Directory of Open Access Journals (Sweden)
Jialong Jiao
2015-01-01
Full Text Available It is of great importance to evaluate the hull structural vibrations response of large ships in extreme seas. Studies of hydroelastic response of an ultra large ship have been conducted with comparative verification between experimental and numerical methods in order to estimate the wave loads response considering hull vibration and water impact. A segmented self-propelling model with steel backbone system was elaborately designed and the experiments were performed in a tank. Time domain numerical simulations of the ship were carried out by using three-dimensional nonlinear hydroelasticity theory. The results from the computational analyses have been correlated with those from model tests.
Wave-induced Ship Hull Vibrations in Stochastic Seaways
DEFF Research Database (Denmark)
Jensen, Jørgen Juncher; Dogliani, M.
1996-01-01
A theoretical Study is undertaken on the determination of wave-induced loads in flexible ship hulls. The calculations are performed within the framework of a non-linear, quadratic strip theory formulated in the frequency domain. Included are non-linear effects due to changes in added mass......, hydrodynamic damping and water line breadth with sectional immersion in waves. The study is limited to continuous excitations from the waves and thus transient so-called whipping vibrations due to slamming loads are not considered.Because of the non-linearities the ship hull responses become non...... to the large separation between dominating wave frequencies and the lowest two-node frequency of the hull beam. Both extreme value predictions and fatigue damage are considered.For a fast container ship the rigid body and two-node (springing) vertical wave-induced bending moments amidship are calculated...
Active vibration control of smart hull structure using piezoelectric composite actuators
International Nuclear Information System (INIS)
Sohn, Jung Woo; Choi, Seung-Bok; Lee, Chul-Hee
2009-01-01
In this paper, active vibration control performance of the smart hull structure with macro-fiber composite (MFC) is evaluated. MFC is an advanced piezoelectric composite which has great flexibility and increased actuating performance compared to a monolithic piezoelectric ceramic patch. The governing equations of motion of the hull structure with MFC actuators are derived based on the classical Donnell–Mushtari shell theory. The actuating model for the interaction between hull structure and MFC is included in the governing equations. Subsequently, modal characteristics are investigated and compared with the results obtained from experiment. The governing equations of the vibration control system are then established and expressed in the state space form. A linear quadratic Gaussian (LQG) control algorithm is designed in order to effectively and actively control the imposed vibration. The controller is experimentally realized and vibration control performances are evaluated
Dynamics Analysis of Castor Hulling in the Process of Air-and-Screen Cleaning
Directory of Open Access Journals (Sweden)
Gao Ruitao
2016-01-01
Full Text Available The air-and-screen cleaning mechanism of castor hulling is analyzed in this paper. And the numeric expression equations of the castor dynamics analysis are established. The correlation of floating speeds vp, air speeds w, the direction angle of airflow velocity β, the direction angle of vibration δ, the friction angle ϕ, the slip coefficient, the fell coefficient and the jumping coefficient are analyzed.
Dynamics Analysis of Castor Hulling in the Process of Air-and-Screen Cleaning
Gao Ruitao; Cao Yuhua; Yao Liangliang; Jin Hong
2016-01-01
The air-and-screen cleaning mechanism of castor hulling is analyzed in this paper. And the numeric expression equations of the castor dynamics analysis are established. The correlation of floating speeds vp, air speeds w, the direction angle of airflow velocity β, the direction angle of vibration δ, the friction angle ϕ, the slip coefficient, the fell coefficient and the jumping coefficient are analyzed.
Enhanced vibration diagnostics using vibration signature analysis
International Nuclear Information System (INIS)
Ahmed, S.; Shehzad, K.; Zahoor, Y.; Mahmood, A.; Bibi, A.
2001-01-01
Symptoms will appear in equipment, as well as in human beings. when 'suffering from sickness. Symptoms of abnormality in equipment are vibration, noise, deformation, temperature, pressure, electric current, crack, wearing, leakage etc. these are called modes of failure. If the mode of failure is vibration then the vibration signature analysis can be effectively used in order to diagnose the machinery problems. Much valuable information is contained within these vibration 'Spectra' or 'Signatures' but is only of use if the analyst can unlock its 'Secrets'. This paper documents a vibration problem in the motor of a centrifugal pump (Type ETA). It focuses mainly on the roll of modern vibration monitoring system in problem analysis. The problem experienced was the motor unstability and noise due to high vibration. Using enhanced vibration signature data, the problem was analyzed. which suggested that the rotor eccentricity was the cause of excessive noise and vibration in the motor. In conclusion, advanced electronic monitoring and diagnostic systems provide powerful information for machine's condition assessment and problem analysis. Appropriate interpretation and use of this information is important for accurate and effective vibration analysis. (author)
International Nuclear Information System (INIS)
Iijima, Shizuka; Goto, Yuichi; Samoto, Hirotaka; Shichi, Ryo; Shimizu, Takenori
2011-01-01
We have been developing a non-destructive assay system called hulls monitor for nuclear fuel materials retained in hulls at the Tokai Reprocessing Plant (TRP). The hulls monitor is based on a passive neutron measurement method, so its applicability should be evaluated by a destructive analysis of hulls that are recovered from the reprocessing process. In this study, hulls came from the Advanced Thermal Reactor (ATR) FUGEN were taken from the dissolution process of TRP and destructively analyzed. Two kinds of hulls from ATR-MOX spent fuel assemblies and from ATR-UO 2 spent fuel assemblies were taken and soaked with nitric acid then fused with ammonium hydrogen sulfate, followed by Pu, 244 Cm, U mass determination by alpha spectrometry and ICP-AES. The characteristics of hulls came from MOX spent fuel assemblies were revealed by comparison of ATR-MOX spent fuel with ATR-UO 2 spent fuel. (author)
Hull Girder Fatigue Damage Estimations of a Large Container Vessel by Spectral Analysis
DEFF Research Database (Denmark)
Andersen, Ingrid Marie Vincent; Jensen, Jørgen Juncher
2013-01-01
This paper deals with fatigue damage estimation from the analysis of full-scale stress measurements in the hull of a large container vessel (9,400 TEU) covering several months of operation. For onboard decision support and hull monitoring sys-tems, there is a need for a fast reliable method...... for esti-mation of fatigue damage in the ship hull. The objective of the study is to investigate whether the higher frequency contributions from the hydroelastic responses (springing and whipping) can satisfactory be included in the fatigue damage estimation by only a few parameters derived from the stress...
Directory of Open Access Journals (Sweden)
Jongguk Lim
2017-09-01
Full Text Available The purpose of this study is to use near-infrared reflectance (NIR spectroscopy equipment to nondestructively and rapidly discriminate Fusarium-infected hulled barley. Both normal hulled barley and Fusarium-infected hulled barley were scanned by using a NIR spectrometer with a wavelength range of 1175 to 2170 nm. Multiple mathematical pretreatments were applied to the reflectance spectra obtained for Fusarium discrimination and the multivariate analysis method of partial least squares discriminant analysis (PLS-DA was used for discriminant prediction. The PLS-DA prediction model developed by applying the second-order derivative pretreatment to the reflectance spectra obtained from the side of hulled barley without crease achieved 100% accuracy in discriminating the normal hulled barley and the Fusarium-infected hulled barley. These results demonstrated the feasibility of rapid discrimination of the Fusarium-infected hulled barley by combining multivariate analysis with the NIR spectroscopic technique, which is utilized as a nondestructive detection method.
VIBRATION ISOLATION SYSTEM PROBABILITY ANALYSIS
Directory of Open Access Journals (Sweden)
Smirnov Vladimir Alexandrovich
2012-10-01
Full Text Available The article deals with the probability analysis for a vibration isolation system of high-precision equipment, which is extremely sensitive to low-frequency oscillations even of submicron amplitude. The external sources of low-frequency vibrations may include the natural city background or internal low-frequency sources inside buildings (pedestrian activity, HVAC. Taking Gauss distribution into account, the author estimates the probability of the relative displacement of the isolated mass being still lower than the vibration criteria. This problem is being solved in the three dimensional space, evolved by the system parameters, including damping and natural frequency. According to this probability distribution, the chance of exceeding the vibration criteria for a vibration isolation system is evaluated. Optimal system parameters - damping and natural frequency - are being developed, thus the possibility of exceeding vibration criteria VC-E and VC-D is assumed to be less than 0.04.
Zinc electrowinning analysis in a modified Hull cell
McColm, Thomas Dean
The Hull cell is an analytical cell designed with trapezoidal geometry to incorporate a range of current densities into a single experiment. It was conceived to examine electroplating processes rather than mass production processes. A modified analytical cell was designed, developed and applied to the diagnosis of zinc electrowinning. Emphasis was placed on obtaining the quantitative variation of current efficiency with current density and the associated microscopic variation in deposit morphology. Current density distributions came by placing an insulating baffle in between parallel electrodes. The baffle position and length were easily adjusted, allowing the generation of 12 different distributions for a single applied potential. Ten electrically isolated 1 cm2 segments comprised the cathode. Measurement of the potential drop across I ohm resistors in each of the ten isolated parallel branches permitted direct quantitative determination of current densities. The small segments permitted simple SEM and X-ray analysis of deposits. The cell was designed to allow the continual cycling of electrolyte. In conjunction with experimental analysis, a technique for the determination of current efficiency was tested and developed. The technique involved the comparison of charge passed for the electrodeposition and subsequent electrodissolution of a given mass of zinc and removed the necessity to determine the mass directly. In no prior studies on zinc electrowinning had current efficiencies been determined this way. The cell and technique were developed and verified by the correct diagnosis of industrial zinc electrowinning. Successful determination of the effects of key variables including temperature, acid to zinc ratio and impurity effects on current efficiency and deposit morphology was demonstrated. In parallel with experimental work, cell electrochemistry was modeled. Primary and secondary input parameters were those pertinent to zinc electrowinning. The resultant
Genetic Analysis and Mapping of TWH Gene in Rice Twisted Hull Mutant
Directory of Open Access Journals (Sweden)
Jin-bo LI
2009-03-01
Full Text Available A mutant with twisted hulls was found in a breeding population of rice (Oryza sativa L.. The mutant shows less grain weight and inferior grain quality in addition to twisted hulls. Genetic analysis indicated that the phenotype of mutant was controlled by a single recessive gene (temporarily designated as TWH. To map the TWH gene, an F2 population was generated by crossing the twh mutant to R725, an indica rice variety with normal hulls. For bulked segregant analysis, the bulk of mutant plants was prepared by mixing equal amount of plant tissue from 10 twisted-hull plants and the bulk of normal plants was obtained by pooling equal amount tissue of 10 normal-hull plants. Two hundred and seven pairs of simple sequence repeat (SSR primers, which are distributed on 12 rice chromosomes, were used for polymorphism analysis of the parents and the two bulks. The TWH locus was initially mapped close to the SSR marker RM526 on chromosome 2. Therefore, further mapping was performed using 50 pairs of SSR primers around the marker RM526. The TWH was delimited between the SSR markers RM14128 and RM208 on the long arm of chromosome 2 at the genetic distances of 1.4 cM and 2.7 cM, respectively. These results provide the foundation for further fine mapping, cloning and functional analysis of the TWH gene.
Static analysis of the hull plate using the finite element method
Ion, A.
2015-11-01
This paper aims at presenting the static analysis for two levels of a container ship's construction as follows: the first level is at the girder / hull plate and the second level is conducted at the entire strength hull of the vessel. This article will describe the work for the static analysis of a hull plate. We shall use the software package ANSYS Mechanical 14.5. The program is run on a computer with four Intel Xeon X5260 CPU processors at 3.33 GHz, 32 GB memory installed. In terms of software, the shared memory parallel version of ANSYS refers to running ANSYS across multiple cores on a SMP system. The distributed memory parallel version of ANSYS (Distributed ANSYS) refers to running ANSYS across multiple processors on SMP systems or DMP systems.
Recovering Intrinsic Fragmental Vibrations Using the Generalized Subsystem Vibrational Analysis.
Tao, Yunwen; Tian, Chuan; Verma, Niraj; Zou, Wenli; Wang, Chao; Cremer, Dieter; Kraka, Elfi
2018-05-08
Normal vibrational modes are generally delocalized over the molecular system, which makes it difficult to assign certain vibrations to specific fragments or functional groups. We introduce a new approach, the Generalized Subsystem Vibrational Analysis (GSVA), to extract the intrinsic fragmental vibrations of any fragment/subsystem from the whole system via the evaluation of the corresponding effective Hessian matrix. The retention of the curvature information with regard to the potential energy surface for the effective Hessian matrix endows our approach with a concrete physical basis and enables the normal vibrational modes of different molecular systems to be legitimately comparable. Furthermore, the intrinsic fragmental vibrations act as a new link between the Konkoli-Cremer local vibrational modes and the normal vibrational modes.
Mechanical vibration and shock analysis, sinusoidal vibration
Lalanne, Christian
2014-01-01
Everything engineers need to know about mechanical vibration and shock...in one authoritative reference work! This fully updated and revised 3rd edition addresses the entire field of mechanical vibration and shock as one of the most important types of load and stress applied to structures, machines and components in the real world. Examples include everything from the regular and predictable loads applied to turbines, motors or helicopters by the spinning of their constituent parts to the ability of buildings to withstand damage from wind loads or explosions, and the need for cars to m
Digital analysis of vibrations
International Nuclear Information System (INIS)
Bohnstedt, H.J.; Walter, G.
1982-01-01
Vibrational measurements, e.g. on turbomachinery, can be evaluated rapidly and economically with the aid of a combination of the following instruments: a desk-top computer, a two-channel vector filter and a FFT spectral analyzer. This equipment combination is available within the Allianz Centre for Technology and has also been used for mobile, on-site investigations during the last year. It enables calculation and display of time functions, kinetic shaft orbits, displacement diagrams. Bode plots, polar-coordinate plots, cascade diagrams and histograms. (orig.) [de
Energy Technology Data Exchange (ETDEWEB)
Nobukawa, H; Kitamura, M; Kawamura, T [Hiroshima University, Hiroshima (Japan). Faculty of Engineering
1996-04-10
A high-speed hydrofoil catamaran under development has such a structure that an independent cabin is mounted on catamaran hulls, the cabin is connected with the hulls by using four soft springs, and hydrofoils are attached to the front and rear of the cabin. The structural design conception was as follows: the self-weight of the cabin is supported by lifting power of the hydrofoils while the boat is cruising; longitudinal motions of the catamaran hulls are absorbed by soft spring struts to make the motions more difficult to be transmitted into the cabin; and vibration excited by engines rotating at high speeds, attached to rear of the catamaran hulls, is not transmitted directly to the cabin structurally. A towing experiment was carried out by using divided models of about 1/10 scale in counter waves and regular waves to investigate their vibration response characteristics in waves. Furthermore, an experimental boat made of aluminum alloy with about 1/3 scale of the design boat was attached with composite structural struts made of springs and rubber parts to perform cruising experiments on an actual sea area. As a result, it was found that vibration excited by main engines in the catamaran hulls is transmitted very little to the cabin. 2 refs., 10 figs., 1 tab.
Directory of Open Access Journals (Sweden)
Carlos José Einicker Lamas
1999-01-01
Full Text Available A cladistic analysis of Euprepina Hull, 1971 (Diptera, Bombyliidae, Bombyliinae, a Neotropical genus that includes ten species, was made. The cladogram was obtained from eight studied species, based on a data matrix with 21 characters, using the program Hennig86. Character states were polarized following outgroup analysis, and an hypothetical ancestor was included in the analysis in order to root the tree. The options used, "ie*" and "xs w", resulted in four most parsimonious trees with ci = 79, ri = 80 and length 115. The monophiletism of Euprepina was supported by two synapomorphies.
Noise and vibration analysis system
International Nuclear Information System (INIS)
Johnsen, J.R.; Williams, R.L.
1985-01-01
The analysis of noise and vibration data from an operating nuclear plant can provide valuable information that can identify and characterize abnormal conditions. Existing plant monitoring equipment, such as loose parts monitoring systems (LPMS) and neutron flux detectors, may be capable of gathering noise data, but may lack the analytical capability to extract useful meanings hidden in the noise. By analyzing neutron noise signals, the structural motion and integrity of core components can be assessed. Computer analysis makes trending of frequency spectra within a fuel cycle and from one cycle to another a practical means of core internals monitoring. The Babcock and Wilcox Noise and Vibration Analysis System (NVAS) is a powerful, compact system that can automatically perform complex data analysis. The system can acquire, process, and store data, then produce report-quality plots of the important parameter. Software to perform neutron noise analysis and loose parts analysis operates on the same hardware package. Since the system is compact, inexpensive, and easy to operate, it allows utilities to perform more frequency analyses without incurring high costs and provides immediate results
Directory of Open Access Journals (Sweden)
Xiao-biao ZHU
2008-12-01
Full Text Available Distributions of pubescences on leaf blade and hull in japonica rice were observed under an optical microscope. Numbers of leaf and hull pubescences in P1, P2, F1, B1, B2 and F2 generations were investigated in three combinations of japonica rice (Sidao 10A/Wuyujing 3R, Wuyujing 3A/Sidao 10R and Liuyan 189A/HR-122, and genetic analysis for these two traits were conducted by using the joint analysis method of P1, P2, F1, B1, B2 and F2 generations with the mixed major gene plus polygene inheritance models. Leaf pubescences characterized by swollen base and fine tip distributed regularly on the boundary between dark green stripe and light green stripe of leaf blade. Hull pubescences with various lengths distributed irregularly on the whole hull. Numbers of leaf pubescences in the reciprocal combinations of Sidao 10A/Wuyujing 3R and Wuyujing 3A/Sidao 10R and numbers of hull pubescences in all the three combinations were controlled by one pair of additive major genes plus additive-dominant polygenes. In the combination of Liuyan 189A/HR-122, number of leaf pubescences was controlled by one pair of additive-dominant major genes plus additive-dominant polygenes. Both numbers of leaf and hull pubescences were mainly governed by major genes.
Preparation and characterization of rice hull silica products
International Nuclear Information System (INIS)
Quirit, Leni L.; Llaguno, Elma C.; Pagdanganan, Fernando C.; Hernandez, Karen N.
2008-01-01
Rice hull is an abundant agricultural waste material which could be a renewable energy source when combusted. The combustion residue (called rice hull ash or RHA) contains a significant amount (20% of the hull) of potentially high grade silica. Silica gels prepared from rice hull were found to have properties comparable to two commercial desiccant silica gels (Blue Merck and FNG-A) in terms of chemical and amorphous structure, surface area, desiccant characteristics, microstructure and heats of adsorption. These properties were determined from water vapor adsorption measurements, electron microscopy, and from infrared and x-ray diffraction spectra. The acid treated rice hull gels were found to have fewer elemental impurities detected by qualitative x-ray fluorescence, compared to the commercial gels. Thermogravimetric analysis (TGA) data showed that this technique can also be used to indirectly compare impurity levels in the samples, in terms of the amorphous to crystalline phase transition. Using an improved acid treatment method, a silica gel sample was prepared from rice hull and compared to three commercial chromatographic silica gels using quantitative elemental x-ray fluorescence analysis. Elemental levels in the rice hull gel were within the range of levels or close to the detection limits of corresponding elements in the chromatographic gels. Water vapor adsorption, x-ray diffraction, infrared spectroscopy and scanning electron microscopy showed that the rice hull gel was similar to the commercial chromatographic silica gel Davison 12. Zeolites are crystalline aluminosilicates used as molecular sieves for purification and catalytic purposes. Zeolites X and Y were synthesized from rice hull silica gel and aluminum hydroxide. For comparison, controls were synthesized from commercial silica gel. The samples and controls exhibited characteristics infrared peaks corresponding to the vibrations of the TO 4 (T=Si, Al) of the zeolite framework. The x
Experience in WWER fuel assemblies vibration analysis
International Nuclear Information System (INIS)
Ovtcharov, O.; Pavelko, V.; Usanov, A.; Arkadov, G.; Dolgov, A.; Molchanov, V.
2003-01-01
It is stated that the vibration studies of internals and the fuel assemblies should be conducted during the reactor designing, commissioning and commercial operation stages and the analysis methods being used should complement each other. The present paper describes the methods and main results of the vibration noise studies of internals and the fuel assemblies of the operating NPPs with WWER reactors, as an example of the implementation of the comprehensive approach to the analysis on equipment flow-induced vibration. At that, the characteristics of internals and fuel assemblies vibration loading were dealt jointly as they are elements of the same compound oscillating system and their vibrations have the interrelated nature
DEFF Research Database (Denmark)
Sørensen, Herman
1997-01-01
Methods for calculating natural frequencies for ship hulls and for plates and panels.Evaluation of the risk for inconvenient vibrations on board......Methods for calculating natural frequencies for ship hulls and for plates and panels.Evaluation of the risk for inconvenient vibrations on board...
Energy Technology Data Exchange (ETDEWEB)
Takimoto, T; Yamamoto, A; Kasuda, T; Yanagi, K [Mitsubishi Heavy Industries, Ltd., Tokyo (Japan)
1996-04-10
Demand for reduction in vibration and noise in large-size ferry boats has been severer in recent years. On the other hand, vibration exciting force in main engines and propellers is on an increasing trend in association with increase in speed and horsepower. A large-size ferry boat uses an intermediate-speed diesel engine which has high vibration exciting frequency. Therefore, discussions were given on characteristics of response to nodal vibration in a main hull induced by primary internal moment in a main engine in a large-size ferry boat mounting an intermediate speed main engine. Results of detailed vibration calculations, vibration experiments using an actual ship, and results of measurements were used for the discussions. Natural frequency for two-node vibration above and below the main hull was set for an equation of estimation such that the whole ship is hypothesized to have been structured with beams having the same cross section according to the Todd`s equation, and effect of rigidity of the long structure can be evaluated. Parameters were derived by using the minimum square method that uses the measured natural frequency of the ship A through the ship E among large-size ferry boats. The derived result may be summarized as follows: this equation of estimation has an estimation error of about 5% against the natural frequency for nodal vibration above and below the main hull; and this equation of estimation has an estimation error of about 30% against the acceleration in the vertical direction at the end of the stern. 2 refs., 11 figs., 1 tab.
Multivariate Analysis of Ladle Vibration
Yenus, Jaefer; Brooks, Geoffrey; Dunn, Michelle
2016-08-01
The homogeneity of composition and uniformity of temperature of the steel melt before it is transferred to the tundish are crucial in making high-quality steel product. The homogenization process is performed by stirring the melt using inert gas in ladles. Continuous monitoring of this process is important to make sure the action of stirring is constant throughout the ladle. Currently, the stirring process is monitored by process operators who largely rely on visual and acoustic phenomena from the ladle. However, due to lack of measurable signals, the accuracy and suitability of this manual monitoring are problematic. The actual flow of argon gas to the ladle may not be same as the flow gage reading due to leakage along the gas line components. As a result, the actual degree of stirring may not be correctly known. Various researchers have used one-dimensional vibration, and sound and image signals measured from the ladle to predict the degree of stirring inside. They developed online sensors which are indeed to monitor the online stirring phenomena. In this investigation, triaxial vibration signals have been measured from a cold water model which is a model of an industrial ladle. Three flow rate ranges and varying bath heights were used to collect vibration signals. The Fast Fourier Transform was applied to the dataset before it has been analyzed using principal component analysis (PCA) and partial least squares (PLS). PCA was used to unveil the structure in the experimental data. PLS was mainly applied to predict the stirring from the vibration response. It was found that for each flow rate range considered in this study, the informative signals reside in different frequency ranges. The first latent variables in these frequency ranges explain more than 95 pct of the variation in the stirring process for the entire single layer and the double layer data collected from the cold model. PLS analysis in these identified frequency ranges demonstrated that the latent
International Nuclear Information System (INIS)
Reilly, T.D.
1979-07-01
Leached hulls are the short lengths of fuel rod cladding and fuel element hardware which constitute a major waste product of a reprocessing plant employing a chop-and-leach head-end process. The small, undissolved fuel residue (0.1 to 1.0% of original fuel content) which is discarded with this waste must be measured for safeguards, material accountability, and process control reasons. This report gives a critical analysis of hull measurement techniques involving the analysis of fission product gamma rays, spontaneous fission neutrons from curium, and delayed neutron activation. Major emphasis is given to the measurement of 2186-keV gamma rays from 144 Ce-- 144 Pr. A detailed description of typical leached hull characteristics is presented at the beginning of the report. An extensive review of experience gained from existing hull measurement systems in the United Kingdom, France, Japan, Germany, Italy, and the United States is presented
Islam, Md Azharul; Asif, M; Hameed, B H
2015-03-01
The pyrolysis of karanj fruit hulls (KFH) and karanj fruit hull hydrothermal carbonization (KFH-HTC) hydrochar was thermogravimetrically investigated under a nitrogen environment at 5 °C/min, 10 °C/min, and 20 °C/min. The pyrolysis decomposition of KFH biomass was faster than that of KFH-HTC hydrochar because of the high volatility and fixed carbon of KFH biomass. Weight loss percentage was also affected by the heating rates. The kinetic data were evaluated with the Kissinger-Akahira-Sunose and Flynn-Wall-Ozawa methods. The activation energy values obtained with these two methods were 61.06 and 68.53 kJ/mol for KFH biomass and 130.49 and 135.87 kJ/mol for KFH-HTC hydrochar, respectively. The analysis of kinetic process mechanisms was verified with the Coats-Redfern method. KFH-HTC hydrochar may play a potential role in transforming biomass to energy-rich feedstock for thermochemical applications because of its high heating value, high fixed carbon, and low ash and sulfur contents. Copyright © 2014 Elsevier Ltd. All rights reserved.
Analysis of the Almond Harvesting and Hulling Mechanization Process: A Case Study
Directory of Open Access Journals (Sweden)
Simone Pascuzzi
2017-12-01
Full Text Available The aim of this paper is the analysis of the almond harvesting system with a very high level of mechanization frequently used in Apulia for the almond harvesting and hulling process. Several tests were carried out to assess the technical aspects related to the machinery and to the mechanized harvesting system used itself, highlighting their usefulness, limits, and compatibility within the almond cultivation sector. Almonds were very easily separated from the tree, and this circumstance considerably improved the mechanical harvesting operation efficiency even if the total time was mainly affected by the time required to manoeuvre the machine and by the following manual tree beating. The mechanical pick-up from the ground was not effective, with only 30% of the dropped almond collected, which mainly was caused by both the pick-up reel of the machine being unable to approach the almonds dropped near the base of the trunk and the surface condition of the soil being unsuitably arranged for a mechanized pick-up operation. The work times concerning the hulling and screening processes, carried out at the farm, were heavily affected by several manual operations before, during, and after the executed process; nevertheless, the plant work capability varied from 170 to 200 kg/h with two operators.
Strength Tests on Hulls and Floats
Matthaes, K
1942-01-01
The present report deals with strength tests on hulls and floats intended in part for the collection of construction data for the design of these components and in part for the stress analysis of the finished hulls and floats.
Shah, S.; Gray, F.; Yang, J.; Crawshaw, J.; Boek, E.
2016-12-01
Advances in 3D pore-scale imaging and computational methods have allowed an exceptionally detailed quantitative and qualitative analysis of the fluid flow in complex porous media. A fundamental problem in pore-scale imaging and modelling is how to represent and model the range of scales encountered in porous media, starting from the smallest pore spaces. In this study, a novel method is presented for determining the representative elementary volume (REV) of a rock for several parameters simultaneously. We calculate the two main macroscopic petrophysical parameters, porosity and single-phase permeability, using micro CT imaging and Lattice Boltzmann (LB) simulations for 14 different porous media, including sandpacks, sandstones and carbonates. The concept of the `Convex Hull' is then applied to calculate the REV for both parameters simultaneously using a plot of the area of the convex hull as a function of the sub-volume, capturing the different scales of heterogeneity from the pore-scale imaging. The results also show that the area of the convex hull (for well-chosen parameters such as the log of the permeability and the porosity) decays exponentially with sub-sample size suggesting a computationally efficient way to determine the system size needed to calculate the parameters to high accuracy (small convex hull area). Finally we propose using a characteristic length such as the pore size to choose an efficient absolute voxel size for the numerical rock.
Wang, Shuzhen; Chen, Wenyue; Xiao, Wenfei; Yang, Changdeng; Xin, Ya; Qiu, Jieren; Hu, Weimin; Ying, Wu; Fu, Yaping; Tong, Jianxin; Hu, Guocheng; Chen, Zhongzhong; Fang, Xianping; Yu, Hong; Lai, Wenguo; Ruan, Songlin; Ma, Huasheng
2015-01-01
Rice hull, the outer cover of the rice grain, determines grain shape and size. Changes in the rice hull proteome in different growth stages may reflect the underlying mechanisms involved in grain development. To better understand these changes, isobaric tags for relative and absolute quantitative (iTRAQ) MS/MS was used to detect statistically significant changes in the rice hull proteome in the booting, flowering, and milk-ripe growth stages. Differentially expressed proteins were analyzed to predict their potential functions during development. Gene ontology (GO) terms and pathways were used to evaluate the biological mechanisms involved in rice hull at the three growth stages. In total, 5,268 proteins were detected and characterized, of which 563 were differentially expressed across the development stages. The results showed that the flowering and milk-ripe stage proteomes were more similar to each other (r=0.61) than either was to the booting stage proteome. A GO enrichment analysis of the differentially expressed proteins was used to predict their roles during rice hull development. The potential functions of 25 significantly differentially expressed proteins were used to evaluate their possible roles at various growth stages. Among these proteins, an unannotated protein (Q7X8A1) was found to be overexpressed especially in the flowering stage, while a putative uncharacterized protein (B8BF94) and an aldehyde dehydrogenase (Q9FPK6) were overexpressed only in the milk-ripe stage. Pathways regulated by differentially expressed proteins were also analyzed. Magnesium-protoporphyrin IX monomethyl ester [oxidative] cyclase (Q9SDJ2), and two magnesium-chelatase subunits, ChlD (Q6ATS0), and ChlI (Q53RM0), were associated with chlorophyll biosynthesis at different developmental stages. The expression of Q9SDJ2 in the flowering and milk-ripe stages was validated by qRT-PCR. The 25 candidate proteins may be pivotal markers for controlling rice hull development at various
Alpha-Concave Hull, a Generalization of Convex Hull
Asaeedi, Saeed; Didehvar, Farzad; Mohades, Ali
2013-01-01
Bounding hull, such as convex hull, concave hull, alpha shapes etc. has vast applications in different areas especially in computational geometry. Alpha shape and concave hull are generalizations of convex hull. Unlike the convex hull, they construct non-convex enclosure on a set of points. In this paper, we introduce another generalization of convex hull, named alpha-concave hull, and compare this concept with convex hull and alpha shape. We show that the alpha-concave hull is also a general...
Statistical evaluation of vibration analysis techniques
Milner, G. Martin; Miller, Patrice S.
1987-01-01
An evaluation methodology is presented for a selection of candidate vibration analysis techniques applicable to machinery representative of the environmental control and life support system of advanced spacecraft; illustrative results are given. Attention is given to the statistical analysis of small sample experiments, the quantification of detection performance for diverse techniques through the computation of probability of detection versus probability of false alarm, and the quantification of diagnostic performance.
Vibration characteristics analysis for HANARO fuel assembly
International Nuclear Information System (INIS)
Ryu, Jeong Soo; Yoon, Doo Byung
2001-06-01
For investigating the vibration characteristics of HANARO fuel assembly, the finite element models of the in-air fuel assemblies and flow tubes were developed. By calculating the hydrodynamic mass and distributing it on the in-air models, the in-water models of the flow tubes and the fuel assemblies were developed. Then, modal analysis of the developed models was carried out. The analysis results show that the fundamental vibration modes of the in-air 18-element and 36-element fuel assemblies are lateral bending modes and its corresponding natural frequencies are 26.4Hz and 27.7Hz, respectively. The fundamental natural frequency of the in-water 18-element and 36-element fuel assemblies were obtained as 16.1Hz and 16.5Hz. For the verification of the developed finite element models, modal analysis results were compared with those obtained from the modal test. These results demonstrate that the natural frequencies of lower order modes obtained from finite element analysis agree well with those of the modal test and the estimation of the hydrodynamic mass is appropriate. It is expected that the analysis results will be applied as a basic data for the operation and management of the HANARO. In addition, when it is necessary to improve the design of the fuel assembly, the developed finite element models will be utilized as a base model for the vibration characteristic analysis of the modified fuel assembly
Vibration Analysis of a Residential Building
Directory of Open Access Journals (Sweden)
Sampaio Regina Augusta
2015-01-01
Full Text Available The aim of this paper is to present the results of a study regarding vibration problems in a 17 storey residential building during pile driving in its vicinity. The structural design of the building was checked according to the Brazilian standards NBR6118 and NBR6123, and using commercial finite element software. An experimental analysis was also carried out using low frequency piezo-accelerometers attached to the building structure. Structure vibrations were recorded under ambient conditions. Four monitoring tests were performed on different days. The objective of the first monitoring test was an experimental modal analysis. To obtain de modal parameters, data was processed in the commercial software ARTEMIS employing two methods: the Stochastic Subspace Identification and the Frequency Domain Decomposition. Human comfort was investigated considering the International Standard ISO 2631. The Portuguese standard, NP2074, was also used as a reference, since it aims to limit the adverse effects of vibrations in structures caused by pile driving in the vicinity of the structure. The carried out experimental tests have shown that, according to ISO2301, the measure vibration levels are above the acceptance limits. However, velocity peaks are below the limits established by NP2074. It was concluded that, although the structure has adequate capacity to resist internal forces according to normative criteria, it has low horizontal stiffness, which could be verified by observing the vibration frequencies and mode shapes obtained with the finite element models, and its similarity with the experimental results. Thus, the analyses indicate the occurrence of discomfort by the residents.
Dynamics and vibrations progress in nonlinear analysis
Kachapi, Seyed Habibollah Hashemi
2014-01-01
Dynamical and vibratory systems are basically an application of mathematics and applied sciences to the solution of real world problems. Before being able to solve real world problems, it is necessary to carefully study dynamical and vibratory systems and solve all available problems in case of linear and nonlinear equations using analytical and numerical methods. It is of great importance to study nonlinearity in dynamics and vibration; because almost all applied processes act nonlinearly, and on the other hand, nonlinear analysis of complex systems is one of the most important and complicated tasks, especially in engineering and applied sciences problems. There are probably a handful of books on nonlinear dynamics and vibrations analysis. Some of these books are written at a fundamental level that may not meet ambitious engineering program requirements. Others are specialized in certain fields of oscillatory systems, including modeling and simulations. In this book, we attempt to strike a balance between th...
Structural-Vibration-Response Data Analysis
Smith, W. R.; Hechenlaible, R. N.; Perez, R. C.
1983-01-01
Computer program developed as structural-vibration-response data analysis tool for use in dynamic testing of Space Shuttle. Program provides fast and efficient time-domain least-squares curve-fitting procedure for reducing transient response data to obtain structural model frequencies and dampings from free-decay records. Procedure simultaneously identifies frequencies, damping values, and participation factors for noisy multiple-response records.
PIXE Analysis of Metal Hull Bolts From HMB DeBraak
International Nuclear Information System (INIS)
Correll, Francis D.; Cole, Lord K.; Slater, Charles J.; Vanhoy, Jeffrey R.; Fithian, Charles H.
2009-01-01
HMB DeBraak was a 16-gun British brig-sloop that sank in a squall on May 25, 1798 off Cape Henlopen, Delaware. Silt covered the wooden hull shortly after it sank, preserving it until DeBraak was raised in 1986. The items recovered from the ship include metal bolts that held the hull together. We used PIXE to measure the compositions of 45 of the bolts and found that they are nearly pure copper (98.3% on average), with most also containing small amounts of iron (0.87%), nickel (0.039%), arsenic (0.43%), silver (0.089%), lead (0.18%), and bismuth (0.12%). A few contain a little indium, tin, or antimony, but none contain zinc above the quantization level. The compositions are similar to those reported for 18th-century English copper, but different from several copper alloys also used to make hull bolts. We conclude that, when DeBraak was last fitted out in 1795-1797, the Royal Navy was still using bolts similar to William Forbes's mechanically hardened pure copper bolts. Forbes's process represents the successful innovation and application of new technology in Royal Navy ships during the wars of the late 18th century.
PIXE Analysis of Metal Hull Bolts From HMB DeBraak
Correll, Francis D.; Cole, Lord K.; Slater, Charles J.; Vanhoy, Jeffrey R.; Fithian, Charles H.
2009-03-01
HMB DeBraak was a 16-gun British brig-sloop that sank in a squall on May 25, 1798 off Cape Henlopen, Delaware. Silt covered the wooden hull shortly after it sank, preserving it until DeBraak was raised in 1986. The items recovered from the ship include metal bolts that held the hull together. We used PIXE to measure the compositions of 45 of the bolts and found that they are nearly pure copper (98.3% on average), with most also containing small amounts of iron (0.87%), nickel (0.039%), arsenic (0.43%), silver (0.089%), lead (0.18%), and bismuth (0.12%). A few contain a little indium, tin, or antimony, but none contain zinc above the quantization level. The compositions are similar to those reported for 18th-century English copper, but different from several copper alloys also used to make hull bolts. We conclude that, when DeBraak was last fitted out in 1795-1797, the Royal Navy was still using bolts similar to William Forbes's mechanically hardened pure copper bolts. Forbes's process represents the successful innovation and application of new technology in Royal Navy ships during the wars of the late 18th century.
Free vibration analysis of corroded steel plates
Energy Technology Data Exchange (ETDEWEB)
Eslami-Majd, Alireza; Rahbar-Ranji, Ahmad [AmirKabir University of Technology, Tehran (Iran, Islamic Republic of)
2014-06-15
Vibration analysis of unstiffened/stiffened plates has long been studied due to its importance in the design and condition assessments of ship and offshore structures. Corrosion is inevitable in steel structures and has been so far considered in strength analysis of structures. We studied the free vibration of pitted corroded plates with simply supported boundary conditions. Finite element analysis, with ABAQUS, was used to determine the natural frequencies and mode shapes of corroded plates. Influential parameters including plate aspect ratio, degree of pit, one-sided/both-sided corroded plate, and different corrosion patterns were investigated. By increasing the degree of corrosion, reduction of natural frequency increases. Plate aspect ratio and plate dimensions have no influence on reduction of natural frequency. Different corrosion patterns on the surface of one-sided corroded plates have little influence on reduction of natural frequency. Ratio of pit depth over plate thickness has no influence on the reduction of natural frequency. The reduction of natural frequency in both-sided corroded plates is higher than one-sided corroded plates with the same amount of total corrosion loss. Mode shapes of vibration would change due to corrosion, except square mode shapes.
The Shock and Vibration Bulletin. Part 2. Vibration Analysis.
1977-09-01
J.N. Tait, Naval Air Development Center, Warminster, PA EVALUATION OF AN ADAPTIVE FILTER AS A DIGITAL TRACKING FILTER D.O. Smallwood and D.L. Gregory...Oklahoma Norman , Oklahoma In contrast to the considerable information abailable on free vibration of isotropic plates, there is only a very limited
An Analysis of Wind Power Development in the Town of Hull, MA, Appendix 2: LaCapra Financial Study
Energy Technology Data Exchange (ETDEWEB)
Adams, Christopher
2013-06-30
The financial analysis and summary results presented in this document represent a first cut at an economic assessment of the proposed Hull Offshore Wind Project. Wind turbine price increases have outpaced the materials and labor price pressures faced by nonrenewable power plant developers due to increased demands on a limited pool of turbine manufacturers and offshore installation companies. Moreover, given the size of the proposed offshore facility, it may be difficult to contract with turbine manufacturers and/or foundation companies given the size and scope of competing worldwide demand. The results described in this report assume that such conditions will not significantly impact the prices that will have to be received from the output of the project; rather, the project size may require as a prerequisite that Hull be able to piggyback on other offshore efforts. The financial estimates provided here necessarily feature a range due to uncertainty in a number of project assumptions as well as overall uncertainty in offshore wind costs. Nevertheless, taken together, the analysis provides a ballpark revenue requirement of approximately $157/MWh for the municipal financing option, with higher estimates possible assuming escalation in costs to levels higher than assumed here.
Silicon Micromachined Sensor for Broadband Vibration Analysis
Gutierrez, Adolfo; Edmans, Daniel; Cormeau, Chris; Seidler, Gernot; Deangelis, Dave; Maby, Edward
1995-01-01
The development of a family of silicon based integrated vibration sensors capable of sensing mechanical resonances over a broad range of frequencies with minimal signal processing requirements is presented. Two basic general embodiments of the concept were designed and fabricated. The first design was structured around an array of cantilever beams and fabricated using the ARPA sponsored multi-user MEMS processing system (MUMPS) process at the Microelectronics Center of North Carolina (MCNC). As part of the design process for this first sensor, a comprehensive finite elements analysis of the resonant modes and stress distribution was performed using PATRAN. The dependence of strain distribution and resonant frequency response as a function of Young's modulus in the Poly-Si structural material was studied. Analytical models were also studied. In-house experimental characterization using optical interferometry techniques were performed under controlled low pressure conditions. A second design, intended to operate in a non-resonant mode and capable of broadband frequency response, was proposed and developed around the concept of a cantilever beam integrated with a feedback control loop to produce a null mode vibration sensor. A proprietary process was used to integrat a metal-oxide semiconductor (MOS) sensing device, with actuators and a cantilever beam, as part of a compatible process. Both devices, once incorporated as part of multifunction data acquisition and telemetry systems will constitute a useful system for NASA launch vibration monitoring operations. Satellite and other space structures can benefit from the sensor for mechanical condition monitoring functions.
An Analysis of Wind Power Development in the Town of Hull, MA
Energy Technology Data Exchange (ETDEWEB)
Adams, Christopher
2013-06-30
Over the past three decades the Town of Hull, MA has solidified its place in U.S. wind energy history through its leadership in community-based generation. This is illustrated by its commissioning of the first commercial-scale wind turbine on the Atlantic coastline, the first suburban-sited turbine in the continental United States, pursuit of community-based offshore wind, and its push toward creating an energy independent community. The town's history and demographics are briefly outlined, followed by experience in projects to provide wind power, including pre-construction and feasibility efforts, financial aspects, and market/industry factors.
Vibration analysis and vibration damage assessment in nuclear and process equipment
International Nuclear Information System (INIS)
Pettigrew, M.J.; Taylor, C.E.; Fisher, N.J.; Yetisir, M.; Smith, B.A.W.
1997-01-01
Component failures due to excessive flow-induced vibration are still affecting the performance and reliability of process and nuclear components. The purpose of this paper is to discuss flow-induced vibration analysis and vibration damage prediction. Vibration excitation mechanisms are described with particular emphasis on fluid elastic instability. The dynamic characteristics of process and power equipment are explained. The statistical nature of some parameters, in particular support conditions, is discussed. The prediction of fretting-wear damage is approached from several points-of-view. An energy approach to formulate fretting-wear damage is proposed. (author)
Editorial: Special Issue on Experimental Vibration Analysis
Serra, Roger
2018-04-01
The vibratory analyses are particularly present today in the various fields of industry, from aeronautics to manufacturing, from machining and maintenance to civil engineering, to mention a few areas, which have made this special issue a true need. The International Journal of Mechanics & Industry compiles a Special Issue on Experimental Vibration Analysis. More than thirty manuscripts were received by the international scientific committee on the 6th congress AVE2016 and only eight papers have been selected after completing a careful and rigorous peer-review process for the Special Issue, which are briefly summarized below.
OPTIMAL AUTOMOBILE MUFFLER VIBRATION AND NOISE ANALYSIS
Directory of Open Access Journals (Sweden)
Sujit Kumar Jha
2013-06-01
Full Text Available The muffler is the main part of the Automobile Exhaust System, consisting of fibrous and porous materials to absorb noise and vibrations. The exhaust gas mass coming from the engine can produce resonance, which may be the source of fatigue failure in the exhaust pipe due to the presence of continuous resonance. The modes on the muffler should be located away from the engine’s operating frequencies in order to minimise the resonance. The objective of this paper is to determine the frequencies that appear at the modes, which have the more adverse effect during the operation of the automobile. An impact test has been conducted by applying the force using a hard head hammer, and data generated have been used for plotting a graph of the transfer functions using MATLAB. Six points have been selected, namely 1, 2, 3, 4, 7, and 11 on the muffler for the impact test. The collected data from theses six points have been analysed for the addition of damping. Results suggests that increasing the mass increases the damping and lowers the modes of the transfer function. Further research will identify higher strength materials that can withstand the higher gas temperatures as well as the corrosion and erosion by the gas emitted from the engine. muffler, noise, vibration,modal analysis,
Vibration analysis of a hydro generator for different operating regimes
Haţiegan, C.; Pădureanu, I.; Jurcu, M.; Nedeloni, M. D.; Hamat, C. O.; Chioncel, C. P.; Trocaru, S.; Vasile, O.; Bădescu, O.; Micliuc, D.; (Filip Nedeloni, L.; Băra, A.; (Barboni Haţiegan, L.
2017-01-01
Based on experimental measurements, this paper presents the vibration analysis of a hydro generator that equips a Kaplan hydraulic turbine of a Hydropower plant in Romania. This analysis means vibrations measurement to different operating regimes of the hydro generator respectively before installing it and into operation, namely putting off load mode (unexcited and excited) respectively putting on load mode. By comparing, through the experimental results obtained before and after the operation of hydro aggregates are observed vibrations improvements.
Analysis of Vibration Diagnostics Methods for Induction Motors
Directory of Open Access Journals (Sweden)
A. P. Kalinov
2012-01-01
Full Text Available The paper presents an analysis of existing vibration diagnostics methods. In order to evaluate an efficiency of method application the following criteria have been proposed: volume of input data required for establishing diagnosis, data content, software and hardware level, execution time for vibration diagnostics. According to the mentioned criteria a classification of vibration diagnostics methods for determination of their advantages and disadvantages, search for their development and improvement has been presented in paper. The paper contains a comparative estimation of methods in accordance with the proposed criteria. According to this estimation the most efficient methods are a spectral analysis and spectral analysis of the vibration signal envelope.
Vibration Analysis of Beam and Block Precast Slab System due to Human Vibrations
Chik, T. N. T.; Kamil, M. R. H.; Yusoff, N. A.
2018-04-01
Beam and block precast slabs system are very efficient which generally give maximum structural performance where their voids based on the design of the unit soffit block allow a significant reduction of the whole slab self-weight. Initially for some combinations of components or the joint connection of the structural slab, this structural system may be susceptible to excessive vibrations that could effects the performance and also serviceability. Dynamic forces are excited from people walking and jumping which produced vibrations to the slab system in the buildings. Few studies concluded that human induced vibration on precast slabs system may be harmful to structural performance and mitigate the human comfort level. This study will investigate the vibration analysis of beam and block precast slab by using finite element method at the school building. Human activities which are excited from jumping and walking will induce the vibrations signal to the building. Laser Doppler Vibrometer (LDV) was used to measure the dynamic responses of slab towards the vibration sources. Five different points were assigned specifically where each of location will determine the behaviour of the entire slabs. The finite element analyses were developed in ABAQUS software and the data was further processed in MATLAB ModalV to assess the vibration criteria. The results indicated that the beam and block precast systems adequate enough to the vibration serviceability and human comfort criteria. The overall vibration level obtained was fell under VC-E curve which it is generally under the maximum permissible level of vibrations. The vibration level on the slab is acceptable within the limit that have been used by Gordon.
Islam, Md Azharul; Kabir, G; Asif, M; Hameed, B H
2015-10-01
This study examined the combustion profile and kinetics of hydrochar produced from hydrothermal carbonisation (HTC) of Karanj fruit hulls (KFH). The HTC-KFH hydrochar combustion kinetics was investigated at 5, 10, and 20°C/min by thermogravimetric analysis. The kinetics model, Kissinger-Akahira-Sunose revealed the combustion kinetics parameters for the extent of conversion from 0.1 to 0.8; the activation energy varies from 114 to 67 kJ/mol respectively. The hydrochar combustion followed multi-steps kinetics; the Coats-Redfern models predicted the activation energies and pre-exponential constants for the hydrochar combustion zones. The diffusion models are the effective mechanism in the second and third zone. Copyright © 2015 Elsevier Ltd. All rights reserved.
International Nuclear Information System (INIS)
Ryu, Jeong Soo; Yoon, Doo Byung
2005-01-01
HANARO is an open-tank-in-pool type research reactor with a thermal power of 30MW. In order to remove the heat generated by the reactor core and the reflector vessel, primary cooling pumps and reflector cooling pumps circulate coolant. These pumps are installed at the RCI(Reactor Concrete Island) which is covered by heavy concrete hatches. For the prevention of an abnormal operation of these pumps in the RCI, it is necessary to construct a vibration monitoring system that provides an alarm signal to the reactor control room when the rotating speed or the vibration level exceeds the allowable limit. The first objective of this work is to construct a vibration monitoring system for HANARO's rotating machinery. The second objective is to verify the possibility of condition monitoring of the rotating machinery. To construct a vibration monitoring system, as a first step, the standards and references related to the vibration monitoring system were investigated. In addition, to determine the number and the location of sensors that can effectively characterize the overall vibration of a pump, the vibration of the primary cooling pumps and the reflector cooling pumps were measured. Based on these results, detailed construction plans for the vibration monitoring system for HANARO were established. Then, in accordance with the construction plans, the vibration monitoring system for HANARO's rotating machinery was manufactured and installed at HANARO. To achieve the second objective, FFT analysis and bearing fault detection of the measured vibration signals were performed. The analysis results demonstrate that the accelerometers mounted at the bearing locations of the pumps can effectively monitor the pump condition
Energy Technology Data Exchange (ETDEWEB)
Maxwell, H.
1996-12-01
This paper is the first of two papers which describe the Predictive Maintenance Program for rotating machines at the Palo Verde Nuclear Generating Station. The organization has recently been restructured and significant benefits have been realized by the interaction, or {open_quotes}synergy{close_quotes} between the Vibration Program and the Lube Oil Analysis Program. This paper starts with the oldest part of the program - the Vibration Program and discusses the evolution of the program to its current state. The {open_quotes}Vibration{close_quotes} view of the combined program is then presented.
System for Monitoring and Analysis of Vibrations at Electric Motors
Directory of Open Access Journals (Sweden)
Gabriela Rață
2014-09-01
Full Text Available The monitoring of vibration occurring at the electric motors is of paramount importance to ensure their optimal functioning. This paper presents a monitoring system of vibrations occurring at two different types of electric motors, using a piezoelectric accelerometer (ICP 603C11 and a data acquisition board from National Instruments (NI 6009. Vibration signals taken from different parts of electric motors are transferred to computer through the acquisition board. A virtual instrument that allows real-time monitoring and Fourier analysis of signals from the vibration sensor was implemented in LabVIEW.
Vibration analysis in nuclear power plant using neural networks
International Nuclear Information System (INIS)
Loskiewicz-Buczak, A.; Alguindigue, I.E.
1993-01-01
Vibration monitoring of components in nuclear power plants has been used for a number of years. This technique involves the analysis of vibration data coming from vital components of the plant to detect features which reflect the operational state of machinery. The analysis leads to the identification of potential failures and their causes, and makes it possible to perform efficient preventive maintenance. This paper documents the authors' work on the design of a vibration monitoring methodology enhanced by neural network technology. This technology provides an attractive complement to traditional vibration analysis because of the potential of neural networks to handle data which may be distorted or noisy. This paper describes three neural networks-based methods for the automation of some of the activities related to motion and vibration monitoring in engineering systems
Large amplitude forced vibration analysis of cross-beam system ...
African Journals Online (AJOL)
Large amplitude forced vibration behaviour of cross-beam system under harmonic excitation is studied, incorporating the effect of geometric non-linearity. The forced vibration analysis is carried out in an indirect way, in which the dynamic system is assumed to satisfy the force equilibrium condition at peak load value, thus ...
Latest Trends in the Monitoring of Ships’s Hull Underwater Part and Analysis of Its Effectiveness
Urbahs, A; Carjova, K; Vulans, P; Straume, R
2012-01-01
Ship operation is not possible without regular maintenance, inspection and certification, established by international and domestic law, where one of the main goals is an effective operation of a ship. To achieve this, it is important to reduce time and costs involved in carrying out the surveys. This paper explores the law under which it’s required for ship to have inspection of underwater part; identifies problems of ship’s hull underwater part; analyze latest trends in ship's hull underwat...
Vibration analysis for trending ageing in rotating machinery
International Nuclear Information System (INIS)
Sinha, S.K.; Rama Rao, A.
2006-01-01
The need for condition monitoring system for important equipment and machinery is a growing requirement in every industry and more so in the nuclear power plants because of stringent safety requirements. This is largely because of the inherent benefit of being able to promote predictive maintenance practice rather than uneconomical preventive maintenance practice in the plant. Forerunner among the condition monitoring parameter is vibration signatures measured on a rotating machine. It is known that every moving element in a rotating machine generates vibration signal that is uniquely its own. Detection of such signals and monitoring the changing conditions in a machine through vibration analysis is a technique involving the knowledge of engineering art and the mathematical theory. This blend of sound engineering judgement and vibration data interpretation skill is in fact the basis of vibration diagnostic techniques. (author)
Distributed bearing fault diagnosis based on vibration analysis
Dolenc, Boštjan; Boškoski, Pavle; Juričić, Đani
2016-01-01
Distributed bearing faults appear under various circumstances, for example due to electroerosion or the progression of localized faults. Bearings with distributed faults tend to generate more complex vibration patterns than those with localized faults. Despite the frequent occurrence of such faults, their diagnosis has attracted limited attention. This paper examines a method for the diagnosis of distributed bearing faults employing vibration analysis. The vibrational patterns generated are modeled by incorporating the geometrical imperfections of the bearing components. Comparing envelope spectra of vibration signals shows that one can distinguish between localized and distributed faults. Furthermore, a diagnostic procedure for the detection of distributed faults is proposed. This is evaluated on several bearings with naturally born distributed faults, which are compared with fault-free bearings and bearings with localized faults. It is shown experimentally that features extracted from vibrations in fault-free, localized and distributed fault conditions form clearly separable clusters, thus enabling diagnosis.
Three-dimensional free vibration analysis of thick laminated circular ...
African Journals Online (AJOL)
Dr Oke
1 ,2 Department of Mechanical Engineering, Maulana Azad National Institute of Technology, Bhopal-462003, INDIA ... In this communication, a numerical analysis regarding free vibration of thick laminated .... ANSYS finite element software.
Development of vibrational analysis for detection of antisymmetric shells
International Nuclear Information System (INIS)
Esmailzadeh Khadem, S.; Mahmoodi, M.; Rezaee, M.
