFERENCES IN SENSITIVITY BUT NOT SELECTIVITY OF XENOESTROGEN BINDING TO ALLIGATOR VERSUS HUMAN ESTROGEN RECEPTOR ALPHA

    Science.gov (United States)

    Rider, Cynthia V.; Hartig, Phillip C.; Cardon, Mary C.; Lambright, Christy R.; Bobseine, Kathy L.; Guillette, Louis J.; Gray, L. Earl; Wilson, Vickie S.

    2010-01-01

    Reproductive abnormalities in alligators exposed to contaminants in Lake Apopka, Florida, USA represent a clear example of endocrine disruption in wildlife. Several of these contaminants that are not able to bind to mammalian estrogen receptors (such as atrazine and cyanazine) have previously been reported to bind to the alligator estrogen receptor from oviductal tissue. Binding of known Lake Apopka contaminants to full length estrogen receptors alpha from human (hERα) and alligator (aERα) was assessed in a side-by-side comparison within the same assay system. Baculovirus-expressed recombinant hERα and aERα were used in a competitive binding assay. Atrazine and cyanazine were not able to bind to either receptor. p,p′-Dicofol was able to bind to aERα with a concentration inhibiting 50% of binding (IC50) of 4 μM, while only partially displacing 17β-estradiol (E2) from hERα and yielding a projected IC50 of 45 μM. Chemicals that only partially displaced E2 from either receptor, including some dichlorodiphenyltrichloroethane (DDT) metabolites and trans-nonachlor, appeared to have higher affinity for aERα than hERα. p,p′-Dicofol-mediated transcriptional activation through aERα and hERα was assessed to further explore the preferential binding of p,p′-dicofol to aERα over hERα. p,p′-Dicofol was able to stimulate transcriptional activation in a similar manner with both receptors. However, the in vitro results obtained with p,p′-dicofol were not reflected in an in vivo mammalian model, where Kelthane™ (mixed o,p′-and p,p′-dicofol isomers) did not elicit estrogenic effects. In conclusion, although there was no evidence of exclusively species-specific estrogen receptor binders, some xenoestrogens, especially p,p′-dicofol, had a higher affinity for aERα than for hERα. PMID:20821664

  7. The initial noncovalent binding of glucose to human hemoglobin in nonenzymatic glycation.

    Science.gov (United States)

    Clark, Shelley L D; Santin, Angela E; Bryant, Priscilla A; Holman, Rw; Rodnick, Kenneth J

    2013-11-01

    Mechanisms for nonenzymatic protein glycation have been extensively studied albeit with an emphasis at the later stages that gives rise to advanced glycation end products. No detailed investigation of the initial, noncovalent binding of d-glucose to human hemoglobin A (HbA) exists in the literature. Although anionic molecules 2,3-bisphosphoglycerate (BPG), inorganic phosphate (Pi) and HCO3(-) have been implicated in the latter stages of glycation, their involvement at the initial binding of glucose to HbA has not yet been assessed. Results from this computational study involving crystal structures of HbA predict that the transient, ring-opened glucose isomer, assumed to be critical in the later stages of glycation, is not directly involved in initial binding to the β-chain of HbA. All the five structures of glucose generated upon mutorotation will undergo reversible, competitive and slow binding at multiple amino acid residues. The ring-opened structure is most likely generated from previously bound pyranoses that undergo mutarotation while bound. BPG, Pi and HCO3(-) also reversibly bind to HbA with similar energies as glucose isomers (~3-5 kcal/mol) and share common binding sites with glucose isomers. However, there was modest amino acid residue selectivity for binding of certain anionic molecules (1-3 regions) but limited selectivity for glucose structures (≥ 7 regions). The clinical difference between average blood glucose and predicted HbA1c, and the presence of unstable HbA-glucose complexes may be more fully explained by initial noncovalent binding interactions and different concentrations of BPG, Pi and HCO3(-) in serum vs. erythrocytes.

  8. Interplay of Multiple Interaction Forces: Binding of Norfloxacin to Human Serum Albumin.

    Science.gov (United States)

    Paul, Bijan K; Ghosh, Narayani; Mukherjee, Saptarshi

    2015-10-15

    Herein, the binding interaction of a potential chemotherapeutic antibacterial drug norfloxacin (NOF) with a serum transport protein, human serum albumin (HSA), is investigated. The prototropic transformation of the drug (NOF) is found to be remarkably modified following interaction with the protein as manifested through significant modulations of the photophysics of the drug. The predominant zwitterionic form of NOF in aqueous buffer phase undergoes transformation to the cationic form within the protein-encapsulated state. This implies the possible role of electrostatic interaction force in NOF-HSA binding. This postulate is further substantiated from the effect of ionic strength on the interaction process. To this end, the detailed study of the thermodynamics of the drug-protein interaction process from isothermal titration calorimetric (ITC) experiments is found to unfold the signature of electrostatic as well as hydrophobic interaction forces underlying the binding process. Thus, interplay of more than one interaction forces is argued to be responsible for the overall drug-protein binding. The ITC results reveal an important finding in terms of enthalpy-entropy compensation (EEC) characterizing the NOF-HSA binding. The effect of drug-binding on the native protein conformation has also been evaluated from circular dichroism (CD) spectroscopy which unveils partial rupture of the protein secondary structure. In conjunction to this, the functionality of the native protein (in terms of esterase-like activity) is found to be lowered as a result of binding with NOF. The AutoDock-based docking simulation unravels the probable binding location of NOF within the hydrophilic subdomain IA of HSA. The present program also focuses on exploring the dynamical aspects of the drug-protein interaction scenario. The rotational-relaxation dynamics of the protein-bound drug reveals the not-so-common "dip-and-rise" pattern.

  9. Synthesis and evaluation of potential inhibitors of human and Escherichia coli histidine triad nucleotide binding proteins.

    Science.gov (United States)

    Bardaweel, Sanaa K; Ghosh, Brahma; Wagner, Carston R

    2012-01-01

    Based on recent substrate specificity studies, a series of ribonucleotide based esters and carbamates were synthesized and screened as inhibitors of the phosphoramidases and acyl-AMP hydrolases, Escherichia coli Histidine Triad Nucleotide Binding Protein (ecHinT) and human Histidine Triad Nucleotide Binding Protein 1 (hHint1). Using our established phosphoramidase assay, K(i) values were determined. All compounds exhibited non-competitive inhibition profiles. The carbamate based inhibitors were shown to successfully suppress the Hint1-associated phenotype in E. coli, suggesting that they are permeable intracellular inhibitors of ecHinT.

  10. Inhibition of platelet (/sup 3/H)- imipramine binding by human plasma protein fractions

    Energy Technology Data Exchange (ETDEWEB)

    Strijewski, A.; Chudzik, J.; Tang, S.W.

    1988-01-01

    Inhibition of high-affinity (/sup 3/H)-imipramine binding to platelet membranes by human plasma fractions and isolated plasma proteins was investigated. Several plasma proteins were found to contribute to the observed apparent inhibition and this contribution was assessed in terms of inhibitor units. Alpha/sub 1/ acid glycoprotein, high density and low density lipoprotein, IgG and ..cap alpha../sub 1/-antitrypsin were identified as effective non-specific inhibitors. Alpha-1-acid glycoprotein was confirmed to be the most potent plasma protein inhibitor. Cohn fractions were evaluated for the presence of the postulated endocoid of (/sup 3/H)-imipramine binding site.

  11. Gestational changes of GABA levels and GABA binding in the human uterus

    Energy Technology Data Exchange (ETDEWEB)

    Erdoe, S.L.; Villanyi, P.; Laszlo, A.

    1989-01-01

    The concentrations of gamma-aminobutyric acid (GABA), the activities of L-glutamate decarboxylase and GABA-transaminase, and the nature of the sodium-independent binding of GABA were examined in uterine tissue pieces obtained surgically from pregnant and non-pregnant women. GABA concentrations were reduced, while the activity of GABA-transaminase and the specific binding of (/sup 3/H)GABA significantly increased in specimens from pregnant subjects. These findings suggest some gestation-related functional role for the GABA system in the human uterus.

  12. Structural basis for antagonism of human interleukin 18 by poxvirus interleukin 18-binding protein

    Energy Technology Data Exchange (ETDEWEB)

    Krumm, Brian; Meng, Xiangzhi; Li, Yongchao; Xiang, Yan; Deng, Junpeng (Texas-HSC); (OKLU)

    2009-07-10

    Human interleukin-18 (hIL-18) is a cytokine that plays an important role in inflammation and host defense against microbes. Its activity is regulated in vivo by a naturally occurring antagonist, the human IL-18-binding protein (IL-18BP). Functional homologs of human IL-18BP are encoded by all orthopoxviruses, including variola virus, the causative agent of smallpox. They contribute to virulence by suppressing IL-18-mediated immune responses. Here, we describe the 2.0-{angstrom} resolution crystal structure of an orthopoxvirus IL-18BP, ectromelia virus IL-18BP (ectvIL-18BP), in complex with hIL-18. The hIL-18 structure in the complex shows significant conformational change at the binding interface compared with the structure of ligand-free hIL-18, indicating that the binding is mediated by an induced-fit mechanism. EctvIL-18BP adopts a canonical Ig fold and interacts via one edge of its {beta}-sandwich with 3 cavities on the hIL-18 surface through extensive hydrophobic and hydrogen bonding interactions. Most of the ectvIL-18BP residues that participate in these interactions are conserved in both human and viral homologs, explaining their functional equivalence despite limited sequence homology. EctvIL-18BP blocks a putative receptor-binding site on IL-18, thus preventing IL-18 from engaging its receptor. Our structure provides insights into how IL-18BPs modulate hIL-18 activity. The revealed binding interface provides the basis for rational design of inhibitors against orthopoxvirus IL-18BP (for treating orthopoxvirus infection) or hIL-18 (for treating certain inflammatory and autoimmune diseases).

  13. Structural basis for distinct binding properties of the human galectins to Thomsen-Friedenreich antigen.

    Directory of Open Access Journals (Sweden)

    Cheng-Feng Bian

    Full Text Available The Thomsen-Friedenreich (TF or T antigen, Galβ1-3GalNAcα1-O-Ser/Thr, is the core 1 structure of O-linked mucin type glycans appearing in tumor-associated glycosylation. The TF antigen occurs in about 90% of human cancer cells and is a potential ligand for the human endogenous galectins. It has been reported that human galectin-1 (Gal-1 and galectin-3 (Gal-3 can perform their cancer-related functions via specifically recognizing TF antigen. However, the detailed binding properties have not been clarified and structurally characterized. In this work, first we identified the distinct TF-binding abilities of Gal-1 and Gal-3. The affinity to TF antigen for Gal-3 is two orders of magnitude higher than that for Gal-1. The structures of Gal-3 carbohydrate recognition domain (CRD complexed with TF antigen and derivatives, TFN and GM1, were then determined. These structures show a unique Glu-water-Arg-water motif-based mode as previously observed in the mushroom galectin AAL. The observation demonstrates that this recognition mode is commonly adopted by TF-binding galectins, either as endogenous or exogenous ones. The detailed structural comparisons between Gal-1 and Gal-3 CRD and mutagenesis experiments reveal that a pentad residue motif ((51AHGDA(55 at the loop (g1-L4 connecting β-strands 4 and 5 of Gal-1 produces a serious steric hindrance for TF binding. This motif is the main structural basis for Gal-1 with the low affinity to TF antigen. These findings provide the intrinsic structural elements for regulating the TF-binding activity of Gal-1 in some special conditions and also show certain target and approach for mediating some tumor-related bioactivities of human galectins.

  14. Interaction of Hyperoside with Human Serum Albumin and Effect of Glucose on the Binding

    Directory of Open Access Journals (Sweden)

    Jie Yang

    2014-01-01

    Full Text Available The interaction of hyperoside (Hyp with human serum albumin (HSA and effect of glucose on the binding were studied in simulating physiological condition (pH 7.40. The results suggested that Hyp quenched the endogenous fluorescence of HSA via a static quenching process with the distance of 1.95 nm between Hyp and HSA. Hydrophobic forces played a major role in stabilizing the Hyp-HSA complex. Through synchronous fluorescence monitoring of conformation of HSA, we found that the binding to Hyp can change the microenvironment around tryptophan (Trp residues. Increasing in glucose concentration over a range from 0 to 9 mM decreased the binding ability of HSA to Hyp, implying that increasing in glucose concentration would increase the concentration of free Hyp.

  15. Site-Specific Oligonucleotide Binding Represses Transcription of the Human c-myc Gene in vitro

    Science.gov (United States)

    Cooney, Michael; Czernuszewicz, Graznya; Postel, Edith H.; Flint, S. Jane; Hogan, Michael E.

    1988-07-01

    A 27-base-long DNA oligonucleotide was designed that binds to duplex DNA at a single site within the 5' end of the human c-myc gene, 115 base pairs upstream from the transcription origin P1. On the basis of the physical properties of its bound complex, it was concluded that the oligonucleotide forms a colinear triplex with the duplex binding site. By means of an in vitro assay system, it was possible to show a correlation between triplex formation at -115 base pairs and repression of c-myc transcription. The possibility is discussed that triplex formation (site-specific RNA binding to a DNA duplex) could serve as the basis for an alternative program of gene control in vivo.

  16. Comparative modelling of human β tubulin isotypes and implications for drug binding

    Science.gov (United States)

    Torin Huzil, J.; Ludueña, Richard F.; Tuszynski, Jack

    2006-02-01

    The protein tubulin is a target for several anti-mitotic drugs, which affect microtubule dynamics, ultimately leading to cell cycle arrest and apoptosis. Many of these drugs, including the taxanes and Vinca alkaloids, are currently used clinically in the treatment of several types of cancer. Another tubulin binding drug, colchicine, although too toxic to be used as a chemotherapeutic agent, is commonly used for the treatment of gout. The main disadvantage that all of these drugs share is that they bind tubulin indiscriminately, leading to the death of both cancerous and healthy cells. However, the broad cellular distribution of several tubulin isotypes provides a platform upon which to construct novel chemotherapeutic drugs that could differentiate between different cell types, reducing the undesirable side effects associated with current chemotherapeutic treatments. Here, we report an analysis of ten human β tubulin isotypes and discuss differences within each of the previously characterized paclitaxel, colchicine and vinblastine binding sites.

  17. Influence of the galloyl moiety in tea catechins on binding affinity for human serum albumin.

    Science.gov (United States)

    Minoda, Kanako; Ichikawa, Tatsuya; Katsumata, Tomoharu; Onobori, Ken-ichi; Mori, Taiki; Suzuki, Yukiko; Ishii, Takeshi; Nakayama, Tsutomu

    2010-01-01

    The major catechins of green tea extract are (-)-epicatechin (EC), (-)-epigallocatechin (EGC), (-)-epicatechin gallate (ECg), and (-)-epigallocatechin gallate (EGCg). Recent research has indicated that catechins form complexes with human serum albumin (HSA) in blood, and differences in their binding affinity toward HSA are believed to modulate their bioavailability. In this study, we kinetically investigated the interaction between the catechins and HSA immobilized on a quartz-crystal microbalance (QCM). The association constants obtained from the frequency changes of QCM revealed interactions of ECg and EGCg with HSA that are 100 times stronger than those of EC and EGC. Furthermore, comparisons of these catechins by native-gel electrophoresis/blotting with redox-cycling staining revealed that, in a phosphate buffer, ECg and EGCg have a higher binding affinity toward HSA than EC and EGC. These observations indicate that catechins with a galloyl moiety have higher binding affinities toward HSA than catechins lacking a galloyl moiety.

  18. Multiple binding of bilirubin to human serum albumin and cobinding with laurate

    DEFF Research Database (Denmark)

    Sato, H; Honoré, B; Brodersen, R

    1988-01-01

    method, based upon a difference of light absorption spectrum for free and bound bilirubin. The observations were supplemented with previous data from an independent technique, measurement of oxidation rates of free bilirubin with hydrogen peroxide and peroxidase. A continuous isotherm was obtained......Numerical analysis of multiple binding of two ligands to one carrier has been accomplished, using the principle of several sets of acceptable binding constants, with bilirubin-laurate-albumin as an example. Binding of bilirubin to defatted human serum albumin was investigated by a spectroscopic....... Cobinding of bilirubin and laurate was studied, with up to 2 mol of each ligand per mole albumin, using the peroxidase method for determination of free equilibrium concentrations of bilirubin, and a dialysis rate technique for free laurate. The findings could be described in terms of a stoichiometric model...

  19. SPECIFIC BINDING OF HUMAN BONE MORPHOGENETIC PROTEIN (2A) WITH MOUSE OSTEOBLASTIC CELLS

    Institute of Scientific and Technical Information of China (English)

    刘新平; 陈苏民; 陈南春; 高磊; 赵忠良

    1996-01-01

    Human bone morphogenetic protein 2A (hBMP2A) cDNA terminal 567 nucleotides were cloned and expressed in a phage display vector pCSM2I. Hulnata BMP2A C-terminal peptide displayed on the surface of the phage can bind specifically to the sttrface of mouse osteoblastie cell (MC3T3) membrane. ELISA assay showed a positive signal of the binding by using antibody against M13 phage gene 8 protein. After labeling with 3HTdR,the counts of the binding groups were 3 to 10 times higher than the control groups. It suggests that the'surface of MC3T3 cells exist the recepzor for hBMP2A.

  20. p53 binds human telomeric G-quadruplex in vitro.

    Science.gov (United States)

    Adámik, Matej; Kejnovská, Iva; Bažantová, Pavla; Petr, Marek; Renčiuk, Daniel; Vorlíčková, Michaela; Brázdová, Marie

    2016-01-01

    The tumor suppressor protein p53 is a key factor in genome stability and one of the most studied of DNA binding proteins. This is the first study on the interaction of wild-type p53 with guanine quadruplexes formed by the human telomere sequence. Using electromobility shift assay and ELISA, we show that p53 binding to telomeric G-quadruplexes increases with the number of telomeric repeats. Further, p53 strongly favors G-quadruplexes folded in potassium over those formed in sodium, thus indicating the telomeric G-quadruplex conformational selectivity of p53. The presence of the quadruplex-stabilizing ligand, N-methyl mesoporphyrin IX (NMM), increases p53 recognition of G-quadruplexes in potassium. Using deletion mutants and selective p53 core domain oxidation, both p53 DNA binding domains are shown to be crucial for telomeric G-quadruplex recognition.

  1. Isoforms of Hsp70-binding human LDL in adult Schistosoma mansoni worms.

    Science.gov (United States)

    Pereira, Adriana S A; Cavalcanti, Marília G S; Zingali, Russolina B; Lima-Filho, José L; Chaves, Maria E C

    2015-03-01

    Schistosoma mansoni is one of the most common parasites infecting humans. They are well adapted to the host, and this parasite's longevity is a consequence of effective escape from the host immune system. In the blood circulation, lipoproteins not only help to conceal the worm from attack by host antibodies but also act as a source of lipids for S. mansoni. Previous SEM studies showed that the low-density lipoprotein (LDL) particles present on the surface of adult S. mansoni worms decreased in size when the incubation time increased. In this study, immunocytochemical and proteomic analyses were used to locate and identify S. mansoni binding proteins to human plasma LDL. Ultrathin sections of adult worms were cut transversely from the anterior, medial and posterior regions of the parasite. Immunocytochemical experiments revealed particles of gold in the tegument, muscle region and spine in male worms and around vitelline cells in females. Immunoblotting and 2D-electrophoresis using incubations with human serum, anti-LDL antibodies and anti-chicken IgG peroxidase conjugate were performed to identify LDL-binding proteins in S. mansoni. Analysis of the binding proteins using LC-MS identified two isoforms of the Hsp70 chaperone in S. mansoni. Hsp70 is involved in the interaction with apoB in the cytoplasm and its transport to the endoplasmic reticulum. However, further studies are needed to clarify the functional role of Hsp70 in S. mansoni, mainly related to the interaction with human LDL.

  2. Heat Capacity Changes for Transition-State Analogue Binding and Catalysis with Human 5'-Methylthioadenosine Phosphorylase.

    Science.gov (United States)

    Firestone, Ross S; Cameron, Scott A; Karp, Jerome M; Arcus, Vickery L; Schramm, Vern L

    2017-02-17

    Human 5'-methylthioadenosine phosphorylase (MTAP) catalyzes the phosphorolysis of 5'-methylthioadenosine (MTA). Its action regulates cellular MTA and links polyamine synthesis to S-adenosylmethionine (AdoMet) salvage. Transition state analogues with picomolar dissociation constants bind to MTAP in an entropically driven process at physiological temperatures, suggesting increased hydrophobic character or dynamic structure for the complexes. Inhibitor binding exhibits a negative heat capacity change (-ΔCp), and thus the changes in enthalpy and entropy upon binding are strongly temperature-dependent. The ΔCp of inhibitor binding by isothermal titration calorimetry does not follow conventional trends and is contrary to that expected from the hydrophobic effect. Thus, ligands of increasing hydrophobicity bind with increasing values of ΔCp. Crystal structures of MTAP complexed to transition-state analogues MT-DADMe-ImmA, BT-DADMe-ImmA, PrT-ImmA, and a substrate analogue, MT-tubercidin, reveal similar active site contacts and overall protein structural parameters, despite large differences in ΔCp for binding. In addition, ΔCp values are not correlated with Kd values. Temperature dependence of presteady state kinetics revealed the chemical step for the MTAP reaction to have a negative heat capacity for transition state formation (-ΔCp(‡)). A comparison of the ΔCp(‡) for MTAP presteady state chemistry and ΔCp for inhibitor binding revealed those transition-state analogues most structurally and thermodynamically similar to the transition state. Molecular dynamics simulations of MTAP apoenzyme and complexes with MT-DADMe-ImmA and MT-tubercidin show small, but increased dynamic motion in the inhibited complexes. Variable temperature CD spectroscopy studies for MTAP-inhibitor complexes indicate remarkable protein thermal stability (to Tm = 99 °C) in complexes with transition-state analogues.

  3. Characterization of interactions of dihydrolipoamide dehydrogenase with its binding protein in the human pyruvate dehydrogenase complex

    Energy Technology Data Exchange (ETDEWEB)

    Park, Yun-Hee [Department of Biochemistry, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14214 (United States); Patel, Mulchand S., E-mail: mspatel@buffalo.edu [Department of Biochemistry, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14214 (United States)

    2010-05-07

    Unlike pyruvate dehydrogenase complexes (PDCs) from prokaryotes, PDCs from higher eukaryotes have an additional structural component, E3-binding protein (BP), for binding of dihydrolipoamide dehydrogenase (E3) in the complex. Based on the 3D structure of the subcomplex of human (h) E3 with the di-domain (L3S1) of hBP, the amino acid residues (H348, D413, Y438, and R447) of hE3 for binding to hBP were substituted singly by alanine or other residues. These substitutions did not have large effects on hE3 activity when measured in its free form. However, when these hE3 mutants were reconstituted in the complex, the PDC activity was significantly reduced to 9% for Y438A, 20% for Y438H, and 18% for D413A. The binding of hE3 mutants with L3S1 determined by isothermal titration calorimetry revealed that the binding affinities of the Y438A, Y438H, and D413A mutants to L3S1 were severely reduced (1019-, 607-, and 402-fold, respectively). Unlike wild-type hE3 the binding of the Y438A mutant to L3S1 was accompanied by an unfavorable enthalpy change and a large positive entropy change. These results indicate that hE3-Y438 and hE3-D413 play important roles in binding of hE3 to hBP.

  4. Binding of recombinant HIV coat protein gp120 to human monocytes

    Energy Technology Data Exchange (ETDEWEB)

    Finbloom, D.S.; Hoover, D.L.; Meltzer, M.S. (Food and Drug Administration, Bethesda, MD (USA))

    1991-02-15

    Inasmuch as the exact level of CD4 Ag expression on macrophages is controversial and because HIV may interact with macrophages in a manner different from that on T cells, we analyzed the binding of gp120 to freshly isolated and cultured monocytes. rgp120 was iodinated using the lactoperoxidase method to a sp. act. of 600 Ci/mmol. Highly purified monocytes (greater than 90%) were isolated from the leukapheresed blood of normal volunteers by Ficoll-Hypaque sedimentation followed by countercurrent centrifugal elutriation and cultured 7 days in DMEM supplemented with 1000 U/ml macrophage CSF in 10% human serum. Whereas MOLT/4 cells consistently bound freshly prepared 125I-rgp120 at 80% specificity with 5100 +/- 700 mol/cell, MCSF cultured monocytes bound rgp120 at only 0 to 20% specificity and 420 +/- 200 mol/cell. Most of the radioactivity bound by these cells could not be blocked by the addition of unlabeled rgp120. In contrast, the U937 myeloid cell line bound rgp120 with 50% specificity and about 2500 mol/cell. Whereas the antibody OKT4a (anti-CD4) blocked 80% of the binding on MOLT/4 cells and 50% on U937 cells, binding was only inhibited on the average of 6% on cultured monocytes. When soluble rCD4 was used as an inhibitor, binding to MOLT/4 cells was blocked by 80%. In contrast, binding to cultured monocytes was inhibited by 28%. HIV infectivity was blocked by similar concentrations of OKT4a. These observations suggest that although most binding of gp120 to cultured monocytes is not to the CD4 determinant, several hundred molecules do bind to a CD4-like molecule which promotes virus entry and replication.

  5. Binding between Saikosaponin C and Human Serum Albumin by Fluorescence Spectroscopy and Molecular Docking

    Directory of Open Access Journals (Sweden)

    Yi-Cun Chen

    2016-01-01

    Full Text Available Saikosaponin C (SSC is one of the major active constituents of dried Radix bupleuri root (Chaihu in Chinese that has been widely used in China to treat a variety of conditions, such as liver disease, for many centuries. The binding of SSC to human serum albumin (HSA was explored by fluorescence, circular dichroism (CD, UV-vis spectrophotometry, and molecular docking to understand both the pharmacology and the basis of the clinical use of SSC/Chaihu. SSC produced a concentration-dependent quenching effect on the intrinsic fluorescence of HSA, accompanied by a blue shift in the fluorescence spectra. The Stern-Volmer equation showed that this quenching was dominated by static quenching. The binding constant of SSC with HSA was 3.72 × 103 and 2.99 × 103 L·mol−1 at 26 °C and 36 °C, respectively, with a single binding site on each SSC and HSA molecule. Site competitive experiments demonstrated that SSC bound to site I (subdomain IIA and site II (subdomain IIIA in HSA. Analysis of thermodynamic parameters indicated that hydrogen bonding and van der Waals forces were mostly responsible for SSC-HSA association. The energy transfer efficiency and binding distance between SSC and HSA was calculated to be 0.23 J and 2.61 nm at 26 °C, respectively. Synchronous fluorescence and CD measurements indicated that SSC affected HSA conformation in the SSC-HSA complex. Molecular docking supported the experimental findings in conformational changes, binding sites and binding forces, and revealed binding of SSC at the interface between subdomains IIA-IIB.

  6. Human RNASET2 derivatives as potential anti-angiogenic agents: actin binding sequence identification and characterization

    Science.gov (United States)

    Nesiel-Nuttman, Liron; Doron, Shani; Schwartz, Betty; Shoseyov, Oded

    2015-01-01

    Human RNASET2 (hRNASET2) has been demonstrated to exert antiangiogenic and antitumorigenic effects independent of its ribonuclease capacity. We suggested that RNASET2 exerts its antiangiogenic and antitumorigenic activities via binding to actin and consequently inhibits cell motility. We focused herein on the identification of the actin binding site of hRNASET2 using defined sequences encountered within the whole hRNASET2 protein. For that purpose we designed 29 different hRNASET2-derived peptides. The 29 peptides were examined for their ability to bind immobilized actin. Two selected peptides-A103-Q159 consisting of 57 amino acids and peptide K108-K133 consisting of 26 amino acids were demonstrated to have the highest actin binding ability and concomitantly the most potent anti-angiogenic activity. Further analyses on the putative mechanisms associated with angiogenesis inhibition exerted by peptide K108-K133 involved its location during treatment within the HUVE cells. Peptide K108-K133 readily penetrates the cell membrane within 10 min of incubation. In addition, supplementation with angiogenin delays the entrance of peptide K108-K133 to the cell suggesting competition on the same cell internalization route. The peptide was demonstrated to co-localize with angiogenin, suggesting that both molecules bind analogous cellular epitopes, similar to our previously reported data for ACTIBIND and trT2-50. PMID:25815360

  7. In vitro stereoselective covalent binding of carprofen glucuronides to human serum albumin: characterization of the mechanism.

    Science.gov (United States)

    Greige-Georges, Hélène; Buronfosse, Thierry; Netter, Patrcik; Magdalou, Jacques; Lapicque, Françoise

    2003-01-01

    The reactivity, in terms of covalent binding, of R- and S-carprofen acylglucuronides with human serum albumin (HSA) has been investigated in vitro. The irreversible binding of these metabolites to the HSA 580 mM occurred at pH 7.4 and 37 degrees C instantaneously and stereoselectively in favour of the R-enentiomer glucuronide. The amount of carprofen adducts remained stable with time up to 48 hr, and increased with the glucuronide concentration. It was not modified by addiction of imine-trapping reagents, suggesting that the reaction is not mediated by a Schiff base mechanism. Moreover the extreme rapidity of the covalent binding supports a mechanism of nucleophilic attack. Competition studies with ligands known to bind to different sites of HSA, indicated that carprofen glucuronides interacted mainly with site II. The extent of the binding of R-carprofen glucuronide increased with pH, thus suggesting the participation of an alkaline group in the process. The modification of HSA by amino-acid directed chemicals led to the conclusion that Tyr, Lys or Arg residues in site II were mainly involved.

  8. A human microRNA precursor binding to folic acid discovered by small RNA transcriptomic SELEX.

    Science.gov (United States)

    Terasaka, Naohiro; Futai, Kazuki; Katoh, Takayuki; Suga, Hiroaki

    2016-12-01

    RNA aptamers are structured motifs that bind to specific molecules. A growing number of RNAs bearing aptamer elements, whose functions are modulated by direct binding of metabolites, have been found in living cells. Recent studies have suggested that more small RNAs binding to metabolites likely exist and may be involved in diverse cellular processes. However, conventional methods are not necessarily suitable for the discovery of such RNA aptamer elements in small RNAs with lengths ranging from 50 to 200 nucleotides, due to the far more abundant tRNAs in this size range. Here, we describe a new in vitro selection method to uncover naturally occurring small RNAs capable of binding to a ligand of interest, referred to as small RNA transcriptomic SELEX (smaRt-SELEX). By means of this method, we identified a motif in human precursor microRNA 125a (hsa-pre-miR-125a) that interacts with folic acid. Mutation studies revealed that the terminal loop region of hsa-pre-miR-125a is important for this binding interaction. This method has potential for the discovery of new RNA aptamer elements or catalytic motifs in biological small RNA fractions. © 2016 Terasaka et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  9. Thermodynamic fingerprints of ligand binding to human telomeric G-quadruplexes.

    Science.gov (United States)

    Bončina, Matjaž; Podlipnik, Črtomir; Piantanida, Ivo; Eilmes, Julita; Teulade-Fichou, Marie-Paule; Vesnaver, Gorazd; Lah, Jurij

    2015-12-02

    Thermodynamic studies of ligand binding to human telomere (ht) DNA quadruplexes, as a rule, neglect the involvement of various ht-DNA conformations in the binding process. Therefore, the thermodynamic driving forces and the mechanisms of ht-DNA G-quadruplex-ligand recognition remain poorly understood. In this work we characterize thermodynamically and structurally binding of netropsin (Net), dibenzotetraaza[14]annulene derivatives (DP77, DP78), cationic porphyrin (TMPyP4) and two bisquinolinium ligands (Phen-DC3, 360A-Br) to the ht-DNA fragment (Tel22) AGGG(TTAGGG)3 using isothermal titration calorimetry, CD and fluorescence spectroscopy, gel electrophoresis and molecular modeling. By global thermodynamic analysis of experimental data we show that the driving forces characterized by contributions of specific interactions, changes in solvation and conformation differ significantly for binding of ligands with low quadruplex selectivity over duplexes (Net, DP77, DP78, TMPyP4; KTel22 ≈ KdsDNA). These contributions are in accordance with the observed structural features (changes) and suggest that upon binding Net, DP77, DP78 and TMPyP4 select hybrid-1 and/or hybrid-2 conformation while Phen-DC3 and 360A-Br induce the transition of hybrid-1 and hybrid-2 to the structure with characteristics of antiparallel or hybrid-3 type conformation.

  10. Thermodynamics of Damaged DNA Binding and Catalysis by Human AP Endonuclease 1.

    Science.gov (United States)

    Miroshnikova, A D; Kuznetsova, A A; Kuznetsov, N A; Fedorova, O S

    2016-01-01

    Apurinic/apyrimidinic (AP) endonucleases play an important role in DNA repair and initiation of AP site elimination. One of the most topical problems in the field of DNA repair is to understand the mechanism of the enzymatic process involving the human enzyme APE1 that provides recognition of AP sites and efficient cleavage of the 5'-phosphodiester bond. In this study, a thermodynamic analysis of the interaction between APE1 and a DNA substrate containing a stable AP site analog lacking the C1' hydroxyl group (F site) was performed. Based on stopped-flow kinetic data at different temperatures, the steps of DNA binding, catalysis, and DNA product release were characterized. The changes in the standard Gibbs energy, enthalpy, and entropy of sequential specific steps of the repair process were determined. The thermodynamic analysis of the data suggests that the initial step of the DNA substrate binding includes formation of non-specific contacts between the enzyme binding surface and DNA, as well as insertion of the amino acid residues Arg177 and Met270 into the duplex, which results in the removal of "crystalline" water molecules from DNA grooves. The second binding step involves the F site flipping-out process and formation of specific contacts between the enzyme active site and the everted 5'-phosphate-2'-deoxyribose residue. It was shown that non-specific interactions between the binding surfaces of the enzyme and DNA provide the main contribution into the thermodynamic parameters of the DNA product release step.

  11. Distribution of [3H]GR65630 binding in human brain postmortem.

    Science.gov (United States)

    Marazziti, D; Betti, L; Giannaccini, G; Rossi, A; Masala, I; Baroni, S; Cassano, G B; Lucacchini, A

    2001-03-01

    We investigated the distribution of serotonin (5-HT) receptors of type 3 (5-HT3) in human brain areas, by means of the the specific binding of [3H]GR65630. The brains were obtained during autoptic sessions from 6 subjects. Human brain membranes and the binding of [3H]GR65630 were carried out according to standardized methods. The highest density (Bmax +/- SD, fmol/mg protein) of [3H]GR65630 binding sites was found in area postrema (13.1+/-9.7), followed at a statistically lower level, by nucleus tractus solitarius (6.7+/-3.4), nervus vagus (5.5+/-2.1), striatum (4.8+/-2.4) with a progressive decrease in amygdala, olivar nuclei, hippocampus, olfactory bulbus and prefrontal cortex, and then by the other cortical areas and the cerebellum, where no binding was detected. These observations extend previous findings on the distribution of 5-HT3 receptors and confirm interspecies variations that might explain the heterogeneous properties of 5-HT3 receptors in different animals.

  12. The human mitochondrial transcription factor A is a versatile G-quadruplex binding protein

    Science.gov (United States)

    Lyonnais, Sébastien; Tarrés-Soler, Aleix; Rubio-Cosials, Anna; Cuppari, Anna; Brito, Reicy; Jaumot, Joaquim; Gargallo, Raimundo; Vilaseca, Marta; Silva, Cristina; Granzhan, Anton; Teulade-Fichou, Marie-Paule; Eritja, Ramon; Solà, Maria

    2017-01-01

    The ability of the guanine-rich strand of the human mitochondrial DNA (mtDNA) to form G-quadruplex structures (G4s) has been recently highlighted, suggesting potential functions in mtDNA replication initiation and mtDNA stability. G4 structures in mtDNA raise the question of their recognition by factors associated with the mitochondrial nucleoid. The mitochondrial transcription factor A (TFAM), a high-mobility group (HMG)-box protein, is the major binding protein of human mtDNA and plays a critical role in its expression and maintenance. HMG-box proteins are pleiotropic sensors of DNA structural alterations. Thus, we investigated and uncovered a surprising ability of TFAM to bind to DNA or RNA G4 with great versatility, showing an affinity similar than to double-stranded DNA. The recognition of G4s by endogenous TFAM was detected in mitochondrial extracts by pull-down experiments using a G4-DNA from the mtDNA conserved sequence block II (CSBII). Biochemical characterization shows that TFAM binding to G4 depends on both the G-quartets core and flanking single-stranded overhangs. Additionally, it shows a structure-specific binding mode that differs from B-DNA, including G4-dependent TFAM multimerization. These TFAM-G4 interactions suggest functional recognition of G4s in the mitochondria. PMID:28276514

  13. Potential toxicity of sulfanilamide antibiotic: Binding of sulfamethazine to human serum albumin

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jiabin [State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092 (China); Zhou, Xuefei [Key Laboratory of Yangtze River Water Environment for Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092 (China); Zhang, Yalei, E-mail: zhangyalei2003@163.com [State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092 (China); Gao, Haiping [Key Laboratory of Yangtze River Water Environment for Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092 (China)

    2012-08-15

    Antibiotics are widely used in daily life but their abuse has posed a potential threat to human health. The interaction between human serum albumin (HSA) and sulfamethazine (SMZ) was investigated by capillary electrophoresis, fluorescence spectrometry, and circular dichroism. The binding constant and site were determined to be 1.09 Multiplication-Sign 10{sup 4} M{sup -1} and 1.14 at 309.5 K. The thermodynamic determination indicated that the interaction was driven by enthalpy change, where the electrostatic interaction and hydrogen bond were the dominant binding force. The binding distance between SMZ and tryptophan residue of HSA was obtained to be 3.07 nm according to Foerster non-radioactive energy transfer theory. The site marker competition revealed that SMZ bound into subdomain IIA of HSA. The binding of SMZ induced the unfolding of the polypeptides of HSA and transferred the secondary conformation of HSA. The equilibrium dialysis showed that only 0.13 mM SMZ decreased vitamin B{sub 2} by 38% transported on the HSA. This work provides a new quantitative evaluation method for antibiotics to cause the protein damage. -- Highlights: Black-Right-Pointing-Pointer Various techniques characterized the interactions between SMZ and HSA. Black-Right-Pointing-Pointer The electrostatic interaction and hydrogen bond dominated in the interaction. Black-Right-Pointing-Pointer SMZ induced the conformation change of HSA. Black-Right-Pointing-Pointer SMZ affected the transportation function of HSA.

  14. Sleep deprivation increases cerebral serotonin 2A receptor binding in humans.

    Science.gov (United States)

    Elmenhorst, David; Kroll, Tina; Matusch, Andreas; Bauer, Andreas

    2012-12-01

    Serotonin and its cerebral receptors play an important role in sleep-wake regulation. The aim of the current study is to investigate the effect of 24-h total sleep deprivation on the apparent serotonin 2A receptor (5-HT(2A)R) binding capacity in the human brain to test the hypothesis that sleep deprivation induces global molecular alterations in the cortical serotonergic receptor system. Volunteers were tested twice with the subtype-selective radiotracer [(18)F]altanserin and positron emission tomography (PET) for imaging of 5-HT(2A)Rs at baseline and after 24 h of sleep deprivation. [(18)F]Altanserin binding potentials were analyzed in 13 neocortical regions of interest. The efficacy of sleep deprivation was assessed by questionnaires, waking electroencephalography, and cognitive performance measurements. Sleep laboratory and neuroimaging center. Eighteen healthy volunteers. Sleep deprivation. A total of 24 hours of sleep deprivation led to a 9.6% increase of [(18)F]altanserin binding on neocortical 5-HT(2A) receptors. Significant region-specific increases were found in the medial inferior frontal gyrus, insula, and anterior cingulate, parietal, sensomotoric, and ventrolateral prefrontal cortices. This study demonstrates that a single night of total sleep deprivation causes significant increases of 5-HT(2A)R binding potentials in a variety of cortical regions although the increase declines as sleep deprivation continued. It provides in vivo evidence that total sleep deprivation induces adaptive processes in the serotonergic system of the human brain.

