Sample records for hulah valley soils

  1. Soil formation in the Tsauchab Valley, Namibia (United States)

    Eden, Marie; Bens, Oliver; Ramisch, Arne; Schwindt, Daniel; Völkel, Jörg


    The BMBF-funded project GeoArchives (Spaces) investigates soils and sediments in Southern Africa. A focus area lies on the Tsauchab Valley (Namibia), South of the Naukluft mountain range (24°26'40'' S, 16°10'40'' E). On a gently sloping alluvial fan facing East towards the river, the surface is characterized by a desert pavement covering soils used as farmland. The landscape units were mapped and the area at the lower slope of a hill was divided into three units: a rinsing surface and a gravel plain, separated by a channel. On these surfaces soil profiles were excavated. Profile description followed the German system (Bodenkundliche Kartieranleitung KA 5) and disturbed samples were taken at various depths and analysed in the lab. Undisturbed soil cores with a volume of 100 cm³ were taken just below the surface at a depth of ~1-6 cm. Lab analyses included texture and gravel content, colour, pH, electrical conductivity, carbonates, CNS, cation exchange capacity, pedogenic oxides, main and trace elements (XRF), and clay mineral distribution (XRD). Undisturbed samples were used to determine soil water retention curve, air permeability and bulk density. The profiles revealed moderately developed cambic soils rich in clay minerals and with total carbon contents ranging up to 1.8 %, bearing shrubs and after episodic rainfall a dense grass vegetation. Their genesis is discussed and interpreted in the context of the landscape and climate history of this semi-desert environment.

  2. Microbial community composition of transiently wetted Antarctic Dry Valley soils

    Directory of Open Access Journals (Sweden)

    Thomas D. Neiderberger


    Full Text Available During the summer months, wet (hyporheic soils associated with ephemeral streams and lake edges in the Antarctic Dry Valleys (DV become hotspots of biological activity and are hypothesized to be an important source of carbon and nitrogen for arid DV soils. Recent research in the DV has focused on the geochemistry and microbial ecology of lakes and arid soils, with substantially less information being available on hyporheic soils. Here we determined the unique properties of hyporheic microbial communities, resolved their relationship to environmental parameters and to compared them to archetypal arid DV soils. Generally, pH increased and chlorophyll a concentrations decreased along transects from wet to arid soils (9.0 to ~7.0 for pH and ~0.8 to ~ 5 µg/cm3 for chlorophyll a, respectively. Soil water content decreased to below ~3% in the arid soils. Community fingerprinting-based principle component analyses revealed that bacterial communities formed distinct clusters specific to arid and wet soils; however, eukaryotic communities that clustered together did not have similar soil moisture content nor did they group together based on sampling location. Collectively, rRNA pyrosequencing indicated a considerably higher abundance of Cyanobacteria in wet soils and a higher abundance of Acidobacterial, Actinobacterial, Deinococcus/Thermus, Bacteroidetes, Firmicutes, Gemmatimonadetes, Nitrospira and Planctomycetes in arid soils. The two most significant differences at the genus level were Gillisia signatures present in arid soils and chloroplast signatures related to Streptophyta that were common in wet soils. Fungal dominance was observed in arid soils and Viridplantae were more common in wet soils. This research represents an in-depth characterization of microbial communities inhabiting wet DV soils. Results indicate that the repeated wetting of hyporheic zones has a profound impact on the bacterial and eukaryotic communities inhabiting in these areas.

  3. NNSS Soils Monitoring: Plutonium Valley (CAU 366) FY2015

    Energy Technology Data Exchange (ETDEWEB)

    Nikolich, George [Desert Research Inst. (DRI), Las Vegas, NV (United States); Mizell, Steve [Desert Research Inst. (DRI), Las Vegas, NV (United States); McCurdy, Greg [Desert Research Inst. (DRI), Reno, NV (United States); Campbell, Scott [Desert Research Inst. (DRI), Las Vegas, NV (United States); Miller, Julianne J. [Desert Research Inst. (DRI), Las Vegas, NV (United States)


    Desert Research Institute (DRI) is conducting a field assessment of the potential for contaminated soil transport from the Plutonium Valley Contamination Area (CA) as a result of wind transport and storm runoff in support of National Nuclear Security Administration (NNSA) efforts to complete regulatory closure of the contamination areas. The DRI work is intended to confirm the likely mechanism(s) of transport and determine the meteorological conditions that might cause movement of contaminated soils. The emphasis of the work is on collecting sediment transported by channelized storm runoff at the Plutonium Valley investigation sites. These data will inform closure plans that are being developed, which will facilitate the appropriate closure design and post-closure monitoring. In 2011, DRI installed two meteorological monitoring stations south (station #1) and north (station #2) of the Plutonium Valley CA and a runoff sediment sampling station within the CA. Temperature, wind speed, wind direction, relative humidity, precipitation, solar radiation, barometric pressure, soil temperature, and airborne particulate concentration are collected at both meteorological stations. The maximum, minimum, and average or total (as appropriate) for each of these parameters are recorded for each 10-minute interval. The sediment sampling station includes an automatically activated ISCO sampling pump with collection bottles for suspended sediment, which is activated when sufficient flow is present in the channel, and passive traps for bedload material that is transported down the channel during runoff events. This report presents data collected from these stations during fiscal year (FY) 2015.

  4. Soil gas and indoor radon studies in Doon Valley, India

    Energy Technology Data Exchange (ETDEWEB)

    Choubey, V.M.; Sharma, K.K. (Wadia Inst. of Himalayan Geology, Dehra Dun (India)); Ramola, R.C. (Garhwal University, Tehri Garhwal (India). Dept. of Physics)


    Radon studies have been carried out in the soil and in dwellings around the Doon Valley, north-west India, using Kodak LR-115 Type II plastic track detectors. Soil gas radon concentrations were found to be higher in carbonaceous shales of the Infra-Krol and in the sandstone of the middle Siwaliks. High values of radon were also observed along prominent tectonic zones, such as the Main Boundary Thrust and the Main Frontal Thrust. In dwellings, the radon values were found to depend on the geology of the area, on the building materials and on the type and construction of the houses. (Author).

  5. NNSS Soils Monitoring: Plutonium Valley (CAU366) FY2012

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Julianne J.; Mizell, Steve A.; Nikolich, George; McCurdy, Greg; Campbell, Scott


    The U.S. Department of Energy (DOE) National Nuclear Security Administration (NNSA), Nevada Site Office (NSO), Environmental Restoration Soils Activity has authorized the Desert Research Institute (DRI) to conduct field assessments of potential sediment transport of contaminated soil from Corrective Action Unit (CAU) 366, Area 11 Plutonium Valley Dispersion Sites Contamination Area (CA) during precipitation runoff events. Field measurements at the T-4 Atmospheric Test Site (CAU 370) suggest that radionuclide-contaminated soils may have migrated along a shallow ephemeral drainage that traverses the site (NNSA/NSO, 2009). (It is not entirely clear how contaminated soils got into their present location at the T-4 Site, but flow to the channel has been redirected and the contamination does not appear to be migrating at present.) Aerial surveys in selected portions of the Nevada National Security Site (NNSS) also suggest that radionuclide-contaminated soils may be migrating along ephemeral channels in Areas 3, 8, 11, 18, and 25 (Colton, 1999). In Area 11, several low-level airborne surveys of the Plutonium Valley Dispersion Sites (CAU 366) show plumes of Americium 241 (Am-241) extending along ephemeral channels (Figure 1, marker numbers 5 and 6) below Corrective Action Site (CAS) 11-23-03 (marker number 3) and CAS 11 23-04 (marker number 4) (Colton, 1999). Plutonium Valley in Area 11 of the NNSS was selected for the study because of the aerial survey evidence suggesting downstream transport of radionuclide-contaminated soil. The aerial survey (Figure 1) shows a well defined finger of elevated radioactivity (marker number 5) extending to the southwest from the southernmost detonation site (marker number 4). This finger of contamination overlies a drainage channel mapped on the topographic base map used for presentation of the survey data suggesting surface runoff as a likely cause of the contaminated area. Additionally, instrumenting sites strongly suspected of conveying

  6. Taxonomic and Functional Diversity of Soil and Hypolithic Microbial Communities in Miers Valley, McMurdo Dry Valleys, Antarctica (United States)

    Wei, Sean T. S.; Lacap-Bugler, Donnabella C.; Lau, Maggie C. Y.; Caruso, Tancredi; Rao, Subramanya; de los Rios, Asunción; Archer, Stephen K.; Chiu, Jill M. Y.; Higgins, Colleen; Van Nostrand, Joy D.; Zhou, Jizhong; Hopkins, David W.; Pointing, Stephen B.


    The McMurdo Dry Valleys of Antarctica are an extreme polar desert. Mineral soils support subsurface microbial communities and translucent rocks support development of hypolithic communities on ventral surfaces in soil contact. Despite significant research attention, relatively little is known about taxonomic and functional diversity or their inter-relationships. Here we report a combined diversity and functional interrogation for soil and hypoliths of the Miers Valley in the McMurdo Dry Valleys of Antarctica. The study employed 16S rRNA fingerprinting and high throughput sequencing combined with the GeoChip functional microarray. The soil community was revealed as a highly diverse reservoir of bacterial diversity dominated by actinobacteria. Hypolithic communities were less diverse and dominated by cyanobacteria. Major differences in putative functionality were that soil communities displayed greater diversity in stress tolerance and recalcitrant substrate utilization pathways, whilst hypolithic communities supported greater diversity of nutrient limitation adaptation pathways. A relatively high level of functional redundancy in both soil and hypoliths may indicate adaptation of these communities to fluctuating environmental conditions. PMID:27812351

  7. Taxonomic and functional diversity of soil and hypolithic microbial communities in Miers Valley, McMurdo Dry Valleys, Antarctica

    Directory of Open Access Journals (Sweden)

    Sean Wei


    Full Text Available The McMurdo Dry Valleys of Antarctica are an extreme polar desert. Mineral soils support subsurface microbial communities and translucent rocks support development of hypolithic communities on ventral surfaces in soil contact. Despite significant research attention relatively little is known about taxonomic and functional diversity or their inter-relationships. Here we report a combined diversity and functional interrogation for soil and hypoliths of the Miers Valley in the McMurdo Dry Valleys of Antarctica. The study employed 16S rRNA fingerprinting and high throughput sequencing combined with the GeoChip functional microarray. The soil community was revealed as a highly diverse reservoir of bacterial diversity dominated by actinobacteria. Hypolithic communities were less diverse and dominated by cyanobacteria. Major differences in putative functionality were that soil communities displayed greater diversity in stress tolerance and recalcitrant substrate utilization pathways, whilst hypolithic communities supported greater diversity of nutrient limitation adaptation pathways. A relatively high level of functional redundancy in both soil and hypoliths may indicate adaptation of these communities to fluctuating environmental conditions.

  8. Distribution of glacial deposits, soils, and permafrost in Taylor Valley, Antarctica (United States)

    Bockheim, James G.; Prentice, M.L.; McLeod, M.


    We provide a map of lower and central Taylor Valley, Antarctica, that shows deposits from Taylor Glacier, local alpine glaciers, and grounded ice in the Ross Embayment. From our electronic database, which includes 153 sites from the coast 50 km upvalley to Pearse Valley, we show the distribution of permafrost type and soil subgroups according to Soil Taxonomy. Soils in eastern Taylor Valley are of late Pleistocene age, cryoturbated due to the presence of ground ice or ice-cemented permafrost within 70 cm of the surface, and classified as Glacic and Typic Haploturbels. In central Taylor Valley, soils are dominantly Typic Anhyorthels of mid-Pleistocene age that have dry-frozen permafrost within the upper 70 cm. Salt-enriched soils (Salic Anhyorthels and Petrosalic Anhyorthels) are of limited extent in Taylor Valley and occur primarily on drifts of early Pleistocene and Pliocene age. Soils are less developed in Taylor Valley than in nearby Wright Valley, because of lesser salt input from atmospheric deposition and salt weathering. Ice-cemented permafrost is ubiquitous on Ross Sea, pre-Ross Sea, and Bonney drifts that occur within 28 km of the McMurdo coast. In contrast, dry-frozen permafrost is prevalent on older (???115 ky) surfaces to the west. ?? 2008 Regents of the University of Colorado.

  9. Modified soil adjusted vegetation index for the Death Valley regional flow system, Nevada and California (United States)

    U.S. Geological Survey, Department of the Interior — The raster-based Modified Soil Adjusted Vegetation Index was derived from Landsat Thematic Mapper imagery data acquired during June 1992 for the Death Valley...

  10. Mapping San Joaquin Valley soil salinity using multi-year canopy reflectance (United States)

    Soil salinity negatively impacts the productivity and profitability of western San Joaquin Valley (WSJV) farmland. Drought, climate change, reduced water allocations, and land use changes are among many current phenomena that could potentially worsen salinity conditions in agricultural lands. Monito...

  11. Soil Geochemical Control Over Nematode Populations in Bull Pass, McMurdo Dry Valleys, Antarctica (United States)

    Poage, M. A.; Barrett, J. E.; Virginia, R. A.; Wall, D. H.


    The McMurdo Dry Valleys occupy the largest ice-free region of Antarctica and are characterized by climatic conditions among the most extreme on Earth. Despite the harsh environmental conditions, some soils of the dry valleys host simple low-diversity ecosystems dominated by microbes and several taxa of metazoans, predominantly nematodes. Distributions, abundance, and diversity of these biota appear to be related to the highly variable soil geochemistry (pH, conductivity, nitrate, sulfate, chloride) of the dry valleys. Bull Pass is a glacially carved valley within the dry valleys. An ancient lake margin near the valley floor creates a continuous gradient spanning the full range of geochemical parameters found across the entire McMurdo Dry Valleys system. This unique setting provides the opportunity to systematically investigate the soil geochemical control on local biodiversity and establish, on the spatial scale of hundreds of meters, correlations between nematode populations and individual geochemical parameters that have application at the regional scale. We measured soil geochemistry and nematode population data from a 1500-meter transect across this ancient lake margin. There were significant negative correlations between live nematode abundance and concentrations of soil nitrate, sulfate and chloride as well as total soil salinity, consistent with recent laboratory experiments showing strong salinity inhibition of nematode survival. A logistical regression analysis based on a compilation of published datasets from across the dry valleys was designed to calculate the probably of live nematode populations occurring given a particular soil chemistry, using the dataset from the Bull Pass transect as a case study to field-test the model. Small-scale chemical and biological gradients can provide insights on the distribution of soil biota at much larger regional scales.

  12. Groundwater recharge on east side soils of the Salinas Valley (United States)

    After four years of drought, groundwater levels in the Salinas Valley are at historically low levels which threaten to adversely affect farming in the Salinas Valley. Given the prospect of a strong El Niño this coming winter, it seems prudent to plan to capture as much of the rainfall as possible to...

  13. Hydraulic conductivity of active layer soils in the McMurdo Dry Valleys, Antarctica: Geological legacy controls modern hillslope connectivity (United States)

    Schmidt, Logan M.; Levy, Joseph S.


    Spatial variability in the hydraulic and physical properties of active layer soils influences shallow groundwater flow through cold-desert hydrological systems. This study measures the saturated hydraulic conductivity and grain-size distribution of 90 soil samples from the McMurdo Dry Valleys (MDV), Antarctica-primarily from Taylor Valley-to determine what processes affect the spatial distribution of saturated hydraulic conductivity in a simple, mineral-soil-dominated natural hillslope laboratory. We find that the saturated hydraulic conductivity and the grain-size distribution of soils are organized longitudinally within Taylor Valley. Soils sampled down-valley near the coast have a higher percentage of fine-sized sediments (fine sand, silt, clay) and lower saturated hydraulic conductivities than soils collected up-valley near Taylor Glacier (1.3 × 10- 2 vs. 1.2 × 10- 1 cm/s). Soils collected mid-valley have intermediate amounts of fines and saturated hydraulic conductivity values consistent with a hydrogeologic gradient spanning the valley from high inland to low near the coast. These results suggest the organization of modern soil properties within Taylor Valley is a relict signature from past glaciations that have deposited soils of decreasing age toward the mouth of the valley, modified by fluvial activity acting along temporal and microclimate gradients.

  14. Characterization of a halotolerant-psychroloterant bacterium from dry valley Antarctic soil. (United States)

    Miller, K J; Leschine, S B; Huguenin, R L


    The saline soils of the ice free dry valleys of Victoria Land, Antarctica may provide the closest analog on Earth to Martian conditions. We have initiated a study aimed at examining microbial adaptations to the harsh environment of these dry valley soils. In this report we describe the characterization of one bacterium, strain A4a, isolated from Taylor Valley soil. Strain A4a was an obligately aerobic, orange-pigmented, Gram-positive coccus that grew over wide ranges of both temperature (0 degrees C-40 degrees C) and sodium chloride concentration (0-2.0M). The optimal temperature for growth at all NaCl concentrations was 25 degrees C. Phospholipid composition and guanine plus cytosine content of the DNA of the isolate indicate a close relation to the genus Planococcus.

  15. Soil Stratigraphy from Three Pleistocene Archaeological Sites of the Middle Ter River Valley, Catalonia, Spain

    Directory of Open Access Journals (Sweden)

    Sayantani NEOGI


    Full Text Available This dissertation summarizes the stratigraphic description of three Pleistocene archaeological sites inthe middle Ter river valley. A long history of archaeological research in this region suggests thepossibility of developing contextual studies. This work is basically an investigation of two soilformation processes from the deep soil horizons of the Mediterranean region: clay illuviation andcarbonatation. This approach has been developed by soil micromorphology, a technique well suitedfor this type of record, supplemented by fundamental field descriptions and basic cartography of the geomorphological terraces of the middle Ter river valley. The soil stratigraphy of archaeological sites and Pleistocene landscapes opens the opportunity to investigate a complex subject of study. The soils and paleosols are a source of information for palaeoecology and human occupations. It has been attempted here only to lay the groundwork for the interpretation of genetic factors pointing to the classification of soils.

  16. Soil and landform interplay in the dry valley of Edson Hills, Ellsworth Mountains, continental Antarctica (United States)

    Delpupo, Caroline; Schaefer, Carlos Ernesto Gonçalves Reynaud; Roque, Mariane Batalha; de Faria, André Luiz Lopes; da Rosa, Katia Kellem; Thomazini, André; de Paula, Mayara Daher


    The main relief units from the dry valley of Edson Hills, Ellsworth Mountains, Antarctica (79°49‧12.4″/83°40‧16.1″), were assessed, emphasizing the analysis of soil and landform interplay. Soil morphological, physical, and chemical properties; salinity; surface boulder weathering (frequency and feature); classification; and weathering stages were analyzed. Three distinct landforms summarize the geomorphology of the dry valley of Edson Hills, Ellsworth Mountains: (i) periglacial features like slightly creeping debris-mantled slopes, steep debris-mantled slopes, patterned grounds, and thermokarst; (ii) glacial features like hummocky moraines, lateral moraines (supraglacial), lakes, kettle hole (proglacial), cirques infill (subglacial), horn, and arête (erosional glacial); and (iii) nonglacial features like scree slopes and talus deposits. All these glacial and periglacial features are related to the West Antarctica ice sheet variations. Soils in the dry valley of Edson Hills are pedologically poorly developed. However, the degree of development in soils associated with patterned ground and moraine systems is remarkable. All soils present desert pavement owing to the action of severe aeolian erosion. In addition, soils accumulate salts depending on the local drainage conditions. The most expressive soil classes among the studied soils were Typic Haploturbel and Typic Anhyorthel, especially because of: (i) a general trend of ice-cemented permafrost occurrence in lower portions of the landscape, particularly in the patterned ground area and in the hummocky moraine; and (ii) the presence of dry permafrost in higher positions of the landscape, in relief units such as in debris-mantled slopes and talus deposits. Thus, a close relationship among soil characteristics and landforms were observed in the dry valley of Edson Hills.


    Institute of Scientific and Technical Information of China (English)

    XIONG Dong-hong; ZHOU Hong-yi; YANG Zhong; ZHANG Xin-bao


    The dry-hot valley of the Jinsha River is one of the typical eco-fragile areas in Southwest China, as well as a focus ofrevegetation study in the upper and middle reaches of the Changjiang River. Due to its extremely dry and hot climate, severely degraded vegetation and the intense soil and water loss, there are extreme difficulties in vegetation restoration in this area and no great breakthrough has ever been achieved on studies of revegetation over the last several decades. Through over ten years' research conducted in the typical areas-the Yuanmou dry-hot valley, the authors found that the lithologic property is one of the crucial factors determining soil moisture conditions and vegetation types in the dry-hot valley, and the rainfall infiltration capability is also one of the key factors affecting the tree growth. Then the revegetation zoning based on different slopes was conducted and revegetation patterns for different zones were proposed.

  18. Cations extraction of sandy-clay soils from cavado valley, portugal, using sodium salts solutions


    Silva João Eudes da; Castro Fernando


    Cases of contamination by metals in the water wells of the Cavado Valley in north-west Portugal can be attributed to the heavy leaching of clay soils due to an excess of nitrogen resulting from the intensive use of fertilisers in agricultural areas. This work focuses on the natural weathering characteristics of soils, particularly the clay material, through the study of samples collected near the River Cavado. Samples taken from various sites, after physico-chemical characterisation, were sub...

  19. Using Soil and Water Conservation Contests for Extension: Experiences from the Bolivian Mountain Valleys

    NARCIS (Netherlands)

    Kessler, A.; Graaff, de J.


    Soil and water conservation (SWC) contests among farmer groups were organized in five rural villages in the Bolivian mountain valleys. The contests were aimed at quickly achieving widespread sustainable results. This article analyzes the effectiveness of these contests as an extension tool. Mixed

  20. Soil development on Late Quaternary river terraces in a high montane valley in Bhutan, Eastern Himalayas

    NARCIS (Netherlands)

    Tshering Dorji,; Caspari, T.; Bäumler, R.; Veldkamp, A.; Jongmans, A.G.; Kado Tshering,; Tsheten Dorji,; Baillie, I.


    We examined the geochemistry and micromorphology of the soils on a suite of morphologically well-defined and visually distinct fluvial terraces, up to 40 m elevation above the current riverbed, at Thangbi in the upper Bumthang Valley, Bhutan. The alluvia forming each of the terraces are lithological

  1. Concentrations of polonium-210 and lead-210 in soil of the Shu river valley

    Directory of Open Access Journals (Sweden)

    Ilona Matveyeva


    Full Text Available Radioecological inspection of the Shu river valley is spent. Concentration of polonium-210 in soil makes no more than 33 Bk/kg and lead-210 - no more than 41 Bk/kg. By a method of mathematical modelling it is shown, activity investigated radionuclides in Shu river water during 50 years after pollution does not exceed maximum permissible level.

  2. Microbial responses to carbon and nitrogen supplementation in an Antarctic dry valley soil

    DEFF Research Database (Denmark)

    Dennis, P. G.; Sparrow, A. D.; Gregorich, E. G.;


    The soils of the McMurdo Dry Valleys are exposed to extremely dry and cold conditions. Nevertheless, they contain active biological communities that contribute to the biogeochemical processes. We have used ester-linked fatty acid (ELFA) analysis to investigate the effects of additions of carbon a...

  3. Genesis of soils and landscapes in the Ridge and Valley province of central Pennsylvania (United States)

    Ciolkosz, Edward J.; Carter, Brian J.; Hoover, Michael T.; Cronce, Richard C.; Waltman, William J.; Dobos, Robert R.


    The characteristics and properties of the soils on the ridge tops, footslopes, and adjacent limestone valley areas in the Ridge and Valley of central Pennsylvania have been strongly influenced by their parent material and geomorphic history. The ridge top soils have developed in sandstone colluvium which mantles sandstone residuum. The upper part of the original residual ridge top soil was truncated during late Wisconsinan time and then covered with local colluvium or it was cyroturbated. These sandstone parent materials have been stable since the late Wisconsinan and have sandy skeletal Dystrochrepts and Haplorthods developed in them. The Haplorthods are minor soils and are associated with local concentrations of coniferous vegetation. During the late Wisconsinan, the sandstone colluvium also moved downslope and was mixed with bedrock and residual material from shale and limestone and deposited on the footslope over a pre-Wisconsinan soil developed in older colluvium or limestone residuum. The footslope surface colluvial soils vary in texture and drainage because of their parent material, their location in discharge areas, and fragipan development. The age of the brown surface colluvium is considered late Wisconsinan and the age of the pre-Wisconsinan buried soils is not known. The buried soil's bright red (rubified) color and argillic horizon indicate a much greater degree of soil development than noted in the brown surface colluvium, and its age may be correlated with isotope stage 6. The soils developed at the surface in the colluvium are mainly Ultisols although some poorly drained soils, particularly in limestone material, are Alfisols. The Ultisols are parent material Ultisols and the poorly drained Alfisols have a high base status in their parent material or were recharged with bases from the groundwater. The soils of the limestone valleys are developed in residuum. The residuum accumulated from the insoluble residues after the CaCO 3 was leached from the

  4. Valley Fever (United States)

    Valley Fever is a disease caused by a fungus (or mold) called Coccidioides. The fungi live in the soil ... from person to person. Anyone can get Valley Fever. But it's most common among older adults, especially ...

  5. 471 Soil Characterization and Land Use of Arondizogu Inland Valley ...

    African Journals Online (AJOL)



    Oct 16, 2010 ... use system (shifting cultivation) was abandoned and rotational bush ... over exploitation has led to high rate of deforestation, soil erosion ... the exchangeable bases and the exchangeable acidity (Jackson, ..... below profit pit.

  6. Determination of radioactivity levels and hazards of soil and sediment samples in Firtina Valley (Rize, Turkey)

    Energy Technology Data Exchange (ETDEWEB)

    Kurnaz, A.; Kuecuekoemeroglu, B. [Department of Physics, Faculty of Arts and Sciences, Karadeniz Technical University, Trabzon, TR 61080 (Turkey); Keser, R.; Okumusoglu, N.T.; Korkmaz, F. [Department of Physics, University of Rize, Rize, TR 53100 (Turkey); Karahan, G. [Cekmece Nuclear Research and Training Center P.O. Box 1, Atatuerk Airport, Istanbul, TR 34381 (Turkey); Cevik, U. [Department of Physics, Faculty of Arts and Sciences, Karadeniz Technical University, Trabzon, TR 61080 (Turkey)], E-mail:


    The natural radioactivity levels in soil and sediment samples of Firtina Valley have been determined. To our knowledge, there seems to be no information about radioactivity level in the Firtina Valley soils and sediments so far. For this reason, soil and sediment samples were collected along the Firtina Valley and analysis on the collected samples were carried out to determine {sup 238}U, {sup 232}Th, {sup 40}K and {sup 137}Cs radioisotopes using high purity germanium detector. The activity concentrations obtained for {sup 226}Ra, {sup 214}Pb, {sup 214}Bi, {sup 228}Ac, {sup 208}Tl, {sup 40}K and {sup 137}Cs are given in the unit of Bq/kg. The results have been compared with other radioactivity measurements in different country's soils and sediments. The radium equivalent activity (Ra{sub eq}), the absorbed dose rate (D), the external hazard index (H{sub ex}), the annual gonadal dose equivalent (AGDE) and the annual effective dose equivalent (AEDE) were also calculated and compared with the international recommended values.

  7. Soil Salinity Changes in the Jordan Valley Potentially Threaten Sustainable Irrigated Agriculture

    Institute of Scientific and Technical Information of China (English)



    The integrated effect of irrigation and agricultural practices on soil salinity in the Jordan Valley (JV),where over 60% of Jordan's agricultural produce is grown,was investigated in this study during 2009 2010.Due to the differences in agricultural operations,cropping patterns,irrigation management,and weather conditions,206 top-and sub-soil samples were taken every 1 to 3 km from representative farms along a north-south (N-S) transect with 1 to 2 km lateral extents.Soil electrical conductivity of saturated extract (ECse),Ca,Mg,K,Na,Cl,and Na adsorption ratio (SAR) were determined in saturated paste extracts.Results indicated that about 63% of soils in the JV are indeed saline,out of which almost 46% are moderately to strongly saline.Along the N-S transect of the JV,ECse increased from 4.5 to 14.1 dS m-1 in top-soil samples.Similar increase was observed for the sub-soil samples.The major chemical components of soil salinity; i.e.,Ca,Mg,and C1,also showed a similar increase along the N-S transect of the valley.Moreover,compared to previous field sampling,results showed that changes in soil salinity in the JV were dramatic.In addition,it was found that C1 imposed an existing and potential threat to sensitive crops in 60% of the soils in the JV,where C1 concentrations were greater than 710 mg L-1.Under the prevalent arid Mediterranean conditions,improving the management of irrigation water,crops,and nutrient inputs and increasing water and fertilizer use efficiencies should be indispensable to conserve and sustain the already fragile agricultural soils in the JV.

  8. Genesis, classification and human modification of peat and mineral-organic soils, Hula Valley, Israel

    Directory of Open Access Journals (Sweden)

    M.I. Litaor


    Full Text Available In the last six decades, the pedosphere of the Hula Valley, Israel, has been subjected to major management changes that have led to intense soil alterations. From a thriving East Mediterranean wetland complex characterised by peat and mineral-organic soils, it was converted in the 1950s to intensively cultivated farmland. After four decades of cultivation with numerous agro-technical difficulties and environmental problems, the least fertile soils were re-flooded to form a small lake called Agmon. Construction of Lake Agmon raised the water table in the surrounding soils, creating new hydrogeochemical conditions that changed the pH, redox potential, adsorption-desorption characteristics, rate of organic matter oxidation and soil structure. In this article, we review the history of pedological research in this area, discuss the various soil classification schemes devised at different times before and after drainage, and present a case against an attempt to produce new soil maps because frequent land-use changes and continuous internal soil processes make them rapidly inaccurate. For future land use planning and management, we recommend adapting a probability-based approach that models the values of continuous soil attributes, produces probability maps and quantifies the acceptance of uncertainty.

  9. NNSS Soils Monitoring: Plutonium Valley (CAU 366) FY2013 and FY2014

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Julianne J. [Desert Research Inst. (DRI), Las Vegas, NV (United States); Nikolich, George [Desert Research Inst. (DRI), Las Vegas, NV (United States); Mizell, Steve [Desert Research Inst. (DRI), Las Vegas, NV (United States); McCurdy, Greg [Desert Research Inst. (DRI), Las Vegas, NV (United States); Campbell, Scott [Desert Research Inst. (DRI), Las Vegas, NV (United States)


    The Desert Research Institute (DRI) is conducting a field assessment of the potential for contaminated soil transport from the Plutonium Valley Contamination Area (CA) as a result of wind transport and storm runoff in support of Nevada Nuclear Security Administration (NNSA) efforts to complete regulatory closure of the contamination areas. The DRI work is intended to confirm the likely mechanism(s) of transport and determine the meteorological conditions that might cause movement of contaminated soils. Emphasis is given to collecting sediment transported by channelized storm runoff at the Plutonium Valley investigation sites. These data will inform closure plans that are being developed, which will facilitate appropriate closure design and postclosure monitoring. Desert Research Institute installed two meteorological monitoring stations south (station number 1) and north (station number 2) of the Plutonium Valley CA and a runoff sediment sampling station within the CA in 2011. Temperature, wind speed, wind direction, relative humidity, precipitation, solar radiation, barometric pressure, soil temperature, and airborne particulate concentration are collected at both meteorological stations. The maximum, minimum, and average or total (as appropriate) for each of these parameters is recorded for each 10-minute interval. The sediment sampling station includes an automatically activated ISCO sampling pump with collection bottles for suspended sediment, which is activated when sufficient flow is present in the channel, and passive traps for bedload material that is transported down the channel during runoff events. This report presents data collected from these stations during FY2013 and FY2014.

  10. Radon migration in the soils of the Irno Valley (Southern Italy inferred from radioactive disequilibrium

    Directory of Open Access Journals (Sweden)

    P. Gasparini


    Full Text Available Radon migration along vertical profiles in the soils of Irno River alluvial Valley (Southern Italy was studied using radioactive disequilibrium between 226 Ra and 210 Pb. Fractional Radon loss, migration length, diffusion and emanation coefficient and Radon flux density were determined. Our results are in agreement with a migra- tion model by simple diffusion. The migration parameters are within typical values, except the Radon flux density, which is about one order of magnitude higher than the values reported in literature. The values of fractional Radon loss are sensitive to changes in the physical properties of the soil.

  11. Mineralogy of Antarctica Dry Valley Soils: Implications for Pedogenic Processes on Mars (United States)

    Quinn, J. E.; Ming, D. W.; Morris, R. V.; Douglas, S.; Kounaves, S. P.; McKay, C. P.; Tamppari, L, K.; Smith, P. H.; Zent, A. P.; Archer, P. D., Jr.


    The Antarctic Dry Valleys (ADVs) located in the Transantarctic Mountains are the coldest and driest locations on Earth. The mean annual air temperature is -20 C or less and the ADVs receive 100mm or less of precipitation annually in the form of snow. The cold and dry climate in the ADVs is one of the best terrestrial analogs for the climatic conditions on Mars [2]. The soils in the ADVs have been categorized into three soil moisture zones: subxerous, xerous and ultraxerous. The subxerous zone is a coastal region in which soils have ice-cemented permafrost relatively close to the surface. Moisture is available in relatively large amounts and soil temperatures are above freezing throughout the soil profile (above ice permafrost) in summer months. The xerous zone, the most widespread of the three zones, is an inland region with a climate midway between the subxerous and ultraxerous. The soils from this zone have dry permafrost at moderate depths (30-75cm) but have sufficient water in the upper soil horizons to allow leaching of soluble materials. The ultraxerous zone is a high elevation zone, where both temperature and precipitation amounts are very low resulting in dry permafrost throughout the soil profile. The three moisture regime regions are similar to the three microclimatic zones (coastal thaw, inland mixed, stable upland) defined by Marchant and Head.

  12. Mediterranean valleys revisited: Linking soil erosion, land use and climate variability in the Northern Levant (United States)

    Casana, Jesse


    This paper presents results of geomorphological and archaeological investigations undertaken in several small drainage basins in the Jebel al-Aqra region of southern Turkey. By focusing intensive archaeological settlement survey in basins where securely dated sequences of sedimentary valley fills have been recorded, spatially and temporally linked, high-resolution records of land use and soil erosion have been generated. Sedimentary data show that throughout most of the Holocene, floodplains remained rather stable, allowing deep soils to form. But in the past two millennia, probably from AD 150-700, a phase of severe soil erosion was initiated and resulted in the deposition of 3.5-5.0 m of alluvial sediments on valley floors. Archaeological and historical evidence suggest that while these areas were occupied by agrarian communities since at least 2800 BC, nearly three millennia of cultivation during the Bronze and Iron Ages had relatively little effect on soil erosion. The intensification of settlement throughout the region and the conversion of upland areas to intensive agricultural production during the Hellenistic, Roman and late Roman periods (300 BC-AD 650), however, created the necessary preconditions for severe soil erosion to occur. These data are compared against modern and paleoclimate studies of the eastern Mediterranean, which show an extremely variable precipitation regime and the effects that it can have on erosion. A 400-year lag between the initial settlement of upland areas and the first evidence of soil erosion suggest that it may have been the intersection of extreme precipitation events with particular land use conditions of the Roman and late Roman periods which worked together to drive soil erosion.


    Institute of Scientific and Technical Information of China (English)

    WANG Ning; ZHU Yan-ming; WANG Hui-lian


    Under the condition of different precipitation intensities, different gradients, different land-use types and different vegetation coverage, the soil erosion and transference of element (or pollutant) are studied by simulating and analyzing the surface run-off of experimental plots in the catchment area of Songhua Lake, with an area of about 43 370.8km2. And the influencing factors that produce the spatial difference are analyzed and assessed. It is put for-ward that the irrational land utilization is the reason of soil erosion and pollutant run-off. The gradient of farmland,the growing season of vegetation and the vegetation coverage are chiefly restricting factors that lead to the soil ero-sion and pollutant run-off. This study can provide the fundamental data for comprehensive planning and harnessing of the non-point source pollution in the valley.

  14. Spatial heterogeneity of soil organic carbon in the Kananaskis valley (Rocky Mountains, Canada) (United States)

    Hoffmann, Ulrike; Kuhn, Nikolaus


    The carbon content in the mineral soil layer represents a major pool in the global carbon cycle. However, their behaviour in different ecosystems is far from fully understood. Soil organic Carbon (SOC) pools and turnover times are particularly sensitive to a range of factors, such as climate, vegetation, topography, soil properties, soil and crop management and other anthropogenic conditions. To elucidate our understanding of global carbon cycle, it is necessary to acquire regional estimates of soil carbon pools in all ecosystem types. Little attention has so far been given to mountain environments, which are strongly affected by and highly sensitive to climate change. Soils at high latitudes are expected to respond sensitively to climate change but still little is known about their spatial variability in carbon content. The aim of this study is to examine the relationship between SOC-stocks climate, topography, forest stand-ages and land use along elevation transects at the Highwood Pass in the Kananaskis valley (Alberta, Canadian Rocky Mountains). We anticipate that the consideration of these issues will progress our understanding of the role of alpine environments in the global C cycle. For our analysis we use space-time analogies (by sampling SOC in forest stands of different known ages) to assess the potential impact of climate change on soil Carbon stocks, in particular the risks of additional Carbon release in response to global warming, natural landscape development and human induced changes of land use. Soil samples were collected across a range of elevations, latitudes, soil texture, vegetation types, forest stand-ages and terrain positions. A hierarchical sampling-design is applied. We estimated soil carbon stocks based on extensive soil sampling and laboratory analysis. The inventories will extrapolated, based on a detailed statistical analysis of the local Carbon stocks with topographic variables to obtain regional inventories of SOC. We use land use

  15. Geochemical pattern of soils in Bobovdol valley, Bulgaria. Assessment of Cd and Co contents

    Directory of Open Access Journals (Sweden)

    Ivona Nikova


    Full Text Available The chemical composition of soils spread in the Bobov dol valley was studied in order to reveal the natural and anthropogenic patterns of Cd and Co spatial distribution. A sampling procedure based on the irregular grid of points and validated analytical methods were used in the field and laboratory studies. It is found that Cd content varies from 0.21 to 0.90 mg kg-1 in studied soils and the average value of 0.55 mg kg-1 coincides with concentration demarcating soil pollution (0.5 mg kg-1. Co content ranges from 2.22 to 15.76 mg kg-1 and in 70 % of sampled points exceeds the natural background content of 7.8 mg kg-1 found in local rocks. Still, Cd enrichment of studied soils is more significant than Co’s with coefficient of Clarke concentration of 3.67. Hence, the secondary deposition of studied elements as a result of the Bobov dol Thermal power plant air emissions is verified by results obtained. The spatial distribution of Cd and Co is featured with an altitudinal gradient in deposition and a trend of quantitative depletion in the South of Plant. Soil organic matter and pH have no influence on the content and spatial distribution of studied elements. Elements iron affinity governs their geochemical linkage in soils although cobalt occurs allied with aluminum and titanium.

  16. New information on regional subsidence and soil fracturing in Mexico City Valley (United States)

    Auvinet, G.; Méndez-Sánchez, E.; Juárez-Camarena, M.


    In this paper, updated information about regional subsidence in Mexico City downtown area is presented. Data obtained by R. Gayol in 1891, are compared with information obtained recently from surveys using the reference points of Sistema de Aguas de la Ciudad de México (2008) and on the elevation of a cloud of points on the ground surface determined using Light Detection and Ranging (LiDAR) technology. In addition, this paper provides an overview of recent data obtained from systematic studies focused on understanding soil fracturing associated with regional land subsidence and mapping of areas susceptible to cracking in Mexico City Valley.

  17. Soils, surficial geology, and geomorphology of the Bear Creek Valley Low-Level Waste Disposal Development and Demonstration Program site

    Energy Technology Data Exchange (ETDEWEB)

    Lietzke, D.A.; Lee, S.Y.; Lambert, R.E.


    An intensive soil survey was conducted on the proposed Low-Level Waste Disposal Development and Demonstration Program site (LLWDDD) in Bear Creek Valley. Soils on the site were related to the underlying residuum and to the surficial colluvium and alluvium. Within any particular geologic formation, soils were subdivided based mostly on the degree of weathering, as reflected by saprolite weathering and morphologic features of the soils. Degree of weathering was related both to slope shape and gradient and to the joint-fracture system. Erosion classes were also used to make further subdivisions of any particular soil. Deep pits were dug in each of the major Conasauga Group formations (Pumpkin Valley, Rogersville, Maryville, and Nolichucky) for soil and saprolite characterization. Because of the widespread presence of alluvium and colluvium, which are potential sources of fill and final cover material, pits and trenches were dug to characterize the properties of these soils and to try to understand the past geomorphic history of the site. The results of the soil survey investigation indicated that the deeply weathered Pumpkin Valley residuum has good potential for the construction of tumuli or other types of belowground or aboveground burial of prepackaged compacted waste. 11 refs., 30 figs., 3 tabs.

  18. Moist-soil seed abundance in managed wetlands in the Mississippi Alluvial Valley (United States)

    Kross, J.; Kaminski, R.M.; Reinecke, K.J.; Penny, E.J.; Pearse, A.T.


    Managed moist-soil units support early succession herbaceous vegetation that produces seeds, tubers, and other plant parts used by waterfowl in the Mississippi Alluvial Valley (MAV), USA. We conducted a stratified multi-stage sample survey on state and federal lands in the MAV of Arkansas, Louisiana, Mississippi, and Missouri during autumns 2002?2004 to generate a contemporary estimate of combined dry mass of seeds and tubers (herein seed abundance) in managed moist-soil units for use by the Lower Mississippi Valley Joint Venture (LMVJV) of the North American Waterfowl Management Plan. We also examined variation in mean seed abundance among moist-soil units in 2003 and 2004 in relation to management intensity (active or passive), soil pH and nutrient levels, proportional occurrence of plant life-forms (e.g., grass, flatsedge, and forb; vine; woody plants), and unit area. Estimates of mean seed abundance were similar in 2002 (X over bar = 537.1 kg/ha, SE = 100.1) and 2004 (X over bar = 555.2 kg/ha, SE = 105.2) but 35?40% less in 2003 (X over bar = 396.8 kg/ha, SE = 116.1). Averaged over years, seed abundance was 496.3 kg/ha (SE = 62.0; CV = 12.5%). Multiple regression analysis indicated seed abundance varied among moist-soil units inversely with proportional occurrence of woody vegetation and unit area and was greater in actively than passively managed units (R2adj = 0.37). Species of early succession grasses occurred more frequently in actively than passively managed units (P < 0.09), whereas mid- and late-succession plants occurred more often in passively managed units (P < 0.02). We recommend the LMVJV consider 556 kg/ha as a measure of seed abundance for use in estimating carrying capacity in managed moist-soil units on public lands in the MAV. We recommend active management of moist-soil units to achieve maximum potential seed production and further research to determine recovery rates of seeds of various sizes from core samples and the relationship between

  19. Effect of irrigation management on soil salinization in Manas River Valley,Xinjiang,China

    Institute of Scientific and Technical Information of China (English)


    The irrigated area of Manas River Valley in Northwest China is an example of the successful reclamation of massive land affected by shallow ground water levels and salinization.To determine the effect of irrigation management practices on soil salinization,soil profiles representing various soil types were sampled.The historical records on the characteristics of irrigation management practices,groundwater level and soil salts accumulation in this region at four key periods,namely:flood irrigation without drainage;flood irrigation with drainage but of low efficiency;irrigation in combination with lined irrigation canals and exploitation of groundwater;and irrigation with the application of water-saving irrigation techniques,were analyzed emphatically.In addition,the salinization status of cultivated land in 2010 and 2020 was also predicted by using analogism according to the relationship between soil salinization and irrigation practices.The results revealed that the application of the traditional irrigation methods,such as flood irrigation and ridge irrigation,resulted in a rapid rising of groundwater level and salts accumulation in soil surface layers.However,with the way of well irrigation and well drainage,the groundwater level and the desalinization in soil layers apparently lowered,leading to a substantial increase of crop yield.Currently,the application of drip irrigation under mulch decreased the salts concentration in soil layers and increased the crop yield.With the continuous application of drip irrigation,the average soil desalinization efficiency in soil layers may increase.It is predicted that the percentage of salinized land would be reduced to 35%-40% when irrigation water is utilized reasonably in 2010.With the high efficient utilization of irrigation water after 2020,the salinized land would remain below 30%.It is concluded that with the improvement of irrigation management,an obvious desalinization would appear in the soil surface layers and the

  20. Geographic information science: Contribution to understanding salt and sodium affected soils in the Senegal River Valley (United States)

    Ndiaye, Ramatoulaye

    The Senegal River valley and delta (SRVD) are affected by long term climate variability. Indicators of these climatic shifts include a rainfall deficit, warmer temperatures, sea level rise, floods, and drought. These shifts have led to environmental degradation, water deficits, and profound effects on human life and activities in the area. Geographic Information Science (GIScience), including satellite-based remote sensing methods offer several advantages over conventional ground-based methods used to map and monitor salt-affected soil (SAS) features. This study was designed to assess the accuracy of information on soil salinization extracted from Landsat satellite imagery. Would available imagery and GIScience data analysis enable an ability to discriminate natural soil salinization from soil sodication and provide an ability to characterize the SAS trend and pattern over 30 years? A set of Landsat MSS (June 1973 and September 1979), Landsat TM (November 1987, April 1994 and November 1999) and ETM+ (May 2001 and March 2003) images have been used to map and monitor salt impacted soil distribution. Supervised classification, unsupervised classification and post-classification change detection methods were used. Supervised classifications of May 2001 and March 2003 images were made in conjunction field data characterizing soil surface chemical characteristics that included exchange sodium percentage (ESP), cation exchange capacity (CEC) and the electrical conductivity (EC). With this supervised information extraction method, the distribution of three different types of SAS (saline, saline-sodic, and sodic) was mapped with an accuracy of 91.07% for 2001 image and 73.21% for 2003 image. Change detection results confirmed a decreasing trend in non-saline and saline soil and an increase in saline-sodic and sodic soil. All seven Landsat images were subjected to the unsupervised classification method which resulted in maps that separate SAS according to their degree of

  1. Relationship between hydraulic properties and plant coverage of the closed-landfill soils in Piacenza (Po Valley, Italy) (United States)

    Cassinari, C.; Manfredi, P.; Giupponi, L.; Trevisan, M.; Piccini, C.


