WorldWideScience

Sample records for humaine mechanical investigation

  1. Humain behavior

    CERN Multimedia

    James,M

    1979-01-01

    Le Dr.Muriel James est ingénieur, conseiller/consultant dans plusieurs commissions (p.ex.justice criminelle au Japon) et universités et est l'auteur de nombreux livres (11) traduits dans plusieurs langues. Le plus connu de ses ouvrages est "Born to win". Dans son exposé elle se réfère à son livre "O.K.Boss" et parle d'un modèle spécifique du comportement humain et de ses qualités essentielles qui est la base de son travail.

  2. Investigation of Nonholonomic Mechanics, Vakonomic Mechanics ...

    African Journals Online (AJOL)

    In this article, methods of modeling dynamic systems namely, Nonholonomic mechanics, Vakonomic mechanics and Chetaev methods for constrained dynamic system are investigated. The fact that Vakonomic mechanics gives a different motion equation to the other methods is verified using a particular example. It is shown ...

  3. Les sciences cognitives ne sont pas des sciences humaines

    Directory of Open Access Journals (Sweden)

    Albert Ogien

    2011-10-01

    Full Text Available Cet article analyse les limites du naturalisme social que Laurence Kaufman et Laurent Cordonier proposent d’adopter dans cette même revue, en critiquant leur plaidoyer pour l’intégration des savoirs des sciences cognitives et des sciences humaines et sociales. Cette critique repose sur la réfutation de trois idées soutenues par les auteurs : 1 la description scientifique des mécanismes cognitifs élémentaires fournit une explication causale des conduites sociales qui doit se substituer à celles des sciences humaines et sociales ; 2 le recours au naturalisme permet de falsifier les préconceptions que ces dernières continuent à entretenir ; 3 le programme de naturalisation de l’esprit n’implique aucune forme de réductionnisme. Cette triple critique permet de rejeter leur appel en faveur d’un modèle intégré de la conduite humaine, en avançant un constat : dans la mesure où on ne sait pas comment combler le hiatus qui sépare les descriptions détaillées du cerveau au travail de l’explication des conduites des individus et de la manière dont ils en assurent la coordination dans le temps même où ils agissent en commun, les sciences humaines et sociales ont peu de choses à aller glaner du côté des sciences cognitives pour améliorer la manière dont elles analysent l’action. C’est que le travail de celles-ci se situe soit au niveau infra-humain du fonctionnement moléculaire, soit au niveau supra-humain de l’évolution ; et que seules les sciences humaines et sociales placent leurs analyses à un niveau simplement humain, en faisant des individus tels qu’ils vivent ensemble la mesure de toutes les choses qui les concernent. Ce qu’elles ne peuvent faire sur un mode naturaliste.Cognitive sciences are not social sciencesThis article examines the limits of the social naturalism proposed by Laurence Kauffman and Laurent Cordonier in this journal by criticizing their plea concerning knowledge integration of

  4. Des relations plus humaines ?

    OpenAIRE

    Ricciardi, Ferruccio

    2013-01-01

    À partir d’une approche sociohistorique, cet article s’intéresse aux effets de la croissance économique sur l’identité des cadres, en l’occurrence les groupements de cadres et patrons italiens qui, au lendemain de la Seconde Guerre mondiale, essaient de conjuguer les principes du catholicisme social dont ils se réclament dans l’arène publique avec les logiques issues du productivisme managérial américain qui s’impose en Europe occidentale. Le prisme des méthodes de « relations humaines » pour...

  5. Des relations plus humaines ?

    Directory of Open Access Journals (Sweden)

    Ferruccio Ricciardi

    2012-05-01

    Full Text Available À partir d’une approche sociohistorique, cet article s’intéresse aux effets de la croissance économique sur l’identité des cadres, en l’occurrence les groupements de cadres et patrons italiens qui, au lendemain de la Seconde Guerre mondiale, essaient de conjuguer les principes du catholicisme social dont ils se réclament dans l’arène publique avec les logiques issues du productivisme managérial américain qui s’impose en Europe occidentale. Le prisme des méthodes de « relations humaines » pour la gestion des salariés est ici utilisé pour rendre compte des modes de construction d’une identité professionnelle prise entre l’« esprit du religieux » et l’« esprit du capitalisme ». La déclinaison des « relations humaines » en fonction du projet de justice sociale préconisé par la doctrine sociale de l’Église en ressort amendée, car elles sont perçues moins comme un levier pour l’intégration des salariés que comme un instrument au service du contrôle politique de ceux-ci.Are the relations more human? Catholic executives and the employers facing the managerial productivism (Italy, ‘50s-‘60sThis article deals with the effects of economic growth on the identity of managers and the employers, especially the Italian ones who, after the World War II, try to combine their catholic principles with the issues of the managerial productivism spreading in the Western Europe. Adopting a socio-historical framework, the article analyses the implementation of the human relations techniques for the management of personnel in order to grasp a split professional identity between the ‘spirit of religious’ and the ‘spirit of capitalism’. The declination of the human relations theories according to the principles of social justice advocated by the social doctrine of the Church has been amended, because of the perception of the human relations as a means for political control of workers rather than an

  6. ORIGINAL ARTICLE Investigation of Nonholonomic Mechanics ...

    African Journals Online (AJOL)

    Abstract: In this article, methods of modeling dynamic systems namely, Nonholonomic mechanics, Vakonomic mechanics and Chetaev methods for constrained dynamic system are investigated. The fact that Vakonomic mechanics gives a different motion equation to the other methods is verified using a particular example.

  7. Analyse, Modélisation et Simulation du Mouvement Humain

    OpenAIRE

    Multon , Franck

    2006-01-01

    Comprendre le mouvement humain mobilise des chercheurs de nombreuses disciplines scientifiques : physiologie, biomécanique, neurosciences comportementales, anatomie fonctionnelle, les sciences du sport... Mes travaux s'inscrivent donc dans une démarche pluridisciplinaire d'analyse/synthèse du mouvement humain. Pour mener à bien cette démarche, une première tâche consiste à modéliser et à simuler le système moteur ainsi qu'un ensemble d'hypothèses. L'objectif est de disposer d'une représentati...

  8. Coordonnateur, (h/f) Ressources humaines | CRDI - Centre de ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Sous la direction de directrice des ressources humaines, le coordonnateur, ... est le principal responsable de la gestion des dossiers papier et électroniques de la ... ordre de priorité, tenir l'emploi du temps à jour, gérer un système de contrôle, ...

  9. Gestionnaire, Solutions d'affaires en ressources humaines | CRDI ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Gestion des ressources humaines du CRDI (stratégie et planification) ... mise en oeuvre des stratégies et des politiques ainsi qu'à l'amélioration continue dans .... les domaines des RH suivants : acquisition de talents (dotation et recrutement), ...

  10. Investigating the improver mechanisms of agricultural water ...

    African Journals Online (AJOL)

    Investigating the improver mechanisms of agricultural water management in karaj county from the viewpoints of the farmers. ... farmers and people, technical improvement of hydraulic structures, improvement of local people participation, improvement of water management, controlling the disturbance of external factors and ...

  11. Experimental investigation into the mechanism of folding

    NARCIS (Netherlands)

    Kuenen, Ph.H.; Sitter, de L.U.

    1938-01-01

    The investigation of geological structures due to folding led de Sitter to form an opinion on the mechanical problems involved (Bibl. 7). His principal contention is that in simple cases the relative movements of particles with respect to eachother during deformation leading to a fold, have been

  12. Distribution des Glossines vecteurs de la Trypanosomose humaine ...

    African Journals Online (AJOL)

    SARAH

    28 févr. 2015 ... RESUME. Objectifs : Dans le but de connaitre la densité apparente et la composition spécifique des glossines dans un ancien foyer de la Trypanosome humaine africaine au Gabon, une enquête entomologique a été menée dans deux biotopes du Parc National de Moukalaba Doudou (Sud Gabon) : le ...

  13. Investigation of Mechanical Properties and Interfacial Mechanics of Crystalline Nanomaterials

    Science.gov (United States)

    Qin, Qingquan

    Nanowires (NWs) and nanotubes (NTs) are critical building blocks of nanotechnologies. The operation and reliability of these nanomaterials based devices depend on their mechanical properties of the nanomaterials, which is therefore important to accurately measure the mechanical properties. Besides, the NW--substrate interfaces also play a critical role in both mechanical reliability and electrical performance of these nanodevices, especially when the size of the NW is small. In this thesis, we focus on the mechanical properties and interface mechanics of three important one dimensional (1D) nanomaterials: ZnO NWs, Ag NWs and Si NWs. For the size effect study, this thesis presents a systematic experimental investigation on the elastic and failure properties of ZnO NWs under different loading modes: tension and buckling. Both tensile modulus (from tension) and bending modulus (from buckling) were found to increase as the NW diameter decreased from 80 to 20 nm. The elastic modulus also shows loading mode dependent; the bending modulus increases more rapidly than the tensile modulus. The tension experiments showed that fracture strain and strength of ZnO NWs increase as the NW diameter decrease. A resonance testing setup was developed to measure elastic modulus of ZnO NWs to confirm the loading mode dependent effect. A systematic study was conducted on the effect of clamping on resonance frequency and thus measured Young's modulus of NWs via a combined experiment and simulation approach. A simple scaling law was provided as guidelines for future designs to accurate measure elastic modulus of a cantilevered NW using the resonance method. This thesis reports the first quantitative measurement of a full spectrum of mechanical properties of five-fold twinned Ag NWs including Young's modulus, yield strength and ultimate tensile strength. In situ tensile testing of Ag NWs with diameters between 34 and 130 nm was carried out inside a SEM. Young's modulus, yield strength and

  14. Investigating Knowledge Transfer Mechanisms for Oil Rigs

    DEFF Research Database (Denmark)

    Vianello, Giovanna; Ahmed, Saeema

    2009-01-01

    It is widely recognized, both in industry and academia, that clear strategies in knowledge transfer positively influence the success of a firm. A firm should support the transfer of knowledge by standardizing communication channels within and across departments, based upon personalization......, codification or a combination of these two strategies. The characteristics of the business influence the choice of communication channels used for knowledge transfer. This paper presents a case study exploring the transfer of knowledge within and across projects, specifically the transfer of service knowledge...... in the case of complex machinery. The strategies used for knowledge transfer were analysed and compared with the expected transfer mechanisms, similarities and differences were investigated and are described. A family of four identical rigs for offshore drilling was the selected case. The transfer...

  15. L'infection a virus de l'Immunodeficience Humaine (VIH), facteur ...

    African Journals Online (AJOL)

    L'infection a virus de l'Immunodeficience Humaine (VIH), facteur predictif de gravite et de mortalite des accidents vasculaires cerebraux au Centre National Hospitalier et Universitaire-Hubert Koutoukou Maga (CNHU-HKM) de Cotonou, Benin.

  16. Mechanical and morphological investigation of virgin polyethylene ...

    Indian Academy of Sciences (India)

    Abstract. This research was accomplished to examine the mechanical, morphological and crystallization kinetics study of ..... Ag-NPs used in this experiment is of 99.9% purity having average particle size ... and true density of 10.5 g cm. −3.

  17. Investigations on the microstructure and mechanical properties

    Indian Academy of Sciences (India)

    This paper addresses the weldability, microstructure and mechanical properties of the multi-pass welding of super-duplex stainless steel (SDSS). Pulsed current gas tungsten arc welding (PCGTAW) was carried out employing ER2553 and ERNiCrMo-4 fillers. Microstructure examination showed the presence of austenite in ...

  18. TIC pour un accès équitable aux ressources humaines en sante en ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Ce projet vise à mieux comprendre comment les TIC peuvent faciliter la distribution équitable des ressources humaines en santé en renforçant et consolidant des activités ... Technologies de l'Information et de la Communication (TIC) pour un Accès équitable aux Ressources Humaines en santé qualifiées, motivées et bien ...

  19. Preliminary rock mechanics laboratory: Investigation plan

    International Nuclear Information System (INIS)

    Oschman, K.P.; Hummeldorf, R.G.; Hume, H.R.; Karakouzian, M.; Vakili, J.E.

    1987-01-01

    This document presents the rationale for rock mechanics laboratory testing (including the supporting analysis and numerical modeling) planned for the site characterization of a nuclear waste repository in salt. This plan first identifies what information is required for regulatory and design purposes, and then presents the rationale for the testing that satisfies the required information needs. A preliminary estimate of the minimum sampling requirements for rock laboratory testing during site characterization is also presented. Periodic revision of this document is planned

  20. Investigations on quantum mechanics with minimal length

    International Nuclear Information System (INIS)

    Chargui, Yassine

    2009-01-01

    We consider a modified quantum mechanics where the coordinates and momenta are assumed to satisfy a non-standard commutation relation of the form( X i , P j ) = iℎ(δ ij (1+βP 2 )+β'P i P j ). Such an algebra results in a generalized uncertainty relation which leads to the existence of a minimal observable length. Moreover, it incorporates an UV/IR mixing and non commutative position space. We analyse the possible representations in terms of differential operators. The latter are used to study the low energy effects of the minimal length by considering different quantum systems : the harmonic oscillator, the Klein-Gordon oscillator, the spinless Salpeter Coulomb problem, and the Dirac equation with a linear confining potential. We also discuss whether such effects are observable in precision measurements on a relativistic electron trapped in strong magnetic field.

  1. Investigating learners' epistemological framings of quantum mechanics

    Science.gov (United States)

    Dini, Vesal

    Classical mechanics challenges students to use their intuitions and experiences as a basis for understanding, in effect to approach learning as "a refinement of everyday thinking'' (Einstein, 1936). Moving on to quantum mechanics (QM), students, like physicists, need to adjust this approach, in particular with respect to the roles that intuitive knowledge and mathematics play in the pursuit of coherent understanding (these are adjustments to aspects of their epistemologies). In this dissertation, I explore how some students manage the epistemological transition. I began this work by recruiting both graduate and undergraduate students, interviewing each subject several times as they moved through coursework in QM. The interviews featured, among other things, how students tried to fit ideas together in mutually consistent ways, including with respect to intuitive knowledge, mathematics and experiment, if at all. I modeled these dynamic cognitive processes as different epistemological framings (i.e., tacit, in-the-moment responses to the question "How should I approach knowledge?''). Through detailed qualitative analyses of students' reasoning and a systematic coding of their interviews, I explored how these coherence seeking related framings impacted their learning. The dissertation supports three main findings: (1) students' patterns of epistemological framing are mostly stable within a given course; (2) students who profess epistemologies aligned with the coordination of coherence seeking framings tend to be more stable in demonstrating them; and (3) students aware that their understanding of QM ultimately anchors in its mathematics tend to produce more coherent explanations and perform better in their courses. These findings are consistent with existing research on student epistemologies in QM and imply that epistemologies, in particular whether and how students seek coherence, require greater attention and emphasis in instruction.

  2. Productivité du Capital Humain dans les Pays de l’UEMOA et de la CEMAC : Une Analyse Comparative

    OpenAIRE

    Élisé Wendlassida Miningou

    2012-01-01

    La présente étude pose le problème de la productivité du capital humain dans les pays de l’UEMOA et de la CEMAC. Dans ce papier, nous mesurons l’efficience avec laquelle le capital humain est mis à contribution dans la production. Pour ce faire, nous appliquons la méthode du Data Envelopment Analysis (DEA) pour mesurer et comparer la productivité du capital humain entre ces deux ensembles de pays. Nos résultats montrent que le capital humain dans la zone UEMOA a été moins productif ...

  3. Corps et esprit : l’identité humaine selon Spinoza

    Directory of Open Access Journals (Sweden)

    Lamine Hamlaoui

    2005-09-01

    Full Text Available Contrairement à Descartes, Spinoza refuse à l’esprit humain et par conséquent à l’homme le statut de substance : l’homme est défini comme l’union de deux modes, un corps et une âme. On ne peut donc plus comme chez Descartes distinguer une identité substantielle, conférée au corps par l’âme, et une identité modale, déterminée par le rapport du corps humain aux autres corps. Ces deux identités sont fondues dans une identité essentielle. L’objet de cet article est de mettre en évidence le statut problématique de cette identité dans l’Éthique. L’esprit humain y est en effet déduit et défini comme l’idée du corps humain, c’est-à-dire le concept que Dieu forme du corps humain. Mais tantôt Spinoza identifie cette idée du corps humain à l’essence de l’esprit humain, tantôt il établit une distinction entre les deux. De même, tantôt en vertu du parallélisme des attributs il identifie l’idée du corps humain à l’idée de l’esprit humain, tantôt il distingue les deux. D’où des tensions qui travaillent le système de l’intérieur.Contrary to Descartes, Spinoza refuses to human mind and therefore to man the status of substance : man is defined as the union of two modes, body and mind. We can’t distinguish, as in Descartes, a substantial identity, conferred to the body by the mind, and a modal identity, determined by the relation between human body and other bodies. Both identities form an essential identity. This paper explains the problematical character of this identity in Spinoza’s Ethic. Human mind is indeed deduced and defined as the idea of human body, namely the concept of human body formed by God. But sometimes Spinoza identifies the idea of human body with the essence of human body, sometimes he makes a distinction between both. In the same way, sometimes he identifies the idea of human body with the idea of human mind, in accordance with parallelism of attributes, sometimes he

  4. Traffic Accident Investigation: A Suitable Theme for Teaching Mechanics.

    Science.gov (United States)

    Tao, P. K.

    1987-01-01

    Suggests the development of curriculum materials on the applications of physics to traffic accident investigations as a theme for teaching mechanics. Describes several standard investigation techniques and the physics principles involved, along with some sample exercises. (TW)

  5. Les perspectives nutritionnelles offertes par les OGM en alimentation humaine

    Directory of Open Access Journals (Sweden)

    Pascal Gérard

    2004-03-01

    Full Text Available Une étude des brevets récents, des publications scientifiques ainsi que des documents présentant les projets des firmes de biotechnologie constituent la base de cet article qui présente les perspectives de développement en alimentation humaine des organismes génétiquement modifiés (OGM présentant un intérêt nutritionnel. Si l’on trouve dans les brevets et les publications scientifiques des applications qui concernent l’amélioration ou l’enrichissement de la composition en macro- et micronutriments, ces applications restent curieusement à l’état de projets, très loin de la mise sur le marché. Les critiques aussi bien que les louanges dont sont l’objet les rares cas dont on pourrait envisager une mise en œuvre à moyen terme, comme le « riz doré », sont aussi injustifiées et excessives les unes que les autres. Les violentes polémiques autour des OGM risquent de handicaper le développement d’une technique puissante, qui n’est certes pas indispensable pour apporter une solution à l’éradication de la faim dans le monde, mais qui peut apporter des améliorations à la nutrition des populations, aussi bien des populations des pays en développement que des pays développés.

  6. Les estimations du capital humain au Canada : approche fondee sur le revenu de la vie entiere

    OpenAIRE

    Gu, Wulong; Wong, Ambrose

    2010-01-01

    Dans le present document, nous produisons une estimation de l'investissement en capital humain fonde sur le marche et du stock de ce capital au Canada au cours de la periode s'etendant de 1970 a 2007 selon l'approche fondee sur le revenu de la vie entiere. Nous comparons cette estimation a celle de l'investissement en capital physique et naturel et du stock de ce capital. En suivant la methode elaboree par Jorgenson et Fraumeni, nous estimons le stock de capital humain sous forme du revenu de...

  7. Capital humain et croissance : Evidences sur les données de pays Africains

    OpenAIRE

    Dorothée Boccanfuso; Luc Savard; Bernice E. Savy

    2009-01-01

    La théorie économique a pendant longtemps admis une relation positive entre le capital humain et la croissance économique (Smith, 1776 ; Becker, 1964) qui sera remise en cause à la fin des années 90 dans plusieurs études (Caselli et al., 1996 ; Pritchett, 2001). Parmi les faiblesses identifiées par ces auteurs, la critique relative à l’utilisation du nombre moyen d’années d’étude comme proxy utilisé pour évaluer le stock de capital humain est souvent avancée. La non prise en considération des...

  8. Analyse du capital humain : diagnostic des dépenses d'éducation au Sénégal

    OpenAIRE

    Youssouph Ba

    2011-01-01

    Le but de notre travail consistait dans un premier temps à revisiter les soubassements théoriques du capital humain et savoir si l'augmentation du capital humain a un effet ponctuel sur la croissance économique (aussi bien dans la sphère des pays industrialisés que dans celle des pays en développement). Dans un second temps, il consistait à mesurer la politique du Sénégal en terme de capital humain : mesurer les efforts de financement de l'éducation d'une part et d'autre part, voir si ces eff...

  9. Investigation of the physical and mechanical properties of Shea Tree ...

    African Journals Online (AJOL)

    Investigation of the physical and mechanical properties of Shea Tree timber ( Vitellaria paradoxa ) used for structural applications in Kwara State, Nigeria. ... strength parallel to grain of 24.7 (N/mm2), compressive strength perpendicular to grain of 8.99 (N/mm2), shear strength of 2.01 (N/mm2), and tensile strength parallel to ...

  10. Investigation of the mechanical and electrical properties of superconducting coils

    International Nuclear Information System (INIS)

    Saito, T.; Yamagiwa, T.; Hara, K.; Kojima, Y.; Hosoyama, K.; Mori, A.; Nojima, K.; Okamoto, Y.; Takabayashi, S.; Tanaka, T.

    1994-01-01

    Measurement of elastic (Young's) modulus of the superconducting coil and electrical punch-through test have been performed at LBL to understand the mechanical and electrical properties of the superconducting coils. The authors have investigated the elastic modulus of the superconducting coils with six kinds of insulators (made with polyimide-fiberglass-epoxy and all polyimide insulation with epoxy/polyimide adhesive) at room and liquid nitrogen temperatures using samples made of 10 stacks of superconducting cables. The samples are cured under varying compression to investigate the curing pressure dependence of Young's modulus of the coils with six kinds of the insulation system. The electrical punch-through test has also performed under compression at room and liquid nitrogen temperatures to investigate electrical integrity of the insulated coils. The tensile strength test of four kinds of polyimide films has been performed at various temperatures (between cryogenic and coil curing temperatures) to understand the mechanical properties of the films

  11. CAPITAL HUMAIN, EDUCATION ET CROISSANCE ÉCONOMIQUE Une approche économétrique

    OpenAIRE

    REZINE, Okacha

    2015-01-01

    Cette recherche examine le lien entre capital humain/éducation et croissance. On s’interroge, en particulier, sur les fondements théoriques de cette relation et sur la manière de la tester. Cette relation est testée sur un panel cylindré comprenant 31 pays africains et, sur la période 1965-2010. La première approche est consacrée à l’analyse des modèles de croissance endogène avec modèle de SOLOW (1956) sans et avec la prise de proxy du capital humain/éducation. Dans la deuxième approche o...

  12. Investigation of double strand breaks induced by alpha particle irradiation using C.N.B.G. microbeam in human keratinocytes; Mise en evidence de cassures double brin de l'ADN induites par irradiation de keratinocytes humains en microfaisceau alpha

    Energy Technology Data Exchange (ETDEWEB)

    Pouthier, Th

    2006-12-15

    To understand the mechanisms of interaction of ionizing radiation with living tissues exposed to low and protracted doses remains a major issue for risk evaluation. The response cannot be found in epidemiological studies because the only available data concern accidental exposures to high doses of radiation. The natural exposure represents the main source of exposure in the daily life, just before the medical sources (radiology, radiotherapy). In addition, this kind of exposure is very difficult to reproduce in vitro by irradiating cell lines. The method per preference is based on random irradiation of cell populations. The mean number of particles having traversed cells is then calculated on the basis of Poisson statistics. In addition to inevitable multiple impacts, the numerous potential intracellular targets (nuclei, cytoplasm), the indirect effects induced by the impact of particles on neighbouring cells or simply the extracellular targets, constitute phenomena that make more complex the interpretation of experimental data. A charged particle microbeam was developed at C.E.N.B.G. to perform the targeted irradiation of individual cells with a targeting precision of a few microns. It is possible to deliver a counted number of alpha particles down to the ultimate dose of one alpha per cell, to target predetermined cells and then to observe the response of the neighbouring cells. This facility has been validated during this work on human keratinocyte cells expressing a recombinant nuclear fluorescent protein (histone H2B-GFP). The combination of ion micro-beams with confocal microscopy and numeric quantitative analysis allowed the measurement of DNA double strand breaks via the phosphorylation of the histone H2A.X in individual cells. The mechanisms of DNA reparation and apoptosis induction were also in the scope of those studies. The experimental results obtained during this thesis validate the methodology we have developed by demonstrating the targeting

  13. ÉTUDE DE CAS — Cuba : Le logement et le capital humain à Cuba ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    10 janv. 2011 ... ÉTUDE DE CAS — Cuba : Le logement et le capital humain à Cuba ... Centre de recherches pour le développement international (CRDI) du Canada révèle ... Les ressources déjà limitées sont devenues encore plus rares. ... de l'Institut national pour l'hygiène, l'épidémiologie et la microbiologie (INHEM), ...

  14. Impact de la gestion des ressources humaines sur la survie des ...

    African Journals Online (AJOL)

    A partir d'un indice composite, l'indice de gestion des ressources humaines ... (iv) la gestion de la performance, et (v) la formation et le développement du ... Même si à cause du type d'étude quasi-expérimentale réalisée (avant-après), nous ne ... GRH d'une organisation doit aussi devenir un objectif chiffré du management.

  15. Investigation of the Mechanical Behaviour of Metal Diamond Composites

    CERN Document Server

    Peroni, L; Bertarelli, A; Dallocchio, A; Mariani, N; Bizzaro, S

    2012-01-01

    Metal-Diamond Composites (Me-CD) are a novel class of materials which has typical applications in the field of thermal management. Usually, due to the high volume fraction of diamonds inside the matrix, the mechanical behavior of such materials is quite brittle with low level of fracture stress and strain. However, with advanced innovations in the sintering processes, it is possible to obtain composite materials with a good level of strength and toughness. The great advantage of these materials is the possibility to combine the high thermal and electrical conductivity of diamonds with the strength of metals. Aim of this work is the investigation of the mechanical behavior of Me-CD from quasi-static to high strain-rate loading conditions. The temperature influence on mechanical properties is also evaluated.

  16. Investigation of failure mechanisms for HTGR core supports

    International Nuclear Information System (INIS)

    Bennett, J.G.; Ju, F.D.; Anderson, C.A.

    1976-12-01

    The report is concerned with potential instabilities of High-Temperature Gas-Cooled Reactor Cores supported by graphite columns. Two failure mechanisms are investigated in detail: that of torsional buckling of the entire core-column assemblage and that of column failure alone. A torsional model of the core-column assemblage is described and static buckling loads are calculated. Dynamic instability of the model to seismic loadings is also investigated. Individual column failure is examined using nonlinear graphite behavior and safety factors for static loading situations are given and compared to values given by conventional design formulas. A model of a cracked graphite column is given and buckling loads are computed for columns using a combined column and fracture mechanics analysis. A finite element analysis of a cracked graphite column is presented

  17. Azo group containing compounds: investigation of the decay mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Franzke, D; Kritzenberger, J; Kunz, T [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    We investigated compounds containing the N=N-X (X=S,P,N{sub 3}) group which are potential candidates for microstructuring by photoresist technology or by photoablation. To elucidate the mechanism of thermal decomposition and photolysis we used infrared and UV spectroscopy, respectively, in solution as well as in the solid state. In this article we describe photolytic and thermolytic properties of one representative molecule for each of three substance classes: diazosulfides, azophosphonates and pentazadienes. (author) 4 figs., 4 refs.

  18. Apports nutritionnels, dépense et bilan énergétiques chez l’homme et les primates non-humains : aspects méthodologiques Nutritional intakes, energy expenditure and energy balance in human and non-human primates: methodological aspects

    Directory of Open Access Journals (Sweden)

    Laurent Tarnaud

    2011-02-01

    intègrent des approches quantitatives dont la précision dépend des populations étudiées et des conditions de terrain. L'approche comportementale est le plus souvent complétée par des analyses réalisées en laboratoire et pouvant nécessiter des équipements lourds et des personnels qualifiés. La présente revue a donc pour objectif d'orienter le(s choix du chercheur en fonction de sa thématique de recherche et des conditions de son étude. Le choix de la ou des techniques sera nécessairement le fruit d’un compromis entre la précision, la faisabilité et le coût des études.This paper presents field methods and laboratory techniques used to evaluate food intake, energy and nutrient input, activity patterns, energy expenditure, and body energy storage in human and non-human primates. The aim is to review both traditional techniques and recent advances in the methods designed to investigate energetic parameters in an anthropobiological perspective. Although most of human habits and behaviours are regarded as culturally determined, Homo as a species share with non-human primates a number of psycho-physiological features originating from biological adaptations and close phylogenetic relationships. Therefore, determining the mechanisms involved in the energetic dynamics in non-human primates may contribute to identify some of these shared biological bases. In this respect, several methods in the field of energetics are applicable to both humans and non-human primates bringing out the similarities of approaches. Besides interspecific comparisons that provide a background to assess the evolution of energy strategies among primates, contrasting the energy fluxes at the population or group level highlights the range of bio-cultural adjustments of humans and non-human primate species to their social and natural environment.The present review distinguishes methods according to the energetic parameters the researcher wishes to describe and quantify: food intake

  19. Investigation on mechanical properties of basalt composite fabrics (experiment study)

    Science.gov (United States)

    Talebi Mazraehshahi, H.; Zamani, H.

    2010-06-01

    To fully appreciate the role and application of composite materials to structures, correct understanding of mechanical behaviors required for selection of optimum material. Fabric reinforced composites are composed of a matrix that is reinforced with pliable fabric, glass fabric is most popular reinforcement for different application specially in aircraft structure, although other fabric material are also used. At this study new fabric material called basalt with epoxy resin introduced and mechanical behaviors of this material investigated from view point of testing. For this study two type of fabric with different thickness used. Comparison between this composite reinforcement with popular reinforcement as carbon, glass, kevlar performed. To determine mechanical properties of epoxy based basalt fabric following test procedure performed : 1). Tensile testing according to ASTM D3039 in 0° and 90° direction to find ultimate strength in tension and shear, modulus of elasticity, elangation and ultimate strain. 2). Compression testing according to EN 2850 ultimate compression strength and maximum deformation under compression loading. 3). Shear testing according to ASTM D3518-94 to find in plane shear response of polymer matrix composites materials. 4). Predict flexural properties of sandwich construction which manufactured from basalt facing with PVC foam core according to ASTM C393-94. Material strength properties must be based on enough tests of material to meet the test procedure specifications [1]. For this reason six specimens were manufactured for testing and the tests were performed on them using an INSTRON machine model 5582. In the study, the effect of percent of resin in basalt reinforced composite was investigated. Also the weights of the ballast based composites with different percent of resin were measured with conventional composites. As the weight is an important parameter in aerospace industry when the designer wants to replace one material with

  20. Investigation on mechanical properties of basalt composite fabrics (experiment study

    Directory of Open Access Journals (Sweden)

    Talebi Mazraehshahi H.

    2010-06-01

    Full Text Available To fully appreciate the role and application of composite materials to structures, correct understanding of mechanical behaviors required for selection of optimum material. Fabric reinforced composites are composed of a matrix that is reinforced with pliable fabric, glass fabric is most popular reinforcement for different application specially in aircraft structure, although other fabric material are also used. At this study new fabric material called basalt with epoxy resin introduced and mechanical behaviors of this material investigated from view point of testing. For this study two type of fabric with different thickness used. Comparison between this composite reinforcement with popular reinforcement as carbon, glass, kevlar performed. To determine mechanical properties of epoxy based basalt fabric following test procedure performed : 1. Tensile testing according to ASTM D3039 in 0° and 90° direction to find ultimate strength in tension and shear, modulus of elasticity, elangation and ultimate strain. 2. Compression testing according to EN 2850 ultimate compression strength and maximum deformation under compression loading. 3. Shear testing according to ASTM D3518-94 to find in plane shear response of polymer matrix composites materials. 4. Predict flexural properties of sandwich construction which manufactured from basalt facing with PVC foam core according to ASTM C393-94. Material strength properties must be based on enough tests of material to meet the test procedure specifications [1]. For this reason six specimens were manufactured for testing and the tests were performed on them using an INSTRON machine model 5582. In the study, the effect of percent of resin in basalt reinforced composite was investigated. Also the weights of the ballast based composites with different percent of resin were measured with conventional composites. As the weight is an important parameter in aerospace industry when the designer wants to replace one

  1. Numerical Investigation of Springback in Mechanical Clinching Process

    Directory of Open Access Journals (Sweden)

    Mohanna Eshtayeh

    2017-12-01

    Full Text Available In this work, a numerical investigation was conducted to study the springback phenomena in the mechanical clinching process. The springback values were calculated using finite element simulations and it was found that these values depend strongly on the strength of the materials. A Taguchi optimization method was used to determine the optimal parameters affecting springback. However, in the case of materials with low tensile strength, determining parameters affecting springback becomes difficult. Implicit and explicit simulations of clinching joints using the springback analysis show that the distance between the joint sheets becomes almost zero after stress recovery.

  2. Elucidating Grinding Mechanism by Theoretical and Experimental Investigations

    Directory of Open Access Journals (Sweden)

    AMM Sharif Ullah

    2018-02-01

    Full Text Available Grinding is one of the essential manufacturing processes for producing brittle or hard materials-based precision parts (e.g., optical lenses. In grinding, a grinding wheel removes the desired amount of material by passing the same area on the workpiece surface multiple times. How the topography of a workpiece surface evolves with these passes is thus an important research issue, which has not yet been addressed elaborately. The present paper tackles this issue from both the theoretical and the experimental points of view. In particular, this paper presents the results of experimental and theoretical investigations on the multi-pass surface grinding operations where the workpiece surface is made of glass and the grinding wheel consists of cBN abrasive grains. Both investigations confirm that a great deal of stochasticity is involved in the grinding mechanism, and the complexity of the workpiece surface gradually increases along with the number of passes.

  3. Elucidating Grinding Mechanism by Theoretical and Experimental Investigations.

    Science.gov (United States)

    Ullah, Amm Sharif; Caggiano, Alessandra; Kubo, Akihiko; Chowdhury, M A K

    2018-02-09

    Grinding is one of the essential manufacturing processes for producing brittle or hard materials-based precision parts (e.g., optical lenses). In grinding, a grinding wheel removes the desired amount of material by passing the same area on the workpiece surface multiple times. How the topography of a workpiece surface evolves with these passes is thus an important research issue, which has not yet been addressed elaborately. The present paper tackles this issue from both the theoretical and the experimental points of view. In particular, this paper presents the results of experimental and theoretical investigations on the multi-pass surface grinding operations where the workpiece surface is made of glass and the grinding wheel consists of cBN abrasive grains. Both investigations confirm that a great deal of stochasticity is involved in the grinding mechanism, and the complexity of the workpiece surface gradually increases along with the number of passes.

  4. Experimental investigation of the mechanical properties of Alfas stone

    Directory of Open Access Journals (Sweden)

    Konstas N. Kaklis

    2017-04-01

    Full Text Available This paper focuses on the experimental investigation of the mechanical properties of the Alfas natural building stone. Two series of uniaxial compression tests and indirect tensile tests (Brazilian tests were performed in order to determine the uniaxial compressive strength and the indirect tensile strength respectively. Different sets of cylindrical specimens and circular discs were prepared by varying their geometry in order to examine the size effect on the respective strength values. Also, the size effect was investigated with respect to the calculated intact rock modulus and Poisson’s ratio. All specimens were prepared by following the ISRM suggested methods and the load was applied using a stiff 1600 kN MTS hydraulic testing machine and a 500 kN load cell. Strain was measured using biaxial 0/90 stacked rosettes appropriately attached on each specimen.

  5. Montmorillonite polyaniline nanocomposites: Preparation, characterization and investigation of mechanical properties

    International Nuclear Information System (INIS)

    Soundararajah, Q.Y.; Karunaratne, B.S.B.; Rajapakse, R.M.G.

    2009-01-01

    The interest in clay polymer nanocomposites (CPN) materials, initially developed by researchers at Toyota, has grown dramatically over the last decade. They have attracted great interest, both in industry and in academia, because they often exhibit remarkable improvement in materials' properties when compared with virgin polymer or conventional micro- and macro-composites. These improvements can include high moduli, increased strength and heat resistance, decreased gas permeability and flammability, optical transparency and increased biodegradability of biodegradable polymers. Such enhancement in the properties of nanocomposites occurs mostly due to their unique phase morphology and improved interfacial properties. Because of these enhanced properties they find applications in the fields of electronics, automobile industry, packaging, and construction. This study aims at investigating the mechanical property enhancement of polyaniline (PANI) intercalated with montmorillonite (MMT) clay. The MMT-PANI nanocomposites displayed improved mechanical properties compared to the neat polymer or clay. The enhancement was achieved at low clay content probably due to its exfoliated structure. The increased interfacial areas and improved bond characteristics may attribute to the mechanical property enhancement

  6. Investigations of fundamental phenomena in quantum mechanics with neutrons

    International Nuclear Information System (INIS)

    Hasegawa, Yuji

    2014-01-01

    Neutron interferometer and polarimeter are used for the experimental investigations of quantum mechanical phenomena. Interferometry exhibits clear evidence of quantum-contextuality and polarimetry demonstrates conflicts of a contextual model of quantum mechanics á la Leggett. In these experiments, entanglements are achieved between degrees of freedom in a single-particle: spin, path and energy degrees of freedom are manipulated coherently and entangled. Both experiments manifest the fact that quantum contextuality is valid for phenomena with matter waves with high precision. In addition, another experiment is described which deals with error-disturbance uncertainty relation: we have experimentally tested error-disturbance uncertainty relations, one is derived by Heisenberg and the other by Ozawa. Experimental results confirm the fact that the Heisenberg's uncertainty relation is often violated and that the new relation by Ozawa is always larger than the limit. At last, as an example of a counterfactual phenomenon of quantum mechanics, observation of so-called quantum Cheshire Cat is carried out by using neutron interferometer. Experimental results suggest that pre- and post-selected neutrons travel through one of the arms of the interferometer while their magnetic moment is located in the other arm.

  7. Investigation of impingement attack mechanism of copper alloy condenser tubes

    Energy Technology Data Exchange (ETDEWEB)

    Fukumura, Takuya; Nakajima, Nobuo; Arioka, Koji; Totsuka, Nobuo; Nakagawa, Tomokazu [Institute of Nuclear Safety System Inc., Mihama, Fukui (Japan)

    2001-09-01

    In order to investigate generation and growth mechanisms of impingement attacks of sea water against copper alloy condenser tubes used in condensers of nuclear power plants, we took out condenser tubes from actual condensers, cut them into several pieces and carried out several material tests mainly for impinged spots. In addition water flow inside of a pit was analyzed. From the results of the investigation, it was found that all of impingement attacks were found in the marks left by sessile organisms and none were found in downstream of the marks as frequently proposed so far. At the pits generated inside the marks, iron coating was striped and zinc content was deficient in some cases. Combining these data and the result of flow analysis, we considered the following mechanism of the impingement attacks: sessile organisms clinging to the surface of the condenser tube and growth, occlusion of the tube, extinction and decomposition of sessile organisms, pollution corrosion under the organisms and cavity formation, occlusion removal by the cleaning, generation of impingement attacks by flow collision inside the cavity, growth of the impingement attacks. (author)

  8. Site investigations: Strategy for rock mechanics site descriptive model

    International Nuclear Information System (INIS)

    Andersson, Johan; Christiansson, Rolf; Hudson, John

    2002-05-01

    As a part of the planning work for the Site Investigations, SKB has developed a Rock Mechanics Site Descriptive Modelling Strategy. Similar strategies are being developed for other disciplines. The objective of the strategy is that it should guide the practical implementation of evaluating site specific data during the Site Investigations. It is also understood that further development may be needed. This methodology enables the crystalline rock mass to be characterised in terms of the quality at different sites, for considering rock engineering constructability, and for providing the input to numerical models and performance assessment calculations. The model describes the initial stresses and the distribution of deformation and strength properties of the intact rock, of fractures and fracture zones, and of the rock mass. The rock mass mechanical properties are estimated by empirical relations and by numerical simulations. The methodology is based on estimation of mechanical properties using both empirical and heroretical/numerical approaches; and estimation of in situ rock stress using judgement and numerical modelling, including the influence of fracture zones. These approaches are initially used separately, and then combined to produce the required characterisation estimates. The methodology was evaluated with a Test Case at the Aespoe Hard Rock Laboratory in Sweden. The quality control aspects are an important feature of the methodology: these include Protocols to ensure the structure and coherence of the procedures used, regular meetings to enhance communication, feedback from internal and external reviewing, plus the recording of an audit trail of the development steps and decisions made. The strategy will be reviewed and, if required, updated as appropriate

  9. Site investigations: Strategy for rock mechanics site descriptive model

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Johan [JA Streamflow AB, Aelvsjoe (Sweden); Christiansson, Rolf [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden); Hudson, John [Rock Engineering Consultants, Welwyn Garden City (United Kingdom)

    2002-05-01

    As a part of the planning work for the Site Investigations, SKB has developed a Rock Mechanics Site Descriptive Modelling Strategy. Similar strategies are being developed for other disciplines. The objective of the strategy is that it should guide the practical implementation of evaluating site specific data during the Site Investigations. It is also understood that further development may be needed. This methodology enables the crystalline rock mass to be characterised in terms of the quality at different sites, for considering rock engineering constructability, and for providing the input to numerical models and performance assessment calculations. The model describes the initial stresses and the distribution of deformation and strength properties of the intact rock, of fractures and fracture zones, and of the rock mass. The rock mass mechanical properties are estimated by empirical relations and by numerical simulations. The methodology is based on estimation of mechanical properties using both empirical and heroretical/numerical approaches; and estimation of in situ rock stress using judgement and numerical modelling, including the influence of fracture zones. These approaches are initially used separately, and then combined to produce the required characterisation estimates. The methodology was evaluated with a Test Case at the Aespoe Hard Rock Laboratory in Sweden. The quality control aspects are an important feature of the methodology: these include Protocols to ensure the structure and coherence of the procedures used, regular meetings to enhance communication, feedback from internal and external reviewing, plus the recording of an audit trail of the development steps and decisions made. The strategy will be reviewed and, if required, updated as appropriate.

  10. Investigating dissolution of mechanically activated olivine for carbonation purposes

    International Nuclear Information System (INIS)

    Haug, Tove Anette; Kleiv, Rolf Arne; Munz, Ingrid Anne

    2010-01-01

    Research highlights: → Dissolution of mechanically activated olivine increased with 3 orders of magnitude. → Crystallinity changes of olivine is important for the observed dissolution rates. → Activation probably decreases with the degree of dissolution of each particle. - Abstract: Mineral carbonation is one of several alternatives for CO 2 sequestration and storage. The reaction rates of appropriate minerals with CO 2 , for instance olivine and serpentine with vast resources, are relatively slow in a CO 2 sequestration context and the rates have to be increased to make mineral carbonation a good storage alternative. Increasing the dissolution rate of olivine has been the focus of this paper. Olivine was milled with very high energy intensity using a laboratory planetary mill to investigate the effect of mechanical activation on the Mg extraction potential of olivine in 0.01 M HCl solution at room temperature and pressure. Approximately 30-40% of each sample was dissolved and water samples were taken at the end of each experiment. The pH change was used to calculate time series of the Mg concentrations, which also were compared to the final Mg concentrations in the water samples. Percentage dissolved and the specific reaction rates were estimated from the Mg concentration time series. The measured particle size distributions could not explain the rate constants found, but the specific surface area gave a good trend versus dissolution for samples milled wet and the samples milled with a small addition of water. The samples milled dry had the lowest measured specific surface areas ( 2 /g), but had the highest rate constants. The crystallinity calculated from X-ray diffractograms, was the material parameter with the best fit for the observed differences in the rate constants. Geochemical modelling of mechanically activated materials indicated that factors describing the changes in the material properties related to the activation must be included. The

  11. The measurement problem in quantum mechanics: A phenomenological investigation

    Science.gov (United States)

    Hunter, Joel Brooks

    2008-10-01

    This dissertation is a phenomenological investigation of the measurement problem in quantum mechanics. The primary subject matter for description and analysis is scientific instruments and their use in experiments which elicit the measurement problem. A methodological critique is mounted against the ontological commitments taken for granted in the canonical interpretations of quantum theory and the scientific activity of measurement as the necessary interface between theoretical interest and perceptual results. I argue that an aesthetic dimension of reality functions as aproto-scientific establishment of sense-making that constantly operates to set integratively all other cognitively neat determinations, including scientifically rendered objects that are intrinsically non-visualizable. The way in which data "key in" to the original and originative register of the sensible in observation is clarified by examining prostheses, measuring apparatuses and instruments that are sense-conveying and -integrative with the human sensorium. Experiments, technology and instrumentation are examined in order to understand how knowing and that which is known is bonded by praxis-aisthesis. Quantum measurement is a praxic-dynamie activity and homologically structured and structur ing functional engagement in terms of instantiation, quantifiability, and spatiotemporal differentiation. The distinctions between a beauty-aesthetic and praxis-aisthesis are delineated. It is argued that a beauty-aesthetic is a construal of the economic dimension of scientific objects and work, and is not the primary manner in which the aesthetic dimension is disclosed. The economic dimension of abstractions reduces to an austere aesthetic of calculative economy. Nature itself, however, is not stingy; it is intrinsically capacious, extravagant, full of surprise, nuance, ambiguity and allusiveness. The capaciousness of Nature and the way in which we are integratively set within Nature in a materiality

  12. Les humains sont-ils des entités matérielles ?

    Directory of Open Access Journals (Sweden)

    Tauveron Matthias

    2012-07-01

    Full Text Available Nous étudions la sémantique des noms d’humains dans le lexique français. Dans la littérature, ces noms ont un positionnement indéterminé ou ambigu par rapport au critère concret/abstrait. Ce fait est regrettable car ce critère est considéré comme fondamental. Nous montrons leur positionnement particulier vis-à-vis de ce critère au travers de l’étude de métaphores attestées en corpus dans divers textes écrits. Nous suivons l’optique de Lakoff et Johnson en considérant que la métaphore est un révélateur des catégories de pensée. Dans cet esprit, la question est de savoir si les humains sont des entités matérielles ou non. L’étude est menée sur deux paramètres définitoires des entités matérielles : la masse et la spatialité. Nous apportons des caractérisations lexicales de ces deux propriétés. La masse est envisagée généralement, autour des noms, adjectifs et verbes relevés dans les dictionnaires. Nous proposons une synthèse des divers paramètres dénotant la spatialité dans la littérature, sous la forme de six points indépendants (forme, intérieur/extérieur, sous-parties, changement de posture, localisation, déplacement. L’étude de la spatialité est menée systématiquement dans ces directions grâce à des tests issus des caractérisations lexicales de ces aspects. Les tests font voir que, si les humains sont dotés d’une certaine dimension matérielle (qu’ils partagent ainsi avec les objets concrets, ils ont également au moins trois autres dimensions qui font qu’ils ne se réduisent pas à des objets matériels. Nous montrons ainsi que l’humain est, dans le lexique français, doté d’une multiplicité ontologique : en plus d’une dimension matérielle, il dispose d’une dimension psychologique, une dimension praxéologique et une dimension sociale. De plus, l’étude des métaphores montre que la dimension matérielle est souvent réduite voire anéantie par rapport aux

  13. Investigation on the mechanism of peripheral axonal injury in glaucoma

    Directory of Open Access Journals (Sweden)

    Jun- Hong Zhao

    2013-05-01

    Full Text Available AIM: To compare the angles of longitudinal section of sclera around optic nerve heads and the never fiber layer changes in healthy adults and patients with glaucoma, and to investigate the mechanism of peripheral retinal axonal injury, with the combined knowledge of biomechanics. METHODS: The optical nerves and their peripheral tissue specimen in the 12 eyes from health adult donators and 12 eyes from glaucoma patient donators were dyed by Glees' method to compare the angles of longitudinal section of sclera around optic nerve heads(through optic nerve center, and to observe the anatomical features of the peripheral retinal axons. RESULTS: The mean angle of longitudinal section of sclera around optic nerve in healthy adults was 73.3°, while that in patients with absolute glaucoma was 75.6°. The difference showed no significance(t=1.44, P>0.05. There was a sharp bend in the course of peripheral optical fiber in healthy adults. However, the optic nerve fiber disappeared completely in patients with glaucoma end stage. CONCLUSION: The angle between the medial edge and leading edge of sclera(around optic nerve headsis an acute angle. The optical fiber in glaucoma end stage disappeared completely. The phenomenon may be related to high intraocular pressure, the sclera shape, the shear modulus of sclera and axons, and “axonal bending-injury” mechanism.

  14. Investigation on Mechanical Properties of Graphene Oxide reinforced GFRP

    Science.gov (United States)

    Arun, G. K.; Sreenivas, Nikhil; Brahma Reddy, Kesari; Sai Krishna Reddy, K.; Shashi Kumar, M. E.; Pramod, R.

    2018-02-01

    Graphene and E-glass fibres individually find a very wide field of applications because of their various mechanical and chemical properties. Recently graphene has attracted both academic and industrial interest because it can produce a dramatic improvement in properties at very low filler content. The primary interest of this venture is to investigate on Graphene reinforced polymer matrix nanocomposites and finding the mechanical properties. The composites were fabricated by Hand Lay Process and have been evaluated by the addition of Graphene with 1, 1.5, 2, 2.5 and 3 by weight% as reinforcement in composites. The theoretical and experimental results validate the increase in properties such as tensile strength, hardness and flexural strength with increase in weight proportions from 1% to 3% of graphene powder. It was observed that the composite material with 2.5% weight fraction of graphene yielded superior properties over other weight percentages. Graphene reinforced polymer matrix nanocomposites finds its major applications in the manufacture of aircraft bodies, ballistic missiles, sporting equipment, marine applications and extraterrestrial ventures.

  15. Investigation of spherical and concentric mechanism of compound droplets

    Directory of Open Access Journals (Sweden)

    Meifang Liu

    2016-07-01

    Full Text Available Polymer shells with high sphericity and uniform wall thickness are always needed in the inertial confined fusion (ICF experiments. Driven by the need to control the shape of water-in-oil (W1/O compound droplets, the effects of the density matching level, the interfacial tension and the rotation speed of the continuing fluid field on the sphericity and wall thickness uniformity of the resulting polymer shells were investigated and the spherical and concentric mechanisms were also discussed. The centering of W1/O compound droplets, the location and movement of W1/O compound droplets in the external phase (W2 were significantly affected by the density matching level of the key stage and the rotation speed of the continuing fluid field. Therefore, by optimizing the density matching level and rotation speed, the batch yield of polystyrene (PS shells with high sphericity and uniform wall thickness increased. Moreover, the sphericity also increased by raising the oil/water (O/W2 interfacial tension, which drove a droplet to be spherical. The experimental results show that the spherical driving force is from the interfacial tension affected by the two relative phases, while the concentric driving force, as a resultant force, is not only affected by the three phases, but also by the continuing fluid field. The understanding of spherical and concentric mechanism can provide some guidance for preparing polymer shells with high sphericity and uniform wall thickness.

  16. Nanometric mechanical cutting of metallic glass investigated using atomistic simulation

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Cheng-Da, E-mail: nanowu@cycu.edu.tw [Department of Mechanical Engineering, Chung Yuan Christian University, 200, Chung Pei Rd., Chung Li District, Taoyuan City 32023, Taiwan (China); Fang, Te-Hua, E-mail: fang.tehua@msa.hinet.net [Department of Mechanical Engineering, National Kaohsiung University of Applied Sciences, Kaohsiung 807, Taiwan (China); Su, Jih-Kai, E-mail: yummy_2468@yahoo.com.tw [Department of Mechanical Engineering, National Kaohsiung University of Applied Sciences, Kaohsiung 807, Taiwan (China)

    2017-02-28

    Highlights: • A nanoscale chip with a shear plane of 135° is extruded by the tool. • Tangential force and normal force increase with increasing tool nose radius. • Resistance factor increases with increasing cutting depth and temperature. - Abstract: The effects of cutting depth, tool nose radius, and temperature on the cutting mechanism and mechanics of amorphous NiAl workpieces are studied using molecular dynamics simulations based on the second-moment approximation of the many-body tight-binding potential. These effects are investigated in terms of atomic trajectories and flow field, shear strain, cutting force, resistance factor, cutting ratio, and pile-up characteristics. The simulation results show that a nanoscale chip with a shear plane of 135° is extruded by the tool from a workpiece surface during the cutting process. The workpiece atoms underneath the tool flow upward due to the adhesion force and elastic recovery. The required tangential force and normal force increase with increasing cutting depth and tool nose radius; both forces also increase with decreasing temperature. The resistance factor increases with increasing cutting depth and temperature, and decreases with increasing tool nose radius.

  17. Distribution des Glossines vecteurs de la Trypanosomose humaine ...

    African Journals Online (AJOL)

    Objective: In order to know the apparent density and specific composition of the flies in a former home of human African trypanosomes in Gabon, an entomological investigation was conducted in primary forest and Doussala village in the National Park of Moukalaba Doudou (Gabon South). Methodology and Results:The ...

  18. Pour une ingénierie des Environnements Informatiques pour l'Apprentissage Humain

    OpenAIRE

    Tchounikine , Pierre

    2002-01-01

    Nous proposons dans cet article une réflexion sur la notion d'ingénierie des EIAH (Environnements Informatiques pour l'Apprentissage Humain). Nous posons tout d'abord une définition de l'ingénierie des EIAH : travaux visant à définir des éléments de méthodes et de techniques reproductibles et/ou réutilisables facilitant la mise en place (conception – réalisation – expérimentation – évaluation - diffusion) d'environnements de formation ou d'apprentissage (dans leur articulation avec les dispos...

  19. Hybridation de la ressource humaine dans les associations : déterminants et effets.

    OpenAIRE

    Gontier , Patricia; Dansac , Christophe; Vachée , Cécile

    2014-01-01

    International audience; À l’image de la multiplicité des rôles que peuvent tenir les associations et autres organisations non orientées vers le profit dans nos sociétés, les ressources humaines impliquées dans les associations ou autres organisations non orientées vers le profit sont multiples. Dans leurs motivations, leurs compétences, et leurs parcours, les individus qui contribuent à ces organisations sont très différents. Parmi les bénévoles, on peut ainsi dissocier ceux qui administrent ...

  20. Robots humains, avez-donc une réalité ?

    OpenAIRE

    Amblard , Maxime; Boumaza , Amine

    2015-01-01

    International audience; Plusieurs laboratoires dans le monde travaillent à la création de robots humanoïdes . La technologie ayant considérablement évolué, il apparaît réaliste d’imaginer un quotidien accompagné de tels systèmes, à l’image du robot Nao, dont on discute encore comment lui faire partager des émotions pour simuler un comportement humain. Mais finalement, les robots sont déjà partout et depuis longtemps, dans les usines, les jouets électroniques, nos ordinateurs, nos tablettes, l...

  1. ÉTUDE DE CAS — Cuba : Le logement et le capital humain à Cuba ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    10 janv. 2011 ... Colin Campbell. Des projets communautaires améliorent la santé du cœur de La Havane. La vie en plein centre-ville peut mettre à rude épreuve la résistance des gens. Lorsque les quartiers périclitent, le dépérissement de la santé humaine suit de près. Un projet mené à Cuba avec l'appui du Centre de ...

  2. Le facteur humain et la sûreté de fonctionnement dans le ...

    African Journals Online (AJOL)

    Notre contribution porte sur le rôle fondamental du facteur humain dans le management intégré des risques d'une part et du rôle déterminant qu'il peut avoir à jouer pour que la sûreté de fonctionnement réponde à sa propriété d'autre part. Un rôle illustré à travers une analyse de risque dans un complexe de Gaz Naturel ...

  3. MWCNTs/Resin Nanocomposites: Structural, Thermal, Mechanical and Dielectric Investigation

    Directory of Open Access Journals (Sweden)

    N. D. Alexopoulos

    2015-11-01

    Full Text Available Multi-wall carbon nanotubes (MWCNTs were manufactured, characterized and added to a typical aeronautical resin matrix at different concentrations as nano-reinforcement. The carbon content of produced MWCNTs was determined to be around 98.5% while they consisted of 13-20 wall-layers and their external diameter had an average size in between 20 and 50 nm. MWCNTs were dispersed in an epoxy resin system and tensile specimens for different MWCNTs concentrations were prepared in an open mould. Electrical wiring was attached to the specimens’ surface and surface electrical resistance change was in-situ monitored during monotonic tension till fracture. Performed tensile tests showed that the MWCNTs addition increased both modulus of elasticity and ultimate tensile strength on the nano-composites with a simultaneously dramatic ductility decrease. The MWCNTs addition enhanced the investigated resin matrix with monitoring ability; electrical resistance change of the investigated tensile tests was correlated in the elastic regime with axial nominal strain and the gauge factor of the different MWCNTs concentration specimens were calculated. It was found that lowest MWCNTs concentration gave the best results in terms of piezo-resistivity and simultaneously the least enhancement in the mechanical properties.

  4. Production, deformation and mechanical investigation of magnetic alginate capsules

    Science.gov (United States)

    Zwar, Elena; Kemna, Andre; Richter, Lena; Degen, Patrick; Rehage, Heinz

    2018-02-01

    In this article we investigated the deformation of alginate capsules in magnetic fields. The sensitivity to magnetic forces was realised by encapsulating an oil in water emulsion, where the oil droplets contained dispersed magnetic nanoparticles. We solved calcium ions in the aqueous emulsion phase, which act as crosslinking compounds for forming thin layers of alginate membranes. This encapsulating technique allows the production of flexible capsules with an emulsion as the capsule core. It is important to mention that the magnetic nanoparticles were stable and dispersed throughout the complete process, which is an important difference to most magnetic alginate-based materials. In a series of experiments, we used spinning drop techniques, capsule squeezing experiments and interfacial shear rheology in order to determine the surface Young moduli, the surface Poisson ratios and the surface shear moduli of the magnetically sensitive alginate capsules. In additional experiments, we analysed the capsule deformation in magnetic fields. In spinning drop and capsule squeezing experiments, water droplets were pressed out of the capsules at elevated values of the mechanical load. This phenomenon might be used for the mechanically triggered release of water-soluble ingredients. After drying the emulsion-filled capsules, we produced capsules, which only contained a homogeneous oil phase with stable suspended magnetic nanoparticles (organic ferrofluid). In the dried state, the thin alginate membranes of these particles were rather rigid. These dehydrated capsules could be stored at ambient conditions for several months without changing their properties. After exposure to water, the alginate membranes rehydrated and became flexible and deformable again. During this swelling process, water diffused back in the capsule. This long-term stability and rehydration offers a great spectrum of different applications as sensors, soft actuators, artificial muscles or drug delivery systems.

  5. Investigation of the cold process pipe rupture mechanism

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    Cryogenic process pipelines are part of the basic subsystem used in installations for fundamental research in physics, as well as in industrial plants which use LNG or liquid nitrogen. The significant increase in importance of cryogenics entails the need to explore phenomena which have direct impact in the design process of cryogenic systems and their safety systems. These aspects are of high priority due to high investment costs, mainly because of safety issues and reliability. One of the issues which requires thorough investigation is the fracture mechanics of gas pipelines in cryogenic conditions. For this subject, importance is placed not only in when the cracks begin to appear, but also in how they form and how quickly they propagate. Currently, there is a lack of reliable research in the available literature in this area. This is often raised as a significant problem for designers, because knowledge in this topic should be reflected e.g., in the sizing calculations of safety valves for the vacuum syste...

  6. Ultrasonic stimulation of peripheral nervous tissue: an investigation into mechanisms

    International Nuclear Information System (INIS)

    Wright, C J; Saffari, N; Rothwell, J

    2015-01-01

    Neuro-stimulation has wide ranging clinical and research potential but this is currently limited either by low resolution, penetration or by highly invasive procedures. It has been reported in previous studies that ultrasound is able to elicit a neuro-stimulatory effect at a higher resolution than other non-invasive approaches but both the underlying mechanism that makes this possible and the practical details of how it can be implemented are still poorly understood. The current study has identified the main issues that need to be resolved in the field, proposing several different approaches to tackling these areas. An isolated in vitro peripheral nerve bundle was chosen as a simple model to demonstrate and investigate the neuro-stimulatory effect after preliminary results showed successful stimulation in a skin-nerve preparation. Early results from the nerve bundle show successful neurostimulation, indicating that structures in the peripheral nerve axon are sensitive to ultrasound. Further research using this model should reveal more precisely what structures are being affected and how to optimise the effect, helping to inform the design of future procedures and devices used in in vivo applications

  7. Experimental and computational investigation of temperature effects on soot mechanisms

    Directory of Open Access Journals (Sweden)

    Bi Xiaojie

    2014-01-01

    Full Text Available Effects of initial ambient temperatures on combustion and soot emission characteristics of diesel fuel were investigated through experiment conducted in optical constant volume chamber and simulation using phenomenological soot model. There are four difference initial ambient temperatures adopted in our research: 1000 K, 900 K, 800 K and 700 K. In order to obtain a better prediction of soot behavior, phenomenological soot model was revised to take into account the soot oxidation feedback on soot number density and good agreement was observed in the comparison of soot measurement and prediction. Results indicated that ignition delay prolonged with the decrease of initial ambient temperature. The heat release rate demonstrated the transition from mixing controlled combustion at high ambient temperature to premixed combustion mode at low ambient temperature. At lower ambient temperature, soot formation and oxidation mechanism were both suppressed. But finally soot mass concentration reduced with decreasing initial ambient temperature. Although the drop in ambient temperature did not cool the mean in-cylinder temperature during the combustion, it did shrink the total area of local high equivalence ratio, in which soot usually generated fast. At 700 K initial ambient temperature, soot emissions were almost negligible, which indicates that sootless combustion might be achieved at super low initial temperature operation conditions.

  8. Microscopic investigations of chemo-mechanical polishing of tungsten

    International Nuclear Information System (INIS)

    Lim, Min Soo; Heide, Paul A.W. van der; Perry, Scott S.; Galloway, Heather C.; Koeck, Deborah C.

    2004-01-01

    The influence of aqueous solutions of KNO 3 , KClO 3 , and KIO 3 on tungsten surfaces has been investigated in terms of the degree of surface oxidation, metal dissolution and interfacial friction. The surface properties of tungsten films have been measured ex-situ with X-ray photoelectron spectroscopy and in situ with atomic force microscopy. Measurements of the surface composition reveal a greater degree of oxidation for surfaces treated in solutions of KIO 3 in comparison to the other solutions. This increase in surface oxidation is correlated to a greater rate of localized film dissolution that occurs under the action of the scanning probe tip. In turn, the process of material removal is the predominant origin of the higher interfacial friction measured at tungsten surfaces immersed in KIO 3 solutions, as compared to KClO 3 and KNO 3 solutions. Collectively, these measurements portray a fundamental pathway of material removal at tungsten surfaces in the presence of oxidizing species and highlight complementary roles of chemical and mechanical action

  9. Microscopic investigations of chemo-mechanical polishing of tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Min Soo; Heide, Paul A.W. van der; Perry, Scott S.; Galloway, Heather C.; Koeck, Deborah C

    2004-06-15

    The influence of aqueous solutions of KNO{sub 3}, KClO{sub 3}, and KIO{sub 3} on tungsten surfaces has been investigated in terms of the degree of surface oxidation, metal dissolution and interfacial friction. The surface properties of tungsten films have been measured ex-situ with X-ray photoelectron spectroscopy and in situ with atomic force microscopy. Measurements of the surface composition reveal a greater degree of oxidation for surfaces treated in solutions of KIO{sub 3} in comparison to the other solutions. This increase in surface oxidation is correlated to a greater rate of localized film dissolution that occurs under the action of the scanning probe tip. In turn, the process of material removal is the predominant origin of the higher interfacial friction measured at tungsten surfaces immersed in KIO{sub 3} solutions, as compared to KClO{sub 3} and KNO{sub 3} solutions. Collectively, these measurements portray a fundamental pathway of material removal at tungsten surfaces in the presence of oxidizing species and highlight complementary roles of chemical and mechanical action.

  10. Investigating Deformation and Failure Mechanisms in Nanoscale Multilayer Metallic Composites

    Energy Technology Data Exchange (ETDEWEB)

    Zbib, Hussein M. [Washington State Univ., Pullman, WA (United States); Bahr, David F. [Purdue Univ., West Lafayette, IN (United States)

    2014-10-22

    Over the history of materials science there are many examples of materials discoveries that have made superlative materials; the strongest, lightest, or toughest material is almost always a goal when we invent new materials. However, often these have been a result of enormous trial and error approaches. A new methodology, one in which researchers design, from the atoms up, new ultra-strong materials for use in energy applications, is taking hold within the science and engineering community. This project focused on one particular new classification of materials; nanolaminate metallic composites. These materials, where two metallic materials are intimately bonded and layered over and over to form sheets or coatings, have been shown over the past decade to reach strengths over 10 times that of their constituents. However, they are not yet widely used in part because while extremely strong (they don’t permanently bend), they are also not particularly tough (they break relatively easily when notched). Our program took a coupled approach to investigating new materials systems within the laminate field. We used computational materials science to explore ways to institute new deformation mechanisms that occurred when a tri-layer, rather than the more common bi-layer system was created. Our predictions suggested that copper-nickel or copper-niobium composites (two very common bi-layer systems) with layer thicknesses on the order of 20 nm and then layered 100’s of times, would be less tough than a copper-nickel-niobium metallic composite of similar thicknesses. In particular, a particular mode of permanent deformation, cross-slip, could be activated only in the tri-layer system; the crystal structure of the other bi-layers would prohibit this particular mode of deformation. We then experimentally validated this predication using a wide range of tools. We utilized a DOE user facility, the Center for Integrated Nanotechnology (CINT), to fabricate, for the first time, these

  11. Studies of photodynamic therapy: Investigation of physiological mechanisms and dosimetry

    Science.gov (United States)

    Woodhams, Josephine Helen

    Photodynamic therapy (PDT) is a treatment for a range of malignant and benign lesions using light activated photosensitising drugs in the presence of molecular oxygen. PDT causes tissue damage by a combination of processes involving the production of reactive oxygen species (in particular singlet oxygen). Since the PDT cytotoxic effect depends on oxygen, monitoring of tissue oxygenation during PDT is important for understanding the basic physiological mechanisms and dosimetry of PDT. This thesis describes the use of non-invasive, optical techniques based on visible light reflectance spectroscopy for the measurement of oxy- to deoxyhaemoglobin ratio or haemoglobin oxygen saturation (HbSat). HbSat was monitored at tissue sites receiving different light dose during aluminium disulphonated phthalocyanine (AIS2PC) PDT. Results are presented on real time PDT-induced changes in HbSat in normal tissue (rat liver) and experimental tumours, and its correlation with the final biological effect under different light regimes, including fractionated light delivery. It was found to some extent that changes in HbSat could indicate whether the tissue would be necrotic after PDT and it was concluded that online physiological dosimetry is feasible for PDT. The evaluation of a new photosensitiser for PDT called palladium-bacteriopheophorbide (WST09) has been carried out in normal and tumour tissue in vivo. WST09 was found to exert a strong PDT effect but was active only shortly after administration. WST09 produced substantial necrosis in colonic tumours whilst only causing a small amount of damage to the normal colon under certain conditions indicating a degree of selectivity. Combination therapy with PDT for enhancing the extent of PDT-induced damage has been investigated in vivo by using the photochemical internalisation (PCI) technique and Type 1 mechanism enhanced phototoxicity with indole acetic acid (IAA). PCI of gelonin using AIS2PC PDT in vivo after systemic administration of

  12. Novel Experimental Techniques to Investigate Wellbore Damage Mechanisms

    Science.gov (United States)

    Choens, R. C., II; Ingraham, M. D.; Lee, M.; Dewers, T. A.

    2017-12-01

    A new experimental technique with unique geometry is presented investigating deformation of simulated boreholes using standard axisymmetric triaxial deformation equipment. The Sandia WEllbore SImulation, SWESI, geometry, uses right cylinders of rock 50mm in diameter and 75mm in length. A 11.3mm hole is drilled perpendicular to the axis of the cylinder in the center of the sample to simulate a borehole. The hole is covered with a solid metal cover, and sealed with polyurethane. The metal cover can be machined with a high-pressure port to introduce different fluid chemistries into the borehole at controlled pressures. Samples are deformed in a standard load frame under confinement, allowing for a broad range of possible stresses, load paths, and temperatures. Experiments in this study are loaded to the desired confining pressure, then deformed at a constant axial strain rate or 10-5 sec-1. Two different suites of experiments are conducted in this study on sedimentary and crystalline rock types. The first series of experiments are conducted on Mancos Shale, a finely laminated transversely isotropic rock. Samples are cored at three different orientations to the laminations. A second series of experiments is conducted on Sierra White granite with different fluid chemistries inside the borehole. Numerical modelling and experimental observations including CT-microtomography demonstrate that stresses are concentrated around the simulated wellbore and recreate wellbore deformation mechanisms. Borehole strength and damage development is dependent on anisotropy orientation and fluid chemistry. Observed failure geometries, particularly for Mancos shale, can be highly asymmetric. These results demonstrate uncertainties in in situ stresses measurements using commonly-applied borehole breakout techniques in complicated borehole physico-chemical environments. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering

  13. Investigation kinetics mechanisms of adsorption malachite green onto activated carbon

    International Nuclear Information System (INIS)

    Onal, Y.; Akmil-Basar, C.; Sarici-Ozdemir, C.

    2007-01-01

    Lignite was used to prepare activated carbon (T3K618) by chemical activation with KOH. Pore properties of the activated carbon such as BET surface area, pore volume, pore size distribution, and pore diameter were characterized by t-plot based on N 2 adsorption isotherm. BET surface area of activated carbon is determined as 1000 m 2 /g. Adsorption capacity of malachite green (MG) onto T3K618 activated carbon was investigated in a batch system by considering the effects of various parameters like initial concentration (100, 150 and 200 mg/L) and temperature (25, 40 and 50 deg. C). The adsorption process was relatively fast and equilibrium was reached after about 20 min for 100, 150 mg/L at all adsorption temperature. Equilibrium time for 200 mg/L was determined as 20 min and 40 min at 298, 313 and 323 K, respectively. Simple mass and kinetic models were applied to the experimental data to examine the mechanisms of adsorption and potential rate controlling steps such as external mass transfer, intraparticle diffusion. Pseudo second-order model was found to explain the kinetics of MG adsorption most effectively. It was found that both mass transfer and pore diffusion are important in determining the adsorption rates. The intraparticle diffusion rate constant, external mass transfer coefficient, film and pore diffusion coefficient at various temperatures were evaluated. The activation energy (E a ) was determined as 48.56, 63.16, 67.93 kJ/mol for 100, 150, 200 mg/L, respectively. The Langmiur and Freundlich isotherm were used to describe the adsorption equilibrium studies at different temperatures. Langmiur isotherm shows better fit than Freundlich isotherm in the temperature range studied. The thermodynamic parameters, such as ΔG o , ΔS and ΔH o were calculated. The thermodynamics of dyes-T3K618 system indicates endothermic process

  14. Investigating Learners' Epistemological Framings of Quantum Mechanics

    Science.gov (United States)

    Dini, Vesal

    2017-01-01

    Classical mechanics challenges students to use their intuitions and experiences as a basis for understanding, in effect to approach learning as "a refinement of everyday thinking'' (Einstein, 1936). Moving on to quantum mechanics (QM), students, like physicists, need to adjust this approach, in particular with respect to the roles that…

  15. Investigation of deformation mechanisms of staggered nanocomposites using molecular dynamics

    Science.gov (United States)

    Mathiazhagan, S.; Anup, S.