  15. Desvenlafaxine succinate identifies novel antagonist binding determinants in the human norepinephrine transporter.

    Science.gov (United States)

    Mason, John N; Deecher, Darlene C; Richmond, Rhonda L; Stack, Gary; Mahaney, Paige E; Trybulski, Eugene; Winneker, Richard C; Blakely, Randy D

    2007-11-01

    Desvenlafaxine succinate (DVS) is a recently introduced antagonist of the human norepinephrine and serotonin transporters (hNET and hSERT, respectively), currently in clinical development for use in the treatment of major depressive disorder and vasomotor symptoms associated with menopause. Initial evaluation of the pharmacological properties of DVS (J Pharmacol Exp Ther 318:657-665, 2006) revealed significantly reduced potency for the hNET expressed in membranes compared with whole cells when competing for [(3)H]nisoxetine (NIS) binding. Using hNET in transfected human embryonic kidney-293 cells, this difference in potency for DVS at sites labeled by [(3)H]NIS was found to distinguish DVS, the DVS analog rac-(1-[1-(3-chloro-phenyl)-2-(4-methylpiperazin-1-yl)-ethyl]cyclohexanol (WY-46824), methylphenidate, and the cocaine analog 3beta-(4-iodophenyl)tropane-2beta-carboxylic acid methyl ester (RTI-55) from other hNET antagonists, such as NIS, mazindol, tricyclic antidepressants, and cocaine. These differences seem not to arise from preparation-specific perturbations of ligand intrinsic affinity or antagonist-specific surface trafficking but rather from protein conformational alterations that perturb the relationships between distinct hNET binding sites. In an initial search for molecular features that differentially define antagonist binding determinants, we document that Val148 in hNET transmembrane domain 3 selectively disrupts NIS binding but not that of DVS.

  16. Germline V-genes sculpt the binding site of a family of antibodies neutralizing human cytomegalovirus

    Energy Technology Data Exchange (ETDEWEB)

    Thomson, Christy A.; Bryson, Steve; McLean, Gary R.; Creagh, A. Louise; Pai, Emil F.; Schrader, John W. (Toronto); (UBC)

    2008-10-17

    Immunoglobulin genes are generated somatically through specialized mechanisms resulting in a vast repertoire of antigen-binding sites. Despite the stochastic nature of these processes, the V-genes that encode most of the antigen-combining site are under positive evolutionary selection, raising the possibility that V-genes have been selected to encode key structural features of binding sites of protective antibodies against certain pathogens. Human, neutralizing antibodies to human cytomegalovirus that bind the AD-2S1 epitope on its gB envelope protein repeatedly use a pair of well-conserved, germline V-genes IGHV3-30 and IGKV3-11. Here, we present crystallographic, kinetic and thermodynamic analyses of the binding site of such an antibody and that of its primary immunoglobulin ancestor. These show that these germline V-genes encode key side chain contacts with the viral antigen and thereby dictate key structural features of the hypermutated, high-affinity neutralizing antibody. V-genes may thus encode an innate, protective immunological memory that targets vulnerable, invariant sites on multiple pathogens.

  17. Alpha-1 adrenergic receptor: Binding and phosphoinositide breakdown in human myometrium

    Energy Technology Data Exchange (ETDEWEB)

    Breuiller-Fouche, M.; Doualla-Bell Kotto Maka, F.; Geny, B.; Ferre, F. (INSERM U.166 Groupe de recherches sur l' Endocrinologie de la Reproduction, Maternite Baudelocque, Paris (France))

    1991-07-01

    Alpha-1 adrenergic receptors were examined in both inner and outer layers of human pregnant myometrium using radioligand binding of (3H)prazosin. (3H)prazosin bound rapidly and reversibly to a single class of high affinity binding sites in myometrial membrane preparations. Scatchard analysis gave similar values of equilibrium dissociation constants in both myometrial layers. In contrast, more alpha-1 adrenergic receptors were detected in the outer layer than in the inner layer. Antagonist inhibited (3H)prazosin binding with an order of potency of prazosin greater than phentolamine greater than idazoxan. Competition experiments have also revealed that a stable guanine nucleotide decreases the apparent affinity of norepinephrine for myometrial (3H)prazosin binding sites. The functional status of these alpha-1 adrenergic receptors was also assessed by measuring the norepinephrine-induced accumulation of inositol phosphates in myometrial tissue. Norepinephrine produced a concentration-dependent accumulation of inositol phosphates in both myometrial layers. However, norepinephrine-induced increases in inositol 1,4,5-triphosphate were only observed in the outer layer. These results indicate that alpha-1 adrenergic receptors in human myometrium at the end of pregnancy are linked to phosphoinositide hydrolysis and that this response occurs mainly in the outer layer.

  18. The predicted 3D structure of the human D2 dopamine receptor and the binding site and binding affinities for agonists and antagonists

    Science.gov (United States)

    Kalani, M. Yashar S.; Vaidehi, Nagarajan; Hall, Spencer E.; Trabanino, Rene J.; Freddolino, Peter L.; Kalani, Maziyar A.; Floriano, Wely B.; Tak Kam, Victor Wai; Goddard, William A., III

    2004-03-01

    Dopamine neurotransmitter and its receptors play a critical role in the cell signaling process responsible for information transfer in neurons functioning in the nervous system. Development of improved therapeutics for such disorders as Parkinson's disease and schizophrenia would be significantly enhanced with the availability of the 3D structure for the dopamine receptors and of the binding site for dopamine and other agonists and antagonists. We report here the 3D structure of the long isoform of the human D2 dopamine receptor, predicted from primary sequence using first-principles theoretical and computational techniques (i.e., we did not use bioinformatic or experimental 3D structural information in predicting structures). The predicted 3D structure is validated by comparison of the predicted binding site and the relative binding affinities of dopamine, three known dopamine agonists (antiparkinsonian), and seven known antagonists (antipsychotic) in the D2 receptor to experimentally determined values. These structures correctly predict the critical residues for binding dopamine and several antagonists, identified by mutation studies, and give relative binding affinities that correlate well with experiments. The predicted binding site for dopamine and agonists is located between transmembrane (TM) helices 3, 4, 5, and 6, whereas the best antagonists bind to a site involving TM helices 2, 3, 4, 6, and 7 with minimal contacts to TM helix 5. We identify characteristic differences between the binding sites of agonists and antagonists.

  19. The binding site for neohesperidin dihydrochalcone at the human sweet taste receptor

    Directory of Open Access Journals (Sweden)

    Kratochwil Nicole A

    2007-10-01

    Full Text Available Abstract Background Differences in sweet taste perception among species depend on structural variations of the sweet taste receptor. The commercially used isovanillyl sweetener neohesperidin dihydrochalcone activates the human but not the rat sweet receptor TAS1R2+TAS1R3. Analysis of interspecies combinations and chimeras of rat and human TAS1R2+TAS1R3 suggested that the heptahelical domain of human TAS1R3 is crucial for the activation of the sweet receptor by neohesperidin dihydrochalcone. Results By mutational analysis combined with functional studies and molecular modeling we identified a set of different amino acid residues within the heptahelical domain of human TAS1R3 that forms the neohesperidin dihydrochalcone binding pocket. Sixteen amino acid residues in the transmembrane domains 2 to 7 and one in the extracellular loop 2 of hTAS1R3 influenced the receptor's response to neohesperidin dihydrochalcone. Some of these seventeen residues are also part of the binding sites for the sweetener cyclamate or the sweet taste inhibitor lactisole. In line with this observation, lactisole inhibited activation of the sweet receptor by neohesperidin dihydrochalcone and cyclamate competitively, whereas receptor activation by aspartame, a sweetener known to bind to the N-terminal domain of TAS1R2, was allosterically inhibited. Seven of the amino acid positions crucial for activation of hTAS1R2+hTAS1R3 by neohesperidin dihydrochalcone are thought to play a role in the binding of allosteric modulators of other class C GPCRs, further supporting our model of the neohesperidin dihydrochalcone pharmacophore. Conclusion From our data we conclude that we identified the neohesperidin dihydrochalcone binding site at the human sweet taste receptor, which overlaps with those for the sweetener cyclamate and the sweet taste inhibitor lactisole. This readily delivers a molecular explanation of our finding that lactisole is a competitive inhibitor of the receptor

  20. SDS-binding assay based on tyrosine fluorescence as a tool to determine binding properties of human serum albumin in blood plasma

    Science.gov (United States)

    Zhdanova, Nadezda; Shirshin, Evgeny; Fadeev, Victor; Priezzhev, Alexander

    2016-04-01

    Among all plasma proteins human serum albumin (HSA) is the most studied one as it is the main transport protein and can bind a wide variety of ligands especially fatty acids (FAs). The concentration of FAs bound to HSA in human blood plasma differs by three times under abnormal conditions (fasting, physical exercises or in case of social important diseases). In the present study a surfactant sodium dodecyl sulfate (SDS) was used to simulate FAs binding to HSA. It was shown that the increase of Tyr fluorescence of human blood plasma due to SDS addition can be completely explained by HSA-SDS complex formation. Binding parameters of SDS-HSA complex (average number of sites and apparent constant of complex formation) were determined from titration curves based on tyrosine (Tyr) fluorescence.

  1. Shipboard Sunphotometer Measurements of Aerosol Optical Depth Spectra and Columnar Water Vapor During ACE-2 and Comparison with Selected Land, Ship, Aircraft, and Satellite Measurements

    Science.gov (United States)

    Livingston, John M.; Kapustin, Vladimir N.; Schmid, Beat; Russell, Philip B.; Quinn, Patricia K.; Bates, Timothy S.; Durkee, Philip A.; Smith, Peter J.; Freudenthaler, Volker; Wiegner, Matthias; Covert, Dave S.; Gasso, Santiago; Hegg, Dean; Collins, Donald R.; Flagan, Richard C.; Seinfeld, John H.; Vitale, Vito; Tomasi, Claudio

    2000-01-01

    Analyses of aerosol optical depth (AOD) and colurnmn water vapor (CWV) measurements acquired with NASA Ames Research Center's 6-channel Airborne Tracking Sunphotometer (AATS-6) operated aboard the R/V Professor Vodyanitskiy during the 2nd Aerosol Characterization Experiment (ACE-2) are discussed. Data are compared with various in situ and remote measurements for selected cases. The focus is on 10 July, when the Pelican airplane flew within 70 km of the ship near the time of a NOAA-14/AVHRR satellite overpass and AOD measurements with the 14-channel Ames Airborne Tracking Sunphotometer (AATS-14) above the marine boundary layer (MBL) permitted calculation of AOD within the MBL from the AATS-6 measurements. A detailed column closure test is performed for MBL AOD on 10 July by comparing the AATS-6 MBL AODs with corresponding values calculated by combining shipboard particle size distribution measurements with models of hygroscopic growth and radiosonde humidity profiles (plus assumptions on the vertical profile of the dry particle size distribution and composition). Large differences (30-80% in the mid-visible) between measured and reconstructed AODs are obtained, in large part because of the high sensitivity of the closure methodology to hygroscopic growth models, which vary considerably and have not been validated over the necessary range of particle size/composition distributions. The wavelength dependence of AATS-6 AODs is compared with the corresponding dependence of aerosol extinction calculated from shipboard measurements of aerosol size distribution and of total scattering mearured by a shipboard integrating nephelometer for several days. Results are highly variable, illustrating further the great difficulty of deriving column values from point measurements. AATS-6 CWV values are shown to agree well with corresponding values derived from radiosonde measurements during 8 soundings on 7 days and also with values calculated from measurements taken on 10 July with

  2. Characterization and immunohistochemical localization of rat salivary cobalamin-binding protein and comparison with human salivary haptocorrin

    DEFF Research Database (Denmark)

    Nexø, Ebba; Poulsen, Steen Seier

    1985-01-01

    Rat saliva contains a cobalamin-binding protein that binds cobalamin as well as cobinamide. The protein binds cobalamin with an affinity constant of 8 X 10(10) l X mol-1, and it binds cobalamin over a more narrow pH range (pH 7.5-10) than does human haptocorrin. It has a Stokes radius of 2.45 nm......-1, n = 8). Immunohistochemical studies show haptocorrin in the secretory acini of the submandibular and parotid glands of the rat. In the human submandibular gland, the protein is detected both in the mucous secretory acini and in the intercalated ducts....

  3. Identification of factors in human urine that inhibit the binding of Escherichia coli adhesins.

    Science.gov (United States)

    Parkkinen, J; Virkola, R; Korhonen, T K

    1988-10-01

    Earlier studies on the binding of Escherichia coli adhesins to the human urinary tract have indicated that the ability to recognize binding sites on the urinary tract epithelial cells is not a characteristic for P fimbriae only, but is also shared by some other adhesins that are not associated with pyelonephritis, especially S fimbriae. In the present study we have investigated whether human urine contains inhibitors of the binding of E. coli adhesins. Normal human urine was found to inhibit hemagglutination by S and type 1 fimbriae but not P fimbriae. The major inhibitor of S fimbriae in normal urine was identified as Tamm-Horsfall glycoprotein, and the interaction with S fimbriae is probably mediated by its sialyloligosaccharide chains. No significant variation was observed in the inhibitory effect of T-H glycoprotein preparations originating from different individuals. In contrast to S fimbriae, the major inhibitors of type 1 fimbriae in urine were identified as low-molecular-weight compounds. Gel filtration and ion-exchange chromatography and alpha-mannosidase treatment indicated that they were neutral alpha-mannosides, probably manno-oligosaccharides with three to five saccharides. Studies of urine samples collected from several individuals indicated the common occurrence of these inhibitory alpha-mannosides. Type 1 fimbriae bound to immobilized T-H glycoprotein, but, unlike S fimbriae, their binding was poorly inhibited by soluble T-H glycoprotein. Some urine samples were also found to contain low-molecular-weight inhibitors for the O75X adhesin of E. coli. These results emphasize that to function as a virulence factor in human urinary tract infections, an adhesin must evidently recognize such receptor structures at the infection sites that are not excreted in soluble form in urine. This prerequisite is filled by P fimbriae but not by type 1 or S fimbriae.

  4. FcRn expression, ligands binding properties and its regulation in human immune cells and hepatocytes

    OpenAIRE

    2007-01-01

    ABSTRACT Expression and diverse functions of MHC class I related neonatal Fc receptor in different tissues is continually reported. To contribute to the understanding of how the receptor functions according to cell type, we investigated the expression and ligands binding properties of FcRn in human immune cells and hepatocytes. Here, we report that heterodimeric FcRn is expressed in these cells as evidenced by RT-PCR, Western immunoblottting and flow cytometry. The receptor expression i...

  5. Unconventional actins and actin-binding proteins in human protozoan parasites.

    Science.gov (United States)

    Gupta, C M; Thiyagarajan, S; Sahasrabuddhe, A A

    2015-06-01

    Actin and its regulatory proteins play a key role in several essential cellular processes such as cell movement, intracellular trafficking and cytokinesis in most eukaryotes. While these proteins are highly conserved in higher eukaryotes, a number of unicellular eukaryotic organisms contain divergent forms of these proteins which have highly unusual biochemical and structural properties. Here, we review the biochemical and structural properties of these unconventional actins and their core binding proteins which are present in commonly occurring human protozoan parasites.

  6. Human CRISP-3 binds serum alpha(1)B-glycoprotein across species

    DEFF Research Database (Denmark)

    Udby, Lene; Johnsen, Anders H; Borregaard, Niels

    2010-01-01

    CRISP-3 was previously shown to be bound to alpha(1)B-glycoprotein (A1BG) in human serum/plasma. All mammalian sera are supposed to contain A1BG, although its presence in rodent sera is not well-documented. Since animal sera are often used to supplement buffers in experiments, in particular such ...... such that involve cell cultures, binding proteins present in sera might interfere in the experiments....

  7. On the binding ratio of α-cyclodextrin to dietary fat in humans

    Directory of Open Access Journals (Sweden)

    Jen KLC

    2013-07-01

    Full Text Available KL Catherine Jen,1,2 George Grunberger,3 Joseph D Artiss2,4 1Department of Nutrition and Food Science, Wayne State University, Detroit, MI, USA; 2ArtJen Complexus Inc, Windsor, ON, Canada; 3The Grunberger Diabetes Institute, Bloomfield Hills, MI, USA; 4Department of Pathology, School of Medicine, Wayne State University, Detroit, MI, USA Abstract: α-Cyclodextrin (α-CD, a soluble dietary fiber, has been shown to bind and eliminate nine times of its own weight in dietary fat. Studies with different animal models have reported that α-CD preferentially binds saturated fatty acids, reducing saturated and trans fatty acid levels in blood. A clinical trial demonstrated that α-CD prevented weight gain in obese diabetic patients. The present study was designed to examine whether α-CD also shows a preference in binding saturated fatty acids in humans and to confirm the 1:9 binding ratio in humans. Sixty-six obese diabetic patients were recruited at the beginning of this 3-month, double-blind, and placebo-controlled study. Patients were randomly assigned to the Active or Placebo group. Blood samples and 3-day dietary records were collected at baseline and at the end of months 1, 2, and 3. A bottle of 180 tablets of active or placebo tablets was dispensed to each participant at the beginning of each month. Dietary records were analyzed using The Food Processor software. It was observed that α-CD has a higher affinity towards saturated fats than to unsaturated fats. Participants with higher intakes of total and saturated fat lost more weight than those with lower intakes (P < 0.05 and < 0.01, respectively. These data support the earlier observation in both in vitro and animal studies that α-CD binds with dietary fat in a 1:9 ratio and further demonstrate the efficacy of α-CD in binding to and eliminating dietary fat, especially saturated fats. α-CD may play a significant role in reducing blood cholesterol and triglyceride levels as well as stopping

  8. Molecular docking and NMR binding studies to identify novel inhibitors of human phosphomevalonate kinase

    Energy Technology Data Exchange (ETDEWEB)

    Boonsri, Pornthip [Chemical Proteomics Facility at Marquette, Department of Chemistry, Marquette University, Milwaukee, WI 53201 (United States); Department of Chemistry, NANOTEC Center of Nanotechnology, National Nanotechnology Center, Faculty of Science, Kasetsart University, Bangkok 10900 (Thailand); Neumann, Terrence S.; Olson, Andrew L.; Cai, Sheng [Chemical Proteomics Facility at Marquette, Department of Chemistry, Marquette University, Milwaukee, WI 53201 (United States); Herdendorf, Timothy J.; Miziorko, Henry M. [Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO 64110 (United States); Hannongbua, Supa [Department of Chemistry, NANOTEC Center of Nanotechnology, National Nanotechnology Center, Faculty of Science, Kasetsart University, Bangkok 10900 (Thailand); Sem, Daniel S., E-mail: daniel.sem@cuw.edu [Chemical Proteomics Facility at Marquette, Department of Chemistry, Marquette University, Milwaukee, WI 53201 (United States)

    2013-01-04

    Highlights: Black-Right-Pointing-Pointer Natural and synthetic inhibitors of human phosphomevalonate kinase identified. Black-Right-Pointing-Pointer Virtual screening yielded a hit rate of 15%, with inhibitor K{sub d}'s of 10-60 {mu}M. Black-Right-Pointing-Pointer NMR studies indicate significant protein conformational changes upon binding. -- Abstract: Phosphomevalonate kinase (PMK) phosphorylates mevalonate-5-phosphate (M5P) in the mevalonate pathway, which is the sole source of isoprenoids and steroids in humans. We have identified new PMK inhibitors with virtual screening, using autodock. Promising hits were verified and their affinity measured using NMR-based {sup 1}H-{sup 15}N heteronuclear single quantum coherence (HSQC) chemical shift perturbation and fluorescence titrations. Chemical shift changes were monitored, plotted, and fitted to obtain dissociation constants (K{sub d}). Tight binding compounds with K{sub d}'s ranging from 6-60 {mu}M were identified. These compounds tended to have significant polarity and negative charge, similar to the natural substrates (M5P and ATP). HSQC cross peak changes suggest that binding induces a global conformational change, such as domain closure. Compounds identified in this study serve as chemical genetic probes of human PMK, to explore pharmacology of the mevalonate pathway, as well as starting points for further drug development.

  9. Single chain human interleukin 5 and its asymmetric mutagenesis for mapping receptor binding sites.

    Science.gov (United States)

    Li, J; Cook, R; Dede, K; Chaiken, I

    1996-01-26

    Wild type human (h) interleukin 5 (wt IL5) is composed of two identical peptide chains linked by disulfide bonds. A gene encoding a single chain form of hIL5 dimer was constructed by linking the two hIL5 chain coding regions with Gly-Gly linker. Expression of this gene in COS cells yielded a single chain IL5 protein (sc IL5) having biological activity similar to that of wt IL5, as judged by stimulation of human cell proliferation. Single chain and wt IL5 also had similar binding affinity for soluble IL5 receptor alpha chain, the specificity subunit of the IL5 receptor, as measured kinetically with an optical biosensor. The design of functionally active sc IL5 molecule. Such mutagenesis was exemplified by changes at residues Glu-13, Arg-91, Glu-110, and Trp-111. The receptor binding and bioactivity data obtained are consistent with a model in which residues from both IL5 monomers interact with the receptor alpha chain, while the interaction likely is asymmetric due to the intrinsic asymmetry of folded receptor. The results demonstrate a general route to the further mapping of receptor and other binding sites on the surface of human IL5.

  10. Farnesoid X Receptor Inhibits the Transcriptional Activity of Carbohydrate Response Element Binding Protein in Human Hepatocytes

    Science.gov (United States)

    Caron, Sandrine; Huaman Samanez, Carolina; Dehondt, Hélène; Ploton, Maheul; Briand, Olivier; Lien, Fleur; Dorchies, Emilie; Dumont, Julie; Postic, Catherine; Cariou, Bertrand; Lefebvre, Philippe

    2013-01-01

    The glucose-activated transcription factor carbohydrate response element binding protein (ChREBP) induces the expression of hepatic glycolytic and lipogenic genes. The farnesoid X receptor (FXR) is a nuclear bile acid receptor controlling bile acid, lipid, and glucose homeostasis. FXR negatively regulates hepatic glycolysis and lipogenesis in mouse liver. The aim of this study was to determine whether FXR regulates the transcriptional activity of ChREBP in human hepatocytes and to unravel the underlying molecular mechanisms. Agonist-activated FXR inhibits glucose-induced transcription of several glycolytic genes, including the liver-type pyruvate kinase gene (L-PK), in the immortalized human hepatocyte (IHH) and HepaRG cell lines. This inhibition requires the L4L3 region of the L-PK promoter, known to bind the transcription factors ChREBP and hepatocyte nuclear factor 4α (HNF4α). FXR interacts directly with ChREBP and HNF4α proteins. Analysis of the protein complex bound to the L4L3 region reveals the presence of ChREBP, HNF4α, FXR, and the transcriptional coactivators p300 and CBP at high glucose concentrations. FXR activation does not affect either FXR or HNF4α binding to the L4L3 region but does result in the concomitant release of ChREBP, p300, and CBP and in the recruitment of the transcriptional corepressor SMRT. Thus, FXR transrepresses the expression of genes involved in glycolysis in human hepatocytes. PMID:23530060

  11. Human Sterol Regulatory Element-Binding Protein 1a Contributes Significantly to Hepatic Lipogenic Gene Expression

    OpenAIRE

    Andreas Bitter; Nüssler, Andreas K.; Thasler, Wolfgang E.; Kathrin Klein; Zanger, Ulrich M.; Matthias Schwab; Oliver Burk

    2015-01-01

    Background/Aims: Sterol regulatory element-binding protein (SREBP) 1, the master regulator of lipogenesis, was shown to be associated with non-alcoholic fatty liver disease, which is attributed to its major isoform SREBP1c. Based on studies in mice, the minor isoform SREBP1a is regarded as negligible for hepatic lipogenesis. This study aims to elucidate the expression and functional role of SREBP1a in human liver. Methods: mRNA expression of both isoforms was quantified in cohorts of human li...

  12. Tetranectin, a plasminogen kringle 4-binding protein. Cloning and gene expression pattern in human colon cancer

    DEFF Research Database (Denmark)

    Wewer, U M; Albrechtsen, R

    1992-01-01

    BACKGROUND: Tetranectin is a recently discovered protein that binds to kringle 4 region of plasminogen (Clemmensen I, Petersen LC, Kluft C. Eur J Biochem 1986; 156:327. EXPERIMENTAL DESIGN: The mRNA encoding human tetranectin was cloned by using degenerate primers in a reverse transcriptase...... reaction followed by polymerase chain reaction amplification. The resulting polymerase chain reaction product was examined by DNA sequencing and subsequently used as probe for screening a human placental cDNA library. A full length cDNA clone (TET-1) was isolated, characterized, and used for Northern blot...

  13. Investigation of Function of Novel Sperm Binding Protein HBRP in Human

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Objective To investigate the biology function of novel protein related to bovie seminal plasma protein in human testis.Methods Recombination pcDNA3/HBRP was constructed and transfected to HEK293 cell and permanently expression cell line was established.The activity of protein kinase C (PKC) of the cell line was detected by autoradiography method.Results The stable expression cell line of HBRP was obtained.The HBRP inhibited the activity of PKC significantly.Conclusion One of the newfunctions of novel sperm binding protein in human is the inhibitor action on activity of PKC.It may be involved in the sperm capacitation,and acrosome reaction.

  14. The SARS Coronavirus S Glycoprotein Receptor Binding Domain: Fine Mapping and Functional Characterization

    Directory of Open Access Journals (Sweden)

    Xiao Xiaodong

    2005-08-01

    Full Text Available Abstract The entry of the SARS coronavirus (SCV into cells is initiated by binding of its spike envelope glycoprotein (S to a receptor, ACE2. We and others identified the receptor-binding domain (RBD by using S fragments of various lengths but all including the amino acid residue 318 and two other potential glycosylation sites. To further characterize the role of glycosylation and identify residues important for its function as an interacting partner of ACE2, we have cloned, expressed and characterized various soluble fragments of S containing RBD, and mutated all potential glycosylation sites and 32 other residues. The shortest of these fragments still able to bind the receptor ACE2 did not include residue 318 (which is a potential glycosylation site, but started at residue 319, and has only two potential glycosylation sites (residues 330 and 357. Mutation of each of these sites to either alanine or glutamine, as well as mutation of residue 318 to alanine in longer fragments resulted in the same decrease of molecular weight (by approximately 3 kDa suggesting that all glycosylation sites are functional. Simultaneous mutation of all glycosylation sites resulted in lack of expression suggesting that at least one glycosylation site (any of the three is required for expression. Glycosylation did not affect binding to ACE2. Alanine scanning mutagenesis of the fragment S319–518 resulted in the identification of ten residues (K390, R426, D429, T431, I455, N473, F483, Q492, Y494, R495 that significantly reduced binding to ACE2, and one residue (D393 that appears to increase binding. Mutation of residue T431 reduced binding by about 2-fold, and mutation of the other eight residues – by more than 10-fold. Analysis of these data and the mapping of these mutations on the recently determined crystal structure of a fragment containing the RBD complexed to ACE2 (Li, F, Li, W, Farzan, M, and Harrison, S. C., submitted suggested the existence of two hot

  15. Dengue Virus Type 2: Protein Binding and Active Replication in Human Central Nervous System Cells

    Directory of Open Access Journals (Sweden)

    Ma Isabel Salazar

    2013-01-01

    Full Text Available An increased number of dengue cases with neurological complications have been reported in recent years. The lack of reliable animal models for dengue has hindered studies on dengue virus (DENV pathogenesis and cellular tropism in vivo. We further investigate the tropism of DENV for the human central nervous system (CNS, characterizing DENV interactions with cell surface proteins in human CNS cells by virus overlay protein binding assays (VOPBA and coimmunoprecipitations. In VOPBA, three membrane proteins (60, 70, and 130 kDa from the gray matter bound the entire virus particle, whereas only a 70 kDa protein bound in white matter. The coimmunoprecipitation assays revealed three proteins from gray matter consistently binding virus particles, one clearly distinguishable protein (~32 kDa and two less apparent proteins (100 and 130 kDa. Monoclonal anti-NS3 targeted the virus protein in primary cell cultures of human CNS treated with DENV-2, which also stained positive for NeuH, a neuron-specific marker. Thus, our results indicate (1 that DENV-2 exhibited a direct tropism for human neurons and (2 that human neurons sustain an active DENV replication as was demonstrated by the presence of the NS3 viral antigen in primary cultures of these cells treated with DENV-2.

  16. Comparative mapping of the actin-binding protein 280 genes in human and mouse

    Energy Technology Data Exchange (ETDEWEB)

    Gariboldi, M.; Canzian, F.; Manenti, G.; De Gregorio, L. (Istituto Nazionale Tumori, Milan (Italy)); Maestrini, E.; Rivella, S. (Istituto di Genetica Biochimica ed Evoluzionistica, Pavia (Italy)); Chatterjee, A.; Herman, G.E. (Universita di Bari (Italy)); Archidiacono, N.; Antonacci, R. (Institute for Molecular Genetics, Houston, TX (United States)) (and others)

    1994-05-15

    Two genes encode actin-binding protein 280 isoforms. ABP-280 or filamin (FLN1) is present in the cytoskeleton of many cell types, whereas expression of FLN2 is limited to skeletal muscle and heart. FLN1 maps to human chromosome Xq28, and, by physical mapping in YAC clones, the authors have mapped the homologous murine locus (Fln1) to mouse chromosome X, in a region of syntenic homology with human chromosome X. They mapped FLN2 to human chromosome 7q32-q35 by analysis of somatic cell hybrids containing portions of chromosome 7, and, by using a mapping panel from an interspecific murine cross, they mapped the corresponding murine locus (Fln2) to murine chromosome 6 in a region homologous to human chromosome 7. 21 refs., 1 fig., 1 tab.

  17. Comparative mapping of the actin-binding protein 280 genes in human and mouse.

    Science.gov (United States)

    Gariboldi, M; Maestrini, E; Canzian, F; Manenti, G; De Gregorio, L; Rivella, S; Chatterjee, A; Herman, G E; Archidiacono, N; Antonacci, R

    1994-05-15

    Two genes encode actin-binding protein 280 isoforms. ABP-280 or filamin (FLN1) is present in the cytoskeleton of many cell types, whereas expression of FLN2 is limited to skeletal muscle and heart. FLN1 maps to human chromosome Xq28, and, by physical mapping in YAC clones, we have mapped the homologous murine locus (Fln1) to mouse chromosome X, in a region of syntenic homology with human chromosome X. We mapped FLN2 to human chromosome 7q32-q35 by analysis of somatic cell hybrids containing portions of chromosome 7, and, by using a mapping panel from an interspecific murine cross, we mapped the corresponding murine locus (Fln2) to murine chromosome 6 in a region homologous to human chromosome 7.

  18. Cloning and characterization of human IC53-2, a novel CDK5 activator binding protein

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    We have identified IC53-2, a human homologue of the rat C53 gene from a human placenta cDNA library (GeneBank Accession No. AF217982). IC53-2 can bind to the CDK5 activator p35 by in vitro association assay. IC53-2 is mapped to human chromosome 17q21.31. The IC53-2 transcript is highly expressed in kidney, liver, skeletal muscle and placenta. It is abundantly expressed in SMMC-7721, C-33A, 3AO, A431and MCF-7 cancer cell lines by RT-PCR assay. Stable transfection of IC53-2 cDNA into the hepatocellularcarcinoma SMMC-7721 cell remarkably stimulates its growth in vitro. The above results indicate thatIC53-2 is a novel human gene, which may be involved in the regulation of cell proliferation.

  19. Spectroscopy and molecular docking studies on the binding of propyl gallate to human serum albumin

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Guo-fei; Wang, Yu; Xi, Lei; Liu, Jin; Wang, Hao; Du, Lin-fang, E-mail: dulinfang@scu.edu.cn

    2015-03-15

    The interaction of propyl gallate (PG) with human serum albumin (HSA) was investigated by fluorescence, far-UV CD and FT-IR spectroscopic methods as well as molecular docking. Fluorescence emission spectra demonstrated that the HSA fluorescence was quenched by PG through static quenching and energy transfer with the binding constants in the order of 10{sup 5} L mol{sup −1}. The thermodynamic parameters (ΔH=−29.64 KJ mol{sup −1}, ΔS=2.7 J mol{sup −1} K{sup −1}) indicated that both hydrophobic force and hydrogen bond interactions played a leading role in the formation of PG–HSA complex. The results also showed the existence of a single binding site, which was located in subdomain IIA (site I) as revealed by molecular docking and competitive binding experiments. Molecular docking studies further showed the participation of several amino acids in PG–HSA complexation, which stabilized by H-bonding systems. The synchronous fluorescence spectra showed that the binding of drug caused the environment of tryptophan residues became more polar. FT-IR and CD spectroscopic further showed that drug complexation altered protein conformation by a major reduction of α-helix inducing a partial protein destabilization. - Highlights: • The interaction between propyl gallate and HSA has been investigated. • HSA fluorescence is quenched by propyl gallate through static quenching mechanism. • Both hydrophobic force and hydrogen bond play major role in the binding process. • Site I of the HSA is found to be the main binding site for propyl gallate. • The structure of HSA has been changed upon the interaction with propyl gallate.

  20. Cycle modulation of insulin-like growth factor-binding protein 1 in human endometrium

    Directory of Open Access Journals (Sweden)

    Corleta H.

    2000-01-01

    Full Text Available Endometrium is one of the fastest growing human tissues. Sex hormones, estrogen and progesterone, in interaction with several growth factors, control its growth and differentiation. Insulin-like growth factor 1 (IGF-1 interacts with cell surface receptors and also with specific soluble binding proteins. IGF-binding proteins (IGF-BP have been shown to modulate IGF-1 action. Of six known isoforms, IGF-BP-1 has been characterized as a marker produced by endometrial stromal cells in the late secretory phase and in the decidua. In the current study, IGF-1-BP concentration and affinity in the proliferative and secretory phase of the menstrual cycle were measured. Endometrial samples were from patients of reproductive age with regular menstrual cycles and taking no steroid hormones. Cytosolic fractions were prepared and binding of 125I-labeled IGF-1 performed. Cross-linking reaction products were analyzed by SDS-polyacrylamide gel electrophoresis (7.5% followed by autoradiography. 125I-IGF-1 affinity to cytosolic proteins was not statistically different between the proliferative and secretory endometrium. An approximately 35-kDa binding protein was identified when 125I-IGF-1 was cross-linked to cytosol proteins. Secretory endometrium had significantly more IGF-1-BP when compared to proliferative endometrium. The specificity of the cross-linking process was evaluated by the addition of 100 nM unlabeled IGF-1 or insulin. Unlabeled IGF-1 totally abolished the radioactivity from the band, indicating specific binding. Insulin had no apparent effect on the intensity of the labeled band. These results suggest that IGF-BP could modulate the action of IGF-1 throughout the menstrual cycle. It would be interesting to study this binding protein in other pathologic conditions of the endometrium such as adenocarcinomas and hyperplasia.

  1. Synthesis and spectroscopic studies of the aminoglycoside (neomycin)--perylene conjugate binding to human telomeric DNA.

    Science.gov (United States)

    Xue, Liang; Ranjan, Nihar; Arya, Dev P

    2011-04-12

    Synthesis of a novel perylene-neomycin conjugate (3) and the properties of its binding to human telomeric G-quadruplex DNA, 5'-d[AG3(T2AG3)3] (4), are reported. Various spectroscopic techniques were employed to characterize the binding of conjugate 3 to 4. A competition dialysis assay revealed that 3 preferentially binds to 4, in the presence of other nucleic acids, including DNA, RNA, DNA-RNA hybrids, and other higher-order structures (single strands, duplexes, triplexes, other G-quadruplexes, and the i-motif). UV thermal denaturation studies showed that thermal stabilization of 4 increases as a function of the increasing concentration of 3. The fluorescence intercalator displacement (FID) assay displayed a significantly tighter binding of 3 with 4 as compared to its parent constituents [220-fold stronger than neomycin (1) and 4.5-fold stronger than perylene diamine (2), respectively]. The binding of 3 with 4 resulted in pronounced changes in the molar ellipticity of the DNA absorption region as confirmed by circular dichroism. The UV-vis absorption studies of the binding of 3 to 4 resulted in a red shift in the spectrum of 3 as well as a marked hypochromic change in the perylene absorption region, suggesting that the ligand-quadruplex interaction involves stacking of the perylene moiety. Docking studies suggest that the perylene moiety serves as a bridge that end stacks on 4, making contacts with two thymine bases in the loop, while the two neomycin moieties branch into the grooves of 4.

  2. Response of fatty acid synthesis genes to the binding of human salivary amylase by Streptococcus gordonii.

    Science.gov (United States)

    Nikitkova, Anna E; Haase, Elaine M; Vickerman, M Margaret; Gill, Steven R; Scannapieco, Frank A

    2012-03-01

    Streptococcus gordonii, an important primary colonizer of dental plaque biofilm, specifically binds to salivary amylase via the surface-associated amylase-binding protein A (AbpA). We hypothesized that a function of amylase binding to S. gordonii may be to modulate the expression of chromosomal genes, which could influence bacterial survival and persistence in the oral cavity. Gene expression profiling by microarray analysis was performed to detect genes in S. gordonii strain CH1 that were differentially expressed in response to the binding of purified human salivary amylase versus exposure to purified heat-denatured amylase. Selected genes found to be differentially expressed were validated by quantitative reverse transcription-PCR (qRT-PCR). Five genes from the fatty acid synthesis (FAS) cluster were highly (10- to 35-fold) upregulated in S. gordonii CH1 cells treated with native amylase relative to those treated with denatured amylase. An abpA-deficient strain of S. gordonii exposed to amylase failed to show a response in FAS gene expression similar to that observed in the parental strain. Predicted phenotypic effects of amylase binding to S. gordonii strain CH1 (associated with increased expression of FAS genes, leading to changes in fatty acid synthesis) were noted; these included increased bacterial growth, survival at low pH, and resistance to triclosan. These changes were not observed in the amylase-exposed abpA-deficient strain, suggesting a role for AbpA in the amylase-induced phenotype. These results provide evidence that the binding of salivary amylase elicits a differential gene response in S. gordonii, resulting in a phenotypic adjustment that is potentially advantageous for bacterial survival in the oral environment.

  3. Thermodynamics parameters for binding of halogenated benzotriazole inhibitors of human protein kinase CK2α.

    Science.gov (United States)

    Winiewska, Maria; Kucińska, Katarzyna; Makowska, Małgorzata; Poznański, Jarosław; Shugar, David

    2015-10-01

    The interaction of human CK2α (hCK2α) with nine halogenated benzotriazoles, TBBt and its analogues representing all possible patterns of halogenation on the benzene ring of benzotriazole, was studied by biophysical methods. Thermal stability of protein-ligand complexes, monitored by calorimetric (DSC) and optical (DSF) methods, showed that the increase in the mid-point temperature for unfolding of protein-ligand complexes (i.e. potency of ligand binding to hCK2α) follow the inhibitory activities determined by biochemical assays. The dissociation constant for the ATP-hCK2α complex was estimated with the aid of microscale thermophoresis (MST) as 4.3±1.8 μM, and MST-derived dissociation constants determined for halogenated benzotriazoles, when converted according to known ATP concentrations, perfectly reconstruct IC50 values determined by the biochemical assays. Ligand-dependent quenching of tyrosine fluorescence, together with molecular modeling and DSC-derived heats of unfolding, support the hypothesis that halogenated benzotriazoles bind in at least two alternative orientations, and those that are efficient hCK2α inhibitors bind in the orientation which TBBt adopts in its complex with maize CK2α. DSC-derived apparent heat for ligand binding (ΔΔHbind) is driven by intermolecular electrostatic interactions between Lys68 and the triazole ring of the ligand, as indicated by a good correlation between ΔΔHbind and ligand pKa. Overall results, additionally supported by molecular modeling, confirm that a balance of hydrophobic and electrostatic interactions contribute predominantly (~40 kJ/mol), relative to possible intermolecular halogen/hydrogen bonding (less than 10 kJ/mol), in binding of halogenated benzotriazoles to the ATP-binding site of hCK2α. This article is part of a Special Issue entitled: Inhibitors of Protein Kinases.