2002-01-01
In this paper, vibrational behavior of bodies of revolution with different types of structural faults is studied. Since vibrational characteristics of structures are natural properties of system, the existence of any structural faults causes measurable changes in these properties. Here, this matter is demonstrated. In other words, vibrational behavior of a body of revolution with no structural faults is analyzed by two methods of I) numerical analysis using super sap software, II) Experimental model analysis, and natural frequencies and mode shapes are obtained. Then, different types of cracks are introduced in the structure, and analysis is repeated and the results are compared. Based on this study, one may perform crack detection by measuring the natural frequencies and mode shapes of the samples and comparing with reference information obtained from the vibration analysis of the original structure with no fault
Wei, Lijuan; Qu, Cunmin; Xu, Xinfu; Lu, Kun; Qian, Wei; Li, Jiana; Li, Maoteng; Liu, Liezhao
2015-01-01
A stable yellow-seeded variety is the breeding goal for obtaining the ideal rapeseed (Brassica napus L.) plant, and the amount of acid detergent lignin (ADL) in the seeds and the hull content (HC) are often used as yellow-seeded rapeseed screening indices. In this study, a genome-wide association analysis of 520 accessions was performed using the Q + K model with a total of 31,839 single-nucleotide polymorphism (SNP) sites. As a result, three significant associations on the B. napus chromosomes A05, A09, and C05 were detected for seed ADL content. The peak SNPs were within 9.27, 14.22, and 20.86 kb of the key genes BnaA.PAL4, BnaA.CAD2/BnaA.CAD3, and BnaC.CCR1, respectively. Further analyses were performed on the major locus of A05, which was also detected in the seed HC examination. A comparison of our genome-wide association study (GWAS) results and previous linkage mappings revealed a common chromosomal region on A09, which indicates that GWAS can be used as a powerful complementary strategy for dissecting complex traits in B. napus. Genomic selection (GS) utilizing the significant SNP markers based on the GWAS results exhibited increased predictive ability, indicating that the predictive ability of a given model can be substantially improved by using GWAS and GS. PMID:26673885
Space Launch System Vibration Analysis Support
Johnson, Katie
2016-01-01
The ultimate goal for my efforts during this internship was to help prepare for the Space Launch System (SLS) integrated modal test (IMT) with Rodney Rocha. In 2018, the Structural Engineering Loads and Dynamics Team will have 10 days to perform the IMT on the SLS Integrated Launch Vehicle. After that 10 day period, we will have about two months to analyze the test data and determine whether the integrated vehicle modes/frequencies are adequate for launching the vehicle. Because of the time constraints, NASA must have newly developed post-test analysis methods proven well and with technical confidence before testing. NASA civil servants along with help from rotational interns are working with novel techniques developed and applied external to Johnson Space Center (JSC) to uncover issues in applying this technique to much larger scales than ever before. We intend to use modal decoupling methods to separate the entangled vibrations coming from the SLS and its support structure during the IMT. This new approach is still under development. The primary goal of my internship was to learn the basics of structural dynamics and physical vibrations. I was able to accomplish this by working on two experimental test set ups, the Simple Beam and TAURUS-T, and by doing some light analytical and post-processing work. Within the Simple Beam project, my role involves changing the data acquisition system, reconfiguration of the test set up, transducer calibration, data collection, data file recovery, and post-processing analysis. Within the TAURUS-T project, my duties included cataloging and removing the 30+ triaxial accelerometers, coordinating the removal of the structure from the current rolling cart to a sturdy billet for further testing, preparing the accelerometers for remounting, accurately calibrating, mounting, and mapping of all accelerometer channels, and some testing. Hammer and shaker tests will be performed to easily visualize mode shapes at low frequencies. Short
Digital data acquisition for laser radar for vibration analysis
Montes, Felix G.
1998-01-01
Approved for public release; distribution is unlimited Laser radar for vibration analysis represents a military application to develop a target identification system in the future. The problem addressed is how to analyze the vibrations of a target illuminated by the laser radar to achieve a positive identification. This thesis develops a computer-based data acquisition and analysis system for improving the laser radar capability. Specifically, a review is made of the CO2 laser radar, coher...
Natural vibration experimental analysis of Novovoronezhskaya NPP main building
International Nuclear Information System (INIS)
Zoubkov, D.; Isaikin, A.; Shablinsky, G.; Lopanchuk, A.; Nefedov, S.
2005-01-01
1. Natural vibration frequencies are main characteristics of buildings and structures which allow to give integral estimation of their in-service state. Even relatively small changes of these frequencies as compared to the initially registered values point to serious defects of building structures. In this paper we analyzed natural vibration frequencies and natural modes of the main building (MB) of Novovoronezhskaya NPP operating nuclear unit with WWER-440 type reactor. The MB consists of a reactor compartment (RC), a machine room (MR) and an electric device (ED) unit positioned in between. 2. Natural vibration frequencies and natural modes of the MB were determined experimentally by analyzing its microvibrations caused by operation of basic equipment (turbines, pumps, etc.). Microvibrations of the main building were measured at 12 points. At each point measurements were carried out along two or three mutually perpendicular vibration directions. Spectral analysis of vibration records has been conducted. Identification of natural vibration frequencies was carried out on the basis of the spectral peaks and plotted vibration modes (taking into account operating frequencies of the basic equipment of the power generating unit). On the basis of the measurement results three transverse modes and corresponding natural vibration frequencies of the MB, one longitudinal mode and corresponding natural vibration frequency of the MB and two natural frequencies of vertical vibrations of RC and MR floor trusses (1st and 2nd symmetric forms) were determined. Dynamic characteristics of the main building of NV NPP resulting from full scale researches are supposed to be used as one of building structure stability criteria. (authors)
Vibrational Micro-Spectroscopy of Human Tissues Analysis: Review.
Bunaciu, Andrei A; Hoang, Vu Dang; Aboul-Enein, Hassan Y
2017-05-04
Vibrational spectroscopy (Infrared (IR) and Raman) and, in particular, micro-spectroscopy and micro-spectroscopic imaging have been used to characterize developmental changes in tissues, to monitor these changes in cell cultures and to detect disease and drug-induced modifications. The conventional methods for biochemical and histophatological tissue characterization necessitate complex and "time-consuming" sample manipulations and the results are rarely quantifiable. The spectroscopy of molecular vibrations using mid-IR or Raman techniques has been applied to samples of human tissue. This article reviews the application of these vibrational spectroscopic techniques for analysis of biological tissue published between 2005 and 2015.
International Nuclear Information System (INIS)
Maxwell, H.
1996-01-01
This paper is the first of two papers which describe the Predictive Maintenance Program for rotating machines at the Palo Verde Nuclear Generating Station. The organization has recently been restructured and significant benefits have been realized by the interaction, or open-quotes synergyclose quotes between the Vibration Program and the Lube Oil Analysis Program. This paper starts with the oldest part of the program - the Vibration Program and discusses the evolution of the program to its current state. The open-quotes Vibrationclose quotes view of the combined program is then presented
DEFF Research Database (Denmark)
Jacob, Riko
We determine the computational complexity of the dynamic convex hull problem in the planar case. We present a data structure that maintains a finite set of n points in the plane under insertion and deletion of points in amortized O(log n) time per operation. The space usage of the data structure...... is O(n). The data structure supports extreme point queries in a given direction, tangent queries through a given point, and queries for the neighboring points on the convex hull in O(log n) time. The extreme point queries can be used to decide whether or not a given line intersects the convex hull......, and the tangent queries to determine whether a given point is inside the convex hull. The space usage of the data structure is O(n). We give a lower bound on the amortized asymptotic time complexity that matches the performance of this data structure....
Fast Fourier transformation in vibration analysis of physically active systems
International Nuclear Information System (INIS)
Hafeez, T.; Amir, M.; Farooq, U.; Day, P.
2003-01-01
Vibration of all physical systems may be expressed as the summation of an infinite number of sine and cosine terms known as Fourier series. The basic vibration analysis tool used is the frequency 'spectrum' (a graph of vibration where the amplitude of vibration is plotted against frequency). When a particular rotating component begins to fail, its vibration tends to increase. Spectra graphs are powerful diagnostic tool for detecting components' degradation. Spectra obtained with accelerometers located at the various locations on the components and their analysis in practice from rotating machines enable early detecting of incipient failure. Consequence of unexpected failure can be catastrophic and costly. This study provides basis to relate defective component by its constituent frequencies and then to the known discrete frequency of its 'signature' or 'thumbprint' to predict and verify the sustained dynamic behavior of machine designs harmful effects of forced vibration. The spectra for gearbox of a vane with teeth damaged fault are presented here which signified the importance of FFT analysis as diagnostic tool. This may be helpful to predictive maintenance of the machinery. (author)
Willems, Maxime; Egger, Bernhard; Wolff, Carsten; Mouton, Stijn; Houthoofd, Wouter; Fonderie, Pamela; Couvreur, Marjolein; Artois, Tom; Borgonie, Gaetan
The development of macrostomid flatworms is of interest for evolutionary developmental biology research because these taxa combine characteristics of the canonical spiral cleavage pattern with significant deviations from this pattern. One such deviation is the formation of hull cells, which surround
Vibration analysis of the piping system using the modal analysis method, 1
International Nuclear Information System (INIS)
Fujikawa, Takeshi; Kurohashi, Michiya; Inoue, Yoshio
1975-01-01
Modal analysis method was developed for the vibration analysis of piping system in nuclear or chemical plants, with finite element theory, and verified by sinusoidal vibration method. The natural vibration equation for pipings was derived with stiffness, attenuation and mass matrices, and eigenvalues are obtained with usual method, then the forced vibration equation for pipings was derived with the same manner, and the special solutions are given by modal method from the eigenvalues of the natural vibration equation. Three simple piping models (one, two and three dimensional) were made, and the natural vibration frequency was measured with forced input from an electrical dynamic shaker and a sound speaker. The experimental values of natural vibration frequency showed good agreement with the results by the analytical method. Therefore the theoretical approach for piping system vibration was proved to be valid. (Iwase, T.)
Forced Vibration Analysis for a FGPM Cylindrical Shell
Directory of Open Access Journals (Sweden)
Hong-Liang Dai
2013-01-01
Full Text Available This article presents an analytical study for forced vibration of a cylindrical shell which is composed of a functionally graded piezoelectric material (FGPM. The cylindrical shell is assumed to have two-constituent material distributions through the thickness of the structure, and material properties of the cylindrical shell are assumed to vary according to a power-law distribution in terms of the volume fractions for constituent materials, the exact solution for the forced vibration problem is presented. Numerical results are presented to show the effect of electric excitation, thermal load, mechanical load and volume exponent on the static and force vibration of the FGPM cylindrical shell. The goal of this investigation is to optimize the FGPM cylindrical shell in engineering, also the present solution can be used in the forced vibration analysis of cylindrical smart elements.
Vibration analysis of the synchronous motor of a propane compressor
Energy Technology Data Exchange (ETDEWEB)
Nogueira, D.; Rangel Junior, J. de S. [Petroleo Brasileiro S.A. - PETROBRAS, Rio de Janeiro, RJ (Brazil)], Emails: diananogueira@petrobras.com.br, joilson_jr@petrobras.com.br; Moreira, R.G. [Petroleo Brasileiro S.A. - PETROBRAS, Cabiunas, RJ (Brazil)], E-mail: ricgmoreira@petrobras.com.br
2010-07-01
This paper aims at describing the Analysis of a synchronous electric motor which presented high vibration levels (shaft displacement and bearing housing vibration) during the commissioning process, as well as propose the best practices for the solution of vibration problems in similar situations. This motor belongs to the propane centrifugal compressor installed at a Gas Compression Station. The methodology used in this study conducted an investigation of the problems presented in the motor through the execution of many types of tests and the analysis of the results. The main evaluations were performed, such as the vibration analysis and the rotor dynamic analysis. The electric motor was shipped back to the manufacturer's shop, where the manufacturer made certain modifications to the motor structure so as to improve the structure stiffness, such as the improvement of the support and the increase of the thickness of the structural plates. In addition to that, the dynamic balancing of the rotating set was checked. Finally, the excitation at a critical speed close to the rated speed was found after Rotor Dynamics Analysis was performed again, because of the increase in bearing clearances. The bearing shells were replaced so as to increase the separation margin between these frequencies. In order to verify the final condition of the motor, the manufacturer repeated the standard tests - FAT (Factory Acceptance Tests) - according to internal procedure and international standards. As a result of this work, it was possible to conclude that there was a significant increase in the vibration levels due to unbalance conditions. It was also possible to conclude that there are close relationships between high vibration levels and unbalance conditions, as well as between high vibration levels and the stiffness of the system and its support. Certain points of attention related to the manufacturing process of the motor compressor are described at the end of this paper, based
Hydroelastic Vibrations of Ships
DEFF Research Database (Denmark)
Jensen, Jørgen Juncher; Folsø, Rasmus
2002-01-01
A formula for the necessary hull girder bending stiffness required to avoid serious springing vibrations is derived. The expression takes into account the zero crossing period of the waves, the ship speed and main dimensions. For whipping vibrations the probability of exceedance for the combined...
Vibration Analysis Of Automotive Structures Using Holographic Interferometry
Brown, G. M.; Wales, R. R.
1983-10-01
Since 1979, Ford Motor Company has been developing holographic interferometry to supplement more conventional test methods to measure vehicle component vibrations. An Apollo PHK-1 Double Pulse Holographic Laser System was employed to visualize a variety of complex vibration modes, primarily on current production and prototype powertrain components. Design improvements to reduce powertrain response to problem excitations have been deter-mined through pulsed laser holography, and have, in several cases, been put into production in Ford vehicles. Whole-field definition of vibration related deflections provide continuity of information missed by accelerometer/modal analysis techniaues. Certain opera-tional problems, common among pulsed ruby holographic lasers, have reauired ongoing hardware and electronics improvements to minimize system downtime. Real-time, time-averaged and stroboscopic C. W. laser holographic techniques are being developed at Ford to complement the double pulse capabilities and provide rapid identification of modal frequencies and nodal lines for analysis of powertrain structures. Methods for mounting and exciting powertrains to minimize rigid body motions are discussed. Work at Ford will continue toward development of C. W. holographic techniques to provide refined test methodology dedicated to noise and vibration diagnostics with particular emphasis on semi-automated methods for quantifying displacement and relative phase using high resolution digitized video and computers. Continued use of refined pulsed and CW laser holographic interferometry for the analysis of complex structure vibrations seems assured.
DEFF Research Database (Denmark)
Brodal, Gerth Stølfting; Jacob, Rico
2002-01-01
In this paper we determine the computational complexity of the dynamic convex hull problem in the planar case. We present a data structure that maintains a finite set of n points in the plane under insertion and deletion of points in amortized O(log n) time per operation. The space usage of the d......In this paper we determine the computational complexity of the dynamic convex hull problem in the planar case. We present a data structure that maintains a finite set of n points in the plane under insertion and deletion of points in amortized O(log n) time per operation. The space usage...... of the data structure is O(n). The data structure supports extreme point queries in a given direction, tangent queries through a given point, and queries for the neighboring points on the convex hull in O(log n) time. The extreme point queries can be used to decide whether or not a given line intersects...... the convex hull, and the tangent queries to determine whether a given point is inside the convex hull. We give a lower bound on the amortized asymptotic time complexity that matches the performance of this data structure....
Vibration and noise analysis in nuclear power plants
International Nuclear Information System (INIS)
1974-12-01
Results of the investigations on noise and vibration analysis are presented as a follow-up study of the work published in ''On-load Surveillance of Nuclear Power Plant Components by Noise and Vibration Analysis'' EUR 5036 e. The state of the art in on-load surveillance techniques of light water reactors is given by extending the preceding studies to investigations of boiling water reactors and by summarizing the latest results of pressurized water reactors, the basis being experimental and theoretical work performed by the different organizations involved in preparing this report. Finally, some developments with respect to measurement and identification methods are discussed
Screw compressor analysis from a vibration point-of-view
Hübel, D.; Žitek, P.
2017-09-01
Vibrations are a very typical feature of all compressors and are given great attention in the industry. The reason for this interest is primarily the negative influence that it can have on both the operating staff and the entire machine's service life. The purpose of this work is to describe the methodology of screw compressor analysis from a vibration point-of-view. This analysis is an essential part of the design of vibro-diagnostics of screw compressors with regard to their service life.
Steam turbine coupling misalignment detection by vibrational analysis
International Nuclear Information System (INIS)
Behzad, M.; Asoyesh, M.
2001-01-01
Machinery troubleshooting and diagnostics via vibration analysis have historically been proven, and once again become enlightened topics with the recent popularity of predictive maintenance programs. Among several causes of vibration of turbomachinery, coupling misalignment plays an important role.The results of a theoretical analysis of coupling misalignment and its frequency spectrum characteristics, which can be used for predictive maintenance programs, are compared with other numerical investigations and practical results. The analytical method used in this research is very straightforward and does not need any computer programming
An Analysis of Wind Power Development in the Town of Hull, MA_Appendix 4_Geophysical Survey Report
Energy Technology Data Exchange (ETDEWEB)
Adams, Christopher
2013-06-30
CR Environmental, Inc. (CR) was contracted by GZA GeoEnvironmental, Inc. (GZA) to perform hydrographic and geophysical surveys of an approximately 3.35 square mile area off the eastern shore of Hull, Massachusetts. Survey components included: • Single-beam bathymetry; • 100-kHz and 500-kHz side scan sonar; • Magnetometry; and • Low to mid-frequency sub-bottom profiling.
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Hulls. 23.755 Section 23.755 Aeronautics... Hulls § 23.755 Hulls. (a) The hull of a hull seaplane or amphibian of 1,500 pounds or more maximum weight must have watertight compartments designed and arranged so that the hull auxiliary floats, and...
Energy Technology Data Exchange (ETDEWEB)
Franco, Mireille
2010-07-01
The objective of the Hull Inspection, Maintenance and Repair Plan is to ensure the total integrity of the Floating Production Unit. To be efficient, the Monitoring has to be part of the Hull Inspection, Monitoring, Maintenance and Repair Plan (IMMR). The IMMR Plan should be developed during the design and project phases and take into account the interfaces between the different systems and teams' tasks in operation. The IMMR is multidisciplinary and form part of the hand-over to ensure an efficient and early implementation. Implementation of such a complex plan requires: - Cross-functionality: take advantage of the synergies - Boldness: break the mould and think outside the box - Listening: be attentive, be available, - Mutual support: during good and bad times. This paper presents the way Total believe the Hull IMMR Plan shall be developed, implemented and followed up. (Author)
International Nuclear Information System (INIS)
Taylor, W.C.; Horgan, J.B.G.; Downie, D.M.
1982-01-01
An 18 sided hull approximately 4 metres in diameter formed in prefabricated watertight sections from GRP has been designed for burying underground to withstand an overpressure of 12P.S.I above normal atmospheric pressure for human protection against a nuclear explosion and resultant radioactivity. The pre-fabricated sections are so designed to be stacked together prior to assembling and the assembled hulls can also be stacked together both vertically and horizontally in a honeycomb formation to form a multiple chamber. (author)
Shunted Piezoelectric Vibration Damping Analysis Including Centrifugal Loading Effects
Min, James B.; Duffy, Kirsten P.; Provenza, Andrew J.
2011-01-01
Excessive vibration of turbomachinery blades causes high cycle fatigue problems which require damping treatments to mitigate vibration levels. One method is the use of piezoelectric materials as passive or active dampers. Based on the technical challenges and requirements learned from previous turbomachinery rotor blades research, an effort has been made to investigate the effectiveness of a shunted piezoelectric for the turbomachinery rotor blades vibration control, specifically for a condition with centrifugal rotation. While ample research has been performed on the use of a piezoelectric material with electric circuits to attempt to control the structural vibration damping, very little study has been done regarding rotational effects. The present study attempts to fill this void. Specifically, the objectives of this study are: (a) to create and analyze finite element models for harmonic forced response vibration analysis coupled with shunted piezoelectric circuits for engine blade operational conditions, (b) to validate the experimental test approaches with numerical results and vice versa, and (c) to establish a numerical modeling capability for vibration control using shunted piezoelectric circuits under rotation. Study has focused on a resonant damping control using shunted piezoelectric patches on plate specimens. Tests and analyses were performed for both non-spinning and spinning conditions. The finite element (FE) shunted piezoelectric circuit damping simulations were performed using the ANSYS Multiphysics code for the resistive and inductive circuit piezoelectric simulations of both conditions. The FE results showed a good correlation with experimental test results. Tests and analyses of shunted piezoelectric damping control, demonstrating with plate specimens, show a great potential to reduce blade vibrations under centrifugal loading.
On the global ship hull bending energy in ship collisions
DEFF Research Database (Denmark)
Pedersen, Preben Terndrup; Li, Yujie
2009-01-01
During ship collisions part of the kinetic energy of the involved vessels immediately prior to contact is absorbed as energy dissipated by crushing of the hull structures, by friction and by elastic energy. The purpose of this report is to present an estimate of the elastic energy that can...... be stored in elastic hull vibrations during a ship collision. When a ship side is strengthened in order to improve the crashworthiness it has been argued in the scientific literature that a non-trivial part of the energy released for structural deformation during the collision can be absorbed as elastic...... energy in global ship hull vibrations, such that with strong ship sides less energy has to be spent in crushing of the striking ship bow and/or the struck ship side. In normal ship–ship collision analyses both the striking and struck ship are usually considered as rigid bodies where structural crushing...
On the Global Ship Hull Bending Energy in Ship Collisions
DEFF Research Database (Denmark)
Pedersen, Preben Terndrup; Li, Y.
2004-01-01
During ship collisions part of the kinetic energy of the involved vessels prior to contact is absorbed as energy dissipated by crushing of the hull structures, by friction and by elastic energy. The purpose of this report is to present an estimate of the elastic energy that can be stored in elastic...... hull vibrations during a ship collision. When a ship side is strengthened in order to improve the crashworthiness it has been argued in the scientific literature that a non trivial part of the energy released for structural deformation during the collision can be absorbed as elastic energy in global...... ship hull vibrations, such that with strong ship sides less energy has to be spent in crushing of the striking ship bow and/or the struck ship side. In normal ship-ship collision analyses both the striking and struck ship are usually considered as rigid bodies where structural crushing is confined...
Ferreira, G; Yang, Y; Teets, C L; Brooks, W S; Griffey, C A
2018-07-01
The objective of this study was to compare ruminal starch disappearance rates of hull-less barley, hulled barley, and corn grains. Five different genotypes were used for each of the 2 barley types. In addition, each of these genotypes was grown in 2 different locations and years, resulting 10 independent barley samples for each of the 2 barley grain types. Five different genotypes of corn grain were obtained from a commercial seed company. After being ground to pass through a 4-mm screen of a cutter mill, 3.6 g of each grain was placed into a porous bag, which was then incubated in the rumen of 2 ruminally cannulated cows for 0, 4, 8, 12, 24, and 48 h. Corn grains had greater instant ruminal starch disappearances than barley grains (22.4 and 8.2%, respectively). Instant ruminal starch disappearances did not differ between hulled and hull-less barley grains. Ruminal starch fractional disappearance rates were greatest for hulled barley grains, moderate for hull-less barley grains, and lowest for corn grains (15.3, 13.9, and 7.1%/h, respectively). Ruminal starch half-life was shortest for hulled and hull-less barley grains (4.4 h) and longest for corn grains (6.6 h). Ruminal starch half-life did not differ between hulled barley and hull-less barley grains. In conclusion, using a holistic experimental design and statistical analysis, this study showed that starch from hull-less barley grains has a ruminal half-life similar to that of hulled barley grains and shorter than that of corn grains. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Analysis of tube vibrations in D-4 steam generator
International Nuclear Information System (INIS)
Mavko, B.; Peterlin, G.; Boltezar, M.
1983-01-01
Accelerometer data for the most exposed tube in steam generator D-4 were recorded on magnetic tape. Procedures for calculations of the most characteristic parameters were prepared for spectral analyzer on SD 360. Parameters which most satisfactorily describe the vibrations are power spectral densities peak to peak acceleration volume and root mean square displacement. Computer program was written to calculate the natural frequencies of a multispaned tube. Procedures and the computer program will be used for independent analysis of tube vibrations in Krsko D-4 type steam generator. (author)
Vibrational analysis of single-layered graphene sheets
Energy Technology Data Exchange (ETDEWEB)
Sakhaee-Pour, A; Ahmadian, M T [Center of Excellence in Design, Robotics and Automation (CEDRA), Department of Mechanical Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Naghdabadi, R [Department of Mechanical Engineering and Institute for Nano Science and Technology, Sharif University of Technology, Tehran (Iran, Islamic Republic of)], E-mail: sakhaee@alum.sharif.edu, E-mail: naghdabd@sharif.edu
2008-02-27
A molecular structural mechanics method has been implemented to investigate the vibrational behavior of single-layered graphene sheets. By adopting this approach, mode shapes and natural frequencies are obtained. Vibrational analysis is performed with different chirality and boundary conditions. Numerical results from the atomistic modeling are employed to develop predictive equations via a statistical nonlinear regression model. With the proposed equations, fundamental frequencies of single-layered graphene sheets with considered boundary conditions can be predicted within 3% difference with respect to the atomistic simulation.
Vibrational analysis of submerged cylindrical shells based on elastic foundations
International Nuclear Information System (INIS)
Shah, A.G.; Naeem, M.N.
2014-01-01
In this study a vibration analysis was performed of an isotropic cylindrical shell submerged in fluid, resting on Winkler and Pasternak elastic foundations for simply supported boundary condition. Love's thin shell theory was exploited for strain- and curvature- displacement relationship. Shell problem was solved by using wave propagation approach. Influence of fluid and Winkler as well as Pasternak elastic foundations were studied on the natural frequencies of submerged isotropic cylindrical shells. Results were validated by comparing with the existing results in literature. Vibration, Submerged cylindrical shell, Love's thin shell theory, Wave propagation method, Winkler and Pasternak foundations. (author)
OPTIMAL AUTOMOBILE MUFFLER VIBRATION AND NOISE ANALYSIS
Directory of Open Access Journals (Sweden)
Sujit Kumar Jha
2013-06-01
Full Text Available The muffler is the main part of the Automobile Exhaust System, consisting of fibrous and porous materials to absorb noise and vibrations. The exhaust gas mass coming from the engine can produce resonance, which may be the source of fatigue failure in the exhaust pipe due to the presence of continuous resonance. The modes on the muffler should be located away from the engine’s operating frequencies in order to minimise the resonance. The objective of this paper is to determine the frequencies that appear at the modes, which have the more adverse effect during the operation of the automobile. An impact test has been conducted by applying the force using a hard head hammer, and data generated have been used for plotting a graph of the transfer functions using MATLAB. Six points have been selected, namely 1, 2, 3, 4, 7, and 11 on the muffler for the impact test. The collected data from theses six points have been analysed for the addition of damping. Results suggests that increasing the mass increases the damping and lowers the modes of the transfer function. Further research will identify higher strength materials that can withstand the higher gas temperatures as well as the corrosion and erosion by the gas emitted from the engine.
Vibration Analysis for Steam Dryer of APR1400 Steam Generator
Energy Technology Data Exchange (ETDEWEB)
Han, Sung-heum; Ko, Doyoung [KHNP CRI, Daejeon (Korea, Republic of); Cho, Minki [Doosan Heavy Industry, Changwon (Korea, Republic of)
2016-10-15
This paper is related to comprehensive vibration assessment program for APR1400 steam generator internals. According to U.S. Nuclear Regulatory Commission, Regulatory Guide 1.20 (Rev.3, March 2007), we conducted vibration analysis for a steam dryer as the second steam separator of steam generator internals. The vibration analysis was performed at the 100 % power operating condition as the normal operation condition. The random hydraulic loads were calculated by the computational fluid dynamics and the structural responses were predicted by power spectral density analysis for the probabilistic method. In order to meet the recently revised U.S. NRC RG 1.20 Rev.3, the CVAP against the potential adverse flow effects in APR1400 SG internals should be performed. This study conducted the vibration response analysis for the SG steam dryer as the second moisture separator at the 100% power condition, and evaluated the structural integrity. The predicted alternating stress intensities were evaluated to have more than 17.78 times fatigue margin compared to the endurance limit.
Modelling of magnetostriction of transformer magnetic core for vibration analysis
Marks, Janis; Vitolina, Sandra
2017-12-01
Magnetostriction is a phenomenon occurring in transformer core in normal operation mode. Yet in time, it can cause the delamination of magnetic core resulting in higher level of vibrations that are measured on the surface of transformer tank during diagnostic tests. The aim of this paper is to create a model for evaluating elastic deformations in magnetic core that can be used for power transformers with intensive vibrations in order to eliminate magnetostriction as a their cause. Description of the developed model in Matlab and COMSOL software is provided including restrictions concerning geometry and properties of materials, and the results of performed research on magnetic core anisotropy are provided. As a case study modelling of magnetostriction for 5-legged 200 MVA power transformer with the rated voltage of 13.8/137kV is conducted, based on which comparative analysis of vibration levels and elastic deformations is performed.
Modelling of magnetostriction of transformer magnetic core for vibration analysis
Directory of Open Access Journals (Sweden)
Marks Janis
2017-12-01
Full Text Available Magnetostriction is a phenomenon occurring in transformer core in normal operation mode. Yet in time, it can cause the delamination of magnetic core resulting in higher level of vibrations that are measured on the surface of transformer tank during diagnostic tests. The aim of this paper is to create a model for evaluating elastic deformations in magnetic core that can be used for power transformers with intensive vibrations in order to eliminate magnetostriction as a their cause. Description of the developed model in Matlab and COMSOL software is provided including restrictions concerning geometry and properties of materials, and the results of performed research on magnetic core anisotropy are provided. As a case study modelling of magnetostriction for 5-legged 200 MVA power transformer with the rated voltage of 13.8/137kV is conducted, based on which comparative analysis of vibration levels and elastic deformations is performed.
Obtaining high purity silica from rice hulls
Directory of Open Access Journals (Sweden)
José da Silva Júnior
2010-01-01
Full Text Available Many routes for extracting silica from rice hulls are based on direct calcining. These methods, though, often produce silica contaminated with inorganic impurities. This work presents the study of a strategy for obtaining silica from rice hulls with a purity level adequate for applications in electronics. The technique is based on two leaching steps, using respectively aqua regia and Piranha solutions, which extract the organic matrix and inorganic impurities. The material was characterized by Fourier-transform infrared spectroscopy (FTIR, powder x-ray diffraction (XRD, x-ray fluorescence (XRF, scanning electron microscopy (SEM, particle size analysis by laser diffraction (LPSA and thermal analysis.
Vibrational Energy Distribution Analysis (VEDA): Scopes and limitations
Jamróz, Michał H.
2013-10-01
The principle of operations of the VEDA program written by the author for Potential Energy Distribution (PED) analysis of theoretical vibrational spectra is described. Nowadays, the PED analysis is indispensible tool in serious analysis of the vibrational spectra. To perform the PED analysis it is necessary to define 3N-6 linearly independent local mode coordinates. Already for 20-atomic molecules it is a difficult task. The VEDA program reads the input data automatically from the Gaussian program output files. Then, VEDA automatically proposes an introductory set of local mode coordinates. Next, the more adequate coordinates are proposed by the program and optimized to obtain maximal elements of each column (internal coordinate) of the PED matrix (the EPM parameter). The possibility for an automatic optimization of PED contributions is a unique feature of the VEDA program absent in any other programs performing PED analysis.
Current applications of vibration monitoring and neutron noise analysis
International Nuclear Information System (INIS)
Damiano, B.; Kryter, R.C.
1990-02-01
Monitoring programs using vibration monitoring or neutron noise analysis have demonstrated the ability to detect and, in some cases, diagnose the nature of reactor vessel internals structural degradation. Detection of compromised mechanical integrity of reactor vessel internal components in its early stages allows corrective action to be taken before weakening or damage occurs. In addition to the economic benefits early detection and correction can provide, they can also help maintain plant safety. Information on the condition of reactor vessel internal components gained from a monitoring program supplements in-service inspection results and may be useful in justifying plant license extension. This report, which was prepared under the Nuclear Plant Aging Research Program sponsored by the US Nuclear Regulatory Commission, discusses the application of vibration monitoring and neutron noise analysis for monitoring light-water reactor vessel internals. The report begins by describing the effects of structural integrity loss on internals vibration and how measurable parameters can be used to detect and track the progress of degradation. This is followed by a description and comparison of vibration monitoring and neutron noise analysis, two methods for monitoring the mechanical integrity of reactor vessel internals condition monitoring programs in the United States, Federal Republic of Germany, and France, three countries having substantial commitments to nuclear power. The last section presents guidelines for US utilities wishing to establish reactor internals condition monitoring programs. 20 refs., 5 figs., 4 tabs
The ABRAVIBE toolbox for teaching vibration analysis and structural dynamics
DEFF Research Database (Denmark)
Brandt, A.
2013-01-01
, a MATLAB toolbox (the ABRAVIBE toolbox) has been developed as an accompanying toolbox for the recent book "Noise and Vibration Analysis" by the author. This free, open software, published under GNU Public License, can be used with GNU Octave, if an entirely free software platform is wanted, with a few...... functional limitations. The toolbox includes functionality for simulation of mechanical models as well as advanced analysis such as time series analysis, spectral analysis, frequency response and correlation function estimation, modal parameter extraction, and rotating machinery analysis (order tracking...
Analysis of flow induced vibration in heat exchangers
Energy Technology Data Exchange (ETDEWEB)
Beek, A.W. van [Institute for Mechanical Constructions TNO, Delft (Netherlands)
1977-12-01
A description will be given of three different types of heat exchangers developed by the Dutch Nuclear Industry Group ''Neratoom'' in cooperation with TNO for the sodium-cooled fast breeder reactor SNR-300 at Kalkar. Moreover, the research related with flow induced vibrations carried out by TNO (Organization for Applied Scientific Research) will be presented. The flow induced forces on the tubes of the straight-tube steam generators were measured at the inlet and outlet section where partial crossflow occurs. With the measured flow induced forces the response of a tube was calculated as a function of the tube-to-supportbush clearances taking into account the non-linear damping effects from the sodium. The theoretical results showed that for this particular design no tube impact damage is to be expected which was confirmed later by a full scale experiment. Special attention will be devoted to the steam generator with helical-coil tube-bundles, where the sodium flows in a counter cross-flow over the tube-bundle. Extensive measurements of the power spectra of the flow induced forces were carried out since no information could be found in the literature. The vibration analysis will be presented and vibration modes of the entire bundle will be compared with experimentally obtained results. Finally a description of the vibration tests to be carried out on the intermediate heat exchanger (IHX) will be presented. (author)
Analysis of flow induced vibration in heat exchangers
International Nuclear Information System (INIS)
Beek, A.W. van
1977-01-01
A description will be given of three different types of heat exchangers developed by the Dutch Nuclear Industry Group ''Neratoom'' in cooperation with TNO for the sodium-cooled fast breeder reactor SNR-300 at Kalkar. Moreover, the research related with flow induced vibrations carried out by TNO (Organization for Applied Scientific Research) will be presented. The flow induced forces on the tubes of the straight-tube steam generators were measured at the inlet and outlet section where partial crossflow occurs. With the measured flow induced forces the response of a tube was calculated as a function of the tube-to-supportbush clearances taking into account the non-linear damping effects from the sodium. The theoretical results showed that for this particular design no tube impact damage is to be expected which was confirmed later by a full scale experiment. Special attention will be devoted to the steam generator with helical-coil tube-bundles, where the sodium flows in a counter cross-flow over the tube-bundle. Extensive measurements of the power spectra of the flow induced forces were carried out since no information could be found in the literature. The vibration analysis will be presented and vibration modes of the entire bundle will be compared with experimentally obtained results. Finally a description of the vibration tests to be carried out on the intermediate heat exchanger (IHX) will be presented. (author)
Directory of Open Access Journals (Sweden)
Marius STAN
2013-05-01
Full Text Available Vibration analysis applications in operation is one of the diagnostic methods ofoperation of the facility. Analysis of these types of failures indicated the existence of specificfeatures prints and related equipment vibration spectra. Modeling and identification of theseparticular aspects in the spectrum of vibration machines help to control the operation of oilfacilities built safely.
Marius STAN
2013-01-01
Vibration analysis applications in operation is one of the diagnostic methods ofoperation of the facility. Analysis of these types of failures indicated the existence of specificfeatures prints and related equipment vibration spectra. Modeling and identification of theseparticular aspects in the spectrum of vibration machines help to control the operation of oilfacilities built safely.
A Study on the Vibration Measurement and Analysis of Rotating Machine Foundations
Energy Technology Data Exchange (ETDEWEB)
Lee, Jong Rim; Jeon, Kyu Sik; Suh, Young Pyo; Cho, Chul Hwan; Kim, Sung Taeg; Lee, Myung Kyu [Korea Electric Power Research Institute, Taejon (Korea, Republic of)
1996-12-31
To search for the cause of vibration problem of rotating machine in the power plant, first the rotating machine is classified according to their type and each vibration characteristic is reviewed. The criteria for the evaluation of mechanical vibration effect on the structure and human being during the design of machine foundation is described below. The foundation of rotating machine is classified according to its shape and some factors are described which should be considered during dynamic modeling analysis for its correct result. Also the methods of incorporating foundation vibration into mechanical vibration analysis are reviewed. Type of vibration measurement and analysis which is used to find out the dynamic characteristic of structure is described in accordance with its signal processing and measuring method. Measurement of vibration and its analysis when there occurs real vibration troubles in power plant are compared with the results of numerical modeling as case studies. (author). 16 refs., 23 figs.
Lee, Gileung; Lee, Kang-Ie; Lee, Yunjoo; Kim, Backki; Lee, Dongryung; Seo, Jeonghwan; Jang, Su; Chin, Joong Hyoun; Koh, Hee-Jong
2018-07-01
The split-hull phenotype caused by reduced lemma width and low lignin content is under control of SPH encoding a type-2 13-lipoxygenase and contributes to high dehulling efficiency. Rice hulls consist of two bract-like structures, the lemma and palea. The hull is an important organ that helps to protect seeds from environmental stress, determines seed shape, and ensures grain filling. Achieving optimal hull size and morphology is beneficial for seed development. We characterized the split-hull (sph) mutant in rice, which exhibits hull splitting in the interlocking part between lemma and palea and/or the folded part of the lemma during the grain filling stage. Morphological and chemical analysis revealed that reduction in the width of the lemma and lignin content of the hull in the sph mutant might be the cause of hull splitting. Genetic analysis indicated that the mutant phenotype was controlled by a single recessive gene, sph (Os04g0447100), which encodes a type-2 13-lipoxygenase. SPH knockout and knockdown transgenic plants displayed the same split-hull phenotype as in the mutant. The sph mutant showed significantly higher linoleic and linolenic acid (substrates of lipoxygenase) contents in spikelets compared to the wild type. It is probably due to the genetic defect of SPH and subsequent decrease in lipoxygenase activity. In dehulling experiment, the sph mutant showed high dehulling efficiency even by a weak tearing force in a dehulling machine. Collectively, the results provide a basis for understanding of the functional role of lipoxygenase in structure and maintenance of hulls, and would facilitate breeding of easy-dehulling rice.
Hardware and software constructs for a vibration analysis network
International Nuclear Information System (INIS)
Cook, S.A.; Crowe, R.D.; Toffer, H.
1985-01-01
Vibration level monitoring and analysis has been initiated at N Reactor, the dual purpose reactor operated at Hanford, Washington by UNC Nuclear Industries (UNC) for the Department of Energy (DOE). The machinery to be monitored was located in several buildings scattered over the plant site, necessitating an approach using satellite stations to collect, monitor and temporarily store data. The satellite stations are, in turn, linked to a centralized processing computer for further analysis. The advantages of a networked data analysis system are discussed in this paper along with the hardware and software required to implement such a system
Lyu, Bai-cheng; Wu, Wen-hua; Yao, Wei-an; Du, Yu
2017-06-01
Mooring system is the key equipment of FPSO safe operation. The soft yoke mooring system is regarded as one of the best shallow water mooring strategies and widely applied to the oil exploitation in the Bohai Bay in China and the Gulf of Mexico. Based on the analysis of numerous monitoring data obtained by the prototype monitoring system of one FPSO in the Bohai Bay, the on-site lateral vibration behaviors found on the site of the soft yoke subject to wave load were analyzed. ADAMS simulation and model experiment were utilized to analyze the soft yoke lateral vibration and it was determined that lateral vibration was resonance behaviors caused by wave excitation. On the basis of the soft yoke longitudinal restoring force being guaranteed, a TLD-based vibration damper system was constructed and the vibration reduction experiments with multi-tank space and multi-load conditions were developed. The experimental results demonstrated that the proposed TLD vibration reduction system can effectively reduce lateral vibration of soft yoke structures.
Convolutional neural networks for vibrational spectroscopic data analysis.
Acquarelli, Jacopo; van Laarhoven, Twan; Gerretzen, Jan; Tran, Thanh N; Buydens, Lutgarde M C; Marchiori, Elena
2017-02-15
In this work we show that convolutional neural networks (CNNs) can be efficiently used to classify vibrational spectroscopic data and identify important spectral regions. CNNs are the current state-of-the-art in image classification and speech recognition and can learn interpretable representations of the data. These characteristics make CNNs a good candidate for reducing the need for preprocessing and for highlighting important spectral regions, both of which are crucial steps in the analysis of vibrational spectroscopic data. Chemometric analysis of vibrational spectroscopic data often relies on preprocessing methods involving baseline correction, scatter correction and noise removal, which are applied to the spectra prior to model building. Preprocessing is a critical step because even in simple problems using 'reasonable' preprocessing methods may decrease the performance of the final model. We develop a new CNN based method and provide an accompanying publicly available software. It is based on a simple CNN architecture with a single convolutional layer (a so-called shallow CNN). Our method outperforms standard classification algorithms used in chemometrics (e.g. PLS) in terms of accuracy when applied to non-preprocessed test data (86% average accuracy compared to the 62% achieved by PLS), and it achieves better performance even on preprocessed test data (96% average accuracy compared to the 89% achieved by PLS). For interpretability purposes, our method includes a procedure for finding important spectral regions, thereby facilitating qualitative interpretation of results. Copyright © 2016 Elsevier B.V. All rights reserved.
High frequency vibration analysis by the complex envelope vectorization.
Giannini, O; Carcaterra, A; Sestieri, A
2007-06-01
The complex envelope displacement analysis (CEDA) is a procedure to solve high frequency vibration and vibro-acoustic problems, providing the envelope of the physical solution. CEDA is based on a variable transformation mapping the high frequency oscillations into signals of low frequency content and has been successfully applied to one-dimensional systems. However, the extension to plates and vibro-acoustic fields met serious difficulties so that a general revision of the theory was carried out, leading finally to a new method, the complex envelope vectorization (CEV). In this paper the CEV method is described, underlying merits and limits of the procedure, and a set of applications to vibration and vibro-acoustic problems of increasing complexity are presented.
Model reduction and analysis of a vibrating beam microgyroscope
Ghommem, Mehdi; Nayfeh, Ali Hasan; Choura, Slim A.
2012-01-01
The present work is concerned with the nonlinear dynamic analysis of a vibrating beam microgyroscope composed of a rotating cantilever beam with a tip mass at its end. The rigid mass is coupled to two orthogonal electrodes in the drive and sense directions, which are attached to the rotating base. The microbeam is driven by an AC voltage in the drive direction, which induces vibrations in the orthogonal sense direction due to rotation about the microbeam axis. The electrode placed in the sense direction is used to measure the induced motions and extract the underlying angular speed. A reduced-order model of the gyroscope is developed using the method of multiple scales and used to examine its dynamic behavior. © The Author(s) 2012 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
Model reduction and analysis of a vibrating beam microgyroscope
Ghommem, Mehdi
2012-05-08
The present work is concerned with the nonlinear dynamic analysis of a vibrating beam microgyroscope composed of a rotating cantilever beam with a tip mass at its end. The rigid mass is coupled to two orthogonal electrodes in the drive and sense directions, which are attached to the rotating base. The microbeam is driven by an AC voltage in the drive direction, which induces vibrations in the orthogonal sense direction due to rotation about the microbeam axis. The electrode placed in the sense direction is used to measure the induced motions and extract the underlying angular speed. A reduced-order model of the gyroscope is developed using the method of multiple scales and used to examine its dynamic behavior. © The Author(s) 2012 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
Nonlinear Vibrations of Cantilever Timoshenko Beams: A Homotopy Analysis
Directory of Open Access Journals (Sweden)
Shahram Shahlaei-Far
Full Text Available Abstract This study analyzes the fourth-order nonlinear free vibration of a Timoshenko beam. We discretize the governing differential equation by Galerkin's procedure and then apply the homotopy analysis method (HAM to the obtained ordinary differential equation of the generalized coordinate. We derive novel analytical solutions for the nonlinear natural frequency and displacement to investigate the effects of rotary inertia, shear deformation, pre-tensile loads and slenderness ratios on the beam. In comparison to results achieved by perturbation techniques, this study demonstrates that a first-order approximation of HAM leads to highly accurate solutions, valid for a wide range of amplitude vibrations, of a high-order strongly nonlinear problem.
Energetics and Vibrational Analysis of Methyl Salicylate Isomers
Massaro, Richard D.; Dai, Yafei; Blaisten-Barojas, Estela
2009-08-01
Energetics and vibrational analysis study of six isomers of methyl salicylate in their singlet ground state and first excited triple state is put forward in this work at the density functional theory level and large basis sets. The ketoB isomer is the lowest energy isomer, followed by its rotamer ketoA. For both ketoB and ketoA their enolized tautomers are found to be stable as well as their open forms that lack the internal hydrogen bond. The calculated vibrational spectra are in excellent agreement with IR experiments of methyl salicylate in the vapor phase. It is demonstrated that solvent effects have a weak influence on the stability of these isomers. The ionization reaction from ketoB to ketoA shows a high barrier of 0.67 eV ensuring that thermal and chemical equilibria yield systems containing mostly the ketoB isomer at normal conditions.
Ultimate Strength of Ship Hulls under Torsion
DEFF Research Database (Denmark)
Paik, Jeom Kee; Thayamballi, Anil K.; Pedersen, Preben Terndrup
2001-01-01
For a ship hull with large deck openings such as container vessels and some large bulk carriers, the analysis of warping stresses and hatch opening deformations is an essential part of ship structural analyses. It is thus of importance to better understand the ultimate torsional strength characte......For a ship hull with large deck openings such as container vessels and some large bulk carriers, the analysis of warping stresses and hatch opening deformations is an essential part of ship structural analyses. It is thus of importance to better understand the ultimate torsional strength...... characteristics of ships with large hatch openings. The primary aim of the present study is to investigate the ultimate strength characteristics of ship hulls with large hatch openings under torsion. Axial (warping) as well as shear stresses are normally developed for thin-walled beams with open cross sections...... subjected to torsion. A procedure for calculating these stresses is briefly described. As an illustrative example, the distribution and magnitude of warping and shear stresses for a typical container vessel hull cross section under unit torsion is calculated by the procedure. By theoretical and numerical...
Vibration behavior of PWR reactor internals Model experiments and analysis
International Nuclear Information System (INIS)
Assedo, R.; Dubourg, M.; Livolant, M.; Epstein, A.
1975-01-01
In the late 1971, the CEA and FRAMATOME decided to undertake a comprehensive joint program of studying the vibration behavior of PWR internals of the 900 MWe, 50 cycle, 3 loop reactor series being built by FRAMATOME in France. The PWR reactor internals are submitted to several sources of excitation during normal operation. Two main sources of excitation may effect the internals behavior: the large flow turbulences which could generate various instabilities such as: vortex shedding: the pump pressure fluctuations which could generate acoustic noise in the circuit at frequencies corresponding to shaft speed frequencies or blade passing frequencies, and their respective harmonics. The flow induced vibrations are of complex nature and the approach selected, for this comprehensive program, is semi-empirical and based on both theoretical analysis and experiments on a reduced scale model and full scale internals. The experimental support of this program consists of: the SAFRAN test loop which consists of an hydroelastic similitude of a 1/8 scale model of a PWR; harmonic vibration tests in air performed on full scale reactor internals in the manufacturing shop; the GENNEVILLIERS facilities which is a full flow test facility of primary pump; the measurements carried out during start up on the Tihange reactor. This program will be completed in April 1975. The results of this program, the originality of which consists of studying separately the effects of random excitations and acoustic noises, on the internals behavior, and by establishing a comparison between experiments and analysis, will bring a major contribution for explaining the complex vibration phenomena occurring in a PWR
VIBRATIONS DETECTION IN INDUSTRIAL PUMPS BASED ON SPECTRAL ANALYSIS TO INCREASE THEIR EFFICIENCY
Directory of Open Access Journals (Sweden)
Belhadef RACHID
2016-01-01
Full Text Available Spectral analysis is the key tool for the study of vibration signals in rotating machinery. In this work, the vibration analy-sis applied for conditional preventive maintenance of such machines is proposed, as part of resolved problems related to vibration detection on the organs of these machines. The vibration signal of a centrifugal pump was treated to mount the benefits of the approach proposed. The obtained results present the signal estimation of a pump vibration using Fourier transform technique compared by the spectral analysis methods based on Prony approach.
Homogeneity Analysis of a MEMS-based PZT Thick Film Vibration Energy Harvester Manufacturing Process
DEFF Research Database (Denmark)
Lei, Anders; Xu, Ruichao; Borregaard, Louise M.
2012-01-01
This paper presents a homogeneity analysis of a high yield wafer scale fabrication of MEMS-based unimorph silicon/PZT thick film vibration energy harvesters aimed towards vibration sources with peak vibrations in the range of around 300Hz. A wafer with a yield of 91% (41/45 devices) has been...
Vibration Spectrum Analysis for Indicating Damage on Turbine and Steam Generator Amurang Unit 1
Directory of Open Access Journals (Sweden)
Beny Cahyono
2017-12-01
Full Text Available Maintenance on machines is a mandatory asset management activity to maintain asset reliability in order to reduce losses due to failure. 89% of defects have random failure mode, the proper maintenance method is predictive maintenance. Predictive maintenance object in this research is Steam Generator Amurang Unit 1, which is predictive maintenance is done through condition monitoring in the form of vibration analysis. The conducting vibration analysis on Amurang Unit 1 Steam Generator is because vibration analysis is very effective on rotating objects. Vibration analysis is predicting the damage based on the vibration spectrum, where the vibration spectrum is the result of separating time-based vibrations and simplifying them into vibrations based on their frequency domain. The transformation of time-domain-wave into frequency-domain-wave is using the application of FFT, namely AMS Machinery. The measurement of vibration value is done on turbine bearings and steam generator of Unit 1 Amurang using Turbine Supervisory Instrument and CSI 2600 instrument. The result of this research indicates that vibration spectrum from Unit 1 Amurang Power Plant indicating that there is rotating looseness, even though the vibration value does not require the Unit 1 Amurang Power Plant to stop operating (shut down. This rotating looseness, at some point, can produce some indications that similar with the unbalance. In order to avoid more severe vibrations, it is necessary to do inspection on the bearings in the Amurang Unit 1 Power Plant.
Symbolic manipulation techniques for vibration analysis of laminated elliptic plates
Andersen, C. M.; Noor, A. K.
1977-01-01
A computational scheme is presented for the free vibration analysis of laminated composite elliptic plates. The scheme is based on Hamilton's principle, the Rayleigh-Ritz technique and symmetry considerations and is implemented with the aid of the MACSYMA symbolic manipulation system. The MACYSMA system, through differentiation, integration, and simplification of analytic expressions, produces highly-efficient FORTRAN code for the evaluation of the stiffness and mass coefficients. Multiple use is made of this code to obtain not only the frequencies and mode shapes of the plate, but also the derivatives of the frequencies with respect to various material and geometric parameters.
Experience on vibration analysis of primary coolant pumps in Cirus
International Nuclear Information System (INIS)
Ullas, O.P.; Tilara, Manoj; Kharpate, A.V.
2002-01-01
Full text: 40 MW (thermal) CIRUS research reactor has been in operation for over four decades. During the major portion of its life almost all the major mechanical equipment operated continuously in a healthy condition. Since 1988 ageing related breakdown has been noticed in some of the critical components, PCW pumps being one of them. Vibration measurement and analysis is carried out on a routine basis as a part of conditioning monitoring programme. Ageing degradation of various components of the pump has been detected by such a performance monitoring programme. Conditioning monitoring has been found to be quite useful for scheduling of maintenance work on pumps
Modal Analysis of MARS Solar Panel and Planar Vibrations
Simonyan, Andranik; Williams, R. Brett
2007-01-01
This slide presentation reviews the modal analysis of MARS solar panels and the planar vibrations. Included are views of the solar panels mock-up assembly, a view of the test seup,a view of the plot from the test, with the raw numbers of the frequencies in Hz values with the mode number, the spatial acceleration plots of Center sub panel at resonant frequencies, predictions from the Finite element models, an explanation of the two test that were done on the plate and the results from both tests,
Advanced Vibration Analysis Tool Developed for Robust Engine Rotor Designs
Min, James B.
2005-01-01
The primary objective of this research program is to develop vibration analysis tools, design tools, and design strategies to significantly improve the safety and robustness of turbine engine rotors. Bladed disks in turbine engines always feature small, random blade-to-blade differences, or mistuning. Mistuning can lead to a dramatic increase in blade forced-response amplitudes and stresses. Ultimately, this results in high-cycle fatigue, which is a major safety and cost concern. In this research program, the necessary steps will be taken to transform a state-of-the-art vibration analysis tool, the Turbo- Reduce forced-response prediction code, into an effective design tool by enhancing and extending the underlying modeling and analysis methods. Furthermore, novel techniques will be developed to assess the safety of a given design. In particular, a procedure will be established for using natural-frequency curve veerings to identify ranges of operating conditions (rotational speeds and engine orders) in which there is a great risk that the rotor blades will suffer high stresses. This work also will aid statistical studies of the forced response by reducing the necessary number of simulations. Finally, new strategies for improving the design of rotors will be pursued.
Numerical analysis using state space method for vibration control of ...
African Journals Online (AJOL)
In passenger cars the vibrations developed at the ground are transmitted to the passengers through seats. Due to vibrations discomfort is experienced by the passengers. Dampers are being successfully utilized to reduce the vibrations in civil engineering structures. Few dampers are used in passenger cars as well.
National Research Council Canada - National Science Library
Colclough, Stephen
1998-01-01
The XM21 Decontaminant Pumper module of the Modular Decontamination System was analyzed using finite element analysis techniques to show why the first design iteration passed transportation vibration...
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Hulls. 25.755 Section 25.755 Aeronautics... STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Floats and Hulls § 25.755 Hulls. (a) Each hull must have enough watertight compartments so that, with any two adjacent compartments flooded, the...
14 CFR 29.755 - Hull buoyancy.
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Hull buoyancy. 29.755 Section 29.755... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction Floats and Hulls § 29.755 Hull buoyancy. Water-based and amphibian rotorcraft. The hull and auxiliary floats, if used, must have enough...
Vibration analysis of gas turbine blade using FEM
International Nuclear Information System (INIS)
Iqbal, M.J.; Chohan, G.Y.; Khusnood, S.; Khan, M.A.
2003-01-01
In a typical turbo-machine, there is a stator row of blades, which guide the gases onto a rotor row of blades, to extract the mechanical power from the machine. A typical rotor blade was sees upstream disturbance from the stator row and as it rotates, receive a corresponding number of increasing and decreasing lift and moment forces alternating periodically, depending on the number of stator blades/nozzles/guide vanes. Thus all the blades in a turbo-machine receiver their major periodic excitation at a frequency equal to nozzle passing frequency. Since these forces are periodic, one has to consider several number of these harmonics in determining whether resonance takes place, when one of these harmonics coincides with any of the natural frequencies of the blades. Turbine blades have a variety of natural modes of vibration, predominantly as blade alone but also in combination with flexing of the disc rim. These mode occur at characteristic frequencies, which are determined by the distribution of mass and stiffness (in bending or torsion), resulting from the variable thickness over the blade area. Since the advent of steam turbines and their application in various sectors of industry, it is a common experience that a blade failure is a major cause of breakdown in these machines. Blade failures due to fatigue are predominantly vibration related. The dynamic loads on the blading can arise from many sources, the predominant being the source of the operation principles on which the machine is designed. This work deals with vibration analysis of a gas turbine blade using a finite element package ANSYS. Determined the natural frequencies and mode shapes for a turbine blade and a rectangular blade. Results have been validated experimentally using a rectangular blade. ANSYS results have also been compared against published results. (author)
Analysis of different vibration patterns to guide blind people.
Durá-Gil, Juan V; Bazuelo-Ruiz, Bruno; Moro-Pérez, David; Mollà-Domenech, Fernando
2017-01-01
The literature indicates the best vibration positions and frequencies on the human body where tactile information is transmitted. However, there is a lack of knowledge about how to combine tactile stimuli for navigation. The aim of this study is to compare different vibration patterns outputted to blind people and to determine the most intuitive vibration patterns to indicate direction for navigation purposes through a tactile belt. The vibration patterns that stimulate the front side of the waist are preferred for indicating direction. Vibration patterns applied on the back side of the waist could be suitable for sending messages such as stop.