    2016-08-01

    Biological materials with nanostructure of regularly or stair-wise staggered arrangements of hard platelets reinforced in a soft protein matrix have superior mechanical properties. Applications of these nanostructures to ceramic matrix composites could enhance their toughness. Using molecular dynamics simulations, mechanical behaviour of the bio-inspired nanocomposites is studied. Regularly staggered model shows better flow behaviour compared to stair-wise staggered model due to the symmetrical crack propagation along the interface. Though higher stiffness and strength are obtained for stair-wise staggered models, rapid crack propagation reduces the toughness. Arresting this crack propagation could lead to superior mechanical properties in stair-wise staggered models.

  16. Numerical and experimental investigation of bump foil mechanical behaviour

    DEFF Research Database (Denmark)

    Larsen, Jon Steffen; Cerda Varela, Alejandro Javier; Santos, Ilmar

    2014-01-01

    Corrugated foils are utilized in air foil bearings to introduce compliance and damping thus accurate mathematical predictions are important. A corrugated foil behaviour is investigated experimentally as well as theoretically. The experimental investigation is performed by compressing the foil...

  17. Subglacial sediment mechanics investigated by computer simulation of granular material

    DEFF Research Database (Denmark)

    Damsgaard, Anders; Egholm, David Lundbek; Tulaczyk, Slawek

    The mechanical properties of subglacial sediments are known to directly influence the stability of ice streams and fast-moving glaciers, but existing models of granular sediment deformation are poorly constrained. In addition, upscaling to generalized mathematical models is difficult due to the m......The mechanical properties of subglacial sediments are known to directly influence the stability of ice streams and fast-moving glaciers, but existing models of granular sediment deformation are poorly constrained. In addition, upscaling to generalized mathematical models is difficult due....... The numerical method is applied to better understand the mechanical properties of the subglacial sediment and its interaction with meltwater. The computational approach allows full experimental control and offers insights into the internal kinematics, stress distribution, and mechanical stability. During...

  18. Investigation on mechanical properties of woven alovera/sisal/kenaf ...

    Indian Academy of Sciences (India)

    1Department of Mechanical Engineering, Sri Sai Ram Institute of Technology, ... ASTM American Society for Testing and Materials ... stress [9]. Naturally the sisal fibres have the characteristics of higher wear ... In this research work an effort.

  19. Dynamic response analysis as a tool for investigating transport mechanisms

    International Nuclear Information System (INIS)

    Dudok de Wit, Th.; Joye, B.; Lister, J.B.; Moret, J.M.

    1990-01-01

    Dynamic response analysis provides an attractive method for studying transport mechanisms in tokamak plasmas. The analysis of the radial response has already been widely used for heat and particle transport studies. The frequency dependence of the dynamic response, which is often omitted, reveals further properties of the dominant transport mechanisms. Extended measurements of the soft X-ray emission were carried out on the TCA tokamak in order to determine the underlying transport processes. (author) 5 refs., 2 figs

  20. Mechanisms of mechanical heart valve cavitation: investigation using a tilting disk valve model.

    Science.gov (United States)

    He, Z; Xi, B; Zhu, K; Hwang, N H

    2001-09-01

    The induction of mechanical heart valve (MHV) cavitation was investigated using a 27 mm Medtronic Hall (MH27) tilting disk valve. The MH27 valve was mounted in the mitral position of a simulating pulse flow system, and stroboscopic lighting used to visualize cavitation bubbles on the occluder inflow surface at the instant of valve closure. MHV cavitation was monitored using a digital camera with 0.04 mm/pixel resolution sufficient to render the tiny bubbles clearly visible on the computer monitor screen. Cavitation on MH27 valve was classified as five types according to the time, site and shape of the cavitation bubbles. Valve cavitation occurred at the instant of occluder impact with the valve seat at closing. The impact motion was subdivided into three temporal phases: (i) squeezing flow; (ii) elastic collision; and (iii) leaflet rebound. MHV cavitation caused by vortices was found to be initiated by the squeezing jet and/or by the transvalvular leakage jets. By using a tension wave which swept across the occluder surface immediately upon elastic impact, nuclei in the vortex core were expanded to form cavitation bubbles. Analysis of the shape and location of the cavitation bubbles permitted a better understanding of MHV cavitation mechanisms, based on the fluid dynamics of jet vortex and tension wave propagations.

  1. Investigations of intermetallic alloy hydriding mechanisms. Annual progress report, May 1 1979-April 30, 1980

    International Nuclear Information System (INIS)

    Livesay, B.R.; Larsen, J.W.

    1980-05-01

    Investigations are being conducted on mechanisms involved with the hydrogen-metal interactions which control the absorption and desorption processes in intermetallic compounds. The status of the following investigations is reported: modeling of hydride formation; microbalance investigations; microstructure investigations; flexure experiments; resistivity experiments; and nuclear backscattering measurements. These investigations concern fundamental hydrogen interaction mechanisms involved in storage alloys

  2. Le facteur humain. Réinventer notre rapport à la technologie de Vicente

    Directory of Open Access Journals (Sweden)

    Jacques Leplat

    2005-11-01

    Full Text Available Kim Vicente est connu du milieu ergonomique pour son très bon ouvrage « Cognitive work analysis » qui manifeste à la fois son expertise et son talent pédagogique. Ingénieur de formation, il a enseigné ensuite à l’université en tant que « professeur en ingénierie des facteurs humains ». Professeur invité au MIT et conseiller à la NASA, il est l’auteur de nombreuses publications de recherche qu’on rangerait dans l’ergonomie cognitive. Le présent ouvrage, qu’il a publié en anglais en 2003, est d...

  3. Investigation of deformation mechanisms of staggered nanocomposites using molecular dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Mathiazhagan, S., E-mail: smathi.research@gmail.com; Anup, S., E-mail: anupiist@gmail.com

    2016-08-19

    Biological materials with nanostructure of regularly or stair-wise staggered arrangements of hard platelets reinforced in a soft protein matrix have superior mechanical properties. Applications of these nanostructures to ceramic matrix composites could enhance their toughness. Using molecular dynamics simulations, mechanical behaviour of the bio-inspired nanocomposites is studied. Regularly staggered model shows better flow behaviour compared to stair-wise staggered model due to the symmetrical crack propagation along the interface. Though higher stiffness and strength are obtained for stair-wise staggered models, rapid crack propagation reduces the toughness. Arresting this crack propagation could lead to superior mechanical properties in stair-wise staggered models. - Highlights: • The deformation behaviour of staggered nanocomposites is studied. • Stair-wise staggered model has high stiffness and strength, but low toughness. • Rapid crack growth in overlap region causes this low toughness. • Toughness could be enhanced by arresting interfacial crack in the overlap.

  4. Investigation of deformation mechanisms of staggered nanocomposites using molecular dynamics

    International Nuclear Information System (INIS)

    Mathiazhagan, S.; Anup, S.

    2016-01-01

    Biological materials with nanostructure of regularly or stair-wise staggered arrangements of hard platelets reinforced in a soft protein matrix have superior mechanical properties. Applications of these nanostructures to ceramic matrix composites could enhance their toughness. Using molecular dynamics simulations, mechanical behaviour of the bio-inspired nanocomposites is studied. Regularly staggered model shows better flow behaviour compared to stair-wise staggered model due to the symmetrical crack propagation along the interface. Though higher stiffness and strength are obtained for stair-wise staggered models, rapid crack propagation reduces the toughness. Arresting this crack propagation could lead to superior mechanical properties in stair-wise staggered models. - Highlights: • The deformation behaviour of staggered nanocomposites is studied. • Stair-wise staggered model has high stiffness and strength, but low toughness. • Rapid crack growth in overlap region causes this low toughness. • Toughness could be enhanced by arresting interfacial crack in the overlap.

  5. Quantum chemical investigation of mechanisms of silane oxidation

    DEFF Research Database (Denmark)

    Mader, Mary M.; Norrby, Per-Ola

    2001-01-01

    Several mechanisms for the peroxide oxidation of organosilanes to alcohols are compared by quantum chemical calculations, including solvation with the PCM method. Without doubt, the reaction proceeds via anionic, pentacoordinate silicate species, but a profound difference is found between in vacuo...

  6. Investigation of the mechanical and physical properties of greywacke specimens

    Czech Academy of Sciences Publication Activity Database

    Holub, Karel; Konečný, Pavel; Knejzlík, Jaromír

    2009-01-01

    Roč. 46, č. 1 (2009), s. 188-193 ISSN 1365-1609 Institutional research plan: CEZ:AV0Z30860518 Keywords : greywacke * mechanical and physical properties Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 1.142, year: 2009 www.elsevier.com/locate ijrmms

  7. Experimental Investigation of Polyurethane Camouflage Coating Using Dynamic Mechanical Analysis

    National Research Council Canada - National Science Library

    Crawford, Dawn

    1999-01-01

    .... The current polyurethane solvent-based (SOL) formulation, used as a chemical-agent-resistant camouflage top coat on all military tactical vehicles, was investigated, along with newly developed water-reducible (WR...

  8. Oxidation mechanism of flavanone taxifolin. Electrochemical and spectroelectrochemical investigation

    International Nuclear Information System (INIS)

    Kocábová, Jana; Fiedler, Jan; Degano, Ilaria; Sokolová, Romana

    2016-01-01

    Highlights: • The oxidation mechanism of flavanone taxifolin was proposed. • The oxidation is specific and differs from oxidation of flavonol quercetin. • A benzofuranon common for quercetin is NOT the taxifolin oxidation product. • The absence of C2–C3 double bond is crucial in taxifolin oxidation. - Abstract: The oxidation of taxifolin on glassy carbon electrode in acetonitrile was studied by cyclic voltammetry, UV–vis and IR spectroelectrochemistry. The oxidation products were identified using HPLC-ESI-MS/MS. The two-electron oxidation mechanism differs from that of flavonols (e.g. quercetin) due to the absence of the double bond between atoms C-2 and C-3. As confirmed by IR spectroelectrochemistry, quinone at ring B is formed as low stable intermediate. The oxidation pathway leads to the formation of hydroxylated derivative of taxifolin 2′,3,3′,4′,5,7-hexahydroxyflavone accompanied by the 2,3-desaturation.

  9. Investigating the ?Trojan Horse? Mechanism of Yersinia pestis Virulence

    Energy Technology Data Exchange (ETDEWEB)

    McCutchen-Maloney, S L; Fitch, J P

    2005-02-08

    Yersinia pestis, the etiological agent of plague, is a Gram-negative, highly communicable, enteric bacterium that has been responsible for three historic plague pandemics. Currently, several thousand cases of plague are reported worldwide annually, and Y. pestis remains a considerable threat from a biodefense perspective. Y. pestis infection can manifest in three forms: bubonic, septicemic, and pneumonic plague. Of these three forms, pneumonic plague has the highest fatality rate ({approx}100% if left untreated), the shortest intervention time ({approx}24 hours), and is highly contagious. Currently, there are no rapid, widely available vaccines for plague and though plague may be treated with antibiotics, the emergence of both naturally occurring and potentially engineered antibiotic resistant strains makes the search for more effective therapies and vaccines for plague of pressing concern. The virulence mechanism of this deadly bacterium involves induction of a Type III secretion system, a syringe-like apparatus that facilitates the injection of virulence factors, termed Yersinia outer membrane proteins (Yops), into the host cell. These virulence factors inhibit phagocytosis and cytokine secretion, and trigger apoptosis of the host cell. Y. pestis virulence factors and the Type III secretion system are induced thermally, when the bacterium enters the mammalian host from the flea vector, and through host cell contact (or conditions of low Ca{sup 2+} in vitro). Apart from the temperature increase from 26 C to 37 C and host cell contact (or low Ca{sup 2+} conditions), other molecular mechanisms that influence virulence induction in Y. pestis are largely uncharacterized. This project focused on characterizing two novel mechanisms that regulate virulence factor induction in Y. pestis, immunoglobulin G (IgG) binding and quorum sensing, using a real-time reporter system to monitor induction of virulence. Incorporating a better understanding of the mechanisms of virulence

  10. Investigation of the porphyrine role at the mechanism of radioprotection

    International Nuclear Information System (INIS)

    Demoukhamedova, S.D.; Alieva, I.N.; Aliev, D.I.

    2002-01-01

    Full text: To date, it is well known that unfavourable radioecological conditions capable effect on the oxygen transport system in an living organism, particularly, on the conformational state of hemoglobin. Underlying mechanism is more active autoxidation of Hb(O 2 )4 into met-hemoglobin. Decreasing of the oxygen binding to the heme group of protein as a result of modified effect of ionization was observed into peripheral blood of people living on the polluted territory. Porphyrin, the main component of hemoglobin has been showed a wide range radioprotector properties. So, the conformational reorganization of the porphyrin ring plays an important role at the mechanism of hemoglobin functioning. In this report the result of conformational study, quantum-chemical calculations and theoretical calculation of frequencies and intensities of normal oscillations of IR-absorption spectrum of the porphyrin molecule at the NO-binding are presented. Computational program 'LEV' was used in all carried calculations. Due to changes into IR-spectrum of different complexes, the mechanism underlying the ligand bond formation are discussed. The theoretical frequencies of normal oscillations, satisfactorily described the porphyrin experimental IR-spectrum are received. On the base of both obtained normal oscillation forms and potential energy distribution of vibrational coordinates the detailed theoretical interpretation of the porphyrin molecule vibrational spectrum as well as the analysis of the nature of each absorption band the porphyrin molecule IR-spectrum have been carried out. Porphyrin molecule force field analysis has been showed that the ring electron density is irregular. The results of this study may be used at the theoretical calculations of IR-absorption spectrum of different metallo complexes of the porphyrin

  11. Investigation of the mechanism of radioprotective action of adrenoceptor agonists

    International Nuclear Information System (INIS)

    Kulinskij, V.I.; Klimova, A.D.; Yashunskij, V.G.; Alpatova, T.V.; 4205700SU)

    1986-01-01

    α-Adrenoceptor agonists of both main groups, i.e. arylalkylamines and imidazolines, have a pronounced radioprotective effect. Their chemical analogs, which fail to stimulate α-adrenoceptors, do not protect mice. The effect of phenylephrine, adrenaline, and noradrenaline comes into play via α 1 -adrenoceptors and that of clonidine, via α 2 -adrenoceptors and also via α 1 -adrenoceptors. Adrenoceptor agonists can probably manifest their radioprotective action via both subtypes of α-adrenoceptors. Possible intracellular mechanisms of the radioprotective action are discussed

  12. Handling of micro objects: investigation of mechanical gripper functional surfaces

    DEFF Research Database (Denmark)

    Gegeckaite, Asta; Hansen, Hans Nørgaard; De Chiffre, Leonardo

    2007-01-01

    between the micro object and the gripper do not allow simple picking and releasing of the object. This effect can be overcome by modifying the functional surface of the gripper. The functional surface of the gripper was modified by different machining techniques. The results of this investigation...

  13. Investigations of construction materials by means of cracking mechanics

    International Nuclear Information System (INIS)

    Bilous, W.; Wasiak, J.

    1995-01-01

    The diagnostic procedure for typical construction materials based on cracking tests has been presented. Results of investigations for aluminium base alloys and tungsten sintered materials have been shown and discussed. Application of the method for pipelines testing has been also performed. 6 figs, 2 tabs

  14. An experimental investigation on mechanical behaviour of eco - friendly concrete

    Science.gov (United States)

    Narender Reddy, A.; Meena, T.

    2017-11-01

    Fly ash (FA) and Alccofine are the eco-friendly materials that can be used in the production of concrete composites. Initially, concrete mixes of M30 grade with replacement of cement by 0%, 5%, 10%, 15%, 20% and 25% by weight of Fly ash were prepared. They were subjected to compression test so as to select the optimum replacement percentage of FA. Keeping this optimum percentage of FA as constant, additional replacement of cement with Alccofine was done varying its replacement in the range of 8%, 10%, 12% and 14%. The mechanical properties such as compressive, split tensile and flexural strengths of these mixes were computed for 7, 14 and 28 days. The results of Eco-Friendly Concrete (EFC) are compared with those of control concrete. It was observed that EFC mixes exhibited superior qualities like quick setting and enhanced workability, their mechanical properties were found to be higher than that of the conventional concrete. This goes to prove that the combination of FA and Alccofine together as replacement for cement would enhance the properties of EFC.

  15. Investigation of damage mechanism by ionising radiation on biomolecules

    International Nuclear Information System (INIS)

    Lau How Mooi

    1996-01-01

    Occupational radiation hazard is a very controversial subject. Effects from high radiation doses are well known from past experiences. However, hazard from low doses is still a subject that is hotly debated upon until now. The occupational dosimetry used now is based on a macroscopic scale. Lately, microdosimetry is fast gaining recognition as a more superior way of measuring hazard. More importantly, scientists are researching the basic damage mechanism that leads to biological effects by ionising radiation. In this report, a simulation study of the basic damage mechanism is discussed . This simulation is based upon Monte Carlo calculations and using polyuridylic acid (Poly-U) as the DNA model This simulation tries to relate the physics and chemistry of interactions of ionising radiation with biomolecules. The computer codes used in this simulation, OREC and RADLYS were created by Hamm et al. (1983) in Oak Ridge National Laboratory. The biological endpoints in this simulation are the strand break and base release of the DNA, which is the precursor of all biological effects. These results are compared with model studies that had been done experimentally to check the validity of this simulation. The G-values of strand break and base release from this simulation were -2.35 and 2.75 and compared well with results from irradiation experiments by von Sonntag (I 98 7) from Max Plank's Institute, Germany

  16. Investigation of Airfoil Aeroacoustics with Blowing Control Mechanism

    Directory of Open Access Journals (Sweden)

    Baha ZAFER

    2016-11-01

    Full Text Available In this investigation, it is dealt with computational aero-acoustic analysis of an airfoil with jet blowing. The airfoil shape is selected as NACA0015 profile with jet blowing on upper surface. The calculations of analysis are done by using commercial finite volume solver. The k-ε turbulence model is used for the turbulence modeling and the Ffowcs Williams and Hawking acoustic analogy model is run for determination of acoustic data. The numerical results are compared with experimental data for computed Sound Pressure Level without jet blowing and well agreement is observed. In the case of jet blowing, the effects of different jet angle, velocity ratio and angle of attack on airfoil are investigated and noise levels of non jet cases and jet blowing cases are studied.

  17. Investigation of mechanical properties of briquette product of ...

    African Journals Online (AJOL)

    This research investigated the relaxed densities of biomass briquettes produced from combination of sawdust and charcoal. Cassava starch gel and orange waste were used as binder for briquetting. Five sizes; 0.2 mm, 0.4 mm, 0.6 mm, 0.8 mm and 1.0 mm and mixing ratios 50:50, 60:40, 70:30, 80:20 and 90:10 of biomass ...

  18. Numerical investigation of elastic mechanical properties of graphene structures

    International Nuclear Information System (INIS)

    Georgantzinos, S.K.; Giannopoulos, G.I.; Anifantis, N.K.

    2010-01-01

    The computation of the elastic mechanical properties of graphene sheets, nanoribbons and graphite flakes using spring based finite element models is the aim of this paper. Interatomic bonded interactions as well as van der Waals forces between carbon atoms are simulated via the use of appropriate spring elements expressing corresponding potential energies provided by molecular theory. Each layer is idealized as a spring-like structure with carbon atoms represented by nodes while interatomic forces are simulated by translational and torsional springs with linear behavior. The non-bonded van der Waals interactions among atoms which are responsible for keeping the graphene layers together are simulated with the Lennard-Jones potential using appropriate spring elements. Numerical results concerning the Young's modulus, shear modulus and Poisson's ratio for graphene structures are derived in terms of their chilarity, width, length and number of layers. The numerical results from finite element simulations show good agreement with existing numerical values in the open literature.

  19. Investigating Resulting Residual Stresses during Mechanical Forming Process

    Science.gov (United States)

    Akinlabi, Stephen A.; Fatoba, Olawale S.; Mashinini, Peter M.; Akinlabi, Esther T.

    2018-03-01

    Most manufacturing processes such as machining, welding, heat treatment, laser forming, laser cladding and, laser metal deposition, etc. are subjected to a form of heat or energy to change the geometrical shape thus changing the inherent engineering and structural properties of the material. These changes often cause the development of locked up stresses referred to as residual stresses as a result of these activities. This study reports on the residual stresses developed due to the mechanical forming process to maintain a suitable structural integrity for the formed components. The result of the analysis through the X-ray diffraction confirmed that residual stresses were induced in the manufactured parts and further revealed that residual stresses were compressive in nature as found in the parent material but with values less than the parent material.

  20. Investigation of language lateralization mechanism by Positron Emission Tomography

    International Nuclear Information System (INIS)

    Belin, Pascal

    1997-01-01

    As language lateralization in the brain left hemisphere is one of the most well known but less understood characteristics of the human brain, this research thesis reports the use of brain functional imaging to address some specific aspects of this lateralization. In a first part, the author reports the study of mechanisms of recovery from aphasia after a left hemisphere lesion within a population of aphasic right-handers. Based on a contrast between patients with a persistent aphasia despite usual language therapies, and patients with a significant recovery after a melodic and rhythmic therapy (TMR), a PET-based (positron emission tomography) activation study has been developed, based on the opposition between usual language stimuli and stimuli accentuated by TMR. In the second part, the author explored more systematically on sane patients the influence of some physical characteristics of auditory stimulation on the induced functional asymmetry [fr

  1. Calorimetric investigation on mechanically activated storage energy mechanism of sphalerite and pyrite

    International Nuclear Information System (INIS)

    Xiao Zhongliang; Chen Qiyuan; Yin Zhoulan; Hu Huiping; Wu Daoxin

    2005-01-01

    The structural changes of mechanically activated sphalerite and pyrite under different grinding conditions were determined by X-ray powder diffraction (XRD), laser particle size analyzer and elemental analysis. The storage energy of mechanically activated sphalerite and pyrite was measured by a calorimetric method. A thermochemical cycle was designed so that mechanically activated and non-activated minerals reached the same final state when dissolved in the same oxidizing solvent. The results show that the storage energy of mechanically activated sphalerite and pyrite rises with increased in grinding time, and reaches a maximum after a certain grinding period. The storage energy of mechanically activated pyrite decreases when heated under inert atmosphere. The storage energy of mechanically activated sphalerite and pyrite remains constant when treated below 573 K under inert atmosphere. The percentage of the storage energy caused by surface area increase during mechanical activation decreases with increasing grinding time. These results support our opinion that the mechanically activated storage energy of sphalerite is closely related to lattice distortions, and the mechanically activated storage energy of pyrite is mainly caused by the formation of reactive sites on the surface

  2. Investigation of Chirality Selection Mechanism of Single Walled Carbon Nanotube

    Science.gov (United States)

    2016-12-13

    in SiO2 Glasses by Ion Implantation. Jpn. J. Appl. Phys. 1993;32(9R):3892. List of Publications and Significant Collaborations that resulted from...layers using TEM holders showed significant advancement. This involved investigation of the effects of sub- supporting SiO2 layer on the interaction...number density are formed on the Al2O3 layer deposited on the sub-supporting SiO2 layer than that deposited directly on the Si(100) wafer. Based on the

  3. L'Empowerment au coeur des bouleversements induits par les TIC dans la gestion des ressources humaines

    OpenAIRE

    Blavier, André

    2012-01-01

    Observer l’influence des TIC (Technologies de l’Information et de la Communication” sur les ressources humaines à la lumière du seul débat “pour ou contre les réseaux sociaux dans l’entreprise ou l’organisation ?” est une approche bien trop restrictive. Les défis relatifs à l’évolution des ressources humaines s’inscrivent dans une perspective plus large, celle d’un environnement numérique global. Comme l’a souligné le rapport “Digital Economy Rankings 2010” d’IBM en collaboration avec l’Econ...

  4. Investigating Mechanisms of Alkalinization for Reducing Primary Breast Tumor Invasion

    Directory of Open Access Journals (Sweden)

    Ian F. Robey

    2013-01-01

    Full Text Available The extracellular pH (pHe of many solid tumors is acidic as a result of glycolytic metabolism and poor perfusion. Acidity promotes invasion and enhances metastatic potential. Tumor acidity can be buffered by systemic administration of an alkaline agent such as sodium bicarbonate. Tumor-bearing mice maintained on sodium bicarbonate drinking water exhibit fewer metastases and survive longer than untreated controls. We predict this effect is due to inhibition of tumor invasion. Reducing tumor invasion should result in fewer circulating tumor cells (CTCs. We report that bicarbonate-treated MDA-MB-231 tumor-bearing mice exhibited significantly lower numbers of CTCs than untreated mice (. Tumor pHe buffering may reduce optimal conditions for enzymes involved in tumor invasion such as cathepsins and matrix metalloproteases (MMPs. To address this, we tested the effect of transient alkalinization on cathepsin and MMP activity using enzyme activatable fluorescence agents in mice bearing MDA-MB-231 mammary xenografts. Transient alkalinization significantly reduced the fluorescent signal of protease-specific activatable agents in vivo (. Alkalinization, however, did not affect expression of carbonic anhydrase IX (CAIX. The findings suggest a possible mechanism in a live model system for breast cancer where systemic alkalinization slows the rate of invasion.

  5. Numerical investigation of unsteady mixing mechanism in plate film cooling

    Directory of Open Access Journals (Sweden)

    Shuai Li

    2016-09-01

    Full Text Available A large-scale large eddy simulation in high performance personal computer clusters is carried out to present unsteady mixing mechanism of film cooling and the development of films. Simulation cases include a single-hole plate with the inclined angle of 30° and blowing ratio of 0.5, and a single-row plate with hole-spacing of 1.5D and 2D (diameters of the hole. According to the massive simulation results, some new unsteady phenomena of gas films are found. The vortex system is changed in different position with the development of film cooling with the time marching the process of a single-row plate film cooling. Due to the mutual interference effects including mutual exclusion, a certain periodic sloshing and mutual fusion, and the structures of a variety of vortices change between parallel gas films. Macroscopic flow structures and heat transfer behaviors are obtained based on 20 million grids and Reynolds number of 28600.

  6. Investigations into the involvement of NMDA mechanisms in recognition memory.

    Science.gov (United States)

    Warburton, E Clea; Barker, Gareth R I; Brown, Malcom W

    2013-11-01

    This review will focus on evidence showing that NMDA receptor neurotransmission is critical for synaptic plasticity processes within brain regions known to be necessary for the formation of object recognition memories. The aim will be to provide evidence concerning NMDA mechanisms related to recognition memory processes and show that recognition memory for objects, places or associations between objects and places depends on NMDA neurotransmission within the perirhinal cortex, temporal association cortex medial prefrontal cortex and hippocampus. Administration of the NMDA antagonist AP5, selectively into each of these brain regions has revealed that the extent of the involvement NMDA receptors appears dependent on the type of information required to solve the recognition memory task; thus NMDA receptors in the perirhinal cortex are crucial for the encoding of long-term recognition memory for objects, and object-in-place associations, but not for short-term recognition memory or for retrieval. In contrast the hippocampus and medial prefrontal cortex are required for both long-term and short-term recognition memory for places or associations between objects and places, or for recognition memory tasks that have a temporal component. Such studies have therefore confirmed that the multiple brain regions make distinct contributions to recognition memory but in addition that more than one synaptic plasticity process must be involved. This article is part of the Special Issue entitled 'Glutamate Receptor-Dependent Synaptic Plasticity'. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Investigation of the mechanism of formation of overbased detergents

    International Nuclear Information System (INIS)

    Courtois, Jean-Philippe

    2002-01-01

    This thesis describes an experimental study of calixarate overbased detergent oil additives, used to neutralise acidic by-products of engine combustion. Aspects of interest in this study include experimental synthesis of calixarenes and overbased detergents, physical and structural characterisation and monitoring of the synthesis process. Two types of calixarenes were prepared (6 and 8 phenolic units). A synthesis procedure of the calixarate overbased detergent was set up, based on adaptation of existing procedures used for other classes of overbased detergents. The procedure was also modified to suit a lab-scale. 13 C NMR and UV-Vis spectroscopy have provided strong evidence for a precursor of the overbased detergent. The ionisation of the surfactants (stearic acid carboxylic group, and phenolic units) was clearly established. The synthesis process was monitored at the molecular and macroscopic level. The use of 13 C-labelled compounds enabled a semi-quantitative study of the concentration evolution of each chemical during the synthesis. Langmuir- trough measurements and dynamic light scattering showed a decrease of particle size during the synthesis of the overbased detergent. The final calixarate overbased detergent was then fully characterised by these two methods. Based on the various information gathered (starting and final material characterisation, monitoring of the process), a mechanism was suggested. This involved a progressive solvation of calcium hydroxide, and breakdown of mixed calcium hydroxide and calcium carbonate. (author)

  8. Mechanism of chlorphentermine-induced lymphocyte toxicity: initial investigations

    International Nuclear Information System (INIS)

    Sauers, L.J.; Wierda, D.; Reasor, M.J.

    1986-01-01

    Chlorphentermine (CP) inhibits the blastogenic response of mouse splenic and human peripheral blood lymphocytes to the T-cell mitogens, phytohemagglutinin (PHA) and concanavalin A (Con A). The purpose of these studies was to examine in vitro the mechanism mediating this immunosuppression. If mouse or human lymphocytes are pretreated with CP for 30 minutes, then stimulated with PHA, their blastogenic response is inhibited 80% and 45%, respectively. However, if CP is not added until 10 minutes or later following PHA stimulation, the inhibitory effect of the drug is essentially eliminated. The authors also determined that CP can potentiate Con A-induced agglutination of human lymphocytes. Enhanced agglutination can result from changes in the integrity of membrane phospholipids. Because changes in membrane phospholipid biochemistry characteristically occur within 10 minutes after mitogen-induced lymphocyte activation, the authors examined whether CP altered the incorporation of choline into cellular phospholipids. They found that CP decreases overall incorporation of 14 C-choline into cellular phospholipids of mouse lymphocytes by 45% during the first 4 hours of activation. These data suggest that the immunotoxicity associated with CP may be mediated by drug-induced changes at the membrane level that appear to occur early during lymphocyte activation

  9. Investigations on mechanical properties of aluminum hybrid composites

    Directory of Open Access Journals (Sweden)

    Dora Siva Prasad

    2014-01-01

    Full Text Available A double stir casting process was used to fabricate aluminum composites reinforced with various volume fractions of 2, 4, 6, and 8 wt% RHA and SiC particulates in equal proportions. Properties such as hardness, density, porosity and mechanical behavior of the unreinforced and Al/x%RHA/x%SiC (x = 2, 4, 6, and 8 wt% reinforced hybrid composites were examined. Scanning electron microscope (model JSM-6610LV was used to study the microstructural characterization of the composites. It was observed that the hardness and porosity of the hybrid composite increased with increasing reinforcement volume fraction and density decreased with increasing particle content. It was also observed that the UTS and yield strength increase with an increase in the percent weight fraction of the reinforcement particles, whereas elongation decreases with the increase in reinforcement. The increase in strength of the hybrid composites is probably due to the increase in dislocation density. A systematic study of the base alloy and composites was done using the Brinell hardness measurement and the corresponding age hardening curves were obtained. It was observed that in comparison to that of the base aluminum alloy, the precipitation kinetics of the composites were accelerated by adding the reinforcement. This effectively reduced the time for obtaining the maximum hardness by the aging heat treatment.

  10. Contribution à la théorie du capital humain : Les bénéfices à court ...

    African Journals Online (AJOL)

    Les enfants scolarisés communiquent-ils à leurs parents paysans des connaissances reçues de l'école ? C'est la problématique de notre étude qui se fixe pour objectif de revisiter la théorie classique du capital humain, plus singulièrement dans le registre du délai des bénéfices que l'on en tire (court ou long terme).

  11. Investigation of DNA damage and repair mechanism using deinococcus radiodurans

    International Nuclear Information System (INIS)

    Lau How Mooi; Kikuchi, M.; Kobayashi, Y.; Narumi, I.; Watanabe, H.

    1997-01-01

    Deninococcus Radiodurans, formerly known as Micrococcus Radiodurans, is a popular bacterium because of its high resistance to damage by carcinogens such as ionizing radiation (Dean et. al. 1966; Kitayama and Matsuyama 1968) and UV radiation (Gasvon et. al., 1995; Arrange et. al. 1993). In this report, we investigated the high resistance to ionizing radiation by this bacterium. The bacteria had been exposed from I to 5 kGy of gamma radiation and then incubated in TGY medium to study their ability to repair the broken DNA. The repair time was measured by Pulse Field Gel Electrophoresis (PFGE) method. The repair time for each dose was determined. Also in order to ensure that the repair was perfect, the bacterium was subjected to a second exposure of ionizing radiation after it has fully repaired. It was found that the 'second' repair characteristic was similar to the first repair. This confirmed that the repair after the exposure to the ionizing radiation was perfect

  12. Sustained attention ability in schizophrenia: Investigation of conflict monitoring mechanisms.

    Science.gov (United States)

    Hoonakker, Marc; Doignon-Camus, Nadège; Marques-Carneiro, José Eduardo; Bonnefond, Anne

    2017-09-01

    The main goal of the current study was to assess, with a time-on-task approach, sustained attention ability in schizophrenia, and to investigate conflict monitoring underlying this ability. Behavioral and event-related potentials data (N2 and P3a amplitudes) were recorded in a long-lasting sustained attention Go/NoGo task (sustained attention to response task, SART), over a period of 30min, in 29 patients with schizophrenia and 29 pair-matched healthy subjects. Our results revealed spared sustained attention ability in patients throughout the task. Impairment of conflict detection (N2) in patients was particularly significant at the end of the task. Furthermore, both schizophrenia and healthy subjects exhibited a decline in conflict detection from the beginning to the middle of the task. Whereas controls' conflict detection recovered in the last part of the task, patients' did not, suggesting a deficit in recovery processes reflecting a lack of additional resources sustained attention Go/NoGo task. Conflict resolution (P3a) was preserved throughout the task in both groups. Conflict monitoring processes are increasingly impaired in schizophrenia during a long-lasting sustained attention Go/NoGo task. This impairment at the end of the task may rely on deficit in recovery processes, rather than a deficit in conflict detection per se in schizophrenia. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  13. Numerical investigations of the mechanical properties of braided vascular stents.

    Science.gov (United States)

    Fu, Wenyu; Xia, Qixiao; Yan, Ruobing; Qiao, Aike

    2018-01-01

    Braided stents, such as Pipeline Embolization Device (PED; ev3 Neurovascular, Irvine, CA, USA), are commonly used to treat cerebral aneurysms. However, little information is available on the compression and bending characteristics of such stents. This paper investigates how geometrical parameters of braided stents influence their radial compression and bending characteristics. Six groups of braided stent models with different braiding angles, numbers of wires and wire diameters are constructed. Parametric analyses of these models are conducted using Abaqus/Explicit software. The numerical results of a finite element analysis are validated by comparison with data of theoretical analysis. The results show that the radial stiffness is not uniform along the longitudinal direction of the stent. When the braiding angle increases from 30° to 75°, the minimum radial deformation decreases from 0.85 mm to 0.0325 mm (at a pressure of 500 Pa, for 24 braided wires). When the wire diameter increases from 0.026 mm to 0.052 mm, the minimum radial deformation decreases from 0.65 mm to 0.055 mm (at a pressure of 500 Pa and a braiding angle of 60°, for 24 braided wires). Frictions don't affect stent diameter and its axial length when braided stent is crimping, but the friction must be considered when it is related to the radial pressure required for compression the braided stent. Compared with commonly used intracranial stents, a braided stent with geometrical parameters close to PED stent has a smaller radial stiffness but a considerably greater longitudinal flexibility. The results of this analysis of braided stents can help in the design and selection of flow diverter stents for clinical treatment of cerebral aneurysms.

  14. Design and Experimental Investigation of Pneumatic Movement Mechanism Supported by Mechanic Cam and Crank Shaft

    Directory of Open Access Journals (Sweden)

    Salih KORUCU

    2015-02-01

    Full Text Available The pressurized air is applied to many sectors required purity and velocity. One of these sectors is to use of air as impulsive force in the moving mechanisms. In this study, the movement mechanism prototype worked with compressed air was designed and produced forlight vehicle engine as motorbike and ATV (All-Terrain Vehicle. In developed mechanisms, pneumatic artificial muscles were used for a given movement of crankshaft. A cam system was also designed for synchronization pneumatic muscles. In this way, these muscles transmit the synchronous movement to crankshaft. At the end of the study, the developed mechanism was mounted on an ATV vehicle(110 cc/ Cubic Centimeter, engine displacement capacityand its performance was tested using the four different weights (50, 75, 100 and 150 kg, three different pressures (4, 5 and 6 bar and two different hoses (Ø 6 and Ø 8 mm. By considering experimental results and design criteria, power of the movement mechanism was obtained as 886 Watt. With this study, minimization of energy consumption for movement of passenger cars, and using clean and cheap energy as ATV which can be alternative for single or two passenger vehicles.

  15. Investigation of the Biochemical Mechanism for Cell-Substrate Mechanical Sensing

    Science.gov (United States)

    Ricotta, Vincent Anthony

    Advancements in stem cell biology and materials science have enabled the development of new treatments for tissue repair. Dental pulp stem cells (DPSCs), which are highly proliferative and can be induced to differentiate along several mesenchymal cell lineages, offer the possibility for pulpal regeneration and treatment of injured dentition. Polybutadiene (PB) may be used as a substrate for these cells. This elastomer can be spun casted into films of different thicknesses with different moduli. DPSCs grown on PB films, which are relatively hard (less than 1500 A thick), biomineralize depositing crystalline calcium phosphate without a requirement for the typical induction factor, dexamethasone (Dex). The moduli of cells track with the moduli of the surface suggesting that mechanics controls mineralization. The purpose of this study was to determine whether the major effect of Dex on biomineralization is the result of its ability to alter cell mechanics or its ability to induce osteogenesis/odontogenesis. DPSCs sense substrate mechanics through the focal adhesions, whose function is in part regulated by the Ras homolog gene (Rho) and its downstream effectors Rho associated kinases (ROCKs). ROCKs control actin filament polymerization and interactions with myosin light chain. Because cells sense substrate mechanics through focal adhesion proteins whose function is regulated by ROCKs, the impact of a ROCK inhibitor, Y-27632, was monitored. Blocking this pathway with Y-27632 suppressed the ability of DPSCs to sense the PB substrate. The cell modulus, plasma membrane stiffness, and cytosol stiffness were all lowered and biomineralization was suppressed in all cultures independent of substrate modulus or the presence of Dex. In other words, the inability of DPSCs to sense mechanical cues suppressed their ability to promote mineralization. On the other hand the expression of osteogenic/odontogenic markers (alkaline phosphatase and osteocalcin) was enhanced, perhaps due to Y

  16. FORMER A L’EXERCICE D’UNE MEDECINE BIOTECHNOLOGIQUE ET HUMAINE

    Directory of Open Access Journals (Sweden)

    Jacques BRINGER

    2017-05-01

    Full Text Available Le bond en avant de la médecine au cours des dernières décennies s’est appuyé sur la recherche, l’innovation dans les nouvelles biotechnologies permettant le développement de soins plus efficaces, moins invasifs, mieux ciblés pour nombre de maladies. Dans le même temps, une meilleure gestion des risques et une organisation plus centrée sur le patient impliquent une étroite coopération entre les professionnels de santé activés selon les besoins du patient. Les étudiants en médecine doivent être entrainés à acquérir la pratique des nouvelles technologies et à se préparer à l’action en équipe avant d’intervenir dans le soin. Un tel entrainement par simulation vise à développer des mises en situation de « vraie vie » incluant l’obtention de compétences individuelles ou collectives et l’aptitude des cliniciens à une décision partagée et aux relations humaines telles que la capacité d’écoute, d’annonce et d’accompagnement s’appuyant sur le questionnement éthique et le souci de la personne.

  17. Leadership et confiance développer le capital humain pour des organisations performantes

    CERN Document Server

    Duluc, Alain

    2003-01-01

    Aujourd'hui, l'encadrement des hommes consiste à tirer le meilleur parti de soi-même et des autres pour contribuer au développement de la performance. Ce type de leadership repose sur des valeurs telle qu'honnêteté, confiance, exemplarité, etc. Cet ouvrage propose une définition opérationnelle de ces valeurs et une façon de les mettre en ouvre. Il repose sur les méthodes et outils de développement personnel et organisationnel, élaborés par Will Schutz, un thérapeute américain. Sommaire : La complexité, nouveau passage des entreprises; Développer la confiance et la dimension humaine pour faire face à la complexité; Quelle forme de leadership pour demain?; Développer la confiance dans l'entreprise; La connaissance de soi et des autres, premier pas vers la confiance.

  18. Further investigation on boric acid catalytic graphitization of polyacrylonitrile carbon fibers: Mechanism and mechanical properties

    International Nuclear Information System (INIS)

    Wen, Ya; Lu, Yonggen; Xiao, Hao; Qin, Xianying

    2012-01-01

    Highlights: ► The modulus of carbon fiber was improved by boric acid at the temperature range of 1500–2900 °C. ► 2300 °C is a key temperature degree from which the boron began to benefit fiber strength. ► The fiber strength was affected by the boron reaction and related to the boron states. -- Abstract: Catalytic graphitization of polyacrylonitrile based carbon fibers by boric acid doping was studied and the dependence of fiber tensile strength on the boron content and temperature was discussed. It was found that there existed a key temperature point for the boron to take effect. When the fibers were modified with 7.0 wt.% boric acid solution, with increasing temperature, the tensile strength was lower than that of the unmodified ones below 2300 °C, but a reverse thing happened above 2300 °C. Moreover, when being heated at 2500 °C, the modified fibers showed an increasing tensile modulus and strength with increasing boron content till maximums of 404 GPa and 2.46 GPa, 26% and 16% higher than those of unmodified ones. The mechanical properties of the fibers were affected by the interaction of carbon and boron, and also related with boron states. The decomposition of boron acid and its interaction with carbon brought defects on fiber surface, degrading the mechanical properties below 1300 °C. With further heat treatment, the boron diffused into the fibers and divided into two states: substitutional and interstitial. At a temperature over 2300 °C with an appreciate boron content, the substitutional would be formed predominantly, which removed the structural defects and relaxed the distortions, so as to benefit the mechanical properties.

  19. Investigations of the mechanical loss of tantala films between 5 and 300 K

    Energy Technology Data Exchange (ETDEWEB)

    Hudl, Matthias; Nawrodt, Ronny; Zimmer, Anja; Nietzsche, Sandor; Vodel, Wolfgang; Seidel, Paul [Friedrich Schiller University (Germany); Tuennermann, Andreas [Institute of Solid-State Physics, Helmholtzweg 5, D-07743 Jena (Germany),; Friedrich Schiller University-Institute of Applied Physics, Jena (Germany)

    2007-07-01

    Mechanical losses in dielectric mirror coatings of interferometric gravitational wave detectors are a main issue for the proposed advanced generation of gravitational wave detectors. Recent investigations have shown that the mechanical loss of the dielectric mirror coatings (tantala/silica stacks) is probably the main contribution to the detector noise. There are indications that among both coating materials tantala gives the major contribute to mechanical loss. Experimental details of a measuring setup and investigations of the temperature dependency of the mechanical dissipation in thin tantala films on different substrates are presented.

  20. Parole et identité humaine à l’âge classique

    Directory of Open Access Journals (Sweden)

    Pascale Gillot

    2010-03-01

    Full Text Available En prenant appui sur des textes de Descartes et de philosophes post-cartésiens comme Géraud de Cordemoy, ou encore des théoriciens de Port-Royal, tels Lancelot, Arnauld et Nicole, nous nous intéressons au statut double et paradoxal que revêt la parole dans la philosophie classique, au moment où se construit la question de l’union psychophysique et où sont proposées diverses « réponses » à cette question, dans la perspective d’une conceptualisation nouvelle d’une identité humaine rendue problématique. Le paradoxe tient au fait que l’activité de langage est d’abord manifestation de la pensée, indice publiquement observable ou témoignage extérieur de l’existence d’un esprit à l’origine des actes linguistiques, conformément à la théorie cartésienne à ce sujet ; mais la parole dénote aussi, dans la philosophie même de Descartes, une faculté spécifiquement humaine, propre au « vrai homme », en tant qu’il est indissolublement esprit et corps. Nous tentons de montrer que ce qui est en jeu dans les études brèves et éparses que Descartes consacre au langage, puis dans les développements ultérieurs de la Grammaire générale et raisonnée et de la Logique de Port-Royal, à travers la théorie du signe linguistique et de la signification, c’est la compréhension de la relation, nécessairement postulée et pourtant constamment renvoyée à l’ordre d’un lien contre-nature, et par là arbitraire, fruit d’une institution, entre la parole comme phénomène physique et la parole comme activité symbolique par excellence ; si bien que le prodige du phénomène humain du langage, comme expression publique des pensées, donne la mesure de l’énigme que constitue l’unité en l’homme du corps et de l’esprit.The aim of this paper is to lay emphasis on the connection between the mind-body problem and the theory of language which is developed in early-modern philosophy by Descartes and post

  1. Atomistic investigations on the mechanical properties and fracture mechanisms of indium phosphide nanowires.

    Science.gov (United States)

    Pial, Turash Haque; Rakib, Tawfiqur; Mojumder, Satyajit; Motalab, Mohammad; Akanda, M A Salam

    2018-03-28

    The mechanical properties of indium phosphide (InP) nanowires are an emerging issue due to the promising applications of these nanowires in nanoelectromechanical and microelectromechanical devices. In this study, molecular dynamics simulations of zincblende (ZB) and wurtzite (WZ) crystal structured InP nanowires (NWs) are presented under uniaxial tension at varying sizes and temperatures. It is observed that the tensile strengths of both types of NWs show inverse relationships with temperature, but are independent of the size of the nanowires. Moreover, applied load causes brittle fracture by nucleating cleavage on ZB and WZ NWs. When the tensile load is applied along the [001] direction, the direction of the cleavage planes of ZB NWs changes with temperature. It is found that the {111} planes are the cleavage planes at lower temperatures; on the other hand, the {110} cleavage planes are activated at elevated temperatures. In the case of WZ NWs, fracture of the material is observed to occur by cleaving along the (0001) plane irrespective of temperature when the tensile load is applied along the [0001] direction. Furthermore, the WZ NWs of InP show considerably higher strength than their ZB counterparts. Finally, the impact of strain rate on the failure behavior of InP NWs is also studied, and higher fracture strengths and strains at higher strain rates are found. With increasing strain rate, the number of cleavages also increases in the NWs. This paper also provides in-depth understanding of the failure behavior of InP NWs, which will aid the design of efficient InP NWs-based devices.

  2. micro-mechanical experimental investigation and modelling of strain and damage of argillaceous rocks under combined hydric and mechanical loads

    International Nuclear Information System (INIS)

    Wang, L.

    2012-01-01

    The hydro-mechanical behavior of argillaceous rocks, which are possible host rocks for underground radioactive nuclear waste storage, is investigated by means of micro-mechanical experimental investigations and modellings. Strain fields at the micrometric scale of the composite structure of this rock, are measured by the combination of environmental scanning electron microscopy, in situ testing and digital image correlation technique. The evolution of argillaceous rocks under pure hydric loading is first investigated. The strain field is strongly heterogeneous and manifests anisotropy. The observed nonlinear deformation at high relative humidity (RH) is related not only to damage, but also to the nonlinear swelling of the clay mineral itself, controlled by different local mechanisms depending on RH. Irreversible deformations are observed during hydric cycles, as well as a network of microcracks located in the bulk of the clay matrix and/or at the inclusion-matrix interface. Second, the local deformation field of the material under combined hydric and mechanical loadings is quantified. Three types of deformation bands are evidenced under mechanical loading, either normal to stress direction (compaction), parallel (microcracking) or inclined (shear). Moreover, they are strongly controlled by the water content of the material: shear bands are in particular prone to appear at high RH states. In view of understanding the mechanical interactions a local scale, the material is modeled as a composite made of non-swelling elastic inclusions embedded in an elastic swelling clay matrix. The internal stress field induced by swelling strain incompatibilities between inclusions and matrix, as well as the overall deformation, is numerically computed at equilibrium but also during the transient stage associated with a moisture gradient. An analytical micro-mechanical model based on Eshelby's solution is proposed. In addition, 2D finite element computations are performed. Results

  3. JournalBase. Comparer les bases de données scientifiques internationales en sciences humaines et sociales (SHS

    Directory of Open Access Journals (Sweden)

    Denise Pumain

    2010-01-01

    Full Text Available Cet article dresse un tableau comparatif des contenus des bases de données et des listes de référence qui recensent les revues en sciences humaines et sociales (SHS. Il s’appuie sur JournalBase publié le 25 juin 2009 dans Cybergeo. Cette étude porte sur les bases AHCI et SSCI du Web of Science (publié par Thomson Reuters, de Scopus (publié par Elsevier, du European Reference Index for Humanities (ERIH (publié par la Fondation européenne pour la Science et de l’AERES (Agence pour l’évaluation de la recherche en France. La recherche a été réalisée en 2008 avec le soutien financier du TGE Adonis du CNRS. Avec quelque 20 000 entrées correspondant à environ 10 000 journaux différents, c’est une vue quasi exhaustive de la richesse des publications en sciences humaines et sociales qui est apportée par ce tableau. La nomenclature adoptée pour classer les revues par discipline est celle en 27 postes de la Fondation Européenne pour la Science. Les affectations multiples révèlent la multidisciplinarité des revues, assez fréquente en SHS, mais parfois aussi les incohérences des bases de données qui n’ont pas été rectifiées.L’article présente l’historique du projet, la méthodologie mise en place par les auteurs, les difficultés rencontrées dans la comparaison des données. Les premiers résultats mettent en évidence une couverture plus large de la liste ERIH pour les sciences humaines et une surreprésentation des revues anglophones dans les bases de données commerciales pour l’ensemble des disciplines. L’objectif de ce travail est d’alerter sur les contenus de ces bases de données, au moment où les outils bibliométriques soulèvent maints débats quant à leur application dans le champ des sciences humaines et sociales.

  4. Interactivity effects in social media marketing on brand engagement: an investigation of underlying mechanisms

    NARCIS (Netherlands)

    Antheunis, M.L.; van Noort, G.; Eisend, M.; Langner, T.

    2011-01-01

    Although, SNS advertising spending increases, research on SNS campaigning is still underexposed. First, this study aims to investigate the effect of SNS campaign interactivity on the receivers brand engagement, taking four underlying mechanisms into account (brand identification, campaign

  5. Integrated investigation approach for determining mechanical properties of poly-silicon membranes

    OpenAIRE

    Brueckner, J.; Dehe, A.; Auerswald, E.; Dudek, R.; Michel, B.; Rzepka, S.

    2014-01-01

    A methodology is presented for determining mechanical properties of free-standing thin films such as poly-silicon membranes. The integrated investigation approach comprises test structure development, mechanical testing, and numerical simulation. All membrane test structures developed and manufactured consist of the same material but have different stiffness due to variations in the geometric design. The mechanical tests apply microscopic loads utilizing a nanoindentation tool. Young's modulu...

  6. A QM/MM–Based Computational Investigation on the Catalytic Mechanism of Saccharopine Reductase

    OpenAIRE

    Almasi, Joel N.; Bushnell, Eric A.C.; Gauld, James W.

    2011-01-01

    Saccharopine reductase from Magnaporthe grisea, an NADPH-containing enzyme in the α-aminoadipate pathway, catalyses the formation of saccharopine, a precursor to L-lysine, from the substrates glutamate and α-aminoadipate-δ-semialdehyde. Its catalytic mechanism has been investigated using quantum mechanics/molecular mechanics (QM/MM) ONIOM-based approaches. In particular, the overall catalytic pathway has been elucidated and the effects of electron correlation and the anisotropic polar protein...

  7. L’intégration du capital humain dans un outil de pilotage de la performance : le cas du tableau de bord stratégique

    OpenAIRE

    Borchani, Manel; Cheffi, Walid

    2005-01-01

    Cette communication examine comment un outil de contrôle de gestion, le tableau de bord stratégique (TdB), permet-il d’intégrer le capital humain dans le pilotage de la performance globale de l’entreprise ? La théorie des ressources (resource based view theory) considère que les Ressources Humaines (RH) sont des ressources internes précieuses pour l’entreprise. Cette théorie établit un lien entre elles, les compétences distinctives et l’avantage concurrentiel durable de l’entreprise. Un tel a...

  8. Investigation of Resistance to Mechanical Effect of Braille Formed on Different Materials

    Directory of Open Access Journals (Sweden)

    Ingrida VENYTĖ

    2014-06-01

    Full Text Available Qualitative analysis of stresses emerged in paperboard during Braille embossing, using specialized polarimetric equipment, was carried out. Resistance to mechanical effect of Braille dot surfaces, formed with different printing types on different materials (paper, paperboard, polymer, textile, Al foil was investigated. It was determined that Braille dot height change after period mechanical effect is different.

  9. Experimental and Quantum-mechanical Investigation of the Vinylsilane-Iminium Ion Cyclization

    DEFF Research Database (Denmark)

    Kværnø, Lisbet; Norrby, Per-Ola; Tanner, David Ackland

    2003-01-01

    be obtained for iminium species derived from 7. Quantum-mechanical investigations of the general reaction mechanism underlined the lack of reactivity of ketiminium species and also convincingly explained the observed diastereoselectivities of aldiminium species. The calculations further revealed that (Z...

  10. La prolongation de la vie humaine selon Francis Bacon. Ou : quel Tithon voulons-nous être ?

    Directory of Open Access Journals (Sweden)

    Dominique Weber

    2011-07-01

    Full Text Available Afin de comprendre avec exactitude la manière dont Francis Bacon envisage la question de la prolongation de la vie humaine, il faut impérativement examiner l’assise théologique de la réflexion du philosophe à ce sujet. Il convient aussi de restituer l’intégration de cette réflexion dans les objectifs plus amples de la philosophie naturelle nouvelle. Enfin, il est nécessaire de comprendre les dimensions proprement morales de la question. Car la prolongation de la vie humaine n’est pas seulement, au sein de la philosophie naturelle nouvelle, un cas parmi d’autres des recherches qu’il faut désormais effectuer : en réalité, c’est elle qui lui donne et qui lui fixe son sens ; avec elle se joue l’effectivité de l’identité espérée entre science et puissance. Mais il faut encore préciser qu’il ne s’agit aucunement pour l’homme de vieillir pour vieillir : il s’agit pour lui de pouvoir vieillir bien. Les leçons que Bacon tire de la fable de Tithon sont ici véritablement décisives.

  11. Investigation of mechanical properties and operative deformation mechanism in nano-crystalline Ni–Co/SiC electrodeposits

    International Nuclear Information System (INIS)

    Lari Baghal, S.M.; Amadeh, A.; Heydarzadeh Sohi, M.

    2012-01-01

    Highlights: ► The tensile properties of Ni–Co and Ni–Co/SiC deposits were investigated. ► The SiC particles enhanced tensile strength and ductility of nano-structured composites. ► The deformation mechanism at low and high strain rates were studied. - Abstract: Ni–Co/SiC nano-composites were prepared via electrodeposition from a modified Watts bath containing SiC particles with average particle size of 50 nm, SDS as surfactant and saccharin as grain refiner in appropriate amounts. The effect of nano-particle incorporation on microstructure, mechanical properties and deformation mechanism of electrodeposits were investigated. The mechanical properties of electrodeposits were investigated by Vickers microhardness and tensile tests. The results indicated that incorporation of SiC particles into a 15 nm Ni–Co matrix had no considerable effect on its microhardness and yield strength, that is, dispersion hardening did not operate in this range of grain size. However it was observed that co-deposition of uniform distributed SiC particles can significantly improve the ultimate tensile strength and elongation to failure of the deposits. Calculation of apparent activation volume from tensile test results at different strain rates proved that incorporation of SiC nano-particles are responsible for stress-assisted activation of GB atoms mechanism that can significantly increase the plasticity. Nano-crystalline Ni–Co matrix showed a mixed mod behavior of ductile and brittle fracture whereas incorporation of SiC particles and increasing the strain rate promoted ductile fracture mode.

  12. Mechanical properties of MEMS materials: reliability investigations by mechanical- and HRXRD-characterization related to environmental testing

    Science.gov (United States)

    Bandi, T.; Shea, H.; Neels, A.

    2014-06-01

    The performance and aging of MEMS often rely on the stability of the mechanical properties over time and under harsh conditions. An overview is given on methods to investigate small variations of the mechanical properties of structural MEMS materials by functional characterization, high-resolution x-ray diffraction methods (HR-XRD) and environmental testing. The measurement of the dynamical properties of micro-resonators is a powerful method for the investigation of elasticity variations in structures relevant to microtechnology. X-ray diffraction techniques are used to analyze residual strains and deformations with high accuracy and in a non-destructive manner at surfaces and in buried micro-structures. The influence of elevated temperatures and radiation damage on the performance of resonant microstructures with a focus on quartz and single crystal silicon is discussed and illustrated with examples including work done in our laboratories at CSEM and EPFL.

  13. Entre guajiros et espagnols, les humains: récits Añun

    Directory of Open Access Journals (Sweden)

    1990-01-01

    Full Text Available L’article présente une série de textes tirés de la tradition orale añun, groupe arawak en voie d’extinction (côte nord-ouest du Lac de Maracaïbo, Venezuela. Sans prendre de position théorique, l’auteur se propose de montrer comment la tradition orale, à travers des récits allégoriques évoquant les dangers de l’intégration, reflète les relations que les Añun entretiennent avec les autres groupes humains de la région et qui dans les contes, se traduisent par des métaphores animales. ENTRE GUAJIROS Y ESPAÑOLES, LOS HUMANOS - RELATOS AÑÚN. Este artículo presenta una serie de relatos de la tradición oral añún, grupo arawak en vías de extinción, localizado en el litoral noroeste del Lago de Maracaibo, Venezuela. Sin tomar ninguna posición teórica, la autora se propone mostrar a través de unos relatos alegóricos que evocan los peligros de la integración, cómo la tradición oral refleja las relaciones experimentadas por los Añún con los demás grupos humanos de la región, traducidas en los cuentos por metáforas animales. BETWEEN GUAJIROS AND SPANIARDS, THE HUMANS - AÑUN TALES. This article presents a selection of tales belonging to the oral tradition of the Añun people, an Arawak group threatened with extinction (North West coast of Maracaibo Lake, Venezuela. Leaving aside all theoretical discussion, the author attempts to show how oral tradition, through allegorical tales illustrating the dangers of integration, reflects the relationships held by the Añun with the other human groups living in the area and which, in the narrative, find expression in animal metaphors.

  14. Multi-nucleon transfer: a probe to investigate the reaction mechanism around the barrier

    International Nuclear Information System (INIS)

    Mandal, Samit K.

    2014-01-01

    The investigation of multi-nucleon transfer mechanism offers valuable information on the pairing interactions that enhance the transfer of nucleon pairs across heavy ions involved in the reaction. These reactions are also a useful tool to study exotic nuclei far from the stability line, which can be explored with the new generation radioactive beam facility. In this talk, multi-nucleon transfer reaction mechanisms between heavy ions and their effect on the reaction dynamics around the coulomb barrier energies have been discussed. Experimental results will be presented with a semi classical description of multi nucleon transfer reaction calculation. One and two nucleon transfer cross sections reproduced using a quantum mechanical coupled channel calculations will also be discussed. A feasibility of investigation of multi-nucleon transfer mechanism to explore the pairing correlation at moderate spin states with radioactive beams will be discussed. (author)

  15. Experimental Investigation of Mechanical Properties of Black Shales after CO2-Water-Rock Interaction

    OpenAIRE

    Lyu, Qiao; Ranjith, Pathegama Gamage; Long, Xinping; Ji, Bin

    2016-01-01

    The effects of CO2-water-rock interactions on the mechanical properties of shale are essential for estimating the possibility of sequestrating CO2 in shale reservoirs. In this study, uniaxial compressive strength (UCS) tests together with an acoustic emission (AE) system and SEM and EDS analysis were performed to investigate the mechanical properties and microstructural changes of black shales with different saturation times (10 days, 20 days and 30 days) in water dissoluted with gaseous/supe...

  16. Investigating the dental toolkit of primates based on food mechanical properties: Feeding action does matter.

    Science.gov (United States)

    Thiery, Ghislain; Guy, Franck; Lazzari, Vincent

    2017-06-01

    Although conveying an indisputable morphological and behavioral signal, traditional dietary categories such as frugivorous or folivorous tend to group a wide range of food mechanical properties together. Because food/tooth interactions are mostly mechanical, it seems relevant to investigate the dental morphology of primates based on mechanical categories. However, existing mechanical categories classify food by its properties but cannot be used as factors to classify primate dietary habits. This comes from the fact that one primate species might be adapted to a wide range of food mechanical properties. To tackle this issue, what follows is an original framework based on action-related categories. The proposal here is to classify extant primates based on the range of food mechanical properties they can process through one given action. The resulting categories can be used as factors to investigate the dental tools available to primates. Furthermore, cracking, grinding, and shearing categories assigned depending on the hardness and the toughness of food are shown to be supported by morphological data (3D relative enamel thickness) and topographic data (relief index, occlusal complexity, and Dirichlet normal energy). Inferring food mechanical properties from dental morphology is especially relevant for the study of extinct primates, which are mainly documented by dental remains. Hence, we use action-related categories to investigate the molar morphology of an extinct colobine monkey Mesopithecus pentelicus from the Miocene of Pikermi, Greece. Action-related categories show contrasting results compared with classical categories and give us new insights into the dietary adaptations of this extinct primate. Finally, we provide some possible directions for future research aiming to test action-related categories. In particular, we suggest acquiring more data on mechanically challenging fallback foods and advocate the use of other food mechanical properties such as

  17. Investigation of mechanical and structural characteristics of platinum and palladium at high temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Trumie, B. T.; Gomidzelovie, L.; Marjanovic, S. R.; Krstic, V. R.

    2015-03-30

    In order to broaden future application of products based on platinum and palladium a comparative analysis of their high-temperature mechanical properties was performed. Platinum and palladium are of great importance and are widely used in chemical industry, electronics, for making laboratory dishes, to name a few. Mechanical properties of pure metals, such as: tensile strength, creep rate and rupture time were investigated using universal testing machine for tensile testing of materials. Microstructure of samples was investigated by optical microscopy. Based on obtained results it can be concluded that the platinum, compared to palladium, is superior for high-temperature applications. (Author)

  18. Investigation of mechanical and structural characteristics of platinum and palladium at high temperatures

    International Nuclear Information System (INIS)

    Trumie, B. T.; Gomidzelovie, L.; Marjanovic, S. R.; Krstic, V. R.

    2015-01-01

    In order to broaden future application of products based on platinum and palladium a comparative analysis of their high-temperature mechanical properties was performed. Platinum and palladium are of great importance and are widely used in chemical industry, electronics, for making laboratory dishes, to name a few. Mechanical properties of pure metals, such as: tensile strength, creep rate and rupture time were investigated using universal testing machine for tensile testing of materials. Microstructure of samples was investigated by optical microscopy. Based on obtained results it can be concluded that the platinum, compared to palladium, is superior for high-temperature applications. (Author)

  19. An investigation of the mechanism underlying teacher aggression : Testing I3 theory and the General Aggression Model

    NARCIS (Netherlands)

    Montuoro, Paul; Mainhard, Tim

    2017-01-01

    Background: Considerable research has investigated the deleterious effects of teachers responding aggressively to students who misbehave, but the mechanism underlying this dysfunctional behaviour remains unknown. Aims: This study investigated whether the mechanism underlying teacher aggression

  20. L'évolution des valeurs de soin humain : une analyse dialectique de la proposition d'humanisation de Watson à la lumière d'une perspective nietzschéenne

    OpenAIRE

    Krol, Pawel

    2014-01-01

    La pratique du soin infirmier d’aujourd’hui hérite d’une longue et complexe évolution de valeurs. Outre les valeurs traditionnellement humaines de soigner, la pratique infirmière d’aujourd’hui intègre aussi des valeurs qui façonnent notre monde moderne. Ainsi, nous retraçons d’abord l’évolution de quelques-unes des valeurs traditionnelles rattachées au soin humain conservées dans les pratiques infirmières. Puis, nous montrons que certaines valeurs traditionnelles de soin humain sont progressi...

  1. Investigation of a hot-pressed Nb–Ti–Al alloy: Mechanical alloying, microstructure and mechanical property

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Zhiwu; Wei, Hua; Zhang, Hongyu; Jin, Tao; Sun, Xiaofeng; Zheng, Qi, E-mail: qzheng@imr.ac.cn

    2016-01-10

    The Nb–23Ti–15Al (at%) alloy was prepared by mechanical alloying (MA) and hot-pressing (HPing). The microstructure evolution of powder particles during MA and its influence on the microstructure and mechanical properties of the hot-pressed (HPed) alloy have been investigated. The powder and HPed alloy were characterized via X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results indicate that particle size increases in the first stage and then decreases in the second stage during MA; as milling speed increases, mechanically alloyed (MAed) powder with convoluted elemental lamellae, homogeneous Nb solid-solution and an amorphous phase could be obtained respectively in 24 h. Higher homogeneity in microstructure and composition of the MAed powder particles promotes the precipitation of the δ phase and refines the β and Ti(O,C) phases in the HPed alloy. Moreover, due to the phase equilibrium changes caused by Fe and Cr in the amorphous powder, σ phase appears in the alloy as a stable phase instead of the δ phase. Properly MAed powder contributes to higher hardness of the HPed alloy, for reasons of microstructure refinement and sufficient precipitating of strengthening phases.

  2. Investigation of a hot-pressed Nb–Ti–Al alloy: Mechanical alloying, microstructure and mechanical property

    International Nuclear Information System (INIS)

    Shi, Zhiwu; Wei, Hua; Zhang, Hongyu; Jin, Tao; Sun, Xiaofeng; Zheng, Qi

    2016-01-01

    The Nb–23Ti–15Al (at%) alloy was prepared by mechanical alloying (MA) and hot-pressing (HPing). The microstructure evolution of powder particles during MA and its influence on the microstructure and mechanical properties of the hot-pressed (HPed) alloy have been investigated. The powder and HPed alloy were characterized via X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results indicate that particle size increases in the first stage and then decreases in the second stage during MA; as milling speed increases, mechanically alloyed (MAed) powder with convoluted elemental lamellae, homogeneous Nb solid-solution and an amorphous phase could be obtained respectively in 24 h. Higher homogeneity in microstructure and composition of the MAed powder particles promotes the precipitation of the δ phase and refines the β and Ti(O,C) phases in the HPed alloy. Moreover, due to the phase equilibrium changes caused by Fe and Cr in the amorphous powder, σ phase appears in the alloy as a stable phase instead of the δ phase. Properly MAed powder contributes to higher hardness of the HPed alloy, for reasons of microstructure refinement and sufficient precipitating of strengthening phases.

  3. Computational Analysis of Pharyngeal Swallowing Mechanics in Patients with Motor Neuron Disease: A Pilot Investigation.

    Science.gov (United States)

    Garand, K L; Schwertner, Ryan; Chen, Amy; Pearson, William G

    2018-04-01

    Swallowing impairment (dysphagia) is a common sequela in patients with motor neuron disease (MND). The purpose of this retrospective, observational pilot investigation was to characterize how pharyngeal swallowing mechanics are impacted in patients with MND using a comparison with healthy, non-dysphagic control group. Computational analysis of swallowing mechanics (CASM) was used to determine covariate biomechanics of pharyngeal swallowing from videofluoroscopic assessment in 15 patients with MND and 15 age- and sex-matched healthy controls. Canonical variant analysis with post hoc discriminate function analysis (DFA) was performed on coordinate data mapping functional muscle groups underlying pharyngeal swallowing. Differences in swallowing mechanics associated with group (MND; control), motor neuron predominance (upper; lower), onset (bulbar; spinal), and swallow task (thin, pudding) were evaluated and visualized. Pharyngeal swallowing mechanics differed significantly in patients with MND compared with healthy controls (D = 2.01, p mechanics by motor neuron predominance (D = 5.03, p mechanics of patients with MND differ from and are more heterogeneous than healthy controls. These findings suggest patients with MND may compensate reductions in pharyngeal shortening and tongue base retraction by extending the head and neck and increasing hyolaryngeal excursion. This work and further CASM investigations will lead to further insights into development and evaluation of targeted clinical treatments designed to prolong safe and efficient swallowing function in patients with MND.

  4. Investigation of Chirality Selection Mechanism of Single-Walled Carbon Nanotube

    Science.gov (United States)

    2015-07-17

    Final 3. DATES COVERED (From - To) 01-June-2014 to 31-May-2015 4. TITLE AND SUBTITLE Investigation of Chirality Selection Mechanism of...of two significant mechanistic aspects of carbon nanotube (CNT) array growth under chemical vapor deposition conditions: chirality selectivity and...affected by the morphological evolution of catalyst particles. 15. SUBJECT TERMS Carbon Nanotubes, Chirality , Processing, Catalysis

  5. Mechanical properties of carbynes investigated by ab initio total-energy calculations

    DEFF Research Database (Denmark)

    Castelli, Ivano E.; Salvestrini, Paolo; Manini, Nicola

    2012-01-01

    As sp carbon chains (carbynes) are relatively rigid molecular objects, can we exploit them as construction elements in nanomechanics? To answer this question, we investigate their remarkable mechanical properties by ab initio total-energy simulations. In particular, we evaluate their linear...

  6. First-principles investigation of mechanical properties of silicene, germanene and stanene

    Science.gov (United States)

    Mortazavi, Bohayra; Rahaman, Obaidur; Makaremi, Meysam; Dianat, Arezoo; Cuniberti, Gianaurelio; Rabczuk, Timon

    2017-03-01

    Two-dimensional allotropes of group-IV substrates including silicene, germanene and stanene have recently attracted considerable attention in nanodevice fabrication industry. These materials involving the buckled structure have been experimentally fabricated lately. In this study, first-principles density functional theory calculations were utilized to investigate the mechanical properties of single-layer and free-standing silicene, germanene and stanene. Uniaxial tensile and compressive simulations were carried out to probe and compare stress-strain properties; such as the Young's modulus, Poisson's ratio and ultimate strength. We evaluated the chirality effect on the mechanical response and bond structure of the 2D substrates. Our first-principles simulations suggest that in all studied samples application of uniaxial loading can alter the electronic nature of the buckled structures into the metallic character. Our investigation provides a general but also useful viewpoint with respect to the mechanical properties of silicene, germanene and stanene.

  7. Investigation of shear distance in Michelson interferometer-based shearography for mechanical characterization

    International Nuclear Information System (INIS)

    Lee, Jung-Ryul; Yoon, Dong-Jin; Kim, Jung-Seok; Vautrin, Alain

    2008-01-01

    Shearography is a growing industrial field in both quantitative mechanical characterization and relatively qualitative non-destructive testing. In shearography, shear distance is the most important parameter to control measurement performances. In this paper, the role of the shear distance is systematically investigated, focusing on the application of full-field mechanical characterization. A modified Michelson interferometer is considered as the shearing device, which is most commonly adopted for mechanical characterization applications because it enables easy and precise shearing and phase shifting. This paper also includes theoretical and experimental investigations of the relationship between shear distance and performance issues such as the immeasurable zone in the target with discontinuity, signal-to-noise ratio, sensitivity and shear distortion. In addition, this study is verified with actual shearographic results and a phase-shifting grid method capable of full-field displacement evaluation in the submicrometer regime

  8. Simulation de mouvement humain sur postes de travail pour le diagnostic et l'aide à la conception

    OpenAIRE

    Hue, Valentin

    2008-01-01

    Les travaux présentés dans ce mémoire concernent la génération automatique de postures et mouvements humains sur poste de travail industriel. L'objectif poursuivi est d'animer de façon réaliste un mannequin numérique afin de simuler un opérateur dans l'exécution de sa tâche. Cette animation doit permettre d'aider à l'analyse des facteurs biomécaniques pouvant engendrer des Troubles Musculo-Squelettiques. Dans un premier temps, des choix de modélisation sont proposés en fonction de ce contexte...