  4. Elucidation of the binding mechanism of coumarin derivatives with human serum albumin.

    Directory of Open Access Journals (Sweden)

    Archit Garg

    Full Text Available Coumarin is a benzopyrone which is widely used as an anti-coagulant, anti-oxidant, anti-cancer and also to cure arthritis, herpes, asthma and inflammation. Here, we studied the binding of synthesized coumarin derivatives with human serum albumin (HSA at physiological pH 7.2 by using fluorescence spectroscopy, circular dichroism spectroscopy, molecular docking and molecular dynamics simulation studies. By addition of coumarin derivatives to HSA the maximum fluorescence intensity was reduced due to quenching of intrinsic fluorescence upon binding of coumarin derivatives to HSA. The binding constant and free energy were found to be 1.957±0.01×10(5 M(-1, -7.175 Kcal M(-1 for coumarin derivative (CD enamide; 0.837±0.01×10(5 M(-1, -6.685 Kcal M(-1 for coumarin derivative (CD enoate, and 0.606±0.01×10(5 M(-1, -6.49 Kcal M(-1 for coumarin derivative methylprop (CDM enamide. The CD spectroscopy showed that the protein secondary structure was partially unfolded upon binding of coumarin derivatives. Further, the molecular docking studies showed that coumarin derivatives were binding to HSA at sub-domain IB with the hydrophobic interactions and also with hydrogen bond interactions. Additionally, the molecular dynamics simulations studies contributed in understanding the stability of protein-drug complex system in the aqueous solution and the conformational changes in HSA upon binding of coumarin derivatives. This study will provide insights into designing of the new inspired coumarin derivatives as therapeutic agents against many life threatening diseases.

  5. Cytotoxicity and comparative binding mechanism of piperine with human serum albumin and α-1-acid glycoprotein.

    Science.gov (United States)

    Yeggoni, Daniel Pushparaju; Rachamallu, Aparna; Kallubai, Monika; Subramanyam, Rajagopal

    2015-01-01

    Human serum albumin (HSA) and α-1-acid glycoprotein (AGP) (acute phase protein) are the plasma proteins in blood system which transports many drugs. To understand the pharmacological importance of piperine molecule, here, we studied the anti-inflammatory activity of piperine on mouse macrophages (RAW 264.7) cell lines, which reveals that piperine caused an increase in inhibition growth of inflammated macrophages. Further, the fluorescence maximum quenching of proteins were observed upon binding of piperine to HSA and AGP through a static quenching mechanism. The binding constants obtained from fluorescence emission were found to be K(piperine) = 5.7 ± .2 × 10(5) M(-1) and K(piperine) = 9.3± .25 × 10(4) M(-1) which correspond to the free energy of -7.8 and -6.71 kcal M(-1)at 25 °C for HSA and AGP, respectively. Further, circular dichrosim studies revealed that there is a marginal change in the secondary structural content of HSA due to partial destabilization of HSA-piperine complexes. Consequently, inference drawn from the site-specific markers (phenylbutazone, site I marker) studies to identify the binding site of HSA noticed that piperine binds at site I (IIA), which was further authenticated by molecular docking and molecular dynamic (MD) studies. The binding constants and free energy corresponding to experimental and computational analysis suggest that there are hydrophobic and hydrophilic interactions when piperine binds to HSA. Additionally, the MD studies have showed that HSA-piperine complex reaches equilibration state at around 3 ns, which prove that the HSA-piperine complex is stable in nature.

  6. Phosphorylation regulates binding of the human papillomavirus type 8 E2 protein to host chromosomes.

    Science.gov (United States)

    Sekhar, Vandana; McBride, Alison A

    2012-09-01

    The papillomavirus E2 proteins are indispensable for the viral life cycle, and their functions are subject to tight regulation. The E2 proteins undergo posttranslational modifications that regulate their properties and roles in viral transcription, replication, and genome maintenance. During persistent infection, the E2 proteins from many papillomaviruses act as molecular bridges that tether the viral genomes to host chromosomes to retain them within the host nucleus and to partition them to daughter cells. The betapapillomavirus E2 proteins bind to pericentromeric regions of host mitotic chromosomes, including the ribosomal DNA loci. We recently reported that two residues (arginine 250 and serine 253) within the chromosome binding region of the human papillomavirus type 8 (HPV8) E2 protein are required for this binding. In this study, we show that serine 253 is phosphorylated, most likely by protein kinase A, and this modulates the interaction of the E2 protein with cellular chromatin. Furthermore, we show that this phosphorylation occurs in S phase, increases the half-life of the E2 protein, and promotes chromatin binding from S phase through mitosis.

  7. THE EFFECTS OF COPPER AND ZINC IONS DURING THEIR BINDING WITH HUMAN SERUM γ-GLOBULIN

    Directory of Open Access Journals (Sweden)

    S. B. Cheknev

    2006-01-01

    Full Text Available Abstract. Conformational changes of human serum γ-globulin were studied during and after its binding with copper and zinc ions, using molecular ultrafiltration and differential spectrophotometry. The contents of nonbound metals in the filtrate were evaluated, resp., with sodium diethyl thyocarbamate and o-phenanthroline. It has been shown that copper and zinc exhibited common biological properties during their interactions with protein, but the binding differed sufficiently under similar experimental conditions. E.g., it was confirmed that copper was more active at the external sites of γ-globulin molecule, whereas zinc demonstrated tropicity for the areas of protein intraglobular compartments. The metal-binding sites have been described that differ in their parameters of interactions with cations and their spatial location within globular domains. Approaches are suggested for dynamic analysis of saturation for these differently located sites by the metal ions. We discuss the issues of altered conformational state of the γ-globulin molecule during the binding of cations, as well as potential usage of these data in clinical immunology.

  8. Binding of doxyl stearic spin labels to human serum albumin: an EPR study.

    Science.gov (United States)

    Pavićević, Aleksandra A; Popović-Bijelić, Ana D; Mojović, Miloš D; Šušnjar, Snežana V; Bačić, Goran G

    2014-09-18

    The binding of spin-labeled fatty acids (SLFAs) to the human serum albumin (HSA) examined by electron paramagnetic resonance (EPR) spectroscopy was studied to evaluate the potential of the HSA/SLFA/EPR technique as a biomarking tool for cancer. A comparative study was performed on two spin labels with nitroxide groups attached at opposite ends of the fatty acid (FA) chain, 5-doxyl stearic (5-DS) and 16-doxyl stearic (16-DS) acid. The effects of incubation time, different [SLFA]/[HSA] molar ratios, ethanol, and temperature showed that the position of the nitroxide group produces certain differences in binding between the two SLFAs. Spectra for different [SLFA]/[HSA] molar ratios were decomposed into two spectral components, which correspond to the weakly and strongly bound SLFAs. The reduction of SLFA with ascorbate showed the existence of a two component process, fast and slow, confirming the decomposition results. Warfarin has no effect on the binding of the two SLFAs, whereas ibuprofen significantly decreases the binding of 5-DS and has no effect on 16-DS. Together, the results of this study indicate that both SLFAs, 5-DS and 16-DS, should be used for the study of HSA conformational changes in blood induced by various medical conditions.

  9. Stereoselective binding of mexiletine and ketoprofen enantiomers with human serum albumin domains

    Institute of Scientific and Technical Information of China (English)

    Da SHI; Yin-xiu JIN; Yi-hong TANG; Hai-hong HU; Si-yun XU; Lu-shanYU; Hui-di JIANG; Su ZENG

    2012-01-01

    To investigate the stereoselective binding of mexiletine or ketoprofen enantiomers with different recombinant domains of human serum albumin (HSA).Methods:Three domains (HSA DOM Ⅰ,Ⅱ and Ⅲ) were expressed in Pichia pastoris GS115 cells.Blue Sepharose 6 Fast Flow was employed to purify the recombinant HSA domains.The binding properties of the standard ligands,digitoxin,phenylbutazone and diazepam,and the chiral drugs to HSA domains were investigated using ultrafiltration.The concentrations of the standard ligands,ketoprofen and mexiletine were analyzed with HPLC.Results:The recombinant HSA domains were highly purified as shown by SDS-PAGE and Western blotting analyses,The standard HSA ligands digitoxin,phenylbutazone and diazepam selectively binds to DOM Ⅰ,DOM Ⅱ and DOM Ⅲ,respectively.For the chiral drugs,R-ketoprofen showed a higher binding affinity toward DOM Ⅲ than S-ketoprofen,whereas S-mexiletine bound to DOM Ⅱ with a greater affinity than R-mexiletine.Conclusion:The results demonstrate that HSA DOM Ⅲ possesses the chiral recognition ability for the ketoprofen enantiomers,whereas HSA DOM Ⅱ possesses that for the mexiletine enantiomers.

  10. Binding of ring-substituted indole-3-acetic acids to human serum albumin.

    Science.gov (United States)

    Soskić, Milan; Magnus, Volker

    2007-07-01

    The plant hormone, indole-3-acetic acid (IAA), and its ring-substituted derivatives have recently attracted attention as promising pro-drugs in cancer therapy. Here we present relative binding constants to human serum albumin for IAA and 34 of its derivatives, as obtained using the immobilized protein bound to a support suitable for high-performance liquid chromatography. We also report their octanol-water partition coefficients (logK(ow)) computed from retention data on a C(18) coated silica gel column. A four-parameter QSPR (quantitative structure-property relationships) model, based on physico-chemical properties, is put forward, which accounts for more than 96% of the variations in the binding affinities of these compounds. The model confirms the importance of lipophilicity as a global parameter governing interaction with serum albumin, but also assigns significant roles to parameters specifically related to the molecular topology of ring-substituted IAAs. Bulky substituents at ring-position 6 increase affinity, those at position 2 obstruct binding, while no steric effects were noted at other ring-positions. Electron-withdrawing substituents at position 5 enhance binding, but have no obvious effect at other ring positions.

  11. beta. -Adrenoceptors in human tracheal smooth muscle: characteristics of binding and relaxation

    Energy Technology Data Exchange (ETDEWEB)

    van Koppen, C.J.; Hermanussen, M.W.; Verrijp, K.N.; Rodrigues de Miranda, J.F.; Beld, A.J.; Lammers, J.W.J.; van Ginneken, C.A.M.

    1987-06-29

    Specific binding of (/sup 125/I)-(-)-cyanopindolol to human tracheal smooth muscle membranes was saturable, stereo-selective and of high affinity (K/sub d/ = 5.3 +/- 0.9 pmol/l and R/sub T/ = 78 +/- 7 fmol/g tissue). The ..beta../sub 1/-selective antagonists atenolol and LK 203-030 inhibited specific (/sup 125/I)-(-)-cyanopindolol binding according to a one binding site model with low affinity in nearly all subjects, pointing to a homogeneous BETA/sub 2/-adrenoceptor population. In one subject using LK 203-030 a small ..beta../sub 1/-adrenoceptor subpopulation could be demonstrated. The beta-mimetics isoprenaline, fenoterol, salbutamol and terbutaline recognized high and low affinity agonist binding sites. Isoprenaline's pK/sub H/- and pK/sub L/-values for the high and low affinity sites were 8.0 +/- 0.2 and 5.9 +/- 0.3 respectively. In functional experiments isoprenaline relaxed tracheal smooth muscle strips having intrinsic tone with a pD/sub 2/-value of 6.63 +/- 0.19. 32 references, 4 figures, 2 tables.

  12. Monte carlo method-based QSAR modeling of penicillins binding to human serum proteins.

    Science.gov (United States)

    Veselinović, Jovana B; Toropov, Andrey A; Toropova, Alla P; Nikolić, Goran M; Veselinović, Aleksandar M

    2015-01-01

    The binding of penicillins to human serum proteins was modeled with optimal descriptors based on the Simplified Molecular Input-Line Entry System (SMILES). The concentrations of protein-bound drug for 87 penicillins expressed as percentage of the total plasma concentration were used as experimental data. The Monte Carlo method was used as a computational tool to build up the quantitative structure-activity relationship (QSAR) model for penicillins binding to plasma proteins. One random data split into training, test and validation set was examined. The calculated QSAR model had the following statistical parameters: r(2)  = 0.8760, q(2)  = 0.8665, s = 8.94 for the training set and r(2)  = 0.9812, q(2)  = 0.9753, s = 7.31 for the test set. For the validation set, the statistical parameters were r(2)  = 0.727 and s = 12.52, but after removing the three worst outliers, the statistical parameters improved to r(2)  = 0.921 and s = 7.18. SMILES-based molecular fragments (structural indicators) responsible for the increase and decrease of penicillins binding to plasma proteins were identified. The possibility of using these results for the computer-aided design of new penicillins with desired binding properties is presented. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Surfactant protein D binds to human immunodeficiency virus (HIV) envelope protein gp120 and inhibits HIV replication

    DEFF Research Database (Denmark)

    Meschi, Joseph; Crouch, Erika C; Skolnik, Paul;

    2005-01-01

    The envelope protein (gp120) of human immunodeficiency virus (HIV) contains highly conserved mannosylated oligosaccharides. These glycoconjugates contribute to resistance to antibody neutralization, and binding to cell surface lectins on macrophages and dendritic cells. Mannose-binding lectin (MBL......) binds to gp120 and plays a role in defence against the virus. In this study it is demonstrated that surfactant protein D (SP-D) binds to gp120 and inhibits HIV infectivity at significantly lower concentrations than MBL. The binding of SP-D was mediated by its calcium-dependent carbohydrate...... defence against HIV. A chimeric protein containing the N-terminal and collagen domains of SP-D linked to the neck and carbohydrate-recognition domains of MBL (called SP-D/MBL(neck+CRD)) had greater ability to bind to gp120 and inhibit virus replication than either SP-D or MBL. The enhanced binding of SP...

  14. Binding thermodynamics at the human cannabinoid CB1 and CB2 receptors.

    Science.gov (United States)

    Merighi, Stefania; Simioni, Carolina; Gessi, Stefania; Varani, Katia; Borea, Pier Andrea

    2010-02-01

    The thermodynamic parameters DeltaG degrees , DeltaH degrees and DeltaS degrees of the binding equilibrium of agonists and antagonists at cannabinoid CB(1) and CB(2) receptors were determined by means of affinity measurements at different temperatures and van't Hoff plots were constructed. Affinity constants were measured on CHO cells transfected with the human CB(1) and CB(2) receptors by inhibition assays of the binding of the cannabinoid receptor agonist [(3)H]-CP-55,940. van't Hoff plots were linear for agonists and antagonists in the temperature range 0-30 degrees C. The thermodynamic parameters for CB(1) receptors fall in the ranges 17< or =DeltaH degrees < or =59 kJ/mol and 213< or =DeltaS degrees < or =361 kJ/mol for agonists and -52< or =DeltaH degrees < or =-26 kJ/mol and -12< or =DeltaS degrees < or =38 kJ/mol for antagonists. The thermodynamic parameters for CB(2) receptors fall in the ranges 27< or =DeltaH degrees < or =48 kJ/mol and 234< or =DeltaS degrees < or =300 kJ/mol for agonists and -19< or =DeltaH degrees < or =-17 kJ/mol and 43< or =DeltaS degrees < or =74 kJ/mol for antagonists. Collectively, these data show that agonist binding is always totally entropy-driven while antagonist binding is enthalpy and entropy-driven, indicating that CB(1) and CB(2) receptors are thermodynamically discriminated. These data could give new details on the nature of the forces driving the CB(1) and CB(2) binding at a molecular level. Enthalpy, entropy, free energy and binding affinity for each ligand to its receptor can all be assessed and therefore the optimal binding profile discovered. Carrying out these binding investigations as early as possible in the discovery process increases the probability that a lead compound will become a successful pharmaceutical compound.

  15. Binding and inhibition of human spermidine synthase by decarboxylated S-adenosylhomocysteine

    Energy Technology Data Exchange (ETDEWEB)

    Še; #269; kut; #279; , Jolita; McCloskey, Diane E.; Thomas, H. Jeanette; Secrist III, John A.; Pegg, Anthony E.; Ealick, Steven E. (Cornell); (Southern Research); (UPENN-MED)

    2011-11-17

    Aminopropyltransferases are essential enzymes that form polyamines in eukaryotic and most prokaryotic cells. Spermidine synthase (SpdS) is one of the most well-studied enzymes in this biosynthetic pathway. The enzyme uses decarboxylated S-adenosylmethionine and a short-chain polyamine (putrescine) to make a medium-chain polyamine (spermidine) and 5'-deoxy-5'-methylthioadenosine as a byproduct. Here, we report a new spermidine synthase inhibitor, decarboxylated S-adenosylhomocysteine (dcSAH). The inhibitor was synthesized, and dose-dependent inhibition of human, Thermatoga maritima, and Plasmodium falciparum spermidine synthases, as well as functionally homologous human spermine synthase, was determined. The human SpdS/dcSAH complex structure was determined by X-ray crystallography at 2.0 {angstrom} resolution and showed consistent active site positioning and coordination with previously known structures. Isothermal calorimetry binding assays confirmed inhibitor binding to human SpdS with K{sub d} of 1.1 {+-} 0.3 {mu}M in the absence of putrescine and 3.2 {+-} 0.1 {mu}M in the presence of putrescine. These results indicate a potential for further inhibitor development based on the dcSAH scaffold.

  16. Characterization of a ligand binding site in the human transient receptor potential ankyrin 1 pore.

    Science.gov (United States)

    Klement, Göran; Eisele, Lina; Malinowsky, David; Nolting, Andreas; Svensson, Mats; Terp, Gitte; Weigelt, Dirk; Dabrowski, Michael

    2013-02-19

    The pharmacology and regulation of Transient Receptor Potential Ankyrin 1 (TRPA1) ion channel activity is intricate due to the physiological function as an integrator of multiple chemical, mechanical, and temperature stimuli as well as differences in species pharmacology. In this study, we describe and compare the current inhibition efficacy of human TRPA1 on three different TRPA1 antagonists. We used a homology model of TRPA1 based on Kv1.2 to select pore vestibule residues available for interaction with ligands entering the vestibule. Site-directed mutation constructs were expressed in Xenopus oocytes and their functionality and pharmacology assessed to support and improve our homology model. Based on the functional pharmacology results we propose an antagonist-binding site in the vestibule of the TRPA1 ion channel. We use the results to describe the proposed intravestibular ligand-binding site in TRPA1 in detail. Based on the single site substitutions, we designed a human TRPA1 receptor by substituting several residues in the vestibule and adjacent regions from the rat receptor to address and explain observed species pharmacology differences. In parallel, the lack of effect on HC-030031 inhibition by the vestibule substitutions suggests that this molecule interacts with TRPA1 via a binding site not situated in the vestibule.

  17. Characterization of nanobodies binding human fibrinogen selected by E. coli display.

    Science.gov (United States)

    Salema, Valencio; López-Guajardo, Ana; Gutierrez, Carlos; Mencía, Mario; Fernández, Luis Ángel

    2016-09-20

    Abnormal levels of fibrinogen (Fib) in blood plasma are associated with several pathological conditions and hence methods for its detection in blood and body fluids are essential. Nanobodies (Nbs) or (VHHs) are single domain antibodies derived from camelids with excellent biophysical and antigen-binding properties, showing great promise in diagnostics and therapy. In this work, we select and characterize high affinity Nbs binding human Fib employing an E. coli cell surface display system based on the fusion of an immune library of VHH domains with the β-domain of Intimin. Bacteria displaying high-affinity Nbs against Fib were selected using magnetic cell sorting (MACS). Specific binding of the selected clones to Fib was confirmed by flow cytometry of E. coli bacteria, as well as by enzyme-linked immunosorbent assay (ELISA) and surface plasmon resonance (SPR) with the purified Nbs. E. coli display also provided an excellent estimation of the affinity of the selected Nbs by flow cytometry analysis under equilibrium conditions, with equilibrium constant (KD) values very similar to those obtained by SPR analysis. Finally, pairwise epitope-scouting studies revealed that the selected Nbs bound distinct epitopes on Fib. The selected Nbs are promising diagnostic tools for determination of human Fib levels. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. The role of lactoferrin binding protein B in mediating protection against human lactoferricin.

    Science.gov (United States)

    Morgenthau, Ari; Livingstone, Margaret; Adamiak, Paul; Schryvers, Anthony B

    2012-06-01

    Bacteria that inhabit the mucosal surfaces of the respiratory and genitourinary tracts of mammals encounter an iron-deficient environment because of iron sequestration by the host iron-binding proteins transferrin and lactoferrin. Lactoferrin is also present in high concentrations at sites of inflammation where the cationic, antimicrobial peptide lactoferricin is produced by proteolysis of lactoferrin. Several Gram-negative pathogens express a lactoferrin receptor that enables the bacteria to use lactoferrin as an iron source. The receptor is composed of an integral membrane protein, lactoferrin binding protein A (LbpA), and a membrane-bound lipoprotein, lactoferrin binding protein B (LbpB). LbpA is essential for growth with lactoferrin as the sole iron source, whereas the role of LbpB in iron acquisition is not yet known. In this study, we demonstrate that LbpB from 2 different species is capable of providing protection against the killing activity of a human lactoferrin-derived peptide. We investigated the prevalence of lactoferrin receptors in bacteria and examined their sequence diversity. We propose that the protection against the cationic antimicrobial human lactoferrin-derived peptide is associated with clusters of negatively charged amino acids in the C-terminal lobe of LbpB that is a common feature of this protein.

  19. Dengue Virus Capsid Protein Binds Core Histones and Inhibits Nucleosome Formation in Human Liver Cells

    Science.gov (United States)

    Colpitts, Tonya M.; Barthel, Sebastian; Wang, Penghua; Fikrig, Erol

    2011-01-01

    Dengue virus (DENV) is a member of the Flaviviridae and a globally (re)emerging pathogen that causes serious human disease. There is no specific antiviral or vaccine for dengue virus infection. Flavivirus capsid (C) is a structural protein responsible for gathering the viral RNA into a nucleocapsid that forms the core of a mature virus particle. Flaviviral replication is known to occur in the cytoplasm yet a large portion of capsid protein localizes to the nucleus during infection. The reasons for the nuclear presences of capsid are not completely understood. Here, we expressed mature DENV C in a tandem affinity purification assay to identify potential binding partners in human liver cells. DENV C targeted the four core histones, H2A, H2B, H3 and H4. DENV C bound recombinant histones in solution and colocalized with histones in the nucleus and cytoplasm of liver cells during DENV infection. We show that DENV C acts as a histone mimic, forming heterodimers with core histones, binding DNA and disrupting nucleosome formation. We also demonstrate that DENV infection increases the amounts of core histones in livers cells, which may be a cellular response to C binding away the histone proteins. Infection with DENV additionally alters levels of H2A phosphorylation in a time-dependent manner. The interactions of C and histones add an interesting new role for the presence of C in the nucleus during DENV infection. PMID:21909430

  20. Functional and structural changes of human erythrocyte catalase induced by cimetidine: proposed model of binding.

    Science.gov (United States)

    Yazdi, Fatemeh; Minai-Tehrani, Dariush; Jahngirvand, Mahboubeh; Almasirad, Ali; Mousavi, Zahra; Masoud, Masoudeh; Mollasalehi, Hamidreza

    2015-06-01

    In erythrocyte, catalase plays an important role to protect cells from hydrogen peroxide toxicity. Hydrogen peroxide is a byproduct compound which is produced during metabolic pathway of cells. Cimetidine, a histamine H2 receptor antagonist, is used for gastrointestinal tract diseases and prevents the extra release of gastric acid. In this study, the effect of cimetidine on the activity of human erythrocyte catalase was investigated. Erythrocytes were broken by hypotonic solution. The supernatant was used for catalase assay and kinetics study. Lineweaver-Burk plot was performed to determine the type of inhibition. The kinetics data revealed that cimetidine inhibited the catalase activity by mixed inhibition. The IC50 (1.54 μM) and Ki (0.45 μM) values of cimetidine determined that the drug was bound to the enzyme with high affinity. Circular dichroism and fluorescence measurement showed that the binding of cimetidine to the enzyme affected the content of secondary structure of the enzyme as well as its conformational changes. Docking studies were carried out to detect the site in which the drug was bound to the enzyme. Molecular modeling and energy calculation of the binding showed that the cyanoguanidine group of the drug connected to Asp59 via two hydrogen bonds, while the imidazole group of the drug interacted with Phe64 in the enzyme by a hydrophobic interaction. In conclusion, cimetidine could bind to human erythrocyte catalase, and its interaction caused functional and conformational changes in the enzyme.

  1. Dengue virus capsid protein binds core histones and inhibits nucleosome formation in human liver cells.

    Directory of Open Access Journals (Sweden)

    Tonya M Colpitts

    Full Text Available Dengue virus (DENV is a member of the Flaviviridae and a globally (reemerging pathogen that causes serious human disease. There is no specific antiviral or vaccine for dengue virus infection. Flavivirus capsid (C is a structural protein responsible for gathering the viral RNA into a nucleocapsid that forms the core of a mature virus particle. Flaviviral replication is known to occur in the cytoplasm yet a large portion of capsid protein localizes to the nucleus during infection. The reasons for the nuclear presences of capsid are not completely understood. Here, we expressed mature DENV C in a tandem affinity purification assay to identify potential binding partners in human liver cells. DENV C targeted the four core histones, H2A, H2B, H3 and H4. DENV C bound recombinant histones in solution and colocalized with histones in the nucleus and cytoplasm of liver cells during DENV infection. We show that DENV C acts as a histone mimic, forming heterodimers with core histones, binding DNA and disrupting nucleosome formation. We also demonstrate that DENV infection increases the amounts of core histones in livers cells, which may be a cellular response to C binding away the histone proteins. Infection with DENV additionally alters levels of H2A phosphorylation in a time-dependent manner. The interactions of C and histones add an interesting new role for the presence of C in the nucleus during DENV infection.

  2. Detection of vitamin D binding protein on the surface of cytotrophoblasts isolated from human placentae

    Energy Technology Data Exchange (ETDEWEB)

    Nestler, J.E.; McLeod, J.F.; Kowalski, M.A.; Strauss, J.F. 3d.; Haddad, J.G. Jr.

    1987-05-01

    Vitamin D binding protein (DBP), a Mr 56,000-58,000 alpha 2-glycoprotein, is the major serum protein involved in the transport of vitamin D sterols. Recently it has been suggested that DBP may also be involved in immunoglobulin G binding to cells. Because the trophoblast is involved in the transport of molecules such as vitamin D and immunoglobulin G to the fetus, we asked whether DBP could be detected on the surface of human placental trophoblast cells. Cytotrophoblasts purified from human term placentae were fixed and made permeant with Triton X-100 and examined by indirect immunofluorescence after incubation with a monoclonal antibody to DBP. Greater than 90% of these cells stained positively, whereas no staining was observed with nonimmune antiserum. The presence of DBP on/in the surface of cytotrophoblasts could also be demonstrated by fluorescent cytometry. When cell surface-associated proteins of cytotrophoblasts were radioiodinated, a Mr 57,000 radiolabeled protein could be immunoisolated from the cell lysate with a purified monospecific polyclonal antibody to DBP. Immunoisolation of this radiolabeled protein was prevented by the addition of excess unlabeled human DBP to the cell lysate before incubation with antibody. This Mr 57,000 radiolabeled protein could also be isolated by affinity chromatography selecting for proteins that bind to globular actin. When cytotrophoblasts were incubated with (/sup 35/S)methionine for 3 or 18 h, active synthesis of DBP could not be demonstrated by immunoisolation techniques. These studies demonstrate the presence of DBP on the surface of well washed, human cytotrophoblasts. This DBP may be maternally derived, since active synthesis of DBP could not be demonstrated.

  3. Influence of fatty acids on the binding of warfarin and phenprocoumon to human serum albumin with relation to anticoagulant therapy

    DEFF Research Database (Denmark)

    Vorum, H; Honoré, B

    1996-01-01

    Warfarin and phenprocoumon binding to human serum albumin was studied by equilibrium dialysis. The first stoichiometric binding constant was 1.89 x 10(5) M-1 for warfarin and 2.40 x 10(5) M-1 for phenprocoumon. The affinity of warfarin was markedly increased on addition of up to 3 mol mol-1 albumin...

  4. Biglycan is a novel binding partner of fibroblast growth factor receptor 3c (FGFR3c) in the human testis

    DEFF Research Database (Denmark)

    Winge, S B; Nielsen, J; Jørgensen, Anders

    2015-01-01

    in spermatocytic seminoma, thought to originate from clonal expansion of spermatogonia. In this study we aimed to characterize potential binding partners of FGFR3, and specifically its mesenchymal "c" splice isoform, in human spermatogonia. Based on expression patterns and homology to the binding site, we...

  5. Human-Phosphate-Binding-Protein inhibits HIV-1 gene transcription and replication

    Directory of Open Access Journals (Sweden)

    Candolfi Ermanno

    2011-07-01

    Full Text Available Abstract The Human Phosphate-Binding protein (HPBP is a serendipitously discovered lipoprotein that binds phosphate with high affinity. HPBP belongs to the DING protein family, involved in various biological processes like cell cycle regulation. We report that HPBP inhibits HIV-1 gene transcription and replication in T cell line, primary peripherical blood lymphocytes and primary macrophages. We show that HPBP is efficient in naïve and HIV-1 AZT-resistant strains. Our results revealed HPBP as a new and potent anti HIV molecule that inhibits transcription of the virus, which has not yet been targeted by HAART and therefore opens new strategies in the treatment of HIV infection.

  6. Green synthesis of gold nanoparticles for staining human cervical cancer cells and DNA binding assay.

    Science.gov (United States)

    De, Swati; Kundu, Rikta; Ghorai, Atanu; Mandal, Ranju Prasad; Ghosh, Utpal

    2014-11-01

    Gold nanoparticles have been functionalized by non-ionic surfactants (polysorbates) used in pharmaceutical formulations. This results in the formation of more well-dispersed gold nanoparticles (GNPs) than the GNPs formed in neat water. The synthesized GNPs show good temporal stability. The synthesis conditions are mild and environmentally benign. The GNPs can bind to ct-DNA and displace bound dye molecules. The DNA-binding assay is significant as it preliminarily indicated that DNA-GNP conjugates can be formed. Such conjugates are extremely promising for applications in nanobiotechnology. The GNPs can also stain the human cervical cancer (HeLa) cells over a wide concentration range while remaining non-cytotoxic, thus providing a non invasive cell staining method. This result is very promising as we observe staining of HeLa cells at very low GNP concentrations (1 μM) while the cell viability is retained even at 10-fold higher GNP concentrations.

  7. Specific high-affinity binding sites for a synthetic gliadin heptapeptide of human peripheral blood lymphocytes

    Energy Technology Data Exchange (ETDEWEB)

    Payan, D.G.; Horvath, K.; Graf, L.

    1987-03-23

    The synthetic peptide containing residues 43-49 of ..cap alpha..-gliadin, the major protein component of gluten, has previously been shown to inhibit the production of lymphokine activities by mononuclear leukocytes. The authors demonstrate using radiolabeled ..cap alpha..-gliadin(43-49) that human peripheral blood lymphocytes express approximately 20,000-25,000 surface receptors for this peptide, with a dissociation constant (K/sub D/) of 20 nM. In addition, binding is inhibited by naloxone and an enkephalin analog, thus confirming the functional correlate which demonstrates inhibition by these agents of ..cap alpha..-gliadin(43-49) functional effects. Furthermore, B-lymphocytes bind specifically a greater amount of (/sup 125/I)..cap alpha..-gliadin(43-49) than T-lymphocytes. The lymphocyte ..cap alpha..-gliadin(43-49) receptor may play an important role in mediating the immunological response to ..cap alpha..-gliadin. 16 references, 4 figures.

  8. Binding of caffeine, theophylline, and theobromine with human serum albumin: A spectroscopic study

    Science.gov (United States)

    Zhang, Hong-Mei; Chen, Ting-Ting; Zhou, Qiu-Hua; Wang, Yan-Qing

    2009-12-01

    The interaction between three purine alkaloids (caffeine, theophylline, and theobromine) and human serum albumin (HSA) was investigated using UV/vis absorption, circular dichroism (CD), fluorescence, synchronous fluorescence, and three-dimensional fluorescence spectra techniques. The results revealed that three alkaloids caused the fluorescence quenching of HSA by the formation of alkaloid-HSA complex. The binding site number n and apparent binding constant KA, corresponding thermodynamic parameters the free energy change (Δ G), enthalpy change (Δ H), and entropy change (Δ S) at different temperatures were calculated. The hydrophobic interaction plays a major role in stabilizing the complex. The distance r between donor (HSA) and acceptor (alkaloids) was obtained according to fluorescence resonance energy transfer. The effect of alkaloids on the conformation of HSA was analyzed using circular dichroism (CD), UV/vis absorption, synchronous fluorescence and three-dimensional fluorescence spectra techniques.

  9. Ligand binding strategies of human serum albumin: how can the cargo be utilized?

    Science.gov (United States)

    Varshney, Ankita; Sen, Priyankar; Ahmad, Ejaz; Rehan, Mohd; Subbarao, Naidu; Khan, Rizwan Hasan

    2010-01-01

    Human serum albumin (HSA), being the most abundant carrier protein in blood and a modern day clinical tool for drug delivery, attracts high attention among biologists. Hence, its unfolding/refolding strategies and exogenous/endogenous ligand binding preference are of immense use in therapeutics and clinical biochemistry. Among its fellow proteins albumin is known to carry almost every small molecule. Thus, it is a potential contender for being a molecular cargo/or nanovehicle for clinical, biophysical and industrial purposes. Nonetheless, its structure and function are largely regulated by various chemical and physical factors to accommodate HSA to its functional purpose. This multifunctional protein also possesses enzymatic properties which may be used to convert prodrugs to active therapeutics. This review aims to highlight current overview on the binding strategies of protein to various ligands that may be expected to lead to significant clinical applications.

  10. Purification of proteins specifically binding human endogenous retrovirus K long terminal repeat by affinity elution chromatography.

    Science.gov (United States)

    Trubetskoy, D O; Zavalova, L L; Akopov, S B; Nikolaev, L G

    2002-11-01

    A novel affinity elution procedure for purification of DNA-binding proteins was developed and employed to purify to near homogeneity the proteins recognizing a 21 base pair sequence within the long terminal repeat of human endogenous retroviruses K. The approach involves loading the initial protein mixture on a heparin-agarose column and elution of protein(s) of interest with a solution of double-stranded oligonucleotide containing binding sites of the protein(s). The affinity elution has several advantages over conventional DNA-affinity chromatography: (i) it is easier and faster, permitting to isolate proteins in a 1 day-one stage procedure; (ii) yield of a target protein is severalfold higher than that in DNA-affinity chromatography; (iii) it is not necessary to prepare a special affinity support for each factor to be isolated. Theaffinity elution could be a useful alternative to conventional DNA-affinity chromatography.

  11. Antigen binding of human IgG Fabs mediate ERK-associated proliferation of human breast cancer cells.

    Science.gov (United States)

    Wen, Yue-Jin; Mancino, Anne; Pashov, Anastas; Whitehead, Tracy; Stanley, Joseph; Kieber-Emmons, Thomas

    2005-02-01

    Serum-circulating antibody can be linked to poor outcomes in some cancer patients. To investigate the role of human antibodies in regulating tumor cell growth, we constructed a recombinant cDNA expression library of human IgG Fab from a patient with breast cancer. Clones were screened from the library with breast tumor cell lysate. Sequence analysis of the clones showed somatic hypermutations when compared to their closest VH/VL germ-line genes. Initial characterizations focused on five clones. All tested clones displayed stronger binding to antigen derived from primary breast cancers and established breast cancer cell lines than to normal breast tissues. In vitro functional studies showed that four out of five tested clones could stimulate the growth of MDA-MB-231 breast cancer cell lines, and one out of five was able to promote MCF-7 cell growth as well. Involvement of ERK2 pathway was observed. By 1H-NMR spectra and Western blot analysis, it was evident that two tested antibody Fabs are capable of interacting with sialic acid. Our study suggests a possible role for human antibody in promoting tumor cell growth by direct binding of IgG Fab to breast tumor antigen. Such studies prompt speculation regarding the role of serum antibodies in mediating tumor growth as well as their contribution to disease progression.

  12. QSAR modeling of β-lactam binding to human serum proteins

    Science.gov (United States)

    Hall, L. Mark; Hall, Lowell H.; Kier, Lemont B.

    2003-02-01

    The binding of beta-lactams to human serum proteins was modeled with topological descriptors of molecular structure. Experimental data was the concentration of protein-bound drug expressed as a percent of the total plasma concentration (percent fraction bound, PFB) for 87 penicillins and for 115 β-lactams. The electrotopological state indices (E-State) and the molecular connectivity chi indices were found to be the basis of two satisfactory models. A data set of 74 penicillins from a drug design series was successfully modeled with statistics: r2=0.80, s = 12.1, q2=0.76, spress=13.4. This model was then used to predict protein binding (PFB) for 13 commercial penicillins, resulting in a very good mean absolute error, MAE = 12.7 and correlation coefficient, q2=0.84. A group of 28 cephalosporins were combined with the penicillin data to create a dataset of 115 beta-lactams that was successfully modeled: r2=0.82, s = 12.7, q2=0.78, spress=13.7. A ten-fold 10% leave-group-out (LGO) cross-validation procedure was implemented, leading to very good statistics: MAE = 10.9, spress=14.0, q2 (or r2 press)=0.78. The models indicate a combination of general and specific structure features that are important for estimating protein binding in this class of antibiotics. For the β-lactams, significant factors that increase binding are presence and electron accessibility of aromatic rings, halogens, methylene groups, and =N- atoms. Significant negative influence on binding comes from amine groups and carbonyl oxygen atoms.

  13. Investigation on the binding activities of citalopram with human and bovine serum albumins

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Jingjing; Liu, Yan, E-mail: liuyan@fjirsm.ac.cn; Chen, Mingmao; Huang, Huayin; Song, Ling, E-mail: songling@fjirsm.ac.cn

    2014-02-15

    The binding interactions of citalopram (CIT), an efficient antidepressant, with human serum albumin (HSA) and bovine serum albumin (BSA) were investigated by a series of spectroscopic methods including fluorescence, UV–vis absorption, circular dichroism (CD) and {sup 1}H nuclear magnetic resonance ({sup 1}H NMR). The fluorescence quenching and UV–vis absorption studies reveal that CIT could form complexes with both HSA and BSA. The CIT–BSA complex exhibits higher binding affinity than CIT–HSA complex. The thermodynamic study further suggests that the interactions between CIT and SAs are mainly driven by hydrophobic forces and hydrogen bonds. The {sup 1}H NMR analysis indicates that the participation of different functional groups of CIT is unequal in the complexation of CIT–HSA and CIT–BSA. Site marker competitive experiments show that the interactions between CIT and SAs primarily locate at sub-domain II A (site I). The effects of CIT on the conformation of SAs are further analyzed via synchronous fluorescence, three-dimensional fluorescence and CD spectra techniques. The results prove that the presence of CIT decreases the α-helical content of both SAs and induces the slight unfolding of the polypeptides of protein. Additionally, the conformational change of BSA induced by CIT is larger than that of HSA. -- Highlights: • The difference of binding activity between CIT–BSA and CIT–HSA is first reported. • Use spectroscopic, thermodynamic, and NMR methods. • CIT exhibits higher binding affinity to BSA than to HSA. • The binding forces between CIT and SA have been investigated. • The complexation of CIT–SA induces the conformational change of SA.

  14. Specificity of recognition of mRNA 5' cap by human nuclear cap-binding complex.

    Science.gov (United States)

    Worch, Remigiusz; Niedzwiecka, Anna; Stepinski, Janusz; Mazza, Catherine; Jankowska-Anyszka, Marzena; Darzynkiewicz, Edward; Cusack, Stephen; Stolarski, Ryszard

    2005-09-01

    The heterodimeric nuclear cap-binding complex (CBC) binds to the mono-methylated 5' cap of eukaryotic RNA polymerase II transcripts such as mRNA and U snRNA. The binding is important for nuclear maturation of mRNAs and possibly in the first round of translation and nonsense-mediated decay. It is also essential for nuclear export of U snRNAs in metazoans. We report characterization by fluorescence spectroscopy of the recognition of 5' capped RNA by human CBC. The association constants (K(as)) for 17 mono- and dinucleotide cap analogs as well as for the oligomer m7GpppA(m2') pU(m2')pA(m2') cover the range from 1.8 x 10(6) M(-1) to 2.3 x 10(8) M(-1). Higher affinity for CBC is observed for the dinucleotide compared with mononucleotide analogs, especially for those containing a purine nucleoside next to m7G. The mRNA tetramer associates with CBC as tightly as the dinucleotide analogs. Replacement of Tyr138 by alanine in the CBP20 subunit of CBC reduces the cap affinity except for the mononucleotide analogs, consistent with the crystallographic observation of the second base stacking on this residue. Our spectroscopic studies showed that contrary to the other known cap-binding proteins, the first two nucleotides of a capped-RNA are indispensable for its specific recognition by CBC. Differences in the cap binding of CBC compared with the eukaryotic translation initiation factor 4E (eIF4E) are analyzed and discussed regarding replacement of CBC by eIF4E.