Analysis of different vibration patterns to guide blind people
Directory of Open Access Journals (Sweden)
Juan V. Durá-Gil
2017-03-01
Full Text Available The literature indicates the best vibration positions and frequencies on the human body where tactile information is transmitted. However, there is a lack of knowledge about how to combine tactile stimuli for navigation. The aim of this study is to compare different vibration patterns outputted to blind people and to determine the most intuitive vibration patterns to indicate direction for navigation purposes through a tactile belt. The vibration patterns that stimulate the front side of the waist are preferred for indicating direction. Vibration patterns applied on the back side of the waist could be suitable for sending messages such as stop.
[Structure analysis of disease-related proteins using vibrational spectroscopy].
Hiramatsu, Hirotsugu
2014-01-01
Analyses of the structure and properties of identified pathogenic proteins are important for elucidating the molecular basis of diseases and in drug discovery research. Vibrational spectroscopy has advantages over other techniques in terms of sensitivity of detection of structural changes. Spectral analysis, however, is complicated because the spectrum involves a substantial amount of information. This article includes examples of structural analysis of disease-related proteins using vibrational spectroscopy in combination with additional techniques that facilitate data acquisition and analysis. Residue-specific conformation analysis of an amyloid fibril was conducted using IR absorption spectroscopy in combination with (13)C-isotope labeling, linear dichroism measurement, and analysis of amide I band features. We reveal a pH-dependent property of the interacting segment of an amyloidogenic protein, β2-microglobulin, which causes dialysis-related amyloidosis. We also reveal the molecular mechanisms underlying pH-dependent sugar-binding activity of human galectin-1, which is involved in cell adhesion, using spectroscopic techniques including UV resonance Raman spectroscopy. The decreased activity at acidic pH was attributed to a conformational change in the sugar-binding pocket caused by protonation of His52 (pKa 6.3) and the cation-π interaction between Trp68 and the protonated His44 (pKa 5.7). In addition, we show that the peak positions of the Raman bands of the C4=C5 stretching mode at approximately 1600 cm(-1) and the Nπ-C2-Nτ bending mode at approximately 1405 cm(-1) serve as markers of the His side-chain structure. The Raman signal was enhanced 12 fold using a vertical flow apparatus.
Developments In Electronic Speckle Pattern Interferometry For Automotive Vibration Analysis.
Davies, Jeremy C.; Buckberry, Clive H.; Jones, Julian D. C.; Pannell, Chris N.
1989-01-01
The incorporation of monomode fibre optics into an argon ion powered Electronic Speckle Pattern Interferometer (ESPI) is reported. The system, consisting of an optics assembly linked to the laser and a CCD camera transceiver, flexibly connected by 40m of monomode fibre optic cable to the optics, has been used to analyse the modal behaviour of structures up to 5m X 3m X 2m in size. Phase modulation of the reference beam in order to operate in a heterodyne mode has been implemented using a piezo-electric crystal operating on the monomode fibre. A new mode of operation - sequential time-average subtraction - and the results of a new processing algorithm are also reported. Their implementation enables speckle free, time-average vibration maps to be generated in real-time on large, unstable structures. Example results for a four cylinder power unit, a vehicle body shell component and an engine oil pan are included. In all cases the analysis was conducted in a general workshop environment without the need for vibration isolation facilities.
Vibration analysis of pipes conveying fluid by transfer matrix method
International Nuclear Information System (INIS)
Li, Shuai-jun; Liu, Gong-min; Kong, Wei-tao
2014-01-01
Highlights: • A theoretical study on vibration analysis of pipes with FSI is presented. • Pipelines with high fluid pressure and velocity can be solved by developed method. • Several pipeline schemes are discussed to illustrate the application of the method. • The proposed method is easier to apply compared to most existing procedures. • Influence laws of structural and fluid parameters on FSI of pipe are analyzed. -- Abstract: Considering the effects of pipe wall thickness, fluid pressure and velocity, a developed 14-equation model is presented, which describes the fluid–structure interaction behavior of pipelines. The transfer matrix method has been used for numerical modeling of both hydraulic and structural equations. Based on these models and algorithms, several pipeline schemes are presented to illustrate the application of the proposed method. Furthermore, the influence laws of supports, structural properties and fluid parameters on the dynamic response and natural frequencies of pipeline are analyzed, which shows using the optimal supports and structural properties is beneficial to reduce vibration of pipelines
Wind Turbine Gearbox Condition Monitoring Round Robin Study - Vibration Analysis
Energy Technology Data Exchange (ETDEWEB)
Sheng, S.
2012-07-01
The Gearbox Reliability Collaborative (GRC) at the National Wind Technology Center (NWTC) tested two identical gearboxes. One was tested on the NWTCs 2.5 MW dynamometer and the other was field tested in a turbine in a nearby wind plant. In the field, the test gearbox experienced two oil loss events that resulted in damage to its internal bearings and gears. Since the damage was not severe, the test gearbox was removed from the field and retested in the NWTCs dynamometer before it was disassembled. During the dynamometer retest, some vibration data along with testing condition information were collected. These data enabled NREL to launch a Wind Turbine Gearbox Condition Monitoring Round Robin project, as described in this report. The main objective of this project was to evaluate different vibration analysis algorithms used in wind turbine condition monitoring (CM) and find out whether the typical practices are effective. With involvement of both academic researchers and industrial partners, the project sets an example on providing cutting edge research results back to industry.
Vibrational spectra and normal co-ordinate analysis of 2-aminopyridine and 2-amino picoline.
Jose, Sujin P; Mohan, S
2006-05-01
The Fourier transform infrared (FT-IR) and Raman (FT-R) spectra of 2-aminopyridine and 2-amino picoline were recorded and the observed frequencies were assigned to various modes of vibration in terms of fundamentals by assuming Cs point group symmetry. A normal co-ordinate analysis was also carried out for the proper assignment of the vibrational frequencies using simple valence force field. A complete vibrational analysis is presented here for the molecules and the results are briefly discussed.
Study of vibration analysis for nuclear reactor building
International Nuclear Information System (INIS)
Hirashima, Shin-ichi
1978-01-01
The mutual interference between the contiguous buildings with separate foundations and also that between the outer wall under the ground and the foundation bottom of the building were taken into consideration for the vibration analysis with spring-mass system. For two contiguous foundations of buildings it was attempted to represent the static mutual interference by a spring-mass system model. The theoretical analysis formulas are shown for the combination of the vertical movement and rocking motion, and for the interfering forces between the foundation and the outer wall of a building. The method of extending the model to dynamic one is explained. Several spring constants utilized in the analysis were obtained, for example, for mutual interference springs regarding vertical motion, mutual interfering springs for the foundation and the outer wall of a building and the mutual interference springs concerning horizontal movement. These models and analysis were applied to the BWR-MARK II-1100 MW nuclear reactor building and the contiguous turbine building. The structures and level relations of two buildings are shown, and the spring-mass system model for these buildings is expressed. The masses of about 20, the weights, the rotating inertia, the sectional moment of inertia, the spring constant and the damping coefficient for each mass are tabulated. As the results, the peak displacements occur at 2.556 Hz, 6.918 Hz, 10.43 Hz and 13.85 Hz. The damping coefficient is large and about 10 - 30% at the lower order modes. The calculated and the measured vibration characteristics for the BWR plant buildings are not much different, and this spring-mass system model is verified to be adequate. (Nakai, Y.)
Directory of Open Access Journals (Sweden)
Jianxu Zhou
2018-03-01
Full Text Available Hydraulic vibration exists in various water conveyance projects and has resulted in different operating problems, but its obvious effects on system’s pressure head and stable operation have not been definitively addressed in the issued codes for engineering design, especially considering the uncertainties of hydraulic vibration. After detailed analysis of the randomness in hydraulic vibration and the commonly used stochastic approaches, in the basic equations for hydraulic vibration analysis, the random parameters and the formed stochastic equations were discussed for further probabilistic characteristic analysis of the random variables. Furthermore, preliminary investigation of the stochastic analysis of hydraulic vibration in pressurized pipelines and possible self-excited vibration in pumped-storage systems was presented for further consideration. The detailed discussion indicates that it is necessary to conduct further and systematic stochastic analysis of hydraulic vibration. Further, with the obtained frequencies and amplitudes in the form of a probability statement, the stochastic characteristics of various hydraulic vibrations can be investigated in detail and these solutions will be more reasonable for practical applications. Eventually, the stochastic analysis of hydraulic vibration will provide a basic premise to introduce its effect into the engineering design of water diversion and hydropower systems.
VIBRATION ANALYSIS OF TURBINE BASED ON FLUID-STRUCTURE COUPLING
Institute of Scientific and Technical Information of China (English)
LIU Demin; LIU Xiaobing
2008-01-01
The vibration of a Francis turbine is analyzed with the additional quality matrix method based on fluid-structure coupling (FSC). Firstly, the vibration frequency and mode of blade and runner in air and water are calculated. Secondly, the influences to runner frequency domain by large flow, small flow and design flow working conditions are compared. Finally the influences to runner modes by centrifugal forces under three rotating speeds of 400 r/min, 500 r/min and 600 r/min are compared. The centrifugal force and small flow working condition have greatly influence on the vibration of small runner. With the increase of centrifugal force, the vibration frequency of the runner is sharply increased. Some order frequencies are even close to the runner natural frequency in the air. Because the low frequency vibration will severely damage the stability of the turbine, low frequency vibration of units should be avoided as soon as possible.
Experimental vibration level analysis of a Francis turbine
International Nuclear Information System (INIS)
Bucur, D M; Dunca, G; Calinoiu, C
2012-01-01
In this study the vibration level of a Francis turbine is investigated by experimental work in site. Measurements are carried out for different power output values, in order to highlight the influence of the operation regimes on the turbine behavior. The study focuses on the turbine shaft to identify the mechanical vibration sources and on the draft tube in order to identify the hydraulic vibration sources. Analyzing the vibration results, recommendations regarding the operation of the turbine, at partial load close to minimum values, in the middle of the operating domain or close to maximum values of electric power, can be made in order to keep relatively low levels of vibration. Finally, conclusions are drawn in order to present the real sources of the vibrations.
Homotopy analysis approach for nonlinear piezoelectric vibration energy harvesting
Directory of Open Access Journals (Sweden)
Shahlaei-Far Shahram
2016-01-01
Full Text Available Piezoelectric energy harvesting from a vertical geometrically nonlinear cantilever beam with a tip mass subject to transverse harmonic base excitations is analyzed. One piezoelectric patch is placed on the slender beam to convert the tension and compression into electrical voltage. Applying the homotopy analysis method to the coupled electromechanical governing equations, we derive analytical solutions for the horizontal displacement of the tip mass and consequently the output voltage from the piezoelectric patch. Analytical approximation for the frequency response and phase of the geometrically forced nonlinear vibration system are also obtained. The research aims at a rigorous analytical perspective on a nonlinear problem which has previously been solely investigated by numerical and experimental methods.
Numerical Analysis of Vibrations of Structures under Moving Inertial Load
Bajer, Czeslaw I
2012-01-01
Moving inertial loads are applied to structures in civil engineering, robotics, and mechanical engineering. Some fundamental books exist, as well as thousands of research papers. Well known is the book by L. Frýba, Vibrations of Solids and Structures Under Moving Loads, which describes almost all problems concerning non-inertial loads. This book presents broad description of numerical tools successfully applied to structural dynamic analysis. Physically we deal with non-conservative systems. The discrete approach formulated with the use of the classical finite element method results in elemental matrices, which can be directly added to global structure matrices. A more general approach is carried out with the space-time finite element method. In such a case, a trajectory of the moving concentrated parameter in space and time can be simply defined. We consider structures described by pure hyperbolic differential equations such as strings and structures described by hyperbolic-parabolic differential equations ...
A theoretical analysis on vibrational-energy transfers in gases
International Nuclear Information System (INIS)
Mastrocinque, G.
1981-01-01
In order to investigate the relationships between three-dimensional and colinear molecular-collision models with particular emphasis on the role of repulsive and attractive forces in vibrational-energy transfers in gases, a theoretical analysis is developed in this paper. A few known results - mainly the Cottrell and Ream equation, the Takayanagi and the Shin expressions of the transfer probability - relevant to repulsive-force-dominated processes are obtained and/or discussed in the proposed frame. Light is also given on long-range, attractive-forces-dominated processes. The main result of this investigation is that, when a suitable hypothesis is done on the transfer probability, centrifugal effects on the intermolecular trajectories due to standard potentials are negligible in the low-temperature range. A quasi-colinear collision model, which is found to be correlated to the Cottrell and Ream expression for the transfer probability, is regained from a three-dimensional geometry in these conditions. (author)
Vibration Analysis of Annular Sector Plates under Different Boundary Conditions
Directory of Open Access Journals (Sweden)
Dongyan Shi
2014-01-01
Full Text Available An analytical framework is developed for the vibration analysis of annular sector plates with general elastic restraints along each edge of plates. Regardless of boundary conditions, the displacement solution is invariably expressed as a new form of trigonometric expansion with accelerated convergence. The expansion coefficients are treated as the generalized coordinates and determined using the Rayleigh-Ritz technique. This work allows a capability of modeling annular sector plates under a variety of boundary conditions and changing the boundary conditions as easily as modifying the material properties or dimensions of the plates. Of equal importance, the proposed approach is universally applicable to annular sector plates of any inclusion angles up to 2π. The reliability and accuracy of the current method are adequately validated through numerical examples.
Free vibration analysis of rectangular plates with central cutout
Directory of Open Access Journals (Sweden)
Kanak Kalita
2016-12-01
Full Text Available A nine-node isoparametric plate element in conjunction with first-order shear deformation theory is used for free vibration analysis of rectangular plates with central cutouts. Both thick and thin plate problems are solved for various aspect ratios and boundary conditions. In this article, primary focus is given to the effect of rotary inertia on natural frequencies of perforated rectangular plates. It is found that rotary inertia has significant effect on thick plates, while for thin plates the rotary inertia term can be ignored. It is seen that the numerical convergence is very rapid and based on comparison with experimental and analytical data from literature, it is proposed that the present formulation is capable of yielding highly accurate results. Finally, some new numerical solutions are provided here, which may serve as benchmark for future research on similar problems.
Vibration Analysis for Monitoring of Ancient Tie-Rods
Directory of Open Access Journals (Sweden)
L. Collini
2017-01-01
Full Text Available This paper presents an application of vibration analysis to the monitoring of tie-rods. An algorithm for the axial load estimation based on experimentally measured natural frequencies is introduced and its application to a case study is reported. The proposed model of a tie-rod incorporates elastic bed-type boundary conditions that represent the contact between stonework and the tie-rod. The weighed differences between experimentally and numerically determined frequencies are minimized with respect to the parameters of the model, the main being the axial load and the stiffness at the tie-rod/wall interface. Thus, the multidimensional optimization problem is solved. Results are analysed in comparison to a model with simple fixed-end boundary conditions. In addition, the analytical formulation of the problem is delivered.
System for Monitoring and Analysis of Vibrations at Electric Motors
Gabriela Rață; Mihai Rață
2014-01-01
The monitoring of vibration occurring at the electric motors is of paramount importance to ensure their optimal functioning. This paper presents a monitoring system of vibrations occurring at two different types of electric motors, using a piezoelectric accelerometer (ICP 603C11) and a data acquisition board from National Instruments (NI 6009). Vibration signals taken from different parts of electric motors are transferred to computer through the acquisition board. A virtual...
Vibrational analysis of a shipboard free electron laser beam path
Gallant, Bryan M.
2011-01-01
This thesis explores the deployment of a free electron laser (FEL) weapon system in a shipboard vibration environment. A concept solid model of a shipboard FEL is developed and used as a basis for a finite element model which is subjected to vibration simulation in MATLAB. Vibration input is obtained from ship shock trials data and wave excited motion data from ship motion simulation software. Emphasis is placed on the motion of electron beam path components of the FEL and the feasibility of ...
Vibrational analysis of Fourier transform spectrum of the B u )–X g ...
Indian Academy of Sciences (India)
improved by putting the wave number of band origins in Deslandre table. The vibrational analysis was supported by determining the Franck–Condon factor and r-centroid values. Keywords. Fourier transform spectroscopy; electronic spectrum of selenium dimer; vibrational analysis; Franck–Condon factor; r-centroid values.
Instantaneous Purified Orbit: A New Tool for Analysis of Nonstationary Vibration of Rotor System
Directory of Open Access Journals (Sweden)
Shi Dongfeng
2001-01-01
Full Text Available In some circumstances, vibration signals of large rotating machinery possess time-varying characteristics to some extent. Traditional diagnosis methods, such as FFT spectrum and orbit diagram, are confronted with a huge challenge to deal with this problem. This work aims at studying the four intrinsic drawbacks of conventional vibration signal processing method and instantaneous purified orbit (IPO on the basis of improved Fourier spectrum (IFS to analyze nonstationary vibration. On account of integration, the benefits of short period Fourier transform (SPFT and regular holospectrum, this method can intuitively reflect vibration characteristics of’a rotor system by means of parameter analysis for corresponding frequency ellipses. Practical examples, such as transient vibration in run-up stages and bistable condition of rotor show that IPO is a powerful tool for diagnosis and analysis of the vibration behavior of rotor systems.
Vibration analysis of continuous maglev guideways with a moving distributed load model
International Nuclear Information System (INIS)
Teng, N G; Qiao, B P
2008-01-01
A model of moving distributed load with a constant speed is established for vertical vibration analysis of a continuous guideway in maglev transportation system. The guideway is considered as a continuous structural system and the action of maglev vehicles on guideways is considered as a moving distributed load. Vibration of the continuous guideways used in Shanghai maglev line is analyzed with this model. The factors that affect the vibration of the guideways, such as speeds, guideway's spans, frequency and damping, are discussed
Used fuel rail shock and vibration testing options analysis
Energy Technology Data Exchange (ETDEWEB)
Ross, Steven B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Best, Ralph E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Klymyshyn, Nicholas A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Jensen, Philip J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Maheras, Steven J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
2014-09-25
The objective of the rail shock and vibration tests is to complete the framework needed to quantify loads of fuel assembly components that are necessary to guide materials research and establish a technical basis for review organizations such as the U.S. Nuclear Regulatory Commission (NRC). A significant body of experimental and numerical modeling data exists to quantify loads and failure limits applicable to normal conditions of transport (NCT) rail transport, but the data are based on assumptions that can only be verified through experimental testing. The test options presented in this report represent possible paths for acquiring the data that are needed to confirm the assumptions of previous work, validate modeling methods that will be needed for evaluating transported fuel on a case-by-case basis, and inform material test campaigns on the anticipated range of fuel loading. The ultimate goal of this testing is to close all of the existing knowledge gaps related to the loading of used fuel under NCT conditions and inform the experiments and analysis program on specific endpoints for their research. The options include tests that would use an actual railcar, surrogate assemblies, and real or simulated rail transportation casks. The railcar carrying the cradle, cask, and surrogate fuel assembly payload would be moved in a train operating over rail track modified or selected to impart shock and vibration forces that occur during normal rail transportation. Computer modeling would be used to help design surrogates that may be needed for a rail cask, a cask’s internal basket, and a transport cradle. The objective of the design of surrogate components would be to provide a test platform that effectively simulates responses to rail shock and vibration loads that would be exhibited by state-of-the-art rail cask, basket, and/or cradle structures. The computer models would also be used to help determine the placement of instrumentation (accelerometers and strain gauges
Engineering Hydrodynamic AUV Hulls
Allen, J.
2016-12-01
AUV stands for autonomous underwater vehicle. AUVs are used in oceanography and are similar to gliders. MBARIs AUVs as well as other AUVs map the ocean floor which is very important. They also measure physical characteristics of the water, such as temperature and salinity. My science fair project for 4th grade was a STEM activity in which I built and tested 3 different AUV bodies. I wanted to find out which design was the most hydrodynamic. I tested three different lengths of AUV hulls to see which AUV would glide the farthest. The first was 6 inches. The second was 12 inches and the third was 18 inches. I used clay for the nosecone and cut a ruler into two and made it the fin. Each AUV used the same nosecone and fin. I tested all three designs in a pool. I used biomimicry to create my hypothesis. When I was researching I found that long slim animals swim fastest. So, my hypothesis is the longer AUV will glide farthest. In the end I was right. The longer AUV did glide the farthest.
Calculation of Flows Over Underwater Bodies with Hull, Sail and Appendages
International Nuclear Information System (INIS)
Shoab, M.; Ayub, M.; Bilal, S.; Zahir, S.; Khan, M.A.
2004-01-01
A comprehensive study has been made for the hydrodynamic analysis of the submarine DARPA 2. The analysis was first performed for hull, then hull with sail on top and then for the complete submarine including hull, sail and appendages. A comparison of tangential velocity and pressure distribution for hull is accomplished using CFD flow solvers and published data. Further, the pressure distribution over the hull with sail is also analyzed. Finally, pressure distribution, forces and moments were calculated over the complete submarine including hull, sail and appendages. Comparison 01 pressure distribution and tangential velocity for the hull show a good agreement with published data. Pressure coefficient comparison for the hull with sail shows the good CFD-CFD agreement. Comparison of Normal force and pitching moment of complete submarine having hull, sail and appendages shows a reasonable agreement with the experimental results of DARPA 2. Both quantitative and qualitative analysis of the complete submarine estimates the required design force and moment at different angles of attack and also demonstrate the flow visualization. (author)
Parametric analysis of protective grid flow induced vibration
Energy Technology Data Exchange (ETDEWEB)
Ryu, Jooyoung; Eom, Kyongbo; Jeon, Sangyoun; Suh, Jungmin [KEPCO NF Co., Daejeon (Korea, Republic of)
2012-10-15
Protective grid (P-grid) flow-induced vibration in a nuclear power reactor is one of the critical factors for the mechanical integrity of a nuclear fuel. The P-grid is located at the lower most position above the bottom nozzle of the nuclear fuel as shown in Fig. 1, and it is required for not only filtering debris, but also supporting fuel rods. On the other hand, P-grid working conditions installed in a nuclear fuel in a reactor are severe in terms of flow speed, temperature and pressure. Considering such a severe condition of P-grid's functional performance in working environment, excessive vibration could be developed. Furthermore, if the P-grid is exposed to high levels of excessive vibration over a long period of time, fatigue failure could be unavoidable. Therefore, it is important to reduce excessive vibration while maintaining P-grid's own functional performance. KEPCO Nuclear Fuel has developed a test facility - Investigation Flow-induced Vibration (INFINIT) - to study flow-induced vibration caused by flowing coolant at various flow rates. To investigate specific relationships between configuration of P-grid and flow-induced vibration characteristics, several types of the P-grids were tested in INFINIT facility. And, based on the test results through parametric studies, the flow-induced vibration characteristics could be analyzed, and critical design parameters were found.
Computational Fluid Dynamic Analysis of a Vibrating Turbine Blade
Directory of Open Access Journals (Sweden)
Osama N. Alshroof
2012-01-01
Full Text Available This study presents the numerical fluid-structure interaction (FSI modelling of a vibrating turbine blade using the commercial software ANSYS-12.1. The study has two major aims: (i discussion of the current state of the art of modelling FSI in gas turbine engines and (ii development of a “tuned” one-way FSI model of a vibrating turbine blade to investigate the correlation between the pressure at the turbine casing surface and the vibrating blade motion. Firstly, the feasibility of the complete FSI coupled two-way, three-dimensional modelling of a turbine blade undergoing vibration using current commercial software is discussed. Various modelling simplifications, which reduce the full coupling between the fluid and structural domains, are then presented. The one-way FSI model of the vibrating turbine blade is introduced, which has the computational efficiency of a moving boundary CFD model. This one-way FSI model includes the corrected motion of the vibrating turbine blade under given engine flow conditions. This one-way FSI model is used to interrogate the pressure around a vibrating gas turbine blade. The results obtained show that the pressure distribution at the casing surface does not differ significantly, in its general form, from the pressure at the vibrating rotor blade tip.
Energy Technology Data Exchange (ETDEWEB)
Cryns, Jackson W.; Hatchell, Brian K.; Santiago-Rojas, Emiliano; Silvers, Kurt L.
2013-07-01
Formal journal article Experimental analysis of a piezoelectric energy harvesting system for harmonic, random, and sine on random vibration Abstract: Harvesting power with a piezoelectric vibration powered generator using a full-wave rectifier conditioning circuit is experimentally compared for varying sinusoidal, random and sine on random (SOR) input vibration scenarios. Additionally, the implications of source vibration characteristics on harvester design are discussed. Studies in vibration harvesting have yielded numerous alternatives for harvesting electrical energy from vibrations but piezoceramics arose as the most compact, energy dense means of energy transduction. The rise in popularity of harvesting energy from ambient vibrations has made piezoelectric generators commercially available. Much of the available literature focuses on maximizing harvested power through nonlinear processing circuits that require accurate knowledge of generator internal mechanical and electrical characteristics and idealization of the input vibration source, which cannot be assumed in general application. In this manuscript, variations in source vibration and load resistance are explored for a commercially available piezoelectric generator. We characterize the source vibration by its acceleration response for repeatability and transcription to general application. The results agree with numerical and theoretical predictions for in previous literature that load optimal resistance varies with transducer natural frequency and source type, and the findings demonstrate that significant gains are seen with lower tuned transducer natural frequencies for similar source amplitudes. Going beyond idealized steady state sinusoidal and simplified random vibration input, SOR testing allows for more accurate representation of real world ambient vibration. It is shown that characteristic interactions from more complex vibrational sources significantly alter power generation and power processing
International Nuclear Information System (INIS)
Li Yingli; Xu Daolin; Fu Yiming; Zhou Jiaxi
2012-01-01
In this paper, the average method is adopted to analysis dynamic characteristics of nonlinear vibration isolation floating raft system with feedback control. The analytic results show that the purposes of reducing amplitude of oscillation and complicating the motion can be achieved by adjusting properly the system parameters, exciting frequency and control gain. The conclusions can provide some available evidences for the design and improvement of both the passive and active control of the vibration isolation systems. By altering the exciting frequency and control gain, complex motion of the system can be obtained. Numerical simulations show the system exhibits period vibration, double period vibration and quasi-period motion.
Evaluation of the biological activity of sunflower hull extracts
Energy Technology Data Exchange (ETDEWEB)
Taha, F. S.; Wagdy, S. M.; Hassanein, M. M. M.; Hamed, S. F.
2012-11-01
This work was planned with the aim of adding value to sunflower seed hulls, a waste product of the oil industry by preparing a sunflower hull phenolic extract rich in chlorogenic acid (CGA). In order to fulfill this goal, the optimization for the extraction of a phenolic extract from the hulls was investigated. The parameters studied were: type of solvent, solvent to water ratio and hull to solvent ratio. In addition, the solvent mixtures were also studied. The resulting phenolic extracts were evaluated for their biological activities. This included phenolic content determination, evaluation of the antioxidant and antimicrobial activities. Chlorogenic acid was determined in two chosen hull extracts using the UV spectrophotometric method and HPLC analysis. The anti carcinogenic activity of the two chosen extracts was tested on seven different cell line carcinomas. The results revealed that all the phenolic extracts of sunflower hull studied contain between 190-312.5 mg phenolics/ 100 g hulls. The highest phenolic extraction was achieved with 80% methanol (1:30, hull to solvent, w/v ratio) and methanol to ethanol to water (7:7:6 v/v/v) mixture with values of 312.5 and 306.5 mg phenolics/100 g hulls, respectively. The free radical scavenging activity and antioxidant activity of all the samples ranged from 33.6-72.6%. The highest antioxidant activity and free radical scavenging activity were achieved by the same extracts that possessed the highest phenolic content, namely methanol to ethanol to water extract and 80% methanol with values 71.8 and 72.6%, 68.2 and 70.9% respectively, compared to 77.9 and 76.9% respectively for TBHQ. All the phenolic extracts possessed antimicrobial activity but to different levels against different pathogenic bacteria. The two chosen extracts also possessed anti carcinogenic activity, which differed among varying cell line carcinomas. The HPLC analysis indicated that chlorogenic acid was the main phenolic acid in the extract. Thus it can
Modeling and Analysis of a Combined Stress-Vibration Fiber Bragg Grating Sensor.
Yao, Kun; Lin, Qijing; Jiang, Zhuangde; Zhao, Na; Tian, Bian; Shi, Peng; Peng, Gang-Ding
2018-03-01
A combined stress-vibration sensor was developed to measure stress and vibration simultaneously based on fiber Bragg grating (FBG) technology. The sensor is composed of two FBGs and a stainless steel plate with a special design. The two FBGs sense vibration and stress and the sensor can realize temperature compensation by itself. The stainless steel plate can significantly increase sensitivity of vibration measurement. Theoretical analysis and Finite Element Method (FEM) were used to analyze the sensor's working mechanism. As demonstrated with analysis, the obtained sensor has working range of 0-6000 Hz for vibration sensing and 0-100 MPa for stress sensing, respectively. The corresponding sensitivity for vibration is 0.46 pm/g and the resulted stress sensitivity is 5.94 pm/MPa, while the nonlinearity error for vibration and stress measurement is 0.77% and 1.02%, respectively. Compared to general FBGs, the vibration sensitivity of this sensor is 26.2 times higher. Therefore, the developed sensor can be used to concurrently detect vibration and stress. As this sensor has height of 1 mm and weight of 1.15 g, it is beneficial for minimization and integration.
The Shock and Vibration Bulletin. Part 3. Skylab, Vibration Testing and Analysis
1973-06-01
SPECTRA D, 0. Smallwood , Sandia Laboratories, Albuquerque, New Mexico and A. F. Witte, Kaman Sciences, Colorado Springs, Colorado A TRANSIENT VIBRATION TEST...TECHNIQUE USING LEAST FAVORABLE RESPONSES D. 0. Smallwood , Sandia Laboratories, Albuquerque, New Mexico PAPERS APPEARING IN PART 2 Structural...form of the time history pdf is REFERENCES determined to be independent of changes in flight condition and sensor location, the 1. Norman Johnson and
1980-09-01
Smallwood and D. L. Gregory, Sandia Laboratories, Albuquerque, NM A NEW METHOD OF IMPROVING SPECTRA SHAPING IN REVERBERANT CHAMBERS...DAMPING M. M. Wallace and C. W. Bert, The University of Oklahoma, Norman , OK CONTRIBUTIONS TO THE DYNAMIC ANALYSIS OF MAGLEV VEHICLES ON ELEVATED GUIDEWAYS...RANDOM VIBRATION EXTRENAL CONTROL STRATEGY D. 0. Smallwood D. L. Gregory Sandia Laboratories Albuquerque, NM This paper discusses the theoretical basis for
Condition monitoring of PARR-1 rotating machines by vibration analysis technique
Directory of Open Access Journals (Sweden)
Qadir Javed
2014-01-01
Full Text Available Vibration analysis is a key tool for preventive maintenance involving the trending and analysis of machinery performance parameters to detect and identify developing problems before failure and extensive damage can occur. A lab-based experimental setup has been established for obtaining fault-free and fault condition data. After this analysis, primary and secondary motor and pump vibration data of the Pakistan Research Reactor-1 were obtained and analyzed. Vibration signatures were acquired in horizontal, vertical, and axial directions. The 48 vibration signatures have been analyzed to assess the operational status of motors and pumps. The vibration spectrum has been recorded for a 2000 Hz frequency span with a 3200 lines resolution. The data collected should be helpful in future Pakistan Research Reactor-1 condition monitoring.
Vibrational analysis of Fourier transform spectrum of the B 3− u (0
Indian Academy of Sciences (India)
... microwave, was recorded on BOMEM DA8 Fourier transform spectrometer at an apodized resolution of 0.035 cm-1. Vibrational constants were improved by putting the wave number of band origins in Deslandre table. The vibrational analysis was supported by determining the Franck–Condon factor and -centroid values.
Analysis of fluid induced vibration of cryogenic pipes in consideration of the cooling effect
International Nuclear Information System (INIS)
Kim, Bong Soo; Kim, Young Ki; Choi, Jung Woon
2008-01-01
The purpose of system analysis using fluid induced vibration is to identify the problems of the system in advance by analyzing the vibration behavior of the system excited by fluid flow. Fluid-induced vibration analysis methods, developed so far, generally use the numerical analysis method to analyze the fluid flowing inside the pipe and the infinitesimal elements at normal temperature on the basis of the governing equation obtained by applying Newton's Second Law and the momentum equation. However, as the fluid temperature changes greatly at low temperature, fluid-induced vibration analysis methods for normal temperature cannot be applied. This study investigated methods of analyzing fluid-induced vibration in consideration of the cooling effect. In consideration of the changes in the properties of the fluid and system relative to temperature, vibration behavior was analyzed numerically by means of the equation of motion. As a result, the natural frequency of the system tends to change because of the changes of the properties of materials even when the flux is constant inside the pipe, and the vibration behavior of the system was compared to that in case of normal temperature to analyze how much influence the cooling effect has on the vibration behavior of the system
Efstathiou, K; Sadovskii, DA; Zhilinskii, BI
2004-01-01
We study relative equilibria ( RE) of a nonrigid molecule, which vibrates about a well-defined equilibrium configuration and rotates as a whole. Our analysis unifies the theory of rotational and vibrational RE. We rely on the detailed study of the symmetry group action on the initial and reduced
Investigation of Apple Vibration Characteristics Using Finite Element Modal Analysis
Directory of Open Access Journals (Sweden)
R Mirzaei
2013-02-01
Full Text Available The most important quality indicator of fruits is the flesh firmness which is well correlated to their young’s modulus. In this research variation of vibration characteristics (shape modes, natural frequency of apple due to change of material characteristics (density, young's models, Poisson ratio and apple volume was investigated using Finite Element simulation. An image processing technique was used to obtain an unsymmetrical and non-spherical geometric model of apple. The exact three-dimensional shape of the fruit was created by determining the coordinates of apple surface and forming uneven rotational curvatures. Modal analysis with no boundary constraints has been applied. The first 20 Eigen frequencies and the corresponding mode shape were determined. Six rigid body modes possess zero resonant frequency which is related to the degree of freedom of a rigid body in space indicated the validity of finite element model. The modal analysis results showed that resonant frequency increased by increasing young's modulus of the fruit, while it decreased by increasing apple density. First mode torsion has a mean resonant frequency of 584 Hz. Variations of natural frequency due to change in young's modulus, density, and Poisson ratio were 80%, 11% and 4%, respectively. Coefficient of variation of resonant frequency in response to changing young's modulus was 2-3 times of that of density which shows the greatest effect of young modulus changes on natural frequency of fruits. Consequently with determination of fruits' natural frequency, their young modulus and firmness can be estimated.
Analysis of micro vibration in gas film of aerostatic guide way based on molecule collision theory
Directory of Open Access Journals (Sweden)
Yang Shao Hua
2016-01-01
Full Text Available Micro vibration of the aerostatic guide way has a significant impact on its dynamic characteristics and stability, which limits the development of pneumatic component. High pressure gas molecules have been collided with the supporting surface and the internal surface of the throttle during the flow process. Variable impulse of the surfaces aside for the gas film are affected by the changes of impulse which formed irregular impact force in horizontal and vertical direction. Micro-vibration takes place based on the natural frequency of the system and its frequency doubling. In this paper, the vibration model was established to describe the dynamic characteristics of the gas film, and the formation mechanism of micro vibration in the film is defined. Through the simulation analysis and experimental comparison, formation mechanism of the micro vibration in the gas film is confirmed. It was proposed that the micro vibration of gas film can be produced no matter whether there is a gas chamber or not in the throttle. Under the same conditions, the micro vibration of the guide way with air chamber is greater than that without any chamber. The frequency points of the vibration peaks are almost the same, as well as the vibration pattern in the frequency domain.
National Research Council Canada - National Science Library
Baumann, Gregg
1997-01-01
... (Integrated Design Engineering Analysis Software) software. The term 'shadow zone' refers to areas of low stress concentrations that are caused by lines of stress bending around structural discontinuities...
Classification Trees and the Analysis of Helicopter Vibration Data
National Research Council Canada - National Science Library
Larson, Harold
1997-01-01
.... These systems monitor (and can record) various flight parameters, pilot conversations, engine exhaust debris, metallic chip detector levels in the lubrication system, rotor track and balance, as well as vibration levels at selected...
Free vibration analysis of elastically supported Timoshenko columns ...
Indian Academy of Sciences (India)
, concen- trated mass ... linear equations of motion for transverse vibrations of a simply supported beam carrying con- centrated ... a cantilever Timoshenko beam with a rigid tip mass. Ferreira .... Figure 3. Free body diagram of elastic support.
Free Vibration Analysis of Rectangular Orthotropic Membranes in Large Deflection
Directory of Open Access Journals (Sweden)
Zheng Zhou-Lian
2009-01-01
Full Text Available This paper reviewed the research on the vibration of orthotropic membrane, which commonly applied in the membrane structural engineering. We applied the large deflection theory of membrane to derive the governing vibration equations of orthotropic membrane, solved it, and obtained the power series formula of nonlinear vibration frequency of rectangular membrane with four edges fixed. The paper gave the computational example and compared the two results from the large deflection theory and the small one, respectively. Results obtained from this paper provide some theoretical foundation for the measurement of pretension by frequency method; meanwhile, the results provide some theoretical foundation for the research of nonlinear vibration of membrane structures and the response solving of membrane structures under dynamic loads.
Analysis and simulation of centrifugal pendulum vibration absorbers
Smith, Emma
2015-01-01
When environmental laws are constricted and downsizing of engines has become the reality of the vehicle industry, there needs to be a solution for the rise in torsion vibrations in the drivetrain. These increased levels of torsion vibrations are mostly due to excitations from the firing pulses, which in turn have become increased due to higher cylinder pressures. One of the solutions for further dampening the system is to add a centrifugal pendulum absorber to the flywheel, and predicting the...
Vibrational analysis of vertical axis wind turbine blades
Kapucu, Onur
The goal of this research is to derive a vibration model for a vertical axis wind turbine blade. This model accommodates the affects of varying relative flow angle caused by rotating the blade in the flow field, uses a simple aerodynamic model that assumes constant wind speed and constant rotation rate, and neglects the disturbance of wind due to upstream blade or post. The blade is modeled as elastic Euler-Bernoulli beam under transverse bending and twist deflections. Kinetic and potential energy equations for a rotating blade under deflections are obtained, expressed in terms of assumed modal coordinates and then plugged into Lagrangian equations where the non-conservative forces are the lift and drag forces and moments. An aeroelastic model for lift and drag forces, approximated with third degree polynomials, on the blade are obtained assuming an airfoil under variable angle of attack and airflow magnitudes. A simplified quasi-static airfoil theory is used, in which the lift and drag coefficients are not dependent on the history of the changing angle of attack. Linear terms on the resulting equations of motion will be used to conduct a numerical analysis and simulation, where numeric specifications are modified from the Sandia-17m Darrieus wind turbine by Sandia Laboratories.
Analytical and experimental vibration analysis of BWR pressure vessel internals
International Nuclear Information System (INIS)
Krutzik, N.; Schad, O.
1975-01-01
This report attempts to evaluate the validity as well as quality of several analytical methods in the light of presently available experimental data for the internals of pressure vessels of boiling-water-reactor-types. The experimental checks were performed after the numerical analysis was completed and showed the accuracy of the numerical results. The analytical investigations were done by finite element programmes - 2-dimensional as well as 3-dimensional, where the effect of the mass distribution with parts of virtual masses on the dynamic response could be studied in depth. The experimental data were collected at various different plants and with different mass correlations. Besides evaluating the dynamic characteristics of the components, tests were also performed to evaluate the vibrations of the pressure vessel relative to the main structure. After analysing extensive recorded data much better understanding of the response under a variety of loading- and boundary conditions could be gained. The comparison of the results of analytical studies with the experimental results made a broad qualitative evaluation possible. (Auth.)
Vibration analysis of partially cracked plate submerged in fluid
Soni, Shashank; Jain, N. K.; Joshi, P. V.
2018-01-01
The present work proposes an analytical model for vibration analysis of partially cracked rectangular plates coupled with fluid medium. The governing equation of motion for the isotropic plate based on the classical plate theory is modified to accommodate a part through continuous line crack according to simplified line spring model. The influence of surrounding fluid medium is incorporated in the governing equation in the form of inertia effects based on velocity potential function and Bernoulli's equations. Both partially and totally submerged plate configurations are considered. The governing equation also considers the in-plane stretching due to lateral deflection in the form of in-plane forces which introduces geometric non-linearity into the system. The fundamental frequencies are evaluated by expressing the lateral deflection in terms of modal functions. The assessment of the present results is carried out for intact submerged plate as to the best of the author's knowledge the literature lacks in analytical results for submerged cracked plates. New results for fundamental frequencies are presented as affected by crack length, fluid level, fluid density and immersed depth of plate. By employing the method of multiple scales, the frequency response and peak amplitude of the cracked structure is analyzed. The non-linear frequency response curves show the phenomenon of bending hardening or softening and the effect of fluid dynamic pressure on the response of the cracked plate.
Impedance Synthesis Based Vibration Analysis of Geared Transmission System
Directory of Open Access Journals (Sweden)
Yafeng Ren
2017-01-01
Full Text Available The severity of gear noise response depends on the sensitivity of geared rotor system dynamics to the transmission error. As gearbox design trending towards lighter weight and lower noise, the influence of housing compliance on system dynamic characteristics cannot be ignored. In this study, a gear-shaft-bearing-housing coupled impedance model is proposed to account for the effect of housing compliance on the vibration of geared transmission system. This proposed dynamic model offers convenient modeling, efficient computing, and ability to combine computed parameters with experimental ones. The numerical simulations on system dynamic characteristics are performed for both a rigid housing configuration and a flexible one. Natural frequencies, dynamic mesh forces, and dynamic bearing reaction loads are computed, and the housing compliance contribution on system dynamic characteristics is analyzed. Results show that increasing housing compliance will decrease the system natural frequencies and will affect the dynamic bearing reaction loads significantly but have very little influence on the dynamic mesh force. Also, the analysis shows that bearing stiffness has significant influence on the degree of housing contribution on system dynamic characteristics.
Digital Double-Pulse Holographic Interferometry for Vibration Analysis
Directory of Open Access Journals (Sweden)
H.J. Tiziani
1996-01-01
Full Text Available Different arrangements for double-pulsed holographic and speckle interferometry for vibration analysis will be described. Experimental results obtained with films (classical holographic interferometry and CCD cameras (digital holographic interferometry as storage materials are presented. In digital holography, two separate holograms of an object under test are recorded within a few microseconds using a CCD camera and are stored in a frame grabber. The phases of the two reconstructed wave fields are calculated from the complex amplitudes. The deformation is obtained from the phase difference. In the case of electronic speckle pattern interferometry (or image plane hologram, the phase can be calculated by using the sinusoid-fitting method. In the case of digital holographic interferometry, the phase is obtained by digital reconstruction of the complex amplitudes of the wave fronts. Using three directions of illumination and one direction of observation, all the information necessary for the reconstruction of the 3-dimensional deformation vector can be recorded at the same time. Applications of the method for measuring rotating objects are discussed where a derotator needs to be used.
Hull loss accident model for narrow body commercial aircraft
Directory of Open Access Journals (Sweden)
Somchanok Tiabtiamrat
2010-10-01
Full Text Available Accidents with narrow body aircraft were statistically evaluated covering six families of commercial aircraft includingBoeing B737, Airbus A320, McDonnell Douglas MD80, Tupolev TU134/TU154 and Antonov AN124. A risk indicator for eachflight phase was developed based on motion characteristics, duration time, and the presence of adverse weather conditions.The estimated risk levels based on these risk indicators then developed from the risk indicator. Regression analysis indicatedvery good agreement between the estimated risk level and the accident ratio of hull loss cases per number of delivered aircraft.The effect of time on the hull loss accident ratio per delivered aircraft was assessed for B737, A320 and MD80. Equationsrepresenting the effect of time on hull loss accident ratio per delivered aircraft were proposed for B737, A320, and MD80,while average values of hull loss accident ratio per delivered aircraft were found for TU134, TU154, and AN 124. Accidentprobability equations were then developed for each family of aircraft that the probability of an aircraft in a hull loss accidentcould be estimated for any aircraft family, flight phase, presence of adverse weather factor, hour of day, day of week, monthof year, pilot age, and pilot flight hour experience. A simplified relationship between estimated hull loss accident probabilityand unsafe acts by human was proposed. Numerical investigation of the relationship between unsafe acts by human andfatality ratio suggested that the fatality ratio in hull loss accident was dominated primarily by the flight phase media.
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Hull. 115.802 Section 115.802 Shipping COAST GUARD....802 Hull. (a) At each initial and subsequent inspection for certification of a vessel, the owner or managing operator shall be prepared to conduct tests and have the vessel ready for inspections of the hull...
2010-10-01
... 46 Shipping 7 2010-10-01 2010-10-01 false Hull. 176.802 Section 176.802 Shipping COAST GUARD... CERTIFICATION Material Inspections § 176.802 Hull. (a) At each initial and subsequent inspection for... ready for inspections of the hull structure and its appurtenances, including the following: (1...
2010-10-01
... 46 Shipping 7 2010-10-01 2010-10-01 false Hull. 169.239 Section 169.239 Shipping COAST GUARD... Certification Inspections § 169.239 Hull. At each inspection for certification and periodic inspection, the vessel must be afloat and ready for the following tests and inspections of the hull structure and its...
Biofibres from biofuel industrial byproduct-Pongamia pinnata seed hull.
Manjula, Puttaswamy; Srinikethan, Govindan; Shetty, K Vidya
2017-01-01
Biodiesel production using Pongamia pinnata (P. pinnata) seeds results in large amount of unused seed hull. These seed hulls serve as a potential source for cellulose fibres which can be exploited as reinforcement in composites. These seed hulls were processed using chlorination and alkaline extraction process in order to isolate cellulose fibres. Scanning electron microscopy (SEM), dynamic light scattering (DLS), thermogravimetric analysis (TGA), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance spectroscopy (NMR) analysis demonstrated the morphological changes in the fibre structure. Cellulose microfibres of diameter 6-8 µm, hydrodynamic diameter of 58.4 nm and length of 535 nm were isolated. Thermal stability was enhanced by 70 °C and crystallinity index (CI) by 19.8% ensuring isolation of crystalline cellulose fibres. The sequential chlorination and alkaline treatment stemmed to the isolation of cellulose fibres from P. pinnata seed hull. The isolated cellulose fibres possessed enhanced morphological, thermal, and crystalline properties in comparison with P. pinnata seed hull. These cellulose microfibres may potentially find application as biofillers in biodegradable composites by augmenting their properties.
A.F. Zakki; Parlindungan Manik
2012-01-01
This study comparation of hull form performance was analysed becaused there was suggestion that a ship was built by hull form scheming this time (Scheltema, Formdata, NPL Series) is better than a ship that was built traditionally because there is no basic erudite calculation in hull form design. So hull form design was result of natural adaptation. Such performance are ship’s resistance, stability, and ship’s navigation.This research about hull form performance is expected can giv...
Directory of Open Access Journals (Sweden)
Lyashenko Mikhail
2017-01-01
Full Text Available This paper proposes mechanism and control algorithm for pneumatic relaxation system of suspension with vibration energy recuperation applied to standard vehicle operator seat (“Sibeko” company. Mathematical model of the seat pneumatic relaxation suspension with two additional air volumes was created. Pneumatic motor – recuperator activated by means of air flow from the one additional volume to another is installed in air piping between additional volumes. Computational research was made in Matlab/Simulink. Amplitude-frequency characteristics of transmission coefficient for standard and proposed suspensions were plotted for preliminary evaluation of vibration protection properties of seat suspension. Performed comparative analysis of amplitude-frequency characteristics shows that noticeable improvement of vibration protection properties of pneumatic relaxation suspension system with vibration energy recuperation in comparison with standard system both in region of resonance disturbances and in above-resonance region. Main ways for further improvement of vibration protection properties of proposed system were marked out.
Analysis of whole-body vibration on rheological models for tissues
Neamţu, A.; Simoiu, D.; Nyaguly, E.; Crastiu, I.; Bereteu, L.
2018-01-01
Whole body vibrations have become a very popular method in recent years, both in physical therapy and in sports. This popularity is due to the fact that, as a result of analyzing the groups of subjects, the effects of small amplitude vibration and low frequency vibration, it was found an increase in the force developed by the feet, a hardening of bone strength or an increase in bone density. In this paper we propose to give a possible explanation of the stress relieving in muscle and/or bone after whole body vibration treatment. To do this we consider some rheological models which after whole body vibrations and after the analysis of their response lead to various experiments.
International Nuclear Information System (INIS)
Ahmed, M; Gu, F; Ball, A D
2012-01-01
Traditional vibration monitoring techniques have found it difficult to determine a set of effective diagnostic features due to the high complexity of the vibration signals originating from the many different impact sources and wide ranges of practical operating conditions. In this paper Principal Component Analysis (PCA) is used for selecting vibration feature and detecting different faults in a reciprocating compressor. Vibration datasets were collected from the compressor under baseline condition and five common faults: valve leakage, inter-cooler leakage, suction valve leakage, loose drive belt combined with intercooler leakage and belt loose drive belt combined with suction valve leakage. A model using five PCs has been developed using the baseline data sets and the presence of faults can be detected by comparing the T 2 and Q values from the features of fault vibration signals with corresponding thresholds developed from baseline data. However, the Q -statistic procedure produces a better detection as it can separate the five faults completely.
An experimental approach to free vibration analysis of smart composite beam
Yashavantha Kumar, G. A.; Sathish Kumar, K. M.
2018-02-01
Experimental vibration analysis is a main concern of this study. In designing any structural component the important parameter that has to be considered is vibration. The present work involves the experimental investigation of free vibration analysis of a smart beam. Smart beam consists of glass/epoxy composite as a main substrate and two PZT patches. The PZT patches are glued above and below the main beam. By experimentation the natural frequencies and mode shapes are obtained for both with and without PZT patches of a beam. Finally through experimentation the response of the smart beam is recorded.
Classification Analysis of Vibration Data from SH-60B Helicopter Transmission Test Facility
National Research Council Canada - National Science Library
Anderson, Gregory
1997-01-01
.... The system is referred to as the Health Usage and Monitoring Systems (HUMS). The program's objective is to develop an automated diagnostic system that can identify mechanical faults within the power train of helicopters using vibration analysis...
Advances in nonlinear vibration analysis of structures. Part-I. Beams
Indian Academy of Sciences (India)
Unknown
element analysis of nonlinear beams under static and dynamic loads. ... linearization, substitution of inplane boundary conditions at element level rather .... Modelling the nonlinear vibration problems using finite elements, albeit with a couple.
Predicting wind-induced vibrations of high-rise buildings using unsteady CFD and modal analysis
Zhang, Yue; Habashi, Wagdi G (Ed); Khurram, Rooh Ul Amin
2015-01-01
This paper investigates the wind-induced vibration of the CAARC standard tall building model, via unsteady Computational Fluid Dynamics (CFD) and a structural modal analysis. In this numerical procedure, the natural unsteady wind in the atmospheric
Development of varying magnetic field analysis technology caused by vibration of MRI apparatus
International Nuclear Information System (INIS)
Imamura, Yukinobu; Motoshiromizu, Hirofumi; Abe, Mitsushi; Watanabe, Hiroyuki; Takeuchi, Hiroyuki
2015-01-01
In Magnetic Resonance Imaging (MRI) apparatus, pulse current is energized to the gradient coils in a strong static magnetic field generated by the static magnetic poles. Since electromagnetic force (i.e. Lorentz force) is generated in the gradient coils, the MRI magnet system vibrates. On the other hand, vibration of the MRI magnet system is affected by electromagnetic force caused by static magnetic poles vibration. As the vibration of MRI magnet system causes magnetic field disturbance (so-called 'error magnetic field') and affect image quality, it is important to evaluate them in the design process. In this study, a varying magnetic field evaluation method for MRI magnet system was developed. Vibration and electromagnetic force is considered in the weak coupling formation using the Modal Magnetic Dumping (MMD) method. In the eddy current analysis by vibration, the displacement was considered in the magnetic field changes in the finite elements. Error magnetic field caused by equipment vibration was obtained by superposition of the static magnetic field fluctuation and the eddy current magnetic field. Then open type MRI magnet was evaluated by the proposed methodology. A a result, vibration of static magnet poles were suppressed by magnetic dumping at 50 Hz or less and eddy current magnetic field was dominant at 50 Hz or more. (author)
Development of hull compaction system for nuclear recycle facility
International Nuclear Information System (INIS)
Manole, A.A.; Karkhanis, P.P.; Agarwal, Kailash; Basu, Sekhar
2013-01-01
India has adopted closed fuel cycle strategy for efficient management of available resources to meet long term energy requirements. Nuclear Recycle Facility (NRF) provides a vital link in three-stage Indian nuclear power programme. In a NRF for PHWR fuel cycle, reprocessing of spent fuel bundles from PHWRs is carried out using a chop-leach process where the spent fuel bundles are chopped into small pieces using a spent fuel chopper and the contents inside the zircaloy clad are dissolved using concentric nitric acid. This process generates empty zircaloy shells called 'hulls'. The present practice followed for management of hulls is to transfer them into SS drums and store these drums in underground RCC tile holes at a Waste Management Facility (WMF). This waste needs to be stored in an engineered WMF for at least 30-60 years before transferred to a final repository. The storage volumes required for this hull waste will keep increasing as the reprocessing capacity is being enhanced multi-folds. Compaction of hull waste has been employed internationally to reduce the volume required for storage. Hence indigenous development of hull compaction system was initiated by NRB to meet the future requirements. This is being achieved through a set of experiments and analysis with the available resources within the country. This paper describes the process of compaction, conceptualization of the system and benefits accrued from it. (author)
An adjoint method of sensitivity analysis for residual vibrations of structures subject to impacts
Yan, Kun; Cheng, Gengdong
2018-03-01
For structures subject to impact loads, the residual vibration reduction is more and more important as the machines become faster and lighter. An efficient sensitivity analysis of residual vibration with respect to structural or operational parameters is indispensable for using a gradient based optimization algorithm, which reduces the residual vibration in either active or passive way. In this paper, an integrated quadratic performance index is used as the measure of the residual vibration, since it globally measures the residual vibration response and its calculation can be simplified greatly with Lyapunov equation. Several sensitivity analysis approaches for performance index were developed based on the assumption that the initial excitations of residual vibration were given and independent of structural design. Since the resulting excitations by the impact load often depend on structural design, this paper aims to propose a new efficient sensitivity analysis method for residual vibration of structures subject to impacts to consider the dependence. The new method is developed by combining two existing methods and using adjoint variable approach. Three numerical examples are carried out and demonstrate the accuracy of the proposed method. The numerical results show that the dependence of initial excitations on structural design variables may strongly affects the accuracy of sensitivities.
Time average vibration fringe analysis using Hilbert transformation
International Nuclear Information System (INIS)
Kumar, Upputuri Paul; Mohan, Nandigana Krishna; Kothiyal, Mahendra Prasad
2010-01-01
Quantitative phase information from a single interferogram can be obtained using the Hilbert transform (HT). We have applied the HT method for quantitative evaluation of Bessel fringes obtained in time average TV holography. The method requires only one fringe pattern for the extraction of vibration amplitude and reduces the complexity in quantifying the data experienced in the time average reference bias modulation method, which uses multiple fringe frames. The technique is demonstrated for the measurement of out-of-plane vibration amplitude on a small scale specimen using a time average microscopic TV holography system.