    In this paper the results of a study of soil hydraulic properties and plant coverage of a landfill located in Piacenza (Po Valley, Italy) are presented, together with the attempt to relate the hydraulic properties in relation with plant coverage. The measured soil water retention curve was first compared with the output of pedotransfer functions taken from the literature and then compared with the output of the same pedotransfer functions applied to a reference soil. The landfill plant coverage was also studied. The relationship between soil hydraulic properties and plant coverage showed that the landfill soils have a low water content available for plants. The soils' low water content, together with a lack of depth and a compacted structure, justifies the presence of a nitrophilous, disturbed-soil vegetation type, dominated by ephemeral annual species (therophytes).

  2. Microbial and soil properties in restoration areas in the jequitinhonha valley, Minas Gerais

    Directory of Open Access Journals (Sweden)

    Danielle Cristina Fonseca Santos


    Full Text Available To mitigate the impacts of eucalypt monoculture, forestry companies in the Upper Jequitinhonha Valley (MG have adopted the insertion of strips of native vegetation in-between the commercial plantations. The method used for the creation of these corridors is to allow spontaneous regrowth of native vegetation in areas previously under eucalypt. The objective of this study was to evaluate the effect of cover crops on microbial and soil properties for a detailed description of the restoration process of native vegetation in forest soils of the Jequitinhonha Valley. The treatments were represented by an initial restoration stage ( 4 years with or without remaining eucalypt, plus the three controls: commercial eucalypt plantation, Cerrado vegetation and native forest. Soil samples were collected for three consecutive years in the dry and rainy season (August and February, respectively. The microbial activity, regardless of the presence of remaining eucalypt , did not differ among the restoration areas, except for the metabolic quotient (qCO2 in the rainy season of February 2007. At this time, this microbial activity was higher in the advanced restoration stage without eucalypt than initial restoration without eucalypt and advanced restoration with eucalypt. The restoration areas, in general, did not differ from the control: eucalypt plantation and Cerrado either. Compared to the forest, the levels of organic C, microbial C, basal respiration (Rbasal and hydrolysis of fluorescein diacetate (FDA in the restoration areas were, in general, lower and did not differ in qCO2 and microbial quotient (qMIC. In general, the soil quality was similar in the initial and advanced restoration stages. Most of the soil and microbial properties in the three years indicated that the restoration areas were most similar to the Cerrado. In the advanced restoration areas without eucalypt compared to Cerrado, the lower Rbasal in the 3rd year and the lower FDA and qMIC and

  3. Cations extraction of sandy-clay soils from cavado valley, portugal, using sodium salts solutions

    Directory of Open Access Journals (Sweden)

    Silva João Eudes da


    Full Text Available Cases of contamination by metals in the water wells of the Cavado Valley in north-west Portugal can be attributed to the heavy leaching of clay soils due to an excess of nitrogen resulting from the intensive use of fertilisers in agricultural areas. This work focuses on the natural weathering characteristics of soils, particularly the clay material, through the study of samples collected near the River Cavado. Samples taken from various sites, after physico-chemical characterisation, were subjected to clay dissolution tests, using sodium salts of different ionic forces, to detect the relationship between certain physico-chemical parameters of water, such as pH, nitrate, chloride and sulphate content, in the dissolution of clay and the subsequent extraction of such cations as Al, Fe and K. In acidic sandy clay soils, the mineralogical composition of which was characterised by a predominance of quartz, micas, kaolinite and K-feldspars, decreases of the clay material/water pH ratio increases dissolution of the micaceous and K-feldspars phases. The presence of nitrates in the aqueous solution apparently advanced the extraction of all three cations Al, Fe and K. The specific surface area of the clay material showed a significant correlation with the main kinetic parameters of cation extraction.

  4. Selenium speciation methods and application to soil saturation extracts from San Joaquin Valley, California (United States)

    Fio, John L.; Fujii, Roger


    Methods to determine soluble concentrations of selenite, selenate, and organic Se were evaluated on saturation extracts of soil samples collected from three sites on the Panoche Creek alluvial fan in the western San Joaquin Valley, California. The methods were used in combination with hydride-generation atomic-absorption spectrometry for detection of Se, and included a selective chemical-digestion method and three chromatographic methods using XAD-8 resin, Sep-Pak C18 cartridge, and a combination of XAD-8 resin and activated charcoal. The chromatography methods isolate dissolved organic matter that can inhibit Se detection by hydride-generation atomic-absorption spectrometry. Isolation of hydrophobic organic matter with XAD-8 did not affect concentrations of selenite and selenate, and the isolated organic matter represents a minimal estimation of organic Se. Ninety-eight percent of the Se in the extracts was selenate and about 100% of the isolated organic Se was associated with the humic acid fraction of dissolved organic matter. The depth distribution of Se species in the soil saturation extracts support a hypothesis that the distribution of soluble Se and salinity in these soils is the result of evaporation from a shallow water table and leaching by irrigation water low in Se and salinity.

  5. Determination of uranium, thorium and potassium activity concentrations in soil cores in Araba valley, Jordan. (United States)

    Abusini, M; Al-Ayasreh, K; Al-Jundi, J


    Soil samples were collected from six different locations in Araba valley, situated between Aqaba port and Dead sea. The samples have been analysed by using gamma-ray spectrometry. From the measured gamma-ray spectra, activity concentrations are determined for (238)U, (232)Th and (40)K. The mean activity concentration for (238)U, (232)Th and (40)K was found to be in the range 19 +/- 1.4 to 38.7 +/- 3, 14.3 +/- 0.8 to 35 +/- 3.2 and 94 +/- 18.9 to 762 +/- 47.4 Bq kg(-1), respectively. These results indicate that the mean concentrations of (238)U, (232)Th and (40)K in the populated Araba valley are lower than those in other populated areas. On the other hand, the concentrations of the major oxides (Al(2)O(3), SiO(2), K(2)O, CaO and Fe(2)O(3)) in the samples were determined using wavelength dispersive X-ray fluorescence. High potassium and iron content in some samples might be attributed to the active faults, which refer to the Dead sea transform fault.

  6. Land Contamination and Soil-Plant Interactions in the Imperina Valley Mine (Belluno, Venetian Region, Italy) (United States)

    Bini, Claudio; Wahsha, Mohammad; Fontana, Silvia; Zilioli, Diana


    In Italy, ore exploitation, particularly that of mixed sulphides, has been abandoned since the final thirty years of the last century, and a quantity of mine dumps has been discharged in wide areas of the land, provoking evident environmental damages to landscape, soil and vegetation, with potential risk for human health. The present study concerns the distribution and mobility of heavy metals (Ni, Cr, Cu, Pb, Zn, Fe and Mn) in the soils of a mine site and their transfer to wild flora. Soils and wild plants were sampled from mixed sulphides mine dumps in Imperina valley (Belluno, Italy), and the concentrations of heavy metals were determined. Chemical analyses carried out on 10 soil profiles (mostly entisols) of the mineralised area revealed metal concentrations generally above the international target levels (Cu up to 3160 mg kg-1 , Pb up to 23600 mg kg-1, Zn up to 1588 mg kg-1, Fe up to 52,30 %). The concentrations of Ni, Cr and Mn, instead, are below the reference limits. Moreover, a highly significant correlation was observed between the concentrations of metals in soils (Fe, Pb, Zn and Cu). Metal concentration in selected wild plants of the mineralized area is moderately high, in particolar Cu, Pb, Zn in the roots of Plantago major, Pb and Zn in the leaves of Taraxacum officinale, Zn and Pb in Salix spp. The translocation coefficient (BAC) from soil to plant (hypogean portion), and within the plant (epigean portion) vary from 0,37 in Plantago major to 2,97 in Silene dioica, two known accumulator plants. Salix spp present high translocation coefficients from soil to plant, and from roots to leaves. In particular, essential metals present a translocation coefficient ≥1 (with the order Mn>Zn>Cu>Fe), while toxic metals have coefficients metals and plant, in relation to their nutritional function. The combined results of metal concentration in soils and plants, BAC and translocation coefficients show that the plants considered seem to be rather highly tolerant

  7. Preliminary Study on Biological Characteristics of Degraded Soil Ecosystems in Dry Hot Valley of the Jinsha River

    Institute of Scientific and Technical Information of China (English)


    Distribution characteristics of soil animals, microorganisms and enzymatic activity were studied in thedry red soil and Vertisol ecosystems with different degradation degrees in the Yuanmou dry hot valley of theJinsha River, China. Results showed that Hymenoptera, Araneae and Collembola were the dominant groupsof soil animals in the plots studied. The numbers of groups and individuals and density of soil animals in thedry red soil series were higher than those in the Vertisol series, and the numbers of individuals and density ofsoil animals decreased with the degree of soil degradation. Bacteria dominated microbiocoenosis not only inthe dry red soils but also in the Vertisols. Microbial numbers of the dry red soil series were higher than thoseof Vertisol series, and decreased with the degree of soil degradation. The activities of catalase, invertase,urease and alkaline phosphatase declined with the degradation degree and showed a significant decline withdepth in the profiles of both the dry red soils and the Vertisols, but activities of polyphenol oxidase andacid and neutral phosphatase showed the same tendencies only in the Vertisols. It was concluded that thecharacteristics of soil animals, microorganisms and enzymatic activity could be used as the bio-indicators toshow the degradation degree of the dry red soils and Vertisols. Correlation among these soil bio-indicatorswas highly significant.

  8. Relation between hydraulic properties and plant coverage of the closed-landfill soils in Piacenza (Po Valley, Italy) (United States)

    Cassinari, C.; Manfredi, P.; Giupponi, L.; Trevisan, M.; Piccini, C.


    In this paper the results of a study of soil hydraulic properties and plant coverage of a landfill located in Piacenza (Po Valley, Italy) are presented, together with the attempt to put the hydraulic properties in relation with plant coverage. The measured soil water retention curve was first compared with the output of some pedotransfer functions taken from the literature and then with the output of the same pedotransfer functions applied to a reference soil. The landfill plant coverage was also studied. The relation between soil hydraulic properties and plant coverage showed that the landfill soils have a low water content available for plants and this fact, together with their lack of depth and compacted structure, justifies the presence of a nitrophilous, disturbed-soil vegetation type, dominated by ephemeral annual species (therophytes).

  9. Cone penetration tests and soil borings at the Mason Road site in Green Valley, Solano County, California (United States)

    Bennett, Michael J.; Noce, Thomas E.; Lienkaemper, James J.


    In support of a study to investigate the history of the Green Valley Fault, 13 cone penetration test soundings and 3 auger borings were made at the Mason Road site in Green Valley, Solano County, California. Three borings were made at or near two of the cone penetration test soundings. The soils are mostly clayey with a few sandy layers or lenses. Fine-grained soils range from low plasticity sandy lean clay to very plastic fat clay. Lack of stratigraphic correlation in the subsurface prevented us from determining whether any channels had been offset at this site. Because the soils are generally very clayey and few sand layers or lenses are loose, the liquefaction potential at the site is very low.

  10. Rainfall and human activity impacts on soil losses and rill erosion in vineyards (Ruwer Valley, Germany) (United States)

    Rodrigo Comino, J.; Brings, C.; Lassu, T.; Iserloh, T.; Senciales, J. M.; Martínez Murillo, J. F.; Ruiz Sinoga, J. D.; Seeger, M.; Ries, J. B.


    Vineyards are one of the most German conditioned eco-geomorphological systems by human activity. Precisely, the vineyards of the Ruwer Valley (Germany) is characterized by high soil erosion rates and rill problems on steep slopes (between 23-26°) caused by the increasingly frequent heavy rainfall events, what is sometimes enhanced by incorrect land use managements. Soil tillage before and after vintage, application of vine training systems and anthropic rills generated by wheel tracks and footsteps are observed along these cultivated area. The objective of this paper is to determine and to quantify the hydrological and erosive phenomena in two chosen vineyards, during diverse seasons and under different management conditions (before, during and after vintage). For this purpose, a combined methodology was applied. Investigating climatic, pedological, geomorphological and botanic-marks variables was suggested on the two experimental plot in the village of Waldrach (Trier, region of Rhineland-Palatinate). First, high infiltration rates (near 100%) and subsurface flow was detected by rainfall simulations performed at different times of the year. The second method to investigate the geomorphological response of slope inclination, two 10 m and one 30 m long rills were measured using geometrical channel cross-section index, depth and width. The highest variations (lateral and frontal movements) were noted before and during vintage, when footsteps occurred in a concentrated short time. Finally, two maps were generated of soil loss, indicated by the botanic marks on the graft union of the vines. As results 62.5 t-1 ha-1 yr-1 soil loss rate was registered (one year) on the experimental plots of the new vineyards, while 4.3 t-1 ha-1 yr-1 on the old one.

  11. Correlation among fluoride and metals in irrigation water and soils of Ethiopian Rift Valley

    Directory of Open Access Journals (Sweden)

    Elias Gizaw


    Full Text Available The levels of fluoride and selected metals in Ethiopian Rift Valley soils and irrigation water in the nearby sources were determined by fluoride ion selective electrode and flame atomic absorption spectrophotometer, respectively. The pH, conductivity, salinity and total dissolved solids in water and soil samples were also determined. Accuracy of the optimized procedure was evaluated using standard addition (spiking method and an acceptable percentage recovery was obtained. The fluoride concentrations in water samples were found in the range of 0.14-8.0 mg/L which is below the WHO limit of fluoride concentration for irrigation (less than 10 mg/L. The water soluble and total fluorides in soil were 2.3-16 µg/g and 209-1210 µg/g, respectively and are within the ranges recommended by FAO and WHO. The range of metal concentration in soil samples (µg/g dry weight basis and in water samples (mg/L respectively were: Na (684-6703, 8.6-67, Mg (1608-11229, 23-67, K (1776-4394, 1.1-20, Ca (7547-22998, 17-267, Cr (9.8-79, 0.07-0.17, Mn (143-700, 0.05-37, Co (50-112, 0.35-1.5, Ni (446-1288, 0.27-41, Fe (12180-32681, 6.0-48, Cu (8.9-45, 0.09-0.25 and Zn (31-89, 0.14-0.56. Fluoride was found to have significant correlation with major trace metals (Fe, Cu and Cr, but the correlation with other trace metals was not significant. DOI:

  12. Using soil and water conservation contests for extension: experiences from the Bolivian mountain valleys. (United States)

    Kessler, Aad; de Graaff, Jan


    Soil and water conservation (SWC) contests among farmer groups were organized in five rural villages in the Bolivian mountain valleys. The contests were aimed at quickly achieving widespread sustainable results. This article analyzes the effectiveness of these contests as an extension tool. Mixed results were obtained. In three villages, participation rates in the SWC activities introduced in the contests were still high even 2 years after project withdrawal. These were all villages where a solid foundation for sustainable development had been laid before the contests were held. Two years later, most families were still involved in maintenance of the SWC practices introduced in the contests, and many farmers had started to experiment with different soil management practices. However, replications of these SWC practices were not widespread, Conservation Leaders did not continue with their training activities, and the quality of maintenance of the practices was often not satisfactory. In order to become a more effective extension tool and achieve widespread impact, SWC contests must receive continued support by a catalyst agency. Moreover, other SWC contests should also be organized in which practices are not predefined. Given that SWC contests are a low-budget extension tool, local municipalities could become more actively involved.

  13. Time since plantation is the most important determining factor for soil erosion rates in vineyards. A case study in the valley of Les Alcusses valley, Eastern Spain (United States)

    Rodrígo Comino, Jesús; Keesstra, Saskia; Novara, Agata; García Díaz, Andrés; Jordán, Antonio; Brevik, Eric C.; Cerdà, Artemi


    Vineyards are known to suffer from soil erosion around the world (Novara et al., 2011; 2013; 2015; Rodrigo Comino et al., 2015; Prosdocimi et al., 2016; Rodrigo-Comino et al., 2016a; 2016b, 2016b). As in other crops in the Mediterranean such as citrus (Cerdà et al., 2009), olives (Taguas et al., 2015), persimmon (Cerdà et al., 2016) or apricot (Keesstra et al., 2016) plantations, there is a need to survey the spatial and temporal changes in soil erosion in vineyards. Soil redistribution in agricultural land is determined by human management due to the control it exerts on the vegetation cover and soil properties. This is why the time since plantation is important in soil erosion spatial and temporal distribution. Especially because during the plantation of the saplings, the soil is compacted and all other vegetation is removed. In our experiment we selected four paired plot research sites in the Les Alcusses valley, in Eastern Spain. We selected recently planted vineyards (1-year old) and 40-years old plantations. In total 80 rainfall simulations were performed with an intensity of 55 mm h-1 on small 0.25 m2 circular plots to determine the soil detachment by rainfall. The results show that soil erosion rates in the 40-year old vineyards were high (### a rate??), and in the recently planted ones were extremely high, on average six times higher. Acknowledgements The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement n 603498 (RECARE project) and the CGL2013- 47862-C2-1-R and CGL2016-75178-C2-2-R national research projects. References Cerdà, A., González-Pelayo, O., Giménez-Morera, A., Jordán, A., Pereira, P., Novara, A., Brevik, E.C., Prosdocimi, M., Mahmoodabadi, M., Keesstra, S., García Orenes, F., Ritsema, C., 2016. The use of barley straw residues to avoid high erosion and runoff rates on persimmon plantations in Eastern Spain under low frequency - high magnitude

  14. Soil erosion risk evaluation using GIS in the Yuanmou County,a dry-hot valley of Yunnan, China

    Institute of Scientific and Technical Information of China (English)


    Soil erosion is a major threat to sustainable agriculture. Evaluating regional erosion risk is increasingly needed by national and in-ternational environmental agencies. This study elaborates a model (using spatial principal component analysis [SPCA]) method for the evaluation of soil erosion risk in a representative area of dry-hot valley (Yuanmou County) at a scale of 1:100,000 using a spatial database and GIS. The model contains seven factors: elevation, slope, annual precipitation, land use, vegetation, soil, and population density. The evaluation results show that five grades of soil erosion risk: very low, low, medium, high, and very high. These are divided in the study area, and a soil erosion risk evaluation map is created. The model may be applicable to other areas of China because it utilizes spatial data that are generally available.

  15. The ecological dichotomy of ammonia-oxidizing archaea and bacteria in the hyper-arid soils of the Antarctic Dry Valleys

    Directory of Open Access Journals (Sweden)

    Catarina Maria Magalhães


    Full Text Available The McMurdo Dry Valleys of Antarctica are considered to be one of the most physically and chemically extreme terrestrial environments on the Earth. However, little is known about the organisms involved in nitrogen transformations in these environments. In this study, we investigated the diversity and abundance of ammonia-oxidizing archaea (AOA and bacteria (AOB in four McMurdo Dry Valleys with highly variable soil geochemical properties and climatic conditions: Miers Valley, Upper Wright Valley, Beacon Valley and Battleship Promontory. The bacterial communities of these four Dry Valleys have been examined previously, and the results suggested that the extremely localized bacterial diversities are likely driven by the disparate physicochemical conditions associated with these locations. Here we showed that AOB and AOA amoA gene diversity was generally low; only four AOA and three AOB operational taxonomic units (OTUs were identified from a total of 420 AOA and AOB amoA clones. Quantitative PCR analysis of amoA genes revealed clear differences in the relative abundances of AOA and AOB amoA genes among samples from the four Dry Valleys. Although AOB amoA gene dominated the ammonia-oxidizing community in soils from Miers Valley and Battleship Promontory, AOA amoA gene were more abundant in samples from Upper Wright and Beacon Valleys, where the environmental conditions are considerably harsher (e.g., extremely low soil C/N ratios and much higher soil electrical conductivity. Correlations between environmental variables and amoA genes copy numbers, as examined by redundancy analysis (RDA, revealed that higher AOA/AOB ratios were closely related to soils with high salts and Cu contents and low pH. Our findings hint at a dichotomized distribution of AOA and AOB within the Dry Valleys, potentially driven by environmental constraints.

  16. Correlation between geology and radon levels in groundwater, soil and indoor air in Bhilangana Valley, Garhwal Himalaya, India

    Energy Technology Data Exchange (ETDEWEB)

    Choubey, V.M. [Wadia Inst. of Himalayan Geology, Dehra Dun (India); Ramola, R.C. [Dept. of Physics, H.N.B. Garhwal Univ. Campus, Tehri Garhwal (India)


    Radon concentrations were measured in soil, air and groundwater in Bhilangana Valley, Garhwal Himalaya, India by using an LR-115 plastic track detector and radon emanometer. Radon concentrations were found to vary from 1 KBq/m{sup 3} to 57 KBq/m{sup 3} in soil, 5 Bq/l to 887 Bq/l in water and 95 Bq/m{sup 3} to 208 Bq/m{sup 3} in air. The recorded values are quite high due to associated uranium mineralization in the area. Radon concentration was also found to depend on the tectonic structure and geology of the area. (orig.)

  17. HCMM: Soil moisture in relation to geologic structure and lithology, northern California. [Sacramento Valley, California (United States)

    Rich, E. I. (Principal Investigator)


    The author has identified the following significant results. Empirical observations on the ground and examination of aerial color IR photographs indicate that in grassland terrain, the vegetation overlying sandstone tends to become less vigorous sooner in the late spring season than does the area overlain by an adjacent shale unit. The reverse relationship obtains in the fall. These relationships are thought to be a reflection of the relative porosity of each of the units and hence of their ability to retain or lose soil moisture. A comparison of the optically enlarged day and nite IR imagery of the Late Mesozoic interbedded sandstone and shale units along the western margin of the Sacramento Valley, California, taken at seasonally critical times of the year (late spring/early summer and late fall/early winter) reveals subtle seasonal variations of graytone which tend to support the empirical observations after consideration of Sun angle and azimuth, and the internal consistency of the data on each set of satellite imagery.

  18. Arsenic fractions in soils: A case study in the Amblés valley (Castilla-León, Spain) (United States)

    Joaquin Ramos-Miras, Jose; Díaz-Fernández, Pedro; Sanjosé Wery, Ana; Rodríguez-Martín, Jose Antonio; Boluda, Rafael; Bech, Jaume; Gil, Carlos


    Arsenic (As) is a trace element whose distribution and toxicology in the environment is a serious issue. In Spain, presence of As has been mainly related with mining activities because oxidation of sulphur minerals releases As into the environment. As has been detected in aquifers and soils in southern areas of the Spanish Autonomous Castilla-León Community (central Spain). Risk of human contact with As has increased substantially in the last two decades as residential areas continue to expand into former agricultural land. As distribution in topsoil horizons in the high Adaja river basin in the Amblés Valley, Ávila (Autonomous Castilla-León Community) were studied. In this area, the principal soil use is conventional farming. Three As-soil fractions: total content, extractable with EDTA and water-soluble, were determined. The origin and the causes that might favour their higher or lower concentrations were investigated. Geochemical baseline concentrations were established, and the relationships between the concentration of the different As fractions and soil properties were investigated. Iron-aluminium oxides, clay content, soil organic matter, and soil pH were the main controlling factors for As soil concentrations. Total As content in soils was related with parent material, whereas anthropogenic activities affected its solubility.

  19. Statistical analyses of soil properties on a quaternary terrace sequence in the upper sava river valley, Slovenia, Yugoslavia (United States)

    Vidic, N.; Pavich, M.; Lobnik, F.


    Alpine glaciations, climatic changes and tectonic movements have created a Quaternary sequence of gravely carbonate sediments in the upper Sava River Valley, Slovenia, Yugoslavia. The names for terraces, assigned in this model, Gu??nz, Mindel, Riss and Wu??rm in order of decreasing age, are used as morphostratigraphic terms. Soil chronosequence on the terraces was examined to evaluate which soil properties are time dependent and can be used to help constrain the ages of glaciofluvial sedimentation. Soil thickness, thickness of Bt horizons, amount and continuity of clay coatings and amount of Fe and Me concretions increase with soil age. The main source of variability consists of solutions of carbonate, leaching of basic cations and acidification of soils, which are time dependent and increase with the age of soils. The second source of variability is the content of organic matter, which is less time dependent, but varies more within soil profiles. Textural changes are significant, presented by solution of carbonate pebbles and sand, and formation is silt loam matrix, which with age becomes finer, with clay loam or clayey texture. The oldest, Gu??nz, terrace shows slight deviation from general progressive trends of changes of soil properties with time. The hypothesis of single versus multiple depositional periods of deposition was tested with one-way analysis of variance (ANOVA) on a staggered, nested hierarchical sampling design on a terrace of largest extent and greatest gravel volume, the Wu??rm terrace. The variability of soil properties is generally higher within subareas than between areas of the terrace, except for the soil thickness. Observed differences in soil thickness between the areas of the terrace could be due to multiple periods of gravel deposition, or to the initial differences of texture of the deposits. ?? 1991.

  20. Soil degradation in farmlands of California's San Joaquin Valley resulting from drought-induced land-use changes (United States)

    Scudiero, Elia; Skaggs, Todd; Anderson, Ray; Corwin, Dennis


    Irrigation in California's Central Valley (USA) has decreased significantly due to water shortages resulting from the current drought, which began in 2010. In particular, fallow fields in the west side of the San Joaquin Valley (WSJV), which is the southwest portion of the Central Valley, increased from around 12% in the years before the drought (2007-2010) to 20-25% in the following years (2011-2015). We monitored and mapped drought-induced edaphic changes in salinity at two scales: (i) field scale (32.4-ha field in Kings County) and (ii) water district scale (2400 ha at -former- Broadview Water District in Fresno County). At both scales drought-induced land-use changes (i.e., shift from irrigated agriculture to fallow) drastically decreased soil quality by increasing salinity (and sodicity), especially in the root-zone (top 1.2 m). The field study monitors the spatial (three dimensions) changes of soil salinity (and sodicity) in the root-zone during 10 years of irrigation with drainage water followed by 4 years of no applied irrigation water (only rainfall) due to drought conditions. Changes of salinity (and other edaphic properties), through the soil profile (down to 1.2 m, at 0.3-m increments), were monitored and modeled using geospatial apparent electrical conductivity measurements and extensive soil sampling in 1999, 2002, 2004, 2009, 2011, and 2013. Results indicate that when irrigation was applied, salts were leached from the root-zone causing a remarkable improvement in soil quality. However, in less than two years after termination of irrigation, salinity in the soil profile returned to original levels or higher across the field. At larger spatial scales the effect of drought-induced land-use change on root-zone salinity is also evident. Up to spring 2006, lands in Broadview Water District (BWD) were used for irrigated agriculture. Water rights were then sold and the farmland was retired. Soil quality decreased since land retirement, especially during the

  1. Soil properties relevant to land degradation in abandoned sloping fields in Aisa valley, Central Pyrenees (Spain

    Directory of Open Access Journals (Sweden)

    Pardini, G.


    Full Text Available A multi-approach characterization of soil properties in abandoned fields in the Aisa valley, at mid mountain in the Central Spanish Pyrenees, demonstrated that the soil's own peculiar characteristics are concerned with conservation problems. Aggregate stability and shrinkage tests pointed to a relatively good soil performance due to the aggregating role of organic matter and calcium carbonates, although calcium ions, in some instances, may exert and additional antagonistic role for a sealed surface, increasing runoff. On the other hand, soil micromorphology suggests that the poor condition of the soils is in some contradiction to paedogenic activity. These findings, together with the presence of ashes, support the hypothesis that land degradation in these areas is mainly related to human activity thought unsuitable management after land abandonment.

    [es] La caracterización de diversas propiedades del suelo en campos abandonados del valle de Aisa, montaña media del Pirineo Central, ha mostrado que dichos suelos presentan algunos caracteres de interés desde el punto de vista de la conservación. La estabilidad de los agregados y los test de agrietamiento evidencian un comportamiento aceptable, gracias al papel agregante de la materia orgánica y carbonatos de calcio, a pesar que los iones calcio, en algunas ocasiones, pueden ejercer un papel antagonista adicional y favorecer el sellado de la superficie del suelo, aumentando la escorrentía superficial. Por otra parte, la micromorfología sugiere que el estado de degradación de los suelos contrasta con la actividad pedogénica. Estos resultados, juntamente con la presencia de cenizas, apoyan la hipótesis de que el estado de degradación en estas áreas es consecuencia principalmente de una utilización incorrecta después del abandono de los cultivos.
    [fr] Un étude des propriétés des sois dans une zone à cultures en pente abandonnées dans la vallée d'Aisa (Pyr


    Directory of Open Access Journals (Sweden)



    Full Text Available Cellulases refers to a suite of enzymes produced chiefly by fungi , bacteria , and protozoans that catalyze cellulolysis which is the hydrolysis of cellulose . Cellulose is the most abundant natural polymer on earth . It is the structural component of the plant cell walls which helps in the hydrolysis of 1, 4 - beta - D - glycosidic linkages in cellulose, lichenin and cereal beta - D - glucans . Cellulases are used for clarif ication of fruit juice, vegetable juice, roots, treatment of wine, extraction of oils and improving the quality of the bakery products . Eight soil samples were collected for cellulose preliminary screening from Gullarghati, Doon valley at different pH and temperatures, because maximum diversity was possible there as there was no interference by the humans . 110 colonies were isolated by the activity zone plate method containing CMC as a substrate using Congo red dye . Best twelve colonies were selected and ch ecked using DNS method at 540 A 0 . Four strains BR - 1, BR - 2, BR - 3 and BR - 4 were used on the basis of spectrophotometerically and characterized with the study of substrate . Maximum velocity (Vmax was observed for BR - 2 i . e . 170 units per mg protein with Km of 49 . 50mg/ml . Strain BR - 1 gave to pH optima at 4 . 5 and 6 . 5, strain BR - 2 gave maximum activity at 4 . 5 and 7 . 0 pH, BR - 3 strain gave maximum activity at pH 5 . 0 and 6 . 5 with the highest yield of cellulases w ere obtained at pH 4 . 5, 5 . 5 and 7 . 0 in bacterial s train BR - 4 . The results also shows the effect of temperature bacterial strain BR - 1, BR - 2 and BR - 4 with maximum cellulases activity at 45 0 C and bacterial strain BR - 3 maximum activity at 25 0 C .

  3. Regional-scale assessment of soil salinity in the Red River Valley using multi-year MODIS EVI and NDVI. (United States)

    Lobell, D B; Lesch, S M; Corwin, D L; Ulmer, M G; Anderson, K A; Potts, D J; Doolittle, J A; Matos, M R; Baltes, M J


    The ability to inventory and map soil salinity at regional scales remains a significant challenge to scientists concerned with the salinization of agricultural soils throughout the world. Previous attempts to use satellite or aerial imagery to assess soil salinity have found limited success in part because of the inability of methods to isolate the effects of soil salinity on vegetative growth from other factors. This study evaluated the use of Moderate Resolution Imaging Spectroradiometer (MODIS) imagery in conjunction with directed soil sampling to assess and map soil salinity at a regional scale (i.e., 10-10(5) km(2)) in a parsimonious manner. Correlations with three soil salinity ground truth datasets differing in scale were made in Kittson County within the Red River Valley (RRV) of North Dakota and Minnesota, an area where soil salinity assessment is a top priority for the Natural Resource Conservation Service (NRCS). Multi-year MODIS imagery was used to mitigate the influence of temporally dynamic factors such as weather, pests, disease, and management influences. The average of the MODIS enhanced vegetation index (EVI) for a 7-yr period exhibited a strong relationship with soil salinity in all three datasets, and outperformed the normalized difference vegetation index (NDVI). One-third to one-half of the spatial variability in soil salinity could be captured by measuring average MODIS EVI and whether the land qualified for the Conservation Reserve Program (a USDA program that sets aside marginally productive land based on conservation principles). The approach has the practical simplicity to allow broad application in areas where limited resources are available for salinity assessment.

  4. A first attempt to derive soil erosion rates from 137Cs airborne gamma measurements in two Alpine valleys (United States)

    Arata, Laura; Meusburger, Katrin; Bucher, Benno; Mabit, Lionel; Alewell, Christine


    The application of fallout radionuclides (FRNs) as soil tracers is currently one of the most promising and effective approach for evaluating soil erosion magnitudes in mountainous grasslands. Conventional assessment or measurement methods are laborious and constrained by the topographic and climatic conditions of the Alps. The 137Cs (half-life = 30.2 years) is the most frequently used FRN to study soil redistribution. However the application of 137Cs in alpine grasslands is compromised by the high heterogeneity of the fallout due to the origin of 137Cs fallout in the Alps, which is linked to single rain events occurring just after the Chernobyl accident when most of the Alpine soils were still covered by snow. The aim of this study was to improve our understanding of the 137Cs distribution in two study areas in the Central Swiss Alps: the Ursern valley (Canton Uri), and the Piora valley (Canton Ticino). In June 2015, a helicopter equipped with a NaI gamma detector flew over the two study sites and screened the 137Cs activity of the top soil. The use of airborne gamma measurements is particularly efficient in case of higher 137Cs concentration in the soil. Due to their high altitude and high precipitation rates, the Swiss Alps are expected to be more contaminated by 137Cs fallout than other parts of Switzerland. The airborne gamma measurements have been related to several key parameters which characterize the areas, such as soil properties, slopes, expositions and land uses. The ground truthing of the airborne measurements (i.e. the 137Cs laboratory measurements of the soil samples collected at the same points) returned a good fit. The obtained results offer an overview of the 137Cs concentration in the study areas, which allowed us to identify suitable reference sites, and to analyse the relationship between the 137Cs distribution and the above cited parameters. The authors also derived a preliminary qualitative and a quantitative assessment of soil redistribution

  5. Natural and Enhanced Attenuation of Soil and Groundwater at the Monument Valley, Arizona, DOE Legacy Waste Site—10281

    Energy Technology Data Exchange (ETDEWEB)

    Waugh, W.J. [S.M. Stoller Corporation, Grand Junction, CO; Miller, D.E. [S.M. Stoller Corporation, Grand Junction, CO; Morris, S.A. [S.M. Stoller Corporation, Grand Junction, CO; Sheader, L.R. [S.M. Stoller Corporation, Grand Junction, CO; Glenn, E.P. [University of Arizona, Tucson, AZ; Moore, D. [University of Arizona, Tucson, AZ; Carroll, K.C. [University of Arizona, Tucson, AZ; Benally, L. [Navajo Nation, Window Rock, AZ; Roanhorse, M. [Navajo Nation, Window Rock, AZ; Bush, R.P. [U.S. Department of Energy, Grand Junction, CO; none,


    The U.S. Department of Energy (DOE), the Navajo Nation, and the University of Arizona are exploring natural and enhanced attenuation remedies for groundwater contamination at a former uranium-ore processing site near Monument Valley, Arizona. DOE removed radioactive tailings from the Monument Valley site in 1994. Nitrate and ammonium, waste products of the milling process, remain in an alluvial groundwater plume spreading from the soil source where tailings were removed. Planting and irrigating two native shrubs, fourwing saltbush and black greasewood, markedly reduced both nitrate and ammonium in the source area over an 8-year period. Total nitrogen dropped from 350 mg/kg in 2000 to less than 200 mg/kg in 2008. Most of the reduction is attributable to irrigation-enhanced microbial denitrification rather than plant uptake. However, soil moisture and percolation flux monitoring show that the plantings control the soil water balance in the source area, preventing additional leaching of nitrogen compounds. Enhanced denitrification and phytoremediation also look promising for plume remediation. Microcosm experiments, nitrogen isotopic fractionation analysis, and solute transport modeling results suggest that (1) up to 70 percent of nitrate in the plume has been lost through natural denitrification since the mill was closed in 1968, and (2) injection of ethanol may accelerate microbial denitrification in plume hot spots. A field-scale ethanol injection pilot study is underway. Landscape-scale remote sensing methods developed for the project suggest that transpiration from restored native phreatophyte populations rooted in the aquifer could limit further expansion of the plume. An evaluation of landfarm phytoremediation, the irrigation of native shrub plantings with high nitrate water pumped from the alluvial aquifer, is also underway.

  6. Impact of water quality and irrigation management on soil salinization in the Drâa valley of Morocco. (United States)

    Beff, L.; Descamps, C.; Dufey, J.; Bielders, C.


    Under the arid climatic conditions of the Drâa valley in southern Morocco, irrigation is essential for crop production. Two sources of water are available to farmers: (1) moderate salinity water from the Oued Drâa (classified as C3-S1 in the USDA irrigation water classification diagram) which is available only a few times per year following discrete releases from the Mansour Eddahbi dam, and (2) high salinity water from wells (C4-S2). Soil salinization is frequently observed, principally on plots irrigated with well water. As Oued water is available in insufficient amounts, strategies must be devised to use well and Oued water judiciously, without inducing severe salinization. The salinization risk under wheat production was evaluated using the HP1 program (Jacques and Šimůnek, 2005) for different combinations of the two main water sources, different irrigation frequencies and irrigation volumes. The soil was a sandy clay loam (topsoil) to sandy loam (40 cm depth). Soil hydrodynamic properties were derived from in situ measurements and lab measurements on undisturbed soil samples. The HP1 model was parameterized for wheat growth and 12 scenarios were run for 10 year periods using local climatic data. Water quality was measured or estimated on the basis of water samples in wells and various Oueds, and the soil chemical properties were determined. Depending on the scenario, soil salinity in the mean root zone increased from less than 1 meq/100g of soil to more than 5 meq/100g of soil over a ten year period. Salt accumulation was more pronounced at 45 cm soil depth, which is half of the maximum rooting depth, and when well water was preferentially used. Maximum crop yield (water transpired / potential water transpired) was achieved for five scenarios but this implied the use of well water to satisfy the crop water requirements. The usual Drâa Valley irrigation scenario, with five, 84 mm dam water applications per year, lead to a 25% yield loss. Adding the amount

  7. Quantification of 3D macropore networks in forest soils in Touzhai valley (Yunnan, China) using X-ray computed tomography and image analysis

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jia-ming; XU Ze-min; LI Feng; HOU Ru-ji; REN Zhe


    The three dimensional (3D) geometry of soil macropores largely controls preferential flow,which is a significant infiltrating mechanism for rainfall in forest soils and affects slope stability.However,detailed studies on the 3D geometry of macropore networks in forest soils are rare.The intense rainfall-triggered potentially unstable slopes were threatening the villages at the downstream of Touzhai valley (Yunnan,China).We visualized and quantified the 3D macropore networks in undisturbed soil columns (Histosols) taken from a forest hillslope in Touzhai valley,and compared them with those in agricultural soils (corn and soybean in USA;barley,fodder beet and red fescue in Denmark) and grassland soils in USA.We took two large undisturbed soil columns (250 mmx250 mm×500 mm),and scanned the soil columns at in-situ soil water content conditions using X-ray computed tomography at a voxel resolution of 0.945 x 0.945 × 1.500 mm3.After reconstruction and visualization,we quantified the characteristics of macropore networks.In the studied forest soils,the main types of macropores were root channels,inter-aggregate voids,macropores without knowing origin,root-soil interface and stone-soil interface.While macropore networks tend to be more complex,larger,deeper and longer.The forest soils have high macroporosity,total macropore wall area density,node density,and large macropore volume,hydraulic radius,mean macropore length,angle,and low tortuosity.The findings suggest that macropore networks in the forest soils have high interconnectivity,vertical continuity,linearity and less vertically oriented.

  8. Updates on Water Use of Pistachio Orchards Grown in the San Joaquin Valley of California on Saline Soils (United States)

    Zaccaria, Daniele; Marino, Giulia; Whiting, Michael; Sanden, Blake; Ferguson, Louise; Lampinen, Bruce; Kent, Eric; Snyder, Richard; Grattan, Stephen; Little, Cayle


    Pistachio acreage is rapidly expanding in California thanks to its economic profitability and capacity to grow and produce in salt-affected soils. Our team at University of California is updating information on actual water use (ET) of mature pistachio orchards grown on saline soils under micro-irrigation methods. Actual Evapotranspiration (ETa) and Crop Coefficients (Ka) were determined for the 2015 and 2016 crop seasons on four pistachio orchards grown in the San Joaquin Valley (SJV) on grounds with increasing levels of soil-water salinity, using the residual of energy balance method with a combination of eddy covariance and surface renewal equipment. Tree canopy cover, light interception, and plant water status across the orchards were also measured and evaluated. Our preliminary results show that salinity strongly affects the tree water use, resulting in 10-30% less ET for medium to high salt-affected soils. Salinity also showed a strong effect on tree water status and light interception, as suggested by values of the Midday Stem Water Potential (ΨSWP) around 10 to 15-bar lower in salt-affected than in the control orchard, and by the intercepted Photosynthetic Active Radiation (PAR) decreasing from 75% in the control orchard to 25% in the severely salt affected grounds. The crop coefficient values we observed in this study are lower than those commonly used for irrigation scheduling in the SJV, suggesting that pistachio growers could better tailor irrigation management to the actual site-specific orchard conditions (e.g. canopy features and soil-water salinity) if they are provided updated information. Improved irrigation practices could likely lead to significant water savings and thus improve the resource-efficiency and competitiveness of pistachio production in the SJV. Keywords: Pistacia vera L., salinity, stem water potential, surface renewal, canopy cover.

  9. HCMM: Soil moisture in relation to geologic structure and lithology, northern California. [Sacremento Valley (United States)

    Rich, E. I. (Principal Investigator)


    The author has identified the following significant results. A preliminary analysis of the HCMM imagery of the project area indicated that locally some differentiation of lithologic units within the Northern Coast Range may be possible. Of significance, however, was a thermally cool linear area that appeared on the 30 May 1978 Nite-IR. This linear feature seemed to coincide with the Bear Mt. Fault and with the axis of the Chico Monocline along the eastern margin of the Sacramento Valley.