  15. Proteolytic dissection of Zab, the Z-DNA-binding domain of human ADAR1

    Science.gov (United States)

    Schwartz, T.; Lowenhaupt, K.; Kim, Y. G.; Li, L.; Brown, B. A. 2nd; Herbert, A.; Rich, A.

    1999-01-01

    Zalpha is a peptide motif that binds to Z-DNA with high affinity. This motif binds to alternating dC-dG sequences stabilized in the Z-conformation by means of bromination or supercoiling, but not to B-DNA. Zalpha is part of the N-terminal region of double-stranded RNA adenosine deaminase (ADAR1), a candidate enzyme for nuclear pre-mRNA editing in mammals. Zalpha is conserved in ADAR1 from many species; in each case, there is a second similar motif, Zbeta, separated from Zalpha by a more divergent linker. To investigate the structure-function relationship of Zalpha, its domain structure was studied by limited proteolysis. Proteolytic profiles indicated that Zalpha is part of a domain, Zab, of 229 amino acids (residues 133-361 in human ADAR1). This domain contains both Zalpha and Zbeta as well as a tandem repeat of a 49-amino acid linker module. Prolonged proteolysis revealed a minimal core domain of 77 amino acids (positions 133-209), containing only Zalpha, which is sufficient to bind left-handed Z-DNA; however, the substrate binding is strikingly different from that of Zab. The second motif, Zbeta, retains its structural integrity only in the context of Zab and does not bind Z-DNA as a separate entity. These results suggest that Zalpha and Zbeta act as a single bipartite domain. In the presence of substrate DNA, Zab becomes more resistant to proteases, suggesting that it adopts a more rigid structure when bound to its substrate, possibly with conformational changes in parts of the protein.

  16. Investigation of neohesperidin dihydrochalcone binding to human serum albumin by spectroscopic methods

    Energy Technology Data Exchange (ETDEWEB)

    Bozoğlan, Bahar Kancı; Tunç, Sibel, E-mail: stunc@akdeniz.edu.tr; Duman, Osman, E-mail: osmanduman@akdeniz.edu.tr

    2014-11-15

    In this study, the interaction of human serum albumin (HSA) with neohesperidin dihydrochalcone (NHD) was investigated by UV, fluorescence, synchronous fluorescence and circular dichroism spectroscopic methods. Experimental results confirmed the complex formation between HSA and NHD molecules under physiological conditions. NHD quenched the intrinsic fluorescence spectrum of HSA by static quenching mechanism. The binding constant of this system was calculated as 2.79×10{sup 4} M{sup −1} at 298.15 K. The stability of HSA–NHD complex illustrated a decrease with increasing temperature. The number of binding sites was found to be 1. Thermodynamic parameter values were calculated by using van’t Hoff equation. According to sign and magnitude of thermodynamic parameters (ΔH=−29.22 kJ mol{sup −1} and ΔS=−12.91 J mol{sup −1} K{sup −1}), hydrogen bonding and van der Waals forces were found as the effective interaction forces between HSA and NHD molecules. Synchronous fluorescence and circular dichroism spectroscopic methods proved the alteration of secondary structure of HSA in the presence of NHD. Site marker competitive experiments indicated that the binding of NHD to HSA took place in subdomain IIA region of protein. - Highlights: • Static quenching mechanism is effective in the interaction of HSA with NHD. • Hydrogen bonding and van der Waals forces play an important role in the binding process. • NHD causes a slight change in the conformational structure of HSA. • The binding site of NHD takes place in subdomain IIA region of HSA.

  17. Is there a close relationship between synonymous codon bias and codon-anticodon binding strength in human genes?

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Synonymous codon bias has been examined in 78 human genes (19967 codons) and measured by relative synonymous codon usage (RSCU). Relative frequencies of all kinds of dinucleotides in 2,3 or 3,4 codon positions have been calculated, and codon-anticodon binding strength has been estimated by the stacking energies of codon-anticodon bases in Watson-Crick pairs. The data show common features in synonymous codon bias for all codon families in human genes: all C-ending codons, which possess the strongest co-don-anticodon binding energies, are the most favored codons in almost all codon families, and those codons with medium codon-anticodon binding energies are avoided. Data analysis suggests that besides isochore and genome signature , codon-anticodon binding strength may be closely related to syn-onymous codon choice in human genes. The join-effect of these factors on human genes results in the common features in codon bias.

  18. Ku80 binds to human replication origins prior to the assembly of the ORC complex.

    Science.gov (United States)

    Sibani, Sahar; Price, Gerald B; Zannis-Hadjopoulos, Maria

    2005-05-31

    The Ku heterodimer, an abundant nuclear protein, binds DNA replication origins in a sequence-specific manner and promotes initiation. In this study, using HCT116 Ku80+/- haplo-insufficient and Orc2(delta/-) hypomorphic cells, the order of binding of Ku and the human origin recognition complex (HsORC) was determined. The nuclear expression of Ku80 was found to be decreased by 60% in Ku80+/- cells, while its general association with chromatin was decreased by 33%. Coimmunoprecipitation studies indicated that the Ku heterodimer associates specifically with the human HsOrc-2, -3, -4, and -6 subunits. Chromatin immunoprecipitation (ChIP) experiments, using cells synchronized to late G1, showed that the association of Ku80 with the lamin B2, beta-globin, and c-myc origins in vivo was decreased by 1.5-, 2.3-, and 2.5-fold, respectively, in Ku80+/- cells. The association of HsOrc-3, -4, and -6 was consistently decreased in all three origins examined in Ku80+/- cells, while that of HsOrc-2 showed no significant variation, indicating that the HsOrc-3, -4, and -6 subunits bind to the origins after Ku80. In Orc2(delta/-) cells, the association of HsOrc-2 with the lamin B2, beta-globin, and c-myc origins was decreased by 2.8-, 4.9-, and 2.8-fold, respectively, relative to wild-type HCT116 cells. Furthermore, nascent strand abundance at these three origins was decreased by 4.5-, 2.3-, and 2.6-fold in Orc2(delta/-) relative to HCT116 cells, respectively. Interestingly, the association of Ku80 with these origins was not affected in this hypomorphic cell line, indicating that Ku and HsOrc-2 bind to origins independently of each other.

  19. Identification of proteins binding coding and non-coding human RNAs using protein microarrays

    Directory of Open Access Journals (Sweden)

    Siprashvili Zurab

    2012-11-01

    Full Text Available Abstract Background The regulation and function of mammalian RNAs has been increasingly appreciated to operate via RNA-protein interactions. With the recent discovery of thousands of novel human RNA molecules by high-throughput RNA sequencing, efficient methods to uncover RNA-protein interactions are urgently required. Existing methods to study proteins associated with a given RNA are laborious and require substantial amounts of cell-derived starting material. To overcome these limitations, we have developed a rapid and large-scale approach to characterize binding of in vitro transcribed labeled RNA to ~9,400 human recombinant proteins spotted on protein microarrays. Results We have optimized methodology to probe human protein microarrays with full-length RNA molecules and have identified 137 RNA-protein interactions specific for 10 coding and non-coding RNAs. Those proteins showed strong enrichment for common human RNA binding domains such as RRM, RBD, as well as K homology and CCCH type zinc finger motifs. Previously unknown RNA-protein interactions were discovered using this technique, and these interactions were biochemically verified between TP53 mRNA and Staufen1 protein as well as between HRAS mRNA and CNBP protein. Functional characterization of the interaction between Staufen 1 protein and TP53 mRNA revealed a novel role for Staufen 1 in preserving TP53 RNA stability. Conclusions Our approach demonstrates a scalable methodology, allowing rapid and efficient identification of novel human RNA-protein interactions using RNA hybridization to human protein microarrays. Biochemical validation of newly identified interactions between TP53-Stau1 and HRAS-CNBP using reciprocal pull-down experiments, both in vitro and in vivo, demonstrates the utility of this approach to study uncharacterized RNA-protein interactions.

  20. Wide-scale analysis of human functional transcription factor binding reveals a strong bias towards the transcription start site.

    Directory of Open Access Journals (Sweden)

    Yuval Tabach

    Full Text Available BACKGROUND: Transcription factors (TF regulate expression by binding to specific DNA sequences. A binding event is functional when it affects gene expression. Functionality of a binding site is reflected in conservation of the binding sequence during evolution and in over represented binding in gene groups with coherent biological functions. Functionality is governed by several parameters such as the TF-DNA binding strength, distance of the binding site from the transcription start site (TSS, DNA packing, and more. Understanding how these parameters control functionality of different TFs in different biological contexts is a must for identifying functional TF binding sites and for understanding regulation of transcription. METHODOLOGY/PRINCIPAL FINDINGS: We introduce a novel method to screen the promoters of a set of genes with shared biological function (obtained from the functional Gene Ontology (GO classification against a precompiled library of motifs, and find those motifs which are statistically over-represented in the gene set. More than 8,000 human (and 23,000 mouse genes, were assigned to one of 134 GO sets. Their promoters were searched (from 200 bp downstream to 1,000 bp upstream the TSS for 414 known DNA motifs. We optimized the sequence similarity score threshold, independently for every location window, taking into account nucleotide heterogeneity along the promoters of the target genes. The method, combined with binding sequence and location conservation between human and mouse, identifies with high probability functional binding sites for groups of functionally-related genes. We found many location-sensitive functional binding events and showed that they clustered close to the TSS. Our method and findings were tested experimentally. CONCLUSIONS/SIGNIFICANCE: We identified reliably functional TF binding sites. This is an essential step towards constructing regulatory networks. The promoter region proximal to the TSS is of central

  1. Probing the human estrogen receptor-α binding requirements for phenolic mono- and di-hydroxyl compounds: a combined synthesis, binding and docking study.

    Science.gov (United States)

    McCullough, Christopher; Neumann, Terrence S; Gone, Jayapal Reddy; He, Zhengjie; Herrild, Christian; Wondergem Nee Lukesh, Julie; Pandey, Rajesh K; Donaldson, William A; Sem, Daniel S

    2014-01-01

    Various estrogen analogs were synthesized and tested for binding to human ERα using a fluorescence polarization displacement assay. Binding affinity and orientation were also predicted using docking calculations. Docking was able to accurately predict relative binding affinity and orientation for estradiol, but only if a tightly bound water molecule bridging Arg394/Glu353 is present. Di-hydroxyl compounds sometimes bind in two orientations, which are flipped in terms of relative positioning of their hydroxyl groups. Di-hydroxyl compounds were predicted to bind with their aliphatic hydroxyl group interacting with His524 in ERα. One nonsteroid-based dihdroxyl compound was 1000-fold specific for ERβ over ERα, and was also 25-fold specific for agonist ERβ versus antagonist activity. Docking predictions suggest this specificity may be due to interaction of the aliphatic hydroxyl with His475 in the agonist form of ERβ, versus with Thr299 in the antagonist form. But, the presence of this aliphatic hydroxyl is not required in all compounds, since mono-hydroxyl (phenolic) compounds bind ERα with high affinity, via hydroxyl hydrogen bonding interactions with the ERα Arg394/Glu353/water triad, and van der Waals interactions with the rest of the molecule.

  2. Postnatal development of calcium-binding proteins immunoreactivity (parvalbumin, calbindin, calretinin) in the human entorhinal cortex.

    Science.gov (United States)

    Grateron, L; Cebada-Sanchez, S; Marcos, P; Mohedano-Moriano, A; Insausti, A M; Muñoz, M; Arroyo-Jimenez, M M; Martinez-Marcos, A; Artacho-Perula, E; Blaizot, X; Insausti, R

    2003-12-01

    The entorhinal cortex is an essential component in the organization of the human hippocampal formation related to cortical activity. It transfers, neocortical information (ultimately distributed to the dentate gyrus and hippocampus) and receives most of the hippocampal output directed to neocortex. At birth, the human entorhinal cortex presents similar layer organization as in adults, although layer II (cell islands) and upper layer III have a protracted maturation. The presence of interneurons expressing calcium-binding proteins (parvalbumin, calbindin-D28K (calbindin) and calretinin) is well documented in the adult human entorhinal cortex. In many of them the calcium binding is co-localized with GABA. Parvalbumin-immunoreactive cells and fibers were virtually absent at birth, their presence increasing gradually in deep layer III, mostly in the lateral and caudal portions of the entorhinal cortex from the 5th month onwards. Calbindin immunoreactive cells and fibers were present at birth, mainly in layers II and upper III; mostly at rostral and lateral portions of the entorhinal cortex, increasing in number and extending to deep layers from the 5th month onwards. Calretinin immunoreactivity was present at birth, homogeneously distributed over layers I, II and upper V, throughout the entorhinal cortex. A substantial increase in the number of calretinin neurons in layer V was observed at the 5th month. The postnatal development of parvalbumin, calbindin and calretinin may have an important role in the functional maturation of the entorhinal cortex through the control of hippocampal, cortical and subcortical information.

  3. Prediction on the binding domain between human interleukin-6 and its receptor

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Based on the spatial conformations of human interleukin-6 (hIL-6) derived from nuclear magnetic resonance analysis and human interleukin-6 receptor (hIL-6R) modeled with homology modeling method using human growth hormone receptor as template, the interaction between hIL-6 and its receptor (hIL-6R) is studied with docking program according to the surface electrostatic potential analysis and spatial conformation complement. The stable region structure composed of hIL-6 and hIL-6R is obtained on the basis of molecular mechanism optimization and molecular dynamics simulation. The binding domain between hIL-6 and hIL-6R is predicted theoretically. Furthermore, the especial binding sites that influence the interaction between hIL-6 and hIL-6R are confirmed. The results lay a theoretical foundation for confirming the active regions of hIL-6 and designing novel antagonist with computer-guided techniques.

  4. Prediction on the binding domain between human interleukin-6 and its receptor

    Institute of Scientific and Technical Information of China (English)

    冯健男; 任蕴芳; 沈倍奋

    2000-01-01

    Based on the spatial conformations of human interleukin-6 (hlL-6) derived from nuclear magnetic resonance analysis and human interleukin-6 receptor (hlL-6R) modeled with homology modeling method using human growth hormone receptor as template, the interaction between hlL-6 and its receptor (hIL-6R) is studied with docking program according to the surface electrostatic potential analysis and spatial conformation complement. The stable region structure composed of hlL-6 and hlL-6R is obtained on the basis of molecular mechanism optimization and molecular dynamics simulation. The binding domain between hIL-6 and hIL-6R is predicted theoretically. Furthermore, the especial binding sites that influence the interaction between hlL-6 and hlL-6R are confirmed. The results lay a theoretical foundation for confirming the active regions of hlL-6 and designing novel antagonist with computer-guided techniques.

  5. Human Capital as a Binding Constraint to Economic Growth: The Case of Macedonia

    Directory of Open Access Journals (Sweden)

    Darko Lazarov

    2016-06-01

    Full Text Available The main objective of the paper is to explore the assumption if the lack of skilled and well-educated workforces (human capital holds a potential of a binding constraint to economic growth of the Macedonian economy. Not neglecting growth econometrics’ insights for the investigation of the relationship between human capital and economic growth, the work is primarily based on a growth diagnostic approach. The empirical techniques used in this paper are: growth accounting decomposition production method; macro and micro assessment of the return rate on investment in human capital; and, comparative benchmark analysis concerns with regard to unemployment distribution according to education and age structure and companies’ perceptions about the quality of workforce. The estimated results indicate an important contribution of human capital to economic growth (its relative contribution in terms of growth rate composition is approximately 22 percent. The macro and micro assessment of the rate of return on investment in human capital shows that the rate of return to higher education is significantly superior to corresponding returns to secondary education. Finally, the international benchmark analysis helps in comparative human capital impact analysis (educational structure of labor force in the wider region. Predominantly, it is based on educational structure, unemployment distribution and the companies’ perception about the quality of the workforce.

  6. Effects of IGF-binding protein 5 in dysregulating the shape of human hair.

    Science.gov (United States)

    Sriwiriyanont, Penkanok; Hachiya, Akira; Pickens, William L; Moriwaki, Shigeru; Kitahara, Takashi; Visscher, Marty O; Kitzmiller, William J; Bello, Alexander; Takema, Yoshinori; Kobinger, Gary P

    2011-02-01

    The hair follicle has a unique dynamic property to cyclically regenerate throughout life. Despite significant progress in hair structure and hair shape determination using animal models, the mechanisms controlling the architecture and the shape of the human hair remain largely unexplored. In this study, comparison of the genetic expression of several human genes, especially those involved in growth, development, and differentiation, between Caucasian curly hair and naturally straight hair was performed. Thereafter, analyses using human recombinant and lentiviral vector technologies were conducted to further dissect and elucidate a molecular mechanism that regulates hair growth and development, particularly in controlling the shape of the hair shaft. Overexpression of IGF-binding protein 5 (IGFBP-5) in the human hair xenografts obtained from straight- and curly-haired individuals was found to result in the decreased expression of several extracellular matrix proteins and disassembly of adhesional junctions, resulting in twisted hair shafts as well as an unusual deposition of hair cuticle that may be derived from the disturbance of normal proliferation and differentiation. This study provides evidence that IGFBP-5 has an effect on human hair shape, and that lentiviral transduction regimen can be used for functional analysis of genes involved in human hair morphogenesis.

  7. Human Jk recombination signal binding protein gene (IGKJRB): Comparison with its mouse homologue

    Energy Technology Data Exchange (ETDEWEB)

    Amakawa, Ryuichi; Jing, Wu; Matsunami, Norisada; Hamaguchi, Yasushi; Matsuda, Fumihiko; Kawaichi, Masashi; Honjo, Tasuku (Kyoto Univ., Sakyo-ku, Kyoto (Japan)); Ozawa, Kazuo (Tsukuba Life Science Center, Tsukuba, Ibraraki (Japan))

    1993-08-01

    The mouse Igkjrb protein specifically binds to the immunoglobulin Jk recombination signal sequence. The IGKJRB gene is highly conserved among many species such as human, Xenopus, and Drosophila. Using cDNA fragments of the mouse Igkjrb gene, the authors isolated its human counterpart, IGKJRB. The human genome contains one functional IGKJRB gene and two types of processed pseudogenes. In situ chromosome hybridization analysis demonstrated that the functional gene is localized at chromosome 3q25, and the pseudogenes (IGKJRBP1 and IGKJRBP2, respectively) are located at chromosomes 9p13 and 9q13. The functional gene is composed of 13 exons spanning at least 67 kb. Three types of cDNA with different 5[prime] sequences were isolated by rapid amplification of cDNA ends, suggesting the presence of three proteins. The aPCR-1 protein, which possessed the exon 1 sequence, was the counterpart of the mouse RBP-2 type protein. The aPCR-2 and 3 proteins may be specific to human cells because the mouse counterparts were not detected. The amino acid sequences of the human and mouse IGKJRB genes were 98% homologous in exons 2-11, whereas the homology of the human and mouse exon 1 sequences was 75%. 40 refs., 7 figs.

  8. Usefulness of molecular modeling in characterizing the ligand-binding sites of proteins: experience with human PDI, PDIp and COX.

    Science.gov (United States)

    Wang, Pan; Zhu, Bao-Ting

    2013-01-01

    In this paper, we discussed our recent experience with the use of computational modeling tools in studying the binding interaction of small molecular weight ligands with their protein targets. Specific examples discussed here include the interaction of estrogens with human protein disulfide isomerase (PDI) and its pancreas-specific homolog (PDIp), and the interaction of dietary flavonoids with human cyclooxygenase (COX) I and II. Using human PDIp as an example, biochemical analysis revealed that the estrogen-binding activity is only associated with PDIp's b-b´ domain combination but not associated with the single b or b´ domain or any other domains. Homology modeling was then used to build a threedimensional structure of the human PDIp's b-b´ fragment. Docking analyses predicted that a hydrogen bond, formed between the 3-hydroxyl group of estradiol and His278 of PDIp's E2-binding site, is critical for the binding interaction. This binding model was then experimentally confirmed by a series of experiments, such as selective mutations of the predicted binding site amino acid residues and the selective modifications of the functional groups of the ligands. Similar combinatorial approaches were used successfully to identify the binding site structure of human PDI for estradiol and the binding site structures of human COX I and II for their phenolic co-substrates. The success with these combinatorial approaches provides the basis for using computational modeling-guided approaches in characterizing the ligand binding site structures of complex proteins whose structures are difficult to decipher with crystallographic studies.

  9. Human transcriptional coactivator with PDZ-binding motif (TAZ) is downregulated during decidualization.

    Science.gov (United States)

    Strakova, Zuzana; Reed, Jennifer; Ihnatovych, Ivanna

    2010-06-01

    Transcriptional coactivator with PDZ-binding motif (TAZ) is known to bind to a variety of transcription factors to control cell differentiation and organ development. However, its role in uterine physiology has not yet been described. To study its regulation during the unique process of differentiation of fibroblasts into decidual cells (decidualization), we utilized the human uterine fibroblast (HuF) in vitro cell model. Immunocytochemistry data demonstrated that the majority of the TAZ protein is localized in the nucleus. Treatment of HuF cells with the embryonic stimulus cytokine interleukin 1 beta in the presence of steroid hormones (estradiol-17 beta and medroxyprogesterone acetate) for 13 days did not cause any apparent TAZ mRNA changes but resulted in a significant TAZ protein decline (approximately 62%) in total cell lysates. Analysis of cytosolic and nuclear extracts revealed that the decline of total TAZ was caused primarily by a drop of TAZ protein levels in the nucleus. TAZ was localized on the peroxisome proliferator-activated receptor response element site (located at position -1200 bp relative to the transcription start site) of the genomic region of decidualization marker insulin-like growth factor-binding protein 1 (IGFBP1) in HuF cells as detected by chromatin immunoprecipitation. TAZ is also present in human endometrium tissue as confirmed by immunohistochemistry. During the secretory phase of the menstrual cycle, specific TAZ staining particularly diminishes in the stroma, suggesting its participation during the decidualization process, as well as implantation. During early baboon pregnancy, TAZ protein expression remains minimal in the endometrium close to the implantation site. In summary, the presented evidence shows for the first time to date TAZ protein in the human uterine tract, its downregulation during in vitro decidualization, and its localization on the IGFBP1 promoter region, all of which indicate its presence in the uterine

  10. Vitamin B12 Phosphate Conjugation and Its Effect on Binding to the Human B12 -Binding Proteins Intrinsic Factor and Haptocorrin

    DEFF Research Database (Denmark)

    Ó Proinsias, Keith; Ociepa, Michał; Pluta, Katarzyna

    2016-01-01

    The binding of vitamin B12 derivatives to human B12 transporter proteins is strongly influenced by the type and site of modification of the cobalamin original structure. We have prepared the first cobalamin derivative modified at the phosphate moiety. The reaction conditions were fully optimized...... and its limitations examined. The resulting derivatives, particularly those bearing terminal alkyne and azide groups, were isolated and used in copper-catalyzed alkyne-azide cycloaddition reactions (CuAAC). Their sensitivity towards light revealed their potential as photocleavable molecules. The binding...

  11. Human tandem-repeat-type galectins bind bacterial non-βGal polysaccharides

    DEFF Research Database (Denmark)

    Knirel, Yu A.; Gabius, H.-J.; Blixt, Klas Ola;

    2014-01-01

    ), prompted us to establish an array with bacterial polysaccharides. We addressed the question whether sugar determinants other than β-galactosides may be docking sites, using human galectins-4, -8, and -9. Positive controls with histo-blood group ABH-epitopes and the E. coli 086 polysaccharide ascertained...... the suitability of the set-up. Significant signal generation, depending on type of galectin and polysacchride, was obtained. Presence of cognate β-galactoside-related epitopes within a polysaccharide chain or its branch will not automatically establish binding properties, and structural constellations lacking...

  12. Molecular modelling studies on the binding of some protides to the putative human phosphoramidase Hint1.

    Science.gov (United States)

    Congiatu, C; Brancale, A; McGuigan, C

    2007-01-01

    The aim of the present work is to investigate through molecular modelling the possible role of the human enzyme Hint1 in the final P-N bond cleavage of phosphoramidate ProTides, which would lead to the intracellular delivery of unmasked nucleoside analogue monophosphates. Herein, we report our preliminary analysis based on docking studies of (E)-5-(2-bromovinyl)-2'-deoxyuridine (BVdU) related aminoacyl phosphates with Hint1 and the effect of the amino acid moiety on the enzyme-substrate binding affinity.

  13. Radiolabelled GLP-1 receptor antagonist binds to GLP-1 receptor-expressing human tissues

    Energy Technology Data Exchange (ETDEWEB)

    Waser, Beatrice; Reubi, Jean Claude [University of Berne, Division of Cell Biology and Experimental Cancer Research, Institute of Pathology, PO Box 62, Berne (Switzerland)

    2014-06-15

    Radiolabelled glucagon-like peptide 1 (GLP-1) receptor agonists have recently been shown to successfully image benign insulinomas in patients. For the somatostatin receptor targeting of tumours, however, it was recently reported that antagonist tracers were superior to agonist tracers. The present study therefore evaluated various forms of the {sup 125}iodinated-Bolton-Hunter (BH)-exendin(9-39) antagonist tracer for the in vitro visualization of GLP-1 receptor-expressing tissues in rats and humans and compared it with the agonist tracer {sup 125}I-GLP-1(7-36)amide. Receptor autoradiography studies with {sup 125}I-GLP-1(7-36)amide agonist or {sup 125}I-BH-exendin(9-39) antagonist radioligands were performed in human and rat tissues. The antagonist {sup 125}I-BH-exendin(9-39) labelled at lysine 19 identifies all human and rat GLP-1 target tissues and GLP-1 receptor-expressing tumours. Binding is of high affinity and is comparable in all tested tissues in its binding properties with the agonist tracer {sup 125}I-GLP-1(7-36)amide. For comparison, {sup 125}I-BH-exendin(9-39) with the BH labelled at lysine 4 did identify the GLP-1 receptor in rat tissues but not in human tissues. The GLP-1 receptor antagonist exendin(9-39) labelled with {sup 125}I-BH at lysine 19 is an excellent GLP-1 radioligand that identifies human and rat GLP-1 receptors in normal and tumoural tissues. It may therefore be the molecular basis to develop suitable GLP-1 receptor antagonist radioligands for in vivo imaging of GLP-1 receptor-expressing tissues in patients. (orig.)

  14. Uncommon structural motifs dominate the antigen binding site in human autoantibodies reactive with basement membrane collagen.

    Science.gov (United States)

    Foster, Mary H; Buckley, Elizabeth S; Chen, Benny J; Hwang, Kwan-Ki; Clark, Amy G

    2016-08-01

    Autoantibodies mediate organ destruction in multiple autoimmune diseases, yet their origins in patients remain poorly understood. To probe the genetic origins and structure of disease-associated autoantibodies, we engrafted immunodeficient mice with human CD34+ hematopoietic stem cells and immunized with the non-collagenous-1 (NC1) domain of the alpha3 chain of type IV collagen. This antigen is expressed in lungs and kidneys and is targeted by autoantibodies in anti-glomerular basement membrane (GBM) nephritis and Goodpasture syndrome (GPS), prototypic human organ-specific autoimmune diseases. Using Epstein Barr virus transformation and cell fusion, six human anti-alpha3(IV)NC1 collagen monoclonal autoantibodies (mAb) were recovered, including subsets reactive with human kidney and with epitopes recognized by patients' IgG. Sequence analysis reveals a long to exceptionally long heavy chain complementarity determining region3 (HCDR3), the major site of antigen binding, in all six mAb. Mean HCDR3 length is 25.5 amino acids (range 20-36), generated from inherently long DH and JH genes and extended regions of non-templated N-nucleotides. Long HCDR3 are suited to forming noncontiguous antigen contacts and to binding recessed, immunologically silent epitopes hidden from conventional antibodies, as seen with self-antigen crossreactive broadly neutralizing anti-HIV Ig (bnAb). The anti-alpha3(IV)NC1 collagen mAb also show preferential use of unmutated variable region genes that are enriched among human chronic lymphocytic leukemia antibodies that share features with natural polyreactive Ig. Our findings suggest unexpected relationships between pathogenic anti-collagen Ig, bnAb, and autoreactive Ig associated with malignancy, all of which arise from B cells expressing unconventional structural elements that may require transient escape from tolerance for successful expansion. Published by Elsevier Ltd.

  15. Uncommon Structural Motifs Dominate the Antigen Binding Site in Human Autoantibodies Reactive with Basement Membrane Collagen

    Science.gov (United States)

    Foster, Mary H.; Buckley, Elizabeth S.; Chen, Benny J.; Hwang, Kwan-Ki; Clark, Amy G.

    2016-01-01

    Autoantibodies mediate organ destruction in multiple autoimmune diseases, yet their origins in patients remain poorly understood. To probe the genetic origins and structure of disease-associated autoantibodies, we engrafted immunodeficient mice with human CD34+ hematopoietic stem cells and immunized with the non-collagenous-1 (NC1) domain of the alpha3 chain of type IV collagen. This antigen is expressed in lungs and kidneys and is targeted by autoantibodies in anti-glomerular basement membrane (GBM) nephritis and Goodpasture syndrome (GPS), prototypic human organ-specific autoimmune diseases. Using Epstein Barr virus transformation and cell fusion, six human anti-alpha3(IV)NC1 collagen monoclonal autoantibodies (mAb) were recovered, including subsets reactive with human kidney and with epitopes recognized by patients’ IgG. Sequence analysis reveals a long to exceptionally long heavy chain complementarity determining region3 (HCDR3), the major site of antigen binding, in all six mAb. Mean HCDR3 length is 25.5 amino acids (range 20–36), generated from inherently long DH and JH genes and extended regions of non-templated N-nucleotides. Long HCDR3 are suited to forming noncontiguous antigen contacts and to binding recessed, immunologically silent epitopes hidden from conventional antibodies, as seen with self-antigen crossreactive broadly neutralizing anti-HIV Ig (bnAb). The anti-alpha3(IV)NC1 collagen mAb also show preferential use of unmutated variable region genes that are enriched among human chronic lymphocytic leukemia antibodies that share features with natural polyreactive Ig. Our findings suggest unexpected relationships between pathogenic anti-collagen Ig, bnAb, and autoreactive Ig associated with malignancy, all of which arise from B cells expressing unconventional structural elements that may require transient escape from tolerance for successful expansion. PMID:27450516

  16. Natural compounds in the human diet and their ability to bind mutagens prevents DNA-mutagen intercalation.

    Science.gov (United States)

    Osowski, Adam; Pietrzak, Monika; Wieczorek, Zbigniew; Wieczorek, Jolanta

    2010-01-01

    Human diet may contain many mutagenic or carcinogenic aromatic compounds as well as some beneficial physiologically active dietary components, especially plant food phytochemicals, which act as mutagenesis or carcinogenesis inhibitors. This study compared the binding properties of natural compounds in the human diet (caffeine, theophylline, theobromine, and resveratrol) with a water-soluble derivative of chlorophyll to bind to acridine orange, a known mutagen. An analysis was conducted to determine which substances were effective binding agents and may thus be useful in prevention of chemical-induced mutagenesis and carcinogenesis. Data indicated that in order to bind 50% of the mutagen in a complex, less than twice the concentration of chlorophyllin was needed, the resveratrol concentration was 20-fold higher, while a 1000-fold or even 10,000-fold excess of xanthines were required to bind acridine orange.

  17. Fesoterodine, its active metabolite, and tolterodine bind selectively to muscarinic receptors in human bladder mucosa and detrusor muscle.

    Science.gov (United States)

    Yoshida, Akira; Fuchihata, Yusuke; Kuraoka, Shiori; Osano, Ayaka; Otsuka, Atsushi; Ozono, Seiichiro; Takeda, Masayuki; Masuyama, Keisuke; Araki, Isao; Yamada, Shizuo

    2013-04-01

    To comparatively characterize the binding activity of fesoterodine, its active metabolite (5-hydroxymethyl tolterodine [5-HMT]), and tolterodine in the human bladder mucosa, detrusor muscle, and parotid gland. Muscarinic receptors in the homogenates of human bladder mucosa, detrusor muscle, and parotid gland were measured by a radioligand binding assay using [N-methyl-(3)H] scopolamine methyl chloride. Fesoterodine, 5-HMT, and tolterodine competed with [N-methyl-(3)H] scopolamine methyl chloride for binding sites in the bladder mucosa, detrusor muscle, and parotid gland in a concentration-dependent manner. The affinity for muscarinic receptors of these agents was significantly greater in the bladder than in the parotid gland, suggesting pharmacologic selectivity for the bladder over the parotid gland. The bladder selectivity was larger for fesoterodine and 5-HMT than for tolterodine. Fesoterodine, 5-HMT, and tolterodine resulted in significantly increased (two- to five-fold) values of the apparent dissociation constant for specific [N-methyl-(3)H] scopolamine methyl chloride binding in the detrusor muscle and parotid gland, with little effect on the corresponding values of the maximal number of binding sites. This finding indicates that these agents bind to the human muscarinic receptors in a competitive and reversible manner. Fesoterodine and 5-HMT bind to the muscarinic receptors with greater affinity in the human bladder mucosa and detrusor muscle than in the parotid gland in a competitive and reversible manner. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Diazepam-binding inhibitor. A brain neuropeptide present in human spinal fluid: studies in depression, schizophrenia, and Alzheimer's disease.

    Science.gov (United States)

    Barbaccia, M L; Costa, E; Ferrero, P; Guidotti, A; Roy, A; Sunderland, T; Pickar, D; Paul, S M; Goodwin, F K

    1986-12-01

    Diazepam-binding inhibitor is a novel peptide purified to homogeneity from rat and human brain. Diazepam-binding inhibitor is present, though not exclusively, in gamma-aminobutyric acid (GABA)-containing neurons where it is believed to inhibit GABAergic neurotransmission mediated by GABA by binding to the benzodiazepine-GABA receptor complex. Since an impairment of central GABAergic tone has been postulated to be associated with a number of neuropsychiatric disorders, we measured human diazepam-binding inhibitor immunoreactivity in the cerebrospinal fluid (CSF) of patients suffering from endogenous depression, schizophrenia, and dementia of the Alzheimer's type. Patients with major depression had significantly higher concentrations of human diazepam-binding inhibitor immunoreactivity in CSF when compared with age- and sex-matched normal volunteers, while no difference in CSF diazepam-binding inhibitor immunoreactivity was found in schizophrenics or patients with dementia of the Alzheimer's type when compared with controls. The possibility is discussed that the increased CSF human diazepam-binding inhibitor immunoreactivity observed in depressed patients may represent a functional disinhibition of GABAergic neurotransmission associated with depression.

  19. Structure-dependent binding and activation of perfluorinated compounds on human peroxisome proliferator-activated receptor γ

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lianying [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, 18 Shuangqing Road, Beijing 100085 (China); College of Life Science, Dezhou University, Dezhou 253023 (China); Ren, Xiao-Min; Wan, Bin [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, 18 Shuangqing Road, Beijing 100085 (China); Guo, Liang-Hong, E-mail: LHGuo@rcees.ac.cn [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, 18 Shuangqing Road, Beijing 100085 (China)

    2014-09-15

    Perfluorinated compounds (PFCs) have been shown to disrupt lipid metabolism and even induce cancer in rodents through activation of peroxisome proliferator-activated receptors (PPARs). Lines of evidence showed that PPARα was activated by PFCs. However, the information on the binding interactions between PPARγ and PFCs and subsequent alteration of PPARγ activity is still limited and sometimes inconsistent. In the present study, in vitro binding of 16 PFCs to human PPARγ ligand binding domain (hPPARγ-LBD) and their activity on the receptor in cells were investigated. The results showed that the binding affinity was strongly dependent on their carbon number and functional group. For the eleven perfluorinated carboxylic acids (PFCAs), the binding affinity increased with their carbon number from 4 to 11, and then decreased slightly. The binding affinity of the three perfluorinated sulfonic acids (PFSAs) was stronger than their PFCA counterparts. No binding was detected for the two fluorotelomer alcohols (FTOHs). Circular dichroim spectroscopy showed that PFC binding induced distinctive structural change of the receptor. In dual luciferase reporter assays using transiently transfected Hep G2 cells, PFCs acted as hPPARγ agonists, and their potency correlated with their binding affinity with hPPARγ-LBD. Molecular docking showed that PFCs with different chain length bind with the receptor in different geometry, which may contribute to their differences in binding affinity and transcriptional activity. - Highlights: • Binding affinity between PFCs and PPARγ was evaluated for the first time. • The binding strength was dependent on fluorinated carbon chain and functional group. • PFC binding induced distinctive structural change of the receptor. • PFCs could act as hPPARγ agonists in Hep G2 cells.

  20. The effect of polyamines on the binding of anti-DNA antibodies from patients with SLE and normal human subjects.

    Science.gov (United States)

    Wang, Xiao; Stearns, Nancy A; Li, Xingfu; Pisetsky, David S

    2014-07-01

    Antibodies to DNA (anti-DNA) are the serological hallmark of systemic lupus erythematosus (SLE). To elucidate specificity further, the effect of polyamines on the binding of anti-DNA antibodies from patients with lupus was tested by ELISA to calf thymus (CT) DNA; we also assessed the binding of plasmas of patients and normal human subjects (NHS) to Micrococcus luteus (MC) DNA. As these studies showed, spermine can dose-dependently inhibit SLE anti-DNA binding to CT DNA and can promote dissociation of preformed immune complexes. With MC DNA as antigen, spermine failed to inhibit the NHS anti-DNA binding. Studies using plasmas adsorbed to a CT DNA cellulose affinity indicated that SLE plasmas are mixtures of anti-DNA that differ in inhibition by spermine and binding to conserved and non-conserved determinants. Together, these studies demonstrate that spermine can influence the binding of anti-DNA autoantibodies and may contribute to the antigenicity of DNA.

  1. Investigation of binding behaviour of procainamide hydrochloride with human serum albumin using synchronous, 3D fluorescence and circular dichroism

    Directory of Open Access Journals (Sweden)

    Kirthi Byadagi

    2017-04-01

    Full Text Available Interaction of procainamide hydrochloride (PAH with human serum albumin (HSA is of great significance in understanding the pharmacokinetic and pharmacodynamic mechanisms of the drug. Multi-spectroscopic techniques were used to investigate the binding mode of PAH to HSA and results revealed the presence of static type of quenching mechanism. The number of binding sites, binding constants and thermodynamic parameters were calculated. The results showed a spontaneous binding of PAH to HSA and hydrophobic interactions played a major role. In addition, the distance between PAH and the Trp–214 was estimated employing the Förster's theory. Site marker competitive experiments indicated that the binding of PAH to HSA primarily took place in subdomain IIA (Sudlow's site I. The influence of interference of some common metal ions on the binding of PAH to HSA was studied. Synchronous fluorescence spectra (SFS, 3D fluorescence spectra and circular dichroism (CD results indicated the conformational changes in the structure of HSA.