  9. Capital humain et croissance : la littérature empirique à un tournant ?

    OpenAIRE

    Gurgand, Marc

    2005-01-01

    Depuis le début des années 1990, la littérature empirique sur le rôle du capital humain dans la croissance économique fourmille de résultats contradictoires. Cet article récapitule les éléments du débat en opposant les contributions selon deux axes, celui de la spécification économique et celui des méthodes économétriques. Le premier axe oppose les estimations qui s’appuient sur des modèles de convergence des économies, à proximité de leur équilibre stationnaire et celles, de nature plus comp...

  10. Cellular and molecular investigations of the adhesion and mechanics of Listeria monocytogenes

    Science.gov (United States)

    Eskhan, Asma Omar

    Atomic force microscopy has been used to quantify the adherence and mechanical properties of an array of L. monocytogenes strains and their surface biopolymers. First, eight L. monocytogenes strains that represented the two major lineages of the species were compared for their adherence and mechanics at cellular and molecular levels. Our results indicated that strains of lineage' II were characterized by higher adhesion and Young's moduli, longer and more rigid surface biopolymers and lower specific and nonspecific forces when compared to lineage' I strains. Additionally, adherence and mechanical properties of eight L. monocytogenes epidemic and environmental strains were probed. Our results pointed to that environmental and epidemic strains representative of a given lineage were similar in their adherence and mechanical properties when investigated at a cellular level. However, when the molecular properties of the strains were considered, epidemic strains were characterized by higher specific and nonspecific forces, shorter, denser and more flexible biopolymers compared to environmental strains. Second, the role of environmental pH conditions of growth on the adhesion and mechanics of a pathogenic L. monocytogenes EGDe was investigated. Our results pointed to a transition in the adhesion energies for cells cultured at pH 7. In addition, when the types of molecular forces that govern the adhesion were quantified using Poisson statistical approach and using a new proposed method, specific hydrogen-bond energies dominated the bacterial adhesion process. Such a finding is instrumental to researchers designing methods to control bacterial adhesion. Similarly, bacterial cells underwent a transition in their mechanical properties. We have shown that cells cultured at pH 7 were the most rigid compared to those cultured in lower or higher pH conditions of growth. Due to transitions observed in adherence and mechanics when cells were cultured at pH 7, we hypothesized that

  11. Effect of mechanical stress on the Raman and infrared bands of hydroxylapatite: A quantum mechanical first principle investigation.

    Science.gov (United States)

    Ulian, Gianfranco; Valdrè, Giovanni

    2018-01-01

    The calcium apatite minerals are among the most studied in the biomaterial field because of their similarity with the mineral phase of bone tissues, which is mainly the hexagonal polymorph of hydroxylapatite. Given the growing interest both in the microscopic processes governing the behaviour of these natural biomaterials and in recent experimental methods to investigate the Raman response of hydroxylapatite upon mechanical loading, we report in the present work a detailed quantum mechanical analysis by DFT/B3LYP-D* approach on the Raman and infrared responses of hydroxylapatite upon deformation of its unit cell. From the vibrational results, the piezo-spectroscopic components Δν = Π ij σ ij were calculated. For the first time to the authors' knowledge quantum mechanics (QM) was applied to resolve the piezo-spectroscopic response of hydroxylapatite. The QM results on the uniaxial stress responses of this phase on the piezo-spectroscopic components Π 11 and Π 33 of the symmetric P-O stretching mode were 2.54 ± 0.09cm -1 /GPa and 2.56 ± 0.06cm -1 /GPa, respectively (Raman simulation) and 2.48 ± 0.15cm -1 /GPa and Π 33 = 2.74 ± 0.08cm -1 /GPa, respectively, of the asymmetric P-O stretching (infrared spectroscopy simulation). These results are in excellent agreement with previous experimental data reported in literature. The quantum mechanical analysis of the other vibrational bands (not present in literature) shed more light on this new and very important application of both Raman and IR spectroscopies and extend the knowledge of the behaviour of hydroxylapatite, suggesting and addressing further experimental research and analytic strategy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Investigations on the Mechanical Properties of Conducting Polymer Coating-Substrate Structures and Their Influencing Factors

    Directory of Open Access Journals (Sweden)

    Xin Hua

    2009-12-01

    Full Text Available This review covers recent advances and work on the microstructure features, mechanical properties and cracking processes of conducting polymer film/coatingsubstrate structures under different testing conditions. An attempt is made to characterize and quantify the relationships between mechanical properties and microstructure features. In addition, the film cracking mechanism on the micro scale and some influencing factors that play a significant role in the service of the film-substrate structure are presented. These investigations cover the conducting polymer film/coating nucleation process, microstructure-fracture characterization, translation of brittle-ductile fractures, and cracking processes near the largest inherent macromolecule defects under thermal-mechanical loadings, and were carried out using in situ scanning electron microscopy (SEM observations, as a novel method for evaluation of interface strength and critical failure stress.

  13. In situ tests for investigating thermal and mechanical rock behaviors at an underground research tunnel

    International Nuclear Information System (INIS)

    Kwon, Sangki; Cho, Won-Jin

    2013-01-01

    The understanding of the thermal and mechanical behaviors expected to be happened around an underground high-level radioactive waste (HLW) repository is important for a successful site selection, construction, operation, and closure of the repository. In this study, the thermal and mechanical behaviors of rock and rock mass were investigated from in situ borehole heater test and the studies for characterizing an excavation damaged zone (EDZ), which had been carried out at an underground research tunnel, KURT, constructed in granite for the validation of a HLW disposal concept. Thermal, mechanical, and hydraulic properties in EDZ could be predicted from various in situ and laboratory tests as well as numerical simulations. The complex thermo-mechanical coupling behavior of rock could be modeled using the rock properties. (author)

  14. Investigation on Mechanical Properties’ Anisotropy of Rod Units in Lattice Structures Fabricated by Selective Laser Melting

    Directory of Open Access Journals (Sweden)

    Jing Chenchen

    2017-01-01

    Full Text Available Lattice structure with high strength and low mass using selective laser melting (SLM has been a hot topic. However, there are some problems in the fabrication of lattice structure by SLM. Rod unit is the basic component of lattice structure and its performance affects the whole structure. It is necessary to investigate the influence of selective laser melting on rod unit’s mechanical properties. A series of rod units with different inclination angle and diameter were fabricated by SLM in this research. And the mechanical properties of these units were measured by tensile test. The results show that the rod units with different diameters and inclination angles have good mechanical properties and show no difference. It is a good news for lattice structure designing for there is no necessary to consider the mechanical properties’ anisotropy of rod units.

  15. Investigation of gamma-ray fingerprint identifying mechanism for the types of radiation sources

    CERN Document Server

    Liu Su Ping; Gu Dang Chang; Gong-Jian; Hao Fan Hua; Hu Guang Chun

    2002-01-01

    Radiation fingerprints sometimes can be used to label and identify the radiation resources. For instance, in a future nuclear reduction treaty that requires verification of irreversible dismantling of reduced nuclear warheads, the radiation fingerprints of nuclear warheads are expected to play a key role in labelling and identifying the reduced warheads. It would promote the development of nuclear warheads deep-cuts verification technologies if authors start right now some investigations on the issues related to the radiation fingerprints. The author dedicated to the investigation of gamma-ray fingerprint identifying mechanism for the types of radiation resources. The purpose of the identifying mechanism investigation is to find a credible way to tell whether any two gamma-ray spectral fingerprints that are under comparison are radiated from the same resource. The authors created the spectrum pattern comparison (SPC) to study the comparability of the two radiation fingerprints. Guided by the principle of SPC,...

  16. An investigation into the impact of cryogenic environment on mechanical stresses in FRP composites

    Science.gov (United States)

    Fifo, O.; Basu, B.

    2015-07-01

    Fibre reinforced polymer (FRP) composites are fast becoming a highly utilised engineering material for high performance applications due to their light weight and high strength. Carbon fibre and other high strength fibres are commonly used in design of aerospace structures, wind turbine blades, etc. and potentially for propellant tanks of launch vehicles. For the aforementioned fields of application, stability of the material is essential over a wide range of temperature particularly for structures in hostile environments. Many studies have been conducted, experimentally, over the last decade to investigate the mechanical behaviour of FRP materials at varying subzero temperature. Likewise, tests on aging and cycling effect (room to low temperature) on the mechanical response of FRP have been reported. However, a relatively lesser focused area has been the mechanical behaviour of FRP composites under cryogenic environment. This article reports a finite element method of investigating the changes in the mechanical characteristics of an FRP material when temperature based analysis falls below zero. The simulated tests are carried out using a finite element package with close material properties used in the cited literatures. Tensile test was conducted and the results indicate that the mechanical responses agree with those reported in the literature sited.

  17. Investigations into the Mechanical Properties and Microstructural Behavior of Foreign and Locally Fabricated Brake Disc

    Directory of Open Access Journals (Sweden)

    Basil Olufemi Akinnuli

    2017-11-01

    Full Text Available The present work reports investigations on mechanical and microstructural properties of foreign and locally fabricated brake disc. From safety point of view, brake disc is a crucial component of the braking system. Foreign brake disc (FBD are known for their long life span and better mechanical properties under service condition. However, locally fabricated brake disc (LFBD may possess similar or better mechanical properties than the foreign one. Therefore, the need to investigate their mechanical properties in order to determine which brake disc has better mechanical properties under the same service condition. It was observed that a high machinability index occurs in the locally fabricated brake disc as compared with the foreign brake disc, noticeable in the softness and weak graphite flakes formation in the matrix. Higher resistance to indentation was noticeable in the foreign brake disc as compared to the locally fabricated disc. The locally fabricated brake disc however, witnesses about 22% reduction in toughness compared to the foreign brake disc. An offshoot from this research will enhance the choice of material selection in the manufacturing of brake disc and assurance of locally made spare parts at affordable prices, and the provision of employment opportunities by establishing spare-parts production and allied industries

  18. Parental separation and adult psychological distress: an investigation of material and relational mechanisms.

    Science.gov (United States)

    Lacey, Rebecca E; Bartley, Mel; Pikhart, Hynek; Stafford, Mai; Cable, Noriko

    2014-03-23

    An association between parental separation or divorce occurring in childhood and increased psychological distress in adulthood is well established. However relatively little is known about why this association exists and how the mechanisms might differ for men and women. We investigate why this association exists, focussing on material and relational mechanisms and in particular on the way in which these link across the life course. This study used the 1970 British Cohort Study (n=10,714) to investigate material (through adolescent and adult material disadvantage, and educational attainment) and relational (through parent-child relationship quality and adult partnership status) pathways between parental separation (0-16 years) and psychological distress (30 years). Psychological distress was measured using Rutter's Malaise Inventory. The inter-linkages between these two broad mechanisms across the life course were also investigated. Missing data were multiply imputed by chained equations. Path analysis was used to explicitly model prospectively-collected measures across the life course, therefore methodologically extending previous work. Material and relational pathways partially explained the association between parental separation in childhood and adult psychological distress (indirect effect=33.3% men; 60.0% women). The mechanisms were different for men and women, for instance adult partnership status was found to be more important for men. Material and relational factors were found to interlink across the life course. Mechanisms acting through educational attainment were found to be particularly important. This study begins to disentangle the mechanisms between parental separation in childhood and adult psychological distress. Interventions which aim to support children through education, in particular, are likely to be particularly beneficial for later psychological health.

  19. Investigation of the mechanism of mercury removal from a silver dental amalgam alloy

    Directory of Open Access Journals (Sweden)

    M. DJURDJEVIC

    2004-12-01

    Full Text Available An investigation of silver dental amalgam decomposition and the mercury removal mechanism was performed. The decomposition process was analysed during thermal treatment in the temperature interval from 400 °C to 850 °C and for times from 0.5 to 7.5 h. The chemical compositions of the silver dental amalgam alloy and the treated alloy were tested and microstructure analysis using optical and scanning electron microscopy was carried out. The phases were identified using energy disperse electron probe microanalysis. A mechanism for the mercury removal process from silver dental amalgam alloy is suggested.

  20. Investigation of the mechanisms of action behind Electromotive Drug Administration (EMDA)

    DEFF Research Database (Denmark)

    Kos, Bor; Vasquez, Juan Luis; Miklavčič, D

    2016-01-01

    Objective. Bladder cancer is a cause of considerable morbidity worldwide. Electromotive Drug Administration is a method that combines intravesical chemotherapy with local electric field application. Electroporation has been suggested among other mechanisms as having a possible role in the therapy......, so the goal of the present study was to investigate the electric fields present in the bladder wall during the treatment to determine which mechanisms might be involved. Material and Methods. Electromotive Drug Administration involves applying intravesical mitomycin C with direct current of 20 m...

  1. Investigating the work-family conflict and health link: Repetitive thought as a mechanism.

    Science.gov (United States)

    Davis, Kelly D; Gere, Judith; Sliwinski, Martin J

    2017-10-01

    Research is needed to investigate mechanisms linking work-family conflict to poor health in working adults. We took a novel approach to build on extant studies by testing a potential mechanism in these associations - repetitive thought. Data came from a sample of 203 partnered working adults. There were significant direct effects of work-family conflict with lower life satisfaction, positive affect, and perceived health as well as greater fatigue. As for total effects, work-family conflict was significantly associated with all health outcomes - life satisfaction, positive affect, negative affect, fatigue, perceived health, and chronic health conditions - in the expected directions through repetitive thought. This study provides support that repetitive thought is one potential mechanism of how work-family conflict can take a toll on psychological and physical health. Findings are discussed in relation to improving workplace policies to improve the health of working adults managing work-family conflict. Copyright © 2016 John Wiley & Sons, Ltd.

  2. Investigation of Mechanical Properties of Unidirectional Steel Fiber/Polyester Composites: Experiments and Micromechanical Predictions

    DEFF Research Database (Denmark)

    Raghavalu Thirumalai, Durai Prabhakaran; Løgstrup Andersen, Tom; Bech, Jakob Ilsted

    2016-01-01

    the role of material and process parameters on material properties. Two types of SFRP were studied: polyester resin reinforced by both steel fabric containing unidirectional fibers and steel fibers wound on a metal frame with 0° orientations. The effects of the fiber volume fraction and the role of polymer......The article introduces steel fiber reinforced polymer composites, which is considered new for composite product developments. These composites consist of steel fibers or filaments of 0.21 mm diameter embedded in a polyester resin. The goal of this investigation is to characterize the mechanical...... performance of steel fiber reinforced polyester composites at room temperature. The mechanical properties of unidirectional steel fiber reinforced polyester composites (SFRP) are evaluated experimentally and compared with the predicted values by micro-mechanical models. These predictions help to understand...

  3. Investigation of ion acceleration mechanism through laser-matter interaction in femtosecond domain

    Energy Technology Data Exchange (ETDEWEB)

    Altana, C., E-mail: altana@lns.infn.it [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via S. Sofia 62, 95123 Catania (Italy); Dipartimento di Fisica e Astronomia, Università degli Studi di Catania, Via S. Sofia 64, 95123 Catania (Italy); Muoio, A. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via S. Sofia 62, 95123 Catania (Italy); Dipartimento di Fisica e Scienze della Terra, Università degli Studi di Messina, Viale F.S. D’Alcontres 31, 98166 Messina (Italy); Lanzalone, G. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via S. Sofia 62, 95123 Catania (Italy); Università degli Studi di Enna “Kore”, Via delle Olimpiadi, 94100 Enna (Italy); Tudisco, S. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via S. Sofia 62, 95123 Catania (Italy); Brandi, F. [CNR, Intense Laser Irradiation Laboratory, Via G. Moruzzi 1, 56124 Pisa (Italy); Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova (Italy); Cirrone, G.A.P. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via S. Sofia 62, 95123 Catania (Italy); Cristoforetti, G. [CNR, Intense Laser Irradiation Laboratory, Via G. Moruzzi 1, 56124 Pisa (Italy); Fazzi, A. [Energy Department, Polytechnic of Milan and INFN, Milan (Italy); Ferrara, P.; Fulgentini, L. [CNR, Intense Laser Irradiation Laboratory, Via G. Moruzzi 1, 56124 Pisa (Italy); Giove, D. [Energy Department, Polytechnic of Milan and INFN, Milan (Italy); Koester, P. [CNR, Intense Laser Irradiation Laboratory, Via G. Moruzzi 1, 56124 Pisa (Italy); Labate, L. [CNR, Intense Laser Irradiation Laboratory, Via G. Moruzzi 1, 56124 Pisa (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); and others

    2016-09-01

    An experimental campaign aiming to investigate the ion acceleration mechanisms through laser-matter interaction in the femtosecond domain has been carried out at the ILIL facility at a laser intensity of up to 2×10{sup 19} W/cm{sup 2}. A Thomson Parabola Spectrometer was used to identify different ion species and measure the energy spectra and the corresponding temperature parameters. We discuss the dependence of the protons spectra upon the structural characteristics of the targets (thickness and atomic mass) and the role of surface versus target bulk during acceleration process. - Highlights: • Ion acceleration mechanism in TNSA regime was investigated. • The energy spectra and the corresponding temperature parameters were measured. • Dependence of the spectra upon the target structural characteristics was discussed.

  4. Mechanical properties of metallic ribbons investigated by depth sensing indentation technique

    International Nuclear Information System (INIS)

    Pesek, Ladislav; Dobrzanski, Leszek A.; Zubko, Pavol; Konieczny, Jaroslaw

    2006-01-01

    The paper presents mechanical properties of two kinds of Co-based and one Fe-based metallic ribbons by the depth sensing indentation (DSI) technique. Investigations were carried out on two kinds ternary alloy Co 77 Si 11,5 B 11,5 and Fe 78 Si 13 B 9 and multicomponent Co 68 Fe 4 Mo 1 Si 13,5 B 13,5 , which are so-called 'zero-magnetostriction' materials. Metallic ribbons were investigated in amorphous state and partially crystallized state after annealing in 400deg. C in argon atmosphere. Heating of ribbons obtained by melt spinning technique was performed to check its effect on changes of mechanical properties

  5. Investigation of particle reduction and its transport mechanism in UHF-ECR dielectric etching system

    International Nuclear Information System (INIS)

    Kobayashi, Hiroyuki; Yokogawa, Ken'etsu; Maeda, Kenji; Izawa, Masaru

    2008-01-01

    Control of particle transport was investigated by using a UHF-ECR etching apparatus with a laser particle monitor. The particles, which float at a plasma-sheath boundary, fall on a wafer when the plasma is turned off. These floating particles can be removed from the region above the wafer by changing the plasma distribution. We measured the distribution of the rotational temperature of nitrogen molecules across the wafer to investigate the effect of the thermophoretic force. We found that mechanisms of particle transport in directions parallel to the wafer surface can be explained by the balance between thermophoretic and gas viscous forces

  6. An investigation of deformed microstructure and mechanical properties of Zircaloy-4 processed through multiaxial forging

    Energy Technology Data Exchange (ETDEWEB)

    Fuloria, Devasri; Nageswararao, P. [Department of Metallurgical and Materials Engineering & Centre of Nanotechnology, IIT Roorkee, Roorkee 247667 (India); Jayaganthan, R., E-mail: rjayafmt@iitr.ernet.in [Department of Metallurgical and Materials Engineering & Centre of Nanotechnology, IIT Roorkee, Roorkee 247667 (India); Department of Engineering Design, Indian Institute of Technology Madras, Chennai 600036 (India); Jha, S. [Nuclear Fuel Complex Limited, Hyderabad 501301 (India); Srivastava, D. [Materials Science Division, Bhabha Atomic Research Centre, Mumbai 40085 (India)

    2016-04-15

    In the present work, the mechanical behavior of Zircaloy-4 subjected to various deformation strains by multiaxial forging (MAF) at cryogenic temperature (CT) was investigated. The alloy was strained up to different number of cycles, viz., 6 cycles, 9 cycles, and 12 cycles at cumulative strains of 2.96, 4.44, and 5.91, respectively. The mechanical properties of the alloy were investigated by performing the universal tensile test and the Vickers hardness test. Both the test showed improvement in the ultimate tensile strength and hardness value by 51% and 26%, respectively, at the highest cumulative strain of 5.91. The electron backscattered diffraction (EBSD) measurement and transmission electron microscopy (TEM) were used for analyzing the deformed microstructure. The microstructures of the alloy underwent deformation at various cumulative strains/cycles showed grain refinement with the evolution of shear and twin bands that were highest for the alloy deformed at the highest number of cycles. The effective grain refinement was due to twins formation and their intersection, which led to the improvement in mechanical properties of the MAFed alloy, as observed in the present work. - Highlights: • Zircaloy-4 was subjected to MAF at cryogenic temperature. • Microstructural evolution was studied through EBSD and TEM. • Deformed microstructure was marked with various types of twinning and shear banding. • Twins formations are responsible for effective grain refinement and enhanced mechanical properties.

  7. Experimental investigation of thixoforging process on microstructure and mechanical properties of the centrifugal pump flange

    Energy Technology Data Exchange (ETDEWEB)

    Kazemi, A.; Nourouzi, S.; Gorji, A. [Babol University of Technology, Babol (Iran, Islamic Republic of); Kolahdooz, A. [Islamic Azad University, Isfahan (Iran, Islamic Republic of)

    2015-07-15

    In this paper, a thixoforging method is studied as one of the semi-solid forming processes. At the first step, the influence of semi-solid temperature, holding time, and ram speed of the hydraulic press are investigated on microstructure and mechanical properties of thixoforged A356 aluminum alloy parts. For this purpose, the slope plate casted billets are heated up to semi-solid temperature of 580, 590, and 600 .deg. C and holding time of 5, 10, and 15 minutes and then are deformed using the press with ram speeds of 1, 3 and 5 mm/s. Results show that the best mechanical properties are related to the thixoforged specimen with the finest microstructure which is thixoforged at semi-solid temperature of 600 .deg. C, holding time of 5 minutes and ram speed of 5 mm/s. Afterwards, the T6 heat treatment is performed to improve mechanical properties of parts produced by thixoforging process. At the final step of experiments in order to investigate the effect of using slope plate prior to reheating on microstructure and mechanical properties, semi-solid forging is done by using the gravity casted billet.

  8. Investigation of the effect of hydride and iodine on the mechanical behaviour of the zircaloy-4

    International Nuclear Information System (INIS)

    Soares, M.I.

    1981-12-01

    To investigate the effect of hydride and iodine on the mechanical behaviour of the zircaloy-4 tubes, deformation tests under pressure of samples hydrided in autoclave and of samples containing iodine were carried out, in order to simulate the fission product. The same tests were carried out in samples without hydride and iodine contents that were used as reference samples in the temperature range of 650 0 C-950 0 C. The hydrided samples and the samples containing iodine tested at 650 0 C and 750 0 C showed a higher ductility than the samples of reference. The hydrided samples tested at 850 0 C and 950 0 C showed a higher embritlement than the samples of reference and than the samples containing iodine tested at the same temperatures. A mechanical test has been developed to investigate the effect of hydride and iodine on the mechanical behaviour of the zircaloy-4 tubes. The mechanical test were carried out at room temperature. At room temperature the hydrition decreased the ductility of zircaloy-4. At room temperature the sample containing iodine showed a higher ductility than the sample without iodine. The combined action of hydrogen and iodine at room temperature enhanced the embrittlment of the samples zircaloy-4. (Author) [pt

  9. Investigation on the Mechanical and Tribological Properties of Aluminium-Tin Based Plain Bearing Material

    Directory of Open Access Journals (Sweden)

    T. Rameshkumar

    2010-06-01

    Full Text Available The purpose of this study is to investigate the Mechanical and Tribological properties of plain bearing alloys used especially in internal combustion engines. The mechanical properties namely Tensile strength and Hardness were investigated according to standard procedure. The sliding friction and wear properties of aluminium-tin alloy against high carbon high chromium steel were investigated at different normal loads as (29.43 N, 33.35 N and 36.25 N. Tests were carried in oil lubricated conditions with a sliding speed of 1 m/s. Prior to experimentation, the circulating engine oil 20w40 was heated to temperature of 800C using heater. The frictional behavior and wear property of aluminium-tin alloy were studied by means of pin-on-disk tribometer. The weight loss of the specimen was measured and wear and friction characteristics were calculated with respect to time, depth of wear track, sliding speed and bearing load. To determine the wear mechanism, the worn surfaces of the samples were examined using Scanning Electron Microscope (SEM. The optimum wear reduction was obtained at different normal loads and at same sliding speed.

  10. Investigations of leakage mechanisms and its influences on a micro swing engine considering rarefaction effects

    International Nuclear Information System (INIS)

    Zhou, Xiong; Zhang, Zhenyu; Kong, Wenjun; Du, Ning

    2016-01-01

    Highlights: • Mechanisms of the leakage flow in different flow regimes have been studied. • The leakage flow regime and patterns in the micro swing engine are presented. • Slip on the walls has a larger effect on leakage flow with decreasing the gap. • Rarefaction effects on the engine performance have been investigated. - Abstract: Considering rarefaction effects, this paper investigated mechanisms of the clearance leakage and its influences on a micro swing engine for the micro power generation by employing three different flow models named as discrete velocity direction (DVD) model, Navier-Stokes equations with slip boundary conditions (NS-slip) and no-slip boundary conditions (NS-no slip). Using the DVD model, this paper firstly studied leakage mechanisms of a micro Couette-Poisueille flow. Factors which control the leakage in different regimes were obtained. Furthermore, the system-level predictions of the clearance leakage in the micro swing engine have been conducted by solving the Navier-Stokes equations. The leakage flow regime, patterns and characteristics were presented. Results by NS-slip and NS-no slip were compared to study the rarefaction effects. Finally, investigations of the engine size and the gap height on the engine performance have been conducted. The significance of the leakage in different engine size regimes was presented, and the results show that rarefaction effects affect the indicated thermal efficiency greatly with the decrease of the engine size scale.

  11. Ouverture commerciale : condition de la contribution effective du capital humain à la croissance économique des pays en développement

    OpenAIRE

    Yves Abessolo

    2005-01-01

    Dans la littérature actuelle une controverse persiste quant à la validation sur données de panel de l'hypothèse selon laquelle le capital humain contribue à la croissance. Nous confirmons ce résultat à l'aide d'un échantillon comprenant 23 pays d'Afrique subsaharienne entre 1980 et 1997. Cependant, l'estimation sur ces mêmes données de panel de modèles à termes interactifs puis à coefficients variables suggère que la contribution du capital humain à la croissance dépend du taux d'ouverture co...

  12. Microscale experimental investigation of deformation and damage of argillaceous rocks under cyclic hydric and mechanical loads

    International Nuclear Information System (INIS)

    Wang, Linlin; Yang, Diansen; Heripre, Eva; Chanchole, Serge; Bornert, Michel; Pouya, Ahmad; Halphen, Bernard

    2012-01-01

    loading, the behavior of argillaceous rocks under mechanical loading is also investigated. Firstly, uniaxial compression tests are conducted maintaining relative humidity constant in the ESEM's chamber, by means of a new in situ rig designed to prescribe both the temperature and the load of the sample. The mechanisms of deformation and damage of such rocks are investigated. Moreover, the test under combined hydric and mechanical loadings is performed: the specimen is subjected to a staged humidification (20 %RH - 80 %RH - 99 %RH). Reaching the moisture equilibrium for each humidity sate, uniaxial compression test is performed on the specimen: a moderate loading-unloading cycle for the first two humidity states (20 %RH, 80 %RH) has been considered, while the mechanical loading was increased up to failure for the high humidity state (99 %RH). By means of such test, the influence of saturation (water content) on the mechanical behavior of argillaceous rocks is investigated, and the spatial distribution of hydric swelling/shrinking strains and mechanical strains can be compared on a same sample. (authors)

  13. L'écosanté, pour améliorer la santé humaine et préserver l ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    27 oct. 2010 ... Puis, en 1992, il a lancé le programme Santé, société et environnement, qui réunissait des spécialistes de divers domaines dans le but d'étudier les répercussions des facteurs environnementaux sur la santé. La création du programme Écosystèmes et santé humaine (ÉCOSANTÉ) en 1996 a permis de ...

  14. Investigation of gamma-ray fingerprint identifying mechanism for the types of radiation sources

    International Nuclear Information System (INIS)

    Liu Suping; Wu Huailong; Gu Dangchang; Gong Jian; Hao Fanhua; Hu Guangchun

    2002-01-01

    Radiation fingerprints sometimes can be used to label and identify the radiation resources. For instance, in a future nuclear reduction treaty that requires verification of irreversible dismantling of reduced nuclear warheads, the radiation fingerprints of nuclear warheads are expected to play a key role in labelling and identifying the reduced warheads. It would promote the development of nuclear warheads deep-cuts verification technologies if authors start right now some investigations on the issues related to the radiation fingerprints. The author dedicated to the investigation of gamma-ray fingerprint identifying mechanism for the types of radiation resources. The purpose of the identifying mechanism investigation is to find a credible way to tell whether any two gamma-ray spectral fingerprints that are under comparison are radiated from the same resource. The authors created the spectrum pattern comparison (SPC) to study the comparability of the two radiation fingerprints. Guided by the principle of SPC, the authors programmed a software dedicated to identify the types of radiation resources. The efficiency of the software was tested by a series of experiments with some laboratory gamma-ray resources. The experiments were designed to look into the relations between comparability and radioactive statistics, and the relations between comparability and some measurement conditions such as real time, resource activity and background etc. Two main results can be drawn from the investigation: 1) it is quite feasible to use the concept of spectral comparability to answer the question whether any two gamma-ray fingerprints are identity or not; 2) the identifying mechanism can only identify the types of radiation resources, and cannot identify the individuals with the same type and small differences

  15. Investigation on the Tribological Behavior and Wear Mechanism of Five Different Veneering Porcelains.

    Directory of Open Access Journals (Sweden)

    Jie Min

    Full Text Available The primary aim of this research was to investigate the wear behavior and wear mechanism of five different veneering porcelains.Five kinds of veneering porcelains were selected in this research. The surface microhardness of all the samples was measured with a microhardness tester. Wear tests were performed on a ball-on-flat PLINT fretting wear machine, with lubrication of artificial saliva at 37°C. The friction coefficients were recorded by the testing system. The microstructure features, wear volume, and damage morphologies were recorded and analyzed with a confocal laser scanning microscope and a scanning electron microscope. The wear mechanism was then elucidated.The friction coefficients of the five veneering porcelains differ significantly. No significant correlation between hardness and wear volume was found for these veneering porcelains. Under lubrication of artificial saliva, the porcelain with higher leucite crystal content exhibited greater wear resistance. Additionally, leucite crystal size and distribution in glass matrix influenced wear behavior. The wear mechanisms for these porcelains were similar: abrasive wear dominates the early stage, whereas delamination was the main damage mode at the later stage. Furthermore, delamination was more prominent for porcelains with larger crystal sizes.Wear compatibility between porcelain and natural teeth is important for dental restorative materials. Investigation on crystal content, size, and distribution in glass matrix can provide insight for the selection of dental porcelains in clinical settings.

  16. An investigation of the mechanical behavior of initially curved microplates under electrostatic actuation

    KAUST Repository

    Saghir, Shahid

    2018-03-28

    In this article, we investigate the mechanical behavior of initially curved microplates under electrostatic actuation. Microplates are essential components of many Micro-Electro-Mechanical System devices; however, they commonly undergo an initial curvature imperfection, due to the microfabrication process. Initial curvature imperfection significantly affects the mechanical behavior of microplates. In this work, we derive a dynamic analogue of the von Kármán governing equation for such plates. These equations are then used to develop a reduced order model based on the Galerkin procedure to simulate the static and dynamic behavior of the microplate. Two profiles of initial curvature commonly encountered in microfabricated structures are considered, where one assumes a variation in shape along one dimension of the plate only (cylindrical bending shape) while the other assumes a variation in shape along both dimensions of the plate. Their effects on both the static and dynamic responses of the microplates are examined and compared. We validate the reduced order model by comparing the calculated static behavior and the fundamental natural frequency with those computed by a finite element model over a range of the initial plate rise. The static behavior of the microplate is investigated when varying the DC voltage. Then, the dynamic behavior of the microplate is examined under the application of a harmonic AC voltage superimposed to a DC voltage.

  17. A molecular dynamics investigation on the crizotinib resistance mechanism of C1156Y mutation in ALK

    International Nuclear Information System (INIS)

    Sun, Hui-Yong; Ji, Feng-Qin

    2012-01-01

    Highlights: ► The study revealed the detailed resistance mechanism of the non-active mutation C1156Y in ALK. ► C1156Y leads to crizotinib displacement and conformational changes in the binding cavity. ► The conformations cause a decline in the vdW and electrostatic energy between crizotinib and ALK. -- Abstract: Crizotinib is an anaplastic lymphoma kinase (ALK) inhibitor that has recently been approved in the US for the treatment of non-small cell lung carcinoma (NSCLC). Despite its outstanding safety and efficacy, several resistant mutations against crizotinib have been detected in the treatment of NSCLC. However, in contrast to the widely accepted mechanism of steric hindrance by mutations at the active site, the mechanism by which the C1156Y non-active site mutation confers resistance against crizotinib remains unclear. In the present study, the resistance mechanism of C1156Y in ALK was investigated using molecular dynamics simulations. The results suggest that despite the non-active site mutation, C1156Y causes the dislocation of crizotinib as well as the indirect conformational changes in the binding cavity, which results in a marked decrease in the van der Waals and electrostatic interactions between crizotinib and ALK. The obtained results provide a detailed explanation of the resistance caused by C1156Y and may give a vital clue for the design of drugs to combat crizotinib resistance.

  18. A QM/MM–Based Computational Investigation on the Catalytic Mechanism of Saccharopine Reductase

    Directory of Open Access Journals (Sweden)

    James W. Gauld

    2011-10-01

    Full Text Available Saccharopine reductase from Magnaporthe grisea, an NADPH-containing enzyme in the α-aminoadipate pathway, catalyses the formation of saccharopine, a precursor to L-lysine, from the substrates glutamate and α-aminoadipate-δ-semialdehyde. Its catalytic mechanism has been investigated using quantum mechanics/molecular mechanics (QM/MM ONIOM-based approaches. In particular, the overall catalytic pathway has been elucidated and the effects of electron correlation and the anisotropic polar protein environment have been examined via the use of the ONIOM(HF/6-31G(d:AMBER94 and ONIOM(MP2/6-31G(d//HF/6-31G(d:AMBER94 methods within the mechanical embedding formulism and ONIOM(MP2/6-31G(d//HF/6-31G(d:AMBER94 and ONIOM(MP2/6-311G(d,p//HF/6-31G(d:AMBER94 within the electronic embedding formulism. The results of the present study suggest that saccharopine reductase utilises a substrate-assisted catalytic pathway in which acid/base groups within the cosubstrates themselves facilitate the mechanistically required proton transfers. Thus, the enzyme appears to act most likely by binding the three required reactant molecules glutamate, α-aminoadipate-δ-semialdehyde and NADPH in a manner and polar environment conducive to reaction.

  19. A molecular dynamics investigation on the crizotinib resistance mechanism of C1156Y mutation in ALK

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Hui-Yong [Shandong University of Technology, Zibo 255049 (China); Ji, Feng-Qin, E-mail: fengqinji@mail.hzau.edu.cn [National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070 (China); Center for Bioinformatics, Huazhong Agricultural University, Wuhan 430070 (China)

    2012-06-29

    Highlights: Black-Right-Pointing-Pointer The study revealed the detailed resistance mechanism of the non-active mutation C1156Y in ALK. Black-Right-Pointing-Pointer C1156Y leads to crizotinib displacement and conformational changes in the binding cavity. Black-Right-Pointing-Pointer The conformations cause a decline in the vdW and electrostatic energy between crizotinib and ALK. -- Abstract: Crizotinib is an anaplastic lymphoma kinase (ALK) inhibitor that has recently been approved in the US for the treatment of non-small cell lung carcinoma (NSCLC). Despite its outstanding safety and efficacy, several resistant mutations against crizotinib have been detected in the treatment of NSCLC. However, in contrast to the widely accepted mechanism of steric hindrance by mutations at the active site, the mechanism by which the C1156Y non-active site mutation confers resistance against crizotinib remains unclear. In the present study, the resistance mechanism of C1156Y in ALK was investigated using molecular dynamics simulations. The results suggest that despite the non-active site mutation, C1156Y causes the dislocation of crizotinib as well as the indirect conformational changes in the binding cavity, which results in a marked decrease in the van der Waals and electrostatic interactions between crizotinib and ALK. The obtained results provide a detailed explanation of the resistance caused by C1156Y and may give a vital clue for the design of drugs to combat crizotinib resistance.

  20. A Theoretical and Experimental Investigation of Mechanical Damage to Rodent Sperm Generated by Microscale Ice Formation.

    Science.gov (United States)

    Han, X; Critser, J K

      BACKGROUND: Rodent sperm cryopreservation is of critical importance for the maintenance of lines or strains of genetically engineered mice and rats. However, rodent sperm are extremely mechanically sensitive due to their unusual morphology, and are severely damaged using current methods of cryopreservation. Those methods result in poor post thaw motility (PTM) for mouse. To investigate the mechanism of mechanical damage introduced to rodent sperm during freezing, a micro-mechanical model was established to analyze the sperm radial and axial thermal stresses generated by microscale extracellular ice formation. PTM of mouse sperm cryopreserved in capillaries of different radii (100, 200, 344, 526, 775µm) was measured using a standard computer-assisted sperm analysis system. The model predicts that when one of the inner dimensions of the containers (the inner diameter of plastic straws or straw capillaries) is on the same order of magnitude of sperm length, axial stress is significantly increased. The experimental results showed that the value of PTM was decreased from 38 ± 8 % in the larger (775µm) capillaries to 0 ± 0 % in the smaller (100 µm) ones. Theoretical analysis based on the established model were experimentally validated and can be used to guide the design of novel devices to improve the efficiency of rodent sperm cryopreservation.

  1. Experimental and numerical investigation of a phase-only control mechanism in the linear intensity regime.

    Science.gov (United States)

    Brühl, Elisabeth; Buckup, Tiago; Motzkus, Marcus

    2018-06-07

    Mechanisms and optimal experimental conditions in coherent control still intensely stimulate debates. In this work, a phase-only control mechanism in an open quantum system is investigated experimentally and numerically. Several parameterizations for femtosecond pulse shaping (combination of chirp and multipulses) are exploited in transient absorption of a prototype organic molecule to control population and vibrational coherence in ground and excited states. Experimental results are further numerically simulated and corroborated with a four-level density-matrix model, which reveals a phase-only control mechanism based on the interaction between the tailored phase of the excitation pulse and the induced transient absorption. In spite of performing experiment and numerical simulations in the linear regime of excitation, the control effect amplitude depends non-linearly on the excitation energy and is explained as a pump-dump control mechanism. No evidence of single-photon control is observed with the model. Moreover, our results also show that the control effect on the population and vibrational coherence is highly dependent on the spectral detuning of the excitation spectrum. Contrary to the popular belief in coherent control experiments, spectrally resonant tailored excitation will lead to the control of the excited state only for very specific conditions.

  2. Investigation of the mechanisms of action behind Electromotive Drug Administration (EMDA).

    Science.gov (United States)

    Kos, Bor; Vásquez, Juan Luis; Miklavčič, Damijan; Hermann, Gregers G G; Gehl, Julie

    2016-01-01

    Bladder cancer is a cause of considerable morbidity worldwide. Electromotive Drug Administration is a method that combines intravesical chemotherapy with local electric field application. Electroporation has been suggested among other mechanisms as having a possible role in the therapy, so the goal of the present study was to investigate the electric fields present in the bladder wall during the treatment to determine which mechanisms might be involved. Electromotive Drug Administration involves applying intravesical mitomycin C with direct current of 20 mA delivered through a catheter electrode for 30 min. For numerical electric field computation we built a 3-D nonhomogeneous patient specific model based on CT images and used finite element method simulations to determine the electric fields in the whole body. Results indicate that highest electric field in the bladder wall was 37.7 V/m. The mean electric field magnitude in the bladder wall was 3.03 V/m. The mean magnitude of the current density in the bladder wall was 0.61 A/m(2). The present study shows that electroporation is not the mechanism of action in EMDA. A more likely explanation of the mechanism of action is iontophoretic forces increasing the mitomycin C concentration in the bladder wall.

  3. Investigation of the mechanism of soft tissue conduction explains several perplexing auditory phenomena.

    Science.gov (United States)

    Adelman, Cahtia; Chordekar, Shai; Perez, Ronen; Sohmer, Haim

    2014-09-01

    Soft tissue conduction (STC) is a recently expounded mode of auditory stimulation in which the clinical bone vibrator delivers auditory frequency vibratory stimuli to skin sites on the head, neck, and thorax. Investigation of the mechanism of STC stimulation has served as a platform for the elucidation of the mechanics of cochlear activation, in general, and to a better understanding of several perplexing auditory phenomena. This review demonstrates that it is likely that the cochlear hair cells can be directly activated at low sound intensities by the fluid pressures initiated in the cochlea; that the fetus in utero, completely enveloped in amniotic fluid, hears by STC; that a speaker hears his/her own voice by air conduction and by STC; and that pulsatile tinnitus is likely due to pulsatile turbulent blood flow producing fluid pressures that reach the cochlea through the soft tissues.

  4. Investigation of the role of bicyclic peroxy radicals in the oxidation mechanism of toluene.

    Science.gov (United States)

    Birdsall, Adam W; Andreoni, John F; Elrod, Matthew J

    2010-10-07

    The products of the primary OH-initiated oxidation of toluene were investigated using the turbulent flow chemical ionization mass spectrometry technique under different oxygen, NO, and initial OH radical concentrations as well as a range of total pressures. The bicyclic peroxy radical intermediate, a key proposed intermediate species in the Master Chemical Mechanism (MCM) for the atmospheric oxidation of toluene, was detected for the first time. The toluene oxidation mechanism was shown to have a strong oxygen concentration dependence, presumably due to the central role of the bicyclic peroxy radical in determining the stable product distribution at atmospheric oxygen concentrations. The results also suggest a potential role for bicyclic peroxy radical + HO(2) reactions at high HO(2)/NO ratios. These reactions are postulated to be a source of the inconsistencies between environmental chamber results and predictions from the MCM.

  5. Investigation of corrosion resistance of alloys with high mechanical characteristics in some environments of food industry

    International Nuclear Information System (INIS)

    Tremoureux, Yves

    1978-01-01

    This research thesis aimed at improving knowledge in the field of stress-free corrosion of alloys with high mechanical characteristics in aqueous environments, at highlighting some necessary aspects of their behaviour during cleaning or disinfection, and at selecting alloys which possess a good stress-free corrosion resistance in view of a later investigation of their stress corrosion resistance. After a presentation of the metallurgical characteristics of high mechanical strength alloys and the report of a bibliographical study on corrosion resistance of these alloys, the author presents and discusses the results obtained in the study of a possible migration of metallic ions in a milk product which is submitted to a centrifugation, and of the corrosion resistance of selected alloys with respect to the different media they will be in contact with during ultra-centrifugation. The following alloys have been used in this research: Marval 18, Marphynox, Marval X12, 17-4PH steel, Inconel 718 [fr

  6. Investigation on the interaction of catalase with sodium lauryl sulfonate and the underlying mechanisms.

    Science.gov (United States)

    Wang, Jing; Jia, Rui; Wang, Jiaxi; Sun, Zhiqiang; Wu, Zitao; Liu, Rutao; Zong, Wansong

    2018-02-01

    As a classic type of anionic surfactants, sodium lauryl sulfonate (SLS) might change the structure and function of antioxidant enzyme catalase (CAT) through their direct interactions. However, the underlying molecular mechanism is still unknown. This study investigated the direct interaction of SLS with CAT molecule and the underlying mechanisms using multi-spectroscopic methods, isothermal titration calorimetry, and molecular docking studies. No obvious effects were observed on CAT structure and activity under low SLS concentration exposure. The particle size of CAT molecule decreased and CAT activity was slightly inhibited under high SLS concentration exposure. SLS prefers to bind to the interface of CAT mainly via van der Waals' forces and hydrogen bonds. Subsequently, SLS interacts with the amino acid residues around the heme groups of CAT via hydrophobic interactions and might inhibit CAT activity. © 2017 Wiley Periodicals, Inc.

  7. Investigation of Gas Piston Actuated Opening-Closing Trunk Lid Mechanisms Used in Passenger Cars

    Directory of Open Access Journals (Sweden)

    Ahmet YILDIZ

    2015-05-01

    Full Text Available In this study, the gas piston actuated opening-closing trunk lid mechanisms used in passenger cars are investigated theoretically and experimentally. First, the position analysis of the mechanism which is a four-bar linkage has been carried out. Then the quasi-static analyzes according to the principle of virtual work have been made, and so the hand force, one of the most important parameters in terms of ergonomics, required for opening and closing the trunk lid has been calculated. In order to verify this developed model, the hand force has been determined also experimentally, performing the physical tests on an existing vehicle at Turkish Automobile Factory Inc. (TOFAŞ. Eventually, it is observed that the results obtained from mathematical model and the experimental measurements are compatible each other. This established model will provide convenience for manufacturers to determine the hand force for different model of vehicles. 

  8. Vibrational and mechanical properties of single layer MXene structures: a first-principles investigation

    Science.gov (United States)

    Yorulmaz, Uğur; Özden, Ayberk; Perkgöz, Nihan K.; Ay, Feridun; Sevik, Cem

    2016-08-01

    MXenes, carbides, nitrides and carbonitrides of early transition metals are the new members of two dimensional materials family given with a formula of {{{M}}}n+1 X n . Recent advances in chemical exfoliation and CVD growth of these crystals together with their promising performance in electrochemical energy storage systems have triggered the interest in these two dimensional structures. In this work, we employ first principles calculations for n = 1 structures of Sc, Ti, Zr, Mo and Hf pristine MXenes and their fully surface terminated forms with F and O. We systematically investigated the dynamical and mechanical stability of both pristine and fully terminated MXene structures to determine the possible MXene candidates for experimental realization. In conjunction with an extensive stability analysis, we report Raman and infrared active mode frequencies for the first time, providing indispensable information for the experimental elaboration of MXene field. After determining dynamically stable MXenes, we provide their phonon dispersion relations, electronic and mechanical properties.

  9. Mechanical Behaviour Investigation Of Aluminium Alloy Tailor Welded Blank Developed By Using Friction Stir Welding Technique

    Science.gov (United States)

    Dwi Anggono, Agus; Sugito, Bibit; Hariyanto, Agus; Subroto; Sarjito

    2017-10-01

    The objective on the research was to investigate the mechanical properties and microstructure of tailor welded blank (TWB) made from AA6061-T6 and AA1100 using friction stir welding (FSW) process. Due to the dissimilar mechanical properties of the two aluminium alloys, microhardness test was conducted to measure the hardness distribution across the weld nugget. The mixing of two distinct materials was influenced by tool rotation speed. Therefore, microstructure analysis was carried out to investigate the grain size and shape. The grain size of AA6061-T6 has increased in the heat affected zone (HAZ) while for AA1100 has decreased. In the weld nugget, it has found a hook defects in the dissimilar aluminium joining. By using monotonic tensile load, the different weld line direction was observed with the expansion in tool rotation. The joints failure were consistently on the area of AA1100 series. Furthermore, two specimens were investigated, one through the dissimilar aluminium and the other through similiar material. Inspection of the weld nugget hardness was shown that nonhomogen material intermixing during the stiring process as confirmed by microhardness measurement.

  10. Investigation on Fluorescence Quenching Mechanism of Perylene Diimide Dyes by Graphene Oxide

    Directory of Open Access Journals (Sweden)

    Yuzhen Zhao

    2016-11-01

    Full Text Available Perylene diimide derivatives were used as probes to investigate the effect of the molecular structures on the fluorescence quenching mechanism in a perylene diimide/graphene oxide system. The electrons transferred from the excited state of dyes to the conductive band of graphene oxide with different concentrations were determined by fluorescence spectra. The results indicated that the quenching efficiency of perylene diimides by graphene oxide was not only dependent on the difference between the lowest unoccupied molecular orbital level of dyes and the conduction band of the graphene oxide, but also mainly on the difference in the molecular structures.

  11. Experimental and Numerical Investigation of the FRP Shear Mechanism for Concrete Sandwich Panels

    DEFF Research Database (Denmark)

    Hodicky, Kamil; Sopal, G.; Rizkalla, S.

    2015-01-01

    This paper investigates the composite action of 46 segments representing precast concrete sandwich panels (PCSPs) using a fiber-reinforced polymer [FRP; specifically, a carbon fiber-reinforced polymer (CFRP)] grid/rigid foam as a shear mechanism. The experimental aspect of the research reported...... reported in this paper indicated that increasing the spacing between vertical lines of CFRP grid increase the overall shear flow strengths due to the increase of the bonded contact area of the rigid foam to the concrete surface. However, the overall shear stresses were decreased due to the increase...

  12. Experimental Investigation of Mechanical Properties of PVC Polymer under Different Heating and Cooling Conditions

    Directory of Open Access Journals (Sweden)

    Sarkawt Rostam

    2016-01-01

    Full Text Available Due to a widely increasing usage of polymers in various industrial applications, there should be a continuous need in doing research investigations for better understanding of their properties. These applications require the usage of the polymer in different working environments subjecting the material to various temperature ranges. In this paper, an experimental investigation of mechanical properties of polyvinyl chloride (PVC polymer under heating and cooling conditions is presented. For this purpose standard samples are prepared and tested in laboratory using universal material testing apparatus. The samples are tested under different conditions including the room temperature environment, cooling in a refrigerator, and heating at different heating temperatures. It is observed that the strength of the tested samples decreases with the increasing of heating temperature and accordingly the material becomes softer. Meanwhile the cooling environments give a clear increasing to the strength of the material.

  13. Thermal and Fluid Mechanical Investigation of an Internally Cooled Piston Rod

    Science.gov (United States)

    Klotsche, K.; Thomas, C.; Hesse, U.

    2017-08-01

    The Internal Cooling of Reciprocating Compressor Parts (ICRC) is a promising technology to reduce the temperature of the thermally stressed piston and piston rod of process gas compressors. The underlying heat transport is based on the flow of a two-phase cooling medium that is contained in the hollow reciprocating assembly. The reciprocating motion forces the phases to mix, enabling an enhanced heat transfer. In order to investigate this heat transfer, experimental results from a vertically reciprocating hollow rod are presented that show the influence of different liquid charges for different working temperatures. In addition, pressure sensors are used for a crank angle dependent analysis of the fluid mechanical processes inside the rod. The results serve to investigate the two-phase flow in terms of the velocity and distribution of the liquid and vapour phase for different liquid fractions.

  14. Experimental investigations of nonlinearities and destruction mechanisms of an experimental phospholipid-based ultrasound contrast agent.

    Science.gov (United States)

    Casciaro, Sergio; Palmizio Errico, Rosa; Errico, Rosa Palmizio; Conversano, Francesco; Demitri, Christian; Distante, Alessandro

    2007-02-01

    We sought to characterize the acoustical behavior of the experimental ultrasound contrast agent BR14 by determining the acoustic pressure threshold above which nonlinear oscillation becomes significant and investigating microbubble destruction mechanisms. We used a custom-designed in vitro setup to conduct broadband attenuation measurements at 3.5 MHz varying acoustic pressure (range, 50-190 kPa). We also performed granulometric analyses on contrast agent solutions to accurately measure microbubble size distribution and to evaluate insonification effects. Attenuation did not depend on acoustic pressure less than 100 kPa, indicating this pressure as the threshold for the appearance of microbubble nonlinear behavior. At the lowest excitation amplitude, attenuation increased during insonification, while, at higher excitation levels, the attenuation decreased over time, indicating microbubble destruction. The destruction rate changed with pressure amplitude suggesting different destruction mechanisms, as it was confirmed by granulometric analysis. Microbubbles showed a linear behavior until 100 kPa, whereas beyond this value significant nonlinearities occurred. Observed destruction phenomena seem to be mainly due to gas diffusion and bubble fragmentation mechanisms.

  15. Experimental Investigation of the Mechanical and Durability Properties of Crumb Rubber Concrete.

    Science.gov (United States)

    Liu, Hanbing; Wang, Xianqiang; Jiao, Yubo; Sha, Tao

    2016-03-07

    Recycling waste tire rubber by incorporating it into concrete has become the preferred solution to dispose of waste tires. In this study, the effect of the volume content of crumb rubber and pretreatment methods on the performances of concrete was evaluated. Firstly, the fine aggregate and mixture were partly replaced by crumb rubber to produce crumb rubber concrete. Secondly, the mechanical and durability properties of crumb rubber concrete with different replacement forms and volume contents had been investigated. Finally, the crumb rubber after pretreatment by six modifiers was introduced into the concrete mixture. Corresponding tests were conducted to verify the effectiveness of pretreatment methods as compared to the concrete containing untreated crumb rubber. It was observed that the mechanical strength of crumb rubber concrete was reduced, while durability was improved with the increasing of crumb rubber content. 20% replacement of fine aggregate and 5% replacement of the total mixture exhibited acceptable properties for practical applications. In addition, the results indicated that the modifiers had a positive impact on the mechanical and durability properties of crumb rubber concrete. It avoided the disadvantage of crumb rubber concrete having lower strength and provides a reference for the production of modified crumb rubber concrete.

  16. Formation mechanism of gas bubble superlattice in UMo metal fuels: Phase-field modeling investigation

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Shenyang, E-mail: shenyang.hu@pnnl.gov; Burkes, Douglas E.; Lavender, Curt A.; Senor, David J.; Setyawan, Wahyu; Xu, Zhijie

    2016-10-15

    Nano-gas bubble superlattices are often observed in irradiated UMo nuclear fuels. However, the formation mechanism of gas bubble superlattices is not well understood. A number of physical processes may affect the gas bubble nucleation and growth; hence, the morphology of gas bubble microstructures including size and spatial distributions. In this work, a phase-field model integrating a first-passage Monte Carlo method to investigate the formation mechanism of gas bubble superlattices was developed. Six physical processes are taken into account in the model: 1) heterogeneous generation of gas atoms, vacancies, and interstitials informed from atomistic simulations; 2) one-dimensional (1-D) migration of interstitials; 3) irradiation-induced dissolution of gas atoms; 4) recombination between vacancies and interstitials; 5) elastic interaction; and 6) heterogeneous nucleation of gas bubbles. We found that the elastic interaction doesn’t cause the gas bubble alignment, and fast 1-D migration of interstitials along 〈110〉 directions in the body-centered cubic U matrix causes the gas bubble alignment along 〈110〉 directions. It implies that 1-D interstitial migration along [110] direction should be the primary mechanism of a fcc gas bubble superlattice which is observed in bcc UMo alloys. Simulations also show that fission rates, saturated gas concentration, and elastic interaction all affect the morphology of gas bubble microstructures.

  17. Therapeutic effect of increased openness: Investigating mechanism of action in MDMA-assisted psychotherapy.

    Science.gov (United States)

    Wagner, Mark T; Mithoefer, Michael C; Mithoefer, Ann T; MacAulay, Rebecca K; Jerome, Lisa; Yazar-Klosinski, Berra; Doblin, Rick

    2017-08-01

    A growing body of research suggests that traumatic events lead to persisting personality change characterized by increased neuroticism. Relevantly, enduring improvements in Post-Traumatic Stress Disorder (PTSD) symptoms have been found in response to 3,4-methylenedioxymethamphetamine (MDMA)-assisted psychotherapy. There is evidence that lasting changes in the personality feature of "openness" occur in response to hallucinogens, and that this may potentially act as a therapeutic mechanism of change. The present study investigated whether heightened Openness and decreased Neuroticism served as a mechanism of change within a randomized trial of MDMA-assisted psychotherapy for chronic, treatment-resistant PTSD. The Clinician-Administered PTSD Scale (CAPS) Global Scores and NEO PI-R Personality Inventory (NEO) Openness and Neuroticism Scales served as outcome measures. Results indicated that changes in Openness but not Neuroticism played a moderating role in the relationship between reduced PTSD symptoms and MDMA treatment. Following MDMA-assisted psychotherapy, increased Openness and decreased Neuroticism when comparing baseline personality traits with long-term follow-up traits also were found. These preliminary findings suggest that the effect of MDMA-assisted psychotherapy extends beyond specific PTSD symptomatology and fundamentally alters personality structure, resulting in long-term persisting personality change. Results are discussed in terms of possible mechanisms of psychotherapeutic change.

  18. Date palm biochar-polymer composites: An investigation of electrical, mechanical, thermal and rheological characteristics.

    Science.gov (United States)

    Poulose, Anesh Manjaly; Elnour, Ahmed Yagoub; Anis, Arfat; Shaikh, Hamid; Al-Zahrani, S M; George, Justin; Al-Wabel, Mohammad I; Usman, Adel R; Ok, Yong Sik; Tsang, Daniel C W; Sarmah, Ajit K

    2018-04-01

    The application of biochar (BC) as a filler in polymers can be viewed as a sustainable approach that incorporates pyrolysed waste based value-added material and simultaneously mitigate bio-waste in a smart way. The overarching aim of this work was to investigate the electrical, mechanical, thermal and rheological properties of biocomposite developed by utilizing date palm waste-derived BC for the reinforcing of polypropylene (PP) matrix. Date palm waste derived BC prepared at (700 and 900°C) were blended at different proportions with polypropylene and the resultant composites (BC/PP) were characterized using an array of techniques (scanning electron microscope, energy-dispersive X-ray spectroscopy and Fourier transform infra-red spectroscopy). Additionally the thermal, mechanical, electrical and rheological properties of the BC/PP composites were evaluated at different loading of BC content (from 0 to15% w/w). The mechanical properties of BC/PP composites showed an improvement in the tensile modulus while that of electrical characterization revealed an enhanced electrical conductivity with increased BC loading. Although the BC incorporation into the PP matrix has significantly reduced the total crystallinity of the resulted composites, however; a positive effect on the crystallization temperature (T c ) was observed. The rheological characterization of BC/PP composites revealed that the addition of BC had minimal effect on the storage modulus (G') compared to the neat (PP). Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Investigation of creep deformation mechanisms at intermediate temperatures in Rene 88 DT

    International Nuclear Information System (INIS)

    Viswanathan, G.B.; Sarosi, P.M.; Henry, M.F.; Whitis, D.D.; Milligan, W.W.; Mills, M.J.

    2005-01-01

    Creep deformation substructures in the superalloy Rene 88 DT have been investigated after small-strain (0.2-0.5%) creep at 650 deg C using conventional and high resolution transmission electron microscopy. Clear differences in creep strength and deformation mechanisms have been observed as a function of applied stress and precipitate microstructure. Both coarse and fine bimodal precipitate microstructures have been tested, produced by relatively slow and fast cooling from the supersolvus solutionizing temperature. The finer γ' microstructure exhibited significantly lower creep rates. It has been established that microtwinning caused by the passage of Shockley partial dislocations on successive {1 1 1} planes is the dominant deformation process at low applied stress, and changes to shearing by 1/2[1 1 0] dislocations and Orowan looping around the larger secondary precipitates at higher applied stress. In the coarser microstructure, the dominant deformation mode is isolated faulting where 1/2[1 1 0] dislocations shear the matrix while superlattice extrinsic stacking faults are created in the secondary γ' particles. The detailed mechanisms by which these deformation modes proceed are discussed, leading to the proposition that the thermally activated process for both microtwinning and isolated faulting is similar, involving diffusion-mediated re-ordering within the γ' particles in the wake of shearing 1/6 Shockley partials. Based on the present evidence, it is proposed that the tertiary γ' volume fraction is crucial in dictating the transition in mechanism and the creep strength of these alloys

  20. Investigation of membrane mechanics using spring networks: application to red-blood-cell modelling.

    Science.gov (United States)

    Chen, Mingzhu; Boyle, Fergal J

    2014-10-01

    In recent years a number of red-blood-cell (RBC) models have been proposed using spring networks to represent the RBC membrane. Some results predicted by these models agree well with experimental measurements. However, the suitability of these membrane models has been questioned. The RBC membrane, like a continuum membrane, is mechanically isotropic throughout its surface, but the mechanical properties of a spring network vary on the network surface and change with deformation. In this work spring-network mechanics are investigated in large deformation for the first time via an assessment of the effect of network parameters, i.e. network mesh, spring type and surface constraint. It is found that a spring network is conditionally equivalent to a continuum membrane. In addition, spring networks are employed for RBC modelling to replicate the optical tweezers test. It is found that a spring network is sufficient for modelling the RBC membrane but strain-hardening springs are required. Moreover, the deformation profile of a spring network is presented for the first time via the degree of shear. It is found that spring-network deformation approaches continuous as the mesh density increases. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Experimental Investigation of the Mechanical and Durability Properties of Crumb Rubber Concrete

    Directory of Open Access Journals (Sweden)

    Hanbing Liu

    2016-03-01

    Full Text Available Recycling waste tire rubber by incorporating it into concrete has become the preferred solution to dispose of waste tires. In this study, the effect of the volume content of crumb rubber and pretreatment methods on the performances of concrete was evaluated. Firstly, the fine aggregate and mixture were partly replaced by crumb rubber to produce crumb rubber concrete. Secondly, the mechanical and durability properties of crumb rubber concrete with different replacement forms and volume contents had been investigated. Finally, the crumb rubber after pretreatment by six modifiers was introduced into the concrete mixture. Corresponding tests were conducted to verify the effectiveness of pretreatment methods as compared to the concrete containing untreated crumb rubber. It was observed that the mechanical strength of crumb rubber concrete was reduced, while durability was improved with the increasing of crumb rubber content. 20% replacement of fine aggregate and 5% replacement of the total mixture exhibited acceptable properties for practical applications. In addition, the results indicated that the modifiers had a positive impact on the mechanical and durability properties of crumb rubber concrete. It avoided the disadvantage of crumb rubber concrete having lower strength and provides a reference for the production of modified crumb rubber concrete.

  2. Investigation of mechanical field weakening of axial flux permanent magnet motor

    Science.gov (United States)

    Syaifuddin Mohd, M.; Aziz, A. Rashid A.; Syafiq Mohd, M.

    2015-12-01

    An investigation of axial flux permanent magnet motor (AFPM) characteristics was conducted with a proposed mechanical field weakening control mechanisms (by means of stator-rotor force manipulation) on the motor through modeling and experimentation. By varying the air gap between at least two bistable positions, the peak torque and top speed of the motor can be extended. The motor high efficiency region can also be extended to cover greater part of the motor operating points. An analytical model of the motor had been developed to study the correlation between the total attraction force (between the rotor and the stator) and the operating parameters of the motor. The test results shows that the motor output complies with the prediction of the research hypothesis and it is likely that a spring locking mechanism can be built to dynamically adjust the air gap of the motor to increase the operating range and could be applied in electric drivetrain applications to improve overall efficiency of electric and hybrid electric vehicles.

  3. Investigation of balancing problem for a planar mechanism using genetic algorithm

    International Nuclear Information System (INIS)

    Erkaya, Selcuk

    2013-01-01

    In this study, optimal balancing of a planar articulated mechanism is investigated to minimize the shaking force and moment fluctuations. Balancing of a four-bar mechanism is formulated as an optimization problem. On the other hand, an objective function based on the sub-components of shaking force and moment is constituted, and design variables consisting of kinematic and dynamic parameters are defined. Genetic algorithm is used to solve the optimization problem under the appropriate constraints. By using commercial simulation software, optimized values of design variables are also tested to evaluate the effectiveness of the proposed optimization process. This work provides a practical method for reducing the shaking force and moment fluctuations. The results show that both the structure of objective function and particularly the selection of weighting factors have a crucial role to obtain the optimum values of design parameters. By adjusting the value of weighting factor according to the relative sensitivity of the related term, there is a certain decrease at the shaking force and moment fluctuations. Moreover, these arrangements also decrease the initiative of mechanism designer on choosing the values of weighting factors.

  4. Improved removal performance and mechanism investigation of papermaking wastewater treatment using manganese enhanced Fenton reaction.

    Science.gov (United States)

    Wang, Yingcai; Wang, Can; Shi, Shuai; Fang, Shuai

    2018-06-01

    The effects of Mn(II) on Fenton system to treat papermaking wastewater and the mechanism of Mn(II) enhanced Fenton reaction were investigated in this study. The chemical oxygen demand (COD) removal efficiency was enhanced in the presence of Mn(II), which increased by 19% compared with that of the Fenton system alone. The pseudo-first order reaction kinetic rate constant of Mn(II)/Fenton system was 2.11 times higher than that of Fenton system. 67%-81% COD were removed with the increasing Mn(II) concentration from 0 to 0.8 g/L. COD removal efficiency was also enhanced in a wider pH range (3-7), which indicated the operation parameters of Fenton technology could be broadened to a milder condition. The study of the mechanism showed that Mn(II) participated in the oxidation and coagulation stages in Fenton system. In the oxidation stage, Mn(II) promotes the production of HO 2 •/ O 2 • - , then HO 2 •/ O 2 • - reacts with Fe(III) to accelerate the formation of Fe(II), and finally accelerates the production of HO•. Meantime MnMnO 3 and Fe(OH) 3 forms in the coagulation stage, facilitating the removal of suspended substances and a large amount of COD, which enhances the overall COD removal of papermaking wastewater. This study provided a detailed mechanism to improve practical applications of Fenton technology.

  5. Investigating and improving student understanding of quantum mechanical observables and their corresponding operators in Dirac notation

    Science.gov (United States)

    Marshman, Emily; Singh, Chandralekha

    2018-01-01

    In quantum mechanics, for every physical observable, there is a corresponding Hermitian operator. According to the most common interpretation of quantum mechanics, measurement of an observable collapses the quantum state into one of the possible eigenstates of the operator and the corresponding eigenvalue is measured. Since Dirac notation is an elegant notation that is commonly used in upper-level quantum mechanics, it is important that students learn to express quantum operators corresponding to observables in Dirac notation in order to apply the quantum formalism effectively in diverse situations. Here we focus on an investigation that suggests that, even though Dirac notation is used extensively, many advanced undergraduate and PhD students in physics have difficulty expressing the identity operator and other Hermitian operators corresponding to physical observables in Dirac notation. We first describe the difficulties students have with expressing the identity operator and a generic Hermitian operator corresponding to an observable in Dirac notation. We then discuss how the difficulties found via written surveys and individual interviews were used as a guide in the development of a quantum interactive learning tutorial (QuILT) to help students develop a good grasp of these concepts. The QuILT strives to help students become proficient in expressing the identity operator and a generic Hermitian operator corresponding to an observable in Dirac notation. We also discuss the effectiveness of the QuILT based on in-class evaluations.

  6. INVESTIGATION OF MECHANICAL STRESSES IN THE DRIVE SHAFT OF MV VACUUM CIRCUIT BREAKER

    Directory of Open Access Journals (Sweden)

    E. I. Baida

    2017-03-01

    Full Text Available Introduction. In the last 10-15 years a dominant position in the market of medium voltage circuit breakers, vacuum circuit breakers have taken in which as an actuator mono- or bistable actuators with permanent magnets are used. Such circuit breakers are characterized by simplicity of design, high reliability, require preventive maintenance for many years. Development, research and improvement of vacuum circuit breakers are carried out at the Department for Electrical Apparatus, National Technical University «Kharkiv Polytechnic Institute». While working on the circuit breakers, developers have to deal with two related objectives – electrical and mechanical. This paper considers the solution of one of these problems – calculation of mechanical forces in the drive shaft of the vacuum circuit breaker in static and dynamic modes. This work was preceded by the failure of the results of measurements of the prototype circuit breakers’ contacts. Measurements have shown that these values do not match the expected values (there were less than the value of 0.8 to 1 mm. The assumption about the reasons for this discrepancy needed to be detailed checked. The results of the work done are presented in this paper. Purpose. Investigation of static and dynamic mechanical stresses and strains in the drive shaft of the vacuum circuit breaker mechanism to determine its characteristics and material selection. Methods. The investigation of mechanical processes is performed by the finite element method in the COMSOL software package. Results. We obtain the static and dynamic characteristics of the circuit breaker drive shaft: deformations, reaction forces, stresses. These characteristics made it possible to determine the actual course of the contacts, select shaft material and calculate the forces acting on the bearings. Conclusions. It is shown that the contact velocity and contact pressure are different from the theoretical value due to the deformation of the

  7. EFFET DES VITAMINES B12, B9 ET B6 ET LEURS INTERACTIONS SUR LA FRAGILITE OSMOTIQUE DES ERYTHROCYTES HUMAINS

    Directory of Open Access Journals (Sweden)

    B HOUCHER

    2001-06-01

    Full Text Available L’effet des vitamines B12, B9 et B6 sur la fragilité osmotique des érythrocytes humains a été exploré in vitro. De fortes concentrations de vitamines B12 et B6 ont protégé les érythrocytes de l’hémolyse hypotonique, avec une protection maxima atteinte respectivement à 10 et 500 µg/ml. A concentrations plus faibles, cependant, ces vitamines ont favorisé grandement l’hémolyse hypotonique. Par contre, la vitamine B9 a montré uniquement un effet hémolytique de 4 à 200 µg/ml. Cet effet peut être expliqué par la nature acide de la molécule. L’effet nul sur la fragilité osmotique de deux vitamines antagonistes, peut probablement être expliqué par l’antagonisme partiel ou par la présence de ces deux vitamines simultanément: ces dernières se lient en quantités appréciables à la cellule intacte de même qu’à l’hémolysat et il y’ a compétition mutuelle entre ces vitamines et leur transport.

  8. Learnings from investigations on SG divider plates: Coupling field characterizations with numerical mechanical simulation

    International Nuclear Information System (INIS)

    Rossillon, F.; Depradeux, L.; Miloudi, S.; Deforge, D.; Lemaire, E.; Massoud, J.P.

    2014-01-01

    Nickel based alloys stress corrosion cracking (SCC) has been a major concern for the nuclear power plant utilities since the 1970s. Since 2002, SCC indications have been found on steam generator (SG) divider plates made of alloy 600 on French PWRs (pressurized water reactors) 900 MWe units. Although integrity is not questioned, many studies have been conducted to deepen understanding of the phenomenon. Among numerous studies to investigate the SCC damage phenomena, advanced mechanical analysis has been performed to improve the knowledge of the in-service loadings of the SG 900 MWe partition stub and divider plate. Manufacturing steps are taken into account, such as welding and the first hydro-test, to have a more precise description of the mechanical states in the vicinity of the welds where SCC is likely to occur. Recently, EDF hot laboratories made destructive examinations of a decommissioned SG. To fulfil the analyses computations have been carried out on the dedicated configuration. A 3D FE model, including the simulation of the welding and hydro-test, has been set up. Comparisons with experimental investigations on the divider plate of decommissioned SG have shown a good agreement between experimental and numerical results. These results emphasize the redistribution of weld residual stresses after the first hydro-test, and the effect of hydro-testing on the plastic deformation of the stub only in some specific cases of 900 MWe SG

  9. Learnings from investigations on SG divider plates: Coupling field characterizations with numerical mechanical simulation

    Energy Technology Data Exchange (ETDEWEB)

    Rossillon, F., E-mail: frederique.rossillon@edf.fr [EDF SEPTEN, 12-14 Avenue Dutrievoz, Villeurbanne (France); Depradeux, L. [EC2-MS, 66 Bd Niels Bohr, Villeurbanne (France); Miloudi, S. [EDF CEIDRE, CNPE de Chinon, Avoine (France); Deforge, D. [EDF CEIDRE, 2 Rue Ampère, Saint Denis (France); Lemaire, E. [EDF UNIE, Cap Ampère, Saint Denis (France); Massoud, J.P. [EDF SEPTEN, 12-14 Avenue Dutrievoz, Villeurbanne (France)

    2014-04-01

    Nickel based alloys stress corrosion cracking (SCC) has been a major concern for the nuclear power plant utilities since the 1970s. Since 2002, SCC indications have been found on steam generator (SG) divider plates made of alloy 600 on French PWRs (pressurized water reactors) 900 MWe units. Although integrity is not questioned, many studies have been conducted to deepen understanding of the phenomenon. Among numerous studies to investigate the SCC damage phenomena, advanced mechanical analysis has been performed to improve the knowledge of the in-service loadings of the SG 900 MWe partition stub and divider plate. Manufacturing steps are taken into account, such as welding and the first hydro-test, to have a more precise description of the mechanical states in the vicinity of the welds where SCC is likely to occur. Recently, EDF hot laboratories made destructive examinations of a decommissioned SG. To fulfil the analyses computations have been carried out on the dedicated configuration. A 3D FE model, including the simulation of the welding and hydro-test, has been set up. Comparisons with experimental investigations on the divider plate of decommissioned SG have shown a good agreement between experimental and numerical results. These results emphasize the redistribution of weld residual stresses after the first hydro-test, and the effect of hydro-testing on the plastic deformation of the stub only in some specific cases of 900 MWe SG.