Directory of Open Access Journals (Sweden)
Wei Zheng
Full Text Available The prediction of conformational b-cell epitopes plays an important role in immunoinformatics. Several computational methods are proposed on the basis of discrimination determined by the solvent-accessible surface between epitopes and non-epitopes, but the performance of existing methods is far from satisfying. In this paper, depth functions and the k-th surface convex hull are used to analyze epitopes and exposed non-epitopes. On each layer of the protein, we compute relative solvent accessibility and four different types of depth functions, i.e., Chakravarty depth, DPX, half-sphere exposure and half space depth, to analyze the location of epitopes on different layers of the proteins. We found that conformational b-cell epitopes are rich in charged residues Asp, Glu, Lys, Arg, His; aliphatic residues Gly, Pro; non-charged residues Asn, Gln; and aromatic residue Tyr. Conformational b-cell epitopes are rich in coils. Conservation of epitopes is not significantly lower than that of exposed non-epitopes. The average depths (obtained by four methods for epitopes are significantly lower than that of non-epitopes on the surface using the Wilcoxon rank sum test. Epitopes are more likely to be located in the outer layer of the convex hull of a protein. On the benchmark dataset, the cumulate 10th convex hull covers 84.6% of exposed residues on the protein surface area, and nearly 95% of epitope sites. These findings may be helpful in building a predictor for epitopes.
Study on Nonlinear Vibration Analysis of Gear System with Random Parameters
Tong, Cao; Liu, Xiaoyuan; Fan, Li
2018-03-01
In order to study the dynamic characteristics of gear nonlinear vibration system and the influence of random parameters, firstly, a nonlinear stochastic vibration analysis model of gear 3-DOF is established based on Newton’s Law. And the random response of gear vibration is simulated by stepwise integration method. Secondly, the influence of stochastic parameters such as meshing damping, tooth side gap and excitation frequency on the dynamic response of gear nonlinear system is analyzed by using the stability analysis method such as bifurcation diagram and Lyapunov exponent method. The analysis shows that the stochastic process can not be neglected, which can cause the random bifurcation and chaos of the system response. This study will provide important reference value for vibration engineering designers.
National Aeronautics and Space Administration — Ground vibration tests or modal surveys are routinely conducted to support flutter analysis for subsonic and supersonic vehicles. However, vibration testing...
Suhasini, M.; Sailatha, E.; Gunasekaran, S.; Ramkumaar, G. R.
2015-11-01
The Fourier transform infrared (FT-IR) and FT-Raman spectra of Lornoxicam were recorded in the region 4000-450 cm-1 and 4000-50 cm-1 respectively. Density functional theory (DFT) has been used to calculate the optimized geometrical parameters, atomic charges, and vibrational wavenumbers and intensity of the vibrational bands. The computed vibrational wave numbers were compared with the FT-IR and FT-Raman experimental data. The computational calculations at DFT/B3LYP level with 6-31G(d,p) and 6-31++G(d,p) basis sets. The complete vibrational assignments were performed on the basis of the potential energy distribution (PED) of the Vibrational modes calculated using Vibrational Energy Distribution Analysis (VEDA 4) program. The oscillator's strength calculated by TD-DFT and Lornoxicam is approach complement with the experimental findings. The NMR chemical shifts 13C and 1H were recorded and calculated using the gauge independent atomic orbital (GIAO) method. The Natural charges and intermolecular contacts have been interpreted using Natural Bond orbital (NBO) analysis and the HOMO-LUMO energy gap has been calculated. The thermodynamic properties like Entropy, Enthalpy, Specific heat capacity and zero vibrational energy have been calculated. Besides, molecular electrostatic potential (MEP) was investigated using theoretical calculations.
Classical Analysis of the Shear Vibration Characteristics of an ...
African Journals Online (AJOL)
For harmonic displacement response, it was found that the governing partial differential equation reduces to an ordinary differential equation of the Bessel type. This was then solved, subject to the boundary conditions, to obtain the modal shape functions and natural frequencies of vibration. The shear stress distribution ...
Analysis of flow-induced vibrations in the PEC design
International Nuclear Information System (INIS)
Cornaggia, L.; Reale, M.; Martelli, A.; Zambelli, M.
1986-01-01
This paper summarizes the studies performed for the Italian PEC fast reactor test facility with regard to flow-induced vibration problems. Reference is made to the reactor-block, the primary and secondary coolant loops and the emergency loops. Studies in progress and future developments foreseen are also mentioned. (author)
Vibrational Analysis of (SCN)2 and the Transient (SCN)2
DEFF Research Database (Denmark)
Jensen, N. H.; Wilbrandt, Robert Walter; Pagsberg, Palle Bjørn
1979-01-01
The vibrational spectra of thiocyanogen and the transient radical anion (SCN)2− are interpreted in detail through molecular orbital and normal coordinate calculations. The results support the assignment of (SCN)2− to the anion of thiocyanogen and indicate a substantial weakening of the S–S and C......≡N bonds in going from the parent molecule to its radical anion....
Numerical analysis using state space method for vibration control of ...
African Journals Online (AJOL)
ATHARVA
carried out for two cases namely car moving on sagged bridges and car ... the vibrations of steel moment resisting frame in reinforced cement concrete buildings. ... active or semi-active dampers rolled into one (Spencer Jr. and Soong, 1999). ... implementation cost, low power consumption, ease of control, simple design ...
Analysis of radial vibrations of poroelastic circular cylindrical shells ...
African Journals Online (AJOL)
DR OKE
vanished, the considered problem reduces to the problem of radial vibrations of fluid-filled poroelastic circular cylindrical shell. (2). When the .... the volume change of the solid to that of liquid. ..... When the outer fluid density is zero, that is, ρof = 0 then the poroelastic cylindrical shell immersed in an acoustic medium will.
Analysis of the vibration of the vehicle body with the elimination of the influence of tires
Directory of Open Access Journals (Sweden)
Łukasz KONIECZNY
2015-09-01
Full Text Available The article presented the results of vibration measurements of selected elements of the vehicle during the test vibration carried out on a bench with a harmonic kinematic extortion. The results of research carried out for the car when replacing tire and wheels steel tripod eliminating the influence of elasticity and damping tires. The tests were performed at various values of the shock absorber fluid filling (from 100% to 50% of the shock absorber fluid. For registered vibration acceleration STFT analysis was performed.
Vibration analysis of continuous maglev guideways with a moving distributed load model
Energy Technology Data Exchange (ETDEWEB)
Teng, N G; Qiao, B P [Department of Civil Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 (China)
2008-02-15
A model of moving distributed load with a constant speed is established for vertical vibration analysis of a continuous guideway in maglev transportation system. The guideway is considered as a continuous structural system and the action of maglev vehicles on guideways is considered as a moving distributed load. Vibration of the continuous guideways used in Shanghai maglev line is analyzed with this model. The factors that affect the vibration of the guideways, such as speeds, guideway's spans, frequency and damping, are discussed.
International Nuclear Information System (INIS)
Katayama, I.; Niwa, A.; Kubo, Y.; Penzien, J.
1987-01-01
In connection with the previous paper under the same subject, which describes the results obtained by the field vibration tests of five different models, this paper describes the outline of the hybrid analysis code of soil-structure interaction (HASSI) and the results of numerical simulation of the responses obtained at the model 2C in both cases of the forced vibration test and the natural earthquake excitation
Modeling and analysis of circular flexural-vibration-mode piezoelectric transformer.
Huang, Yihua; Huang, Wei
2010-12-01
We propose a circular flexural-vibration-mode piezoelectric transformer and perform a theoretical analysis of the transformer. An equivalent circuit is derived from the equations of piezoelectricity and the Hamilton's principle. With this equivalent circuit, the voltage gain ratio, input impedance, and the efficiency of the circular flexural-vibration-mode piezoelectric transformer can be determined. The basic behavior of the transformer is shown by numerical results.
WAVELETS AND PRINCIPAL COMPONENT ANALYSIS METHOD FOR VIBRATION MONITORING OF ROTATING MACHINERY
Bendjama, Hocine; S. Boucherit, Mohamad
2017-01-01
Fault diagnosis is playing today a crucial role in industrial systems. To improve reliability, safety and efficiency advanced monitoring methods have become increasingly important for many systems. The vibration analysis method is essential in improving condition monitoring and fault diagnosis of rotating machinery. Effective utilization of vibration signals depends upon effectiveness of applied signal processing techniques. In this paper, fault diagnosis is performed using a com...
The Hull Method for Selecting the Number of Common Factors
Lorenzo-Seva, Urbano; Timmerman, Marieke E.; Kiers, Henk A. L.
2011-01-01
A common problem in exploratory factor analysis is how many factors need to be extracted from a particular data set. We propose a new method for selecting the number of major common factors: the Hull method, which aims to find a model with an optimal balance between model fit and number of parameters. We examine the performance of the method in an…
Measurement and Analysis of Horizontal Vibration Response of Pile Foundations
Directory of Open Access Journals (Sweden)
A. Boominathan
2007-01-01
Full Text Available Pile foundations are frequently used in very loose and weak deposits, in particular soft marine clays deposits to support various industrial structures, power plants, petrochemical complexes, compressor stations and residential multi-storeyed buildings. Under these circumstances, piles are predominantly subjected to horizontal dynamic loads and the pile response to horizontal vibration is very critical due to its low stiffness. Though many analytical methods have been developed to estimate the horizontal vibration response, but they are not well validated with the experimental studies. This paper presents the results of horizontal vibration tests carried out on model aluminium single piles embedded in a simulated Elastic Half Space filled with clay. The influence of various soil and pile parameters such as pile length, modulus of clay, magnitude of dynamic load and frequency of excitation on the horizontal vibration response of single piles was examined. Measurement of various response quantities, such as the load transferred to the pile, pile head displacement and the strain variation along the pile length were done using a Data Acquisition System. It is found that the pile length, modulus of clay and dynamic load, significantly influences the natural frequency and peak amplitude of the soil-pile system. The maximum bending moment occurs at the fundamental frequency of the soil-pile system. The maximum bending moment of long piles is about 2 to 4 times higher than that of short piles and it increases drastically with the increase in the shear modulus of clay for both short and long piles. The active or effective pile length is found to be increasing under dynamic load and empirical equations are proposed to estimate the active pile length under dynamic loads.
46 CFR 45.129 - Hull fittings: General.
2010-10-01
... 46 Shipping 2 2010-10-01 2010-10-01 false Hull fittings: General. 45.129 Section 45.129 Shipping... Assignment § 45.129 Hull fittings: General. Hull fittings must be securely mounted in the hull so as to avoid increases in hull stresses and must be protected from local damage caused by movement of equipment or cargo. ...
46 CFR 154.174 - Transverse contiguous hull structure.
2010-10-01
... 46 Shipping 5 2010-10-01 2010-10-01 false Transverse contiguous hull structure. 154.174 Section... Equipment Hull Structure § 154.174 Transverse contiguous hull structure. (a) The transverse contiguous hull...) The transverse contiguous hull structure of a vessel having cargo containment systems with secondary...
46 CFR 115.645 - Alternative Hull Examination (AHE) Procedure.
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Alternative Hull Examination (AHE) Procedure. 115.645... AND CERTIFICATION Hull and Tailshaft Examinations § 115.645 Alternative Hull Examination (AHE... underwater hull plating and a detailed examination of all hull welds, propellers, tailshafts, rudders, and...
An Analysis of the High Frequency Vibrations in Early Thematic Mapper Scenes
Kogut, J.; Larduinat, E.
1985-01-01
The motion of the mirrors in the thematic mapper (TM) and multispectral scanner (MSS) instruments, and the motion of other devices, such as the TDRSS antenna drive, and solar array drives onboard LANDSAT-4 cause vibrations to propagate through the spacecraft. These vibrations as well as nonlinearities in the scanning motion of the TM mirror can cause the TM detectors to point away from their nominal positions. Two computer programs, JITTER and SCDFT, were developed as part of the LANDSAT-D Assessment System (LAS), Products and Procedures Analysis (PAPA) program to evaluate the potential effect of high frequency vibrations on the final TM image. The maximum overlap and underlap which were observed for early TM scenes are well within specifications for the ground processing system. The cross scan and scan high frequency vibrations are also within the specifications cited for the flight system.
Vibration analysis on driver’s seat of agricultural tractors during tillage tests
International Nuclear Information System (INIS)
Gialamas, T.; Gravalos, I.; Kateris, D.; Xyradakis, P.; Dimitriadis, C.
2016-01-01
The vibration of the driver’s seat of agricultural tractors was investigated during three alternative tillage operations. Three tractors including a range of specifications were considered, at a range of forward speeds. The interactions between the tractors, implements and speeds were examined using the SPSS program and the GLM-ANOVA method. The results analysis indicated that the tractors played the first major role in vibration development in the lateral axis and was followed by the implements. In contrast, the implements played the first major role in the development of vibration in the horizontal axis and are followed by factor tractors. The statistically significant effect in vertical and horizontal axes shows the factor implements. In addition, the statistically significant effect in the vertical and lateral axes shows again the implements to be the most significant factor. Of the implements, the plough shows the highest vibration and displays statistically significant difference in comparison with the other implements.
Thermal and vibration dynamic analysis of an induction motor using optical fiber Bragg gratings
Sousa, Kleiton d. M.; Dreyer, Uilian J.; Martelli, Cicero; Cardozo da Silva, Jean Carlos
2015-09-01
In this paper it is presented the results of temperature and vibration measurements in a Three-phase Induction Motor (TIM) running at no-load condition. Vibration and temperature analysis are the most successful techniques used for condition monitoring of induction motors. The vibration is measured using two FBGs installed inside of the motor between two subsequent stator teeth. The motor spectrum of vibration when power is at 60 Hz presents the frequencies 60 Hz, 120 Hz, 180 Hz, and 240 Hz as theoretically expected. For the temperature measurement two FBGs are encapsulated in an alumina tube fixed along the stator. The results show 0.9°C difference between the two FBG caused by the motor ventilation nearer of one FBG. These measurements can be used to determine TIM parameters and still be predictive maintenance tool.
Analysis of vibration of exhaust valve pipeline in nuclear power plant
International Nuclear Information System (INIS)
Tan Ping
2005-01-01
Pipeline system for conveying pressurized steam often operates under time-varying conditions due to the valve operations. This may cause vibration problems as a result the pipeline system suffered vibration damage. In this paper, a finite element formulation for the exhaust dynamic equations that include the effect of all pipe supports, and hangers is introduced and applied to the dynamic analysis of the pipeline system used in a nuclear power plant. the vibration response of steam-conveying pipeline induced by valve exhaust has been studied. The model is validated with a fieldwork experimental pipeline system. the mechanical vibrations from steam exhaust valves can be eliminated by careful design of the valve plug and seat. (authors)
Karakaya, Mustafa; Kürekçi, Mehmet; Eskiyurt, Buse; Sert, Yusuf; Çırak, Çağrı
2015-01-01
In present study, the experimental and theoretical harmonic vibrational frequencies of gliclazide molecule have been investigated. The experimental FT-IR (400-4000 cm-1) and Laser-Raman spectra (100-4000 cm-1) of the molecule in the solid phase were recorded. Theoretical vibrational frequencies and geometric parameters (bond lengths and bond angles) have been calculated using ab initio Hartree Fock (HF), density functional theory (B3LYP hybrid function) methods with 6-311++G(d,p) and 6-31G(d,p) basis sets by Gaussian 09W program. The assignments of the vibrational frequencies were performed by potential energy distribution (PED) analysis by using VEDA 4 program. Theoretical optimized geometric parameters and vibrational frequencies have been compared with the corresponding experimental data, and they have been shown to be in a good agreement with each other. Also, the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energies have been found.
Vibrational analysis of 4-chloro-3-nitrobenzonitrile by quantum chemical calculations
Sert, Yusuf; Çırak, Çağrı; Ucun, Fatih
2013-04-01
In the present study, the experimental and theoretical harmonic and anharmonic vibrational frequencies of 4-chloro-3-nitrobenzonitrile were investigated. The experimental FT-IR (400-4000 cm-1) and μ-Raman spectra (100-4000 cm-1) of the molecule in the solid phase were recorded. Theoretical vibrational frequencies and geometric parameters (bond lengths and bond angles) were calculated using ab initio Hartree Fock (HF), density functional B3LYP and M06-2X methods with 6-311++G(d,p) basis set by Gaussian 09 W program, for the first time. The assignments of the vibrational frequencies were performed by potential energy distribution (PED) analysis by using VEDA 4 program. The theoretical optimized geometric parameters and vibrational frequencies were compared with the corresponding experimental data, and they were seen to be in a good agreement with each other. Also, the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energies were found.
Torsional vibration analysis in turbo-generator shaft due to mal-synchronization fault
Bangunde, Abhishek; Kumar, Tarun; Kumar, Rajeev; Jain, S. C.
2018-03-01
A rotor of turbo-generator shafting is many times subjected to torsional vibrations during its lifespan. The reasons behind these vibrations are three-Phase fault, two-phase fault, line to ground fault, faulty-mal synchronization etc. Sometimes these vibrations can cause complete failure of turbo-generator shafting system. To calculate moment variation during these faults on the shafting system vibration analysis is done using Finite Elements Methods to calculate mass and stiffness matrix. The electrical disturbance caused during Mal-synchronization is put on generator section, and corresponding second order equations are solved by using “Duhamel Integral”. From the moment variation plots at four sections critically loaded sections are identified.
International Nuclear Information System (INIS)
Masoudifar, M.; AghaAmini, M.
2001-01-01
Today the fault diagnostic of the rotating machinery based on the vibration analysis is an effective method in designing predictive maintenance programs. In this method, vibration level of the turbines is monitored and if it is higher than the allowable limit, vibrational data will be analyzed and the growing faults will be detected. But because of the high complexity of the system monitoring, the interpretation of the measured data is more difficult. Therefore, design of the fault diagnostic expert systems by using the expert's technical experiences and knowledge; seem to be the best solution. In this paper,at first several common faults in turbines are studied and the how applying the neural networks to interpret the vibrational data for fault diagnostic is explained
Modelling and Analysis of Vibrations in a UAV Helicopter with a Vision System
Directory of Open Access Journals (Sweden)
G. Nicolás Marichal Plasencia
2012-11-01
Full Text Available The analysis of the nature and damping of unwanted vibrations on Unmanned Aerial Vehicle (UAV helicopters are important tasks when images from on-board vision systems are to be obtained. In this article, the authors model a UAV system, generate a range of vibrations originating in the main rotor and design a control methodology in order to damp these vibrations. The UAV is modelled using VehicleSim, the vibrations that appear on the fuselage are analysed to study their effects on the on-board vision system by using Simmechanics software. Following this, the authors present a control method based on an Adaptive Neuro-Fuzzy Inference System (ANFIS to achieve satisfactory damping results over the vision system on board.
Vibration analysis on driver’s seat of agricultural tractors during tillage tests
Energy Technology Data Exchange (ETDEWEB)
Gialamas, T.; Gravalos, I.; Kateris, D.; Xyradakis, P.; Dimitriadis, C.
2016-07-01
The vibration of the driver’s seat of agricultural tractors was investigated during three alternative tillage operations. Three tractors including a range of specifications were considered, at a range of forward speeds. The interactions between the tractors, implements and speeds were examined using the SPSS program and the GLM-ANOVA method. The results analysis indicated that the tractors played the first major role in vibration development in the lateral axis and was followed by the implements. In contrast, the implements played the first major role in the development of vibration in the horizontal axis and are followed by factor tractors. The statistically significant effect in vertical and horizontal axes shows the factor implements. In addition, the statistically significant effect in the vertical and lateral axes shows again the implements to be the most significant factor. Of the implements, the plough shows the highest vibration and displays statistically significant difference in comparison with the other implements.
Detection of generator bearing inner race creep by means of vibration and temperature analysis
DEFF Research Database (Denmark)
Skrimpas, Georgios Alexandros; Dragiev, Ivaylo G.; Hilmisson, Reynir
2015-01-01
Vibration and temperature analysis are the two dominating condition monitoring techniques applied to fault detection of bearing failures in wind turbine generators. Relative movement between the bearing inner ring and generator axle is one of the most severe failure modes in terms of secondary...... damages and development. Detection of bearing creep can be achieved reliably based on continuous trending of the amplitude of vibration running speed harmonic and temperature absolute values. In order to decrease the number of condition indicators which need to be assessed, it is proposed to exploit...... a weighted average descriptor calculated based on the 3rd up to 6th harmonic orders. Two cases of different bearing creep severity are presented, showing the consistency of the combined vibration and temperature data utilization. In general, vibration monitoring reveals early signs of abnormality several...
2010-10-01
... 46 Shipping 7 2010-10-01 2010-10-01 false Hull type. 172.085 Section 172.085 Shipping COAST GUARD... of This Chapter § 172.085 Hull type. If a cargo listed in Table 151.05 of part 151 of this chapter is to be carried, the tank barge must be at least the hull type specified in Table 151.05 of this...
Non-destructive assay of leached hulls in a nuclear fuel reprocessing plant
International Nuclear Information System (INIS)
Hofstetter, K.J.; Henderson, B.C.; Gray, J.H.; Huff, G.A.
1978-01-01
The hull monitor at the Barnwell Nuclear Fuels Plant (BNFP) will be a remotely controlled, fully automated system designed to quantitatively assay leached hulls for undissolved U and Pu. The hull monitor will assay the hulls from one metric ton of fuel per dissolver basket with the design goal of detecting 0.1% undissolved fuel and yet remain within the framework of the BNFP materials flow of five hull baskets per day. The non-destructive assay will be accomplished using a computer-based gamma-ray pulse height analysis system employing a 5 x 5 inch NaI(Tl) scintillation detector. The intense radiations from the fission product isotopes and the activation product isotopes produced in the reactor prevent direct assay of the undissolved fuel left in the hulls. The measurement will be made indirectly by demonstrating a correlation between the amount of 144 Ce undissolved and the remaining U. The isotope 144 Ce is a direct fission product with high cumulative yield. The daughter isotope 144 Pr has a gamma ray at 2.18 MeV well above other predominant radiations in the spectrum from the major interferences 60 Co, 58 Co, 95 Zr( 95 Nb), 137 Cs and 106 Ru( 106 Rh). Segmented scanning operation of the hull monitor is accomplished by rotation and vertical transversal of the hulls container past the detector station. Proper collimation and absorbers are required to maximize the 144 Ce( 144 Pr) to background ratio. A basket indexer is provided which monitors the scanning rate and ensures repositioning. The leached hull monitor system will be interfaced to a computer-based multichannel analyzer for ease of operation and data handling. A calibration basket has been fabricated to accomodate radioactive sources and inactive Zircaloy hulls
Coupled thermal, structural and vibrational analysis of a hypersonic engine for flight test
Energy Technology Data Exchange (ETDEWEB)
Sook-Ying, Ho [Defence Science and Technology Organisation, SA (Australia); Paull, A. [Queensland Univ., Dept. of Mechanical Engineering (Australia)
2006-07-15
This paper describes a relatively simple and quick method for implementing aerodynamic heating models into a finite element code for non-linear transient thermal-structural and thermal-structural-vibrational analyses of a Mach 10 generic HyShot scram-jet engine. The thermal-structural-vibrational response of the engine was studied for the descent trajectory from 60 to 26 km. Aerodynamic heating fluxes, as a function of spatial position and time for varying trajectory points, were implemented in the transient heat analysis. Additionally, the combined effect of varying dynamic pressure and thermal loads with altitude was considered. This aero-thermal-structural analysis capability was used to assess the temperature distribution, engine geometry distortion and yielding of the structural material due to aerodynamic heating during the descent trajectory, and for optimising the wall thickness, nose radius of leading edge, etc. of the engine intake. A structural vibration analysis was also performed following the aero-thermal-structural analysis to determine the changes in natural frequencies of the structural vibration modes that occur at the various temperatures associated with the descent trajectory. This analysis provides a unique and relatively simple design strategy for predicting and mitigating the thermal-structural-vibrational response of hypersonic engines. (authors)
33 CFR 110.31 - Hull Bay and Allerton Harbor at Hull, Mass.
2010-07-01
... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Hull Bay and Allerton Harbor at Hull, Mass. 110.31 Section 110.31 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.31 Hull Bay and Allerton Harbor at...
Natural Vibration Analysis of Clamped Rectangular Orthotropic Plates
dalaei, m.; kerr, a. d.
The natural vibrations of clamped rectangular orthotropic plates are analyzed using the extended Kantorovich method. The developed iterative scheme converges very rapidly to the final result. The obtained natural frequencies are evaluated for a square plate made of Kevlar 49 Epoxy and the obtained results are compared with those published by Kanazawa and Kawai, and by Leissa. The agreement was found to be very close. As there are no exact analytical solutions for clamped rectangular plates, the generated closed form expression for the natural modes, and the corresponding natural frequencies, are very suitable for use in engineering analyses.
Vibration analysis of thin-wall structures containing piezoactive layers
International Nuclear Information System (INIS)
Guz, I A; Kashtalyan, M; Zhuk, Y A
2010-01-01
A coupled dynamic problem of electro-mechanics for a layered beam is formulated based on the Kirchhoff-Love hypotheses. In the case of harmonic loading, a simplified formulation is given using the single frequency approximation and the concept of complex moduli. As an example, the problem of forced vibration of a three-layer sandwich beam (aluminium alloy core covered with piezoelectric layers) with hinged ends is solved in order to investigate the accuracy and applicability of the approximate monoharmonic approach. Different aspects of the beam response to the mechanical and electric excitation are studied.
Vibrational spectroscopy and structural analysis of complex uranium compounds (review)
International Nuclear Information System (INIS)
Umreiko, D.S.; Nikanovich, M.V.
1985-01-01
The paper reports on the combined application of experimental and theoretical methods of vibrational spectroscopy together with low-temperature luminescence data to determine the characteristic features of the formation and structure of complex systems, not only containing ligands directly coordinated to the CA uranium, but also associated with the extraspherical polyatomic electrically charged particles: organic cations. These include uranyl complexes and heterocyclical amines. Studied here were compounds of tetra-halouranylates with pyridine and its derivates, as well as dipyridyl, quinoline and phenanthroline. Structural schemes are also proposed for other uranyl complexes with protonated heterocyclical amines with a more complicated composition, which correctly reflect their spectroscopic properties
Govindasamy, P.; Gunasekaran, S.; Ramkumaar, G. R.
2014-09-01
The Fourier transform infrared (FT-IR) and FT-Raman spectra of N-(4-hydroxy phenyl) acetamide (N4HPA) of painkiller agent were recorded in the region 4000-450 cm-1 and 4000-50 cm-1 respectively. Density functional theory (DFT) has been used to calculate the optimized geometrical parameter, atomic charges, and vibrational wavenumbers and intensity of the vibrational bands. The computed vibrational wave numbers were compared with the FT-IR and FT-Raman experimental data. The computational calculations at DFT/B3LYP level with 6-31G(d,p), 6-31++G(d,p), 6-311G(d,p) and 6-311++G(d,p) basis sets. The complete vibrational assignments were performed on the basis of the potential energy distribution (PED) of the vibrational modes calculated using Vibrational energy distribution analysis (VEDA 4) program. The oscillator’s strength calculated by TD-DFT and N4HPA is approach complement with the experimental findings. The NMR chemical shifts 13C and 1H were recorded and calculated using the gauge independent atomic orbital (GIAO) method. The molecular electrostatic potential (MESP) and electron density surfaces of the molecule were constructed. The Natural charges and intermolecular contacts have been interpreted using Natural Bond orbital (NBO) analysis the HOMO-LUMO energy gap has been calculated. The thermodynamic properties like entropy, heat capacity and zero vibrational energy have been calculated.
Impact Analysis of Roller System Stability for Four-High Mill Horizontal Vibration
Directory of Open Access Journals (Sweden)
Xiao-bin Fan
2016-01-01
Full Text Available In order to study the hot Compact Strip Production (CSP, four-high mill vibration characteristics, and vibration suppression method, the roller system structure stability was analyzed and calculated at first in the paper. And then, the mill stand gap was measured at field and its influence on roll transverse vibration was analyzed. The drum gear coupling effect on the roller system stability and the automatic balance conditions of the coupling transmission torque were studied; the influence of axial force caused by the roller cross on the system stability was analyzed. Finally, the roller transverse friction chatter vibration mechanics model was established; the simulation analysis was carried out with eliminating mill house-bearing clearance and adding floating support for coupling, respectively. And the characteristics of the roller “jump vibration” were studied. We applied copper gaskets to eliminate or reduce mill house-bearing clearance for suppressing the rolling mill vibration on the spot; the test results show that the roller transverse vibration was suppressed after eliminating clearance.
An analytical method for free vibration analysis of functionally graded beams with edge cracks
Wei, Dong; Liu, Yinghua; Xiang, Zhihai
2012-03-01
In this paper, an analytical method is proposed for solving the free vibration of cracked functionally graded material (FGM) beams with axial loading, rotary inertia and shear deformation. The governing differential equations of motion for an FGM beam are established and the corresponding solutions are found first. The discontinuity of rotation caused by the cracks is simulated by means of the rotational spring model. Based on the transfer matrix method, then the recurrence formula is developed to get the eigenvalue equations of free vibration of FGM beams. The main advantage of the proposed method is that the eigenvalue equation for vibrating beams with an arbitrary number of cracks can be conveniently determined from a third-order determinant. Due to the decrease in the determinant order as compared with previous methods, the developed method is simpler and more convenient to analytically solve the free vibration problem of cracked FGM beams. Moreover, free vibration analyses of the Euler-Bernoulli and Timoshenko beams with any number of cracks can be conducted using the unified procedure based on the developed method. These advantages of the proposed procedure would be more remarkable as the increase of the number of cracks. A comprehensive analysis is conducted to investigate the influences of the location and total number of cracks, material properties, axial load, inertia and end supports on the natural frequencies and vibration mode shapes of FGM beams. The present work may be useful for the design and control of damaged structures.
Cronkhite, James D.
1993-01-01
Accurate vibration prediction for helicopter airframes is needed to 'fly from the drawing board' without costly development testing to solve vibration problems. The principal analytical tool for vibration prediction within the U.S. helicopter industry is the NASTRAN finite element analysis. Under the NASA DAMVIBS research program, Bell conducted NASTRAN modeling, ground vibration testing, and correlations of both metallic (AH-1G) and composite (ACAP) airframes. The objectives of the program were to assess NASTRAN airframe vibration correlations, to investigate contributors to poor agreement, and to improve modeling techniques. In the past, there has been low confidence in higher frequency vibration prediction for helicopters that have multibladed rotors (three or more blades) with predominant excitation frequencies typically above 15 Hz. Bell's findings under the DAMVIBS program, discussed in this paper, included the following: (1) accuracy of finite element models (FEM) for composite and metallic airframes generally were found to be comparable; (2) more detail is needed in the FEM to improve higher frequency prediction; (3) secondary structure not normally included in the FEM can provide significant stiffening; (4) damping can significantly affect phase response at higher frequencies; and (5) future work is needed in the areas of determination of rotor-induced vibratory loads and optimization.
Vibration analysis method for detection of abnormal movement of material in a rotary dissolver
International Nuclear Information System (INIS)
Smith, C.M.; Fry, D.N.
1978-11-01
Vibration signals generated by the movement of simulated nuclear fuel material through a three-stage, continuous, rotary dissolver were frequency analyzed to determine whether these signals contained characteristic signal patterns that would identify each of five phases of operation in the dissolver and, thus, would indicate the proper movement of material through the dissolver. This characterization of the signals is the first step in the development of a system for monitoring the flow of material through a dissolver to be developed for reprocessing spent nuclear fuel. Vibration signals from accelerometers mounted on the dissolver roller supports were analyzed in a bandwidth from 0 to 10 kHz. The analysis established that (1) all five phases of dissolver operation can be characterized by vibration signatures; (2) four of the five phases of operation can be readily and directly identified by a characteristic vibration signature during continuous, prototypic operation; (3) the transfer of material from the inlet to the dissolution stage can be indirectly monitored by one of the other four vibration signatures (the mixing signature) during prototypic operation; (4) a simulated blockage between the dissolution and exit stages can be detected by changes in one or more characteristic vibration signatures; and (5) a simulated blockage of the exit chute cannot be detected
A Shell Model for Free Vibration Analysis of Carbon Nanoscroll
Directory of Open Access Journals (Sweden)
Amin Taraghi Osguei
2017-04-01
Full Text Available Carbon nanoscroll (CNS is a graphene sheet rolled into a spiral structure with great potential for different applications in nanotechnology. In this paper, an equivalent open shell model is presented to study the vibration behavior of a CNS with arbitrary boundary conditions. The equivalent parameters used for modeling the carbon nanotubes are implemented to simulate the CNS. The interactions between the layers of CNS due to van der Waals forces are included in the model. The uniformly distributed translational and torsional springs along the boundaries are considered to achieve a unified solution for different boundary conditions. To study the vibration characteristics of CNS, total energy including strain energy, kinetic energy, and van der Waals energy are minimized using the Rayleigh-Ritz technique. The first-order shear deformation theory has been utilized to model the shell. Chebyshev polynomials of first kind are used to obtain the eigenvalue matrices. The natural frequencies and corresponding mode shapes of CNS in different boundary conditions are evaluated. The effect of electric field in axial direction on the natural frequencies and mode shapes of CNS is investigated. The results indicate that, as the electric field increases, the natural frequencies decrease.
Full scale leak test of the MEGAPIE containment hull
Energy Technology Data Exchange (ETDEWEB)
Samec, K
2006-07-15
The Full Scale Leak Test (FSLT) experiment is designed to replicate an accidental leak of Lead-Bismuth Eutectic (LBE) liquid metal from the MEGAPIE neutron spallation source. The neutron source is totally encased in an aluminum containment hull cooled by heavy water. Any liquid metal which would, in a hypothetical accident, leak into the helium-filled insulation gap between the source and the aluminum containment hull, would immediately impact the hull. Furthermore, during irradiation in the PSI SINQ facility, the LBE in the MEGAPIE Lower Liquid Metal Container (LLMC) accumulates radio-active substances which, in the event of a leak, must be cooled and contained under controlled conditions, as they may otherwise contaminate the facility. The FSLT experiment has been devised to fully test the structural integrity of the containment hull against a sudden liquid metal leak, and in addition, to resolve the peak temperature of he coolant, to validate the sensors used in detecting a leak and of proof-test the analytical methods used in predicting the consequences of a leak. The FSLT experiment has been analysed ahead of the test, and both thermal and structural aspects calculated using commercial codes. The predictions applied conservative assumptions to the analysis of the thermal shock so as to preclude the likelihood of an unforeseen failure of the hull. In this document, these initial predictions are compared to the temperature and strain data recorded in the experiment. Further analysis, to be published at a later stage, will focus on applying actual conditions realised in the experiment, as opposed to the envelope case used in the test predictions. The integrity of the containment hull under loads resulting from liquid metal-leak is therefore the focal point of the experiment described in the current document, and serves as a key reference test for the Iicensing of the facility. The data recorded during the SLT experiment shows that the MEGAPIE containment hull is
Full scale leak test of the MEGAPIE containment hull
International Nuclear Information System (INIS)
Samec, K.
2006-07-01
The Full Scale Leak Test (FSLT) experiment is designed to replicate an accidental leak of Lead-Bismuth Eutectic (LBE) liquid metal from the MEGAPIE neutron spallation source. The neutron source is totally encased in an aluminum containment hull cooled by heavy water. Any liquid metal which would, in a hypothetical accident, leak into the helium-filled insulation gap between the source and the aluminum containment hull, would immediately impact the hull. Furthermore, during irradiation in the PSI SINQ facility, the LBE in the MEGAPIE Lower Liquid Metal Container (LLMC) accumulates radio-active substances which, in the event of a leak, must be cooled and contained under controlled conditions, as they may otherwise contaminate the facility. The FSLT experiment has been devised to fully test the structural integrity of the containment hull against a sudden liquid metal leak, and in addition, to resolve the peak temperature of he coolant, to validate the sensors used in detecting a leak and of proof-test the analytical methods used in predicting the consequences of a leak. The FSLT experiment has been analysed ahead of the test, and both thermal and structural aspects calculated using commercial codes. The predictions applied conservative assumptions to the analysis of the thermal shock so as to preclude the likelihood of an unforeseen failure of the hull. In this document, these initial predictions are compared to the temperature and strain data recorded in the experiment. Further analysis, to be published at a later stage, will focus on applying actual conditions realised in the experiment, as opposed to the envelope case used in the test predictions. The integrity of the containment hull under loads resulting from liquid metal-leak is therefore the focal point of the experiment described in the current document, and serves as a key reference test for the Iicensing of the facility. The data recorded during the SLT experiment shows that the MEGAPIE containment hull is
Petroleum Pumps’ Current and Vibration Signatures Analysis Using Wavelet Coherence Technique
Directory of Open Access Journals (Sweden)
Rmdan Shnibha
2013-01-01
Full Text Available Vibration analysis is widely used for rotating machinery diagnostics; however measuring vibration of operational oil well pumps is not possible. The pump’s driver’s current signatures may provide condition-related information without the need for an access to the pump itself. This paper investigates the degree of relationship between the pump’s driver’s current signatures and its induced vibration. This relationship between the driver’s current signatures (DCS and its vibration signatures (DVS is studied by calculating magnitude-squared coherence and phase coherence parameters at a certain frequency band using continuous wavelet transform (CWT. The CWT coherence-based technique allows better analysis of temporal evolution of the frequency content of dynamic signals and areas in the time-frequency plane where the two signals exhibit common power or consistent phase behaviour indicating a relationship between the signals. This novel approach is validated by experimental data acquired from 3 kW petroleum pump’s driver. Both vibration and current signatures were acquired under different speed and load conditions. The outcomes of this research suggest the use of DCS analysis as reliable and inexpensive condition monitoring tool, which could be implemented for oil pumps, real-time monitoring associated with condition-based maintenance (CBM program.
International Nuclear Information System (INIS)
Preumont, A.; Shilab, S.; Cornaggia, L.; Reale, M.; Labbe, P.; Noe, H.
1992-01-01
This benchmark exercise is the continuation of the state-of-the-art review (EUR 11369 EN) which concluded that the random vibration approach could be an effective tool in seismic analysis of nuclear power plants, with potential advantages on time history and response spectrum techniques. As compared to the latter, the random vibration method provides an accurate treatment of multisupport excitations, non classical damping as well as the combination of high-frequency modal components. With respect to the former, the random vibration method offers direct information on statistical variability (probability distribution) and cheaper computations. The disadvantages of the random vibration method are that it is based on stationary results, and requires a power spectral density input instead of a response spectrum. A benchmark exercise to compare the three methods from the various aspects mentioned above, on one or several simple structures has been made. The following aspects have been covered with the simplest possible models: (i) statistical variability, (ii) multisupport excitation, (iii) non-classical damping. The random vibration method is therefore concluded to be a reliable method of analysis. Its use is recommended, particularly for preliminary design, owing to its computational advantage on multiple time history analysis
Double hull oil tankers - how effective are they?
International Nuclear Information System (INIS)
Keith, V.F.
1993-01-01
The groundings of the Exxon Valdez on Bligh Reef in Prince William Sound, spilling more than 10 million gallons of Alaska North Slope crude, and the American Trader off Huntington Beach, spilling almost 400,000 gallons of Alaska North Slope crude, suggest that the construction of oil tankers be re-examined with respect to a design which could reduce both the number and magnitude of oil spills. This paper discusses state-of-the-art tanker technology with respect to spill prevention, effectiveness, and cost. The design features include double hulls, centralized bunker tankers, vacuum-retaining valves, cargo control systems, auxiliary thrusters, electronic charting, and the retransmission of the ship's position. Double hulls provide the highest probability of surviving damage, either from a collision or grounding, with no loss of cargo. Use of double hulls can reduce oil spill incidence by 90 percent in grounding situations and by 75 percent in collisions. The oil spill from the AmericanTrader could have been completely avoided by double hull construction. The arrangement provides spaces below the cargo tanks and on the vessel's sides solely for the carriage of ballast water when the tanker is in ballast condition. These tanks are empty when the tanker is loaded and then also act as the first line of defense in the event of structural damage to the cargo tanks. Tanker design is integrated with port safety measures, including vessel monitoring systems, in this total spill prevention analysis. All aspects of the tanker transportation system are considered
Coupled Boundary and Finite Element Analysis of Vibration from Railway Tunnels
DEFF Research Database (Denmark)
Andersen, Lars; Jones, C.J.C.
2006-01-01
The analysis of vibration from railway tunnels is of growing interest as new and higher-speed railways are built under the ground to address the transport problems of growing modern urban areas around cities. Such analysis can be carried out using numerical methods but models and therefore comput...... body vibration (about 4 to 80 Hz). A coupled finite element and boundary element scheme is applied in both two and three dimensions. Two tunnel designs are considered: a cut-and-cover tunnel for a double track and a single-track tunnel dug with the New Austrian Tunnelling Method (NATM)....
Condition Monitoring of a Process Filter Applying Wireless Vibration Analysis
Directory of Open Access Journals (Sweden)
Pekka KOSKELA
2011-05-01
Full Text Available This paper presents a novel wireless vibration-based method for monitoring the degree of feed filter clogging. In process industry, these filters are applied to prevent impurities entering the process. During operation, the filters gradually become clogged, decreasing the feed flow and, in the worst case, preventing it. The cleaning of the filter should therefore be carried out predictively in order to avoid equipment damage and unnecessary process downtime. The degree of clogging is estimated by first calculating the time domain indices from low frequency accelerometer samples and then taking the median of the processed values. Nine different statistical quantities are compared based on the estimation accuracy and criteria for operating in resource-constrained environments with particular focus on energy efficiency. The initial results show that the method is able to detect the degree of clogging, and the approach may be applicable to filter clogging monitoring.
46 CFR 185.602 - Hull markings.
2010-10-01
... 46 Shipping 7 2010-10-01 2010-10-01 false Hull markings. 185.602 Section 185.602 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS (UNDER 100 GROSS TONS) OPERATIONS Markings Required § 185.602 Hull markings. (a) Each vessel must be marked as required by part 67...
46 CFR 122.602 - Hull markings.
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Hull markings. 122.602 Section 122.602 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS CARRYING MORE THAN 150....602 Hull markings. (a) Each vessel must be marked as required by part 67, subpart I, of this chapter...
Vibration analysis of cooling system of upgraded PARR-1: (primary pumps)
International Nuclear Information System (INIS)
Ayazuddin, S.K.; Baig, R.; Pervez, S.
1992-12-01
During the conversion and up gradation of PARR-1, major changes were made in the cooling system of the reactor with the addition of new heat exchanger assemblies and cooling tower. It was therefore, planned to perform vibration analysis on the cooling system to check proper installation and investigate any abnormality in the operation. As a first step, vibration measurements was made on the primary pumps PW-P1 and PW-P2. Power spectral density (PSD) or frequency spectrum of the signal produced from an accelerometer placed on the pump motor assembly was analysed to identify faults which are commonly found in rotating and reciprocating machinery such as unbalance, shaft misalignment and bearing instability. The root mean square (RMS) of the signal was compared with the vibration criterion chart to determine the operating condition of the pump motor assembly. The procedure used for the analysis and faults detected in the primary pump-motor system are discussed. 9 figs. (author)
Stochastic modeling of friction force and vibration analysis of a mechanical system using the model
International Nuclear Information System (INIS)
Kang, Won Seok; Choi, Chan Kyu; Yoo, Hong Hee
2015-01-01
The squeal noise generated from a disk brake or chatter occurred in a machine tool primarily results from friction-induced vibration. Since friction-induced vibration is usually accompanied by abrasion and lifespan reduction of mechanical parts, it is necessary to develop a reliable analysis model by which friction-induced vibration phenomena can be accurately analyzed. The original Coulomb's friction model or the modified Coulomb friction model employed in most commercial programs employs deterministic friction coefficients. However, observing friction phenomena between two contact surfaces, one may observe that friction coefficients keep changing due to the unevenness of contact surface, temperature, lubrication and humidity. Therefore, in this study, friction coefficients are modeled as random parameters that keep changing during the motion of a mechanical system undergoing friction force. The integrity of the proposed stochastic friction model was validated by comparing the analysis results obtained by the proposed model with experimental results.
Rykov, S. P.; Rykova, O. A.; Koval, V. S.; Makhno, D. E.; Fedotov, K. V.
2018-03-01
The paper aims to analyze vibrations of the dynamic system equivalent of the suspension system with regard to tyre ability to smooth road irregularities. The research is based on static dynamics for linear systems of automated control, methods of correlation, spectral and numerical analysis. Input of new data on the smoothing effect of the pneumatic tyre reflecting changes of a contact area between the wheel and road under vibrations of the suspension makes the system non-linear which requires using numerical analysis methods. Taking into account the variable smoothing ability of the tyre when calculating suspension vibrations, one can approximate calculation and experimental results and improve the constant smoothing ability of the tyre.
Vibration Finite Element Analysis of SC10 Dry-type Transformer Core
Directory of Open Access Journals (Sweden)
Gao Sheng Wei
2014-06-01
Full Text Available As the popularization and application of dry-type power transformer, its work when the vibration noise problem widely concerned, on the basis of time-varying electromagnetic field and structural mechanics equation, this paper established a finite element analysis model of dry-type transformer, through the electromagnetic field – Structural mechanics field – sound field more than physical field coupling calculation analysis, obtained in no load and the vibration modes of the core under different load and frequency. According to the transformer vibration mechanism, compared with the experimental data, verified the accuracy of the calculation results, as the core of how to provide the theory foundation and to reduce the noise of the experiment.
Numerical Modal Analysis of Vibrations in a Three-Phase Linear Switched Reluctance Actuator
Directory of Open Access Journals (Sweden)
José Salvado
2017-01-01
Full Text Available This paper addresses the problem of vibrations produced by switched reluctance actuators, focusing on the linear configuration of this type of machines, aiming at its characterization regarding the structural vibrations. The complexity of the mechanical system and the number of parts used put serious restrictions on the effectiveness of analytical approaches. We build the 3D model of the actuator and use finite element method (FEM to find its natural frequencies. The focus is on frequencies within the range up to nearly 1.2 kHz which is considered relevant, based on preliminary simulations and experiments. Spectral analysis results of audio signals from experimental modal excitation are also shown and discussed. The obtained data support the characterization of the linear actuator regarding the excited modes, its vibration frequencies, and mode shapes, with high potential of excitation due to the regular operation regimes of the machine. The results reveal abundant modes and harmonics and the symmetry characteristics of the actuator, showing that the vibration modes can be excited for different configurations of the actuator. The identification of the most critical modes is of great significance for the actuator’s control strategies. This analysis also provides significant information to adopt solutions to reduce the vibrations at the design.
Group-theoretical and topological analysis of localized rotation-vibration states
International Nuclear Information System (INIS)
Sadovskii, D.A.; Zhilinskii, B.I.
1993-01-01
A general scheme of qualitative analysis is applied to molecular rovibrational problems. The classical-quantum correspondence provides a description of different classes of localized quantum rotation-vibration states associated with localized classical motion. A description of qualitative features, such as localized motion, and of qualitative changes, such as localization phenomena, is based on the concept of the simplest Hamiltonian. It uses only the topological properties of the compact reduced phase space and the action of the symmetry group on this space. The qualitative changes of the simplest Hamiltonian are analyzed as bifurcations caused by rotational or vibrational excitation. The relation between the stationary points of the classical Hamiltonian function on the reduced phase space and the principal periodic trajectories in the coordinate space is analyzed for vibrational Hamiltonians. In particular, the relation between the nonlinear normal modes, proposed by Montaldi, Roberts, and Stewart [Philos. Trans. R. Soc. London, Ser. A 325, 237 (1988)], and normal- and local-mode models widely used in molecular physics is discussed. Along with a general consideration of localized rotational and vibrational states a more detailed analysis of the vibrational dynamics of an X 3 molecule with the D 3h symmetry, such as the H 3 + molecular ion, is given
A Study on the Radioactivity Reduction Method for the Decladding Hull
International Nuclear Information System (INIS)
Kim, Jong Ho; Jung, In Ha; Park, Jang Jin; Shin, Jin Myeong; Lee, Ho Hee; Yang, Myung Seung
1994-01-01
The cladding materials remaining after reprocessing process of the nuclear fuel, generally called as hulls, are classified as a high-level radioactive waste. They are usually packaged in the container for disposal after being compacted, melted, or solidified into the matrix. The efforts to fabricated a better ingot for a more favorable disposal to the environment have failed due to the technical difficulties encountered in the chemical decontamination method. In the early 1990s, the accumulation of radio-chemical data on hulls and the advent of new technology such as a laser or plasma have made the pre-treatment of the hulls mere efficient. This paper summarizes the information regarding the radio-chemical analysis of the hull through a literature survey and determines the characteristics of the hull and depth profile of the radio-nuclides within the hull thickness. The feasibility study was carried out to evaluate the reduction of the radioactivity by peeling off the surface of the hull with the application of laser technology
Solid-state fermentation of Mortierella isabellina for lipid production from soybean hull.
Zhang, Jianguo; Hu, Bo
2012-02-01
Soybean hull, generated from soybean processing, is a lignocellulosic material with limited industrial applications and little market value. This research is exploring a new application of soybean hull to be converted to fungal lipids for biodiesel production through solid-state fermentation. Mortierella isabellina was selected as the oil producer because of its high lipid content at low C/N ratio. Several cultivation factors were investigated, including moisture content, inoculums size, fungal spore age, and nutrient supplements, in an attempt to enhance the lipid production of the solid-state fermentation process. The results showed that lipid production with the increase of the moisture content and the spore age, while decreased as the size of inoculums increased. Nutrients addition (KH₂PO₄ 1.2 mg and MgSO₄ 0.6 mg/g soybean hull) improved the lipid production. The total final lipid reached 47.9 mg lipid from 1 g soybean hull after the conversion, 3.3-fold higher than initial lipid reserve in the soybean hull. The fatty acid profile analysis indicated that fatty acid content consisted of 30.0% of total lipid, and 80.4% of total fatty acid was C16 and C18. Therefore, lipid production from soybean hull is a possible option to enable soybean hull as a new resource for biodiesel production and to enhance the overall oil production from soybeans.
Analysis of the phenomena associated with structural damage using real time vibration analysis
International Nuclear Information System (INIS)
Garcia Peyrano, O; Cismondi, L; Damiani, H; Torres, E
2004-01-01
It is of interest to have analytical methodologies available for the dynamic behavior of large mechanical structures like those in thermal cycle systems of nuclear power plants or in transport systems during the experimental stage prior to their construction, as happens in aeronautics, where prototypes are tested in experimental banks on a scale of 1 to 1. The same does not occur with systems for the generation of electrical energy such as a nuclear power plant or in ships, competition automobiles, railway systems, etc. Not because of the technical impossibility but because of the high costs involved. This work aims to implement a technology based on the analysis of the vibrations to obtain a profile of the modal dynamic response and its influence on the critical components of the mechanisms with the particularity of detecting the preventive location of the component that may suffer a potential damage. The Vibrations Analysis Laboratory has resolved different cases in the Embalse Nuclear Plant, in the Atucha Nuclear Plant, in the Heavy Water Industrial Plant, in the automobile industry and in other industrial areas (CW)
International Nuclear Information System (INIS)
Kwak, Mun Gyu; Na, Sung Su; Baek, Gwang Hyeon; Song, Chul Gi; Han, Sang Bo
2001-09-01
This book deals with vibration of machine which gives descriptions of free vibration using SDOF system, forced vibration using SDOF system, vibration of multi-degree of freedom system like introduction and normal form, distribution system such as introduction, free vibration of bar and practice problem, approximate solution like lumped approximations and Raleigh's quotient, engineering by intuition and experience, real problem and experimental method such as technology of signal, fourier transform analysis, frequency analysis and sensor and actuator.
Free vibration analysis of linear particle chain impact damper
Gharib, Mohamed; Ghani, Saud
2013-11-01
Impact dampers have gained much research interest over the past decades that resulted in several analytical and experimental studies being conducted in that area. The main emphasis of such research was on developing and enhancing these popular passive control devices with an objective of decreasing the three parameters of contact forces, accelerations, and noise levels. To that end, the authors of this paper have developed a novel impact damper, called the Linear Particle Chain (LPC) impact damper, which mainly consists of a linear chain of spherical balls of varying sizes. The LPC impact damper was designed utilizing the kinetic energy of the primary system through placing, in the chain arrangement, a small-sized ball between each two large-sized balls. The concept of the LPC impact damper revolves around causing the small-sized ball to collide multiple times with the larger ones upon exciting the primary system. This action is believed to lead to the dissipation of part of the kinetic energy at each collision with the large balls. This paper focuses on the outcome of studying the free vibration of a single degree freedom system that is equipped with the LPC impact damper. The proposed LPC impact damper is validated by means of comparing the responses of a single unit conventional impact damper with those resulting from the LPC impact damper. The results indicated that the latter is considerably more efficient than the former impact damper. In order to further investigate the LPC impact damper effective number of balls and efficient geometry when used in a specific available space in the primary system, a parametric study was conducted and its result is also explained herein. Single unit impact damper [14-16]. Multiunit impact damper [17,18]. Bean bag impact damper [19,20]. Particle/granular impact damper [21,23,22]. Resilient impact damper [24]. Buffered impact damper [25-27]. Multiunit impact damper consists of multiple masses instead of a single mass. This
Analysis on Coupled Vibration of a Radially Polarized Piezoelectric Cylindrical Transducer
Directory of Open Access Journals (Sweden)
Jie Xu
2017-12-01
Full Text Available Coupled vibration of a radially polarized piezoelectric cylindrical transducer is analyzed with the mechanical coupling coefficient method. The method has been utilized to analyze the metal cylindrical transducer and the axially polarized piezoelectric cylindrical transducer. In this method, the mechanical coupling coefficient is introduced and defined as the stress ratio in different directions. Coupled vibration of the cylindrical transducer is regarded as the interaction of the plane radial vibration of a ring and the longitudinal vibration of a tube. For the radially polarized piezoelectric cylindrical transducer, the radial and longitudinal electric admittances as functions of mechanical coupling coefficients and angular frequencies are derived, respectively. The resonance frequency equations are obtained. The dependence of resonance frequency and mechanical coupling coefficient on aspect ratio is studied. Vibrational distributions on the surfaces of the cylindrical transducer are presented with experimental measurement. On the support of experiments, this work is verified and provides a theoretical foundation for the analysis and design of the radially polarized piezoelectric cylindrical transducer.
Directory of Open Access Journals (Sweden)
WANG Minhao
2017-08-01
Full Text Available Plate structures with openings are common in many engineering structures. The study of the vibration characteristics of such structures is directly related to the vibration reduction, noise reduction and stability analysis of an overall structure. This paper conducts research into the free vibration characteristics of a thin elastic plate with a rectangular opening parallel to the plate in an arbitrary position. We use the improved Fourier series to represent the displacement tolerance function of the rectangular plate with an opening. We can divide the plate into an eight zone plate to simplify the calculation. We then use linear springs, which are uniformly distributed along the boundary, to simulate the classical boundary conditions and the boundary conditions of the boundaries between the regions. According to the energy functional and variational method, we can obtain the overall energy functional. We can also obtain the generalized eigenvalue matrix equation by studying the extremum of the unknown improved Fourier series expansion coefficients. We can then obtain the natural frequencies and corresponding vibration modes of the rectangular plate with an opening by solving the equation. We then compare the calculated results with the finite element method to verify the accuracy and effectiveness of the method proposed in this paper. Finally, we research the influence of the boundary condition, opening size and opening position on the vibration characteristics of a plate with an opening. This provides a theoretical reference for practical engineering application.
Mode shape and natural frequency identification for seismic analysis from background vibration
International Nuclear Information System (INIS)
Bhan, S.; Wozniak, Z.