  2. Association between angiotensin-converting enzyme 2 gene polymorphisms and childhood primary nephrotic syndrome%ACE2基因多态性与儿童原发性肾病综合征的相关性研究

    Institute of Scientific and Technical Information of China (English)

    邱明瑜; 谢琴芳; 王丽娜; 于力

    2015-01-01

    ObjectiveAngiotensin-converting enzyme 2 (ACE2) gene polymorphisms have been shown to be implicated in hypertension, diabetic nephropathy, and other diseases. However, it remains unclear whether ACE2 gene polymorphisms are involved in the development of primary nephrotic syndrome (PNS) in children. The aim of this study was to assess the association between A9570G polymorphisms of ACE2 gene and PNS in a group of Han children in Guangdong Province, China.MethodsThe genotype distribution and allele frequency of ACE2 gene A9570G in 66 children with PNS and 60 healthy subjects (control group) were analyzed by polymerase chain reaction and restriction fragment length polymorphism.ResultsAllele frequency and genotype distribution showed no signiifcant difference between the PNS and control groups whether in female or in male children (P>0.05). The PNS group was classiifed into the glucocorticoid-sensitive and glucocorticoid-resistant subgroups according to glucocorticoid treatment response. Subgroup analysis revealed that in female children, the frequency of GG genotype was 17% in the glucocorticoid-sensitive group vs 45% in the glucocorticoid-sensitive group (P=0.018); the frequency of G allele was 31% in the glucocorticoid-sensitive group vs 61% in the glucocorticoid-resistant group (P=0.023). In male children, the frequency of G genotype/G allele was 36% in the glucocorticoid-sensitive group vs 64% in the glucocorticoid-resistant group (P=0.017).ConclusionsThere is no clear association between ACE2 gene A9570G polymorphisms and childhood PNS, but ACE2 gene A9570G polymorphisms might be associated with glucocorticoid treatment response in children with PNS. The G allele might be a genetic susceptibility factor of glucocorticoid resistance in children with PNS.%目的:血管紧张素转换酶2(ACE2)基因多态性与高血压病、糖尿病肾病等多种疾病相关,是否参与儿童原发性肾病综合征(PNS)的发病尚不明确,该研究探讨广东汉族儿童ACE

  3. HOCOMOCO: A comprehensive collection of human transcription factor binding sites models

    KAUST Repository

    Kulakovskiy, Ivan V.

    2012-11-21

    Transcription factor (TF) binding site (TFBS) models are crucial for computational reconstruction of transcription regulatory networks. In existing repositories, a TF often has several models (also called binding profiles or motifs), obtained from different experimental data. Having a single TFBS model for a TF is more pragmatic for practical applications. We show that integration of TFBS data from various types of experiments into a single model typically results in the improved model quality probably due to partial correction of source specific technique bias. We present the Homo sapiens comprehensive model collection (HOCOMOCO, http://autosome.ru/HOCOMOCO/, http://cbrc.kaust.edu.sa/ hocomoco/) containing carefully hand-curated TFBS models constructed by integration of binding sequences obtained by both low- and high-throughput methods. To construct position weight matrices to represent these TFBS models, we used ChIPMunk software in four computational modes, including newly developed periodic positional prior mode associated with DNA helix pitch. We selected only one TFBS model per TF, unless there was a clear experimental evidence for two rather distinct TFBS models. We assigned a quality rating to each model. HOCOMOCO contains 426 systematically curated TFBS models for 401 human TFs, where 172 models are based on more than one data source. The Author(s) 2012.

  4. Structural basis of human transcription factor Sry-related box 17 binding to DNA.

    Science.gov (United States)

    Gao, Nana; Jiang, Wei; Gao, Hai; Cheng, Zhong; Qian, Huolian; Si, Shuyi; Xie, Yong

    2013-04-01

    Sry-related box (Sox) transcription factors share a conserved high-mobility-group box domain (HMG-domain) that binds DNA in the minor groove and bends DNA for further assembly of transcriptional machineries. During organogenesis, each member of the Sox family triggers a specific cell lineage differentiation, indicating that their interactions with DNA are different from each other. Therefore, investigating structural rearrangement of each Sox transcription factor HMG-domain upon binding to DNA would help to elucidate the distinctive molecular mechanism by which they interact with DNA. Previous studies have determined the crystal structures of Sox2 HMG-domain/DNA, Sox4 HMGdomain/ DNA, Sox9 HMG-domain/DNA and Sox17 HMG-domain/DNA complexes. However, major gaps remain in the structural information on the Sox transcription factor HMG-domains. Here, we report the crystal structure of the human Sox17 HMG-domain alone at 2.4 A resolution. Comparing this structure and the structure of the mouse Sox17 HMGdomain/ DNA complex provides structural understanding of the mechanism of Sox17 binding to DNA. Specifically, after electrostatic interactions attract Sox17 to DNA, Asn73, Ser99, and Trp106 form hydrogen bonds with DNA, Arg70, Lys80, Arg83, His94, and Asn95 on Sox17 undergo conformational changes and form hydrogen bonds with DNA, contributing to the electrostatic interaction between Sox17 and DNA.

  5. Staphylococcal SSL5 Binding to Human Leukemia Cells Inhibits Cell Adhesion to Endothelial Cells and Platelets

    Directory of Open Access Journals (Sweden)

    Annemiek M. E. Walenkamp

    2010-01-01

    Full Text Available Bacterial proteins provide promising tools for novel anticancer therapies. Staphylococcal superantigen-like 5 (SSL5 was recently described to bind P-selectin glycoprotein ligand-1 (PSGL-1 on leukocytes and to inhibit neutrophil rolling on a P-selectin surface. As leukocytes and tumor cells share many characteristics in migration and dissemination, we explored the potential of SSL5 as an antagonist of malignant cell behavior. Previously, it was demonstrated that rolling of human HL-60 leukemia cells on activated endothelial cells was mediated by P-selectin. In this study, we show that SSL5 targets HL-60 cells. Binding of SSL5 was rapid and without observed toxicity. Competition of SSL5 with the binding of three anti-PSGL-1 antibodies and P-selectin to HL-60 cells identified PSGL-1 as the ligand on HL-60 cells. Presence of sialyl Lewis x epitopes on PSGL-1 was crucial for its interaction with SSL5. Importantly, SSL5 not only inhibited the interaction of HL-60 cells with activated endothelial cells but also with platelets, which both play an important role in growth and metastasis of cancers. These data support the concept that SSL5 could be a lead in the search for novel strategies against hematological malignancies.

  6. A Novel, ;Double-Clamp; Binding Mode for Human Heme Oxygenase-1 Inhibition

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, Mona N.; Vlahakis, Jason Z.; Vukomanovic, Dragic; Lee, Wallace; Szarek, Walter A.; Nakatsu, Kanji; Jia, Zongchao (Queens)

    2012-08-01

    The development of heme oxygenase (HO) inhibitors is critical in dissecting and understanding the HO system and for potential therapeutic applications. We have established a program to design and optimize HO inhibitors using structure-activity relationships in conjunction with X-ray crystallographic analyses. One of our previous complex crystal structures revealed a putative secondary hydrophobic binding pocket which could be exploited for a new design strategy by introducing a functional group that would fit into this potential site. To test this hypothesis and gain further insights into the structural basis of inhibitor binding, we have synthesized and characterized 1-(1H-imidazol-1-yl)-4,4-diphenyl-2-butanone (QC-308). Using a carbon monoxide (CO) formation assay on rat spleen microsomes, the compound was found to be {approx}15 times more potent (IC{sub 50} = 0.27{+-}0.07 {mu}M) than its monophenyl analogue, which is already a potent compound in its own right (QC-65; IC{sub 50} = 4.0{+-}1.8 {mu}M). The crystal structure of hHO-1 with QC-308 revealed that the second phenyl group in the western region of the compound is indeed accommodated by a definitive secondary proximal hydrophobic pocket. Thus, the two phenyl moieties are each stabilized by distinct hydrophobic pockets. This 'double-clamp' binding offers additional inhibitor stabilization and provides a new route for improvement of human heme oxygenase inhibitors.

  7. The Human p73 Promoter: Characterization and Identification of Functional E2F Binding Sites

    Directory of Open Access Journals (Sweden)

    Ratnam S. Seelan

    2002-01-01

    Full Text Available p73, a member of the p53 family, is overexpressed in many cancers. To understand the mechanism(s underlying this overexpression, we have undertaken a detailed characterization of the human p73 promoter. The promoter is strongly activated in cells expressing exogenous E2F1 and suppressed by exogenous Rb. At least three functional E2F binding sites, located immediately upstream of exon 1 (at-284,-155 and-132 mediate this induction. 5' serially deleted promoter constructs and constructs harboring mutated E2F sites were analyzed for their response to exogenously expressed E2F1 or Rb to establish functionality of these sites. Authenticity of E2F sites was further confirmed by electrophoretic mobility shift assay (EMSA using E2F1 /DP1 heterodimers synthesized in vitro, followed by competition assays with unlabeled wild-type or mutant oligonucleotides and supershift analysis using anti-E2F1 antibodies. In vivo binding of E2F1 to the p73 promoter was demonstrated using nuclear extracts prepared from E2F1-inducible Saos2 cells. The region conferring the highest promoter activity was found to reside between-113 to-217 of the p73 gene. Two of the three functional E2F sites (at-155 and-132 reside within this region. Our results suggest that regulation of p73 expression is primarily mediated through binding of E2 F1 to target sites at-155 and-132.

  8. Complexities in human herpesvirus-6A and -6B binding to host cells

    DEFF Research Database (Denmark)

    Pedersen, Simon Metz; Höllsberg, Per

    2006-01-01

    Human herpesvirus-6A and -6B uses the cellular receptor CD46 for fusion and infection of the host cell. The viral glycoprotein complex gH-gL from HHV-6A binds to the short consensus repeat 2 and 3 in CD46. Although all the major isoforms of CD46 bind the virus, certain isoforms may have higher...... affinity than others for the virus. Within recent years, elucidation of the viral complex has identified additional HHV-6A and -6B specific glycoproteins. Thus, gH-gL associates with a gQ1-gQ2 dimer to form a heterotetrameric complex. In addition, a novel complex consisting of gH-gL-gO has been described...... that does not bind CD46. Accumulating evidence suggests that an additional HHV-6A and -6B receptor exists. The previous simple picture of HHV-6A/B-host cell contact therefore includes more layers of complexities on both the viral and the host cell side of the interaction....

  9. A novel, "double-clamp" binding mode for human heme oxygenase-1 inhibition.

    Directory of Open Access Journals (Sweden)

    Mona N Rahman

    Full Text Available The development of heme oxygenase (HO inhibitors is critical in dissecting and understanding the HO system and for potential therapeutic applications. We have established a program to design and optimize HO inhibitors using structure-activity relationships in conjunction with X-ray crystallographic analyses. One of our previous complex crystal structures revealed a putative secondary hydrophobic binding pocket which could be exploited for a new design strategy by introducing a functional group that would fit into this potential site. To test this hypothesis and gain further insights into the structural basis of inhibitor binding, we have synthesized and characterized 1-(1H-imidazol-1-yl-4,4-diphenyl-2-butanone (QC-308. Using a carbon monoxide (CO formation assay on rat spleen microsomes, the compound was found to be ∼15 times more potent (IC(50 = 0.27±0.07 µM than its monophenyl analogue, which is already a potent compound in its own right (QC-65; IC(50 = 4.0±1.8 µM. The crystal structure of hHO-1 with QC-308 revealed that the second phenyl group in the western region of the compound is indeed accommodated by a definitive secondary proximal hydrophobic pocket. Thus, the two phenyl moieties are each stabilized by distinct hydrophobic pockets. This "double-clamp" binding offers additional inhibitor stabilization and provides a new route for improvement of human heme oxygenase inhibitors.

  10. A Novel, “Double-Clamp” Binding Mode for Human Heme Oxygenase-1 Inhibition

    Science.gov (United States)

    Rahman, Mona N.; Vlahakis, Jason Z.; Vukomanovic, Dragic; Lee, Wallace; Szarek, Walter A.; Nakatsu, Kanji; Jia, Zongchao

    2012-01-01

    The development of heme oxygenase (HO) inhibitors is critical in dissecting and understanding the HO system and for potential therapeutic applications. We have established a program to design and optimize HO inhibitors using structure-activity relationships in conjunction with X-ray crystallographic analyses. One of our previous complex crystal structures revealed a putative secondary hydrophobic binding pocket which could be exploited for a new design strategy by introducing a functional group that would fit into this potential site. To test this hypothesis and gain further insights into the structural basis of inhibitor binding, we have synthesized and characterized 1-(1H-imidazol-1-yl)-4,4-diphenyl-2-butanone (QC-308). Using a carbon monoxide (CO) formation assay on rat spleen microsomes, the compound was found to be ∼15 times more potent (IC50 = 0.27±0.07 µM) than its monophenyl analogue, which is already a potent compound in its own right (QC-65; IC50 = 4.0±1.8 µM). The crystal structure of hHO-1 with QC-308 revealed that the second phenyl group in the western region of the compound is indeed accommodated by a definitive secondary proximal hydrophobic pocket. Thus, the two phenyl moieties are each stabilized by distinct hydrophobic pockets. This “double-clamp” binding offers additional inhibitor stabilization and provides a new route for improvement of human heme oxygenase inhibitors. PMID:22276118

  11. A novel, "double-clamp" binding mode for human heme oxygenase-1 inhibition.

    Science.gov (United States)

    Rahman, Mona N; Vlahakis, Jason Z; Vukomanovic, Dragic; Lee, Wallace; Szarek, Walter A; Nakatsu, Kanji; Jia, Zongchao

    2012-01-01

    The development of heme oxygenase (HO) inhibitors is critical in dissecting and understanding the HO system and for potential therapeutic applications. We have established a program to design and optimize HO inhibitors using structure-activity relationships in conjunction with X-ray crystallographic analyses. One of our previous complex crystal structures revealed a putative secondary hydrophobic binding pocket which could be exploited for a new design strategy by introducing a functional group that would fit into this potential site. To test this hypothesis and gain further insights into the structural basis of inhibitor binding, we have synthesized and characterized 1-(1H-imidazol-1-yl)-4,4-diphenyl-2-butanone (QC-308). Using a carbon monoxide (CO) formation assay on rat spleen microsomes, the compound was found to be ∼15 times more potent (IC(50) = 0.27±0.07 µM) than its monophenyl analogue, which is already a potent compound in its own right (QC-65; IC(50) = 4.0±1.8 µM). The crystal structure of hHO-1 with QC-308 revealed that the second phenyl group in the western region of the compound is indeed accommodated by a definitive secondary proximal hydrophobic pocket. Thus, the two phenyl moieties are each stabilized by distinct hydrophobic pockets. This "double-clamp" binding offers additional inhibitor stabilization and provides a new route for improvement of human heme oxygenase inhibitors.

  12. HOCOMOCO: a comprehensive collection of human transcription factor binding sites models

    Science.gov (United States)

    Kulakovskiy, Ivan V.; Medvedeva, Yulia A.; Schaefer, Ulf; Kasianov, Artem S.; Vorontsov, Ilya E.; Bajic, Vladimir B.; Makeev, Vsevolod J.

    2013-01-01

    Transcription factor (TF) binding site (TFBS) models are crucial for computational reconstruction of transcription regulatory networks. In existing repositories, a TF often has several models (also called binding profiles or motifs), obtained from different experimental data. Having a single TFBS model for a TF is more pragmatic for practical applications. We show that integration of TFBS data from various types of experiments into a single model typically results in the improved model quality probably due to partial correction of source specific technique bias. We present the Homo sapiens comprehensive model collection (HOCOMOCO, http://autosome.ru/HOCOMOCO/, http://cbrc.kaust.edu.sa/hocomoco/) containing carefully hand-curated TFBS models constructed by integration of binding sequences obtained by both low- and high-throughput methods. To construct position weight matrices to represent these TFBS models, we used ChIPMunk software in four computational modes, including newly developed periodic positional prior mode associated with DNA helix pitch. We selected only one TFBS model per TF, unless there was a clear experimental evidence for two rather distinct TFBS models. We assigned a quality rating to each model. HOCOMOCO contains 426 systematically curated TFBS models for 401 human TFs, where 172 models are based on more than one data source. PMID:23175603

  13. A comparative study of recombinant and native frutalin binding to human prostate tissues

    Directory of Open Access Journals (Sweden)

    Domingues Lucília

    2009-09-01

    Full Text Available Abstract Background Numerous studies indicate that cancer cells present an aberrant glycosylation pattern that can be detected by lectin histochemistry. Lectins have shown the ability to recognise these modifications in several carcinomas, namely in the prostate carcinoma, one of the most lethal diseases in man. Thus, the aim of this work was to investigate if the α-D-galactose-binding plant lectin frutalin is able to detect such changes in the referred carcinoma. Frutalin was obtained from different sources namely, its natural source (plant origin and a recombinant source (Pichia expression system. Finally, the results obtained with the two lectins were compared and their potential use as prostate tumour biomarkers was discussed. Results The binding of recombinant and native frutalin to specific glycoconjugates expressed in human prostate tissues was assessed by using an immuhistochemical technique. A total of 20 cases of prostate carcinoma and 25 cases of benign prostate hyperplasia were studied. Lectins bound directly to the tissues and anti-frutalin polyclonal antibody was used as the bridge to react with the complex biotinilated anti-rabbit IgG plus streptavidin-conjugated peroxidase. DAB was used as visual indicator to specifically localise the binding of the lectins to the tissues. Both lectins bound to the cells cytoplasm of the prostate carcinoma glands. The binding intensity of native frutalin was stronger in the neoplasic cells than in hyperplasic cells; however no significant statistical correlation could be found (P = 0.051. On the other hand, recombinant frutalin bound exclusively to the neoplasic cells and a significant positive statistical correlation was obtained (P Conclusion Native and recombinant frutalin yielded different binding responses in the prostate tissues due to their differences in carbohydrate-binding affinities. Also, this study shows that both lectins may be used as histochemical biomarkers for the prostate

  14. Ionic residues of human serum transferrin affect binding to the transferrin receptor and iron release.

    Science.gov (United States)

    Steere, Ashley N; Miller, Brendan F; Roberts, Samantha E; Byrne, Shaina L; Chasteen, N Dennis; Smith, Valerie C; MacGillivray, Ross T A; Mason, Anne B

    2012-01-17

    Efficient delivery of iron is critically dependent on the binding of diferric human serum transferrin (hTF) to its specific receptor (TFR) on the surface of actively dividing cells. Internalization of the complex into an endosome precedes iron removal. The return of hTF to the blood to continue the iron delivery cycle relies on the maintenance of the interaction between apohTF and the TFR after exposure to endosomal pH (≤6.0). Identification of the specific residues accounting for the pH-sensitive nanomolar affinity with which hTF binds to TFR throughout the cycle is important to fully understand the iron delivery process. Alanine substitution of 11 charged hTF residues identified by available structures and modeling studies allowed evaluation of the role of each in (1) binding of hTF to the TFR and (2) TFR-mediated iron release. Six hTF mutants (R50A, R352A, D356A, E357A, E367A, and K511A) competed poorly with biotinylated diferric hTF for binding to TFR. In particular, we show that Asp356 in the C-lobe of hTF is essential to the formation of a stable hTF-TFR complex: mutation of Asp356 in the monoferric C-lobe hTF background prevented the formation of the stoichiometric 2:2 (hTF:TFR monomer) complex. Moreover, mutation of three residues (Asp356, Glu367, and Lys511), whether in the diferric or monoferric C-lobe hTF, significantly affected iron release when in complex with the TFR. Thus, mutagenesis of charged hTF residues has allowed identification of a number of residues that are critical to formation of and release of iron from the hTF-TFR complex.

  15. Comparative modeling of the human monoamine transporters: similarities in substrate binding.

    Science.gov (United States)

    Koldsø, Heidi; Christiansen, Anja B; Sinning, Steffen; Schiøtt, Birgit

    2013-02-20

    The amino acid compositions of the substrate binding pockets of the three human monoamine transporters are compared as is the orientation of the endogenous substrates, serotonin, dopamine, and norepinephrine, bound in these. Through a combination of homology modeling, induced fit dockings, molecular dynamics simulations, and uptake experiments in mutant transporters, we propose a common binding mode for the three substrates. The longitudinal axis of the substrates is similarly oriented with these, forming an ionic interaction between the ammonium group and a highly conserved aspartate, Asp98 (serotonin transporter, hSERT), Asp79 (dopamine transporter, hDAT), and Asp75 (norepinephrine transporter, hNET). The 6-position of serotonin and the para-hydroxyl groups of dopamine and norepinephrine were found to face Ala173 in hSERT, Gly153 in hDAT, and Gly149 in hNET. Three rotations of the substrates around the longitudinal axis were identified. In each mode, an aromatic hydroxyl group of the substrates occupied equivalent volumes of the three binding pockets, where small changes in amino acid composition explains the differences in selectivity. Uptake experiments support that the 5-hydroxyl group of serotonin and the meta-hydroxyl group norepinephrine and dopamine are placed in the hydrophilic pocket around Ala173, Ser438, and Thr439 in hSERT corresponding to Gly149, Ser419, Ser420 in hNET and Gly153 Ser422 and Ala423 in hDAT. Furthermore, hDAT was found to possess an additional hydrophilic pocket around Ser149 to accommodate the para-hydroxyl group. Understanding these subtle differences between the binding site compositions of the three transporters is imperative for understanding the substrate selectivity, which could eventually aid in developing future selective medicines.

  16. Computational characterization of how the VX nerve agent binds human serum paraoxonase 1.

    Science.gov (United States)

    Fairchild, Steven Z; Peterson, Matthew W; Hamza, Adel; Zhan, Chang-Guo; Cerasoli, Douglas M; Chang, Wenling E

    2011-01-01

    Human serum paraoxonase 1 (HuPON1) is an enzyme that can hydrolyze various chemical warfare nerve agents including VX. A previous study has suggested that increasing HuPON1's VX hydrolysis activity one to two orders of magnitude would make the enzyme an effective countermeasure for in vivo use against VX. This study helps facilitate further engineering of HuPON1 for enhanced VX-hydrolase activity by computationally characterizing HuPON1's tertiary structure and how HuPON1 binds VX. HuPON1's structure is first predicted through two homology modeling procedures. Docking is then performed using four separate methods, and the stability of each bound conformation is analyzed through molecular dynamics and solvated interaction energy calculations. The results show that VX's lone oxygen atom has a strong preference for forming a direct electrostatic interaction with HuPON1's active site calcium ion. Various HuPON1 residues are also detected that are in close proximity to VX and are therefore potential targets for future mutagenesis studies. These include E53, H115, N168, F222, N224, L240, D269, I291, F292, and V346. Additionally, D183 was found to have a predicted pKa near physiological pH. Given D183's location in HuPON1's active site, this residue could potentially act as a proton donor or accepter during hydrolysis. The results from the binding simulations also indicate that steered molecular dynamics can potentially be used to obtain accurate binding predictions even when starting with a closed conformation of a protein's binding or active site.

  17. Tryptic digestion of the human erythrocyte glucose transporter: effects on ligand binding and tryptophan fluorescence.

    Science.gov (United States)

    May, J M; Qu, Z C; Beechem, J M

    1993-09-21

    The conformation of the human erythrocyte glucose transport protein has been shown to determine its susceptibility to enzymatic cleavage on a large cytoplasmic loop. We took the converse approach and investigated the effects of tryptic digestion on the conformational structure of this protein. Exhaustive tryptic digestion of protein-depleted erythrocyte ghosts decreased the affinity of the residual transporter for cytochalasin B by 3-fold but did not affect the total number of binding sites. Tryptic digestion also increased the affinity of the residual transporter for D-glucose and inward-binding sugar phenyl beta-D-glucopyranoside but decreased that for the outward-binding 4,6-O-ethylidene glucose. These results suggest that tryptic cleavage stabilized the remaining transporter in an inward-facing conformation, but one with decreased affinity for cytochalasin B. The steady-state fluorescence emission scan of the purified reconstituted glucose transport protein was unaffected by tryptic digestion. Addition of increasing concentrations of potassium iodide resulted in linear Stern-Volmer plots, which were also unaffected by prior tryptic digestion. The tryptophan oxidant N-bromosuccinimide was investigated to provide a more sensitive measure of tryptophan environment. This agent irreversibly inhibited 3-O-methylglucose transport in intact erythrocytes and cytochalasin B binding in protein-depleted ghosts, with a half-maximal effect observed for each activity at about 0.3-0.4 nM. Treatment of purified glucose transport protein with N-bromosuccinimide resulted in a time-dependent quench of tryptophan fluorescence, which was resolved into two components by nonlinear regression using global analysis. Tryptic digestion retarded the rate of oxidation of the more slowly reacting class of tryptophans. (ABSTRACT TRUNCATED AT 250 WORDS)

  18. The Cobalamin-binding Protein in Zebrafish is an Intermediate Between the Three Cobalamin-binding Proteins in Human

    DEFF Research Database (Denmark)

    Greibe, Eva Holm; Fedosov, Sergey; Nexø, Ebba

    2012-01-01

    knowledge concerning the phylogenetic evolution of kindred proteins. We identified a cobalamin binding capacity in zebrafish protein extracts (8.2 pmol/fish) and ambient water (13.5 pmol/fish) associated with a single protein. The protein showed resistance toward degradation by trypsin and chymotrypsin...

  19. Interacting proteins on human spermatozoa: adaptive evolution of the binding of semenogelin I to EPPIN.

    Science.gov (United States)

    Silva, Erick J R; Hamil, Katherine G; O'Rand, Michael G

    2013-01-01

    Semenogelin I (SEMG1) is found in human semen coagulum and on the surface of spermatozoa bound to EPPIN. The physiological significance of the SEMG1/EPPIN interaction on the surface of spermatozoa is its capacity to modulate sperm progressive motility. The present study investigates the hypothesis that the interacting surface of SEMG1 and EPPIN co-evolved within the Hominoidea time scale, as a result of adaptive pressures applied by their roles in sperm protection and reproductive fitness. Our results indicate that some amino acid residues of SEMG1 and EPPIN possess a remarkable deficiency of variation among hominoid primates. We observe a distinct residue change unique to humans within the EPPIN sequence containing a SEMG1 interacting surface, namely His92. In addition, Bayes Empirical Bayes analysis for positive selection indicates that the SEMG1 Cys239 residue underwent positive selection in humans, probably as a consequence of its role in increasing the binding affinity of these interacting proteins. We confirm the critical role of Cys239 residue for SEMG1 binding to EPPIN and inhibition of sperm motility by showing that recombinant SEMG1 mutants in which Cys239 residue was changed to glycine, aspartic acid, histidine, serine or arginine have reduced capacity to interact to EPPIN and to inhibit human sperm motility in vitro. In conclusion, our results indicate that EPPIN and SEMG1 rapidly co-evolved in primates due to their critical role in the modulation of sperm motility in the semen coagulum, providing unique insights into the molecular co-evolution of sperm surface interacting proteins.

  20. Transcription factor binding sites are genetic determinants of retroviral integration in the human genome.

    Directory of Open Access Journals (Sweden)

    Barbara Felice

    Full Text Available Gamma-retroviruses and lentiviruses integrate non-randomly in mammalian genomes, with specific preferences for active chromatin, promoters and regulatory regions. Gene transfer vectors derived from gamma-retroviruses target at high frequency genes involved in the control of growth, development and differentiation of the target cell, and may induce insertional tumors or pre-neoplastic clonal expansions in patients treated by gene therapy. The gene expression program of the target cell is apparently instrumental in directing gamma-retroviral integration, although the molecular basis of this phenomenon is poorly understood. We report a bioinformatic analysis of the distribution of transcription factor binding sites (TFBSs flanking >4,000 integrated proviruses in human hematopoietic and non-hematopoietic cells. We show that gamma-retroviral, but not lentiviral vectors, integrate in genomic regions enriched in cell-type specific subsets of TFBSs, independently from their relative position with respect to genes and transcription start sites. Analysis of sequences flanking the integration sites of Moloney leukemia virus (MLV- and human immunodeficiency virus (HIV-derived vectors carrying mutations in their long terminal repeats (LTRs, and of HIV vectors packaged with an MLV integrase, indicates that the MLV integrase and LTR enhancer are the viral determinants of the selection of TFBS-rich regions in the genome. This study identifies TFBSs as differential genomic determinants of retroviral target site selection in the human genome, and suggests that transcription factors binding the LTR enhancer may synergize with the integrase in tethering retroviral pre-integration complexes to transcriptionally active regulatory regions. Our data indicate that gamma-retroviruses and lentiviruses have evolved dramatically different strategies to interact with the host cell chromatin, and predict a higher risk in using gamma-retroviral vs. lentiviral vectors for human

  1. Analysis of Cap-binding Proteins in Human Cells Exposed to Physiological Oxygen Conditions.

    Science.gov (United States)

    Timpano, Sara; Melanson, Gaelan; Evagelou, Sonia L; Guild, Brianna D; Specker, Erin J; Uniacke, James

    2016-12-28

    Translational control is a focal point of gene regulation, especially during periods of cellular stress. Cap-dependent translation via the eIF4F complex is by far the most common pathway to initiate protein synthesis in eukaryotic cells, but stress-specific variations of this complex are now emerging. Purifying cap-binding proteins with an affinity resin composed of Agarose-linked m(7)GTP (a 5' mRNA cap analog) is a useful tool to identify factors involved in the regulation of translation initiation. Hypoxia (low oxygen) is a cellular stress encountered during fetal development and tumor progression, and is highly dependent on translation regulation. Furthermore, it was recently reported that human adult organs have a lower oxygen content (physioxia 1-9% oxygen) that is closer to hypoxia than the ambient air where cells are routinely cultured. With the ongoing characterization of a hypoxic eIF4F complex (eIF4F(H)), there is increasing interest in understanding oxygen-dependent translation initiation through the 5' mRNA cap. We have recently developed a human cell culture method to analyze cap-binding proteins that are regulated by oxygen availability. This protocol emphasizes that cell culture and lysis be performed in a hypoxia workstation to eliminate exposure to oxygen. Cells must be incubated for at least 24 hr for the liquid media to equilibrate with the atmosphere within the workstation. To avoid this limitation, pre-conditioned media (de-oxygenated) can be added to cells if shorter time points are required. Certain cap-binding proteins require interactions with a second base or can hydrolyze the m(7)GTP, therefore some cap interactors may be missed in the purification process. Agarose-linked to enzymatically resistant cap analogs may be substituted in this protocol. This method allows the user to identify novel oxygen-regulated translation factors involved in cap-dependent translation.

  2. Characterization of human platelet binding of recombinant T cell receptor ligand

    Directory of Open Access Journals (Sweden)

    Meza-Romero Roberto

    2010-11-01

    Full Text Available Abstract Background Recombinant T cell receptor ligands (RTLs are bio-engineered molecules that may serve as novel therapeutic agents for the treatment of neuroinflammatory conditions such as multiple sclerosis (MS. RTLs contain membrane distal α1 plus β1 domains of class II major histocompatibility complex linked covalently to specific peptides that can be used to regulate T cell responses and inhibit experimental autoimmune encephalomyelitis (EAE. The mechanisms by which RTLs impede local recruitment and retention of inflammatory cells in the CNS, however, are not completely understood. Methods We have recently shown that RTLs bind strongly to B cells, macrophages, and dendritic cells, but not to T cells, in an antigenic-independent manner, raising the question whether peripheral blood cells express a distinct RTL-receptor. Our study was designed to characterize the molecular mechanisms by which RTLs bind human blood platelets, and the ability of RTL to modulate platelet function. Results Our data demonstrate that human blood platelets support binding of RTL. Immobilized RTL initiated platelet intracellular calcium mobilization and lamellipodia formation through a pathway dependent upon Src and PI3 kinases signaling. The presence of RTL in solution reduced platelet aggregation by collagen, while treatment of whole blood with RTL prolonged occlusive thrombus formation on collagen. Conclusions Platelets, well-known regulators of hemostasis and thrombosis, have been implicated in playing a major role in inflammation and immunity. This study provides the first evidence that blood platelets express a functional RTL-receptor with a putative role in modulating pathways of neuroinflammation.

  3. Human 15-LOX-1 active site mutations alter inhibitor binding and decrease potency.

    Science.gov (United States)

    Armstrong, Michelle; van Hoorebeke, Christopher; Horn, Thomas; Deschamps, Joshua; Freedman, J Cody; Kalyanaraman, Chakrapani; Jacobson, Matthew P; Holman, Theodore

    2016-11-01

    Human 15-lipoxygenase-1 (h15-LOX-1 or h12/15-LOX) reacts with polyunsaturated fatty acids and produces bioactive lipid derivatives that are implicated in many important human diseases. One such disease is stroke, which is the fifth leading cause of death and the first leading cause of disability in America. The discovery of h15-LOX-1 inhibitors could potentially lead to novel therapeutics in the treatment of stroke, however, little is known about the inhibitor/active site interaction. This study utilizes site-directed mutagenesis, guided in part by molecular modeling, to gain a better structural understanding of inhibitor interactions within the active site. We have generated eight mutants (R402L, R404L, F414I, F414W, E356Q, Q547L, L407A, I417A) of h15-LOX-1 to determine whether these active site residues interact with two h15-LOX-1 inhibitors, ML351 and an ML094 derivative, compound 18. IC50 values and steady-state inhibition kinetics were determined for the eight mutants, with four of the mutants affecting inhibitor potency relative to wild type h15-LOX-1 (F414I, F414W, E356Q and L407A). The data indicate that ML351 and compound 18, bind in a similar manner in the active site to an aromatic pocket close to F414 but have subtle differences in their specific binding modes. This information establishes the binding mode for ML094 and ML351 and will be leveraged to develop next-generation inhibitors.

  4. The nuclear proteome and DNA-binding fraction of human Raji lymphoma cells.

    Science.gov (United States)

    Henrich, Silke; Cordwell, Stuart J; Crossett, Ben; Baker, Mark S; Christopherson, Richard I

    2007-04-01

    Purification of organelles and analysis of their proteins is an important initial step for biological proteomics, simplifying the proteome prior to analysis by established techniques such as two-dimensional liquid chromatography (2-DLC) or two-dimensional gel electrophoresis (2-DE). Nuclear proteins play a central role in regulating gene expression, but are often under-represented in proteomic studies due to their lower abundance in comparison to cellular 'housekeeping' metabolic enzymes and structural proteins. A reliable procedure for separation and proteomic analysis of nuclear proteins would be useful for investigations of cell proliferation and differentiation during disease processes (e.g., human cancer). In this study, we have purified nuclei from the human Burkitt's lymphoma B-cell line, Raji, using sucrose density gradient centrifugation. The integrity and purity of the nuclei were assessed by light microscopy and proteins from the nuclear fractions were separated by 2-DE and identified using matrix assisted laser desorption ionization mass spectrometry (MALDI-MS). A total of 124 unique proteins were identified, of which 91% (n=110) were predicted to be nuclear using PSORT. Proteins from the nuclear fraction were subjected to affinity chromatography on DNA-agarose to isolate DNA-binding proteins. From this purified fraction, 131 unique proteins were identified, of which 69% (n=90) were known or predicted DNA-binding proteins. Purification of nuclei and subsequent enrichment of DNA-binding proteins allowed identification of a total of 209 unique proteins, many involved in transcription and/or correlated with lymphoma, leukemia or cancer in general. The data obtained should be valuable for identification of biomarkers and targets for cancer therapy, and for furthering our understanding of the molecular mechanisms underlying lymphoma development and progression.

  5. Identification of calprotectin, a calcium binding leukocyte protein, in human dental calculus matrix.

    Science.gov (United States)

    Kido, J; Nishikawa, S; Ishida, H; Yamashita, K; Kitamura, S; Kohri, K; Nagata, T

    1997-05-01

    Calprotectin is a calcium binding protein produced by leukocytes, macrophages and epithelial cells, and its levels in several tissues increase during infections and in many inflamed areas, suggesting that it may be an indicator of inflammatory activity. Osteopontin is a prominent phosphorylated glycoprotein in bone matrix, having calcium binding capacity. Recently, it has been reported that calprotectin and osteopontin are present in urinary stones (pathological mineralized masses in the body), and that these proteins may be involved in their formation. Dental calculus formed by mineralization of dental plaque is an inflammatory factor which may contribute to periodontal disease. It contains many organic components involved in mineralization. We recently found osteopontin molecules in human dental calculus and suggested that the components of its matrix may be similar to those of urinary stones. In this study, we investigated the presence of calprotectin in human dental calculus by immunohistochemical and immunoblotting analyses using a specific antibody for calprotectin. After fixation and demineralization of dental calculi adhered to tooth roots, sections embedded in paraffin were immunoreacted with the antibody for calprotectin and positive immunostaining for calprotectin was observed. Dental calculus proteins were then extracted with EDTA and separated by electrophoresis on 15% polyacrylamide gels. By immunoblotting analysis, 3 or 4 bands were observed at 11, 14.5, 22-25, 28 or 36.5 kDa and these patterns corresponded to those of calprotectin subunits. When non-immune rabbit serum was used instead of calprotectin-specific antibody as a negative control, no immunoreactivity was observed. These findings indicate that calprotectin is associated not only with antibacterial action but also with calcium binding capacity during dental calculus formation.

  6. Comparative genomic analysis of Lactobacillus rhamnosus GG reveals pili containing a human- mucus binding protein.

    Science.gov (United States)

    Kankainen, Matti; Paulin, Lars; Tynkkynen, Soile; von Ossowski, Ingemar; Reunanen, Justus; Partanen, Pasi; Satokari, Reetta; Vesterlund, Satu; Hendrickx, Antoni P A; Lebeer, Sarah; De Keersmaecker, Sigrid C J; Vanderleyden, Jos; Hämäläinen, Tuula; Laukkanen, Suvi; Salovuori, Noora; Ritari, Jarmo; Alatalo, Edward; Korpela, Riitta; Mattila-Sandholm, Tiina; Lassig, Anna; Hatakka, Katja; Kinnunen, Katri T; Karjalainen, Heli; Saxelin, Maija; Laakso, Kati; Surakka, Anu; Palva, Airi; Salusjärvi, Tuomas; Auvinen, Petri; de Vos, Willem M

    2009-10-06

    To unravel the biological function of the widely used probiotic bacterium Lactobacillus rhamnosus GG, we compared its 3.0-Mbp genome sequence with the similarly sized genome of L. rhamnosus LC705, an adjunct starter culture exhibiting reduced binding to mucus. Both genomes demonstrated high sequence identity and synteny. However, for both strains, genomic islands, 5 in GG and 4 in LC705, punctuated the colinearity. A significant number of strain-specific genes were predicted in these islands (80 in GG and 72 in LC705). The GG-specific islands included genes coding for bacteriophage components, sugar metabolism and transport, and exopolysaccharide biosynthesis. One island only found in L. rhamnosus GG contained genes for 3 secreted LPXTG-like pilins (spaCBA) and a pilin-dedicated sortase. Using anti-SpaC antibodies, the physical presence of cell wall-bound pili was confirmed by immunoblotting. Immunogold electron microscopy showed that the SpaC pilin is located at the pilus tip but also sporadically throughout the structure. Moreover, the adherence of strain GG to human intestinal mucus was blocked by SpaC antiserum and abolished in a mutant carrying an inactivated spaC gene. Similarly, binding to mucus was demonstrated for the purified SpaC protein. We conclude that the presence of SpaC is essential for the mucus interaction of L. rhamnosus GG and likely explains its ability to persist in the human intestinal tract longer than LC705 during an intervention trial. The presence of mucus-binding pili on the surface of a nonpathogenic Gram-positive bacterial strain reveals a previously undescribed mechanism for the interaction of selected probiotic lactobacilli with host tissues.

  7. Machupo virus glycoprotein determinants for human transferrin receptor 1 binding and cell entry.

    Directory of Open Access Journals (Sweden)

    Sheli R Radoshitzky

    Full Text Available Machupo virus (MACV is a highly pathogenic New World arenavirus that causes hemorrhagic fever in humans. MACV, as well as other pathogenic New World arenaviruses, enter cells after their GP1 attachment glycoprotein binds to their cellular receptor, transferrin receptor 1 (TfR1. TfR1 residues essential for this interaction have been described, and a co-crystal of MACV GP1 bound to TfR1 suggests GP1 residues important for this association. We created MACV GP1 variants and tested their effect on TfR1 binding and virus entry to evaluate the functional significance of some of these and additional residues in human and simian cells. We found residues R111, D123, Y122, and F226 to be essential, D155, and P160 important, and D114, S116, D140, and K169 expendable for the GP1-TfR1 interaction and MACV entry. Several MACV GP1 residues that are critical for the interaction with TfR1 are conserved among other New World arenaviruses, indicating a common basis of receptor interaction. Our findings also open avenues for the rational development of viral entry inhibitors.