  10. Investigating the mechanism of clofibric acid removal in Fe(0)/H2O systems.

    Science.gov (United States)

    Ghauch, Antoine; Abou Assi, Hala; Tuqan, Almuthanna

    2010-04-15

    Since the introduction of iron wall technology, the inherent relationship between contaminant removal and iron corrosion has been mostly attributed to electron transfer from the metal body (direct reduction). This thermodynamically founded premise has failed to explain several experimental facts. Recently, a new concept considering adsorption and co-precipitation as fundamental contaminant removal mechanisms was introduced. This consistent concept has faced very skeptic views and necessarily needs experimental validation. The present work was the first independent attempt to validate the new concept using clofibric acid (CLO) as model compound. For this purpose, a powdered Fe(0) material (Fe(0)) was used in CLO removal experiments under various experimental conditions. Additional experiments were performed with plated Fe(0) (mFe(0): Fe(0)/Pd(0), Fe(0)/Ni(0)) to support the discussion of removal mechanism. Main investigated experimental variables included: abundance of O(2), abundance of iron corrosion products (ICPs) and shaking operations. Results corroborated the concept that quantitative contaminant removal in Fe(0)/H(2)O systems occurs within the oxide-film in the vicinity of Fe(0). Additionally, mixing type and shaking intensity significantly influenced the extent of CLO removal. More importantly, HPLC/MS revealed that the identity of reaction products depends on the extent of iron corrosion or the abundance of ICPs. The investigation of the CLO/Fe(0)/H(2)O system disproved the popular view that direct reduction mediates contaminant removal in the presence of Fe(0). 2009 Elsevier B.V. All rights reserved.

  11. Investigating the mechanism of clofibric acid removal in Fe0/H2O systems

    International Nuclear Information System (INIS)

    Ghauch, Antoine; Abou Assi, Hala; Tuqan, Almuthanna

    2010-01-01

    Since the introduction of iron wall technology, the inherent relationship between contaminant removal and iron corrosion has been mostly attributed to electron transfer from the metal body (direct reduction). This thermodynamically founded premise has failed to explain several experimental facts. Recently, a new concept considering adsorption and co-precipitation as fundamental contaminant removal mechanisms was introduced. This consistent concept has faced very skeptic views and necessarily needs experimental validation. The present work was the first independent attempt to validate the new concept using clofibric acid (CLO) as model compound. For this purpose, a powdered Fe 0 material (Fe 0 ) was used in CLO removal experiments under various experimental conditions. Additional experiments were performed with plated Fe 0 (mFe 0 : Fe 0 /Pd 0 , Fe 0 /Ni 0 ) to support the discussion of removal mechanism. Main investigated experimental variables included: abundance of O 2 , abundance of iron corrosion products (ICPs) and shaking operations. Results corroborated the concept that quantitative contaminant removal in Fe 0 /H 2 O systems occurs within the oxide-film in the vicinity of Fe 0 . Additionally, mixing type and shaking intensity significantly influenced the extent of CLO removal. More importantly, HPLC/MS revealed that the identity of reaction products depends on the extent of iron corrosion or the abundance of ICPs. The investigation of the CLO/Fe 0 /H 2 O system disproved the popular view that direct reduction mediates contaminant removal in the presence of Fe 0 .

  12. An investigation of transition boiling mechanisms of subcooled water under forced convective conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kwang-Won, Lee; Sang-Yong, Lee

    1995-09-01

    A mechanistic model for forced convective transition boiling has been developed to investigate transition boiling mechanisms and to predict transition boiling heat flux realistically. This model is based on a postulated multi-stage boiling process occurring during the passage time of the elongated vapor blanket specified at a critical heat flux (CHF) condition. Between the departure from nucleate boiling (DNB) and the departure from film boiling (DFB) points, the boiling heat transfer is established through three boiling stages, namely, the macrolayer evaporation and dryout governed by nucleate boiling in a thin liquid film and the unstable film boiling characterized by the frequent touches of the interface and the heated wall. The total heat transfer rates after the DNB is weighted by the time fractions of each stage, which are defined as the ratio of each stage duration to the vapor blanket passage time. The model predictions are compared with some available experimental transition boiling data. The parametric effects of pressure, mass flux, inlet subcooling on the transition boiling heat transfer are also investigated. From these comparisons, it can be seen that this model can identify the crucial mechanisms of forced convective transition boiling, and that the transition boiling heat fluxes including the maximum heat flux and the minimum film boiling heat flux are well predicted at low qualities/high pressures near 10 bar. In future, this model will be improved in the unstable film boiling stage and generalized for high quality and low pressure situations.

  13. A Theoretical Investigation of Composite Overwrapped Pressure Vessel (COPV) Mechanics Applied to NASA Full Scale Tests

    Science.gov (United States)

    Thesken, John C.; Murthy, Pappu L. N.; Phoenix, S. L.; Greene, N.; Palko, Joseph L.; Eldridge, Jeffrey; Sutter, James; Saulsberry, R.; Beeson, H.

    2009-01-01

    A theoretical investigation of the factors controlling the stress rupture life of the National Aeronautics and Space Administration's (NASA) composite overwrapped pressure vessels (COPVs) continues. Kevlar (DuPont) fiber overwrapped tanks are of particular concern due to their long usage and the poorly understood stress rupture process in Kevlar filaments. Existing long term data show that the rupture process is a function of stress, temperature and time. However due to the presence of a load sharing liner, the manufacturing induced residual stresses and the complex mechanical response, the state of actual fiber stress in flight hardware and test articles is not clearly known. This paper is a companion to a previously reported experimental investigation and develops a theoretical framework necessary to design full-scale pathfinder experiments and accurately interpret the experimentally observed deformation and failure mechanisms leading up to static burst in COPVs. The fundamental mechanical response of COPVs is described using linear elasticity and thin shell theory and discussed in comparison to existing experimental observations. These comparisons reveal discrepancies between physical data and the current analytical results and suggest that the vessel s residual stress state and the spatial stress distribution as a function of pressure may be completely different from predictions based upon existing linear elastic analyses. The 3D elasticity of transversely isotropic spherical shells demonstrates that an overly compliant transverse stiffness relative to membrane stiffness can account for some of this by shifting a thin shell problem well into the realm of thick shell response. The use of calibration procedures are demonstrated as calibrated thin shell model results and finite element results are shown to be in good agreement with the experimental results. The successes reported here have lead to continuing work with full scale testing of larger NASA COPV

  14. Structural, elastic, mechanical and thermodynamic properties of Terbium oxide: First-principles investigations

    Directory of Open Access Journals (Sweden)

    Samah Al-Qaisi

    Full Text Available First-principles investigations of the Terbium oxide TbO are performed on structural, elastic, mechanical and thermodynamic properties. The investigations are accomplished by employing full potential augmented plane wave FP-LAPW method framed within density functional theory DFT as implemented in the WIEN2k package. The exchange-correlation energy functional, a part of the total energy functional, is treated through Perdew Burke Ernzerhof scheme of the Generalized Gradient Approximation PBEGGA. The calculations of the ground state structural parameters, like lattice constants a0, bulk moduli B and their pressure derivative B′ values, are done for the rock-salt RS, zinc-blende ZB, cesium chloride CsCl, wurtzite WZ and nickel arsenide NiAs polymorphs of the TbO compound. The elastic constants (C11, C12, C13, C33, and C44 and mechanical properties (Young’s modulus Y, Shear modulus S, Poisson’s ratio σ, Anisotropic ratio A and compressibility β, were also calculated to comprehend its potential for valuable applications. From our calculations, the RS phase of TbO compound was found strongest one mechanically amongst the studied cubic structures whereas from hexagonal phases, the NiAs type structure was found stronger than WZ phase of the TbO. To analyze the ductility of the different structures of the TbO, Pugh’s rule (B/SH and Cauchy pressure (C12–C44 approaches are used. It was found that ZB, CsCl and WZ type structures of the TbO were of ductile nature with the obvious dominance of the ionic bonding while RS and NiAs structures exhibited brittle nature with the covalent bonding dominance. Moreover, Debye temperature was calculated for both cubic and hexagonal structures of TbO in question by averaging the computed sound velocities. Keywords: DFT, TbO, Elastic properties, Thermodynamic properties

  15. An Investigation of the Mechanism Underlying Teacher Aggression: Testing I[superscript 3] Theory and the General Aggression Model

    Science.gov (United States)

    Montuoro, Paul; Mainhard, Tim

    2017-01-01

    Background: Considerable research has investigated the deleterious effects of teachers responding aggressively to students who misbehave, but the mechanism underlying this dysfunctional behaviour remains unknown. Aims: This study investigated whether the mechanism underlying teacher aggression follows I[superscript 3] theory or General Aggression…

  16. Electrical and mechanical investigations on polyvinyl chloride filled with haf black

    International Nuclear Information System (INIS)

    El- Nashar, D.E.; Eid, M.A.M.; Abou Aiad, T.H.; Abd-El-Messieh, S.L.

    2005-01-01

    Polyvinyl chloride (PVC) was chosen to be loaded with various amount of high abrasion furnace black (HAF). The mechanical as well as electrical properties of the prepared composites were investigated. The Dielectric properties of these composites were investigated in the frequency range 10 2 - 10 5 Hz at temperature range from 30 to 120 degree C . In addition to the conductivity term, the experimental data of the dielectric losses ε were analyzed using a computer program based on both Havriliak-Nagami and Frohlich equations into two relaxation processes. The first relaxation process in the lower frequency range could be attributed to Maxwell Wagner effect. The second relaxation could be attributed to the combination of the large scale mobilization of the chains i.e. the glass rubber relaxation process in addition to a contribution of the motion of the large aggregates caused by the movement of the main chain, which are expected to be formed by the addition of different ingredients to PVC such as plasticizer. The percolation threshold concentration, which is the concentration after which the conductivity increases many orders of magnitude with very little increase in the filler amount for PVC/HAF composites depends upon the measuring temperature, whether it is below or above the glass transition of the polymer matrix. Stress strain plot, hardness, and other mechanical properties such as stress at yield, stress at rupture, strain at yield, strain at rupture and Young's Modulus were investigated at room temperature. This investigation led to the conclusion that all the mechanical properties are improved by increasing HAF content and reaches its optimum values at about 30 p hr HAF loading. On the other hand. The addition of HAF black by concentration up to 40 p hr increase the electrical conductivity to be in the order of 10 -10 Sm -1 at 30 degree C and 10 -9 Sm -1 at 120 degree C which highly recommend such composites to be used in anti static applications as the

  17. Mizunami Underground Research Laboratory project. Rock mechanical investigations annual report for fiscal year 2013

    International Nuclear Information System (INIS)

    Sato, Toshinori; Sanada, Hiroyuki; Tanno, Takeo

    2015-02-01

    In order to establish the scientific and technical basis for geological disposal of technology, Japan Atomic Energy Agency (JAEA) is pursuing the geoscientific research project namely the Mizunami Underground Research Laboratory (MIU) in the crystalline rock environment at Tono Geoscience Center (TGC). In the MIU Project, geoscientific research is being carried out in three overlapping phases; Surface-based Investigation Phase (Phase I: FY1996 - 2004), Construction Phase (Phase II: FY2004- in progress) and Operation Phase (Phase III: FY2010- in progress). In the rock mechanical investigations at the Phase II, the research aims at “Characterization of geological environment in the Excavation Disturbed Zone (EDZ)” from the viewpoint of safety assessment. For the research, the specific information of the EDZ such as (1) size and structures, (2) petrophysical/geomechanical properties, and (3) stress state are required. The research also aims at “Characterization of geomechanical stability around tunnel” from the viewpoint of design and construction of underground facilities. For the research, the specific information such as (4) local stress regime, (5) spatial variability of petrophysical/geomechanical properties of rocks, and (6) distribution of discontinuities intersecting underground tunnels are required. The measurement system for rock mass behavior has been manufactured and set for groundwater recovery experiment in the Phase III. This report presents the results of following rock mechanical investigations conducted in FY 2013. In-situ stress measurements using Compact Conical-ended Borehole Overcoring Technique were performed at the - 500m stage. Measurement system for rock mass displacement using optical fiber was installed at the - 500m stage as part of the groundwater recovery experiment. Study on the modeling based on equivalent continuum model was continued. Phenomenological study and theoretical study on long-term behavior of crystalline rock were

  18. Thermo-mechanical cementation effects in bentonite investigated by unconfined compression tests

    International Nuclear Information System (INIS)

    Dueck, Ann; Boergesson, Lennart; Karnland, Ola

    2010-01-01

    Document available in extended abstract form only. Mechanical properties of buffer material are included in the model used for predicting the physical behaviour of saturated buffer in the final disposal of spent nuclear fuel. One simple test where the mechanical properties can be quantified is the unconfined compression test. In this type of test the relation between stress and strain are determined from axial compression of a cylindrical specimen. In the project LOT the unconfined compression test was used to study the mechanical properties on field exposed buffer material. The results from these test series showed that specimens exposed to warm conditions had a significantly reduced strain at failure compared to reference material. Changes in mechanical properties may be due to incipient chemical changes in the material. However, the present study focuses on other possible sources for brittle failure behaviour. In this study the objective was to experimentally investigate if deviating stress-strain behaviour measured after temperature exposure could be explained by Thermo-Hydro-Mechanical processes. The word cementation is used as a general term for the process involving a change in mechanical properties including brittleness at failure. A relatively large number of specimens were tested representing sodium dominated and calcium dominated bentonites. Cylindrical specimens were compacted from air dry powder to a height and diameter of 20 mm. The main part of the specimens was put in a saturation device prior to the tests in order to ensure full saturation. After the saturation each sample was placed in a mechanical press where a constant rate of strain was applied axially to the specimens having no radial confinement. During the test the deformation and the applied force were measured by means of force and strain transducers. After failure the water content and density were determined. Test series were carried out for investigating the influence of for example

  19. Understanding the mechanisms that change the conductivity of damaged ITO-coated polymeric films: A micro-mechanical investigation

    KAUST Repository

    Nasr Saleh, Mohamed; Lubineau, Gilles

    2014-01-01

    Degradation from mechanical loading of transparent electrodes made of indium tin oxide (ITO) endangers the integrity of any material based on these electrodes, including flexible organic solar cells. However, how different schemes of degradation

  20. Multi-scale investigation into the mechanisms of fault mirror formation in seismically active carbonate rocks

    Science.gov (United States)

    Ohl, Markus; Chatzaras, Vasileios; Niemeijer, Andre; King, Helen; Drury, Martyn; Plümper, Oliver

    2017-04-01

    Mirror surfaces along principal slip zones in carbonate rocks have recently received considerable attention as they are thought to form during fault slip at seismic velocities and thus may be a marker for paleo-seismicity (Siman-Tov et al., 2013). Therefore, these structures represent an opportunity to improve our understanding of earthquake mechanics in carbonate faults. Recent investigations reported the formation of fault mirrors in natural rocks as well as in laboratory experiments and connected their occurrence to the development of nano-sized granular material (Spagnuolo et al., 2015). However, the underlying formation and deformation mechanisms of these fault mirrors are still poorly constrained and warrant further research. In order to understand the influence and significance of these fault products on the overall fault behavior, we analysed the micro-, and nanostructural inventory of natural fault samples containing mirror slip surfaces. Here we present first results on the possible formation mechanisms of fault mirrors and associated deformation mechanisms operating in the carbonate fault gouge from two seismically active fault zones in central Greece. Our study specifically focuses on mirror slip surfaces obtained from the Arkitsa fault in the Gulf of Evia and the Schinos fault in the Gulf of Corinth. The Schinos fault was reactivated by a magnitude 6.7 earthquake in 1981 while the Arkitsa fault is thought to have been reactivated by a magnitude 6.9 earthquake in 1894. Our investigations encompass a combination of state-of-the-art analytical techniques including X-ray computed tomography, focused ion beam scanning electron microscopy (FIB-SEM), transmission electron microscopy (TEM) and Raman spectroscopy. Using this multiscale analytical approach, we report decarbonation-reaction structures, considerable calcite twinning and grain welding immediately below the mirror slip surface. Grains or areas indicating decarbonation reactions show a foam

  1. Investigation of the mechanism for penetration of low density lipoprotein into the arterial wall

    Science.gov (United States)

    Glukhova, O. E.; Zyktin, A. A.; Slepchenkov, M. M.

    2018-02-01

    Currently, the pathology of the cardiovascular system is an extremely urgent problem of fundamental and clinical medicine. These diseases are caused, mainly, by atherosclerotic changes in the wall of blood vessels. The predominant role in the development of atherosclerosis is attributed to the penetration of various kinds of lipoproteins into the arterial intima. In this paper, we in silico investigated the dynamics of the penetration of low density lipoprotein (LDL) through the intercellular gap using molecular modeling methods. The simulation was carried out in the GROMACS software package using a coarse-grained MARTINI model. During investigation we carried out the LDL self-assembly for the first time. The coarse-grained model of LDL was collected from the following molecules: POPC (phosphatidylcholine) - 630 molecules, LPC (lysophosphatidylcholine) - 80 molecules CHOL (cholesterol) - 600 molecules CHYO (cholesteryl oleate) - 1600 molecules TOG (glycerol trioleate) 180 Molecules. The coarse-grained model of the intercellular endothelial gap was based on a model of lipid bilayer consisting of DPPC phospholipids and cholesterol in a percentage ratio of 70% and 30%, respectively. Based on the obtained results, we can predict the mechanism of LDL diffusion. Lipoproteins can be deformed so as to pass through narrow gaps. Our investigations open the way for the research of the behavior dynamics of LDL moving with the blood flow rate when interacting with the intercellular gaps of the endothelial layer of the vessel inner wall.

  2. Investigating decision-making mechanisms and biases in Dutch criminal investigation teams by using a serious game

    NARCIS (Netherlands)

    Groenendaal, J.; Helsloot, I.

    2014-01-01

    In this article we examine by means of a serious game how ten teams of police leaders from major criminal investigation teams from five regional forces in the Netherlands, during criminal investigation, deal with tunnel vision and other potential causes of flawed decision-making, described according

  3. Investigation of Sterilization Mechanism for Geobacillus stearothermophilus Spores with Plasma-Excited Neutral Gas

    Science.gov (United States)

    Matsui, Kei; Ikenaga, Noriaki; Sakudo, Noriyuki

    2015-09-01

    We investigate the mechanism of the sterilization with plasma-excited neutral gas that uniformly sterilizes both the space and inner wall of the reactor chamber at atmospheric pressure. Only reactive neutral species such as plasma-excited gas molecules and radicals are separated from the plasma and sent to the reactor chamber for chemical sterilization. The plasma source gas uses humidified mixture of nitrogen and oxygen. Geobacillus stearothermophilus spores and tyrosine which is amino acid are treated by the plasma-excited neutral gas. Shape change of the treated spore is observed by SEM, and chemical modification of the treated tyrosine is analyzed by HPLC. As a result, the surface of the treated spore shows depression. Hydroxylation and nitration of tyrosine are shown after the treatment. For these reasons, we believe that the sterilization with plasma-excited neutral gas results from the deformation of spore structure due to the chemical modification of amino acid.

  4. An investigation of the mechanical and hydrologic behavior of tuff fractures under saturated conditions

    International Nuclear Information System (INIS)

    Voss, C.F.; Shotwell, L.R.

    1990-04-01

    The mechanical and hydrologic behavior of natural fractures in a partially welded tuff rock were investigated. Tuff cores, each containing part of the same natural fracture oriented subparallel to the core axis, were subjected a range of stress and hydraulic gradients while simultaneously monitoring changes in the fracture aperture and volumetric flow rate. The fractures were tested in three configurations: intact, mated, and offset. Fracture deformation was nonlinear over the stress range tested with permanent deformation and hysteresis occurring with each loading cycle. The offset samples had larger permanent deformation and significantly reduced normal stiffness at lower stress levels. The cubic flow law appears to be valid for the relatively undisturbed tuff fractures at the scale tested. The cubic law did not explain the observed hydraulic behavior of the offset fractures. 6 refs., 10 figs., 2 tabs

  5. Investigation of the mechanisms that influence the accretion of bovine intramuscular and subcutaneous adipose tissue

    International Nuclear Information System (INIS)

    Miller, M.F.

    1987-01-01

    The understanding of the mechanisms that differ between breeds of cattle and their ability to deposit intramuscular adipose tissue is imperative to profitable beef production. Thus, the interactions among breeds, metabolic substrates and specific hormones in bovine intramuscular and subcutaneous adipose tissue were investigated. Subcutaneous and intramuscular adipose tissues were obtained from 10 Angus and 9 Santa Gertrudis steers immediately postmortem. The adipose tissues were incubated for 2 h and 48 h with and without 1 mU/ml insulin and 30 mg/ml bovine serum albumin (BSA) to measure the incorporation of 14 C-labeled acetate and glucose into lipid fractions. At the same chronological age, Angus steers had a more youthful lean maturity score, higher USDA marbling scores and higher USDA quality grades than carcasses from Santa Gertrudis steers

  6. Microscopic description of protein thermostabilization mechanisms with disaccharides from Raman spectroscopy investigations

    Energy Technology Data Exchange (ETDEWEB)

    Hedoux, A; Affouard, F; Descamps, M; Guinet, Y; Paccou, L [Laboratoire de Dynamique et Structure des Materiaux Moleculaires UMR CNRS 8024, Universite de Lille 1, UFR de Physique, Batiment P5, 59 655 Villeneuve d' Ascq Cedex (France)

    2007-05-23

    The mechanisms of protein thermostabilization by sugar were analysed for three disaccharides (maltose, sucrose and trehalose) characterized by the same chemical formula (C{sub 12}H{sub 22}O{sub 11}). Raman scattering investigations simultaneously carried out in the low-frequency range and in the amide I band region provide a microscopic description of the process of protein thermal denaturation. From this detailed description, the influence of sugar on this process was analysed. The principal effect of sugars is to stabilize the tertiary structure, in which the biomolecule preserves its native conformation, through a strengthening of O-H interactions. This study shows that the bioprotective properties of sugars are mainly based on interactions between water and sugar. The exceptional properties of trehalose to preserve the native state of lysozyme by heating can be associated with its capability to distort the tetra-bonded hydrogen bond network of water.

  7. Shape Stability of the LHC Superconducting Dipole Mechanical Model and Experimental Investigations

    CERN Document Server

    La China, M; Scandale, Walter

    2006-01-01

    The aim of this work is the study of the geometry of the main superconducting dipole for the Large Hadron Collider from the manufacturing process throughout the pre-operative stages to predict the respect of the tight tolerance, imposed by the beam dynamic, in both nominal and chancy working conditions. Expected and unexpected situations have been approached through the development of dedicate models and tests with the purpose of evaluating their impact on magnet geometry. In our study we used structural models of different complexity for different purposes. For example we used analytical models in conjunction with the cold mass geometry database to simulate the overall effect of individual geometry corrections or to discriminate elastic from inelastic measured deformations. By means of finite element models, instead, we investigated the effect of mechanic loads as induced by road transport, or the effect of electro-magnetic forces arising in working conditions. As the assembly complexity prevents from deduci...

  8. The quantum-chemical investigation of N-cyclization reaction mechanism for epichlorohydrin aminolysis products

    Directory of Open Access Journals (Sweden)

    Andrey V. Tokar

    2014-12-01

    Full Text Available The mechanism of intramolecular cyclization for products of epichlorohydrin aminolysis by secondary amines has been investigated at ab initio level of theory. By comparative analysis of energetic characteristics, which obtained in vacuo as well as in acetonitrile solution with the trace quantities of water as an «active» solvation partner of reaction, it has been shown a decisive role of solvent, which occurs mainly at the expense of the polarizable effects for nonspecific solvation. Indeed, the addition to the substrate of one water molecule have decreased corresponding EACT values only 24.1 kJ/mol, while the appearance of acetonitrile surroundings have the same influence ~42.0 kJ/mol. The results of calculations are in good agreement with that data, which have been obtained for such type modeling previously.

  9. Investigation of mechanical behavior of copper in Nb3Sn superconducting composite wire

    International Nuclear Information System (INIS)

    Hojo, M.; Matsuoka, T.; Nakamura, M.; Tanaka, M.; Adachi, T.; Ochiai, S.; Miyashita, K.

    2004-01-01

    The mechanical properties and the thermal residual stress distribution of copper in Nb 3 Sn/Cu composite superconductor were investigated in detail. The stabilizer copper was removed from the composite wire, and the stress-strain behavior of this wire was compared with that of the original composite wire. The subtraction yielded the stress-strain curves of the copper when the Bauschinger effect was taken into account. The tensile test of the composites from which about 30% and 60% of copper was removed suggested the existence of the distribution of the thermal residual stress in the stabilizer copper. When this factor was taken into account, the analytical stress-strain curve agreed well with the experimental stress-strain curve. Thus, the stress-stain behavior of each component was fully understood

  10. Investigation of mechanical properties of kenaf, hemp and E-glass fiber reinforced composites

    Science.gov (United States)

    Dinesh, Veena; Shivanand, H. K.; Vidyasagar, H. N.; Chari, V. Srinivasa

    2018-04-01

    Recently the use of fiber reinforced polymer composite in the automobile, aerospace overwhelming designing sectors has increased tremendously due to the ecological issues and health hazard possessed by the synthetic fiber during disposal and manufacturing. The paper presents tensile strength, flexural strength and hardness of kenaf-E glass-kenaf, hemp-E glass-hemp and kenaf-E glass-hemp fiber reinforced polyester composites. The composite plates are shaped according to the standard geometry and uni-axially loaded in order to investigate the tensile responses of each combination. In addition to the physical and mechanical properties, processing methods and application of kenaf and hemp fiber composites is also discussed.

  11. Indentation induced mechanical and electrical response in ferroelectric crystal investigated by acoustic mode AFM

    Science.gov (United States)

    Yu, H. F.; Zeng, H. R.; Ma, X. D.; Chu, R. Q.; Li, G. R.; Luo, H. S.; Yin, Q. R.

    2005-01-01

    The mechanical and electrical response of Pb (Mg1/3Nb2/3)- O3-PbTiO3 single crystals to micro-indentation are investigated using the newly developed low frequency scanning probe acoustic microscopy which is based on the atomic force microscope. There are three ways to release the stress produced by indentation. Plastic deformation emerged directly underneath the indentor and along the indentation diagonals. In addition, indentation-induced micro-cracks and new non-180° domain structures which are perpendicular to each other are also observed in the indented surface. Based on the experimental results, the relationship between the cracks and the domain patterns was discussed.

  12. Investigation on Mechanical Properties of Austenitic Stainless-Steel Pipes Welded by TIG Method

    Directory of Open Access Journals (Sweden)

    Mushtaq Albdiry

    2017-11-01

    Full Text Available This paper investigates the mechanical properties of austenitic stainless steel (type 204 pipes welded by Tungsten Inert Gas (TIG welding process. Testing of hardness (HRC, tensile strength and bending strength was performed for the steel pipes welded at two different welding temperatures (700 °C and 900 °C with and without using the weld filler wire. The microstructure of the welding regions was examined by using an optical microscopy. The properties showed that the steel pipes welded by 900 °C with using the weld filler obtained the highest tensile strength and bending strength versus these welded by 700 °C without the use of the weld filler. This is attributed to the weld filler heated and melt at sufficient temperature (900 °C and compensate losing in the Ni metal occurred in the base steel metal during the welding process.

  13. Rock mechanics investigations of structural stability in the Bulli seam at West Cliff Colliery

    Energy Technology Data Exchange (ETDEWEB)

    Jaggar, F

    1978-03-01

    Rock mechanics investigations were conducted at West Cliff colliery to obtain rock properties and stress measurements and study the stability of mining structures. The roof and floor were drilled in order to obtain core for rock testing and lump samples of coal were collected in order to measure the coal properties. Absolute stress measurements were obtained using CSIR cells. The strata were sufficiently uniform and competent to overcore the emplaced cells. Testing revealed that the rocks were better than average for coal measure sedimentary strata and the stresses indicated the existence of a moderately high horizontal stress field. The coal is of average strength only with some marked variation relating to the very banded nature of the seam. Finite element analyses showed that the rectangular roadways driven using roof bolts and timber supports were stable and adequately stable by an indicative factor of safety of about l.5.

  14. Turbulent pattern formation in plane Couette flow: modelling and investigation of mechanisms

    International Nuclear Information System (INIS)

    Rolland, Joran; Manneville, Paul

    2011-01-01

    In the transitional range of Reynolds number, plane Couette flow exhibits oblique turbulent bands. We focus on a Kelvin-Helmholtz instability occurring in the intermediate area between turbulent and laminar flow. The instability is characterised by means of Direct Numerical Simulations (DNS): a short wavelength instability, localised and advected in the spanwise direction. The coherent background flow on which the instability develops is extracted from DNS data, and an analytical formulation for the background flow is proposed. Linear stability analysis is performed to investigate its main mechanisms and its convective or absolute nature, depending on the location in the flow. Both DNS and linear stability analysis indicate that the instability takes place in a confined area 'inside' turbulent streaks. This proceeding sums up the results from an article in preparation (Rolland, 2011).

  15. Investigation of mechanical properties of masterbatches and composites with small additions of CNTs

    International Nuclear Information System (INIS)

    Burmistrov, I N; Yudintseva, T I; Ilinykh, I A; Khaydarov, B B; Mazov, I N; Anshin, S M; Kuznetsov, D V

    2016-01-01

    The present paper investigated physical and mechanical properties of the nanotube masterbatches and the polymer composites with low contents of carbon nanotubes (CNTs), which were obtained by diluting masterbatches. Ethylene-octene copolymer was used as the binder for the masterbatches, which provides the elasticity of the material at a content 20 wt% of CNT. Masterbatches were obtained with a 2-roller mixer, and their additive to polypropylene was carried out on a single screw injection molding machine. Strength properties of ethylene-octene copolymer increased when additing CNTs in an amount of 5-20 wt%. When the concentration of CNT in masterbatches is reduced to 0.01-0.1 wt% its strength characteristics increased up to 4-18%. The most effective strengthening of polypropylene was observed with the content of CNTs 0.1 wt%. (paper)

  16. Investigations of the electrical neutralization and bonding mechanisms of shallow impurities in silicon grain boundaries

    International Nuclear Information System (INIS)

    Kazmerski, L.L.; Nelson, A.J.; Dhere, R.G.; Abou-Elfotouh, F.

    1987-01-01

    Interactions between shallow acceptors (B, Al, Ga and In) and hydrogen in polycrystalline Si are investigated. The bonding mechanisms involved in the acceptor neutralization process at grain boundaries are examined using microanalytical techniques. Differences in the incorporation of molecular and atomic hydrogen, and corresponding variations in electrical passivation at grain boundaries, are observed. Low-temperature Auger difference spectroscopy confirms Si-H bonding to dominate B, Ga and In-doped cases, with no direct acceptor-hydrogen bonding. Al-rich grain boundaries show H-complex and hydroxyl bonding. The data confirm chemical bond strength trends with B< Ga< In. Volume-indexed AES is utilized to compare bonding and H-distributions in B- and Al-rich grain boundary regions

  17. Investigation of mechanical properties of modern dental composites after artificial aging for one year.

    Science.gov (United States)

    Hahnel, Sebastian; Henrich, Anne; Bürgers, Ralf; Handel, Gerhard; Rosentritt, Martin

    2010-01-01

    This in vitro study investigated the aging behavior of dental composites with regard to surface roughness (SR), Vickers hardness (VH) and flexural strength (FS), and the study elucidated the impact of artificial aging parameters. One hundred and sixty-five rectangular specimens were prepared from five composites (Filtek Supreme XT, Filtek Silorane, CeramX, Quixfil, experimental ormocer) and subjected to various artificial aging protocols (storage in distilled water/ethanol/artificial saliva for 7, 90 and 365 days; thermal cycling, 2 x 3000 cycles 5/55 degrees C). SR, VH and FS were determined at baseline and after each aging treatment. Means and standard deviations were calculated; statistical analysis was performed using three-way ANOVA and the Tukey-Kramer multiple comparison test (alpha=.05). The results showed a significant influence in the composite and aging duration on mechanical parameters; the aging medium did not have a significant influence on VH and FS, but there was a significant influence on SR. The highest overall VH was found for theexperimental ormocer; Filtek Silorane yielded the lowest values. For FS, the significantly highest values were found for Filtek Silorane, and the lowest values were found for the experimental ormocer. Prolonged aging periods (90 or 365 days) or thermal cycling led to significant decreases in both VH and FS and significant increases in SR. The findings of the current study indicate that composites differ significantly for SR and its mechanical properties with regard to FS and VH, as well as in aging behavior. Generally, artificial aging leads to a significant decrease in mechanical properties, which underlines the relevance of continuous improvement of dental composites.

  18. Experimental Investigation of Mechanical Properties of Black Shales after CO2-Water-Rock Interaction

    Directory of Open Access Journals (Sweden)

    Qiao Lyu

    2016-08-01

    Full Text Available The effects of CO2-water-rock interactions on the mechanical properties of shale are essential for estimating the possibility of sequestrating CO2 in shale reservoirs. In this study, uniaxial compressive strength (UCS tests together with an acoustic emission (AE system and SEM and EDS analysis were performed to investigate the mechanical properties and microstructural changes of black shales with different saturation times (10 days, 20 days and 30 days in water dissoluted with gaseous/super-critical CO2. According to the experimental results, the values of UCS, Young’s modulus and brittleness index decrease gradually with increasing saturation time in water with gaseous/super-critical CO2. Compared to samples without saturation, 30-day saturation causes reductions of 56.43% in UCS and 54.21% in Young’s modulus for gaseous saturated samples, and 66.05% in UCS and 56.32% in Young’s modulus for super-critical saturated samples, respectively. The brittleness index also decreases drastically from 84.3% for samples without saturation to 50.9% for samples saturated in water with gaseous CO2, to 47.9% for samples saturated in water with super-critical carbon dioxide (SC-CO2. SC-CO2 causes a greater reduction of shale’s mechanical properties. The crack propagation results obtained from the AE system show that longer saturation time produces higher peak cumulative AE energy. SEM images show that many pores occur when shale samples are saturated in water with gaseous/super-critical CO2. The EDS results show that CO2-water-rock interactions increase the percentages of C and Fe and decrease the percentages of Al and K on the surface of saturated samples when compared to samples without saturation.

  19. Investigation of power oscillation mechanisms based on noise analysis at Forsmark-1 BWR

    International Nuclear Information System (INIS)

    Oguma, Ritsuo

    1996-01-01

    Noise analysis has been performed for stability test data collected during reactor start-up in January 1989 at the boiling water reactor (BWR) Forsmark unit 1. A unique instrumentation to measure local coolant flow in this reactor allowed investigation of dynamic interactions between neutron flux and coolant flow noise signals at different radial positions in the core. The causal relationship for these signals was evaluated based on a method called signal transmission path (STP) analysis with the aim of identifying the principal mechanism of power oscillations in this reactor. The results of the present study indicated that large amplitude power oscillations were induced by two instability mechanisms concurrent in the core. The first is the global void reactivity feedback effect which played the most significant role to power oscillations at a resonant frequency of about 0.53 Hz. The second is the thermal-hydraulics coupling with neutron kinetics, inducing resonant oscillations at about 0.45 Hz. The latter was found to be active only in a certain core region. A peculiar phenomenon of amplitude modulations observed in some local power range monitor (LPRM) signals was also examined. It was interpreted to occur as the consequence of these two resonant power oscillations, the frequencies of which lie close to each other. The noise analysis technique applied in the present study is expected to be useful to get a deeper understanding of the power oscillation mechanism which is active in the reactor under evaluation. The technique may be applicable to BWRs with instruments to measure local channel flow together with in-core neutron detectors. (Author)

  20. Investigation into local cell mechanics by atomic force microscopy mapping and optical tweezer vertical indentation.

    Science.gov (United States)

    Coceano, G; Yousafzai, M S; Ma, W; Ndoye, F; Venturelli, L; Hussain, I; Bonin, S; Niemela, J; Scoles, G; Cojoc, D; Ferrari, E

    2016-02-12

    Investigating the mechanical properties of cells could reveal a potential source of label-free markers of cancer progression, based on measurable viscoelastic parameters. The Young's modulus has proved to be the most thoroughly studied so far, however, even for the same cell type, the elastic modulus reported in different studies spans a wide range of values, mainly due to the application of different experimental conditions. This complicates the reliable use of elasticity for the mechanical phenotyping of cells. Here we combine two complementary techniques, atomic force microscopy (AFM) and optical tweezer microscopy (OTM), providing a comprehensive mechanical comparison of three human breast cell lines: normal myoepithelial (HBL-100), luminal breast cancer (MCF-7) and basal breast cancer (MDA-MB-231) cells. The elastic modulus was measured locally by AFM and OTM on single cells, using similar indentation approaches but different measurement parameters. Peak force tapping AFM was employed at nanonewton forces and high loading rates to draw a viscoelastic map of each cell and the results indicated that the region on top of the nucleus provided the most meaningful results. OTM was employed at those locations at piconewton forces and low loading rates, to measure the elastic modulus in a real elastic regime and rule out the contribution of viscous forces typical of AFM. When measured by either AFM or OTM, the cell lines' elasticity trend was similar for the aggressive MDA-MB-231 cells, which were found to be significantly softer than the other two cell types in both measurements. However, when comparing HBL-100 and MCF-7 cells, we found significant differences only when using OTM.

  1. Experimental Investigation of Mechanical Properties of Black Shales after CO2-Water-Rock Interaction

    Science.gov (United States)

    Lyu, Qiao; Ranjith, Pathegama Gamage; Long, Xinping; Ji, Bin

    2016-01-01

    The effects of CO2-water-rock interactions on the mechanical properties of shale are essential for estimating the possibility of sequestrating CO2 in shale reservoirs. In this study, uniaxial compressive strength (UCS) tests together with an acoustic emission (AE) system and SEM and EDS analysis were performed to investigate the mechanical properties and microstructural changes of black shales with different saturation times (10 days, 20 days and 30 days) in water dissoluted with gaseous/super-critical CO2. According to the experimental results, the values of UCS, Young’s modulus and brittleness index decrease gradually with increasing saturation time in water with gaseous/super-critical CO2. Compared to samples without saturation, 30-day saturation causes reductions of 56.43% in UCS and 54.21% in Young’s modulus for gaseous saturated samples, and 66.05% in UCS and 56.32% in Young’s modulus for super-critical saturated samples, respectively. The brittleness index also decreases drastically from 84.3% for samples without saturation to 50.9% for samples saturated in water with gaseous CO2, to 47.9% for samples saturated in water with super-critical carbon dioxide (SC-CO2). SC-CO2 causes a greater reduction of shale’s mechanical properties. The crack propagation results obtained from the AE system show that longer saturation time produces higher peak cumulative AE energy. SEM images show that many pores occur when shale samples are saturated in water with gaseous/super-critical CO2. The EDS results show that CO2-water-rock interactions increase the percentages of C and Fe and decrease the percentages of Al and K on the surface of saturated samples when compared to samples without saturation. PMID:28773784

  2. Experimental Investigation of Mechanical Properties of Black Shales after CO₂-Water-Rock Interaction.

    Science.gov (United States)

    Lyu, Qiao; Ranjith, Pathegama Gamage; Long, Xinping; Ji, Bin

    2016-08-06

    The effects of CO₂-water-rock interactions on the mechanical properties of shale are essential for estimating the possibility of sequestrating CO₂ in shale reservoirs. In this study, uniaxial compressive strength (UCS) tests together with an acoustic emission (AE) system and SEM and EDS analysis were performed to investigate the mechanical properties and microstructural changes of black shales with different saturation times (10 days, 20 days and 30 days) in water dissoluted with gaseous/super-critical CO₂. According to the experimental results, the values of UCS, Young's modulus and brittleness index decrease gradually with increasing saturation time in water with gaseous/super-critical CO₂. Compared to samples without saturation, 30-day saturation causes reductions of 56.43% in UCS and 54.21% in Young's modulus for gaseous saturated samples, and 66.05% in UCS and 56.32% in Young's modulus for super-critical saturated samples, respectively. The brittleness index also decreases drastically from 84.3% for samples without saturation to 50.9% for samples saturated in water with gaseous CO₂, to 47.9% for samples saturated in water with super-critical carbon dioxide (SC-CO₂). SC-CO₂ causes a greater reduction of shale's mechanical properties. The crack propagation results obtained from the AE system show that longer saturation time produces higher peak cumulative AE energy. SEM images show that many pores occur when shale samples are saturated in water with gaseous/super-critical CO₂. The EDS results show that CO₂-water-rock interactions increase the percentages of C and Fe and decrease the percentages of Al and K on the surface of saturated samples when compared to samples without saturation.

  3. Experimental Investigation on the Morphology and Adhesion Mechanism of Leech Posterior Suckers.

    Directory of Open Access Journals (Sweden)

    Huashan Feng

    Full Text Available The posterior sucker of a leech represents a fascinating natural system that allows the leech to adhere to different terrains and substrates. However, the mechanism of adhesion and desorption has not yet to be elucidated. In order to better understand how the adhesion is performed, we analyzed the surface structure, adsorption movements, the muscles' distribution, physical characteristics, and the adsorption force of the leech posterior suckers by experimental investigation. Three conclusions can be drawn based on the obtained experimental results. First, the adhesion by the posterior sucker is wet adhesion, because the surface of the posterior sucker is smooth and the sealing can only be achieved on wet surfaces. Second, the deformation texture, consisting of soft collagen tissues and highly ductile epidermal tissues, plays a key role in adhering to rough surfaces. Finally, the adhesion and desorption is achieved by the synergetic operation of six muscle fibers working in different directions. Concrete saying, directional deformation of the collagen/epithermal interface driven by spatially-distributed muscle fibers facilitates the excretion of fluids in the sucker venter, thus allowing liquid sealing. Furthermore, we found that the adhesion strength is directly related to the size of the contact surface which is generated and affected by the sucker deformation. Such an underlying physical mechanism offers potential cues for developing innovative bio-inspired artificial adhesion systems.

  4. Mechanical, Anisotropic, and Electronic Properties of XN (X = C, Si, Ge): Theoretical Investigations.

    Science.gov (United States)

    Ma, Zhenyang; Liu, Xuhong; Yu, Xinhai; Shi, Chunlei; Wang, Dayun

    2017-08-08

    The structural, mechanical, elastic anisotropic, and electronic properties of Pbca -XN (X = C, Si, Ge) are investigated in this work using the Perdew-Burke-Ernzerhof (PBE) functional, Perdew-Burke-Ernzerhof for solids (PBEsol) functional, and Ceperly and Alder, parameterized by Perdew and Zunger (CA-PZ) functional in the framework of density functional theory. The achieved results for the lattice parameters and band gap of Pbca -CN with the PBE functional in this research are in good accordance with other theoretical results. The band structures of Pbca -XN (X = C, Si, Ge) show that Pbca -SiN and Pbca -GeN are both direct band gap semiconductor materials with a band gap of 3.39 eV and 2.22 eV, respectively. Pbca -XN (X = C, Si, Ge) exhibits varying degrees of mechanical anisotropic properties with respect to the Poisson's ratio, bulk modulus, shear modulus, Young's modulus, and universal anisotropic index. The (001) plane and (010) plane of Pbca -CN/SiN/GeN both exhibit greater elastic anisotropy in the bulk modulus and Young's modulus than the (100) plane.

  5. Jumping to the wrong conclusions? An investigation of the mechanisms of reasoning errors in delusions.

    Science.gov (United States)

    Jolley, Suzanne; Thompson, Claire; Hurley, James; Medin, Evelina; Butler, Lucy; Bebbington, Paul; Dunn, Graham; Freeman, Daniel; Fowler, David; Kuipers, Elizabeth; Garety, Philippa

    2014-10-30

    Understanding how people with delusions arrive at false conclusions is central to the refinement of cognitive behavioural interventions. Making hasty decisions based on limited data ('jumping to conclusions', JTC) is one potential causal mechanism, but reasoning errors may also result from other processes. In this study, we investigated the correlates of reasoning errors under differing task conditions in 204 participants with schizophrenia spectrum psychosis who completed three probabilistic reasoning tasks. Psychotic symptoms, affect, and IQ were also evaluated. We found that hasty decision makers were more likely to draw false conclusions, but only 37% of their reasoning errors were consistent with the limited data they had gathered. The remainder directly contradicted all the presented evidence. Reasoning errors showed task-dependent associations with IQ, affect, and psychotic symptoms. We conclude that limited data-gathering contributes to false conclusions but is not the only mechanism involved. Delusions may also be maintained by a tendency to disregard evidence. Low IQ and emotional biases may contribute to reasoning errors in more complex situations. Cognitive strategies to reduce reasoning errors should therefore extend beyond encouragement to gather more data, and incorporate interventions focused directly on these difficulties. Copyright © 2014 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  6. Investigation of the Mechanism of Roof Caving in the Jinchuan Nickel Mine, China

    Science.gov (United States)

    Ding, Kuo; Ma, Fengshan; Guo, Jie; Zhao, Haijun; Lu, Rong; Liu, Feng

    2018-04-01

    On 13 March 2016, a sudden, violent roof caving event with a collapse area of nearly 11,000 m2 occurred in the Jinchuan Nickel Mine and accompanied by air blasts, loud noises and ground vibrations. This collapse event coincided with related, conspicuous surface subsidence across an area of nearly 19,000 m2. This article aims to analyse this collapse event. In previous studies, various mining-induced collapses have been studied, but collapse accidents associated with the filling mining method are very rare and have not been thoroughly studied. The filling method has been regarded as a safe mining method for a long time, so research on associated collapse mechanisms is of considerable significance. In this study, a detailed field investigation of roadway damage was performed, and GPS monitoring results were used to analyse the surface failure. In addition, a numerical model was constructed based on the geometry of the ore body and a major fault. The analysis of the model revealed three failure mechanisms acting during different stages of destruction: double-sided embedded beam deformation, fault activation, and cantilever-articulated rock beam failure. The fault activation and the specific filling method are the key factors of this collapse event. To gain a better understanding of these factors, the shear stress and normal stress along the fault plane were monitored to determine the variation in stress at different failure stages. Discrete element models were established to study two filling methods and to analyse the stability of different filling structures.

  7. Mechanical, Thermal and Surface Investigations of Chitosan/Agar/PVA Ternary Blended Films

    Directory of Open Access Journals (Sweden)

    Esam A. El-Hefian

    2011-01-01

    Full Text Available The mechanical and thermal properties of chitosan/agar/poly vinyl alcohol (CS/AG/PVA ternary blended films having various proportions considering chitosan as the main component were investigated. The various variables static water contact angle such as contact angle, drop base area, drop volume and drop height was also studied in correlation with the variation of time. Results obtained from mechanical measurements showed a noticeable increase in the tensile strength (TS coincided with a sharp decrease in elongation percent at break (E% of blended films with increasing agar and PVA contents. The DSC results prevailed the development of an interaction between chitosan individual components: agar and PVA. Moreover, an enhancement of the wettability of the blends was obtained with increasing agar and PVA contents. It was also found that the pure CS film and the blended films with 90/05/05 and 80/10/10 compositions were more affected by time than blended films with other compositions when the contact angle, the drop height and the drop length were studied as a function of time. In addition, when the drop is initially placed on the substrate, the drop area and the drop volume of all films remained almost constant up to a certain time after which they showed a slight difference with the elapse of time.

  8. Investigation and exploitation of the radiation in peaceful uses and its juridical protection mechanism

    International Nuclear Information System (INIS)

    Solorzano R, S.A.

    1991-10-01

    In is included in a brief way the radioisotopes and ionizing radiations application in Guatemala; the risk an the radioactive damage from the juridical point of view; the nuclear energy's juridical nature, without any doubt, has its place in the law's world causing several effects which we have to determine the civil responsabilities; we expose the Guatemala's civil order the objective responsability of the nuclear law and its foundation. We had to mention the different international organisms that have relationship between each other in this area, for example: International Atomic Energy Agency (IAEA): Its objetives and functions; its services and attendance; juridical activities, etc. and as a national institution the general Directorate for the Nuclear Energy that belong to the energy and Mines Ministry, it is the charge of the sutdy, promotion, control, supervision, thechnical vigilance and investigate the use of the nuclear energy In the juridical mechanisms of the radiation applications, we find in Guatemala the ''protection an environment improvement law'' decree 68-86 of the Republic Congress; ''the control, use and application of radioisotopes and ionizing radiation law (nuclear law) law decree 11-86 which is transcribed because it is related with the nuclear energy subject. The rules also emphasize because of the technical aspects requirement concurrence that develop the law's precepts. As a viable juridical mechanism to guarantee the nuclear damage indemnity it is considered in others contracts determined the necessary constitution of the civil responsability insurance of the nuclear damages to guarantee the right indemnity of it. (Author)

  9. A numerical investigation on piezoresistive behaviour of carbon nanotube/polymer composites: mechanism and optimizing principle

    International Nuclear Information System (INIS)

    Wang Zhifeng; Ye Xiongying

    2013-01-01

    Carbon nanotubes (CNTs) filled polymeric composites can be used as a kind of flexible piezoresistive material in potentially many fields. Due to the diversity of CNTs and polymers, the mechanism and features of their piezoresistive behaviour is still not fully understood. This paper reports our investigations into the mechanism and optimization of piezoresistive CNT/polymer composites. Numerical simulation results showed that the junction resistances between CNTs are a major component of the network conductance of the composite as well as the piezoresistive behaviour. Average junction gap variation (AJGV) was introduced as a quantitative description of the conductance variation of a CNT network caused by strain and the conductance variation of the CNT network was found to be dominated by AJGV. Numerical simulation and analytical results indicated that the key parameters affecting AJGV include the orientation and diameter of CNTs, Poisson’s ratio of the polymer, and the concentration of CNTs in the polymer matrix. An optimizing principle was then given for piezoresistive CNT/polymer composites. (paper)

  10. Jumping to the wrong conclusions? An investigation of the mechanisms of reasoning errors in delusions

    Science.gov (United States)

    Jolley, Suzanne; Thompson, Claire; Hurley, James; Medin, Evelina; Butler, Lucy; Bebbington, Paul; Dunn, Graham; Freeman, Daniel; Fowler, David; Kuipers, Elizabeth; Garety, Philippa

    2014-01-01

    Understanding how people with delusions arrive at false conclusions is central to the refinement of cognitive behavioural interventions. Making hasty decisions based on limited data (‘jumping to conclusions’, JTC) is one potential causal mechanism, but reasoning errors may also result from other processes. In this study, we investigated the correlates of reasoning errors under differing task conditions in 204 participants with schizophrenia spectrum psychosis who completed three probabilistic reasoning tasks. Psychotic symptoms, affect, and IQ were also evaluated. We found that hasty decision makers were more likely to draw false conclusions, but only 37% of their reasoning errors were consistent with the limited data they had gathered. The remainder directly contradicted all the presented evidence. Reasoning errors showed task-dependent associations with IQ, affect, and psychotic symptoms. We conclude that limited data-gathering contributes to false conclusions but is not the only mechanism involved. Delusions may also be maintained by a tendency to disregard evidence. Low IQ and emotional biases may contribute to reasoning errors in more complex situations. Cognitive strategies to reduce reasoning errors should therefore extend beyond encouragement to gather more data, and incorporate interventions focused directly on these difficulties. PMID:24958065

  11. Mechanical, Anisotropic, and Electronic Properties of XN (X = C, Si, Ge): Theoretical Investigations

    Science.gov (United States)

    Ma, Zhenyang; Liu, Xuhong; Yu, Xinhai; Shi, Chunlei; Wang, Dayun

    2017-01-01

    The structural, mechanical, elastic anisotropic, and electronic properties of Pbca-XN (X = C, Si, Ge) are investigated in this work using the Perdew–Burke–Ernzerhof (PBE) functional, Perdew–Burke–Ernzerhof for solids (PBEsol) functional, and Ceperly and Alder, parameterized by Perdew and Zunger (CA–PZ) functional in the framework of density functional theory. The achieved results for the lattice parameters and band gap of Pbca-CN with the PBE functional in this research are in good accordance with other theoretical results. The band structures of Pbca-XN (X = C, Si, Ge) show that Pbca-SiN and Pbca-GeN are both direct band gap semiconductor materials with a band gap of 3.39 eV and 2.22 eV, respectively. Pbca-XN (X = C, Si, Ge) exhibits varying degrees of mechanical anisotropic properties with respect to the Poisson’s ratio, bulk modulus, shear modulus, Young’s modulus, and universal anisotropic index. The (001) plane and (010) plane of Pbca-CN/SiN/GeN both exhibit greater elastic anisotropy in the bulk modulus and Young’s modulus than the (100) plane. PMID:28786960

  12. Investigation of the relationships between mechanical properties and microstructure in a Fe-9%Cr ODS steel

    Directory of Open Access Journals (Sweden)

    Hary Benjamin

    2016-01-01

    Full Text Available Ferritic-martensitic Oxide Dispersion Strengthened (ODS steels are potential materials for fuel pin cladding in Sodium Fast Reactor (SFR and their optimisation is essential for future industrial applications. In this paper, a feasibility study concerning the generation of tensile specimens using a quenching dilatometer is presented. The ODS steel investigated contains 9%Cr and exhibits a phase transformation between ferrite and austenite around 870 °C. The purpose was to generate different microstructures and to evaluate their tensile properties. Specimens were machined from a cladding tube and underwent controlled heat treatments inside the dilatometer. The microstructures were observed using Electron Backscatter Diffraction (EBSD and tensile tests were performed at room temperature and at 650 °C. Results show that a tempered martensitic structure is the optimum state for tensile loading at room temperature. At 650 °C, the strengthening mechanisms that are involved differ and the microstructures exhibit more similar yield strengths. It also appeared that decarburisation during heat treatment in the dilatometer induces a decrease in the mechanical properties and heterogeneities in the dual-phase microstructure. This has been addressed by proposing a treatment with a much shorter time in the austenitic domain. Thereafter, the relaxation of macroscopic residual stresses inside the tube during the heat treatment was evaluated. They appear to decrease linearly with increasing temperature and the phase transformation has a limited effect on the relaxation.

  13. Numerical Investigation on the Propagation Mechanism of Steady Cellular Detonations in Curved Channels

    International Nuclear Information System (INIS)

    Li Jian; Ning Jian-Guo; Zhao Hui; Wang Cheng; Hao Li

    2015-01-01

    The propagation mechanism of steady cellular detonations in curved channels is investigated numerically with a detailed chemical reaction mechanism. The numerical results demonstrate that as the radius of the curvature decreases, detonation fails near the inner wall due to the strong expansion effect. As the radius of the curvature increases, the detonation front near the inner wall can sustain an underdriven detonation. In the case where detonation fails, a transverse detonation downstream forms and re-initiates the quenched detonation as it propagates toward the inner wall. Two kinds of propagation modes exist as the detonation is propagating in the curved channel. One is that the detonation fails first, and then a following transverse detonation initiates the quenched detonation and this process repeats itself. The other one is that without detonation failure and re-initiation, a steady detonation exists which consists of an underdriven detonation front near the inner wall subject to the diffraction and an overdriven detonation near the outer wall subject to the compression. (paper)

  14. Kinetic investigation of the catalytic mechanism for bovine liver mitochondrial monoamine oxidase

    International Nuclear Information System (INIS)

    Walker, M.C.

    1988-01-01

    The kinetic behavior of the oxidative deamination reaction catalyzed by bovine liver mitochondrial monoamine oxidase was investigated with a series of ring-substituted benzylamines. Oxidation rates were fastest with the meta isomers. Dalziel coefficients were consistent with a mechanism involving a ternary complex for all substrates tested. Alterations in the Michaelis constant for oxygen were similar in magnitude to those for the rate of catalysis. Deuterium and tritium isotope effects were determined to obtain more detailed information on the mechanism of catalysis. Large deuterium isotope effects expressed on k cat were obtained for all substrates. Determination of the tritium isotope effect for benzylamine allowed the calculation of an intrinsic isotope effect of 6.5 and a secondary isotope effect of 1.17. Steady-state experiments were supplemented with pre-steady-state kinetic techniques. Rates of flavin reduction were faster than that of turnover. The deuterium isotope effect obtained for the rate of flavin reduction was 7-15 for the various substrates. The observed isotope effect was found to be an appropriate estimate for the intrinsic isotope effect

  15. Molecular Level Investigation of Staphylococci’s Resistance Mechanisms to Antibiotics

    Directory of Open Access Journals (Sweden)

    Lavinia Lorena PRUTEANU

    2017-09-01

    Full Text Available Polymerase chain reaction (PCR techniques development allows elaboration of many assays for identification of bacteria’s resistance mechanisms to antibiotics. Following this idea, the results of molecular level investigation of bacteria’s resistance mechanisms to antibiotics may give many opportunities to find more rapid methods for identifying the genes which are responsible for antibiotic resistance induction. The aim of this study was to investigate antibiotic resistance genes in Staphylococcus bacteria on molecular level. As classes of antibiotics it was used macrolides-lincosamides-streptogramin B (MLSB and beta-lactams. In the proposed study the bacterial strains are represented by 50 isolates of Staphylococcus. The bacterial strains were analyzed using polymerase chain reaction to identify the nuc, tuf, tst, sea, pathogenic activity genes. After this, the bacteria were tested for ermA, ermB, ermC genes and for mecA, femA which are involved in resistance to macrolides, lincosamides, streptogramin B and to beta-lactams, respectively. The presence or the absence of these genes confirms that tested strains are resistant to specific antibiotic or not. Bacteria pathogenic activity was emphasized by genes as follows: sea (enterotoxin which was found at all isolates, tst (toxic shock toxin gene was not detected in any of isolates and tuf gene (elongation factor was obtained with one pair of primers. Resistance to beta-lactams was evidenced by the presence of mecA in all isolates and femA in some strains. Each of ermC, ermA and ermB, macrolides-lincosamides-streptogramin B resistance genes, were detected.

  16. Investigation of the Influence of Acoustic Oscillation Parameters on the Mechanism of Waste Rubber Products Combustion

    Science.gov (United States)

    Shakurov, R. F.; Sitnikov, O. R.; Galimova, A. I.; Sabitova, A. F.

    2018-03-01

    The article presents an analysis of the used methods of recycling of waste rubber products. The worn out tires are exposed to natural decomposition only after 50 - 100 years, and toxic organic compounds used in the manufacture constitute a danger to the environment. It contemplates a method of recycling waste rubber products in devices where pulsating combustion is realized. The dependence of the influence of acoustic pulsation parameters on the combustion mechanism of waste rubber products and on the composition of combustion products was experimentally investigated and established. For this purpose, the setup scheme based on the Rijke effect is optimized. The resonance pipe is coaxially embedded in the shaft. The known mathematical model of finding the combustion zones in the Rijke pipe, corresponding to the gas flow oscillations with the maximum amplitude, is applied to the chosen scheme. Investigations were carried out for three positions of the grate relative to the lower section of the experimental pipe, in which 1st, 2nd, 3rd modes of oscillation are formed. There are favorable conditions arise for the secondary combustion of mechanical particles entrained in the gas flow in the tube. The favorable conditions for afterburning also include the fact that through the upper section of the resonant pipe, the ambient air, caused by the features of the standing wave, is mixed into the gas stream. A comparative analysis of the change of gas concentration composition along the length of the resonance tube is carried out. It is established that the basic mode of oscillations contributes to the reduction of nitrogen oxides, in comparison with the oscillations occurring simultaneously at several harmonics, considering the main one. The results of research for the three positions of the grate in relation to the lower section of the installation are presented in tabular form, in which 1, 2, 3 modes of oscillation are formed. The analysis of experimental results confirms

  17. Ressources humaines en matière de santé dans la Chine rurale ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Six world-class research teams to investigate overcoming therapeutic resistance in high fatality cancers. The world-class research teams will direct their focus towards new frontiers in cancer research. View moreSix world-class research teams to investigate overcoming therapeutic resistance in high fatality cancers ...

  18. Understanding the mechanisms that change the conductivity of damaged ITO-coated polymeric films: A micro-mechanical investigation

    KAUST Repository

    Nasr Saleh, Mohamed

    2014-11-01

    Degradation from mechanical loading of transparent electrodes made of indium tin oxide (ITO) endangers the integrity of any material based on these electrodes, including flexible organic solar cells. However, how different schemes of degradation change the conductivity of ITO devices remains unclear. We propose a systematic micro-mechanics-based approach to clarify the relationship between degradation and changes in electrical resistance. By comparing experimentally measured channel crack densities to changes in electrical resistance returned by the different micro-mechanical schemes, we highlight the key role played by the residual conductivity in the interface between the ITO electrode and its substrate after delamination. We demonstrate that channel cracking alone does not explain the experimental observations. Our results indicate that delamination has to take place between the ITO electrode and the substrate layers and that the residual conductivity of this delaminated interface plays a major role in changes in electrical resistance of the degraded device. © 2014 Elsevier B.V.

  19. Investigating the Mechanical Behavior and Deformation Mechanisms of Ultrafinegrained Metal Films Using Ex-situ and In-situ TEM Techniques

    Science.gov (United States)

    Izadi, Ehsan

    Nanocrystalline (NC) and Ultrafine-grained (UFG) metal films exhibit a wide range of enhanced mechanical properties compared to their coarse-grained counterparts. These properties, such as very high strength, primarily arise from the change in the underlying deformation mechanisms. Experimental and simulation studies have shown that because of the small grain size, conventional dislocation plasticity is curtailed in these materials and grain boundary mediated mechanisms become more important. Although the deformation behavior and the underlying mechanisms in these materials have been investigated in depth, relatively little attention has been focused on the inhomogeneous nature of their microstructure (particularly originating from the texture of the film) and its influence on their macroscopic response. Furthermore, the rate dependency of mechanical response in NC/UFG metal films with different textures has not been systematically investigated. The objectives of this dissertation are two-fold. The first objective is to carry out a systematic investigation of the mechanical behavior of NC/UFG thin films with different textures under different loading rates. This includes a novel approach to study the effect of texture-induced plastic anisotropy on mechanical behavior of the films. Efforts are made to correlate the behavior of UFG metal films and the underlying deformation mechanisms. The second objective is to understand the deformation mechanisms of UFG aluminum films using in-situ transmission electron microscopy (TEM) experiments with Automated Crystal Orientation Mapping. This technique enables us to investigate grain rotations in UFG Al films and to monitor the microstructural changes in these films during deformation, thereby revealing detailed information about the deformation mechanisms prevalent in UFG metal films.

  20. Investigating the molecular mechanisms of organophosphate and pyrethroid resistance in the fall armyworm Spodoptera frugiperda.

    Directory of Open Access Journals (Sweden)

    Renato A Carvalho

    Full Text Available The fall armyworm Spodoptera frugiperda is an economically important pest of small grain crops that occurs in all maize growing regions of the Americas. The intensive use of chemical pesticides for its control has led to the selection of resistant populations, however, to date, the molecular mechanisms underlying resistance have not been characterised. In this study the mechanisms involved in the resistance of two S. frugiperda strains collected in Brazil to chlorpyrifos (OP strain or lambda-cyhalothrin (PYR strain were investigated using molecular and genomic approaches. To examine the possible role of target-site insensitivity the genes encoding the organophosphate (acetylcholinesterase, AChE and pyrethroid (voltage-gated sodium channel, VGSC target-site proteins were PCR amplified. Sequencing of the S. frugiperda ace-1 gene identified several nucleotide changes in the OP strain when compared to a susceptible reference strain (SUS. These result in three amino acid substitutions, A201S, G227A and F290V, that have all been shown previously to confer organophosphate resistance in several other insect species. Sequencing of the gene encoding the VGSC in the PYR strain, identified mutations that result in three amino acid substitutions, T929I, L932F and L1014F, all of which have been shown previously to confer knockdown/super knockdown-type resistance in several arthropod species. To investigate the possible role of metabolic detoxification in the resistant phenotype of the OP and PYR stains all EST sequences available for S. frugiperda were used to design a gene-expression microarray. This was then used to compare gene expression in the resistant strains with the susceptible reference strain. Members of several gene families, previously implicated in metabolic resistance in other insects were found to be overexpressed in the resistant strains including glutathione S-transferases, cytochrome P450s and carboxylesterases. Taken together these results

  1. Investigating the molecular mechanisms of organophosphate and pyrethroid resistance in the fall armyworm Spodoptera frugiperda.

    Science.gov (United States)

    Carvalho, Renato A; Omoto, Celso; Field, Linda M; Williamson, Martin S; Bass, Chris

    2013-01-01

    The fall armyworm Spodoptera frugiperda is an economically important pest of small grain crops that occurs in all maize growing regions of the Americas. The intensive use of chemical pesticides for its control has led to the selection of resistant populations, however, to date, the molecular mechanisms underlying resistance have not been characterised. In this study the mechanisms involved in the resistance of two S. frugiperda strains collected in Brazil to chlorpyrifos (OP strain) or lambda-cyhalothrin (PYR strain) were investigated using molecular and genomic approaches. To examine the possible role of target-site insensitivity the genes encoding the organophosphate (acetylcholinesterase, AChE) and pyrethroid (voltage-gated sodium channel, VGSC) target-site proteins were PCR amplified. Sequencing of the S. frugiperda ace-1 gene identified several nucleotide changes in the OP strain when compared to a susceptible reference strain (SUS). These result in three amino acid substitutions, A201S, G227A and F290V, that have all been shown previously to confer organophosphate resistance in several other insect species. Sequencing of the gene encoding the VGSC in the PYR strain, identified mutations that result in three amino acid substitutions, T929I, L932F and L1014F, all of which have been shown previously to confer knockdown/super knockdown-type resistance in several arthropod species. To investigate the possible role of metabolic detoxification in the resistant phenotype of the OP and PYR stains all EST sequences available for S. frugiperda were used to design a gene-expression microarray. This was then used to compare gene expression in the resistant strains with the susceptible reference strain. Members of several gene families, previously implicated in metabolic resistance in other insects were found to be overexpressed in the resistant strains including glutathione S-transferases, cytochrome P450s and carboxylesterases. Taken together these results provide

  2. Numerical investigations of triggering mechanisms of shallow landslides due to heterogeneous spatio-temporal hydrological patterns.

    Science.gov (United States)

    Schwarz, Massimiliano; Cohen, Denis

    2016-04-01

    regional scale rely on the infinite slope assumption for stability calculations and on continuous hydrological properties of the soil. The objective of the present study is to investigate the influence of non-continuos hydrological features (such as ephemeral springs) on the triggering mechanisms of shallow landslides using a discrete element model (SOSlope) in which the stress-strain behavior of soil is explicitly considered. The application of a stress-strain calculation allows for the simulation of local versus global loading due to hydrological processes. In particular, this study investigates the effects of different types of hydrological loading on the force redistribution on a slope associated with local displacements and following failures of soil masses. Strength and stiffness of soil are considered heterogeneous and are calculated based on the assumption of root distributions within a forested hillslope.

  3. Understanding the hydrolysis mechanism of ethyl acetate catalyzed by an aqueous molybdocene: a computational chemistry investigation.

    Science.gov (United States)

    Tílvez, Elkin; Cárdenas-Jirón, Gloria I; Menéndez, María I; López, Ramón

    2015-02-16

    A thoroughly mechanistic investigation on the [Cp2Mo(OH)(OH2)](+)-catalyzed hydrolysis of ethyl acetate has been performed using density functional theory methodology together with continuum and discrete-continuum solvation models. The use of explicit water molecules in the PCM-B3LYP/aug-cc-pVTZ (aug-cc-pVTZ-PP for Mo)//PCM-B3LYP/aug-cc-pVDZ (aug-cc-pVDZ-PP for Mo) computations is crucial to show that the intramolecular hydroxo ligand attack is the preferred mechanism in agreement with experimental suggestions. Besides, the most stable intermediate located along this mechanism is analogous to that experimentally reported for the norbornenyl acetate hydrolysis catalyzed by molybdocenes. The three most relevant steps are the formation and cleavage of the tetrahedral intermediate immediately formed after the hydroxo ligand attack and the acetic acid formation, with the second one being the rate-determining step with a Gibbs energy barrier of 36.7 kcal/mol. Among several functionals checked, B3LYP-D3 and M06 give the best agreement with experiment as the rate-determining Gibbs energy barrier obtained only differs 0.2 and 0.7 kcal/mol, respectively, from that derived from the experimental kinetic constant measured at 296.15 K. In both cases, the acetic acid elimination becomes now the rate-determining step of the overall process as it is 0.4 kcal/mol less stable than the tetrahedral intermediate cleavage. Apart from clarifying the identity of the cyclic intermediate and discarding the tetrahedral intermediate formation as the rate-determining step for the mechanism of the acetyl acetate hydrolysis catalyzed by molybdocenes, the small difference in the Gibbs energy barrier found between the acetic acid formation and the tetrahedral intermediate cleavage also uncovers that the rate-determining step could change when studying the reactivity of carboxylic esters other than ethyl acetate substrate specific toward molybdocenes or other transition metal complexes. Therefore

  4. Investigation of organometallic reaction mechanisms with one and two dimensional vibrational spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Cahoon, James Francis [Univ. of California, Berkeley, CA (United States)

    2008-12-01

    One and two dimensional time-resolved vibrational spectroscopy has been used to investigate the elementary reactions of several prototypical organometallic complexes in room temperature solution. The electron transfer and ligand substitution reactions of photogenerated 17-electron organometallic radicals CpW(CO)3 and CpFe(CO)2 have been examined with one dimensional spectroscopy on the picosecond through microsecond time-scales, revealing the importance of caging effects and odd-electron intermediates in these reactions. Similarly, an investigation of the photophysics of the simple Fischer carbene complex Cr(CO)5[CMe(OMe)] showed that this class of molecule undergoes an unusual molecular rearrangement on the picosecond time-scale, briefly forming a metal-ketene complex. Although time-resolved spectroscopy has long been used for these types of photoinitiated reactions, the advent of two dimensional vibrational spectroscopy (2D-IR) opens the possibility to examine the ultrafast dynamics of molecules under thermal equilibrium conditions. Using this method, the picosecond fluxional rearrangements of the model metal carbonyl Fe(CO)5 have been examined, revealing the mechanism, time-scale, and transition state of the fluxional reaction. The success of this experiment demonstrates that 2D-IR is a powerful technique to examine the thermally-driven, ultrafast rearrangements of organometallic molecules in solution.