1986-02-01
The feasibility of calculating natural frequencies and mode shapes of major equipment in a CANDU reactor from the measurements of their response to background excitation has been studied. A review of vibration data measured at various locations in CANDU plants shows that structures responded to a combination of random and harmonic background excitation. Amplitude of measured vibration is sufficient to allow meaningful data analysis. Frequency content in the 0 to 50-Hz range, which is of interest for earthquake response, is present in some of the vibration measurements studied. Spectral techniques have been developed for determining the response function of structures from measured vibration response to background excitation. The natural frequencies and mode shapes are then evaluated graphically from the frequency function plots. The methodology has been tested on a simple cantilever beam with known natural frequencies and mode shapes. The comparison between the theoretical and the computed natural frequencies and mode shapes is good for the lower modes. However, better curve-fitting techniques will be required in future, especially for higher modes. Readily available equipment necessary for the measurement of background vibration in a CANDU plant (which is commercially available) has been identified. An experimental program has been proposed to verify the methodology developed in this study. Recommendations are also made to study methods to improve the accuracy of the mode shape and natural frequency prediction
Measurement and analysis of vibrational behaviour of an SNR-fuel element in sodium flow
International Nuclear Information System (INIS)
Hess, B.F.H.; Ruppert, E.; Schmidt, H.; Vinzens, K.
1975-01-01
Within the framework of SNR-300 fuel element development programme a complete full size fuel element dummy has been tested thoroughly for nearly 3000 hours at 650 0 C system temperature in the AKB sodium loop at Interatom, Bensberg. Investigations of the hydraulic characteristics by measurements of specific pressure losses, flow velocities, leakage flow through the piston rings and investigations of its vibrational behaviour were part of this endurance test at elevated temperatures. The pressure drop versus flow and the leakage measurement are mentioned briefly to confirm the correctness of the test hydraulics. The vibrational behaviour of the element and the approach to analysis is the main object of this report. (Auth.)
Flow-induced vibration analysis of heat exchanger and steam generator designs
International Nuclear Information System (INIS)
Pettigrew, M.J.; Sylvestre, Y.; Campagna, A.O.
1977-08-01
Tube and shell heat exchange components such as steam generators, heat exchangers and condensers are essential parts of CANDU nuclear power stations. Excessive flow-induced vibration may cause tube failures by fatigue or more likely by fretting-wear. Such failures may lead to station shutdowns that are very undesirable in terms of lost production. Hence good performance and reliability dictate a thorough flow-induced vibration analysis at the design stage. This paper presents our approach and techniques in this respect. (author)
Analysis of two-phase flow induced vibrations in perpendiculary supported U-type piping systems
International Nuclear Information System (INIS)
Hiramatsu, Tsutomu; Komura, Yoshiaki; Ito, Atsushi.
1984-01-01
The perpose of this analysis is to predict the vibration level of a pipe conveying a two-phase flowing fluid. Experiments were carried out with a perpendiculary supported U-type piping system, conveying an air-water two-phase flow in a steady state condition. Fluctuation signals are observed by a void signal sensor, and power spectral densities and probability density functions are obtained from the void signals. Theoretical studies using FEM and an estimation of the exciting forces from the PSD of void signals, provided a good predictional estimation of vibration responses of the piping system. (author)
Vibrational spectroscopy and structural analysis of uranium complexes
Energy Technology Data Exchange (ETDEWEB)
Umrejko, D.S.; Nikanovich, M.V.
1984-12-01
On the basis of experimental and theoretical studies of vibbrational spectra for halides, sulfates, phosphates, uranyl oxalates (and uranium) as well as for more complicated complex systems, reliable spectroscopic criteria have been established for estimation of their structural features by more simple and accessible (than direct) methods. Due to coordination to a central ion of U/sup 6/(U/sup 4/) ligands a geometry variation specific for each method of addition occurs and concomitant redistribution of the force interaction in the mentioned system as well, which directly affects the variation of their frequency characteristics and vibration modes. On this ground stable indications of particular types of coordination for mono- and polyatomic groups (including bridge-type, characteristic of polymetric structures) are pointed out in the IR absorption and Raman spectra. In the investigated structures the predominant effect of coordination on the spectral properties of complexes, as compared with other factors (for example, outer-sphere binding) is established. The presence of water molecules in an interlayer space does not tell essentially on the state of polyatomic ligands with all donor atoms bound with the uranium central atom (particularly, in binary uranyl phosphates). In the presence of free oxygen atoms the H/sub 2/O effect can lead only to some shift of the maxima of separate bands and their additional weak splitting (in uranyl sulfates).
Nonlinear vibrations analysis of rotating drum-disk coupling structure
Chaofeng, Li; Boqing, Miao; Qiansheng, Tang; Chenyang, Xi; Bangchun, Wen
2018-04-01
A dynamic model of a coupled rotating drum-disk system with elastic support is developed in this paper. By considering the effects of centrifugal and Coriolis forces as well as rotation-induced hoop stress, the governing differential equation of the drum-disk is derived by Donnell's shell theory. The nonlinear amplitude-frequency characteristics of coupled structure are studied. The results indicate that the natural characteristics of the coupling structure are sensitive to the supporting stiffness of the disk, and the sensitive range is affected by rotating speeds. The circumferential wave numbers can affect the characteristics of the drum-disk structure. If the circumferential wave number n = 1 , the vibration response of the drum keeps a stable value under an unbalanced load of the disk, there is no coupling effect if n ≠ 1 . Under the excitation, the nonlinear hardening characteristics of the forward traveling wave are more evident than that of the backward traveling wave. Moreover, because of the coupling effect of the drum and the disk, the supporting stiffness of the disk has certain effect on the nonlinear characteristics of the forward and backward traveling waves. In addition, small length-radius and thickness-radius ratios have a significant effect on the nonlinear characteristics of the coupled structure, which means nonlinear shell theory should be adopted to design rotating drum's parameter for its specific structural parameters.
Coupled Boundary and Finite Element Analysis of Vibration from Railway Tunnels
DEFF Research Database (Denmark)
Andersen, Lars; Jones, C. J. C.
2004-01-01
axis, it is useful to evaluate the potential uses of two-dimensional models before committing to much more costly three-dimensional approaches. The vibration forces in the track due to the passage of a train are by nature three-dimensional and a complete analysis undoubtedly requires a model of three...
International Nuclear Information System (INIS)
Katayama, I.; Niwa, A.; Kubo, Y.; Penzien, J.
1987-01-01
The paper describes the outline of the hybrid analysis code for soil-structure interaction (HASSI) and the results of numerical simulation of the responses obtained at the model 2C in both cases of the forced vibration test and the natural earthquake excitation. (orig./HP)
Vibrational spectra and natural bond orbital analysis of organic crystal L-prolinium picrate
Edwin, Bismi; Amalanathan, M.; Hubert Joe, I.
2012-10-01
Vibrational spectral analysis and quantum chemical computations based on density functional theory (DFT) have been performed on the organic crystal L-prolinium picrate (LPP). The equilibrium geometry, various bonding features and harmonic vibrational wavenumbers of LPP have been investigated using B3LYP method. The calculated molecular geometry has been compared with the experimental data. The detailed interpretation of the vibrational spectra has been carried out with the aid of VEDA 4 program. The various intramolecular interactions confirming the biological activity of the compound have been exposed by natural bond orbital analysis. The distribution of Mulliken atomic charges and bending of natural hybrid orbitals associated with hydrogen bonding also reflects the presence of intramolecular hydrogen bonding thereby enhancing bioactivity. The analysis of the electron density of HOMO and LUMO gives an idea of the delocalization and low value of energy gap indicates electron transport in the molecule and thereby bioactivity. Vibrational analysis reveals the presence of strong O-H⋯O and N-H⋯O interaction between L-prolinium and picrate ions providing evidence for the charge transfer interaction between the donor and acceptor groups and is responsible for its bioactivity.
Numerical methods for analysis of structure and ground vibration from moving loads
DEFF Research Database (Denmark)
Andersen, L.; Nielsen, S.R.K.; Krenk, Steen
2007-01-01
An overview of the main theoretical aspects of finite-element and boundary-element modelling of the response to moving loads is given. The moving loads represent sources of noise and vibration generated by moving vehicles, and the analysis describes the propagation of the disturbances generated i...
Wang, Xu; Bi, Fengrong; Du, Haiping
2018-05-01
This paper aims to develop an 5-degree-of-freedom driver and seating system model for optimal vibration control. A new method for identification of the driver seating system parameters from experimental vibration measurement has been developed. The parameter sensitivity analysis has been conducted considering the random excitation frequency and system parameter uncertainty. The most and least sensitive system parameters for the transmissibility ratio have been identified. The optimised PID controllers have been developed to reduce the driver's body vibration.
Energy Technology Data Exchange (ETDEWEB)
Shiohata, K.; Nemoto, K.; Nagawa, Y.; Sakamoto, S.; Kobayashi, T.; Ito, M.; Koharagi, H. [Hitachi, Ltd, Tokyo (Japan)
1998-11-01
In this analysis method, electromagnetic force calculated by 2-dimensional analysis is transformed into external force for 3-dimensional structural-vibration analysis. And a modeling procedure for a vibrating structure is developed. Further, a space-modal-resonance criteria which relates electromagnetic force to structural-vibration or noise is introduced. In the structural-vibration analysis, the finite element method is used; and in the noise analysis, the boundary element method is used. Finally, vibration and noise of an induction motor are calculated using this criteria. Consequently, high-accuracy modeling is achieved and noise the calculated by the simulation almost coincides with that obtained by experiments. And it is clarified that the-space-modal resonance criteria is effective in numerical simulation. 11 refs., 9 figs., 3 tabs.
Study and analysis for the flow-induced vibration of the core barrel of a PWR
International Nuclear Information System (INIS)
Yao Weida; Shi Guolin; Jiang Nanyan
1989-01-01
The resemblance criteria are derived and a test model is designed by applying the flow-soild coupling theory. After having completed the model analysis of the pressurized water reactor (PWR) core barrel in an 1:10 model, the dynamic characteristics are obtained. In an 1:5 reactor model with a hydraulic closed loop, the hydraulic vibration tests of the core barrel are performed, and the relations between the flow rate and the flow-induced pulse pressure on core barrel, acceleration and strain signals have been measured. The corresponding responses and a group of computational equations for hydraulic vibration are derived from these two experiments. The computational hydraulic vibration responses for core barrel in Qinshan Nuclear Power Plant are in good agreement with the test results, and it shows that the core barrel is safe within its lifetime of 30 years
Multi-parameters sensitivity analysis of natural vibration modal for steel arch bridge
Directory of Open Access Journals (Sweden)
WANG Ying
2014-02-01
Full Text Available Because of the vehicle loads and environmental factors,the behaviors of bridge structure in service is becoming deterioration.The modal parameters are important indexes of structure,so sensitivity analysis of natural vibration is an important way to evaluate the behavior of bridge structure.In this paper,using the finite element software Ansys,calculation model of a steel arch bridge was built,and the natural vibration modals were obtained.In order to compare the different sensitivity of material parameters which may affect the natural vibration modal,5 factors were chosen to perform the calculation.The results indicated that different 5 factors had different sensitivity.The leading factor was elastic modulus of arch rib,and the elastic modulus of suspender had little effect to the sensitivity.Another argument was the opposite sensitivity effect happened between the elastic modulus and density of the material.
Finite Element Formulation for Stability and Free Vibration Analysis of Timoshenko Beam
Directory of Open Access Journals (Sweden)
Abbas Moallemi-Oreh
2013-01-01
Full Text Available A two-node element is suggested for analyzing the stability and free vibration of Timoshenko beam. Cubic displacement polynomial and quadratic rotational fields are selected for this element. Moreover, it is assumed that shear strain of the element has the constant value. Interpolation functions for displacement field and beam rotation are exactly calculated by employing total beam energy and its stationing to shear strain. By exploiting these interpolation functions, beam elements' stiffness matrix is also examined. Furthermore, geometric stiffness matrix and mass matrix of the proposed element are calculated by writing governing equation on stability and beam free vibration. At last, accuracy and efficiency of proposed element are evaluated through numerical tests. These tests show high accuracy of the element in analyzing beam stability and finding its critical load and free vibration analysis.
Energy Technology Data Exchange (ETDEWEB)
Fernández-Bravo, Ángel; Delgado, Tomás; Lucena, Patricia; Laserna, J. Javier, E-mail: laserna@uma.es
2013-11-01
Laser-induced breakdown spectroscopy (LIBS) of organic materials is based on the analysis of atomic and ionic emission lines and on a few molecular bands, the most important being the CN violet system and the C{sub 2} Swan system. This paper is focused in molecular emission of LIBS plasmas based on the CN (B{sup 2}Σ–X{sup 2}Σ) band, one of the strongest emissions appearing in all carbon materials when analyzed in air atmosphere. An analysis of this band with sufficient spectral resolution provides a great deal of information on the molecule, which has revealed that valuable information can be obtained from the plume chemistry and dynamics affecting the excitation mechanisms of the molecules. The vibrational emission of this molecular band has been investigated to establish the dependence of this emission on the molecular structure of the materials. The paper shows that excitation/emission phenomena of molecular species observed in the plume depend strongly on the time interval selected and on the irradiance deposited on the sample surface. Precise time resolved LIBS measurements are needed for the observation of distinctive CN emission. For the organic compounds studied, larger differences in the behavior of the vibrational emission occur at early stages after plasma ignition. Since molecular emission is generally more complex than that involving atomic emission, local plasma conditions as well as plume chemistry may induce changes in vibrational emission of molecules. As a consequence, alterations in the distribution of the emissions occur in terms of relative intensities, being sensitive to the molecular structure of every single material. - Highlights: • Vibrational emission of CN species in laser-induced plasmas has been investigated. • Distribution of vibrational emission of CN has been found to be time dependent. • Laser irradiance affects the vibrational distribution of the CN molecules. • Plume chemistry controls the excitation mechanisms of CN
International Nuclear Information System (INIS)
Christian, Robby; Song, Seon Ho; Kang, Hyun Gook
2015-01-01
The application of neutron noise analysis (NNA) to the ex-core neutron detector signal for monitoring the vibration characteristics of a reactor core support barrel (CSB) was investigated. Ex-core flux data were generated by using a nonanalog Monte Carlo neutron transport method in a simulated CSB model where the implicit capture and Russian roulette technique were utilized. First and third order beam and shell modes of CSB vibration were modeled based on parallel processing simulation. A NNA module was developed to analyze the ex-core flux data based on its time variation, normalized power spectral density, normalized cross-power spectral density, coherence, and phase differences. The data were then analyzed with a fuzzy logic module to determine the vibration characteristics. The ex-core neutron signal fluctuation was directly proportional to the CSB's vibration observed at 8Hz and15Hzin the beam mode vibration, and at 8Hz in the shell mode vibration. The coherence result between flux pairs was unity at the vibration peak frequencies. A distinct pattern of phase differences was observed for each of the vibration models. The developed fuzzy logic module demonstrated successful recognition of the vibration frequencies, modes, orders, directions, and phase differences within 0.4 ms for the beam and shell mode vibrations.
Analysis of the effect of vibrations on the bentonite buffer in the canister hole
International Nuclear Information System (INIS)
Jonsson, Martin; Hakami, Hossein; Ekneligoda, Thushan
2009-09-01
During the construction of a final repository for spent nuclear fuel in crystalline rock, blasting activities in certain deposition tunnels will occur at the same time as the deposition of canisters containing the waste is going on in another adjacent access tunnel. In fact, the deposition consists of several stages after the drilling of the deposition hole. The most vulnerable stage from a vibration point of view is when the bentonite buffer is placed in the deposition hole but the canister has not been placed yet. During this stage, a hollow column of bentonite blocks remains free to vibrate inside the deposition hole. The goal of this study was to investigate the displacement of the bentonite blocks when exposed to the highest vibration level that can be expected during the drill and blast operations. In order to investigate this, a three dimensional model in 3DEC, capable of capturing the dynamic behaviour of the bentonite buffer was set up. To define the vibration levels, which serve as input data for the 3DEC model, an extensive analysis of the recorded vibrations from the TASQ - tunnel was carried out. For this purpose, an upper expected vibration limit was defined. This was done outgoing from the fact that the planned charging for the construction of the geological repository will lie in the interval 2 to 4 kg. Furthermore, at the first stage for this study, it was decided that the vibration should be conservatively evaluated for 30 m distance. Using these data, it was concluded that the maximum vibration level that can be expected will be approximately 60 mm/s. After simplifying the vibration signal, a sinusoidal wave with the amplitude 60 mm/s was applied at the bottom of the column and it was assumed that the vibrations only affect the bentonite buffer in one direction (horizontal direction). From this simulation, it was concluded that hardly any displacements occurred. However, when applying the same sinusoidal wave both in the horizontal and the
Directory of Open Access Journals (Sweden)
Sheraz Ali Khan
2016-01-01
Full Text Available Traditional fault diagnosis methods of bearings detect characteristic defect frequencies in the envelope power spectrum of the vibration signal. These defect frequencies depend upon the inherently nonstationary shaft speed. Time-frequency and subband signal analysis of vibration signals has been used to deal with random variations in speed, whereas design variations require retraining a new instance of the classifier for each operating speed. This paper presents an automated approach for fault diagnosis in bearings based upon the 2D analysis of vibration acceleration signals under variable speed conditions. Images created from the vibration signals exhibit unique textures for each fault, which show minimal variation with shaft speed. Microtexture analysis of these images is used to generate distinctive fault signatures for each fault type, which can be used to detect those faults at different speeds. A k-nearest neighbor classifier trained using fault signatures generated for one operating speed is used to detect faults at all the other operating speeds. The proposed approach is tested on the bearing fault dataset of Case Western Reserve University, and the results are compared with those of a spectrum imaging-based approach.
46 CFR 45.153 - Through-hull piping: General.
2010-10-01
... 46 Shipping 2 2010-10-01 2010-10-01 false Through-hull piping: General. 45.153 Section 45.153... Conditions of Assignment § 45.153 Through-hull piping: General. (a) All through-hull pipes required by this subpart must be made of steel or material equivalent to the hull in strength and fatigue resistance. (b...
46 CFR 154.176 - Longitudinal contiguous hull structure.
2010-10-01
... 46 Shipping 5 2010-10-01 2010-10-01 false Longitudinal contiguous hull structure. 154.176 Section... Equipment Hull Structure § 154.176 Longitudinal contiguous hull structure. (a) The longitudinal contiguous hull structure of a vessel having cargo containment systems without secondary barriers must meet the...
46 CFR 154.178 - Contiguous hull structure: Heating system.
2010-10-01
... 46 Shipping 5 2010-10-01 2010-10-01 false Contiguous hull structure: Heating system. 154.178... Equipment Hull Structure § 154.178 Contiguous hull structure: Heating system. The heating system for transverse and longitudinal contiguous hull structure must: (a) Be shown by a heat load calculation to have...
46 CFR 154.180 - Contiguous hull structure: Welding procedure.
2010-10-01
... 46 Shipping 5 2010-10-01 2010-10-01 false Contiguous hull structure: Welding procedure. 154.180... Equipment Hull Structure § 154.180 Contiguous hull structure: Welding procedure. Welding procedure tests for contiguous hull structure designed for a temperature colder than −18 °C (0 °F) must meet § 54.05-15 and...
14 CFR 29.757 - Hull and auxiliary float strength.
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Hull and auxiliary float strength. 29.757... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction Floats and Hulls § 29.757 Hull and auxiliary float strength. The hull, and auxiliary floats if used, must withstand the...
46 CFR 151.10-20 - Hull construction.
2010-10-01
... 46 Shipping 5 2010-10-01 2010-10-01 false Hull construction. 151.10-20 Section 151.10-20 Shipping... BULK LIQUID HAZARDOUS MATERIAL CARGOES Barge Hull Construction Requirements § 151.10-20 Hull construction. (a) Construction features. (1) Each barge hull shall be constructed with a suitable bow form...
46 CFR 151.10-1 - Barge hull classifications.
2010-10-01
... 46 Shipping 5 2010-10-01 2010-10-01 false Barge hull classifications. 151.10-1 Section 151.10-1... CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Barge Hull Construction Requirements § 151.10-1 Barge hull classifications. (a) Each barge constructed or converted in conformance with this subpart shall be assigned a hull...
46 CFR 115.655 - Hull examination reports.
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Hull examination reports. 115.655 Section 115.655... CERTIFICATION Hull and Tailshaft Examinations § 115.655 Hull examination reports. (a) If you use only divers for the underwater survey portion of the Alternative Hull Examination (AHE), you must provide the Officer...
46 CFR 154.188 - Membrane tank: Inner hull steel.
2010-10-01
... 46 Shipping 5 2010-10-01 2010-10-01 false Membrane tank: Inner hull steel. 154.188 Section 154.188... STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Hull Structure § 154.188 Membrane tank: Inner hull steel. For a vessel with membrane tanks, the inner hull...
46 CFR 176.655 - Hull examination reports.
2010-10-01
... 46 Shipping 7 2010-10-01 2010-10-01 false Hull examination reports. 176.655 Section 176.655... TONS) INSPECTION AND CERTIFICATION Hull and Tailshaft Examinations § 176.655 Hull examination reports. (a) If you use only divers for the underwater survey portion of the Alternative Hull Examination (AHE...
21 CFR 573.160 - Ammoniated rice hulls.
2010-04-01
... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Ammoniated rice hulls. 573.160 Section 573.160... Additive Listing § 573.160 Ammoniated rice hulls. The food additive ammoniated rice hulls may be safely... obtained by the treatment of ground rice hulls with monocalcium phosphate and anhydrous ammonia at a...
Fluid-Induced Vibration Analysis for Reactor Internals Using Computational FSI Method
Energy Technology Data Exchange (ETDEWEB)
Moon, Jong Sung; Yi, Kun Woo; Sung, Ki Kwang; Im, In Young; Choi, Taek Sang [KEPCO E and C, Daejeon (Korea, Republic of)
2013-10-15
This paper introduces a fluid-induced vibration analysis method which calculates the response of the RVI to both deterministic and random loads at once and utilizes more realistic pressure distribution using the computational Fluid Structure Interaction (FSI) method. As addressed above, the FIV analysis for the RVI was carried out using the computational FSI method. This method calculates the response to deterministic and random turbulence loads at once. This method is also a simple and integrative method to get structural dynamic responses of reactor internals to various flow-induced loads. Because the analysis of this paper omitted the bypass flow region and Inner Barrel Assembly (IBA) due to the limitation of computer resources, it is necessary to find an effective way to consider all regions in the RV for the FIV analysis in the future. Reactor coolant flow makes Reactor Vessel Internals (RVI) vibrate and may affect the structural integrity of them. U. S. NRC Regulatory Guide 1.20 requires the Comprehensive Vibration Assessment Program (CVAP) to verify the structural integrity of the RVI for Fluid-Induced Vibration (FIV). The hydraulic forces on the RVI of OPR1000 and APR1400 were computed from the hydraulic formulas and the CVAP measurements in Palo Verde Unit 1 and Yonggwang Unit 4 for the structural vibration analyses. In this method, the hydraulic forces were divided into deterministic and random turbulence loads and were used for the excitation forces of the separate structural analyses. These forces are applied to the finite element model and the responses to them were combined into the resultant stresses.
A new approach to hull consistency
Directory of Open Access Journals (Sweden)
Kolev Lubomir
2016-06-01
Full Text Available Hull consistency is a known technique to improve the efficiency of iterative interval methods for solving nonlinear systems describing steady-states in various circuits. Presently, hull consistency is checked in a scalar manner, i.e. successively for each equation of the nonlinear system with respect to a single variable. In the present poster, a new more general approach to implementing hull consistency is suggested which consists in treating simultaneously several equations with respect to the same number of variables.
Global Loads on FRP Ship Hulls
DEFF Research Database (Denmark)
Pedersen, Preben Terndrup
1997-01-01
Fibre reinforced plastic (FRP) composites used for high-speed vessels have lower modulus of elasticity than the conventionally used steels.Therefore, for large fast ships the lowest natural frequencies of the global hull modes can be relatively low compared to the frequency of waveencounter....... As part of the NoKoS project it was decided to investigate the effect of hull flexibility on the wave-induced as well as accidental structural loads on high-speed ships.Especially it was decided to determine whether there is an upper size of FRP and aluminium mono-hulls caused by continuous wave action...
Analysis of annual exposure of private farmers to noise and whole body vibration
Directory of Open Access Journals (Sweden)
Leszek Solecki
2012-06-01
Full Text Available Based on a literature review for the period of 1982– 2011, an analysis was performed of studies by various researchers concerning the exposure of private farmers to noise and vibration of the whole body with particular consideration of the annual exposure to these factors. The main sources of noise occurring in agriculture are: agricultural tractors mounted with a set of farm machinery, self-propelled machines, machinery for the production of fodder and workshop equipment. The review of literature showed that the highest values of equivalent exposure to noise (EA, T or noise doses (d were noted during the summer-autumn season and in spring. Mean noise levels for the entire year (of over 90 dB-A, considerably exceeded permissible values.The primary sources of the whole body vibration are agricultural vehicles including agricultural tractors of various types and self-propelled agricultural vehicles. In these vehicles vibration transmitted from the seat to the whole body is of basic importance. The measurements of vibration acceleration indicated that mechanical vibration on seats was produced while performing following activities: hay tedding and raking, sowing of fertilizers, aggregation of soil, grass mowing and cultivation. All of them may create a considerable health risk. These work activities are performed at elevated working speeds of tractors, most often along with hardened or uneven surfaces. In relation to the standard values (A(840.8 m/s2, the mean daily vibration acceleration values remain below the permissible levels during all months of the year. However, considering the occurrence of mechanical shocks of high values (above the Maximum Acceptable Intensity on agricultural vehicles there is a high risk for the spine problems among operators of agricultural vehicles.
International Nuclear Information System (INIS)
Qiu, Kunzan; Zhang, Hailong; Zhou, Hao; Zhou, Bin; Li, Letian; Cen, Kefa
2014-01-01
This paper investigated the ash deposit characteristics during the co-firing Da Tong (DA) coal with different proportions of rice hull (0%, 5%, 10%, and 20%, based on weight) in a pilot-scale furnace. The growth of ash deposit with a four-stage mode was presented. The stable thickness values of DA coal, 5% rice hull, 10% rice hull, and 20% rice hull were 0.5, 1.4, 2.9, 5.7 cm, with stable heat flux values of 230, 200, 175, and 125 kW/m 2 , respectively. According to the results of scanning electron microscopy with energy dispersive X-ray analysis (SEM-EDX), the amount of Si in the deposits increased with the increasing proportion of rice hull rich in SiO 2 . The X-ray diffraction (XRD) analysis results indicated that most elements except Si were in the amorphous state because of the formation of eutectics. The stable thicknesses of deposits increased exponentially with the proportion of rice hull. The deposit was loose, easy removable but it reduced the heat transfer significantly. Consequently, sootblowing timely was necessary when co-firing DA coal with rice hull. - Highlights: • Digital image technique was used to monitor deposits growth process. • A type of four stages mode of ash deposit growth was presented. • The heat flux of ash deposits fit a three-stage mode. • The addition of rice hull increased the porosity of deposits
Simplified analysis method for vibration of fusion reactor components with magnetic damping
International Nuclear Information System (INIS)
Tanaka, Yoshikazu; Horie, Tomoyoshi; Niho, Tomoya
2000-01-01
This paper describes two simplified analysis methods for the magnetically damped vibration. One is the method modifying the result of finite element uncoupled analysis using the coupling intensity parameter, and the other is the method using the solution and coupled eigenvalues of the single-degree-of-freedom coupled model. To verify these methods, numerical analyses of a plate and a thin cylinder are performed. The comparison between the results of the former method and the finite element tightly coupled analysis show almost satisfactory agreement. The results of the latter method agree very well with the finite element tightly coupled results because of the coupled eigenvalues. Since the vibration with magnetic damping can be evaluated using these methods without finite element coupled analysis, these approximate methods will be practical and useful for the wide range of design analyses taking account of the magnetic damping effect
Investigation of active vibration drilling using acoustic emission and cutting size analysis
Directory of Open Access Journals (Sweden)
Yingjian Xiao
2018-04-01
Full Text Available This paper describes an investigation of active bit vibration on the penetration mechanisms and bit-rock interaction for drilling with a diamond impregnated coring bit. A series of drill-off tests (DOTs were conducted where the drilling rate-of-penetration (ROP was measured at a series of step-wise increasing static bit thrusts or weight-on-bits (WOBs. Two active DOTs were conducted by applying 60 Hz axial vibration at the bit-rock interface using an electromagnetic vibrating table mounted underneath the drilling samples, and a passive DOT was conducted where the bit was allowed to vibrate naturally with lower amplitude due to the compliance of the drilling sample mountings. During drilling, an acoustic emission (AE system was used to record the AE signals generated by the diamond cutter penetration and the cuttings were collected for grain size analysis. The instrumented drilling system recorded the dynamic motions of the bit-rock interface using a laser displacement sensor, a load cell, and an LVDT (linear variable differential transformer recorded the dynamic WOB and the ROP, respectively. Calibration with the drilling system showed that rotary speed was approximately the same at any given WOB, facilitating comparison of the results at the same WOB. Analysis of the experimental results shows that the ROP of the bit at any given WOB increased with higher amplitude of axial bit-rock vibration, and the drill cuttings increased in size with a higher ROP. Spectral analysis of the AEs indicated that the higher ROP and larger cutting size were correlated with a higher AE energy and a lower AE frequency. This indicated that larger fractures were being created to generate larger cutting size. Overall, these results indicate that a greater magnitude of axial bit-rock vibration produces larger fractures and generates larger cuttings which, at the same rotary speed, results in a higher ROP. Keywords: Active bit vibration, Diamond coring drilling, Drill
El Aroudi, Abdelali
2014-05-01
Recently, nonlinearities have been shown to play an important role in increasing the extracted energy of vibration-based energy harvesting systems. In this paper, we study the dynamical behavior of a piecewise linear (PWL) spring-mass-damper system for vibration-based energy harvesting applications. First, we present a continuous time single degree of freedom PWL dynamical model of the system. Different configurations of the PWL model and their corresponding state-space regions are derived. Then, from this PWL model, extensive numerical simulations are carried out by computing time-domain waveforms, state-space trajectories and frequency responses under a deterministic harmonic excitation for different sets of system parameter values. Stability analysis is performed using Floquet theory combined with Filippov method, Poincaré map modeling and finite difference method (FDM). The Floquet multipliers are calculated using these three approaches and a good concordance is obtained among them. The performance of the system in terms of the harvested energy is studied by considering both purely harmonic excitation and a noisy vibrational source. A frequency-domain analysis shows that the harvested energy could be larger at low frequencies as compared to an equivalent linear system, in particular, for relatively low excitation intensities. This could be an advantage for potential use of this system in low frequency ambient vibrational-based energy harvesting applications. © 2014 World Scientific Publishing Company.
Hu, Zhan; Zheng, Gangtie
2016-08-01
A combined analysis method is developed in the present paper for studying the dynamic properties of a type of geometrically nonlinear vibration isolator, which is composed of push-pull configuration rings. This method combines the geometrically nonlinear theory of curved beams and the Harmonic Balance Method to overcome the difficulty in calculating the vibration and vibration transmissibility under large deformations of the ring structure. Using the proposed method, nonlinear dynamic behaviors of this isolator, such as the lock situation due to the coulomb damping and the usual jump resulting from the nonlinear stiffness, can be investigated. Numerical solutions based on the primary harmonic balance are first verified by direct integration results. Then, the whole procedure of this combined analysis method is demonstrated and validated by slowly sinusoidal sweeping experiments with different amplitudes of the base excitation. Both numerical and experimental results indicate that this type of isolator behaves as a hardening spring with increasing amplitude of the base excitation, which makes it suitable for isolating both steady-state vibrations and transient shocks.
Hortobagyi, Tibor; Lesinski, Melanie; Fernandez-del-Olmo, Miguel; Granacher, Urs
We quantified the acute and chronic effects of whole body vibration on athletic performance or its proxy measures in competitive and/or elite athletes. Systematic literature review and meta-analysis. Whole body vibration combined with exercise had an overall 0.3 % acute effect on maximal voluntary
Benefits Of Vibration Analysis For Development Of Equipment In HLW Tanks - 12341
International Nuclear Information System (INIS)
Stefanko, D.; Herbert, J.
2012-01-01
Vibration analyses of equipment intended for use in the Savannah River Site (SRS) radioactive liquid waste storage tanks are performed during pre-deployment testing and has been demonstrated to be effective in reducing the life-cycle costs of the equipment. Benefits of using vibration analysis to identify rotating machinery problems prior to deployment in radioactive service will be presented in this paper. Problems encountered at SRS and actions to correct or lessen the severity of the problem are discussed. In short, multi-million dollar cost saving have been realized at SRS as a direct result of vibration analysis on existing equipment. Vibration analysis of equipment prior to installation can potentially reduce inservice failures, and increases reliability. High-level radioactive waste is currently stored in underground carbon steel waste tanks at the United States Department of Energy (DOE) Savannah River Site and at the Hanford Site, WA. Various types of rotating machinery (pumps and separations equipment) are used to manage and retrieve the tank contents. Installation, maintenance, and repair of these pumps and other equipment are expensive. In fact, costs to remove and replace a single pump can be as high as a half million dollars due to requirements for radioactive containment. Problems that lead to in-service maintenance and/or equipment replacement can quickly exceed the initial investment, increase radiological exposure, generate additional waste, and risk contamination of personnel and the work environment. Several different types of equipment are considered in this paper, but pumps provide an initial example for the use of vibration analysis. Long-shaft (45 foot long) and short-shaft (5-10 feet long) equipment arrangements are used for 25-350 horsepower slurry mixing and transfer pumps in the SRS HLW tanks. Each pump has a unique design, operating characteristics and associated costs, sometimes exceeding a million dollars. Vibration data are routinely
BENEFITS OF VIBRATION ANALYSIS FOR DEVELOPMENT OF EQUIPMENT IN HLW TANKS - 12341
Energy Technology Data Exchange (ETDEWEB)
Stefanko, D.; Herbert, J.
2012-01-10
Vibration analyses of equipment intended for use in the Savannah River Site (SRS) radioactive liquid waste storage tanks are performed during pre-deployment testing and has been demonstrated to be effective in reducing the life-cycle costs of the equipment. Benefits of using vibration analysis to identify rotating machinery problems prior to deployment in radioactive service will be presented in this paper. Problems encountered at SRS and actions to correct or lessen the severity of the problem are discussed. In short, multi-million dollar cost saving have been realized at SRS as a direct result of vibration analysis on existing equipment. Vibration analysis of equipment prior to installation can potentially reduce inservice failures, and increases reliability. High-level radioactive waste is currently stored in underground carbon steel waste tanks at the United States Department of Energy (DOE) Savannah River Site and at the Hanford Site, WA. Various types of rotating machinery (pumps and separations equipment) are used to manage and retrieve the tank contents. Installation, maintenance, and repair of these pumps and other equipment are expensive. In fact, costs to remove and replace a single pump can be as high as a half million dollars due to requirements for radioactive containment. Problems that lead to in-service maintenance and/or equipment replacement can quickly exceed the initial investment, increase radiological exposure, generate additional waste, and risk contamination of personnel and the work environment. Several different types of equipment are considered in this paper, but pumps provide an initial example for the use of vibration analysis. Long-shaft (45 foot long) and short-shaft (5-10 feet long) equipment arrangements are used for 25-350 horsepower slurry mixing and transfer pumps in the SRS HLW tanks. Each pump has a unique design, operating characteristics and associated costs, sometimes exceeding a million dollars. Vibration data are routinely
Energy Technology Data Exchange (ETDEWEB)
Skrzypinski, W.
2012-02-15
Wind turbine blade vibrations at standstill conditions were investigated in the present work. These included vortex-induced and stall-induced vibrations. Thus, it was investigated whether the stand still vibrations are vortex-induced, stall-induced or a combination of both types. The work comprised analyzes based on engineering models and Computational Fluid Dynamics. Two-dimensional, three-degree-of-freedom, elastically-mounted-airfoil engineering models were created. These models aimed at investigating the effect of temporal lag in the aerodynamic response of an airfoil on the aeroelastic stability limits. The motivation for it was that the standard aerodynamics existing in state-of-the-art aeroelastic codes is effectively quasi-steady in deep stall. If such an assumption was incorrect, these codes could predict stall-induced vibrations inaccurately. The main conclusion drawn from these analyses was that even a relatively low amount of temporal lag in the aerodynamic response may significantly increase the aerodynamic damping and therefore influence the aeroelastic stability limits, relative to quasisteady aerodynamic response. Two- and three-dimensional CFD computations included non-moving, prescribed-motion and elastically mounted airfoil suspensions. 2D and 3D prescribed-motion CFD computations performed on a DU96-W-180 airfoil predicted vortex-induced vibrations at 90 degrees angle of attack at the frequency close to the stationary vortex shedding frequency predicted by 2D CFD computations. Significant discrepancies were observed between 2D and 3D computations around 25 degrees angle of attack. 3D computations predicted occurrence of vortex-induced vibrations while the wind speed necessary for the occurrence of stall-induced vibrations was predicted too high to occur in normal conditions. Analysis of the dynamic lift and drag resulting from 2D and 3D CFD computations carried out around 25 degrees angle of attack showed loops with the slopes of opposite signs
David Hull's generalized natural selection as an explanation for scientific change
Little, Michelle Yvette
2001-10-01
Philosophers of science such as Karl Popper and Thomas Kuhn have employed evolutionary idiom in describing scientific change. In Science as a Process (1988) Hull makes evolutionary theory explanatorily applicable. He modifies key evolutionary terms in order that both biological evolution and scientific change are instances of a general selection process. According to Hull, because of naturally-existing competition for credit among researchers and the professional lineages they constitute, scientists are constrained to cooperate and collaborate. This process entails two important philosophical consequences. First, it allows for a natural justification of why the sciences can provide objective empirical knowledge. Second, appreciating its strength means that a philosophical analysis of scientific change is solidly difficult features to combine. I work on strengthening two weaknesses in Hull's arguments. First, operating in his analysis is an unexplicated notion of ``information'' running parallel to the equally opaque notion of genetic information. My third chapter provides a clear account of ``genetic information'' whose usefulness extends beyond the assistance it can render Hull as a clear concept is needed in biological contexts as well. The fourth and fifth chapters submit evidence of scientific change from radio astronomy. Hull insists on empirical backing for philosophical theses but his own book stands to suffer from selection effects as it offers cases drawn from a single subspecialty in the biological sciences. I found that in the main scientists and the change they propel accords well with Hull's explanation. However, instances of major change reveal credit- and resource-sharing to a degree contrary with what Hull would expect. My conclusion is that the naturalness of competition, instantiated during the course of standardized and relatively ``normal'' scientific research, is not the norm during periods of new research and its uncertain standards of
Hull's Diploma in Teaching of Adults
Styler, W. E.
1971-01-01
A diploma in the Teaching of Adults for part-time students was introduced in the University of Hull in 1966 as a fully recognized university diploma. Article discusses the three major parts of the course, examinations, and requirements. (RB)
International Nuclear Information System (INIS)
Ayazuddin, S.K.; Qureshi, A.A.; Hayat, T.
1997-11-01
The Primary Water Inlet Pipeline (PW-IPL) is of stainless steel conveying demineralized water from hold-up tank to the reactor pool of Pakistan Research Reactor-1 (PARR-1). The section of the pipeline from heat exchangers to the valve pit is hanger supported in the pump room and the rest of the section from valve pit to the reactor pool is embedded. The PW-IPL is subjected to steady state and transient vibrations. The reactor pumps, which drive the coolant through various circuits mainly contribute the steady state vibrations, while transient vibrations arise due to instant closure of the check valve (water hammer). The ASME Boiler and Pressure Vessel code provides data about the acceptable limits of stresses related to the primary static stress due to steady state vibrations. However, due to complexity in the pipe structure, stresses related to the transient vibrations are neglected in the code. In this report attempt has been made to analyzed both steady state and transient vibrations of PW-IPL of PARR-1. Since, both the steady state and transient vibrations affect the hanger-supported section of the PW-IPL, therefore, it was selected for vibration test measurements. In the analysis vibration data was compared with the allowable limits and estimations of maximum pressure build-up, eflection, natural frequency, tensile and shear load on hanger support, and the ratio of maximum combine stress to the allowable load were made. (author)
FREQUENCY ANALYSIS OF VIBRATIONS OF THE ROUND PARACHUTE EDGE
Directory of Open Access Journals (Sweden)
2016-01-01
Full Text Available The article is addressed to the analysis of the videos obtained during flight experiment at the launch of meteo-rocket MMP-06 in order to determine main characteristics of the oscillatory process the edges of the canopy at subsonic speeds at altitudes from 42,2 km to 34.2 km. Data analysis demonstrated that the oscillations of the edge of the canopy has a random character. The structure frequency of 2.4 Hz was identified from the analysis to be determined by the nylon sling stiffness.
Directory of Open Access Journals (Sweden)
Aboozar Heydari
2017-09-01
Full Text Available In this paper, the effects of nonlinear forces due to the electromagnetic field of bearing and the unbalancing force on nonlinear vibration behavior of a rotor is investigated. The rotor is modeled as a rigid body that is supported by two magnetic bearings with eight-polar structures. The governing dynamics equations of the system that are coupled nonlinear second order ordinary differential equations (ODEs are derived, and for solving these equations, the homotopy perturbation method (HPM is used. By applying HPM, the possibility of presenting a harmonic semi-analytical solution, is provided. In fact, with equality the coefficient of auxiliary parameter (p, the system of coupled nonlinear second order and non-homogenous differential equations are obtained so that consists of unbalancing effects. By considering some initial condition for displacement and velocity in the horizontal and vertical directions, free vibration analysis is done and next, the forced vibration analysis under the effect of harmonic forces also is investigated. Likewise, various parameters on the vibration behavior of rotor are studied. Changes in amplitude and response phase per excitation frequency are investigated. Results show that by increasing excitation frequency, the motion amplitude is also increases and by passing the critical speed, it decreases. Also it shows that the magnetic bearing system performance is in stable maintenance of rotor. The parameters affecting on vibration behavior, has been studied and by comparison the results with the other references, which have a good precision up to 2nd order of embedding parameter, it implies the accuracy of this method in current research.
Formula for Forced Vibration Analysis of Structures Using Static ...
African Journals Online (AJOL)
Some methods of dynamic analysis are based on using static factored response ... on a false assumption of direct linear variation in the stress-displacement relationship. Based on the flexible frame model and stiffness formulation a formula for ...
DEFF Research Database (Denmark)
Andersen, Ingrid Marie Vincent; Jensen, Jørgen Juncher
2012-01-01
Currently, a number of very large container ships are being built and more are on order, and some concerns have been expressed about the importance of the reduced hull girder stiffness to the wave-induced loads. The main concern is related to the fatigue life, but also a possible increase...... in the global hull girder loads as consequence of the increased hull flexibility must be considered. This is especially so as the rules of the classification societies do not explicitly account for the effect of hull flexibility on the global loads. In the present paper an analysis has been carried out...... in the waves. Slamming forces are determined by a standard momentum formulation. The hull flexibility is modelled as a nonprismatic Timoshenko beam. Generally, good agreement with experimental results and more accurate numerical predictions has previously been obtained in a number of studies. The statistical...
An introduction to random vibrations, spectral & wavelet analysis
Newland, D E
2005-01-01
One of the first engineering books to cover wavelet analysis, this classic text describes and illustrates basic theory, with a detailed explanation of the workings of discrete wavelet transforms. Computer algorithms are explained and supported by examples and a set of problems, and an appendix lists ten computer programs for calculating and displaying wavelet transforms.Starting with an introduction to probability distributions and averages, the text examines joint probability distributions, ensemble averages, and correlation; Fourier analysis; spectral density and excitation response relation
Morphing hull implementation for unmanned underwater vehicles
Miller, Timothy F.; Gandhi, Farhan; Rufino, Russell J.
2013-11-01
There has been much interest and work in the area of morphing aircraft since the 1980s. Morphing could also potentially benefit unmanned underwater vehicles (UUVs). The current paper envisions a UUV with an interior pressure hull and a variable diameter outer flexible hull with fuel stored in the annulus between, and presents a mechanism to realize diameter change of the outer hull. The outer hull diameter of UUVs designed for very long endurance/range could be progressively reduced as fuel was consumed, thereby reducing drag and further increasing endurance and range capability. Diameter morphing could also be advantageous for compact storage of UUVs. A prototype is fabricated to represent an axial section of such a morphing diameter UUV. Diameter change is achieved using eight morphing trusses arranged equidistant around the circumference of the representative interior rigid hull. Each morphing truss has a lower rail (attached to the rigid hull) and an upper rail with V-linkages between, at either ends of the rail. Horizontal motion of the feet of the V-linkages (sliding in the lower rail) results in vertical motion of the upper rail which in turn produces diameter change of the outer hull. For the prototype built and tested, a 63% increase in outer diameter from 12.75″ to 20.75″ was achieved. The introduction of a stretched latex representative flexible skin around the outer rails increased actuation force requirement and led to a propensity for the wheel-in-track sliders in the morphing truss to bind. It is anticipated that this could be overcome with higher precision manufacturing. In addition to symmetric actuation of the morphing trusses resulting in diameter change, the paper also shows that with asymmetric actuation the hull cross-section shape can be changed (for example, from a circular section for underwater operation to a V-section for surface operations).
Morphing hull implementation for unmanned underwater vehicles
International Nuclear Information System (INIS)
Miller, Timothy F; Gandhi, Farhan; Rufino, Russell J
2013-01-01
There has been much interest and work in the area of morphing aircraft since the 1980s. Morphing could also potentially benefit unmanned underwater vehicles (UUVs). The current paper envisions a UUV with an interior pressure hull and a variable diameter outer flexible hull with fuel stored in the annulus between, and presents a mechanism to realize diameter change of the outer hull. The outer hull diameter of UUVs designed for very long endurance/range could be progressively reduced as fuel was consumed, thereby reducing drag and further increasing endurance and range capability. Diameter morphing could also be advantageous for compact storage of UUVs. A prototype is fabricated to represent an axial section of such a morphing diameter UUV. Diameter change is achieved using eight morphing trusses arranged equidistant around the circumference of the representative interior rigid hull. Each morphing truss has a lower rail (attached to the rigid hull) and an upper rail with V-linkages between, at either ends of the rail. Horizontal motion of the feet of the V-linkages (sliding in the lower rail) results in vertical motion of the upper rail which in turn produces diameter change of the outer hull. For the prototype built and tested, a 63% increase in outer diameter from 12.75″ to 20.75″ was achieved. The introduction of a stretched latex representative flexible skin around the outer rails increased actuation force requirement and led to a propensity for the wheel-in-track sliders in the morphing truss to bind. It is anticipated that this could be overcome with higher precision manufacturing. In addition to symmetric actuation of the morphing trusses resulting in diameter change, the paper also shows that with asymmetric actuation the hull cross-section shape can be changed (for example, from a circular section for underwater operation to a V-section for surface operations). (paper)
Inspecting the inside of underwater hull
Valkovic, Vladivoj; Sudac, Davorin
2009-05-01
In order to demonstrate the possibility of identifying the material within ship's underwater hull, sunken ships and other objects on the sea floor tests with the 14 MeV sealed tube neutron generator incorporated inside a small submarine submerged in the test basin filled with sea water have been performed. Results obtained for inspection of diesel fuel and explosive presence behind single and double hull constructions are presented.
International Nuclear Information System (INIS)
Liu, Yao; Wang, Xiufeng; Lin, Jing; Zhao, Wei
2016-01-01
Motor current is an emerging and popular signal which can be used to detect machining chatter with its multiple advantages. To achieve accurate and reliable chatter detection using motor current, it is important to make clear the quantitative relationship between motor current and chatter vibration, which has not yet been studied clearly. In this study, complex continuous wavelet coherence, including cross wavelet transform and wavelet coherence, is applied to the correlation analysis of motor current and chatter vibration in grinding. Experimental results show that complex continuous wavelet coherence performs very well in demonstrating and quantifying the intense correlation between these two signals in frequency, amplitude and phase. When chatter occurs, clear correlations in frequency and amplitude in the chatter frequency band appear and the phase difference of current signal to vibration signal turns from random to stable. The phase lead of the most correlated chatter frequency is the largest. With the further development of chatter, the correlation grows up in intensity and expands to higher order chatter frequency band. The analyzing results confirm that there is a consistent correlation between motor current and vibration signals in the grinding chatter process. However, to achieve accurate and reliable chatter detection using motor current, the frequency response bandwidth of current loop of the feed drive system must be wide enough to response chatter effectively. (paper)
The use of pulsed lasers for vibration analysis in the nuclear power industry
International Nuclear Information System (INIS)
Tozer, B.A.
1987-01-01
The structural engineer's interest in vibration can generally be summarised as a desire to know the modes of vibration which an engineering structure can assume, the resonant frequencies, the sharpness of the resonances (related to the damping forces in and on the structure) and their amplitudes under given driving forces. Most of all he is interested in the non-resonant vibration of the structure under the influence of a random driving force, and he would like to determine the direction (in three dimensional space), as well as amplitude, of the motions involved. In industries in which exceptionally high levels of structural integrity are required through long periods of continuous or near continuous operation, such as the aeronautical or nuclear industries, accurate vibration analysis is an essential first step towards an assessment of the fatigue life of the structure. In this case the most important factor is the dynamic stress in the structural material. Measurement tools available to the engineer, in order to obtain the information he needs, are numerous, varied in character, and generally unable to meet all the needs outlined above. They may be contacting (e.g. accelerometers or straingauges) or non contacting (for example holographic interferometry, ESPI or SPATE). They may provide data continuous in space (holographic interferometry), with limited spatial resolution (ESPI), or discrete point measurements (accelerometers, laser vibrometers)
Experimental vibration analysis for a 3D scaled model of a three-floor steel structure
Directory of Open Access Journals (Sweden)
Ernesto F. Castillo
Full Text Available In this paper we present an experimental study of a three dimensional physical model of a three-floor structure subjected to forced vibrations by imposing displacements in its support. The aim of this work is to analyze the behavior of the building when a dynamic vibration absorber (DVA is acting. An analytic simplified analysis and a numerical study are developed to obtain the natural frequencies of the structure. Experiments are carried out in a vibrating table. The frequency range to be experimentally analyzed is determined by the first natural frequency of the structure for which the DVA damping effects are verified. The equipment capabilities, i.e. the frequencies, amplitudes and admissible load, limit the analyses. Nevertheless, satisfactory results are obtained for the study of the first mode of vibration. The effect of different amplitudes of the imposed support motion is also analyzed. In addition, the damping effect of the DVA device is evaluated upon varying its mass and its location in the structure. The characteristic curves in the frequency domain are obtained computing the Fast Fourier Transformation (FFT of the acceleration history registered with piezoelectric accelerometers at different checkpoints for the cases analyzed.
Vibrational spectroscopic study and NBO analysis on tranexamic acid using DFT method
Muthu, S.; Prabhakaran, A.
2014-08-01
In this work, we reported the vibrational spectra of tranexamic acid (TA) by experimental and quantum chemical calculation. The solid phase FT-Raman and FT-IR spectra of the title compound were recorded in the region 4000 cm-1 to 100 cm-1 and 4000 cm-1 to 400 cm-1 respectively. The molecular geometry, harmonic vibrational frequencies and bonding features of TA in the ground state have been calculated by using density functional theory (DFT) B3LYP method with standard 6-31G(d,p) basis set. The scaled theoretical wavenumber showed very good agreement with the experimental values. The vibrational assignments were performed on the basis of the potential energy distribution (PED) of the vibrational modes. Stability of the molecule, arising from hyperconjugative interactions and charge delocalization, has been analyzed using Natural Bond Orbital (NBO) analysis. The results show that ED in the σ* and π* antibonding orbitals and second order delocalization energies E(2) confirm the occurrence of intramolecular charge transfer (ICT) within the molecule. The electrostatic potential mapped onto an isodensity surface has been obtained. The calculated HOMO and LUMO energies show that charge transfer occurs within the molecule. The thermodynamic properties (heat capacity, entropy, and enthalpy) of the title compound at different temperatures were calculated in gas phase.
Directory of Open Access Journals (Sweden)
E. Carrera
2011-01-01
Full Text Available This paper presents hierarchical finite elements on the basis of the Carrera Unified Formulation for free vibrations analysis of beam with arbitrary section geometries. The displacement components are expanded in terms of the section coordinates, (x, y, using a set of 1-D generalized displacement variables. N-order Taylor type expansions are employed. N is a free parameter of the formulation, it is supposed to be as high as 4. Linear (2 nodes, quadratic (3 nodes and cubic (4 nodes approximations along the beam axis, (z, are introduced to develop finite element matrices. These are obtained in terms of a few fundamental nuclei whose form is independent of both N and the number of element nodes. Natural frequencies and vibration modes are computed. Convergence and assessment with available results is first made considering different type of beam elements and expansion orders. Additional analyses consider different beam sections (square, annular and airfoil shaped as well as boundary conditions (simply supported and cantilever beams. It has mainly been concluded that the proposed model is capable of detecting 3-D effects on the vibration modes as well as predicting shell-type vibration modes in case of thin walled beam sections.
One stacked-column vibration test and analysis for VHTR core
International Nuclear Information System (INIS)
Ikushima, Takeshi; Ishizuka, Hiroshi; Ide, Akira; Hayakawa, Hitoshi; Shingai, Kazuteru.
1978-07-01
This paper describes experimental results of the vibration test on a single stacked-column and compares them with the analytical results. A 1/2 scale model of the core element of a very high temperature gas-cooled reactor (VHTR) was set on a shaking table. Sinusoidal waves, response time history waves, beat wave and step wave of input acceleration 100 - 900 gal in the frequency of 0.5 to 15 Hz were used to vibrate the table horizontally. Results are as follows: (1) The column has a non-linear resonance and exhibits a hysteresis response with jump points. (2) The column vibration characteristics is similar to that of the finite beams connected with non-linear soft spring. (3) The column resonance frequency decreases with increasing input acceleration. (4) The impact force increases with increasing input acceleration and boundary gap width. (5) Good correlation in vibration behavior of the stacked-column and impact force on the boundary between test and analysis was obtained. (auth.)
Ali, Narmeen; Mansha, Asim; Asim, Sadia; Zahoor, Ameer Fawad; Ghafoor, Sidra; Akbar, Muhammad Usman
2018-03-01
This paper deals with combined theoretical and experimental study of geometric, electronic and vibrational properties of 2-chlorothioxanthone (CTX) molecule which is potential photosensitizer. The FT-IR spectrum of CTX in solid phase was recorded in 4000-400 cm-1 region. The UV-Vis. absorption spectrum was also recorded in the laboratory as well as computed at DFT/B3LYP level in five different phases viz. gas, water, DMSO, acetone and ethanol. The quantum mechanics based theoretical IR and Raman spectra were also calculated for the title compound employing HF and DFT functional with 3-21G+, 6-31G+ and 6-311G+, 6-311G++ basis sets, respectively, and assignment of each vibrational frequency has been done on the basis of potential energy distribution (PED). A comparison has been made between theoretical and experimental vibrational spectra as well as for the UV-Vis. absorption spectra. The computed infra red & Raman spectra by DFT compared with experimental spectra along with reliable vibrational assignment based on PED. The calculated electronic properties, results of natural bonding orbital (NBO) analysis, charge distribution, dipole moment and energies have been reported in the paper. Bimolecular quenching of triplet state of CTX in the presence of triethylamine, 2-propanol triethylamine and diazobicyclooctane (DABCO) reflect the interactions between them. The bimolecular quenching rate constant is fastest for interaction of 3CTX in the presence of DABCO reflecting their stronger interactions.