  8. Binding of toxic-shock-syndrome toxin-1 to human peripheral blood mononuclear cells

    Energy Technology Data Exchange (ETDEWEB)

    Poindexter, N.J.; Schlievert, P.M.

    1987-07-01

    Toxic-shock-syndrome toxin-1 (TSST-1), produced by Staphylococcus aureus and associated with toxic shock syndrome, functions in vitro as both a lymphoproliferative and immunosuppressive protein for human peripheral blood mononuclear cells (PBMs). We analyzed TSST-1-target cell interactions by receptor-ligand binding analyses. In competitive binding experiments, 2 X 10(5) human PBMs or purified cell populations were incubated in the presence of small amounts of (5-50 ng) of /sup 125/I-labeled TSST-1 and increasing amounts of unlabeled TSST-1 (25-10,000 ng). Data were analyzed by the method of Scatchard. Toxin-specific receptors were shown to exist on T lymphocytes within the PBM population. T4+ cells had 27.5 X 10(6) receptors per cell, and T8+ cells had 9 X 10(6) receptors per cell. T4+ and T8+ receptors had dissociation constants of 2.58 X 10(-8) M and 1.8 X 10(-8) M, respectively. These studies confirm earlier work showing that TSST-1 causes the functional activation of a population of T lymphocytes involved in suppression of immunoglobulin responses.

  9. Human single-stranded DNA binding proteins: guardians of genome stability

    Institute of Scientific and Technical Information of China (English)

    Yuanzhong Wu; Jinping Lu; Tiebang Kang

    2016-01-01

    Single-stranded DNA-binding proteins (SSBs) are essential for maintaining the integrity of the genome in all organisms.All processes related to DNA,such as replication,excision,repair,and recombination,require the participation of SSBs whose oligonucleotideaoligosaccharide-binding (OB)-fold domain is responsible for the interaction with single-stranded DNA (ssDNA).For a long time,the heterotrimeric replication protein A (RPA) complex was believed to be the only nuclear SSB in eukanyotes to participate in ssDNA processing,while mitochondrial SSBs that are consewed with prokaryotic SSBs were shown to be essential for maintaining genome stability in eukaryotic mitochondria.In recent years,two new proteins,hSSB1 and hSSB2 (human SSBs 1/2),were identified and have better sequence similarity to bacterial and archaeal SSBs than RPA.This review summarizes the current understanding of these human SSBs in DNA damage repair and in cell-cycle checkpoint activation following DNA damage,as well as their relationships with cancer.

  10. Trans—acting factors from the human fetal liver binding to the human ε—globin gene silencer

    Institute of Scientific and Technical Information of China (English)

    YANZHIJIANG; CHUJIANG; 等

    1997-01-01

    The developmental stage-specific silencing of the human ε-globin gene during embryonic life is controlled,in part,by the silencer (-392bp- -177bp) upstream of this gene.In order to elucidate its role,the nuclear extract from the human fetal liver has been prepared and the interactions between trans-acting factors and this silencer element have been examined.By using DNaseI footprinting assay,a major protected region from -278bp to -235bp within this silencer element was identified.Furthermore,we found in gel mobility shift assay and Southwestern blotting assay that there were at least four trans-acting factors (MV≈32,28,26 and 22kD) in the nuclear extract isolated from the human fetal liver,which could specifically bind to this region.Our results suggested that these trans-acting factors might play an important role in silencing the human embryonic ε-globin gene expression at the fetal stage through the interactions with this silencer.

  11. Binding of fluorescently labeled cholera toxin subunit B to glycolipids in the human submandibular gland and inhibition of binding by periodate oxidation and by galactose.

    Science.gov (United States)

    Kirkeby, S

    2016-01-01

    FITC-labeled cholera toxin subunit B (CTB) stained the surfaces of cells of mucous acini in the submandibular gland. CTB, also called choleragenoid, binds to the GM1 glycolipid in the cell membrane. The binding in most acini was inhibited by periodic acid oxidation of the sections, while some acini remained unaffected even after increased oxidation. Staining with the subunit was also reduced significantly by adding galactose to the incubation medium. Binding of CTB to cell surfaces apparently requires intact sialic groups on most, but not all, cell surfaces. Oxidation of the sialic acid residues may influence the structure of the sialylated GM1 molecules on the cell surface in different ways. It is possible that both the sialic acid residue and the terminal galactose are oxidized. Alternatively, the sialic acid may be resistant to acid hydrolysis in gangliosides in which the sialic acid is attached to the internal galactose residue linked to GalNAc, as in the GM1 glycolipid. Inhibition of the GM1 receptor binding to cholera toxin has potential for protection of humans against cholera. Galactose and agents that modify sialic acid inhibit the accessibility of the toxin to the GM1 carbohydrate receptor. Human milk contains high levels of sialic acid glycoconjugates that may provide defense mechanisms.

  12. Expression of androgen-binding protein (ABP) in human cardiac myocytes.

    Science.gov (United States)

    Schock, H W; Herbert, Z; Sigusch, H; Figulla, H R; Jirikowski, G F; Lotze, U

    2006-04-01

    Cardiomyocytes are known to be androgen targets. Changing systemic steroid levels are thought to be linked to various cardiac ailments, including dilated cardiomyopathy (DCM). The mode of action of gonadal steroid hormones on the human heart is unknown to date. In the present study, we used high-resolution immunocytochemistry on semithin sections (1 microm thick), IN SITU hybridization, and mass spectrometry to investigate the expression of androgen-binding protein (ABP) in human myocardial biopsies taken from male patients with DCM. We observed distinct cytoplasmic ABP immunoreactivity in a fraction of the myocytes. IN SITU hybridization with synthetic oligonucleotide probes revealed specific hybridization signals in these cells. A portion of the ABP-positive cells contained immunostaining for androgen receptor. With SELDI TOF mass spectrometry of affinity purified tissue extracts of human myocardium, we confirmed the presence of a 50 kDa protein similar to ABP. Our observations provide evidence of an intrinsic expression of ABP in human heart. ABP may be secreted from myocytes in a paracrine manner perhaps to influence the bioavailabity of gonadal steroids in myocardium.

  13. A 193-amino acid fragment of the SARS coronavirus S protein efficiently binds angiotensin-converting enzyme 2.

    Science.gov (United States)

    Wong, Swee Kee; Li, Wenhui; Moore, Michael J; Choe, Hyeryun; Farzan, Michael

    2004-01-30

    The coronavirus spike (S) protein mediates infection of receptor-expressing host cells and is a critical target for antiviral neutralizing antibodies. Angiotensin-converting enzyme 2 (ACE2) is a functional receptor for the coronavirus (severe acute respiratory syndrome (SARS)-CoV) that causes SARS. Here we demonstrate that a 193-amino acid fragment of the S protein (residues 318-510) bound ACE2 more efficiently than did the full S1 domain (residues 12-672). Smaller S protein fragments, expressing residues 327-510 or 318-490, did not detectably bind ACE2. A point mutation at aspartic acid 454 abolished association of the full S1 domain and of the 193-residue fragment with ACE2. The 193-residue fragment blocked S protein-mediated infection with an IC(50) of less than 10 nm, whereas the IC(50) of the S1 domain was approximately 50 nm. These data identify an independently folded receptor-binding domain of the SARS-CoV S protein.

  14. Inhibition of human spermatozoa-zona pellucida binding by a combinatorially derived peptide from a synthetic target.

    Science.gov (United States)

    Pieczenik, George; Garrisi, John; Cohen, Jacques

    2006-09-01

    Intact zona-free human oocytes were screened using a combinatorial peptide library selection protocol. Pieczenik Peptide Sequence 1 (PPS1) HEHRKRG binds human spermatozoa. A complementary and unique binding sequence HNSSLSPLATPA (PPS2) was developed from the first PPS1 ligand that binds to the human zona pellucida or oolemma. Cytoplasm-free zonae from unfertilized eggs were obtained and used as an assay system to test the effects of exposure to these two ligands. Spermatozoa were inserted into evacuated zonae and their behaviour and binding activity were assessed at regular intervals. The behaviour of spermatozoa exposed to PPS1 and unlabelled spermatozoa injected into unexposed zonae was similar as far as binding was concerned (50 and 54% binding), but PPS1 exposed spermatozoa had higher motility and displacement, marked by their escape from the zona pellucida. Zonae exposed to PPS2 inhibited the interaction between injected spermatozoa and the inside of the zona when compared with controls (8.3 and 53.8% attached respectively, P movie sequence taken approximately 30 min after injection of spermatozoa into empty human zonae pellucidae shows behaviour of non-manipulated spermatozoa into zonae not exposed or exposed to ligand. This may be purchased for viewing on the Internet at www.rbmonline.com/Article/2159 (free to web subscribers).

  15. Cyanide binding to human plasma heme-hemopexin: A comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Ascenzi, Paolo, E-mail: ascenzi@uniroma3.it [Laboratorio Interdipartimentale di Microscopia Elettronica, Universita Roma Tre, Roma (Italy); Istituto Nazionale di Biostrutture e Biosistemi, Roma (Italy); Leboffe, Loris [Istituto Nazionale di Biostrutture e Biosistemi, Roma (Italy); Polticelli, Fabio [Dipartimento di Biologia, Universita Roma Tre, Roma (Italy)

    2012-11-16

    Highlights: Black-Right-Pointing-Pointer Cyanide binding to ferric HHPX-heme-Fe. Black-Right-Pointing-Pointer Cyanide binding to ferrous HHPX-heme-Fe. Black-Right-Pointing-Pointer Dithionite-mediated reduction of ferric HHPX-heme-Fe-cyanide. Black-Right-Pointing-Pointer Cyanide binding to HHPX-heme-Fe is limited by ligand deprotonation. Black-Right-Pointing-Pointer Cyanide dissociation from HHPX-heme-Fe-cyanide is limited by ligand protonation. -- Abstract: Hemopexin (HPX) displays a pivotal role in heme scavenging and delivery to the liver. In turn, heme-Fe-hemopexin (HPX-heme-Fe) displays heme-based spectroscopic and reactivity properties. Here, kinetics and thermodynamics of cyanide binding to ferric and ferrous hexa-coordinate human plasma HPX-heme-Fe (HHPX-heme-Fe(III) and HHPX-heme-Fe(II), respectively), and for the dithionite-mediated reduction of the HHPX-heme-Fe(III)-cyanide complex, at pH 7.4 and 20.0 Degree-Sign C, are reported. Values of thermodynamic and kinetic parameters for cyanide binding to HHPX-heme-Fe(III) and HHPX-heme-Fe(II) are K = (4.1 {+-} 0.4) Multiplication-Sign 10{sup -6} M, k{sub on} = (6.9 {+-} 0.5) Multiplication-Sign 10{sup 1} M{sup -1} s{sup -1}, and k{sub off} = 2.8 Multiplication-Sign 10{sup -4} s{sup -1}; and H = (6 {+-} 1) Multiplication-Sign 10{sup -1} M, h{sub on} = 1.2 Multiplication-Sign 10{sup -1} M{sup -1} s{sup -1}, and h{sub off} = (7.1 {+-} 0.8) Multiplication-Sign 10{sup -2} s{sup -1}, respectively. The value of the rate constant for the dithionite-mediated reduction of the HHPX-heme-Fe(III)-cyanide complex is l = 8.9 {+-} 0.8 M{sup -1/2} s{sup -1}. HHPX-heme-Fe reactivity is modulated by proton acceptor/donor amino acid residue(s) (e.g., His236) assisting the deprotonation and protonation of the incoming and outgoing ligand, respectively.

  16. Divergent evolution of human p53 binding sites: cell cycle versus apoptosis.

    Directory of Open Access Journals (Sweden)

    Monica M Horvath

    2007-07-01

    Full Text Available The p53 tumor suppressor is a sequence-specific pleiotropic transcription factor that coordinates cellular responses to DNA damage and stress, initiating cell-cycle arrest or triggering apoptosis. Although the human p53 binding site sequence (or response element [RE] is well characterized, some genes have consensus-poor REs that are nevertheless both necessary and sufficient for transactivation by p53. Identification of new functional gene regulatory elements under these conditions is problematic, and evolutionary conservation is often employed. We evaluated the comparative genomics approach for assessing evolutionary conservation of putative binding sites by examining conservation of 83 experimentally validated human p53 REs against mouse, rat, rabbit, and dog genomes and detected pronounced conservation differences among p53 REs and p53-regulated pathways. Bona fide NRF2 (nuclear factor [erythroid-derived 2]-like 2 nuclear factor and NFkappaB (nuclear factor of kappa light chain gene enhancer in B cells binding sites, which direct oxidative stress and innate immunity responses, were used as controls, and both exhibited high interspecific conservation. Surprisingly, the average p53 RE was not significantly more conserved than background genomic sequence, and p53 REs in apoptosis genes as a group showed very little conservation. The common bioinformatics practice of filtering RE predictions by 80% rodent sequence identity would not only give a false positive rate of approximately 19%, but miss up to 57% of true p53 REs. Examination of interspecific DNA base substitutions as a function of position in the p53 consensus sequence reveals an unexpected excess of diversity in apoptosis-regulating REs versus cell-cycle controlling REs (rodent comparisons: p < 1.0 e-12. While some p53 REs show relatively high levels of conservation, REs in many genes such as BAX, FAS, PCNA, CASP6, SIVA1, and P53AIP1 show little if any homology to rodent sequences. This

  17. Bisphenol A binds to the local anesthetic receptor site to block the human cardiac sodium channel.

    Directory of Open Access Journals (Sweden)

    Andrias O O'Reilly

    Full Text Available Bisphenol A (BPA has attracted considerable public attention as it leaches from plastic used in food containers, is detectable in human fluids and recent epidemiologic studies link BPA exposure with diseases including cardiovascular disorders. As heart-toxicity may derive from modified cardiac electrophysiology, we investigated the interaction between BPA and hNav1.5, the predominant voltage-gated sodium channel subtype expressed in the human heart. Electrophysiology studies of heterologously-expressed hNav1.5 determined that BPA blocks the channel with a K(d of 25.4±1.3 µM. By comparing the effects of BPA and the local anesthetic mexiletine on wild type hNav1.5 and the F1760A mutant, we demonstrate that both compounds share an overlapping binding site. With a key binding determinant thus identified, an homology model of hNav1.5 was generated based on the recently-reported crystal structure of the bacterial voltage-gated sodium channel NavAb. Docking predictions position both ligands in a cavity delimited by F1760 and contiguous with the DIII-IV pore fenestration. Steered molecular dynamics simulations used to assess routes of ligand ingress indicate that the DIII-IV pore fenestration is a viable access pathway. Therefore BPA block of the human heart sodium channel involves the local anesthetic receptor and both BPA and mexiletine may enter the closed-state pore via membrane-located side fenestrations.

  18. Neutralization of biological activity and inhibition of receptor binding by antibodies against human thrombopoietin.

    Science.gov (United States)

    Tahara, T; Kuwaki, T; Matsumoto, A; Morita, H; Watarai, H; Inagaki, Y; Ohashi, H; Ogami, K; Miyazaki, H; Kato, T

    1998-01-01

    Thrombopoietin (TPO) is a recently isolated cytokine that primarily regulates megakaryocytopoiesis and thrombopoiesis. We recently reported the development of a variety of antibodies (Abs) to synthetic peptides of human (h)TPO and to recombinant human TPO (rhTPO). In this study, we characterized the Abs and mapped immunologically distinct areas of the molecule. Among the five different antipeptide polyclonal Abs, only one, raised against synthetic peptide D8 to Q28, neutralized the TPO-dependent growth of FDCP-2 cells expressing human Mpl (FDCP-hMpl5 cells). One out of seven anti-rhTPO monoclonal Abs, designated as TN1, also showed neutralizing activity. TN1 was found to be specifically reactive with two proteolytic fragments, residues S1 to R117 and A60 to K122 of hTPO, indicating that the epitope(s) of TN1 is localized in residues A60 to R117 of the molecule. These two neutralizing Abs inhibited the binding of biotinylated rhTPO to FDCP-hMpl5 cells. On the other hand, the other Abs, which reacted with five polypeptides of S47 to D62, L108 to A126, N172 to A190, S262 to T284, and P306 to G332 of hTPO, did not show either the neutralizing activity or the ability to inhibit the binding of biotinylated rhTPO to the cell surface hMpl. These findings indicate that two regions, residues D8 to Q28 and A60 to R117 of hTPO, may contain the domains associated with its receptor, C-Mpl. These Abs characterized here are valuable for studying the structural analysis and the biological function of hTPO mediated by its receptor.

  19. Identification of transcription factor AML-1 binding site upstream of human cytomegalovirus UL111A gene.

    Directory of Open Access Journals (Sweden)

    Xiaoqun Zheng

    Full Text Available Human cytomegalovirus (HCMV interleukin-10 (hcmvIL-10, encoded by HCMV UL111A gene, is a homolog of human IL-10. It exerts immunomodulatory effects that allow HCMV to evade host defense mechanisms. However, the exact mechanism underlying the regulation of hcmvIL-10 expression is not well understood. The transcription factor acute myeloid leukemia 1 (AML-1 plays an important role in the regulation of various genes involved in the differentiation of hematopoietic lineages. A putative AML-1 binding site is present within the upstream regulatory region (URR of UL111A gene. To provide evidence that AML-1 is involved in regulating UL111A gene expression, we examined the interaction of AML-1 with the URR of UL111A in HCMV-infected human monocytic THP-1 cells using a chromatin immunoprecipitation assay. HcmvIL-10 transcription was detected in differentiated THP-1 cells, but not in undifferentiated ones. Furthermore, the URR of UL111A showed a higher intensity of AML-1 binding, a higher level of histone H3 acetyl-K9, but a lower level of histone H3 dimethyl-K9 in differentiated THP-1 cells than undifferentiated cells. Down-regulation of AML1 by RNA interference decreased the expression of the UL111A gene. Our results suggest that AML-1 may contribute to the epigenetic regulation of UL111A gene via histone modification in HCMV-infected differentiated THP-1 cells. This finding could be useful for the development of new anti-viral therapies.

  20. Human Sterol Regulatory Element-Binding Protein 1a Contributes Significantly to Hepatic Lipogenic Gene Expression

    Directory of Open Access Journals (Sweden)

    Andreas Bitter

    2015-01-01

    Full Text Available Background/Aims: Sterol regulatory element-binding protein (SREBP 1, the master regulator of lipogenesis, was shown to be associated with non-alcoholic fatty liver disease, which is attributed to its major isoform SREBP1c. Based on studies in mice, the minor isoform SREBP1a is regarded as negligible for hepatic lipogenesis. This study aims to elucidate the expression and functional role of SREBP1a in human liver. Methods: mRNA expression of both isoforms was quantified in cohorts of human livers and primary human hepatocytes. Hepatocytes were treated with PF-429242 to inhibit the proteolytic activation of SREBP precursor protein. SREBP1a-specifc and pan-SREBP1 knock-down were performed by transfection of respective siRNAs. Lipogenic SREBP-target gene expression was analyzed by real-time RT-PCR. Results: In human liver, SREBP1a accounts for up to half of the total SREBP1 pool. Treatment with PF-429242 indicated SREBP-dependent auto-regulation of SREBP1a, which however was much weaker than of SREBP1c. SREBP1a-specifc knock-down also reduced significantly the expression of SREBP1c and of SREBP-target genes. Regarding most SREBP-target genes, simultaneous knock-down of both isoforms resulted in effects of only similar extent as SREBP1a-specific knock-down. Conclusion: We here showed that SREBP1a is significantly contributing to the human hepatic SREBP1 pool and has a share in human hepatic lipogenic gene expression.

  1. Kaempferol-human serum albumin interaction: Characterization of the induced chirality upon binding by experimental circular dichroism and TDDFT calculations

    Science.gov (United States)

    Matei, Iulia; Ionescu, Sorana; Hillebrand, Mihaela

    2012-10-01

    The experimental induced circular dichroism (ICD) and absorption spectra of the achiral flavonoid kaempferol upon binding to human serum albumin (HSA) were correlated to electronic CD and UV-vis spectra theoretically predicted by time-dependent density functional theory (TDDFT). The neutral and four anionic species of kaempferol in various conformations were considered in the calculations. The appearance of the experimental ICD signal was rationalized in terms of kaempferol binding to HSA in a distorted, chiral, rigid conformation. The comparison between the experimental and simulated spectra allowed for the identification of the kaempferol species that binds to HSA, namely the anion generated by deprotonation of the hydroxyl group in position 7. This approach constitutes a convenient method for evidencing the binding species and for determining its conformation in the binding pocket of the protein. Its main advantage over the UV-vis absorption method lays in the fact that only the bound ligand species gives an ICD signal.

  2. Binding and conformational changes of human serum albumin upon interaction with 4-aminoantipyrine studied by spectroscopic methods and cyclic voltammetry.

    Science.gov (United States)

    Gowda, Jayant I; Nandibewoor, Sharanappa T

    2014-04-24

    The interactions of 4-aminoantipyrine (AAP) with human serum albumin (HSA) have been studied by UV-visible spectroscopy, fluorescence spectroscopy and cyclic voltammetry. The binding of 4-aminoantipyrine quenches the HSA fluorescence, revealing a 1:1 interaction with a binding constant of about 10(5) M(-1). The experimental results showed that AAP effectively quenched the intrinsic fluorescence of HSA via dynamic type of quenching. In addition, according to the synchronous fluorescence spectra of HSA in presence of 4-aminoantipyrine, the tryptophan residue of the proteins are most perturbed by the binding process. The number of binding sites, the binding constant, site probe study, some common metal ions effect and the thermodynamic parameters were calculated.

  3. Drug binding to human serum albumin: abridged review of results obtained with high-performance liquid chromatography and circular dichroism.

    Science.gov (United States)

    Ascoli, Giorgio A; Domenici, Enrico; Bertucci, Carlo

    2006-09-01

    The drug binding to plasma and tissue proteins are fundamental factors in determining the overall pharmacological activity of a drug. Human serum albumin (HSA), together with alpha1-acid glycoprotein (AGP), are the most important plasma proteins, which act as drug carriers, with drug pharmacokinetic implications, resulting in important clinical impacts for drugs that have a relatively narrow therapeutic index. This review focuses on the combination of biochromatography and circular dichroism as an effective approach for the characterization of albumin binding sites and their enantioselectivity. Furthermore, their applications to the study of changes in the binding properties of the protein arising by the reversible or covalent binding of drugs are discussed, and examples of physiological relevance reported. Perspectives of these studies reside in supporting the development of new drugs, which require miniaturization to facilitate the screening of classes of compounds for their binding to the target protein, and a deeper characterization of the mechanisms involved in the molecular recognition processes.

  4. Interaction of complement-solubilized immune complexes with CR1 receptors on human erythrocytes. The binding reaction

    DEFF Research Database (Denmark)

    Jepsen, H H; Svehag, S E; Jarlbaek, L

    1986-01-01

    showed no binding. IC solubilized in 50% human serum in the presence of autologous RBC bound rapidly to RBC-CR1, with maximal binding within less than 1 min at 37 degrees C. Release of CR1-bound IC under these conditions occurred slowly, requiring more than 30 min. Only binding of 'partially' solubilized...... of an intact classical pathway in preparing the IC for binding to RBC-CR1. C-solubilized IC could be absorbed to solid-phase conglutinin or antibody to C3c and C4c, and these ligands were able to inhibit the binding of solubilized IC to RBC. Heparin also exerted a marked, dose-dependent inhibitory effect...

  5. Thermodynamics of the binding of salicylate to human serum albumin: evidence of non-competition with imidazole.

    Science.gov (United States)

    Matias, I; Ceballos, A; Gonzalez-Velasco, F; Cachaza, J M

    1989-02-01

    The thermodynamic characteristics of the binding of salicylate to human serum albumin have been studied using a technique based on the variation of the quantum yield of fluorescence of salicylate when it binds to the protein. The binding constants, number of sites and the values of delta G degrees, delta H degrees and delta S degrees were determined. The results are consistent with a model that proposes two equal and independent types of binding site with a predominantly ionic interaction and an important hydrophobic contribution in one of the sites. The technique was also used to demonstrate that imidazole and salicylate (that can be found simultaneously in plasma following administration of imidazole-2-hydroxybenzoate) do not compete for the same binding sites on the protein.

  6. Normocyte-binding protein required for human erythrocyte invasion by the zoonotic malaria parasitePlasmodium knowlesi

    KAUST Repository

    Moon, Robert W.

    2016-06-15

    The dominant cause of malaria in Malaysia is now Plasmodium knowlesi, a zoonotic parasite of cynomolgus macaque monkeys found throughout South East Asia. Comparative genomic analysis of parasites adapted to in vitro growth in either cynomolgus or human RBCs identified a genomic deletion that includes the gene encoding normocyte-binding protein Xa (NBPXa) in parasites growing in cynomolgus RBCs but not in human RBCs. Experimental deletion of the NBPXa gene in parasites adapted to growth in human RBCs (which retain the ability to grow in cynomolgus RBCs) restricted them to cynomolgus RBCs, demonstrating that this gene is selectively required for parasite multiplication and growth in human RBCs. NBPXa-null parasites could bind to human RBCs, but invasion of these cells was severely impaired. Therefore, NBPXa is identified as a key mediator of P. knowlesi human infection and may be a target for vaccine development against this emerging pathogen.

  7. Investigation of the binding of Salvianolic acid B to human serum albumin and the effect of metal ions on the binding

    Science.gov (United States)

    Chen, Tingting; Cao, Hui; Zhu, Shajun; Lu, Yapeng; Shang, Yanfang; Wang, Miao; Tang, Yanfeng; Zhu, Li

    2011-10-01

    The studies on the interaction between HSA and drugs have been an interesting research field in life science, chemistry and clinical medicine. There are also many metal ions present in blood plasma, thus the research about the effect of metal ions on the interaction between drugs and plasma proteins is crucial. In this study, the interaction of Salvianolic acid B (Sal B) with human serum albumin (HSA) was investigated by the steady-state, synchronous fluorescence and circular dichroism (CD) spectroscopies. The results showed that Sal B had a strong ability to quench the intrinsic fluorescence of HSA through a static quenching mechanism. Binding parameters calculated showed that Sal B was bound to HSA with the binding affinities of 10 5 L mol -1. The thermodynamic parameters studies revealed that the binding was characterized by positive enthalpy and positive entropy changes, and hydrophobic interactions were the predominant intermolecular forces to stabilize the complex. The specific binding distance r (2.93 nm) between donor (HSA) and acceptor (Sal B) was obtained according to Förster non-radiative resonance energy transfer theory. The synchronous fluorescence experiment revealed that Sal B cannot lead to the microenvironmental changes around the Tyr and Trp residues of HSA, and the binding site of Sal B on HSA is located in hydrophobic cavity of subdomain IIA. The CD spectroscopy indicated the secondary structure of HSA is not changed in the presence of Sal B. Furthermore, The effect of metal ions (e.g. Zn 2+, Cu 2+, Co 2+, Ni 2+, Fe 3+) on the binding constant of Sal B-HSA complex was also discussed.

  8. Spectral and computational features of the binding between riparins and human serum albumin.

    Science.gov (United States)

    Camargo, Cintia Ramos; Caruso, Ícaro Putinhon; Gutierrez, Stanley Juan Chavez; Fossey, Marcelo Andres; Filho, José Maria Barbosa; Cornélio, Marinônio Lopes

    2017-09-08

    The green Brazilian bay leaf, a spice much prized in local cuisine (Aniba riparia, Lauraceae), contains chemical compounds presenting benzoyl-derivatives named riparins, which have anti-inflammatory, antimicrobial and anxiolytic properties. However, it is unclear what kind of interaction riparins perform with any molecular target. As a profitable target, human serum albumin (HSA) is one of the principal extracellular proteins, with an exceptional capacity to interact with several molecules, and it also plays a crucial role in the transport, distribution, and metabolism of a wide variety of endogenous and exogenous ligands. To outline the HSA-riparin interaction mechanism, spectroscopy and computational methods were synergistically applied. An evaluation through fluorescence spectroscopy showed that the emission, attributed to Trp 214, at 346 nm decreased with titrations of riparins. A static quenching mechanism was observed in the binding of riparins to HSA. Fluorescence experiments performed at 298, 308 and 318 K made it possible to conduct thermodynamic analysis indicating a spontaneous reaction in the complex formation (ΔGcomplex, Hill's approach was utilized to distinguish the index of affinity and the binding constant. A correspondence between the molecular structures of riparins, due to the presence of the hydroxyl group in the B-ring, with thermodynamic parameters and index of affinity were observed. Riparin III performs an intramolecular hydrogen bond, which affects the Hill coefficient and the binding constant. Therefore, the presence of hydroxyl groups is capable of modulating the interaction between riparins and HSA. Site marker competitive experiments indicated Site I as being the most suitable, and the molecular modeling tools reinforced the experimental results detailing the participation of residues. Copyright © 2017. Published by Elsevier B.V.

  9. Piperine Decreases Binding of Drugs to Human Plasma and Increases Uptake by Brain Microvascular Endothelial Cells.

    Science.gov (United States)

    Dubey, Raghvendra K; Leeners, Brigitte; Imthurn, Bruno; Merki-Feld, Gabriele Susanne; Rosselli, Marinella

    2017-09-26

    We previously reported that piperine, an active alkaloidal principal of black and long peppers, enhances drug bioavailability by inhibiting drug metabolism. Another mechanism influencing drug availability/uptake is its free fraction. Since piperine is highly lipophilic, we hypothesize that it could also interact with drugs through binding displacement and influence their bioavailability. Accordingly, using equilibrium dialysis, we investigated whether piperine alters the binding of model drug ligands, that is flunitrazepam, diazepam, warfarin, salicylic acid, propranolol, lidocaine, and disopyramide to human plasma (n = 4). Since alterations in binding influence drug disposition, we also studied the effects of piperine on the uptake of plasma bound (3) H-propranolol and (14) C-warfarin by cultured bovine brain microvascular endothelial cells (BMECs). Piperine (1-1000 μM) increased the free fraction (fu) of both albumin and alpha-acid glycoprotein bound drugs in a concentration-dependent manner (p < 0.01). Moreover, piperine (10 μM) increased the uptake of (3) H-propranolol and (14) C-warfarin by BMECs (p < 0.01). In conclusion, our findings provide the first evidence that piperine displaces plasma bound drugs from both albumin and alpha-acid glycoprotein and facilitates drug uptake across biological membranes (e.g. BMEC). Moreover, it is feasible that piperine may similarly facilitate the transport of drugs into tissues, in vivo, and alter both pharmacokinetics and pharmacodynamics of administered drugs. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  10. Binding of furosemide to albumin isolated from human fetal and adult serum.

    Science.gov (United States)

    Viani, A; Cappiello, M; Silvestri, D; Pacifici, G M

    1991-01-01

    Albumin was isolated from pooled fetal serum from 58 placentas obtained at normal delivery at term and from pooled adult plasma from 8 individuals. Albumin isolation was carried out by means of PEG precipitation followed by ion-exchange chromatography on DEAE-Sephadex A 50 and then on SP-Sephadex C 50. The electrophoresis on SDS-polyacrylamide gels showed only one spot that comigrated with commercial human albumin. Binding to albumin was measured by equilibrium dialysis of an aliquot of albumin solution (0.7 ml) against the same volume of 0.13 M sodium orthophosphate buffer (pH 7.4). At a total concentration of 2 micrograms/ml (therapeutic range), the unbound fraction of furosemide was 2.71% (fetal albumin) and 2.51% (adult albumin). Two classes of binding sites for furosemide were observed in fetal and adult albumin. The number of binding sites (moles of furosemide per mole of albumin) was 1.22 (fetal albumin) and 1.58 (adult albumin) for the high-affinity site and 2.97 (fetal albumin) and 3.25 (adult albumin) for the low-affinity site. The association constants (M-1) were 3.1 X 10(4) (fetal albumin) and 2.6 X 10(4) (adult albumin) for the high-affinity set of sites and 0.83 X 10(4) (fetal albumin) and 1.0 X 10(4) (adult albumin) low-affinity site. The displacement of furosemide from albumin was studied with therapeutic concentrations of several drugs. Valproic acid, salicylic acid, azapropazone and tolbutamide had the highest displacing effects which were significantly higher with fetal than with adult albumin.

  11. RNA-binding properties and RNA chaperone activity of human peroxiredoxin 1

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ji-Hee; Lee, Jeong-Mi; Lee, Hae Na; Kim, Eun-Kyung; Ha, Bin [Lee Gil Ya Cancer and Diabetes Institute, Gachon University (Korea, Republic of); Ahn, Sung-Min, E-mail: smahn@gachon.ac.kr [Lee Gil Ya Cancer and Diabetes Institute, Gachon University (Korea, Republic of); Department of Translational Medicine, Gachon University Gil Hospital, Incheon (Korea, Republic of); Jang, Ho Hee, E-mail: hhjang@gachon.ac.kr [Lee Gil Ya Cancer and Diabetes Institute, Gachon University (Korea, Republic of); Lee, Sang Yeol [Division of Applied Life Sciences (Brain Korea 21 program), Gyeongsang National University, Jinju 660-701 (Korea, Republic of)

    2012-09-07

    Highlights: Black-Right-Pointing-Pointer hPrx1 has RNA-binding properties. Black-Right-Pointing-Pointer hPrx1 exhibits helix-destabilizing activity. Black-Right-Pointing-Pointer Cold stress increases hPrx1 level in the nuclear fraction. Black-Right-Pointing-Pointer hPrx1 enhances the viability of cells exposed to cold stress. -- Abstract: Human peroxiredoxin 1 (hPrx1), a member of the peroxiredoxin family, detoxifies peroxide substrates and has been implicated in numerous biological processes, including cell growth, proliferation, differentiation, apoptosis, and redox signaling. To date, Prx1 has not been implicated in RNA metabolism. Here, we investigated the ability of hPrx1 to bind RNA and act as an RNA chaperone. In vitro, hPrx1 bound to RNA and DNA, and unwound nucleic acid duplexes. hPrx1 also acted as a transcription anti-terminator in an assay using an Escherichia coli strain containing a stem-loop structure upstream of the chloramphenicol resistance gene. The overall cellular level of hPrx1 expression was not increased at low temperatures, but the nuclear level of hPrx1 was increased. In addition, hPrx1 overexpression enhanced the survival of cells exposed to cold stress, whereas hPrx1 knockdown significantly reduced cell survival under the same conditions. These findings suggest that hPrx1 may perform biological functions as a RNA-binding protein, which are distinctive from known functions of hPrx1 as a reactive oxygen species scavenger.

  12. Insulin-like growth factors, insulin-like growth factor-binding proteins, insulin-like growth factor-binding protein-3 protease, and growth hormone-binding protein in lipodystrophic human immunodeficiency virus-infected patients

    DEFF Research Database (Denmark)

    Haugaard, Steen B; Andersen, Ove; Hansen, Birgitte Rønde;

    2004-01-01

    Human immunodeficiency virus (HIV)-lipodystrophy is associated with impaired growth hormone (GH) secretion. It remains to be elucidated whether insulin-like growth factors (IGFs), IGF-binding proteins (IGFBPs), IGFBP-3 protease, and GH-binding protein (GHBP) are abnormal in HIV-lipodystrophy....... These parameters were measured in overnight fasting serum samples from 16 Caucasian males with HIV-lipodystrophy (LIPO) and 15 Caucasian HIV-infected males without lipodystrophy (NONLIPO) matched for age, weight, duration of HIV infection, and antiretroviral therapy. In LIPO, abdominal fat mass and insulin...... of bioactive IGF-I in HIV-lipodystrophy....

  13. Sialic acid receptor detection in the human respiratory tract: evidence for widespread distribution of potential binding sites for human and avian influenza viruses

    Directory of Open Access Journals (Sweden)

    Guan Yi

    2007-10-01

    Full Text Available Abstract Background Influenza virus binds to cell receptors via sialic acid (SA linked glycoproteins. They recognize SA on host cells through their haemagglutinins (H. The distribution of SA on cell surfaces is one determinant of host tropism and understanding its expression on human cells and tissues is important for understanding influenza pathogenesis. The objective of this study therefore was to optimize the detection of α2,3-linked and α2,6-linked SA by lectin histochemistry by investigating the binding of Sambucus nigra agglutinin (SNA for SAα2,6Gal and Maackia amurensis agglutinin (MAA for SAα2,3Gal in the respiratory tract of normal adults and children. Methods We used fluorescent and biotinylated SNA and MAA from different suppliers on archived and prospectively collected biopsy and autopsy specimens from the nasopharynx, trachea, bronchus and lungs of fetuses, infants and adults. We compared different methods of unmasking for tissue sections to determine if these would affect lectin binding. Using serial sections we then compared the lectin binding of MAA from different suppliers. Results We found that unmasking using microwave treatment in citrate buffer produced increased lectin binding to the ciliated and glandular epithelium of the respiratory tract. In addition we found that there were differences in tissue distribution of the α2,3 linked SA when 2 different isoforms of MAA (MAA1 and MAA2 lectin were used. MAA1 had widespread binding throughout the upper and lower respiratory tract and showed more binding to the respiratory epithelium of children than in adults. By comparison, MAA2 binding was mainly restricted to the alveolar epithelial cells of the lung with weak binding to goblet cells. SNA binding was detected in bronchial and alveolar epithelial cells and binding of this lectin was stronger to the paediatric epithelium compared to adult epithelium. Furthermore, the MAA lectins from 2 suppliers (Roche and EY Labs tended

  14. Function of the PEX19-binding site of human adrenoleukodystrophy protein as targeting motif in man and yeast. PMP targeting is evolutionarily conserved.

    Science.gov (United States)

    Halbach, André; Lorenzen, Stephan; Landgraf, Christiane; Volkmer-Engert, Rudolf; Erdmann, Ralf; Rottensteiner, Hanspeter

    2005-06-01

    We predicted in human peroxisomal membrane proteins (PMPs) the binding sites for PEX19, a key player in the topogenesis of PMPs, by virtue of an algorithm developed for yeast PMPs. The best scoring PEX19-binding site was found in the adrenoleukodystrophy protein (ALDP). The identified site was indeed bound by human PEX19 and was also recognized by the orthologous yeast PEX19 protein. Likewise, both human and yeast PEX19 bound with comparable affinities to the PEX19-binding site of the yeast PMP Pex13p. Interestingly, the identified PEX19-binding site of ALDP coincided with its previously determined targeting motif. We corroborated the requirement of the ALDP PEX19-binding site for peroxisomal targeting in human fibroblasts and showed that the minimal ALDP fragment targets correctly also in yeast, again in a PEX19-binding site-dependent manner. Furthermore, the human PEX19-binding site of ALDP proved interchangeable with that of yeast Pex13p in an in vivo targeting assay. Finally, we showed in vitro that most of the predicted binding sequences of human PMPs represent true binding sites for human PEX19, indicating that human PMPs harbor common PEX19-binding sites that do resemble those of yeast. Our data clearly revealed a role for PEX19-binding sites as PMP-targeting motifs across species, thereby demonstrating the evolutionary conservation of PMP signal sequences from yeast to man.

  15. Computer simulation study of the binding of an antiviral agent to a sensitive and a resistant human rhinovirus

    Science.gov (United States)

    Lybrand, Terry P.; McCammon, J. Andrew

    1989-01-01

    Molecular dynamics simulations have been used to study the free energy of binding of an antiviral agent to the human rhinovirus HRV-14 and to a mutant in which a valine residue in the antiviral binding pocket is replaced by leucine. The simulations predict that the antiviral should bind to the two viruses with similar affinity, in apparent disagreement with experimental results. Possible origins of this discrepancy are outlined. Of particular importance is the apparent need for methods to systematically sample all significant conformations of the leucine side chain.