  10. Metals in residential soils and cumulative risk assessment in Yaqui and Mayo agricultural valleys, northern Mexico. (United States)

    Meza-Montenegro, Maria M; Gandolfi, A Jay; Santana-Alcántar, María Ernestina; Klimecki, Walter T; Aguilar-Apodaca, María Guadalupe; Del Río-Salas, Rafael; De la O-Villanueva, Margarita; Gómez-Alvarez, Agustín; Mendivil-Quijada, Héctor; Valencia, Martín; Meza-Figueroa, Diana


    This investigation examines the extent of soil metal pollution associated with the Green Revolution, relative to agricultural activities and associated risks to health in the most important agricultural region of Mexico. Metal contents in bulk soil samples are commonly used to assess contamination, and metal accumulations in soils are usually assumed to increase with decreasing particle size. This study profiled the spatial distribution of metals (Ni, Cr, Pb, Cu, Fe, Cd, V, Hg, Co, P, Se, and Mn) in bulk soil and fine-grained fractions (soil-derived dust) from 22 towns and cities. The contamination of soil was assessed through the use of a geoaccumulation index (Igeo) and pollution index (PI). The results of this study indicated that a number of towns and cities are moderately to highly polluted by soil containing Be, Co, Hg, P, S, V, Zn, Se, Cr, and Pb in both size fractions (coarse and fine). Hazard index in fine fraction (HI(children)=2.1) shows that risk assessment based on Co, Mn, V, and Ni spatially related to power plants, have the potential to pose health risks to local residents, especially children. This study shows that risk assessment based on metal content in bulk soil could be overestimated when compared to fine-grained fraction. Our results provide important information that could be valuable in establishing risk assessment associated with residential soils within agricultural areas, where children can ingest and inhale dust. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Remote sensing soil salinity map for the San Joaquin Valley, California (United States)

    Soil salinization is a major natural hazard to worldwide agriculture. We present a remote imagery approach that maps salinity within a range (i.e., salinities less than 20 dS m-1, when measured as the electrical conductivity of the soil saturation extract), accuracy, and resolution most relevant to ...

  12. Modified soil adjusted vegetation index of the Sarcobatus Flat area of the Death Valley (United States)

    U.S. Geological Survey, Department of the Interior — The raster-based Modified Soil Adjusted Vegetation Index was derived from Landsat Thematic Mapper imagery data acquired during June 1989 for Sarcobatus Flat. The...

  13. Soil Development and Fertility Characteristics of Inland Valleys in the Rain Forest Zone of Nigeria:Mineralogical Composition and Particle-Size Distribution

    Institute of Scientific and Technical Information of China (English)



    The particle-size distribution and mineralogical composition of the clay (<2 μm) and fine-sand (0.25-0.10 mm)fractions in soils of two inland valleys in Abakaliki and Bende,Southeast Nigeria,were investigated to provide basic information on soil-forming processes and agricultural potentials.These soils were silty or clayey,deriving from Cretaceous or Tertiary shale materials.The particle-size distribution and its computation on a clay-free basis revealed relatively remarkable lithologic breaks in a couple of pedons.The effect of lithologic discontinuities on soil mineralogical composition was not,however,conspicuous.Petrographic investigation revealed that quartz predominantly comprised the fine-sand fraction in the soils at both study sites.Nevertheless,the clay mineralogical composition of the soils was a mixture of kaolinite,irregularly interstratified smectite-illite intergrades (S/I),hydroxyl-Al interlayered 2:1 type clays (HICs),vermiculite,smectite,halloysite and illite along with fine-sized quartz in Abakaliki.The soils of Bende predominantly contained smectite,which was partially interlayered with hydroxyl-A1 and kaolinite.It is suggested that seasonal floodwater has slowed the disintegration of weatherable clay minerals inherited from the shale,while quartz originating from the sandstone is predominant in the fine-sand fraction.Additionally,a possible soil-forming process observed at the both study sites was ferrolysls,which was indicated by a clear decreasing pattern of HICs downward in the soil profiles.The entry of S/I and vertical distribution patterns for a couple of clay minerals in the pedon suggested that the soils in Abakaliki have developed under the significant influence of aeolian dust delivered by the Harmattan.The findings might describe a site-specific deposition pattern of Harmattan dusts as well as hydromorphic soil-forming processes in the wetlands of the inland valleys.

  14. Modelling soil erosion and associated sediment yield for small headwater catchments of the Daugava spillway valley, Latvia (United States)

    Soms, Juris


    The accelerated soil erosion by water and associated fine sediment transfer in river catchments has various negative environmental as well as economic implications in many EU countries. Hence, the scientific community had recognized and ranked soil erosion among other environmental problems. Moreover, these matters might worsen in the near future in the countries of the Baltic Region, e.g. Latvia considering the predicted climate changes - more precisely, the increase in precipitation and shortening of return periods of extreme rainfall events, which in their turn will enable formation of surface runoff, erosion and increase of sediment delivery to receiving streams. Thereby it is essential to carry out studies focused on these issues in order to obtain reliable data in terms of both scientific and applied aims, e.g. environmental protection and sustainable management of soils as well as water resources. During the past decades, many of such studies of soil erosion had focused on the application of modelling techniques implemented in a GIS environment, allowing indirectly to estimate the potential soil losses and to quantify related sediment yield. According to research results published in the scientific literature, this approach currently is widely used all over the world, and most of these studies are based on the USLE model and its revised and modified versions. Considering that, the aim of this research was to estimate soil erosion rates and sediment transport under different hydro-climatic conditions in south-eastern Latvia by application of GIS-based modelling. For research purposes, empirical RUSLE model and ArcGIS software were applied, and five headwater catchments were chosen as model territories. The selected catchments with different land use are located in the Daugava spillway valley, which belongs to the upper Daugava River drainage basin. Considering lithological diversity of Quaternary deposits, a variety of soils can be identified, i.e., Stagnic


    Directory of Open Access Journals (Sweden)

    Branimir Šimić


    Full Text Available Growing seed-maize is more profitable than mercantile maize, but also riskier, especially under less favourable soil conditions because parents of maize hybrids are less tolerant than their progeny to environmental stress, including plant nutrition problems. For this reason, we conducted the field experiment with P and K fertilization and a range of maize genotypes (parents of seed-maize on soil with moderate P and K supplies. Following application of 382 kg P and 726 kg K ha-1 , maize grain yields increased from 1.93 t ha-1 to 2.86 t ha-1 (3-year means. High correlations were found between grain yields of maize genotypes and nutrient concentrations in ear-leaf at silking stage (r = 0.82** for P and r = 0.90** for K. Based on these results, we could recommend the higher P and K fertilization of seed-maize crops on soils of similar chemical properties.

  16. Environmental quality of a semi-natural area of the Po Valley (northern Italy): aspects of soil and vegetation. (United States)

    Manfredi, Paolo; Giupponi, Luca; Cassinari, Chiara; Trevisan, Marco


    This work, originating in the preliminary analyses of a Life project and co-financed by the European Union ("Environmental recovery of degraded soils and desertified by a new treatment technology for land reconstruction", Life 10 ENV IT 400 "New Life";, aims to evaluate the environmental quality of a semi-natural area of the Po Valley (northern Italy) by analysing the characteristics of soil and vegetation. The area of study is located in the municipal territory of Piacenza (Emilia-Romagna, Italy) along the eastern shores of the river Trebbia and is made up of the closed landfill of Solid Urban Waste of Borgotrebbia (active from 1972 to 1985) and of the neighbouring areas (in North-South order: riverside area, northern borders of the landfill, landfill disposal, southern borders and cultivated corn fields). For each area pedological and vegetational analyses were carried out and in particular, as regards the soil, various chemical-physical analyses were done among which: pH, organic carbon, total nitrogen, salinity, exchangeable bases and granulometry. The ground vegetation data were collected using phytosociological relevés according to the method of the Zurich-Montpellier Sigmatist School, (Braun-Blanquet, 1964). For the analysis of the environmental quality of each area, the floristic-vegetation indexes system was applied as proposed by Taffetani & Rismondo (2009) (updated by Rismondo et al., 2011) conveniently created for analysing the ecological functionality of the agro-ecosystems. The results obtained by such applications drew attention to a dynamic vegetation mass in the landfill which, despite a value of the floristic biodiversity index (IFB) comparable to that of the borders, shows a much lower value of the maturity index (IM). This is due to the elevated percentage of annual species (index of the therophytic component = 52.78%) belonging to the phytosociological class Stellarietea mediae Tüxen, Lohmeyer & Preising ex

  17. Motivating farmers for soil and water conservation: A promising strategy from the Bolivian mountain valleys

    NARCIS (Netherlands)

    Kessler, A.


    Successful examples of strategies that motivate farmers for the large-scale execution of soil and water conservation (SWC) practices are scarce. This paper presents a promising strategy for changing mostly passive Bolivian Andes farmers into active participators in natural resources conservation. In

  18. Pancam Multispectral and APXS Chemical Examination of Rocks and Soils in Marathon Valley and Points South Along the Rim of Endeavour Crater (United States)

    Farrand, W. H.; Johnson, J. R.; Bell, J. F., III; Mittlefehldt, D. W.; Gellert, R.; VanBommel, S.; Arvidson, R. E.; Schroder, C.


    The Mars Exploration Rover Opportunity has concluded its exploration of Marathon Valley, a 100-meter-wide valley in the western rim of the 22-kilometer-diameter Endeavour crater. Orbital observations from CRISM (Compact Reconnaissance Imaging Spectrometer for Mars) indicated the presence of Fe smectites in Marathon Valley. Since leaving the valley, Opportunity has been traversing along the inner rim of the crater, and currently towards the outer rim. This presentation describes the Pancam 430 to 1009 nanometer (VNIR - Visible and Near Infared) multispectral reflectance and APXS (Alpha Particle X-ray Spectrometer) chemical compositions of rock and soil units observed during the latter portions of the Marathon Valley campaign on the Knudson Ridge area and observations of those materi-als along the traverse to the south. Full Pancam spectral coverage of rock targets consists of 13 filter (13f) data collections with 11 spectrally unique channels with data processing. Data were examined using spectral parameters, decorrelation stretch composites, and spectral mixture analysis. Note that color terms used here refer to colors in various false-color renditions, not true colors. The APXS determines major and select trace element compositions of targets.

  19. Soil sampling and analysis plan for the Bear Creek Valley Floodplain at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)



    This Sampling and Analysis Plan (SAP) for the Bear Creek Valley (BCV) Floodplain presents the approach and rationale for characterizing potentially contaminated soils and sediments of the Bear Creek floodplain and the impact of any contaminants on the floodplain ecosystem. In addition to this SAP, the Remedial Investigation Work Plan for Bear Creek (Y02-S600) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee (ES/ER-19&D2) presents background information pertaining to this floodplain investigation.

  20. Soil water storage and groundwater behaviour in a catenary sequence beneath forest in central Amazonia: I. Comparisons between plateau, slope and valley floor

    Directory of Open Access Journals (Sweden)

    M. G. Hodnett


    Full Text Available Soil water storage was monitored in three landscape elements in the forest (plateau, slope and valley floor over a 3 year period to identify differences in sub-surface hydrological response. Under the plateau and slope, the changes of storage were very similar and there was no indication of surface runoff on the slope. The mean maximum seasonal storage change was 156 mm in the 2 m profile but it was clear that, in the dry season, the forest was able to take up water from below 3.6 m. Soil water availability was low. Soil water storage changes in the valley were dominated by the behaviour of a shallow water table which, in normal years, varied between 0.1 m below the surface at the end of the wet season and 0.8 m at the end of the dry season. Soil water storage changes were small because root uptake was largely replenished by groundwater flow towards the stream. The groundwater behaviour is controlled mainly by the deep drainage from beneath the plateau and slope areas. The groundwater gradient beneath the slope indicated that recharge beneath the plateau and slope commences only after the soil water deficits from the previous dry season have been replenished. Following a wet season with little recharge, the water table fell, ceasing to influence the valley soil water storage, and the stream dried up. The plateau and slope, a zone of very high porosity between 0.4 and 1.1 m, underlain by a less conductive layer, is a probable route for interflow during, and for a few hours after, heavy and prolonged rainfall.

  1. Microbial Community Responses to Increased Water and Organic Matter in the Arid Soils of the McMurdo Dry Valleys, Antarctica

    Directory of Open Access Journals (Sweden)

    Heather N Buelow


    Full Text Available The soils of the McMurdo Dry Valleys, Antarctica are an extreme polar desert, inhabited exclusively by microscopic taxa. This region is on the threshold of anticipated climate change, with glacial melt, permafrost thaw, and the melting of massive buried ice increasing liquid water availability and mobilizing soil nutrients. Experimental water and organic matter (OM amendments were applied to investigate how these climate change effects may impact the soil communities. To identify active taxa and their functions, total community RNA transcripts were sequenced and annotated, and amended soils were compared with unamended control soils using differential abundance and expression analyses. Overall, taxonomic diversity declined with amendments of water and organic matter. The domain Bacteria increased with both amendments while Eukaryota declined from 38% of all taxa in control soils to 8% and 11% in water and OM amended soils, respectively. Among bacterial phyla, Actinobacteria (59% dominated water-amended soils and Firmicutes (45% dominated OM amended soils. Three bacterial phyla (Actinobacteria, Proteobacteria, and Firmicutes were primarily responsible for the observed positive functional responses, while eukaryotic taxa experienced the majority (27 of 34 of significant transcript losses. These results indicated that as climate changes in this region, a replacement of endemic taxa adapted to dry, oligotrophic conditions by generalist, copiotrophic taxa is likely.

  2. Deep soil dynamics of floodplain carbon in the Central Valley of California (United States)

    Steger, Kristin; Kim, Amy T.; Viers, Joshua H.; Fiener, Peter; Smart, David R.


    Active floodplains can putatively store large amounts of organic carbon (SOC) in subsoils originating from catchment erosion processes with subsequent floodplain deposition. Changes in catchment land use patterns and river management to optimize agricultural use of the floodplain or to restore the floodplain back to natural systems may alter SOC stocks in these soils. Our study focussed on the assessment of SOC pools associated with alluvial floodplain soils converting from conventional arable use to restored flooding and floodplain vegetation. We evaluated depth-dependent SOC contents using 21 drillings down to 3m and 10 drillings down to 7m along a transect through a floodplain area of the lower Cosumnes River, a non-constrained tributary to the Sacramento - San Joaquin Delta in California. In general, our data underline the importance of carbon stocks in subsoils >1m, which represent up to 19 and 6% of SOC stocks at the different sampling locations accounting for drillings down to 3 and 7m, respectively. All of our sampling sites revealed a SOC-rich buried A horizon between 70 and 130cm with SOC concentrations between 11 and 17g/kg, representative of the functioning floodplain system pre-disturbance. Radiocarbon dating showed that the 14C age in the buried horizon was younger than in the overlaying soils, indicating a substantial sedimentation phase with sediments of low SOC concentrations and higher carbon age. This sedimentation phase was probably associated with the huge upstream sediment production resulting from the hydraulic gold mining at the Cosumnes River starting around 1860. Apart from larger SOC contents in the buried horizon compared to the recent topsoil, its 13C and 15N isotopic signature also differed suggesting a change in long-term input of plant organic matter as well as different fertilization regimes during the agricultural use of the area from approx. 1890 onwards. In summary, deep alluvial soils in floodplains store large amounts of SOC

  3. Major and trace element distribution in soil and sediments from the Egyptian central Nile Valley (United States)

    Badawy, W. M.; Ghanim, E. H.; Duliu, O. G.; El Samman, H.; Frontasyeva, M. V.


    The distributions of 32 major and trace elements in 72 surface soil and sediment samples collected from the Asyut to Cairo Nile river section were determined by epithermal neutron activation analysis and compared with corresponding data for the Upper Continental Crust, North American Shale Composite, Average Soil and Average Sediment as well as suspended sediments from Congo and Upper Niger Rivers, in order to establish to which extent the Nile sedimentary material can be related to similar material all over the world as well as to local geology. Their relative distributions indicate the presence of detrital material of igneous origin, most probably resulting from weathering of the Ethiopian Highlands and transported by the Blue Nile, the Nile main tributary. The distributions of nickel, zinc, and arsenic contents suggest that the lower part of the Nile and its surroundings including the Nile Delta is not seriously polluted with heavy metals, so that, in spite of a human activity, which lasted four millennia, the Nile River continues to be less affected by any anthropogenic contamination.


    Directory of Open Access Journals (Sweden)

    Leszek Pływaczyk


    Full Text Available In soils, where the water table is deeply located and has a minor impact on the moisture content of the surface layer, we are dealing with the precipitation-and-water type of water management. If underground water level is close to the surface, the top stratum of the soil, apart from precipitation, is additionally fed by water absorption from underground waters. Then we are dealing with ground-and-water type of management. We consider such types of water management of soil in the area of the left-bank valley of the Odra river, above and below the dam in Brzeg Dolny. The dominant soil types here are middle fen soils, based on middle clay and heavy clay as well as loam, which, in conditions of either excess or deficiency of moisture, are difficult to cultivate. The work compares water management of two soil profiles in vegetation periods between 2004 and 2009. The formation of underground waters, meteorological conditions and the course of the water reserves in the strata 0–50 cm and 0–100 cm were estimated with various supplying conditions of the active stratum of the soil. The volume of the supply with percolated water from underground water of the layer 50–100 cm on approximately 75–90 mm was also estimated. This value was mainly dependent on the depth of the retention of the water table of the soil profile above the level in Brzeg Dolny.

  5. Recovery Act. Sub-Soil Gas and Fluid Inclusion Exploration and Slim Well Drilling, Pumpernickel Valley, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Fairbank, Brian D. [Nevada Geothermal Power Company, Las Vegas, NV (United States)


    Nevada Geothermal Power Company (NGP) was awarded DOE Award DE-EE0002834 in January 2010 to conduct sub-soil gas and fluid inclusion studies and slim well drilling at its Black Warrior Project (now known as North Valley) in Washoe and Churchill Counties, Nevada. The project was designed to apply highly detailed, precise, low-cost subsoil and down-hole gas geochemistry methods from the oil and gas industry to identify upflow zone drilling targets in an undeveloped geothermal prospect. NGP ran into multiple institutional barriers with the Black Warrior project relating to property access and extensive cultural survey requirement. NGP requested that the award be transferred to NGP’s Pumpernickel Valley project, due to the timing delay in obtaining permits, along with additional over-budget costs required. Project planning and permit applications were developed for both the original Black Warrior location and at Pumpernickel. This included obtaining proposals from contractors able to conduct required environmental and cultural surveying, designing the two-meter probe survey methodology and locations, and submitting Notices of Intent and liaising with the Bureau of Land Management to have the two-meter probe work approved. The award had an expiry date of April 30, 2013; however, due to the initial project delays at Black Warrior, and the move of the project from Black Warrior to Pumpernickel, NGP requested that the award deadline be extended. DOE was amenable to this, and worked with NGP to extend the deadline. However, following the loss of the Blue Mountain geothermal power plant in Nevada, NGP’s board of directors changed the company’s mandate to one of cash preservation. NGP was unable to move forward with field work on the Pumpernickel property, or any of its other properties, until additional funding was secured. NGP worked to bring in a project partner to form a joint venture on the property, or to buy the property. This was unsuccessful, and NGP notified

  6. Time as An Important Soil-Forming Factor Influencing Modern and Ancient Magnetic Susceptibility Enhancement Along the Delaware River Valley, USA (United States)

    Stinchcomb, G. E.; Peppe, D. J.; Driese, S. G.


    Magnetic susceptibility is an increasingly popular low-cost method for rapidly assessing paleoclimate and paleoenvironmental impact on buried soils. The goal of this study is to determine the primary influence(s) on soil magnetic susceptibility along floodplain, terrace and upland soils in the middle Delaware River Valley, USA, using environmental magnetic, pedologic, and stratigraphic techniques. Two-hundred thirty samples were collected from age-constrained sandy, quartz-rich, floodplain, terrace, and upland soils (Entisols, Inceptisols). A Kruskal-Wallis (K-W) and post-hoc Tukey-Kramer (T-K) (α=0.05) multiple comparisons analysis on 176 mass-specific low-field susceptibility (Xlf) assays show that A and B horizons are magnetically enhanced compared to C and E horizons (p<0.0001). Results of descriptive soil micromorphology show that A and B horizons contain anywhere from 10-50% more amorphous organic matter and clay films along pores than do C and E horizons. Enhanced Xlf values also correlate positively (R^2=0.63) with the soil molecular weathering ratio of Alumina/Bases, suggesting that increased weathering likely results in the formation of pedogenic magnetic minerals and enhanced magnetic susceptibility signal. Additional K-W and T-K testing show that Xlf results, when grouped by floodplain-terrace designation (i.e., chronofunction) are significantly different (p<0.0001). The older T3 terrace and upland Xlf values (0.34±0.14 10^-6 m^3 kg^-1) are greater than the younger T2 terrace (0.18±0.06 10^-6 m^3 kg^-1) values, which are greater than modern floodplain (0.09±0.01 10^-6 m^3 kg^-1) Xlf values. These data suggest that longer intervals of soil formation enhance the Χlf value. This hypothesis is further supported when 159 Xlf values are plotted vs. age for the entire Holocene. A locally-weighted regression smoothing curve (LOESS) shows two distinct intervals of magnetic enhancement during previously established dry intervals, the early and late

  7. [Effects of grazing disturbance on soil active organic carbon in mountain forest-arid valley ecotone in the upper reaches of Minjiang River]. (United States)

    Liu, Shan-Shan; Zhang, Xing-Hua; Gong, Yuan-Bo; Li, Yuan; Wang, Yan; Yin, Yan-Jie; Ma, Jin-Song; Guo, Ting


    Effects of grazing disturbance on the soil carbon contents and active components in the four vegetations, i.e., artificial Robinia pseudoacacia plantation, artificial poplar plantation, Berberis aggregate shrubland and grassland, were studied in the mountain forest-arid valley ecotone in the upper Minjiang River. Soil organic carbon and active component contents in 0-10 cm soil layer were greater than in 10-20 cm soil layer at each level of grazing disturbance. With increasing the grazing intensity, the total organic carbon (TOC), light fraction organic carbon (LFOC), particulate organic carbon (POC) and easily oxidized carbon (LOC) contents in 0-10 cm soil layer decreased gradually in the artificial R. pseudoacacia plantation. The LFOC content decreased, the POC content increased, and the TOC and LOC contents decreased initially and then increased with increasing the grazing intensity in the artificial poplar plantation. The POC content decreased, and the TOC, LFOC and LOC contents decreased initially and then increased with increasing the grazing intensity in the B. aggregate shrubland. The POC and TOC contents decreased, and the LFOC and LOC contents decreased initially and then increased with increasing the grazing intensity in the grassland. The decreasing ranges of LOC, LFOC and POC contents were 0.1-7.9 times more than that of TOC content. There were significant positive relationships between TOC and LOC, LFOC and POC, suggesting that the active organic carbon components could reflect the change of soil total carbon content.

  8. Stable isotope analyses of NO2-, NO3-, and N2O in the hypersaline ponds and soils of the McMurdo Dry Valleys, Antarctica (United States)

    Peters, Brian; Casciotti, Karen L.; Samarkin, Vladimir A.; Madigan, Michael T.; Schutte, Charles A.; Joye, Samantha B.


    Nitrous oxide (N2O) is produced in significant quantities in the soils and lakes of the McMurdo Dry Valleys, Antarctica. Unraveling the mechanisms of N2O production in these soils and ponds is of great interest due to the extreme arid and cold conditions, which are hostile to life. Recent studies have shown production of N2O having unique stable isotopic signatures in certain Dry Valley soils through abiotic reduction of nitrate (NO3-) and nitrite (NO2-) on active surfaces of Fe(II)-containing minerals, a process known as ‘chemodenitrification’. In this study, δ15N and δ18O of N2O, NO2-, and NO3-, as well as the N2O site preference (SP), were measured at three sites to evaluate the role of chemodenitrification in N2O production. The δ15N and δ18O values in NO3- indicated an atmospheric source, while δ15N values in NO2- (-150‰) were indicative of abiotic reactions. Instead of finding unique SP values for N2O at Dry Valley sites, SP values mostly fell within the range associated with microbial N2O production mechansims. The δ15N and δ18O of N2O were also within a range of values expected for various biological N2O production mechanisms. However, efforts to detect biological activity in Don Juan Pond (DJP), a hypersaline pond in the Wright Valley, have been largely unsuccessful. We consider two possible scenarios for N2O production at DJP: (1) abiotic production in the pond, or (2) biological production in nearby freshwater and transport to the pond. Although little is known about the isotopic systematics of abiotic N2O production, these results indicate that if the observed N2O was produced by an abiotic mechanism, its isotopic signature is indistinguishable from that expected from a mixture of several microbial processes and thus, the formation pathway cannot be determined from isotopic composition alone.

  9. A study of local amplification effect of soil layers on ground motion in the Kathmandu Valley using microtremor analysis (United States)

    Paudyal, Youb Raj; Yatabe, R.; Bhandary, N. P.; Dahal, R. K.


    Past researchers have anticipated the occurrence of a great earthquake in the central Himalayas in the near future. This may cause serious damage in the Kathmandu Valley, which sits on an ancient lake bed zone, with lacustrine sediments of more than 500 m depth. In this study, the predominant frequency of ground motion is evaluated using the Horizontal-to-Vertical ( H/V) spectral ratio technique and recordings of ambient noise. The results of the H/V ratio show two peaks in about 20 percent of the locations, which are distributed mainly in and around the center and northern part of the Kathmandu Valley. The predominant frequencies vary from 0.5 Hz to 8.9 Hz in the study area, whereas the second resonance frequency varies from 4 Hz to 6 Hz in the center and northern part of the valley. This indicates that the center and northern part of the valley have a wide range of resonance frequency due to two levels of impedance contrast — one may be from the surface layer and the other may be from the layer underneath. These two levels of resonance indicate the importance of considering the effects of surface and lower layers during the planning and designing of infrastructures in the Kathmandu Valley.

  10. Effects of plant cover on properties of rhizosphere and inter-plant soil in a semiarid valley, SW China

    NARCIS (Netherlands)

    Qu, Laiye; Huang, Yuanyuan; Ma, Keming; Zhang, Yuxin; Biere, A.


    Plant establishment is widely recognized as an effective way to prevent soil erosion in arid and semiarid ecosystems. Artemisia gmelinii, a pioneering species in many degraded ecosystems in China, is effective in improving soil properties and controlling runoff and soil loss, but mechanisms underlyi

  11. Soil erosion in sloping vineyards assessed by using botanical indicators and sediment collectors in the Ruwer-Mosel valley

    NARCIS (Netherlands)

    Rodrigo Comino, J.; Quiquerez, A.; Follain, S.; Raclot, D.; Bissonnais, Le Y.; Casalí, J.; Giménez, R.; Cerdà, A.; Keesstra, S.D.; Brevik, E.C.; Pereira, P.; Senciales, J.M.; Seeger, M.; Ruiz Sinoga, J.D.; Ries, J.B.


    Steep slopes, erodible soils, rill and ephemeral gullies, compaction due to wheel traffic and human trampling are common features in vineyards around the world and result in high soil erosion rates. However, little is known about seasonal and spatial variations of soil erosion rates due to factor

  12. Soil erosion in sloping vineyards assessed by using botanical indicators and sediment collectors in the Ruwer-Mosel valley

    NARCIS (Netherlands)

    Rodrigo Comino, J.; Quiquerez, A.; Follain, S.; Raclot, D.; Bissonnais, Le Y.; Casalí, J.; Giménez, R.; Cerda Bolinches, Artemio; Keesstra, S.D.; Brevik, E.C.; Pereira, P.; Senciales, J.M.; Seeger, M.; Ruiz Sinoga, J.D.; Ries, J.B.


    Steep slopes, erodible soils, rill and ephemeral gullies, compaction due to wheel traffic and human trampling are common features in vineyards around the world and result in high soil erosion rates. However, little is known about seasonal and spatial variations of soil erosion rates due to factors s

  13. Light availability and soil flooding regulate photosynthesis of an imperiled shrub in lowland forests of the Mississippi Alluvial Valley, USA (United States)

    B. R. Lockhart; E. S. Gardiner; T. D. Leininger; M. S. Devall; A. D. Wilson; K. F. Connor; P. B. Hamel; N. M. Schiff


    Physiological responses to light availability and soil flooding on Lindera melissifolia (Walt.) Blume were studied. Shrubswere grown under 70, 37 or 5% of full sunlight with either 0, 45, or 90 d of soil flooding. We measured leaf photosyntheticrate (PN) to test the hypothesis that soil flooding reduces PN in L. melissifolia following shrub...

  14. Effects of plant cover on properties of rhizosphere and inter-plant soil in a semiarid valley, SW China

    NARCIS (Netherlands)

    Qu, Laiye; Huang, Yuanyuan; Ma, Keming; Zhang, Yuxin; Biere, A.


    Plant establishment is widely recognized as an effective way to prevent soil erosion in arid and semiarid ecosystems. Artemisia gmelinii, a pioneering species in many degraded ecosystems in China, is effective in improving soil properties and controlling runoff and soil loss, but mechanisms

  15. Regional variations in water quality and relationships to soil and bedrock weathering in the southern Sacramento Valley, California, USA (United States)

    Wanty, R.B.; Goldhaber, M.B.; Morrison, J.M.; Lee, L.


    Regional patterns in ground- and surface-water chemistry of the southern Sacramento Valley in California were evaluated using publicly available geochemical data from the US Geological Survey's National Water Information System (NWIS). Within the boundaries of the study area, more than 2300 ground-water analyses and more than 20,000 surface-water analyses were available. Ground-waters from the west side of the Sacramento Valley contain greater concentrations of Na, Ca, Mg, B, Cl and SO4, while the east-side ground-waters contain greater concentrations of silica and K. These differences result from variations in surface-water chemistry as well as from chemical reactions between water and aquifer materials. Sediments that fill the Sacramento Valley were derived from highlands to the west (the Coast Ranges) and east (the Sierra Nevada Mountains), the former having an oceanic provenance and the latter continental. These geologic differences are at least in part responsible for the observed patterns in ground-water chemistry. Thermal springs that are common along the west side of the Sacramento Valley appear to have an effect on surface-water chemistry, which in turn may affect the ground-water chemistry.

  16. Soil Nematodes and Their Prokaryotic Prey Along an Elevation Gradient in The Mojave Desert (Death Valley National Park, California, USA

    Directory of Open Access Journals (Sweden)

    Alyxandra Pikus


    Full Text Available We characterized soil communities in the Mojave Desert across an elevation gradient. Our goal was to test the hypothesis that as soil quality improved with increasing elevation (due to increased productivity, the diversity of soil prokaryotes and nematodes would also increase. Soil organic matter and soil moisture content increased with elevation as predicted. Soil salinity did not correlate to elevation, but was highest at a mid-gradient, alluvial site. Soil nematode density, community trophic structure, and diversity did not show patterns related to elevation. Similar results were obtained for diversity of bacteria and archaea. Relationships between soil properties, nematode communities, and prokaryotic diversity were site-specific. For example, at the lowest elevation site, nematode communities contained a high proportion of fungal-feeding species and diversity of bacteria was lowest. At a high-salinity site, nematode density was highest, and overall, nematode density showed an unexpected, positive correlation to salinity. At the highest elevation site, nematode density and species richness were attenuated, despite relatively high moisture and organic matter content for the soils. Our results support emerging evidence for the lack of a relationship between productivity and the diversity of soil nematodes and prokaryotes.

  17. Soil sampling and analysis plan for the Bear Creek Valley floodplain at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)



    This Sampling and Analysis Plan (SAP) for the Bear Creek Valley (BCV) Floodplain presents the approach and rationale for characterizing potentially contaminated soils and sediments of the Bear Creek floodplain and the impact of any contaminants on the floodplain ecosystem. It is an addendum to a previously issued document, the Remedial Investigation Work Plan for Bear Creek (Y02-S600) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee (ES/ER-19&D2), which presents background information pertaining to this floodplain investigation. The strategy presented in the SAP is to divide the investigation into three component parts: a large-scale characterization of the floodplain; a fine-scale characterization of the floodplain beginning with a known contaminated location; and a stream sediment characterization. During the large-scale and the fine-scale characterizations, soil and biota samples (i.e., small mammals, earthworms, and vegetation) will be collected in order to characterize the nature and extent of floodplain soil contamination and the impact of this contamination on floodplain biota. The fine-scale characterization will begin with an investigation of a site corresponding to the location noted in the Remedial Investigation Work Plan (ES/ER-19&D2) as an area where uranium and PCBs are concentrated in discrete strata. During this fine-scale characterization, a 1 m deep soil profile excavation will be dug into the creek berm, and individual soil strata in the excavation will be screened for alpha radiation, PCBs, and VOCs. After the laboratory analysis results are received, biota samples will be collected in the vicinity of those locations.


    Institute of Scientific and Technical Information of China (English)



    Songnen valley is one of the important commodity grain bases in China. But now, it becomes the worst region with water and soil erosion, which result in some serious consequences of the environment, as well as fluvial deposit, moreover, the grain yields dropped and inconvinient to the people to live there.%松嫩流域是我国重要商品粮基地之一,目前,松嫩流域已成为我国主要商品粮基地中水土流失最严重的地区,水土流失不仅影响粮食生产,而且泥沙淤积河道、恶化环境,给工业生产和交通运输及人民生命财产带来严重危害。

  19. Effect of almond shell biochar addition on the hydro-physical properties of an arable Central Valley soil (United States)

    Lopez, V.; Ghezzehei, T. A.


    Biochar is composed of any carbonaceous matter pyrolyzed under low oxygen exposure. Its use as a soil amendment to address soil infertility has been accelerated by studies reporting positive effects of enhanced nutrient retention, cation exchange capacity, microbial activity, and vegetative growth over time. Biochar has also been considered as a carbon sequestration method because of its reported environmental persistence. While the aforementioned effects are positive benefits of biochar's use, its impact on soil physical properties and water flow are equally important in maintaining soil fertility. This study aims to show how soil physical and hydraulic properties change over time with biochar addition. To address these aims, we conducted a 9 week microcosm incubation experiment with local arable loamy sand soils amended with biochar. Biochar was created from locally collected almond shells and differs by pyrolysis temperatures (350°C, 700°C) and size (determining content of water stable aggregates remaining after wet sieving. This series of experiments is expected to provide a greater understanding on the impact biochar addition on soil physical and hydraulic properties. Furthermore, it provides insight into whether or not converting local agricultural waste into biochar for soil use will be beneficial, especially in agricultural systems undergoing climate stress.

  20. Regional soil geochemistry in the Ojailen Valley: a realm dominated by the industrial and mining city of Puertollano (South Central Spain) (United States)

    López-Berdonces, Miguel; Fernandez-Calderón, Sergio; Higueras, Pablo; María Esbrí, Jose; Gonzalez-Corrochano, Beatríz; García-Noguero, Eva Mª; Martínez-Coronado, Alba; García-Noguero, Carolina


    Regional soil geochemistry in the Ojailén Valley: a realm dominated by the industrial and mining city of Puertollano (South Central Spain). Authors: Miguel A. López-Berdonces¹; Sergio Fernández Calderón¹; Pablo Higueras¹; José María Esbrí¹; Beatriz González-Corrochano¹; Eva Mª García-Noguero¹; Alba Martínez-Coronado¹; Carolina García Noguero¹ ¹Instituto de Geología Aplicada, Universidad de Castilla La Mancha, Almadén 13400 (Spain). Ojailén Valley is situated in South Central of Spain, an area where livestock, agriculture, mining and industry coexist. This work tries to assess the relationships between these activities and local environmental compartments: water, soils and heavy metal contents, and establish the most appropriate methodology of sample treatment and analytical techniques that can be employed on this kind of studies. For soil geochemistry, 152 samples were taken at two different depths, one at surface layer and another at 20 cm depth, and establish relationships between them and the possible sources. For this purpose, we determine soil parameters (pH, conductivity and organic matter) and total metal contents by Energy Dispersion of X Ray Fluorescence (EDXRF). Samples with higher nickel contents were analyzed with Inductive Coupled Plasma Spectroscopy (ICP-OES) after acid digestion. The study of surface waters includes 18 samples along the river and tributaries near mining and industrial areas. Water analysis was performed by ICP-OES. Soil samples shows pH between 6 and 8.5, highest located near on the east part of the valley, in the vicinity of petrochemical complex. Conductivity values show higher levels (1600 µS cm¯¹) in the vicinity of Puertollano and the industrial sites. Local reference value (LRV) for contaminated soils were determined according to the methodology proposed by Jimenez-Ballesta et al. (2010), using the equation: LRV=GM + 2SD, where LRV: Local Reference Value, GM: Geometric Mean, SD: Standard Deviation

  1. Sedimentos arcillosos en un suelo del valle inferior del río Colorado (Argentina Clay sediments in a soil of the lower Colorado river valley (Argentina

    Directory of Open Access Journals (Sweden)

    Norman Peinemann


    Full Text Available Se describe la presencia de capas sedimentarias ricas en minerales de arcilla en un subsuelo del valle inferior del río Colorado por su importancia para el régimen hídrico de suelos bajo riego. Difractogramas de rayos X efectuados sobre la fracción arcilla fina de estos sedimentos revelaron que está compuesta por smectitas con muy buena cristalización. La caracterización fisicoquímica del perfil de suelo mostró que el fuerte incremento de minerales de arcilla en el subsuelo estuvo vinculado con un aumento de pH y PSI y en consecuencia una marcada disminución en la conductividad hidráulica, motivo por el cual la eventual presencia de estas capas sedimentarias debe ser muy tenida en cuenta en la programación de las prácticas de riego para evitar el posible deterioro de los suelos.The presence of sedimentary clay layers in subsoils of the lower Colorado river valley are described due to their impact on the water balance of soils under irrigation. X-ray difractograms of the fine clay fraction of these sediments show that they are composed of smectites with a very good crystallization. The physicochemical characterization of the soil profile indicates that the abrupt increase of clay minerals was associated with high pH and ESP values as well as a sharp decrease in hydraulic conductivity. Therefore, the presence of sedimentary clay layers in soils has to be considered when planning irrigation practices to avoid soil degradation.

  2. The Availability Of Iron In Soil And Plants Treated With Organic And Inorganic Fertilizers In The Jordan Valley


    Abed Rabbo, A. M. [الفرد عبد ربه; Winka, A.; Qannam, Z.


    This paper deals with the rcults of a study carried out on "Phoseolus vulgaris - Wed" as an indicator of chlorosis. The study took place between July 1990 and July 1992, and for two crop seasons each year. Six kinds of fertilizer were used. Soxtrinc (Iron), granular superphosphate, liquid phosphate fertilizers, and natural fertilizers: manure and quarters waste of sheep, cows and egg-laying hens. An area of about three-quarters of an acre in Jericho (Jordan Valley) was used for the study, usi...

  3. Among wells and irrigation ditches. Transformations in the uses of water and soil in the Famatina Valley (Argentina

    Directory of Open Access Journals (Sweden)

    Tomás Palmisano


    Full Text Available The instauration of the neoliberal paradigm in the argentine country from the 1970 decade deeply affected the agroindustrial productions. In this context, we will reconstruct the changes in the agrarian structure in the Famatina Valley, in La Rioja province (Argentina, emphasizing the appearance of new actors that can concentrate land and water with the benefits of some public policy. On the other hand, we will point out the small and medium productions underlining how they manage their water resources. The methodological strategy of this paper combines the analysis of statistical sources as well as interviews.

  4. Contribution of Soil Fauna to Foliar Litter-Mass Loss in Winter in an Ecotone between Dry Valley and Montane Forest in the Upper Reaches of the Minjiang River.

    Directory of Open Access Journals (Sweden)

    Yan Peng

    Full Text Available Litter decomposition during winter can provide essential nutrients for plant growth in the subsequent growing season, which plays important role in preventing the expansion of dry areas and maintaining the stability of ecotone ecosystems. However, limited information is currently available on the contributions of soil fauna to litter decomposition during winter in such ecosystems. Therefore, a field experiment that included litterbags with two different mesh sizes (0.04 mm and 3 mm was conducted to investigate the contribution of soil fauna to the loss of foliar litter mass in winter from November 2013 to April 2014 along the upper reaches of the Minjiang River. Two litter types of the dominant species were selected in each ecosystem: cypress (Cupressus chengiana and oak (Quercus baronii in ecotone; cypress (Cupressus chengiana and clovershrub (Campylotropis macrocarpa in dry valley; and fir (Abies faxoniana and birch (Betula albosinensis in montane forest. Over one winter incubation, foliar litter lost 6.0%-16.1%, 11.4%-26.0%, and 6.4%-8.5% of initial mass in the ecotone, dry valley and montane forest, respectively. Soil fauna showed obvious contributions to the loss of foliar litter mass in all of the ecosystems. The highest contribution (48.5%-56.8% was observed in the ecotone, and the lowest contribution (0.4%-25.8% was observed in the montane forest. Compared with other winter periods, thawing period exhibited higher soil fauna contributions to litter mass loss in ecotone and dry valley, but both thawing period and freezing period displayed higher soil fauna contributions in montane forest. Statistical analysis demonstrated that the contribution of soil fauna was significantly correlated with temperature and soil moisture during the winter-long incubation. These results suggest that temperature might be the primary control factor in foliar litter decomposition, but more active soil fauna in the ecotone could contribute more in litter

  5. Remote Sensing Assessment of Soil Moisture, Soil Mineralogy and other Environmental Factors Influencing Mosquito-borne Infection Risks in the Lower Rio Grande Valley, U.S. - Mexico Border (Invited) (United States)

    Hubbard, B. E.; Folger, H. W.; Page, W. R.


    A dengue fever outbreak occurred near Matamoros, Mexico along the Lower Rio Grande Valley during the summer of 2005 following heavy rainfall from Tropical Storm Gert and Hurricane Emily. This outbreak exemplifies the need for monitoring soil moisture and mapping soil permeability factors affecting the breeding and distribution of mosquito species capable of spreading disease. For example, the Rio Grande delta of South Texas and North Tamaulipas Mexico is inhabited by over 50 native and invasive species of mosquitoes capable of hosting Malaria, West Nile Virus and other types of human and livestock infecting Encephalitis. They range in ecological habitats from coastal salt marshes to freshwater riparian wetlands, tree holes and/or urban containers, flooded agricultural fields, and the many irrigation canals and ditches present throughout our study area. For this study, water-saturated and flooded soils were mapped using a “soil moisture availability” index (Mo) based on normalized difference vegetation index (NDVI) images and surface radiant and/or kinetic temperature images derived from multi-temporal Landsat-7 ETM+ and ASTER imagery. In particular, the Landsat-7 imagery covers ten cloud-free or minimal cloud cover acquisition dates during drought and wet periods of 2002, prior to the scan-line corrector failure in 2003. This includes one date (August 18, 2002) of co-orbital swath coverage between Landsat and ASTER, acquired after the land fall and dissipation of Tropical Storm Bertha (August 09, 2002). ASTER image dates used include those before and after the land fall of Hurricane Emily on July 20, 2005. The resulting maps show the distribution of relatively permeable (i.e. sandier) and impermeable soil types, the latter of which are dominated by clay-rich soils deposited in remnant interdistributary channels as channel-fill, and overbank flood deposits along the modern Rio Grande delta and portions of the (remapped) Pleistocene Beaumont coastal deltaic plain

  6. Effects of source rocks, soil features and climate on natural gamma radioactivity in the Crati valley (Calabria, Southern Italy). (United States)

    Guagliardi, Ilaria; Rovella, Natalia; Apollaro, Carmine; Bloise, Andrea; De Rosa, Rosanna; Scarciglia, Fabio; Buttafuoco, Gabriele


    The study, which represents an innovative scientific strategy to approach the study of natural radioactivity in terms of spatial and temporal variability, was aimed to characterize the background levels of natural radionuclides in soil and rock in the urban and peri-urban soil of a southern Italy area; to quantify their variations due to radionuclide bearing minerals and soil properties, taking into account nature and extent of seasonality influence. Its main novelty is taking into account the effect of climate in controlling natural gamma radioactivity as well as analysing soil radioactivity in terms of soil properties and pedogenetic processes. In different bedrocks and soils, activities of natural radionuclides ((238)U, (232)Th (4) K) and total radioactivity were measured at 181 locations by means of scintillation γ-ray spectrometry. In addition, selected rocks samples were collected and analysed, using a Scanning Electron Microscope (SEM) equipped with an Energy Dispersive Spectrometer (EDS) and an X-Ray Powder Diffraction (XRPD), to assess the main sources of radionuclides. The natural-gamma background is intimately related to differing petrologic features of crystalline source rocks and to peculiar pedogenetic features and processes. The radioactivity survey was conducted during two different seasons with marked changes in the main climatic characteristics, namely dry summer and moist winter, to evaluate possible effects of seasonal climatic variations and soil properties on radioactivity measurements. Seasonal variations of radionuclides activities show their peak values in summer. The activities of (238)U, (232)Th and (4) K exhibit a positive correlation with the air temperature and are negatively correlated with precipitations.