Probabilistic analysis of wind-induced vibration mitigation of structures by fluid viscous dampers
Chen, Jianbing; Zeng, Xiaoshu; Peng, Yongbo
2017-11-01
The high-rise buildings usually suffer from excessively large wind-induced vibrations, and thus vibration control systems might be necessary. Fluid viscous dampers (FVDs) with nonlinear power law against velocity are widely employed. With the transition of design method from traditional frequency domain approaches to more refined direct time domain approaches, the difficulty of time integration of these systems occurs sometimes. In the present paper, firstly the underlying reason of the difficulty is revealed by identifying that the equations of motion of high-rise buildings installed with FVDs are sometimes stiff differential equations. Thus, an approach effective for stiff differential systems, i.e., the backward difference formula (BDF), is then introduced, and verified to be effective for the equation of motion of wind-induced vibration controlled systems. Comparative studies are performed among some methods, including the Newmark method, KR-alpha method, energy-based linearization method and the statistical linearization method. Based on the above results, a 20-story steel frame structure is taken as a practical example. Particularly, the randomness of structural parameters and of wind loading input is emphasized. The extreme values of the responses are examined, showing the effectiveness of the proposed approach, and also necessitating the refined probabilistic analysis in the design of wind-induced vibration mitigation systems.
Analysis of the Impacts of Bearing on Vibration Characteristics of Rotor
Directory of Open Access Journals (Sweden)
Peiji Yang
2017-01-01
Full Text Available Aiming at a Top Gas Recovery Turbine Unit (TRT with double support rotor and the extending disk end, theoretical and experimental analysis about influence of cylindrical bearing and four-lobe bearing on vibration of TRT rotor system are conducted in this paper. The results indicate that vibration of the rotor supported by cylindrical bearing is more stable than that supported by four-lobe bearing at the driving end (DE and the nondriving end (NDE. The amplitude of rotor is supported by both of these types of bearing increases as the speed increases at the NDE, while the amplitude of the DE remains unchanged. Comparing with the result of theoretical analysis, the practical test results are more consistent with the theoretical response analysis conducted by applying unbalanced mass at the extending disk end. This paper presents an analysis method of the critical characteristics of a double support rotor system with the extending disk end and provides reference value for dealing with vibration fault of double support rotor system with the extending disk end.
Vibration analysis of the photon shutter designed for the advanced photon source
International Nuclear Information System (INIS)
Wang, Z.; Shu, D.; Kuzay, T.M.
1992-01-01
The photon shutter is a critical component of the beamline front end for the 7 GeV Advanced Photon Source (APS) project, now under construction at Argonne National Laboratory (ANL). The shutter is designed to close in tens of milliseconds to absorb up to 10 kW heat load (with high heat flux). Our shutter design uses innovative enhanced heat transfer tubes to withstand the high heat load. Although designed to be light weight and compact, the very fast movement of the shutter gives rise to concern regarding vibration and dynamic sensitivity. To guarantee long-term functionality and reliability of the shutter, the dynamic behavior should be fully studied. In this paper, the natural frequency and transient dynamic analysis for the shutter during operation are presented. Through analysis of the vibration characteristics, as well as stress and deformation, several options in design were developed and compared, including selection of materials for the shutter and structural details
Jandaghian, A. A.; Rahmani, O.
2016-03-01
In this study, free vibration analysis of magneto-electro-thermo-elastic (METE) nanobeams resting on a Pasternak foundation is investigated based on nonlocal theory and Timoshenko beam theory. Coupling effects between electric, magnetic, mechanical and thermal loading are considered to derive the equations of motion and distribution of electrical potential and magnetic potential along the thickness direction of the METE nanobeam. The governing equations and boundary conditions are obtained using the Hamilton principle and discretized via the differential quadrature method (DQM). Numerical results reveal the effects of the nonlocal parameter, magneto-electro-thermo-mechanical loading, Winkler spring coefficients, Pasternak shear coefficients and height-to-length ratio on the vibration characteristics of METE nanobeams. It is observed that the natural frequency is dependent on the magnetic, electric, temperature, elastic medium, small-scale coefficient, and height-to-length ratio. These results are useful in the mechanical analysis and design of smart nanostructures constructed from magneto-electro-thermo-elastic materials.
On-line vibration and analysis system at the Paducah Gaseous Diffusion Plant
International Nuclear Information System (INIS)
Herricks, D.M.; Strunk, W.D.
1987-11-01
The enrichment facility in Paducah, KY uses a unique hard-wired vibration monitoring and analysis system for gaseous diffusion equipment. The axial flow and centrifugal flow compressors used in uranium enrichment range in size from 6 feet in diameter to less than one foot in diameter. These compressors must operate smoothly and safely, without breech of containment, since the working fluid of gaseous diffusion is gaseous UF 6 . The condition of 1925 compressors is monitored by use of the 2500 point vibration analysis system. Since the failure mechanisms of the compressors are well known and documented, only one accelerometer per machine is needed for most machines. The system is completely automated and can generate spectra or broadband levels in either acceleration or velocity units. Levels are stored for historical review. The analyst can, via a custom telecommunications link, view and analyze data from all monitored points with an office PC. 4 figs
Dimitrić Marković, Jasmina M; Marković, Zoran S; Milenković, Dejan; Jeremić, Svetlana
2011-12-01
This paper addresses experimental and theoretical research in fisetin (2-(3,4-dihydroxyphenyl)-3,7-dihydroxychromen-4-one) structure by means of experimental IR and Raman spectroscopies and mechanistic calculations. Density Functional Theory calculations, with M05-2X functional and the 6-311+G (2df, p) basis set implemented in the Gaussian 09 package, are performed with the aim to support molecular structure, vibrational bands' positions and their intensities. Potential energy distribution (PED) values and the description of the largest vibrational contributions to the normal modes are calculated. The most intense bands appear in the 1650-1500 cm(-1) wavenumber region. This region involves a combination of the CO, C2C3 and C-C stretching vibrational modes. Most of the bands in the 1500-1000 cm(-1) range involve C-C stretching, O-C stretching and in-plane C-C-H, C-O-H, C-C-O and C-C-C bending vibrations of the rings. The region below 1000 cm(-1) is characteristic to the combination of in plane C-C-C-H, H-C-C-H, C-C-C-C, C-C-O-C and out of plane O-C-C-C, C-C-O-C, C-C-C-C torsional modes. The Raman spectra of baicalein and quercetin were used for qualitative comparison with fisetin spectrum and verification of band assignments. The applied detailed vibrational spectral analysis and the assignments of the bands, proposed on the basis of fundamentals, reproduced the experimental results with high degree of accuracy. Copyright © 2011 Elsevier B.V. All rights reserved.
Dimitrić Marković, Jasmina M.; Marković, Zoran S.; Milenković, Dejan; Jeremić, Svetlana
2011-12-01
This paper addresses experimental and theoretical research in fisetin (2-(3,4-dihydroxyphenyl)-3,7-dihydroxychromen-4-one) structure by means of experimental IR and Raman spectroscopies and mechanistic calculations. Density Functional Theory calculations, with M05-2X functional and the 6-311+G (2df, p) basis set implemented in the Gaussian 09 package, are performed with the aim to support molecular structure, vibrational bands' positions and their intensities. Potential energy distribution (PED) values and the description of the largest vibrational contributions to the normal modes are calculated. The most intense bands appear in the 1650-1500 cm -1 wavenumber region. This region involves a combination of the C dbnd O, C2 dbnd C3 and C-C stretching vibrational modes. Most of the bands in the 1500-1000 cm -1 range involve C-C stretching, O-C stretching and in-plane C-C-H, C-O-H, C-C-O and C-C-C bending vibrations of the rings. The region below 1000 cm -1 is characteristic to the combination of in plane C-C-C-H, H-C-C-H, C-C-C-C, C-C-O-C and out of plane O-C-C-C, C-C-O-C, C-C-C-C torsional modes. The Raman spectra of baicalein and quercetin were used for qualitative comparison with fisetin spectrum and verification of band assignments. The applied detailed vibrational spectral analysis and the assignments of the bands, proposed on the basis of fundamentals, reproduced the experimental results with high degree of accuracy.
Directory of Open Access Journals (Sweden)
Saleem Riaz
2017-02-01
Full Text Available Safety, reliability, efficiency and performance of rotating machinery in all industrial applications are the main concerns. Rotating machines are widely used in various industrial applications. Condition monitoring and fault diagnosis of rotating machinery faults are very important and often complex and labor-intensive. Feature extraction techniques play a vital role for a reliable, effective and efficient feature extraction for the diagnosis of rotating machinery. Therefore, developing effective bearing fault diagnostic method using different fault features at different steps becomes more attractive. Bearings are widely used in medical applications, food processing industries, semi-conductor industries, paper making industries and aircraft components. This paper review has demonstrated that the latest reviews applied to rotating machinery on the available a variety of vibration feature extraction. Generally literature is classified into two main groups: frequency domain, time frequency analysis. However, fault detection and diagnosis of rotating machine vibration signal processing methods to present their own limitations. In practice, most healthy ingredients faulty vibration signal from background noise and mechanical vibration signals are buried. This paper also reviews that how the advanced signal processing methods, empirical mode decomposition and interference cancellation algorithm has been investigated and developed. The condition for rotating machines based rehabilitation, prevent failures increase the availability and reduce the cost of maintenance is becoming necessary too. Rotating machine fault detection and diagnostics in developing algorithms signal processing based on a key problem is the fault feature extraction or quantification. Currently, vibration signal, fault detection and diagnosis of rotating machinery based techniques most widely used techniques. Furthermore, the researchers are widely interested to make automatic
Directory of Open Access Journals (Sweden)
Balla Srinivasa Prasad
2017-02-01
Full Text Available In this paper, a correlation between vibration amplitude and tool wear when in dry turning of AISI 4140 steel using uncoated carbide insert DNMA 432 is analyzed via experiments and finite element simulations. 3D Finite element simulations results are utilized to predict the evolution of cutting forces, vibration displacement amplitudes and tool wear in vibration induced turning. In the present paper, the primary concern is to find the relative vibration and tool wear with the variation of process parameters. These changes lead to accelerated tool wear and even breakage. The cutting forces in the feed direction are also predicted and compared with the experimental trends. A laser Doppler vibrometer is used to detect vibration amplitudes and the usage of Kistler 9272 dynamometer for recording the cutting forces during the cutting process is well demonstrated. A sincere effort is put to investigate the influence of spindle speed, feed rate, depth of cut on vibration amplitude and tool flank wear at different levels of workpiece hardness. Empirical models have been developed using second order polynomial equations for correlating the interaction and higher order influences of various process parameters. Analysis of variance (ANOVA is carried out to identify the significant factors that are affecting the vibration amplitude and tool flank wear. Response surface methodology (RSM is implemented to investigate the progression of flank wear and displacement amplitude based on experimental data. While measuring the displacement amplitude, R-square values for experimental and numerical methods are 98.6 and 97.8. Based on the R-square values of ANOVA it is found that the numerical values show good agreement with the experimental values and are helpful in estimating displacement amplitude. In the case of predicting the tool wear, R-square values were found to be 97.69 and 96.08, respectively for numerical and experimental measures while determining the tool
Czech Academy of Sciences Publication Activity Database
Gorman, D. G.; Trendafilova, I.; Mulholland, F.; Horáček, Jaromír
5-6, - (2006), s. 323-330 ISSN 1660-9336 R&D Projects: GA AV ČR(CZ) IAA2076101 Institutional research plan: CEZ:AV0Z20760514 Keywords : vibrations * vibro-acoustic interaction * structural/acoustic Subject RIV: BI - Acoustics
CFD simulation on Kappel propeller with a hull wake field
DEFF Research Database (Denmark)
Shin, Keun Woo; Andersen, Poul; Møller Bering, Rasmus
2013-01-01
Marine propellers are designed not for the open-water operation, but for the operation behind a hull due to the inhomogeneous hull wake and thrust deduction. The adaptation for the hull wake is important for the propulsive efficiency and cavitation risk especially on single-screw ships. CFD...... simulations for a propeller with a hull model have showed acceptable agreement with a model test result in the thrust and torque (Larsson et al. 2010). In the current work, a measured hull wake is applied to the simulation instead of modelling a hull, because the hull geometry is mostly not available...... for propeller designers and the computational effort can be reduced by excluding the hull. The CFD simulation of a propeller flow with a hull wake is verified in order to use CFD as a propeller design tool. A Kappel propeller, which is an innovative tip-modified propeller, is handled. Kappel propellers...
Mulier, Michiel; Pastrav, Cesar; Van der Perre, Georges
2008-01-01
Defining the stem insertion end point during total hip replacement still relies on the surgeon's feeling. When a custom-made stem prosthesis with an optimal fit into the femoral canal is used, the risk of per-operative fractures is even greater than with standard prostheses. Vibration analysis is used in other clinical settings and has been tested as a means to detect optimal stem insertion in the laboratory. The first per-operative use of vibration analysis during non-cemented custom-made stem insertion in 30 patients is reported here. Thirty patients eligible for total hip replacement with uncemented stem prosthesis were included. The neck of the stem was connected with a shaker that emitted white noise as excitation signal and an impedance head that measured the frequency response. The response signal was sent to a computer that analyzed the frequency response function after each insertion phase. A technician present in the operating theatre but outside the laminated airflow provided feed-back to the surgeon. The correlation index between the frequency response function measured during the last two insertion hammering sessions was >0.99 in 86.7% of the cases. In four cases the surgeon stopped the insertion procedure because of a perceived risk of fracture. Two special cases illustrating the potential benefit of per-operative vibration analysis are described. The results of intra-operative vibration analysis indicate that this technique may be a useful tool assisting the orthopaedic surgeon in defining the insertion endpoint of the stem. The development of a more user-friendly device is therefore warranted.
A pragmatic approach to including complex natural modes of vibration in aeroelastic analysis
CSIR Research Space (South Africa)
Van Zyl, Lourens H
2015-09-01
Full Text Available complex natural modes of vibration in aeroelastic analysis Louw van Zyl International Aerospace Symposium of South Africa 14 to 16 September, 2015 Stellenbosch, South Africa Slide 2 © CSIR 2006 www.csir.co.za Problem statement..., the square of the angular frequencies in radians per second) [ ]{ } [ ]{ } [ ]{ } { }fxKxCxM =++ &&& [ ]{ } [ ]{ } 0=+ xKxMs2 Slide 4 © CSIR 2006 www.csir.co.za Structural Dynamics (continued) • The corresponding eigenvectors are real...
Stability Analysis of Periodic Orbits in a Class of Duffing-Like Piecewise Linear Vibrators
El Aroudi, A.
2014-09-01
In this paper, we study the dynamical behavior of a Duffing-like piecewise linear (PWL) springmass-damper system for vibration-based energy harvesting applications. First, we present a continuous time single degree of freedom PWL dynamical model of the system. From this PWL model, numerical simulations are carried out by computing frequency response and bifurcation diagram under a deterministic harmonic excitation for different sets of system parameter values. Stability analysis is performed using Floquet theory combined with Fillipov method.
Vibration Analysis of a Tire in Ground Contact under Varied Conditions
Karakus Murat; Cavus Aydin; Colakoglu Mehmet
2017-01-01
The effect of three different factors, which are inflation pressure, vertical load and coefficient of friction on the natural frequencies of a tire (175/70 R13) has been studied. A three dimensional tire model is constructed, using four different material properties and parts in the tire. Mechanical properties of the composite parts are evaluated. After investigating the free vibration, contact analysis is carried out. A concrete block and the tire are modelled together, using three different...
Stability Analysis of Periodic Orbits in a Class of Duffing-Like Piecewise Linear Vibrators
El Aroudi, A.; Benadero, L.; Ouakad, H.; Younis, Mohammad I.
2014-01-01
In this paper, we study the dynamical behavior of a Duffing-like piecewise linear (PWL) springmass-damper system for vibration-based energy harvesting applications. First, we present a continuous time single degree of freedom PWL dynamical model of the system. From this PWL model, numerical simulations are carried out by computing frequency response and bifurcation diagram under a deterministic harmonic excitation for different sets of system parameter values. Stability analysis is performed using Floquet theory combined with Fillipov method.
Coupled analysis of multi-impact energy harvesting from low-frequency wind induced vibrations
Zhu, Jin; Zhang, Wei
2015-04-01
Energy need from off-grid locations has been critical for effective real-time monitoring and control to ensure structural safety and reliability. To harvest energy from ambient environments, the piezoelectric-based energy-harvesting system has been proven very efficient to convert high frequency vibrations into usable electrical energy. However, due to the low frequency nature of the vibrations of civil infrastructures, such as those induced from vehicle impacts, wind, and waves, the application of a traditional piezoelectric-based energy-harvesting system is greatly restrained since the output power drops dramatically with the reduction of vibration frequencies. This paper focuses on the coupled analysis of a proposed piezoelectric multi-impact wind-energy-harvesting device that can effectively up-convert low frequency wind-induced vibrations into high frequency ones. The device consists of an H-shape beam and four bimorph piezoelectric cantilever beams. The H-shape beam, which can be easily triggered to vibrate at a low wind speed, is originated from the first Tacoma Narrows Bridge, which failed at wind speeds of 18.8 m s-1 in 1940. The multi-impact mechanism between the H-shape beam and the bimorph piezoelectric cantilever beams is incorporated to improve the harvesting performance at lower frequencies. During the multi-impact process, a series of sequential impacts between the H-shape beam and the cantilever beams can trigger high frequency vibrations of the cantilever beams and result in high output power with a considerably high efficiency. In the coupled analysis, the coupled structural, aerodynamic, and electrical equations are solved to obtain the dynamic response and the power output of the proposed harvesting device. A parametric study for several parameters in the coupled analysis framework is carried out including the external resistance, wind speed, and the configuration of the H-shape beam. The average harvested power for the piezoelectric cantilever
Energy Finite Element Analysis Developments for Vibration Analysis of Composite Aircraft Structures
Vlahopoulos, Nickolas; Schiller, Noah H.
2011-01-01
The Energy Finite Element Analysis (EFEA) has been utilized successfully for modeling complex structural-acoustic systems with isotropic structural material properties. In this paper, a formulation for modeling structures made out of composite materials is presented. An approach based on spectral finite element analysis is utilized first for developing the equivalent material properties for the composite material. These equivalent properties are employed in the EFEA governing differential equations for representing the composite materials and deriving the element level matrices. The power transmission characteristics at connections between members made out of non-isotropic composite material are considered for deriving suitable power transmission coefficients at junctions of interconnected members. These coefficients are utilized for computing the joint matrix that is needed to assemble the global system of EFEA equations. The global system of EFEA equations is solved numerically and the vibration levels within the entire system can be computed. The new EFEA formulation for modeling composite laminate structures is validated through comparison to test data collected from a representative composite aircraft fuselage that is made out of a composite outer shell and composite frames and stiffeners. NASA Langley constructed the composite cylinder and conducted the test measurements utilized in this work.
Application of the random vibration approach in the seismic analysis of LMFBR structures
International Nuclear Information System (INIS)
Preumont, A.
1988-01-01
The first part discusses the general topic of the spectral analysis of linear multi-degree-of-freedom structure subjected to a stationary random field. Particular attention is given to structures with non-classical damping and hereditary characteristics. The method is implemented in the computer programme RANDOM. Next, the same concepts are applied to multi-supported structures subjected to a stationary seismic excitation. The method is implemented in the computer programme SEISME. Two related problems are dealt with in the next two chapters: (i) the relation between the input of the random vibration analysis and the traditional ground motion specification for seismic analysis (the Design Response Spectra) and (ii) the application of random vibration techniques to the direct generation of floor response spectra. Finally the problem of extracting information from costly time history analyses is addressed. This study has mainly been concerned with the methodology and the development of appropriate softwares. Some qualitative conclusions have been drawn regarding the expected benefit of the approach. They have been judged promising enough to motivate a benchmark exercise. Specifically, the random vibration approach will be compared to the current approximate methods (response spectrum) and time-history analyses (considered as representative of the true response) for a set of typical structures. The hope is that some of the flaws of the current approximate methods can be removed
Shaft cracks detection on operating centrifugal pumps by vibration analysis
International Nuclear Information System (INIS)
Serra, Reynaldo Cavalcanti.
1995-01-01
This study gives an account of the vibratory behaviour of one centrifugal pump representative of those employed in nuclear reactors whereby its shaft contained a fatigue crack with critical orientation. Two cracks depth were included in the study, aside from the uncracked shaft. Four other machined discontinuities with varying depths were also included to allow a direct comparison. The data acquisition was carried out with a system using eight accelerometers and a tape recorder. The signals were then processed and interpreted with a dynamic signal analysis work station. The data analysis based in the time domain were unsuccessful as a result of the signal complexity. The fundamental frequency and its harmonics were defined from the frequency spectra. The corresponding amplitudes were recorded and tabulated for future reference. A method was proposed to identify the evolution of the discontinuities based on the departures from a reference state and procedure is suggested to substitute the standards and practices presently in use which are unreliable. (author). 46 refs., 48 figs., 24 tabs
Effect of stern hull shape on turning circle of ships
Jaswar, Maimun, A.; Wahid, M. A.; Priyanto, A.; Zamani, Pauzi, Saman
2012-06-01
Many factors such as: stern hull shape, length, draught, trim, propulsion system and external forces affecting the drift angle influence rate of turn and size of turning circle of ships. This paper discusses turning circle characteristics of U and V stern hull shape of Very Large Crude Oil Carrier (VLCC) ships. The ships have same principal dimension such as length, beam, and draught. The turning circle characteristics of the VLCC ships are simulated at 35 degree of rudder angle. In the analysis, firstly, turning circle performance of U-type VLCC ship is simulated. In the simulation, initial ship speed is determined using given power and rpm. Hydrodynamic derivatives coefficients are determined by including effect of fullness of aft run. Using the obtained, speed and hydrodynamic coefficients, force and moment acting on hull, force and moment induced by propeller, force and moment induced by rudder are determined. Finally, ship trajectory, ratio of speed, yaw angle and drift angle are determined. Results of simulation results of the VLCC ship are compared with the experimental one as validation. Using the same method, V-type VLCC is simulated and the simulation results are compared with U-type VLCC ship. Results shows the turning circle of U-type is larger than V-type due to effect stern hul results of simulation are.
Study on the status of the working bodies grinding machines based on vibration analysis
Directory of Open Access Journals (Sweden)
S. T. Antipov
2016-01-01
Full Text Available Improvement of technology and engineering aimed at the use of secondary raw material is an important task. One of the most important operations in the preparation of raw materials for mixed feeds is fine grinding. In this regard, the article discusses the grinding equipment allowing to obtain raw materials of higher quality with the lower energy consumption. Methods and diagnostic tools were proposed, the principle of determining the locations (points of installation of vibration measurement sensors as well as the choice of the vibration signal analysis method were considered. Investigation of the state of the disintegrator working bodies was carried out in the workshop of LLC PСF "Luch 2000". The object of study is a disintegrator with rotors diameter of 350 mm, each of them having two rows of pins. The result of the experiment revealed that during the operation the working bodies of grinding machines are exposed to uneven wear and under the action of multicycle load micro-cracks and fatigue fractures occur. The method of spectral analysis revealed the appearance of harmonics with large vibration at a frequency of 126 Hz, as well as multiple frequencies, allowing a high degre e of probability to determine not only the actual state of the working bodies, but also to predict the defect development trend. Based on the analysis of the spectra, the decision on further time operation of the equipment is made, which significantly reduces the probability of an emergency stop of equipment and expensive repairs. The research data will be relevant when using vibration diagnostics tools in enterprises, as well as in the design, construction and choice of materials for grinding equipment.
Solution of quadratic matrix equations for free vibration analysis of structures.
Gupta, K. K.
1973-01-01
An efficient digital computer procedure and the related numerical algorithm are presented herein for the solution of quadratic matrix equations associated with free vibration analysis of structures. Such a procedure enables accurate and economical analysis of natural frequencies and associated modes of discretized structures. The numerically stable algorithm is based on the Sturm sequence method, which fully exploits the banded form of associated stiffness and mass matrices. The related computer program written in FORTRAN V for the JPL UNIVAC 1108 computer proves to be substantially more accurate and economical than other existing procedures of such analysis. Numerical examples are presented for two structures - a cantilever beam and a semicircular arch.
Xu, Chengjin; Guan, Junjun; Bao, Ming; Lu, Jiangang; Ye, Wei
2018-01-01
Based on vibration signals detected by a phase-sensitive optical time-domain reflectometer distributed optical fiber sensing system, this paper presents an implement of time-frequency analysis and convolutional neural network (CNN), used to classify different types of vibrational events. First, spectral subtraction and the short-time Fourier transform are used to enhance time-frequency features of vibration signals and transform different types of vibration signals into spectrograms, which are input to the CNN for automatic feature extraction and classification. Finally, by replacing the soft-max layer in the CNN with a multiclass support vector machine, the performance of the classifier is enhanced. Experiments show that after using this method to process 4000 vibration signal samples generated by four different vibration events, namely, digging, walking, vehicles passing, and damaging, the recognition rates of vibration events are over 90%. The experimental results prove that this method can automatically make an effective feature selection and greatly improve the classification accuracy of vibrational events in distributed optical fiber sensing systems.
Analysis of classical guitars' vibrational behavior based on scanning laser vibrometer measurements
Czajkowska, Marzena
2012-06-01
One of the main goals in musical acoustics research is to link measurable, physical properties of a musical instrument with subjective assessments of its tone quality. The aim of the research discussed in this paper was to observe the structural vibrations of different class classical guitars in relation to their quality. This work focuses on mid-low-and low-class classical (nylon-stringed) guitars. The main source of guitar body vibrations come from top and back plate vibrations therefore these were the objects of structural mode measurements and analysis. Sixteen classical guitars have been investigated, nine with cedar and seven with spruce top plate. Structural modes of top and back plates have been measured with the aid of a scanning laser vibrometer and the instruments were excited with a chirp signal transferred by bone vibrator. The issues related to excitor selection have been discussed. Correlation and descriptive statistics of top and back plates measurement results have been investigated in relation to guitar quality. The frequency range of 300 Hz to 5 kHz as well as selected narrowed frequency bands have been analyzed for cedar and spruce guitars. Furthermore, the influence of top plate wood type on vibration characteristics have been observed on three pairs of guitars. The instruments were of the same model but different top plate material. Determination and visualization of both guitar plates' modal patterns in relation to frequency are a significant attainment of the research. Scanning laser vibrometer measurements allow particular mode observation and therefore mode identification, as opposed to sound pressure response measurements. When correlating vibration characteristics of top and back plates it appears that Pearson productmoment correlation coefficient is not a parameter that associates with guitar quality. However, for best instruments with cedar top, top-back correlation coefficient has relatively greater value in 1-2 kHz band and lower in
Directory of Open Access Journals (Sweden)
Maziar Janghorban
Full Text Available Static and free vibration analysis of carbon nano wires with rectangular cross section based on Timoshenko beam theory is studied in this research. Differential quadrature method (DQM is employed to solve the governing equations. From the knowledge of author, it is the first time that free vibration of nano wires is investigated. It is also the first time that differential quadrature method is used for bending analysis of nano wires.
Energy Technology Data Exchange (ETDEWEB)
Yuan, Haomin; Solberg, Jerome; Merzari, Elia; Kraus, Adam; Grindeanu, Iulian
2017-10-01
This paper describes a numerical study of flow-induced vibration in a helical coil steam generator experiment conducted at Argonne National Laboratory in the 1980s. In the experiment, a half-scale sector model of a steam generator helical coil tube bank was subjected to still and flowing air and water, and the vibrational characteristics were recorded. The research detailed in this document utilizes the multi-physics simulation toolkit SHARP developed at Argonne National Laboratory, in cooperation with Lawrence Livermore National Laboratory, to simulate the experiment. SHARP uses the spectral element code Nek5000 for fluid dynamics analysis and the finite element code DIABLO for structural analysis. The flow around the coil tubes is modeled in Nek5000 by using a large eddy simulation turbulence model. Transient pressure data on the tube surfaces is sampled and transferred to DIABLO for the structural simulation. The structural response is simulated in DIABLO via an implicit time-marching algorithm and a combination of continuum elements and structural shells. Tube vibration data (acceleration and frequency) are sampled and compared with the experimental data. Currently, only one-way coupling is used, which means that pressure loads from the fluid simulation are transferred to the structural simulation but the resulting structural displacements are not fed back to the fluid simulation
Directory of Open Access Journals (Sweden)
Mauricio Holguín-Londoño
2016-01-01
Full Text Available Vibration and acoustic analysis actively support the nondestructive and noninvasive fault diagnostics of rotating machines at early stages. Nonetheless, the acoustic signal is less used because of its vulnerability to external interferences, hindering an efficient and robust analysis for condition monitoring (CM. This paper presents a novel methodology to characterize different failure signatures from rotating machines using either acoustic or vibration signals. Firstly, the signal is decomposed into several narrow-band spectral components applying different filter bank methods such as empirical mode decomposition, wavelet packet transform, and Fourier-based filtering. Secondly, a feature set is built using a proposed similarity measure termed cumulative spectral density index and used to estimate the mutual statistical dependence between each bandwidth-limited component and the raw signal. Finally, a classification scheme is carried out to distinguish the different types of faults. The methodology is tested in two laboratory experiments, including turbine blade degradation and rolling element bearing faults. The robustness of our approach is validated contaminating the signal with several levels of additive white Gaussian noise, obtaining high-performance outcomes that make the usage of vibration, acoustic, and vibroacoustic measurements in different applications comparable. As a result, the proposed fault detection based on filter bank similarity features is a promising methodology to implement in CM of rotating machinery, even using measurements with low signal-to-noise ratio.
Vibration analysis of reactor assembly internals for Prototype Fast Breeder Reactor
International Nuclear Information System (INIS)
Chellapandi, P.; Jalaldeen, S.; Srinivasan, R.; Chetal, S.C.; Bhoje, S.B.
2003-01-01
Vibration analysis of the reactor assembly components of 500 MWe Prototype Fast Breeder Reactor (PFBR) is presented. The vibration response of primary pump as well as dynamic forces developed at its supports are predicted numerically. The stiffness properties of hydrostatic bearing are determined by formulating and solving governing fluid and structural mechanics equations. The dynamic forces exerted by pump are used as input data for the dynamic response of reactor assembly components, mainly inner vessel, thermal baffle and control plug. Dynamic response of reactor assembly components is also predicted for the pressure fluctuations caused by sodium free level oscillations. Thermal baffle (weir shell) which is subjected to fluid forces developed at the associated sodium free levels is analysed by formulating and solving a set of non-linear equations for fluids, structures and fluid structure interaction (FSI). The control rod drive mechanism is analysed for response under flow induced forces on the parts subjected to cross flow in the zone just above the core top, taking into account FSI between sheaths of control and safety rod and absorber pin bundle. Based on the analysis results, it is concluded that the reactor assembly internals are free from any risk of mechanical as well as flow induced vibrations. (author)
Nonlinear Analysis of Cable Vibration of a Multispan Cable-Stayed Bridge under Transverse Excitation
Directory of Open Access Journals (Sweden)
Kun Lin
2014-01-01
Full Text Available The nonlinear vibrations of cable in a multispan cable-stayed bridge subjected to transverse excitation are investigated. The MECS (multielements cable system model, where multielements per cable stay are used, is built up and used to analyze the model properties of the multispan cable-stayed bridges. Then, a simplified two-degrees-of-freedom (2-DOFs model, where the tower or the deck is reduced to a beam, is proposed to analyze the nonlinear dynamic behaviors of the beam and cable. The results of MECS model analysis show that the main tower in the multispan cable-stayed bridge is prone to the transverse vibration, and the local vibration of cables only has a little impact on the frequency values of the global modes. The results of simplified model analysis show that the energy can be transformed between the modes of the beam and cable when the nature frequencies of them are very close. On the other hand, with the transverse excitation changing, the cable can exhibit richer quasi-periodic or chaotic motions due to the nonlinear terms caused by the coupled mode between the beam and cable.
N-propyl nitrate vibrational spectrum analysis using DFT B3LYP quantum-chemical method
Shaikhullina, R. M.; Hrapkovsky, G. M.; Shaikhullina, M. M.
2018-05-01
Calculation of a molecular structure, conformation and related vibrational spectra of the n- propyl nitrate C3H7NO3 was carried out by means of density functional theory (DFT) by employing the Gaussian 03 package. The molecular geometries were fully optimized by using the Becker's three-parameter hybrid exchange functional combined with the Lee–Yang–Parr correlation functional (B3LYP) and using the 6-31G(d) basis set. By scanning the dihedral angles around C-O and C-C bonds, five energetically most favorable conformers of n-propyl nitrate - TG, TT, GT, GG and G´G forms were found. Vibrational spectra of the most energetically favorable conformers were calculated. The comparative analysis of calculated and experimental spectra is carried out, the spectral features of the conformational state of n-propyl nitrate and the spectral effects of formation of intramolecular hydrogen bonds are established.
DEFF Research Database (Denmark)
Bajrić, Anela; Høgsberg, Jan Becker; Rüdinger, Finn
2018-01-01
Reliable predictions of the lifetime of offshore wind turbine structures are influenced by the limited knowledge concerning the inherent level of damping during downtime. Error measures and an automated procedure for covariance driven Operational Modal Analysis (OMA) techniques has been proposed....... In order to obtain algorithmic independent answers, three identification techniques are compared: Eigensystem Realization Algorithm (ERA), covariance driven Stochastic Subspace Identification (COV-SSI) and the Enhanced Frequency Domain Decomposition (EFDD). Discrepancies between automated identification...... techniques are discussed and illustrated with respect to signal noise, measurement time, vibration amplitudes and stationarity of the ambient response. The best bias-variance error trade-off of damping estimates is obtained by the COV-SSI. The proposed automated procedure is validated by real vibration...
The use of an optical data acquisition system for bladed disk vibration analysis
Lawrence, C.; Meyn, E. H.
1985-01-01
A new concept in instrumentation was developed by engineers at NASA Lewis Research Center to collect vibration data from multi-bladed rotors. This new concept, known as the optical data acquisition system, uses optical transducers to measure bladed tip deflections by reflection of light beams off the tips of the blades as they pass in front of the optical transducer. By using an array of transducers around the perimeter of the rotor, detailed vibration signals can be obtained. In this study, resonant frequencies and mode shapes were determined for a 56 bladed rotor using the optical system. Frequency data from the optical system was also compared to data obtained from strain gauge measurements and finite element analysis and was found to be in good agreement.
Study and analysis on the flow induced vibration of the core barrel of PWR
International Nuclear Information System (INIS)
Yao Weida; Shi Guolin; Jiang Nanyan; Peng YongYong; Zhang Huijun; Wang Yufen; Xie Yongcheng; Guo Chunhua; Shen Qinping
1989-01-01
The deduction of the resemblance criterion and the design of the test model by applying flow-solid coupling theory are described. The model analysis of a core barrel both in the air and stationary water were performed in a 1:10 model, thus obtaining the dynamic characteristic. In a 1:5 reactor model with a hydraulic closed loop, the inner structure and support were modeled for performing hydraulic closed loop, the inner structure and support were modeled for performing hydraulic vibration test of the core barrel. The flow induced pulse pressure of the core barrel and corresponding response were obtained by using miniature pressure capsule, strain gauge and accelerometer. Power spectrum, correlation functions, transfer function and amplitudes under different flow velocities were calculated. The hydraulic vibration test shows that the core barrel will be in safety during its 30-year life time
Development of Non-Conservative Joints in Beam Networks for Vibration Energy Flow Analysis
Directory of Open Access Journals (Sweden)
Jee-Hun Song
2007-01-01
Full Text Available Our work aims to find a general solution for the vibrational energy flow through a plane network of beams on the basis of an energy flow analysis. A joint between two semi-infinite beams are modeled by three sets of springs and dashpots. Thus, the results can incorporate the case of complaint and non-conservative in all the three degrees of freedom. In the cases of finite coupled structures connected at a certain angle, the derived non-conservative joints and developed wave energy equation were applied. The joint properties, the frequency, the coupling angle, and the internal loss factor were changed to evaluate the proposed methods for predicting medium-to-high frequency vibrational energy and intensity distributions.
International Nuclear Information System (INIS)
Wen Zheng; Liu Yu; Yang Wenjiang; Qiu Ming
2007-01-01
In this paper, we present a study of the quasi-static and dynamic behaviour of high-T c superconductors (HTS hereafter) using a model suspension vibration testing system based on the magnetic launch assistance concept. The stiffness and damping of the levitation system under specified vibration circumstances was calculated by drawing on harmonic response analysis and half-power points method. Also, the equation of motion of the suspension system was presented in this paper, and with an attempt to analyse and predict mechanical characteristics of HTS in dynamic conditions. The obtained results of the suspending motion behaviour by numerical calculation are compared with experimental analytical results. Experimental technique combined with a numerical simulation method is a useful tool for measuring and analysing motion-dependent magnetic forces for the prediction and control of suspension systems
Directory of Open Access Journals (Sweden)
Salvatore Brischetto
2014-01-01
equilibrium written in orthogonal curvilinear coordinates for the free vibrations of simply supported structures. These equations consider an exact geometry for shells without simplifications. The main novelty is the possibility of a general formulation for different geometries. The equations written in general orthogonal curvilinear coordinates allow the analysis of spherical shell panels and they automatically degenerate into cylindrical shell panel, cylindrical closed shell, and plate cases. Results are proposed for isotropic and orthotropic structures. An exhaustive overview is given of the vibration modes for a number of thickness ratios, imposed wave numbers, geometries, embedded materials, and angles of orthotropy. These results can also be used as reference solutions to validate two-dimensional models for plates and shells in both analytical and numerical form (e.g., closed solutions, finite element method, differential quadrature method, and global collocation method.
Advanced non-linear flow-induced vibration and fretting-wear analysis capabilities
Energy Technology Data Exchange (ETDEWEB)
Toorani, M.; Pan, L.; Li, R.; Idvorian, N. [Babcock and Wilcox Canada Ltd., Cambridge, Ontario (Canada); Vincent, B.
2009-07-01
Fretting wear is a potentially significant degradation mechanism in nuclear steam generators and other shell and tube heat transfer equipment as well. This paper presents an overview of the recently developed code FIVDYNA which is used for the non-linear flow-induced vibration and fretting wear analysis for operating steam generators (OTSG and RSG) and shell-and-tube heat exchangers. FIVDYNA is a non-linear time-history Flow-Induced Vibration (FIV) analysis computer program that has been developed by Babcock and Wilcox Canada to advance the understanding of tube vibration and tube to tube-support interaction. In addition to the dynamic fluid induced forces the program takes into account other tube static forces due to axial and lateral tube preload and thermal interaction loads. The program is capable of predicting the location where the fretting wear is most likely to occur and its magnitude taking into account the support geometry including gaps. FIVDYNA uses the general purpose finite element computer code ABAQUS as its solver. Using ABAQUS gives the user the flexibility to add additional forces to the tube ranging from tube preloads and the support offsets to thermal loads. The forces currently being modeled in FIVDYNA are the random turbulence, steady drag force, fluid-elastic forces, support offset and pre-strain force (axial loads). This program models the vibration of tubes and calculates the structural dynamic characteristics, and interaction forces between the tube and the tube supports. These interaction forces are then used to calculate the work rate at the support and eventually the predicted depth of wear scar on the tube. A very good agreement is found with experiments and also other computer codes. (author)
Borah, Mukunda Madhab; Devi, Th. Gomti
2018-06-01
The vibrational spectral analysis of Serotonin and its dimer were carried out using the Fourier Transform Infrared (FTIR) and Raman techniques. The equilibrium geometrical parameters, harmonic vibrational wavenumbers, Frontier orbitals, Mulliken atomic charges, Natural Bond orbitals, first order hyperpolarizability and some optimized energy parameters were computed by density functional theory with 6-31G(d,p) basis set. The detailed analysis of the vibrational spectra have been carried out by computing Potential Energy Distribution (PED, %) with the help of Vibrational Energy Distribution Analysis (VEDA) program. The second order delocalization energies E(2) confirms the occurrence of intramolecular Charge Transfer (ICT) within the molecule. The computed wavenumbers of Serotonin monomer and dimer were found in good agreement with the experimental Raman and IR values.
Uncertainty modeling in vibration, control and fuzzy analysis of structural systems
Halder, Achintya; Ayyub, Bilal M
1997-01-01
This book gives an overview of the current state of uncertainty modeling in vibration, control, and fuzzy analysis of structural and mechanical systems. It is a coherent compendium written by leading experts and offers the reader a sampling of exciting research areas in several fast-growing branches in this field. Uncertainty modeling and analysis are becoming an integral part of system definition and modeling in many fields. The book consists of ten chapters that report the work of researchers, scientists and engineers on theoretical developments and diversified applications in engineering sy
Conformational analysis and vibrational studies of ethylenediamine-d4, using DFT method
International Nuclear Information System (INIS)
Catikkas, B.
2010-01-01
In this work, conformational analysis and quantum chemical calculations of ethylenediamine-d4 were carried out. The geometry optimization and the geometric parameters (bond length, bond angle and tortion angle) were calculated. The Infrared and Raman frequencies of fundamental modes of the most stable conformer were determined. Calculations were carried out by using the MPW1PW91/6-311+G(d,p) method and Gaussian03 and GaussView3.0 programs. Populations of the conformers was calculated. Vibrational assignments of the title molecule were calculated by using Scaled Quantum Mechanical (SQM) analysis. Calculated values were compared with the experimental ones.
Directory of Open Access Journals (Sweden)
Paulo Antonio Delgado-Arredondo
2015-01-01
Full Text Available Induction motors are critical components for most industries and the condition monitoring has become necessary to detect faults. There are several techniques for fault diagnosis of induction motors and analyzing the startup transient vibration signals is not as widely used as other techniques like motor current signature analysis. Vibration analysis gives a fault diagnosis focused on the location of spectral components associated with faults. Therefore, this paper presents a comparative study of different time-frequency analysis methodologies that can be used for detecting faults in induction motors analyzing vibration signals during the startup transient. The studied methodologies are the time-frequency distribution of Gabor (TFDG, the time-frequency Morlet scalogram (TFMS, multiple signal classification (MUSIC, and fast Fourier transform (FFT. The analyzed vibration signals are one broken rotor bar, two broken bars, unbalance, and bearing defects. The obtained results have shown the feasibility of detecting faults in induction motors using the time-frequency spectral analysis applied to vibration signals, and the proposed methodology is applicable when it does not have current signals and only has vibration signals. Also, the methodology has applications in motors that are not fed directly to the supply line, in such cases the analysis of current signals is not recommended due to poor current signal quality.
Hazreek, Z. A. M.; Kamarudin, A. F.; Rosli, S.; Fauziah, A.; Akmal, M. A. K.; Aziman, M.; Azhar, A. T. S.; Ashraf, M. I. M.; Shaylinda, M. Z. N.; Rais, Y.; Ishak, M. F.; Alel, M. N. A.
2018-04-01
Geotechnical site investigation as known as subsurface profile evaluation is the process of subsurface layer characteristics determination which finally used for design and construction phase. Traditionally, site investigation was performed using drilling technique thus suffers from several limitation due to cost, time, data coverage and sustainability. In order to overcome those problems, this study adopted surface techniques using seismic refraction and ambient vibration method for subsurface profile depth evaluation. Seismic refraction data acquisition and processing was performed using ABEM Terraloc and OPTIM software respectively. Meanwhile ambient vibration data acquisition and processing was performed using CityShark II, Lennartz and GEOPSY software respectively. It was found that studied area consist of two layers representing overburden and bedrock geomaterials based on p-wave velocity value (vp = 300 – 2500 m/s and vp > 2500 m/s) and natural frequency value (Fo = 3.37 – 3.90 Hz) analyzed. Further analysis found that both methods show some good similarity in term of depth and thickness with percentage accuracy at 60 – 97%. Consequently, this study has demonstrated that the application of seismic refractin and ambient vibration method was applicable in subsurface profile depth and thickness estimation. Moreover, surface technique which consider as non-destructive method adopted in this study was able to compliment conventional drilling method in term of cost, time, data coverage and environmental sustainaibility.
Vibration Analysis of a Tire in Ground Contact under Varied Conditions
Directory of Open Access Journals (Sweden)
Karakus Murat
2017-03-01
Full Text Available The effect of three different factors, which are inflation pressure, vertical load and coefficient of friction on the natural frequencies of a tire (175/70 R13 has been studied. A three dimensional tire model is constructed, using four different material properties and parts in the tire. Mechanical properties of the composite parts are evaluated. After investigating the free vibration, contact analysis is carried out. A concrete block and the tire are modelled together, using three different coefficients of friction. Experiments are run under certain conditions to check the accuracy of the numerical model. The natural frequencies are measured to describe free vibration and vibration of the tire contacted by ground, using a damping monitoring method. It is seen, that experimental and numerical results are in good agreement. On the other hand, investigating the impact of three different factors together is quite difficult on the natural frequencies. When some of these factors are assumed to be constant and the variables are taken one by one, it is easier to assess the effects.
Liu, Y.; Yuan, H.; Vo-Dinh, T.
2013-03-01
Raman spectra measurements and density functional theory (DFT) calculations were performed to investigate three psoralens: 5-amino-8-methoxypsoralen (5-A-8-MOP), 5-methoxypsoralen (5-MOP) and 8-methoxypsoralen (8-MOP) with the aim of differentiating these similar bioactive molecules. The Raman spectra were recorded in the region 300-3500 cm-1. All three psoralens were found to have similar Raman spectrum in the region 1500-1650 cm-1. 5-A-8-MOP can be easily differentiated from 5-MOP or 8-MOP based on the Raman spectrum. The Raman spectrum differences at 651 and 795 cm-1 can be used to identify 5-MOP from 8-MOP. The theoretically computed vibrational frequencies and relative peak intensities were compared with experimental data. DFT calculations using the B3LYP method and 6-311++G(d,p) basis set were found to yield results that are very comparable to experimental Raman spectra. Detailed vibrational assignments were performed with DFT calculations and the potential energy distribution (PED) obtained from the Vibrational Energy Distribution Analysis (VEDA) program.
A non-invasive acoustic and vibration analysis technique for evaluation of hip joint conditions.
Glaser, Diana; Komistek, Richard D; Cates, Harold E; Mahfouz, Mohamed R
2010-02-10
The performance evaluation of THA outcome is difficult and surgeons often use invasive methods to investigate effectiveness. A non-invasive acoustic and vibration analysis technique has recently been developed for more-in-depth evaluation of in vivo hip conditions. Gait kinematics, corresponding vibration and sound measurement of five THA subjects were analyzed post-operatively using video-fluoroscopy, sound and accelerometer measurements while walking on a treadmill. The sound sensor and a pair of tri-axial accelerometers, externally attached to the pelvic and femoral bone prominences, detected frequencies that are propagated through the femoral head and acetabular cup interactions. A data acquisition system was used to amplify the signal and filter out noise generated by undesired frequencies. In vivo kinematics and femoral head sliding quantified using video fluoroscopy were correlated to the sound and acceleration measurements. Distinct variations between the different subjects were identified. A correlation of sound and acceleration impulses with separation has been achieved. Although, in vivo sounds are quite variable in nature and all correlated well with the visual images. This is the first study to document and correlate visual and audible effects of THA under in-vivo conditions. This study has shown that the development of the acoustic and vibration technique provides a practical method and generates new possibilities for a better understanding of THA performance. Copyright 2009 Elsevier Ltd. All rights reserved.
Sharma, Trivendra Kumar; Parashar, Sandeep Kumar
2018-05-01
In the present age functionally graded piezoelectric materials (FGPM) are increasingly being used as actuators and sensors. In spite of the fact that the piezoelectric coupling coefficient for shear d15 has much higher value in comparison to d31 or d33, it is far less utilized for the applications due to complex nature of the shear induced vibrations. In this work three dimensional free vibration analysis of functionally graded piezoelectric material annular plates with free-free boundary conditions is presented. The annular FGPM plate is polarized along the radial direction while the electric field is applied along the thickness direction inducing flexural vibrations of the plate due to d15 effect of functionally graded piezoelectric materials. The material properties are assumed to have a power law variation along the thickness. COMSOL Multiphysics is used to obtain the natural frequencies and modeshapes. Detailed numerical study is performed to ascertain the effect of variation in power law index and various geometrical parameters. The results presented shall be helpful in optimizing the existing applications and developing the new ones utilizing the FGPM annular plates.
Region-of-interest volumetric visual hull refinement
Knoblauch, Daniel; Kuester, Falko
2010-01-01
This paper introduces a region-of-interest visual hull refinement technique, based on flexible voxel grids for volumetric visual hull reconstructions. Region-of-interest refinement is based on a multipass process, beginning with a focussed visual
International Nuclear Information System (INIS)
Sugawara, Y.; Sugiyama, T.; Kobayashi, T.; Yamaya, H.; Kitamura, E.
1995-01-01
The correlation analysis for a forced vibration test of a 1/4-scale containment SSI test model constructed in Hualien, Taiwan was carried out for the case of after backfilling. Prior to this correlation analysis, the structural properties were revised to adjust the calculated fundamental frequency in the fixed base condition to that derived from the test results. A correlation analysis was carried out using the Lattice Model which was able to estimate the soil-structure effects with embedment. The analysis results coincide well with test results and it is concluded that the mathematical soil-structure interaction model established by the correlation analysis is efficient in estimating the dynamic soil-structure interaction effect with embedment. This mathematical model will be applied as a basic model for simulation analysis of earthquake observation records. (author). 3 refs., 12 figs., 2 tabs
Directory of Open Access Journals (Sweden)
E. O. Zaitsev
2016-01-01
Full Text Available The objective of this paper is development and experimental verification special software of spectral analysis. Spectral analysis use of controlled vibrations objects. Spectral analysis of vibration based on use maximum-entropy autoregressive method of spectral analysis by the Berg algorithm. For measured signals use preliminary analysis based on regression analysis. This analysis of the signal enables to eliminate uninformative parameters such as – the noise and the trend. For preliminary analysis developed special software tools. Non-contact measurement of mechanical vibrations parameters rotating diffusely-reflecting surfaces used in circumstances where the use of contact sensors difficult or impossible for a number of reasons, including lack of access to the object, the small size of the controlled area controlled portion has a high temperature or is affected by strong electromagnetic fields. For control use offered laser measuring system. This measuring system overcomes the shortcomings interference or Doppler optical measuring systems. Such as measure the large amplitude and inharmonious vibration. On the basis of the proposed methods developed special software tools for use measuring laser system. LabVIEW using for developed special software. Experimental research of the proposed method of vibration signals processing is checked in the analysis of the diagnostic information obtained by measuring the vibration system grinding diamond wheel cold solid tungsten-containing alloy TK8. A result of work special software tools was complex spectrum obtained «purified» from non-informative parameters. Spectrum of the signal corresponding to the vibration process observed object.
Management of cladding hulls and fuel hardware
International Nuclear Information System (INIS)
1985-01-01
The reprocessing of spent fuel from power reactors based on chop-leach technology produces a solid waste product of cladding hulls and other metallic residues. This report describes the current situation in the management of fuel cladding hulls and hardware. Information is presented on the material composition of such waste together with the heating effects due to neutron-induced activation products and fuel contamination. As no country has established a final disposal route and the corresponding repository, this report also discusses possible disposal routes and various disposal options under consideration at present
Directory of Open Access Journals (Sweden)
P. Czech
2012-10-01
Full Text Available In the article methods of vibroacoustic diagnostics of high-power toothed gears are described. It is shown below, that properly registered and processed acoustic signal or vibration signal may serve as an explicitly interpreted source of diagnostic symptoms. The presented analysis were based on vibration signals registered during the work of the gear of a rolling stand working in Katowice Steel Plant (presently one of the branches of Mittal Steel Poland JSC.
46 CFR 91.25-25 - Hull equipment.
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Hull equipment. 91.25-25 Section 91.25-25 Shipping COAST... CERTIFICATION Inspection for Certification § 91.25-25 Hull equipment. (a) At each inspection for certification and periodic inspection, the inspectors shall conduct the following tests and inspections of hull...
46 CFR 169.231 - Definitions relating to hull examinations.
2010-10-01
... 46 Shipping 7 2010-10-01 2010-10-01 false Definitions relating to hull examinations. 169.231... hull examinations. As used in the part— (a) Drydock examination means hauling out a vessel or placing a... and all through-hull fittings, sea chests, sea valves, sea strainers, and valves for the emergency...
33 CFR 181.25 - Hull identification number format.
2010-07-01
... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Hull identification number format... (CONTINUED) BOATING SAFETY MANUFACTURER REQUIREMENTS Identification of Boats § 181.25 Hull identification number format. Each of the hull identification numbers required by § 181.23 must consist of twelve...
46 CFR 45.107 - Strength of hull.
2010-10-01
... 46 Shipping 2 2010-10-01 2010-10-01 false Strength of hull. 45.107 Section 45.107 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) LOAD LINES GREAT LAKES LOAD LINES Conditions of Assignment § 45.107 Strength of hull. The general structural strength of the hull must be sufficient for the...
46 CFR 154.170 - Outer hull steel plating.
2010-10-01
... 46 Shipping 5 2010-10-01 2010-10-01 false Outer hull steel plating. 154.170 Section 154.170... STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Hull Structure § 154.170 Outer hull steel plating. (a) Except as required in paragraph (b) of this section, the...
46 CFR 154.516 - Piping: Hull protection.
2010-10-01
... 46 Shipping 5 2010-10-01 2010-10-01 false Piping: Hull protection. 154.516 Section 154.516 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY... and Process Piping Systems § 154.516 Piping: Hull protection. A vessel's hull must be protected from...
33 CFR 181.29 - Hull identification number display.
2010-07-01
... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Hull identification number... SECURITY (CONTINUED) BOATING SAFETY MANUFACTURER REQUIREMENTS Identification of Boats § 181.29 Hull identification number display. Two identical hull identification numbers are required to be displayed on each...
46 CFR 71.50-29 - Hull examination reports.
2010-10-01
... 46 Shipping 3 2010-10-01 2010-10-01 false Hull examination reports. 71.50-29 Section 71.50-29... CERTIFICATION Drydocking § 71.50-29 Hull examination reports. (a) If you use only divers for the underwater survey portion of the Alternative Hull Examination (AHE), you must provide the Officer in Charge, Marine...
46 CFR 154.172 - Contiguous steel hull structure.
2010-10-01
... 46 Shipping 5 2010-10-01 2010-10-01 false Contiguous steel hull structure. 154.172 Section 154.172... STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Hull Structure § 154.172 Contiguous steel hull structure. (a) Except as allowed in paragraphs (b) and (c) of this...
46 CFR 111.05-11 - Hull return.
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Hull return. 111.05-11 Section 111.05-11 Shipping COAST... REQUIREMENTS Equipment Ground, Ground Detection, and Grounded Systems § 111.05-11 Hull return. (a) A vessel's hull must not carry current as a conductor except for the following systems: (1) Impressed current...
46 CFR 252.33 - Hull and machinery insurance.
2010-10-01
... 46 Shipping 8 2010-10-01 2010-10-01 false Hull and machinery insurance. 252.33 Section 252.33... Subsidy Rates § 252.33 Hull and machinery insurance. (a) Subsidy items. The fair and reasonable net premium costs (including stamp taxes) of hull and machinery, increased value, excess general average...
46 CFR 189.25-25 - Hull equipment.
2010-10-01
... 46 Shipping 7 2010-10-01 2010-10-01 false Hull equipment. 189.25-25 Section 189.25-25 Shipping... CERTIFICATION Inspection for Certification § 189.25-25 Hull equipment. (a) At each inspection for certification and periodic inspection the inspector shall conduct the following tests and inspections of hull...
33 CFR 181.23 - Hull identification numbers required.
2010-07-01
... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Hull identification numbers... SECURITY (CONTINUED) BOATING SAFETY MANUFACTURER REQUIREMENTS Identification of Boats § 181.23 Hull... identify each boat produced or imported with two hull identification numbers that meet the requirements of...