  16. A fibrinogen-binding lipoprotein contributes to the virulence of Haemophilus ducreyi in humans.

    Science.gov (United States)

    Bauer, Margaret E; Townsend, Carisa A; Doster, Ryan S; Fortney, Kate R; Zwickl, Beth W; Katz, Barry P; Spinola, Stanley M; Janowicz, Diane M

    2009-03-01

    A gene expression study of Haemophilus ducreyi identified the hypothetical lipoprotein HD0192, renamed here "fibrinogen binder A" (FgbA), as being preferentially expressed in vivo. To test the role played by fgbA in virulence, an isogenic fgbA mutant (35000HPfgbA) was constructed using H. ducreyi 35000HP, and 6 volunteers were experimentally infected with 35000HP or 35000HPfgbA. The overall pustule-formation rate was 61.1% at parent sites and 22.2% at mutant sites (P = .019). Papules were significantly smaller at mutant sites than at parent sites (13.3 vs. 37.9 mm(2); P = .002) 24 h after inoculation. Thus, fgbA contributed significantly to the virulence of H. ducreyi in humans. In vitro experiments demonstrated that fgbA encodes a fibrinogen-binding protein; no other fibrinogen-binding proteins were identified in 35000HP. fgbA was conserved among clinical isolates of both class I and II H. ducreyi strains, supporting the finding that fgbA is important for H. ducreyi infection.

  17. Comparison of immunochemical and radioligand binding assays for estrogen receptors in human breast tumors.

    Science.gov (United States)

    Di Fronzo, G; Miodini, P; Brivio, M; Cappelletti, V; Coradini, D; Granata, G; Ronchi, E

    1986-08-01

    We have compared a new enzyme immunoassay (EIA) for estrogen receptors (ER) with our conventional radioligand binding assays (multipoint dextran-coated charcoal assay for cytoplasmic ER and hydroxylapatite exchange assay for nuclear ER). Cytoplasmic ERs were measured in 76 human breast cancer specimens by EIA and by five-point Scatchard analysis. The correlation between the two assays yielded a straight line with a slope of 0.92 (r = 0.95; P less than 0.001); conversely, in 31 nuclear salt extracts, linear regression analysis of hydroxylapatite exchange assay data with EIA showed a clear correlation (r = 0.93; P less than 0.001) but a slope of 1.7, demonstrating that EIA detects more ER sites. The binding of the antibody to the cytoplasmic ER molecules was investigated by sucrose density gradient analysis, which showed that EIA recognizes both cytoplasmic forms (9 and 3S), but does not distinguish between them. Advantages and drawbacks of this method are discussed with respect to its application for routine receptor determination for clinical management of breast cancer patients.

  18. Temperature dependence of binding and catalysis for human serum arylesterase/paraoxonase.

    Science.gov (United States)

    Debord, Jean; Bollinger, Jean-Claude; Harel, Michel; Dantoine, Thierry

    2014-02-01

    The influence of temperature upon the hydrolysis of phenyl acetate, catalysed by purified human serum arylesterase/paraoxonase (E. C. 3.1.8.1), was studied in the temperature range 10 °C-40 °C by spectrophotometry in TRIS buffer, pH 8.0, using both initial rate analysis and progress curve analysis. The kinetic parameters (catalytic constant k(cat); Michaelis constant K(m); product inhibition constant K(p)) were determined by nonlinear regression. All parameters increased with temperature, but the ratios k(cat)/K(m) and K(p)/K(m) remained practically constant. Binding of both substrate and reaction product (phenol) was exothermic. A negative entropic term accounted for about 50% of the enthalpy change for both the binding and catalytic steps. Thermodynamic analysis suggested that: (1) the rate-limiting step is the nucleophilic attack of the carbonyl group of the substrate by a water molecule, (2) the active site is preorganized with no induced fit, (3) the enzyme-bound calcium plays an important role in stabilizing both the substrate and the transition state. The practical implications of these results are discussed.

  19. Aggregation analysis of Con A binding proteins of human seminal plasma: a dynamic light scattering study.

    Science.gov (United States)

    Tomar, Anil Kumar; Sooch, Balwinder Singh; Singh, Sarman; Yadav, Savita

    2013-02-01

    Concanavalin A (Con A) binding fraction of human seminal plasma is vital as it shows decapacitating activity and contains proteins which have critical roles in fertility related processes. Con A binding proteins were isolated by lectin affinity chromatography. These proteins form high molecular weight aggregates at near physiological pH (7.0) as inferred by gel filtration. Aggregation analysis was performed by dynamic light scattering (DLS). DLS analysis was also performed at different pH values and in presence of various additives including NaCl, EDTA, cholesterol and sugars, such as d-glucose, d-fructose and d-mannose to identify their effect on aggregation size. The results indicate that degree of aggregation was highly reduced in presence of d-fructose, EDTA and at lower and higher pH values as depicted by lowering of hydrodynamic radii. This aggregation behaviour might be decisive for fertility related events with a suggestive role towards inhibition of premature capacitation.

  20. Reconstruction of adenovirus replication origins with a human nuclear factor I binding site.

    Science.gov (United States)

    Adhya, S; Shneidman, P S; Hurwitz, J

    1986-03-05

    Nuclear factor I is a host-coded DNA-binding protein that stimulates initiation of adenovirus DNA replication. To understand the mechanism of action of nuclear factor I, we have constructed, by recombinant DNA techniques, origins of replication in which the adenovirus type 5 nuclear factor I binding site (FIB site) has been replaced by a FIB site isolated from human genomic DNA (Gronostajski, R. M., Nagata, K., and Hurwitz, J. (1984) Proc. Natl. Acad. Sci. U. S. A. 81, 4013-4017). Assays of such recombinants for initiation and elongation in vitro showed that nuclear factor I was active only when the FIB site was relatively close to the DNA terminus, i.e. the FIB site was centered at nucleotides 30-36 from the end of the DNA. Nuclear factor I was active in either orientation within this distance range. The presence of one or two additional FIB sites in the downstream region had no effect. The implications of these results for the mechanism of nuclear factor I action are discussed.

  1. Determination of sex hormone-binding globulin in human semen by selective ammonium sulphate precipitation.

    Science.gov (United States)

    Morvay, J; Traub, A

    1984-01-01

    A simple method was developed to measure the SHBG capacities of human serum, semen and sperm cells. After suitable dilution, disintegration and addition of labelled dihydrotestosterone-1,2-3 H or testosterone-1,2-3 H, the SHBG was precipitated by the addition of saturated ammonium sulphate in a final concentration of 42.3%. The precipitate was centrifuged and the activity of the non-bound, labelled steroid was counted in an aliquot of the supernatant. Subtraction of this result from the total activity yielded the SHBG-bound steroid in microgram/100 ml or nmol/l. Examination of 52 males gave normal values of means = 13.91 nmol/l (S.E.M. = 0,746) dihydrotestosterone binding globulin (DHTBG) and means = 11.67 nmol/l (S.E.M. = 0.555) testosterone binding globulin (TBG) in serum, while the concentrations in the seminal plasma were means = 10.89 nmol/l (S.E.M. = 0,723) DHTBG and means = 8.93 nmol/l (S.E.M. = 0.625) TBG. means = 5.57 ng/mg protein (S.E.M. = 0.516) DHTBG and means = 4.91 ng/mg protein (S.E.M. = 0.440) TBG were found in the disintegrated sperm cells.

  2. Structure and self-assembly of the calcium binding matrix protein of human metapneumovirus.

    Science.gov (United States)

    Leyrat, Cedric; Renner, Max; Harlos, Karl; Huiskonen, Juha T; Grimes, Jonathan M

    2014-01-07

    The matrix protein (M) of paramyxoviruses plays a key role in determining virion morphology by directing viral assembly and budding. Here, we report the crystal structure of the human metapneumovirus M at 2.8 Å resolution in its native dimeric state. The structure reveals the presence of a high-affinity Ca²⁺ binding site. Molecular dynamics simulations (MDS) predict a secondary lower-affinity site that correlates well with data from fluorescence-based thermal shift assays. By combining small-angle X-ray scattering with MDS and ensemble analysis, we captured the structure and dynamics of M in solution. Our analysis reveals a large positively charged patch on the protein surface that is involved in membrane interaction. Structural analysis of DOPC-induced polymerization of M into helical filaments using electron microscopy leads to a model of M self-assembly. The conservation of the Ca²⁺ binding sites suggests a role for calcium in the replication and morphogenesis of pneumoviruses.

  3. The 5' binding MID domain of human Argonaute2 tolerates chemically modified nucleotide analogues.

    Science.gov (United States)

    Deleavey, Glen F; Frank, Filipp; Hassler, Matthew; Wisnovsky, Simon; Nagar, Bhushan; Damha, Masad J

    2013-02-01

    Small interfering RNAs (siRNAs) can trigger potent gene silencing through the RNA interference (RNAi) pathway. The RNA-induced silencing complex (RISC) is key to this targeted mRNA degradation, and the human Argonaute2 (hAGO2) endonuclease component of RISC is responsible for the actual mRNA cleavage event. During RNAi, hAGO2 becomes loaded with the siRNA guide strand, making several key nucleic acid-enzyme interactions. Chemically modified siRNAs are now widely used in place of natural double-stranded RNAs, and understanding the effects chemical modifications have on guide strand-hAGO2 interactions has become particularly important. Here, interactions between the 5' nucleotide binding domain of hAGO2, MID, and chemically modified nucleotide analogues are investigated. Measured dissociation constants reveal that hAGO2 does not discriminate between nucleotide analogues during binding, regardless of the preferred sugar conformation of the nucleotide analogues. These results correlate well with cell-based gene silencing results employing siRNAs with 5'-modified guide strands. Additionally, chemical modification with 2'-deoxy-2'-fluoroarabino nucleic acid (2'F-ANA) and 2'-deoxy-2'-fluororibonucleic acid (2'F-RNA) at the passenger strand cleavage site of siRNAs has been shown to prevent hAGO2-mediated strand cleavage, an observation that appears to have little impact on overall gene silencing potency.

  4. Plasma mannose-binding lectin is stimulated by PPARα in humans.

    Science.gov (United States)

    Rakhshandehroo, Maryam; Stienstra, Rinke; de Wit, Nicole J; Bragt, Marjolijn C E; Haluzik, Martin; Mensink, Ronald P; Müller, Michael; Kersten, Sander

    2012-03-01

    The peroxisome proliferator activated receptor-α (PPARα) is a major transcriptional regulator of lipid metabolism in liver and represents the molecular target for hypolipidemic fibrate drugs. Effects of PPARα on lipid metabolism are partially mediated by circulating proteins such as FGF21 and ANGPTL4. The present study was undertaken to screen for and identify circulating proteins produced by human liver that are under the control of PPARα. Toward that aim, primary human hepatocytes were treated with the synthetic PPARα agonist Wy-14643 and whole genome expression data selected for secreted proteins. Expression of FGF21, ANGPTL4, and mannose-binding lectin (MBL), a soluble mediator of innate immunity and primary component of the lectin branch of the complement system, was markedly upregulated by Wy-14643 in primary human hepatocytes. Mice express two MBL isomers, Mbl1 and Mbl2. Mbl1 mRNA was weakly induced by Wy-14643 in primary mouse hepatocytes and remained unaltered by Wy-14643 in mouse liver. Mbl2 mRNA was unchanged by Wy-14643 in primary mouse hepatocytes and was strongly reduced by Wy-14643 in mouse liver. Remarkably, plasma Mbl1 levels were increased by chronic PPARα activation in lean and obese mice. Importantly, in two independent clinical trials, treatment with the PPARα agonist fenofibrate at 200 mg/day for 6 wk and 3 mo increased plasma MBL levels by 73 (P = 0.0016) and 86% (P = 0.017), respectively. It is concluded that hepatocyte gene expression and plasma levels of MBL are stimulated by PPARα and fenofibrate in humans, linking PPARα to regulation of innate immunity and complement activation in humans and suggesting a possible role of MBL in lipid metabolism.

  5. Regulatory consequences of neuronal ELAV-like protein binding to coding and non-coding RNAs in human brain

    Science.gov (United States)

    Scheckel, Claudia; Drapeau, Elodie; Frias, Maria A; Park, Christopher Y; Fak, John; Zucker-Scharff, Ilana; Kou, Yan; Haroutunian, Vahram; Ma'ayan, Avi

    2016-01-01

    Neuronal ELAV-like (nELAVL) RNA binding proteins have been linked to numerous neurological disorders. We performed crosslinking-immunoprecipitation and RNAseq on human brain, and identified nELAVL binding sites on 8681 transcripts. Using knockout mice and RNAi in human neuroblastoma cells, we showed that nELAVL intronic and 3' UTR binding regulates human RNA splicing and abundance. We validated hundreds of nELAVL targets among which were important neuronal and disease-associated transcripts, including Alzheimer's disease (AD) transcripts. We therefore investigated RNA regulation in AD brain, and observed differential splicing of 150 transcripts, which in some cases correlated with differential nELAVL binding. Unexpectedly, the most significant change of nELAVL binding was evident on non-coding Y RNAs. nELAVL/Y RNA complexes were specifically remodeled in AD and after acute UV stress in neuroblastoma cells. We propose that the increased nELAVL/Y RNA association during stress may lead to nELAVL sequestration, redistribution of nELAVL target binding, and altered neuronal RNA splicing. DOI: http://dx.doi.org/10.7554/eLife.10421.001 PMID:26894958

  6. Crystal structure of the MrkD1P receptor binding domain of Klebsiella pneumoniae and identification of the human collagen V binding interface.

    Science.gov (United States)

    Rêgo, Ana Toste; Johnson, Jeremiah G; Gelbel, Sebastian; Enguita, Francisco J; Clegg, Steven; Waksman, Gabriel

    2012-11-01

    Klebsiella species are members of the family enterobacteriaceae, opportunistic pathogens that are among the eight most prevalent infectious agents in hospitals. Among other virulence factors in Klebsiella, type 3 pili exhibit a unique binding pattern in the human kidney via interaction of two MrkD adhesion variants 1C1 and 1P to type IV and/or V collagen. However, very little is known about the nature of this recognition. Here we present the crystal structure of the plasmid born MrkD1P receptor domain (MrkDrd). The structure reveals a jelly-roll β-barrel fold comprising 17 β-strands very similar to the receptor domain of GafD, the tip adhesin from the F17 pilus that recognizes n-acetyl-d-glucosamine (GlcNAc). Analysis of collagen V binding of different MrkD1P mutants revealed that two regions were responsible for its binding: a pocket, that aligns approximately with the GlcNAc binding pocket of GafD involving residues R105 and Y155, and a transversally oriented patch that spans strands β2a, β9b and β6 including residues V49, T52, V91, R102 and I136. Taken together, these data provide structural and functional insights on MrkD1P recognition of host cells, providing a tool for future development of rationally designed drugs with the prospect of blocking Klebsiella adhesion to collagen V.

  7. Effect of Common Buffers and Heterocyclic Ligands on the Binding of Cu(II at the Multimetal Binding Site in Human Serum Albumin

    Directory of Open Access Journals (Sweden)

    Magdalena Sokołowska

    2010-01-01

    Full Text Available Visible-range circular dichroism titrations were used to study Cu(II binding properties of Multimetal Binding Site (MBS of Human Serum Albumin (HSA. The formation of ternary MBS-Cu(II-Buffer complexes at pH 7.4 was positively verified for sodium phosphate, Tris, and Hepes, the three most common biochemical buffers. The phosphate > Hepes > Tris order of affinities, together with strong spectral changes induced specifically by Tris, indicates the presence of both Buffer-Cu(II and Buffer-HSA interactions. All complexes are strong enough to yield a nearly 100% ternary complex formation in 0.5 mM HSA dissolved in 100 mM solutions of respective buffers. The effects of warfarin and ibuprofen, specific ligands of hydrophobic pockets I and II in HSA on the Cu(II binding to MBS were also investigated. The effects of ibuprofen were negligible, but warfarin diminished the MBS affinity for Cu(II by a factor of 20, as a result of indirect conformational effects. These results indicate that metal binding properties of MBS can be modulated directly and indirectly by small molecules.

  8. A novel phage-library-selected peptide inhibits human TNF-α binding to its receptors.

    Science.gov (United States)

    Brunetti, Jlenia; Lelli, Barbara; Scali, Silvia; Falciani, Chiara; Bracci, Luisa; Pini, Alessandro

    2014-06-03

    We report the identification of a new human tumor necrosis factor-alpha (TNF-α) specific peptide selected by competitive panning of a phage library. Competitive elution of phages was obtained using the monoclonal antibody adalimumab, which neutralizes pro-inflammatory processes caused by over-production of TNF-α in vivo, and is used to treat severe symptoms of rheumatoid arthritis. The selected peptide was synthesized in monomeric and branched form and analyzed for binding to TNF-α and competition with adalimumab and TNF-α receptors. Results of competition with TNF-α receptors in surface plasmon resonance and melanoma cells expressing both TNF receptors make the peptide a candidate compound for the development of a novel anti-TNF-α drug.

  9. Peptide-directed binding of quantum dots to integrins in human fibroblast.

    Science.gov (United States)

    Shi, Peng; Chen, Hongfeng; Cho, Michael R; Stroscio, Michael A

    2006-03-01

    There is currently a major international effort aimed at integrating semiconductor nanostructures with biological structures. This paper reports the use of peptide sequences with certain motifs like artinine-glycine-aspartic acid (RGD) and leucine-aspartic acid-valine (LDV) to functionalize zinc sulfide (ZnS)-capped cadmiun selenide (CdSe) quantum dots, so that the quantum dot-peptide complexes selectively bind to integrins on HT1080 human fibrosarcoma cells membrane. In this way, an interface between semiconductor nanocrystals and subcellular components was achieved, and the distribution pattern of RGD and LDV receptors on HT1080 cell membranes is revealed. These findings point the way to using a wide class of peptide-functionalized semiconductor quantum dots for the study of cellular processes involving integrins.

  10. Binding properties of drospirenone with human serum albumin and lysozyme in vitro

    Science.gov (United States)

    Wang, Qing; Ma, Xiangling; He, Jiawei; Sun, Qiaomei; Li, Yuanzhi; Li, Hui

    2016-01-01

    The interaction of drospirenone (DP) with human serum albumin (HSA)/lysozyme (LYZ) was investigated using different optical techniques and molecular models. Results from the emission and time resolved fluorescence studies revealed that HSA/LYZ emission quenching with DP was initiated by static quenching mechanism. The LYZ-DP system was more easily influenced by temperature than the HSA-DP system. Displacement experiments demonstrated that the DP binding site was mainly located in site 1 of HSA. Based on the docking methods, DP was mainly bound in the active site hinge region where Trp-62 and Trp-63 are located. Conformation study showed that DP had different effects on the local conformation of HSA and LYZ molecules.

  11. Copper-binding peptides from human prion protein and newly designed peroxidative biocatalysts.

    Science.gov (United States)

    Kagenishi, Tomoko; Yokawa, Ken; Kadono, Takashi; Uezu, Kazuya; Kawano, Tomonori

    2011-01-01

    A previous work suggested that peptides from the histidine-containing copper-binding motifs in human prion protein (PrP) function as peroxidase-like biocatalysts catalyzing the generation of superoxide anion radicals in the presence of neurotransmitters (aromatic monoamines) and phenolics such as tyrosine and tyrosyl residues on proteins. In this study, using various phenolic substrates, the phenol-dependent superoxide-generating activities of PrP-derived peptide sequences were compared. Among the peptides tested, the GGGTH pentapeptide was shown to be the most active catalyst for phenol-dependent reactions. Based on these results, we designed a series of oligoglycyl-histidines as novel peroxidative biocatalysts, and their catalytic performances including kinetics, heat tolerance, and freezing tolerance were analysed.

  12. Conformational restrictions in ligand binding to the human intestinal di-/tripeptide transporter

    DEFF Research Database (Denmark)

    Våbenø, Jon; Nielsen, Carsten Uhd; Steffansen, Bente

    2005-01-01

    by conformational analysis and 2D dihedral driving analysis of 15 hPEPT1 substrates, which suggested that psi(1) approximately 165 degrees , omega(1) approximately 180 degrees , and phi(2) approximately 280 degrees were descriptive of the bioactive conformation. Subsequently, the conformational energy required......The aim of the present study was to develop a computational method aiding the design of dipeptidomimetic pro-moieties targeting the human intestinal di-/tripeptide transporter hPEPT1. First, the conformation in which substrates bind to hPEPT1 (the bioactive conformation) was identified...... to change the peptide backbone conformation (DeltaE(bbone)) from the global energy minimum conformation to the identified bioactive conformation was calculated for 20 hPEPT1 targeted model prodrugs with known K(i) values. Quantitatively, an inverse linear relationship (r(2)=0.81, q(2)=0.80) was obtained...

  13. Study on the bindings of dichlorprop and diquat dibromide herbicides to human serum albumin by spectroscopic methods

    Energy Technology Data Exchange (ETDEWEB)

    Tunç, Sibel, E-mail: stunc@akdeniz.edu.tr; Duman, Osman, E-mail: osmanduman@akdeniz.edu.tr; Soylu, İnanç; Kancı Bozoğlan, Bahar

    2014-05-01

    Highlights: • The affinity of DCP to HSA is higher than DQ. • DCP and DQ have quenched the fluorescence emission spectrum of HSA by static quenching mechanism. • Electrostatic interactions are very important in HSA-DCP and HSA-DQ complexes. • Binding constants, numbers of binding sites and thermodynamic parameters have been calculated. • The binding of DQ changes the conformation of protein, on the contrary to DCP. - Abstract: The interactions of dichlorprop (DCP) and diquat dibromide (DQ) herbicides with human serum albumin (HSA) protein were studied by UV absorption, fluorescence, synchronous fluorescence and circular dichroism (CD) spectroscopy. Both DCP and DQ quenched the fluorescence emission spectrum of HSA through the static quenching mechanism. The Stern–Volmer quenching constant, binding constant, the number of binding sites and thermodynamic parameters were determined at 288 K, 298 K, 310 K and 318 K. In HSA-DCP and HSA-DQ systems, an increase in temperature led to a decrease in the Stern–Volmer quenching constant and binding constant. One binding site was obtained for DCP and DQ on HSA. It was found that DCP can bind to HSA with higher affinity than DQ. Negative ΔH and positive ΔS values were obtained for the binding processes between protein and herbicide molecules. This result displayed that electrostatic interactions play a major role in the formation of HSA-DCP and HSA-DQ complexes. The binding processes were exothermic reactions and spontaneous. In addition, synchronous fluorescence and CD spectra of HSA revealed that the binding of DCP to HSA did not cause a significant conformational change in protein, but the interaction of DQ with HSA led to an alteration in the protein structure.

  14. Uranium(VI) Binding Forms in Selected Human Body Fluids: Thermodynamic Calculations versus Spectroscopic Measurements.

    Science.gov (United States)

    Osman, Alfatih A A; Geipel, Gerhard; Barkleit, Astrid; Bernhard, Gert

    2015-02-16

    Human exposure to uranium increasingly becomes a subject of interest in many scientific disciplines such as environmental medicine, toxicology, and radiation protection. Knowledge about uranium chemical binding forms(speciation) in human body fluids can be of great importance to understand not only its biokinetics but also its relevance in risk assessment and in designing decorporation therapy in the case of accidental overexposure. In this study, thermodynamic calculations of uranium speciation in relevant simulated and original body fluids were compared with spectroscopic data after ex-situ uranium addition. For the first time, experimental data on U(VI) speciation in body fluids (saliva, sweat, urine) was obtained by means of cryogenic time-resolved laser-induced fluorescence spectroscopy (cryo-TRLFS) at 153 K. By using the time dependency of fluorescence decay and the band positions of the emission spectra, various uranyl complexes were demonstrated in the studied samples. The variations of the body fluids in terms of chemical composition, pH, and ionic strength resulted in different binding forms of U(VI). The speciation of U(VI) in saliva and in urine was affected by the presence of bioorganic ligands, whereas in sweat, the distribution depends mainly on inorganic ligands. We also elucidated the role of biological buffers, i.e., phosphate (H(2)PO(4−)/HPO(4)(2−)) on U(VI) distribution, and the system Ca(2+)/UO(2)(2+)/PO(4)(3−) was discussed in detail in both saliva and urine. The theoretical speciation calculations of the main U(VI) species in the investigated body fluids were significantly consistent with the spectroscopic data. Laser fluorescence spectroscopy showed success and reliability for direct determination of U(VI) in such biological matrices with the possibility for further improvement.

  15. Binding of levomepromazine and cyamemazine to human recombinant dopamine receptor subtypes

    Directory of Open Access Journals (Sweden)

    Lalit K. Srivastava

    Full Text Available Background and Objectives: Clozapine (CLOZ and levomepromazine (LMP improve treatment-resistant schizophrenia. The superior efficacy of CLOZ compared with other antipsychotic agents has been attributed to an effect on D1-like and D4 receptors. We examined the binding of LMP, CLOZ and cyamemazine (CMZ, a neuroleptic analog of LMP, to human recombinant dopamine (rDA receptor subtypes. Methods: Binding studies were performed on frozen membrane suspensions of human rDA receptor subtypes expressed in Sf9 cells. Results: (i LMP has a high affinity (Ki, nM for rD2 receptor subtypes (rD2L 8.6; rD2S 4.3; rD3 8.3; rD4.2 7.9; (ii LMP and CLOZ have comparable affinities for the rD1 receptor (54.3 vs 34.6; (iii CMZ has high affinities for rD2-like and rD1-like receptors (rD2L 4.6; rD2S 3.3; rD3 6.2; rD4.2 8.5; rD1 3.9; rD5 10.7; (iv CMZ is 9 times more potent than CLOZ at the rD1 receptor and 5 times more potent than CLOZ at the rD4.2 receptor; (v CMZ has high affinities for rD1 and rD5 receptor subtypes compared with LMP and CLOZ. Conclusions: If D1 and D4 receptors are important sites for the unique action of CLOZ, the present study points to a need for clinical trials comparing CMZ with CLOZ in schizophrenia and in particular, treatment-resistant schizophrenia, especially given the risk for agranulocytosis with CLOZ.

  16. Binding of levomepromazine and cyamemazine to human recombinant dopamine receptor subtypes

    Directory of Open Access Journals (Sweden)

    Lalit K. Srivastava

    2009-09-01

    Full Text Available Background and Objectives: Clozapine (CLOZ and levomepromazine (LMP improve treatment-resistant schizophrenia. The superior efficacy of CLOZ compared with other antipsychotic agents has been attributed to an effect on D1-like and D4 receptors. We examined the binding of LMP, CLOZ and cyamemazine (CMZ, a neuroleptic analog of LMP, to human recombinant dopamine (rDA receptor subtypes. Methods: Binding studies were performed on frozen membrane suspensions of human rDA receptor subtypes expressed in Sf9 cells. Results: (i LMP has a high affinity (Ki, nM for rD2 receptor subtypes (rD2L 8.6; rD2S 4.3; rD3 8.3; rD4.2 7.9; (ii LMP and CLOZ have comparable affinities for the rD1 receptor (54.3 vs 34.6; (iii CMZ has high affinities for rD2-like and rD1-like receptors (rD2L 4.6; rD2S 3.3; rD3 6.2; rD4.2 8.5; rD1 3.9; rD5 10.7; (iv CMZ is 9 times more potent than CLOZ at the rD1 receptor and 5 times more potent than CLOZ at the rD4.2 receptor; (v CMZ has high affinities for rD1 and rD5 receptor subtypes compared with LMP and CLOZ. Conclusions: If D1 and D4 receptors are important sites for the unique action of CLOZ, the present study points to a need for clinical trials comparing CMZ with CLOZ in schizophrenia and in particular, treatment-resistant schizophrenia, especially given the risk for agranulocytosis with CLOZ.

  17. Binding of the blood group-reactive lectins to human adult kidney specimens.

    Science.gov (United States)

    Laitinen, L; Juusela, H; Virtanen, I

    1990-01-01

    The binding of a panel of blood group-reactive lectins to frozen sections of human kidney was studied with a special emphasis on reactivity with endothelia and basement membranes. The blood group A-reactive lectins, all specific for alpha-D-N-acetylgalactosamine (GalNAc), Helix aspersa (HAA), Helix pomatia (HPA), and Griffonia simplicifolia I-A4 (GSA-I-A4) agglutinins bound to the endothelium in specimens with blood groups A and AB. In other samples, these lectins reacted predominantly with tubular basement membranes, as well as with certain tubules. Both Dolichos biflorus (DBA) and Vicia villosa agglutinins (VVA), reported to react with blood group A1 substance, failed to reveal endothelia in most specimens, but bound differently to tubules in all blood groups. The blood group B-reactive lectins, specific for alpha-D-galactose (alpha-Gal) or GalNAc, respectively, GSA-I-B4 and Sophora japonica agglutinin (SJA), bound to the endothelia in specimens from blood group B or AB and in other specimens bound only to certain tubules. Among the blood group O-reactive lectins, specific for alpha-L-fucose (Fuc), Ulex europaeus I agglutinin (UEA-I) conjugates, but not other lectins with a similar nominal specificity, bound strongly to endothelia in specimens with blood group O. The UEA-I conjugates bound distinctly more faintly to endothelia in specimens of other blood groups. The present results indicate that lectins, binding to defined blood group determinants, react with endothelia in specimens of the respective blood group status. Furthermore, they suggest that basement membranes and some tubules in the human kidney show a distinct heterogeneity in their expression of saccharide residues, related to their blood group status.

  18. Energetics of Glutathione Binding to Human Eukaryotic Elongation Factor 1 Gamma: Isothermal Titration Calorimetry and Molecular Dynamics Studies.

    Science.gov (United States)

    Tshabalala, Thabiso N; Tomescu, Mihai-Silviu; Prior, Allan; Balakrishnan, Vijayakumar; Sayed, Yasien; Dirr, Heini W; Achilonu, Ikechukwu

    2016-12-01

    The energetics of ligand binding to human eukaryotic elongation factor 1 gamma (heEF1γ) was investigated using reduced glutathione (GSH), oxidised glutathione (GSSG), glutathione sulfonate and S-hexylglutathione as ligands. The experiments were conducted using isothermal titration calorimetry, and the findings were supported using computational studies. The data show that the binding of these ligands to heEF1γ is enthalpically favourable and entropically driven (except for the binding of GSSG). The full length heEF1γ binds GSSG with lower affinity (K d = 115 μM), with more hydrogen-bond contacts (ΔH = -73.8 kJ/mol) and unfavourable entropy (-TΔS = 51.7 kJ/mol) compared to the glutathione transferase-like N-terminus domain of heEF1γ, which did not show preference to any specific ligand. Computational free binding energy calculations from the 10 ligand poses show that GSSG and GSH consistently bind heEF1γ, and that both ligands bind at the same site with a folded bioactive conformation. This study reveals the possibility that heEF1γ is a glutathione-binding protein.

  19. Determination of human serum alpha1-acid glycoprotein and albumin binding of various marketed and preclinical kinase inhibitors.

    Science.gov (United States)

    Zsila, Ferenc; Fitos, Ilona; Bencze, Gyula; Kéri, György; Orfi, László

    2009-01-01

    There are about 380 protein kinase inhibitors in drug development as of today and 15 drugs have been marketed already for the treatment of cancer. This time 139 validated kinase targets are in the focus of drug research of pharmaceutical companies and big efforts are made for the development of new, druglike kinase inhibitors. Plasma protein binding is an important factor of the ADME profiling of a drug compound. Human serum albumin (HSA) and alpha(1)-acid glycoprotein (AAG) are the most relevant drug carriers in blood plasma. Since previous literature data indicated that AAG is the principal plasma binding component of some kinase inhibitors the present work focuses on the comprehensive evaluation of AAG binding of a series of marketed and experimental kinase inhibitors by using circular dichroism (CD) spectroscopy approach. HSA binding was also evaluated by affinity chromatography. Protein binding interactions of twenty-six kinase inhibitors are characterized. The contribution of AAG and HSA binding data to the pharmacokinetic profiles of the investigated therapeutic agents is discussed. Structural, biological and drug binding properties of AAG as well as the applicability of the CD method in studying drug-protein binding interactions are also briefly reviewed.

  20. Competitive binding of fluoroquinolone antibiotics and some other drugs to human serum albumin: a luminescence spectroscopic study.

    Science.gov (United States)

    Seedher, Neelam; Agarwal, Pooja

    2013-01-01

    Co-administration of several drugs in multidrug therapy may alter the binding of each to human serum albumin (HSA) and hence their pharmacological activity. Thirty-two frequently prescribed drug combinations, consisting of four fluoroquinolone antibiotics and eight competing drugs, have been studied using fluorescence and circular dichroism spectroscopic techniques. Competitive binding studies on the drug combinations are not available in the literature. In most cases, the presence of competing drug decreased the binding affinity of fluoroquinolone, resulting in an increase in the concentration of free pharmacologically active drug. The competitive binding mechanism involved could be interpreted in terms of the site specificity of the binding and competing drugs. For levofloxacin, the change in the binding affinity was small because in the presence of site II-specific competing drugs, levofloxacin mainly occupied site I. A competitive interference mechanism was operative for sparfloxacin, whereas competitive interference as well as site-to-site displacement of competing drugs was observed in the case of ciprofloxacin hydrochloride. For enrofloxacin, a different behavior was observed for different combinations; site-to-site displacement and conformational changes as well as independent binding has been observed for various drug combinations. Circular dichroism spectral studies showed that competitive binding did not cause any major structural changes in the HSA molecule. Copyright © 2013 John Wiley & Sons, Ltd.

  1. Structural studies on dinuclear ruthenium(II) complexes that bind diastereoselectively to an antiparallel folded human telomere sequence.

    Science.gov (United States)

    Wilson, Tom; Costa, Paulo J; Félix, Vítor; Williamson, Mike P; Thomas, Jim A

    2013-11-14

    We report DNA binding studies of the dinuclear ruthenium ligand [{Ru(phen)2}2tpphz](4+) in enantiomerically pure forms. As expected from previous studies of related complexes, both isomers bind with similar affinity to B-DNA and have enhanced luminescence. However, when tested against the G-quadruplex from human telomeres (which we show to form an antiparallel basket structure with a diagonal loop across one end), the ΛΛ isomer binds approximately 40 times more tightly than the ΔΔ, with a stronger luminescence. NMR studies show that the complex binds at both ends of the quadruplex. Modeling studies, based on experimentally derived restraints obtained for the closely related [{Ru(bipy)2}2tpphz](4+), show that the ΛΛ isomer fits neatly under the diagonal loop, whereas the ΔΔ isomer is unable to bind here and binds at the lateral loop end. Molecular dynamics simulations show that the ΔΔ isomer is prevented from binding under the diagonal loop by the rigidity of the loop. We thus present a novel enantioselective binding substrate for antiparallel basket G-quadruplexes, with features that make it a useful tool for quadruplex studies.

  2. Production of functional human insulin-like growth factor binding proteins (IGFBPs) using recombinant expression in HEK293 cells

    DEFF Research Database (Denmark)

    Wanscher, Anne Sofie Molsted; Williamson, Michael; Ebersole, Tasja Wainani;

    2015-01-01

    Insulin-like growth factor binding proteins (IGFBPs) display many functions in humans including regulation of the insulin-like growth factor (IGF) signaling pathway. The various roles of human IGFBPs make them attractive protein candidates in drug discovery. Structural and functional knowledge...... such as full-length human IGFBPs, still remains a challenge. Here we present a mammalian HEK293 expression method suitable for over-expression of secretory full-length human IGFBP-1 to -7. Protein purification of full-length human IGFBP-1, -2, -3 and -5 was conducted using a two-step chromatography procedure...

  3. The novel alpha 2-adrenoceptor agonist [3H]mivazerol binds to non-adrenergic binding sites in human striatum membranes that are distinct from imidazoline receptors.

    Science.gov (United States)

    Flamez, A; Gillard, M; De Backer, J P; Vauquelin, G; Noyer, M

    1997-07-01

    The alpha 2 adrenergic agonist [3H]mivazerol labelled two populations of binding sites in membranes from the human striatum. Forty per cent of the sites labelled by 3 nM [3H]mivazerol corresponded to alpha 2 adrenergic receptors as they displayed a high affinity for (-)-adrenaline and for rauwolscine. The remaining binding was displaced by mivazerol with a pIC50 of 6.5 +/- 0.1. These sites displayed higher affinity for dexmedetomidine (pIC50 = 7.1 +/- 0.1), but much lower affinity for clonidine (pIC50 < 5.0) and for idazoxan (pIC50 = 5.1 +/- 0.1). Mivazerol also showed low affinity for the [3H]clonidine-labelled I1 imidazoline receptors and for the [3H]idazoxan-labelled I2 receptors (pIC50 = 5.1 and 3.9, respectively). These results suggest that the non-adrenergic [3H]mivazerol binding sites are distinct from the imidazoline receptors in the human striatum.

  4. Screening of specific binding peptide targeting blood vessel of human esophageal cancer in vivo in mice

    Institute of Scientific and Technical Information of China (English)

    ZHI Min; WU Kai-chun; HAO Zhi-ming; GUO Chang-cun; YAO Jia-yin

    2011-01-01

    Background Cancer of the esophagus and gastroesophageal junction remains a virulent malignancy with poor prognosis. Rapid progresses were made in chemotherapeutic agents and the development of molecular markers allowed better identification of candidates for targeted therapy. This study aimed to identify the candidate peptides used for anti-angiogenic therapy of esophageal cancer by in vivo screening C7C peptide library for peptides binding specifically to blood vessels of human esophageal cancer.Methods The phage displayed C7C peptide library was injected intravenously into mice bearing human esophageal tumor xenografts under renal capsule. After 5 rounds of screening, 13 clones were picked up individually and sequenced.During each round of screening, titers of phage recovery were calculated from tumor xenograft and control tissues.Homing of these 9 peptides to tumor vessel was detected by calculating phage titers in the tumor xenograft and control tissues (lung and spleen) after each phage was injected into mice model, and compared with the distribution of phage M13 and Ⅷ-related antigen in tumor xenograft by immunohistochemical staining. Comparisons among groups of data were made using one-way analysis of variance (ANOVA), followed by the Bonferroni multiple comparisons test.Results The number of phage recovered from tumor tissue of each round increased gradually in tumor group while decreased in control groups (P <0.01 in tumor and spleen, P <0.05 in lung). Immunohistochemical staining showed similar staining pattern with M13 antibody or Ⅷ-related antigen antibody, suggesting that phages displaying the selected peptides could home to blood vessel of human esophageal cancer. According to their DNA, 9 corresponding peptide sequences were deduced. And the homing ability to blood vessel of phages displaying the selected peptides was confirmed by comparing with their recovery in tumor and control tissues. Two motifs, YSXNXW and PXNXXN, were also obtained by

  5. Association of angiotensin converting enzyme 2 gene polymorphisms with essential hypertension%ACE2基因多态性与原发性高血压的关系

    Institute of Scientific and Technical Information of China (English)

    张曹进; 单志新; 陈富荣; 符永恒; 衣文君

    2007-01-01

    目的 研究血管紧张素转化酶2(angiotensin converting enzyme 2,ACE2)基因多态性与广东地区原发性高血压的相关性.方法 高血压组选择门诊与住院的汉族无血缘关系的原发性高血压369例,男194例,女175例;对照组为同期体检的广东地区健康汉族居民199例,男101例,女98例.排除冠心病、高血压、糖尿病、脑血管病及肝功能不良、肾功能不良.按照性别分为两组,采用病例对照的原则,应用聚合酶链反应和限制性内切酶片段长度多态性(polymerase chain reaction and restriction fragment length polymorphism,PCR-RFLP)的方法检测ACE2基因G9570A多态性,并随机抽取20份标本进行基因测序以核实基因分型.在分析各亚组的年龄、体重指数、血压及生化指标的基础上综合分析ACE2基因多态性与原发性高血压的关系.结果 高血压组G等位基因频率:男75.3%,对照组男60.4%,差异有统计学意义(χ2=7.0086,P=0.0081),高血压组,女57.4%,对照组45.4%,差异有统计学意义(χ2=6.9443,P=0.0084);女高血压组GG基因型的频率明显高于对照组(χ2=12.9499,P=0.0015);G等位基因人群发生高血压的风险高于A等位基因人群,男OR:1.9945,95% CI:1.1916~3.3385,P=0.0082;女OR:1.603,95% CI:1.1274~2.2792,P=0.0085.结论 ACE2-G9570A多态性与原发性高血压相关;携带G等位基因的男性和仅仅携带G基因的女性人群发生高血压的危险性相对较大,提示ACE2基因可作为原发性高血压的候选易感基因.