  7. Soil Protection measures based on the analysis if sediment sources in a commercial farm at the Guadalquivir Valley (Spain) (United States)

    Albert, Enrique; Brígido, Consuelo; Herrera, Pascual; Migallón, Jose Ignacio; Taguas, Encarnación V.


    High soil losses are associated with agricultural areas dedicated to traditional crops in Spain (olive, grapevine, almond and sunflower, among others) and they caused by interacting drivers such as frequent intense events, steep/hilly slopes and unsuitable managements (De Santisteban et al., 2006). These crops are essential for the Spanish economy but at the same time, they constitute important areas of soil degradation. This work has been promoted by a farm owner interested in improving the sustainability of his farm as well as solving traffic problems derived from a gully. An analysis based on a modeling approach and field measurements was carried out in order to diagnose the main sediment sources of a farm with traditional Mediterranean crops (sunflower and olives) and to propose actions for optimizing soil conservation efforts. Firstly, an environmental study to characterize meteorological and topographical features, soil properties and managements was performed. The farm was divided in different areas belonging to the same hydrological catchment, land-use and management. Secondly, splash and inter-rill erosion were evaluated in each spatial unit through the RUSLE model. Rills and gullies in the catchment were also measured by using orthophotographies and a tape in the field to calculate their corresponding sediment volume. Finally, a plan of soil protection measures was designed and presented to the owner who will apply the proposed actions, mainly cover crop seeding and construction of check dams. REFERENCES: De Santisteban, L. M., J. Casalí, and J. J. López. 2006. Assessing soil erosion rates in cultivated areas of Navarre (Spain). Earth Surf. Process. Landforms 31: 487-506.

  8. Presence of glyphosate and AMPA in orchard soils and water in the upper Río Negro and Neuquén valley (United States)

    Holzmann, Rosa; Sheridan, Miguel; De Geronimo, Eduardo; Aparicio, Virginia; Costa, Jose Luis


    The Upper Valley of Río Negro and Neuquén provinces is the most important region of Argentina for pear and apple production. The local climate is arid, with deficits of plant available water of 1,200 mm per year with soils classified as Entisols and Aridisols. Flooding irrigation provides approximately 2,000 mm yearly. The weeds control consists on the application of glyphosate along the planting row 0.5 m each at both sides of the trees. The aim of this work was to detect the presence of glyphosate and AMPA (aminomethylphosphonic acid) remaining in water and soil. Some orchards were monitored one year after the herbicide application. Soil composed samples were taken at the 0 to 10 cm depth and also in the canals. Percolation water was taken from drainage canals until its final destination. Irrigation water before entering the orchards were also sampled. The presence of glyphosate and AMPA was detected in all samples. The soil in the canals had 1,098 and 340.5 µ of glyphosate and AMPA respectively. 934 and 1,864.5 µ of glyphosate and AMPA respectively on a land where the herbicide was recently applied; figures from 11 y 208µ (minimun) to 149.5 y 583 µ (maximum) of glyphosate and AMPA respectively in orchards on which the herbicide was applied one year before; finally, 13 and 17.5 µ minimun, and 32 and 30.5 µ maximun of glyphosate and AMPA respectively in draining channel sediments. As regards waters, and according to the quantity of molecules and the level allowed by the EU of 0.5 µg.l-1, the water source contained 0.56 µg.l-1, while, in the draining waters, we found concentrations between 1.5 and 12.21µg.l-1 right after soil percolation and between 0.49 and 5.0 µg.l-1 in secondary drainage canals and finally, between 0.5 and 1.4 µg.l-1 in the main canal. Glyphosate and AMPA comprised between 73% and 99.9% of the sum of total molecules in all cases.

  9. Geochemical features and sources of hydrocarbons and fatty acids in soils from the McMurdo Dry Valleys in the Antarctic (United States)

    Matsumoto, Genki I.; Honda, Eisuke; Sonoda, Kazuhiko; Yamamoto, Shuichi; Takemura, Tetsuo


    We studied the geochemical features and compound-specific (CS)-δ 13C of hydrocarbons and fatty acids in soil samples from the McMurdo Dry Valleys in the Antarctic to elucidate their source organisms and characteristics of their environments. Total organic carbon contents in soil samples were extremely low reflecting extremely harsh environments for organisms. Normal-alkanes ranging in carbon chain length from n-C 14 to n-C 38 with the predominance of odd-carbon numbers were found, together with n-alkenes ( n-C 23:1 to n-C 27:1). Normal-alkanoic acids ranging in carbon chain length from n-C 10 to n-C 30 with the predominance of even-carbon numbers were detected in the samples, along with small amounts of branched ( iso and anteiso) and n-alkenoic acids. CS-δ 13C values of long-chain n-alkanes ( n-C 20 to n-C 29) ranged from -30.4 to -26.6‰. CS-δ 13C values of n-alkanoic acids with short-chain carbon numbers ( n-C 14 to n-C 19) ranging from -27.7 to -21.7‰ were much higher than those of long-chain carbon numbers ( n-C 20 to n-C 30, -32.5 to -25.3‰). The geochemical features and CS-δ 13C values of long-chain n-alkanes and n-alkanoic acids revealed that they are originated from lichen and/or vascular plant debris from the pre- and inter-glacial periods in this region, whereas short-chain n-alkanoic acids are come from microalgae and cyanobacterial debris. CS-δ 13C values suggest that they are derived from gymnosperms and/or C 4 plants in the cold and dry environments of the pre- and inter-glacial periods of the McMurdo Dry Valleys region.

  10. Mississippi Alluvial Valley (United States)

    Reinecke, K.J.; Kaminski, R.M.; Moorhead, D.J.; Hodges, J.D.; Nasser, J.R.; Smith, L.M.; Pederson, R.L.; Kaminski, R.M.


    Available data are summarized according to the following major topics: (1) characteristics of the Mississippi Alluvial Valley (MAV); (2) waterfowl populations associated with the MAV; (3) habitat requirements of migrating and wintering waterfowl in the MAV; (4) current habitat management practices in the MAV, including croplands, moist-soil impoundments, and forested wetlands; (5) status and classification of winter habitat in the MAV; and (6) research and management information needs.

  11. Biodiversity of Rhizospheric Soil Bacteria and Arbuscular Mycorrhizal (AM Fungi in Some of The Wild Medicinal Legumes of Barak Valley

    Directory of Open Access Journals (Sweden)

    F. Malina Singha


    Full Text Available Present investigation was aimed to isolate and study the rhizobacteria and AM fungi from rhizosphere of wild legumes: Mimosa pudica (sensitive plant, Crotolaria pallida (Sunhemp, Cassia tora (Sickle pod and Desmodium . The molecular characterization of four bacterial isolates were done. Four bacterial species - Bacillus megaterium, Bacillus aerophilus, Microbacterium laevaniformans and - Staphylococcus xylosus were isolated from strains M1, RT, D5 and D7 respectively. Also, the distribution of AM fungi population was studied from rhizosphere soils of these legumes. Among the AM fungi, Glomus species was dominant and bacterial genus - Bacillus was found to be dominant. Maximum number of VAM infection was found in the rhizosphere soil of Mimosa pudica of Srikona.

  12. Comparative Analysis of Different Types of Bacterial Colonies from the Soils of Yusmarg Forest, Kashmir valley India

    Directory of Open Access Journals (Sweden)

    Gowhar Hamid Dar


    Full Text Available The present work was carried out in the soils of Yusmarg forest to study about the bacterial load (density and diversity, to identify and isolate the bacteria from the soils. During the study a total of thirty six isolates were obtained, among thirty-six different isolates obtained at the four sites B7 and B8 were present at all the four sites, B6 and B9 were present only at site I in November, B16 and B17 were present only at site II in November, B19, B22, B23 and B24 were present only at site III in November, B32, B33 and B34 were present only at site III in December and B35 was present only at site IV in December. Comparative analysis of different types of colonies found at the four sites during the study indicates that the bacterial load was dominant in the month of November.

  13. Technogenic magnetic particles in soils as evidence of historical mining and smelting activity: A case of the Brynica River Valley, Poland. (United States)

    Magiera, Tadeusz; Mendakiewicz, Maria; Szuszkiewicz, Marcin; Jabłońska, Mariola; Chróst, Leszek


    In the area of Brynica River basin (Upper Silesia, southern Poland) the exploitation and smelting of iron, silver and lead ores was historically documented since early Middle Ages. First investigations showed that metallurgy industry had a large impact from 9th century (AD) until the Second World War. The aim of the study was to use magnetic prospection to detect traces of past mining and ore smelting in Brynica River Valley located in Upper Silesia (southern Poland). The field screening was performed by measurement magnetic susceptibility (κ) on surface and in vertical profiles and was supported locally by gradiometric measurements. Vertical distribution of magnetic susceptibility values was closely associated with the type of soil use. Historical technogenic magnetic particles resulting from exploitation, processing, and smelting of iron, silver, and lead ores were accumulated in the soil layer at the depth 10 to 25cm. They were represented by sharp-edged particles of slag, coke, as well as various mineralogical forms of iron minerals and aggregates composed of carbon particles, aluminosilicate glass, and single particles of metallic iron. The additional geochemical study in adjacent peat bog supported by radiocarbon dating was also performed. The application of integrated geochemical-magnetic methods to reconstruct the historical accumulation of pollutants in the studied peat bog was effective. The magnetic peak, which was pointed out by magnetic analyses, is consistent with the presence of charcoal and pollution from heavy metals, such as Ag, Cd, Cu, Fe, Pb, or Sn. The results of this work will be helpful for the further study of human's impact on the environment related to the historical and even pre-historical ore exploitation and smelting and also used for better targeting the archeological excavations on such areas.

  14. 西藏拉萨河谷地土壤中的暗色丝孢菌%Soil dematiaceous hyphomycetes from Lhasa River Valley, Tibet, China

    Institute of Scientific and Technical Information of China (English)

    耿月华; 张天宇


    A total of 38 isolates of soil dernatiaceous hyphomycetes belonging to 25 species in 15 genera were obtained from 17 soil samples in the Lhasa River Valley. Among them, Gliomastix tibetensis, Monodictys tibetensis and Phialomyces microsporus are new species. Chrysosporium keratinophilum is a new record for China. The other 21 species previously known from China are also included.All descriptions and illustrations provided were based on Chinese isolates. The holotype and isotype specimens are deposited in the Herbarium of Sbandong Agricultural University: Plant Pathology (HSAUP) and the Herbarium Mycologieum, Academiae Sinicae (HMAS), respectively. The other specimens are kept in HSAUP.%从采自拉萨河谷地的17份土样中,分离获得38个暗色丝孢菌分离物,经鉴定分别属于15属中的25种,其中包括3个新种,即西藏粘鞭霉Gliomastix tibetensis,西藏单格孢Monodictys tibetensis和小孢瓶梗霉Phialomyces microsporus,1个中国新记录种嗜毛金色孢Chrysosporium keratinophilum.对新种和中国新记录种进行了描述和图示,对其他21个中国已报道种作了分离地点和生境的引证.主模式和等模式标本(干制培养物)分别保藏在山东农业大学植物病理学标本室(HSAUP)和中国科学院菌物标本馆(HMAS).其余研究过的标本(干制培养物)与活菌种保存在HSAUP.

  15. Characterization of 15 selected coccal bacteria isolated from Antarctic rock and soil samples from the McMurdo-Dry Valleys (South-Victoria Land) (United States)

    Siebert, J.; Hirsch, P.; Friedmann, E. I. (Principal Investigator)


    Approximately 1500 cultures of microorganisms were isolated from rocks and soils of the Ross Desert (McMurdo-Dry Valleys). From these, 15 coccoid strains were chosen for more detailed investigation. They were characterized by morphological, physiological and chemotaxonomical properties. All isolates were Gram-positive, catalase-positive and nonmotile. Six strains showed red pigmentation and could be identified as members of the genera Micrococcus (M. roseus, M. agilis) or Deinococcus. In spite of their coccoid morphology, the remaining nine strains had to be associated with coryneform bacteria (Arthrobacter, Brevibacterium), because of their cell wall composition and G+C ratios. Most of the strains were psychrotrophic, but one strain was even obligately psychrophilic, with a temperature maximum below 20 degrees C. Red cocci had in vitro pH optima above 9.0 although they generally originated from acid samples. Most isolates showed a preference for sugar alcohols and organic acids, compounds which are commonly known to be released by lichens, molds and algae, the other components of the cryptoendolithic ecosystem. These properties indicate that our strains are autochthonous members of the natural Antarctic microbial population.

  16. Agent-Based Modeling of Physical Factors That May Control the Growth of Coccidioides immitis (Valley Fever Fungus) in Soils (United States)

    Gettings, M. E.; Fisher, F. S.


    A model of the spread and survival of the fungus Coccidioides immitis in soil via wind-borne spore transport has been completed using public domain agent-based modeling software. The hypothetical model posits that for a successful new site to become established, four factors must be simultaneously satisfied. 1) There must be transport of spores from a source site to sites with favorable soil geology, texture, topographic aspect, and lack of biomass competition. 2) There must be sufficient moisture for fungal growth. 3) Temperature of the surface and soil must be favorable for growth. Finally, 4) the temperature and moisture must remain in favorable ranges for a long enough time interval for the fungus to grow down to depths at which spores will survive subsequent heat, aridity, and ultraviolet radiation of the hot, dry season typical of the Southwest U.S. climate. Using agent-based modeling software, a model was built so that the effects of combinations of these controlling factors could be evaluated using realistic temperature, rain and wind models. The rain probability and amount, temperature annual and diurnal variation, and wind direction and intensity were based on the weather records at Tucson, Arizona for the 107-year period from 1894 to 2001. Favorable ground was defined using a fractal tree algorithm that emulates a drainage network in accordance with observations that favorable sites are often adjacent to drainage channels. Numerous model runs produced the following five conclusions. 1) If any property is not isotropic, for example wind direction or narrow paths of rainstorms, parts of the favorable areas will never become colonized no matter how long the model runs. 2)The spread of sites is extremely sensitive to moisture duration. The amount of wind and temperature after a rain control the length of time before a site becomes too dry. 3) The distribution of wind and rainstorm direction relative to that of the favorable sites is a strong control on the

  17. Current state of peatland soils as an effect of long-term drainage – preliminary results of peatland ecosystems investigation in the Grójecka Valley (central Poland

    Directory of Open Access Journals (Sweden)

    Glina Bartłomiej


    Full Text Available Understanding the effect of long-term drainage of peatland areas is helpful in future peatland management and regulations of water conditions. The aim of this work was to assess the current state of fen peatland soils in the Grójecka Valley (eastern part of the Wielkopolskie voivodeship, central Poland, affected by long-term agricultural use (pastures, meadows since the 1960s and potentially by lignite open pit mining industry (KWB Konin since 1980s. Field studies were carried out in 2015 in selected fen peatland areas. Soil material for laboratory analysis was collected from genetic horizons from four soil profiles. The surface horizons of studied organic and organo-mineral soils were built with well-developed moorsh material. They were classified as medium moorshiefied – MtII (profile 1, 3 and 4 and strongly moorshiefied – MtIII (profile 2. Obtained results of physical and physico-chemical analysis indicate that long-term peatland utilization connected with potential impact of the lignite mining, transformed mainly the upper horizons of studied organic and organo-mineral soils. However, despite obvious strong human impact on peatlands ecosystems, we cannot exclude the climate variables, what should be confirmed by long-term monitoring program. Furthermore, presented paper indicated that new subtype moorsh-muddy soils (in Polish: gleby murszowo-mułowe within the type of gleyic soils should be implemented in the next version of Polish Soil Classification.

  18. [Effect of the spatial and seasonal soil heterogeneity over arbuscular mycorrhizal fungal spore abundance in the semi-arid valley of Tehuacán-Cuicatlán, Mexico]. (United States)

    Camargo-Ricalde, Sara Lucía; Esperón-Rodríguez, Manuel


    Recent studies have shown that some species of Mimosa (Leguminosae-Mimosoideae) create resource islands (RI), rich in soil organic matter and nutrients, as well as in arbuscular mycorrhyzal fungal (AMF) spores, in the semi-arid Valley of Tehuacán-Cuicatlán. The relevance of this fact is that arid and semi-arid regions are characterized by low fertility soils and scarce precipitation, limiting plant species growth and development; this explains why the presence of AM fungi may be advantageous for mycorrhizal desert plants. Fluctuations in AMF spore numbers could be related to environmental, seasonal and soil factors which affect AMF sporulation, in addition to the life history of the host plant. The aim of this study was to asses the impact of spatial (resource islands vs open areas, OA) and seasonal (wet season vs start of dry season vs dry season) soil heterogeneity in the distribution and abundance of AMF spores in four different study sites within the Valley. We registered AMF spores in the 120 soil samples examined. Significant differences in the number of AMF spores were reported in the soil below the canopy of Mimosa species (RI) comparing with OA (RI > OA), and between Mimosa RI themselves when comparing along a soil gradient within the RI (soil near the trunk > soil below the middle of the canopy > soil in the margin of the canopy > OA); however, there were no significant differences between the soil closest to the trunk vs middle, and margin 's OA. Finally, more spores were reported in the soil collected during the wet season than during the dry season (wet > start of dry > dry). Therefore, the distribution of AMF spores is affected by spatial and seasonal soil heterogeneity. This study points out the relevance of Mimosa RI as AMF spore reservoirs and the potential importance of AM fungi for plant species survivorship and establishment in semi-arid regions. AM fungi have recently been recognized as an important factor determining plant species diversity

  19. Geochemistry of sediments and surface soils from the Nile Delta and lower Nile valley studied by epithermal neutron activation analysis (United States)

    Arafa, Wafaa M.; Badawy, Wael M.; Fahmi, Naglaa M.; Ali, Khaled; Gad, Mohamed S.; Duliu, Octavian G.; Frontasyeva, Marina V.; Steinnes, Eiliv


    The distributions of 36 major and trace elements in 40 surface soil and sediment samples collected from the Egyptian section of the river Nile were determined by epithermal neutron activation analysis and compared with corresponding data for the Upper Continental Crust and North American Shale Composite. Their relative distributions indicate the presence of detrital material of igneous origin, most probably resulting from weathering on Ethiopian highlands and transported by the Blue Nile, the Nile main tributary. The distributions of the nickel, zinc, and arsenic contents suggest that the lower part of the Nile and its surroundings including the Nile Delta is not seriously polluted with metals from local human activity. The geographical distributions of Na, Cl, and I as well as results of principal component analysis suggest atmospheric supply of these elements from the ocean. In general the present data may contribute to a better understanding of the geochemistry of the Nile sediments.

  20. Detection of Helminth Eggs and Identification of Hookworm Species in Stray Cats, Dogs and Soil from Klang Valley, Malaysia. (United States)

    Tun, Sandee; Ithoi, Init; Mahmud, Rohela; Samsudin, Nur Izyan; Kek Heng, Chua; Ling, Lau Yee


    The present study was conducted to determine the prevalence of helminth eggs excreted in the faeces of stray cats, dogs and in soil samples. A total of 505 fresh samples of faeces (from 227 dogs and 152 cats) and soil were collected. The egg stage was detected via microscopy after the application of formalin-ether concentration technique. Genomic DNA was extracted from the samples containing hookworm eggs and used for further identification to the species level using real-time polymerase chain reaction coupled with high resolution melting analysis. Microscopic observation showed that the overall prevalence of helminth eggs among stray cats and dogs was 75.7% (95% CI = 71.2%-79.9%), in which 87.7% of dogs and 57.9% of cats were infected with at least one parasite genus. Five genera of heliminth eggs were detected in the faecal samples, including hookworms (46.4%), Toxocara (11.1%), Trichuris (8.4%), Spirometra (7.4%) and Ascaris (2.4%). The prevalence of helminth infections among stray dogs was significantly higher than that among stray cats (p dog hookworm, Ancylostoma caninum, was also detected among cats, which is the first such occurrence reported in Malaysia till date. This finding indicated that there was a cross-infection of A. caninum between stray cats and dogs because of their coexistent within human communities. Taken together, these data suggest the potential role of stray cats and dogs as being the main sources of environmental contamination as well as for human infections.

  1. Technogenic magnetic particles in soils as evidence of historical mining and smelting activity: A case of the Brynica River Valley, Poland

    Energy Technology Data Exchange (ETDEWEB)

    Magiera, Tadeusz, E-mail: [Institute of Environmental Engineering, Polish Academy of Sciences, Skłodowskiej-Curie 34, Zabrze (Poland); Mendakiewicz, Maria; Szuszkiewicz, Marcin [Institute of Environmental Engineering, Polish Academy of Sciences, Skłodowskiej-Curie 34, Zabrze (Poland); Jabłońska, Mariola [Department of Geochemistry, Mineralogy and Petrology, Faculty of Earth Sciences, University of Silesia, Sosnowiec (Poland); Chróst, Leszek [Laboratory for Ecological Research, Ekopomiar, Gliwice (Poland)


    In the area of Brynica River basin (Upper Silesia, southern Poland) the exploitation and smelting of iron, silver and lead ores was historically documented since early Middle Ages. First investigations showed that metallurgy industry had a large impact from 9th century (AD) until the Second World War. The aim of the study was to use magnetic prospection to detect traces of past mining and ore smelting in Brynica River Valley located in Upper Silesia (southern Poland). The field screening was performed by measurement magnetic susceptibility (κ) on surface and in vertical profiles and was supported locally by gradiometric measurements. Vertical distribution of magnetic susceptibility values was closely associated with the type of soil use. Historical technogenic magnetic particles resulting from exploitation, processing, and smelting of iron, silver, and lead ores were accumulated in the soil layer at the depth 10 to 25 cm. They were represented by sharp-edged particles of slag, coke, as well as various mineralogical forms of iron minerals and aggregates composed of carbon particles, aluminosilicate glass, and single particles of metallic iron. The additional geochemical study in adjacent peat bog supported by radiocarbon dating was also performed. The application of integrated geochemical-magnetic methods to reconstruct the historical accumulation of pollutants in the studied peat bog was effective. The magnetic peak, which was pointed out by magnetic analyses, is consistent with the presence of charcoal and pollution from heavy metals, such as Ag, Cd, Cu, Fe, Pb, or Sn. The results of this work will be helpful for the further study of human's impact on the environment related to the historical and even pre-historical ore exploitation and smelting and also used for better targeting the archeological excavations on such areas. - Highlights: • Due to ferrimagnetic properties of historical slags magnetic prospection is an efficient tool for they localization.

  2. 岷江上游干旱河谷旱地土壤斥水性特征初步研究%Preliminary Study on the Characteristics of Soil Repellency in the Dry Valley of Minjiang River

    Institute of Scientific and Technical Information of China (English)

    秦纪洪; 赵利坤; 孙辉; 李沙


    土壤斥水性是土壤颗粒不易被水滴浸润的现象,对土壤水分特征曲线、土壤溶质运移、土壤优先流、土壤导水率以及地表径流和土壤侵蚀等具有重要影响。研究结果表明,3月份岷江上游干旱河谷0-5cm土层具斥水性的土壤在空间上的分布概率约为34%,其中强度斥水性土壤分布比例为5%;在时间分布上,土壤斥水性主要表现在7月,轻度以下斥水性概率为91%,强度以上斥水性概率为58%;从各粒级土壤斥水性的研究结果来看,斥水性与土壤粒级呈显著负相关,粒级越小,土壤斥水性越高。因此,岷江上游干旱河谷旱地土壤斥水性具有明显的时空分布差异,并且粒级越小土壤斥水性越强,7月份土壤表层的土壤斥水性强度与分布比例高。这可能是导致干旱河谷严重水土流失、土壤砂砾化的一个重要原因。%Soil water repellency is a widespread hydrologic phenomenon in different soils all over the world,and its implications encompass hysteresis of the water retention curve,unstable wetting fronts with fingered flow,reduced infiltration capacity as compared to wettable soils,and accelerated hillslope runoff and erosion.The results show that probability of 0-5 cm layer of soil with slight and strong repellency is about 34% in total,of which soil with strong water repellency is 5% in the dry valley of Minjiang River in March.In July,the probability of soil with slight and strong repellency is 91%,in which 58% is strong water repellent soil.The results also show that soil water repellency is significantly negatively related to the ratio of soil particle size.It can be concluded that there are apparently temporal and spatial variability for soil water repellency and water repellent soil distribution in the dry valley of Minjiang River.A higher ratio of strong soil water repellency exhibits in July of monsoon in topsoil,and in soil with higher proportion of fine fraction,which may be one of

  3. Anthropogenic changes and environmental degradation in pre-Hispanic and post-Colonial periods: soil erosion modelled with WEPP during Late Holocene in Teotihuacán Valley (central Mexico) (United States)

    Lourdes González-Arqueros, M.; Mendoza Cantú, Manuel E.


    Land use changes and support practices are a worldwide significant issue in soil erosion and subsequently, land degradation. Anthropogenic changes, along different periods of the history in the last 2000 years in the Valley of Teotihuacan (central Mexico), highlight that soil erosion varies depending on how the management and the intensity of soil use is handled, considering the soils as a main resource. As a part of a broader effort to reconstruct the erosion dynamics in the Teotihuacán Valley through geoarchaeological approaches, this study apply a process-based watershed hydrology and upland erosion model, Water Erosion Prediction Project (WEPP). This research aims to contribute with insights through modelling and to recreate soil erosion and sedimentation dynamics in several historical periods with different environmental and anthropogenic scenarios. The Geo-spatial interface for WEPP (GeoWEPP) was used to characterize location of detachment, depositions and erosion predicted on the profile through time, based on current and hypothetical reconstructed conditions in the watershed. Climate, topography, soil and land use were used as inputs for the WEPP model to estimate runoff fluxes, soil loss rates, and sediment delivery ratio (SDR) for three historical scenarios: current period, reconstructed Teotihuacán period (AD 1-650), and reconstructed Aztec period (AD 1325-1520). Over a simulated and stablished timeframe for those social periods, the runoff, soil loss rate and SDR were estimated to be greater during the Aztec period. We assume that in general the climate conditions for this period were wetter, compared with present, in agreement with several authors that proposed climate reconstructions for the center of Mexico. It is also highlighted that support practices were more effective in this period. The next period with higher values is the current one, and fewer rates are estimated for the Teotihuacán period. This comparison release new arguments in the

  4. 金沙江干热河谷人T林土壤水分研究%A Study on Soil Moisture in Different Plantations in Dry-Hot Valley of Jinsha River

    Institute of Scientific and Technical Information of China (English)

    岳学文; 方海东; 钱坤建; 方晋; 奎建蕊; 潘志贤; 杨艳鲜; 纪中华; 彭辉


    以金沙江干热河谷6种人工林为例,采用TRIME-PICO-IPH TDR测定雨季(6-10月)土壤水分,每个样地设3个重复,分析不同人工林内的土壤水分变化特征.罗望子纯林土壤含水量稳定,变异系数小,且含水量较其他人工林高.随着深度的增加,不同人工林之间的土壤含水量差异逐渐变小.根据土壤对降雨的蓄积、利用情况,将0-100cm的土壤剖面分为水分剧烈变化层、弱利用层,草本植物水分利用层、土壤水分微调节层.%Six kinds of plantations in Yuanmou County of Yunnan Province,a typical dry-hot area in the valley of Jinsha River, were selected. Soil moisture was determined with TRIME-PICO-IPH TDR in rainy season (from June to October). Each sample area was selected in triplicate to analysis the variety characteristics of the soil moisture. Soil moisture is vey stable and the variation coefficient is much less in the pure forest of tamarindus indica and its soil moisture content is higher than the others. With the increase of the soil depth,the soil moisture differences among the plantations diminish gradually. The soil profile at 0- 100 cm was divided into 4 layers by saving and using the rainfall of soil, i.e. moisture dramatical-change layer, moisture weak-utilization layer, herbaceous plant moisture utilization layer and soil moisture slight-adjustment layer.

  5. Soils (United States)

    Emily Moghaddas; Ken Hubbert


    When managing for resilient forests, each soil’s inherent capacity to resist and recover from changes in soil function should be evaluated relative to the anticipated extent and duration of soil disturbance. Application of several key principles will help ensure healthy, resilient soils: (1) minimize physical disturbance using guidelines tailored to specific soil types...

  6. Soil and Water Conservation Function of Composite Shrub Grasslands on the Hot Arid Valley in Yunnan Province%干热河谷区灌草草地的水土保持效应

    Institute of Scientific and Technical Information of China (English)

    毕玉芬; 车伟光; 许岳飞


    为了恢复干热河谷退化山区草地的生态环境.提高草地的水土保持能力,于2004~2007年在金沙江干热河谷区的云南省永胜县设置样点.在退化严重的草地上建植了7个组合模式的灌草复合型草地,以凋落物量、最大持水量、有效截流量、草地盖度、草地土壤崩解时间为指标.对建植3年的灌草草地的水保效果进行研究.结果表明."灌+草+藤"最适宜金沙江干热河谷区的植被重建.其中"木豆+非洲狗尾草+高羊茅+大翼豆"建植模式显著地提高草地植被盖度和凋落物重量.凋落物的持水能力与凋落物重量呈显著的正相关;土壤根量与土体崩塌时间呈显著的正相关.灌草草地植被盖度、凋落物量和根系重量的显著提高,有效地提高草地的持水量和有效截流量,推迟草地土壤崩解时间,增加了土体的稳定性,对防止水土流失和泥石流的形成具有重要作用.%In order to recover ecological environment and enhance soil and water conservation capacity of degraded mountainous grasslands in the hot arid valley,7 combined patterns for shrub-grass communities were established on the degraded mountains in the Jinsha River hot-arid valley at Yongsheng County of Yunnan Province from 2004 to 2007. In 2007,litter weight,the largest water-holding capacity,effective cut-off flow,grass cover and grassland soil disintegration time of grassland in this hot arid valley were analyzed. The results showed that "shrub+grass+vine" was the most favorable pattern for vegetation recovery in the area of Jinsha River hot-arid valley. Among them,the combination of "Cajanus cajan + Setaria sphacelata + Festuca arundinacea + Macroptilium atropurpureum" significantly improved the grassland vegetation coverage and litter weight. The water retention capacity was significantly correlated with weight of the litter. Soil root biomass was significantly positively correlated with the soil disintegration time

  7. Chemical-Mineralogical Characterization of Magnetic Materials from Magnetic Soils of the Southern Espinhaço Mountain Chain and of the Upper Jequitinhonha Valley, State of Minas Gerais, Brazil

    Directory of Open Access Journals (Sweden)

    Alexandre Christófaro Silva

    Full Text Available ABSTRACT In the Southern Espinhaço Mountain Chain and in the Upper Jequitinhonha Valley, magnetic soils, in different pedogenetic stages, are found to be forming over intrusions of basic lithology. The essential chemical and mineralogical properties of samples from magnetic soil profiles from those two physiographic environments in the state of Minas Gerais, Brazil, are reported. Three of the pedons (Rhodic Kandiustox – RKox, Rhodic Haplustox – RHox, and Typic Argiustoll - TAoll were identified as being indeed developed over basic rocks; the fourth pedon (Typic Haplustox - THox is currently forming on an acidic rock. Particle size and routine chemical analyses were performed on samples from all horizons of the four selected soil profiles. For a deeper insight into the dominant mineralogy of each diagnostic soil horizon, the elemental contents, expressed in terms of the corresponding metal cation oxides, namely Fe2O3, Al2O3, and MnO2, were obtained from digesting the whole soil samples with sulfuric acid. A similar chemical analytical procedure was performed for the residual solid extracts obtained from attacking the whole soil materials with mixtures of (i dithionite - citrate - bicarbonate and (ii oxalate - oxalic acid. The soil samples were also analyzed by Mössbauer spectroscopy at room temperature (~298 °K in an attempt to better identify the main magnetic iron oxides. Maghemite (δFe2O3 was found in all samples and magnetite (Fe3O4 was identified only for the sample from the Typic Argiustoll. The pedogenetic loss of silica and consequent accumulation of iron and aluminum oxides along the profile are found to be somehow correlated to the weathering sequence in the soils forming on basic rocks: TAoll < RKox < RHox.

  8. History of pedogenesis and geomorphic processes in the Valley of Teotihuacán, Mexico: Micromorphological evidences from a soil catena Historia de la edafogénesis y de los procesos geomorfológicos en el Valle de Teotihuacán, México: evidencias micromorfológicas de una catena de suelos História da pedogénese e dos processos geomorfológicos no Vale de Teotihuacán, México: evidencias micromorfológicas de uma catena de solos

    National Research Council Canada - National Science Library

    M. Lourdes González-Arqueros; Lorenzo Vázquez-Selem; Jorge E. Gama Castro; Emily McClung de Tapia; Sergey Sedov


    The paper provides new evidence on the pedogeomorphic history of the Valley of Teotihuacán, Mexico. The soil landscape here consists of Luvisol and "black soil", the micromorphology of which allowed us...

  9. Valley Fever (United States)

    ... anything that disrupts the soil, such as farming, construction and wind. The fungi can then be breathed ... expose them to dust are most at risk — construction, road and agricultural workers, ranchers, archeologists, and military ...

  10. Soil Aggregate Features under Tamarindus indica Forest with Different Plant Compositions in Dry-hot Valley%干热河谷不同酸豆林土壤团聚体特征分析

    Institute of Scientific and Technical Information of China (English)

    彭辉; 周红敏; 徐肇友; 瞿虹; 纪中华


    Experiments were conducted on the soil aggregates underTamarindus indica forest with bared land(L+G)CK), with fireweed(L+Z), with Paspalum notatum (L+B), withPhyllanthus emblica (L+Y), and withCajanus cajan (L+M) in dry-hot valley of Yunnan. R0.25(percentage of soil aggregates with diameter larger than 0.25mm), mean weight diameter (MWD), geometric mean diameter (GMD) and fractal dimension (D) were determined at 3 soil layers (0 - 10 cm, >10 - 20 cm, >20 – 40 cm). The results showed that L+B promoted the conservation of soil macro-aggregates, L+Z and L+G could improve the soil aggregate structure, L+Y and L+M forestlands reduced the proportion of macro-aggregates in the soil but increased micro-aggregates content. The experiment demonstrated that in dry-hot valley, conservation tillage was conducive to the sustainable management ofT. indica.%采用干筛法对金沙江干热河谷区酸豆林+光板地(裸地)、酸豆林+杂草、酸豆林+百喜草、酸豆林+余甘子、酸豆林+木豆5种酸豆林地在0~10 cm、>10~20 cm、>20~40 cm的3个土层中的R0.25、MWD、GMD和分形维数D变化进行研究,结果表明:5种酸豆林模式中,酸豆林+百喜草模式有利于土壤大团聚体的保存,酸豆林+杂草模式和酸豆林+光板地模式提升土壤团聚结构,但是效果并不显著,而酸豆林+余甘子模式和酸豆林+木豆模式则降低了土壤中大团聚体的比例,使土壤中的微团聚体含量增加;在干热河谷实施保护性耕作有利于酸豆林的可持续经营。

  11. Analysis on Relationships between Soil Salinization and Spectra in Manas River Valley%玛纳斯河流域土壤盐渍化现状及其与光谱关系研究

    Institute of Scientific and Technical Information of China (English)

    李娜; 吴玲; 王绍明; 夏军; 朱宏伟


    Taking Manas River Valley as an example, three landform types of alluvial proluvial fan, alluvial plain and delta were selected for the study targets, portable spectrometer was used to measure the soil spectral reflectance, combined with the statistical data of soil salinity, the soil salinity status characteristics and the relationship between soil spectrum in Manas River Basin were approached. The results showed that; in the studied region the composition of soil salinity has obvious regional characteristics; in a small number of spectral bands, the salt content and the dominant salt-ions of the three landfrom types are significantly correlated with the spectral reflectance. On this foundation, multiple linear regression model is established, thus providing a scientific basis for the establishment of spectral database and remote sensing monitoring of soil salin-ization in Mans River Valley.%以玛纳斯河流域为研究对象,选择冲积洪积扇、冲积平原和干三角洲3种主要地貌类型为研究区域,利用便携式光谱仪测量土壤光谱反射率,结合土壤盐分因子数据进行统计分析,探讨玛纳斯河流域土壤盐渍化现状特征及其与土壤光谱之间的关系.结果表明:研究区土壤盐分组成具有明显的地域性特点;在少数光谱波段,3种地貌类型的含盐量及占优势的盐离子均与光谱反射率呈显著相关,在此基础上,建立多元线性回归模型,为玛纳斯河流域地物光谱数据库的建立及土壤盐渍化的遥感监测提供科学依据.

  12. Cations extraction of sandy-clay soils from cavado valley, portugal, using sodium salts solutions Extração de cátions em solos areno-argilosos do vale do cávado, portugal, utilizando soluções de sais de sódio


    João Eudes da Silva; Fernando De Castro


    Cases of contamination by metals in the water wells of the Cavado Valley in north-west Portugal can be attributed to the heavy leaching of clay soils due to an excess of nitrogen resulting from the intensive use of fertilisers in agricultural areas. This work focuses on the natural weathering characteristics of soils, particularly the clay material, through the study of samples collected near the River Cavado. Samples taken from various sites, after physico-chemical characterisation, were sub...

  13. 金沙江干热河谷银合欢人工林对土壤养分的影响%Effects of Soil Nutrients on Planted Leucaena leucocephala Forest in the Dry-hot Jinshajiang River Valley

    Institute of Scientific and Technical Information of China (English)

    方海东; 魏雅丽; 刘刚才; 杨艳鲜; 潘志贤; 纪中华


    通过干热河谷银合欢人工林对土壤改良效应5年的研究,结果表明:银合欢林具有很好的土壤改良效应,土壤有机质明显高于CK,在0~20 cm,20~40cm和40~60cm的土层中,比CK分别高52.61%,51.09%和43.52%,土壤有机质随着土壤深度的增加而减少.pH在0~20cm,20~40cm和40~60cm的土层中,比CK分别低8.28%,2.41%和2.19%.全N含量上层土壤明显高于下层,水解N比CK高43.75%,随着土壤深度的增加,水解N呈现下降趋势,并具有显著性相关关系.全P含量比CK高0.05mg/kg,相差不是很明显.有效P含量与CK相差不是很明显,在不同土层深度有效P含量的变化非常一致.全K含量比CK高0.98 mg/kg,银合欢的生长对土壤全K含量的影响并不明显.速效K含量平均为136.79 mg/kg,变化幅度较大,比CK高69.45 mg/kg,银合欢的生长对土壤速效K含量的影响明显.%The soil improvement effect on the planted Leucaena leucocephala forest in the dry-hot Jinshajiang River Valley was researched for five years. The results show that the soil improvement effect on the forest was obvious. Soil organic matter content was obviously higher than CK, its values at soil depths of 0 - 20 cm, 20-40 cm and 40 -60 cm under the forest were 52. 61% , 51. 09% and 43. 52% higher than CK respectively, and it decreased with the increase of soil depth. At soil depths of 0 -20 cm, 20 -40 cm and 40 -60 cm, the Ph values of forest soil were 8. 28% , 2.41% and 2. 19% lower than CK respectively. Total soil N content was 43. 75% higher than CK, it decreased with the increase of soil depth, and there was a significant correlation between total soil N content and soil depth. Total soil P content was 0. 05 mg/kg higher than CK only. The difference of available P content between the forest soil and CK was not obvious. Total soil K content was 0. 98 mg/kg higher than CK, and the effect of total K content on the forest was not obvious. The available K content in the forest soil was 136

  14. The impact of 90 years of drainage works on some chemical properties of raised peat bog organic soils - case study from valley of the Upper San river in Polish Bieszczady Mts. (Eastern Carpathians). (United States)

    Stolarczyk, Mateusz


    Wetland ecosystems, including raised peat bogs are characterized by a specific water conditions and unique vegetation, which makes peatland highly important habitats due to protection of biodiversity. Transformation of peat bog areas is particularly related to changes in the environment e.g. according to reclamation works. Drainage of peatlands is directly associated to the decrease of groundwater levels and lead to a number of changes in the chemical and physical properties of peat material, included contents of exchangeable cations in the surface layers of peat soils in the decession phase of peat development and release above compounds from the soil to ground or surface waters. The aim of the research was to determine the impact of extended drainage works on chemical composition of sorption complex of raised peat bog organic soils and identification the potential environmental effects of alkaline cations leaching to the surface waters. Research was carried out on the peat bogs located in the Upper San valley in Polish Bieszczady Mts. (Eastern Carpathians). Soil samples used in this study were collected from 3 soil profiles in 10 or 20 cm intervals to the approximately 130 cm depth. Laboratory analyses included determination of basic properties of organic material such as the degree of peat decomposition, ash content, soil pH and carbon, hydrogen, nitrogen concentrations. Additionally the amount of alkaline cations, exchangeable and extractable acidity was determined. Furthermore, the degree of saturation of the sorption complex with alkaline cations (V) and cation exchange capacity (CEC) are calculated. In order to evaluate the impact of the examined peat bog to the environment, also water samples were collected and ions composition was measured. The obtained results show that studied organic soils are oligotrophic and strongly acidic. In the case of organic material related to decession phase of peat development, as a result of the lengthy drainage works

  15. Modeling the air-soil transport pathway of perfluorooctanoic acid in the mid-Ohio Valley using linked air dispersion and vadose zone models (United States)

    Shin, Hyeong-Moo; Ryan, P. Barry; Vieira, Verónica M.; Bartell, Scott M.


    As part of an extensive modeling effort on the air-soil-groundwater transport pathway of perfluorooctanoic acid (PFOA), this study was designed to compare the performance of different air dispersion modeling systems (AERMOD vs. ISCST3), and different approaches to handling incomplete meteorological data using a data set with substantial soil measurements and a well characterized point source for air emissions. Two of the most commonly used EPA air dispersion models, AERMOD and ISCST3, were linked with the EPA vadose zone model PRZM-3. Predicted deposition rates from the air dispersion model were used as input values for the vadose zone model to estimate soil concentrations of PFOA at different depths. We applied 34 years of meteorological data including hourly surface measurements from Parkersburg Airport and 5 years of onsite wind direction and speed to the air dispersion models. We compared offsite measured soil concentrations to predictions made for the corresponding sampling depths, focusing on soil rather than air measurements because the offsite soil samples were less likely to be influenced by short-term variability in emission rates and meteorological conditions. PFOA concentrations in surface soil (0-30 cm depth) were under-predicted and those in subsurface soil (>30 cm depth) were over-predicted compared to observed concentrations by both linked air and vadose zone model. Overall, the simulated values from the linked modeling system were positively correlated with those observed in surface soil (Spearman's rho, Rsp = 0.59-0.70) and subsurface soil (Rsp = 0.46-0.48). This approach provides a useful modeling scheme for similar exposure and risk analyses where the air-soil-groundwater transport is a primary contamination pathway.