  5. Investigation of microstructural and mechanical properties of cell walls of closed-cell aluminium alloy foams

    Energy Technology Data Exchange (ETDEWEB)

    Islam, M.A.; Kader, M.A.; Hazell, P.J.; Brown, A.D. [School of Engineering and Information Technology, UNSW Canberra, ACT 2610 (Australia); Saadatfar, M. [Department of Applied Mathematics, Australian National University, Canberra ACT 0200 (Australia); Quadir, M.Z [Electron Microscope Unit, Mark Wainwright Analytical Centre (MWAC), The University of New South Wales, Sydney, NSW 2052 (Australia); Microscopy and Microanalysis Facility (MMF), John de Laeter Centre (JdLC), Curtin University, WA 6102 (Australia); Escobedo, J.P., E-mail: J.Escobedo-Diaz@adfa.edu.au [School of Engineering and Information Technology, UNSW Canberra, ACT 2610 (Australia)

    2016-06-01

    This study investigates the influence of microstructure on the strength properties of individual cell walls of closed-cell stabilized aluminium foams (SAFs). Optical microscopy (OM), micro-computed X-ray tomography (µ-CT), electron backscattering diffraction (EBSD), and energy dispersive X-ray spectroscopy (EDS) analyses were conducted to examine the microstructural properties of SAF cell walls. Novel micro-tensile tests were performed to investigate the strength properties of individual cell walls. Microstructural analysis of the SAF cell walls revealed that the material consists of eutectic Al-Si and dendritic a-Al with an inhomogeneous distribution of intermetallic particles and micro-pores (void defects). These microstructural features affected the micro-mechanism fracture behaviour and tensile strength of the specimens. Laser-based extensometer and digital image correlation (DIC) analyses were employed to observe the strain fields of individual tensile specimens. The tensile failure mode of these materials has been evaluated using microstructural analysis of post-mortem specimens, revealing a brittle cleavage fracture of the cell wall materials. The micro-porosities and intermetallic particles reduced the strength under tensile loading, limiting the elongation to fracture on average to ~3.2% and an average ultimate tensile strength to ~192 MPa. Finally, interactions between crack propagation and obstructing intermetallic compounds during the tensile deformation have been elucidated.

  6. Investigation of mechanical properties of hemp/glass fiber reinforced nano clay hybrid composites

    Science.gov (United States)

    Unki, Hanamantappa Ningappa; Shivanand, H. K.; Vidyasagar, H. N.

    2018-04-01

    Over the last twenty to thirty years composite materials have been used in engineering field. Composite materials possess high strength, high strength to weight ratio due to these facts composite materials are becoming popular among researchers and scientists. The major proportion of engineering materials consists of composite materials. Composite materials are used in vast applications ranging from day-to-day household articles to highly sophisticated applications. In this paper an attempt is made to prepare three different composite materials using e-glass and Hemp. In this present investigation hybrid composite of Hemp, Glass fiber and Nano clay will be prepared by Hand-layup technique. The glass fiber used in this present investigation is E-glass fiber bi-directional: 90˚ orientation. The composite samples will be made in the form of a Laminates. The wt% of nanoclay added in the preparation of sample is 20 gm constant. The fabricated composite Laminate will be cut into corresponding profiles as per ASTM standards for Mechanical Testing. The effect of addition of Nano clay and variation of Hemp/glass fibers will be studied. In the present work, a new Hybrid composite is developed in which Hemp, E glass fibers is reinforced with epoxy resin and with Nano clay.

  7. Experimental investigation into the mechanism of the polygonal wear of electric locomotive wheels

    Science.gov (United States)

    Tao, Gongquan; Wang, Linfeng; Wen, Zefeng; Guan, Qinghua; Jin, Xuesong

    2018-06-01

    Experiments were conducted at field sites to investigate the mechanism of the polygonal wear of electric locomotive wheels. The polygonal wear rule of electric locomotive wheels was obtained. Moreover, two on-track tests have been carried out to investigate the vibration characteristics of the electric locomotive's key components. The measurement results of wheels out-of-round show that most electric locomotive wheels exhibit polygonal wear. The main centre wavelength in the 1/3 octave bands is 200 mm and/or 160 mm. The test results of vibration characteristics indicate that the dominating frequency of the vertical acceleration measured on the axle box is approximately equal to the passing frequency of a polygonal wheel, and does not vary with the locomotive speed during the acceleration course. The wheelset modal analysis using the finite element method (FEM) indicates that the first bending resonant frequency of the wheelset is quite close to the main vibration frequency of the axle box. The FEM results are verified by the experimental modal analysis of the wheelset. Moreover, different plans were designed to verify whether the braking system and the locomotive's adhesion control have significant influence on the wheel polygon or not. The test results indicate that they are not responsible for the initiation of the wheel polygon. The first bending resonance of the wheelset is easy to be excited in the locomotive operation and it is the root cause of wheel polygon with centre wavelength of 200 mm in the 1/3 octave bands.

  8. Thermo-mechanical properties of SOFC components investigated by a combined method

    DEFF Research Database (Denmark)

    Teocoli, Francesca; Esposito, Vincenzo; Ramousse, Severine

    , and differential thermo-mechanical behavior at each layer. The combination of such factors can have a critical effect on the final shape and microstructure, and on the mechanical integrity. Thermo-mechanical properties and sintering mechanisms of important SOFC materials (CGO, YSZ, ScYSZ) were systematically...

  9. Trois modèles « éducatifs » : droit, potentialité et capital humain

    Directory of Open Access Journals (Sweden)

    Ingrid Robeyns

    2011-05-01

    Full Text Available Dans cet article, j’analyse trois logiques normatives qui peuvent fonder les politiques éducatives en portant une attention particulière aux questions liées aux spécificités des sexes. Ces trois modèles éducatifs sont la théorie du capital humain, le discours du droit et l’approche des potentialités. D’abord, je décris cinq rôles que l’éducation peut jouer. Ensuite, j’analyse les trois modèles pouvant fonder les politiques éducatives. La théorie du capital humain pose un certain nombre de problèmes parce qu’elle s’avère économiciste, fragmentée et essentiellement instrumentaliste. Le discours du droit et l’approche des potentialités sont en principe des modèles multidimensionnels et inclusifs et peuvent par le fait même tenir compte des rôles intrinsèques et non économicistes de l’éducation. Toutefois, selon la manière dont quelqu’un satisfait aux exigences spécifiques des cadres théoriques du droit et des potentialités, ceux-ci peuvent également présenter des difficultés. Je termine cet article en soutenant que la visée intrinsèque des politiques éducatives devrait être d’augmenter les potentialités des individus et que nous devrions employer les discours du droit de façon stratégique, c’est-à-dire lorsqu’il est probable qu’ils amènent les gens à réaliser leurs potentialités.In this paper, I discuss three normative approaches that can establish educational policies with special attention to gender issues. These three models of education are human capital theory, the discourse of law and the capabilities theory. First, I describe five roles that education can play. Then I analyze the three foundational models of educational policies. The human capital theory raises a number of problems because it is economistic, fragmented and largely instrumental. The discourse of law and the capabilites theory are usually multidimensional and inclusive; they can thereby take into account

  10. Micro-mechanical investigation of the effect of fine content on mechanical behavior of gap graded granular materials using DEM

    Directory of Open Access Journals (Sweden)

    Taha Habib

    2017-01-01

    Full Text Available In this paper, we present a micro-mechanical study of the effect of fine content on the behavior of gap graded granular samples by using numerical simulations performed with the Discrete Element Method. Different samples with fine content varied from 0% to 30% are simulated. The role of fine content in reinforcing the granular skeleton and in supporting the external deviatoric stress is then brought into the light.

  11. Investigation of the CH3Cl + CN(-) reaction in water: Multilevel quantum mechanics/molecular mechanics study.

    Science.gov (United States)

    Xu, Yulong; Zhang, Jingxue; Wang, Dunyou

    2015-06-28

    The CH3Cl + CN(-) reaction in water was studied using a multilevel quantum mechanics/molecular mechanics (MM) method with the multilevels, electrostatic potential, density functional theory (DFT) and coupled-cluster single double triple (CCSD(T)), for the solute region. The detailed, back-side attack SN2 reaction mechanism was mapped along the reaction pathway. The potentials of mean force were calculated under both the DFT and CCSD(T) levels for the reaction region. The CCSD(T)/MM level of theory presents a free energy activation barrier height at 20.3 kcal/mol, which agrees very well with the experiment value at 21.6 kcal/mol. The results show that the aqueous solution has a dominant role in shaping the potential of mean force. The solvation effect and the polarization effect together increase the activation barrier height by ∼11.4 kcal/mol: the solvation effect plays a major role by providing about 75% of the contribution, while polarization effect only contributes 25% to the activation barrier height. Our calculated potential of mean force under the CCSD(T)/MM also has a good agreement with the one estimated using data from previous gas-phase studies.

  12. Investigating mechanical behavior and radiation resistant of fuel rods clad in nuclear power plant

    International Nuclear Information System (INIS)

    Sedgh Kerdar, A.

    1999-01-01

    interstitials in metal lattice under irradiation causes increased strength and hardness but decreases ductility in metals.The increase in strength and hardness depends on obstacles that prevent the motion of dislocations. The clustering of point defects are responsible for these changes. Irradiation also induces instabilities in phases due to enhancement of diffusion, solute segregation, precipitate formation, order- disorder transformation and resolution of small precipitates. From the microscopic point of view accumulation of vacancies accompanied by formation of He and H 2 gases under irradiation cause an increase in volume which results in swelling and eventually ends up with embrittlement of metals. This subject was described in chapter three Zirconium and its alloys are the best structural materials for fuel cladding of BWR and PWR reactors core. The working condition in the core of nuclear reactor are very serve, respect temperature and radiation dose. It should be realized that, if fuel cladding receive damage and get cracked, the first cooling cycle and the maine equipment will be contaminated with active materials which cause additional environmental problems. Furthermore, replacement of fuel rods are very costly. Therefore, for increasing life time of fuel cladding and minimizing damage, the effect of radiation and heat on Zirconium and its alloys must be investigated. This subject was described in chapter four.The mechanical behavior and radiation resistant of fuel cladding in PWR reactor (specifically WWER ) have been investigated which is described in chapter five. Result, discussion and final conclusion are summarized in last chapter and also several points for improvement have been offered

  13. Investigation of the Effects of Extracellular Osmotic Pressure on Morphology and Mechanical Properties of Individual Chondrocyte.

    Science.gov (United States)

    Nguyen, Trung Dung; Oloyede, Adekunle; Singh, Sanjleena; Gu, YuanTong

    2016-06-01

    It has been demonstrated that most cells of the body respond to osmotic pressure in a systematic manner. The disruption of the collagen network in the early stages of osteoarthritis causes an increase in water content of cartilage which leads to a reduction of pericellular osmolality in chondrocytes distributed within the extracellular environment. It is therefore arguable that an insight into the mechanical properties of chondrocytes under varying osmotic pressure would provide a better understanding of chondrocyte mechanotransduction and potentially contribute to knowledge on cartilage degeneration. In this present study, the chondrocyte cells were exposed to solutions with different osmolality. Changes in their dimensions and mechanical properties were measured over time. Atomic force microscopy (AFM) was used to apply load at various strain-rates and the force-time curves were logged. The thin-layer elastic model was used to extract the elastic stiffness of chondrocytes at different strain-rates and at different solution osmolality. In addition, the porohyperelastic (PHE) model was used to investigate the strain-rate-dependent responses under the loading and osmotic pressure conditions. The results revealed that the hypo-osmotic external environment increased chondrocyte dimensions and reduced Young's modulus of the cells at all strain-rates tested. In contrast, the hyper-osmotic external environment reduced dimensions and increased Young's modulus. Moreover, using the PHE model coupled with inverse FEA simulation, we established that the hydraulic permeability of chondrocytes increased with decreasing extracellular osmolality which is consistent with previous work in the literature. This could be due to a higher intracellular fluid volume fraction with lower osmolality.

  14. Investigation of noninvasive healing of damaged piping system using electro-magneto-mechanical methods

    KAUST Repository

    Mukherjee, Debanjan

    2014-01-01

    Virtually all engineering applications involve the use of piping, conduits and channels. In the petroleum industry, piping systems are extensively employed in upstream and downstream processes. These piping systems often carry fluids that are corrosive, which leads to wear, cavitation and cracking. The replacement of damaged piping systems can be quite expensive, both in terms of capital costs, as well as in operational downtime. This motivates the present research on noninvasive healing of cracked piping systems. In this investigation, we propose to develop computational models for characterizing noninvasive repair strategies involving electromagnetically guided particles. The objective is to heal industrial-piping systems noninvasively, from the exterior of the system, during operation, resulting in no downtime, with minimal relative cost. The particle accumulation at a target location is controlled by external electro-magneto-mechanical means. There are two primary effects that play a role for guiding the particles to the solid-fluid interface/wall: mechanical shear due to the fluid flow, and an electrical or magnetic force. In this work we develop and study a relationship that characterizes contributions of both, and ascertain how this relationship scales with characteristic physical parameters. Characteristic non-dimensional parameters that describe system behavior are derived and their role in design is illustrated. A detailed, fully 3-dimensional discrete element simulation framework is presented, and illustrated using a model problem of magnetically guided particles. The detailed particle behavior is considered to be regulated by three effects: (1) the field strength (2) the mass flow rate and (3) the wall interactions.

  15. Synthesis and Mechanical Properties Investigation of Nano TiO2/Glass/Epoxy Hybrid Nanocomposite

    Directory of Open Access Journals (Sweden)

    Hamid Reza Salehi

    2015-10-01

    Full Text Available Mechanical properties of epoxy and glass/epoxy filled with 0.25, 0.5 and 1 vol% of TiO2 nanoparticles have been studied using tensile and three-point bending tests. For the TiO2/epoxy nanocomposites, the results showed that the strength and stiffness were improved, though the strain at ultimate strength point and breaking strain decreased. Moreover, the hybrid nanocomposites composed of 4 layers of woven E-glass fabric and TiO2/epoxy matrix were fabricated and cut onaxis and 45° off-axis by water jet. The results of tensile and three-point bending tests indicated a remarkable improvement in the strength and stiffness that could not be related to the mechanical improvement of the matrix. The samples containing 1 vol% nano TiO2 were improved relative to samples without the nanoparticles. The tensile strength of the on-axis and off-axis samples containing 1 vol% TiO2 increased by about 25.9% and 17.9%, in the order given, compared to that of the glass/epoxy specimens. In three-point bending test, the strength of the on-axis and off-axis specimens was improved 26% and 23.2%, respectively. In addition, the tensile stiffness of the onaxis and off-axis samples containing 1 vol% TiO2 increased, respectively, by about 14.4% and 17.5% compared to that of the glass/epoxy specimens. Also for the same on-axis and off-axis samples the three-point bending stiffness increased about 19.8% and 14.6%, respectively. The whole investigation on the microstructure of the hybrid nanocomposites illustrated that stronger interfaces between the fiber and TiO2/epoxy matrix were formed and improvement was noticed on mechanical properties of ternary composite compared to those of the fiber/epoxy composites. The analysis of damage zones of hybrid nanocomposites showed that the surface area of the damaged zone declined considerably due to the brittle behavior of TiO2-filled specimens but the area below the stress-strain curve, showing energy absorption during the test

  16. Investigation of the degradation mechanism of catalytic wires during oxidation of ammonia process

    International Nuclear Information System (INIS)

    Pura, Jarosław; Wieciński, Piotr; Kwaśniak, Piotr; Zwolińska, Marta; Garbacz, Halina; Zdunek, Joanna; Laskowski, Zbigniew; Gierej, Maciej

    2016-01-01

    Highlights: • Degradation mechanisms of precious metal catalytic gauzes is proposed. • Significant change of gauzes morphology and chemical composition was observed. • Samples were analyzed using SEM, EDS and micro-XCT techniques. - Abstract: The most common catalysts for the ammonia oxidation process are 80 μm diameter platinum-rhodium wires knitted or woven into the form of a gauze. In an aggressive environment and under extreme conditions (temperature 800–900 °C, intensive gas flow, high pressure) precious elements are drained from the surface of the wires. Part of this separated material quickly decomposes on the surface in the form of characteristic “cauliflower-shape protrusions”. The rest of the platinum is captured by palladium-nickel catalytic-capture gauzes located beneath. In our investigation we focused on the effects of the degradation of gauzes from one industrial catalytic system. The aim of the study was to compare the degree and the mechanism of degradation of gauzes from a different part of the reactor. The study covered PtRh7 catalytic and PdNi5 catalytic-capture gauzes. X-ray computer microtomography investigation revealed that despite strong differences in morphology, each Pt-Rh wire has a similar specific surface area. This indicates that the oxidation process and morphological changes of the wires occur in a self-regulating balance, resulting in the value of the specific surface area of the catalyst. Microtomography analysis of Pd-Ni wires revealed strong redevelopment of the wires’ surface, which is related to the platinum capture phenomenon. Scanning electron microscope observations also revealed the nanostructure in the cauliflower-shape protrusions and large grains in the wires’ preserved cores. The high temperature in the reactor and the long-term nature of the process do not favor the occurrence of the nanostructure in this type of material. Further and detailed analysis of this phenomena will provide a better

  17. Investigation of the degradation mechanism of catalytic wires during oxidation of ammonia process

    Energy Technology Data Exchange (ETDEWEB)

    Pura, Jarosław, E-mail: jaroslawpura@gmail.com [Faculty of Material Science and Engineering, Warsaw University of Technology, Wołoska 141, 02-507 Warsaw (Poland); Wieciński, Piotr; Kwaśniak, Piotr; Zwolińska, Marta; Garbacz, Halina; Zdunek, Joanna [Faculty of Material Science and Engineering, Warsaw University of Technology, Wołoska 141, 02-507 Warsaw (Poland); Laskowski, Zbigniew; Gierej, Maciej [Precious Metal Mint, Weteranów 95, 05-250 Radzymin (Poland)

    2016-12-01

    Highlights: • Degradation mechanisms of precious metal catalytic gauzes is proposed. • Significant change of gauzes morphology and chemical composition was observed. • Samples were analyzed using SEM, EDS and micro-XCT techniques. - Abstract: The most common catalysts for the ammonia oxidation process are 80 μm diameter platinum-rhodium wires knitted or woven into the form of a gauze. In an aggressive environment and under extreme conditions (temperature 800–900 °C, intensive gas flow, high pressure) precious elements are drained from the surface of the wires. Part of this separated material quickly decomposes on the surface in the form of characteristic “cauliflower-shape protrusions”. The rest of the platinum is captured by palladium-nickel catalytic-capture gauzes located beneath. In our investigation we focused on the effects of the degradation of gauzes from one industrial catalytic system. The aim of the study was to compare the degree and the mechanism of degradation of gauzes from a different part of the reactor. The study covered PtRh7 catalytic and PdNi5 catalytic-capture gauzes. X-ray computer microtomography investigation revealed that despite strong differences in morphology, each Pt-Rh wire has a similar specific surface area. This indicates that the oxidation process and morphological changes of the wires occur in a self-regulating balance, resulting in the value of the specific surface area of the catalyst. Microtomography analysis of Pd-Ni wires revealed strong redevelopment of the wires’ surface, which is related to the platinum capture phenomenon. Scanning electron microscope observations also revealed the nanostructure in the cauliflower-shape protrusions and large grains in the wires’ preserved cores. The high temperature in the reactor and the long-term nature of the process do not favor the occurrence of the nanostructure in this type of material. Further and detailed analysis of this phenomena will provide a better

  18. The results of the investigations on rock mechanics in HDB-9-11 boreholes and update of the rock mechanical model around the Horonobe URL construction area

    International Nuclear Information System (INIS)

    Sanada, Hiroyuki; Niunoya, Sumio; Matsui, Hiroya

    2008-09-01

    Horonobe URL (Underground Research Laboratory) Project is conducted at Horonobe-cho, Teshio-gun, Hokkaido. This research report shows the result of the rock mechanical investigations which have been carried out from 2004 to 2005 as a part of the project. The objectives of the rock mechanical investigation are as follows: To obtain the data which were necessary for construction design of URL. To confirm the distribution of rock mechanical properties in and around URL construction area. The results of the investigations are summarized as follows: 1) Variation and values of depth direction of physical and mechanical properties in the laboratory construction area corresponded approximately to the results obtained from the rock mechanical investigations of HDB-1-8. 2) The major redesign had been not had about physical and mechanical properties in the laboratory construction area being able to divide into three zones and length of its own zone in updating rock mechanical model. 3) From the results of initial stress measured by hydraulic fracturing, the results that the direction of the maximum principle stress is E-W was no different from results obtained from the investigations of HDB-1-8, but the magnitude correlation among maximum, minimum principle stress and overburden pressure measured around G.L.-927 m showed different trends compared with the results of HDB-1-8. 4) Diatomaceous mudstone was yielded under isotropic compression. Cam-clay model as constitutive law of diatomaceous mudstone should be used for tunnel excavation analysis. 5) Uniaxial compression strength of rock saturated under saline water is larger than that of saturated under freshwater. Poisson's ratio of rock saturated under saline water is smaller than that of saturated under saline water. 6) The effective confining pressure increases with the equivalent opening width and permeability decreases. 7) The value of principle stress obtained from DSCA method is larger than that obtained from hydraulic

  19. Investigation on multilayer failure mechanism of RPV with a high temperature gradient from core meltdown scenario

    Energy Technology Data Exchange (ETDEWEB)

    Jianfeng, Mao, E-mail: jianfeng-mao@163.com [Institute of Process Equipment and Control Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310032 (China); Engineering Research Center of Process Equipment and Remanufacturing, Ministry of Education (China); Xiangqing, Li [Institute of Process Equipment and Control Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310032 (China); Shiyi, Bao, E-mail: bsy@zjut.edu.cn [Institute of Process Equipment and Control Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310032 (China); Engineering Research Center of Process Equipment and Remanufacturing, Ministry of Education (China); Lijia, Luo [Institute of Process Equipment and Control Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310032 (China); Zengliang, Gao [Institute of Process Equipment and Control Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310032 (China); Engineering Research Center of Process Equipment and Remanufacturing, Ministry of Education (China)

    2016-12-15

    Highlights: • The multilayer failure mechanism is investigated for RPV under CHF. • Failure time and location of RPV are predicted under various SA scenarios. • The structural behaviors are analyzed in depth for creep and plasticity. • The effect of internal pressure and temperature gradient is considered. • The structural integrity of RPV is secured within the required 72 creep hours. - Abstract: The Fukushima accident shows that in-vessel retention (IVR) of molten core debris has not been appropriately assessed, and a certain pressure (up to 8.0 MPa) still exists inside the reactor pressure vessel (RPV). In the traditional concept of IVR, the pressure is supposed to successfully be released, and the temperature distributed among the wall thickness is assumed to be uniform. However, this concept is seriously challenged by reality of Fukushima accident with regard to the existence of both internal pressure and high temperature gradient. Therefore, in order to make the IVR mitigation strategy succeed, the numerical investigation of the lower head behavior and its failure has been performed for several internal pressures under high temperature gradient. According to some requirements in severe accident (SA) management of RPV, it should be ensured that the IVR mitigation takes effect in preventing the failure of the structure within a period of 72 h. Subsequently, the failure time and location have to be predicted under the critical heat flux (CHF) loading condition for lower head, since the CHF is limit thermal boundary before the melt-through of RPV. In illustrating the so called ‘multilayer failure mechanism’, the structural behaviors of RPV are analyzed in terms of the stress, creep strain, deformation, damage on selected paths.

  20. Investigating the emission mechanisms of the jet in the quasar PKS 1127-145

    Science.gov (United States)

    Duffy, Ryan T.; Siemiginowska, A.; Kashyap, V.; Stein, N.; Migliori, G.

    2014-01-01

    There is currently uncertainty surrounding the emission mechanism for X-ray photons in quasar jets, with both Inverse Compton Scattering from the Cosmic Microwave Background (IC/CMB) and synchrotron models considered possibilities. We use a 100 ks observation (Siemiginowska et al 2007) of the redshift z=1.18, radio-loud quasar PKS 1127-145 taken by the Chandra X-ray Observatory, with the hope of accurately measuring the offsets between radio and X-ray radiation peaks in order to establish the emission process for this jet. PKS 1127-145 is a bright quasar with a long jet which has several bright knots and complex morphology, making it a perfect source for this investigation. We use a Bayesian statistical method called Low-Count Image Restoration and Analysis (LIRA, Connors & van Dyk 2007, Esch et al 2004) to investigate the quasar jet. This fits the parameters of a multiscale model to the data by employing a Markov Chain Monte Carlo process. LIRA has shown the location of some jet X-ray components, although further simulations must be undertaken to determine whether these are statistically significant. We also study these jet X-ray components in both hard and soft X-ray bands in order to gain more information on the energy of the emitted photons. References: Connors, A., & van Dyk, D. A. 2007, Statistical Challenges in Modern Astronomy IV, 371, 101 Esch, D.N., Connors, A., Karovska, M., & van Dyk, D.A. 2004, ApJ, 610, 1213 Siemiginowska, A., Stawarz, L., Cheung, C.C., et al. 2007, ApJ, 657, 145

  1. Investigation on multilayer failure mechanism of RPV with a high temperature gradient from core meltdown scenario

    International Nuclear Information System (INIS)

    Jianfeng, Mao; Xiangqing, Li; Shiyi, Bao; Lijia, Luo; Zengliang, Gao

    2016-01-01

    Highlights: • The multilayer failure mechanism is investigated for RPV under CHF. • Failure time and location of RPV are predicted under various SA scenarios. • The structural behaviors are analyzed in depth for creep and plasticity. • The effect of internal pressure and temperature gradient is considered. • The structural integrity of RPV is secured within the required 72 creep hours. - Abstract: The Fukushima accident shows that in-vessel retention (IVR) of molten core debris has not been appropriately assessed, and a certain pressure (up to 8.0 MPa) still exists inside the reactor pressure vessel (RPV). In the traditional concept of IVR, the pressure is supposed to successfully be released, and the temperature distributed among the wall thickness is assumed to be uniform. However, this concept is seriously challenged by reality of Fukushima accident with regard to the existence of both internal pressure and high temperature gradient. Therefore, in order to make the IVR mitigation strategy succeed, the numerical investigation of the lower head behavior and its failure has been performed for several internal pressures under high temperature gradient. According to some requirements in severe accident (SA) management of RPV, it should be ensured that the IVR mitigation takes effect in preventing the failure of the structure within a period of 72 h. Subsequently, the failure time and location have to be predicted under the critical heat flux (CHF) loading condition for lower head, since the CHF is limit thermal boundary before the melt-through of RPV. In illustrating the so called ‘multilayer failure mechanism’, the structural behaviors of RPV are analyzed in terms of the stress, creep strain, deformation, damage on selected paths.

  2. Theoretic investigation into polytopic rearrangements mechanism of molecules of sulfurans and their analogs

    International Nuclear Information System (INIS)

    Minkin, V.I.; Minyaev, R.M.

    1975-01-01

    The energy characteristics and electron distributions were calculated for the fundamental and transitional states in topomerization of configuration of sulfo-, selenium and tellurium-uranium compounds of the AX 4 type. Also mapping of the potential energies was made for the predominant topomerization mechanisms. The mechanisms were classified into rearrangement types according to exchange-responsible apical and equatorial ligands. The physical mechanisms of the topomerization were determined on the basis of symmetry requirements for transitional configuration with respect to non-interchanging ligands. The lowest activation barrier was characteristic for the Berry mechanism of pseudorotation; however, other mechanism (the lever and pyramidal type) can compete with the Berry mechanisms. The expanded method of Hukkel does not give correct values for the relative energy of the fundamental and transitional configurations for sulfouranium molecules and their analogs for two of the three exchange mechanisms examined. Tunnel ligand-exchange mechanism cannot compete with the kinetic path of psudorotation reaction even at very low temperatures

  3. Investigating Degradation Mechanisms in 130 nm and 90 nm Commercial CMOS Technologies Under Extreme Radiation Conditions

    Science.gov (United States)

    Ratti, Lodovico; Gaioni, Luigi; Manghisoni, Massimo; Traversi, Gianluca; Pantano, Devis

    2008-08-01

    The purpose of this paper is to study the mechanisms underlying performance degradation in 130 nm and 90 nm commercial CMOS technologies exposed to high doses of ionizing radiation. The investigation has been mainly focused on their noise properties in view of applications to the design of low-noise, low-power analog circuits to be operated in harsh environment. Experimental data support the hypothesis that charge trapping in shallow trench isolation (STI), besides degrading the static characteristics of interdigitated NMOS transistors, also affects their noise performances in a substantial fashion. The model discussed in this paper, presented in a previous work focused on CMOS devices irradiated with a 10 Mrad(SiO2) gamma -ray dose, has been applied here also to transistors exposed to much higher (up to 100 Mrad(SiO2 )) doses of X-rays. Such a model is able to account for the extent of the observed noise degradation as a function of the device polarity, dimensions and operating point.

  4. Numerical investigation of hypersonic flat-plate boundary layer transition mechanism induced by different roughness shapes

    Science.gov (United States)

    Zhou, Yunlong; Zhao, Yunfei; Xu, Dan; Chai, Zhenxia; Liu, Wei

    2016-10-01

    The roughness-induced laminar-turbulent boundary layer transition is significant for high-speed aerospace applications. The transition mechanism is closely related to the roughness shape. In this paper, high-order numerical method is used to investigate the effect of roughness shape on the flat-plate laminar-to-turbulent boundary layer transition. Computations are performed in both the supersonic and hypersonic regimes (free-stream Mach number from 3.37 up to 6.63) for the square, cylinder, diamond and hemisphere roughness elements. It is observed that the square and diamond roughness elements are more effective in inducing transition compared with the cylinder and hemisphere ones. The square roughness element has the longest separated region in which strong unsteadiness exists and the absolute instability is formed, thus resulting in the earliest transition. The diamond roughness element has a maximum width of the separated region leading to the widest turbulent wake region far downstream. Furthermore, transition location moves backward as the Mach number increases, which indicates that the compressibility significantly suppresses the roughness-induced boundary layer transition.

  5. Investigation of Mechanical Properties of Coconut Fiber as a Concrete Admixture

    Directory of Open Access Journals (Sweden)

    Ramli M.S.

    2014-01-01

    Full Text Available The high cost of conventional construction materials is the dominating factor affecting housing systems worldwide. Because of this, further research into alternative materials in construction is required. The purpose of this study is to experimentally investigate the physical characteristics and mechanical properties of concrete produced using shredded coconut fibre composites. The following percentage amounts of fibre were tested: 0 % (control, 0.6 %, and 1.8 %. The coconut fibres were cut to a certain length according to previous studies which suggested that the most ideal length is around 30 - 60mm. The test results showed that the compressive strength of concrete decreased as the percentage of total fibre in the concrete mix increased. The experimental results also showed that coconut fibre concrete performed satisfactorily in terms of crack growth in comparison to that of conventional concrete. Finally, it was concluded that the use of coconut fibres has great potential in the production of lightweight concrete or normal concrete for use in the construction of concrete structures. As coconut fibre is a natural material that is easily available and cheap, it is a particularly good, low-cost alternative. Therefore, this material has the potential to overcome the problem of escalating costs in the industry.

  6. Experimental Investigation of a Mechanical Vapour Compression Chiller at Elevated Chilled Water Temperatures

    KAUST Repository

    Thu, Kyaw

    2017-05-18

    The performance of a Mechanical Vapour Compression (MVC) chiller is experimentally investigated under operating conditions suitable for sensible cooling. With the emergence of the energy efficient dehumidification systems, it is possible to decouple the latent load from the MVC chillers which can be operated at higher chilled water temperature for handling sensible cooling load. In this article, the performance of the chiller is evaluated at the elevated chilled water outlet temperatures (7 – 17° C) at various coolant temperatures (28 – 32° C) and flow rates (ΔT = 4 and 5° C) for both full- and part-load conditions. Keeping the performance at the AHRI standard as the baseline condition, the efficacy of the chiller in terms of compression ratio, cooling capacity and COP at aforementioned conditions is quantified experimentally. It is observed that for each one-degree Celsius increase in the chilled water temperature, the COP of the chiller improves by about 3.5% whilst the cooling capacity improvement is about 4%. For operation at 17° C chilled water outlet temperature, the improvements in COP and cooling capacity are between 37 – 40% and 40 – 45%, respectively, compared to the performance at the AHRI standards. The performance of the MVC chiller at the abovementioned operation conditions is mapped on the chiller performance characteristic chart.

  7. Investigation of cryogenic irradiation influence on mechanical and physical properties of ITER magnetic system insulation materials

    International Nuclear Information System (INIS)

    Kozlov, A.V.; Scherbacov, E.N.; Dudchenko, N.A.; Shihalev, V.S.; Bedin, V.V.; Paltusov, N.A.; Korsunskiy, V.E.

    1998-01-01

    A set of methods of cryogenic irradiation influence test on mechanical and physical properties of insulation of ITER magnetic system are presented in this paper. Investigations are carried out without intermediate warming up of samples. A Russian insulating composite material was irradiated in the IVV-2M reactor. The ratio of energy absorbed by insulation materials from neutron irradiation to that from gamma irradiation can be varied from ∝(25:75)% to ∝(50:50)% in the reactor. The test results on the thermal expansion, thermal conductivity and gas evolution of the above material are presented. It was shown, that cryogenic irradiation up to the fluence ∝2 x 10 22 n/m 2 (E ≥ 0.1 MeV) leads to 0.27% linear size changes along layers of fiber-glass, the thermal conductivity coefficient is decreased on 15% at 100 k in perpendicular direction to fiber-glass plane, and thermal coefficient of linear expansion (TCLE) has anomalous temperature dependence. (orig.)

  8. Experimental Investigation of a Mechanical Vapour Compression Chiller at Elevated Chilled Water Temperatures

    KAUST Repository

    Thu, Kyaw; Saththasivam, Jayaprakash; Saha, Bidyut Baran; Chua, Kian Jon; Srinivasa Murthy, S.; Ng, Kim Choon

    2017-01-01

    The performance of a Mechanical Vapour Compression (MVC) chiller is experimentally investigated under operating conditions suitable for sensible cooling. With the emergence of the energy efficient dehumidification systems, it is possible to decouple the latent load from the MVC chillers which can be operated at higher chilled water temperature for handling sensible cooling load. In this article, the performance of the chiller is evaluated at the elevated chilled water outlet temperatures (7 – 17° C) at various coolant temperatures (28 – 32° C) and flow rates (ΔT = 4 and 5° C) for both full- and part-load conditions. Keeping the performance at the AHRI standard as the baseline condition, the efficacy of the chiller in terms of compression ratio, cooling capacity and COP at aforementioned conditions is quantified experimentally. It is observed that for each one-degree Celsius increase in the chilled water temperature, the COP of the chiller improves by about 3.5% whilst the cooling capacity improvement is about 4%. For operation at 17° C chilled water outlet temperature, the improvements in COP and cooling capacity are between 37 – 40% and 40 – 45%, respectively, compared to the performance at the AHRI standards. The performance of the MVC chiller at the abovementioned operation conditions is mapped on the chiller performance characteristic chart.

  9. Investigation of Mechanical and Electromagnetic Interference Shielding Properties of Nickel-CFRP Textile Composites

    Science.gov (United States)

    Tugirumubano, Alexandre; Vijay, Santhiyagu Joseph; Go, Sun Ho; Kwac, Lee Ku; Kim, Hong Gun

    2018-04-01

    The most common materials used for electromagnetic interference shielding are metals and their alloys. However, those materials are heavy and highly reflective. In order to eliminate or reduce the intensity of wave radiation in their working environment, lightweight materials that have interference shielding properties are needed. In this paper, nickel wire mesh yarns (warps) were woven into carbon fibers-reinforced plastic yarns (wefts) to produce metal-carbon textile composite materials. The plain weave and 2/2 twill weave techniques were used, and the woven fabrics were laminated to manufacture experimental test samples. The nickel, which has high magnetic permeability and good electric conductivity, and carbon fibers, which have good electrical, thermal and mechanical properties, were used together to achieve the desired properties. The shielding effectiveness of each sample was investigated using a network analyzer connected with coaxial transmission line test in accordance with ASTM 4935-99 standard, with the frequencies ranging from 500 MHz to 1.5 GHz. Here, the plain weave structure showed higher shielding effectiveness than twill weave. The absorption losses for both materials were relatively greater than reflection losses. In reference to the orientation of wire mesh yarns about the loading axis, the tensile strengths in the transversal direction were 19.04 and 16.34% higher than the tensile strengths in longitudinal direction for plain weave and twill weave, respectively. The fractography analysis with SEM showed a ductile fracture of wire mesh and brittle fracture of epoxy matrix and carbon fibers.

  10. Investigations on mechanical biological treatment of waste in South America: Towards more sustainable MSW management strategies

    International Nuclear Information System (INIS)

    Bezama, Alberto; Aguayo, Pablo; Konrad, Odorico; Navia, Rodrigo; Lorber, Karl E.

    2007-01-01

    This work presents an analysis on the suitability of mechanical biological treatment of municipal solid waste in South America, based on two previous experimental investigations carried out in two different countries. The first experiment was performed for determining the mass and volume reduction of MSW in the province of Concepcion (Chile). The implemented bench-scale process consisted of a manual classification and separation stage, followed by an in-vessel biological degradation process. The second experiment consisted of a full-scale experiment performed in the city of Estrela (Brazil), where the existing municipal waste management facility was adapted to enhance the materials sorting and separation. Expressed in wet weight composition, 85.5% of the material input in the first experiment was separated for biological degradation. After 27 days of processing, 60% of the initial mass was reduced through degradation and water evaporation. The final fraction destined for landfilling equals 59% of the total input mass, corresponding to about 50% of the initial volume. In the second experiment, the fraction destined to landfill reaches 46.6% of the total input waste mass, whilst also significantly reducing the total volume to be disposed. These results, and the possible recovery of material streams suitable for recycling or for preparing solid recovered fuels, are the main advantages of the studied process

  11. Graphene coating for anti-corrosion and the investigation of failure mechanism

    International Nuclear Information System (INIS)

    Zhu, Y X; Duan, C Y; Chen, Y F; Wang, Y; Liu, H Y

    2017-01-01

    Graphene produced by chemical vapor deposition (CVD) methods has been considered as a promising corrosion prevention layer because of its exceptional structure and impermeability. However, the anti-corrosion performance and the failure mechanism are still controversial. In this study, graphene layers with different quality levels, crystallite sizes, and layer numbers were prepared on the surface of Cu by a CVD process. The effects of grain boundaries (GBs) on the failure of graphene layers to provide adequate protection were investigated in detail by combining graphene transfer techniques, computation, and anti-corrosion measurements. Our results reveal that corrosion rates decrease marginally upon the increase of graphene layer number, and this rather weak dependence on thickness likely arises from the aligned nature of the GBs in CVD-grown few-layer graphene. This problem can potentially be overcome by layer-by-layer graphene transfer technique, in which corrosion is found to be arrested locally when transferred graphene is present on top of the as-grown graphene. However, this advantage is not reflected in corrosion studies performed on large-scale samples, where cracks or imperfect interfaces could offset the advantages of GB misalignment. With improvements in technology, the layer-by-layer assembly technique could be used to develop an effective anti-corrosion barrier. (paper)

  12. Investigation of the Deformation Mechanism of a near β Titanium Alloy through Isothermal Compression

    Directory of Open Access Journals (Sweden)

    Jie Wu

    2017-11-01

    Full Text Available This study investigated the hot deformation behavior of Ti-4Al-1Sn-2Zr-5Mo-8V-2.5Cr alloy through isothermal compression tests at temperatures from 780 to 930 °C with strain rates ranging from 0.001 to 1 s−1. The flow stress decreases with a decreased strain rate and an increased temperature. A constitutive equation was established for this alloy and the dependence of activation energy on temperature and strain rate is discussed. We further proposed a processing map using the dynamic materials model. On the processing map various domains of flow stability and flow instability can be identified. The deformation mechanisms associated with flow stability regions are mainly dynamic recrystallization (DRX and dynamic recovery (DRV. The flow instability is manifested in the form of the band of flow localizations. The optimum processing conditions are suggested such that the temperature range is from 780 to 880 °C and the strain rate ranges from 0.001 to 0.01 s−1.

  13. Investigation of Mechanical and Electromagnetic Interference Shielding Properties of Nickel-CFRP Textile Composites

    Science.gov (United States)

    Tugirumubano, Alexandre; Vijay, Santhiyagu Joseph; Go, Sun Ho; Kwac, Lee Ku; Kim, Hong Gun

    2018-05-01

    The most common materials used for electromagnetic interference shielding are metals and their alloys. However, those materials are heavy and highly reflective. In order to eliminate or reduce the intensity of wave radiation in their working environment, lightweight materials that have interference shielding properties are needed. In this paper, nickel wire mesh yarns (warps) were woven into carbon fibers-reinforced plastic yarns (wefts) to produce metal-carbon textile composite materials. The plain weave and 2/2 twill weave techniques were used, and the woven fabrics were laminated to manufacture experimental test samples. The nickel, which has high magnetic permeability and good electric conductivity, and carbon fibers, which have good electrical, thermal and mechanical properties, were used together to achieve the desired properties. The shielding effectiveness of each sample was investigated using a network analyzer connected with coaxial transmission line test in accordance with ASTM 4935-99 standard, with the frequencies ranging from 500 MHz to 1.5 GHz. Here, the plain weave structure showed higher shielding effectiveness than twill weave. The absorption losses for both materials were relatively greater than reflection losses. In reference to the orientation of wire mesh yarns about the loading axis, the tensile strengths in the transversal direction were 19.04 and 16.34% higher than the tensile strengths in longitudinal direction for plain weave and twill weave, respectively. The fractography analysis with SEM showed a ductile fracture of wire mesh and brittle fracture of epoxy matrix and carbon fibers.

  14. 3D PiC code investigations of Auroral Kilometric Radiation mechanisms

    International Nuclear Information System (INIS)

    Gillespie, K M; McConville, S L; Speirs, D C; Ronald, K; Phelps, A D R; Bingham, R; Cross, A W; Robertson, C W; Whyte, C G; He, W; Vorgul, I; Cairns, R A; Kellett, B J

    2014-01-01

    Efficient (∼1%) electron cyclotron radio emissions are known to originate in the X mode from regions of locally depleted plasma in the Earths polar magnetosphere. These emissions are commonly referred to as the Auroral Kilometric Radiation (AKR). AKR occurs naturally in these polar regions where electrons are accelerated by electric fields into the increasing planetary magnetic dipole. Here conservation of the magnetic moment converts axial to rotational momentum forming a horseshoe distribution in velocity phase space. This distribution is unstable to cyclotron emission with radiation emitted in the X-mode. Initial studies were conducted in the form of 2D PiC code simulations [1] and a scaled laboratory experiment that was constructed to reproduce the mechanism of AKR. As studies progressed, 3D PiC code simulations were conducted to enable complete investigation of the complex interaction dimensions. A maximum efficiency of 1.25% is predicted from these simulations in the same mode and frequency as measured in the experiment. This is also consistent with geophysical observations and the predictions of theory.

  15. Investigation on the mechanism of nitrogen plasma modified PDMS bonding with SU-8

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Chengxin; Yuan, Yong J., E-mail: yongyuan@swjtu.edu.cn

    2016-02-28

    Graphical abstract: - Highlights: • Different nitrogen plasma processes modified PDMS bonding with SU-8 had been studied. • The effect of nitrogen plasma modification would produce the best result and the recovery of PDMS hydrophobicity could be delayed. - Abstract: Polydimethylsiloxane (PDMS) and SU-8 are both widely used for microfluidic system. However, it is difficult to permanently seal SU-8 microfluidic channels using PDMS with conventional methods. Previous efforts of combining these two materials mainly employed oxygen plasma modified PDMS. The nitrogen plasma modification of PDMS bonding with SU-8 is rarely studied in recent years. In this work, the mechanism of nitrogen plasma modified PDMS bonding with SU-8 was investigated. The fourier-transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and contact angle of a water droplet were used to analyze the nitrogen plasma modified surface and the hydrophilic stability of PDMS samples. Pull-off tests were used for estimating the bonding effect of interface between nitrogen plasma modified PDMS and SU-8.

  16. Investigation of an alleged mechanism of finger injury in an automobile crash.

    Science.gov (United States)

    Stacey, Stephen; Kent, Richard

    2006-07-01

    This investigation centers on the case of an adult male whose finger was allegedly amputated by the steering wheel of his car during a crash. The subject claimed to have been driving with his left index finger inserted through a hole in the spoke of his steering wheel and was subsequently involved in an offset frontal collision with a tree. The finger was found to be cleanly severed at the mid-shaft of the proximal phalanx after the crash. This injury was alleged to have been caused by inertial loading from the rotation of the steering wheel during the crash. To determine whether this injury mechanism was plausible, three laboratory tests representing distinct loading scenarios were carried out with postmortem human surrogates loaded dynamically by the subject's steering wheel. It was found that the inertial loads generated in this loading scenario are insufficient to amputate the finger. Additionally, artificially constraining the finger to force an amputation to occur revealed that a separation at the proximal interphalangeal joint occurs rather than a bony fracture of the proximal phalanx. Based on these biomechanical tests, it can be concluded that the subject's injury did not occur during the automobile crash in question. Furthermore, it can be shown that the injury was self-inflicted to fraudulently claim on an insurance policy.

  17. Investigate The Effect Of Welding Parameters On Mechanical Properties During The Welding Of Al-6061 Alloy

    Directory of Open Access Journals (Sweden)

    Rajendra Prasad

    2017-10-01

    Full Text Available Friction welding is a solid state welding technique which is being used in recent times to weld similar as well as dissimilar metals for getting defect free weld. Many combinations like low carbon to stainless steel austenitic to ferrite stainless steel aluminium to copper and titanium to aluminium or steel have been tried out by various solid state welding processes with quite good results. In the present work the 3 level full factorial design has been employed to investigate the effect of welding parameters on tensile strength toughness and heat generation during the welding of Al-6061 alloy. Mathematical relationships between friction welding parameters and mechanical properties like heat generation tensile strength and toughness have also been developed. An attempt has also been made to examine the fracture surfaces of test specimens using SEM. It has been found that welding speed is the most significant parameter thats affect the heat generation tensile strength and toughness. it has been found that tensile strength and toughness during welding increases with increased in welding speed while tensile strength and toughness initially increased as the welding time increases after that it decreased with increase in welding time. The difference in weight of alloying elements can be clearly seen by analyzing spectrum of elements.

  18. Big Brother is watching but helping you : analyse et interprétation de mouvements humains (expressions, gestes, postures) : Big Brother is watching but helping you : human motion analysis and interpretation

    OpenAIRE

    Caplier , Alice

    2005-01-01

    Mes activités de recherche portent sur l'analyse et l'interprétation des mouvements humains à partir de données visuelles avec comme application principale l'amélioration du processus de communication entre l'homme et la machine. L'idée sous-jacente est de tendre vers une communication homme machine non pas par l'intermédiaire des traditionnels écran/clavier/souris mais vers un processus plus « humain » de communication. Ceci suppose que la machine est capable de reconnaître et d'interpréter ...

  19. Pharmacologic investigations on the role of Sirt-1 in neuroprotective mechanism of postconditioning in mice.

    Science.gov (United States)

    Kaur, Harpreet; Kumar, Amit; Jaggi, Amteshwar S; Singh, Nirmal

    2015-07-01

    Cerebral ischemia-reperfusion (I-R) injury is one of the primary causes of ischemic stroke. Ischemic postconditioning (iPoCo) is evolving as an important adaptive technique to contain I-R injury. Some recent studies have shown neuroprotective effects of iPoCo. However, the neuroprotective mechanism of iPoCo is not clear. So, the present study has been undertaken to investigate the possible role of Sirtinol, a selective class III histone deacetylase (HDAC) inhibitor in the neuroprotective mechanism of iPoCo in mice. Bilateral carotid artery occlusion (BCAO) for 12 min followed by reperfusion for 24 h was used to produce I-R-induced cerebral injury in Swiss albino mice. iPoCo involving three episodes of 10-s carotid artery occlusion and reperfusion instituted immediately after BCAO just before prolonged reperfusion of 24 h. Cerebral infarct size was measured using triphenyltetrazolium chloride staining. Memory was evaluated using a Morris water maze test. Rotarod test, inclined beam-walking test, and neurologic severity score (NSS) were used to assess motor incoordination. Acetylcholine esterase levels, brain thiobarbituric acid reactive species (TBARS), and glutathione level were also estimated. BCAO for 12 min followed by reperfusion for 24 h produced a significant rise in cerebral infarct size and NSS along with impairment of memory and motor coordination and biochemical alteration (↑acetylcholine esterase, ↓glutathione, and ↑TBARS). iPoCo, involving three episodes of 10-s carotid artery occlusion with intermittent reperfusion of 10 s applied just after ischemic insult of 12 min produced a significant decrease in cerebral infarct size and NSS along with the reversal of I-R-induced impairment of memory and motor coordination. iPoCo-induced neuroprotective effects were significantly abolished by pretreatment with selective SIRT 1 (class III HDAC) blocker Sirtinol (10 mg/kg intraperitoneal). It may be concluded that the neuroprotective effect of iPoCo probably

  20. Investigations into stress shell characteristics of surrounding rock in fully mechanized top-coal caving face

    Energy Technology Data Exchange (ETDEWEB)

    Xie, G.X.; Chang, J.C.; Yang, K. [Anhui University of Science and Technology, Huainan (China)

    2009-01-15

    A key issue in underground mining is to understand and master the evolving patterns of stress induced by mining, and to control and utilize the action of rock pressure. Numerical and physical modeling tests have been carried out to investigate the distribution patterns of stress in the rock surrounding a fully mechanized top-coal caving (FMTC) face. The results showed that a macro-stress shell composed of high stress exists in the rock surrounding an FMTC face. The stress of the shell is higher than its internal and external stress and the stresses at its skewback producing abutment pressure for the surrounding rock. The stress shell lies in the virgin coal and rock mass in the vicinity of the face and its sagging zone. The stress shell, which bears and transfers the loads of overlying strata, acts as the primary supporting system of forces, and is the corpus of characterizing three-dimensional and macro-rock pressure distribution of mining face. Its external and internal shape changes with the variations in the working face structure as the face advances. Within the low-stress zone inside the stress shell, another structure, i.e. voussoir beam, which only bears parts of the load from the lower-lying strata, will produce periodic pressures on the face instead of great dynamic pressure even if the beam ruptures and loses stability. The results show that the FMTC face is situated within the lower-stress zone, which is protected by the stress shell of the overlying surrounding rock. We give an explanation of lower occurrence of rock pressure on FMTC faces, and reveal the mechanical nature of the top coal of an FMTC face acting as a 'cushion'. The strata behaviors of the face and its neighboring gates are under control of the stress shell. Drastic rock pressure in mine may occur when the balance of the stress shell is destruction or the forces system of the stress shell transfers. Crown Copyright

  1. Oxidative degradation of chlorophenol derivatives promoted by microwaves or power ultrasound: a mechanism investigation.

    Science.gov (United States)

    Cravotto, Giancarlo; Binello, Arianna; Di Carlo, Stefano; Orio, Laura; Wu, Zhi-Lin; Ondruschka, Bernd

    2010-03-01

    Phenols are the most common pollutants in industrial wastewaters (particularly from oil refineries, resin manufacture, and coal processing). In the last two decades, it has become common knowledge that they can be effectively destroyed by nonconventional techniques such as power ultrasound (US) and/or microwave (MW) irradiation. Both techniques may strongly promote advanced oxidation processes (AOPs). The present study aimed to shed light on the effect and mechanism of US- and MW-promoted oxidative degradation of chlorophenols; 2,4-dichlorophenoxyacetic acid (2,4-D), a pesticide widespread in the environment, was chosen as the model compound. 2,4-D degradation by AOPs was carried out either under US (20 and 300 kHz) in aqueous solutions (with and without the addition of Fenton reagent) or solvent-free under MW with sodium percarbonate (SPC). All these reactions were monitored by gas chromatography-mass spectrometry (GC-MS) analysis and compared with the classical Fenton reaction in water under magnetic stirring. The same set of treatments was also applied to 2,4-dichlorophenol (2,4-DCP) and phenol, the first two products that occur a step down in the degradation sequence. Fenton and Fenton-like reagents were employed at the lowest active concentration. The effects of US and MW irradiation were investigated and compared with those of conventional treatments. Detailed mechanisms of Fenton-type reactions were suggested for 2,4-D, 2,4-DCP, and phenol, underlining the principal degradation products identified. MW-promoted degradation under solvent-free conditions with solid Fenton-like reagents (viz. SPC) is extremely efficient and mainly follows pyrolytic pathways. Power US strongly accelerates the degradation of 2,4-D in water through a rapid generation of highly reactive radicals; it does not lead to the formation of more toxic dimers. We show that US and MW enhance the oxidative degradation of 2,4-D and that a considerable saving of oxidants and cutting down of

  2. Investigation of efficiency of electric drive control system of excavator traction mechanism based on feedback on load

    Science.gov (United States)

    Kuznetsov, N. K.; Iov, I. A.; Iov, A. A.

    2018-05-01

    The article presents the results of a study of the efficiency of the electric drive control system of the traction mechanism of a dragline based on the use of feedback on load in the traction cable. The investigations were carried out using a refined electromechanical model of the traction mechanism, which took into account not only the elastic elements of the gearbox, the backlashes in it and the changes in the kinematic parameters of the mechanism during operation, but also the mechanical characteristics of the electric drive and the features of its control system. By mathematical modeling of the transient processes of the electromechanical system, it is shown that the introduction of feedback on the load in the elastic element allows one to reduce the dynamic loads in the traction mechanism and to limit the elastic oscillations of the actuating mechanism in comparison with the standard control system. Fixed as a general decrease in the dynamic load of the nodes of traction mechanism in the modes of loading and latching of the bucket, and a decrease the operating time of the mechanism at maximum load. At the same time, undesirable phenomena in the operation of the electric drive were also associated with the increase in the recovery time of the steady-state value of the speed of the actuating mechanism under certain operating conditions, which can lead to a decrease in the reliability of the mechanical part and the productivity of the traction mechanism.

  3. Investigation of the mechanisms by which UV irradiation activates the tyrosinase gene

    International Nuclear Information System (INIS)

    Bao, Y.

    2000-04-01

    within this 100-bp, totally abolished the stimulation of CAT activity in response to UV irradiation, thus suggesting a key role of this potential CRE motif in the UV response of the 100-bp promoter. Since the CRE motif binds transcription factors of CREB family, it is possible that CREB or a related protein, could be involved in UV-activation of tyrosinase gene expression. Microphthalmia (Mi), a basic helix-loop-helix (bHLH) transcription factor which binds to a CANNTG E-motif, has recently been demonstrated to be important in tyrosinase and TRP-1 gene expression. The tyrosinase, TRP-1 and TRP-2 promoters share a CATGTG E-motif within a conserved 11 bp M-box. Mi is able to transactivate the human tyrosinase and TRP-1 gene promoter through the E-motif and cAMP elevating agents led to a rapid, but transient increase in Mi mRNA and protein levels in B16 melanoma cells. To investigate the possible role of Mi in UV-induced melanogenesis, the effects of UV irradiation on gene expression and protein phosphorylation of Mi were examined. UV irradiation caused a marked reduction of Mi mRNA. This suggested that Mi was unlikely to be involved in the stimulation of the tyrosinase gene expression by UV. When using a One-hybrid System to study activation of the Mi phosphorylation, however, UV irradiation caused a small increase in GAL4-Mi-dependent luciferase activity, indicating a phosphorylation of Mi by UV. The mechanisms under these effects need to be further investigated. (author)

  4. Corrosion on Mars: An Investigation of Corrosion Mechanisms Under Relevant Simulated Martian Environments

    Science.gov (United States)

    Calle, Luz M.; Li, Wenyan; Johansen, Michael R.; Buhrow, Jerry W.; Calle, Carlos I.

    2017-01-01

    , showed that there is an interaction between the small amount of oxygen present in the Mars gas and the alloy when there is a scratch that removes the protective aluminum oxide film. Further studies are needed to consider many other important components of the Mars environment that can affect this interaction such as: the effect of oxidants, the effect of radiation on their oxidizing properties and the possible catalytic effects of the clays present in the Martian regolith. The results of this one-year project provide strong justification for further investigation of the corrosion mechanism of materials relevant to long-term surface operations in support of future human exploration missions on Mars.

  5. Investigations on the influence of the stress state on fracture-mechanical values

    International Nuclear Information System (INIS)

    Schmidt, P.

    1979-01-01

    Fracture toughness obtained from specimen can be applied to construction elements only when the same stress state exists. In standardised fracture-mechanical tests plain strain is realised. Using the stress intensity factor, a critical crack length or a critical load can be obtained. Above these values a crack propagates in an unstable way. The specimen are tested under uni-axial load. In this paper investigations have been made whether a biaxial load increases the stress state over the plain strain and whether consequently a decrease of the critical fracture toughness and a shift of the temperatures Tsub(g)sub(y) and Tsub(s) results which characterise the fracture behaviour of steel. In order to answer these questions the tests were made which induced due to their geometry an additional nominal stress parallel to the crack front in spite of uni-axial loading. The results were compared with those from specimen without an additional nominal stress and having in their cross section under same test conditions nearly the same plain strain. The fracture toughness of both specimen types were compared at temperatures between 142 K and 252 K and correlated to other material-characterising values. The tests were completed by stress analysis and by comparing the crack opening displacement. Due to the additional stress, Tsub(g)sub(y) was found to be 20 K higher than for the reference specimen. The fracture toughness decreases significantly in certain temperature ranges. The plastic stress concentration factor was comperatively higher and the remaining plastic crack opening decreases up to 25%. (orig.) [de

  6. An investigation on microstructure and mechanical property of thermally aged stainless steel weld overlay cladding

    Energy Technology Data Exchange (ETDEWEB)

    Cao, X.Y. [National Center for Materials Service Safety, University of Science and Technology Beijing, 30 Xueyuan Road, 100083 Beijing (China); Zhu, P. [Suzhou Nuclear Power Research Institute Co. Ltd., 1788 Xihuan Road, 215004 Suzhou (China); Ding, X.F. [National Center for Materials Service Safety, University of Science and Technology Beijing, 30 Xueyuan Road, 100083 Beijing (China); Lu, Y.H., E-mail: lu_yonghao@mater.ustb.edu.cn [National Center for Materials Service Safety, University of Science and Technology Beijing, 30 Xueyuan Road, 100083 Beijing (China); Shoji, T. [National Center for Materials Service Safety, University of Science and Technology Beijing, 30 Xueyuan Road, 100083 Beijing (China); Fracture and Reliability Research Institute, Tohoku University, 6-6-01 Aoba AramakiAobaku, 980-8579 Sendai (Japan)

    2017-04-01

    Microstructural evolution and mechanical property change of E308L stainless steel weld overlay cladding aged at 400 °C for 400, 1000 and 5000 h were investigated by transmission electron microscope (TEM) and small punch test (SPT). The results indicated that thermal aging had no obvious effect on the volume fraction of ferrite, but can cause microstructural evolution by spinodal decomposotion and G-phase precipitation in the ferrite phase. Spinodal decomposition took place after aging up to 1000 h, while G-phase formed along dislocations, and growed up to 2–11 nm after aging for 5000 h. The total energy for inducing deformation and fracture by the small punch tests decreased with the increase of thermal aging time, and this decline was associated with spinodal decomposition and G-phase precipitation. Plastic deformation of the aged ferrite proceeded via formation of curvilinear slip bands. Nucleation of microcracks occurred at the δ/γ interface along the slip bands. The hardening of the ferrite and high stress concentration on δ/γ phase interface resulted in brittle fracture and phase boundary separation after thermal aging. - Highlights: •Spinodal decomposition took place after long-term therml aging at 400 °C. •Dislocations were the preferable sites for G-phase formation aged at 400 °C for 5000 h. •Spinodal decomposition and G-phase precipitation induced reduction of small punch energy. •Thermal aging led to brittle fracture and phase boundary separation. •Nucleation of microcracks occurred at the δ/γ interface along the slip bands in the aged ferrite phase.

  7. An investigation on microstructure and mechanical property of thermally aged stainless steel weld overlay cladding

    International Nuclear Information System (INIS)

    Cao, X.Y.; Zhu, P.; Ding, X.F.; Lu, Y.H.; Shoji, T.

    2017-01-01

    Microstructural evolution and mechanical property change of E308L stainless steel weld overlay cladding aged at 400 °C for 400, 1000 and 5000 h were investigated by transmission electron microscope (TEM) and small punch test (SPT). The results indicated that thermal aging had no obvious effect on the volume fraction of ferrite, but can cause microstructural evolution by spinodal decomposotion and G-phase precipitation in the ferrite phase. Spinodal decomposition took place after aging up to 1000 h, while G-phase formed along dislocations, and growed up to 2–11 nm after aging for 5000 h. The total energy for inducing deformation and fracture by the small punch tests decreased with the increase of thermal aging time, and this decline was associated with spinodal decomposition and G-phase precipitation. Plastic deformation of the aged ferrite proceeded via formation of curvilinear slip bands. Nucleation of microcracks occurred at the δ/γ interface along the slip bands. The hardening of the ferrite and high stress concentration on δ/γ phase interface resulted in brittle fracture and phase boundary separation after thermal aging. - Highlights: •Spinodal decomposition took place after long-term therml aging at 400 °C. •Dislocations were the preferable sites for G-phase formation aged at 400 °C for 5000 h. •Spinodal decomposition and G-phase precipitation induced reduction of small punch energy. •Thermal aging led to brittle fracture and phase boundary separation. •Nucleation of microcracks occurred at the δ/γ interface along the slip bands in the aged ferrite phase.

  8. Mise à jour sur le nouveau vaccin 9-valent pour la prévention du virus du papillome humain

    Science.gov (United States)

    Yang, David Yi; Bracken, Keyna

    2016-01-01

    Résumé Objectif Informer les médecins de famille quant à l’efficacité, à l’innocuité, aux effets sur la santé publique et à la rentabilité du vaccin 9-valent contre le virus du papillome humain (VPH). Qualité des données Des articles pertinents publiés dans PubMed jusqu’en mai 2015 ont été examinés et analysés. La plupart des données citées sont de niveau I (essais randomisés et contrôlés et méta-analyses) ou de niveau II (études transversales, cas-témoins et épidémiologiques). Des rapports et recommandations du gouvernement sont aussi cités en référence. Message principal Le vaccin 9-valent contre le VPH, qui offre une protection contre les types 6, 11, 16, 18, 31, 33, 45, 52 et 58 du VPH, est sûr et efficace et réduira encore plus l’incidence des infections à VPH, de même que les cas de cancer lié au VPH. Il peut également protéger indirectement les personnes non immunisées par l’entremise du phénomène d’immunité collective. Un programme d’immunisation efficace peut prévenir la plupart des cancers du col de l’utérus. Les analyses montrent que la rentabilité du vaccin 9-valent chez les femmes est comparable à celle du vaccin quadrivalent original contre le VPH (qui protège contre les types 6, 11, 16 et 18 du VPH) en usage à l’heure actuelle. Toutefois, il faut investiguer plus en profondeur l’utilité d’immuniser les garçons avec le vaccin 9-valent contre le VPH. Conclusion en plus d’être sûr, le vaccin 9-valent protège mieux contre le VPH que le vaccin quadrivalent. Une analyse coûtefficacité en favorise l’emploi, du moins chez les adolescentes. Ainsi, les médecins devraient recommander le vaccin 9-valent à leurs patients plutôt que le vaccin quadrivalent contre le VPH.

  9. Effects of temperature and cellular interactions on the mechanics and morphology of human cancer cells investigated by atomic force microscopy.

    Science.gov (United States)

    Li, Mi; Liu, LianQing; Xi, Ning; Wang, YueChao; Xiao, XiuBin; Zhang, WeiJing

    2015-09-01

    Cell mechanics plays an important role in cellular physiological activities. Recent studies have shown that cellular mechanical properties are novel biomarkers for indicating the cell states. In this article, temperature-controllable atomic force microscopy (AFM) was applied to quantitatively investigate the effects of temperature and cellular interactions on the mechanics and morphology of human cancer cells. First, AFM indenting experiments were performed on six types of human cells to investigate the changes of cellular Young's modulus at different temperatures and the results showed that the mechanical responses to the changes of temperature were variable for different types of cancer cells. Second, AFM imaging experiments were performed to observe the morphological changes in living cells at different temperatures and the results showed the significant changes of cell morphology caused by the alterations of temperature. Finally, by co-culturing human cancer cells with human immune cells, the mechanical and morphological changes in cancer cells were investigated. The results showed that the co-culture of cancer cells and immune cells could cause the distinct mechanical changes in cancer cells, but no significant morphological differences were observed. The experimental results improved our understanding of the effects of temperature and cellular interactions on the mechanics and morphology of cancer cells.

  10. Aroma Effects on Physiologic and Cognitive Function Following Acute Stress: A Mechanism Investigation

    OpenAIRE

    Chamine, Irina; Oken, Barry S.

    2016-01-01

    Objective: Aromas may improve physiologic and cognitive function after stress, but associated mechanisms remain unknown. This study evaluated the effects of lavender aroma, which is commonly used for stress reduction, on physiologic and cognitive functions. The contribution of pharmacologic, hedonic, and expectancy-related mechanisms of the aromatherapy effects was evaluated.

  11. An investigation of mechanical nociceptive thresholds in dogs with hind limb joint pain compared to healthy control dogs.

    Science.gov (United States)

    Harris, L K; Whay, H R; Murrell, J C

    2018-04-01

    This study investigated the effects of osteoarthritis (OA) on somatosensory processing in dogs using mechanical threshold testing. A pressure algometer was used to measure mechanical thresholds in 27 dogs with presumed hind limb osteoarthritis and 28 healthy dogs. Mechanical thresholds were measured at the stifles, radii and sternum, and were correlated with scores from an owner questionnaire and a clinical checklist, a scoring system that quantified clinical signs of osteoarthritis. The effects of age and bodyweight on mechanical thresholds were also investigated. Multiple regression models indicated that, when bodyweight was taken into account, dogs with presumed osteoarthritis had lower mechanical thresholds at the stifles than control dogs, but not at other sites. Non-parametric correlations showed that clinical checklist scores and questionnaire scores were negatively correlated with mechanical thresholds at the stifles. The results suggest that mechanical threshold testing using a pressure algometer can detect primary, and possibly secondary, hyperalgesia in dogs with presumed osteoarthritis. This suggests that the mechanical threshold testing protocol used in this study might facilitate assessment of somatosensory changes associated with disease progression or response to treatment. Copyright © 2017. Published by Elsevier Ltd.

  12. Numerical investigation of the triggering mechanisms of the Piz Dora sackung system (Val Mustair, Switzerland)

    Science.gov (United States)

    Riva, Federico; Agliardi, Federico; Crosta, Giovanni B.; Zanchi, Andrea

    2015-04-01

    Deep-Seated Gravitational Slope Deformations (DSGSD) are widespread phenomena in alpine environments, where they affect entire high-relief valley flanks involving huge rock volumes. Slope scale inherited structures related to ductile and brittle tectonic deformation can control the onset and development of DSGSD and the localization of strain in deep gravitational shear zones. Slope unloading, rock mass damage and hydrological perturbations related to deglaciation are considered important triggers of these phenomena in formerly glaciated areas. Furthermore, earthquake shaking and the long-term effects of seismicity in active tectonic areas might provide an additional triggering component. Nevertheless, the role played by these different processes and their interplay is not obvious, especially in geological context less typically favourable to DSGSD and in low-magnitude seismicity settings as the axial European Alps. We analysed the Piz Dora sackung system (Val Mustair, Switzerland), which affects conglomerates, meta-conglomerates and phyllites of the Austroalpine S-Charl nappe, involved in a slope-scale, WNW trending closed anticline fold. The area is actively uplifting, seismically active (maximum Mw>5) and experienced extensive glaciation during the LGM. The slope is affected by sharp gravitational morphostructures associated to the deep-seated sliding of 1.85 km3 of rock along a basal shear zone up to 300 m deep (Agliardi et al., 2014; Barbarano et al., 2015). We investigated the controlling role of inherited tectonic features and the relative influence of different candidate triggering processes (post-glacial debuttressing, related changes in slope hydrology, seismicity) through a series of 2D Distinct Element (DEM) numerical models set up using the code UDEC (ItascaTM). Based on field structural and geomechanical data, we discretized the slope into an ensemble of discontinuum domains, accounting for the slope-scale folded structure and characterised by unique

  13. Investigation on the oxygen transport mechanisms in the Sarcheshmeh waste rock dumps

    Directory of Open Access Journals (Sweden)

    Saeed Yousefi

    2015-04-01

    present in some samples. The carbonate content as the major neutralizing agent was zero in all samples. Due to the presence of sulfide minerals, mainly as pyrite, and also lack of any carbonate minerals, the AMD generation from the Sarcheshmeh waste rocks during the weathering reactions is predictable. At the Sarcheshmeh mine waste, several secondary minerals such as butlerite, jarosite and gypsum were detected by XRD at some depths. Moreover, amorphous iron oxyhydroxide minerals visually observed in waste dumps were not detected by XRD due to being negligible and low level of crystallinity. Hence, they were measured in terms of (Feo-h by ASTM standard test method. The ASTM-D2492 standard test showed that pyrite, sulphate and iron oxyhydroxide minerals (Feo-h are present in all samples. Against the XRD method, the test even detected the negligible content of the minerals. The paste pH tests showed that 15 samples were acid-producing because they had pH lower than 4. On the basis of moisture content results, the samples by name A6, A7, B1 and B2 showed high level of moisture which can be sign of the particular status in them. Discussion According to the field observations, channels with a strong flow of warm and humid air were detected in the depth of 3 to 5 meters of the investigated waste rock dumps. High content of humidity (8.25 and 13.43 percent and sulfate (4.5 and 7.02 percent were observed together with low content of pyrite (1.5 and 6.23 percent and acidic paste pH values (3.13 and 2.88 around these channels. Therefore, from the relation of these occurrences, it can be inferred that the air convection is important for supply oxygen to pyrite oxidation in the waste dumps of Sarcheshmeh. The results also indicate that, two main factors including grain size distribution and formation of hardpan layer on top of old weathered rocks are responsible for the decreasing of oxygen transformation rate via the molecular diffusion mechanism through the waste rock dumps

  14. Investigating radionuclide bearing suspended sediment transport mechanisms in the Ribble estuary using airborne remote sensing

    International Nuclear Information System (INIS)

    Atkin, P.A.

    2000-10-01

    BNFL Sellafield has been authorised to discharge radionuclides to the Irish Sea since 1952. In the aquatic environment the radionuclides are adsorbed by sediments and are thus redistributed by sediment transport mechanisms. This sediment is known to accumulate in the estuaries of the Irish Sea. BNFL Springfields is also licensed to discharge isotopically different radionuclides directly to the Ribble estuary. Thus there is a need to understand the sediment dynamics of the Ribble estuary in order to understand the fate of these radionuclides within the Ribble estuary. Estuaries are highly dynamic environments that are difficult to monitor using the conventional sampling techniques. However, remote sensing provides a potentially powerful tool for monitoring the hydrodynamics of the estuarine environment by providing data that are both spatially and temporally representative. This research develops a methodology for mapping suspended sediment concentration (SSC) in the Ribble estuary using airborne remote sensing. The first hypothesis, that there is a relationship between SSC and 137 Cs concentration is proven in-situ (R 2 =0.94), thus remotely sensed SSC can act as a surrogate for 137 Cs concentration. Initial in-situ characterisation of the suspended sediments was investigated to identify spatial and temporal variability in grain size distributions and reflectance characteristics for the Ribble estuary. Laboratory experiments were then performed to clearly define the SSC reflectance relationship, identify the optimum CASI wavelengths for quantifying SSC and to demonstrate the effects on reflectance of the environmental variables of salinity and clay content. Images were corrected for variation in solar elevation and angle to give a ground truth calibration for SSC, with an R 2 =0.76. The remaining scatter in this relationship was attributed to the differences in spatial and temporal representation between sampling techniques and remote sensing. The second hypothesis

  15. Inhibition of Helicobacter pylori and Its Associated Urease by Palmatine: Investigation on the Potential Mechanism.

    Science.gov (United States)

    Zhou, Jiang-Tao; Li, Cai-Lan; Tan, Li-Hua; Xu, Yi-Fei; Liu, Yu-Hong; Mo, Zhi-Zhun; Dou, Yao-Xing; Su, Rui; Su, Zi-Ren; Huang, Ping; Xie, Jian-Hui

    2017-01-01

    In this paper, we evaluated the anti-Helicobacter pylori activity and the possible inhibitory effect on its associated urease by Palmatine (Pal) from Coptis chinensis, and explored the potential underlying mechanism. Results indicated that Pal exerted inhibitory effect on four tested H. pylori strains (ATCC 43504, NCTC 26695, SS1 and ICDC 111001) by the agar dilution test with minimum inhibitory concentration (MIC) values ranging from 100 to 200 μg/mL under neutral environment (pH 7.4), and from 75 to 100 μg/mL under acidic conditions (pH 5.3), respectively. Pal was observed to significantly inhibit both H. pylori urease (HPU) and jack bean urease (JBU) in a dose-dependent manner, with IC50 values of 0.53 ± 0.01 mM and 0.03 ± 0.00 mM, respectively, as compared with acetohydroxamic acid, a well-known urease inhibitor (0.07 ± 0.01 mM for HPU and 0.02 ± 0.00 mM for JBU, respectively). Kinetic analyses showed that the type of urease inhibition by Pal was noncompetitive for both HPU and JBU. Higher effectiveness of thiol protectors against urease inhibition than the competitive Ni2+ binding inhibitors was observed, indicating the essential role of the active-site sulfhydryl group in the urease inhibition by Pal. DTT reactivation assay indicated that the inhibition on the two ureases was reversible, further supporting that sulfhydryl group should be obligatory for urease inhibition by Pal. Furthermore, molecular docking study indicated that Pal interacted with the important sulfhydryl groups and inhibited the active enzymatic conformation through N-H ∙ π interaction, but did not interact with the active site Ni2+. Taken together, Pal was an effective inhibitor of H. pylori and its urease targeting the sulfhydryl groups, representing a promising candidate as novel urease inhibitor. This investigation also gave additional scientific support to the use of C. chinensis to treat H. pylori-related gastrointestinal diseases in traditional Chinese medicine. Pal might be

  16. Investigating the gas sorption mechanism in an rht -metal-organic framework through computational studies

    KAUST Repository

    Pham, Tony T.