  6. Lipid-binding properties of human ApoD and Lazarillo-related lipocalins: functional implications for cell differentiation.

    Science.gov (United States)

    Ruiz, Mario; Sanchez, Diego; Correnti, Colin; Strong, Roland K; Ganfornina, Maria D

    2013-08-01

    Lipocalins are a family of proteins characterized by a conserved eight-stranded β-barrel structure with a ligand-binding pocket. They perform a wide range of biological functions and this functional multiplicity must relate to the lipid partner involved. Apolipoprotein D (ApoD) and its insect homologues, Lazarillo (Laz) and neural Lazarillo (NLaz), share common ancestral functions like longevity, stress resistance and lipid metabolism regulation, coexisting with very specialized functions, like courtship behavior. Using tryptophan fluorescence titration, we screened the binding of 15 potential lipid partners for NLaz, ApoD and Laz and uncovered several novel ligands with apparent dissociation constants in the low micromolar range. Retinoic acid (RA), retinol, fatty acids and sphingomyelin are shared ligands. Sterols, however, showed a species-specific binding pattern: cholesterol did not show strong binding to human ApoD, whereas NLaz and Laz did bind ergosterol. Among the lipocalin-specific ligands, we found that ApoD selectively binds the endocannabinoid anandamide but not 2-acylglycerol, and that NLaz binds the pheromone 7-tricosene, but not 7,11-heptacosadiene or 11-cis-vaccenyl acetate. To test the functional relevance of lipocalin ligand binding at the cellular level, we analyzed the effect of ApoD, Laz and NLaz preloaded with RA on neuronal differentiation. Our results show that ApoD is necessary and sufficient to allow for RA differentiating activity. Both human ApoD and Drosophila NLaz successfully deliver RA to immature neurons, driving neurite outgrowth. We conclude that ApoD, NLaz and Laz bind selectively to a different but overlapping set of lipid ligands. This multispecificity can explain their varied physiological functions.

  7. The human renin-binding protein gene (RENBP) maps in Xq28

    Energy Technology Data Exchange (ETDEWEB)

    Ouweland, A.M.W. van der; Verdijk, M.; Oost, B.A. van (Univ. Hospital Nijmegen (Netherlands)); Kiochis, P.; Poustka, A. (Deutsches Krebsforschungszemtrum, Heidelberg (Germany))

    1994-05-01

    The authors report here the successful application of the method by which cDNA libraries are screened with positionally identified genomic clones. Human cosmid clones were selected from a cosmid library derived from the Q1Z cell line. This Q1Z cell line is a hamster-human somatic cell hybrid that contains the Xq28 region as its sole human component. To search for kidney-expressed genes, they screened a kidney cDNA library purchased from Clontech with cosmid-derived probes. Based on the physical mapping of the vasopressin V2 receptor gene close to the L1CAM gene, they analyzed cosmids derived from this region. One of the cosmids was 12B2, located 50 kb from the L1CAM gene. A 20-kb EcoRI subclone from the 12B2 cosmid was used as probe. This fragment did not hybridize to the probe 2-55 in contrast to the whole cosmid 12B2. Screening of 200,000 cDNA clones resulted in the identification of two positive clones. After sequence determination, it appeared that one of the positive cDNA clones contained Escherichia coli DNA as insert (data not shown). The other cDNA (pMV24) contained an open reading frame corresponding to the 243 amino-terminal amino acids of the human renin binding protein. The RENBP gene maps to interval 3 between the loci for DX52 and G-6-PD. This is the same interval as that for the color blindness gene, DXS707, and the AVPR2, L1CAM, and QM genes. This result confirms that the isolated RENBP cDNA originates from the same location as that from which the parental cosmid clone was derived. 28 refs., 1 fig.

  8. Genetically encoded photocrosslinkers locate the high-affinity binding site of antidepressant drugs in the human serotonin transporter

    DEFF Research Database (Denmark)

    Rannversson, Hafsteinn; Andersen, Jacob; Hall, Lena Sørensen;

    2016-01-01

    Despite the well-established role of the human serotonin transporter (hSERT) in the treatment of depression, the molecular details of antidepressant drug binding are still not fully understood. Here we utilize amber codon suppression in a membrane-bound transporter protein to encode photocrosslin......Despite the well-established role of the human serotonin transporter (hSERT) in the treatment of depression, the molecular details of antidepressant drug binding are still not fully understood. Here we utilize amber codon suppression in a membrane-bound transporter protein to encode...

  9. Insulin-like growth factors, insulin-like growth factor-binding proteins, insulin-like growth factor-binding protein-3 protease, and growth hormone-binding protein in lipodystrophic human immunodeficiency virus-infected patients

    DEFF Research Database (Denmark)

    Haugaard, Steen B; Andersen, Ove; Hansen, Birgitte R;

    2004-01-01

    Human immunodeficiency virus (HIV)-lipodystrophy is associated with impaired growth hormone (GH) secretion. It remains to be elucidated whether insulin-like growth factors (IGFs), IGF-binding proteins (IGFBPs), IGFBP-3 protease, and GH-binding protein (GHBP) are abnormal in HIV-lipodystrophy. The......Human immunodeficiency virus (HIV)-lipodystrophy is associated with impaired growth hormone (GH) secretion. It remains to be elucidated whether insulin-like growth factors (IGFs), IGF-binding proteins (IGFBPs), IGFBP-3 protease, and GH-binding protein (GHBP) are abnormal in HIV......-lipodystrophy. These parameters were measured in overnight fasting serum samples from 16 Caucasian males with HIV-lipodystrophy (LIPO) and 15 Caucasian HIV-infected males without lipodystrophy (NONLIPO) matched for age, weight, duration of HIV infection, and antiretroviral therapy. In LIPO, abdominal fat mass and insulin...... study groups, including suppressed GH, and increased GHBP in LIPO, argue against GH resistance of GH-sensitive tissues in LIPO compared with NONLIPO; however, this notion awaits examination in dose-response studies. Furthermore, our data suggest that IGFBP-3 protease is a significant regulator...

  10. New insight into the binding modes of TNP-AMP to human liver fructose-1,6-bisphosphatase

    Science.gov (United States)

    Han, Xinya; Huang, Yunyuan; Zhang, Rui; Xiao, San; Zhu, Shuaihuan; Qin, Nian; Hong, Zongqin; Wei, Lin; Feng, Jiangtao; Ren, Yanliang; Feng, Lingling; Wan, Jian

    2016-08-01

    Human liver fructose-1,6-bisphosphatase (FBPase) contains two binding sites, a substrate fructose-1,6-bisphosphate (FBP) active site and an adenosine monophosphate (AMP) allosteric site. The FBP active site works by stabilizing the FBPase, and the allosteric site impairs the activity of FBPase through its binding of a nonsubstrate molecule. The fluorescent AMP analogue, 2‧,3‧-O-(2,4,6-trinitrophenyl)adenosine 5‧-monophosphate (TNP-AMP) has been used as a fluorescent probe as it is able to competitively inhibit AMP binding to the AMP allosteric site and, therefore, could be used for exploring the binding modes of inhibitors targeted on the allosteric site. In this study, we have re-examined the binding modes of TNP-AMP to FBPase. However, our present enzyme kinetic assays show that AMP and FBP both can reduce the fluorescence from the bound TNP-AMP through competition for FBPase, suggesting that TNP-AMP binds not only to the AMP allosteric site but also to the FBP active site. Mutagenesis assays of K274L (located in the FBP active site) show that the residue K274 is very important for TNP-AMP to bind to the active site of FBPase. The results further prove that TNP-AMP is able to bind individually to the both sites. Our present study provides a new insight into the binding mechanism of TNP-AMP to the FBPase. The TNP-AMP fluorescent probe can be used to exam the binding site of an inhibitor (the active site or the allosteric site) using FBPase saturated by AMP and FBP, respectively, or the K247L mutant FBPase.

  11. Broadly neutralizing human antibody that recognizes the receptor-binding pocket of influenza virus hemagglutinin

    Energy Technology Data Exchange (ETDEWEB)

    Whittle, James R.R.; Zhang, Ruijun; Khurana, Surender; King, Lisa R.; Manischewitz, Jody; Golding, Hana; Dormitzer, Philip R.; Haynes, Barton F.; Walter, Emmanuel B.; Moody, M. Anthony; Kepler, Thomas B.; Liao, Hua-Xin; Harrison, Stephen C. (Harvard-Med); (Novartis); (US-FDA); (Duke)

    2011-09-20

    Seasonal antigenic drift of circulating influenza virus leads to a requirement for frequent changes in vaccine composition, because exposure or vaccination elicits human antibodies with limited cross-neutralization of drifted strains. We describe a human monoclonal antibody, CH65, obtained by isolating rearranged heavy- and light-chain genes from sorted single plasma cells, coming from a subject immunized with the 2007 trivalent influenza vaccine. The crystal structure of a complex of the hemagglutinin (HA) from H1N1 strain A/Solomon Islands/3/2006 with the Fab of CH65 shows that the tip of the CH65 heavy-chain complementarity determining region 3 (CDR3) inserts into the receptor binding pocket on HA1, mimicking in many respects the interaction of the physiological receptor, sialic acid. CH65 neutralizes infectivity of 30 out of 36 H1N1 strains tested. The resistant strains have a single-residue insertion near the rim of the sialic-acid pocket. We conclude that broad neutralization of influenza virus can be achieved by antibodies with contacts that mimic those of the receptor.

  12. Changes in BQCA Allosteric Modulation of [(3)H]NMS Binding to Human Cortex within Schizophrenia and by Divalent Cations.

    Science.gov (United States)

    Dean, Brian; Hopper, Shaun; Conn, P Jeffrey; Scarr, Elizabeth

    2016-05-01

    Stimulation of the cortical muscarinic M1 receptor (CHRM1) is proposed as a treatment for schizophrenia, a hypothesis testable using CHRM1 allosteric modulators. Allosteric modulators have been shown to change the activity of CHRMs using cloned human CHRMs and CHRM knockout mice but not human CNS, a prerequisite for them working in humans. Here we show in vitro that BQCA, a positive allosteric CHRM1 modulator, brings about the expected change in affinity of the CHRM1 orthosteric site for acetylcholine in human cortex. Moreover, this effect of BQCA is reduced in the cortex of a subset of subjects with schizophrenia, separated into a discrete population because of a profound loss of cortical [(3)H]pirenzepine binding. Surprisingly, there was no change in [(3)H]NMS binding to the cortex from this subset or those with schizophrenia but without a marked loss of cortical CHRM1. Hence, we explored the nature of [(3)H]pirenzepine and [(3)H]NMS binding to human cortex and showed total [(3)H]pirenzepine and [(3)H]NMS binding was reduced by Zn(2+), acetylcholine displacement of [(3)H]NMS binding was enhanced by Mg(2+) and Zn(2+), acetylcholine displacement of [(3)H]pirenzepine was reduced by Mg(2+) and enhanced by Zn(2+), whereas BQCA effects on [(3)H]NMS, but not [(3)H]pirenzepine, binding was enhanced by Mg(2+) and Zn(2+). These data suggest the orthosteric and allosteric sites on CHRMs respond differently to divalent cations and the effects of allosteric modulation of the cortical CHRM1 is reduced in a subset of people with schizophrenia, a finding that may have ramifications for the use of CHRM1 allosteric modulators in the treatment of schizophrenia.

  13. Changes in BQCA Allosteric Modulation of [3H]NMS Binding to Human Cortex within Schizophrenia and by Divalent Cations

    Science.gov (United States)

    Dean, Brian; Hopper, Shaun; Conn, P Jeffrey; Scarr, Elizabeth

    2016-01-01

    Stimulation of the cortical muscarinic M1 receptor (CHRM1) is proposed as a treatment for schizophrenia, a hypothesis testable using CHRM1 allosteric modulators. Allosteric modulators have been shown to change the activity of CHRMs using cloned human CHRMs and CHRM knockout mice but not human CNS, a prerequisite for them working in humans. Here we show in vitro that BQCA, a positive allosteric CHRM1 modulator, brings about the expected change in affinity of the CHRM1 orthosteric site for acetylcholine in human cortex. Moreover, this effect of BQCA is reduced in the cortex of a subset of subjects with schizophrenia, separated into a discrete population because of a profound loss of cortical [3H]pirenzepine binding. Surprisingly, there was no change in [3H]NMS binding to the cortex from this subset or those with schizophrenia but without a marked loss of cortical CHRM1. Hence, we explored the nature of [3H]pirenzepine and [3H]NMS binding to human cortex and showed total [3H]pirenzepine and [3H]NMS binding was reduced by Zn2+, acetylcholine displacement of [3H]NMS binding was enhanced by Mg2+ and Zn2+, acetylcholine displacement of [3H]pirenzepine was reduced by Mg2+ and enhanced by Zn2+, whereas BQCA effects on [3H]NMS, but not [3H]pirenzepine, binding was enhanced by Mg2+ and Zn2+. These data suggest the orthosteric and allosteric sites on CHRMs respond differently to divalent cations and the effects of allosteric modulation of the cortical CHRM1 is reduced in a subset of people with schizophrenia, a finding that may have ramifications for the use of CHRM1 allosteric modulators in the treatment of schizophrenia. PMID:26511338

  14. Structural basis for specific binding of human MPP8 chromodomain to histone H3 methylated at lysine 9.

    Directory of Open Access Journals (Sweden)

    Jing Li

    Full Text Available BACKGROUND: M-phase phosphoprotein 8 (MPP8 was initially identified to be a component of the RanBPM-containing large protein complex, and has recently been shown to bind to methylated H3K9 both in vivo and in vitro. MPP8 binding to methylated H3K9 is suggested to recruit the H3K9 methyltransferases GLP and ESET, and DNA methyltransferase 3A to the promoter of the E-cadherin gene, mediating the E-cadherin gene silencing and promote tumor cell motility and invasion. MPP8 contains a chromodomain in its N-terminus, which is used to bind the methylated H3K9. METHODOLOGY/PRINCIPAL FINDINGS: Here, we reported the crystal structures of human MPP8 chromodomain alone and in complex with the trimethylated histone H3K9 peptide (residue 1-15. The complex structure unveils that the human MPP8 chromodomain binds methylated H3K9 through a conserved recognition mechanism, which was also observed in Drosophila HP1, a chromodomain containing protein that binds to methylated H3K9 as well. The structure also reveals that the human MPP8 chromodomain forms homodimer, which is mediated via an unexpected domain swapping interaction through two β strands from the two protomer subunits. CONCLUSIONS/SIGNIFICANCE: Our findings reveal the molecular mechanism of selective binding of human MPP8 chromodomain to methylated histone H3K9. The observation of human MPP8 chromodomain in both solution and crystal lattice may provide clues to study MPP8-mediated gene regulation furthermore.

  15. Structural Basis for Specific Binding of Human MPP8 Chromodomain to Histone H3 Methylated at Lysine 9

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jing; Li, Zhihong; Ruan, Jianbin; Xu, Chao; Tong, Yufeng; Pan, Patricia W.; Tempel, Wolfram; Crombet, Lissete; Min, Jinrong; Zang, Jianye (Toronto); (Chinese Aca. Sci.)

    2012-02-27

    M-phase phosphoprotein 8 (MPP8) was initially identified to be a component of the RanBPM-containing large protein complex, and has recently been shown to bind to methylated H3K9 both in vivo and in vitro. MPP8 binding to methylated H3K9 is suggested to recruit the H3K9 methyltransferases GLP and ESET, and DNA methyltransferase 3A to the promoter of the E-cadherin gene, mediating the E-cadherin gene silencing and promote tumor cell motility and invasion. MPP8 contains a chromodomain in its N-terminus, which is used to bind the methylated H3K9. Here, we reported the crystal structures of human MPP8 chromodomain alone and in complex with the trimethylated histone H3K9 peptide (residue 1-15). The complex structure unveils that the human MPP8 chromodomain binds methylated H3K9 through a conserved recognition mechanism, which was also observed in Drosophila HP1, a chromodomain containing protein that binds to methylated H3K9 as well. The structure also reveals that the human MPP8 chromodomain forms homodimer, which is mediated via an unexpected domain swapping interaction through two {beta} strands from the two protomer subunits. Our findings reveal the molecular mechanism of selective binding of human MPP8 chromodomain to methylated histone H3K9. The observation of human MPP8 chromodomain in both solution and crystal lattice may provide clues to study MPP8-mediated gene regulation furthermore.

  16. LGALS3BP, lectin galactoside-binding soluble 3 binding protein, induces vascular endothelial growth factor in human breast cancer cells and promotes angiogenesis.

    Science.gov (United States)

    Piccolo, Enza; Tinari, Nicola; Semeraro, Daniela; Traini, Sara; Fichera, Imma; Cumashi, Albana; La Sorda, Rossana; Spinella, Francesca; Bagnato, Anna; Lattanzio, Rossano; D'Egidio, Maurizia; Di Risio, Annalisa; Stampolidis, Pavlos; Piantelli, Mauro; Natoli, Clara; Ullrich, Axel; Iacobelli, Stefano

    2013-01-01

    Elevated serum or tissue levels of lectin galactoside-binding soluble 3 binding protein (LGALS3BP) have been associated with short survival and development of metastasis in a variety of human cancers. However, the role of LGALS3BP, particularly in the context of tumor-host relationships, is still missing. Here, we show that LGALS3BP knockdown in MDA-MB-231 human breast cancer cells leads to a decreased adhesion to fibronectin, a reduced transendothelial migration and, more importantly, a reduced expression of vascular endothelial growth factor (VEGF). Production of VEGF, that was restored by exposure of silenced cells to recombinant LGALS3BP, required an intact PI3k/Akt signaling. Furthermore, we show that LGALS3BP was able to directly stimulate HUVEC tubulogenesis in a VEGF-independent, galectin-3-dependent manner. Immunohistochemical analysis of human breast cancer tissues revealed a correlation among LGALS3BP expression, VEGF expression, and blood vessel density. We propose that in addition to its prometastatic role, LGALS3BP secreted by breast cancer cells functions critically as a pro-angiogenic factor through a dual mechanism, i.e by induction of tumor VEGF and stimulation of endothelial cell tubulogenesis.

  17. Protein L. A bacterial Ig-binding protein that activates human basophils and mast cells.

    Science.gov (United States)

    Patella, V; Casolaro, V; Björck, L; Marone, G

    1990-11-01

    Peptostreptococcus magnus strain 312 (10(6) to 10(8)/ml), which synthesizes a protein capable of binding to kappa L chains of human Ig (protein L), stimulated the release of histamine from human basophils in vitro. P. magnus strain 644, which does not synthesize protein L, did not induce histamine secretion. Soluble protein L (3 x 10(-2) to 3 micrograms/ml) induced histamine release from human basophils. The characteristics of the release reaction were similar to those of rabbit IgG anti-Fc fragment of human IgE (anti-IgE): it was Ca2(+)- and temperature-dependent, optimal release occurring at 37 degrees C in the presence of 1.0 mM extracellular Ca2+. There was an excellent correlation (r = 0.82; p less than 0.001) between the maximal percent histamine release induced by protein L and that induced by anti-IgE, as well as between protein L and protein A from Staphylococcus aureus (r = 0.52; p less than 0.01). Preincubation of basophils with either protein L or anti-IgE resulted in complete cross-desensitization to a subsequent challenge with the heterologous stimulus. IgE purified from myeloma patients PS and PP (lambda-chains) blocked anti-IgE-induced histamine release but failed to block the histamine releasing activity of protein L. In contrast, IgE purified from myeloma patient ADZ (kappa-chains) blocked both anti-IgE- and protein L-induced releases, whereas human polyclonal IgG selectively blocked protein L-induced secretion. Protein L acted as a complete secretagogue, i.e., it activated basophils to release sulfidopeptide leukotriene C4 as well as histamine. Protein L (10(-1) to 3 micrograms/ml) also induced the release of preformed (histamine) and de novo synthesized mediators (leukotriene C4 and/or PGD2) from mast cells isolated from lung parenchyma and skin tissues. Intradermal injections of protein L (0.01 to 10 micrograms/ml) in nonallergic subjects caused a dose-dependent wheal-and-flare reaction. Protein L activates human basophils and mast cells in

  18. Insight into the modified Ibalizumab-human CD4 receptor interactions: using a computational binding free energy approach

    Science.gov (United States)

    Wang, Yeng-Tseng; Chuang, Lea-Yea

    2015-01-01

    Antibody drugs are very useful tools for the treatment of many chronic diseases. Recently, however, patients and doctors have encountered the problem of drug resistance. How to improve the affinity of antibody drugs has therefore become a pressing issue. Ibalizumab is a humanized monoclonal antibody that binds human CD4, the primary receptor for human immunodeficiency virus type 1. This study investigates the mutation residues of the complementarity determining regions of Ibalizumab. We propose using the wild and mutations of Ibalizumab-human CD4 receptor complex structures, molecular dynamics techniques, alanine-scanning mutagenesis calculations and solvated interaction energies methods to predict the binding free energy of the Ibalizumab-human CD4 receptor complex structures. This work found that revealed three key positions (31th, 32th and 33th in HCDR-1) of the residues may play an important role in Ibalizumab-human CD4 receptor complex interactions. Therefore, bioengineering substitutions of the three key positions and increasing number of intermolecular interactions (HCDR-1 of Ibalizumab/human CD4 receptor) might improve the binding affinities of this complex structure.

  19. The human TTAGGG repeat factors 1 and 2 bind to a subset of interstitial telomeric sequences and satellite repeats

    Institute of Scientific and Technical Information of China (English)

    Thomas Simonet; Elena Giulotto; Frederique Magdinier; Béatrice Horard; Pascal Barbry; Rainer Waldmann; Eric Gison; Laure-Emmanuelle Zaragosi; Claude Philippe; Kevin Lebrigand; Clémentine Schouteden; Adeline Augereau; Serge Bauwens; Jing Ye; Marco Santagostino

    2011-01-01

    The study of the proteins that bind to telomeric DNA in mammals has provided a deep understanding of the mech anisms involved in chromosome-end protection. However, very little is known on the binding of these proteins to nontelomeric DNA sequences. The TTAGGG DNA repeat proteins 1 and 2 (TRF1 and TRF2) bind to mammalian telomeres as part of the shelterin complex and are essential for maintaining chromosome end stability. In this study, we combined chromatin immunoprecipitation with high-throughput sequencing to map at high sensitivity and resolution the human chromosomal sites to which TRF1 and TRF2 bind. While most of the identified sequences correspond to telomeric regions, we showed that these two proteins also bind to extratelomeric sites. The vast majority of these extratelomeric sites contains interstitial telomeric sequences (or ITSs). However, we also identified non-iTS sites, which correspond to centromeric and pericentromeric satellite DNA. Interestingly, the TRF-binding sites are often located in the proximity of genes or within introns. We propose that TRF1 and TRF2 couple the functional state of telomeres to the long-range organization of chromosomes and gene regulation networks by binding to extratelomeric sequences.

  20. CfaE tip mutations in enterotoxigenic Escherichia coli CFA/I fimbriae define critical human intestinal binding sites.

    Science.gov (United States)

    Baker, K K; Levine, M M; Morison, J; Phillips, A; Barry, E M

    2009-05-01

    Enterotoxigenic Escherichia coli (ETEC) use colonization factors to attach to the human intestinal mucosa, followed by enterotoxin expression that induces net secretion and diarrhoeal illness. ETEC strain H10407 expresses CFA/I fimbriae, which are composed of multiple CfaB structural subunits and a CfaE tip subunit. Currently, the contribution of these individual fimbrial subunits in intestinal binding remains incompletely defined. To identify the role of CfaE in attachment in the native ETEC background, an R181A single-amino-acid substitution was introduced by recombination into the H10407 genome. The substitution of R181A eliminated haemagglutination and binding of intestinal mucosa biopsies in in vitro organ culture assays, without loss of CFA/I fimbriae expression. Wild-type in trans plasmid-expressed cfaE restored the binding phenotype. In contrast, in trans expression of cfaE containing amino acid 181 substitutions with similar amino acids, lysine, methionine and glutamine did not restore the binding phenotype, indicating that the loss of the binding phenotype was due to localized areas of epitope disruption. R181 appears to have an irreplaceable role in the formation of a receptor-binding feature on CFA/I fimbriae. The results specifically indicate that the CfaE tip protein is a required binding factor in CFA/I-mediated ETEC colonization, making it a potentially important vaccine antigen. © 2009 Blackwell Publishing Ltd.

  1. A novel V(IV)O-pyrimidinone complex: synthesis, solution speciation and human serum protein binding.

    Science.gov (United States)

    Gonçalves, Gisela; Tomaz, Isabel; Correia, Isabel; Veiros, Luís F; Castro, M Margarida C A; Avecilla, Fernando; Palacio, Lorena; Maestro, Miguel; Kiss, Tamás; Jakusch, Tamás; Garcia, M Helena V; Pessoa, João Costa

    2013-09-07

    The pyrimidinones mhcpe, 2-methyl-3H-5-hydroxy-6-carboxy-4-pyrimidinone ethyl ester (mhcpe, 1), 2,3-dimethyl-5-benzyloxy-6-carboxy-4-pyrimidinone ethyl ester (dbcpe, 2) and N-methyl-2,3-dimethyl-5-hydroxy-6-carboxyamido-4-pyrimidinone (N-MeHOPY, 3), are synthesized and their structures determined by single crystal X-ray diffraction. The acid-base properties of 1 are studied by potentiometric and spectrophotometric methods, the pK(a) values being 1.14 and 6.35. DFT calculations were carried out to determine the most stable structure for each of the H2L(+), HL and L(-) forms (HL = mhcpe) and assign the groups involved in the protonation-deprotonation processes. The mhcpe(-) ligand forms stable complexes with V(IV)O(2+) in the pH range 2 to 10, and potentiometry, EPR and UV-Vis techniques are used to identify and characterize the V(IV)O-mhcpe species formed. The results are consistent with the formation of V(IV)O, (V(IV)O)L, (V(IV)O)L2, (V(IV)O)2L2H(-2), (V(IV)O)L2H(-1), (V(IV)O)2L2H(-3), (V(IV)O)LH(-2) species and V(IV)O-hydrolysis products. Calculations indicate that the global binding ability of mhcpe towards V(IV)O(2+) is similar to that of maltol (Hmaltol = 3-hydroxy-2-methyl-4H-pyran-4-one) and lower than that of 1,2-dimethyl-3-hydroxy-4-pyridinone (Hdhp). The interaction of V(IV)O-complexes with human plasma proteins (transferrin and albumin) is studied by circular dichroism (CD), EPR and (51)V NMR spectroscopy. V(IV)O-mhcpe-protein ternary complexes are formed in both cases. The binding of V(IV)O(2+) to transferrin (hTF) in the presence of mhcpe involves mainly (V(IV)O)1(hTF)(mhcpe)1, (V(IV)O)2(hTF)(mhcpe)1 and (V(IV)O)2(hTF)(mhcpe)2 species, bound at the Fe(III) binding sites, and the corresponding conditional formation constants are determined. Under the conditions expected to prevail in human blood serum, CD data indicate that the V(IV)O-mhcpe complexes mainly bind to hTF; the formation of V(IV)O-hTF-mhcpe complexes occurs in the presence of Fe(III) as well

  2. Identification and structural characterization of two 14-3-3 binding sites in the human peptidylarginine deiminase type VI.

    Science.gov (United States)

    Rose, Rolf; Rose, Micheline; Ottmann, Christian

    2012-10-01

    The regulation and function of peptidylarginine deiminase isoform VI (PAD6), which is a highly abundant protein associated with the cytoplasmic lattices in mammalian oocytes, is poorly understood so far. It has been shown previously, that 14-3-3 proteins, a class of regulatory adapter proteins ubiquitous in eukaryotes, bind to PAD6 in vivo in a phosphorylation dependent manner. Here we identify possible 14-3-3 binding sites in human PAD6 by in silico methods, looking for conserved, surface exposed serine residues. Two of these sites were confirmed as 14-3-3 binding sites by fluorescence polarization competition and X-ray crystallography. We furthermore suggest a role of RSK-type kinases in the phosphorylation of one of these two binding sites and provide evidence in the form of in vitro kinase assays with p70S6 kinase and RSK1. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Interaction of fisetin with human serum albumin by fluorescence, circular dichroism spectroscopy and DFT calculations: binding parameters and conformational changes

    Energy Technology Data Exchange (ETDEWEB)

    Matei, Iulia; Ionescu, Sorana [Department of Physical Chemistry, Faculty of Chemistry, University of Bucharest, Bd. Regina Elisabeta 4-12, 030018 Bucharest (Romania); Hillebrand, Mihaela, E-mail: mihh@gw-chimie.math.unibuc.ro [Department of Physical Chemistry, Faculty of Chemistry, University of Bucharest, Bd. Regina Elisabeta 4-12, 030018 Bucharest (Romania)

    2011-08-15

    The interaction between fisetin, an antioxidant and neuroprotective flavonoid, and human serum albumin (HSA) is investigated by means of fluorescence (steady-state, synchronous, time-resolved) and circular dichroism (CD) spectroscopy. The formation of a 1:1 complex with a constant of about 10{sup 5} M{sup -1} was evidenced. Foerster's resonance energy transfer and competitive binding with site markers warfarin and ibuprofen were considered and discussed. Changes in the CD band of HSA indicate a decrease in the {alpha}-helix content upon binding. An induced CD signal for bound fisetin was observed and rationalized in terms of density functional theory calculations. - Highlights: > Fisetin-BSA system was studied by fluorescence spectroscopy. > Binding parameters, association constant and number of sites were estimated. > Binding site of fisetin was identified by competitive experiments. > Conformational changes in HSA and fisetin were evidenced by circular dichroism. > TDDFT calculated CD spectra supported the experimental data.

  4. Binding of coumarins to human serum albumin. Study by equilibrium dialysis; Union de cumarinas a seroalbumina humana. Estudio por dialisis en el equilibrio

    Energy Technology Data Exchange (ETDEWEB)

    Zaton Lopez, A.M.L.; Ferrer Lopez, J.M. [Departamento de Bioquimica y Biologia Molecular, Universidad del Pais Vasco, Facultad de Farmacia, Vitoria (Spain)

    1995-12-31

    In order to find the typical structure of ligands that could displace the binding of warfarin on human serum albumin, the binding parameters of several coumarin derivatives have been compared. Warfarin, hydroxy coumarin, coumarin, acetyl coumarin and chromanol, bind to two different sites on seroalbumin. In the primary binding site, the affinity for the 4-hydroxyl compounds (4-chromanol, warfarin and 4-hidroxycoumarin) are larger than for coumarin and 3-acetyl coumarin. this high-affinity binding site, warfarin binding site, is the region in which the specific binding of warfarin and 4-hydroxybenzopyrans occurs. the 4-chromanol is the smallest ligand which binds to seroalbumin with high-affinity, and its structure is typical in ligands which specifically bind to the warfarin binding site. (Author) 23 refs.

  5. HUMAN LIVER FATTY ACID BINDING PROTEIN (L-FABP) T94A VARIANT ALTERS STRUCTURE, STABILITY, AND INTERACTION WITH FIBRATES

    OpenAIRE

    Martin, Gregory G.; McIntosh, Avery L.; Huang, Huan; Gupta, Shipra; Atshaves, Barbara P.; Landrock, Kerstin K.; Landrock, Danilo; Kier, Ann B.; Schroeder, Friedhelm

    2013-01-01

    Although the human L-FABP T94A variant arises from the most commonly occurring SNP in the entire FABP family, there is a complete lack of understanding regarding the role of this polymorphism in human disease. It has been hypothesized that the T94A substitution results in complete loss of ligand binding ability and function analogous to L-FABP gene ablation. This possibility was addressed using recombinant human WT T94T and T94A variant L-FABP and cultured primary human hepatocytes. Non-conse...

  6. The human rs1050286 polymorphism alters LOX-1 expression through modifying miR-24 binding.

    Science.gov (United States)

    Morini, Elena; Rizzacasa, Barbara; Pucci, Sabina; Polidoro, Chiara; Ferrè, Fabrizio; Caporossi, Daniela; Helmer Citterich, Manuela; Novelli, Giuseppe; Amati, Francesca

    2016-01-01

    The up-regulation of lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1), encoded by the OLR1 gene, plays a fundamental role in the pathogenesis of atherosclerosis. Moreover, OLR1 polymorphisms were associated with increased susceptibility to acute myocardial infarction (AMI) and coronary artery diseases (CAD). In these pathologies, the identification of therapeutic approaches that can inhibit or reduce LOX-1 overexpression is crucial. Predictive analysis showed a putative hsa-miR-24 binding site in the 3'UTR of OLR1, 'naturally' mutated by the presence of the rs1050286 single nucleotide polymorphism (SNP). Luciferase assays revealed that miR-24 targets OLR1 3'UTR-G, but not 3'UTR-A (P < 0.0005). The functional relevance of miR-24 in regulating the expression of OLR1 was established by overexpressing miR-24 in human cell lines heterozygous (A/G, HeLa) and homozygous (A/A, HepG2) for rs1050286 SNP. Accordingly, HeLa (A/G), but not HepG2 (A/A), showed a significant down-regulation of OLR1 both at RNA and protein level. Our results indicate that rs1050286 SNP significantly affects miR-24 binding affinity to the 3'UTR of OLR1, causing a more efficient post-transcriptional gene repression in the presence of the G allele. On this basis, we considered that OLR1 rs1050286 SNP may contribute to modify OLR1 susceptibility to AMI and CAD, so ORL1 SNPs screening could help to stratify patients risk. © 2015 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  7. Human Biliverdin Reductase Suppresses Goodpasture Antigen-binding Protein (GPBP) Kinase Activity

    Science.gov (United States)

    Miralem, Tihomir; Gibbs, Peter E. M.; Revert, Fernando; Saus, Juan; Maines, Mahin D.

    2010-01-01

    The Ser/Thr/Tyr kinase activity of human biliverdin reductase (hBVR) and the expression of Goodpasture antigen-binding protein (GPBP), a nonconventional Ser/Thr kinase for the type IV collagen of basement membrane, are regulated by tumor necrosis factor (TNF-α). The pro-inflammatory cytokine stimulates kinase activity of hBVR and activates NF-κB, a transcriptional regulator of GPBP mRNA. Increased GPBP activity is associated with several autoimmune conditions, including Goodpasture syndrome. Here we show that in HEK293A cells hBVR binds to GPBP and down-regulates its TNF-α-stimulated kinase activity; this was not due to a decrease in GPBP expression. Findings with small interfering RNA to hBVR and to the p65 regulatory subunit of NF-κB show the hBVR role in the initial stimulation of GPBP expression by TNF-α-activated NF-κB; hBVR was not a factor in mediating GPBP mRNA stability. The interacting domain was mapped to the 281CX10C motif in the C-terminal 24 residues of hBVR. A 7-residue peptide, KKRILHC281, corresponding to the core of the consensus D(δ)-Box motif in the interacting domain, was as effective as the intact 296-residue hBVR polypeptide in inhibiting GPBP kinase activity. GPBP neither regulated hBVR expression nor TNF-α dependent NF-κB expression. Collectively, our data reveal that hBVR is a regulator of the TNF-α-GPBP-collagen type IV signaling cascade and uncover a novel biological interaction that may be of relevance in autoimmune pathogenesis. PMID:20177069

  8. Impact of Alu repeats on the evolution of human p53 binding sites

    Directory of Open Access Journals (Sweden)

    Sirotin Michael V

    2011-01-01

    Full Text Available Abstract Background The p53 tumor suppressor protein is involved in a complicated regulatory network, mediating expression of ~1000 human genes. Recent studies have shown that many p53 in vivo binding sites (BSs reside in transposable repeats. The relationship between these BSs and functional p53 response elements (REs remains unknown, however. We sought to understand whether the p53 REs also reside in transposable elements and particularly in the most-abundant Alu repeats. Results We have analyzed ~160 functional p53 REs identified so far and found that 24 of them occur in repeats. More than half of these repeat-associated REs reside in Alu elements. In addition, using a position weight matrix approach, we found ~400,000 potential p53 BSs in Alu elements genome-wide. Importantly, these putative BSs are located in the same regions of Alu repeats as the functional p53 REs - namely, in the vicinity of Boxes A/A' and B of the internal RNA polymerase III promoter. Earlier nucleosome-mapping experiments showed that the Boxes A/A' and B have a different chromatin environment, which is critical for the binding of p53 to DNA. Here, we compare the Alu-residing p53 sites with the corresponding Alu consensus sequences and conclude that the p53 sites likely evolved through two different mechanisms - the sites overlapping with the Boxes A/A' were generated by CG → TG mutations; the other sites apparently pre-existed in the progenitors of several Alu subfamilies, such as AluJo and AluSq. The binding affinity of p53 to the Alu-residing sites generally correlates with the age of Alu subfamilies, so that the strongest sites are embedded in the 'relatively young' Alu repeats. Conclusions The primate-specific Alu repeats play an important role in shaping the p53 regulatory network in the context of chromatin. One of the selective factors responsible for the frequent occurrence of Alu repeats in introns may be related to the p53-mediated regulation of Alu

  9. Platelet binding and biodistribution of [{sup 99m}Tc]rBitistatin in animal species and humans

    Energy Technology Data Exchange (ETDEWEB)

    Knight, Linda C. [Department of Radiology, Temple University School of Medicine, Philadelphia, PA 19140 (United States)], E-mail: lknight@temple.edu; Romano, Jan E. [Department of Radiology, Temple University School of Medicine, Philadelphia, PA 19140 (United States); Bright, Lewis T.; Agelan, Alexis [University Laboratory Animal Resources, Temple University School of Medicine, Philadelphia, PA 19140 (United States); Kantor, Steven; Maurer, Alan H. [Department of Radiology, Temple University School of Medicine, Philadelphia, PA 19140 (United States)

    2007-10-15

    Introduction: {sup 99m}Tc recombinant bitistatin (rBitistatin) is a radioligand for {alpha}{sub IIb}{beta}{sub 3} (glycoproteins IIb/IIIa) receptor on platelets and is being developed as a diagnostic radiopharmaceutical for in vivo imaging of acute thrombi and emboli. Prior to the first administration of [{sup 99m}Tc]rBitistatin to human subjects, its biodistribution and effects on platelets were evaluated in animals. This paper reports findings in animal studies in comparison with initial findings in normal human subjects. Methods: [{sup 99m}Tc]rBitistatin was administered to mice, guinea pigs and dogs to assess time-dependent organ distribution, urinary excretion and blood disappearance rates. Blood samples were analyzed to determine radioligand binding to circulating platelets and the extent of plasma protein binding. The effect of [{sup 99m}Tc]rBitistatin on circulating platelet count was determined. These factors were also determined in normal human subjects who received [{sup 99m}Tc]rBitistatin as part of a Phase I clinical trial. Results: The main organs that accumulated [{sup 99m}Tc]rBitistatin were kidneys, liver and spleen in all animal species and humans. The main organs seen on human images were the kidneys and spleen. Liver uptake was fainter, and soft-tissue background was low. [{sup 99m}Tc]rBitistatin bound to circulating platelets in blood, with a higher percentage of binding to platelets in guinea pigs and dogs compared to that in humans. Plasma protein binding was low and of little consequence in view of platelet binding. The main route of excretion was through the urine. [{sup 99m}Tc]rBitistatin did not affect platelet counts in humans or dogs. Conclusions: [{sup 99m}Tc]rBitistatin, when administered at low doses for imaging, has no adverse effects on platelets and has the qualitative biodistribution predicted by animal studies. [{sup 99m}Tc]rBitistatin was found to bind to circulating platelets in humans, suggesting that it will be able to bind

  10. Human IgA-binding peptides selected from random peptide libraries: affinity maturation and application in IgA purification.

    Science.gov (United States)

    Hatanaka, Takaaki; Ohzono, Shinji; Park, Mirae; Sakamoto, Kotaro; Tsukamoto, Shogo; Sugita, Ryohei; Ishitobi, Hiroyuki; Mori, Toshiyuki; Ito, Osamu; Sorajo, Koichi; Sugimura, Kazuhisa; Ham, Sihyun; Ito, Yuji

    2012-12-14

    Phage display system is a powerful tool to design specific ligands for target molecules. Here, we used disulfide-constrained random peptide libraries constructed with the T7 phage display system t