46 CFR 71.25-25 - Hull equipment.
2010-10-01
... 46 Shipping 3 2010-10-01 2010-10-01 false Hull equipment. 71.25-25 Section 71.25-25 Shipping COAST... Inspection § 71.25-25 Hull equipment. (a) At each annual inspection, the inspector shall conduct the following tests and inspections of hull equipment: (1) All subdivision bulkheads shall be examined to...
46 CFR 308.107 - War risk hull insurance policy.
2010-10-01
... 46 Shipping 8 2010-10-01 2010-10-01 false War risk hull insurance policy. 308.107 Section 308.107 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE War Risk Hull and Disbursements Insurance § 308.107 War risk hull insurance policy. Standard Form MA-240...
46 CFR 282.23 - Hull and machinery insurance.
2010-10-01
... 46 Shipping 8 2010-10-01 2010-10-01 false Hull and machinery insurance. 282.23 Section 282.23... COMMERCE OF THE UNITED STATES Calculation of Subsidy Rates § 282.23 Hull and machinery insurance. (a) Subsidy items. The fair and reasonable net premium costs (including stamp taxes) of hull and machinery...
Sivaprakash, S.; Prakash, S.; Mohan, S.; Jose, Sujin P.
2017-12-01
Quantum chemical calculations of energy and geometrical parameters of 1-aminoisoquinoline [1-AIQ] were carried out by using DFT/B3LYP method using 6-311G (d,p), 6-311G++(d,p) and cc-pVTZ basis sets. The vibrational wavenumbers were computed for the energetically most stable, optimized geometry. The vibrational assignments were performed on the basis of potential energy distribution (PED) using VEDA program. The NBO analysis was done to investigate the intra molecular charge transfer of the molecule. The frontier molecular orbital (FMO) analysis was carried out and the chemical reactivity descriptors of the molecule were studied. The Mulliken charge analysis, molecular electrostatic potential (MEP), HOMO-LUMO energy gap and the related properties were also investigated at B3LYP level. The absorption spectrum of the molecule was studied from UV-Visible analysis by using time-dependent density functional theory (TD-DFT). Fourier Transform Infrared spectrum (FT-IR) and Raman spectrum of 1-AIQ compound were analyzed and recorded in the range 4000-400 cm-1 and 3500-100 cm-1 respectively. The experimentally determined wavenumbers were compared with those calculated theoretically and they complement each other.
Vibration of hydraulic machinery
Wu, Yulin; Liu, Shuhong; Dou, Hua-Shu; Qian, Zhongdong
2013-01-01
Vibration of Hydraulic Machinery deals with the vibration problem which has significant influence on the safety and reliable operation of hydraulic machinery. It provides new achievements and the latest developments in these areas, even in the basic areas of this subject. The present book covers the fundamentals of mechanical vibration and rotordynamics as well as their main numerical models and analysis methods for the vibration prediction. The mechanical and hydraulic excitations to the vibration are analyzed, and the pressure fluctuations induced by the unsteady turbulent flow is predicted in order to obtain the unsteady loads. This book also discusses the loads, constraint conditions and the elastic and damping characters of the mechanical system, the structure dynamic analysis, the rotor dynamic analysis and the system instability of hydraulic machines, including the illustration of monitoring system for the instability and the vibration in hydraulic units. All the problems are necessary for vibration pr...
Analysis of a cylindrical shell vibrating in a cylindrical fluid region
International Nuclear Information System (INIS)
Chung, H.; Turula, P.; Mulcahy, T.M.; Jendrzejczyk, J.A.
1976-08-01
Analytical and experimental methods are presented for evaluating the vibration characteristics of cylindrical shells such as the thermal liner of the Fast Flux Test Facility (FFTF) reactor vessel. The NASTRAN computer program is used to calculate the natural frequencies, mode shapes, and response to a harmonic loading of a thin, circular cylindrical shell situated inside a fluid-filled rigid circular cylinder. Solutions in a vacuum are verified with an exact solution method and the SAP IV computer code. Comparisons between analysis and experiment are made, and the accuracy and utility of the fluid-solid interaction package of NASTRAN is assessed
Ayers, Beverley; Forshaw, Mark
2010-05-01
With a substantial number of individuals diagnosed with Hand-Arm Vibration Syndrome (HAVS) and the preponderance of research focused on the medical and paramedical issues, the psychological and mental health sequelae of HAVS are largely neglected within the published literature. A series of focus groups and interviews were conducted involving nine people who had been diagnosed with HAVS. Transcripts of these interviews were analysed using Interpretative Phenomenological Analysis. Four key themes were identified within the discourse of individuals affected by HAVS: machismo; coping; psychological impacts; and the development of support services for HAVS. Clinical implications are briefly discussed.
Vibrational analysis and thermodynamic properties of C120 nanotorus: a DFT study
International Nuclear Information System (INIS)
López-Chávez, Ernesto; Cruz-Torres, Armando; Landa Castillo-Alvarado, Fray de; Ortíz-López, Jaime; Peña-Castañeda, Yésica A.; Martínez-Magadán, José Manuel
2011-01-01
Density functional theory (DFT) computational methods are applied to a C 120 carbon nanotorus studied as an isolated molecular species, using the functional GGA PW91. This toroidal form of carbon contains five fold, six fold, and sevenfold rings. The calculated cohesive energy of the nanotorus, indicates that the ground state of this structure is energetically more stable than that of fullerene C 60 . Geometry and stability, Raman and IR vibrational analysis and thermodynamic properties have been reported and compared to the values obtained by other authors.
Homotopy perturbation method for free vibration analysis of beams on elastic foundation
International Nuclear Information System (INIS)
Ozturk, Baki; Coskun, Safa Bozkurt; Koc, Mehmet Zahid; Atay, Mehmet Tarik
2010-01-01
In this study, the homotopy perturbation method (HPM) is applied for free vibration analysis of beam on elastic foundation. This numerical method is applied on a previously available case study. Analytical solutions and frequency factors are evaluated for different ratios of axial load N acting on the beam to Euler buckling load, N r . The application of HPM for the particular problem in this study gives results which are in excellent agreement with both analytical solutions and the variational iteration method (VIM) solutions for the case considered in this study and the differential transform method (DTM) results available in the literature.
Stability Analysis of Periodic Orbits in a Class of Duffing-Like Piecewise Linear Vibrators
Directory of Open Access Journals (Sweden)
El Aroudi A.
2014-01-01
Full Text Available In this paper, we study the dynamical behavior of a Duffing-like piecewise linear (PWL springmass-damper system for vibration-based energy harvesting applications. First, we present a continuous time single degree of freedom PWL dynamical model of the system. From this PWL model, numerical simulations are carried out by computing frequency response and bifurcation diagram under a deterministic harmonic excitation for different sets of system parameter values. Stability analysis is performed using Floquet theory combined with Fillipov method.
Sharma, Sonia; Crow, Heidi C; McCall, W D; Gonzalez, Yoly M
2013-01-01
To conduct a systematic review of papers reporting the reliability and diagnostic validity of the joint vibration analysis (JVA) for diagnosis of temporomandibular disorders (TMD). A search of Pubmed identified English-language publications of the reliability and diagnostic validity of the JVA. Guidelines were adapted from applied STAndards for the Reporting of Diagnostic accuracy studies (STARD) to evaluate the publications. Fifteen publications were included in this review, each of which presented methodological limitations. This literature is unable to provide evidence to support the reliability and diagnostic validity of the JVA for diagnosis of TMD.
Paik, Kwang-Jun; Park, Hyung-Gil; Seo, Jongsoo
2013-12-01
Simulations of cavitation flow and hull pressure fluctuation for a marine propeller operating behind a hull using the unsteady Reynolds-Averaged Navier-Stokes equations (RANS) are presented. A full hull body submerged under the free surface is modeled in the computational domain to simulate directly the wake field of the ship at the propeller plane. Simulations are performed in design and ballast draught conditions to study the effect of cavitation number. And two propellers with slightly different geometry are simulated to validate the detectability of the numerical simulation. All simulations are performed using a commercial CFD software FLUENT. Cavitation patterns of the simulations show good agreement with the experimental results carried out in Samsung CAvitation Tunnel (SCAT). The simulation results for the hull pressure fluctuation induced by a propeller are also compared with the experimental results showing good agreement in the tendency and amplitude, especially, for the first blade frequency.
Directory of Open Access Journals (Sweden)
Kwang-Jun Paik
2013-12-01
Full Text Available Simulations of cavitation flow and hull pressure fluctuation for a marine propeller operating behind a hull using the unsteady Reynolds-Averaged Navier-Stokes equations (RANS are presented. A full hull body submerged under the free surface is modeled in the computational domain to simulate directly the wake field of the ship at the propeller plane. Simulations are performed in design and ballast draught conditions to study the effect of cavitation number. And two propellers with slightly different geometry are simulated to validate the detectability of the numerical simulation. All simulations are performed using a commercial CFD software FLUENT. Cavitation patterns of the simulations show good agreement with the experimental results carried out in Samsung CAvitation Tunnel (SCAT. The simulation results for the hull pressure fluctuation induced by a propeller are also compared with the experimental results showing good agreement in the tendency and amplitude, especially, for the first blade frequency.
Directory of Open Access Journals (Sweden)
Ibrahim Rasidi
2018-01-01
Full Text Available Finite element analysis for piezoelectric actuator has been developed in Ansys Software which are a program that can analyses and simulate the dynamic behaviour of piezoelectric. The Ultrasonic Vibration assisted Milling (UVAM experimental having a difficulty to investigate the effect of vibration mechanism where existence of error in material, mechanism and attachment of piezoelectric thus affect the amplitude and frequency of mechanical compliance during the machining of UVAM. This paper will investigate the modelling of piezoelectric compliance and follow the procedures of FEA to accurately predict the dynamic behaviour of compliance. The parameters for simulation of piezoelectric are voltage, electromechanical coupling and frequency. The compliance mechanism is model by using SolidWorks 2014 and imported to Ansys Mechanical APDL Software were the piezoelectric are embedded on the mechanism. Modal analysis and harmonic analysis has been used in order to obtain the mode shape and displacement. The displacement of the compliance mechanism will be compare between simulation and experimental. The dynamic behaviour was discussed in simulation to study the reliability of the compliance mechanism before it safely used in UVAM.
Impact vibration analysis of group of hexagonal bars immersed in liquid
International Nuclear Information System (INIS)
Horiuchi, Toshihiko
1994-01-01
A simulation method was studied to calculate the vibration response during seismic excitation of a group of hexagonal bars installed in a restraint immersed in liquid. In this study, the influence of fluid force on structural motion was modeled using an added mass matrix. The added mass matrix was then transferred into the space composed of the eigen modes of hexagonal bars without the added mass and introduced into eigenvalue analysis of the whole bar group structure. By means of this method, the computational time of the added mass matrix calculation and the eigenvalue analysis can be reduced. It was shown that the proposed method yielded almost the same eigenvalues as the conventional method in the physical space. Using the proposed method, added mass models to be used in the impact vibration analysis were investigated. Comparing the calculated results by the proposed method with those using a concentrated added mass, which is a simplified model, showed that the concentrated added mass can be used for a rough response calculation, although the precise calculation requires the added mass matrix. (author)
Statistical Analysis of Deep Drilling Process Conditions Using Vibrations and Force Signals
Directory of Open Access Journals (Sweden)
Syafiq Hazwan
2016-01-01
Full Text Available Cooling systems is a key point for hot forming process of Ultra High Strength Steels (UHSS. Normally, cooling systems is made using deep drilling technique. Although deep twist drill is better than other drilling techniques in term of higher productivity however its main problem is premature tool breakage, which affects the production quality. In this paper, analysis of deep twist drill process parameters such as cutting speed, feed rate and depth of cut by using statistical analysis to identify the tool condition is presented. The comparisons between different two tool geometries are also studied. Measured data from vibrations and force sensors are being analyzed through several statistical parameters such as root mean square (RMS, mean, kurtosis, standard deviation and skewness. Result found that kurtosis and skewness value are the most appropriate parameters to represent the deep twist drill tool conditions behaviors from vibrations and forces data. The condition of the deep twist drill process been classified according to good, blunt and fracture. It also found that the different tool geometry parameters affect the performance of the tool drill. It believe the results of this study are useful in determining the suitable analysis method to be used for developing online tool condition monitoring system to identify the tertiary tool life stage and helps to avoid mature of tool fracture during drilling process.
Murrad, Muhamad; Leong, M. Salman
Based on the experiences of the Malaysian Armed Forces (MAF), failure of the main rotor gearbox (MRGB) was one of the major contributing factors to helicopter breakdowns. Even though vibration and oil analysis are the effective techniques for monitoring the health of helicopter components, these two techniques were rarely combined to form an effective assessment tool in MAF. Results of the oil analysis were often used only for oil changing schedule while assessments of MRGB condition were mainly based on overall vibration readings. A study group was formed and given a mandate to improve the maintenance strategy of S61-A4 helicopter fleet in the MAF. The improvement consisted of a structured approach to the reassessment/redefinition suitable maintenance actions that should be taken for the MRGB. Basic and enhanced tools for condition monitoring (CM) are investigated to address the predominant failures of the MRGB. Quantitative accelerated life testing (QALT) was considered in this work with an intent to obtain the required reliability information in a shorter time with tests under normal stress conditions. These tests when performed correctly can provide valuable information about MRGB performance under normal operating conditions which enable maintenance personnel to make decision more quickly, accurately and economically. The time-to-failure and probability of failure information of the MRGB were generated by applying QALT analysis principles. This study is anticipated to make a dramatic change in its approach to CM, bringing significant savings and various benefits to MAF.
Bhattacharjee, T.; Kumar, P.; Fillipe, L.
2018-02-01
Vibrational spectroscopy, especially FTIR and Raman, has shown enormous potential in disease diagnosis, especially in cancers. Their potential for detecting varied pathological conditions are regularly reported. However, to prove their applicability in clinics, large multi-center multi-national studies need to be undertaken; and these will result in enormous amount of data. A parallel effort to develop analytical methods, including user-friendly software that can quickly pre-process data and subject them to required multivariate analysis is warranted in order to obtain results in real time. This study reports a MATLAB based script that can automatically import data, preprocess spectra— interpolation, derivatives, normalization, and then carry out Principal Component Analysis (PCA) followed by Linear Discriminant Analysis (LDA) of the first 10 PCs; all with a single click. The software has been verified on data obtained from cell lines, animal models, and in vivo patient datasets, and gives results comparable to Minitab 16 software. The software can be used to import variety of file extensions, asc, .txt., .xls, and many others. Options to ignore noisy data, plot all possible graphs with PCA factors 1 to 5, and save loading factors, confusion matrices and other parameters are also present. The software can provide results for a dataset of 300 spectra within 0.01 s. We believe that the software will be vital not only in clinical trials using vibrational spectroscopic data, but also to obtain rapid results when these tools get translated into clinics.
Tondji Chendjou, Yvan Wilfried
This Master's thesis is written within the framework of the multidisciplinary international research project CRIAQ MDO-505. This global project consists of the design, manufacture and testing of a morphing wing box capable of changing the shape of the flexible upper skin of a wing using an actuator system installed inside the wing. This changing of the shape generates a delay in the occurrence of the laminar to turbulent transition area, which results in an improvement of the aerodynamic performances of the morphed wing. This thesis is focused on the technologies used to gather the pressure data during the wind tunnel tests, as well as on the post processing methodologies used to characterize the wing airflow. The vibration measurements of the wing and their real-time graphical representation are also presented. The vibration data acquisition system is detailed, and the vibration data analysis confirms the predictions of the flutter analysis performed on the wing prior to wind tunnel testing at the IAR-NRC. The pressure data was collected using 32 highly-sensitive piezoelectric sensors for sensing the pressure fluctuations up to 10 KHz. These sensors were installed along two wing chords, and were further connected to a National Instrument PXI real-time acquisition system. The acquired pressure data was high-pass filtered, analyzed and visualized using Fast Fourier Transform (FFT) and Standard Deviation (SD) approaches to quantify the pressure fluctuations in the wing airflow, as these allow the detection of the laminar to turbulent transition area. Around 30% of the cases tested in the IAR-NRC wind tunnel were optimized for drag reduction by the morphing wing procedure. The obtained pressure measurements results were compared with results obtained by infrared thermography visualization, and were used to validate the numerical simulations. Two analog accelerometers able to sense dynamic accelerations up to +/-16g were installed in both the wing and the aileron boxes
Eulerian frequency analysis of structural vibrations from high-speed video
International Nuclear Information System (INIS)
Venanzoni, Andrea; De Ryck, Laurent; Cuenca, Jacques
2016-01-01
An approach for the analysis of the frequency content of structural vibrations from high-speed video recordings is proposed. The techniques and tools proposed rely on an Eulerian approach, that is, using the time history of pixels independently to analyse structural motion, as opposed to Lagrangian approaches, where the motion of the structure is tracked in time. The starting point is an existing Eulerian motion magnification method, which consists in decomposing the video frames into a set of spatial scales through a so-called Laplacian pyramid [1]. Each scale — or level — can be amplified independently to reconstruct a magnified motion of the observed structure. The approach proposed here provides two analysis tools or pre-amplification steps. The first tool provides a representation of the global frequency content of a video per pyramid level. This may be further enhanced by applying an angular filter in the spatial frequency domain to each frame of the video before the Laplacian pyramid decomposition, which allows for the identification of the frequency content of the structural vibrations in a particular direction of space. This proposed tool complements the existing Eulerian magnification method by amplifying selectively the levels containing relevant motion information with respect to their frequency content. This magnifies the displacement while limiting the noise contribution. The second tool is a holographic representation of the frequency content of a vibrating structure, yielding a map of the predominant frequency components across the structure. In contrast to the global frequency content representation of the video, this tool provides a local analysis of the periodic gray scale intensity changes of the frame in order to identify the vibrating parts of the structure and their main frequencies. Validation cases are provided and the advantages and limits of the approaches are discussed. The first validation case consists of the frequency content
Rhythmical Alchemy: Village Drumming with Arthur Hull.
Hillerson, Gary R.; Hull, Arthur
As a step toward writing a master's thesis in psychology, the connection between rhythm circles and psychotherapeutic process was explored. Arthur Hull, who experienced and preached about the healing power of rhythm for many years, was interviewed. This article recorded the interview between Arthur and the researcher. The interviewer learned that…
"Keisri hull" on viimast korda laval
2010-01-01
Neli hooaega Ugala repertuaaris olnud Jaan Krossi romaani põhjal lavastatud draama "Keisri hull" etendub viimast korda 10. veebruaril. Viimane etendus on pühendatud Jaan Krossi 90. sünniaastapäevale, mis on 19. veebruaril. Lavastajad Peeter Tammearu ja Jaak Allik. Peaosas Peeter Tammearu
Committee VI.1. Extreme Hull Girder Loading
DEFF Research Database (Denmark)
Jensen, Jørgen Juncher
2000-01-01
Committee Mandate. Evaluate and develop direct calculation procedures for extreme wawe loads on ship hull girders. Due consideration shall be given to stochastic and non-linear effects. The procedures shall be assessed by comparison with in-service experiences, model tests and more refined...
Convex Hull Aided Registration Method (CHARM).
Fan, Jingfan; Yang, Jian; Zhao, Yitian; Ai, Danni; Liu, Yonghuai; Wang, Ge; Wang, Yongtian
2017-09-01
Non-rigid registration finds many applications such as photogrammetry, motion tracking, model retrieval, and object recognition. In this paper we propose a novel convex hull aided registration method (CHARM) to match two point sets subject to a non-rigid transformation. First, two convex hulls are extracted from the source and target respectively. Then, all points of the point sets are projected onto the reference plane through each triangular facet of the hulls. From these projections, invariant features are extracted and matched optimally. The matched feature point pairs are mapped back onto the triangular facets of the convex hulls to remove outliers that are outside any relevant triangular facet. The rigid transformation from the source to the target is robustly estimated by the random sample consensus (RANSAC) scheme through minimizing the distance between the matched feature point pairs. Finally, these feature points are utilized as the control points to achieve non-rigid deformation in the form of thin-plate spline of the entire source point set towards the target one. The experimental results based on both synthetic and real data show that the proposed algorithm outperforms several state-of-the-art ones with respect to sampling, rotational angle, and data noise. In addition, the proposed CHARM algorithm also shows higher computational efficiency compared to these methods.
Estimation of penetration depth of fission products in cladding Hull
International Nuclear Information System (INIS)
Kim, Hee Moon; Jung, Yang Hong; Yoo, Byong Ok; Choo, Yong Sun; Hong, Kwon Pyo
2005-01-01
A disposal and a reprocessing for spent fuel rod with high burnup need de-cladding procedure. Pellet in this rod has been separated from a cladding hull to reduce a radioactivity of hull by chemical and mechanical methods. But fission products and actinides(U,Pu) still remain inside of cladding hull by chemical bonding and fission spike, which is called as 'contamination'. More specific removal of this contamination would have been considered. In this study, the sorts of fission products and penetration depth in hull were observed by EPMA test. To analyze this behavior, SRIM 2000 code was also used as energies of fission products and an oxide thickness of hull
Free vibration analysis of beams by using a third-order shear ...
Indian Academy of Sciences (India)
Free vibrations of beams; the third-order shear deformation theory; ... Thus, a shear correction factor is required to compensate for the error because of ...... Wang C M, Kitipornchai S 2003 Vibration of Timoshenko beams with internal hinge.
Finite Element Analysis and Experimental Study on Elbow Vibration Transmission Characteristics
Qing-shan, Dai; Zhen-hai, Zhang; Shi-jian, Zhu
2017-11-01
Pipeline system vibration is one of the significant factors leading to the vibration and noise of vessel. Elbow is widely used in the pipeline system. However, the researches about vibration of elbow are little, and there is no systematic study. In this research, we firstly analysed the relationship between elbow vibration transmission characteristics and bending radius by ABAQUS finite element simulation. Then, we conducted the further vibration test to observe the vibration transmission characteristics of different elbows which have the same diameter and different bending radius under different flow velocity. The results of simulation calculation and experiment both showed that the vibration acceleration levels of the pipeline system decreased with the increase of bending radius of the elbow, which was beneficial to reduce the transmission of vibration in the pipeline system. The results could be used as reference for further studies and designs for the low noise installation of pipeline system.
Analysis of musle fatigue induced by isometric vibration exercise at varying frequencies
Mischi, M.; Rabotti, C.; Cardinale, M. (Marco)
2012-01-01
An increase in neuromuscular activity, measured by electromyography (EMG), is usually observed during vibration exercise. The underlying mechanisms are however unclear, limiting the possibilities to introduce and exploit vibration training in rehabilitation programs. In this study, a new training
Characterization of whole assembly hulls produced by industrial reprocessing of LWR fuels
International Nuclear Information System (INIS)
Gue, J.P.; Isaac, M.
1987-03-01
The characterization program for Obrigheim and Stade PWR hulls sampled at La Hague was conducted in the CEA hot cells (Coquenstock program operating on whole assembly hulls). A description of the appearance of these hulls, recovered on the industrial scale and after severe damage, is followed by a review of the results of the different radiochemical characterization operations (neutron emission measurements, gamma scanning, alpha and mass spectrometry after dissolution of several samples, determination of the retention of tritium and other gaseous fission products occluded in the zircalloy clads etc). The alpha contamination of these hulls proved to be rather high, but it demonstrated that a large part (90 to 95%) was labile and could be removed by simple rinsing with cold 3N nitric acid. By contrast, contamination by fission products such as Cs 137, Ce 144 and Eu 154, remains high and relatively unaffected by nitriacid rinsing. Based on the results obtained and the observations recorded, an analysis is carried out of the origins of alpha contamination of these hulls treated on an industrial scale, among which the chief source is certainly the limited effectiveness of rinsing
Characterization of whole assembly hulls produced by industrial reprocessing of LWR fuels
International Nuclear Information System (INIS)
Gue, J.P.; Isaac, M.; Hebel, W.
1987-01-01
The characterization program for Obrigheim and Stade PWR hulls sampled at La Hague was conducted in the CEA hot cells (Coquenstock program operating on whole assembly hulls). A description of the appearance of these hulls, recovered on the industrial scale and after severe damage, is followed by a review of the results of the different radiochemical characterization operations (neutron emission measurements, gamma scanning, alpha and mass spectrometry after dissolution of several samples, determination of the retention of tritium and other gaseous fission products occluded in the zircalloy clads, etc.). The alpha contamination of these hulls proved to be rather high, but it demonstrated that a large part (90 to 95%) was labile and could be removed by simple rinsing with cold 3N nitric acid. By contrast, contamination by fission products such as Cs 137, Ce 144 and Eu 154, remains high and relatively unaffected by nitric acid rinsing. Based on the results obtained and the observations recorded, an analysis is carried out of the origins of alpha contamination of these hulls treated on an industrial scale, among which the chief source is certainly the limited effectiveness of rinsing
International Nuclear Information System (INIS)
Wuerz, H.; Wagner, K.; Becker, H.J.
1990-01-01
In reprocessing plants leached hulls and dissolver sludges represent rather important intermediate level α-waste streams. A control of the Pu content of these waste streams is desirable. The nondestructive assay method to be preferred would be passive neutron counting. However, before any decision on passive neutron monitoring becomes possible a characterization of hulls and sludges in terms of Pu content and neutron emission is necessary. For the direct determination of plutonium on hulls and in sludges, as coming from reprocessing, an active neutron measurement is required. A simple, and sufficiently sensitive active neutron method which can easily be installed uses as stationary Cf-252 neutron source. This method was used for the characterization of hulls and sludges in terms of plutonium content and total neutron emission in the WAK. Meanwhile a total of 28 batches of leached hulls and 22 batches of dissolver sludges from reprocessing of PWR fuel have been assayed. The paper describes the assay method used and gives an analysis of the error sources together with a discussion of the results and the accuracies obtained in a reprocessing plant. (orig./HP)
Image quality analysis of vibration effects In C-arm-flat panel X-ray imaging
Snoeren, R.M.; Kroon, J.N.; With, de P.H.N.
2011-01-01
The motion of C-arm scanning X-ray systems may result in vibrations of the imaging sub-system. In this paper, we connect C-arm system vibrations to Image Quality (IQ) deterioration for 2D angiography and 3D cone beam X-ray imaging, using large Flat Panel detectors. Vibrations will affect the
ANALYSIS OF VIBRATORY PROTECTION SYSTEM VIBRATION DURING HARMONIC AND POLYHARMONIC EXCITATIONS
Directory of Open Access Journals (Sweden)
T. N. Mikulik
2011-01-01
Full Text Available The paper considers a mathematical model of local «driver-seat» system and an algorithm for vibratory loading formation at external actions. Results of the investigations on the system vibration according to minimum vibration acceleration depending on transfer force factor acting on the seat and a vibration isolation factor are presented in the paper.
Design, analysis and testing of a new piezoelectric tool actuator for elliptical vibration turning
Lin, Jieqiong; Han, Jinguo; Lu, Mingming; Yu, Baojun; Gu, Yan
2017-08-01
A new piezoelectric tool actuator (PETA) for elliptical vibration turning has been developed based on a hybrid flexure hinge connection. Two double parallel four-bar linkage mechanisms and two right circular flexure hinges were chosen to guide the motion. The two input displacement directional stiffness were modeled according to the principle of virtual work modeling method and the kinematic analysis was conducted theoretically. Finite element analysis was used to carry out static and dynamic analyses. To evaluate the performance of the developed PETA, off-line experimental tests were carried out to investigate the step responses, motion strokes, resolutions, parasitic motions, and natural frequencies of the PETA along the two input directions. The relationship between input displacement and output displacement, as well as the tool tip’s elliptical trajectory in different phase shifts was analyzed. By using the developed PETA mechanism, micro-dimple patterns were generated as the preliminary application to demonstrate the feasibility and efficiency of PETA for elliptical vibration turning.
Determination of fuel assembly vibrational modes through analysis of incore detector noise
International Nuclear Information System (INIS)
Johnson, R.S.
1986-01-01
In order to better characterize fuel assembly vibration at Duke Power Company's Oconee Nuclear Station, incore noise data were acquired an analyzed from prompt responding detectors incorporated in the Oconee 2, Cycle 7 core. Duke Power Company began actively pursuing an inhouse Neutron Noise Analysis program for routine surveillance of reactor internals vibration in 1979. Noise data has since been acquired and analyzed for twelve cycles of operation for the three Oconee units. Duke Power's Oconee Unit 2 is a Babcock and Wilcoxs pressurized water reactor with a rate thermal power of 2568MW. For Oconee 2, Cycle 7 operation, two test assemblies, each employing a string of seven axially-spaced, prompt responding hafnium detectors, were included in the final core design. Incore detector noise data were obtained during Cycle 7 at approximately 281 and 430 effective full power days (EFPD). In addition to the incore test detector signals, noise signals from the upper and lower chambers of the four excore power range detectors were recorded to aid in the analysis. The comparison of RMS signal levels for each incore detector and the phase relationships between detector locations within two test assemblies identified the first four fuel assembly bending modes associated with fixed end conditions
Killeen, Daniel P; Andersen, David H; Beatson, Ron A; Gordon, Keith C; Perry, Nigel B
2014-12-31
Hops, Humulus lupulus, are grown worldwide for use in the brewing industry to impart characteristic flavor and aroma to finished beer. Breeders produce many varietal crosses with the aim of improving and diversifying commercial hops varieties. The large number of crosses critical to a successful breeding program imposes high demands on the supporting chemical analytical laboratories. With the aim of reducing the analysis time associated with hops breeding, quantitative partial least-squares regression (PLS-R) models have been produced, relating reference data acquired by the industrial standard HPLC and UV methods, to vibrational spectra of the same, chemically diverse hops sample set. These models, produced from rapidly acquired infrared (IR), near-infrared (NIR), and Raman spectra, were appraised using standard statistical metrics. Results demonstrated that all three spectroscopic methods could be used for screening hops for α-acid, total bitter acids, and cohumulone concentrations in powdered hops. Models generated from Raman and IR spectra also showed potential for use in screening hops varieties for xanthohumol concentrations. NIR analysis was performed using both a standard benchtop spectrometer and a portable NIR spectrometer, with comparable results obtained by both instruments. Finally, some important vibrational features of cohumulone, colupulone, and xanthohumol were assigned using DFT calculations, which allow more insightful interpretation of PLS-R latent variable plots.
International Nuclear Information System (INIS)
Jandaghian, A A; Rahmani, O
2016-01-01
In this study, free vibration analysis of magneto-electro-thermo-elastic (METE) nanobeams resting on a Pasternak foundation is investigated based on nonlocal theory and Timoshenko beam theory. Coupling effects between electric, magnetic, mechanical and thermal loading are considered to derive the equations of motion and distribution of electrical potential and magnetic potential along the thickness direction of the METE nanobeam. The governing equations and boundary conditions are obtained using the Hamilton principle and discretized via the differential quadrature method (DQM). Numerical results reveal the effects of the nonlocal parameter, magneto-electro-thermo-mechanical loading, Winkler spring coefficients, Pasternak shear coefficients and height-to-length ratio on the vibration characteristics of METE nanobeams. It is observed that the natural frequency is dependent on the magnetic, electric, temperature, elastic medium, small-scale coefficient, and height-to-length ratio. These results are useful in the mechanical analysis and design of smart nanostructures constructed from magneto-electro-thermo-elastic materials. (paper)
Directory of Open Access Journals (Sweden)
Johan Debayle
2011-05-01
Full Text Available An image analysis method has been developed in order to compute the velocity field of a granular medium (sand grains, mean diameter 600 μm submitted to different kinds of mechanical stresses. The differential method based on optical flow conservation consists in describing a dense motion field with vectors associated to each pixel. A multiscale, coarse-to-fine, analytical approach through tailor sized windows yields the best compromise between accuracy and robustness of the results, while enabling an acceptable computation time. The corresponding algorithmis presented and its validation discussed through different tests. The results of the validation tests of the proposed approach show that the method is satisfactory when attributing specific values to parameters in association with the size of the image analysis window. An application in the case of vibrated sand has been studied. An instrumented laboratory device provides sinusoidal vibrations and enables external optical observations of sand motion in 3D transparent boxes. At 50 Hz, by increasing the relative acceleration G, the onset and development of two convective rolls can be observed. An ultra fast camera records the grain avalanches, and several pairs of images are analysed by the proposed method. The vertical velocity profiles are deduced and allow to precisely quantify the dimensions of the fluidized region as a function of G.
Sattar, M.; Wei, C.; Jalali, A.; Sattar, R.
2017-07-01
To address the impact of solar array (SA) anomalies and vibrations on performance of precision space-based operations, it is important to complete its accurate jitter analysis. This work provides mathematical modelling scheme to approximate kinematics and coupled micro disturbance dynamics of rigid load supported and operated by solar array drive assembly (SADA). SADA employed in analysis provides a step wave excitation torque to activate the system. Analytical investigations into kinematics is accomplished by using generalized linear and Euler angle coordinates, applying multi-body dynamics concepts and transformations principles. Theoretical model is extended, to develop equations of motion (EoM), through energy method (Lagrange equation). The main emphasis is to research coupled frequency response by determining energies dissipated and observing dynamic behaviour of internal vibratory systems of SADA. The disturbance model captures discrete active harmonics of SADA, natural modes and vibration amplifications caused by interactions between active harmonics and structural modes of mechanical assembly. The proposed methodology can help to predict true micro disturbance nature of SADA operating rigid load. Moreover, performance outputs may be compared against actual mission requirements to assess precise spacecraft controller design to meet next space generation stringent accuracy goals.
Flow induced vibration and stability analysis of multi wall carbon nanotubes
Energy Technology Data Exchange (ETDEWEB)
Yun, Kyung Jae [Agency for Defense Development, Daejeon (Korea, Republic of); Choi, Jong Woon [Korean Intellectual Property Office, Daejeon (Korea, Republic of); Kim, Sung Kyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Song, Oh Seop [Chungnam National Univ., Daejeon (Korea, Republic of)
2012-12-15
The free vibration and flow induced flutter instability of cantilever multi wall carbon nanotubes conveying fluid are investigated and the nanotubes are modeled as thin-walled beams. The non-classical effects of the transverse shear, rotary inertia, warping inhibition, and van der Waals forces between two walls are incorporated into the structural model. The governing equations and associated boundary conditions are derived using Hamilton's principle. A numerical analysis is carried out by using the extended Galerkin method, which enables us to obtain more accurate solutions compared to the conventional Galerkin method. Cantilevered carbon nanotubes are damped with decaying amplitude for a flow velocity below a certain critical value. However, beyond this critical flow velocity, flutter instability may occur. The variations in the critical flow velocity with respect to both the radius ratio and length of the carbon nanotubes are investigated and pertinent conclusions are outlined. The differences in the vibration and instability characteristics between the Timoshenko beam theory and Euler beam theory are revealed. A comparative analysis of the natural frequencies and flutter characteristics of MWCNTs and SWCNTs is also performed.
Dovbeshko, G. I.; Repnytska, O. P.; Pererva, T.; Miruta, A.; Kosenkov, D.
2004-07-01
Conformation analysis of mutated DNA-bacteriophages (PLys-23, P23-2, P47- the numbers have been assigned by T. Pererva) induced by MS2 virus incorporated in Ecoli AB 259 Hfr 3000 has been done. Surface enhanced infrared absorption (SEIRA) spectroscopy and principal component analysis has been applied for solving this problem. The nucleic acids isolated from the mutated phages had a form of double stranded DNA with different modifications. The nucleic acid from phage P47 was undergone the structural rearrangement in the most degree. The shape and position ofthe fine structure of the Phosphate asymmetrical band at 1071cm-1 as well as the stretching OH vibration at 3370-3390 cm-1 has indicated to the appearance ofadditional OH-groups. The Z-form feature has been found in the base vibration region (1694 cm-1) and the sugar region (932 cm-1). A supposition about modification of structure of DNA by Z-fragments for P47 phage has been proposed. The P23-2 and PLys-23 phages have showed the numerous minor structural changes also. On the basis of SEIRA spectra we have determined the characteristic parameters of the marker bands of nucleic acid used for construction of principal components. Contribution of different spectral parameters of nucleic acids to principal components has been estimated.
International Nuclear Information System (INIS)
Gorman, D.J.
1983-12-01
PIPEAU-2 is a computer code developed at the Chalk River Nuclear Laboratories for the flow-induced vibration analysis of heat exchanger and steam generator tube bundles. It can perform this analysis for straight and 'U' tubes. All the theoretical work underlying the code is analytical rather than numerical in nature. Highly accurate evaluation of the free vibration frequencies and mode shapes is therefore obtained. Using the latest experimentally determined parameters available, the free vibration analysis is followed by a forced vibration analysis. Tube response due to fluid turbulence and vortex shedding is determined, as well as critical fluid velocity associated with fluid-elastic instability
National Research Council Canada - National Science Library
Jones, Harry D; Gerzina, David M
1973-01-01
... small waterplane area, twin-hulled, attack aircraft carrier in waves. Motions of the model were measured, together with the forces and moments induced by the hulls on the cross structure spanning the two hulls...
Directory of Open Access Journals (Sweden)
Ted W Cranford
Full Text Available Global concern over the possible deleterious effects of noise on marine organisms was catalyzed when toothed whales stranded and died in the presence of high intensity sound. The lack of knowledge about mechanisms of hearing in toothed whales prompted our group to study the anatomy and build a finite element model to simulate sound reception in odontocetes. The primary auditory pathway in toothed whales is an evolutionary novelty, compensating for the impedance mismatch experienced by whale ancestors as they moved from hearing in air to hearing in water. The mechanism by which high-frequency vibrations pass from the low density fats of the lower jaw into the dense bones of the auditory apparatus is a key to understanding odontocete hearing. Here we identify a new acoustic portal into the ear complex, the tympanoperiotic complex (TPC and a plausible mechanism by which sound is transduced into the bony components. We reveal the intact anatomic geometry using CT scanning, and test functional preconceptions using finite element modeling and vibrational analysis. We show that the mandibular fat bodies bifurcate posteriorly, attaching to the TPC in two distinct locations. The smaller branch is an inconspicuous, previously undescribed channel, a cone-shaped fat body that fits into a thin-walled bony funnel just anterior to the sigmoid process of the TPC. The TPC also contains regions of thin translucent bone that define zones of differential flexibility, enabling the TPC to bend in response to sound pressure, thus providing a mechanism for vibrations to pass through the ossicular chain. The techniques used to discover the new acoustic portal in toothed whales, provide a means to decipher auditory filtering, beam formation, impedance matching, and transduction. These tools can also be used to address concerns about the potential deleterious effects of high-intensity sound in a broad spectrum of marine organisms, from whales to fish.
Huang, Zhiqiang; Xie, Dou; Xie, Bing; Zhang, Wenlin; Zhang, Fuxiao; He, Lei
2018-03-01
The undesired stick-slip vibration is the main source of PDC bit failure, such as tooth fracture and tooth loss. So, the study of PDC bit failure base on stick-slip vibration analysis is crucial to prolonging the service life of PDC bit and improving ROP (rate of penetration). For this purpose, a piecewise-smooth torsional model with 4-DOF (degree of freedom) of drilling string system plus PDC bit is proposed to simulate non-impact drilling. In this model, both the friction and cutting behaviors of PDC bit are innovatively introduced. The results reveal that PDC bit is easier to fail than other drilling tools due to the severer stick-slip vibration. Moreover, reducing WOB (weight on bit) and improving driving torque can effectively mitigate the stick-slip vibration of PDC bit. Therefore, PDC bit failure can be alleviated by optimizing drilling parameters. In addition, a new 4-DOF torsional model is established to simulate torsional impact drilling and the effect of torsional impact on PDC bit's stick-slip vibration is analyzed by use of an engineering example. It can be concluded that torsional impact can mitigate stick-slip vibration, prolonging the service life of PDC bit and improving drilling efficiency, which is consistent with the field experiment results.
International Nuclear Information System (INIS)
Yoon, Sang Won; Lee, Sangwoo; Najafi, Khalil; Perkins, Noel C
2011-01-01
This paper presents the analysis and preliminary design, fabrication, and measurement for mechanical vibration-isolation platforms especially designed for resonating MEMS devices including gyroscopes. Important parameters for designing isolation platforms are specified and the first platform (in designs with cascaded multiple platforms) is crucial for improving vibration-isolation performance and minimizing side-effects on integrated gyroscopes. This isolation platform, made from a thick silicon wafer substrate for an environment-resistant MEMS package, incorporates the functionalities of a previous design including vacuum packaging and thermal resistance with no additional resources. This platform consists of platform mass, isolation beams, vertical feedthroughs, and bonding pads. Two isolation platform designs follow from two isolation beam designs: lateral clamped–clamped beams and vertical torsion beams. The beams function simultaneously as mechanical springs and electrical interconnects. The vibration-isolation platform can yield a multi-dimensional, high-order mechanical low pass filter. The isolation platform possesses eight interconnects within a 12.2 × 12.2 mm 2 footprint. The contact resistance ranges from 4–11 Ω depending on the beam design. Vibration measurements using a laser-Doppler vibrometer demonstrate that the lateral vibration-isolation platform suppresses external vibration having frequencies exceeding 2.1 kHz.
Wang, Hong-Fei; Gan, Wei; Lu, Rong; Rao, Yi; Wu, Bao-Hua
Sum frequency generation vibrational spectroscopy (SFG-VS) has been proven to be a uniquely effective spectroscopic technique in the investigation of molecular structure and conformations, as well as the dynamics of molecular interfaces. However, the ability to apply SFG-VS to complex molecular interfaces has been limited by the ability to abstract quantitative information from SFG-VS experiments. In this review, we try to make assessments of the limitations, issues and techniques as well as methodologies in quantitative orientational and spectral analysis with SFG-VS. Based on these assessments, we also try to summarize recent developments in methodologies on quantitative orientational and spectral analysis in SFG-VS, and their applications to detailed analysis of SFG-VS data of various vapour/neat liquid interfaces. A rigorous formulation of the polarization null angle (PNA) method is given for accurate determination of the orientational parameter D = /, and comparison between the PNA method with the commonly used polarization intensity ratio (PIR) method is discussed. The polarization and incident angle dependencies of the SFG-VS intensity are also reviewed, in the light of how experimental arrangements can be optimized to effectively abstract crucial information from the SFG-VS experiments. The values and models of the local field factors in the molecular layers are discussed. In order to examine the validity and limitations of the bond polarizability derivative model, the general expressions for molecular hyperpolarizability tensors and their expression with the bond polarizability derivative model for C3v, C2v and C∞v molecular groups are given in the two appendixes. We show that the bond polarizability derivative model can quantitatively describe many aspects of the intensities observed in the SFG-VS spectrum of the vapour/neat liquid interfaces in different polarizations. Using the polarization analysis in SFG-VS, polarization selection rules or
DECONTAMINATION OF ZIRCALOY SPENT FUEL CLADDING HULLS
International Nuclear Information System (INIS)
Rudisill, T; John Mickalonis, J
2006-01-01
The reprocessing of commercial spent nuclear fuel (SNF) generates a Zircaloy cladding hull waste which requires disposal as a high level waste in the geologic repository. The hulls are primarily contaminated with fission products and actinides from the fuel. During fuel irradiation, these contaminants are deposited in a thin layer of zirconium oxide (ZrO 2 ) which forms on the cladding surface at the elevated temperatures present in a nuclear reactor. Therefore, if the hulls are treated to remove the ZrO 2 layer, a majority of the contamination will be removed and the hulls could potentially meet acceptance criteria for disposal as a low level waste (LLW). Discard of the hulls as a LLW would result in significant savings due to the high costs associated with geologic disposal. To assess the feasibility of decontaminating spent fuel cladding hulls, two treatment processes developed for dissolving fuels containing zirconium (Zr) metal or alloys were evaluated. Small-scale dissolution experiments were performed using the ZIRFLEX process which employs a boiling ammonium fluoride (NH 4 F)/ammonium nitrate (NH 4 NO 3 ) solution to dissolve Zr or Zircaloy cladding and a hydrofluoric acid (HF) process developed for complete dissolution of Zr-containing fuels. The feasibility experiments were performed using Zircaloy-4 metal coupons which were electrochemically oxidized to produce a thin ZrO 2 layer on the surface. Once the oxide layer was in place, the ease of removing the layer using methods based on the two processes was evaluated. The ZIRFLEX and HF dissolution processes were both successful in removing a 0.2 mm (thick) oxide layer from Zircaloy-4 coupons. Although the ZIRFLEX process was effective in removing the oxide layer, two potential shortcomings were identified. The formation of ammonium hexafluorozirconate ((NH 4 ) 2 ZrF 6 ) on the metal surface prior to dissolution in the bulk solution could hinder the decontamination process by obstructing the removal of
Dynamic Analysis of an Office Building due to Vibration from Road Construction Activities
Chik, T. N. T.; Kamil, M. R. H.; Yusoff, N. A.; Ibrahim, M. H. W.
2018-04-01
Construction activities are widely known as one of the predominant sources of man-made vibrations that able to create nuisance towards any adjacent building, and this includes the road construction operations. Few studies conclude the construction-induced vibration may be harmful directly and indirectly towards the neighbouring building. This lead to the awareness of study the building vibration response of concrete masonry load bearing system and its vibrational performance towards the road construction activities. This study will simulate multi-storey office building of Sekolah Menengah Kebangsaan (SMK) Bandar Enstek at Negeri Sembilan by using finite element vibration analyses. The excitation of transient loads from ground borne vibrations which triggered by the road construction activities are modelled into the building. The vibration response was recorded during in-situ ambient vibration test by using Laser Doppler Vibrometer (LDV), which specifically performed on four different locations. The finite element simulation process was developed in the commercial FEA software ABAQUS. Then, the experimental data was processed and evaluated in MATLAB ModalV to assess the vibration criteria of the floor in building. As a result, the vibration level of floor in building is fall under VC-E curve which was under the maximum permissible level for office building (VC-ISO). The vibration level on floor is acceptable within the limit that have been referred.
Research on vibration signal analysis and extraction method of gear local fault
Yang, X. F.; Wang, D.; Ma, J. F.; Shao, W.
2018-02-01
Gear is the main connection parts and power transmission parts in the mechanical equipment. If the fault occurs, it directly affects the running state of the whole machine and even endangers the personal safety. So it has important theoretical significance and practical value to study on the extraction of the gear fault signal and fault diagnosis of the gear. In this paper, the gear local fault as the research object, set up the vibration model of gear fault vibration mechanism, derive the vibration mechanism of the gear local fault and analyzes the similarities and differences of the vibration signal between the gear non fault and the gears local faults. In the MATLAB environment, the wavelet transform algorithm is used to denoise the fault signal. Hilbert transform is used to demodulate the fault vibration signal. The results show that the method can denoise the strong noise mechanical vibration signal and extract the local fault feature information from the fault vibration signal..
Directory of Open Access Journals (Sweden)
Ye-qing Huang
2016-01-01
Full Text Available Aiming at the existing problems of traditional water piston pump used in the naval ship, such as low efficiency, high noise, large vibration, and nonintelligent control, a new type of linear-motor-driven water piston pump is developed and its vibration characteristics are analyzed in this research. Based on the 3D model of the structure, the simulation analyses including static stress analysis, modal analysis, and harmonic response analysis are conducted. The simulation results reveal that the mode shape under low frequency stage is mainly associated with the eccentricity swing of the piston rod. The vibration experiment results show that the resonance frequency of linear-motor-driven water piston pump is concentrated upon 500 Hz and 800 Hz in the low frequency range. The dampers can change the resonance frequency of the system to a certain extent. The vibration under triangular motion curve is much better than that of S curve, which is consistent with the simulation conclusion. This research provides an effective method to detect the vibration characteristics and a reference for design and optimization of the linear-motor-driven water piston pump.
Analysis of Parameters Assessment on Laminated Rubber-Metal Spring for Structural Vibration
International Nuclear Information System (INIS)
Salim, M.A.; Putra, A.; Mansor, M.R.; Musthafah, M.T.; Akop, M.Z.; Abdullah, M.A.
2016-01-01
This paper presents the analysis of parameter assessment on laminated rubber-metal spring (LR-MS) for vibrating structure. Three parameters were selected for the assessment which are mass, Young's modulus and radius. Natural rubber materials has been used to develop the LR-MS model. Three analyses were later conducted based on the selected parameters to the LR-MS performance which are natural frequency, location of the internal resonance frequency and transmissibility of internal resonance. Results of the analysis performed were plotted in frequency domain function graph. Transmissibility of laminated rubber-metal spring (LR-MS) is changed by changing the value of the parameter. This occurrence was referred to the theory from open literature then final conclusion has been make which are these parameters have a potential to give an effects and trends for LR-MS transmissibility. (paper)
Vibration analysis of a dummy fuel rod continuously supported by spacer grids
International Nuclear Information System (INIS)
Choi, Myoung-Hwan; Kang, Heung-Seok; Yoon, Kyung-Ho; Song, Kee-Nam; Jung, Youn-Ho
2003-01-01
A modal testing and a finite element (FE) analysis using ABAQUS on a dummy fuel rod continuously supported by Optimized H type (OHT) and New Doublet (ND) spacer grids are performed to obtain the vibration characteristics such as natural frequencies and mode shapes and to verify the FE model used. The results from the test and the FE analysis are compared according to modal assurance criteria values. The natural frequency differences between the two methods as well as the mode comparison results for the rod with OHT SG are better than those with ND SG. That is, in the case of the ND grid model using beam-spring elements, there was a large discrepancy between the two methods. Thus, we tried to modify the FE model for ND SG considering the contact phenomena between the fuel rod and the SG. The results of the new model showed good agreement with the experiment compared with those of a beam-spring model
Natural frequency and vibration analysis of jacket type foundation for offshore wind power
Hung, Y.-C.; Chang, Y.-Y.; Chen, S.-Y.
2017-12-01
There are various types of foundation structure for offshore wind power, engineers may assess the condition of ocean at wind farm, and arrange the transportation, installation of each structure members, furthermore, considering the ability of manufacture steel structure as well, then make an optimum design. To design jacket offshore structure, unlike onshore cases, offshore structure also need to estimate the wave excitation effect. The aim of this paper is to study the difference of natural frequency between different kinds of structural stiffness and discuss the effect of different setting of boundary condition during analysis, besides, compare this value with the natural frequency of sea wave, in order to avoid the resonance effect. In this paper, the finite element analysis software ABAQUS is used to model and analyze the natural vibration behavior of the jacket structure.
Numerical solution of quadratic matrix equations for free vibration analysis of structures
Gupta, K. K.
1975-01-01
This paper is concerned with the efficient and accurate solution of the eigenvalue problem represented by quadratic matrix equations. Such matrix forms are obtained in connection with the free vibration analysis of structures, discretized by finite 'dynamic' elements, resulting in frequency-dependent stiffness and inertia matrices. The paper presents a new numerical solution procedure of the quadratic matrix equations, based on a combined Sturm sequence and inverse iteration technique enabling economical and accurate determination of a few required eigenvalues and associated vectors. An alternative procedure based on a simultaneous iteration procedure is also described when only the first few modes are the usual requirement. The employment of finite dynamic elements in conjunction with the presently developed eigenvalue routines results in a most significant economy in the dynamic analysis of structures.
International Nuclear Information System (INIS)
Yas, M.H.; Samadi, N.
2012-01-01
This study deals with free vibrations and buckling analysis of nanocomposite Timoshenko beams reinforced by single-walled carbon nanotubes (SWCNTs) resting on an elastic foundation. The SWCNTs are assumed to be aligned and straight with a uniform layout. Four different carbon nanotubes (CNTs) distributions including uniform and three types of functionally graded distributions of CNTs through the thickness are considered. The rule of mixture is used to describe the effective material properties of the nanocomposite beams. The governing equations are derived through using Hamilton's principle and then solved by using the generalized differential quadrature method (GDQM). Natural frequencies and critical buckling load are obtained for nanocomposite beams with different boundary conditions. Effects of several parameters, such as nanotube volume fraction, foundation stiffness parameters, slenderness ratios, CNTs distribution and boundary conditions on both natural frequency and critical buckling load are investigated. The results indicate that the above-mentioned parameters play a very important role on the free vibrations and buckling characteristics of the beam. Highlights: ► Beams with FG-X distribution have highest fundamental frequency. ► Beams with FG-X distribution have highest critical buckling load. ► Using elastic foundation, lead to increase the natural frequency. ► Using elastic foundation, lead to increase the critical buckling load. ► Increasing CNT volume fraction, lead to increase the natural frequency.
Griffiths, K. R.; Hicks, B. J.; Keogh, P. S.; Shires, D.
2016-08-01
In general, vehicle vibration is non-stationary and has a non-Gaussian probability distribution; yet existing testing methods for packaging design employ Gaussian distributions to represent vibration induced by road profiles. This frequently results in over-testing and/or over-design of the packaging to meet a specification and correspondingly leads to wasteful packaging and product waste, which represent 15bn per year in the USA and €3bn per year in the EU. The purpose of the paper is to enable a measured non-stationary acceleration signal to be replaced by a constructed signal that includes as far as possible any non-stationary characteristics from the original signal. The constructed signal consists of a concatenation of decomposed shorter duration signals, each having its own kurtosis level. Wavelet analysis is used for the decomposition process into inner and outlier signal components. The constructed signal has a similar PSD to the original signal, without incurring excessive acceleration levels. This allows an improved and more representative simulated input signal to be generated that can be used on the current generation of shaker tables. The wavelet decomposition method is also demonstrated experimentally through two correlation studies. It is shown that significant improvements over current international standards for packaging testing are achievable; hence the potential for more efficient packaging system design is possible.
Seismic analysis methods for LMFBR core and verification with mock-up vibration tests
International Nuclear Information System (INIS)
Sasaki, Y.; Kobayashi, T.; Fujimoto, S.
1988-01-01
This paper deals with the vibration behaviors of a cluster of core elements with the hexagonal cross section in a barrel under the dynamic excitation due to seismic events. When a strong earthquake excitation is applied to the core support, the cluster of core elements displace to a geometrical limit determined by restraint rings in the barrel, and collisions could occur between adjacent elements as a result of their relative motion. For these reasons, seismic analysis on LMFBR core elements is a complicated non-linear vibration problem, which includes collisions and fluid interactions. In an actual core design, it is hard to include hundreds of elements in the numerical calculations. In order to study the seismic behaviors of core elements, experiments with single row 29 elements (17 core fuel assemblies, 4 radial blanket assemblies, and 8 neutron shield assemblies) simulated all elements in MONJU core central row, and experiments with 7 cluster rows of 37 core fuel assemblies in the core center were performed in a fluid filled tank, using a large-sized shaking table. Moreover, the numerical analyses of these experiments were performed for the validation of simplified and detailed analytical methods. 4 refs, 18 figs
Free Vibration Analysis for Shells of Revolution Using an Exact Dynamic Stiffness Method
Directory of Open Access Journals (Sweden)
Xudong Chen
2016-01-01
Full Text Available An exact generalised formulation for the free vibration of shells of revolution with general shaped meridians and arbitrary boundary conditions is introduced. Starting from the basic shell theories, the vibration governing equations are obtained in the Hamilton form, from which dynamic stiffness is computed using the ordinary differential equations solver COLSYS. Natural frequencies and modes are determined by employing the Wittrick-Williams (W-W algorithm in conjunction with the recursive Newton’s method, thus expanding the applications of the abovementioned techniques from one-dimensional skeletal structures to two-dimensional shells of revolution. A solution for solving the number of clamped-end frequencies J0 in the W-W algorithm is presented for both uniform and nonuniform shell segment members. Based on these theories, a FORTRAN program is written. Numerical examples on circular cylindrical shells, hyperboloidal cooling tower shells, and spherical shells are given, and error analysis is performed. The convergence of the proposed method on J0 is verified, and comparisons with frequencies from existing literature show that the dynamic stiffness method is robust, reliable, and accurate.