    2014-01-09

    Grand canonical Monte Carlo (GCMC) simulations were performed to investigate CO2 and H2 sorption in an rht-metal-organic framework (MOF) that was synthesized with a ligand having a nitrogen-rich trigonal core through trisubstituted triazine groups and amine functional groups. This MOF was synthesized by two different groups, each reporting their own distinct gas sorption measurements and crystal structure. Electronic structure calculations demonstrated that the small differences in the atomic positions between each group\\'s crystal structure resulted in different electrostatic parameters about the Cu2+ ions for the respective unit cells. Simulations of CO2 sorption were performed with and without many-body polarization effects and using our recently developed CO2 potentials, in addition to a well-known bulk CO2 model, in both crystallographic unit cells. Simulated CO2 sorption isotherms and calculated isosteric heats of adsorption, Qst, values were in excellent agreement with the results reported previously by Eddaoudi et al. for both structures using the polarizable CO2 potential. For both crystal structures, the initial site for CO2 sorption were the Cu 2+ ions that had the higher positive charge in the unit cell, although the identity of this electropositive Cu2+ ion was different in each case. Simulations of H2 sorption were performed with three different hydrogen potentials of increasing anisotropy in both crystal structures and the results, especially with the highest fidelity model, agreed well with Eddaoudi et al.\\'s experimental data. The preferred site of H 2 sorption at low loading was between two Cu2+ ions of neighboring paddlewheels. The calculation of the normalized hydrogen dipole distribution for the polarizable model in both crystal structures aided in the identification of four distinct sorption sites in the MOF, which is consistent to what was observed in the experimental inelastic neutron scattering (INS) spectra. Lastly, while the

  17. Investigations into the molecular mechanism of chromatid breakage in the G2-phase of mammalian cells

    International Nuclear Information System (INIS)

    Bryant, P.E.; Armstrong, G.N.; Gray, L.; Frankenberg, D.; Mozdarani, H.

    2003-01-01

    Chromatid breakage following irradiation of cells in the G2-phase of the cell cycle results from the induction of DNA double-strand breaks (dsb). The conversion of dsb into chromatid breaks (cb) has a genetic basis, seemingly different from that of dsb rejoining. The variation in extent of this conversion is exemplified by the stiking variation in frequency of cb in irradiated cycling T-lymphocytes between different normal individuals. Elevated cb frequency in lymphocytes of around 40% of breast cancer patients and their first-degree relatives suggests the presence of mutations in low penetrance cancer predisposing genes that also affect conversion of dsb to cb. Investigation of the mechanism of chromatid radiosensitivity using genetically engineered rodent cell lines containing unique dsb break sites indicate that a single isolated dsb is sufficient to cause a cb. The single-event nature of chromatid breakage is confirmed by the fact that cb are induced as a linear function of radiation dose. Moreover, we have recently shown that ultrasoft carbon-K X-rays also induce chromatid breakage. In this case the energy of the secondary electrons produced by carbon-K X-rays is too low to span more than one DNA double helix, thus further supporting our conclusion that a single dsb is responsible for the formation of a cb. Chromatid breakage is thought to involve a rearrangement between DNA strands at the crossover points of chromatin loop(s) triggered by the presence of a dsb within the loop structure. The occasional observation of 'looped-out' sections of chromatin at cb sites supports this hypothesis. The occurrence of 'colour-switches' between FPG stained chromatids at a proportion of break sites (e.g. about 16% in CHO cells) shows that a significant proportion of cb definitely result from chromatin rearrangements. Measurements of altered colour-switch ratio (csr) in mutant rodent and human cells (irs1 and AT cells respectively) also indicate a genetic basis for the

  18. Theoretical investigation of the mechanism of tritiated methane dehydrogenation reaction using nickel-based catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Liang; Li, Jiamao; Deng, Bing; Yang, Yong; Wang, Heyi [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900 (China); Li, Weiyi [School of Physics and Chemistry, Xihua University, Chengdu 610065 (China); Li, Shuo, E-mail: lishuo@cqut.edu.cn [School of Chemical Engineering, Chongqing University of Technology, Chongqing 400054 (China); Tan, Zhaoyi, E-mail: tanzhaoyi@caep.cn [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900 (China)

    2015-06-15

    Graphical abstract: - Highlights: • Four-step dehydrogenation of CT{sub 4} catalyzed by Ni to form Ni–C by releasing T{sub 2}. • The process of Ni + CT{sub 4} → NiCT{sub 2} + T{sub 2} is more achievable than that of NiCT{sub 2} → NiC + T{sub 2}. • TNiCT → T{sub 2}NiC step is the RDS with the rate constant of k = 2.8 × 10{sup 13} exp(−313,136/RT). • The hydrogen isotope effect value of k{sub H}/k{sub T} is 2.94, and k{sub D}/k{sub T} is 1.39. • CH{sub 4} and CD{sub 4} dehydrogenations are likely to occur, accompanied by the CT{sub 4} cracking. - Abstract: The mechanism of tritiated methane dehydrogenation reaction catalyzed by nickel-based catalyst was investigated in detail by density functional theory (DFT) at the B3LYP/[6-311++G(d, p), SDD] level. The computational results indicated that the dehydrogenation of tritiated methane is endothermic. The decomposition of tritiated methane catalyzed by Ni to form Ni-based carbon (Ni–C) after a four-step dehydrogenation companied with releasing tritium. After the first and second dehydrogenation steps, Ni + CT{sub 4} formed NiCT{sub 2}. After the third and fourth dehydrogenation steps, NiCT{sub 2} formed NiC. The first and second steps of dehydrogenation occurred on both the singlet and triplet states, and the lowest energy route is Ni + CT{sub 4} → {sup 1}COM → {sup 1}TS1 → {sup 3}IM1 → {sup 3}TS2 → {sup 3}IM2. The third and fourth steps of dehydrogenation occurred on both the singlet and quintet states, and the minimum energy reaction pathway appeared to be IM3 → {sup 1}TS4 → {sup 5}IM4 → {sup 5}TS5 → {sup 5}IM5 → {sup 5}pro + T{sub 2}. The fourth step of dehydrogenation TNiCT → T{sub 2}NiC was the rate-determining step of the entire reaction with the rate constant of k{sub 2} = 2.8 × 10{sup 13} exp(−313,136/RT) (in cm{sup 3} mol{sup −1} s{sup −1}), and its activation energy barrier was calculated to be 51.8 kcal/mol. The Ni-catalyzed CH{sub 4} and CD{sub 4} cracking

  19. Investigating and Improving Student Understanding of Key Ideas in Quantum Mechanics throughout Instruction

    Science.gov (United States)

    Emigh, Paul Jeffrey

    This dissertation describes research on student understanding of quantum mechanics across multiple levels of instruction. The primary focus has been to identify patterns in student reasoning related to key concepts in quantum mechanics. The specific topics include quantum measurements, time dependence, vector spaces, and angular momentum. The research has spanned a variety of different quantum courses intended for introductory physics students, upper-division physics majors, and graduate students in physics. The results of this research have been used to develop a set of curriculum, Tutorials in Physics: Quantum Mechanics, for addressing the most persistent student difficulties. We document both the development of this curriculum and how it has impacted and improved student understanding of quantum mechanics.

  20. Is thrombosis a contributor to heart failure pathophysiology? Possible mechanisms, therapeutic opportunities, and clinical investigation challenges

    NARCIS (Netherlands)

    Zannad, F.; Stough, W.G.; Regnault, V.; Gheorghiade, M.; Deliargyris, E.; Gibson, C.M.; Agewall, S.; Berkowitz, S.D.; Burton, P.; Calvo, G.; Goldstein, S.; Verheugt, F.W.A.; Koglin, J.; O'Connor, C.M.

    2013-01-01

    Thrombotic events (coronary thrombosis, venous thromboembolism, intraventricular thrombosis, intracranial and systemic thromboembolism) occur frequently in patients with heart failure. These events may be precipitated by several mechanisms including hypercoagulability through enhancement of

  1. Investigation of dominant loss mechanisms in low-temperature polymer electrolyte membrane fuel cells

    OpenAIRE

    Gerteisen, D.

    2010-01-01

    This thesis deals with the analysis of dominant loss mechanisms in direct methanol fuel cells (DMFC) and hydrogen fed polymer electrolyte membrane fuel cells (PEFC) by means of experimental characterization and modeling work.

  2. A multi-scale investigation of the mechanical behavior of durable sisal fiber cement composites

    OpenAIRE

    Silva, Flávio de Andrade; Toledo Filho, Romildo D.; Mobasher, Barzin; Chawla, Nikhilesh

    2010-01-01

    Durable sisal fiber cement composites reinforced with long unidirectional aligned fibers were developed and their mechanical behavior was characterized in a multi-scale level. Tensile tests were performed in individual sisal fibers. Weibull statistics were used to quantify the degree of variability in fiber strength at different gage lengths. The fiber-matrix pull-out behavior was evaluated at several curing ages and embedded lengths. The composite's mechanical response was measured under dir...

  3. AN INVESTIGATION OF THE IMPACT OF IMPURITIES ON THE MECHANICAL PROPERTIES OF RECYCLED PVC EXTRUSION PIPES

    OpenAIRE

    Adamu Alhaji Umar; Raji Olalere Fatai

    2007-01-01

    This work studied the effect of using recycled scraps in the production of rigid PVC extrusion pipe. Different formulations with varied percentages of scraps were extruded and various tests carried out on the sample specimen to determine their corresponding mechanical properties. It was finally discovered that among the two sources of scraps, the in-house scraps contained less impurities and blending about 10% of it with virgin PVC material in the production gave improved mechanical propertie...

  4. Biosorption of uranium on Bacillus sp. dwc-2: preliminary investigation on mechanism

    International Nuclear Information System (INIS)

    Li, Xiaolong; Ding, Congcong; Liao, Jiali; Lan, Tu; Li, Feize; Zhang, Dong; Yang, Jijun; Yang, Yuanyou; Luo, Shunzhong; Tang, Jun; Liu, Ning

    2014-01-01

    In this paper, the biosorption mechanisms of uranium on an aerobic Bacillus sp. dwc-2, isolated from a potential disposal site for (ultra-) low uraniferous radioactive waste in Southwest China, was explored by transmission electron microscopy (TEM), energy dispersive X-ray (EDX) analysis, FT-IR spectroscopy, proton induced X-ray emission (PIXE) and enhanced proton backscattering spectrometry (EPBS). The biosorption experiments for uranium were carried out at a low pH (pH 3.0), where the uranium solution speciation is dominated by highly mobile uranyl ions. The bioaccumulation was found to be the potential mechanism involved in uranium biosorption by Bacillus sp. dwc-2, and the bioaccumulated uranium was deposited in the cell interior as needle shaped particles at pH 3.0, as revealed by TEM analysis as well as EDX spectra. FTIR analysis further suggested that the absorbed uranium was bound to amino, phosphate and carboxyl groups of bacterial cells. Additionally, PIXE and EPBS results confirmed that ion-exchange also contributed to the adsorption process of uranium. All the results implied that the biosorption mechanism of uranium on Bacillus sp. is complicated and at least involves bioaccumulation, ion exchange and complexation process. - Highlights: • We examined U (VI) biosorption by a bacterial strain isolated from Southwest China. • We studied the involved mechanisms between uranium and this bacterium. • U (VI) was intracellularly bioaccumulated as needlelike granules by this bacterium. • The biosorption mechanisms involved ion exchange, complexation and bioccumulation

  5. Investigation of the mechanical performance of Siemens linacs components during arc

    DEFF Research Database (Denmark)

    Rowshanfarzad, Pejman; Häring, Peter; Lynggaard Riis, Hans

    2015-01-01

    to linac rotation were separately investigated by acquisition of 37 EPID images of a simple phantom with five ball bearings at various gantry angles. A fast and robust software package was developed for automated analysis of image data. Three Siemens linacs were investigated. RESULTS: The average EPID sag...... for effective investigation of the behavior of Siemens linac components with gantry rotation. Such a comprehensive study has been performed for the first time on Siemens machines....

  6. Investigation of Mechanical Properties and Metallurical Characteristics of a Metallic Chromium and Magnesium Oxide Composite

    National Research Council Canada - National Science Library

    Manning, Charles

    1963-01-01

    An experimental investigation has been made to evaluate an uncoated thin composite sheet material containing metallic chromium and magnesium oxide for aerospace applications in the temperature range...

  7. Experimental investigation on local mechanical response of superelastic NiTi shape memory alloy

    International Nuclear Information System (INIS)

    Xiao, Yao; Zeng, Pan; Lei, Liping

    2016-01-01

    In this paper, primary attention is paid to the local mechanical response of NiTi shape memory alloy (SMA) under uniaxial tension. With the help of in situ digital image correlation, sets of experiments are conducted to measure the local strain field at various thermomechanical conditions. Two types of mechanical responses of NiTi SMA are identified. The residual strain localization phenomena are observed, which can be attributed to the localized phase transformation (PT) and we affirm that most of the irreversibility is accumulated simultaneously during PT. It is found that temperature and PT play important roles in inducing delocalization of the reverse transformation. We conclude that forward transformation has more influence on the transition of mechanical response in NiTi SMA than reverse transformation in terms of the critical transition temperature for inducing delocalized reverse transformation. (technical note)

  8. Σ--antihyperon correlations in Z0 decay and investigation of the baryon production mechanism

    International Nuclear Information System (INIS)

    Abbiendi, G.; Braibant, S.; Capiluppi, P.; Ciocca, C.; Cuffiani, M.; Dallavalle, M.; Fabbri, F.; Giacomelli, G.; Giacomelli, P.; Ludwig, J.; Merritt, F.S.; Rembser, C.; Ainsley, C.; Batley, R.J.; Carter, J.R.; Hill, J.C.; Tarem, S.; Verzocchi, M.; Voss, H.; Aakesson, P.F.; Barberio, E.; Burckhart, H.J.; Roeck, A. de; Wolf, E.A. de; Ferrari, P.; Frey, A.; Gruwe, M.; Hauschild, M.; Hawkings, R.; Maettig, P.; Nanjo, H.; Pater, J.R.; Pinfold, J.; Pooth, O.; Przybycien, M.; Runge, K.; Sarkisyan, E.K.G.; Schaile, O.; Scharff-Hansen, P.; Schroeder, M.; Shen, B.C.; Strom, D.; Thomson, M.A.; Vannerem, P.; Vertesi, R.; Watkins, P.M.; Watson, A.T.; Alexander, G.; Bella, G.; Etzion, E.; Grunhaus, J.; Toya, D.; Anagnostou, G.; Bell, P.J.; Charlton, D.G.; Hawkes, C.M.; Jeremie, H.; Nakamura, I.; Trigger, I.; Vossebeld, J.; Ward, C.P.; Ward, D.R.; Wermes, N.; Anderson, K.J.; Gupta, A.; McPherson, R.A.; Neal, H.A.; Pahl, C.; Smith, A.M.; Stroehmer, R.; Asai, S.; Igo-Kemenes, P.; Junk, T.R.; Karlen, D.; Kawagoe, K.; Kluth, S.; Kobel, M.; Marcellini, S.; Mes, H.; Mikenberg, G.; Mori, T.; Mutter, A.; O'Neale, S.W.; Rozen, Y.; Teuscher, R.; Trocsanyi, Z.; Wilson, J.A.; Axen, D.; Lloyd, S.L.; Martin, A.J.; Bailey, I.; Kanzaki, J.; Kawamoto, T.; Mashimo, T.; Rabbertz, K.; Sherwood, P.; Barillari, T.; Bethke, S.; Kennedy, B.W.; Oh, A.; Plane, D.E.; Schaile, A.D.; Barlow, R.J.; Duerdoth, I.P.; Ford, M.; Kupper, M.; Lillich, J.; Orito, S.; Skuja, A.; Wengler, T.; Wilson, G.W.; Bechtle, P.; Behnke, T.; Desch, K.; Hamann, M.; Heuer, R.D.; Komamiya, S.; Krogh, J. von; McKenna, J.; Menges, W.; Bell, K.W.; Brown, R.M.; Kellogg, R.G.; Bellerive, A.; Carnegie, R.K.; Jovanovic, P.; Krasznahorkay, A.; Meijers, F.; Rossi, A.M.; Benelli, G.; Campana, S.; Gary, J.W.; Giunta, M.; Hanson, G.G.; Oreglia, M.J.; Schumacher, M.; Wolf, G.; Biebel, O.; Boutemeur, M.; Dubbert, J.; Duckeck, G.; Fiedler, F.; Sachs, K.; Saeki, T.; Spano, F.; Turner-Watson, M.F.; Boeriu, O.; Fleck, I.; Herten, G.; Letts, J.; Lu, J.; Mihara, S.; Miller, D.J.; Roney, J.M.; Ueda, I.; Bock, P.; Krieger, P.; Wells, P.S.; Carter, A.A.; Levinson, L.; Mader, W.; Mohr, W.; Chang, C.Y.; Keeler, R.K.; Shears, T.G.; Vollmer, C.F.; Csilling, A.; Hajdu, C.; Horvath, D.; Dado, S.; Goldberg, J.; Harel, A.; Lafferty, G.D.; Renkel, P.; Stahl, A.; Wyatt, T.R.; Dienes, B.; Kraemer, T.; Torrence, E.; Tsur, E.; Ujvari, B.; Duchovni, E.; Gross, E.; Kuhl, T.; Lanske, D.; Lellouch, D.; Meyer, N.; Quadt, A.; Wetterling, D.; Gagnon, P.; Geich-Gimbel, C.; Kobayashi, T.; Loebinger, F.K.; Ludwig, A.; Schieck, J.; Watson, N.K.; Ishii, K.; Landsman, H.; Pilcher, J.E.; Schoerner-Sadenius, T.; Sobie, R.; Michelini, A.; Seuster, R.; Nagai, K.; Pasztor, G.; Soeldner-Rembold, S.; Tasevsky, M.

    2009-01-01

    Data collected around √(s)=91 GeV by the OPAL experiment at the LEP e + e - collider are used to study the mechanism of baryon formation. As the signature, the fraction of Σ - hyperons whose baryon number is compensated by the production of a anti Σ - , anti Λ or anti Ξ - antihyperon is determined. The method relies entirely on quantum number correlations of the baryons, and not rapidity correlations, making it more model independent than previous studies. Within the context of the JETSET implementation of the string hadronization model, the diquark baryon production model without the popcorn mechanism is strongly disfavored with a significance of 3.8 standard deviations including systematic uncertainties. It is shown that previous studies of the popcorn mechanism with Λanti Λ and p anti p correlations are not conclusive, if parameter uncertainties are considered. (orig.)

  9. Investigations on the Structural and Mechanical Properties of Polyurethane Resins Based on Cu(IIphthalocyanines

    Directory of Open Access Journals (Sweden)

    Tamer E. Youssef

    2015-01-01

    Full Text Available This work report was reported on the effect of the addition of organic filler, that is, 2(3,9(10,16(17,23(24-octahydroxycopper(IIphthalocyanine [(OH8CuPc] (3, on the thermal, tensile, and morphological properties of a polyurethane matrix. The mechanical and dynamic mechanical thermal tests together with microstructural characterization of CuPc/PU composites were performed. The three PU composite films containing up to 1, 15, and 30 wt% of CuPc have different behaviors in terms of their morphological issues, thermal properties, and tensile behavior in comparison with the PU film as the reference material. Very high elongations at break from 910% to 1230%, as well as high tensile strengths, illustrate excellent ultimate tensile properties of the prepared samples. The best mechanical and thermomechanical properties were found for the sample filled with 30 wt% of CuPc.

  10. Investigation on mechanical alloying process for v-cr-ti alloys

    International Nuclear Information System (INIS)

    Stanciulescu, M.; Carlan, P.; Mihalache, M.; Bucsa, G.; Abrudeanu, M.; Galateanu, A.

    2015-01-01

    Mechanical alloying (MA) is an efficient approach for fabricating oxide-dispersion alloys and structural materials including vanadium alloys for fusion and fission application. Dissolution behaviour of the alloying elements is a key issue for optimizing the mechanical alloying process in fabricating vanadium alloys. This paper studies the MA process of V-4wt.%Cr-4wt.%Ti alloy. The outcomes of the MA powders in a planetary ball mill are reported in terms of powder particle size and morphology evolution and elemental composition. The impact of spark-plasma sintering process on the mechanically alloyed powder is analysed. An optimal set of sintering parameters, including the maximum temperature, the dwell time and the heating rate are determined. (authors)

  11. Ozone-surface interactions: Investigations of mechanisms, kinetics, mass transport, and implications for indoor air quality

    Energy Technology Data Exchange (ETDEWEB)

    Morrison, Glenn Charles [Univ. of California, Berkeley, CA (United States)

    1999-12-01

    In this dissertation, results are presented of laboratory investigations and mathematical modeling efforts designed to better understand the interactions of ozone with surfaces. In the laboratory, carpet and duct materials were exposed to ozone and measured ozone uptake kinetics and the ozone induced emissions of volatile organic compounds. To understand the results of the experiments, mathematical methods were developed to describe dynamic indoor aldehyde concentrations, mass transport of reactive species to smooth surfaces, the equivalent reaction probability of whole carpet due to the surface reactivity of fibers and carpet backing, and ozone aging of surfaces. Carpets, separated carpet fibers, and separated carpet backing all tended to release aldehydes when exposed to ozone. Secondary emissions were mostly n-nonanal and several other smaller aldehydes. The pattern of emissions suggested that vegetable oils may be precursors for these oxidized emissions. Several possible precursors and experiments in which linseed and tung oils were tested for their secondary emission potential were discussed. Dynamic emission rates of 2-nonenal from a residential carpet may indicate that intermediate species in the oxidation of conjugated olefins can significantly delay aldehyde emissions and act as reservoir for these compounds. The ozone induced emission rate of 2-nonenal, a very odorous compound, can result in odorous indoor concentrations for several years. Surface ozone reactivity is a key parameter in determining the flux of ozone to a surface, is parameterized by the reaction probability, which is simply the probability that an ozone molecule will be irreversibly consumed when it strikes a surface. In laboratory studies of two residential and two commercial carpets, the ozone reaction probability for carpet fibers, carpet backing and the equivalent reaction probability for whole carpet were determined. Typically reaction probability values for these materials were 10

  12. Investigating the effects of ABC transporter-based acquired drug resistance mechanisms at the cellular and tissue scale.

    Science.gov (United States)

    Liu, Cong; Krishnan, J; Xu, Xiao Yun

    2013-03-01

    In this paper we systematically investigate the effects of acquired drug resistance at the cellular and tissue scale, with a specific focus on ATP-binding cassette (ABC) transporter-based mechanisms and contrast this with other representative intracellular resistance mechanisms. This is done by developing in silico models wherein the drug resistance mechanism is overlaid on a coarse-grained description of apoptosis; these cellular models are coupled with interstitial drug transport, allowing for a transparent examination of the effect of acquired drug resistances at the tissue level. While ABC transporter-mediated resistance mechanisms counteract drug effect at the cellular level, its tissue-level effect is more complicated, revealing unexpected trends in tissue response as drug stimuli are systematically varied. Qualitatively different behaviour is observed in other drug resistance mechanisms. Overall the paper (i) provides insight into the tissue level functioning of a particular resistance mechanism, (ii) shows that this is very different from other resistance mechanisms of an apparently similar type, and (iii) demonstrates a concrete instance of how the functioning of a negative feedback based cellular adaptive mechanism can have unexpected higher scale effects.

  13. Compressive damage mechanism of GFRP composites under off-axis loading: Experimental and numerical investigations

    DEFF Research Database (Denmark)

    Zhou, H.W.; Li, H.Y.; Gui, L.L.

    2013-01-01

    the angle between the fiber direction and the loading vector goes from 0° to 45° (by 2.3–2.6 times), and then slightly increases (when the angle approaches 80–90°). At the low angles between the fiber and the loading vector, fiber buckling and kinking are the main mechanisms of fiber failure....... With increasing the angle between the fiber and applied loading, failure of glass fibers is mainly controlled by shear cracking. For the computational analysis of the damage mechanisms, 3D multifiber unit cell models of GFRP composites and X-FEM approach to the fracture modeling were used. The computational...

  14. The mechanisms of regional branching: An investigation of the emerging fuel cell industry

    DEFF Research Database (Denmark)

    Tanner, Anne Nygaard

    The growth of evolutionary thinking in economic geography has brought about the proposition that new industries are place dependent and tend to develop in regions where the pre-existing industry is technologically related to the knowledge base of the new industry, a phenomena that is termed...... ?regional branching?. What is still lacking, however, is a more thorough understanding of the mechanisms through which regional branching operates: firm diversification, spinoffs, labor mobility, and social networking. This paper analyzes which mechanisms dominate the current regional branching process...... such as universities and network organizations play a role in the creation of new knowledge-intensive industrial paths in regions....

  15. Investigation of ammonium nitrate effect on kinetics and mechanism of thermal decomposition of ammonium polyuranates

    International Nuclear Information System (INIS)

    Karelin, A.I.; Lobas, O.P.; Zhiganov, A.N.; Vasil'ev, K.F.; Zhiganova, A.A.

    1987-01-01

    A study was made on ammonium nitrate effect on the mechanism and kinetics of dehydration and thermal decomposition of ammonium polyuranates. Sufficient effect of nitrate ion content in ammonium polyuranate samples on their thermal stability was noted. Kinetic parameters of thermal decomposition of ammonium polyuranates were evaluated. Mechanism of dehydration and thermal decomposition of ammonium polyuranates in the presence of ammonium nitrate was suggested. It was shown that increase of ammonium nitrate content in ammonium polyuranate precipitate resulted to reduction of the specific surface of prepared uranium mixed oxide

  16. Investigation on fracture behavior and mechanisms of DGEBF toughened by CTBN

    Science.gov (United States)

    Wang, Lulu; Tan, Yefa; Wang, Haitao; Gao, Li; Xiao, Chufan

    2018-05-01

    Carboxyl-terminated butadiene-co-acrylonitrile (CTBN) was used as the toughener to improve the mechanical performance and fracture toughness of diglycidyl ether of bisphenol F (DGEBF) by prereacted approach. The results show that the chemical bonding interface was formed between DGEBF and CTBN particles in the prepolymerization reaction process, which remarkably enhances the fracture toughness of the composites. Based on the qualitative and quantitative analyses, it shows the main toughening mechanisms are the plastic shear banding effect resulted from the plastic deformation of the EP matrix and the plastic void expansion because of the debonding of CTBN particles from the EP matrix.

  17. Determination of iron absorption and excretion by whole-body counting; Determination de l'absorption et de l'excretion du fer par la methode de comptage global humain

    Energy Technology Data Exchange (ETDEWEB)

    Hollard, D; Benabid, Y; Berard, M; Bonnin, J; Darnault, J; Millet, M [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1969-07-01

    Using a whole-body counter, the authors have studied {sup 59}Fe absorption and loss in 8 normal subjects and in 30 iron deficient patients. Results showed that whole-body counting provided an excellent and simple method for iron retention measurements, obviating many inaccuracies of previous technic. Normal absorption of radio iron with this procedure has ranged from 9 per cent to 20 per cent of the administered tracer in normal subjects, with a mean of 15 per cent. A significant increase in {sup 59}Fe absorption was noted in 21 iron-deficient patients in whom the retention ranged from 40 to 100 per cent. However, 3 iron-deficient patients were found to have low absorption, and their severe iron deficiency could be correlated with this defect in absorption. This method permits also the determination of the rate of iron excretion during the following months and therefore the study of the mechanism of some pathological loss. (authors) [French] L'utilisation de la methode de comptage humain global a permis aux auteurs d'etudier l'absorption et l'excretion du fer-59 chez 8 sujets temoins et 30 sujets hyposideremiques. Les resultats montrent que cette technique simple et directe offre de nombreux avantages sur les methodes employees jusqu'a maintenant pour cette determination. La valeur normale de l'absorption du fer chez les temoins est d'environ 15 pour cent de la dose ingeree. Ce chiffre est tres fortement augmente chez 21 sujets hyposideremiques, pouvant atteindre 100 pour cent de la dose ingeree. Par contre, pour 3 malades, cette absorption est si faible qu'elle suggere une carence par defaut d'absorption. Cette methode permet egalement de suivre l'excretion du fer au cours des mois qui suivent l'examen et de determiner le mecanisme de fuites anormales. (auteurs)

  18. Investigating and Improving Student Understanding of Quantum Mechanics in the Context of Single Photon Interference

    Science.gov (United States)

    Marshman, Emily; Singh, Chandralekha

    2017-01-01

    Single photon experiments involving a Mach-Zehnder interferometer can illustrate the fundamental principles of quantum mechanics, e.g., the wave-particle duality of a single photon, single photon interference, and the probabilistic nature of quantum measurement involving single photons. These experiments explicitly make the connection between the…

  19. Identifying and Investigating Difficult Concepts in Engineering Mechanics and Electric Circuits. Research Brief

    Science.gov (United States)

    Streveler, Ruth; Geist, Monica; Ammerman, Ravel; Sulzbach, Candace; Miller, Ronald; Olds, Barbara; Nelson, Mary

    2007-01-01

    This study extends ongoing work to identify difficult concepts in thermal and transport science and measure students' understanding of those concepts via a concept inventory. Two research questions provided the focal point: "What important concepts in electric circuits and engineering mechanics do students find difficult to learn?" and…

  20. Stress analysis of fatigue cracks in mechanically fastened joints : An analytical and experimental investigation

    NARCIS (Netherlands)

    De Rijck, J.J.M.

    2005-01-01

    The two historical fuselage failures, Comet in 1954 and Aloha in 1988, illustrate that similar accidents must be avoided which requires a profound understanding of the fatigue mechanisms involved, including analytical models to predict the fatigue behavior of riveted joints of a fuselage structure.

  1. Investigation of peptide based surface functionalization for copper ions detection using an ultrasensitive mechanical microresonator

    DEFF Research Database (Denmark)

    Cagliani, Alberto; Fischer, Lee MacKenzie; Rasmussen, Jakob Lyager

    2011-01-01

    In the framework of developing a portable label-free sensor for multi arrayed detection of heavy metals in drinking water, we present a mechanical resonator-based copper ions sensor, which uses a recently synthesized peptide Cysteine–Glycine–Glycine–Histidine (CGGH) and the l-Cysteine (Cys) peptide...

  2. Investigation of Carboxymethyl Cellulose (CMC on Mechanical Properties of Cold Water Fish Gelatin Biodegradable Edible Films

    Directory of Open Access Journals (Sweden)

    Mahsa Tabari

    2017-05-01

    Full Text Available The tendency to use biocompatible packages, such as biodegradable films, is growing since they contain natural materials, are recyclable and do not cause environmental pollution. In this research, cold water fish gelatin and carboxymethyl cellulose were combined for use in edible films. Due to its unique properties, gelatin is widely used in creating gel, and in restructuring, stabilizing, emulsifying, and forming foam and film in food industries. This research for the first time modified and improved the mechanical properties of cold water fish gelatin films in combination with carboxymethyl cellulose. Cold water fish gelatin films along with carboxymethyl cellulose with concentrations of 0%, 5%, 10%, 20% and 50% were prepared using the casting method. The mechanical properties were tested by the American National Standard Method. Studying the absorption isotherm of the resulting composite films specified that the humidity of single-layer water decreased (p < 0.05 and caused a reduction in the equilibrium moisture of these films. In the mechanical testing of the composite films, the tensile strength and Young’s modulus significantly increased and the elongation percent significantly decreased with the increase in the concentration of carboxymethyl cellulose. Considering the biodegradability of the films and the improvement of their mechanical properties by carboxymethyl cellulose, this kind of packaging can be used in different industries, especially the food industry, as an edible coating for packaging food and agricultural crops.

  3. Investigating the Retention Mechanisms of Liquid Chromatography Using Solid-Phase Extraction Cartridges

    Science.gov (United States)

    O'Donnell, Mary E.; Musial, Beata A.; Bretz, Stacey Lowery; Danielson, Neil D.; Ca, Diep

    2009-01-01

    Liquid chromatography (LC) experiments for the undergraduate analytical laboratory course often illustrate the application of reversed-phase LC to solve a separation problem, but rarely compare LC retention mechanisms. In addition, a high-performance liquid chromatography instrument may be beyond what some small colleges can purchase. Solid-phase…

  4. Investigation of combined effect of mixture variables on mechanical properties of cement treated demolition waste

    NARCIS (Netherlands)

    Xuan, D.; Houben, L.J.M.; Molenaar, A.A.A.; Shui, Z.

    2012-01-01

    One of high efficient ways to reuse the recycled construction and demolition waste (CDW) is to consider it as a road base material. The recycled CDW however is mainly a mix of recycled masonry and concrete with a wide variation in composition. This results that the mechanical properties of cement

  5. Force Spectroscopy of Collagen Fibers to Investigate Their Mechanical Properties and Structural Organization

    OpenAIRE

    Gutsmann, Thomas; Fantner, Georg E.; Kindt, Johannes H.; Venturoni, Manuela; Danielsen, Signe; Hansma, Paul K.

    2004-01-01

    Tendons are composed of collagen and other molecules in a highly organized hierarchical assembly, leading to extraordinary mechanical properties. To probe the cross-links on the lower level of organization, we used a cantilever to pull substructures out of the assembly. Advanced force probe technology, using small cantilevers (length

  6. Sensory-specific clock components and memory mechanisms: investigation with parallel timing.

    Science.gov (United States)

    Gamache, Pierre-Luc; Grondin, Simon

    2010-05-01

    A challenge for researchers in the time-perception field is to determine whether temporal processing is governed by a central mechanism or by multiple mechanisms working in concert. Behavioral studies of parallel timing offer interesting insights into the question, although the conclusions fail to converge. Most of these studies focus on the number-of-clocks issue, but the commonality of memory mechanisms involved in time processing is often neglected. The present experiment aims to address a straightforward question: do signals from different modalities marking time intervals share the same clock and/or the same memory resources? To this end, an interval reproduction task involving the parallel timing of two sensory signals presented either in the same modality or in different modalities was conducted. The memory component was tested by manipulating the delay separating the presentation of the target intervals and the moment when the reproduction of one of these began. Results show that there is more variance when only visually marked intervals are presented, and this effect is exacerbated with longer retention delays. Finally, when there is only one interval to process, encoding the interval with signals delivered from two modalities helps to reduce variance. Taken together, these results suggest that the hypothesis stating that there are sensory-specific clock components and memory mechanisms is viable.

  7. Investigating the Relationship between Governance Mechanisms and the Disclosure of IT Control Weaknesses

    Science.gov (United States)

    Hamdan, Basil

    2012-01-01

    The current research is concerned with exploring the quality of information technology (IT) control over financial reporting systems as reported under Section 404 of the Sarbanes-Oxley Act of 2002. More specifically, this dissertation examines the association between organizational governance mechanisms and the occurrence and subsequent disclosure…

  8. Investigation of the Hydroxylation Mechanism of Noncoupled Copper Oxygenases by Ab Initio Molecular Dynamics Simulations

    Czech Academy of Sciences Publication Activity Database

    Meliá, C.; Ferrer, S.; Řezáč, Jan; Parisel, O.; Reinaud, O.; Moliner, V.; de la Lande, A.

    2013-01-01

    Roč. 19, č. 51 (2013), s. 17328-17337 ISSN 0947-6539 Institutional support: RVO:61388963 Keywords : ab initio calculations * copper * electron transfer * enzymes * molecular dynamics * reaction mechanisms Subject RIV: CC - Organic Chemistry Impact factor: 5.696, year: 2013

  9. Investigation of the bonding strength and bonding mechanisms of SOFCs interconnector-electrode interfaces

    Czech Academy of Sciences Publication Activity Database

    Boccaccini, D. N.; Ševeček, O.; Frandsen, L. H.; Dlouhý, Ivo; Molin, S.; Cannio, M.; Hjelm, J.; Hendriksen, P. V.

    2016-01-01

    Roč. 162, č. 1 (2016), s. 250-253 ISSN 0167-577X Institutional support: RVO:68081723 Keywords : Metal-ceramic bond strength * Schwickerath crack-initiation test * SOC interfaces Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 2.572, year: 2016

  10. Investigation of noninvasive healing of damaged piping system using electro-magneto-mechanical methods

    KAUST Repository

    Mukherjee, Debanjan; Zaky, Zeyad; Zohdi, Tarek Ismail; Salama, Amgad; Sun, Shuyu

    2014-01-01

    role for guiding the particles to the solid-fluid interface/wall: mechanical shear due to the fluid flow, and an electrical or magnetic force. In this work we develop and study a relationship that characterizes contributions of both, and ascertain how

  11. Investigation on Releasing of a Stuck Drill String by Means of a Mechanical Jar

    Directory of Open Access Journals (Sweden)

    Moisyshyn V.

    2017-09-01

    Full Text Available Purpose. In this article the most important part is dedicated to the research of elimination of accident that is caused by drill string sticking during the process. That is why it is necessary to develop a mathematical model of the mechanic system: travelling system + drill string + mechanical jar + rock, to develop a computer model for numerical calculation of dynamic characteristics of firing gear. The aim is to use the results of the research and to work out recommendations for expediency of jar application. Methods. For description of the drill string we are using synthesis of the wave theory and theory of the local distortions. For mathematical modeling of firing device we are offering the use of the combined method that combines static solutions of the theory of elasticity for contact zone of drill string and method of a plain wave of Saint-Venant. We solved systems of differential equations using the methods of mathematical physics. An algorithm of the numerical decision which mounted in the computing environment were used at simulation of the longitudinal impact to the stuck drill pipe. In this article we designed a wave chart of the equation system of the drill pipe and conducted step-by-step calculation of a collision momentum. We also designed a computer program for numerical modeling of the drill pipe mechanism with firing gear. We also designed a method of calculation of main dynamic characteristics of firing device that will help analyze and prove the performance of the mechanical jar. A wave diagram was built that shows the impact forces and speeds on the boundary surfaces of the sections of the drill string. There were calculated main dynamic characteristic of mechanical the jar. Originality. Authors also developed a dynamic mathematical model that combined elastic vibrations of continual system of loose part drill pipe, impact mechanisms and discrete movements of a given drill pipe. The process of a mechanical jar

  12. Determination and Investigation of Some Physical and Mechanical Properties of Date Fruit (Kabkab Variety

    Directory of Open Access Journals (Sweden)

    A. M. Kermani

    2015-01-01

    Full Text Available Knowledge on physical and mechanical properties of fruits is necessary for designing and optimizing processing systems. In this study, several physical and mechanical properties of date fruit (Kabkab cultivar and its seed were determined. The average of length, width, thickness, unit mass, 1000 fruit mass, geometric mean diameter, unit volume, surface and projected areas, sphericity, fruit true and bulk densities, porosity of Kabkab cultivar date fruit were 36.89, 18.68, 23.56 mm, 8264.07 and 8.25 g, 25.24 mm, 8507.8 mm3, 2008.27 mm2, 502.07 mm2, 0.96 g/cm3, 0.51 g/cm3, 46.20%, respectively. The respective values for its seeds were 22.98, 6.25, 7.48 mm, 789.2 and 0.79 g, 10.23 mm, 568.24 mm3, 330.30 mm2, 82.58 mm2, 0.99 g/cm3, 0.65 g/cm3, 30.45%, respectively. The static coefficients of friction were 0.34 for galvanized, 0.30 for steel, 0.32 for plexiglass, 0.31 for glass and 0.42 for plywood. Compressive loading testes were conducted at three loading rates of 5, 15 and 25 mm/min for deformation of fruit until 15%, 30% and 45% of thickness of fruit with seven replications. Some mechanical parameters such as force-deformation, energy and toughness were determined. The results showed that the loading rates affected the mechanical parameters significantly. By increasing the loading rate, the mean values of the mechanical parameters increased significantly.

  13. Mechanical Behaviour of Stainless Steels under Dynamic Loading: An Investigation with Thermal Methods

    Directory of Open Access Journals (Sweden)

    Rosa De Finis

    2016-11-01

    Full Text Available Stainless steels are the most exploited materials due to their high mechanical strength and versatility in producing different alloys. Although there is great interest in these materials, mechanical characterisation, in particular fatigue characterisation, requires the application of several standardised procedures involving expensive and time-consuming experimental campaigns. As a matter of fact, the use of Standard Test Methods does not rely on a physical approach, since they are based on a statistical evaluation of the fatigue limit with a fixed probabilistic confidence. In this regard, Infra-Red thermography, the well-known, non-destructive technique, allows for the development of an approach based on evaluation of dissipative sources. In this work, an approach based on a simple analysis of a single thermographic sequence has been presented, which is capable of providing two indices of the damage processes occurring in material: the phase shift of thermoelastic signal φ and the amplitude of thermal signal at twice the loading frequency, S2. These thermal indices can provide synergetic information about the mechanical (fatigue and fracture behaviour of austenitic AISI 316L and martensitic X4 Cr Ni Mo 16-5-1; since they are related to different thermal effects that produce damage phenomena. In particular, the use of φ and S2 allows for estimation of the fatigue limit of stainless steels at loading ratio R = 0.5 in agreement with the applied Standard methods. Within Fracture Mechanics tests, both indices demonstrate the capacity to localize the plastic zone and determine the position of the crack tip. Finally, it will be shown that the value of the thermoelastic phase signal can be correlated with the mechanical behaviour of the specific material (austenitic or martensitic.

  14. Investigation of fatigue and mechanical properties of the pipe grade poly(vinyl chloride using recycled scraps

    Directory of Open Access Journals (Sweden)

    J-M. Lee

    2015-04-01

    Full Text Available In this paper, the effect of using pre-consumer PVC scraps on static and long-term mechanical properties is studied. The degradation characteristics of mixing virgin PVC with crushed pre-consumer and PVC pipe scraps are analyzed using various tools including Gel Permeation Chromatography (GPC, Thermogravimetric Analysis (TGA, X-ray fluorescence (XRF and Fourier Transform Infrared (FTIR spectroscopy. The variation of static mechanical properties as a function of adding pre-consumer PVC pipe scraps is investigated using the degradation analyses of recycled PVC scraps. In addition, fatigue tests are executed to evaluate the long-term durability of blending virgin PVC and recycled PVC scraps, and the fracture surface is investigated in detail to reveal the variation of the fracture mechanisms.

  15. First-principles investigation of mechanical and electronic properties of tetragonal NbAl3 under tension

    Science.gov (United States)

    Jiao, Zhen; Liu, Qi-Jun; Liu, Fu-Sheng; Tang, Bin

    2018-06-01

    Using the density functional theory calculations, the mechanical and electronic properties of NbAl3 under different tensile loads were investigated. The calculated lattice parameters, elastic constants and mechanical properties (bulk modulus, shear modulus, Young's modulus, Poisson's ratio, Pugh's criterion and Cauchy's pressure) indicated that our results were in agreement with the published experimental and theoretical data at zero tension. With respect to NbAl3 under tension in this paper, the crystal structure was changed from tetragonal to orthorhombic under tension along the [100] and [101] directions. The NbAl3 crystal has been classified as brittle material under tension from 0 to 20 GPa. The obtained Young's modulus and Debye temperature monotonically decreased with increasing tension stress. Combining with mechanical and electronic properties in detail, the decreased mechanical properties were mainly due to the weakening of covalency.

  16. Ab initio investigation of helium in Y_2Ti_2O_7: Mobility and effects on mechanical properties

    International Nuclear Information System (INIS)

    Danielson, T.; Tea, E.; Hin, C.

    2016-01-01

    Oxide nanoclusters (NCs) in nanostructured ferritic alloys (NFAs) are known to be efficient trapping sites for the transmutation product helium. In this study, the migration barriers and potential energy surfaces of helium in Y_2Ti_2O_7 are presented to explain the mobility of helium through oxide NCs and shed light on the accumulation of helium and the trapping mechanisms of the oxides. A complex tunnel-shaped potential energy surface is identified and gives rise to relatively large migration barriers. Subsequently, the effect of helium accumulation on the mechanical properties of Y_2Ti_2O_7 oxide nanoclusters is investigated and it is shown that the mechanical properties of the oxide do not significantly degrade as helium accumulates. - Highlights: • Migration barriers of helium in Y_2Ti_2O_7 are calculated using the climbing image nudged elastic band. • Helium Potential energy surfaces are calculated. • Mechanical properties of varying helium concentrations are presented.

  17. Investigating the Mechanical Function of the Cervix during Pregnancy using Finite Element Models derived from High Resolution 3D MRI

    Science.gov (United States)

    Fernandez, M.; House, M.; Jambawalikar, S.; Zork, N.; Vink, J.; Wapner, R.; Myers, K.

    2015-01-01

    Preterm birth is a strong contributor to perinatal mortality, and preterm infants that survive are at risk for long-term morbidities. During most of pregnancy appropriate mechanical function of the cervix is required to maintain the developing fetus in utero. Premature cervical softening and subsequent cervical shortening are hypothesized to cause preterm birth. Presently, there is a lack of understanding of the structural and material factors that influence the mechanical function of the cervix during pregnancy. In this study we build finite element (FE) models of the pregnant uterus, cervix, and fetal membrane based on magnetic resonance imagining (MRI) data in order to examine the mechanical function of the cervix under the physiologic loading conditions of pregnancy. We calculate the mechanical loading state of the cervix for two pregnant patients: 22 weeks gestational age with a normal cervical length and 28 weeks with a short cervix. We investigate the influence of 1) anatomical geometry 2) cervical material properties, and 3) fetal membrane material properties, including its adhesion properties, on the mechanical loading state of the cervix under physiologically relevant intrauterine pressures. Our study demonstrates that membrane-uterus interaction, cervical material modeling, and membrane mechanical properties are factors that must be deliberately and carefully handled in order to construct a high quality mechanical simulation of pregnancy. PMID:25970655

  18. Investigation on Mechanical Properties and Microstructure of Hydroxyapatite-SiCw Composite Bioceramics

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Hydroxyapatite-SiCw composite micropowder was synthesized using in-situ composite method,and hydroxyapatite-SiCw composite bioceramics with different content of SiCw were produced by hot pressing sintering method. The microstructures of the materials were analyzed by SEM, and the relative density, bending strength and fracture toughness of the materials were tested. The results show that the mechanical properties of composite material are best when the whisker content is 20-23.7% . The mechanical properties of the material are the best when the tensile stress acted on the composite material is parallel with the hot pressing plane, and they are the worst when the tensile stress acted on the composite material is normal to the hot pressing plane.

  19. A case study and mechanism investigation of typical mortars used on ancient architecture in China

    International Nuclear Information System (INIS)

    Zeng Yuyao; Zhang Bingjian; Liang Xiaolin

    2008-01-01

    Mortars sampled from Dutifulness Monument, where typical ancient China mortar formulas and manufacturing processes were used, were analyzed by starch-iodine test, FTIR, DSC-TG, SEM and XRD methods. Several modeling samples were then made according to historical records of Chinese ancient mortar formulas and analyzed with the same techniques. The modeling formulas also were used to consolidate loose specimens. The results show that sticky rice plays a crucial role in the microstructure and the consolidation properties of lime mortars. A possible mechanism was suggested that biomineralization may occur during the carbonation of calcium hydroxide, where the sticky rice functions as a template and controls the growth of calcium carbonate crystal. The organic-inorganic materials formed based on this mechanism will be more favorable for consolidating the loose samples both in strength improvement and durability

  20. Numerical investigation on the thermo-mechanical behavior of a quadratic cross section pile heat exchanger

    DEFF Research Database (Denmark)

    Alberdi Pagola, Maria; Madsen, Søren; Lund Jensen, Rasmus

    2017-01-01

    Pile heat exchangers are traditional foundation piles with built in heat exchangers. As such, the footing of the building both serves as a structural component and a heating/cooling supply element. The existing geotechnical design standards do not consider the nature of thermo-active foundations...... and, therefore, there is a need to develop guidelines to design them properly. This paper contributes by studying the thermo-mechanical behavior of the precast piles which are 15-meter long and have a quadratic cross section and a W-shape pipe heat exchanger. This article aims to numerically assess...... the additional changes in the pile load transfer generated by its heating and cooling. In addressing this objective, a preliminary multi-physical finite element analysis is conducted which serves as a tool for exploring: i) the thermally induced mechanical stresses within the concrete and on the pile-soil axial...

  1. Investigation of microstructure and mechanical properties of proton irradiated Zircaloy 2

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, Apu, E-mail: asarkar@barc.gov.in [Mechanical Metallurgy Division, Bhabha Atomic Reserch Centre, Mumbai, 400 085 (India); Kumar, Ajay [Nuclear Physics Division, Bhabha Atomic Reserch Centre, Mumbai, 400 085 (India); Mukherjee, S.; Sharma, S.K.; Dutta, D.; Pujari, P.K. [Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai, 400 085 (India); Agarwal, A.; Gupta, S.K.; Singh, P. [Ion Accelerator Development Division, Bhabha Atomic Research Centre, Mumbai, 400 085 (India); Chakravartty, J.K. [Mechanical Metallurgy Division, Bhabha Atomic Reserch Centre, Mumbai, 400 085 (India)

    2016-10-15

    Samples of Zircaloy 2 have been irradiated with 4 MeV protons to two different doses. Microstructures of the unirradiated and irradiated samples have been characterized by Electron Back Scatter Diffraction (EBSD), X-ray diffraction line profile analysis (XRDLPA), Positron Annihilation Lifetime Spectroscopy (PALS) and Coincident Doppler Broadening (CDB) Spectroscopy. Tensile tests and micro hardness measurements have been carried out at room temperature to assess the changes in mechanical properties of Zircaloy 2 due to proton irradiation. The correlation of dislocation density, grain size and yield stress of the irradiated samples indicated that an increase in dislocation density due to irradiation is responsible for the change in mechanical behavior of irradiated Zircaloy.

  2. Investigation of sheet steel St 37.2 under mechanical impact

    International Nuclear Information System (INIS)

    Berg, H.P.; Brennecke, P.; Koester, R.; Friehmelt, V.

    1990-01-01

    Special waste originating, e.g. from chemical industry and radioactive wastes are emplaced in disposal mines. Slinger stowing is an approved technique to fill up residual voids in emplacement rooms. If it should be applied, possible mechanical loads on the integrity of sheet steel containers have to be considered. By theoretical calculations and by experiments under variation of different parameters using test specimen and backfill material from the Konrad mine using the container type V as an example it has been shown that sheet steel St 37.2 with a wall thickness of 3 mm will withstand mechanical impact imposed by backfill particles having a speed of 24 m/s. (orig.) [de

  3. Dynamic coarse-graining fills the gap between atomistic simulations and experimental investigations of mechanical unfolding

    Science.gov (United States)

    Knoch, Fabian; Schäfer, Ken; Diezemann, Gregor; Speck, Thomas

    2018-01-01

    We present a dynamic coarse-graining technique that allows one to simulate the mechanical unfolding of biomolecules or molecular complexes on experimentally relevant time scales. It is based on Markov state models (MSMs), which we construct from molecular dynamics simulations using the pulling coordinate as an order parameter. We obtain a sequence of MSMs as a function of the discretized pulling coordinate, and the pulling process is modeled by switching among the MSMs according to the protocol applied to unfold the complex. This way we cover seven orders of magnitude in pulling speed. In the region of rapid pulling, we additionally perform steered molecular dynamics simulations and find excellent agreement between the results of the fully atomistic and the dynamically coarse-grained simulations. Our technique allows the determination of the rates of mechanical unfolding in a dynamical range from approximately 10-8/ns to 1/ns thus reaching experimentally accessible time regimes without abandoning atomistic resolution.

  4. Force spectroscopy of collagen fibers to investigate their mechanical properties and structural organization.

    Science.gov (United States)

    Gutsmann, Thomas; Fantner, Georg E; Kindt, Johannes H; Venturoni, Manuela; Danielsen, Signe; Hansma, Paul K

    2004-05-01

    Tendons are composed of collagen and other molecules in a highly organized hierarchical assembly, leading to extraordinary mechanical properties. To probe the cross-links on the lower level of organization, we used a cantilever to pull substructures out of the assembly. Advanced force probe technology, using small cantilevers (length exponential increase in force and two different periodic rupture events, one with strong bonds (jumps in force of several hundred pN) with a periodicity of 78 nm and one with weak bonds (jumps in force of <7 pN) with a periodicity of 22 nm. We demonstrate a good correlation between the measured mechanical behavior of collagen fibers and their appearance in the micrographs taken with the atomic force microscope.

  5. Stereology application in the investigation of physical and mechanical properties of porous materials

    International Nuclear Information System (INIS)

    Cytermann, Richard.

    1979-04-01

    The sintering of carbonyl nickel powders has been studied through stereology (quantitative microscopy) associated with different physical and mechanical measurements. This study demonstrated that a set of stereological parameters, such as porosity, grain size, mean pore volume ..., was necessary to characterize porous parts with the same porosity obtained through different ways. On the one hand, stereology permitted to elucidate powder shape and speed of pressure rising influence on the compacting process. On the other hand, the study of physical and mechanical properties related to their microstructure led to distinguish: properties such as elasticity modulus independant of compacting pressure, sintering temperature and powder shape. Their evolution has been characterized through contiguity coefficient; properties such as tensile strength dependant of sintering parameters. Their characterization required the simultaneous measurement of porosity mean pore volume, shape factor and grain size [fr

  6. An investigation and understanding of the mechanical response of Palmyrah timber

    International Nuclear Information System (INIS)

    Sobier, Hatim; Menzemer, C.C.; Srivatsan, T.S.

    2003-01-01

    The Palmyrah tree flourishes in tropical areas around South East Asia, and particularly in Sri Lanka. Palmyrah is an important economic resource for the region, and has found use in structural applications for both residential dwellings and commercial buildings. While there is a great deal of local field experience with Palmyrah, the mechanical properties have not been well characterized or understood. In an effort to assist engineers with the design and efficient use of the timber, a study was undertaken to evaluate the mechanical response of Palmyrah and develop estimates of design allowable properties. Properties evaluated include static bending strength, modulus, compression parallel and perpendicular to the grain, shear parallel to the grain and tensile strength parallel and perpendicular to the grain. In order to gain insight into the behavior of the wood, samples were examined using standard optical microscopy techniques. In addition, available fracture surfaces were examined using scanning electron microscopy

  7. Ciona intestinalis notochord as a new model to investigate the cellular and molecular mechanisms of tubulogenesis.

    Science.gov (United States)

    Denker, Elsa; Jiang, Di

    2012-05-01

    Biological tubes are a prevalent structural design across living organisms. They provide essential functions during the development and adult life of an organism. Increasing progress has been made recently in delineating the cellular and molecular mechanisms underlying tubulogenesis. This review aims to introduce ascidian notochord morphogenesis as an interesting model system to study the cell biology of tube formation, to a wider cell and developmental biology community. We present fundamental morphological and cellular events involved in notochord morphogenesis, compare and contrast them with other more established tubulogenesis model systems, and point out some unique features, including bipolarity of the notochord cells, and using cell shape changes and cell rearrangement to connect lumens. We highlight some initial findings in the molecular mechanisms of notochord morphogenesis. Based on these findings, we present intriguing problems and put forth hypotheses that can be addressed in future studies. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Investigation of Mechanical Properties and Fracture Simulation of Solution-Treated AA 5754

    Science.gov (United States)

    Kumar, Pankaj; Singh, Akhilendra

    2017-10-01

    In this work, mechanical properties and fracture toughness of as-received and solution-treated aluminum alloy 5754 (AA 5754) are experimentally evaluated. Solution heat treatment of the alloy is performed at 530 °C for 2 h, and then, quenching is done in water. Yield strength, ultimate tensile strength, impact toughness, hardness, fatigue life, brittle fracture toughness (K_{Ic} ) and ductile fracture toughness (J_{Ic} ) are evaluated for as-received and solution-treated alloy. Extended finite element method has been used for the simulation of tensile and fracture behavior of material. Heaviside function and asymptotic crack tip enrichment functions are used for modelling of the crack in the geometry. Ramberg-Osgood material model coupled with fracture energy is used to simulate the crack propagation. Fracture surfaces obtained from various mechanical tests are characterized by scanning electron microscopy.

  9. Experimental Investigation on Mechanical Properties of Hemp/E-Glass Fabric Reinforced Polyester Hybrid Composites

    Directory of Open Access Journals (Sweden)

    M R SANJAY

    2016-09-01

    Full Text Available This research work has been focusing on Hemp fibers has an alternative reinforcement for fiber reinforced polymer composites due to its eco-friendly and biodegradable characteristics. This work has been carried out to evaluate the mechanical properties of hemp/E-glass fabrics reinforced polyester hybrid composites. Vacuum bagging method was used for the preparation of six different kinds of hemp/glass fabrics reinforced polyester composite laminates as per layering sequences. The tensile, flexural, impact and water absorption tests of these hybrid composites were carried out experimentally according to ASTM standards. It reveals that an addition of E-glass fabrics with hemp fabrics can increase the mechanical properties of composites and decrease the water absorption of the hybrid composites.

  10. Investigations of the mechanical properties of bi-layer and trilayer fiber reinforced composites

    Science.gov (United States)

    Jayakrishna, K.; Balasubramani, K.; Sultan, M. T. H.; Karthikeyan, S.

    2016-10-01

    Natural fibers are renewable raw materials with an environmental-friendly properties and they are recyclable. The mechanical properties of bi-layer and tri-layer thermoset polymer composites have been analyzed. The bi-layer composite consists of basalt and jute mats, while the tri-layer composite consists of basalt fiber, jute fiber and glass fiber mats. In both cases, the epoxy resin was used as the matrix and PTFE as a filler in the composites. The developed trilayer natural fiber composite can be used in various industrial applications such as automobile parts, construction and manufacturing. Furthermore, it also can be adopted in aircraft interior decoration and designed body parts. Flexural, impact, tensile, compression, shear and hardness tests, together with density measurement, were conducted to study the mechanical properties of both bi-layer and tri-layer composites. From the comparison, the tri-layer composite was found to perform in a better way in all tests.

  11. Investigation into mechanical properties of joints of heterogeneous materials brazed with high-temperature solders

    International Nuclear Information System (INIS)

    Lomenko, V.I.; Merkushev, V.P.; Borodina, L.M.; Sycheva, T.S.; Tokhtina, O.A.; Frolov, N.N.

    1988-01-01

    Mechanical properties of copper joints with copper, 12Kh18M10T steel and KhD50 composite obtained by vacuum brazing by copper-titanium solder as compared with properties of joints brazed by PSr 72 and PMFOTsr 6-4-0.03 solders in hydrogen are studied. Dependences of joints strength on temperature of contact - reactive vacuum brazing are obtained. Possible applications of joints of dissimilar materials in electrovacuum devices subjected to the effect of dynamic loadings are established

  12. XPS investigations on the UV-laser ablation mechanism of poly(ether imide)

    Energy Technology Data Exchange (ETDEWEB)

    Wambach, J; Kunz, T; Schnyder, B; Koetz, R; Wokaun, A [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    UV-Laser ablated samples of poly(ether imide) [Kapton{sup TM}] were studied with small-spot XPS. Applying fluences above the threshold level (0.167 J/cm{sup 2}) resulted in the expected behaviour of a decline of both nitrogen and oxygen. Below the threshold level a hint for an altered ablation mechanism was found. (author) 1 fig., 5 refs.

  13. Investigation research on the evaluation of a coupled thermo-hydro-mechanical-chemical phenomena. Outline report

    International Nuclear Information System (INIS)

    Chijimatsu, Masakazu; Amemiya, Kiyoshi; Neyama, Atsushi; Iwata, Hiroshi; Nakagawa, Koichi; Ishihara, Yoshinao; Shiozaki, Isao; Sagawa, Hiroshi

    2002-02-01

    In order to realize a coupling analysis in the near field of the geological disposal system, this study has been studied on the addition of the mass transport model to the coupled thermo-hydro-mechanical analysis code (THAMES) and preliminary coupling analysis by using development environmental tool (Diffpack) for numerical analysis. (1) In order to prepare the strategy on the addition of the mass transport model to the coupled thermo-hydro-mechanical analysis code (THAMES), we have studied on the requirement of THAMES-Transport and methodology of coupling analysis. After that we set out modification plan by the Eulerian-Lagrangian (EL) method. (2) Based on the document of modification plan, we have done addition of the mass transport model to the coupled thermo-hydro-mechanical analysis code (THAMES) and carried out verification analysis in order to confirm on the accuracy of THAMES-Transport. (3) In order to understand on the behavior of NaCl in the porewater under the coupled thermo-hydro-mechanical phenomena in the HLW engineered barrier system, we have calculated coupling phenomenon by using THAMES-Transport. Transportation and concentration phenomena of NaCl are calculated but precipitation of NaCl is not occurred under the analysis conditions in this report. (4) In order to confirm about feasibility of coupling analysis under the development environmental tool (Diffpack) for numerical analysis, we have carried out on the design work and writing program of the preliminary coupling system. In this study, we have adopted existing transport model (HYDROGEOCHEM) and geochemical model (phreeqe60) for preliminary coupling system. (5) In order to confirm program correctness of preliminary coupling system, we have carried out benchmarking analysis by using existing reactive-transport analysis code (HYDROGEOCHEM). (6) We have been prepared short-range development plan based on through the modification study of THAMES and writing program of the preliminary coupling

  14. Geochemical and Spectroscopic Investigations of Cd and Pb Sorption Mechanisms on Contrasting Biochars: Engineering Implications

    Czech Academy of Sciences Publication Activity Database

    Trakal, L.; Bingöl, D.; Pohořelý, Michael; Hruška, M.; Komárek, M.

    2014-01-01

    Roč. 171, NOV 2014 (2014), s. 442-451 ISSN 0960-8524 R&D Projects: GA ČR(CZ) GA14-02219S Grant - others:GA MŠMT(CZ) LD13068 Institutional support: RVO:67985858 Keywords : biochar * metals * sorption mechanisms Subject RIV: DK - Soil Contamination ; De-contamination incl. Pesticides Impact factor: 4.494, year: 2014

  15. Investigation of the physico-mechanical properties of electrospun PVDF/cellulose nanofibers.

    OpenAIRE

    Issa, A.A.; Al-Maadeed, M.; Luyt, A.S.; Mrlik, M.; Hassan, M.K.

    2016-01-01

    The electro-activity and mechanical properties of PVDF depends mainly on the b-phase content and degree of crystallinity. In this study, cellulose fibers were used to improve these characteristics. This could be achieved because the hydroxyl groups on cellulose would force the fluorine atoms in PVDF to be in the trans-conformation, and the cellulose particles could act as nucleation centers. Electrospinning was used to prepare the PVDF/cellulose (nano)fibrous films, and this improved the tota...

  16. Raman spectroscopy in investigations of mechanism of binding of human serum albumin to molecular probe fluorescein

    International Nuclear Information System (INIS)

    Vlasova, I M; Saletsky, A M

    2008-01-01

    The mechanism of binding of molecular probe fluorescein to molecules of human serum albumin was studied by the Raman spectroscopy method. The position of binding Center on human serum albumin molecule for fluorescein is determined. The amino acid residues of albumin molecule, participating in binding of fluorescein at different pH values of solution, are established. The conformation rearrangements of globules of human serum albumin, taking place at binding of fluorescein at different pH values of solution, are registered

  17. A comprehensive investigation into the effect of temperature variation on the mechanical properties of sustainable concrete

    OpenAIRE

    El Mir Abdulkader; Nehme Salem

    2017-01-01

    Minimizing the production energy and resources consumption are the key principle for engineering sustainability. In the case of concrete structures, this concept can be achieved by the use of materials in the most efficient way considering in the mix design the optimal mechanical and durability properties. The substitution of ordinary Portland cement for other supplementary cementitious materials is assessing the possibility of enhancing the sustainability and decreasing the environmental imp...

  18. Numerical Investigation on the Thermo-mechanical Behavior of a Quadratic Cross Section Pile Heat Exchanger

    DEFF Research Database (Denmark)

    Pagola, Maria Alberdi; Madsen, Søren; Jensen, Rasmus Lund

    2017-01-01

    and shaft resistances; ii) the maximum upward/downward displacements. A one-year time span is considered under operational and extreme thermal boundary conditions. The results show that a typical geothermal utilization of the energy foundation does not generate significant structural implications...... on the geotechnical capacity of a single energy pile. However, ground thermal loads need to be considered in the design phase to account for potential extreme temperature changes, which could generate thermal stresses that equalize the mechanically generated ones....

  19. Investigation of Microstructure and Mechanical Properties in Hot-work Tool Steels

    OpenAIRE

    Rey, Tomas

    2017-01-01

    Hot-work tool steels make up an important group of steels that are able to perform with good strength and toughness properties at elevated temperatures and stresses. They are able to gain this behavior through their alloy composition and heat treatment, which relies on the precipitation of alloy carbides to counter the loss in strength as the tempered material becomes more ductile. As demand grows for materials that are suitable for even harsher applications and that show improved mechanical ...

  20. Therapeutic effect of increased openness: Investigating mechanism of action in MDMA-assisted psychotherapy

    OpenAIRE

    Wagner, Mark T; Mithoefer, Michael C; Mithoefer, Ann T; MacAulay, Rebecca K; Jerome, Lisa; Yazar-Klosinski, Berra; Doblin, Rick

    2017-01-01

    A growing body of research suggests that traumatic events lead to persisting personality change characterized by increased neuroticism. Relevantly, enduring improvements in Post-Traumatic Stress Disorder (PTSD) symptoms have been found in response to 3,4-methylenedioxymethamphetamine (MDMA)-assisted psychotherapy. There is evidence that lasting changes in the personality feature of ?openness? occur in response to hallucinogens, and that this may potentially act as a therapeutic mechanism of c...

  1. Investigation research on the evaluation of a coupled thermo-hydro-mechanical-chemical phenomena. Result report

    International Nuclear Information System (INIS)

    Chijimatsu, Masakazu; Amemiya, Kiyoshi; Shiozaki, Isao; Neyama, Atsushi; Iwata, Hiroshi; Nakagawa, Koichi; Ishihara, Yoshinao; Sagawa, Hiroshi

    2002-02-01

    In order to realize a coupling analysis in the near field of the geological disposal system, this study has been studied on the addition of the mass transport model to the coupled thermo-hydro-mechanical analysis code (THAMES) and preliminary coupling analysis by using development environmental tool (Diffpack) for numerical analysis. (1) In order to prepare the strategy on the addition of the mass transport model to the coupled thermo-hydro-mechanical analysis code (THAMES), we have studied on the requirement of THAMES-Transport and methodology of coupling analysis. After that we set out modification plan by the Eulerian-Lagrangian (EL) method. (2) Based on the document of modification plan, we have done addition of the mass transport model to the coupled thermo-hydro-mechanical analysis code (THAMES) and carried out verification analysis in order to confirm on the accuracy of THAMES-Transport. (3) In order to understand on the behavior of NaCl in the porewater under the coupled thermo-hydro-mechanical phenomena in the HLW engineered barrier system, we have calculated coupling phenomenon by using THAMES-Transport. Transportation and concentration phenomena of NaCl are calculated but precipitation of NaCl is not occurred under the analysis conditions in this report. (4) In order to confirm about feasibility of coupling analysis under the development environmental tool (Diffpack) for numerical analysis, we have carried out on the design work and writing program of the preliminary coupling system. In this study, we have adopted existing transport model (HYDROGEOCHEM) and geochemical model (phreeqe 60) for preliminary coupling system. (5) In order to confirm program correctness of preliminary coupling system, we have carried out benchmarking analysis by using existing reactive-transport analysis code (HYDROGEOCHEM). (6) We have been prepared short-range development plan based on through the modification study of THAMES and writing program of the preliminary coupling

  2. Numerical and Experimental Investigations on Mechanical Behavior of Composite Corrugated Core

    Science.gov (United States)

    Dayyani, Iman; Ziaei-Rad, Saeed; Salehi, Hamid

    2012-06-01

    Tensile and flexural characteristics of corrugated laminate panels were studied using numerical and analytical methods and compared with experimental data. Prepreg laminates of glass fiber plain woven cloth were hand-laid by use of a heat gun to ease the creation of the panel. The corrugated panels were then manufactured by using a trapezoidal machined aluminium mould. First, a series of simple tension tests were performed on standard samples to evaluate the material characteristics. Next, the corrugated panels were subjected to tensile and three-point bending tests. The force-displacement graphs were recorded. Numerical and analytical solutions were proposed to simulate the mechanical behavior of the panels. In order to model the energy dissipation due to delamination phenomenon observed in tensile tests in all members of corrugated core, plastic behavior was assigned to the whole geometry, not only to the corner regions. Contrary to the literature, it is shown that the three-stage mechanical behavior of composite corrugated core is not confined to aramid reinforced corrugated laminates and can be observed in other types such as fiber glass. The results reveal that the mechanical behavior of the core in tension is sensitive to the variation of core height. In addition, for the first time, the behavior of composite corrugated core was studied and verified in bending. Finally, the analytical and numerical results were validated by comparing them with experimental data. A good degree of correlation was observed which showed the suitability of the finite element model for predicting the mechanical behavior of corrugated laminate panels.

  3. Aroma Effects on Physiologic and Cognitive Function Following Acute Stress: A Mechanism Investigation.

    Science.gov (United States)

    Chamine, Irina; Oken, Barry S

    2016-09-01

    Aromas may improve physiologic and cognitive function after stress, but associated mechanisms remain unknown. This study evaluated the effects of lavender aroma, which is commonly used for stress reduction, on physiologic and cognitive functions. The contribution of pharmacologic, hedonic, and expectancy-related mechanisms of the aromatherapy effects was evaluated. Ninety-two healthy adults (mean age, 58.0 years; 79.3% women) were randomly assigned to three aroma groups (lavender, perceptible placebo [coconut], and nonperceptible placebo [water] and to two prime subgroups (primed, with a suggestion of inhaling a powerful stress-reducing aroma, or no prime). Participants' performance on a battery of cognitive tests, physiologic responses, and subjective stress were evaluated at baseline and after exposure to a stress battery during which aromatherapy was present. Participants also rated the intensity and pleasantness of their assigned aroma. Pharmacologic effects of lavender but not placebo aromas significantly benefited post-stress performance on the working memory task (F(2, 86) = 5.41; p = 0.006). Increased expectancy due to positive prime, regardless of aroma type, facilitated post-stress performance on the processing speed task (F(1, 87) = 8.31; p = 0.005). Aroma hedonics (pleasantness and intensity) played a role in the beneficial lavender effect on working memory and physiologic function. The observable aroma effects were produced by a combination of mechanisms involving aroma-specific pharmacologic properties, aroma hedonic properties, and participant expectations. In the future, each of these mechanisms could be manipulated to produce optimal functioning.