  16. Modelling photochemistry in alpine valleys

    Directory of Open Access Journals (Sweden)

    G. Brulfert


    Full Text Available Road traffic is a serious problem in the Chamonix Valley, France: traffic, noise and above all air pollution worry the inhabitants. The big fire in the Mont-Blanc tunnel made it possible, in the framework of the POVA project (POllution in Alpine Valleys, to undertake measurement campaigns with and without heavy-vehicle traffic through the Chamonix and Maurienne valleys, towards Italy (before and after the tunnel re-opening. Modelling is one of the aspects of POVA and should make it possible to explain the processes leading to episodes of atmospheric pollution, both in summer and in winter. Atmospheric prediction model ARPS 4.5.2 (Advanced Regional Prediction System, developed at the CAPS (Center for Analysis and Prediction of Storms of the University of Oklahoma, enables to resolve the dynamics above a complex terrain. This model is coupled to the TAPOM 1.5.2 atmospheric chemistry (Transport and Air POllution Model code developed at the Air and Soil Pollution Laboratory of the Ecole Polytechnique Fédérale de Lausanne. The numerical codes MM5 and CHIMERE are used to compute large scale boundary forcing. This paper focuses on modelling Chamonix valley using 300-m grid cells to calculate the dynamics and the reactive chemistry which makes possible to accurately represent the dynamics in the Chamonix valley (slope and valley winds and to process chemistry at fine scale. The summer 2003 intensive campaign was used to validate the model and to study chemistry. NOy according to O3 reduction demonstrates a VOC controlled regime, different from the NOx controlled regime expected and observed in the nearby city of Grenoble.

  17. Modelling photochemistry in alpine valleys

    Directory of Open Access Journals (Sweden)

    G. Brulfert


    Full Text Available Road traffic is a serious problem in the Chamonix Valley, France: traffic, noise and above all air pollution worry the inhabitants. The big fire in the Mont-Blanc tunnel made it possible, in the framework of the POVA project (POllution in Alpine Valleys, to undertake measurement campaigns with and without heavy-vehicle traffic through the valley, towards Italy (before and after the tunnel re-opening. Modelling in POVA should make it possible to explain the processes leading to episodes of atmospheric pollution, both in summer and in winter.

    Atmospheric prediction model ARPS 4.5.2 (Advanced Regional Prediction System, developed at the CAPS (Center for Analysis and Prediction of Storms of the University of Oklahoma, enables to resolve the dynamics above a complex terrain.

    This model is coupled to the TAPOM 1.5.2 atmospheric chemistry (Transport and Air POllution Model code developed at the Air and Soil Pollution Laboratory of the Ecole Polytechnique Fédérale de Lausanne.

    The numerical codes MM5 and CHIMERE are used to compute large scale boundary forcing.

    Using 300-m grid cells to calculate the dynamics and the reactive chemistry makes possible to accurately represent the dynamics in the valley (slope and valley winds and to process chemistry at fine scale.

    Validation of campaign days allows to study chemistry indicators in the valley. NOy according to O3 reduction demonstrates a VOC controlled regime, different from the NOx controlled regime expected and observed in the nearby city of Grenoble.

  18. Changes in Physicochemical Properties of Soil Encourage the Invasion Establishment and Carbon Dynamics of Lantana camara from Doon Valley, Western Himalaya, India

    Directory of Open Access Journals (Sweden)

    Gautam Mandal


    Full Text Available Abstract - Lantana camara L. is a recognized weed of worldwide significance due to its widespread distribution and impacts on nature conservation. In this study physicochemical properties of soil were analysed from different high and low Lantana infested areas. Significant site effect was frequently observed than effect due to invasion status. The present study tested the impact of soil properties in the measured and calculated attributes of Lantana by randomly sampling soil from the highly invaded and less invaded sites in different habitats using the Modified Whittaker plot design. Ten samples were collected at high invaded and ten at less invaded sites per habitat totalling to 120 which were obtained and analysed. One way analysis of variance (ANOVA results indicated that edaphic factors such as soil pH, total nitrogen, soil organic carbon, Phosphorus and Potassium content positively influenced the growth of Lantana and helped in the further invasion process. These factors were also positively influencing the measured and calculated attributes of Lantana such as canopy coverage, average crown diameter, shrub canopy area, phytovolume and biomass from all sites. However some attributes like shrub height and stem diameter were negatively influenced by these soil factors. The level of these soil nutrients was found elevated in all Lantana invaded sites as compared to less invaded sites. The present results reveal that Lantana invasion can not only significantly improve the soil nutrient level but also positively increase the chances of its further invasion with more copious plant attributes.

  19. Fertilidade de alguns solos de várzea do vale do Paraíba Fertility of some soils in alluvial plains of the Paraíba valley

    Directory of Open Access Journals (Sweden)

    H. Garcia Blanco


    Full Text Available Com a finalidade de avaliar a fertilidade de alguns solos de várzea do vale do rio Paraíba, foram instalados ensaios em vasos com arroz, utilizando as séries Corruçá, Avareí e Brejão. A primeira é argilosa; a segunda, orgânica; a terceira, intermediária das anteriores, isto é, argilo-orgânica. Apesar de os resultados analíticos indicarem teores elevados em nutrientes, as reações às adubações foram intensas na maioria dos casos, induzindo à consideração de que os índices de fertilidade dos solos bem drenados não se aplicam a essas séries. Todos os solos apresentaram reação bastante pronunciada ao nitrogênio. No solo mineral argiloso, não se evidenciou reação ao potássio, mas sòmente a N e P. No argilo-orgânico, o P foi o único elemento que não reagiu. Finalmente, no solo orgânico, reagiram, além do N, os outros dois elementos.A study dealing with the fertility of three soils from alluvial plains in the Paraiba River Valley, State of São Paulo, was carried out in greenhouse tests, with rice (of the Iguape-agulha variety cultivated in pots of 6.0 kg soil capacity. The samples were collected down to 20 cm depth from the following monotype soils series: Corruçá, Brejão and Avareí. The former is an alluvial clay soil and the latter an organic one representing stratified muck and peat; the Brejão series is also organic soil but has an intermediate, organic and clay, texture. The experiment was designed to investigate these soils' needs for the NPK nutrients. In an extra treatment the needs for the minor elements were investigated too. The results obtained in these experiments indicated that the fertility levels based on chemical analyses and applied to fertilization practice to other well drained soils of the State are not satisfactory for the soils in question. A significant favorable response to nitrogen was shown by all the soils studied though they held high content of this element. The response to


    Institute of Scientific and Technical Information of China (English)

    刘秀珍; 李翔; 向云; 李静波; 毕如田; 牛越先


    Soil particle is one of the important physical properties of soil.In order to study the connotation of soil particle fractal dimension and the description soil properties by using soil particle fractal dimension, this study calculated the soil particle fractal dimension of dam land in Shuerliang small river valley, and analyzed the relation of fractal dimension and composition of various soil particle and nutrient.Results showed that the fractal dimensions of particle size distribution (PSD) of soils increased with the increase of soil clay content in dam land in Shuerliang, and the fractal dimensions of PSD in the front, the middle and the end of the dam respectively were 2.7278, 2.7184 and 2.685, which met the Stokes' rule.The overall difference of the various size particles content of particle constitution of dam land and the change range were very small, the changes in the vertical profile were very weak.There was significantly positive correlation between the fractal dimensions of PSD and the content of soil organic matter in dam land.The fractal dimensions of PSD were highly significantly positive-related with the soil cation exchange capacity, total potassium,slowly available potassium and readily available potassium.So it is positively significant to describe soil nature with the fractional dimension of soil particle.%土壤颗粒的分形维数是重要的土壤物理特性,为研究坝地土壤颗粒分形维数的内涵和利用土壤颗粒的分形维数来描述与土壤性质的关系,本研究计算了树儿梁小流域坝地土壤颗粒的分形维数,并分析了分形维数与各粒级组成及其土壤养分的关系.结果表明:树儿梁坝地土壤颗粒的分形维数随土壤黏粒的增加而增大,坝前、坝中、坝尾土壤颗粒的分形维数分别为2.7278、2.7184和2.685,符合Stokes沉降原理,坝地颗粒组成各粒级含量及变化范围整体差异较小,在垂直剖面上变化都很微弱.坝地土壤颗粒的分形维

  1. Formation of Pedogenic Carbonates in the Semi-arid Rio Grande Valley: Insights from Carbon, Major elements, and U-series isotopes in Natural and Agricultural Soils of Southern New Mexico and Western Texas (United States)

    Nyachoti, S. K.; Ma, L.; Jin, L.; Tweedie, C. E.


    Accumulation of pedogenic carbonates in arid and semi-arid soils affects soil porosity, water infiltration, and global carbon cycle. We investigate formation rates of these carbonates under different land uses in the semi-arid Rio Grande valley using mineralogy, concentrations of major elements (including C), and U-series isotopes. Our study sites include one alfalfa farm (Alfalfa) at El Paso, TX under frequent irrigation with saline water from the Rio Grande River, and one natural shrub field under natural rainfall conditions at the USDA Jornada Experimental Range (Jornada) in NM. Major minerals observed at Alfalfa and Jornada are calcite, quartz, and feldspars. Calcite/quartz ratios increase upward in the profile at Alfalfa, suggesting formation of carbonates in shallow soils. Consistently, total carbon increases toward the soil surface at Alfalfa, contributed by both soil organic carbon and soil inorganic carbon (pedogenic carbonates). Concentrations of major elements (e.g Ca, Mg, and Sr) also increase toward the surface at Alfalfa, suggesting surface addition. Alternating trends of enrichment and depletion are observed throughout the soil profiles. In contrast, calcite/quartz ratios decrease toward the surface at Jornada, indicative of leaching at shallow soils and redeposition of calcite at depth. This is in agreement with high soil inorganic carbon contents measured at depth. At Jornada however, the Ca, Mg and Sr concentrations decrease toward the surface, showing typical depletion profiles. (234U/238U) activity ratios in bulk soils increase upward at Alfalfa while at Jornada (234U/238U) ratios decrease toward the surface. (234U/238U) ratios at Alfalfa suggest surface addition of U onto shallow soils probably from irrigation water, which is known to have high (234U/238U) ratios. Jornada shows preferential loss of 234U upward. U-series disequilibrium in pedogenic carbonates enables calculation of their formation ages. At Alfalfa, carbonate ages range from 2

  2. Differential absorption of metals from soil to diverse vine varieties from the Valley of Tulum (Argentina): consequences to evaluate wine provenance. (United States)

    Fabani, María P; Toro, María E; Vázquez, Fabio; Díaz, María P; Wunderlin, Daniel A


    We report the effect of vine variety on the absorption of metals from soil and follow the variety from wine through juice, verifying which metals could be used to assess wine provenance. Eleven metals were determined by atomic absorption spectroscopy in 32 soils, 16 grapes juices, and 18 wines sampled from a single vineyard having four red grape varieties (Cabernet Sauvignon, Bonarda, Malbec, and Syrah). The K nearest neighbor method allows us to distinguish among different soils, juices, and wines. Linear discriminant analysis affords descriptors to point out differences, mainly Mg, Mn, Ca, K, and Na. Data analysis evidenced that some elements have equivalent concentrations in soil, juice, and wine, while others did not. Canonical analysis shows good correlation between grape juice and wine with their provenance soil. We suggest using Mg as a marker of wine provenance, while Mn could be used to evaluate differences between wine varieties associated with plant physiology.

  3. DMS pulse and COS valley: the effect of simulated rainfall on sulfur gas exchange in dry soils of uncultivated marine terraces (United States)

    Whelan, M.; Khan, M. H.; Barnash, K.; Vollering, J.; Rhew, R.


    Atmospheric sulfur compounds regulate climate by affecting cloud dynamics and reducing the amount of solar radiation that reaches the Earth's surface. Quantifying the terrestrial-atmosphere exchanges of sulfur has been challenging as only some of the controlling factors are known. In general, oxic soils are observed to act as a sink of reduced sulfur compounds (RSCs), while anoxic soils tend to act a source. Changes in soil moisture are therefore expected to greatly influence the direction of net gas fluxes of RSCs. Here we report the effect of simulated rainfall on soil samples from uncultivated marine terraces near Santa Cruz, CA, U.S.A (37.0°N, 122°W). Soils were collected in the dry season of a Mediterranean-type climate and air dried before the analysis. The rate of production of dimethyl sulfide (DMS), a compound known to be produced by phytoplankton and bacteria, increased dramatically in the first hours after water addition, tapering off over a few days. A concurrent pulse in microbial respiration (as CO_2) was observed. Soils that experience lengthy dry periods, such as those from arid and Mediterranean climates, have been shown to exhibit increases of carbon mineralization after rain events due to a combination of released soil organic matter and increased microbial activity. Conversely, production of carbonyl sulfide (COS), the most abundant reduced sulfur compound in the atmosphere, decreased immediately upon wetting the soil, perhaps due to isolation of the soil atmosphere from the headspace by water. These simultaneous processes after the addition of water can transform a soil in the bulk oxic state into a net source of RSCs in a relatively short span of time.

  4. Valley precession and valley polarization in graphene with inter-valley coupling (United States)

    Wu, Qing-Ping; Liu, Zheng-Fang; Chen, Ai-Xi; Xiao, Xian-Bo; Zhang, Heng; Miao, Guo-Xing


    We theoretically investigate the valley precession and valley polarization in graphene under inter-valley coupling. Our results show that the inter-valley coupling can induce valley polarization in graphene and also precess valleys in real space in a manner similar to the Rashba spin-orbit interaction rotating spins. Moreover, using strain modulation, we can achieve high valley polarization with large valley-polarized currents. These findings provide a new way to create and manipulate valley polarization in graphene.

  5. Water-balance subregions (WBSs), soil types, and virtual crops for the five land-use time-frames used in the Central Valley Hydrologic Model (CVHM) (United States)

    U.S. Geological Survey, Department of the Interior — This digital dataset defines the model grid, water-balance subregions (WBSs), soil types, and virtual crops for the five land-use time-frames in the transient...

  6. Effect of dry land transformation and quality of water use for crop irrigation on the soil bacterial community in the Mezquital Valley, Mexico (United States)

    Lüneberg, Kathia; Schneider, Dominik; Daniel, Rolf; Siebe, Christina


    Soil bacteria are important determinants of soil fertility and ecosystem services as they participate in all biogeochemical cycles. Until now the comprehension of compositional and functional response that bacterial communities have to land use change and management, specifically in dry land its limited. Dry lands cover 40% of the world's land surface and its crop production supports one third of the global population. In this regions soil moisture is limited constraining farming to the rainy season or oblige to irrigate, as fresh water resources become scarce, to maintain productivity, treated or untreated wastewater for field irrigation is used. In this study the transformation of semiarid shrubland to agriculture under different land systems regarding quantity and quality of water use for crop irrigation on bacterial communities was investigated. The land systems included maize rain-fed plantations and irrigation systems with freshwater, untreated wastewater stored in a dam and untreated wastewater during dry and rainy season. Bacterial community structure and function was heavily affected by land use system and soil properties, whereas seasonality had a slighter effect. A soil moisture, nutrient and contaminant-content increasing gradient among the land use systems, going from rain fed plantation over fresh water, dam wastewater to untreated wastewater irrigated plantations was detected, this gradient diminished the abundance of Actinobacteria and Cyanobacteria, but enhanced the one from Bacteroidetes and Proteobacteria. Discernible clustering of the dry land soil communities coincides with the moisture, nutrient and contaminant gradient, being shrubland soil communities closer to the rain-fed's system and farer to the one from untreated wastewater irrigated soil. Soil moisture together with sodium content and pH were the strongest drivers of the community structure. Seasonality promoted shifts in the composition of soil bacteria under irrigation with

  7. Energy valley in transition

    NARCIS (Netherlands)

    Verwayen, Barbara


    The Energy Valley foundation was born in 2004. It functions as a catalyst and platform for private and public organisations. It has a supporting and facilitating role in realising projects on energy conservation and sustainable energy. The Energy Valley a

  8. Climate controls on valley fever incidence in Kern County, California (United States)

    Zender, Charles S.; Talamantes, Jorge


    Coccidiodomycosis (valley fever) is a systemic infection caused by inhalation of airborne spores from Coccidioides immitis, a soil-dwelling fungus found in the southwestern United States, parts of Mexico, and Central and South America. Dust storms help disperse C. immitis so risk factors for valley fever include conditions favorable for fungal growth (moist, warm soil) and for aeolian soil erosion (dry soil and strong winds). Here, we analyze and inter-compare the seasonal and inter-annual behavior of valley fever incidence and climate risk factors for the period 1980-2002 in Kern County, California, the US county with highest reported incidence. We find weak but statistically significant links between disease incidence and antecedent climate conditions. Precipitation anomalies 8 and 20 months antecedent explain only up to 4% of monthly variability in subsequent valley fever incidence during the 23 year period tested. This is consistent with previous studies suggesting that C. immitis tolerates hot, dry periods better than competing soil organisms and, as a result, thrives during wet periods following droughts. Furthermore, the relatively small correlation with climate suggests that the causes of valley fever in Kern County could be largely anthropogenic. Seasonal climate predictors of valley fever in Kern County are similar to, but much weaker than, those in Arizona, where previous studies find precipitation explains up to 75% of incidence. Causes for this discrepancy are not yet understood. Higher resolution temporal and spatial monitoring of soil conditions could improve our understanding of climatic antecedents of severe epidemics.

  9. Adsorción de cadmio, cromo y mercurio en suelos del Valle del Cauca a varios valores de pH Cadmium, chromium and mercury adsorption on Cauca Valley soils as a function of pH

    Directory of Open Access Journals (Sweden)

    García O. Álvaro


    Full Text Available Con el fin de observar el proceso de adsorción de Cd, Cr y Hg y determinar el efecto del pH sobre la adsorción de los metales indicados, se seleccionaron tres suelos de los órdenes predominantes en el Valle del Cauca que, por su ubicación, están siendo regados con aguas contaminadas o pueden llegar a serlo en un futuro. El pH de los suelos se ajustó con ácido acético al 1, 4 y 12% o con NaOH 0.01 N para obtener valores lo más próximo posible a 5.7, 6.5 Y 7.8. Se prepararon soluciones de equilibrio con cada metal (0.0, 0.28, 0.56, 1.12 Y 2.25 mg/L y se adicionaron a 0.25 g de suelo seco al aire y tamizado para pasar una malla de 2 mm. La extracción de los metales se realizó con HCI 001 N y se determinaron por espectrofotometría de absorción atómica. La diferencia entre la concentración inicial y la final se consideró como la cantidad adsorbida por el suelo y la diferencia entre la cantidad adsorbida y la cantidad extraída con H Cl 0.01 N se consideró como la cantidad retenida por el suelo. En general el Cd se adsorbe más a valores de pH neutro o alcalino en todos los suelos, debido a que su forma predominante es la divalente y tiende más a formar complejos solubles e insolubles con los aniones encontrados en el suelo por encima de pH 7.0. La adsorción de Cr y Hg es mayor a valores de pH ácido debido a que forman complejos con la materia orgánica del suelo y/o los óxidos e hidróxidos de Fe, Al y Mn cuyas reacciones se ven favorecidas a estos valores de pH. La menor extracción (mayor retención en todos los suelos se dio a valores de pH entre 6.4 y 6.6, indicando que en este pH los metales quedan fuertemente retenidos por el complejo de cambio y su disponibilidad hacia las plantas es mínima.Soils irrigated with heavy metals contamined water are common in Cauca Valley and there is not available information about of soil behavior and soil processes affected by Cd, Cr and Hg. Three soils of the main orders of Cauca Valley

  10. Soluble Salt Accumulations in Taylor Valley, Antarctica: Implications for Paleolakes and Ross Sea Ice Sheet Dynamics (United States)

    Toner, J. D.; Sletten, R. S.; Prentice, M. L.


    Soluble salt accumulations in Taylor Valley, Antarctica, provide a history of paleolakes and the advance of the Ross Sea Ice Sheet (RSIS). We measured soluble salts in 89 soils throughout Taylor Valley in soil-water extractions. In western Taylor Valley, soluble salt accumulations are relatively high and are comprised primarily of Na, Ca, Cl, and SO4. In eastern Taylor Valley, soluble salt accumulations are much lower and are comprised primarily of Na and HCO3. Salt compositions measured in soil-water extractions are highly influenced by the dissolution of sparingly soluble salts (e.g. calcite and gypsum) and cation exchange reactions. Furthermore, during soil-water extractions, Ca from calcite or gypsum dissolution exchanges with exchangeable Na, K, and Mg. These processes can strongly influence both the total salt content measured in soils and ionic ratios. Thus, it is important to consider the effects of these reactions when interpreting soluble salt accumulations measured in soil-water extractions. Calcite dissolution and cation exchange reactions also appear to have a widespread natural occurrence, resulting in the Na-HCO3 compositions of soils, streams, and lakes in eastern Taylor Valley. The soluble salt data supports the hypotheses that a lobe of the RSIS expanded into eastern Taylor Valley and dammed proglacial paleolakes. However, in contrast to previous studies, our findings indicate that the RSIS advanced deeper into Taylor Valley and that paleolakes were less extensive. By comparing soluble salt distributions across Taylor Valley, we conclude that a lobe of the RSIS filled all of eastern Taylor Valley and dammed paleolakes in western Taylor Valley up to 300 m elevation. Following ice retreat, smaller paleolakes formed in both western and eastern Taylor Valley up to about 120 m, with a prominent still stands at 80 m that was controlled by the elevation of a major valley threshold.

  11. Delineation of Landslide Prone Areas based on Geotechnical and Mineralogical Evaluation of Rocks and Soil to Understand the Failure Zones in a part of Alaknanda Valley, Garhwal Himalaya, India (United States)

    Asthana, H.; Singh, N.; Sen, R.; Vishwakarma, C. A.; Singh, P.; Rena, V.; Mukherjee, S.


    The exclusive physiographic, tectonic and climatic conditions, along with natural and anthropogenic factors make the Himalayan terrain prone to land failure. The land which can be used for the developmental activities are severely limited. Increasing population density, societal requirements has put stress on the same quantum of land and created considerable anthropogenic problems in landscape equilibrium. In present study thematic maps have been developed for the Alaknanda valley in the Garhwal Himalaya of Uttrakhand to assess the potential landslide hazard zones. This has been done using remote sensing GIS data, topographic maps and field investigations. Based on above results landslide hazard zonation has been done to determine the spatio-temporal extent of landslide occurrence and vulnerability. Outlook of the slopes and identification of the discontinuities present in the terrain was done on the basis of representative samples through field investigations. Grain size analysis of the following samples was carried out to estimate the percentage sand, silt and clay content of the soil. Based on the proportions of different particle sizes, a soil textural category may be assigned to the samples. Results indicated that the landslides along the section of Devprayag-Badrinath National Highway are mainly debris slides, debris flows, rock slides and rock falls. Following landslide masses are chiefly composed of boulders, rock fragments and soil. Debris flows are mostly restrained along lines of natural drainage. The area is under severe anthropogenic as well as natural influence which can be further responsible for increase in the shear stress beyond the threshold level, thus decreasing the slope stability resulting in failure zones. A high resolution remotely sensed data in digital form has been proved to be an essential tool for the preparation, interpretation and analysis of the data obtained in the GIS environment. Further mineralogical evaluations are done to

  12. Detection of linear soil erosion forms with Structure from Motion (SfM) technique in a Waldrach vineyard (Ruwer Valley, Germany) (United States)

    Szabó, Boglárka; Seeger, Manuel; Brings, Christine; Gronz, Oliver; Rodrigo Comino, Jesus; Iserloh, Thomas; Ries, Johannes B.


    Photo-based 3D reconstruction with SfM algorithms is a dynamically developing method in high-resolution digital surface modeling. This method has several advantages, which makes it suitable for multiple fields of science. SfM based 3D surface reconstruction is low cost and less time consuming than the similarly precise, but more complicated and technically demanding air- or ground-based lidar or radar scanning methods or the classic aerial photogrammetry. Therefore, the SfM technology has developed to be a widespread tool in mapping geomorphic characteristics and forms. Nevertheless, there are some limiting factors, which are the following: the quality of images, the type of surface and the accuracy which can be variable between the different surfaces and different post-processing methods. Most of the studies in this subject were made on vegetation-free surfaces or where the vegetation is shallow, because the vegetation can be the main influencing factor of the accurate modelling as it covers the ground. Meanwhile, numerous studies for 3D modeling of gullies have appeared, while the number of publications on the modeling of rills is still quite low. As monitoring and quantification of rills and rill development has a great importance in studying soil erosion processes it is crucial to investigate the main limitations of accurate 3D-modelling. To detect linear erosion forms and to quantify the surface changes for estimating the erosion volumes we worked with UAV (Unmanned Aerial Vehicles) based aerial images of a vineyard in Waldrach (Ruwertal, Germany) close to Trier taken at the beginning of the growing season. The used softwares were Visual SFM, Sf3M, Cloudcompare and ArcGIS 10.2. At post processing we filtered out the vegetation based on the pixel value of each of the colour bands in the RGB image. This method reduced the number of points in our point cloud and in this way decreased the dot density and made holes which resulted irregular point distribution. In

  13. Biogeochemical stoichiometry of Antarctic Dry Valley ecosystems (United States)

    Barrett, J. E.; Virginia, R. A.; Lyons, W. B.; McKnight, D. M.; Priscu, J. C.; Doran, P. T.; Fountain, A. G.; Wall, D. H.; Moorhead, D. L.


    Among aquatic and terrestrial landscapes of the McMurdo Dry Valleys, Antarctica, ecosystem stoichiometry ranges from values near the Redfield ratios for C:N:P to nutrient concentrations in proportions far above or below ratios necessary to support balanced microbial growth. This polar desert provides an opportunity to evaluate stoichiometric approaches to understand nutrient cycling in an ecosystem where biological diversity and activity are low, and controls over the movement and mass balances of nutrients operate over 10-106 years. The simple organisms (microbial and metazoan) comprising dry valley foodwebs adhere to strict biochemical requirements in the composition of their biomass, and when activated by availability of liquid water, they influence the chemical composition of their environment according to these ratios. Nitrogen and phosphorus varied significantly in terrestrial and aquatic ecosystems occurring on landscape surfaces across a wide range of exposure ages, indicating strong influences of landscape development and geochemistry on nutrient availability. Biota control the elemental ratio of stream waters, while geochemical stoichiometry (e.g., weathering, atmospheric deposition) evidently limits the distribution of soil invertebrates. We present a conceptual model describing transformations across dry valley landscapes facilitated by exchanges of liquid water and biotic processing of dissolved nutrients. We conclude that contemporary ecosystem stoichiometry of Antarctic Dry Valley soils, glaciers, streams, and lakes results from a combination of extant biological processes superimposed on a legacy of landscape processes and previous climates.

  14. Haemoragisk Rift Valley Fever

    DEFF Research Database (Denmark)

    Fabiansen, Christian; Thybo, Søren


    A case of fatal hemorrhagic Rift Valley fever during an epidemic in Kenya's North Eastern Province in January 2007 is described.......A case of fatal hemorrhagic Rift Valley fever during an epidemic in Kenya's North Eastern Province in January 2007 is described....

  15. Rift Valley Fever Virus (United States)

    Rift Valley fever virus (RVFV) is a mosquito-transmitted virus or arbovirus that is endemic in sub-Saharan Africa. In the last decade, Rift Valley fever (RVF) outbreaks have resulted in loss of human and animal life, as well as had significant economic impact. The disease in livestock is primarily a...

  16. Silicon Valley Ecosystem

    Institute of Scientific and Technical Information of China (English)

    Joseph Leu


    @@ It is unlikely that any industrial region of the world has received as much scrutiny and study as Silicon Valley. Despite the recent crash of Internet and telecommunications stocks,Silicon Valley remains the world's engine of growth for numerous high-technology sectors.

  17. Geometry of Valley Growth

    CERN Document Server

    Petroff, Alexander P; Abrams, Daniel M; Lobkovsky, Alexander E; Kudrolli, Arshad; Rothman, Daniel H


    Although amphitheater-shaped valley heads can be cut by groundwater flows emerging from springs, recent geological evidence suggests that other processes may also produce similar features, thus confounding the interpretations of such valley heads on Earth and Mars. To better understand the origin of this topographic form we combine field observations, laboratory experiments, analysis of a high-resolution topographic map, and mathematical theory to quantitatively characterize a class of physical phenomena that produce amphitheater-shaped heads. The resulting geometric growth equation accurately predicts the shape of decimeter-wide channels in laboratory experiments, 100-meter wide valleys in Florida and Idaho, and kilometer wide valleys on Mars. We find that whenever the processes shaping a landscape favor the growth of sharply protruding features, channels develop amphitheater-shaped heads with an aspect ratio of pi.

  18. Purge at West Valley (United States)

    Mack, Warren


    Tells how the adviser of the student newspaper at West Valley College (Saratoga, California) was dismissed after the newspaper published stories based on investigations into alleged wrongdoings by administration members. (GW)

  19. Manual for semi-detailed characterization of inland valley agro-ecosystems

    NARCIS (Netherlands)

    Duivenbooden, van N.; Windmeijer, P.N.


    The project "Characterization of Rice-growing Agro-ecosystems in West Africa" and its successor "The Consortium for Sustainable Use of Inland Valleys in Sub-Saharan Africa" aim at developing suitable technologies of soil, water and crop management for more-intensive utilization of inland valleys for

  20. Manual for semi-detailed characterization of inland valley agro-ecosystems

    NARCIS (Netherlands)

    Duivenbooden, van N.; Windmeijer, P.N.


    The project "Characterization of Rice-growing Agro-ecosystems in West Africa" and its successor "The Consortium for Sustainable Use of Inland Valleys in Sub-Saharan Africa" aim at developing suitable technologies of soil, water and crop management for more-intensive utilization of inland valleys for

  1. 75 FR 9827 - Proposed Expansion of the Santa Maria Valley Viticultural Area (2008R-287P) (United States)


    ... surrounds the Santa Maria Valley floor, adjacent canyons, and sloping terraces. Elevations vary from a low... the valley floor and 800 feet on the slopes of the rolling hillsides. Soils and Climate: According to... range in texture from sandy ] loam to clay loam. Of climatic importance to the viticultural area,...

  2. Valley-contrasting orbital angular momentum in photonic valley crystals

    CERN Document Server

    Chen, Xiaodong; Dong, Jianwen


    Valley, as a degree of freedom, has been exploited to realize valley-selective Hall transport and circular dichroism in two-dimensional layered materials. On the other hand, orbital angular momentum of light with helical phase distribution has attracted great attention for its unprecedented opportunity to optical communicagtions, atom trapping, and even nontrivial topology engineering. Here, we reveal valley-contrasting orbital angular momentum in all-dielectric photonic valley crystals. Selective excitation of valley chiral bulk states is realized by sources carrying orbital angular momentum with proper chirality. Valley dependent edge states, predictable by nonzero valley Chern number, enable to suppress the inter-valley scattering along zigzag boundary, leading to broadband robust transmission in Z-shape bend without corner morphological optimization. Our work may open up a new door towards the discovery of novel quantum states and the manipulation of spin-orbit interaction of light in nanophotonics.

  3. Functional ecology of an Antarctic Dry Valley (United States)

    Chan, Yuki; Van Nostrand, Joy D.; Zhou, Jizhong; Pointing, Stephen B.


    The McMurdo Dry Valleys are the largest ice-free region in Antarctica and are critically at risk from climate change. The terrestrial landscape is dominated by oligotrophic mineral soils and extensive exposed rocky surfaces where biota are largely restricted to microbial communities, although their ability to perform the majority of geobiological processes has remained largely uncharacterized. Here, we identified functional traits that drive microbial survival and community assembly, using a metagenomic approach with GeoChip-based functional gene arrays to establish metabolic capabilities in communities inhabiting soil and rock surface niches in McKelvey Valley. Major pathways in primary metabolism were identified, indicating significant plasticity in autotrophic, heterotrophic, and diazotrophic strategies supporting microbial communities. This represents a major advance beyond biodiversity surveys in that we have now identified how putative functional ecology drives microbial community assembly. Significant differences were apparent between open soil, hypolithic, chasmoendolithic, and cryptoendolithic communities. A suite of previously unappreciated Antarctic microbial stress response pathways, thermal, osmotic, and nutrient limitation responses were identified and related to environmental stressors, offering tangible clues to the mechanisms behind the enduring success of microorganisms in this seemingly inhospitable terrain. Rocky substrates exposed to larger fluctuations in environmental stress supported greater functional diversity in stress-response pathways than soils. Soils comprised a unique reservoir of genes involved in transformation of organic hydrocarbons and lignin-like degradative pathways. This has major implications for the evolutionary origin of the organisms, turnover of recalcitrant substrates in Antarctic soils, and predicting future responses to anthropogenic pollution. PMID:23671121

  4. Geology and water resources of Owens Valley, California (United States)

    Hollett, Kenneth J.; Danskin, Wesley R.; McCaffrey, William F.; Walti, Caryl L.


    Owens Valley, a long, narrow valley located along the east flank of the Sierra Nevada in east-central California, is the main source of water for the city of Los Angeles. The city diverts most of the surface water in the valley into the Owens River-Los Angeles Aqueduct system, which transports the water more than 200 miles south to areas of distribution and use. Additionally, ground water is pumped or flows from wells to supplement the surface-water diversions to the river-aqueduct system. Pumpage from wells needed to supplement water export has increased since 1970, when a second aqueduct was put into service, and local concerns have been expressed that the increased pumpage may have had a detrimental effect on the environment and the indigenous alkaline scrub and meadow plant communities in the valley. The scrub and meadow communities depend on soil moisture derived from precipitation and the unconfined part of a multilayered aquifer system. This report, which describes the hydrogeology of the aquifer system and the water resources of the valley, is one in a series designed to (1) evaluate the effects that groundwater pumping has on scrub and meadow communities and (2) appraise alternative strategies to mitigate any adverse effects caused by, pumping. Two principal topographic features are the surface expression of the geologic framework--the high, prominent mountains on the east and west sides of the valley and the long, narrow intermountain valley floor. The mountains are composed of sedimentary, granitic, and metamorphic rocks, mantled in part by volcanic rocks as well as by glacial, talus, and fluvial deposits. The valley floor is underlain by valley fill that consists of unconsolidated to moderately consolidated alluvial fan, transition-zone, glacial and talus, and fluvial and lacustrine deposits. The valley fill also includes interlayered recent volcanic flows and pyroclastic rocks. The bedrock surface beneath the valley fill is a narrow, steep-sided graben

  5. Competição entre materiais corretivos (escórias de siderurgia x calcário em solos de várzea do Vale do Paraíba Utilization of two types of blast furnace slag as a soil corrective in the Paraíba Valley

    Directory of Open Access Journals (Sweden)

    A. Gentil Gomes


    Full Text Available Embora apresentando os solos do Vale do Rio Paraíba, com poucas exceções, acidez de média a elevada, muito pouco uso de corretivos de solos tem sido feito. Êste fato se deve principalmente ao pequeno número de jazidas de calcário existente na região, insuficiente para atender à demanda desse material para a agricultura. Visando colaborar na solução do problema, foram estudadas em seis experimentos instalados em solos de várzea, as possibilidades de utilização de dois tipos de escórias, provenientes da Usina Siderúrgica Nacional de Volta Redonda e da produção de aço em São Caetano e Moji das Cruzes. Nesses ensaios, em culturas de batata e tomate, foram comparados os dois tipos de escórias e um de calcário, em três níveis, tendo como testemunha um tratamento que recebeu apenas a adubação básica, NPK. Os resultados obtidos autorizam a recomendação do emprêgo das escorias. Para sua comercialização, entretanto, necessário se torna alterar o grau de moagem, para que sua granulometria satisfaça às exigências legais.Although the soil in the Paraiba Valley generally presents medium to high acidity, the practice of liming is not yet widespread there. One of the reasons for this is the lack of enough lime sources in its vicinity. As a contribution to the study of the liming problem in the Paraiba Valley, six experiments were carried out on various types of soils in the area, comparing two types of slags with limestone as soil correctives. The slags were obtained from the Usina Siderúrgica Nacional, Volta Redonda and from the São Caetano Steel Plant, São Caetano. They were conducted with the tomato and potato crops. Three levels of each type of slag or limestone, plus a complete fertilizer, were compared. Control plots received only the fertilizer. The results from these experiments indicated that the two types of slag compared favorably with limestone as a calcium source. Both can be recommended as a corrective for

  6. Two new species of soil nematodes from Manipur, India. (United States)

    Chanu, Loukrakpam Bina; Meitei, N Mohilal; Shah, M Manjur


    Survey for soil nematodes associated with mulberry plants in valley districts of Manipur revealed the presence of two new species of soil nematodes of the genus Tylenchus sp. and Telotylenchus sp. The two new species are described and illustrated here.

  7. Silicon Valley's Turnaround

    Institute of Scientific and Technical Information of China (English)

    Joseph Leu


    @@ During Silicon Valley's dramatic economic growth fueled by the Internet boom and business investment in information technology, employment in the region's high-tech sec tor tripled between 1995 and 2000. The economic boom gave rise to many new firms,drawing em ployees into high-tech jobs from other regions and other industries.

  8. Breathing Valley Fever

    Centers for Disease Control (CDC) Podcasts


    Dr. Duc Vugia, chief of the Infectious Diseases Branch in the California Department of Public Health, discusses Valley Fever.  Created: 2/4/2014 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 2/5/2014.

  9. Boyne Valley Tombs (United States)

    Prendergast, Frank

    The passage tombs of the Boyne Valley exhibit the greatest level of development of the megalithic tomb building tradition in Ireland in terms of their morphology, embellishment, burial tradition, grave goods, clustering, and landscape siting. This section examines these characteristics and gives a summary archaeoastronomical appraisal of their orientation and detected astronomical alignment.

  10. Red (Planet) River Valleys

    Institute of Scientific and Technical Information of China (English)



    Mars today is a frozen desert,but the photos sent back by the Mariner and Viking probes in the 1970s indicate its past was less bleak and more Earth-like. The images showed sinuous channels and valleys that were al-

  11. Ácidos Húmicos em solo fertirrigado no Vale do São Francisco Humic acids in a fertirrigated soil in the São Francisco River Valley, Brazil

    Directory of Open Access Journals (Sweden)

    Tony Jarbas Ferreira Cunha


    policondensação e grau de humificação do ácido húmico dos tratamentos FE e FHE.The use of humic (HA acids together with mineral and organic fertilizers probably modifies the natve soil humic acids'In the São Francisco Valley, Northeast Brazil, organic acids have gain interest of growers using irrigated agriculture. But so far, the possible modifications of the native soil humic substances under application of organic acids along with mineral and organic fertilizers are not known. The objective of this study was to evaluate and characterize the qualitative changes in humic acids extracted from a soil fertirrigated with different sources of mineral and organic fertilizers, together with the commercial organic acid application to guava trees. The experiment was carried out at Embrapa Tropical Semi-Arid, in Petrolina, State of Pernambuco, Brazil. The treatments were: F - mineral fertirrigation (urea, monoammonium phosphate, potassium chloride; FE - F + 20 L/plant manure; FH - F + fertirrigation with 30 L Codahumus 20® ha-1; FEH - mineral fertigation + 20 L/plant manure + fertirrigation with 30 L Codahumus 20® ha-1; and R - reference (without fertilizer, manure or organic acid applications. The E4/E6 ratio of HA ranged from 4.8 to 5.4 for the treatments FEH and F. Results of the Fourier-transform infrared spectroscopy suggest a mixture of aromatic and aliphatic characteristics, a large abundance of carboxylic groups and a lower number of nitrogen groups for humic acids in the treatments FEH, FH and FH. The A465 index ranged from 1.04 to 1.74 for HA in the treatments FEH and FE. The concentration of organic free radicals in HA in the treatment FEH (2.66 Spins g-1 10(17 was three times higher than the HA concentration in treatment F (0.95 Spins g-1 10(17. Manure accounted for the highest level of HA polycondensation and humification degree in the treatments FE and FHE.

  12. Characteristics of organic carbon and soil properties in Binggou valley at upstream of Heihe river%黑河上游冰沟流域4种土壤有机碳分布特征与土壤特性的关系

    Institute of Scientific and Technical Information of China (English)

    秦嘉海; 张勇; 赵芸晨; 王治江; 高海宁; 赵静


    为了探讨黑河上游冰沟流域不同土壤有机碳分布特征与土壤特性的关系,为黑河上游冰沟流域水源涵养研究提供科学依据,采用野外采样,室内分析方法,研究了4种土壤有机碳分布特征及其与土壤特性的关系。结果表明:4种土壤有机碳含量和密度在整个土壤剖面上均表现为:森林灰褐土>高山灌丛草甸土>高山草甸土>山地栗钙土,且垂直分布均随土壤深度增加而减少,说明黑河上游冰沟流域的森林灰褐土比其它土壤更有利于土壤有机碳储存和积累。森林灰褐土0~10 cm土壤有机碳密度为4.54 kg·m-2,略高于我国森林土壤0~10 cm土壤平均碳密度(4.24 kg ·m-2),说明黑河上游冰沟流域的森林灰褐土区雨量充沛,林下植被丰富,凋落物现存量充足。4种土壤0~10 cm土层有机碳含量是整个土壤剖面土壤有机碳含量的30.69%~37.99%,有机碳密度是整个土壤剖面有机碳密度的29.31%~36.77%,说明黑河上游冰沟流域土壤有机碳含量和有机碳密度在表层具有很强的表聚性,不合理的人为活动引发的水土流失极易造成土壤有机碳储量的减少,应增加黑河上游冰沟流域植被覆盖度,保护生态环境,减少水土流失。4种土壤有机碳、全氮、CEC、田间持水量、团聚体在整个土壤剖面上均随土层深度增加而降低,而土壤容重、pH值在整个土壤剖面上均随土层深度增加而增大。经回归统计分析,4种土壤有机碳含量与土壤田间持水量、团聚体、全氮、CEC之间呈显著的正相关关系,与土壤容重、pH之间呈显著的负相关关系。这种变化规律与多数学者研究结果基本一致。%Based on the method of field sampling and laboratory analysis ,the relationship between distribution of organic carbon and soil properties was investigated for four kinds of soil in Binggou Valley

  13. Bringing Silicon Valley inside. (United States)

    Hamel, G


    In 1998, Silicon Valley companies produced 41 IPOs, which by January 1999 had a combined market capitalization of $27 billion--that works out to $54,000 in new wealth creation per worker in a single year. Multiply the number of employees in your company by $54,000. Did your business create that much new wealth last year? Half that amount? It's not a group of geniuses generating such riches. It's a business model. In Silicon Valley, ideas, capital, and talent circulate freely, gathering into whatever combinations are most likely to generate innovation and wealth. Unlike most traditional companies, which spend their energy in resource allocation--a system designed to avoid failure--the Valley operates through resource attraction--a system that nurtures innovation. In a traditional company, people with innovative ideas must go hat in hand to the guardians of the old ideas for funding and for staff. But in Silicon Valley, a slew of venture capitalists vie to attract the best new ideas, infusing relatively small amounts of capital into a portfolio of ventures. And talent is free to go to the companies offering the most exhilarating work and the greatest potential rewards. It should actually be easier for large, traditional companies to set up similar markets for capital, ideas, and talent internally. After all, big companies often already have extensive capital, marketing, and distribution resources, and a first crack at the talent in their own ranks. And some of them are doing it. The choice is yours--you can do your best to make sure you never put a dollar of capital at risk, or you can tap into the kind of wealth that's being created every day in Silicon Valley.

  14. The Distribution and Identity of Edaphic Fungi in the McMurdo Dry Valleys

    Directory of Open Access Journals (Sweden)

    Lisa L. Dreesens


    Full Text Available Contrary to earlier assumptions, molecular evidence has demonstrated the presence of diverse and localized soil bacterial communities in the McMurdo Dry Valleys of Antarctica. Meanwhile, it remains unclear whether fungal signals so far detected in Dry Valley soils using both culture-based and molecular techniques represent adapted and ecologically active biomass or spores transported by wind. Through a systematic and quantitative molecular survey, we identified significant heterogeneities in soil fungal communities across the Dry Valleys that robustly correlate with heterogeneities in soil physicochemical properties. Community fingerprinting analysis and 454 pyrosequencing of the fungal ribosomal intergenic spacer region revealed different levels of heterogeneity in fungal diversity within individual Dry Valleys and a surprising abundance of Chytridiomycota species, whereas previous studies suggested that Dry Valley soils were dominated by Ascomycota and Basidiomycota. Critically, we identified significant differences in fungal community composition and structure of adjacent sites with no obvious barrier to aeolian transport between them. These findings suggest that edaphic fungi of the Antarctic Dry Valleys are adapted to local environments and represent an ecologically relevant (and possibly important heterotrophic component of the ecosystem.