Izumi, Tatsuya; Hagiwara, Manabu; Hoshina, Takuya; Takeda, Hiroaki; Tsurumi, Takaaki
2012-08-01
We developed a possible method to determine both coefficients of piezoelectricity (d) and electrostriction (M) at the same time by a waveform analysis of current and vibration velocity in the resonance state. The waveforms of the current and vibration velocity were theoretically described using the equations of motion and piezoelectric constitutive equations, considering the dissipation effect. The dissipation factor of the d coefficient and M coefficient is dielectric loss tangent tan δ. The waveforms measured in all of the ceramics, such as Pb(Zr,Ti)O(3) (PZT), Pb(Mg,Nb)O(3) (PMN), and 0.8Pb(Mg(1/3)Nb2/3)O(3)-0.2PbTiO(3) (PMN-PT), were well fitted with the calculated waveform. This fitting produced both the d and M coefficients, which agreed with those determined via the conventional methods. Moreover, the respective contributions of both piezoelectricity and electrostriction to the d value determined in the resonance-antiresonance method were clarified.
Analysis of crack initiation and growth in the high level vibration test at Tadotsu
International Nuclear Information System (INIS)
Kassir, M.K.; Park, Y.J.; Hofmayer, C.H.; Bandyopadhyay, K.K.; Shteyngart, S.
1993-08-01
The High Level Vibration Test data are used to assess the accuracy and usefulness of current engineering methodologies for predicting crack initiation and growth in a cast stainless steel pipe elbow under complex, large amplitude loading. The data were obtained by testing at room temperature a large scale modified model of one loop of a PWR primary coolant system at the Tadotsu Engineering Laboratory in Japan. Fatigue crack initiation time is reasonably predicted by applying a modified local strain approach (Coffin-Mason-Goodman equation) in conjunction with Miner's rule of cumulative damage. Three fracture mechanics methodologies are applied to investigate the crack growth behavior observed in the hot leg of the model. These are: the ΔK methodology (Paris law), ΔJ concepts and a recently developed limit load stress-range criterion. The report includes a discussion on the pros and cons of the analysis involved in each of the methods, the role played by the key parameters influencing the formulation and a comparison of the results with the actual crack growth behavior observed in the vibration test program. Some conclusions and recommendations for improvement of the methodologies are also provided
Directory of Open Access Journals (Sweden)
Sebastian Sauer
2013-01-01
Full Text Available Vibration analysis is a promising approach in order to detect early hip prosthesis loosening, with the potential to extend the range of diagnostic tools currently available in clinical routine. Ongoing research efforts and developments in the area of multi-functional implants, which integrate sensors, wireless power supply, communication and signal processing, provide means to obtain valuable in vivo information otherwise not available. In the current work a medical wireless measurement system is presented, which is integrated in the femoral head of a hip prosthesis. The passive miniaturized system includes a 3-axis acceleration sensor and signal pre-processing based on a lock-in amplifier circuit. Bidirectional data communication and power supply is reached through inductive coupling with an operating frequency of 125 kHz in accordance with the ISO 18000-2 protocol standard. The system allows the acquisition of the acceleration frequency response of the femur-prosthesis system between 500 to 2500 Hz. Applied laboratory measurements with system prototypes on artificial bones and integrated prostheses demonstrate the feasibility of the measurement system approach, clearly showing differences in the vibration behavior due to an implant loosening. In addition a possibility to evaluate the non-linear mechanic system behavior is presented.
Chen, Yu-Chun; Tang, Ping-Han; Wu, Ten-Ming
2013-11-28
By exploiting the instantaneous normal mode (INM) analysis for models of flexible molecules, we investigate intermolecular and intramolecular vibrations of water from the atomic point of view. With two flexible SPC/E models, our investigations include three aspects about their INM spectra, which are separated into the unstable, intermolecular, bending, and stretching bands. First, the O- and H-atom contributions in the four INM bands are calculated and their stable INM spectra are compared with the power spectra of the atomic velocity autocorrelation functions. The unstable and intermolecular bands of the flexible models are also compared with those of the SPC/E model of rigid molecules. Second, we formulate the inverse participation ratio (IPR) of the INMs, respectively, for the O- and H-atom and molecule. With the IPRs, the numbers of the three species participated in the INMs are estimated so that the localization characters of the INMs in each band are studied. Further, by the ratio of the IPR of the H atom to that of the O atom, we explore the number of involved OH bond per molecule participated in the INMs. Third, by classifying simulated molecules into subensembles according to the geometry of their local environments or their H-bond configurations, we examine the local-structure effects on the bending and stretching INM bands. All of our results are verified to be insensible to the definition of H-bond. Our conclusions about the intermolecular and intramolecular vibrations in water are given.
Free vibration analysis of multi-span pipe conveying fluid with dynamic stiffness method
International Nuclear Information System (INIS)
Li Baohui; Gao Hangshan; Zhai Hongbo; Liu Yongshou; Yue Zhufeng
2011-01-01
Research highlights: → The dynamic stiffness method was proposed to analysis the free vibration of multi-span pipe conveying fluid. → The main advantage of the proposed method is that it can hold a high precision even though the element size is large. → The flowing fluid can weaken the pipe stiffness, when the fluid velocity increases, the natural frequencies of pipe are decreasing. - Abstract: By taking a pipe as Timoshenko beam, in this paper the original 4-equation model of pipe conveying fluid was modified by taking the dynamic effects of fluid into account. The shape function that always used in the finite element method was replaced by the exact wave solution of the modified four equations. And then the dynamic stiffness was deduced for the free vibration of pipe conveying fluid. The proposed method was validated by comparing the results of critical velocity with analytical solution for a simply supported pipe at both ends. In the example, the proposed method was applied to calculate the first three natural frequencies of a three span pipe with twelve meters long in three different cases. The results of natural frequency for the pipe conveying stationary fluid fitted well with that calculated by finite element software Abaqus. It was shown that the dynamic stiffness method can still hold high precision even though the element's size was quite large. And this is the predominant advantage of the proposed method comparing with conventional finite element method.
Theoretical analysis of the vibration of axisymmetric liquid bridges of arbitrary shape
Energy Technology Data Exchange (ETDEWEB)
Montanero, J.M. [Departamento de Electronica e Ingenieria Electromecanica, Universidad de Extremadura, 06071 Badajoz (Spain)
2003-01-01
A liquid bridge consists of a mass of liquid sustained by the action of capillary forces between two parallel disks. The dynamics of these liquid columns has been extensively analysed both theoretically and experimentally over the last decades. Many of the studies have focused on the dynamical response of cylindrical liquid bridges subjected to the action of an oscillatory microgravity field due to, for instance, an in-phase vibration of the supporting disks. There have been fewer studies dealing with the vibration of axisymmetric liquid bridges of arbitrary shape. In this paper the dynamics of rotating inviscid axisymmetric liquid bridges is analysed considering the combined effect of residual gravity, the inequality of the disks and the liquid bridge volume. The results are calculated numerically by using the one-dimensional Cosserat model and the full three-dimensional description. The excitation is assumed to be of small amplitude and harmonic, so that the theoretical models are linearized and the analysis is performed in the frequency domain. The details of the numerical methods proposed are discussed. Comparison between the values of the first resonance frequency obtained from both models shows an excellent agreement for long liquid bridges, the discrepancies increasing as the value of the slenderness decreases. (orig.)
Finite Element Analysis for Active-force Control on Vibration of a Flexible Single-link Manipulator
Directory of Open Access Journals (Sweden)
Abdul Kadir Muhammad
2015-10-01
Full Text Available The purposes of this research are to formulate the equations of motion of the system, to develop computational codes by a finite element analysis in order to perform dynamics simulation with vibration control, to propose an effective control scheme using active-force (AF control a flexible single-link manipulator. The system used in this paper consists of an aluminum beam as a flexible link, a clamp-part, a servo motor to rotate the link and a piezoelectric actuator to control vibration. Computational codes on time history responses, FFT (Fast Fourier Transform processing and eigenvalues-eigenvectors analysis were developed to calculate dynamic behavior of the link. Furthermore, the AF control was designed to drive the piezoelectric actuator. Calculated results have revealed that the vibration of the system can be suppressed effectively.
Toossi, Mostafa; Weisenburger, Richard; Hashemi-Kia, Mostafa
1993-01-01
This paper presents a summary of some of the work performed by McDonnell Douglas Helicopter Company under NASA Langley-sponsored rotorcraft structural dynamics program known as DAMVIBS (Design Analysis Methods for VIBrationS). A set of guidelines which is applicable to dynamic modeling, analysis, testing, and correlation of both helicopter airframes and a large variety of structural finite element models is presented. Utilization of these guidelines and the key features of their applications to vibration modeling of helicopter airframes are discussed. Correlation studies with the test data, together with the development and applications of a set of efficient finite element model checkout procedures, are demonstrated on a large helicopter airframe finite element model. Finally, the lessons learned and the benefits resulting from this program are summarized.
Directory of Open Access Journals (Sweden)
Jackson W. Cryns
2013-01-01
Full Text Available Harvesting power with a piezoelectric vibration powered generator using a full-wave rectifier conditioning circuit is experimentally compared for varying sinusoidal, random, and sine on random (SOR input vibration scenarios; the implications of source vibration characteristics on harvester design are discussed. The rise in popularity of harvesting energy from ambient vibrations has made compact, energy dense piezoelectric generators commercially available. Much of the available literature focuses on maximizing harvested power through nonlinear processing circuits that require accurate knowledge of generator internal mechanical and electrical characteristics and idealization of the input vibration source, which cannot be assumed in general application. Variations in source vibration and load resistance are explored for a commercially available piezoelectric generator. The results agree with numerical and theoretical predictions in the previous literature for optimal power harvesting in sinusoidal and flat broadband vibration scenarios. Going beyond idealized steady-state sinusoidal and flat random vibration input, experimental SOR testing allows for more accurate representation of real world ambient vibration. It is shown that characteristic interactions from more complex vibration sources significantly alter power generation and processing requirements by varying harvested power, shifting optimal conditioning impedance, inducing voltage fluctuations, and ultimately rendering idealized sinusoidal and random analyses incorrect.
Dumas, Georges; Lion, Alexis; Perrin, Philippe; Ouedraogo, Evariste; Schmerber, Sébastien
2016-03-23
Vibration-induced nystagmus is elicited by skull or posterior cervical muscle stimulations in patients with vestibular diseases. Skull vibrations delivered by the skull vibration-induced nystagmus test are known to stimulate the inner ear structures directly. This study aimed to measure the vibration transfer at different cranium locations and posterior cervical regions to contribute toward stimulus topographic optimization (experiment 1) and to determine the force applied on the skull with a hand-held vibrator to study the test reproducibility and provide recommendations for good clinical practices (experiment 2). In experiment 1, a 100 Hz hand-held vibrator was applied on the skull (vertex, mastoids) and posterior cervical muscles in 11 healthy participants. Vibration transfer was measured by piezoelectric sensors. In experiment 2, the vibrator was applied 30 times by two experimenters with dominant and nondominant hands on a mannequin equipped to measure the force. Experiment 1 showed that after unilateral mastoid vibratory stimulation, the signal transfer was higher when recorded on the contralateral mastoid than on the vertex or posterior cervical muscles (Pskull vibration-induced nystagmus test in patients with unilateral vestibular lesions and enables a stronger stimulation of the healthy side. In clinical practice, the vibrator should be placed on the mastoid and should be held by the clinician's dominant hand.
Janczur, R.
2016-09-01
The results of road tests of car VW Passat equipped with tires of size 195/65 R15, on the influence of the unbalancing front wheel on vibration of the parts of steering system, steering wheel and the body of the vehicle have been presented in this paper. Unbalances wheels made using weights of different masses, placed close to the outer edge of the steel rim and checked on the machine Hunter GSP 9700 for balancing wheels. The recorded waveforms vibration steering components and car body, at different constant driving speeds, subjected to spectral analysis to determine the possibility of isolating vibration caused by unbalanced wheel in various states and coming from good quality asphalt road surface. The results were discussed in terms of the possibility of identifying the state of unbalancing wheels and possible changes in radial stiffness of the tire vibration transmitted through the system driving wheel on the steering wheel. Vibration analysis steering components and car body, also in the longitudinal direction, including information from the CAN bus of the state of motion of the car, can be used to monitor the development of the state of unbalance wheel, tire damage or errors shape of brake discs or brake drums, causing pulsations braking forces.
European single-hull regulation in force
Energy Technology Data Exchange (ETDEWEB)
Rogers, Michael
2004-07-01
The European Union (EU)has decided that from 21 October 2003 no single-hull tanker carrying heavy grades of oil will be permitted to enter or leave ports or offshore installations or anchor in areas under the jurisdiction of the EU member states. Some of the provisions of the EU regulation will not be in force until 2010. The article looks back on what has led up to to the current regulations, beginning with the Titanic disaster of 1914.
The Causes of Boat Hull Blisters
1987-05-01
blistering. The report is divided into the following sections: Introduction; How Blisters Form; the Hull Material; Manufacturing Processes; Water Diffusion...Term Effects of Water Up-Takeo " The much more detailed and highly technical report of thia-Vsrk is entitled "The Causes of Blistering in Boat Building...Chemical Engineering, ably assisted by several graduate students, and was completed in the fall of 1986. The report itself, d List-ribution/_ Availabilit
46 CFR 32.75-5 - Hull requirements; general-TB/ALL.
2010-10-01
... 46 Shipping 1 2010-10-01 2010-10-01 false Hull requirements; general-TB/ALL. 32.75-5 Section 32.75..., AND HULL REQUIREMENTS Hull Requirements for Wood Hull Tank Vessels Constructed Prior to November 10, 1936 § 32.75-5 Hull requirements; general—TB/ALL. The scantlings, material, and workmanship, and the...
46 CFR 32.70-5 - Hull requirements; general-TB/ALL.
2010-10-01
... 46 Shipping 1 2010-10-01 2010-10-01 false Hull requirements; general-TB/ALL. 32.70-5 Section 32.70..., AND HULL REQUIREMENTS Hull Requirements for Steel Hull Tank Vessels Constructed Prior to November 10, 1936 § 32.70-5 Hull requirements; general—TB/ALL. The scantlings, material, and workmanship, the...
Energy Technology Data Exchange (ETDEWEB)
Kang, Heung Seok; Kim, Kyung Kyu; Yoon, Hyung Hoo; Song, Ki Nam
1998-12-01
The FEM program has been developed to predict the natural frequencies, the FEM program has been developed to predict the natural frequencies, and mode shapes of fuel rod subjected to axial force and continuously supported by a rotational and vent spring system, and to calculate the minimum reaction forces of the spacer grid spring when the maximum vibration amplitude of fuel rod is known. This program has been verified by commercial ANSYS program and the vibration test of dummy rods in air. The test equipment were set to get the fifth modes of test rods. Partial slip problem has been studied for the analysis of fuel fretting problem. Firstly, the assumption of semi-infiniteness of the contact bodies were validated by finite element (FE) analysis. From FE results, a classical bodies were validated by finite element (FE) analysis. From FE results, aclassical theory of elasticity was utilized with regarding the problem as a plane problem. Secondly, the Mindlin-Cattaneo problem was re-evaluated, which gave the fundamental idea for developing the numerical tool for the shear traction on the contact. Shear force of sequentially-changing directions was considered and the corresponding shear traction was evaluated by extending the numerical tool for the Mindlin-Cattaneo problem.
International Nuclear Information System (INIS)
Kang, Heung Seok; Kim, Kyung Kyu; Yoon, Hyung Hoo; Song, Ki Nam
1998-12-01
The FEM program has been developed to predict the natural frequencies, the FEM program has been developed to predict the natural frequencies, and mode shapes of fuel rod subjected to axial force and continuously supported by a rotational and vent spring system, and to calculate the minimum reaction forces of the spacer grid spring when the maximum vibration amplitude of fuel rod is known. This program has been verified by commercial ANSYS program and the vibration test of dummy rods in air. The test equipment were set to get the fifth modes of test rods. Partial slip problem has been studied for the analysis of fuel fretting problem. Firstly, the assumption of semi-infiniteness of the contact bodies were validated by finite element (FE) analysis. From FE results, a classical bodies were validated by finite element (FE) analysis. From FE results, a classical theory of elasticity was utilized with regarding the problem as a plane problem. Secondly, the Mindlin-Cattaneo problem was re-evaluated, which gave the fundamental idea for developing the numerical tool for the shear traction on the contact. Shear force of sequentially-changing directions was considered and the corresponding shear traction was evaluated by extending the numerical tool for the Mindlin-Cattaneo problem
Vibration Analysis and Parameter Design of Two Degree of Freedom System Using Modelica
Energy Technology Data Exchange (ETDEWEB)
Yoo, Yeongmin; Lee, Jongsoo [Yonsei Univ., Seoul (Korea, Republic of)
2017-08-15
Today, we are using computer simulations in various engineering disciplines to reduce the time and cost of product development. The scope of simulations is increasingly complex and diverse for different fields such as mechanical, electrical, thermal, and fluid. Thus, it is necessary to use integrated simulations. In order to overcome these problems, a language has been developed to effectively describe and implement simulations is Modelica. To model and simulate a system, physical models can be broadly divided into causal and acausal models. The most important feature of Modelica is acausal programming. In this study, we will introduce simple concepts and explain about the usage of Modelica. Furthermore, we will explain the vibration analysis of a two degree-of-freedom system and the design of appropriate parameters by using Modelica.
A Highly Accurate and Efficient Analytical Approach to Bridge Deck Free Vibration Analysis
Directory of Open Access Journals (Sweden)
D.J. Gorman
2000-01-01
Full Text Available The superposition method is employed to obtain an accurate analytical type solution for the free vibration frequencies and mode shapes of multi-span bridge decks. Free edge conditions are imposed on the long edges running in the direction of the deck. Inter-span support is of the simple (knife-edge type. The analysis is valid regardless of the number of spans or their individual lengths. Exact agreement is found when computed results are compared with known eigenvalues for bridge decks with all spans of equal length. Mode shapes and eigenvalues are presented for typical bridge decks of three and four span lengths. In each case torsional and non-torsional modes are studied.
Graph theory applied to noise and vibration control in statistical energy analysis models.
Guasch, Oriol; Cortés, Lluís
2009-06-01
A fundamental aspect of noise and vibration control in statistical energy analysis (SEA) models consists in first identifying and then reducing the energy flow paths between subsystems. In this work, it is proposed to make use of some results from graph theory to address both issues. On the one hand, linear and path algebras applied to adjacency matrices of SEA graphs are used to determine the existence of any order paths between subsystems, counting and labeling them, finding extremal paths, or determining the power flow contributions from groups of paths. On the other hand, a strategy is presented that makes use of graph cut algorithms to reduce the energy flow from a source subsystem to a receiver one, modifying as few internal and coupling loss factors as possible.
International Nuclear Information System (INIS)
Cruz-Vega, Israel; Rangel-Magdaleno, Jose; Ramirez-Cortes, Juan; Peregrina-Barreto, Hayde
2017-01-01
There is an increased interest in developing reliable condition monitoring and fault diagnosis systems of machines like induction motors; such interest is not only in the final phase of the failure but also at early stages. In this paper, several levels of damage of rotor bars under different load conditions are identified by means of vibration signals. The importance of this work relies on a simple but effective automatic detection algorithm of the damage before a break occurs. The feature extraction is based on discrete wavelet analysis and auto- correlation process. Then, the automatic classification of the fault degree is carried out by a binary classification tree. In each node, com- paring the learned levels of the breaking off correctly identifies the fault degree. The best results of classification are obtained employing computational intelligence techniques like support vector machines, multilayer perceptron, and the k-NN algorithm, with a proper selection of their optimal parameters.
Mode shape and natural frequency identification for seismic analysis from background vibration
International Nuclear Information System (INIS)
Bhan, S.; Wozniak, Z.
1986-10-01
Background vibration in a CANDU plant can be used to determine the dynamic characteristics of major items of equipment, such as calandria, the fuelling machines and the primary heat transport pumps. These dynamic characteristics can then be used to verify the seismic response of the equipment which, at present, is based on theoretical models only. The feasibility and basic theory of this new approach (which uses accelerations measured at several points on a structure and does not require knowledge of the source of excitation) was established in Phase I of the study. This report is based on Phase II in which the methods of analysis developed in Phase I were improved and verified experimentally. A Fast Fourier Transform (FFT) algorithm was incorporated and an interactive curve fitting technique was developed to obtain the dynamic characteristics in the form of natural frequencies, mode shapes and damping ratios. The method is now available for use at a CANDU plant
Development of non-linear vibration analysis code for CANDU fuelling machine
International Nuclear Information System (INIS)
Murakami, Hajime; Hirai, Takeshi; Horikoshi, Kiyomi; Mizukoshi, Kaoru; Takenaka, Yasuo; Suzuki, Norio.
1988-01-01
This paper describes the development of a non-linear, dynamic analysis code for the CANDU 600 fuelling machine (F-M), which includes a number of non-linearities such as gap with or without Coulomb friction, special multi-linear spring connections, etc. The capabilities and features of the code and the mathematical treatment for the non-linearities are explained. The modeling and numerical methodology for the non-linearities employed in the code are verified experimentally. Finally, the simulation analyses for the full-scale F-M vibration testing are carried out, and the applicability of the code to such multi-degree of freedom systems as F-M is demonstrated. (author)
Energy Technology Data Exchange (ETDEWEB)
Malekzadeh, P. [Department of Mechanical Engineering, Persian Gulf University, Boushehr 75168 (Iran, Islamic Republic of); Center of Excellence for Computational Mechanics in Mechanical Engineering, Shiraz University, Shiraz (Iran, Islamic Republic of)], E-mail: malekzadeh@pgu.ac.ir; Farid, M. [Center of Excellence for Computational Mechanics in Mechanical Engineering, Shiraz University, Shiraz (Iran, Islamic Republic of); Department of Mechanical Engineering, Shiraz University, Shiraz (Iran, Islamic Republic of); Zahedinejad, P. [Department of Mechanical Engineering, Shiraz University, Shiraz (Iran, Islamic Republic of)
2008-07-15
A mixed layerwise theory and differential quadrature (DQ) method (LW-DQ) for three-dimensional free vibration analysis of arbitrary laminated circular cylindrical shells is introduced. Using the layerwise theory in conjunction with the three-dimensional form of Hamilton's principle, the transversely discretized equations of motion and the related boundary conditions are obtained. Then, the DQ method is employed to discretize the resulting equations in the axial directions. The fast convergence behavior of the method is demonstrated and its accuracy is verified by comparing the results with those of other shell theories obtained using conventional methods and also with those of ANSYS software. In the case of arbitrary laminated shells with simply supported ends, the exact solution is developed for comparison purposes. It is shown that using few DQ grid points, converged accurate solutions are obtained. Less computational efforts of the proposed approach with respect to ANSYS software is shown.
Energy Technology Data Exchange (ETDEWEB)
Cruz-Vega, Israel; Rangel-Magdaleno, Jose; Ramirez-Cortes, Juan; Peregrina-Barreto, Hayde [Santa María Tonantzintla, Puebla (Mexico)
2017-06-15
There is an increased interest in developing reliable condition monitoring and fault diagnosis systems of machines like induction motors; such interest is not only in the final phase of the failure but also at early stages. In this paper, several levels of damage of rotor bars under different load conditions are identified by means of vibration signals. The importance of this work relies on a simple but effective automatic detection algorithm of the damage before a break occurs. The feature extraction is based on discrete wavelet analysis and auto- correlation process. Then, the automatic classification of the fault degree is carried out by a binary classification tree. In each node, com- paring the learned levels of the breaking off correctly identifies the fault degree. The best results of classification are obtained employing computational intelligence techniques like support vector machines, multilayer perceptron, and the k-NN algorithm, with a proper selection of their optimal parameters.
Similarity analysis and prediction for data of structural acoustic and vibration
International Nuclear Information System (INIS)
Mei Liquan; Ding Xuemei; Zhang Shujuan
2010-01-01
Support vector machine (SVM) is a learning machine based on statistical learning theory, which can get a model having good generalization. It can solve 'learning more' when dealing with small size. It can also avoid 'dimensional disaster' when solving nonlinear problems. This paper works on the parameters optimization for support vector regression machine (SVRM) and its applications. Solution path algorithm can save much CPU time when it is employed to optimize the regularization parameter of SVRM. Simulated annealing algorithm has good ability of finding global optimal solution. An improved solution path algorithm and simulated annealing algorithm are combined to optimize parameters of SVRM in the regression analysis of the acoustic and vibration data for complex practical problems. The numerical results show the model has good predictive capability. (authors)
Vibration signature analysis of compressors in the gaseous diffusion process for uranium enrichment
International Nuclear Information System (INIS)
Harbarger, W.B.
1975-01-01
Continuous operation of several thousand axial-flow and centrifugal compressors is vital to the gaseous diffusion process for uranium enrichment. Vibration signature analysis using a minicomputer-based Fast Fourier Transform Analyzer is being applied to the evaluation and surveillance of compressor performance at the Portsmouth Gaseous Diffusion Plant. Three areas of application include: (1) new blade design and prototype compressor evaluation; (2) corrective and preventive maintenance of machinery components; and (3) evaluation of machinery health. The present system is being used to monitor signals from accelerometers mounted on the load-bearing housings of 16 on-line compressors. These signals are transmitted by hard-wire to the analyzer for daily monitoring. A program for expansion of this system to monitor more than a thousand compressors and automation of the signature comparison process is planned for all three gaseous diffusion plants operated for the United States Energy Research and Development Administration. (auth)
Directory of Open Access Journals (Sweden)
Cho Dae Seung
2015-04-01
Full Text Available Thin and thick plates, plates with holes, stiffened panels and stiffened panels with holes are primary structural members in almost all fields of engineering: civil, mechanical, aerospace, naval, ocean etc. In this paper, a simple and efficient procedure for the free vibration analysis of such elements is presented. It is based on the assumed mode method and can handle different plate thickness, various shapes and sizes of holes, different framing sizes and types as well as different combinations of boundary conditions. Natural frequencies and modes are determined by solving an eigenvalue problem of a multi-degree-of-freedom system matrix equation derived by using Lagrange’s equations. Mindlin theory is applied for a plate and Timoshenko beam theory for stiffeners. The applicability of the method in the design procedure is illustrated with several numerical examples obtained by the in-house developed code VAPS. Very good agreement with standard commercial finite element software is achieved.
International Nuclear Information System (INIS)
Fu Geyan; Zhu Qirong
1998-11-01
It is pointed out that the main reason making nuclear power plants reactors leak is the vibration of internals of reactors. The factors which lead the vibration all have randomness and obscureness. The obscure reliability theory is introduced to the vibration system of internals of nuclear power reactor. Based on a quantity of designing and moving data, the obscure factors effecting the vibration reliability of the internals of nuclear power plant reactor are analyzed and the anti-vibration reliability criteria and the evaluating model are given. And the anti-vibration reliability measures are advanced from different quarters of the machine design and building, the thermohydraulics design, the control of reactivity, etc.. They may benefit the theory and practice for building and perfecting the vibration obscure reliability model of the reactor internals
Analysis of the tennis racket vibrations during forehand drives: Selection of the mother wavelet.
Blache, Y; Hautier, C; Lefebvre, F; Djordjevic, A; Creveaux, T; Rogowski, I
2017-08-16
The time-frequency analysis of the tennis racket and hand vibrations is of great interest for discomfort and pathology prevention. This study aimed to (i) to assess the stationarity of the vibratory signal of the racket and hand and (ii) to identify the best mother wavelet to perform future time-frequency analysis, (iii) to determine if the stroke spin, racket characteristics and impact zone can influence the selection of the best mother wavelet. A total of 2364 topspin and flat forehand drives were performed by fourteen male competitive tennis players with six different rackets. One tri-axial and one mono-axial accelerometer were taped on the racket throat and dominant hand respectively. The signal stationarity was tested through the wavelet spectrum test. Eighty-nine mother wavelet were tested to select the best mother wavelet based on continuous and discrete transforms. On average only 25±17%, 2±5%, 5±7% and 27±27% of the signal tested respected the hypothesis of stationarity for the three axes of the racket and the hand respectively. Regarding the two methods for the detection of the best mother wavelet, the Daubechy 45 wavelet presented the highest average ranking. No effect of the stroke spin, racket characteristics and impact zone was observed for the selection of the best mother wavelet. It was concluded that alternative approach to Fast Fourier Transform should be used to interpret tennis vibration signals. In the case where wavelet transform is chosen, the Daubechy 45 mother wavelet appeared to be the most suitable. Copyright © 2017 Elsevier Ltd. All rights reserved.
Oliveira Mendes, Thiago de; Pinto, Liliane Pereira; Santos, Laurita dos; Tippavajhala, Vamshi Krishna; Téllez Soto, Claudio Alberto; Martin, Airton Abrahão
2016-07-01
The analysis of biological systems by spectroscopic techniques involves the evaluation of hundreds to thousands of variables. Hence, different statistical approaches are used to elucidate regions that discriminate classes of samples and to propose new vibrational markers for explaining various phenomena like disease monitoring, mechanisms of action of drugs, food, and so on. However, the technical statistics are not always widely discussed in applied sciences. In this context, this work presents a detailed discussion including the various steps necessary for proper statistical analysis. It includes univariate parametric and nonparametric tests, as well as multivariate unsupervised and supervised approaches. The main objective of this study is to promote proper understanding of the application of various statistical tools in these spectroscopic methods used for the analysis of biological samples. The discussion of these methods is performed on a set of in vivo confocal Raman spectra of human skin analysis that aims to identify skin aging markers. In the Appendix, a complete routine of data analysis is executed in a free software that can be used by the scientific community involved in these studies.
International Nuclear Information System (INIS)
Saito, A; Kuroishi, M; Nakai, H
2016-01-01
This paper concerns the noise and structural vibration caused by rotating electric machines. Special attention is given to the magnetic-force induced vibration response of interior-permanent magnet machines. In general, to accurately predict and control the vibration response caused by the electric machines, it is inevitable to model not only the magnetic force induced by the fluctuation of magnetic fields, but also the structural dynamic characteristics of the electric machines and surrounding structural components. However, due to complicated boundary conditions and material properties of the components, such as laminated magnetic cores and varnished windings, it has been a challenge to compute accurate vibration response caused by the electric machines even after their physical models are available. In this paper, we propose a highly-accurate vibration prediction method that couples experimentally-obtained discrete structural transfer functions and numerically-obtained distributed magnetic-forces. The proposed vibration synthesis methodology has been applied to predict vibration responses of an interior permanent magnet machine. The results show that the predicted vibration response of the electric machine agrees very well with the measured vibration response for several load conditions, for wide frequency ranges. (paper)
Wave induced extreme hull girder loads on containerships
DEFF Research Database (Denmark)
Jensen, Jørgen Juncher; Pedersen, Preben Terndrup; Shi, Bill
2009-01-01
This paper provides simple but rational procedures for prediction of extreme wave – induced sectional hull girder forces with reasonable engineering accuracy. The procedures take into account main ship hull characteristics such as: length, breadth, draught, block coefficient, bow flare coefficient......, forward speed and hull flexibility. The vertical hull girder loads are evaluated for specific operational profiles. Firstly a quadratic strip theory is presented which can give separate predictions for the hogging and sagging bending moments and shear forces and for hull girder loads. Then this procedure...... is based on rational methods it can be applied for novel single hull ship types not presently covered by the rules of the classification societies or to account for specific operational profiles....
International Nuclear Information System (INIS)
Torabi, K.; Nafar Dastgerdi, J.
2012-01-01
This paper is concerned with the free transverse vibration of cracked nanobeams modeled after Eringen's nonlocal elasticity theory and Timoshenko beam theory. The cracked beam is modeled as two segments connected by a rotational spring located at the cracked section. This model promotes discontinuities in rotational displacement due to bending which is proportional to bending moment transmitted by the cracked section. The governing equations of cracked nanobeams with two symmetric and asymmetric boundary conditions are derived; then these equations are solved analytically based on concerning basic standard trigonometric and hyperbolic functions. Besides, the frequency parameters and the vibration modes of cracked nanobeams for variant crack positions, crack ratio, and small scale effect parameters are calculated. The vibration solutions obtained provide a better representation of the vibration behavior of short, stubby, micro/nanobeams where the effects of small scale, transverse shear deformation and rotary inertia are significant. - Highlights: ► The free vibration analysis of cracked nanobeams is investigated. ► This study is based on the theory of nonlocal elasticity and Timoshenko beam theory. ► The small scale effect parameter greatly affects the value of natural frequencies. ► Crack reduces the natural frequencies, causes a discontinuity in the cracked section.
Energy Technology Data Exchange (ETDEWEB)
Torabi, K., E-mail: kvntrb@KashanU.ac.ir; Nafar Dastgerdi, J., E-mail: J.nafardastgerdi@me.iut.ac.ir
2012-08-31
This paper is concerned with the free transverse vibration of cracked nanobeams modeled after Eringen's nonlocal elasticity theory and Timoshenko beam theory. The cracked beam is modeled as two segments connected by a rotational spring located at the cracked section. This model promotes discontinuities in rotational displacement due to bending which is proportional to bending moment transmitted by the cracked section. The governing equations of cracked nanobeams with two symmetric and asymmetric boundary conditions are derived; then these equations are solved analytically based on concerning basic standard trigonometric and hyperbolic functions. Besides, the frequency parameters and the vibration modes of cracked nanobeams for variant crack positions, crack ratio, and small scale effect parameters are calculated. The vibration solutions obtained provide a better representation of the vibration behavior of short, stubby, micro/nanobeams where the effects of small scale, transverse shear deformation and rotary inertia are significant. - Highlights: Black-Right-Pointing-Pointer The free vibration analysis of cracked nanobeams is investigated. Black-Right-Pointing-Pointer This study is based on the theory of nonlocal elasticity and Timoshenko beam theory. Black-Right-Pointing-Pointer The small scale effect parameter greatly affects the value of natural frequencies. Black-Right-Pointing-Pointer Crack reduces the natural frequencies, causes a discontinuity in the cracked section.
Directory of Open Access Journals (Sweden)
Anatoliy Alexandrovich Bogoyavlenskiy
2017-01-01
Full Text Available On the basis of system approach the structure of the aviation activity areas on air transport related to monitoring and measurements of vibration parameters is presented.The technology analysis of laboratory tests of the onboard equipment control of vibration parameters is carried out. The issues related to ensuring the unity of measurements of vibration parameters are researched and summarized.While dealing with the works on metrological certification described in the article, the risks arising from aviation activity on air transport are taken into account. The certification methods of measuring channels of vibration parametersused on stands for testing GTE at the repairing of aircraft engines are developed. The methods are implemented when con- ducting initial and periodic certifications of test benches for twelve types of aircraft GTE in repair organizations. The reliability of the results of the conducted research due to the fact that they were carried out with the use of certified measure- ment equipment, included in the State register of measuring instruments. The research is conducted for a sufficiently high statistical confidence level with the boundaries 0.95. The studies have shown that running on air transport measurements of vibration parameters are metrologically se- cured, the unity of measurements and their traceability from the national primary reference to special measuring instru- ments, test equipment, and onboard controls of the aircraft is maintained.
International Nuclear Information System (INIS)
Cinakli, S.; Sert, Y.; Boeyuekata, M.; Ucun, F.
2010-01-01
The vibrational spectra of benzaldehyde and its derivatives have been studied earlier. The substitution of a functional group changes the spectra markedly. Recent spectroscopic studies of the benzaldehyde and their derivatives have been motivated because the vibrational spectra are very useful for understanding of specific biological process and in the analysis of relatively complex systems. The optimized molecular structure, vibrational frequencies and corresponding vibrational assignments, the total energy calculations, relative energies, the mean vibrational deviations of the two planar O-cis and O-trans roomers of 5-Hydroxy 2-nitrobenzaldehydes have been calculated using ab initio Hartree Fock (HF) and Density Functional Theory (B3LYP) with 6-311++G(d,p) basis set. All computations have been performed on personal computer using the Gaussian 03 program package. The calculations were adapted to Cs symmetries of all the molecules. The O-trans rotomers with lower energy of all the molecules have been found as preferential rotomers in the ground state.
International Nuclear Information System (INIS)
Esmaeilzadeh Khadem, S.; Rezaee, M.
2001-01-01
In this paper the large amplitude and non-linear vibration of a string is considered. The initial tension, lateral vibration amplitude, diameter and the modulus of elasticity of the string have main effects on its natural frequencies. Increasing the lateral vibration amplitude makes the assumption of constant initial tension invalid. In this case, therefore, it is impossible to use the classical equation of string with small amplitude transverse motion assumption. On the other hand, by increasing the string diameter, the bending moment effect will increase dramatically, and acts as an impressive restoring moment. Considering the effects of the bending moments, the nonlinear equation governing the large amplitude transverse vibration of a string is derived. The time dependent portion of the governing equation has the from of Duff ing equation is solved using the perturbation theory. The results of the analysis are shown in appropriate graphs, and the natural frequencies of the string due to the non-linear factors are compared with the natural frequencies of the linear vibration os a string without bending moment effects
Directory of Open Access Journals (Sweden)
Yu.A. Shumilov
2014-03-01
Full Text Available The analysis of the turbogenerators’ TВВ-1000-2Y3 failure has shown that the most vulnerable link in the stator is such of their elements as tightening prisms, the teeth of the end packet core, lead-out and connecting buses of the stator winding. The basic reason for the destruction of the elements mentioned is metal fatigue caused by excessive vibration under the influence of variable axial forces of electromagnetic origin. Preventing the destruction of the structural elements may be achieved by vibration monitoring and diagnostics.
Hylarides, S.
1971-01-01
In the calculation of the natural frequencies of ships more accurate values are expected when the shell-like structure of ships is taken into account by the finite element technique, especially in the higher-node vibration modes. To avoid large matrix systems an elimination process has been
Low back pain in drivers exposed to whole body vibration: analysis of a dose-response pattern
Tiemessen, I. J. H.; Hulshof, C. T. J.; Frings-Dresen, M. H. W.
2008-01-01
Analysis of a dose-response pattern between exposure to whole body vibration (WBV) and low back pain (LBP) in a group of drivers. This study assessed individual factors, work-related risk factors, various LBP outcome measures and LBP disability in a group of drivers (n = 571) approached at baseline
Vibrational analysis of Fourier transform spectrum of the A3Π0–X1Σ ...
Indian Academy of Sciences (India)
Home; Journals; Pramana – Journal of Physics; Volume 73; Issue 5. Vibrational analysis of Fourier transform spectrum of the A 3 0 – X 1 ∑ + and B 3 1 – X 1 ∑ + transitions of indium monobromide. Renu Singh K N Uttam M D Saksena M N Deo. Volume 73 Issue 5 November 2009 pp 889-899 ...
Evaluation of Composite-Hull Ships Operating in Arctic Ice
2016-06-01
COMPOSITE- HULL SHIPS OPERATING IN ARCTIC ICE by Ryan M. Tran June 2016 Thesis Advisor: Young W. Kwon Co-Advisor: Jarema M. Didoszak THIS...Master’s thesis 4. TITLE AND SUBTITLE EVALUATION OF COMPOSITE- HULL SHIPS OPERATING IN ARCTIC ICE 5. FUNDING NUMBERS 6. AUTHOR Ryan M. Tran 7...melting ice caps. Extensive research is thus being conducted to determine the interaction between ice and steel- hulls in anticipation of opening sea
Topology Model of the Flow around a Submarine Hull Form
2015-12-01
UNCLASSIFIED Topology Model of the Flow around a Submarine Hull Form S.-K. Lee Maritime Division Defence Science and Technology Group DST-Group–TR...3177 ABSTRACT A topology model constructed from surface-streamer visualisation describes the flow around a generic conventional submarine hull form at...pure yaw angles of 0 ◦, 10 ◦ and 18 ◦. The model is used to develop equations for sway-force and yaw-moment coefficients which relate to the hull - form
Energy Technology Data Exchange (ETDEWEB)
Halim, Zakiah Abd [Universiti Teknikal Malaysia Melaka (Malaysia); Jamaludin, Nordin; Junaidi, Syarif [Faculty of Engineering and Built, Universiti Kebangsaan Malaysia, Bangi (Malaysia); Yahya, Syed Yusainee Syed [Universiti Teknologi MARA, Shah Alam (Malaysia)
2015-04-15
Current steel tubes inspection techniques are invasive, and the interpretation and evaluation of inspection results are manually done by skilled personnel. Part A of this work details the methodology involved in the newly developed non-invasive, non-destructive tube inspection technique based on the integration of vibration impact (VI) and acoustic emission (AE) systems known as the vibration impact acoustic emission (VIAE) technique. AE signals have been introduced into a series of ASTM A179 seamless steel tubes using the impact hammer. Specifically, a good steel tube as the reference tube and four steel tubes with through-hole artificial defect at different locations were used in this study. The AEs propagation was captured using a high frequency sensor of AE systems. The present study explores the cluster analysis approach based on autoregressive (AR) coefficients to automatically interpret the AE signals. The results from the cluster analysis were graphically illustrated using a dendrogram that demonstrated the arrangement of the natural clusters of AE signals. The AR algorithm appears to be the more effective method in classifying the AE signals into natural groups. This approach has successfully classified AE signals for quick and confident interpretation of defects in carbon steel tubes.
International Nuclear Information System (INIS)
Halim, Zakiah Abd; Jamaludin, Nordin; Junaidi, Syarif; Yahya, Syed Yusainee Syed
2015-01-01
Current steel tubes inspection techniques are invasive, and the interpretation and evaluation of inspection results are manually done by skilled personnel. Part A of this work details the methodology involved in the newly developed non-invasive, non-destructive tube inspection technique based on the integration of vibration impact (VI) and acoustic emission (AE) systems known as the vibration impact acoustic emission (VIAE) technique. AE signals have been introduced into a series of ASTM A179 seamless steel tubes using the impact hammer. Specifically, a good steel tube as the reference tube and four steel tubes with through-hole artificial defect at different locations were used in this study. The AEs propagation was captured using a high frequency sensor of AE systems. The present study explores the cluster analysis approach based on autoregressive (AR) coefficients to automatically interpret the AE signals. The results from the cluster analysis were graphically illustrated using a dendrogram that demonstrated the arrangement of the natural clusters of AE signals. The AR algorithm appears to be the more effective method in classifying the AE signals into natural groups. This approach has successfully classified AE signals for quick and confident interpretation of defects in carbon steel tubes.
Torsional vibration signal analysis as a diagnostic tool for planetary gear fault detection
Xue, Song; Howard, Ian
2018-02-01
This paper aims to investigate the effectiveness of using the torsional vibration signal as a diagnostic tool for planetary gearbox faults detection. The traditional approach for condition monitoring of the planetary gear uses a stationary transducer mounted on the ring gear casing to measure all the vibration data when the planet gears pass by with the rotation of the carrier arm. However, the time variant vibration transfer paths between the stationary transducer and the rotating planet gear modulate the resultant vibration spectra and make it complex. Torsional vibration signals are theoretically free from this modulation effect and therefore, it is expected to be much easier and more effective to diagnose planetary gear faults using the fault diagnostic information extracted from the torsional vibration. In this paper, a 20 degree of freedom planetary gear lumped-parameter model was developed to obtain the gear dynamic response. In the model, the gear mesh stiffness variations are the main internal vibration generation mechanism and the finite element models were developed for calculation of the sun-planet and ring-planet gear mesh stiffnesses. Gear faults on different components were created in the finite element models to calculate the resultant gear mesh stiffnesses, which were incorporated into the planetary gear model later on to obtain the faulted vibration signal. Some advanced signal processing techniques were utilized to analyses the fault diagnostic results from the torsional vibration. It was found that the planetary gear torsional vibration not only successfully detected the gear fault, but also had the potential to indicate the location of the gear fault. As a result, the planetary gear torsional vibration can be considered an effective alternative approach for planetary gear condition monitoring.
High-speed vibrational imaging and spectral analysis of lipid bodies by compound Raman microscopy.
Slipchenko, Mikhail N; Le, Thuc T; Chen, Hongtao; Cheng, Ji-Xin
2009-05-28
Cells store excess energy in the form of cytoplasmic lipid droplets. At present, it is unclear how different types of fatty acids contribute to the formation of lipid droplets. We describe a compound Raman microscope capable of both high-speed chemical imaging and quantitative spectral analysis on the same platform. We used a picosecond laser source to perform coherent Raman scattering imaging of a biological sample and confocal Raman spectral analysis at points of interest. The potential of the compound Raman microscope was evaluated on lipid bodies of cultured cells and live animals. Our data indicate that the in vivo fat contains much more unsaturated fatty acids (FAs) than the fat formed via de novo synthesis in 3T3-L1 cells. Furthermore, in vivo analysis of subcutaneous adipocytes and glands revealed a dramatic difference not only in the unsaturation level but also in the thermodynamic state of FAs inside their lipid bodies. Additionally, the compound Raman microscope allows tracking of the cellular uptake of a specific fatty acid and its abundance in nascent cytoplasmic lipid droplets. The high-speed vibrational imaging and spectral analysis capability renders compound Raman microscopy an indispensible analytical tool for the study of lipid-droplet biology.
Analysis of crack initiation and growth in the high level vibration test at Tadotsu
International Nuclear Information System (INIS)
Kassir, M.K.; Hofmayer, C.H.; Bandyopadhyay, K.K.
1991-01-01
A High Level Vibration Test (HLVT) Program was carried out recently on the seismic table at the Tadotsu Engineering Laboratory of Nuclear Power Engineering Center (NUPEC) in Japan. The objective of the study being performed at Brookhaven National Laboratory is to use the HLVT data to assess the accuracy and usefulness of existing methods for predicting crack initiation and growth under complex, large amplitude loading. The work to be performed as part of this effort involves: (1) analysis of the stress/strain distribution in the vicinity of the crack, including the potential for residual stresses due to the weld repair; (2) analysis of the number of load cycles required for crack initiation, including estimates of the impact of the weld repair on the crack initiation behavior; (3) analysis of crack advance as a function of applied loading (classic fatigue versus cyclic tearing) taking into account the variable amplitude loading and the possible influence of the repair; and (4) material property testing to supplement the work performed as part of the HLVT, providing the materials data necessary to perform the analysis efforts. A summary of research progress for FY 1990 is presented. 2 refs
Molecular structure, vibrational, HOMO-LUMO, MEP and NBO analysis of hafnium selenite
Yankova, Rumyana; Genieva, Svetlana; Dimitrova, Ginka
2017-08-01
In hydrothermal condition hafnium selenite with estimated chemical composition Hf(SeO3)2·n(H2O) was obtained and characterized by powder X-Ray diffraction, IR spectroscopy and thermogravimetrical analysis. The composition of the obtained crystalline phase was established as dihydrate of tetraaqua complex of the hafnium selenite [Hf(SeO3)2(H2O)4]·2H2O. The results of the thermogravimetrical analysis are shown that the two hydrated water molecules are released in the temperature interval 80-110°C, while the four coordinated water molecules - at 210-300°C. By DFT method, with Becke's three parameter exchange-functional combined with gradient-corrected correlation functional of Lee, Yang and Parr and 6-31G(d), 6-311 + G(d,p) basis sets and LANL2DZ for Hf atom were calculated the molecular structure, vibrational frequencies and thermodynamic properties of the structure. The UV-Vis spectra and electronic properties are presented. The energy and oscillator strength calculated by time-dependent density functional theory corresponds well with the experimental ones. Molecular electrostatic potential (MEP) was performed. Mulliken population analysis on atomic charges was also calculated. The stability and intramolecular interactions are interpreted by NBO analysis.
Effects of Geometry on the Steady Performance of Planing Hulls
DEFF Research Database (Denmark)
Wagner, M. K.; Andersen, Poul
2003-01-01
A vortex-lattice method is applied to planing hull forms. The geometry of the jet surfaces next to the wetted hull is estimated on the basis of the hull geometry while its sidewise extent has been found numerically applying a non-linear free-surface pressure condition in the jet region. The method...... is applied to practical hull forms with chines spray rails and with varying deadrise over the length of the boat. The deadrise variation has a large influence on lift and drag. For a design situation, where the total lift and centre of effort is given, the influence on the total drag is less due to change...
Rice Hulls as a Renewable Complex Material Resource
Directory of Open Access Journals (Sweden)
Irina Glushankova
2018-05-01
Full Text Available As a result of rice grain processing, a big amount of waste (up to 20% is produced. It is mainly rice hulls. The main components of rice hulls are cellulose, lignin and mineral ash. The mineral ash quantity in rice hulls varies from 15 up to 20%, by weight of the rice hulls. The mineral ash consists of amorphous silica (opal-type. Due to the high content of silica in rice hulls, the material burns with difficulty under natural conditions, and it is biodegradably destroyed only with difficulty, when composted. Utilization of rice hulls then becomes an ecological problem due to huge rice production and its continuous growth. At the same time, the annual quantity of silica content in rice hulls is comparable with the quantity of amorphous silica produced as a mineral resource. The issue of manufacturing cellular glass silica construction materials from rice hulls as a renewable resource is discussed in this paper. The utilization technology is based on an amorphous silicon oxide with the use of energy from the combustion of the organic component of rice hulls.
PREFACE: 7th International Conference on Modern Practice in Stress and Vibration Analysis
Dulieu-Barton, J. M.
2009-07-01
The proceedings contain the papers presented at the 7th International Conference on Modern Practice in Stress and Vibration Analysis. The collection of papers represents the range of activities that are carried out to understand the functionality of engineering systems and structures through stress/strain based evaluation and dynamic response. The scope is broad and covers theoretical studies, modelling and experimental evaluations. Many of the papers cover integration techniques and approaches to better understanding of system performance and failure. All of the papers have been peer reviewed by at least two experts and represent the state of the art of research in this area. The conference is the seventh in the series, following on from previous conferences in Bath, Glasgow, Nottingham, Dublin, Sheffield and Liverpool. Although based in the British Isles the conference has a truly international flavour with offerings from 22 countries. The conference is organised by the Institute of Physics Applied Mechanics Group (formerly the Stress and Vibration Group). It incorporates activities associated with the British Society for Strain Measurement including the Measurements Lecture, the EMex Exhibition and the Young Stress Analyst Competition. The organising committee is grateful for the support of all of the authors, the scientific committee and keynote speakers who played a significant role in the review process, to John Edwards who was instrumental in managing the paper review and submission process, Dawn Stewart and Claire Garland of the Institute of Physics for organising the conference, social programme and registration and Biana Gale of the British Society for Strain Measurement for organising the Exhibition. The organising committee is also grateful to the sponsors of the conference for their kind support and to the co-sponsors for distributing information on the conference. Professor Janice M Dulieu-Barton Professor of Experimental Mechanics University of
International Nuclear Information System (INIS)
Chandrasekaran, S.; Rajagopal, V.; Jose, M.T.; Venkatraman, B.
2012-01-01
In Fuel Reprocessing Plant (FRP), un-dissolved clad of fuel pins known as hulls are the major sources of high level solid waste. Safe handling, transport and disposal require the estimation of radioactivity as a consequent of gamma dose rate from hulls in fast reactor fuel reprocessing plant in comparison with thermal reactor fuel. Due to long irradiation time and low cooling of spent fuel, the evolution of activation products 51 Cr, 58 Co, 54 Mn and 59 Fe present as impurities in the fuel clad are the major sources of gamma radiation. Gamma dose rate from hull container with hulls from Fuel Sub Assembly (FSA) and Radial Sub Assembly (RSA) of Fuel Reprocessing Plant (FRP) was estimated in order to design the hull transport cask. Shielding computations were done using point kernel code, IGSHIELD. This paper describes the details of source terms, estimation of dose rate and shielding design of hull transport cask in detail. (author)
Lightweight Vehicle and Driver’s Whole-Body Models for Vibration Analysis
MdSah, Jamali; Taha, Zahari; Azwan Ismail, Khairul
2018-03-01
Vehicle vibration is a main factor for driving fatigue, discomfort and health problems. The ability to simulate the vibration characteristics in the vehicle and its effects on driver’s whole-body vibration will give significant advantages to designers especially on the vehicle development time and cost. However, it is difficult to achieve optimal condition of ride comfort and handling when using passive suspension system. This paper presents mathematical equations that can be used to describe the vibration characteristics of a lightweight electric vehicle that had been developed. The vehicle’s model was combined with the lumped-parameter model of driver to determine the whole-body vibration level when the vehicle is passing over a road hump using Matlab Simulink. The models were simulated at a constant speed and the results were compared with the experimental data. The simulated vibration level at the vehicle floor and seat were almost similar to the experimental vibration results. The suspension systems that are being used for the solar vehicle are able to reduce the vibration level due to the road hump. The models can be used to simulate and choose the optimal parameters for the suspensions.
International Nuclear Information System (INIS)
Wang, Y. Z.; Ding, X. D.; Xiong, X. M.; Zhang, J. X.
2007-01-01
Relations between various values of the internal friction (tgδ, Q -1 , Q -1* , and Λ/π) measured by free decay and forced vibration are analyzed systemically based on a fundamental mechanical model in this paper. Additionally, relations between various natural frequencies, such as vibration frequency of free decay ω FD , displacement-resonant frequency of forced vibration ω d , and velocity-resonant frequency of forced vibration ω 0 are calculated. Moreover, measurement of natural frequencies of a copper specimen of 99.9% purity has been made to demonstrate the relation between the measured natural frequencies of the system by forced vibration and free decay. These results are of importance for not only more accurate measurement of the elastic modulus of materials but also the data conversion between different internal friction measurements
Directory of Open Access Journals (Sweden)
Jingli Du
2013-01-01
Full Text Available Cable-driven parallel manipulators are one of the best solutions to achieving large workspace since flexible cables can be easily stored on reels. However, due to the negligible flexural stiffness of cables, long cables will unavoidably vibrate during operation for large workspace applications. In this paper a finite element model for cable-driven parallel manipulators is proposed to mimic small amplitude vibration of cables around their desired position. Output feedback of the cable tension variation at the end of the end-effector is utilized to design the vibration attenuation controller which aims at attenuating the vibration of cables by slightly varying the cable length, thus decreasing its effect on the end-effector. When cable vibration is attenuated, motion controller could be designed for implementing precise large motion to track given trajectories. A numerical example is presented to demonstrate the dynamic model and the control algorithm.
Sronsri, Chuchai; Boonchom, Banjong
2018-04-01
A simple precipitating method was used to synthesize effectively a partially metal-doped phosphate hydrate (Mn0.9Mg0.1HPO4·3H2O), whereas the thermal decomposition process of the above hydrate precursor was used to obtain Mn1.8Mg0.2P2O7 and LiMn0.9Mg0.1PO4 compounds under different conditions. To separate the overlapping thermal decomposition peak, a deconvolution technique was used, and the separated peak was applied to calculate the water content. The factor group splitting analysis was used to exemplify their vibrational spectra obtained from normal vibrations of HPO42-, H2O, P2O74- and PO43- functional groups. Further, the deconvoluted bending mode of water was clearly observed. Mn0.9Mg0.1HPO4·3H2O was observed in the orthorhombic crystal system with the space group of Pbca (D2h15). The formula units per unit cell were found to be eight (Z = 8), and the site symmetric type of HPO42- was observed as Cs. For the HPO42- unit, the correlation filed splitting analysis of type C3v - Cs - D2h15 was calculated and had 96 internal modes, whereas H2O in the above hydrate was symbolized as C2v - Cs - D2h15 and had 24 modes. The symbol C2v - Cs - C2h3 was used for the correlation filed splitting analysis of P2O74- in Mn1.8Mg0.2P2O7 (monoclinic, C2/m (C2h3), Z = 2, and 42 modes). Finally, the symbol Td - Cs - D2h16 was used for the correlation filed splitting analysis of PO43- in LiMn0.9Mg0.1PO4 (orthorhombic, Pnma (D2h16), Z = 4, and 36 modes).