  4. Investigation of the mechanical properties of the Euratom LCT coil by tests under different boundary conditions

    International Nuclear Information System (INIS)

    Maurer, A.; Komarek, P.; Maurer, W.; Ulbricht, A.; Wuechner, F.

    1987-01-01

    The increasing size of superconducting magnets for fusion and other application requires a careful design of the mechanical support structure to avoid expensive overdesign or damage. An encouraging progress was made in this field during the last ten years. Requirements of the Large Coil Task, a program to develop superconducting magnets suitable for TOKAMAKS, made it indispensable to transfer the already existing calculation of the finite element method (FEM) to the field of superconducting magnet technology. There are some conditions which require an additional effort and extension of the FEM models for the usage in this field. As a consequence of the operation at low temperatures material data must be available over the whole temperature range. The winding and the conductor of superconducting coils is a sophisticated composite with orthotropic material properties which have to be determined by suitable detailed FEM models and which have to be also checked by measurements on test samples of the winding pack. In most cases an additional structure of stainless steel or fiberglass reinforced epoxy is necessary to support the winding pack. Therefore a suitable model representing the elastic properties of the mechanism of force transmission has to be introduced in the FEM calculations. The mechanical measurements on a superconducting coil confirm or show weak points of the model and close therefore existing gaps. The Euratom LCT coil is equipped with sensors (strain gauges rosettes, displacement transducers) to analyse local and global structural mechanical behaviour. The spectrum of load cases applied during the testing with partly varying boundary conditions offers an excellent experimental frame to elucidate hidden uncovered model problem areas. (orig.)

  5. An investigation into the mechanisms of drug release from taste-masking fatty acid microspheres.

    Science.gov (United States)

    Qi, Sheng; Deutsch, David; Craig, Duncan Q M

    2008-09-01

    Fatty acid microspheres based on stearic and palmitic acids are known to form effective taste masking systems, although the mechanisms by which the drug is preferentially released in the lower gastrointestinal tract are not known. The objective of the present study was to identify the mechanisms involved, with a particular view to clarify the role of acid soap formation in the dissolution process. Microspheres were prepared by a spray chilling process. Using benzoic acid as a model drug and an alkaline dissolution medium, a faster drug release was observed in the mixed fatty acid formulation (50:50 stearic:palmitic acid (w/w)) compared to the single fatty acid component systems. Thermal and powder X-ray diffraction studies indicated a greater degree of acid soap formation for the mixed formulation in alkaline media compared to the single fatty acid systems. Particle size and porosity studies indicated a modest reduction in size for the mixed systems and an increase in porosity on immersion in the dissolution medium. It is proposed that the mixed fatty acid system form a mixed crystal system which in turn facilitates interaction with the dissolution medium, thereby leading to a greater propensity for acid soap formation which in turn forms a permeable liquid crystalline phase through which the drug may diffuse. The role of dissolution of palmitic acid into the dissolution medium is also discussed as a secondary mechanism.

  6. Investigation of the impact of mechanical stress on the properties of silicon strip sensors

    CERN Document Server

    Affolder, Tony; The ATLAS collaboration

    2017-01-01

    The new ATLAS tracker for phase II will be composed of silicon pixel and strip sensor modules. The strip sensor module consists of silicon sensors, boards and readout chips. Adhesives are used to connect the modular components thermally and mechanically. It was shown that the silicon sensor is exposed to mechanical stress, due to temperature difference between construction and operation. Mechanical stress can damage the sensor and can change the electrical properties. The thermal induced tensile stress near to the surface of a silicon sensor in a module was simulated and the results are compared to a cooled module. A four point bending setup was used to measure the maximum tensile stress of silicon detectors and to verify the piezoresistive effects on two recent development sensor types used in ATLAS (ATLAS07 and ATLAS12). Changes in the interstrip, bulk and bias resistance and capacitance as well as the coupling capacitance and the implant resistance were measured. The Leakage current was observed to decreas...

  7. Experimental Investigation on Shock Mechanical Properties of Red Sandstone under Preloaded 3D Static Stresses

    Directory of Open Access Journals (Sweden)

    Niu Yong

    2015-11-01

    Full Text Available Triaxial impact mechanical performance experiment was performed to study the mechanical properties of red sandstone subjected to three-dimensional (3D coupled static and dynamic loads, i.e., three confining pressures (0, 5, and 10 MPa and three axial pressures (11, 27, and 43 MPa. A modified 3D split Hopkinson pressure bar testing system was used. The change trend in the deformation of red sandstone and the strength and failure modes under axial pressures and confining pressures were analyzed. Results show that, when the confining pressure is constant, the compressive strength, secant modulus, and energy absorbed per unit volume of red sandstone initially increases and subsequently decreases, whereas the average strain rate exhibits an opposite trend. When the axial pressure is constant, both the compressive strength and secant modulus of red sandstone are enhanced, but the average strain rate is decreased with increasing confining pressure. The energy absorbed per unit volume is initially increased and subsequently decreased as the confining pressure increases. Red sandstone exhibits a cone-shaped compression–shear failure mode under the 3D coupled static and dynamic loads. The conclusions serve as theoretical basis on the mechanical properties of deep medium-strength rock under a high ground stress and external load disturbance condition

  8. A molecular dynamics investigation into the mechanisms of alectinib resistance of three ALK mutants.

    Science.gov (United States)

    He, Muyang; Li, Weikang; Zheng, Qingchuan; Zhang, Hongxing

    2018-01-11

    Alectinib, a highly selective next-genetation anaplastic lymphoma kinase (ALK) inhibitor, has demonstrated promising antitumor activity in patients with ALK-positive non-small cell lung carcinomas (NSCLC). However, the therapeutic benefits of alectinib is inescapably hampered by the development of acquired resistant mutations in ALK. Despite the availability of ample experimental mutagenesis data, the molecular origin and the structural motifs under alectinib binding affinity deficiencies are still ambiguous. Here, molecular dynamics (MD) simulations and molecular mechanics generalized born surface area (MM-GBSA) calculation approaches were employed to elucidate the mechanisms of alectinib resistance induced by the mutations I1171N, V1180L, and L1198F. The MD results reveal that the studied mutations could trigger the dislocation of alectinib as well as conformational changes at the inhibitor binding site, thus induce the interactional changes between alectinib and mutants. The most influenced regions are the ligand binding entrance and the hinge region, which are considered to be the dominant binding motifs accounting for the binding affinity loss in mutants. The "key and lock mechanism" between the ethyl group at position 9 of alectinib and a recognition cavity in the hinge region of ALK is presented to illustrate the major molecular origin of drug resistance. Our results provide mechanistic insight into the effect of ALK mutations resistant to alectinib, which could contribute to further rational design of inhibitors to combat the acquired resistance. © 2018 Wiley Periodicals, Inc.

  9. Biobehavioral mechanisms of topiramate's effects on alcohol use: an investigation pairing laboratory and ecological momentary assessments.

    Science.gov (United States)

    Miranda, Robert; MacKillop, James; Treloar, Hayley; Blanchard, Alexander; Tidey, Jennifer W; Swift, Robert M; Chun, Thomas; Rohsenow, Damaris J; Monti, Peter M

    2016-01-01

    Topiramate reduces drinking, but little is known about the mechanisms that precipitate this effect. This double-blind randomized placebo-controlled study assessed the putative mechanisms by which topiramate reduces alcohol use among 96 adult non-treatment-seeking heavy drinkers in a laboratory-based alcohol cue reactivity assessment and in the natural environment using ecological momentary assessment methods. Topiramate reduced the quantity of alcohol heavy drinkers consumed on drinking days and reduced craving while participants were drinking but did not affect craving outside of drinking episodes in either the laboratory or in the natural environment. Topiramate did not alter the stimulant or sedative effects of alcohol ingestion during the ascending limb of the blood alcohol curve. A direct test of putative mechanisms of action using multilevel structural equation mediation models showed that topiramate reduced drinking indirectly by blunting alcohol-induced craving. These findings provide the first real-time prospective evidence that topiramate reduces drinking by reducing alcohol's priming effects on craving and highlight the importance of craving as an important treatment target of pharmacotherapy for alcoholism. © 2014 Society for the Study of Addiction.

  10. An Analysis of Modern Japanese Think Tank Prototype——SMR Investigation Organization and Its Operation Mechanism

    Directory of Open Access Journals (Sweden)

    Huang Wenyue

    2017-12-01

    Full Text Available [Purpose/significance] Through an analysis of SMR investigatory apparatus business and its operation mechanism, this paper discusses the development model of the investigation organ, the South Manchuria Railway think tank, and reveals the militarism influence on the early Japanese think tank development. [Method/process] This paper combed the SMR’s important survey agencies development pattern by the case study and literature survey and also discussed the key mechanism of operation system and organization characteristics. The evaluation of reports directed by the SMR provided references. [Result/conclusion] The SMR, as a colonial and aggressive policy tool, its surveys were done for the government and military authorities. With independent sources of information, the use of network intelligence structure and the combination of resident literature collection with field investigation, the collection of professional analysis personnel, the SMR investigation organization completes the decision-making through the scientific method and has reference value.

  11. Introduction : le rôle des sciences humaines dans la compréhension des rapports entre TIC et développement durable

    Directory of Open Access Journals (Sweden)

    Charlotte Ullmann

    2015-04-01

    Full Text Available Un appel à l’interdisciplinarité des sciences humaines Une vérité qui dérange… Qui en 2007, n’a pas encore vu ce film-documentaire réalisé par Al Gore qui lui a valu d’être prix Nobel de la Paix ? Qui n’a pas été étonné de voir que les publicités des constructeurs automobiles parlent de plus en plus de voiture propre (engagement du Lion bleu, tandis que Gaz de France nous vend des « coins de ciel bleu »… Tout d’un coup, les films catastrophes tels que L’armée des douze singes, Le jour d’aprè...

  12. La gestion des ressources humaines peut-elle être un facteur de fidélisation de la clientèle du centre E. Leclerc Casteldis ?

    OpenAIRE

    Laurie Ple

    2010-01-01

    Le secteur de la grande distribution est un domaine passionnant par son histoire, son évolution et sa place au cœur de nombreuses mutations de notre société. L'explorer à travers la gestion des ressources humaines est tout de suite paru attirant. Étant donné que la grande distribution évolue dans un contexte de plus en plus compétitif, la fidélisation de la clientèle est devenue un de ses grands enjeux. La grande distribution a développé des outils de fidélisation, mais ils sont largement rep...

  13. "A epopeia da decadência": um estudo sobre o Essai sur l'inégalité des races humaines (1853-1855, de Arthur de Gobineau

    Directory of Open Access Journals (Sweden)

    Helga da Cunha Gahyva

    2011-12-01

    Full Text Available O presente artigo discute a concepção racial de Arthur de Gobineau a partir de sua mais famosa obra, o Essai sur l'inégalité des races humaines. Se comumente este tratado é associado à discussão racialista que toma corpo nas últimas décadas do século XIX, pretendo relacioná-lo a uma polêmica característica da virada do século XVII para o XVIII, a Querela das duas raças. Neste sentido, o objetivo do artigo é revelar, em primeiro lugar, como a reflexão de Gobineau é tributária de um conceito de linhagem tornado paulatinamente anacrônico no mundo pós-revolucionário. Em segundo, demonstrar a hipótese segundo a qual o Essai, menos do que um estudo sobre raças pretensamente "biológicas", representa fundamentalmente uma recusa à nova ordem igualitária que se impõe na era moderna.The present article discusses the racial concepts of Arthur de Gobineau based on his most famous work, Essai sur l'inegalité des races humaines. Instead of associating these with the racialist debate of the last decades of the XIX the century, I relate them to a polemical text characteristic of the late XVII and early XVIII century: The Quarrel of the Two Races. In this sense, my main objective is to show that, in the first place, the Gobineau's work owes significant debts to the concept of the "bloodline", an idea which gradually became anachronistic after the French Revolution. In addition, I argue that, rather than being a study of supposedly "biological" races, Gobineau's "Essay" should be regarded as a refusal of the new egalitarian order of modern times.

  14. Numerical investigations on the rebound phenomena and the bonding mechanisms in cold spray processes

    Science.gov (United States)

    Viscusi, A.

    2018-05-01

    Cold spray technology is a relatively new additive process allowing to create high quality metallic coatings, on both metallic and non-metallic substrates, without extensive heating of the powders sprayed. Upon impact with a target surface, conversion of kinetic energy to plastic deformation occurs, the solid particles deform and bond together. The actual bonding mechanism for cold spray particles is still not well understood, a high number of works has been carried out during the past two decades, several theories have been proposed to explain the adhesion/rebound mechanisms making the system ineffective for industrial applications. Therefore, the aim of this research activity is to better explain the complex adhesion/rebound phenomena into cold spray impact processes through numerical simulations; for this purpose, on the base of simplified hypothesis and results found in literature, an original 3D Finite Element Method (FEM) model of an aluminium particle impacting on an aluminium substrate was proposed. A cohesive behaviour algorithm was implemented in the particle-substrate contact regions aiming to simulate the bonding between the impacting particle and the substrate under specific working conditions. A rebound coefficient was also defined representing the particle residual energy. Different simulations were performed using a range of impact velocities and varying the interfacial cohesive strength. It was shown that at low impact velocities the rebound phenomenon is governed by the elastic energy stored in the system, meanwhile at high impact velocities, the rebound phenomenon is mainly due to the strain rate effects making the system mechanically stronger; therefore, a specific range of bonding velocities depending on substrate-particle contact area were found.

  15. Investigating the influence of infill percentage on the mechanical properties of fused deposition modelled ABS parts

    Directory of Open Access Journals (Sweden)

    Kenny Álvarez

    2016-09-01

    Full Text Available 3D printing is a manufacturing process that is usually used for modeling and prototyping. One of the most popular printing techniques is fused deposition modeling (FDM, which is based on adding melted material layer by layer. Although FDM has several advantages with respect to other manufacturing materials, there are several problems that have to be faced. When setting the printing options, several parameters have to be taken into account, such as temperature, speed, infill percentage, etc. Selecting these parameters is often a great challenge for the user, and is generally solved by experience without considering the influence of variations in the parameters on the mechanical properties of the printed parts.This article analyzes the influence of the infill percentage on the mechanical properties of ABS (Acrylonitrile Butadiene Styrene printed parts. In order to characterize this influence, test specimens for tensile strength and Charpy tests were printed with a Makerbot Replicator 2X printer, in which the infill percentage was varied but the rest of the printing parameters were kept constant. Three different results were analyzed for these tests: tensile strength, impact resistance, and effective printing time. Results showed that the maximum tensile force (1438N and tensile stress (34,57MPa were obtained by using 100% infill. The maximum impact resistance, 1,55J, was also obtained with 100% infill. In terms of effective printing time, results showed that printing with an infill range between 50% and 98% is not recommended, since the effective printing time is higher than with a 100% infill and the tensile strength and impact resistance are smaller. In addition, in comparing the results of our analysis with results from other authors, it can be concluded that the printer type and plastic roll significantly influence the mechanical properties of ABS parts.

  16. A comparative investigation of bone surface after cutting with mechanical tools and Er:YAG laser.

    Science.gov (United States)

    Baek, Kyung-Won; Deibel, Waldemar; Marinov, Dilyan; Griessen, Mathias; Dard, Michel; Bruno, Alfredo; Zeilhofer, Hans-Florian; Cattin, Philippe; Juergens, Philipp

    2015-07-01

    Despite of the long history of medical application, laser ablation of bone tissue became successful only recently. Laser bone cutting is proven to have higher accuracy and to increase bone healing compared to conventional mechanical bone cutting. But the reason of subsequent better healing is not biologically explained yet. In this study we present our experience with an integrated miniaturized laser system mounted on a surgical lightweight robotic arm. An Erbium-doped Yttrium Aluminium Garnet (Er:YAG) laser and a piezoelectric (PZE) osteotome were used for comparison. In six grown up female Göttingen minipigs, comparative surgical interventions were done on the edentulous mandibular ridge. Our laser system was used to create different shapes of bone defects on the left side of the mandible. On the contralateral side, similar bone defects were created by PZE osteotome. Small bone samples were harvested to compare the immediate post-operative cut surface. The analysis of the cut surface of the laser osteotomy and conventional mechanical osteotomy revealed an essential difference. The scanning electron microscopy (SEM) analysis showed biologically open cut surfaces from the laser osteotomy. The samples from PZE osteotomy showed a flattened tissue structure over the cut surface, resembling the "smear layer" from tooth preparation. We concluded that our new finding with the mechanical osteotomy suggests a biological explanation to the expected difference in subsequent bone healing. Our hypothesis is that the difference of surface characteristic yields to different bleeding pattern and subsequently results in different bone healing. The analyses of bone healing will support our hypothesis. © 2015 Wiley Periodicals, Inc.

  17. Laboratory Investigation on Physical and Mechanical Properties of Granite After Heating and Water-Cooling Treatment

    Science.gov (United States)

    Zhang, Fan; Zhao, Jianjian; Hu, Dawei; Skoczylas, Frederic; Shao, Jianfu

    2018-03-01

    High-temperature treatment may cause changes in physical and mechanical properties of rocks. Temperature changing rate (heating, cooling and both of them) plays an important role in those changes. Thermal conductivity tests, ultrasonic pulse velocity tests, gas permeability tests and triaxial compression tests are performed on granite samples after a heating and rapid cooling treatment in order to characterize the changes in physical and mechanical properties. Seven levels of temperature (from 25 to 900 °C) are used. It is found that the physical and mechanical properties of granite are significantly deteriorated by the thermal treatment. The porosity shows a significant increase from 1.19% at the initial state to 6.13% for samples heated to 900 °C. The increase in porosity is mainly due to three factors: (1) a large number of microcracks caused by the rapid cooling rate; (2) the mineral transformation of granite through high-temperature heating and water-cooling process; (3) the rapid cooling process causes the mineral particles to weaken. As the temperature of treatment increases, the thermal conductivity and P-wave velocity decrease while the gas permeability increases. Below 200 °C, the elastic modulus and cohesion increase with temperature increasing. Between 200 and 500 °C, the elastic modulus and cohesion have no obvious change with temperature. Beyond 500 °C, as the temperature increases, the elastic modulus and cohesion obviously decrease and the decreasing rate becomes slower with the increase in confining pressure. Poisson's ratio and internal frictional coefficient have no obvious change as the temperature increases. Moreover, there is a transition from a brittle to ductile behavior when the temperature becomes high. At 900 °C, the granite shows an obvious elastic-plastic behavior.

  18. Foliation: Geological background, rock mechanics significance, and preliminary investigations at Olkiluoto

    International Nuclear Information System (INIS)

    Milnes, A.G.; Hudson, J.; Wikstroem, L.; Aaltonen, I.

    2006-01-01

    A well developed, pervasive foliation is a characteristic feature of the migmatites and gneisses in the Olkiluoto bedrock, and is expected to have a significant influence on the underground construction, the design and layout and the groundwater flow regime of a deep spent nuclear fuel repository. This Working Report reviews the geological background and rock mechanics significance of foliation, and develops a methodology for the systematic acquisition of foliation data in cored boreholes and in tunnels at the Olkiluoto site, to provide the necessary basis for future geological, rock mechanics and hydrogeological modelling. The first part of the methodology concerns foliation characterisation, and develops a characterisation scheme based on two variables: the foliation type (G = gneissic, B = banded, S = schistose), which is a function of mineral composition and degree of smallscale heterogeneity, and the foliation intensity (1 = low, 2 = intermediate, 3 = high), which is a function of the type and intensity of the deformation by which it was produced (under high-grade metamorphic conditions in the core of the Svecofennian orogenic belt). At the suggested reference scales (1 m length of core, 10 m 2 area of tunnel wall), the most representative foliation type and intensity is assessed using a standard set of core photographs, which are included as an Appendix at the end of the report, providing a systematic description in terms of 9 descriptive types (G1, G2, G3, B1, B2, B3, S1, S2, S3). As a further step, the rock mechanics significance of these types is assessed and a rock mechanics foliation (RMF) number is assigned (RMF 0 = no significance, RMF 1, RMF 2 and RMF 3 = low, intermediate and high significance, respectively). The second part of the methodology concerns the orientations of the foliation within the same 1 m core lengths or 10 m2 wall areas, which have been characterised as above. This combined analysis of foliation character and foliation orientation

  19. Use of nonhuman primate models to investigate mechanisms of infection-associated preterm birth

    Science.gov (United States)

    Adams Waldorf, Kristina M.; Rubens, Craig E.; Gravett, Michael G.

    2010-01-01

    Preterm birth is the most important direct cause of neonatal mortality and remains a major challenge for obstetrics and global health. Intrauterine infection causes approximately 50% of early preterm births. Animal models using pregnant mice, rabbits, or sheep, demonstrate the key link between infection and premature birth, but differ in mechanisms of parturition and placental structure from humans. The nonhuman primate (NHP) is a powerful model which emulates many features of human placentation and parturition. The contributions of the NHP model to preterm birth research are reviewed emphasizing the role of infections, and potential development of preventative and therapeutic strategies. PMID:21040390

  20. Proteomic investigation of the mechanism controlling the Cyclin D-dependent Kinase

    International Nuclear Information System (INIS)

    Crescenzi, M.

    2009-01-01

    This project has been carried out accordingly to the original proposal and it has yielded significant scientific results with great therapeutic potential. Previous work from the PI's group has shown that the cyclin D-dependent kinase activity plays a critical role in the regulation of the post mitotic state of Terminally Differentiated (TD) cells. The first aim of the project was to unravel the molecular mechanisms that repress such kinase activity in TD cells. The use of complementary biochemistry and mass spectrometry techniques has allowed us to answer this question satisfactorily

  1. The investigation of the stochastization mechanisms of the beam generators using the method of functional map

    International Nuclear Information System (INIS)

    Bliokh, Yu.P.; Fajnberg, Ya.B.; Lyubarskij, M.G.; Podobinskij, V.O.

    1994-01-01

    Certain distributed dynamical systems describing the well-known beam generators of UHF oscillations are organized very simple: the nonlinear functional, which determines the current state of the system with respect to its behaviour in the past, is represented as a composition of the linear functional and the nonlinear finite-dimensional map. This property made it possible to find the mechanisms of auto modulation and stochastization of the signals from beam generators and to define corresponding range of parameters values. 12 refs., 6 figs

  2. Investigation of Mechanical Behavior of Nettle Filled Hybrid Composites of Nettle Fiber-Hazelnut Shell

    OpenAIRE

    Kenan BÜYÜKKAYA

    2017-01-01

    Polymer beam specimens produced with reinforcement of nettle fiber and fixed nut hazelnut flour at different volume ratios were opened initial notches with a / W = 0.2, 0.3 ratios after thermal curing. The volume percentage of nettle fiber in the composite is 2.5, 5, 7.5 and 10 percent. The grain size of hazelnut shell flour is 0-50μ and the volume ratio in the composite is 15% in all samples. Mode I fracture behaviors of compacted specimens from single sides, compact tensile and mechanical ...

  3. Investigation of the influence of the manufacturing process on the mechanical and microstructural properties of alumina

    International Nuclear Information System (INIS)

    Madruga, T.P.; Costa, C.R.C. da

    1986-01-01

    High-purity samples of alumina, without any sintering additives, were prepared using the techniques of slip casting and cold unidirectional pressing. The same sintering parameters (temperature, time and heating and cooling rates) were used for all samples. The mechanical strenght, critical flow strenght (mode I), average grain size and porosity were measured on samples manufactured using both methods. The influence of the manufaturing process on the quality of the finished pieces was inferred from the comparison and evaluation of the results for the two sets of samples. (Author) [pt

  4. Photographic investigation into the mechanism of combustion in irregular detonation waves

    Science.gov (United States)

    Kiyanda, C. B.; Higgins, A. J.

    2013-03-01

    Irregular detonations are supersonic combustion waves in which the inherent multi-dimensional structure is highly variable. In such waves, it is questionable whether auto-ignition induced by shock compression is the only combustion mechanism present. Through the use of high-speed schlieren and self-emitted light photography, the velocity of the different components of detonation waves in a {{ CH}}_4+2{ O}_2 mixture is analyzed. The observed burn-out of unreacted pockets is hypothesized to be due to turbulent combustion.

  5. Crystalline perfection and mechanical investigations on vertical Bridgman grown Bismuth telluride (Bi_2Te_3) single crystals for thermoelectric applications

    International Nuclear Information System (INIS)

    Krishna, Anuj; Vijayan, N.; Singh, Budhendra; Thukral, Kanika; Maurya, K.K.

    2016-01-01

    High efficiency thermoelectric materials plays a vital role in power generation and refrigeration applications. Bismuth telluride (Bi_2Te_3) is one among them. In the present work single crystal of bismuth telluride was grown using vertical Bridgman technique. The phase of grown crystals was analysed using a powder X-ray diffractometer. Quality of the grown crystal was assessed by using high resolution X-ray diffractometer and observed that it is fairly good. Further mechanical investigations on grown crystal was carried out using nano-indentation technique and various mechanical properties like hardness, stiffness and Young’s modulus were evaluated. Observed results clearly indicate its suitability for thermoelectric applications.

  6. Investigation on the microstructure and mechanical properties of a cast Mg-6Zn-5Al-4RE alloy

    International Nuclear Information System (INIS)

    Xiao Wenlong; Jia Shusheng; Wang Jun; Wang, Jianli; Wang Limin

    2008-01-01

    Mg-6Zn-5Al-4RE (RE = Mischmetal, mass%) alloy was prepared by metal mould casting method. The microstructure and mechanical properties of the as-cast and heat-treated alloys were investigated. The results show that the phase compositions of the as-cast state alloy are supersaturated solid solution α-Mg, lamellar β-Al 12 Mg 17 , polygonal Al 3 RE and cluster Al 2 REZn 2 phases. The mechanical properties, especially the ultimate tensile strength and elongation of the alloy were significantly improved by the heat treatment. Fracture surface of tensile specimens was analyzed by optical microscope and scanning electron microscope

  7. Perceptual Representation as a Mechanism of Lexical Ambiguity Resolution: An Investigation of Span and Processing Time

    Science.gov (United States)

    Madden, Carol J.; Zwaan, Rolf A.

    2006-01-01

    In 2 experiments, the authors investigated the ability of high- and low-span comprehenders to construe subtle shades of meaning through perceptual representation. High- and low-span comprehenders responded to pictures that either matched or mismatched a target object's shape as implied by the preceding sentence context. At 750 ms after hearing the…

  8. Novel Fluorescent Microemulsion: Probing Properties, Investigating Mechanism, and Unveiling Potential Application.

    Science.gov (United States)

    Hou, Mengna; Dang, Leping; Liu, Tiankuo; Guo, Yun; Wang, Zhanzhong

    2017-08-09

    Nanoscale microemulsions have been utilized as delivery carriers for nutraceuticals and active biological drugs. Herein, we designed and synthesized a novel oil in water (O/W) fluorescent microemulsion based on isoamyl acetate, polyoxyethylene castor oil EL (CrEL), and water. The microemulsion emitted bright blue fluorescence, thus exhibiting its potential for active drug detection with label-free strategy. The microemulsion exhibited excitation-dependent emission and distinct red shift with longer excitation wavelengths. Lifetime and quantum yield of fluorescent microemulsion were 2.831 ns and 5.0%, respectively. An excellent fluorescent stability of the microemulsion was confirmed by altering pH, ionic strength, temperature, and time. Moreover, we proposed a probable mechanism of fluorochromic phenomenon, in connection with the aromatic ring structure of polyoxyethylene ether substituent in CrEL. Based on our findings, we concluded that this new fluorescent microemulsion is a promising drug carrier that can facilitate active drug detection with a label-free strategy. Although further research is required to understand the exact mechanism behind its fluorescence property, this work provided valuable guidance to develop new biosensors based on fluorescent microemulsion.

  9. Investigation of air gasification of micronized coal, mechanically activated using the plasma control of the process

    Directory of Open Access Journals (Sweden)

    Butakov Evgenii

    2017-01-01

    Full Text Available Combination of the processes of coal combustion and gasification into a single technology of mechano-chemical and plasma-chemical activation is of a considerable scientific and technological interest. Enhancement of coal reactivity at their grinding with mechanical activation is associated with an increase in the reaction rate of carbon material, and at plasma-chemical effect, the main is an increase in reactivity of the oxidizing agent caused by the high plasma temperatures of atomic oxygen. The process of gasification was studied on the 1-MW setup with tangential scroll supply of pulverized coal-air mixture and cylindrical reaction chamber. Coal ground by the standard boiler mill is fed to the disintegrator, then, it is sent to the scroll inlet of the burner-reactor with the transport air. Pulverized coal is ignited by the plasmatron of 10-kW power. In experiments on air gasification of micronized coal, carried out at the temperature in the reaction chamber of 1000-1200°C and air excess α = 0.3-1, the data on CO concentration of 11% and H2 concentration of up to 6% were obtained. Air and air-steam gasification of mechanically-activated micronized coals with plasma control was calculated using SigmaFlow software package.

  10. Investigation of air gasification of micronized coal, mechanically activated using the plasma control of the process

    Science.gov (United States)

    Butakov, Evgenii; Burdukov, Anatoly; Chernetskiy, Mikhail; Kuznetsov, Victor

    2017-10-01

    Combination of the processes of coal combustion and gasification into a single technology of mechano-chemical and plasma-chemical activation is of a considerable scientific and technological interest. Enhancement of coal reactivity at their grinding with mechanical activation is associated with an increase in the reaction rate of carbon material, and at plasma-chemical effect, the main is an increase in reactivity of the oxidizing agent caused by the high plasma temperatures of atomic oxygen. The process of gasification was studied on the 1-MW setup with tangential scroll supply of pulverized coal-air mixture and cylindrical reaction chamber. Coal ground by the standard boiler mill is fed to the disintegrator, then, it is sent to the scroll inlet of the burner-reactor with the transport air. Pulverized coal is ignited by the plasmatron of 10-kW power. In experiments on air gasification of micronized coal, carried out at the temperature in the reaction chamber of 1000-1200°C and air excess α = 0.3-1, the data on CO concentration of 11% and H2 concentration of up to 6% were obtained. Air and air-steam gasification of mechanically-activated micronized coals with plasma control was calculated using SigmaFlow software package.

  11. Investigation of Mechanical Properties and Morphology of Multi-Walled Carbon Nanotubes Reinforced Cellulose Acetate Fibers

    Directory of Open Access Journals (Sweden)

    Quazi Nahida Sultana

    2017-11-01

    Full Text Available Cellulose acetate (CA fibers were reinforced with multi-walled carbon nanotubes (MWCNTs at 0.5%, 1.0%, 1.5% and 2.0%. Yield strength, ultimate tensile strength, fracture strain and toughness of the nanocomposite fiber increased up to 1.5 wt. % of the carbon nanotube (CNT loading, however, further inclusion (2.0% of MWCNTs in CA decreased the mechanical properties. Experimental properties were also compared with analytical predictions using a Shear lag model for strength and the rule of mixture for modulus. A solution spinning process, coupled with sonication, mixing, and extrusion, was used to process the CNT-reinforced composite fiber. Scanning electron microscopy (SEM images of the cross sections of neat CA and CA-MWCNT fibers showed the formation of voids and irregular features. The enhanced interconnected fibrillation in the CNT-reinforced CA samples resulted in improved mechanical properties, which were observed by tensile testing. Fourier transform infrared spectroscopy (FTIR spectra showed the area under the curve for C–H bonding after the inclusion of CNT. There was no significant shift of wavenumber for the inclusion of MWCNT in the CA matrix, which indicates that the sonication process of the CNT-loaded solution did not degrade the CA bonding structure.

  12. Investigation research on the evaluation of a coupled thermo-hydro-mechanical-chemical phenomena. 4

    International Nuclear Information System (INIS)

    Ishihara, Yoshinao; Sagawa, Hiroshi; Matsuoka, Fushiki; Chijimatsu, Masakazu; Amemiya, Kiyoshi

    2005-02-01

    In order to realize a coupling analysis in the near field of the geological disposal system, the coupling analysis code 'COUPLYS (Coupling analysis system)' on the Thermo-Hydro-Mechanical-Chemical (THMC) phenomena by THAMES, Dtransu-3D·EL and PHREEQC, those are existing analysis code, is developed in this study. (1) We have introduced 8 nodes element for THAMES code in order to solve the coupled thermal, hydraulic and mechanical phenomena. Furthermore, in order to obtain the reliable resolution, each phenomenon is solved separately instead of full coupling. (2) In order to upgrade Dtransu-3D·EL model, we have introduced gas diffusion independent on aqueous element. (3) We have adopted surface site density for the bentonite depend on water content and CSH solid phase based on the ratio of C/S for cementitious material in the geochemistry module, and studied on the methodology of time mesh for kinetic model and separate method for pore water chemistry in the bentonite. (4) In order to develop THMC code, we have modified Multi p hreeqc to keep efficiency distributed processing for geochemical calculation and modified COUPLYS to calculate continuous treatment, and studied on the coupling module. After THAMES, Dtransu, PHREEQC and the hydraulic conductivity module were installed in COUPLYS, verification study was carried out to check basic function. (5) In order to ensure efficiency of analysis processor, we have developed supporting tool for graphic processor for THMC code and supporting tool of interpretation for geochemistry results. (author)

  13. Nonlinear fracture mechanics investigation on the ductility of reinforced concrete beams

    Directory of Open Access Journals (Sweden)

    A. Carpinteri

    Full Text Available In the present paper, a numerical algorithm based on the finite element method is proposed for the prediction of the mechanical response of reinforced concrete (RC beams under bending loading. The main novelty of such an approach is the introduction of the Overlapping Crack Model, based on nonlinear fracture mechanics concepts, to describe concrete crushing. According to this model, the concrete dam- age in compression is represented by means of a fictitious interpenetration. The larger is the interpenetration, the lower are the transferred forces across the damaged zone. The well-known Cohesive Crack Model in tension and an elastic-perfectly plastic stress versus crack opening displacement relationship describing the steel reinforcement behavior are also integrated into the numerical algorithm. The application of the proposed Cohesive-Overlapping Crack Model to the assessment of the minimum reinforcement amount neces- sary to prevent unstable tensile crack propagation and to the evaluation of the rotational capacity of plastic hinges, permits to predict the size-scale effects evidenced by several experimental programs available in the literature. According to the obtained numerical results, new practical design formulae and diagrams are proposed for the improvement of the current code provisions which usually disregard the size effects.

  14. Investigation on dimensional accuracy and mechanical properties of cylindrical parts by flow forming

    Directory of Open Access Journals (Sweden)

    Xiao Gangfeng

    2015-01-01

    Full Text Available The high dimensional accuracy and excellent mechanical properties have become two most important requirements for structural components. In this paper, experiments using two spinning methods, stagger spinning and counter-roller spinning, were carried out under different thinning ratio of wall thickness of spun parts. The influence of spinning methods and total thinning ratio of wall thickness on the dimensional accuracy and mechanical properties of the!spun parts were studied. It shows that the wall thickness deviation and ovality of the spun parts are closely related to the spinning method and the total thinning ratio of wall thickness. The hardness of the spun parts increases with the increasing of the total thinning ratio, and the hardness along the thickness direction of the spun parts manufactured by counter-roller spinning is more homogeneous than that of the stagger spinning. The strength and the elongation of the spun parts are mainly influenced by the total thinning ratio, with little relevance to the spinning method.

  15. Investigation of the energy transport mechanism in the TCA tokamak by studying the plasma dynamical response

    International Nuclear Information System (INIS)

    Dudok de Wit, Th.; Duval, B.P.; Joye, B.; Lister, J.B.; Moret, J.M.

    1989-01-01

    The energy transport mechanisms that govern the electron temperature behaviour of a tokamak remain very badly understood and up to now no proper model has been proposed that can explain experimental observations such as profile consistency or the influence of the density profile. One approach to this problem, extensively used on TCA, is to study the dynamical response of the plasma due to externally imposed modifications of parameters which have an influence on the plasma energy content. The temporal evolution of the electron temperature will closely depend on the type and the characteristics of the implied mechanisms. Thus a detailed measurement of the dynamical response would reveal experimentally the dominant properties that would have to be taken into account in the elaboration of a model of the transport processes. Most of the results presented here were obtained by analysing the electron temperature response inferred from soft X-ray emissivity during modification of the plasma density due to either gas puffing, laser impurity ablation or alfven wave heating on TCA (a = 0.18 m, R = 0.61 m, B Φ = 1.52 T). 4 refs., 3 figs

  16. A comprehensive investigation into the effect of temperature variation on the mechanical properties of sustainable concrete

    Directory of Open Access Journals (Sweden)

    El Mir Abdulkader

    2017-01-01

    Full Text Available Minimizing the production energy and resources consumption are the key principle for engineering sustainability. In the case of concrete structures, this concept can be achieved by the use of materials in the most efficient way considering in the mix design the optimal mechanical and durability properties. The substitution of ordinary Portland cement for other supplementary cementitious materials is assessing the possibility of enhancing the sustainability and decreasing the environmental impact of concrete. Mass concrete is rich in cementitious materials which results in high temperature within the concrete, hence several hazards such as cracking or temperature differences between the interior and the surface of concrete could be prevented. An experimental study evaluated on several one cubic meter sized concrete elements in which during the primary phase of hydration, the temperature variation is recorded in several location offsets with respect to time. Thermal variations results are analyzed in accordance with the cement type, CO2 emission production of cement, compressive strength, water tightness, drying shrinkage and rapid chloride migration coefficient. The results indicate that slag cement CEM III/B 32.5, that incorporates highest amount of slag, ensured improved mechanical, thermal and durability properties in comparison with ordinary Portland cement CEM I 32.5.

  17. Investigation of deterioration mechanism of electrical ceramic insulating materials under high temperature

    International Nuclear Information System (INIS)

    Mizutani, Yoshinobu; Ito, Tetsuo; Okamoto, Tatsuki; Kumazawa, Ryoji; Aizawa, Rie; Moriyama, Hideshige

    2000-01-01

    It is thought that ceramic insulator can be applied to electric power equipments that are under high temperature not to be able use organic materials. Our research has suggested components of mica-alumina combined insulation. As the results of and carried out temperature accelerating test, combined insulation life is expected long term over 40 years at over 500-Celsius degrees. However to construct high reliable insulating system, it is clarified deterioration mechanism on combined insulation and evaluates life of that. Therefore we carried out metal behavior test and voltage aging test using mica-sheet and alumina-cloth that are components of combined insulation under high temperature in nitrogen gas atmosphere. It is cleared two metal behavior mechanisms: One is that the opening of insulator are filled up with copper that is oxidized, the other is the metal diffuses in alumina-cloth through surface. And distance of metal behavior is able to be estimated at modulate temperature and in modulate time. It is also cleared that alumina-cloth is deteriorated by metal behavior into alumina-cloth. These results indicate that combined insulation is deteriorated from electrode side by metal behavior and is finally broken down through alumina-cloth. (author)

  18. Numerical investigation of the performance of three hinge designs of bileaflet mechanical heart valves.

    Science.gov (United States)

    Simon, Hélène A; Ge, Liang; Sotiropoulos, Fotis; Yoganathan, Ajit P

    2010-11-01

    Thromboembolic complications (TECs) of bileaflet mechanical heart valves (BMHVs) are believed to be due to the nonphysiologic mechanical stresses imposed on blood elements by the hinge flows. Relating hinge flow features to design features is, therefore, essential to ultimately design BMHVs with lower TEC rates. This study aims at simulating the pulsatile three-dimensional hinge flows of three BMHVs and estimating the TEC potential associated with each hinge design. Hinge geometries are constructed from micro-computed tomography scans of BMHVs. Simulations are conducted using a Cartesian sharp-interface immersed-boundary methodology combined with a second-order accurate fractional-step method. Leaflet motion and flow boundary conditions are extracted from fluid-structure-interaction simulations of BMHV bulk flow. The numerical results are analyzed using a particle-tracking approach coupled with existing blood damage models. The gap width and, more importantly, the shape of the recess and leaflet are found to impact the flow distribution and TEC potential. Smooth, streamlined surfaces appear to be more favorable than sharp corners or sudden shape transitions. The developed framework will enable pragmatic and cost-efficient preclinical evaluation of BMHV prototypes prior to valve manufacturing. Application to a wide range of hinges with varying design parameters will eventually help in determining the optimal hinge design.

  19. Theoretical Investigations on the Influence of Artificially Altered Rock Mass Properties on Mechanical Excavation

    Science.gov (United States)

    Hartlieb, Philipp; Bock, Stefan

    2018-03-01

    This study presents a theoretical analysis of the influence of the rock mass rating on the cutting performance of roadheaders. Existing performance prediction models are assessed for their suitability for forecasting the influence of pre-damaging the rock mass with alternative methods like lasers or microwaves, prior to the mechanical excavation process. Finally, the RMCR model was chosen because it is the only reported model incorporating a range of rock mass properties into its calculations. The results show that even very tough rocks could be mechanically excavated if the occurrence, orientation and condition of joints are favourable for the cutting process. The calculated improvements in the cutting rate (m3/h) are up to 350% for the most favourable cases. In case of microwave irradiation of hard rocks with an UCS of 200 MPa, a reasonable improvement in the performance by 120% can be achieved with as little as an extra 0.7 kWh/m3 (= 1% more energy) compared to cutting only.

  20. The use of cultured hepatocytes to investigate the metabolism of drugs and mechanisms of drug hepatotoxicity.

    Science.gov (United States)

    Gómez-Lechón, M J; Ponsoda, X; Bort, R; Castell, J V

    2001-01-01

    Hepatotoxins can be classified as intrinsic when they exert their effects on all individuals in a dose-dependent manner, and as idiosyncratic when their effects are the consequence of an abnormal metabolism of the drug by susceptible individuals (metabolic idiosyncrasy) or of an immune-mediated injury to hepatocytes (allergic hepatitis). Some xenobiotics are electrophilic, and others are biotransformed by the liver into highly reactive metabolites that are usually more toxic than the parent compound. This activation process is the key to many hepatotoxic phenomena. Mitochondria are a frequent target of hepatotoxic drugs, and the alteration of their function has immediate effects on the energy balance of cells (depletion of ATP). Lipid peroxidation, oxidative stress, alteration of Ca(2+) homeostasis, and covalent binding to cell macromolecules are the molecular mechanisms that are frequently involved in the toxicity of xenobiotics. Against these potential hazards, cells have their own defence mechanisms (for example, glutathione, DNA repair, suicide inactivation). Ultimately, toxicity is the balance between bioactivation and detoxification, which determines whether a reactive metabolite elicits a toxic effect. The ultimate goal of in vitro experiments is to generate the type of scientific information needed to identify compounds that are potentially toxic to man. For this purpose, both the design of the experiments and the interpretation of the results are critical.

  1. Investigating aggressive styles and defense mechanisms in bipolar patients and in their parents

    Directory of Open Access Journals (Sweden)

    Nicola Luigi Bragazzi

    2014-10-01

    Full Text Available Bipolar disorder (BD is a very common mental health disorder, whose etiology concerning aggressive styles and defense mechanisms is still poorly known despite the efforts dedicated to develop psychological and biological theories. After obtaining written signed informed consent, this study will recruit inpatients with a clinical diagnosis of BD, based on Structured Clinical Interview and the Diagnostic and Statistical Manual of Mental Disorders criteria, and their parents. The Bus-Perry Aggression Questionnaire, the Defense Style Questionnaire 40, the Symptom check list SCL-90-R, developed by DeRogatis will be administered to the participants, together with a semi-structured questionnaire concerning demographic data (age, gender, employment, education and only for the patients clinical information (onset year of the disorder, presence of co-morbidities, alcohol and drug use, suicide tendencies, kind of treatment. All the questionnaires are in the Italian validated version. The successful completion of this study will shed light on the relationship between aggressive styles and defensive mechanisms in bipolar inpatients and in their parents, helping the clinicians to develop ad hoc psychological interventions.

  2. Experimental Investigation into Corrosion Effect on Mechanical Properties of High Strength Steel Bars under Dynamic Loadings

    Directory of Open Access Journals (Sweden)

    Hui Chen

    2018-01-01

    Full Text Available The tensile behaviors of corroded steel bars are important in the capacity evaluation of corroded reinforced concrete structures. The present paper studies the mechanical behavior of the corroded high strength reinforcing steel bars under static and dynamic loading. High strength reinforcing steel bars were corroded by using accelerated corrosion methods and the tensile tests were carried out under different strain rates. The results showed that the mechanical properties of corroded high strength steel bars were strain rate dependent, and the strain rate effect decreased with the increase of corrosion degree. The decreased nominal yield and ultimate strengths were mainly caused by the reduction of cross-sectional areas, and the decreased ultimate deformation and the shortened yield plateau resulted from the intensified stress concentration at the nonuniform reduction. Based on the test results, reduction factors were proposed to relate the tensile behaviors with the corrosion degree and strain rate for corroded bars. A modified Johnson-Cook strength model of corroded high strength steel bars under dynamic loading was proposed by taking into account the influence of corrosion degree. Comparison between the model and test results showed that proposed model properly describes the dynamic response of the corroded high strength rebars.

  3. Investigation and classification of spume droplets production mechanisms at hurricane winds

    Science.gov (United States)

    Troitskaya, Yuliya; Kandaurov, Alexander; Ermakova, Olga; Kozlov, Dmitry; Sergeev, Daniil; Zilitinkevich, Sergey

    2016-04-01

    Sea sprays are typical element of the marine atmospheric boundary layer of important environmental effect. There are still significant uncertainties in estimations of these effects due to insufficient knowledge on the sea spray generation function. The reason for that are difficulties of direct measurements and insufficient knowledge about the mechanisms of the spume droplet's formation. This study is concerned with the laboratory experiments for identification of mechanisms due to which a strong wind tears off water from the crest of the waves made at the high-speed wind-wave flume of IAP RAS. In order to obtain statistical data for the events on the surface, leading to the spray generation a high-speed video-filming was made using a horizontal and vertical shadow methods at rates of up to 10,000 fps in a wide range of wind speeds (20 - 35 m/s). Classification of phenomena responsible for generation of spume droplets was made. It was observed for the friction velocities from 0.8 to 1.5 m/s that the generation of the spume droplets is caused by 3 types of local phenomena: breaking of "projections" see e.g.[1], bursting of submerged bubbles [2,3] and bag breakup - it begins with increase of small-scale elevation of the surface, transforming to small "sails" then inflated to a water film bordered by a thicker rim and at last blows up, so the droplets are produced from rupture of the water film and fragmentation of the rim (the first report on the observation of a new mechanism of spume droplets', similar to bag-breakup regime was made in [4]). Statistical analysis of number of these phenomena at different winds showed that the "bag-breakup" is the major mechanism of spume droplets generation at strong and hurricane winds. Statistical distributions of observed "bags" geometrical parameters at different airflow velocities were retrieved from video-filming using specially developed software which allowed semi-automatic registering of image features. Acknowledgements

  4. Developing Ultra-small Scale Mechanical Testing Methods and Microstructural Investigation Procedures for Irradiated Materials

    Energy Technology Data Exchange (ETDEWEB)

    Hosemann, Peter; Kaoumi, Djamel

    2018-04-02

    -beam irradiations have been utilized for decades to foster the understanding of materials’ behavior under radiation, and significant efforts at comparing ion-beam irradiations to neutron irradiations are ongoing [1]. While extensive microstructural and chemical characterizations of neutron-irradiated and ion-irradiated materials are essential to the understanding of the underlying physics of materials’ degradation in nuclear environments, the ultimate test is the mechanical performance of a material under the anticipated condition, since it is the final criterion for a material to be accepted for use in a specific nuclear component. Again, standard, large-scale, bulk evaluations are key for the licensing of materials in a specific component, but additional, more basic scientific testing can accelerate the process by targeting specific areas of interest. Small-scale mechanical testing has been applied on nuclear materials for decades [2]. Traditionally the driving forces to use non-standard-size samples are the limited space in reactors, the availability of new alloys, and a reduction in radioactive-materials volume. Shear punch testing [3,5], sub-sized micro tensile testing [4], sub-sized compact tension and charpy testing [6,7], micro bulge testing [8], and micro hardness testing [3] have been used. Small-scale mechanical testing also allows the targeting of specific regions of interest, be they single grains to evaluate a specific deformation mechanism [9], grain boundaries, heat-affected zones in welds, or any other specific critical area of interest. With further reducing of the sample size, it also holds the promise to obtain quantitative data from ion-beam irradiations and to compare such data to the microstructural changes observed. Over the last few decades, a number of small-scale mechanical characterization techniques have been developed and utilized for irradiated materials. In addition to the above-mentioned sample test techniques at the mm and sub mm length scale

  5. Factors affecting the removal of ammonia from air on carbonaceous materials: Investigation of reactive adsorption mechanism

    Science.gov (United States)

    Petit, Camille

    Air pollution related to the release of industrial toxic gases, represents one of the main concerns of our modern world owing to its detrimental effect on the environment. To tackle this growing issue, efficient ways to reduce/control the release of pollutants are required. Adsorption of gases on porous materials appears as a potential solution. However, the physisorption of small molecules of gases such as ammonia is limited at ambient conditions. For their removal, adsorbents providing strong adsorption forces must be used/developed. In this study, new carbon-based materials are prepared and tested for ammonia adsorption at ambient conditions. Characterization of the adsorbents' texture and surface chemistry is performed before and after exposure to ammonia to identify the features responsible for high adsorption capacity and for controlling the mechanisms of retention. The characterization techniques include: nitrogen adsorption, thermal analysis, potentiometric titration, FT-IR spectroscopy, X-ray diffraction, Energy Dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy and Electron Microscopy. The results obtained indicate that ammonia removal is governed by the adsorbent's surface chemistry. On the contrary, porosity (and thus physisorption) plays a secondary role in this process, unless strong dispersive forces are provided by the adsorbent. The surface chemistry features responsible for the enhanced ammonia adsorption include the presence of oxygen-(carboxyl, hydroxyl, epoxy) and sulfur- (sulfonic) containing groups. Metallic species improve the breakthrough capacity as well as they lead to the formation of Lewis acid-base interactions, hydrogen-bonding or complexation. In addition to the latter three mechanisms, ammonia is retained on the adsorbent surface via Bronsted acid-base interactions or via specific reactions with the adsorbent's functionalities leading to the incorporation of ammonia into the adsorbent's matrix. Another mechanism

  6. An in vitro investigation of the retrograde flow fields of two bileaflet mechanical heart valves.

    Science.gov (United States)

    Ellis, J T; Healy, T M; Fontaine, A A; Weston, M W; Jarret, C A; Saxena, R; Yoganathan, A P

    1996-11-01

    Fluid stresses occurring in retrograde flow fields during valve closure may play a significant role in thrombogenesis. The squeeze flow and regurgitant jets can cause damage to formed blood elements due to high levels of turbulent shear stress. The aim of this study was to characterize in detail the spatial structure and temporal behavior of the retrograde flow fields of the St. Jude Medical and Medtronic Parallel bileaflet mechanical heart valves. Three-component, coincident laser Doppler anemometry (LDA) velocity measurements were obtained facilitating the determination of the full Reynolds stress tensor and the principal stresses in the valve flow fields. The experiments were performed in the Georgia Tech aortic flow chamber under physiologic pulsatile flow conditions. Data were collected over several hundred cardiac cycles for subsequent phase window averaging and generation of mean velocity and turbulence statistics over 20 ms intervals. A region approximately 8 mm x 10 mm was mapped 1.0 mm upstream of one hinge of each valve with an incremental resolution of 0.13-0.25 mm. Animation of the data allowed the visualization of the flow fields and a quantitative display of mean velocity and turbulent stress values. In the St. Jude Medical squeeze flow, the peak turbulent shear stress was 800 dynes/cm2 and the peak reverse velocity was 0.60 m/s. In the Medtronic Parallel squeeze flow, the peak turbulent shear stress was 1,000 dynes/cm2 and the peak velocity 0.70 m/s. The leakage jet fields of the two valves were very different: in the case of the St. Jude Medical valve, turbulent shear stresses reached 1,800 dynes/cm2 and peak jet velocity was 0.80 m/s; in the case of the Medtronic Parallel valve, turbulent shear stresses reached 3,690 dynes/cm2 and the peak jet velocity was 1.9 m/s. The retrograde flow fields of these two bileaflet mechanical heart valves appear to be design-dependent. The elevated turbulent shear stresses generated by both valve designs may

  7. Laboratory Investigations on Mechanical Properties of High Volume Fly Ash Concrete and Composite Sections

    OpenAIRE

    Aravindkumar B. Harwalkar; S. S. Awanti

    2013-01-01

    Use of fly ash as a supplementary cementing material in large volumes can bring both technological and economic benefits for concrete industry. In this investigation mix proportions for high volume fly ash concrete were determined at cement replacement levels of 50%, 55%, 60% and 65% with low calcium fly ash. Flexural and compressive strengths of different mixes were measured at ages of 7, 28 and 90 days. Flexural strength of composite section prepared from pavement quali...

  8. Investigation of Laser-Induced Retinal Damage: Wavelength and Pulsewidth Dependent Mechanisms

    Science.gov (United States)

    1994-06-30

    linoleic acid are determined by absorbance at 232 nm due to the presence of conjugated double bonds. Exposure of the linoleic acid alone to...begin our investigation of other light-activated melanin reactions, we are determining the interaction of melanin and linoleic acid , a polyunsaturated...that temperature and atmospheric conditions can be controlled. Native linoleic acid is separated from its hydroperoxides by HPLC on a Delta

  9. Numerical Investigation of Thermal and Thermo-mechanical Effective Properties for Short Fibre Reinforced Composite

    Science.gov (United States)

    Ioannou, Ioannis; Hodzic, Alma; Gitman, Inna M.

    2017-10-01

    This study aims to investigate the thermal conductivity and the linear coefficient of thermal expansion for short fibre reinforced composites. The study combines numerical and statistical analyses in order to primarily examine the representative size and the effective properties of the volume element. Effects of various micromechanical parameters, such as fibre's aspect ratio and fibre's orientation, on the minimum representative size are discussed. The numerically acquired effective properties, obtained for the representative size, are presented and compared with analytical models.

  10. Experimental and Theoretical Investigations of a Mechanical Lever System Driven by a DC Motor

    Science.gov (United States)

    Nana, B.; Fautso Kuiate, G.; Yamgoué, S. B.

    This paper presents theoretical and experimental results on the investigation of the dynamics of a nonlinear electromechanical system made of a lever arm actuated by a DC motor and controlled through a repulsive magnetic force. We use the method of harmonic balance to derive oscillatory solutions. Theoretical tools such as, bifurcation diagrams, Lyapunov exponents, phase portraits, are used to unveil the rich nonlinear behavior of the system including chaos and hysteresis. The experimental results are in close accordance with the theoretical predictions.

  11. Investigation of the relationships between mechanical properties and microstructure in a Fe-9%Cr ODS steel

    OpenAIRE

    Hary Benjamin; Guilbert Thomas; Wident Pierre; Baudin Thierry; Logé Roland; de Carlan Yann

    2016-01-01

    Ferritic-martensitic Oxide Dispersion Strengthened (ODS) steels are potential materials for fuel pin cladding in Sodium Fast Reactor (SFR) and their optimisation is essential for future industrial applications. In this paper, a feasibility study concerning the generation of tensile specimens using a quenching dilatometer is presented. The ODS steel investigated contains 9%Cr and exhibits a phase transformation between ferrite and austenite around 870 °C. The purpose was to generate different ...

  12. Investigation into the factors that influence inverse bulging effect during sheet hydro-mechanical deep drawing

    Directory of Open Access Journals (Sweden)

    Lang Lihui

    2015-01-01

    Full Text Available The factors that influence inverse bulging effect during sheet hydro-mechanical deep drawing are especially researched in this paper. According to the different inverse bulging process, two modes can be singled: the initial inverse bulging (IIB and the local inverse bulging (LIB. IIB includes two parameters: inverse bulging height ratio (HIb/t and inverse bulging pressure ratio (PIb/t. LIB is influenced by IIB and has a direct relationship with liquid chamber pressure in the forming process. The optimal inverse bulging parameters of hemispherical bottom cylindrical part and flat bottom cylindrical part are obtained by numerical simulation. Process parameters including the clearance between the punch and the blank holder and the blank holder entrance radius that have a large influence on inverse bulging effect are optimized, so as to make inverse bulging effect behave better in hydroforming process. Finally, the accuracy of the numerical simulation results was verified by experiments.

  13. Clustering mechanism of ethanol-water mixtures investigated with photothermal microfluidic cantilever deflection spectroscopy

    Science.gov (United States)

    Ghoraishi, M. S.; Hawk, J. E.; Phani, Arindam; Khan, M. F.; Thundat, T.

    2016-04-01

    The infrared-active (IR) vibrational mode of ethanol (EtOH) associated with the asymmetrical stretching of the C-C-O bond in pico-liter volumes of EtOH-water binary mixtures is calorimetrically measured using photothermal microfluidic cantilever deflection spectroscopy (PMCDS). IR absorption by the confined liquid results in wavelength dependent cantilever deflections, thus providing a complementary response to IR absorption revealing a complex dipole moment dependence on mixture concentration. Solvent-induced blue shifts of the C-C-O asymmetric vibrational stretch for both anti and gauche conformers of EtOH were precisely monitored for EtOH concentrations ranging from 20-100% w/w. Variations in IR absorption peak maxima show an inverse dependence on induced EtOH dipole moment (μ) and is attributed to the complex clustering mechanism of EtOH-water mixtures.

  14. Investigating the Mechanisms of Amylolysis of Starch Granules by Solution-State NMR

    Science.gov (United States)

    2015-01-01

    Starch is a prominent component of the human diet and is hydrolyzed by α-amylase post-ingestion. Probing the mechanism of this process has proven challenging, due to the intrinsic heterogeneity of individual starch granules. By means of solution-state NMR, we demonstrate that flexible polysaccharide chains protruding from the solvent-exposed surfaces of waxy rice starch granules are highly mobile and that during hydrothermal treatment, when the granules swell, the number of flexible residues on the exposed surfaces increases by a factor of 15. Moreover, we show that these flexible chains are the primary substrates for α-amylase, being cleaved in the initial stages of hydrolysis. These findings allow us to conclude that the quantity of flexible α-glucan chains protruding from the granule surface will greatly influence the rate of energy acquisition from digestion of starch. PMID:25815624

  15. Preparation and Investigation of Mechanical Properties and Optical Clarity of Polyvinylbutyral Film

    Directory of Open Access Journals (Sweden)

    Morteza Hajian

    2013-01-01

    Full Text Available Polyvinyl butyral (PVB was synthesized by condensation reaction of polyvinyl alcohol (PVA with butanal in aqueous medium containing an effective emulsifier and an inorganic acid as catalyst. The product was characterized by, IR, TG and DTG techniques. Percentage of vinyl alcohol groups in the PVB was determined by a chemical method according to a standard method. Some clear and soft film samples containing the PVB and some high boiling point plasticizers were made by hot press. For this purpose plasticizers such as bis(2-ethylhexylphthalate (DOP and bis(2-ethylhexyl terephthalate (DOTP were purchased and the triethylene glycol bis(2-ethylhexanoate (TEGB was synthesized. The film samples containing 30 percent mixture of triethylene glycol bis(2-ethylhexanoate and bis (2-ethylhexylphthalate with ratio 65/35 showed some improved mechanical and optical properties.

  16. Investigation of the detoxification mechanism of formaldehyde-treated tetanus toxin

    DEFF Research Database (Denmark)

    Thaysen-Andersen, Morten; Jørgensen, Sys Borcher; Wilhelmsen, Ellen Sloth

    2007-01-01

    and properties of the vaccine component, occurs through partly unknown chemical modifications of the toxin. The aim of this study was to gain knowledge of the detoxification mechanism in the generation of the tetanus vaccine. Two approaches were chosen: (i) the effect of changes in the concentrations of lysine...... The tetanus vaccine is based on the extremely potent tetanus neurotoxin (TeNT), which is converted by treatment with formaldehyde and lysine into the non-toxic, but still immunogenic tetanus toxoid (TTd). This formaldehyde-induced detoxification, which to a large extend determines the quality...... and formaldehyde in the detoxification process and (ii) characterisation of the chemically detoxified TTd. (i) We examined a number of TTd components that was produced by varying the concentrations of formaldehyde and lysine during the inactivation. Toxicity tests showed that the detoxification failed when...

  17. Investigations on Mechanical Behaviour of Micro Graphite Particulates Reinforced Al-7Si Alloy Composites

    Science.gov (United States)

    Nagaraj, N.; Mahendra, K. V.; Nagaral, Madeva

    2018-02-01

    Micro particulates reinforced metal matrix composites are finding wide range of applications in automotive and sports equipment manufacturing industries. In the present study, an attempt has been made to develop Al-7Si-micro graphite particulates reinforced composites by using liquid melt method. 3 and 6 wt. % of micro graphite particulates were added to the Al-7Si base matrix. Microstructural characterization was done by using scanning electron microscope and energy dispersive spectroscope. Mechanical behaviour of Al-7Si-3 and 6 wt. % composites were evaluated as per ASTM standards. Scanning electron micrographs revealed the uniform distribution of micro graphite particulates in the Al-7Si alloy matrix. EDS analysis confirmed the presence of B and C elements in graphite reinforced composites. Further, it was noted that ultimate tensile and yield strength of Al-7Si alloy increased with the addition of 3 and 6wt. % of graphite particulates. Hardness of graphite reinforced composites was lesser than the base matrix.

  18. How do monetary policy tools work? An investigation on monetary transmission mechanism in Iran

    Directory of Open Access Journals (Sweden)

    Naser Ali Yadollahzadeh Tabari

    2013-04-01

    Full Text Available Monetary transmission mechanism includes some channels in which monetary policy influences on macroeconomic variables such as the output and inflation. In this study, the effect of monetary policy tools including interest rate, exchange rate and money supply on the variables of monetary policy targets including inflation and output is examined through VECM methodology over the period 1989:2-2007:2. Our findings show that in long-term, monetary supply is the most important variable influencing the price followed by the variables of output and exchange rate, respectively. Exogenous-being of interest rate indicates that this channel is underdeveloped and there is no monetary policy rule like Taylor rule in Iran's economy.

  19. Investigation on Mechanisms of Polymer Enhanced Oil Recovery by Nuclear Magnetic Resonance and Microscopic Theoretical Analysis

    International Nuclear Information System (INIS)

    Ji-Cheng, Zhang; Kao-Ping, Song; Er-Long, Yang; Li, Liu

    2008-01-01

    Polymer flooding is an efficient technique to enhance oil recovery over water flooding. There are lots of discussions regarding the mechanisms for polymer flooding enhancing oil recovery. The main focus is whether polymer flooding can increase sweep efficiency alone, or can increase both of sweep efficiency and displacement efficiency. We present a study on this problem. Oil displacement experiments on 4 natural cores show that polymer flooding can increase oil recovery efficiency by more than 12% over water. Moreover, photos are taken by the nuclear magnetic resonance (NMR) method both after water flooding and after polymer flooding, which show remaining oil saturation distribution at the middle cross section and the central longitudinal section. Analyses of these photos demonstrate that polymer flooding can increase both sweep efficiency and displacement efficiency. (fundamental areas of phenomenology (including applications))

  20. XPS and Auger investigation of mechanisms affecting corrosion inhibition of metals

    International Nuclear Information System (INIS)

    Holmes, R.M.; Surman, D.J.

    1989-01-01

    Atmospheric corrosion of metal surfaces need not be extremely obvious to cause extensive damage to many products. Very small corrosion pits and spots can cause defects in critical copper sources, often resulting in the catastrophic failure of complete electronic assemblies. Microscopic corrosion in steel can lead to the complete failure of subsequently added coatings or furnishings, the automotive industry has become aware. In addition, corrosion at its earliest stages can initiate other corrosion at a later date, resulting in inferior finishings or coatings. A major interest in atmospheric corrosion is in the mechanism by which the initial corrosion initiated and propagated. The initial phase involves the attack of the very other surface layers, hence it is difficult to observe with conventional techniques such as SEM/EDX. This paper presents some of the results obtained by both Auger electron spectroscopy and x- ray photoelectron spectroscopy, of steel and copper samples exposed to corrosive materials under controlled conditions

  1. Experimental investigation on depression mechanism of fly ash on progression of leaching alteration front

    International Nuclear Information System (INIS)

    Yamamoto, Takeshi; Hironaga, Michihiko

    2008-01-01

    An objective of this experimental study is to clarify the depression mechanism of fly ash on leaching alteration in hardened cementitious material. There are two major effects that derived from fly ash, firstly, compacting capillary pore among hydration phase with progression of pozzolanic reaction, secondly, lessen the crystal size and dispersing the location of CH crystal. Progression rate of CH alteration front depends on chain dissolution of CH crystal, so the depression on progressing rate of CH alteration front would be derived from the effects of fly ash as mentioned above. The influences of difference in amount of mixing water and sand on progression rate of CH alteration front in mortar would also be depressed by mixing fly ash. (author)

  2. Q-switched laser removal of tattoos: a clinical and spectroscopic investigation of the mechanism

    Science.gov (United States)

    Siomos, Konstadinos; Bailey, Raymond T.; Cruickshank, Frank R.; Murphy, Michael

    1996-01-01

    The liquid phase spectra of tatoo pigments are shown to be unreliable as a basis for mechanistic deductions. The reflectance spectra of the solids from 2000 nm to 500 nm (5000 to 20,000 cm-1) are shown to accurately assess the relative loss of laser light for different pigments and to be useful in examining these to check for similarities in the pigments. The absorbance differences between the pigments are shown to be largely irrelevant in assessing the ease of tatoo removal by laser radiation of a variety of wavelengths. A multiphoton absorption mechanism with its concomitant shock wave is proposed to be responsible for the reduction of pigment particles to small sizes which the lymph system can remove. The different behavior of blue and green tattoos, treated by Q-switched ruby and Nd:YAG lasers, is attributed to the particle aggregation size of the pigments in the tattoo.

  3. Computational Fluid Dynamic Investigation of Loss Mechanisms in a Pulse-Tube Refrigerator

    International Nuclear Information System (INIS)

    Martin, K; Esguerra, J; Dodson, C; Razani, A

    2015-01-01

    In predicting Pulse-Tube Cryocooler (PTC) performance, One-Dimensional (1-D) PTR design and analysis tools such as Gedeon Associates SAGE® typically include models for performance degradation due to thermodynamically irreversible processes. SAGE®, in particular, accounts for convective loss, turbulent conductive loss and numerical diffusion “loss” via correlation functions based on analysis and empirical testing.In this study, we compare CFD and SAGE® estimates of PTR refrigeration performance for four distinct pulse-tube lengths. Performance predictions from PTR CFD models are compared to SAGE® predictions for all four cases. Then, to further demonstrate the benefits of higher-fidelity and multidimensional CFD simulation, the PTR loss mechanisms are characterized in terms of their spatial and temporal locations. (paper)

  4. Investigation of pool thermal hydraulics and temperature distribution in inner vessel under mechanical seal leakage

    International Nuclear Information System (INIS)

    Abraham, Juby; Velusamy, K.; Selvaraj, P.

    2015-01-01

    The primary heat sink of prototype fast breeder reactor is a sodium pool which is partitioned into cold pool and hot pool. The inner vessel which separates the cold and hot pools is having penetrations for intermediate heat exchangers. The hot sodium from hot pool leaks into the cold pool through these penetrations and to reduce the leakage, mechanical seals are provided. Leakage of hot sodium into cold pool can lead to thermal stratification in the cold pool and also will affect the temperature distribution in inner vessel. 3-D CFD studies were performed focusing these features as a function of sodium leakage. The analyses indicate that the maximum temperature difference across the IV thickness is 65°C without any leakage of sodium. The temperature difference is found to decrease with increase in leakage through the seals. It is seen that a leakage of 2.5% is acceptable. (author)

  5. Effects of high fluoride intake on child mental work capacity: preliminary investigation into the mechanisms involved

    Energy Technology Data Exchange (ETDEWEB)

    Li, Y.; Li, X.J.; Wei, S.Q. [Child & Adolescent Hygiene Teaching Research Station, Chengdu (China)

    2008-10-15

    A study was carried out on 157 children, age 12-13, from a coal-burning fluorosis endemic area together with an experiment looking into the effect of high fluoride intake in animals. The results showed that early, prolonged high fluoride intake causes a decrease in a child's mental work capacity and that prolonged high uptake of fluoride causes a child's levels of hair zinc to drop. A multifactoral correlative analysis demonstrated a direct correlation between hair zinc and mental work capacity. The decrease of 5-hydroxyindoleacetic acid and the increase of norepinephrine in animal brains exposed to high levels of fluoride suggest a possible mechanism for mental work capacity deficits in children. However, further research is necessary.

  6. An investigation into the room temperature mechanical properties of nanocrystalline austenitic stainless steels

    International Nuclear Information System (INIS)

    Eskandari, Mostafa; Zarei-Hanzaki, Abbas; Abedi, Hamid Reza

    2013-01-01

    Highlights: ► Strength of nanocrystalline specimens follows a trend of a remarkable rise along with a small drop in ductility in comparison to the coarse-grained one. ► Universal correlation of linear type (UTS = mτ max ) between shear punch test data and the tensile strength may be unreliable for the nanocrystalline materials. ► Actual relation between the maximum shear and ultimate tensile strength follows an empirical formula of UTS=0.013τ max 2 -25.62τ max +13049. -- Abstract: The present work has been conducted to evaluate the mechanical properties of nanostructured 316L and 301 austenitic stainless steels. The nanocrystalline structures were produced through martensite treatment which includes cold rolling followed by annealing treatment. The effect of equivalent rolling strain and annealing parameters on the room temperature mechanical behavior of the experimental alloys have been studied using the shear punch testing technique. The standard uniaxial tension tests were also carried out to adapt the related correlation factors. The microstructures and the volume fraction of phases were characterized by transmission electron microscopy and feritscopy methods, respectively. The results indicate that the strength of nanocrystalline specimens remarkably increases, but the ductility in comparison to the coarse-grained one slightly decreases. In addition the strength of nanocrystalline specimens has been increased by decreasing the annealing temperature and increasing the equivalent rolling strain. The analysis of the load–displacement data has also disclosed that the universal correlation of linear type (UTS = mτ max ) between shear punch test data and the tensile strength is somehow unreliable for the nanocrystalline materials. The results suggest that the actual relation between the maximum shear strength and ultimate tensile strength follows a second order equation of type UTS=aτ max 2 -bτ max +c.