  15. The Distribution and Identity of Edaphic Fungi in the McMurdo Dry Valleys (United States)

    Dreesens, Lisa L.; Lee, Charles K.; Cary, S. Craig


    Contrary to earlier assumptions, molecular evidence has demonstrated the presence of diverse and localized soil bacterial communities in the McMurdo Dry Valleys of Antarctica. Meanwhile, it remains unclear whether fungal signals so far detected in Dry Valley soils using both culture-based and molecular techniques represent adapted and ecologically active biomass or spores transported by wind. Through a systematic and quantitative molecular survey, we identified significant heterogeneities in soil fungal communities across the Dry Valleys that robustly correlate with heterogeneities in soil physicochemical properties. Community fingerprinting analysis and 454 pyrosequencing of the fungal ribosomal intergenic spacer region revealed different levels of heterogeneity in fungal diversity within individual Dry Valleys and a surprising abundance of Chytridiomycota species, whereas previous studies suggested that Dry Valley soils were dominated by Ascomycota and Basidiomycota. Critically, we identified significant differences in fungal community composition and structure of adjacent sites with no obvious barrier to aeolian transport between them. These findings suggest that edaphic fungi of the Antarctic Dry Valleys are adapted to local environments and represent an ecologically relevant (and possibly important) heterotrophic component of the ecosystem. PMID:25079129

  16. Geothermal resource assessment of western San Luis Valley, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    Zacharakis, Ted G.; Pearl, Richard Howard; Ringrose, Charles D.


    The Colorado Geological Survey initiated and carried out a fully integrated assessment program of the geothermal resource potential of the western San Luis Valley during 1979 and 1980. The San Luis Valley is a large intermontane basin located in southcentral Colorado. While thermal springs and wells are found throughout the Valley, the only thermal waters found along the western part of the Valley are found at Shaw Warm Springs which is a relatively unused spring located approximately 6 miles (9.66 km) north of Del Norte, Colorado. The waters at Shaws Warm Spring have a temperature of 86 F (30 C), a discharge of 40 gallons per minute and contain approximately 408 mg/l of total dissolved solids. The assessment program carried out din the western San Luis Valley consisted of: soil mercury geochemical surveys; geothermal gradient drilling; and dipole-dipole electrical resistivity traverses, Schlumberger soundings, Audio-magnetotelluric surveys, telluric surveys, and time-domain electro-magnetic soundings and seismic surveys. Shaw Warm Springs appears to be the only source of thermal waters along the western side of the Valley. From the various investigations conducted the springs appear to be fault controlled and is very limited in extent. Based on best evidence presently available estimates are presented on the size and extent of Shaw Warm Springs thermal system. It is estimated that this could have an areal extent of 0.63 sq. miles (1.62 sq. km) and contain 0.0148 Q's of heat energy.

  17. Characterization of chasmoendolithic community in Miers Valley, McMurdo Dry Valleys, Antarctica. (United States)

    Yung, Charmaine C M; Chan, Yuki; Lacap, Donnabella C; Pérez-Ortega, Sergio; de Los Rios-Murillo, Asuncion; Lee, Charles K; Cary, S Craig; Pointing, Stephen B


    The Antarctic Dry Valleys are unable to support higher plant and animal life and so microbial communities dominate biotic ecosystem processes. Soil communities are well characterized, but rocky surfaces have also emerged as a significant microbial habitat. Here, we identify extensive colonization of weathered granite on a landscape scale by chasmoendolithic microbial communities. A transect across north-facing and south-facing slopes plus valley floor moraines revealed 30-100 % of available substrate was colonized up to an altitude of 800 m. Communities were assessed at a multidomain level and were clearly distinct from those in surrounding soils and other rock-inhabiting cryptoendolithic and hypolithic communities. All colonized rocks were dominated by the cyanobacterial genus Leptolyngbya (Oscillatoriales), with heterotrophic bacteria, archaea, algae, and fungi also identified. Striking patterns in community distribution were evident with regard to microclimate as determined by aspect. Notably, a shift in cyanobacterial assemblages from Chroococcidiopsis-like phylotypes (Pleurocapsales) on colder-drier slopes, to Synechococcus-like phylotypes (Chroococcales) on warmer-wetter slopes. Greater relative abundance of known desiccation-tolerant bacterial taxa occurred on colder-drier slopes. Archaeal phylotypes indicated halotolerant taxa and also taxa possibly derived from nearby volcanic sources. Among the eukaryotes, the lichen photobiont Trebouxia (Chlorophyta) was ubiquitous, but known lichen-forming fungi were not recovered. Instead, fungal assemblages were dominated by ascomycetous yeasts. We conclude that chasmoendoliths likely constitute a significant geobiological phenomenon at lower elevations in granite-dominated Antarctic Dry Valley systems.

  18. Refuge in Belen Valley


    Arias-Caballero, Diego Andres


    A story about love and desire to imagine architecture in a peruvian landscape. On one hand, 'Refuge in Belen Valley' is a thesis about discovering the ideal conditions that architecture should meet in a landscape, conditions that approach the idea of an offering of man rather than a conditioning for man. On the other, it is a thesis about thinking architecture as a composition derived out of material properties, emotional intentions, inhabiting possibilities and counterpoint, the arrangement ...

  19. Building China's Silicon Valley

    Institute of Scientific and Technical Information of China (English)


    @@ Ellis Rahhal and Andrew Schorr sit across from each other in the minimalist office of their tech startup,all clean lines and white linoleum floors.A pair of toothbrushes hint at many a late night hunched over their computers.Outside the window,the sun is slowly setting behind jagged mountains.The scene is classic Silicon Valley.But Rahhal and Schorr aren't in California.They're in suburban Beijing.

  20. Green valley galaxies

    Directory of Open Access Journals (Sweden)

    Salim S.


    Full Text Available The “green valley” is a wide region separating the blue and the red peaks in the ultraviolet-optical color magnitude diagram, first revealed using GALEX UV photometry. The term was coined by Christopher Martin (Caltech, in 2005. Green valley highlights the discriminating power of UV to very low relative levels of ongoing star formation, to which the optical colors, including u−r, are insensitive. It corresponds to massive galaxies below the star-forming, “main” sequence, and therefore represents a critical tool for the study of the quenching of star formation and its possible resurgence in otherwise quiescent galaxies. This article reviews the results pertaining to (predominantly disk morphology, structure, environment, dust content and gas properties of green valley galaxies in the local universe. Their relationship to AGN is also discussed. Attention is given to biases emerging from defining the “green valley” using optical colors. We review various evolutionary scenarios and we present evidence for a new one, the quasi-static view of the green valley, in which the majority (but not all of galaxies currently in the green valley were only partially quenched in the distant past and now participate in a slow cosmic decline of star formation, which also drives down the activity on the main sequence, presumably as a result of the dwindling accretion/cooling onto galaxy disks. This emerging synthetic picture is based on the findings from Fang et al. (2012, Salim et al. (2012 and Martin et al. (2007, as well as other results.

  1. To tie or not to tie ridges for water conservation in Rift Valley drylands of Ethiopia

    NARCIS (Netherlands)

    Temesgen, B.B.; Stroosnijder, L.


    The Rift Valley drylands of Ethiopia are characterized by sandy loam soils that have poor fertility and unreliable rainfall conditions. The aim of this study was to examine the potential benefit of rainwater harvesting by tied-ridges and improved soil fertility on maize productivity through field ex

  2. To tie or not to tie ridges for water conservation in Rift Valley drylands of Ethiopia

    NARCIS (Netherlands)

    Temesgen, B.B.; Stroosnijder, L.


    The Rift Valley drylands of Ethiopia are characterized by sandy loam soils that have poor fertility and unreliable rainfall conditions. The aim of this study was to examine the potential benefit of rainwater harvesting by tied-ridges and improved soil fertility on maize productivity through field

  3. Optical manipulation of valley pseudospin (United States)

    Ye, Ziliang; Sun, Dezheng; Heinz, Tony F.


    The coherent manipulation of spin and pseudospin underlies existing and emerging quantum technologies, including quantum communication and quantum computation. Valley polarization, associated with the occupancy of degenerate, but quantum mechanically distinct valleys in momentum space, closely resembles spin polarization and has been proposed as a pseudospin carrier for the future quantum electronics. Valley exciton polarization has been created in the transition metal dichalcogenide monolayers using excitation by circularly polarized light and has been detected both optically and electrically. In addition, the existence of coherence in the valley pseudospin has been identified experimentally. The manipulation of such valley coherence has, however, remained out of reach. Here we demonstrate all-optical control of the valley coherence by means of the pseudomagnetic field associated with the optical Stark effect. Using below-bandgap circularly polarized light, we rotate the valley exciton pseudospin in monolayer WSe2 on the femtosecond timescale. Both the direction and speed of the rotation can be manipulated optically by tuning the dynamic phase of excitons in opposite valleys. This study unveils the possibility of generation, manipulation, and detection of the valley pseudospin by coupling to photons.

  4. Session: Long Valley Exploratory Well

    Energy Technology Data Exchange (ETDEWEB)

    Tennyson, George P. Jr.; Finger, John T.; Eichelberger, John C.; Hickox, Charles E.


    This session at the Geothermal Energy Program Review X: Geothermal Energy and the Utility Market consisted of four presentations: ''Long Valley Exploratory Well - Summary'' by George P. Tennyson, Jr.; ''The Long Valley Well - Phase II Operations'' by John T. Finger; ''Geologic results from the Long Valley Exploratory Well'' by John C. Eichelberger; and ''A Model for Large-Scale Thermal Convection in the Long Valley Geothermal Region'' by Charles E. Hickox.

  5. Social Networks in Silicon Valley

    Institute of Scientific and Technical Information of China (English)

    Joseph Leu


    @@ Social network is a dominant, distinguishing characteristic of Silicon Valley. Because innovation entails coping with a high degree of uncertainty,such innovation is particularly dependent on networks.

  6. Influence factors of morphological development of soil cracks in degraded slopes in Yuanmou dry-hot valley region%元谋干热河谷区退化坡地土壤裂缝形态发育的影响因子

    Institute of Scientific and Technical Information of China (English)

    熊东红; 杨丹; 李佳佳; 苏正安; 董一帆; 翟娟


      土壤开裂影响土体内水分散失、溶质运移及土体结构,是元谋干热河谷坡地退化的一个重要过程及特征。该文通过对元谋干热河谷退化坡地典型土壤裂缝样方的实地调查及数据的室内分析,系统分析了土壤理化属性对裂缝发育程度的影响。研究结果表明:1)土壤裂缝发育程度与土壤黏粒含量、土壤胀缩度、土壤容重呈正相关,与土壤有机质含量、土壤总孔隙度呈较弱的负相关;2)土壤裂缝发育程度的首要影响因子是土壤结构性因子(土壤容重、总孔隙度和黏粒含量),其次为土壤胀缩度,然后是土壤有机质。该研究可为进一步研究土壤开裂导致的土地退化过程奠定基础,为制定开裂土体的改良措施提供参考。%Soil cracking is an important process and feature of the slope degradation in Yuanmou Dry-hot Valley Region, which influences water evaporation, solutes transport and soil structure. In this paper, 25 soil crack quads were investigated by using the photography method to describe the morphology of soil cracks, and meanwhile, soil samples were also obtained at soil depth 0-30 cm and >30-60 cm in the same quad. The crack area density (Dc) was obtained by ArcGIS 9.0. The values for soil physico-chemical properties were also obtained by laboratory analysis. And then, the influences of soil physico-chemical properties on the development degrees of soil cracks were analyzed by application of statistical analysis methods. The Results indicate that: (1) The development degrees of soil cracks have a positive correlation with clay content, swell-shrink property and bulk density, and are negatively correlated to organic content and soil porosity. Dc, which is the quantitative indicator for the development degrees of soil cracks has been found to have a significant strong correlation with clay content, their coefficients were 0.97 and 0.95 for 0-30 cm layer and for >30-60 cm

  7. Synthetic River Valleys (United States)

    Brown, R.; Pasternack, G. B.


    The description of fluvial form has evolved from anecdotal descriptions to artistic renderings to 2D plots of cross section or longitudinal profiles and more recently 3D digital models. Synthetic river valleys, artificial 3D topographic models of river topography, have a plethora of potential applications in fluvial geomorphology, and the earth sciences in general, as well as in computer science and ecology. Synthetic river channels have existed implicitly since approximately the 1970s and can be simulated from a variety of approaches spanning the artistic and numerical. An objective method of synthesizing 3D stream topography based on reach scale attributes would be valuable for sizing 3D flumes in the physical and numerical realms, as initial input topography for morphodynamic models, stream restoration design, historical reconstruction, and mechanistic testing of interactions of channel geometric elements. Quite simply - simulation of synthetic channel geometry of prescribed conditions can allow systematic evaluation of the dominant relationships between river flow and geometry. A new model, the control curve method, is presented that uses hierarchically scaled parametric curves in over-lapping 2D planes to create synthetic river valleys. The approach is able to simulate 3D stream geometry from paired 2D descriptions and can allow experimental insight into form-process relationships in addition to visualizing past measurements of channel form that are limited to two dimension descriptions. Results are presented that illustrate the models ability to simulate fluvial topography representative of real world rivers as well as how channel geometric elements can be adjusted. The testing of synthetic river valleys would open up a wealth of knowledge as to why some 3D attributes of river channels are more prevalent than others as well as bridging the gap between the 2D descriptions that have dominated fluvial geomorphology the past century and modern, more complete, 3D

  8. Silicon Valley Lifestyle

    Institute of Scientific and Technical Information of China (English)

    Joseph Leu


    @@ As we embrace the rapid developments of the new media age,competitiveness in the field of internet and computer technology is an increasingly crucial factor in stimulating new business,jobs and new industry in the region.Accelerating advancements in new media,internet,software and computer technologies offer new commercial opportunities and sources of economic revenue. Silicon Valley has been a model of the new age since its existence.While the dream place not only has a unique business model,but also has a very special lifestyle.

  9. Evolution of Soil Organic Carbon Pool in the Cropland of a Typical County Located in Paralleled Ridge-Valley of Eastern Sichuan%川东平行岭谷区典型县农田土壤碳库演变特征

    Institute of Scientific and Technical Information of China (English)

    慈恩; 朱洁; 高岩红; 王莲阁; 谢德体


    Dianjiang ,a typical county in the paralleled ridge-valley region of eastern Sichuan ,was selected as the study area .According to data from soil testing and fertilizer recommendation in 2007 and the second general survey of soil in 1980 ,the storage and evolution of soil organic carbon (SOC) in the cropland in Di-anjiang County were investigated .Most of SOC storage in the cultivated horizon was found to be stocked in purple soils and paddy soils ,of w hich four soil genera (red-brow n purple soil ,gray-brow n purple soil ,red-brown purple paddy soil and gray-brown purple paddy soil) were distributed most extensively and had higher SOC storage in the cultivated horizon than other soil genera ,the sum of their SOC storage in the cultivated horizon accounting for 68 .34% of total SOC storage in the cultivated horizon of croplands .In in-creasing SOC accumulation in the cultivated horizon ,water culture and rice planting were obviously better than dry farming for most soil genera in the county .From 1980 to 2007 ,the effect of long-term artificial disturbance on organic carbon accumulation in the cultivated horizon was positive ,and the topsoil of crop-lands always functioned as a carbon sink .In the last 30 years ,total SOC storage increase in the cultivated horizon of croplands was benefited from purple soils .The main SOC loss in the cultivated horizon was found in grey-brown purple paddy soil ,and reducing the subsoil organic carbon loss in grey-brown purple paddy field should be an important way to increase total SOC storage in the cultivated horizon .The above study showed that the cultivated horizon of croplands ,especially purple soils and paddy soils ,in Dianjiang County maintains great carbon sequestration potential ,and that the genera of gray-brow n purple soil ,red-brown purple soil ,gray-brown purple paddy soil and red-brown purple paddy soil have higher carbon se-questration potential in the cultivated horizon than other soil genera and ,therefore

  10. Seasonal controls on snow distribution and aerial ablation at the snow-patch and landscape scales, McMurdo Dry Valleys, Antarctica


    Eveland, J. W.; M. N. Gooseff; Lampkin, D. J.; Barrett, J E; Takacs-Vesbach, C. D.


    Accumulated snow in the McMurdo Dry Valleys, while limited, has great ecological significance to subnivian soil environments. Though sublimation dominates the ablation process in this region, measurable increases in soil moisture and insulation from temperature extremes provide more favorable conditions with respect to subnivian soil communities. While precipitation is not substantial, significant amounts of snow can accumulate, via wind transport, in topographic lees along the valley bottoms...

  11. Biogeochemical studies of wintering waterfowl in the Imperial and Sacramento Valleys

    Energy Technology Data Exchange (ETDEWEB)

    Koranda, J.J.; Stuart, M.; Thompson, S.; Conrado, C.


    Trace and major elemental composition were determined in the organs of wintering waterfowl in the Imperial and Sacramento Valleys of California, and in soils, sediments, and agricultural fertilizer that constitute the various sources of elements in the waterfowl. These data provide a biogeochemical baseline for waterfowl populations wintering in an area being developed for geothermal power. This baseline in the Imperial Valley is affected by soil and sediment composition, agricultural effluents in irrigation and stream water, and spent shot deposited by hunters in waterfowl habitats. The waterfowl acquire a set of trace elements from these sources and concentrations increase in their organs over the wintering period. Nickel, arsenic, selenium, bromine, and lead are the primary elements acquired from soil sources, agricultural effluents, and spent shot in the Imperial Valley. The assessment of effects from geothermal effluents on waterfowl populations in complex because there are large influxes of materials into the Imperial Valley ecosystem that contain trace elements, i.e., irrigation water, phosphatic fertilizers, pesticides, and lead shot. Multiple sources exist for many elements prominent in the expected geothermal effluents. The relationships between the two California valleys, the Imperial and Sacramento, are apparent in the trace element concentrations in the organs of waterfowl obtained in those two valleys. Arsenic is absent in the waterfowl organs obtained in the Sacramento Valley and relatively common in the Imperial Valley waterfowl. The effect of any release of geothermal effluent in the Imperial Valley waterfowl habitats will be difficult to describe because of the complexity of the biogeochemical baseline and the multiple sources of trace and major elements in the ecosystem.

  12. Radon monitoring of microseismicity in the Kangra and Chambra valleys of Himachal Pradesh, India

    Energy Technology Data Exchange (ETDEWEB)

    Virk, H.S. [Guru Nanak Dev Univ., Amritsar (India). Dept. of Physics


    Data on radon emanation collected in soil-gas and groundwater at Palampur in the Kangra valley and Dalhausie in the Chamba valley of Himachal Pradesh is reported. Radon anomalies exhibit correspondence with some of the seismic events that occurred in the region along the Himalayan thrust faults. The study has proven the usefulness of radon as a precursor micro-seismic activity along the major faults. (author).

  13. 元谋干热河谷植被恢复对土壤酶活性的影响特征%Effects of Vegetation Restoration on Soil Enzyme Activity in Yuanmou Dry-hot Valley, China

    Institute of Scientific and Technical Information of China (English)

    魏雅丽; 郭芬芬; 陈安强; 南岭; 刘刚才


    The soil enzyme is a key criterion for evaluating soil efficiacy of vegetation restoration, as it is an important indicator of soil quality and function.The objectives of this study are 1 )to estimate the effects of vegetation restoration on soil enzyme activity, 2)to determine the correlationship between soil fertility and enzyme activity by comparing the five alternatives of vegetaion restoration.The results showed that soil enzyme activity of sucrase, catalase and alkaline phosphatase activity had significantly increased after vegetation restoration than that of barren land, and its magnitude followed the order of Tamarindus>Jatrophacurcas L.>Azadirachta indica.The soil enzyme activity in the rhizosphere of hedge acacia and Azadirachta indica was higher than in non-rhizosphere.Countour planting was found having an important role in preserving soil fertility to create a favorable environment for microorganisms and to enhance soil enzyme activity.These results suggested that different vegetation restoration practices and planting methods had distinct influences on soil enzyme activity.The enzyme activity had closely related with the soil fertility for various vegetation restoration practices, particularly for the relationship between soil organic matter, total nitrogen and soil sucrase, catalase and alkaline phosphatase activity.Thus, we concluded that indicator of soil enzyme activity was reliable for efficiency assessment of vegetation restoration.%选取5种植被恢复模式,研究了不同模式对土壤酶活性的影响以及土壤肥力与土壤酶活性的关系.结果表明,植被恢复后土壤蔗糖酶、过氧化氧酶和碱性磷酸酶活性相比光板地都有日月显提高,顺序依次为酸角>小桐子>印楝;同种植被的土壤酶活性表现出根际大于非根际的特性;不同的植被恢复模式和种植方式对酶活性都有较大的影响,等高垄沟模式具有较好的保土保肥能力,创造了良好的微生物环境,

  14. 干热河谷典型区土壤功能对不同植被恢复措施的响应%Response of Soil Functioning to Ecological Restoration Practices in the Typical Arid-Hot Valley

    Institute of Scientific and Technical Information of China (English)

    纪中华; 李建增; 闫帮国; 钱坤建; 潘志贤; 奎建蕊


    To explore the response of soil function in arid-hot ecosystem to restoration treatments,the soil infiltration,physical and chemical properties under different restoration models were measured.The results showed that mixture plantation-Cajanus cajan+Pennisetum purpureum had the most effective function on soil in Tamarindus indica forest.The proportion of soil aggregation increased up to 60%~80%,organic matter of soil surface increased by a factor up to 5.01 times,infiltration rate increased by a factor up to 14.43 times compared to the control(T.indica only).The maximum water holding storage reached up to 633.0 t/hm2.All of the soil characters measured in the C.cajan+P.purpureum model were obviously higher than other models and this also enhanced T.indica productivity.The soil functions of other models were poorer than C.cajan+P.purpureum,but better than the control.The results indicated that the improving effects of soil function were determined by plant species and their combinations.%为研究干热河谷地区不同恢复措施下土壤功能的变化,分析了不同模式下土壤入渗和理化特征。结果表明,在乡土树种罗望子(Tamarindus indica)林下,木豆(Cajanus cajan)+象草(Pennisetum purpureum)模式的恢复效果最好,土壤团粒达60%~80%,表层有机质含量较对照提高了5.01倍,其入渗率较对照区提高14.43倍,最大吸持贮水量可达633.0t/hm2,明显高于其他模式,土壤性质的改善也提高了罗望子的生产力水平。其他恢复模式的土壤功能较差,但优于对照模式,表明土壤理化性质的改良取决于植物种类的选择和配置。

  15. 27 CFR 9.82 - Potter Valley. (United States)


    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Potter Valley. 9.82... Potter Valley. (a) Name. The name of the viticultural area described in this section is “Potter Valley.” (b) Approved map. The approved maps for the Potter Valley viticultural area are the U.S.G.S....

  16. Assessment of the geothermal resources of Carson-Eagle valleys and Big Smoky Valley, Nevada. First annual report, May 1, 1979-May 30, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Trexler, D.T.; Koenig, B.A.; Flynn, T.; Bruce, J.L.


    Two geothermal investigations were completed in three Nevada locations. The regions studied were selected from areas outlined as having direct utilization potential (Trexler and others, 1979) and included the Carson-Eagle Valley, Bis Smoky Valley and Caliente. Studies were organized around the completion of a group of tasks in each area. These tasks included: geologic reconnaissance, gravity surveys, aerial photography, fluid sampling and analysis, shallow depth temperature probe surveys, soil mercury surveys, shallow electrical resistivity measurements, and temperature gradient hole drilling. Goals of the project were to provide regional information about the nature and extent of the resources and to offer a critical evaluation of the techniques employed. Results from the work in the Carson-Eagle Valley and Big Smoky Valley are presented. (MHR)

  17. CRIA Sians A areement with Rubber Valley

    Institute of Scientific and Technical Information of China (English)


    The signing ceremony of establishing strategic partnership between China Rubber Industry Association and Rubber Valley Co., Ltd. was held in Rubber Valley on September 13. Leaders such as Xu Wenying, Deputy Secretary-General of CRIA, repre-senting CRIA, and Zhang Yan, Deputy Director of Rubber Valley Management Committee and General Manager of Rubber Valley Co., Ltd., representing Rubber Valley, signed on the cooperation agreement. Fan Rende, President of CRIA, Cai Quanji,

  18. Accelerating optimization by tracing valley (United States)

    Li, Qing-Xiao; He, Rong-Qiang; Lu, Zhong-Yi


    We propose an algorithm to accelerate optimization when an objective function locally resembles a long narrow valley. In such a case, a conventional optimization algorithm usually wanders with too many tiny steps in the valley. The new algorithm approximates the valley bottom locally by a parabola that is obtained by fitting a set of successive points generated recently by a conventional optimization method. Then large steps are taken along the parabola, accompanied by fine adjustment to trace the valley bottom. The effectiveness of the new algorithm has been demonstrated by accelerating the Newton trust-region minimization method and the Levenberg-Marquardt method on the nonlinear fitting problem in exact diagonalization dynamical mean-field theory and on the classic minimization problem of the Rosenbrock's function. Many times speedup has been achieved for both problems, showing the high efficiency of the new algorithm.

  19. Mississippi River Valley alluvial aquifer (United States)

    U.S. Geological Survey, Department of the Interior — This data set represents the extent of the Mississippi River Valley alluvial aquifer in the states of Missouri, Kentucky, Tennessee, Arkansas, Mississippi, and...

  20. The History of Silicon Valley

    Institute of Scientific and Technical Information of China (English)

    Joseph Leu


    @@ Just as Manchester was once the center for indus trial progress, the microelectronics industry also has a heartland. Silicon Valley is located in a thirty by ten miles strip between San Francisco and San Jose,California.

  1. RailroadValleySpringfish_CH (United States)

    US Fish and Wildlife Service, Department of the Interior — These data identify the areas where final critical habitat for the Railroad Valley springfish (Crenichthys nevadae) occur. The irrigation ditch that is on the north...

  2. Social Networks in Silicon Valley

    Institute of Scientific and Technical Information of China (English)

    Joseph; Leu


      Social network is a dominant, distinguishing characteristic of Silicon Valley. Because innovation entails coping with a high degree of uncertainty,such innovation is particularly dependent on networks.……

  3. Sterile soil from Antarctica: organic analysis. (United States)

    Horowitz, N H; Bauman, A J; Cameron, R E; Geiger, P J; Hubbard, J S; Shulman, G P; Simmonds, P G; Westberg, K


    Soils from the dry-valley region of Antarctica can be sterile by the usual microbiological criteria and yet contain significant amounts of organic carbon. Examination of one such soil shows that the organic material is finely divided anthracite coal. These findings have significant implications for the biological exploration of Mars.

  4. Glacial geomorphology of the Victoria Valley System, Ross Sea Region, Antarctica (United States)

    Bockheim, James G.; McLeod, Malcolm


    During the 2011-2012 austral summer, we had the opportunity to verify a surficial geology map prepared nearly 50 years ago for the Victoria Valley system (VVS), the largest of the McMurdo Dry Valleys. We used high-resolution landsat images and a digital elevation model to identify landforms and prepare detailed maps of each of the five valleys in the VVS, including lateral and end moraines, rock glaciers, gelifluction sheets, gravel ripples, and hummocky and ice-cored drifts. Our mapping suggests that the Bull drift is less extensive than previously thought, attains a maximum elevation of ~ 750 m in Balham and Barwick Valleys and the upper Bull Pass region, and does not occur in McKelvey Valley. We found Insel drift to 850 m elevation in eastern McKelvey Valley and upper Bull Pass and were able to trace Insel drift down Bull Pass where it becomes Peleus drift in Wright Valley. The Victoria Lower Glacier likely responded to grounding of ice in the Ross Embayment and was out-of-phase with alpine glaciers elsewhere in the VVS. We amplified and quantified Calkin's relative chronology and provide here our multiple-parameter relative chronology for the McMurdo Dry Valleys that is based on surface-boulder weathering, soil weathering, salt stage, degree of development of the desert pavement, and form of patterned ground. Except for Victoria Lower Valley, we correlate Packard drift with Taylor II drift (ca., 120 ka), Vida drift with Taylor III drift (ca., 300 ka), Bull drift with Taylor IVb drift (2.7-3.5 Ma, and Insel drift with Peleus drift (> 3.7 Ma, < 5.4 Ma). The lack of a strong correlation between soil salt stage and depth of visible salts with elevation leads us to question whether a high-level lake (ca., 200 m deep) existed in the VVS during the early Holocene.

  5. Ground surface temperature and humidity, ground temperature cycles and the ice table depths in University Valley, McMurdo Dry Valleys of Antarctica (United States)

    Fisher, David A.; Lacelle, Denis; Pollard, Wayne; Davila, Alfonso; McKay, Christopher P.


    In the upper McMurdo Dry Valleys, 90% of the measured ice table depths range from 0 to 80 cm; however, numerical models predict that the ice table is not in equilibrium with current climate conditions and should be deeper than measured. This study explored the effects of boundary conditions (air versus ground surface temperature and humidity), ground temperature cycles, and their diminishing amplitude with depth and advective flows (Darcy flow and wind pumping) on water vapor fluxes in soils and ice table depths using the REGO vapor diffusion model. We conducted a series of numerical experiments that illustrated different hypothetical scenarios and estimated the water vapor flux and ice table depth using the conditions in University Valley, a small high elevation valley. In situ measurements showed that while the mean annual ground surface temperature approximates that in the air, the mean annual ground surface relative humidity (>85%ice) was significantly higher than in the atmosphere ( 50%ice). When ground surface temperature and humidity were used as boundary conditions, along with damping diurnal and annual temperature cycles within the sandy soil, REGO predicted that measured ice table depths in the valley were in equilibrium with contemporary conditions. Based on model results, a dry soil column can become saturated with ice within centuries. Overall, the results from the new soil data and modeling have implications regarding the factors and boundary conditions that affect the stability of ground ice in cold and hyperarid regions where liquid water is rare.

  6. Root distribution of irrigated grapevine rootstocks in a coarse texture soil of the São Francisco Valley, Brazil Distribuição radicular de porta-enxertos de videiras irrigadas em um solo de textura arenosa do Vale do São Francisco

    Directory of Open Access Journals (Sweden)



    Full Text Available An experiment was carried out to determine the root distribution of four grapevine rootstocks (Salt Creek, Dogridge, Courdec 1613, IAC 572 in a coarse texture soil of a commercial growing area in Petrolina County, São Francisco Valley, Brazil. Rootstocks were grafted to a seedless table grape cv. Festival, and irrigated by microsprinkler. Roots were quantified by the trench wall method aided by digital image analysis. Results indicated that roots reached 1 m depth, but few differences among rootstocks were found. All of them presented at least 90 % of the roots distributed until 0.6 m depth, with a greater root presence in the first 0.4 m. The upper 0.6 m can be taken into account as the effective rooting depth for soil and water management.Um experimento foi conduzido para se determinar a distribuição radicular de quatro porta-enxertos (Salt Creek, Dogridge, Courdec 1613, IAC 572 em um solo de textura arenosa, em um plantio comercial em Petrolina - PE, no Vale do São Francisco. Os porta-enxertos foram enxertados com a cv. de uva de mesa sem sementes Festival, e irrigados por microaspersão. As raízes foram quantificadas pelo método da parede da trincheira auxiliado pela análise de imagem digital. Os resultados indicaram que as raízes atingiram 1 m de profundidade, mas poucas diferenças entre os porta-enxertos foram observadas. Cerca de 90% do sistema radicular de todos os porta-enxertos estavam distribuídos até 0,6 m de profundidade, mas houve uma grande presença de raízes até 0,4 m. A camada superficial de solo de 0,6 m pode ser considerada como a profundidade efetiva do sistema radicular para fins de manejo de solo e água.

  7. Valley blockade quantum switching in Silicon nanostructures. (United States)

    Prati, Enrico


    In analogy to the Coulomb and the Pauli spin blockade, based on the electrostatic repulsion and the Pauli exclusion principle respectively, the concept of valley blockade in Silicon nanostructures is explored. The valley parity operator is defined. Valley blockade is determined by the parity conservation of valley composition eigenvectors in quantum transport. A Silicon quantum changeover switch based on a triple of donor quantum dots capable to separate electrons having opposite valley parity by virtue of the valley parity conservation is proposed. The quantum changeover switch represents a novel kind of hybrid quantum based classical logic device.

  8. Fungal Biodiversity in the Alpine Tarfala Valley

    Directory of Open Access Journals (Sweden)

    Claudia Coleine


    Full Text Available Biological soil crusts (BSCs are distributed worldwide in all semiarid and arid lands, where they play a determinant role in element cycling and soil development. Although much work has concentrated on BSC microbial communities, free-living fungi have been hitherto largely overlooked. The aim of this study was to examine the fungal biodiversity, by cultural-dependent and cultural-independent approaches, in thirteen samples of Arctic BSCs collected at different sites in the Alpine Tarfala Valley, located on the slopes of Kebnekaise, the highest mountain in northern Scandinavia. Isolated fungi were identified by both microscopic observation and molecular approaches. Data revealed that the fungal assemblage composition was homogeneous among the BSCs analyzed, with low biodiversity and the presence of a few dominant species; the majority of fungi isolated belonged to the Ascomycota, and Cryptococcus gilvescens and Pezoloma ericae were the most frequently-recorded species. Ecological considerations for the species involved and the implication of our findings for future fungal research in BSCs are put forward.

  9. Fungal Biodiversity in the Alpine Tarfala Valley. (United States)

    Coleine, Claudia; Selbmann, Laura; Ventura, Stefano; D'Acqui, Luigi Paolo; Onofri, Silvano; Zucconi, Laura


    Biological soil crusts (BSCs) are distributed worldwide in all semiarid and arid lands, where they play a determinant role in element cycling and soil development. Although much work has concentrated on BSC microbial communities, free-living fungi have been hitherto largely overlooked. The aim of this study was to examine the fungal biodiversity, by cultural-dependent and cultural-independent approaches, in thirteen samples of Arctic BSCs collected at different sites in the Alpine Tarfala Valley, located on the slopes of Kebnekaise, the highest mountain in northern Scandinavia. Isolated fungi were identified by both microscopic observation and molecular approaches. Data revealed that the fungal assemblage composition was homogeneous among the BSCs analyzed, with low biodiversity and the presence of a few dominant species; the majority of fungi isolated belonged to the Ascomycota, and Cryptococcus gilvescens and Pezoloma ericae were the most frequently-recorded species. Ecological considerations for the species involved and the implication of our findings for future fungal research in BSCs are put forward.

  10. Seismic responses of a hemispherical alluvial valley to SV Waves: a three-dimensional analytical approximation

    Institute of Scientific and Technical Information of China (English)

    Chenggang Zhao; Jun Dong; Fuping Gao; D.-S.Jeng


    An analytical solution to the three-dimensional scattering and diffraction of plane SV-waves by a saturated hemispherical alluvial valley in elastic halfspace is obtained by using Fourier-Bessel series expansion technique.The hemispherical alluvial valley with saturated soil deposits is simulated with Biot's dynamic theory for saturated porous media.The following conclusions based on numerical results can be drawn:(1) there are a significant differences in the seismic response simulation between the previous single-phase models and the present two-phase model;(2)the normalized displacements on the free surface of the alluvial valley depend mainly on the incident wave angles,the dimensionless frequency of the incident SV waves and the porosity of sediments;(3)with the increase of the incident angle,the displacement distributions become more complicated,and the displacements on the free surface of the alluvial valley increase as the porosity of sediments increases.

  11. Small Glaciofluvial Valleys on Amazonian Mars (United States)

    Fassett, C.; Dickson, J.; Head, J. W.; Levy, J. S.; Marchant, D. R.


    We present new observations of small valleys associated with glacial features in the Martian mid-latitudes, based on a survey of images from the Context Camera (CTX) on the Mars Reconnaissance Orbiter. These valleys are small (~50-400 m wide) and short (mechanism most likely to explain their origin is top-down melting of these cold-based glaciers. Some valleys have associated sedimentary deposits (small fans) (e.g., Fig. 1). Both stratigraphic relations and crater counting constrain most such valleys to the Amazonian period. The observed glaciofluvial valleys are typically on slopes of P16_007256_1383). The valley begins in a small alcove, where remnant glacial materials are now ~1 km from the valley head. The valley is ~5.5 km long, has an average slope of 5°, and terminates in an elongate fan.

  12. EPA Region 1 - Valley Depth in Meters (United States)

    U.S. Environmental Protection Agency — Raster of the Depth in meters of EPA-delimited Valleys in Region 1. Valleys (areas that are lower than their neighbors) were extracted from a Digital Elevation Model...

  13. Valley evolution by meandering rivers (United States)

    Limaye, Ajay Brian Sanjay

    Fluvial systems form landscapes and sedimentary deposits with a rich hierarchy of structures that extend from grain- to valley scale. Large-scale pattern formation in fluvial systems is commonly attributed to forcing by external factors, including climate change, tectonic uplift, and sea-level change. Yet over geologic timescales, rivers may also develop large-scale erosional and depositional patterns that do not bear on environmental history. This dissertation uses a combination of numerical modeling and topographic analysis to identify and quantify patterns in river valleys that form as a consequence of river meandering alone, under constant external forcing. Chapter 2 identifies a numerical artifact in existing, grid-based models that represent the co-evolution of river channel migration and bank strength over geologic timescales. A new, vector-based technique for bank-material tracking is shown to improve predictions for the evolution of meander belts, floodplains, sedimentary deposits formed by aggrading channels, and bedrock river valleys, particularly when spatial contrasts in bank strength are strong. Chapters 3 and 4 apply this numerical technique to establishing valley topography formed by a vertically incising, meandering river subject to constant external forcing---which should serve as the null hypothesis for valley evolution. In Chapter 3, this scenario is shown to explain a variety of common bedrock river valley types and smaller-scale features within them---including entrenched channels, long-wavelength, arcuate scars in valley walls, and bedrock-cored river terraces. Chapter 4 describes the age and geometric statistics of river terraces formed by meandering with constant external forcing, and compares them to terraces in natural river valleys. The frequency of intrinsic terrace formation by meandering is shown to reflect a characteristic relief-generation timescale, and terrace length is identified as a key criterion for distinguishing these

  14. 27 CFR 9.57 - Green Valley of Russian River Valley. (United States)


    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Green Valley of Russian River Valley. 9.57 Section 9.57 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE... Areas § 9.57 Green Valley of Russian River Valley. (a) Name. The name of the viticultural area...

  15. 76 FR 70866 - Expansions of the Russian River Valley and Northern Sonoma Viticultural Areas (United States)


    ... adequate information as to the identity and quality of the product. The Alcohol and Tobacco Tax and Trade... of the Russian River watershed. Finally, the petitioner included a Russian River Valley area tourism... and climate for Pinot Noir and Chardonnay. (``Diverse Geology/Soils Impact Wine Quality,'' by Terry...

  16. Three years of hillslope sediment yields following the Valley Complex fires, western Montana (United States)

    Peter R. Robichaud; Joseph W. Wagenbrenner; Robert E. Brown; Kevin M. Spigel


    The 2000 Bitterroot Valley wildfires provided an opportunity to measure post-fire effects and recovery rates. We established 24 small (0.01 ha [0.02 acre]) plots in four high-severity burn sites. We measured sediment yields at each site with silt fences. We also measured rainfall characteristics, soil water repellency, vegetative cover, and other site characteristics....

  17. Population biology of Verticillium dahliae isolates from lettuce in the Sallinas Valley of Californis. (United States)

    Verticillium dahliae is a soil borne fungus and the primary causal agent of Verticillium wilt, which affects many crops worldwide. Many crops grown in the Salinas Valley (SV) of California, including strawberry and lettuce (Lactuca sativa), are susceptible to V. dahliae and severe outbreaks are comm...

  18. Elemental composition of the PM{sub 1}0 fraction in the Mezquital Valley, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Beltran-Hernandez, I.; Martinez-Resendiz, G.; Solis Rosales, C.; Ramirez, A.; Sastre Conde, I.


    The Mezquital Valley has been receiving for nearly 100 years the residual waters of Mexico City to produce corn, alfalfa, oat, beans and barley among others. The information generated on the metal concentration in water, soils and agricultural products is vast. There are nevertheless limit's studies of other sources of heavy metal, like atmospheric wastes. (Author)

  19. Increasing demands on limited water resources: Consequences for two endangered plants in Amargosa Valley, USA. (United States)

    Hasselquist, Niles J; Allen, Michael F


    Recent population expansion throughout the Southwest United States has created an unprecedented demand for already limited water resources, which may have severe consequences on the persistence of some species. Two such species are the federally protected Nitrophila mohavensis (Chenopodiaceae) and Grindelia fraxino-pratensis (Asteraceae) found in Amargosa Valley, one valley east of Death Valley, California. Because both species are federally protected, no plant material could be harvested for analysis. We therefore used a chamber system to collect transpired water for isotopic analysis. After a correction for isotopic enrichment during transpiration, δ(18)O values of plant xylem water were significantly different between N. mohavensis and G. fraxino-pratensis throughout the study. Using a multisource mixing model, we found that both N. mohavensis and G. fraxino-pratensis used soil moisture near the soil surface in early spring when surface water was present. However, during the dry summer months, G. fraxino-pratensis tracked soil moisture to deeper depths, whereas N. mohavensis continued to use soil moisture near the soil surface. These results indicate that pumping groundwater and subsequently lowering the water table may directly prevent G. fraxino-pratensis from accessing water, whereas these same conditions may indirectly affect N. mohavensis by reducing surface soil moisture and thus its ability to access water.

  20. 27 CFR 9.154 - Chiles Valley. (United States)


    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Chiles Valley. 9.154... Chiles Valley. (a) Name. The name of the viticultural area described in this section is “Chiles Valley.” (b) Approved maps. The appropriate maps for determining the boundary of the Chiles...

  1. 27 CFR 9.23 - Napa Valley. (United States)


    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Napa Valley. 9.23 Section... THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.23 Napa Valley. (a) Name. The name of the viticultural area described in this section is “Napa Valley.”...

  2. Valley Singularities and Baryon Number Violation

    CERN Document Server

    Provero, P


    We consider the valley--method computation of the inclusive cross section of baryon number violating processes in the Standard Model. We show that any physically correct model of the valley action should present a singularity in the saddle point valley parameters as functions of the energy of the process. This singularity prevents the saddle point configuration from collapsing into the perturbative vacuum.

  3. Earthquake Ground Motion in the Valley of Mexico: Basin Effects (United States)

    Ramirez, L.; Contreras, M.; Bielak, J.; Aguirre, J.


    We present a study of the ground motion and resulting amplification in the Mexico City Basin due to strong earthquakes in the Mexican Pacific Coast. We propose an approximation of the regional structure and Mexico City's basin and analyze their response to two shallow earthquakes generated near the coast. We compare two sets of three dimensional simulations: the first includes a soft structure similar in shape and properties to the Valley of Mexico, while the second excludes the soft soil deposits. Our 3D computations, with a maximum resolution of 0.75 Hz, reproduce the amplitude and long durations characteristics usually observed in the basin. We confirm that stations inside the Mexican Volcanic Belt experience amplification. In the frequency band 0.2-0.4 Hz additional amplification occurs inside the valley due to the shallow soil deposits in the lake bed region. We compare the normalized durations of the ground motion at several stations against observed data, and speculate on the durations of the soil motion as being a local effect due to the basin's shape and low velocities.

  4. The Future of Silicon Valley

    Institute of Scientific and Technical Information of China (English)

    Joseph Leu


    @@ By the end of 1984, Silicon Valley was going through the down cycle fol lowing the PC boom. A hundred PC companies wanted just 10 percent of the market, wanting to strike it rich, as rich as the Apple IPO (Initial Public Of fering) -the Google celebrity IPO of its day.

  5. Atmospheric turbidity over Kathmandu valley (United States)

    Sapkota, Balkrishna; Dhaubhadel, Rajan

    The atmosphere of Kathmandu Valley has been investigated by using Sunphotometer and Nephelometer during the pre-monsoon period of 1999. The atmospheric turbidity parameters (extinction coefficient for 500 nm wavelength τAG and Angstrom coefficient β) are found high in the morning and show decreasing trends from morning to late afternoon on average. Vertical dispersion of pollutants and increasing pollutant flushing rate by increasing wind speed from morning to late afternoon is the cause for this decreasing trend of turbidity over the valley. Being surrounded by high hills all around the valley, horizontal exit of pollutants without vertical dispersion is not possible. The scattering coefficient bscat of aerosols in ground level troposphere is also found high in the morning, which decreases and becomes minimum during afternoon. During late afternoon, bscat again shows a slightly increasing trend. The reason is the increasing vehicular emission during late afternoon rush period. The average values of Angstrom exponent α, β, τAG and bscat are found to be 0.624±0.023, 0.299±0.009, 0.602±0.022 and 0.353±0.014 km -1, respectively. About 76.8% of the observed values of β lie above 0.2 indicating heavy particulate pollution in the valley. A comparison of observed values of turbidity parameters with other major cities of the world shows that Kathmandu is as polluted as cities like Jakarta, Kansas, Beijing, Vienna, etc.

  6. Nearing the cold-arid limits of microbial life in permafrost of an upper dry valley, Antarctica. (United States)

    Goordial, Jacqueline; Davila, Alfonso; Lacelle, Denis; Pollard, Wayne; Marinova, Margarita M; Greer, Charles W; DiRuggiero, Jocelyn; McKay, Christopher P; Whyte, Lyle G


    Some of the coldest and driest permafrost soils on Earth are located in the high-elevation McMurdo Dry Valleys (MDVs) of Antarctica, but little is known about the permafrost microbial communities other than that microorganisms are present in these valleys. Here, we describe the microbiology and habitable conditions of highly unique dry and ice-cemented permafrost in University Valley, one of the coldest and driest regions in the MDVs (1700 m above sea level; mean temperature -23 °C; no degree days above freezing), where the ice in permafrost originates from vapour deposition rather than liquid water. We found that culturable and total microbial biomass in University Valley was extremely low, and microbial activity under ambient conditions was undetectable. Our results contrast with reports from the lower-elevation Dry Valleys and Arctic permafrost soils where active microbial populations are found, suggesting that the combination of severe cold, aridity, oligotrophy of University Valley permafrost soils severely limit microbial activity and survival.

  7. The Central Valley Hydrologic Model (United States)

    Faunt, C.; Belitz, K.; Hanson, R. T.


    Historically, California’s Central Valley has been one of the most productive agricultural regions in the world. The Central Valley also is rapidly becoming an important area for California’s expanding urban population. In response to this competition for water, a number of water-related issues have gained prominence: conjunctive use, artificial recharge, hydrologic implications of land-use change, subsidence, and effects of climate variability. To provide information to stakeholders addressing these issues, the USGS made a detailed assessment of the Central Valley aquifer system that includes the present status of water resources and how these resources have changed over time. The principal product of this assessment is a tool, referred to as the Central Valley Hydrologic Model (CVHM), that simulates surface-water flows, groundwater flows, and land subsidence in response to stresses from human uses and from climate variability throughout the entire Central Valley. The CVHM utilizes MODFLOW combined with a new tool called “Farm Process” to simulate groundwater and surface-water flow, irrigated agriculture, land subsidence, and other key processes in the Central Valley on a monthly basis. This model was discretized horizontally into 20,000 1-mi2 cells and vertically into 10 layers ranging in thickness from 50 feet at the land surface to 750 feet at depth. A texture model constructed by using data from more than 8,500 drillers’ logs was used to estimate hydraulic properties. Unmetered pumpage and surface-water deliveries for 21 water-balance regions were simulated with the Farm Process. Model results indicate that human activities, predominately surface-water deliveries and groundwater pumping for irrigated agriculture, have dramatically influenced the hydrology of the Central Valley. These human activities have increased flow though the aquifer system by about a factor of six compared to pre-development conditions. The simulated hydrology reflects spatial

  8. Potassium and Phosphorus in Muscat Rosada Grape Yield in Elqui Valley Soil Fósforo y Potasio en la Producción de Vid Moscatel Rosada, en Suelo del Valle de Elqui

    Directory of Open Access Journals (Sweden)

    Carlos Sierra B


    Full Text Available The effects of P and K on grapevines (Vitis vinifera L. var. Muscat Rosada were evaluated four years, considering the same levels of N. The experiment was conducted at the Vicuña Experimental Station (30° S; 70°44´ W of the Instituto de Investigaciones Agropecuarias (INIA. The soil is alluvial antropic miscellaneous (Entisols. Three fertilization treatments were established: 1 N 160 + P2O5 200 + K2O 300; 2 N 160 + P2O5 0 + K2O 300; and 3 N 160 + P2O5 200 + K2O 0. At the beginning of the experiment, grape vines received all the phosphate fertilizers, 200 kg ha-1 of P2O5 as triple superphosphate in Treatments 1 and 3. Nitrogen was applied as urea for four years. The applications were initiated when the vine buds measured 20 cm. The K was applied to the soils of Treatments 1 and 2, at a dosage of 200 kg ha-1 K2O, using potassium sulphate. Between berry set and 30 d before harvest, 100 kg ha-1 K2O were applied as potassium sulphate by fertigation. Significant effects of the P fertilization were observed by the second year, with increased cluster numbers per plant. K also increased grape fruit yield by the third year. This response was obtained with less than 5 mg kg-1 of P available in the soil and less than 145 mg kg-1 of exchangeable K in the soil. The initially low content of available K and P suggests a high probability of response to the application of both elements.En el Campo Experimental del Instituto de Investigaciones Agropecuarias (INIA, ubicado en la localidad de Vicuña (30° S; 70°44´ O, se evaluó durante cuatro años el efecto de la aplicación de P y K, considerando un mismo nivel de aplicación de N en vid (Vitis vinifera L. var. Moscatel Rosada. El suelo corresponde al tipo misceláneo antrópico coluvial (Entisols. Se establecieron tres tratamientos de fertilización: 1 N 160 + P2O5 200 + K2O 300; 2 N 160 + P2O5 0 + K2O 300; y 3 N 160 + P2O5 200 + K(20 0. El parrón recibió toda la fertilización fosfatada aplicada al

  9. Systematic Mapping and Statistical Analyses of Valley Landform and Vegetation Asymmetries Across Hydroclimatic Gradients (United States)

    Poulos, M. J.; Pierce, J. L.; McNamara, J. P.; Flores, A. N.; Benner, S. G.


    Terrain aspect alters the spatial distribution of insolation across topography, driving eco-pedo-hydro-geomorphic feedbacks that can alter landform evolution and result in valley asymmetries for a suite of land surface characteristics (e.g. slope length and steepness, vegetation, soil properties, and drainage development). Asymmetric valleys serve as natural laboratories for studying how landscapes respond to climate perturbation. In the semi-arid montane granodioritic terrain of the Idaho batholith, Northern Rocky Mountains, USA, prior works indicate that reduced insolation on northern (pole-facing) aspects prolongs snow pack persistence, and is associated with thicker, finer-grained soils, that retain more water, prolong the growing season, support coniferous forest rather than sagebrush steppe ecosystems, stabilize slopes at steeper angles, and produce sparser drainage networks. We hypothesize that the primary drivers of valley asymmetry development are changes in the pedon-scale water-balance that coalesce to alter catchment-scale runoff and drainage development, and ultimately cause the divide between north and south-facing land surfaces to migrate northward. We explore this conceptual framework by coupling land surface analyses with statistical modeling to assess relationships and the relative importance of land surface characteristics. Throughout the Idaho batholith, we systematically mapped and tabulated various statistical measures of landforms, land cover, and hydroclimate within discrete valley segments (n=~10,000). We developed a random forest based statistical model to predict valley slope asymmetry based upon numerous measures (n>300) of landscape asymmetries. Preliminary results suggest that drainages are tightly coupled with hillslopes throughout the region, with drainage-network slope being one of the strongest predictors of land-surface-averaged slope asymmetry. When slope-related statistics are excluded, due to possible autocorrelation, valley

  10. Geohydrology of the valley-fill aquifer in the Corning area, Steuben County, New York (United States)

    Miller, Todd S.; Belli, J.L.; Allen, R.V.


    This report is the seventh in a series of 11 map sets depicting geohydrologic conditions in selected aquifers in upstate New York. Geohydrologic data are compiled on six maps at 1:24,000 scale. Together, the maps provide a comprehensive overview of a major valley-fill aquifer in southeastern Steuben County. The maps include surficial geology, geologic sections, water-infiltration potential of soil zone, aquifer thickness, potentiometric-surface elevations, and land use. The valley-fill deposits consist of alluvial silt, sand, and gravel, glacial-outwash (sand and gravel), till, and lacustrine silt and clay. The sand and gravel beds have relatively high permeabilities, whereas the till and silt deposits have relatively low permeabilities. Water-table conditions prevail in unconfined sand and gravel along the valley margin. Artesian conditions are found locally in sand and gravel confined under silt and clay in the middle of the valley. Recharge occurs nearly everywhere on the valley floor, but principally along the margin of the valley, where highly permeable land surface conditions exist, and runoff from the hillsides is concentrated. The use of land overlying the aquifer is a mixture of residential, commercial, agricultural, and industrial uses. (USGS)

  11. Quaternary Glaciations in the Rio Mendoza Valley, Argentine Andes (United States)

    Espizua, Lydia E.


    In the Rio Mendoza valley, five Pleistocene drifts and one Holocene drift are distinguished by multiple relative-age criteria, including surface-rock weathering, development of rock varnish, moraine morphology, soil-profile development, and stratigraphic relationships. Several absolute ages suggest a preliminary chronology. During the oldest (Uspallata) glaciation, a system of valley glaciers flowed 110 km from the Andean drainage divide and 80 km from Cerro Aconcagua to terminate at 1850 m. Drift of this ice advance is older than a widespread tephra dated by fission-track at 360,000 ± 36,000 yr. During the Punta de Vacas advance, ice terminated at 2350 m, while during the subsequent Penitentes advance, the glacier system ended at 2500 m. A travertine layer overlying Penitentes Drift has U-series age of 24,200 ± 2000 yr B.P. The distribution of Horcones Drift, which is inferred to represent the last glacial maximum, delimits an independent ice stream that flowed 22 km down Horcones valley to 2750 m. A later readvance (Almacenes) reached 3250 m. Confluencia Drift is considered to be Neoglacial in age and extends downvalley to 3300 m. The moraine sequence is compared with those studied by Caviedes (1972) along Rio Aconcagua on the Chilean flank of the Andes.

  12. Determination of volatile compounds in Grenache wines in relation with different terroirs in the Rhone Valley. (United States)

    Sabon, Isabelle; De Revel, Gilles; Kotseridis, Yorgos; Bertrand, Alain


    This paper describes the study of 19 wines of the Grenache Noir cultivar obtained from representative soils of the Rhone Valley according to their geographical site, climatic conditions, hydrological regulation, and soil profile. Among the volatile compounds analyzed by GC/MS/FID, the concentrations of the varietal compounds (i.e., beta-damascenone, beta-ionone, and geraniol) and those of the compounds without direct influence on the wine aroma (i.e., hexenols and methanol) indicated the existence of two groups of wines. These concentrations were correlated with grape maturity due to the ecosystem and particularly the soil.

  13. Mechanically and optically controlled graphene valley filter

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Fenghua; Jin, Guojun, E-mail: [National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093 (China)


    We theoretically investigate the valley-dependent electronic transport through a graphene monolayer modulated simultaneously by a uniform uniaxial strain and linearly polarized light. Within the Floquet formalism, we calculate the transmission probabilities and conductances of the two valleys. It is found that valley polarization can appear only if the two modulations coexist. Under a proper stretching of the sample, the ratio of the light intensity and the light frequency squared is important. If this quantity is small, the electron transport is mainly contributed by the valley-symmetric central band and the conductance is valley unpolarized; but when this quantity is large, the valley-asymmetric sidebands also take part in the transport and the valley polarization of the conductance appears. Furthermore, the degree of the polarization can be tuned by the strain strength, light intensity, and light frequency. It is proposed that the detection of the valley polarization can be realized utilizing the valley beam splitting. Thus, a graphene monolayer can be used as a mechanically and optically controlled valley filter.

  14. Zhongguan Village, China's Silicon Valley

    Institute of Scientific and Technical Information of China (English)

    Liu Xinwen


    @@ In 1999,driven by the dream of using technology to change people's lives,Li Yanhong,returned to Zhongguancun(Zhongguan Village in Chinese),Beijing from Silicon Valley in the create the years,Baidu has become the most frequently hitted website in China as well as the largest Chinesc search engine and Chinese language website in the world.

  15. Assessment of surface water quality of inland valleys for cropping in SW Nigeria (United States)

    Aboyeji, O. S.; Ogunkoya, O. O.


    Inland valley agro-ecosystems which are a category of wetlands have potential for sustainable crop production relative to uplands. A major challenge to their utilisation in the study area is their heterogeneity in hydrology, morphology, soil types and agro-economy. The study assessed the surface water quality of three typologies of the agro-ecosystems—amphitheatre-like valley-heads (Am), valley-side (VS), and low depression (LD)—for cropping. Surface water of six sites were sampled during the wet and dry seasons. The physicochemical properties and metal concentrations of the samples were analysed. Descriptive statistics and water quality indices were used to assess the suitability of the waters of the agro-ecosystems for cropping. Results showed that the valleys have neutral to slightly alkaline waters. Values of physicochemical parameters are generally within the acceptable range for cropping. The concentration of major cations varied across the inland valley types, but exhibited similar characteristics within each valley. The dominance of the major cations is in the order of Na > Ca > K > Mg. ANOVA results indicated that there is no significant difference in the concentration of heavy metals across the valleys ( F = 2.044, p = 0.138, α = 0.05). Generally, most of the physicochemical parameters and trace metals have low concentrations and are non-toxic to plants. Values of water quality indices (sodium adsorption ratio, soluble sodium percentage, total dissolved solids and permeability index) indicated that the concentrations of minerals in waters across the valley typologies are generally within permissible limits for cropping.

  16. Shallow Seismic Reflection Survey at Garner Valley Digital Array (United States)

    Lawrence, Z. S.; Brackman, T. B.; Bodin, P.; Stephenson, W. J.; Steidl, J. H.; Gomberg, J.


    The Garner Valley Digital Array (GVDA) site is a NEES-sponsored facility in a small, sediment-filled, intermountain valley in Southern California, established for the purpose of investigating ground motion site response and soil-structure interaction, in situ. The site has been well-characterized geotechnically, and is thoroughly instrumented with both surface and downhole instrumentation of various types. Nevertheless, a borehole recently drilled into lake bed sediments and deeply weathered granitic rocks that comprise the valley fill at GVDA encountered hard, unweathered bedrock at an unexpected depth, suggesting an apparent 38 meter offset in the unweathered bedrock between two wells 40 meters apart. The apparent offset can be most easily explained either by faulting, or as a buried erosional surface. The Hot Springs fault, a strand of the San Jacinto fault zone, runs through Garner Valley, although its inferred location is several hundred meters east of GVDA. To better characterize the subsurface strata, particularly the existence and configuration of faulting that may disturb them; we conducted a 120-meter long, 12-fold shallow seismic reflection common midpoint (CMP) survey at GVDA using a 24-channel seismograph, vertical 4.5 Hz geophones at 2-meter intervals and a sledgehammer seismic source. Preliminary processing reveals strong refractors and surface waves that may mask reflections, although reflections are visible in some raw shot records. Semi-continuous reflections seen in the CMP section from a shallow reflector may coincide with the water table. There are also deeper, discontinuous reflectors obscured by bands of coherent noise. We plan to present a fully migrated and interpreted CMP record section.

  17. Soil seed bank and aboveground vegetation in Jinshajing Hot-Dry River Valley Hillslope vegetation restoration site%金沙江干热河谷山地植被恢复区土壤种子库和地上植被研究

    Institute of Scientific and Technical Information of China (English)

    罗辉; 王克勤


    Soil seed bank plays an important role in the composition of different plant communities and especially in their conservation. Although Soil seed bank, aboveground vegetation and their relationship have been the subject of much recent attention, little is known about the size and species composition of soil seed bank and aboveground vegetation in semi-arid hillslope grasslands and understanding of how these components interact to determine the importance of seed banks to regeneration is limited.We assessed the size and species composition of a soil seed bank and aboveground vegetation in an experiment with 36 vegetation quadrats and 108 soil samples in terrace, slope, gully and grazing land that represent a range of habitats within a hillslope grassland in Jinshajing hot-dry river valley of Yunnan. Terrace, slope and gully represent restored site and grazing land typifies unrestored site. We identified 21 taxa in the seed bank with a median of 7 species/m2 and a median density of 5498 seeds/m2, while in aboveground vegetation, 19 species were observed with a median of 6 species/m2 and a median density of 1088 plants/m2. Both seed bank density and aboveground vegetation density among grazing land, gully, slope and terrace differed significantly. There was an absolutely high proportion of herbaceous species in the seed bank and aboveground vegetation. Gramineae predominated over both seed bank and vegetation. The most frequent seeds and plants were Bothriochloa pertusa (L.) A. Camus and Heteropogon contortus (L.) Beauv that had the highest individual number, importance value and biomass. In the seed bank, the seeds of Bothriochloa pertusa (L.) A. Camus and Heteropogon contortus (L.) Beauv accounted for 50.68% and for 33.10% of the total seeds respectively. In aboveground vegetation, the individual number of Bothriochloa pertusa (L.) A. Camus accounted for 55.66% of the total and Heteropogon contortus (L.) Beauv accounted for 29.86%. The biomass of Bothriochloa

  18. Spin-Valley Beam Splitter in Graphene

    CERN Document Server

    Song, Yu; Shi, Zhi-Gui; Li, Shun; Zhang, Jian


    The fourfold spin-valley degenerate degrees of freedom in bulk graphene can support rich physics and novel applications associated with multicomponent quantum Hall effects and linear conductance filtering. In this work, we study how to break the spin-valley degeneracy of electron beams spatially. We propose a spin-valley beam splitter in a gated ferromagnetic/pristine/strained graphene structure. We demonstrate that, in a full resonant tunneling regime for all spin-valley beam components, the formation of quasi-standing waves can lead four giant lateral Goos-H\\"{a}nchen shifts as large as the transverse beam width, while the interplay of the two modulated regions can lead difference of resonant angles or energies for the four spin-valley flavors, manifesting an effective spin-valley beam splitting effect. The beam splitting effect is found to be controllable by the gating and strain.

  19. Influencia de la aplicación de vinaza en actividad y biomasa microbiana en un Entic Dystropept y un Fluventic haplustoll del Valle del Cauca, Colombia Influence of the vinasse application on activity and microbial biomass in an Entic dystropept and a Fluventic haplustoll soils of the Cauca Valley, Colombia

    Directory of Open Access Journals (Sweden)

    Sandra Patricia Montenegro Gómez


    Full Text Available Con la aplicación de vinaza, residuo de la producción de alcohol carburante a partir de la caña de azúcar, se evaluó el efecto sobre la actividad y biomasa microbiana del suelo y el suministro de K+ al cultivo de maíz dulce (Zea Mays en un Entic Dystropept y un Fluventic Haplustoll del Valle del Cauca, Colombia. Se utilizó un diseño completamente al azar con cuatro tratamientos y cinco repeticiones: T1 (100% requerimiento de K+ con KCl, T2 (100% requerimiento de K+ con vinaza, T3 (50% requerimiento de K+ con KCl +50% con vinaza y T4 (25% requerimiento de K+ con KCl +75% con vinaza. Se estimó biomasa microbiana por el método de fumigación-extracción. Se realizó análisis de varianza, prueba de comparación de medias, regresiones y correlaciones (SAS. Se presentaron diferencias significativas en la actividad y biomasa microbiana por época de muestreo y entre los diferentes muestreos; al final del cultivo el Entic Dystropept presentó el contenido más alto de biomasa microbiana-C en el T2, mientras que en el Fluventic Haplustoll fue en el T1. El menor qCO2 fue para el T2 del Entic Distropept y T1 del Fluventic Haplustoll, estos tratamientos presentaron mayor acumulación de biomasa en cada suelo respectivamente T2 (30 450 kg ha-1 y T1 (21 015.6 kg ha-1.With the vinasse application, a residue from the production of fuel ethanol from sugarcane, the effect on the activity of soil microbial biomass an the supply of K+ to crop sweet corn (Zea Mays in two soils of the Cauca Valley, Colombia were evaluated: Entic Dystropept and Fluventic Haplustoll . Was used a completely randomized design with four replications and five treatments: T1 (100% requirement of K+ with KCl, T2 (100% requirement of K+ with vinasse, T3 (50% requirement of K+ with KCl + 50% with vinasse, T4 (25% requirement of K+ with KCl +75% with vinasse. The microbial biomass was estimated by the fumigation-extraction method. The results were evaluated using analysis of variance

  20. California's restless giant: the Long Valley Caldera (United States)

    Hill, David P.; Bailey, Roy A.; Hendley, James W.; Stauffer, Peter H.; Marcaida, Mae


    Scientists have monitored geologic unrest in the Long Valley, California, area since 1980. In that year, following a swarm of strong earthquakes, they discovered that the central part of the Long Valley Caldera had begun actively rising. Unrest in the area persists today. The U.S. Geological Survey (USGS) continues to provide the public and civil authorities with current information on the volcanic hazard at Long Valley and is prepared to give timely warnings of any impending eruption.

  1. Intrinsic valley Hall effect in graphene (United States)

    Yang, Mou; Zhang, Wen-Lian; Liu, Hai; Bai, Yan-Kui


    If electrons are incident from an armchair graphene ribbon into the bulk graphene region, the electronic diffraction occurs. Because of the different triangular wrapping of the energy dispersion between valleys K and K ‧ , the electrons of valley K tend to be diffracted to one side and those of valley K ‧ to the other side. When the current is injected from the armchair ribbon of a four-terminal graphene device, the major portion of the incident current of valley K flows through one side arm and the minor portion through the other side arm. The ratio between them is derived to be 1 + 4 E / 3 in the low energy limit, where E is the energy in units of hopping parameter. The major arm for valley K is the minor arm for valley K ‧ . This results in the rise of the valley Hall effect, which is an intrinsic property of graphene stemming from the different electronic structure of the two valleys. The valley Hall conductance is calculated to be (2 E / 3)G0 with G0 being the conductance supported by the injection ribbon.

  2. Trion valley coherence in monolayer semiconductors (United States)

    Hao, Kai; Xu, Lixiang; Wu, Fengcheng; Nagler, Philipp; Tran, Kha; Ma, Xin; Schüller, Christian; Korn, Tobias; MacDonald, Allan H.; Moody, Galan; Li, Xiaoqin


    The emerging field of valleytronics aims to exploit the valley pseudospin of electrons residing near Bloch band extrema as an information carrier. Recent experiments demonstrating optical generation and manipulation of exciton valley coherence (the superposition of electron-hole pairs at opposite valleys) in monolayer transition metal dichalcogenides (TMDs) provide a critical step towards control of this quantum degree of freedom. The charged exciton (trion) in TMDs is an intriguing alternative to the neutral exciton for control of valley pseudospin because of its long spontaneous recombination lifetime, its robust valley polarization, and its coupling to residual electronic spin. Trion valley coherence has however been unexplored due to experimental challenges in accessing it spectroscopically. In this work, we employ ultrafast 2D coherent spectroscopy to resonantly generate and detect trion valley coherence in monolayer MoSe2 demonstrating that it persists for a few-hundred femtoseconds. We conclude that the underlying mechanisms limiting trion valley coherence are fundamentally different from those applicable to exciton valley coherence.

  3. Geyser Valley on the Kamchatka Peninsula (United States)


    On June 2, a devastating mudslide in the world-renowned Geyser Valley on the Kamchatka Peninsula virtually obliterated the natural wonder, forcing the emergency evacuation of visitors and national park personnel. The site, which is the Kamchatka Peninsula's main tourist attraction, consists of some 200 thermal pools created by the area's intense volcanic activity, including about 90 geysers covering an area of four square kilometers (2.5 square miles). It is one of only five sites in the world where the impressive eruptions of steam and boiling-hot water can be found. According to witnesses, a powerful mudslide 1.5 kilometers (one mile) long and 200 meters (600 feet) wide buried more than two-thirds of the valley beneath tens of meters of snow, dirt, trees and boulders (right image), and created a temporary lake submerging more geysers. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet. ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra spacecraft. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance. The U.S. science team is located at NASA's Jet

  4. Technical Analysis of In-Valley Drainage Management Strategies for the Western San Joaquin Valley, California (United States)

    Presser, Theresa S.; Schwarzbach, Steven E.


    The western San Joaquin Valley is one of the most productive farming areas in the United States, but salt-buildup in soils and shallow groundwater aquifers threatens this area?s productivity. Elevated selenium concentrations in soils and groundwater complicate drainage management and salt disposal. In this document, we evaluate constraints on drainage management and implications of various approaches to management considered in: *the San Luis Drainage Feature Re-Evaluation (SLDFRE) Environmental Impact Statement (EIS) (about 5,000 pages of documentation, including supporting technical reports and appendices); *recent conceptual plans put forward by the San Luis Unit (SLU) contractors (i.e., the SLU Plans) (about 6 pages of documentation); *approaches recommended by the San Joaquin Valley Drainage Program (SJVDP) (1990a); and *other U.S. Geological Survey (USGS) models and analysis relevant to the western San Joaquin Valley. The alternatives developed in the SLDFRE EIS and other recently proposed drainage plans (refer to appendix A for details) differ from the strategies proposed by the San Joaquin Valley Drainage Program (1990a). The Bureau of Reclamation (USBR) in March 2007 signed a record of decision for an in-valley disposal option that would retire 194,000 acres of land, build 1,900 acres of evaporation ponds, and develop a treatment system to remove salt and selenium from drainwater. The recently proposed SLU Plans emphasize pumping drainage to the surface, storing approximately 33% in agricultural water re-use areas, treating selenium through biotechnology, enhancing the evaporation of water to concentrate salt, and identifying ultimate storage facilities for the remaining approximately 67% of waste selenium and salt. The treatment sequence of reuse, reverse osmosis, selenium bio-treatment, and enhanced solar evaporation is unprecedented and untested at the scale needed to meet plan requirements. All drainage management strategies that have been proposed

  5. How is water availability related to the land use and morphology of an inland valley wetland in Kenya? (United States)

    Böhme, Beate; Becker, Mathias; Diekkrüger, Bernd; Förch, Gerd


    Small inland valley wetlands contribute substantially to the livelihoods of rural communities in East Africa. Their conversion into farmland is driven by water availability. We quantified spatial-temporal dynamics of water availability in a headwater wetland in the humid zone of Kenya. Climatic conditions, soil moisture contents, groundwater levels and discharge data were monitored. A land-use map and a digital elevation model of the valley bottom were created to relate variations in soil moisture to dominant land uses and valley morphology. Upland crops occupied about a third of the wetland area, while approximately a quarter of the wet, central part of the valley bottom was designated for flood-tolerant taro, grown either by itself or in association or in rotation with upland crops. Finally, natural vegetation was found in 3% of the mapped area, mainly in sections with nearpermanent soil saturation. The HBV rainfall-runoff model's overestimation of stream discharge during the long dry season of the hydrological year 2010/2011 can be explained by the strong seasonal impact of water abstraction on the wetland's water balance. Our study vividly demonstrates the necessity of multi-method approaches for assessing the impact of management practices on water availability in valley bottom wetlands in East Africa.

  6. Microbial ecology of extreme environments: Antarctic dry valley yeasts and growth in substrate limited habitats (United States)

    Vishniac, H. S.


    The multiple stresses temperature, moisture, and for chemoheterotrophs, sources of carbon and energy of the Dry Valley Antarctica soils allow at best depauperate communities, low in species diversity and population density. The nature of community structure, the operation of biogeochemical cycles, the evolution and mechanisms of adaptation to this habitat are of interest in informing speculations upon life on other planets as well as in modeling the limits of gene life. Yeasts of the Cryptococcus vishniacil complex (Basidiobiastomycetes) are investigated, as the only known indigenes of the most hostile, lichen free, parts of the Dry Valleys. Methods were developed for isolating these yeasts (methods which do not exclude the recovery of other microbiota). The definition of the complex was refined and the importance of nitrogen sources was established as well as substrate competition in fitness to the Dry Valley habitats.

  7. The daytime boundary layer in the Inn Valley - A model evaluation study with high-quality turbulence measurements (United States)

    Goger, Brigitta; Rotach, Mathias W.; Gohm, Alexander; Fuhrer, Oliver; Stiperski, Ivana


    Atmospheric processes associated with complex terrain include various phenomena on the meso- and microscale, which contribute significantly to the local weather in mountainous areas of the Earth. One of the most prominent and well-known boundary-layer phenomena in mountainous terrain is the daytime valley wind circulation, which is very pronounced on clear-sky days with weak synoptic forcing. We use several chosen "valley wind days" in the Inn Valley, Austria, as case studies for the evaluation of the performance of the NWP model COSMO on a horizontal resolution of 1.1 km with a focus on boundary-layer processes and turbulent exchange. The overall goal is to evaluate the model setup and to investigate whether the model's physics schemes (initially developed for horizontally homogeneous and flat surroundings) are suitable for truly complex terrain. We evaluate the model by using measurements from the so-called "i-Box" located in the Inn Valley. The i-Box consists of six core sites that are located at representative locations in the Inn Valley, and two remote sensing systems (wind Lidar and HATPRO passive T/RH profiler) in the city of Innsbruck. The long-term data set provides a data pool of high-resolution velocity variances, turbulence variables, radiation, soil moisture, and vertical profiles of temperature, humidity, and wind in the lower troposphere, which allows a process-oriented analysis. A special focus is laid on the daytime valley boundary layer and its interaction with the developing up-valley wind. Vertical cross-sections show that the valley wind has an asymmetric structure, hence, the i-Box stations show a high spatial variability. While the station on the valley bottom and on the south-facing slope are clearly under the strong influence of the valley wind, the two stations on the north-facing slope are rather dominated by slope flows. We find that the valley wind has a strong (indirect) influence on the development of the local turbulence kinetic

  8. Alterations of soil chemical properties by eucalyptus cultivation in five regions in the Rio Doce Valley Alterações de características químicas de solos pelo cultivo de eucalipto em cinco regiões no Vale do Rio Doce

    Directory of Open Access Journals (Sweden)

    Fernando Palha Leite


    Full Text Available Little is currently known about modifications in edaphic characteristics caused by short-rotation eucalyptus and the impacts of these alterations on the sustainability of eucalyptus wood production. This study was carried out to identify theses changes at five sites of eucalyptus plantation in the region of the Rio Doce Valley, state of Minas Gerais, Brazil. Areas with more than three previous eucalyptus cycles, adjacent to pasture land or native forest, were chosen. Soil samples were collected and soil fertility analyzed by routine methods and other fractionation methods in order to measure alterations in the K, Ca and Mg contents as a consequence of eucalyptus cultivation. In the eucalyptus areas, reductions in the exchangeable Ca2+, Mg2+ and K+ contents and pH were observed and increased Al3+ and H + Al contents. Of all nutrients, only P contents (Mehlich-1 P increased in the eucalyptus areas. The reduction in exchangeable forms and in medium-term soil nutrient pools indicates the need for higher nutrient rates than the currently applied in order to prevent nutritional limitations and soil nutrient exhaustion. After several eucalyptus rotations there was a recovery in the SOM content in comparison to degraded pasture soils, although not to the level of the native forest soil. The positive correlation between effective CEC and medium-term non-exchangeable Ca, Mg and K with SOM emphasizes the need for adequate fertilizer and plant residue management to sustain or even increase forest productivity in future cycles.Modificações em características edáficas, assim como as consequências resultantes dessas alterações sobre a sustentabilidade do processo de produção de madeira de eucalipto, ainda são pouco conhecidas. Com o objetivo de identificar essas modificações, realizou-se este trabalho em cinco locais cultivados com eucalipto na região do Vale do Rio Doce-MG. Foram selecionadas áreas cultivadas com eucalipto por mais de tr

  9. Biodiversity of rhizobia associated with cowpea cultivars in soils of the lower half of the São Francisco River Valley Biodiversidade de rizóbio associado a cultivares de feijão-caupi em solos do submédio do Vale do São Francisco

    Directory of Open Access Journals (Sweden)

    Jakson Leite


    Full Text Available The biodiversity of rhizobium in soils of the São Francisco Valley is unknown and can be studied using cowpea as trap plants. The objective of this study was to verify the diversity of diazotrophic bacteria that nodulate cowpea in soils of the lower half of the São Francisco River Valley by morphological and genotypic characterization. Seven soil samples (A1, A2, A3, A4, C1, C2 and MC were collected to capture bacteria associated to five cowpea cultivars (IPA 206, BRS Pujante, BRS Marataoã, Canapu Roxo, and Sempre Verde, in a 5x7 factorial design with three replications. Thirty days after plant emergence, the nodules were collected and the bacteria isolated and analyzed in relation to their growth characteristics in YMA medium. The 581 isolates were grouped in 49 morphologic groups. Of this total, 62.3 % formed colonies in up to three days, 33.4 % grew from the 6th day on, and 4.3 % began to grow 4 to 5 days after incubation. Regarding the formation of acids and alkalis, 63 % acidified the medium, 12 % made it alkaline and 25 % maintained the medium at neutral pH. The highest diversity was observed in the A3 sample and in isolates associated with the cultivars Canapu Roxo and BRS Pujante. Thirty-eight representative isolates were chosen for the genotypic characterization, clustered in four groups based on the restriction analysis of 16s rDNA. This grouping was strongly correlated with the sampling site; 13 rhizobium isolates had an electrophoretic profile distinct from the standard rhizobium strains used in this study.A biodiversidade de rizóbio de solos do Vale do São Francisco é desconhecida e pode ser estudada utilizando feijão-caupi como planta-isca. Este trabalho teve por objetivo verificar a diversidade de bactérias diazotróficas que nodulam feijão-caupi em solos do Submédio do Vale do São Francisco por meio da caracterização morfológica e genotípica. Sete amostras de solos (A1, A2, A3, A4, C1, C2 e MC foram coletadas para

  10. Precision Mapping of Valley Networks in Margaritifer Sinus, Mars (United States)

    Stepinski, T. F.; Luo, W.; Qi, Y.


    Valley networks in Margaritifer Sinus quadrangle are mapped using a computer algorithm. The new map reveals wider existence of valleys than has been inferred from older maps. This suggests runoff as the primary mechanism for origin of the valleys.

  11. Work through the valley: plan. (United States)

    Jones, Loretta; Meade, Barbara; Koegel, Paul; Lucas-Wright, Aziza; Young-Brinn, Angela; Terry, Chrystene; Norris, Keith


    This first of three chapters on the Valley stage, or main work of a Community-Partnered Participatory Research (CPPR) initiative, concerns the planning phase of the work cycle. The main goal of this phase is to develop an action plan, which clarifies the goals, methods, responsible individuals, and timeline for doing the work. Further, this chapter reviews approaches, such as creativity and use of humor, that help level the playing field and assure community co-leadership with academic partners in developing effective action plans.

  12. Soil Sampling Techniques For Alabama Grain Fields (United States)

    Thompson, A. N.; Shaw, J. N.; Mask, P. L.; Touchton, J. T.; Rickman, D.


    Characterizing the spatial variability of nutrients facilitates precision soil sampling. Questions exist regarding the best technique for directed soil sampling based on a priori knowledge of soil and crop patterns. The objective of this study was to evaluate zone delineation techniques for Alabama grain fields to determine which method best minimized the soil test variability. Site one (25.8 ha) and site three (20.0 ha) were located in the Tennessee Valley region, and site two (24.2 ha) was located in the Coastal Plain region of Alabama. Tennessee Valley soils ranged from well drained Rhodic and Typic Paleudults to somewhat poorly drained Aquic Paleudults and Fluventic Dystrudepts. Coastal Plain s o i l s ranged from coarse-loamy Rhodic Kandiudults to loamy Arenic Kandiudults. Soils were sampled by grid soil sampling methods (grid sizes of 0.40 ha and 1 ha) consisting of: 1) twenty composited cores collected randomly throughout each grid (grid-cell sampling) and, 2) six composited cores collected randomly from a -3x3 m area at the center of each grid (grid-point sampling). Zones were established from 1) an Order 1 Soil Survey, 2) corn (Zea mays L.) yield maps, and 3) airborne remote sensing images. All soil properties were moderately to strongly spatially dependent as per semivariogram analyses. Differences in grid-point and grid-cell soil test values suggested grid-point sampling does not accurately represent grid values. Zones created by soil survey, yield data, and remote sensing images displayed lower coefficient of variations (8CV) for soil test values than overall field values, suggesting these techniques group soil test variability. However, few differences were observed between the three zone delineation techniques. Results suggest directed sampling using zone delineation techniques outlined in this paper would result in more efficient soil sampling for these Alabama grain fields.

  13. Frações da matéria orgânica do solo após três décadas de cultivo de eucalipto no Vale do Rio Doce-MG Soil organic matter fractions after three decades of eucalypt cultivation in the Rio Doce Valley, Brazil

    Directory of Open Access Journals (Sweden)

    Augusto Miguel Nascimento Lima


    -rotation eucalypt plantations. This study aimed to evaluate the impact of eucalypt cultivation on C stocks of several organic matter fractions in soils previously covered with degraded pasture, as well as to identify which SOM fractions are more sensitive indicators of land use change impacts. The study was conducted at two sites (Belo Oriente and Virginópolis with commercial short-rotation eucalypt plantations in the Rio Doce Valley region, Minas Gerais state, Brazil. The soil samples were analyzed for: total organic C (TOC, light fraction C (free light - FLL and occluded light- FLO, C associated to heavy fractions (sand - AR, silt + clay - S+A and clay - ARG, microbial biomass C (BM and humic fractions C (fulvic acids- FAF; humic acid- FAH and humin- FH. Results indicate that overall organic C stockst in all SOM fractions were higher in soils of Virginópolis than those of Belo Oriente due to the lower annual mean temperature and higher clay content. Thus, soil C sequestration by eucalypt plantations was higher in Virginópolis (14.2 t ha-1 than in Belo Oriente (10.0 t ha-1, resulting in a C sequestration rate of 0.42 t ha-1 yr-1 and 0.29 t ha-1 yr-1 , respectively. In Belo Oriente the eucalypt plantations also favored the increase in C stocks of the ARG, S + A and FH fractions. A similar pattern was observed for C of FLL, FAF and FAH in Virginópolis. Of all SOM fractions, the BM and the FLO were the least sensitive indicators of alterations in SOM three decades after land use changes. In this regard, TOC and C of FLL, FAF, FAH and FH were more efficient.

  14. Vernal Pool Distribution - Central Valley, 2005 [ds650 (United States)

    California Department of Resources — "Great Valley Vernal Pool Distribution", originally mapped by Bob Holland, 2005. This dataset contains vernal pool areas mapped over Califorina's Central Valley,...

  15. Rift Valley fever outbreak, southern Mauritania, 2012. (United States)

    Sow, Abdourahmane; Faye, Ousmane; Ba, Yamar; Ba, Hampathé; Diallo, Diawo; Faye, Oumar; Loucoubar, Cheikh; Boushab, Mohamed; Barry, Yahya; Diallo, Mawlouth; Sall, Amadou Alpha


    After a period of heavy rainfall, an outbreak of Rift Valley fever occurred in southern Mauritania during September-November 2012. A total of 41 human cases were confirmed, including 13 deaths, and 12 Rift Valley fever virus strains were isolated. Moudjeria and Temchecket Departments were the most affected areas.

  16. Valley Fever (Coccidioidomycosis) Risk and Prevention (United States)

    ... fungal spores. The following are some common-sense methods that may be helpful to avoid getting Valley fever. It’s important to know that although these steps are recommended, they haven’t been proven to prevent Valley fever. ... information about respirators. Stay inside during dust storms and ...

  17. Enjoy Samba Carnival in Happy Valley

    Institute of Scientific and Technical Information of China (English)


    On July3,the Yanjing Beer 2009 Beijing Happy Valley Mayan Carnival was grandly opened.The carnival will last for almost two months until August 30.With support from Yanjing Beer,Happy Valley is able to provide an authentic Brazilian festival including hot music and dancing,

  18. Valley Pearl’ table grape (United States)

    Valley Pearl’ is an early to mid-season, white seedless table grape (Vitis vinifera L.) suitable for commercial table grape production where V. vinifera can be grown. Significant characteristics of ‘Valley Pearl’ are its high and consistent fruit production on spur pruned vines and large round berr...

  19. Heavy metal contamination in agricultural soils and water in Dar es ...

    African Journals Online (AJOL)


    water indicates the potential for pollution transfer from these media to the food chain, especially since this valley is popular ... goodness of urban agriculture as a source of income and ..... (1997). Variations in plant and soil Lead and Cadmium.

  20. Characterization And Classification Of The Inland Valley Soils Of ...

    African Journals Online (AJOL)

    The textures of the surface horizons ranged from sandy loam to clay while the subsoil ... with their base saturation values greater than 50% for the surface horizons. ... APT – 2 as Typic Epiaqualfs, ABN – 3 as Typic Umbraqualfs and ABN – 4 as ...

  1. Transforming the "Valley of Death" into a "Valley of Opportunity" (United States)

    Jedlovec, Gary J.; Merceret, Francis J.; O'Brien, T. P.; Roeder, William P.; Huddleston, Lisa L.; Bauman, William H., III


    Transitioning technology from research to operations (23 R2O) is difficult. The problem's importance is exemplified in the literature and in every failed attempt to do so. Although the R2O gap is often called the "valley of death", a recent a Space Weather editorial called it a "Valley of Opportunity". There are significant opportunities for space weather organizations to learn from the terrestrial experience. Dedicated R2O organizations like those of the various NOAA testbeds and collaborative "proving ground" projects take common approaches to improving terrestrial weather forecasting through the early transition of research capabilities into the operational environment. Here we present experience-proven principles for the establishment and operation of similar space weather organizations, public or private. These principles were developed and currently being demonstrated by NASA at the Applied Meteorology Unit (AMU) and the Short-term Prediction Research and Transition (SPoRT) Center. The AMU was established in 1991 jointly by NASA, the U.S. Air Force (USAF) and the National Weather Service (NWS) to provide tools and techniques for improving weather support to the Space Shuttle Program (Madura et al., 2011). The primary customers were the USAF 45th Weather Squadron (45 WS) and the NWS Spaceflight Meteorology Group (SMG who provided the weather observing and forecast support for Shuttle operations). SPoRT was established in 2002 to transition NASA satellite and remote-sensing technology to the NWS. The continuing success of these organizations suggests the common principles guiding them may be valuable for similar endeavors in the space weather arena.

  2. New geoarchaeological investigations of the valley systems in the Aksum area of northern Ethiopia

    DEFF Research Database (Denmark)

    French, Charles; Sulas, Federica; Madella, Marco


    landscape stability and resilience. This is reflected in the development of soils with vertic-like properties, which instead appear to be more like organic brown earths that gradually begin to aggrade through colluvial and alluvial additions. How much this is the result of sympathetic, long-term landscape...... of the sediment captured in the valley systems and lower slopes to the north of Aksum. This no doubt reflects a growing population and arable intensification....

  3. Correlations between the air pollution and the rainfall composition in Jiului Valley area

    Directory of Open Access Journals (Sweden)

    Traistă Eugen


    Full Text Available Rainfall composition is conditional on the air quality. If the air is polluted, the rainfall will be also polluted. In fact, rainfall contains the same compounds like the air as nitrites, nitrates, sulphites, sulphates, ammonia etc. Some cations like calcium, magnesium, sodium and potassium are present in rainfall because of dust. This paper presents the air qualities and the soil composition influenced by the rainfall in one of the most polluted mining areas from our country, Jiului Valley.