  7. Kinetics and mechanism investigation on the destruction of oxytetracycline by UV-254 nm activation of persulfate

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yiqing [Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756 (China); Environmental Engineering and Science Program, University of Cincinnati, Cincinnati, OH 45221-0012 (United States); He, Xuexiang [Environmental Engineering and Science Program, University of Cincinnati, Cincinnati, OH 45221-0012 (United States); Fu, Yongsheng [Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756 (China); Dionysiou, Dionysios D., E-mail: dionysios.d.dionysiou@uc.edu [Environmental Engineering and Science Program, University of Cincinnati, Cincinnati, OH 45221-0012 (United States)

    2016-03-15

    Highlights: • The most effective destruction of OTC by UV/PS was achieved at near neutral pH. • Deprotonated HOTC{sup −} had the highest second-order rate constant with SO{sub 4}·{sup −}. • Presence of HCO{sub 3}{sup −} or Cu{sup 2+} enhanced the removal of OTC in UV/PS system. • Total organic carbon was degraded slowly during the mineralization of OTC. • Studies on the degradation mechanism revealed four different reaction pathways. - Abstract: Oxytetracycline (OTC), an important broad-spectrum antibiotic, has been detected extensively in various environmental systems, which may have a detrimental impact on ecosystem and human health through the development of drug resistant bacteria and pathogens. In this study, the degradation of OTC was evaluated by UV-254 nm activated persulfate (PS). The observed UV fluence based pseudo first-order rate constant (k{sub obs}) was found to be the highest at near neutral pH conditions (pH 5.5–8.5). Presence of various natural water constituents had different effects on OTC degradation, with a significant enhancement in the presence of bicarbonate or Cu{sup 2+}. Limited elimination of total organic carbon (TOC) and PS was observed during the mineralization of OTC. Transformation byproducts in the presence and absence of hydroxyl radical scavenging agent tert-butanol (t-BuOH) were identified using ultra-high definition accurate-mass quadrupole time-of-flight liquid chromatography/mass spectrometer (LC-QTOF/MS). Potential OTC degradation mechanism was subsequently proposed revealing four different reaction pathways by SO{sub 4}·{sup −} reaction including hydroxylation (+16 Da), demethylation (−14 Da), decarbonylation (−28 Da) and dehydration (−18 Da). This study suggests that UV-254 nm/PS is a promising treatment technology for the control of water pollution caused by emerging contaminants such as OTC.

  8. Investigation of the mechanism of action of alemtuzumab in a human CD52 transgenic mouse model

    Science.gov (United States)

    Hu, Yanping; Turner, Michael J; Shields, Jacqueline; Gale, Matthew S; Hutto, Elizabeth; Roberts, Bruce L; Siders, William M; Kaplan, Johanne M

    2009-01-01

    Alemtuzumab is a humanized monoclonal antibody against CD52, an antigen found on the surface of normal and malignant lymphocytes. It is approved for the treatment of B-cell chronic lymphocytic leukaemia and is undergoing Phase III clinical trials for the treatment of multiple sclerosis. The exact mechanism by which alemtuzumab mediates its biological effects in vivo is not clearly defined and mechanism of action studies have been hampered by the lack of cross-reactivity between human and mouse CD52. To address this issue, a transgenic mouse expressing human CD52 (hCD52) was created. Transgenic mice did not display any phenotypic abnormalities and were able to mount normal immune responses. The tissue distribution of hCD52 and the level of expression by various immune cell populations were comparable to those seen in humans. Treatment with alemtuzumab replicated the transient increase in serum cytokines and depletion of peripheral blood lymphocytes observed in humans. Lymphocyte depletion was not as profound in lymphoid organs, providing a possible explanation for the relatively low incidence of infection in alemtuzumab-treated patients. Interestingly, both lymphocyte depletion and cytokine induction by alemtuzumab were largely independent of complement and appeared to be mediated by neutrophils and natural killer cells because removal of these populations with antibodies to Gr-1 or asialo-GM-1, respectively, strongly inhibited the activity of alemtuzumab whereas removal of complement by treatment with cobra venom factor had no impact. The hCD52 transgenic mouse appears to be a useful model and has provided evidence for the previously uncharacterized involvement of neutrophils in the activity of alemtuzumab. PMID:19740383

  9. Kinetics and mechanism investigation on the destruction of oxytetracycline by UV-254 nm activation of persulfate

    International Nuclear Information System (INIS)

    Liu, Yiqing; He, Xuexiang; Fu, Yongsheng; Dionysiou, Dionysios D.

    2016-01-01

    Highlights: • The most effective destruction of OTC by UV/PS was achieved at near neutral pH. • Deprotonated HOTC"− had the highest second-order rate constant with SO_4·"−. • Presence of HCO_3"− or Cu"2"+ enhanced the removal of OTC in UV/PS system. • Total organic carbon was degraded slowly during the mineralization of OTC. • Studies on the degradation mechanism revealed four different reaction pathways. - Abstract: Oxytetracycline (OTC), an important broad-spectrum antibiotic, has been detected extensively in various environmental systems, which may have a detrimental impact on ecosystem and human health through the development of drug resistant bacteria and pathogens. In this study, the degradation of OTC was evaluated by UV-254 nm activated persulfate (PS). The observed UV fluence based pseudo first-order rate constant (k_o_b_s) was found to be the highest at near neutral pH conditions (pH 5.5–8.5). Presence of various natural water constituents had different effects on OTC degradation, with a significant enhancement in the presence of bicarbonate or Cu"2"+. Limited elimination of total organic carbon (TOC) and PS was observed during the mineralization of OTC. Transformation byproducts in the presence and absence of hydroxyl radical scavenging agent tert-butanol (t-BuOH) were identified using ultra-high definition accurate-mass quadrupole time-of-flight liquid chromatography/mass spectrometer (LC-QTOF/MS). Potential OTC degradation mechanism was subsequently proposed revealing four different reaction pathways by SO_4·"− reaction including hydroxylation (+16 Da), demethylation (−14 Da), decarbonylation (−28 Da) and dehydration (−18 Da). This study suggests that UV-254 nm/PS is a promising treatment technology for the control of water pollution caused by emerging contaminants such as OTC.

  10. Investigating the mechanisms of glyphosate resistance in goosegrass (Eleusine indica (L.) Gaertn.) by RNA sequencing technology.

    Science.gov (United States)

    Chen, Jingchao; Huang, Hongjuan; Wei, Shouhui; Huang, Zhaofeng; Wang, Xu; Zhang, Chaoxian

    2017-01-01

    Glyphosate is an important non-selective herbicide that is in common use worldwide. However, evolved glyphosate-resistant (GR) weeds significantly affect crop yields. Unfortunately, the mechanisms underlying resistance in GR weeds, such as goosegrass (Eleusine indica (L.) Gaertn.), an annual weed found worldwide, have not been fully elucidated. In this study, transcriptome analysis was conducted to further assess the potential mechanisms of glyphosate resistance in goosegrass. The RNA sequencing libraries generated 24 597 462 clean reads. De novo assembly analysis produced 48 852 UniGenes with an average length of 847 bp. All UniGenes were annotated using seven databases. Sixteen candidate differentially expressed genes selected by digital gene expression analysis were validated by quantitative real-time PCR (qRT-PCR). Among these UniGenes, the EPSPS and PFK genes were constitutively up-regulated in resistant (R) individuals and showed a higher copy number than that in susceptible (S) individuals. The expressions of four UniGenes relevant to photosynthesis were inhibited by glyphosate in S individuals, and this toxic response was confirmed by gas exchange analysis. Two UniGenes annotated as glutathione transferase (GST) were constitutively up-regulated in R individuals, and were induced by glyphosate both in R and S. In addition, the GST activities in R individuals were higher than in S. Our research confirmed that two UniGenes (PFK, EPSPS) were strongly associated with target resistance, and two GST-annotated UniGenes may play a role in metabolic glyphosate resistance in goosegrass. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  11. Use of mutagenesis, genetic mapping and next generation transcriptomics to investigate insecticide resistance mechanisms.

    Directory of Open Access Journals (Sweden)

    Predrag Kalajdzic

    Full Text Available Insecticide resistance is a worldwide problem with major impact on agriculture and human health. Understanding the underlying molecular mechanisms is crucial for the management of the phenomenon; however, this information often comes late with respect to the implementation of efficient counter-measures, particularly in the case of metabolism-based resistance mechanisms. We employed a genome-wide insertional mutagenesis screen to Drosophila melanogaster, using a Minos-based construct, and retrieved a line (MiT[w(-]3R2 resistant to the neonicotinoid insecticide Imidacloprid. Biochemical and bioassay data indicated that resistance was due to increased P450 detoxification. Deep sequencing transcriptomic analysis revealed substantial over- and under-representation of 357 transcripts in the resistant line, including statistically significant changes in mixed function oxidases, peptidases and cuticular proteins. Three P450 genes (Cyp4p2, Cyp6a2 and Cyp6g1 located on the 2R chromosome, are highly up-regulated in mutant flies compared to susceptible Drosophila. One of them (Cyp6g1 has been already described as a major factor for Imidacloprid resistance, which validated the approach. Elevated expression of the Cyp4p2 was not previously documented in Drosophila lines resistant to neonicotinoids. In silico analysis using the Drosophila reference genome failed to detect transcription binding factors or microRNAs associated with the over-expressed Cyp genes. The resistant line did not contain a Minos insertion in its chromosomes, suggesting a hit-and-run event, i.e. an insertion of the transposable element, followed by an excision which caused the mutation. Genetic mapping placed the resistance locus to the right arm of the second chromosome, within a ∼1 Mb region, where the highly up-regulated Cyp6g1 gene is located. The nature of the unknown mutation that causes resistance is discussed on the basis of these results.

  12. Investigation of surface properties and adhesion mechanisms in the combination of different layers, with the aid of surface analysis methods

    International Nuclear Information System (INIS)

    Olschewski, T.

    1991-01-01

    The aim of the investigations was to characterize the surface properties of organic coating materials and inorganic substrates, which are relevant in the context of microstructure technique developments and to obtain information on the adhesion mechanisms present. Two systems were examined which play an important part in micro-technique, i.e.: for the LIGA process and in the development of micro-sensors based on Chem FET's for chemical analysis. For these systems, i.e.: PMMA/TiO 2 and PVC adipate/Si 3 N 4 , adhesion mechanisms were expected, which occur particularly frequently in adhesive combination of polymers with inorganic substrates, i.e.: the mechanical gearing between polymer molecules and substrate structures and a chemical interaction between the boundary layers of the organic top coating and the inorganic substrate. (orig./DG) [de

  13. Experimental investigation of the trapping and energy loss mechanisms of intense relativistic electron rings in hydrogen gas and plasma

    International Nuclear Information System (INIS)

    Smith, A.C. Jr.

    1977-01-01

    The results of an experimental study on the trapping and energy loss mechanisms of intense, relativistic electron rings confined in Astron-like magnetic field geometries are presented. The work is subdivided into four sections: gas trapping; average ring electron energetics; plasma trapping, and hollow-beam cusp-injection into gas and plasma. The mechanisms by which the injected beam coalesces into a current ring in the existing Cornell RECE-Berta facility are considered. To investigate the nature of ring electron energy loss mechanisms following completion of the trapping process, a diagnostic was developed utilizing multi-foil X-ray absorption spectroscopy to analyze the Bremsstrahlung generated by the electrons as they impinge upon a thin tungsten wire target suspended in the circulating current. Finally, a set of preliminary experimental results is presented in which an annular electron beam was passed through a coaxial, non-adiabatic magnetic cusp located at one end of a magnetic mirror well

  14. Investigation on de-trapping mechanisms related to non-monotonic kink pattern in GaN HEMT devices

    Directory of Open Access Journals (Sweden)

    Chandan Sharma

    2017-08-01

    Full Text Available This article reports an experimental approach to analyze the kink effect phenomenon which is usually observed during the GaN high electron mobility transistor (HEMT operation. De-trapping of charge carriers is one of the prominent reasons behind the kink effect. The commonly observed non-monotonic behavior of kink pattern is analyzed under two different device operating conditions and it is found that two different de-trapping mechanisms are responsible for a particular kink behavior. These different de-trapping mechanisms are investigated through a time delay analysis which shows the presence of traps with different time constants. Further voltage sweep and temperature analysis corroborates the finding that different de-trapping mechanisms play a role in kink behavior under different device operating conditions.

  15. Investigation on de-trapping mechanisms related to non-monotonic kink pattern in GaN HEMT devices

    Science.gov (United States)

    Sharma, Chandan; Laishram, Robert; Amit, Rawal, Dipendra Singh; Vinayak, Seema; Singh, Rajendra

    2017-08-01

    This article reports an experimental approach to analyze the kink effect phenomenon which is usually observed during the GaN high electron mobility transistor (HEMT) operation. De-trapping of charge carriers is one of the prominent reasons behind the kink effect. The commonly observed non-monotonic behavior of kink pattern is analyzed under two different device operating conditions and it is found that two different de-trapping mechanisms are responsible for a particular kink behavior. These different de-trapping mechanisms are investigated through a time delay analysis which shows the presence of traps with different time constants. Further voltage sweep and temperature analysis corroborates the finding that different de-trapping mechanisms play a role in kink behavior under different device operating conditions.

  16. Investigations of physicochemical properties of dusts generated in mechanical reclamation process of spent moulding sands with alkaline resins

    Directory of Open Access Journals (Sweden)

    R. Dańko

    2014-03-01

    Full Text Available Mechanical reclamation processes of spent moulding sands generate large amounts of post-reclamation dusts mainly containing rubbed spent binding agents and quartz dusts. The amount of post-reclamation dusts, depending in the reclamation system efficiency and the reclaim dedusting system, can reach 5%-10% in relation to the total reclaimed spent moulding sand. The proper utilization of such material is a big problem facing foundries these days. This study presents the results of investigations of physicochemical properties of post- reclamation dusts. All tested dusts originated from various Polish cast steel plants applying the mechanical reclamation process of moulding sands with alkaline resins, obtained from different producers. Different dusts, delivered from foundries, were tested to determine their chemical composition, granular characterization, physicochemical and energetic properties. Presented results confirmed assumptions that it is possible to utilize dusts generated during mechanical reclamation of used sands with organic resins as a source of energy.

  17. Mechanics

    CERN Document Server

    Hartog, J P Den

    1961-01-01

    First published over 40 years ago, this work has achieved the status of a classic among introductory texts on mechanics. Den Hartog is known for his lively, discursive and often witty presentations of all the fundamental material of both statics and dynamics (and considerable more advanced material) in new, original ways that provide students with insights into mechanical relationships that other books do not always succeed in conveying. On the other hand, the work is so replete with engineering applications and actual design problems that it is as valuable as a reference to the practicing e

  18. Thermo-mechanical cementation effects in bentonite investigated by unconfined compression tests

    Energy Technology Data Exchange (ETDEWEB)

    Dueck, Ann (Clay Technology AB, Lund (Sweden))

    2010-01-15

    Results from the project LOT showed that specimens exposed to warm conditions had a significantly reduced strain at failure compared to reference material. The objective of the present study was to investigate the impact of parameters such as temperature, density, water content and degree of saturation on the occurrence of brittleness at failure of bentonite specimens. To quantify the influence of the different parameters the unconfined compression test was used on specimens with a height and diameter of 20 mm. In this test the relation between stress and strain is determined from axial compression of a cylindrical specimen. Brittle failure is in this investigation mainly seen on specimens having a density of rho >= 2,060 kg/m3 or on specimens exposed to high temperature T >= 150 deg C in the laboratory. Brittle failure behaviour was also seen on unsaturated specimens with a degree of saturation less than Sr < 90%. Failure at reduced strain was seen in this investigation on specimens exposed to T = 150 deg C, on specimens having a water content of w{sub i} = 0% before saturation, on specimens with a final degree of saturation of S{sub r} <= 97% and also on one specimen subjected to consolidation during preparation. Brittle failure and reduced strain were noticed in the heated field exposed material in the LOT project. Similar behaviour was also observed in the present short term laboratory tests. However, the specimens in the present study showing this behaviour had higher density, lower degree of saturation or were exposed to higher temperatures than the field exposed specimens

  19. Magnetoresistors as a tool for investigating the mechanical properties of ferromagnetic materials

    Science.gov (United States)

    Kaleta, Jerzy; Tumański, Slawomir; Żebracki, Jacek

    1996-07-01

    We have investigated the possibility of applying the Villari effect for measurements of the dependence of deformation on the external loading. The magnetic field arising due to the deformation has been measured with a Permalloy magnetoresistive sensor. The plot of the dependence of the external field H on the strain ɛ agrees almost perfectly with the classical dependence σ = f( ɛ) in tensile tests. In steel and nickel samples stress changes in the range 0-500 MPa were accompanied by changes in the external magnetic field in the range 0-300 A/m.

  20. Investigation of the role of grain boundary on the mechanical properties of metals

    International Nuclear Information System (INIS)

    Kheradmand, Nousha; Barnoush, Afrooz; Vehoff, Horst

    2010-01-01

    Compression testing of micropillars was used to investigate the gain boundary effect on the strength of metals which is especially interesting in ultra fine grained and nanocrystalline metals. Single and bicrystal micropillars of different sizes and crystallographic orientations were fabricated using a focused ion beam system and the compression test was performed with a nanoindenter. A reduction of the pillar size as well as the introduction of a grain boundary results in an increase in the yield strength. The results show that the size and the orientation of different adjoining crystals in bicrystalline pillars have an obvious effect on dislocation nucleation and multiplication.

  1. Investigations into the Mechanisms of Cell Death: The Common Link between Anticancer Nanotherapeutics and Nanotoxicology

    Science.gov (United States)

    Minocha, Shalini

    Nanotoxicology and anticancer nanotherapeutics are essentially two sides of the same coin. The nanotoxicology discipline deals with the nanoparticle (NP)-induced toxicity and mechanisms of cell death in healthy cells, whereas anticancer agents delivered via nano-based approaches aim to induce cell death in abnormally proliferating cancer cells. The objectives of the studies presented herein were two-fold; to (a) systematically study the physico-chemical properties and cell death mechanisms of model NPs and (b) utilize the knowledge gained from cell death-nanotoxicity studies in developing a potentially novel anticancer nanotherapeutic agent. For the first objective, the effect of a distinguishing characteristic, i.e., surface carbon coating on the matched pairs of carbon-coated and non-coated copper and nickel NPs (Cu, C-Cu, Ni and C-Ni) on the physico-chemical properties and toxicity in A549 alveolar epithelial cells were evaluated. The effect of carbon coating on particle size, zeta potential, oxidation state, cellular uptake, release of soluble metal and concentration dependent toxicity of Cu and Ni NPs was systematically evaluated. A significant effect of carbon coating was observed on the physico-chemical properties, interaction with cellular membranes, and overall toxicity of the NPs. C-Cu NPs, compared to Cu NPs, showed four-fold lower release of soluble copper, ten-fold higher cellular uptake and protection against surface oxidation. In toxicity assays, C-Cu NPs induced higher mitochondrial damage than Cu NPs whereas Cu NPs were associated with a significant damage to plasma membrane integrity. Nickel and carbon coated nickel NPs were less toxic compared to Cu and C-Cu NPs. Thus, by studying the effect of carbon coating, correlations between physico-chemical properties and toxicity of NPs were established. The second objective was focused on utilizing nano-based approaches for the intracellular delivery of an anticancer agent, Cytochrome c (Cyt c), to

  2. LAMI - a planned Brazilian facility to investigate the mechanical and physical properties of structural materials under irradiation

    International Nuclear Information System (INIS)

    Andrade, Arnaldo H.P.; Lobo, Raquel M.

    2011-01-01

    The LAMI (Laboratorio de Materiais Irradiados) is a hot laboratory designed to the characterization of irradiated structural material and will constitute one of the main installations of the Brazilian Multipurpose Reactor (RMB). The strong points of LAMI are: to contribute, through theoretical and experimental investigations, to the development of knowledge in materials science in order to be able to predict the evolution of the physical and mechanical material properties under service conditions (irradiation, thermomechanical solicitation, influence of the environment, etc); to characterize the properties of the materials used in the nuclear industry in order to determine their performance and to be able to predict their life expectancy; to establish, maintain and make use of the database generated by these data and to provide expertise on industrial components, in particular to investigate strain or rupture mechanisms. The test materials can be irradiated or not, and originate from surveillance programs, experimental neutron irradiations or simulated irradiation with charged particles. The main line of LAMI will have 10 shielded hot cells. The building also will have an area dedicated to micro and nano structural materials analysis. The mechanical characterization to be carried out within LAMI includes mechanical tests on irradiated materials, comprehension of behavior and damage processes and the incorporation of the test data results in a data bank for capitalization of test results. Planned materials to be tested are going to be metallic alloys used in industrial and experimental reactor: pressure vessel steels, internal stainless steels, austeno-ferritic steels, zirconium alloys and aluminum alloys. (author)

  3. An investigation into the effects of conventional heat treatments on mechanical characteristics of new hot working tool steel

    Science.gov (United States)

    Fares, M. L.; Athmani, M.; Khelfaoui, Y.; Khettache, A.

    2012-02-01

    The effects of conventional heat treatments, i.e. quenching and tempering, on the mechanical characteristics of non standard hot work tool steel, close to either AISI-H11/H13 are investigated. The major elemental composition differences are in carbon, silicon and vanadium. The objective of the carried heat treatments is to obtain an efficient tool performance in terms of hardness, wear resistance and mechanical strength. Experimental results allow an explanation of the surface properties depending mainly on both chemical composition and optimised preheating parameters. After austenitizing at 1050 °C for 15 min, the as-quenched steel in oil bath exhibited the fully martensitic structure (without bainite) connected to a small fraction of retained austenite and complex carbides mainly of M23C6 type. Twice tempering at 500 °C and 600 °C resulted in initiating the precipitation processes and the secondary hardness effect. As a result, carbide content amounted to 3% while the retained austenite content decreased to 0%. Accordingly, the required mechanical properties in terms of hardness and wear are fulfilled and are adequately favourable in handling both shocks and pressures for the expected tool life. Induced microstructures are revealed using optical and scanning electron microscopes. Phase compositions are assessed by means of X-ray diffraction technique while mechanical characteristics are investigated based on hardness and abrasive wear standard tests.

  4. A microscopic investigation of failure mechanisms in a triaxially braided polyimide composite at room and elevated temperatures

    International Nuclear Information System (INIS)

    Montesano, John; Fawaz, Zouheir; Poon, Cheung; Behdinan, Kamran

    2014-01-01

    Highlights: • Experimental investigation on a unique braided polyimide composite material. • Tensile static and fatigue tests at both room temperature and elevated temperature. • Tests reveal that elevated temperature causes a reduction in microscopic damage. • Temperature-dependent damage development caused a reduction in fatigue life. • A fundamental understanding of the novel material behavior was achieved. - Abstract: An experimental investigation is conducted on a unique triaxially braided polyimide composite material in order to track the development of microscopic damage leading to failure. Tensile static and fatigue tests are conducted at both room and elevated temperatures. Edge replication and scanning electron microscopy are employed to track damage development and to identify failure mechanisms, respectively. Static tests reveal that although the elevated temperature environment does not significantly alter the mechanical properties of the composite, its influence on the development of microscopic damage development is notable. The dominant damage mechanism of braider yarn cracking is mitigated at elevated temperatures as a direct result of resin softening, which is also the case for the fatigue test specimens. The result of the temperature-dependent microscopic damage development is a reduction in the fatigue lives at elevated temperatures. This study yielded an improved understanding of microscopic damage mechanisms and local deformation behavior for an advanced composite material, which is valuable for designers

  5. Gene expression profile analysis of colorectal cancer to investigate potential mechanisms using bioinformatics

    Directory of Open Access Journals (Sweden)

    Kou YB

    2015-04-01

    Full Text Available Yubin Kou,1,2* Suya Zhang,3* Xiaoping Chen,2 Sanyuan Hu1 1Department of General Surgery, Qilu Hospital of Shandong University, Jinan, People’s Republic of China; 2Department of General Surgery, 3Department of Neurology, Shuguang Hospital Baoshan Branch, Shanghai, People’s Republic of China *These authors contributed equally to this work Abstract: This study aimed to explore the underlying molecular mechanisms of colorectal cancer (CRC using bioinformatics analysis. Using GSE4107 datasets downloaded from the Gene Expression Omnibus, the differentially expressed genes (DEGs were screened by comparing the RNA expression from the colonic mucosa between 12 CRC patients and ten healthy controls using a paired t-test. The Gene Ontology (GO functional and pathway enrichment analyses of DEGs were performed using the Database for Annotation, Visualization and Integrated Discovery (DAVID software followed by the construction of a protein–protein interaction (PPI network. In addition, hub gene identification and GO functional and pathway enrichment analyses of the modules were performed. A total of 612 up- and 639 downregulated genes were identified. The upregulated DEGs were mainly involved in the regulation of cell growth, migration, and the MAPK signaling pathway. The downregulated DEGs were significantly associated with oxidative phosphorylation, Alzheimer’s disease, and Parkinson’s disease. Moreover, FOS, FN1, PPP1CC, and CYP2B6 were selected as hub genes in the PPI networks. Two modules (up-A and up-B in the upregulated PPI network and three modules (d-A, d-B, and d-C in the downregulated PPI were identified with the threshold of Molecular Complex Detection (MCODE Molecular Complex Detection (MCODE score ≥4 and nodes ≥6. The genes in module up-A were significantly enriched in neuroactive ligand–receptor interactions and the calcium signaling pathway. The genes in module d-A were enriched in four pathways, including oxidative

  6. Investigation of the thermophilic mechanism in the genus Porphyrobacter by comparative genomic analysis.

    Science.gov (United States)

    Xu, Lin; Wu, Yue-Hong; Zhou, Peng; Cheng, Hong; Liu, Qian; Xu, Xue-Wei

    2018-05-23

    Type strains of the genus Porphyrobacter belonging to the family Erythrobacteraceae and the class Alphaproteobacteria have been isolated from various environments, such as swimming pools, lake water and hot springs. P. cryptus DSM 12079 T and P. tepidarius DSM 10594 T out of all Erythrobacteraceae type strains, are two type strains that have been isolated from geothermal environments. Next-generation sequencing (NGS) technology offers a convenient approach for detecting situational types based on protein sequence differences between thermophiles and mesophiles; amino acid substitutions can lead to protein structural changes, improving the thermal stabilities of proteins. Comparative genomic studies have revealed that different thermal types exist in different taxa, and few studies have been focused on the class Alphaproteobacteria, especially the family Erythrobacteraceae. In this study, eight genomes of Porphyrobacter strains were compared to elucidate how Porphyrobacter thermophiles developed mechanisms to adapt to thermal environments. P. cryptus DSM 12079 T grew optimally at 50 °C, which was higher than the optimal growth temperature of other Porphyrobacter type strains. Phylogenomic analysis of the genus Porphyrobacter revealed that P. cryptus DSM 12079 T formed a distinct and independent clade. Comparative genomic studies uncovered that 1405 single-copy genes were shared by Porphyrobacter type strains. Alignments of single-copy proteins showed that various types of amino acid substitutions existed between P. cryptus DSM 12079 T and the other Porphyrobacter strains. The primary substitution types were changes from glycine/serine to alanine. P. cryptus DSM 12079 T was the sole thermophile within the genus Porphyrobacter. Phylogenomic analysis and amino acid frequencies indicated that amino acid substitutions might play an important role in the thermophily of P. cryptus DSM 12079 T . Bioinformatic analysis revealed that major amino acid substitutional types

  7. Numerical and experimental investigation on labyrinth seal mechanism for bypass flow reduction in prismatic VHTR core

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Su-Jong, E-mail: paper80@snu.ac.r [Department of Nuclear Engineering, Seoul National University, San 56-1, Daehak-Dong, Kwanak-Gu, Seoul 151-742 (Korea, Republic of); Lee, Jeong-Hun [Department of Nuclear Engineering, Seoul National University, San 56-1, Daehak-Dong, Kwanak-Gu, Seoul 151-742 (Korea, Republic of); Lee, Sang-Moon [Department of Mechanical Engineering, Inha University, 253 Yonghyun-Dong, Nam-Gu, Incheon 402-751 (Korea, Republic of); Tak, Nam-il; Kim, Min-Hwan [Korea Atomic Energy Research Institute, 150-1 Deokjin-Dong, 1045 Daedeokdaero, Yuseong, Daejeon 305-353 (Korea, Republic of); Kim, Kwang-Yong [Department of Mechanical Engineering, Inha University, 253 Yonghyun-Dong, Nam-Gu, Incheon 402-751 (Korea, Republic of); Park, Goon-Cherl [Department of Nuclear Engineering, Seoul National University, San 56-1, Daehak-Dong, Kwanak-Gu, Seoul 151-742 (Korea, Republic of)

    2013-09-15

    Highlights: • Bypass flow reduction method was developed by applying labyrinth seal mechanism. • Grooves on side walls of replaceable reflector block were made. • Design of the grooved wall of the reflector block was optimized by the RSA method. • The flow resistance of the bypass gap rose from 18.04 to 26.24 by the optimization. • The bypass ratios at the inlet and outlet were reduced by 36.19% and 14.66%, respectively. -- Abstract: Core bypass flow in block type very high temperature reactor (VHTR) occurs due to the inevitable gaps between the hexagonal core blocks for the block installation and refueling. Since the core bypass flow affects the reactor safety and efficiency, it should be minimized to enhance the core thermal margin. In this regard, the core bypass flow reduction method applying the labyrinth seal mechanism was developed and optimized by using the single-objective shape optimization method. Response surface approximation (RSA) method was adopted as the optimization method. Side wall of the replaceable reflector block was redesigned and response surface approximate model was adopted to optimize the shape of the reflector wall. Computational fluid dynamics (CFD) analyses were carried out not only to assess the limitation of existing method of bypass flow reduction, but also to optimize the design of a newly developed reduction method. The experiment with Seoul National University (SNU) multi-block experimental facility was performed to demonstrate the performance of the reduction method. It was found that the effect of the existing bypass flow reduction method by sealing the bypass gap exit was restricted nearby the lower region of the core. However, the flow resistance factor of the bypass gap increased from 18.04 to 26.24 by the optimized reduction method. The results of the performance test showed that the bypass flow distribution was reduced throughout the entire core regions. The bypass flow ratios at the inlet and the outlet were

  8. New and investigational antiretroviral drugs for HIV infection: mechanisms of action and early research findings.

    Science.gov (United States)

    Saag, Michael S

    2012-12-01

    Numerous investigational antiretroviral agents are in clinical development. Among them are festinavir (BMS986001), a thymidine analogue similar to stavudine with reduced potential for toxicity; GS-7340, a prodrug of tenofovir that achieves greater intracellular concentrations; MK-1439, a nonnucleoside analogue reverse transcriptase inhibitor (NNRTI) that retains activity against common NNRTI-associated resistance mutations; and albuvirtide, a long-acting parenteral fusion inhibitor. Investigational integrase strand transfer inhibitors (InSTIs) include elvitegravir, recently approved by the US Food and Drug Administration (FDA) as part of a once-daily, single-tablet formulation with cobicistat/tenofovir/emtricitabine; dolutegravir, which maintains some activity against raltegravir- and elvitegravir-resistant mutants; and S/GSK1265744, which also maintains some activity against resistance mutations in the integrase gene and is being developed as a long-lasting parenteral agent. Novel 2-(quinolin-3-yl)acetic acid derivatives (LEDGINs), agents that were originally thought to inhibit the interaction of integrase with its cofactor lens epithelium-derived growth factor p75 (LEDGF/p75), be active against InSTI-resistant mutants and to have additive activity when combined with InSTIs. This article summarizes a presentation by Michael S. Saag, MD, at the IAS-USA live Improving the Management of HCV Disease continuing medical education program held in New York in October 2012.

  9. Thermo-mechanical cementation effects in bentonite investigated by unconfined compression tests

    International Nuclear Information System (INIS)

    Dueck, Ann

    2010-01-01

    Results from the project LOT showed that specimens exposed to warm conditions had a significantly reduced strain at failure compared to reference material. The objective of the present study was to investigate the impact of parameters such as temperature, density, water content and degree of saturation on the occurrence of brittleness at failure of bentonite specimens. To quantify the influence of the different parameters the unconfined compression test was used on specimens with a height and diameter of 20 mm. In this test the relation between stress and strain is determined from axial compression of a cylindrical specimen. Brittle failure is in this investigation mainly seen on specimens having a density of ρ ≥ 2,060 kg/m 3 or on specimens exposed to high temperature T ≥ 150 deg C in the laboratory. Brittle failure behaviour was also seen on unsaturated specimens with a degree of saturation less than Sr i = 0% before saturation, on specimens with a final degree of saturation of S r ≤ 97% and also on one specimen subjected to consolidation during preparation. Brittle failure and reduced strain were noticed in the heated field exposed material in the LOT project. Similar behaviour was also observed in the present short term laboratory tests. However, the specimens in the present study showing this behaviour had higher density, lower degree of saturation or were exposed to higher temperatures than the field exposed specimens

  10. Sorbitol-based osmotic diarrhea: possible causes and mechanism of prevention investigated in rats.

    Science.gov (United States)

    Islam, Md Shahidul; Sakaguchi, Ei

    2006-12-21

    To study the possible causes of sorbitol (S)-based diarrhea and its mechanism of reduction by rice gruel (RG) in cecectomized rats. S was dissolved either in distilled water or in RG (50 g/L) and ingested as a single oral dose (1.2 g/kg body mass, containing 0.5 g/L phenol red as a recovery marker) by S (control) and S + RG groups (n = 7), respectively. This dose is over the laxative dose for humans. Animals were sacrificed exactly 1 h after dose ingestion, without any access to drinking water. The whole gastro-intestinal tract was divided into seven segments and sampled to analyze the S and marker remaining in its contents. Gastric-emptying and intestinal transit were comparatively slower in the S + RG group. Also, the S absorption index in the 3(rd) and last quarter of the small intestine (24.85 +/- 18.88% vs 0.0 +/- 0.0% and 39.09 +/- 32.75% vs 0.0 +/- 0.0%, respectively, P osmotic diarrhea. Where RG enhanced the absorption of S through passive diffusion, the degree of diarrhea was reduced in cecectomized rats.

  11. Investigation of decreasing reactor coolant inventory as a mechanism to reduce power during a BWR ATWS

    International Nuclear Information System (INIS)

    Peterson, C.E.; Chexal, V.K.; Layman, W.; Hentzen, R.D.; Gose, G.C.

    1985-01-01

    A best-estimate analysis was performed to evaluate the technique of intentionally reducing reactor coolant inventory in order to reduce power during a BWR ATWS event. The ATWS was initiated by closure of the main steam isolation valves. The analysis was performed with the RETRAN-02 computer code utilizing the one-dimensional kinetics option. The one-dimensional cross sections were developed using the SIMULATE-E and SIMTRAN-E computer codes. The MSIV closure transient provides some of the more severe conditions following a postulated failure to scram. In this transient, the only mechanism for removing energy from the vessel is through the safety relief valve system which results in a heating up of the suppression pool fluid. Consequently, the reactor power must be reduced so that the suppression pool temperature limits are not exceeded. Under the proposed emergency procedure guidelines for the ATWS event, the reactor vessel water level will be lowered to reduce system power. This analysis evaluated the dynamic response of the system as the water level was lowered to the top of active fuel evaluation. Correlating the system power and flow patterns to water level was of particular interest in the analysis. Under natural circulating conditions, the system flows, core power, and pressure responses are extremely tightly coupled and the analysis results proved to be very sensitive to the modeling of downcomer, upper plenum, and core regions

  12. Paramecium tetraurelia growth stimulation under low-level chronic irradiation: investigations on a possible mechanism

    International Nuclear Information System (INIS)

    Croute, F.; Soleilhavoup, J.P.; Vidal, S.; Dupouy, D.; Planel, H.

    1982-01-01

    Experiments were carried out to demonstrate the effects of low-level chronic irradiation on Paramecium tetraurelia proliferation. Biological effects were strongly dependent on the bacterial density of culture medium and more exactly on the catalase content of the medium. Significant growth stimulation was found under 60 Co chronic irradiation at a dose rate of 2 rad/year when paramecia were grown in a medium containing a high bacterial concentration (2.5 x 10 2 cells/m) or supplemented with catalase (300 U/ml). In a medium with a low bacterial density (1 x 10 6 cell/ml) or supplemented with a catalase activity inhibitor, growth simulation was preceded by a transitory inhibiting effect which could be correlated with extracellularly radioproduced H 2 O 2 . H 2 O 2 addition appeared to be able to simulate the biological effects of chronic irradiation. A possible mechanism is discussed.We proposed that the stimulating effects were the result of intracellular enzymatic scavenging of radioproduced H 2 O 2

  13. Characterization of four arginine kinases in the ciliate Paramecium tetraurelia: Investigation on the substrate inhibition mechanism.

    Science.gov (United States)

    Yano, Daichi; Suzuki, Takaya; Hirokawa, Saki; Fuke, Kyoko; Suzuki, Tomohiko

    2017-08-01

    The ciliate Paramecium tetraurelia contains four arginine kinase genes (AK1-4). We detected cDNA for only three of the AKs (AK1-3) via PCR. Recombinant AK1-4 were expressed in Escherichia coli and their kinetics parameters determined. AK3 showed typical substrate inhibition toward arginine, and enzymatic activity markedly decreased when arginine concentration increased. This is the first example of substrate inhibition in wild-type phosphagen kinases. To explore the substrate inhibition mechanism, site-directed mutations were generated, targeting the amino acid sequence D-D-S-Q-V at positions 77-81 in P. tetraurelia AK3. Among the mutants, substrate inhibition was lost remarkably in the S79A mutant. In spite of high amino acid sequence identity (91%) between P. tetraurelia AK3 and AK4, the enzymatic activity of AK4 was less by 3% than that of AK3. We noticed that the conservative G298 was unusually replaced by R in P. tetraurelia AK4, and we constructed two mutants, R298G/AK4 and G298R/AK3. Enzymatic activity of the former mutant was comparable with that of the wild-type AK3, whereas that of the latter mutant was dramatically reduced. Thus, we concluded that the significantly low activity of P. tetraurelia AK4 is due to the residue R298. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Investigation of structure and mechanical properties of plasma vapor deposited nanocomposite TiBN films

    Science.gov (United States)

    Han, Bin; Neena, D.; Wang, Zesong; Kondamareddy, K. k.; Li, Na; Zuo, Wenbin; Yan, Shaojian; Liu, Chuansheng; Fu, Dejun

    2017-04-01

    TiBN coatings have huge potential applications as they have excellent properties with increasing modern industrial requirements. Nanocomposite TiBN coatings were synthesized on cemented carbide, high speed steel and Si substrates by using cathodic arc plasma ion plating from pure TiB2 ceramic targets. The structure and mechanical properties of the TiBN coatings were significantly influenced by the nitrogen partial pressure. Rutherford backscattering spectrometry demonstrates that the nitrogen content of the coating varied from 2.8% to 34.5% and high-resolution electron microscopy images reveal that all coatings have the characteristic of nanocrystals embedded in an amorphous matrix. The root-mean-square roughness of the coatings increases from 3.73 to 14.64 nm and the coefficients of friction of the coatings at room temperature vary from 0.54 to 0.73 with increasing nitrogen partial pressure. The microhardness of the coating increases up to 35.7 GPa at 10 sccm N2 flow rate. The smallest wear rate is 2.65 × 10-15 m3 N-1 m-1 which indicates that TiBN coatings have excellent wear resistance. The adhesion test revealed that the TiBN coatings have good adhesion at low nitrogen partial pressure.

  15. Neural mechanisms of dissonance: an fMRI investigation of choice justification.

    Science.gov (United States)

    Kitayama, Shinobu; Chua, Hannah Faye; Tompson, Steven; Han, Shihui

    2013-04-01

    Cognitive dissonance theory proposes that difficult choice produces negatively arousing cognitive conflict (called dissonance), which motivates the chooser to justify her decision by increasing her preference for the chosen option while decreasing her preference for the rejected option. At present, however, neural mechanisms of dissonance are poorly understood. To address this gap of knowledge, we scanned 24 young Americans as they made 60 choices between pairs of popular music CDs. As predicted, choices between CDs that were close (vs. distant) in attractiveness (referred to as difficult vs. easy choices) resulted in activations of the dorsal anterior cingulate cortex (dACC), a brain region associated with cognitive conflict, and the left anterior insula (left aINS), a region often linked with aversive emotional arousal. Importantly, a separate analysis showed that choice-justifying attitude change was predicted by the in-choice signal intensity of the posterior cingulate cortex (PCC), a region that is linked to self-processing. The three regions identified (dACC, left aINS, and PCC) were correlated, within-subjects, across choices. The results were interpreted to support the hypothesis that cognitive dissonance plays a key role in producing attitudes that justify the choice. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Investigation of the mechanism of interaction of Lithium 6 ions on Beryllium 9

    International Nuclear Information System (INIS)

    Coste, Mireille

    1962-01-01

    The objective of this research on the interaction of Lithium 6 and Beryllium 9 ions is to obtain new indications on the mode of interaction of these heavy ions, and on the configuration of target nuclei and projectile nuclei. In a first part, the author presents and describes the experimental conditions which comprise a Van de Graaff accelerator, a source, a stripper, and a target. He reports the study of α particles emitted by the reaction between the Lithium and Beryllium ions: description of the experimental installation (irradiation chamber and method), presentation and interpretation of experimental results. In the next part, he reports the study of Lithium 7 and Beryllium 10 nuclides emitted by disintegration of Beryllium 11: description of experimental conditions, variations of cross sections, variation of the cross section rate, and interpretation. The author then addresses the study of the intervention of the mode of interaction by 15 N compound nucleus in the reactions between lithium and beryllium ions: study of intensities of the different spectrum lines, measurement of the Doppler effect produced of the 479 keV line, interpretation of results. In conclusion, the author analyses the mechanism of interaction between lithium and beryllium ions, and discusses different theories: the Newns and Glendenning theories, and the Leigh theory

  17. An investigation of texturing by magnetic and mechanical techniques in high critical temperature superconducting ceramics

    International Nuclear Information System (INIS)

    Deschanels, X.

    1992-11-01

    The principal goal of this work is to quantify the influence of texture of ceramic superconductors ReBaCuO (Re=Dy, Y) on their critical current density (Jc). The magnetic alignment of particles at ambient temperature is the first technique who has allowed us to produce superconducting (Meissner effect) and textured ceramics. However, these materials are very brittle because of their porosity and this makes it impossible to measure their Jc. Press-forging (or creep sintering) is the second technique who has allowed us to prepare highly textured ceramics materials which are also dense. We have studied the influence of various conditions of thermomechanical treatment (sintering time and temperature, applied load, rate of deformation, density of the material at the beginning) on the texture quality. We have shown that at 900 deg, the eutectic liquid formed by BaCuO 2 , CuO and YBa 2 Cu 3 0 7-Y various mechanisms that help explain the formation of observed texture. After the oxidation stage which requires heat treatment under controlled atmospheres, we obtain superconducting ceramics (Tc=85 K). Moreover, this study also shows that the texture can improve the Jc by 400%, to 750 A/cm 2 at 77 K in the best specimens. This low value is explained by the presence of non-superconducting secondary phases and amorphous phases at the grain boundaries. (Author). 120 refs., figs., tabs

  18. Tribological and mechanical investigation of acrylic-based nanocomposite coatings reinforced with PMMA-grafted-MWCNT

    Energy Technology Data Exchange (ETDEWEB)

    Al-Kawaz, A. [UPR22/CNRS, Institut Charles Sadron, Université de Strasbourg, 23 Rue du Loess, BP 84047, F-67034 Strasbourg Cedex 2 (France); Rubin, A., E-mail: anne.rubin@ics-cnrs.unistra.fr [UPR22/CNRS, Institut Charles Sadron, Université de Strasbourg, 23 Rue du Loess, BP 84047, F-67034 Strasbourg Cedex 2 (France); Badi, N.; Blanck, C.; Jacomine, L. [UPR22/CNRS, Institut Charles Sadron, Université de Strasbourg, 23 Rue du Loess, BP 84047, F-67034 Strasbourg Cedex 2 (France); Janowska, I.; Pham-Huu, C. [Institute of Chemistry and Processes for Energy, Environment and Health (UMR 7515) CNRS - University of Strasbourg, 25 Rue Becquerel Strasbourg, 67087 Cedex 08 (France); Gauthier, C. [UPR22/CNRS, Institut Charles Sadron, Université de Strasbourg, 23 Rue du Loess, BP 84047, F-67034 Strasbourg Cedex 2 (France)

    2016-06-01

    The chemical functionalization of carbon nanotubes (CNTs) could improve their chemical compatibility. Poly(methyl methacrylate) (PMMA)-functionalized multi-walled carbon nanotubes (MWCNTs) are prepared by in situ atom transfer radical polymerization (ATRP) using a “grafting from” approach. It allows the control of the thickness of the polymer layer grafted on MWCNTs from two parameters: the feed ratio of MMA to MWCNT, the volume fraction of solvent to MMA. This work compared the effect of several PMMA-grafted-MWNCT fillers embedded into a PMMA matrix, PMMA-grafted-MWCNT/PMMA, and obtained by solution mixing technique. We studied the tribological performances of 20 μm coatings of these nanocomposites deposited on neat PMMA. The percentage of embedded fillers is kept low to maintain the transparency of the PMMA. The coefficient of friction was found to relatively decrease with the increase of the weight fraction of polymer grafted to the surface of MWCNT. Moreover the elastic modulus also increased with increasing the weight fraction of PMMA coated MWCNT. - Highlights: • Synthesis of MWCNT-PMMA nanoparticles by ATRP “grafting from” approach. • PMMA-grafted-MWCNT/PMMA coatings with good mechanical properties. • High tribological performance of PMMA-grafted-MWCNT/PMMA coatings.

  19. Structural investigations of mechanical properties of Al based rapidly solidified alloys

    International Nuclear Information System (INIS)

    Karakoese, Ercan; Keskin, Mustafa

    2011-01-01

    Highlights: → Rapid solidification processing (RSP) involves exceptionally high cooling rates. → We correlate the microstructure of the intermetallic Al 3 Fe, Al 2 Cu and Al 3 Ni phases with the cooling rate. → The solidification rate is high enough to retain most of alloying elements in the Al matrix. → The rapid solidification has effect on the phase constitution. -- Abstract: In this study, Al based Al-3 wt.%Fe, Al-3 wt.%Cu and Al-3 wt.%Ni alloys were prepared by conventional casting. They were further processed using the melt-spinning technique and characterized by the X-ray diffraction (XRD), scanning electron microscopy (SEM) together with energy dispersive spectroscopy (EDS), transmission electron microscope (TEM), differential scanning calorimetry (DSC) and the Vickers microhardness tester. The rapidly solidified (RS) binary alloys were composed of supersaturated α-Al solid solution and finely dispersed intermetallic phases. Experimental results showed that the mechanical properties of RS alloys were enhanced, which can be attributed to significant changes in the microstructure. RS samples were measured using a microhardness test device. The dependence of microhardness H V on the solidification rate (V) was analysed. These results showed that with the increasing values of V, the values of H V increased. The enthalpies of fusion for the same alloys were determined by DSC.

  20. Investigation of microstructure and mechanical properties of phosphocalcic bone substitute using the chemical wet method

    Science.gov (United States)

    Alimi, Latifa; Bahloul, Lynda; Azzi, Afef; Guerfi, Souad; Ismail, Fadhel; Chaoui, Kamel

    2018-05-01

    Selection of calcium phosphate base materials in reconstructive bone surgery is justified by the surprising similarities in chemical compositions with human bones. The closest to natural apatite material is the hydroxyapatite (HAp) which has a chemical composition based on calcium and phosphate (Ca10(PO4)6(OH)2). In this study, HAp is synthesized using the wet precipitation method from hydrated calcium chloride (CaCl2,12H2O) and di-sodium hydrogen phosphate di-hydrate (HNa2PO4,2H2O). The powder is calcinated at 900°C and 1200°C in order to compare with sintered condition at 1150°C. Vickers microhardness tests and X-ray diffraction analyzes are used for the characterization of the crystalline material. Mechanical properties (Hv, σe, σr, and KC) and the degree of crystallinity (Xc) are discussed according to heat treatment temperatures. Results indicate that heat treating the powder at 1200°C increased crystallinity up to 72%. At the same time, microhardness increased with temperature and even outmatched the sintered case at 1150°C. Fracture toughness is ameliorated with increasing heat treatment temperature by more than two folds.

  1. A Novel Ex Vivo Model to Investigate the Underlying Mechanisms in Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Emanuele Brai

    2017-09-01

    Full Text Available Currently there is no widely accepted animal model reproducing the full pathological profile of Alzheimer’s disease (AD, since the basic mechanisms of neurodegeneration are still poorly understood. We have proposed that the interaction between the α7 nicotinic acetylcholine receptor (α7-nAChR and a recently discovered toxic peptide, cleaved from the acetylcholinesterase (AChE C-terminus, could account for the aberrant processes occurring in AD. In this article we describe a new application on ex vivo model procedure, which combines the advantages of both in vivo and in vitro preparations, to study the effects of the AChE-derived peptide on the rat basal forebrain (BF. Western blot analysis showed that the levels of α7-nAChR, p-Tau and Aβ are differentially expressed upon the AChE-peptide administration, in a selective site-dependent manner. In conclusion, this methodology demonstrates the action of a novel peptide in triggering an AD-like phenotype and proposes a new ex vivo approach for manipulating and monitoring neurochemical processes contributing to neurodegeneration, in a time-dependent and site-specific manner.

  2. Radiation-induced bystander effects. Mechanisms, biological implications, and current investigations at the Leipzig LIPSION facility

    International Nuclear Information System (INIS)

    Oesterreicher, J.; Prise, K.M.; Michael, B.D.; Vogt, J.; Butz, T.; Tanner, J.M.

    2003-01-01

    Background: The bystander effect is a relatively new area of radiobiological research, which is aimed at studying post-radiation changes in neighboring non-hit cells or tissues. The bystander effect of ionizing irradiation is important after low-dose irradiation in the range of up to 0.2 Gy, where a higher incidence of stochastic damage was observed than was expected from a linear-quadratic model. It is also important when the irradiation of a cell population is highly non-uniform. Objective: This review summarizes most of the important results and proposed bystander effect mechanisms as well as their impact on theory and clinical practice. The literature, in parts contradictory, is collected, the main topics are outlined, and some basic papers are described in more detail. In order to illustrate the microbeam technique, which is considered relevant for the bystander effect research, the state of the Leipzig LIPSION nanoprobe facility is described. Results: The existence of a radiation-induced bystander effect is now generally accepted. The current state of knowledge on it is summarized here. Several groups worldwide are working on understanding its different aspects and its impact on radiobiology and radiation protection. Conclusion: The observation of a bystander effect has posed many questions, and answering them is a challenging topic for radiobiology in the future. (orig.)

  3. Radiation-induced bystander effects. Mechanisms, biological implications, and current investigations at the Leipzig LIPSION facility

    Energy Technology Data Exchange (ETDEWEB)

    Oesterreicher, J. [Dept. of Nuclear Solid State Physics, Univ. of Leipzig (Germany); Dept. of Radiobiology and Immunology, Purkyne Military Medical Academy, Hradec Kralove (Czech Republic); Prise, K.M.; Michael, B.D. [Gray Cancer Inst., Mount Vernon Hospital, Northwood, Middlesex (United Kingdom); Vogt, J.; Butz, T. [Dept. of Nuclear Solid State Physics, Univ. of Leipzig (Germany); Tanner, J.M. [Clinic and Polyclinic of Radiation Oncology, Martin Luther Univ. Halle-Wittenberg (Germany)

    2003-02-01

    Background: The bystander effect is a relatively new area of radiobiological research, which is aimed at studying post-radiation changes in neighboring non-hit cells or tissues. The bystander effect of ionizing irradiation is important after low-dose irradiation in the range of up to 0.2 Gy, where a higher incidence of stochastic damage was observed than was expected from a linear-quadratic model. It is also important when the irradiation of a cell population is highly non-uniform. Objective: This review summarizes most of the important results and proposed bystander effect mechanisms as well as their impact on theory and clinical practice. The literature, in parts contradictory, is collected, the main topics are outlined, and some basic papers are described in more detail. In order to illustrate the microbeam technique, which is considered relevant for the bystander effect research, the state of the Leipzig LIPSION nanoprobe facility is described. Results: The existence of a radiation-induced bystander effect is now generally accepted. The current state of knowledge on it is summarized here. Several groups worldwide are working on understanding its different aspects and its impact on radiobiology and radiation protection. Conclusion: The observation of a bystander effect has posed many questions, and answering them is a challenging topic for radiobiology in the future. (orig.)

  4. Investigation of cold extrusion process using coupled thermo-mechanical FEM analysis and adaptive friction modeling

    Science.gov (United States)

    Görtan, Mehmet Okan

    2017-10-01

    Cold extrusion processes are known for their excellent material usage as well as high efficiency in the production of large batches. Although the process starts at room temperature, workpiece temperatures may rise above 200°C. Moreover, contact normal stresses can exceed 2500 MPa, whereas surface enlargement values can reach up to 30. These changes affects friction coefficients in cold extrusion processes. In the current study, friction coefficients between a plain carbon steel C4C (1.0303) and a tool steel (1.2379) are determined dependent on temperature and contact pressure using the sliding compression test (SCT). In order to represent contact normal stress and temperature effects on friction coefficients, an empirical adaptive friction model has been proposed. The validity of the model has been tested with experiments and finite element simulations for a cold forward extrusion process. By using the proposed adaptive friction model together with thermo-mechanical analysis, the deviation in the process loads between numerical simulations and model experiments could be reduced from 18.6% to 3.3%.

  5. Investigating the Mechanisms of Action of Depside Salt from Salvia miltiorrhiza Using Bioinformatic Analysis

    Directory of Open Access Journals (Sweden)

    Hua Li

    2017-01-01

    Full Text Available Salvia miltiorrhiza is a traditional Chinese medicinal herb used for treating cardiovascular diseases. Depside salt from S. miltiorrhiza (DSSM contains the following active components: magnesium lithospermate B, lithospermic acid, and rosmarinic acid. This study aimed to reveal the mechanisms of action of DSSM. After searching for DSSM-associated genes in GeneCards, Search Tool for Interacting Chemicals, SuperTarget, PubChem, and Comparative Toxicogenomics Database, they were subjected to enrichment analysis using Multifaceted Analysis Tool for Human Transcriptome. A protein-protein interaction (PPI network was visualised; module analysis was conducted using the Cytoscape software. Finally, a transcriptional regulatory network was constructed using the TRRUST database and Cytoscape. Seventy-three DSSM-associated genes were identified. JUN, TNF, NFKB1, and FOS were hub nodes in the PPI network. Modules 1 and 2 were identified from the PPI network, with pathway enrichment analysis, showing that the presence of NFKB1 and BCL2 in module 1 was indicative of a particular association with the NF-κB signalling pathway. JUN, TNF, NFKB1, FOS, and BCL2 exhibited notable interactions among themselves in the PPI network. Several regulatory relationships (such as JUN → TNF/FOS, FOS → NFKB1 and NFKB1 → BCL2/TNF were also found in the regulatory network. Thus, DSSM exerts effects against cardiovascular diseases by targeting JUN, TNF, NFKB1, FOS, and BCL2.

  6. Kinetics and mechanism investigation on the destruction of oxytetracycline by UV-254nm activation of persulfate.

    Science.gov (United States)

    Liu, Yiqing; He, Xuexiang; Fu, Yongsheng; Dionysiou, Dionysios D

    2016-03-15

    Oxytetracycline (OTC), an important broad-spectrum antibiotic, has been detected extensively in various environmental systems, which may have a detrimental impact on ecosystem and human health through the development of drug resistant bacteria and pathogens. In this study, the degradation of OTC was evaluated by UV-254nm activated persulfate (PS). The observed UV fluence based pseudo first-order rate constant (kobs) was found to be the highest at near neutral pH conditions (pH 5.5-8.5). Presence of various natural water constituents had different effects on OTC degradation, with a significant enhancement in the presence of bicarbonate or Cu(2+). Limited elimination of total organic carbon (TOC) and PS was observed during the mineralization of OTC. Transformation byproducts in the presence and absence of hydroxyl radical scavenging agent tert-butanol (t-BuOH) were identified using ultra-high definition accurate-mass quadrupole time-of-flight liquid chromatography/mass spectrometer (LC-QTOF/MS). Potential OTC degradation mechanism was subsequently proposed revealing four different reaction pathways by SO4(-) reaction including hydroxylation (+16Da), demethylation (-14Da), decarbonylation (-28Da) and dehydration (-18Da). This study suggests that UV-254nm/PS is a promising treatment technology for the control of water pollution caused by emerging contaminants such as OTC. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Experimental and Numerical Investigations on the Mechanical Characteristics of Carbon Fiber Sensors

    Directory of Open Access Journals (Sweden)

    Salem Bashmal

    2017-09-01

    Full Text Available Carbon fiber-based materials possess excellent mechanical properties and show linear piezoresistive behavior, which make them good candidate materials for strain measurements. They have the potential to be used as sensors for various applications such as damage detection, stress analysis and monitoring of manufacturing processes and quality. In this paper, carbon fiber sensors are prepared to perform reliable strain measurements. Both experimental and computational studies were carried out on commercially available carbon fibers in order to understand the response of the carbon fiber sensors due to changes in the axial strain. Effects of parameters such as diameter, length, and epoxy-hardener ratio are discussed. The developed numerical model was calibrated using laboratory-based experimental data. The results of the current study show that sensors with shorter lengths have relatively better sensitivity. This is due to the fact short fibers have low initial resistance, which will increase the change of resistance over initial resistance. Carbon fibers with low number of filaments exhibit linear behavior while nonlinear behavior due to transverse resistance is significant in fibers with large number of filaments. This study will allow researchers to predict the behavior of the carbon fiber sensor in real life and it will serve as a basis for designing carbon fiber sensors to be used in different applications.

  8. Investigating and improving student understanding of the expectation values of observables in quantum mechanics

    International Nuclear Information System (INIS)

    Marshman, Emily; Singh, Chandralekha

    2017-01-01

    The expectation value of an observable is an important concept in quantum mechanics since measurement outcomes are, in general, probabilistic and we only have information about the probability distribution of measurement outcomes in a given quantum state of a system. However, we find that upper-level undergraduate and PhD students in physics have both conceptual and procedural difficulties when determining the expectation value of a physical observable in a given quantum state in terms of the eigenstates and eigenvalues of the corresponding operator, especially when using Dirac notation. Here we first describe the difficulties that these students have with determining the expectation value of an observable in Dirac notation. We then discuss how the difficulties found via student responses to written surveys and individual interviews were used as a guide in the development of a quantum interactive learning tutorial (QuILT) to help students develop a good grasp of the expectation value. The QuILT strives to help students integrate conceptual understanding and procedural skills to develop a coherent understanding of the expectation value. We discuss the effectiveness of the QuILT in helping students learn this concept from in-class evaluations. (paper)

  9. Investigating and improving student understanding of the probability distributions for measuring physical observables in quantum mechanics

    International Nuclear Information System (INIS)

    Marshman, Emily; Singh, Chandralekha

    2017-01-01

    A solid grasp of the probability distributions for measuring physical observables is central to connecting the quantum formalism to measurements. However, students often struggle with the probability distributions of measurement outcomes for an observable and have difficulty expressing this concept in different representations. Here we first describe the difficulties that upper-level undergraduate and PhD students have with the probability distributions for measuring physical observables in quantum mechanics. We then discuss how student difficulties found in written surveys and individual interviews were used as a guide in the development of a quantum interactive learning tutorial (QuILT) to help students develop a good grasp of the probability distributions of measurement outcomes for physical observables. The QuILT strives to help students become proficient in expressing the probability distributions for the measurement of physical observables in Dirac notation and in the position representation and be able to convert from Dirac notation to position representation and vice versa. We describe the development and evaluation of the QuILT and findings about the effectiveness of the QuILT from in-class evaluations. (paper)

  10. Investigating different mechanisms for biogenic selenite transformations: Geobacter sulfurreducens, Shewanella oneidensis and Veillonella atypica

    Science.gov (United States)

    Pearce, C.I.; Pattrick, R.A.D.; Law, N.; Charnock, J.M.; Coker, V.S.; Fellowes, J.W.; Oremland, R.S.; Lloyd, J.R.

    2009-01-01

    The metal-reducing bacteria Geobacter sulfurreducens, Shewanella oneidensis and Veillonella atypica, use different mechanisms to transform toxic, bioavailable sodium selenite to less toxic, non-mobile elemental selenium and then to selenide in anaerobic environments, offering the potential for in situ and ex situ bioremediation of contaminated soils, sediments, industrial effluents, and agricultural drainage waters. The products of these reductive transformations depend on both the organism involved and the reduction conditions employed, in terms of electron donor and exogenous extracellular redox mediator. The intermediary phase involves the precipitation of elemental selenium nanospheres and the potential role of proteins in the formation of these structures is discussed. The bionanomineral phases produced during these transformations, including both elemental selenium nanospheres and metal selenide nanoparticles, have catalytic, semiconducting and light-emitting properties, which may have unique applications in the realm of nanophotonics. This research offers the potential to combine remediation of contaminants with the development of environmentally friendly manufacturing pathways for novel bionanominerals. ?? 2009 Taylor & Francis.

  11. Constitutive Investigation on Viscoelasticity of PolyVinyl Butyral: Experiments Based on Dynamic Mechanical Analysis Method

    Directory of Open Access Journals (Sweden)

    Bohan Liu

    2014-01-01

    Full Text Available PolyVinyl Butyral (PVB film is now widely used in automotive industry and architectures serving as the protective interlayer. The dynamic modulus of PVB is measured through systematic experiments based on Dynamic Mechanical Analysis (DMA method at various temperatures, heating rates, and vibration frequencies. Further, viscoelasticity of PVB influenced by time and temperature is systematically studied. Fitted empirical formulas describing the relationship between glass transition temperature and frequency, as well as the heating rate of PVB, are established. The master curve of PVB at 293 K is suggested based on the experiment data as to express the dynamic modulus variation at various frequencies in a wider range. Constitutive behavior of PVB is then analyzed based on Generalized Maxwell (GM model and Fractional Derivative (FD model, respectively. It is shown that PVB has higher efficiency of energy dissipation in its high energy absorption state, while both fifth-order GM model and FD model can characterize the viscoelasticity of PVB at glassy transition area. Results may offer useful fundamental experimental data and important constitutive characteristics of PVB and shed lights on further studies on viscoelasticity behavior of PVB and energy mitigation ability of laminated glass.

  12. Parametric Investigation on Microstructure and Mechanical Properties of Ultrasonic spot welded Aluminium to Copper sheets

    Science.gov (United States)

    Prasad Satpathy, Mantra; Das Mohapatra, Kasinath; Sahoo, Ananda Kumar; Sahoo, Susanta Kumar

    2018-03-01

    Ultrasonic welding is one of the promising solid state welding methods which have been widely used to join highly conductive materials like aluminum and copper. Despite these applications in the automotive field, other industries also have a strong interest to adopt this process for joining of various advanced alloys. In some of its applications, poor weld strength and sticking of the workpiece to the tool are issues. Thus, an attempt has been taken in the present study to overcome these issues by performing experiments with a suitable range of weld parameters. The major objectives of this study are to obtain a good joint strength with a reduced sticking phenomenon and microstructure of Al-Cu weld coupons. The results uncovered the mechanical strength of the joint increased up to 0.34 sec of weld time and afterward, it gradually decreased. Meantime, the plastic deformation in the weld zone enhanced the formation of an intermetallic layer of 1.5 μm thick, and it is composed of mainly Al2Cu compound. The temperature evolved during the welding process is also measured by thermocouples to show its relationship with the plastic deformation. The present work exemplifies a finer understanding of the failure behavior of joints and provides an insight of ultrasonic welding towards the improvement in the quality of weld.

  13. Investigation of Mechanical Behavior of Nettle Filled Hybrid Composites of Nettle Fiber-Hazelnut Shell

    Directory of Open Access Journals (Sweden)

    Kenan BÜYÜKKAYA

    2017-12-01

    Full Text Available Polymer beam specimens produced with reinforcement of nettle fiber and fixed nut hazelnut flour at different volume ratios were opened initial notches with a / W = 0.2, 0.3 ratios after thermal curing. The volume percentage of nettle fiber in the composite is 2.5, 5, 7.5 and 10 percent. The grain size of hazelnut shell flour is 0-50μ and the volume ratio in the composite is 15% in all samples. Mode I fracture behaviors of compacted specimens from single sides, compact tensile and mechanical behavior were determined by three point bending test and impact test. The amount of crack opening was determined by the high-speed camera recorder. The bending test determined bending modulus and bending stresses. The morphological structure of the fractured surfaces obtained from the impulse test was revealed by sem views. It has been observed that the added hazelnut flour enhances the flexural modulus while reducing bending stress, fracture strength and impact resistance

  14. Properties and in vivo investigation of nanocrystalline hydroxyapatite obtained by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Silva, C.C.; Pinheiro, A.G.; Oliveira, R.S. de; Goes, J.C.; Aranha, N.; Oliveira, L.R. de; Sombra, A.S.B

    2004-06-01

    Mechanical alloying has been used successfully to produce nanocrystalline powders of hydroxyapatite (HA) using three different procedures. The milled HA was studied by X-ray diffraction, Infrared, Raman scattering spectroscopy and Scanning Electron Microscopy (SEM). We obtained HA with different degrees of crystallinity and time of milling. The grain size analysis through SEM and XRD shows particles with dimensions of 36.9, 14.3 and 35.5 nm (for (R1), (R2) and (R3), respectively) forming bigger units with dimensions given by 117.2, 110.8 and 154.4 nm (for (R1), (R2) and (R3), respectively). The Energy-Dispersive Spectroscopy (EDS) analysis showed that an atomic ratio of Ca/P=1.67, 1.83 and 1.50 for reactions (R1), (R2) and (R3), respectively. These results suggest that the R1 nanocrystalline ceramic is closer to the expected value for the ratio Ca/P for hydroxyapatite, which is 5/3 congruent with 1.67. The bioactivity analysis shows that all the samples implanted into the rabbits can be considered biocompatible, since they had been considered not toxic, had not caused inflammation and reject on the part of the organisms of the animals, during the period of implantation. The samples implanted in rabbits had presented new osseous tissue formation with the presence of osteoblasts cells.

  15. Properties and in vivo investigation of nanocrystalline hydroxyapatite obtained by mechanical alloying

    International Nuclear Information System (INIS)

    Silva, C.C.; Pinheiro, A.G.; Oliveira, R.S. de; Goes, J.C.; Aranha, N.; Oliveira, L.R. de; Sombra, A.S.B.

    2004-01-01

    Mechanical alloying has been used successfully to produce nanocrystalline powders of hydroxyapatite (HA) using three different procedures. The milled HA was studied by X-ray diffraction, Infrared, Raman scattering spectroscopy and Scanning Electron Microscopy (SEM). We obtained HA with different degrees of crystallinity and time of milling. The grain size analysis through SEM and XRD shows particles with dimensions of 36.9, 14.3 and 35.5 nm (for (R1), (R2) and (R3), respectively) forming bigger units with dimensions given by 117.2, 110.8 and 154.4 nm (for (R1), (R2) and (R3), respectively). The Energy-Dispersive Spectroscopy (EDS) analysis showed that an atomic ratio of Ca/P=1.67, 1.83 and 1.50 for reactions (R1), (R2) and (R3), respectively. These results suggest that the R1 nanocrystalline ceramic is closer to the expected value for the ratio Ca/P for hydroxyapatite, which is 5/3 congruent with 1.67. The bioactivity analysis shows that all the samples implanted into the rabbits can be considered biocompatible, since they had been considered not toxic, had not caused inflammation and reject on the part of the organisms of the animals, during the period of implantation. The samples implanted in rabbits had presented new osseous tissue formation with the presence of osteoblasts cells

  16. Investigation of Amourphous Deposits and Potential Corrosion Mechanisms in Offshore Water Injection Systems

    DEFF Research Database (Denmark)

    Eroini, Violette; Oehler, Mike Christian; Graver, Britt Kathrine

    2017-01-01

    Increasing incidence of amorphous deposits in both production and water injection systems has caused considerable problems for offshore oil fields. Amorphous deposits, which are a widely recognized, but often poorly explained phenomenon, are typically comprised of both organic (biological...... or hydrocarbons) and inorganic material, but with compositions that vary considerably. One recurrent form of deposits, found in offshore water injection flowlines and wells, consisting mainly of magnetite as the corrosion product, was further investigated with the objectives of explaining its formation......, composed of both organic and inorganic compounds, has caused concerns within operating assets due to the detrimental effect on production and injection, in addition to challenges with intervention and integrity. The variety of deposits and poor understanding of their nature has led to confusion...

  17. Investigating the growth mechanism and optical properties of carbon-coated titanium dioxide nanoparticles

    KAUST Repository

    Anjum, Dalaver H.

    2013-10-01

    TiO2 nanoparticles (NPs) were prepared using flame synthesis and then characterized using transmission electron microscopy. We found that the flame method yields both crystalline TiO2 and amorphous TiO 2 NPs. TEM analysis revealed that only the crystalline TiO 2 NPs were coated with carbon. Based on this observation, we proposed a growth model for the diffusion and precipitation of carbon atoms in TiO 2 NPs. The optical properties of TiO2 NPs were investigated by performing valence electron energy loss spectrometry analysis. We observed that carbon-coated TiO2 NPs have higher absorption in the visible range due to their lower band-gap energy. © 2013 Elsevier B.V.

  18. Investigation of Degradation Mechanisms of LSCF Based SOFC Cathodes — by CALPHAD Modeling and Experiments

    DEFF Research Database (Denmark)

    Zhang, Weiwei; Barfod, Rasmus

    cathodes, investigation of the La-Sr-Co-Fe-O system using computational thermodynamics and designed key experiments was carried out in this work. The first part of the research work was devoted to establish a self-consistent thermodynamic database of relevant components (La-Sr-Co-Fe-O) using the CALPHAD...... (CALculation of PHAse Diagrams) approach. Published thermodynamic databases and experimental data related to the La-Sr-Co-Fe-O system were critically reviewed. The thermodynamic descriptions of the La-Co-O, Sr-Co-O and La-Sr-Co-O systems were further improved in order to construct the present thermodynamic...... database for LSCF, while new thermodynamic modeling of the Co-Fe-O, Sr-Co-Fe-O and La-Sr-Co-Fe-O systems was performed in this work. Calculated phase equilibria in LSCF as functions of composition, temperature, oxygen partial pressure are discussed by comparing with experimental data. Based...

  19. Investigations on the mechanism of chlorpromazine phototoxicity: effects on lysosomes of cultured human fibroblasts

    International Nuclear Information System (INIS)

    Hasei, K.; Ichihashi, M.; Mojamdar, M.

    1984-01-01

    The effect of chlorpromazine (CPZ) and UVA on lysosomes of cultured normal human fibroblasts has been investigated. Acid phosphatase (ACPase) activity in 12000 g pellet of cells treated with CPZ (10 μg/ml) and UVA (6 x 10 4 J/m 2 ) was found to be decreased as compared with non-treated, CPZ or UVA treated control cells. This decrease, however, was not accompanied by a concomitant increase in ACPase activity in the 12000 g supernatant. The addition of Triton X-100 to cells pre-treated with CPZ + UVA resulted in only a moderate increase in ACPase activity of the 12000 g supernatant. ACPase activity of the cells incubated in media containing pre-irradiated CPZ was also found to be decreased. These results indicate that CPZ + UVA directly inactivate lysosomal enzymes, possibly without affecting the membrane. (author)

  20. Temperature dependent mechanical property of PZT film: an investigation by nanoindentation.

    Science.gov (United States)

    Li, Yingwei; Feng, Shangming; Wu, Wenping; Li, Faxin

    2015-01-01

    Load-depth curves of an unpoled Lead Zirconate Titanate (PZT) film composite as a function of temperature were measured by nanoindentation technique. Its reduce modulus and hardness were calculated by the typical Oliver-Pharr method. Then the true modulus and hardness of the PZT film were assessed by decoupling the influence of substrate using methods proposed by Zhou et al. and Korsunsky et al., respectively. Results show that the indentation depth and modulus increase, but the hardness decreases at elevated temperature. The increasing of indentation depth and the decreasing of hardness are thought to be caused by the decreasing of the critical stress needed to excite dislocation initiation at high temperature. The increasing of true modulus is attributed to the reducing of recoverable indentation depth induced by back-switched domains. The influence of residual stress on the indentation behavior of PZT film composite was also investigated by measuring its load-depth curves with pre-load strains.