  4. Effects of a copper smelter on a grassland community in the Puchuncaví Valley, Chile. (United States)

    Ginocchio, R


    A grassland formation has been subjected to pollution generated by the Ventanas copper smelter since 1964 (Puchuncaví Valley, central zone of Chile) with extensive damage to local vegetation and important changes in soil characteristics. The aims of the study were (1) to detect soil parameters that best explain changes observed in plant species richness and abundance and (2) to determine if pollution-derived stresses have also affected regeneration capabilities of plant communities from the soil seed bank. The grassland was quantitatively analysed in terms of physicochemical soil characteristics, plant species diversity and abundance, and soil seed bank species composition and abundance. Results showed that a decrease in total soil nitrogen explained 13% of the changes detected in plant abundance while soil pH and 0.05 M EDTA extractable copper explained 10% and 7%, respectively, of the vegetation change. It was also found that the pollution has already affected plant species regeneration capabilities from the soil seed bank and the microsite distribution of the seeds in soils.

  5. Some previous ABL measurements in the Duero and Ebro valleys (United States)

    Cuxart, Joan


    Evapotranspiration in semi-arid regimes needs improved understanding and representation in numerical models. Most of the Iberian Peninsula (IP) upper soil in summer becomes dry which makes of it a good area for field campaigning and numerical modeling. The two large basins at the northern IP, Duero (essentially non-irrigated cereals) and Ebro (large irrigated areas surrounded by typical mediterranean vegetation), have already seen some ABL research efforts in the last decades. The CIBA site is located over a plateau in the centre of the Duero basin. The plateau has shallow soil over karstic rock, contrarily to the lower areas that are essentially sedimentary. There radiation and fluxes of biogenic gases have been measured during decades by the University of Valladolid. Since 1998 the renovated 100m tower has been used to study the ABL, focusing essentially in the nocturnal stably stratified regime, the mesoscale low-level jets, the effet of surface heterogeneities and fog events. Studies have been supplemented with use of satellital information and high-resolution mesoscale simulations. The center of the Ebro basin was the site of ABL measurements between 2008 and 2011, when a surface energy budget (SEB) station and a WindRASS were operating in the middle of a large vineyard, occasionally irrigated during the summer season, keeping the soil always with enough water content to sustain the needs of the vines. Similar topics as for the Duero basin were inspected, here supplemented by the effect of the surrounding topography and the wet-dry terrain heterogeneities, both contributing to intensify the strength of low-level circulations. The SEB imbalance was quantified and the terms compared to the ones from the ECMWF model, finding very significant differences. The SEB and WindRASS were installed in 2015 in the large Pyrenean valley of La Cerdanya, through which the Segre river (a main tributary of the Ebro) flows. The soil in this area usually retains enough water

  6. Geology of radon occurrence around Jari in Parvati Valley, Himachal Pradesh, India

    Energy Technology Data Exchange (ETDEWEB)

    Choubey, V.M. [Wadia Inst. of Himalayan Geology, Dehra Dun (India); Sharma, K.K.; Ramola, R.C. [H.N.B. Garhwal Univ., Tehri Garhwal (India). Dept. of Physics


    Soil gas and indoor radon concentrations have been measured around Jari in Parvati Valley, Himachal Pradesh, India, to study their relationship with the local geology. Both soil gas and indoor radon concentrations were found to be higher near structurally controlled uranium mineralization. Indoor radon levels in the houses of the study area are considerably higher than the ICRP recommended value of 200 Bq m{sup -3}. The high indoor radon concentration found may be attributed to the geology of the area. This area needs more detailed investigation as it may be one of the areas of high radon risk in India. (Author).

  7. Suppression of plant parasitic nematodes in the chinampa agricultural soils. (United States)

    Zuckerman, B M; Dicklow, M B; Coles, G C; Garcia-E, R; Marban-Mendoza, N


    Soil from the chinampa agricultural system in the Valley of Mexico suppressed damage by plant-parasitic nematodes to tomatoes and beans in greenhouse and growth chamber trials. Sterilization of the chinampa soil resulted in a loss of the suppressive effect, thereby indicating that one or more biotic factors were responsible for the low incidence of nematode damage. Nine organisms were isolated from chinampa soil, which showed antinematodal properties in culture. Naturally occurring populations of plant-parasitic nematodes were of lower incidence in chinampa soil than in Chapingo soil.

  8. Automatic mapping of valley networks on Mars (United States)

    Molloy, I.; Stepinski, T. F.


    Martian valley networks bear some resemblance to terrestrial drainage systems, but their precise origin remains an active research topic. A limited number of valley networks have been manually mapped from images, but the vast majority remains unmapped because standard drainage mapping algorithms are inapplicable to valleys that are poorly organized and lack spatial integration. In this paper, we present a novel drainage delineation algorithm specially designed for mapping the valley networks from digital elevation data. It first identifies landforms characterized by convex tangential curvature, and then uses a series of image processing operations to separate valleys from other features having a convex form. The final map is produced by reconnecting all valley segments along drainage directions. Eight test sites on Mars are selected and manually mapped for valley networks. The algorithm is applied to the test sites and delineated networks are compared to mapped networks using a series of quantitative quality factors. We have found a good agreement between delineated and mapped networks. In the process of comparing manual and delineated networks some shortcomings of manual mapping became apparent. We argue that delineated networks are indeed of better quality than the networks manually mapped from images. Although the algorithm has been developed to study Martian surface, it may also be relevant to terrestrial geomorphology.

  9. Effects of Groundwater Development on Uranium: Central Valley, California, USA (United States)

    Jurgens, B.C.; Fram, M.S.; Belitz, K.; Burow, K.R.; Landon, M.K.


    Uranium (U) concentrations in groundwater in several parts of the eastern San Joaquin Valley, California, have exceeded federal and state drinking water standards during the last 20 years. The San Joaquin Valley is located within the Central Valley of California and is one of the most productive agricultural areas in the world. Increased irrigation and pumping associated with agricultural and urban development during the last 100 years have changed the chemistry and magnitude of groundwater recharge, and increased the rate of downward groundwater movement. Strong correlations between U and bicarbonate suggest that U is leached from shallow sediments by high bicarbonate water, consistent with findings of previous work in Modesto, California. Summer irrigation of crops in agricultural areas and, to lesser extent, of landscape plants and grasses in urban areas, has increased Pco2 concentrations in the soil zone and caused higher temperature and salinity of groundwater recharge. Coupled with groundwater pumping, this process, as evidenced by increasing bicarbonate concentrations in groundwater over the last 100 years, has caused shallow, young groundwater with high U concentrations to migrate to deeper parts of the groundwater system that are tapped by public-supply wells. Continued downward migration of U-affected groundwater and expansion of urban centers into agricultural areas will likely be associated with increased U concentrations in public-supply wells. The results from this study illustrate the potential long-term effects of groundwater development and irrigation-supported agriculture on water quality in arid and semiarid regions around the world. Journal compilation ?? 2009 National Ground Water Association. No claim to original US government works.


    Directory of Open Access Journals (Sweden)

    Gheorghe Jigau


    Full Text Available In Prut - Dniester interfluves the halomorphic soil meets practically in all soilgeographical areas and is characterized by a significant genetic variety. To them concern as interzones types sodium soil, saline soil and halomorphic soil of the large and small river valleys, and alkalized and solonchak genuses of zones chernozem’s soil. They are distributed both in flood land of the rivers, and outside of flood land. In outside flood lands they form large missives. On an outside flood lands territories they form island sites with the small area dated to an exit on a surface of salt Neogene clays or to territories testing constant or periodic humidifying more often.

  11. Weathering and transport of chromium and nickel from serpentinite in the Coast Range ophiolite to the Sacramento Valley, California, USA (United States)

    Morrison, Jean M.; Goldhaber, Martin B.; Mills, Christopher T.; Breit, George N.; Hooper, Robert L.; Holloway, JoAnn M.; Diehl, Sharon F.; Ranville, James F.


    A soil geochemical study in northern California was done to investigate the role that weathering and transport play in the regional distribution and mobility of geogenic Cr and Ni, which are both potentially toxic and carcinogenic. These elements are enriched in ultramafic rocks (primarily serpentinite) and the soils derived from them (1700–10,000 mg Cr per kg soil and 1300–3900 mg Ni per kg soil) in the Coast Range ophiolite. Chromium and Ni have been transported eastward from the Coast Range into the western Sacramento Valley and as a result, valley soil is enriched in Cr (80–1420 mg kg−1) and Ni (65–224 mg kg−1) compared to median values of U.S. soils of 50 and 15 mg kg−1, respectively. Nickel in ultramafic source rocks and soils is present in serpentine minerals (lizardite, antigorite, and chrysotile) and is more easily weathered compared to Cr, which primarily resides in highly refractory chromite ([Mg,Fe2+][Cr3+,Al,Fe3+]2O4). Although the majority of Cr and Ni in soils are in refractory chromite and serpentine minerals, the etching and dissolution of these minerals, presence of Cr- and Ni-enriched clay minerals and development of nanocrystalline Fe (hydr)oxides is evidence that a significant fractions of these elements have been transferred to potentially more labile phases.

  12. Visible Effects of Invisible Hidden Valley Radiation

    CERN Document Server

    Carloni, Lisa


    Assuming there is a new gauge group in a Hidden Valley, and a new type of radiation, can we observe it through its effect on the kinematic distributions of recoiling visible particles? Specifically, what are the collider signatures of radiation in a hidden sector? We address these questions using a generic SU(N)-like Hidden Valley model that we implement in Pythia. We find that in both the e+e- and the LHC cases the kinematic distributions of the visible particles can be significantly affected by the valley radiation. Without a proper understanding of such effects, inferred masses of "communicators" and of invisible particles can be substantially off.

  13. Radon in groundwater of eastern Doon valley, Outer Himalaya

    Energy Technology Data Exchange (ETDEWEB)

    Choubey, V.M. E-mail:; Bartarya, S.K.; Ramola, R.C


    The radon content in water may serve as a useful tracer for several geohydrological processes. The hydrodynamic factor, presence of radium in host rocks, as well as the soil porosity and permeability control its concentration in groundwater. In order to understand the factors that control the occurrence of radon in groundwater of Doon valley in Outer Himalaya, a total of 34 groundwater samples were collected from handpumps and tubewells covering three hydrogeological units/areas in the eastern part of Doon valley. Radon variation in tubewells and handpumps varies from 25.4{+-}1.8 to 92.5{+-}3.4 Bq/l with an average of 53.5{+-}2.6 Bq/l. A significant positive correlation between radon concentration and depth of the wells was observed in the Doiwala-Dudhli and Jolleygrant areas suggesting that radon concentration increases with drilling depth in areas consisting of sediments of younger Doon gravels, whereas samples of the Ganga catchment show negative correlation. The high radon levels at shallower depths in the Ganga catchment (consisting of fluvial terraces of Ganga basin) indicate uranium-rich sediments at shallower depth.

  14. 76 FR 22746 - Conecuh Valley Railway, LLC-Acquisition and Operation Exemption-Conecuh Valley Railroad Co., Inc. (United States)


    ... Surface Transportation Board Conecuh Valley Railway, LLC--Acquisition and Operation Exemption--Conecuh Valley Railroad Co., Inc. Conecuh Valley Railway, LLC (CVR), a noncarrier, has filed a verified notice of exemption under 49 CFR 1150.31 to acquire from Conecuh Valley Railroad Co., Inc. (COEH), and to operate...

  15. Valley-filtered edge states and quantum valley Hall effect in gated bilayer graphene. (United States)

    Zhang, Xu-Long; Xu, Lei; Zhang, Jun


    Electron edge states in gated bilayer graphene in the quantum valley Hall (QVH) effect regime can carry both charge and valley currents. We show that an interlayer potential splits the zero-energy level and opens a bulk gap, yielding counter-propagating edge modes with different valleys. A rich variety of valley current states can be obtained by tuning the applied boundary potential and lead to the QVH effect, as well as to the unbalanced QVH effect. A method to individually manipulate the edge states by the boundary potentials is proposed.

  16. Analysis of shallow failures triggered by the 14-16 November 2002 event in the Albaredo valley, Valtellina (Northern Italy)


    Dapporto, S.; Aleotti, P.; Casagli, N.; G. Polloni


    On 14-16 November 2002 the North Italy was affected by an intense rainfall event: in the Albaredo valley (Valtellina) more than 200 mm of rain fell triggering about 50 shallow landslides, mainly soil slips and soil slip-debris flows. Landslides occurred above the critical rainfall thresholds computed by Cancelli and Nova (1985) and Ceriani et al. (1994) for the Italian Central Alps: in fact the cumulative precipitation at the soil slips initiation time was 230 mm (in two days) with a pe...

  17. Valley-protected backscattering suppression in silicon photonic graphene

    CERN Document Server

    Chen, Xiao-Dong


    In this paper, we study valley degree of freedom in all dielectric silicon photonic graphene. Photonic band gap opening physics under inversion symmetry breaking is revisited by the viewpoint of nonzero valley Chern number. Bulk valley modes with opposite orbital angular momentum are unveiled by inspecting time-varying electric fields. Topological transition is well illustrated through photonic Dirac Hamiltonian. Valley dependent edge states and the associated valley-protected backscattering suppression around Z-shape bend waveguide have been demonstrated.

  18. Hydrothermal system of Long Valley caldera, California

    Energy Technology Data Exchange (ETDEWEB)

    Sorey, M.L.; Lewis, R.E.; Olmsted, F.H.


    The geologic and hydrologic setting of the hydrothermal system are described. The geochemical and thermal characteristics of the system are presented. A mathematical model of the Long Valley caldera is analyzed. (MHR)

  19. Burrowing Owl - Palo Verde Valley [ds197 (United States)

    California Department of Resources — These burrowing owl observations were collected during the spring and early summer of 1976 in the Palo Verde Valley, eastern Riverside County, California. This is an...

  20. Woodcock "Roundup" 2001 at Canaan Valley NWR (United States)

    US Fish and Wildlife Service, Department of the Interior — In an effort to make a more complete census of breeding American woodcock in the Canaan Valley, a volunteer survey was performed in April. The idea was to coordinate...

  1. Alluvial Boundary of California's Central Valley (United States)

    U.S. Geological Survey, Department of the Interior — This digital dataset defines the extent of the alluvial deposits in the Central Valley of California and encompasses the contiguous Sacramento, San Joaquin, and...

  2. Goldstone Apple Valley Radio Telescope Project. (United States)

    Ibe, Mary; MacLaren, Dave


    Describes the Goldstone Apple Valley Radio Telescope (GAVRT) project as a way of teaching astronomy concepts to middle school students. The project provides students opportunities to work with professional scientists. (SOE)

  3. Woodcock "Roundup" 2004 at Canaan Valley NWR (United States)

    US Fish and Wildlife Service, Department of the Interior — On April 24, 2004 the refuge sponsored the fourth annual ''woodcock round up", a volunteer event to perform a woodcock survey in Canaan Valley. The event was started...

  4. Woodcock "Roundup" 2002 at Canaan Valley NWR (United States)

    US Fish and Wildlife Service, Department of the Interior — On April 20, 2002 an annual Woodcock Roundup survey was conducted to document American woodcock presence in Canaan Valley. The Annual Woodcock roundup began in April...

  5. Vegetation - San Felipe Valley [ds172 (United States)

    California Department of Resources — This Vegetation Map of the San Felipe Valley Wildlife Area in San Diego County, California is based on vegetation samples collected in the field in 2002 and 2005 and...

  6. Meie mees Silicon Valleys / Kertu Ruus

    Index Scriptorium Estoniae

    Ruus, Kertu, 1977-


    Ilmunud ka: Delovõje Vedomosti 5. dets. lk. 4. Peaminister Andrus Ansip avas Eesti Ettevõtluse Sihtasutuse esinduse Silicon Valley pealinnas San Joses. Vt. samas: Ränioru kliima on tehnoloogiasõbralik; Andrus Viirg

  7. Meie ingel Silicon Valleys / Raigo Neudorf

    Index Scriptorium Estoniae

    Neudorf, Raigo


    Ettevõtluse Arendamise Sihtasutuse esinduse töölepanekust USAs Silicon Valleys räägib esinduse juht Andrus Viirg. Vt. ka: Eestlasi leidub San Franciscos omajagu; Muljetavaldav karjäär; USAga ammune tuttav

  8. Death Valley%死亡山谷

    Institute of Scientific and Technical Information of China (English)

    Suasan Spano; 文迪


    @@ Late-afternoon light tints the mountains as two hikers trek1 across Stovepipe Wells sand dunes2 in Death Valley, Calif. Dunes near Scotty's Castle and Zabriskie Point are also popular tourist sights.

  9. Meie ingel Silicon Valleys / Raigo Neudorf

    Index Scriptorium Estoniae

    Neudorf, Raigo


    Ettevõtluse Arendamise Sihtasutuse esinduse töölepanekust USAs Silicon Valleys räägib esinduse juht Andrus Viirg. Vt. ka: Eestlasi leidub San Franciscos omajagu; Muljetavaldav karjäär; USAga ammune tuttav

  10. Meie mees Silicon Valleys / Kertu Ruus

    Index Scriptorium Estoniae

    Ruus, Kertu, 1977-


    Ilmunud ka: Delovõje Vedomosti 5. dets. lk. 4. Peaminister Andrus Ansip avas Eesti Ettevõtluse Sihtasutuse esinduse Silicon Valley pealinnas San Joses. Vt. samas: Ränioru kliima on tehnoloogiasõbralik; Andrus Viirg

  11. Land Protection Plan: Swan Valley Conservation Area (United States)

    US Fish and Wildlife Service, Department of the Interior — This Land Protection Plan for Swan Valley Conservation Area provides a description of the project, a description of the area and its resources, threats to the...

  12. Summary and evaluation of existing geological and geophysical data near prospective surface facilities in Midway Valley, Yucca Mountain Project, Nye County, Nevada; Yucca Mountain Site Characterization Project

    Energy Technology Data Exchange (ETDEWEB)

    Gibson, J.D. [Sandia National Labs., Albuquerque, NM (United States); Swan, F.H.; Wesling, J.R.; Bullard, T.F.; Perman, R.C.; Angell, M.M.; DiSilvestro, L.A. [Geomatrix Consultants, Inc., San Francisco, CA (United States)


    Midway Valley, located at the eastern base of the Yucca Mountain in southwestern Nevada, is the preferred location of the surface facilities for the potential high-level nuclear waste repository at Yucca Mountain. One goal in siting these surface facilities is to avoid faults that could produce relative displacements in excess of 5 cm in the foundations of the waste-handling buildings. This study reviews existing geologic and geophysical data that can be used to assess the potential for surface fault rupture within Midway Valley. Dominant tectonic features in Midway Valley are north-trending, westward-dipping normal faults along the margins of the valley: the Bow Ridge fault to the west and the Paintbrush Canyon fault to the east. Published estimates of average Quaternary slip rates for these faults are very low but the age of most recent displacement and the amount of displacement per event are largely unknown. Surface mapping and interpretive cross sections, based on limited drillhole and geophysical data, suggest that additional normal faults, including the postulated Midway Valley fault, may exist beneath the Quaternary/Tertiary fill within the valley. Existing data, however, are inadequate to determine the location, recency, and geometry of this faulting. To confidently assess the potential for significant Quaternary faulting in Midway Valley, additional data are needed that define the stratigraphy and structure of the strata beneath the valley, characterize the Quaternary soils and surfaces, and establish the age of faulting. The use of new and improved geophysical techniques, combined with a drilling program, offers the greatest potential for resolving subsurface structure in the valley. Mapping of surficial geologic units and logging of soil pits and trenches within these units must be completed, using accepted state-of-the-art practices supported by multiple quantitative numerical and relative age-dating techniques.

  13. Rainfall infiltration on hilly slopes under various lithology and its effect on tree growth in the dry-hot valley

    Institute of Scientific and Technical Information of China (English)

    YANG; Zhong; XIONG; Donghong; ZHOU; Hongyi; ZHANG; Xinbao


    Revegetation is very difficult in dry-hot valleys in China. Rainfall infiltration capability on hilly slopes is one of the key factors determining soil moisture conditions and tree growth in the dry-hot valley. Low rainfall infiltration often results in soil drought on slopes under the dry-hot valleys climate. Rainfall infiltration capability varies greatly with the difference of slope lithologic porosity. The infiltration rates of five lithologic slope-types, Schist Slope, Grit Slope, Gravel Slope, the slightly eroded Mudstone Slope and the intensively eroded Mudstone Slope, are 1.40-8.67, 6.33, 0.69-2.20, 0.6-1.3 and 0.03-0.63 mm/min, respectively. With its viscid compact soil body and low infiltration capability which causes little infiltrating rainfall, mudstone slope can afford little effective supply to soil water and leads to serious drought of soil in dry seasons, resulting in cessation of growth or even wide-spread death of trees due to physiological damage for the excessive deficit of water in dry season and also the low productivity of stands. Hence, it is extremely difficult to restore vegetation on this type of slope. The other four lithologic slope-types, however, with well-developed soil crevice, high infiltration capability and thus more infiltrating rainfall, can afford more available soil water supply and the trees on them can obtain better growth and relatively higher productivity, compared with those on Mudstone Slope. Revegetation in dry-hot valleys is controlled by the soil moisture conditions of different slope-types, and it can be implemented by relying on the dominative life-form plant species, the suitable spatial arrangement of different life-forms of arbor-shrub-herb species, and the establishment of ecological community relationship between vegetation and soil moisture in habits. On the other hand, ground making measures for forestation and the runoff-collecting engineering measures to increase the rainfall infiltration are the major

  14. A method to detect soil carbon degradation during soil erosion

    Directory of Open Access Journals (Sweden)

    F. Conen


    Full Text Available Soil erosion has been discussed intensively but controversial both as a significant source or a significant sink of atmospheric carbon possibly explaining the gap in the global carbon budget. One of the major points of discussion has been whether or not carbon is degraded and mineralized to CO2 during detachment, transport and deposition of soil material. By combining the caesium-137 (137Cs approach (quantification of erosion rates with stable carbon isotope signatures (process indicator of mixing versus degradation of carbon pools we were able to show that degradation of carbon occurs during soil erosion processes at the investigated mountain grasslands in the central Swiss Alps (Urseren Valley, Canton Uri. Transects from upland (erosion source to wetland soils (erosion sinks of sites affected by sheet and land slide erosion were sampled. Analysis of 137Cs yielded an input of 2 and 4.6 tha−1 yr−1 of soil material into the wetlands sites. Assuming no degradation of soil organic carbon during detachment and transport, carbon isotope signature of soil organic carbon in the wetlands could only be explained with an assumed 500–600 and 350–400 years of erosion input into the wetlands Laui and Spissen, respectively. The latter is highly unlikely with alpine peat growth rates indicating that the upper horizons might have an age between 7 and 200 years. While we do not conclude from our data that eroded soil organic carbon is generally degraded during detachment and transport, we propose this method to gain more information on process dynamics during soil erosion from oxic upland to anoxic wetland soils, sediments or water bodies.

  15. A method to detect soil carbon degradation during soil erosion

    Directory of Open Access Journals (Sweden)

    C. Alewell


    Full Text Available Soil erosion has been discussed intensively but controversial both as a significant source or a significant sink of atmospheric carbon possibly explaining the gap in the global carbon budget. One of the major points of discussion has been whether or not carbon is degraded and mineralized to CO2 during detachment, transport and deposition of soil material. By combining the caesium-137 (137Cs approach (quantification of erosion rates with stable carbon isotope signatures (process indicator of mixing versus degradation of carbon pools we were able to show that degradation of carbon occurs during soil erosion processes at the investigated mountain grasslands in the central Swiss Alps (Urseren Valley, Canton Uri. Transects from upland (erosion source to wetland soils (erosion sinks of sites affected by sheet and land slide erosion were sampled. Analysis of 137Cs yielded an input of 2 and 2.6 t ha−1 yr−1 of soil material into the wetlands sites. Assuming no degradation of soil organic carbon during detachment and transport, carbon isotope signature of soil organic carbon in the wetlands could only be explained with an assumed 800 and 400 years of erosion input into the wetlands. The latter is highly unlikely with alpine peat growth rates indicating that the upper horizons might have an age between 7 and 200 years. While we do not conclude from our data that eroded soil organic carbon is generally degraded during detachment and transport, we propose this method to gain more information on process dynamics during soil erosion from oxic upland to anoxic wetland soils, sediments or water bodies.

  16. Chemistry, mineralogy and origin of the clay-hill nitrate deposits, Amargosa River valley, Death Valley region, California, U.S.A. (United States)

    Ericksen, G.E.; Hosterman, J.W.; St., Amand


    The clay-hill nitrate deposits of the Amargosa River valley, California, are caliche-type accumulations of water-soluble saline minerals in clay-rich soils on saline lake beds of Miocene, Pliocene(?) and Pleistocene age. The soils have a maximum thickness of ??? 50 cm, and commonly consist of three layers: (1) an upper 5-10 cm of saline-free soil; (2) an underlying 15-20 cm of rubbly saline soil; and (3) a hard nitrate-rich caliche, 10-20 cm thick, at the bottom of the soil profile. The saline constituents, which make up as much as 50% of the caliche, are chiefly Cl-, NO-3, SO2-4 and Na+. In addition are minor amounts of K+, Mg2+ and Ca2+, varying, though generally minor, amounts of B2O3 and CO2-3, and trace amounts of I (probably as IO-3), NO-2, CrO2-4 and Mo (probably as MoO2-4). The water-soluble saline materials have an I/Br ratio of ??? 1, which is much higher than nearly all other saline depostis. The principal saline minerals of the caliche are halite (NaCl), nitratite (NaNO3), darapskite (Na3(SO4)(NO3)??H2O), glauberite (Na2Ca(SO4)2), gypsum (CaSO4??2H2O) and anhydrite (CaSO4). Borax (Na2B4O5(OH)4??8H2O), tincalconite (Na2B4O5(OH)4??3H2O) and trona (Na3(CO3)(HCO3)??2H2O) are abundant locally. The clay-hill nitrate deposits are analogous to the well-known Chilean nitrate deposits, and probably are of similar origin. Whereas the Chilean deposits are in permeable soils of the nearly rainless Atacama Desert, the clay-hill deposits are in relatively impervious clay-rich soils that inhibited leaching by rain water. The annual rainfall in the Death Valley region of ??? 5 cm is sufficient to leach water-soluble minerals from the more permeable soils. The clay-hill deposits contain saline materials from the lake beds beneath the nitrate deposits are well as wind-transported materials from nearby clay-hill soils, playas and salt marshes. The nitrate is probably of organic origin, consisting of atmospheric nitrogen fixed as protein by photoautotrophic blue-green algae

  17. Large-Scale Land Development, Fugitive Dust, and Increased Coccidioidomycosis Incidence in the Antelope Valley of California, 1999-2014. (United States)

    Colson, Aaron J; Vredenburgh, Larry; Guevara, Ramon E; Rangel, Natalia P; Kloock, Carl T; Lauer, Antje


    Ongoing large-scale land development for renewable energy projects in the Antelope Valley, located in the Western Mojave Desert, has been blamed for increased fugitive dust emissions and coccidioidomycosis incidence among the general public in recent years. Soil samples were collected at six sites that were destined for solar farm construction and were analyzed for the presence of the soil-borne fungal pathogen Coccidioides immitis which is endemic to many areas of central and southern California. We used a modified culture-independent nested PCR approach to identify the pathogen in all soil samples and also compared the sampling sites in regard to soil physical and chemical parameters, degree of disturbance, and vegetation. Our results indicated the presence of C. immitis at four of the six sites, predominantly in non-disturbed soils of the Pond-Oban complex, which are characterized by an elevated pH and salt bush communities, but also in grassland characterized by different soil parameters and covered with native and non-native annuals. Overall, we were able to detect the pathogen in 40% of the soil samples (n = 42). Incidence of coccidioidomycosis in the Antelope Valley was positively correlated with land use and particulate matter in the air (PM10) (Pearson correlation coefficient >0.5). With the predicted population growth and ongoing large-scale disturbance of soil in the Antelope Valley in coming years, incidence of coccidioidomycosis will likely further increase if policy makers and land developers continue to ignore the risk of grading land without implementing long-term dust mitigation plans in Environmental Impact Reports.

  18. Conventional tillage vs. organic farming in relation to soil organic carbon stock in olive groves in Mediterranean rangelands (Southern Spain

    Directory of Open Access Journals (Sweden)

    L. Parras-Alcántara


    Full Text Available Soil organic carbon (SOC concentration is a soil variable subject to changes. In agricultural soils, the management system is a key factor that influence to these changes. For determine the management system effects on SOC stocks (SOC-S in olive groves, 114 soil profiles were studied in the Los Pedroches Valley (Mediterranean rangelands – southern Spain for long-term (20 yr. The management practices were conventional tillage (CT and organic farming (OF in four soil types: Cambisols (CM, Regosols (RG, Luvisols (LV and Leptosols (LP. Soil properties were statistically analyzed by management techniques, soil types and horizons. The principal components analyses identified four factors that explained 65% of the variance. Also, significant differences (p p 2 in all studied soils. These results indicate high soils quality, and that management practices affect to SOC store in the Los Pedroches Valley.

  19. Soils - NRCS Web Soil Survey (United States)

    NSGIC GIS Inventory (aka Ramona) — Web Soil Survey (WSS) provides soil data and information produced by the National Cooperative Soil Survey. It is operated by the USDA Natural Resources Conservation...

  20. Geomorphological characteristics of increased landslide activity in the Gudbrandsdalen valley, Norway (United States)

    Heyerdahl, Håkon; Høydal, Øyvind


    The Gudbrandsdalen valley in Eastern Norway lies in a region where annual precipitation is generally low (down to 300 mm/year). The landslide activity has consequently historically been low, although the lower part of the valley sides generally is draped with thick layers of Quaternary deposits, primarily of glacial or glaciofluvial origin. The perception of natural hazards in the valley was previously primarily connected to flooding in the main river in the valley bottom during early summer, due to large discharges resulting from snowmelt in the mountainous regions west and east of the valley. However, several high-intensity events have changed the image of the region. Starting with a localized, but intense, landslide event in the Northern part of the valley in year 2008, two larger events covering almost the entire valley occurred in the years 2011 and 2013. A high number of landslides was triggered in all these events, including many flash floods and debris flows/debris slides in small and steep tributary rivers along the valley slopes. Landslide triggering covers different release mechanisms: In 2008, landslides were triggered without precipitation in not-frozen soil deposits without snow cover in the lower part of the valley. Groundwater flow through the permeable bedrock ("Otta schist") resulting from snow-melt in the elevated mountainous areas caused landslide triggering due to positive pore-water pressures forming at the bedrock surface below soil deposits, or at depressions in the terrain. Subsequent rainfall resulted in even more landslides being released. In later events (years 2011 and 2013) many landslides were caused by surface water taking new paths downslope, often due to man-made changes in existing waterways (typically poorly planned drainage solutions or new roads). Relatively small discharges in slopes with unconsolidated and easily erodible glacial deposits (typically lateral moraine) in many cases lead to small initial slides that down

  1. Quantitative-qualitative structures of the soil fungi communities in three profiles of peat-muck soils

    Directory of Open Access Journals (Sweden)

    Zofia Tyszkiewicz


    Full Text Available The mycological investigations were performed on three soil profiles, which represent the slightly, moderately and strongly mucked peat-muck soils located in the Biebrza Valley. The aim of the study was the comparison of quantitative-qualitative structures of the fungi communities in the chosen peat-muck soils. The results indicate that soil fungi communities from compared soils reveal only small degree of similarity. The variety in quantitative and in qualitative structure increase with increasing mucking of organic deposits. These results may suggest that decreasing moisture of habitat stimulates the development of soil fungi. The most numerous soil fungi communities were observed in the turf layer and subturf layer of all soils.

  2. Christmas Valley Renewable Energy Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Del Mar, Robert [Oregon Department of Energy, Salem, OR (United States)


    In partnership with the Oregon Military Department, the Department of Energy used the award to assess and evaluate renewable resources in a 2,622-acre location in Lake County, central Oregon, leading to future development of up to 200 MW of solar electricity. In partnership with the Oregon Military Department, the Department of Energy used the award to assess and evaluate renewable resources in a 2,622-acre location in Lake County, central Oregon, leading to future development of up to 200 MW of solar electricity. The Oregon Military Department (Military) acquired a large parcel of land located in south central Oregon. The land was previously owned by the US Air Force and developed for an Over-the-Horizon Backscatter Radar Transmitter Facility, located about 10 miles east of the town of Christmas Valley. The Military is investigating a number of uses for the site, including Research and Development (R&D) laboratory, emergency response, military operations, developing renewable energy and related educational programs. One of the key potential uses would be for a large scale solar photovoltaic power plant. This is an attractive use because the site has excellent solar exposure; an existing strong electrical interconnection to the power grid; and a secure location at a moderate cost per acre. The project objectives include: 1. Site evaluation 2. Research and Development (R&D) facility analysis 3. Utility interconnection studies and agreements 4. Additional on-site renewable energy resources analysis 5. Community education, outreach and mitigation 6. Renewable energy and emergency readiness training program for veterans

  3. Valley polarization in Si(100) at zero magnetic field. (United States)

    Takashina, K; Ono, Y; Fujiwara, A; Takahashi, Y; Hirayama, Y


    The valley splitting, which lifts the degeneracy of the lowest two valley states in a SiO(2)/Si(100)/SiO(2) quantum well, is examined through transport measurements. We demonstrate that the valley splitting can be observed directly as a step in the conductance defining a boundary between valley-unpolarized and -polarized regions. This persists to well above liquid helium temperature and shows no dependence on magnetic field, indicating that single-particle valley splitting and valley polarization exist in (100) silicon even at zero magnetic field.

  4. Graphene Nanobubbles as Valley Filters and Beam Splitters

    DEFF Research Database (Denmark)

    Settnes, Mikkel; Power, Stephen; Brandbyge, Mads


    The energy band structure of graphene has two inequivalent valleys at the K and K' points of the Brillouin zone. The possibility to manipulate this valley degree of freedom defines the field of valleytronics, the valley analogue of spintronics. A key requirement for valleytronic devices is the ab......The energy band structure of graphene has two inequivalent valleys at the K and K' points of the Brillouin zone. The possibility to manipulate this valley degree of freedom defines the field of valleytronics, the valley analogue of spintronics. A key requirement for valleytronic devices...

  5. Soil color - a window for public and educators to understands soils (United States)

    Libohova, Zamir; Beaudette, Dylan; Wills, Skye; Monger, Curtis; Lindbo, David


    Soil color is one of the most visually striking properties recorded by soil scientists around the world. Soil color is an important characteristic related to soil properties such organic matter, parent materials, drainage. It is a simplified way for the public and educators alike to understand soils and their functions. Soil color is a quick measurement that can be recorded by people using color charts or digital cameras, offering an opportunity for the citizen science projects to contribute to soil science. The US Soil Survey has recorded soil colors using Munsell color system for over 20,000 soil types representing a wide range of conditions throughout the Unites States. The objective of this research was to generate a US soil color map based on color descriptions from the Official Series Descriptions (OSDs). A color calculator developed in R and ArcMap were used to spatially display the soil colors. Soil colors showed vertical trends related to soil depth and horizontal trends related to parent material and climate. Soil colors represent development processes depending upon environment and time that have influenced their appearance and geographic distribution. Dark colors represent soils that are rich in organic matter, such as the soils of the Midwest USA, which are some of the most fertile soils in the world. These soils are relatively "young" in that they developed over the last 20,000 years in materials left behind after continental Glaciers retreated and reflect long- term prairie vegetation that dominated this area prior to European settlements. Dark soils of the Pacific Northwest reflect the influence of forests (and volcanic activity) but are shallower and less fertile than the deep dark Midwest soils. Soils of the eastern and southern Coastal Plains are older and are enriched with iron oxides ('rust') which gives them their red coloring. Soils of flood plains, like the broad Mississippi Valley, have multi-colored soils that reflect the process of

  6. Soil friability

    DEFF Research Database (Denmark)

    Munkholm, Lars Juhl


    has been found but it is not possible to identify a specific lower critical level of organic matter across soil types. Sustainable management of soil requires continuous and adequate inputs of organic matter to sustain or improve soil friability. Intensive tillage and traffic in unfavorable conditions...... for optimal friability. There is a strong need to get more detailed knowledge about effects of soil water content on soil friability and especially to be able to quantify the least limiting water range for soil friability and therefore soil tillage. A strong relationship between organic matter and friability...

  7. Performance of carrot genotypes at two Jequitinhonha Valley sites

    Directory of Open Access Journals (Sweden)

    Gustavo Antônio Mendes Pereira


    Full Text Available The successful commercial use of carrot depends on the choice of cultivars that are well-adapted to soil and climate conditions at the cultivation site and on good consumer acceptance. The objective of this study was to evaluate the performance of carrot cultivars grown in autumn-winter in two towns with different climatic characteristics, in the High Jequitinhonha Valley, MG, Brazil. The experiments were conducted on the Rio Manso farm, in the town of Couto de Magalhães de Minas and on Campus JK at UFVJM, in the town of Diamantina, Minas Gerais, Brazil. Six carrot cultivars (Brasília, Nantes, Kuronan, Esplanada, Planalto and Tornado were evaluated using a randomized complete block design with three replicates. The following morpho-agronomic characteristics were evaluated 100 days after sowing: shoot height, root length, root dry matter, total dry matter, harvest index, commercial yield and total yield root. The most suitable cultivars in Diamantina were Planalto, Tornado and Kuronan, and the cultivatar Planalto was the best suited to Couto de Magalhães de Minas. The agronomic performance of the cultivars was higher in Couto de Magalhães de Minas for the majority of the study variables, resulting in a higher total yield and commercial root yield. The climatic and soil conditions of Diamantina induced flowering in most cultivars, causing a loss to the commercial yield in autumn-winter cultivation.

  8. Controllable valley splitting in silicon quantum devices (United States)

    Goswami, Srijit; Slinker, K. A.; Friesen, Mark; McGuire, L. M.; Truitt, J. L.; Tahan, Charles; Klein, L. J.; Chu, J. O.; Mooney, P. M.; van der Weide, D. W.; Joynt, Robert; Coppersmith, S. N.; Eriksson, Mark A.


    Silicon has many attractive properties for quantum computing, and the quantum-dot architecture is appealing because of its controllability and scalability. However, the multiple valleys in the silicon conduction band are potentially a serious source of decoherence for spin-based quantum-dot qubits. Only when a large energy splits these valleys do we obtain well-defined and long-lived spin states appropriate for quantum computing. Here, we show that the small valley splittings observed in previous experiments on Si-SiGe heterostructures result from atomic steps at the quantum-well interface. Lateral confinement in a quantum point contact limits the electron wavefunctions to several steps, and enhances the valley splitting substantially, up to 1.5meV. The combination of electrostatic and magnetic confinement produces a valley splitting larger than the spin splitting, which is controllable over a wide range. These results improve the outlook for realizing spin qubits with long coherence times in silicon-based devices.

  9. Cleanup and valuation of waters of the aquifer of M’zab Valley (Algeria

    Directory of Open Access Journals (Sweden)

    Ouled Belkhir Cheikh


    Full Text Available The M’zab valley is a hyper arid region of average rainfall not exceeding 100 mm per year. However, the rare floods that occur in M’zab River drain large volumes of surface water. Thanks to the genius of the local population, traditional dams were made for artificial recharge of groundwater. Grace of traditional wells drilled in the valley, farmers irrigate their palm groves and gardens. However, since more than half a century, the contribution of deep drilling for the exploitation of the aquifer of the Continental Intercalary posed environmental problems. On the basis of investigations and surveys of the local population during the years 2010, 2011, 2012 and 2013, it appears that these modern techniques in water catchment caused harmful consequences to the region like the rising of water consumption, pollution of groundwater and soil salinity. Solutions and recommendations are outlined in this article.

  10. Solos da bacia de Taubaté (Vale do Paraíba: levantamento de reconhecimento. Séries monotípicas, suas propriedades genético-morfológicas, físicas e químicas Soils of Taubaté basin (Paraíba Valley

    Directory of Open Access Journals (Sweden)

    F. C. Verdade


    deposited during the terciary period, and the present configuration is set-up by the Paraíba river and its tributaries. The flood plain occupies large areas of economical significance for the State of São Paulo. This work may be classified as a reconnaissance soil survey, whose main objetives were to determine the physical and chemical soil characteristics, the area occupied by soil units in such a way that it would be usefull for a general drainage and irrigation program of the basin. At same time the identification of soil types (as monotype-series was done looking to a detailed soil survey which is in development. The unit identified in the field was a mono-type-series but for mapping they were grouped into series associations, whose boundaries were plotted in maps on the scale 1:100,000. The series association includes soils belonging to the same great soil group, same geological formation, and same distribution of textural classes in the profile. Some soils because of small occurrence and relative intricacy of soil pattern, did not follow the last criterion. The area studied by this survey is about 222,980 hectares, including the flood-plain, tlie terciary sediments and small strip of the pre-Cambriam formation. Data are presented for identification of the units on the ground (48 soil types or mono-type series, and the chemical and physics craracteristics for 151 profiles. The soil types were grouped into 18 series associations. The series association A groups soil belonging to the sub-order Latosol, with clay texture in profile, derived from the terciary sediments. They have dense A horizon and friable B, and they include 11 soil types. The series association B is classified as red-yellow podzolic soil, with origin in Terciary sediments, having nonclay texture in the A horizon and clay one in the B. Three soil types were identified. The series association C. with the same origin and texture distribution in the profile as the B are characteristic Latosol. It also has

  11. Terrestrial Cosmogenic-Nuclide Dating of Alluvial Fans in Death Valley, California (United States)

    Machette, Michael N.; Slate, Janet L.; Phillips, Fred M.


    We have used terrestrial cosmogenic nuclides (TCN) to establish the age of some of the most extensive Quaternary alluvial fans in Death Valley, California. These intermediate-age alluvial fans are most extensive on the western side of the valley, where tectonic deformation is considerably less pronounced than on the eastern side of the valley. These fans are characterized by a relatively smooth, densely packed desert pavement formed by well-varnished (blackened) clasts. These surfaces have been mapped as the Q2 gravel by previous workers and as unit Qai (intermediate age) by us. However, the intermediate-age gravels probably contain multiple subunits, as evidenced by slight differences in morphologic expression, soil formation, and inset geomorphic relations. The TCN technique used herein sums the cosmogenic 36Cl in approximately 2.5-meter-deep profiles through soil and host alluvium, thus avoiding some of the problems associated with the more typical surface-exposure dating of boulders or smaller clasts. Our TCN 36Cl dating of 12 depth profiles indicates that these intermediate-age (Qai) alluvial fans range from about 100 to 40 kilo-annum (ka), with a mean age of about 70 ka. An alternative interpretation is that alluvial unit Qai was deposited in two discrete episodes from 90 to 80 ka and from 60 to 50 ka, before and after MIS (marine oxygen-isotope stage) 4 (respectively). Without an intermediate-age unit, such as MIS 4 lake deposits, we can neither disprove nor prove that Qai was deposited in two discrete intervals or over a longer range of time. Thus, in Death Valley, alluvial unit Qai largely brackets MIS 4, which is not associated with a deep phase of Lake Manly. These Qai fans extend to elevations of about -46 meters (150 feet below sea level) and have not been transgressed by Lake Manly, suggesting that MIS 4 or MIS 2 lakes were rather shallow in Death Valley, perhaps because they lacked inflow from surface runoff of the Sierra Nevada drainages through

  12. Castro Valley High School's Solar Panels (United States)

    Lew, A.; Ham, S.; Shin, Y.; Yang, W.; Lam, J.


    Solar panels are photovoltaic cells that are designed to convert the sun's kinetic energy to generate usable energy in the form of electricity. Castro Valley High School has tried to offset the cost of electricity by installing solar panels, costing the district approximately 3.29 million dollars, but have been installed incorrectly and are not operating at peak efficency. By using trigonometry we deduced that Castro Valley High School's south facing solar panels were at an incline of 10o and that the east and west facing solar panels are at an incline of 5o. By taking the averages of the optimum angles for the months of September through May, roughly when school is in session, we found that the optimum angle for south facing solar panels should be roughly 46o. This shows that Castro Valley High School has not used it's budget to its full potential due to the fact that the solar panels were haphazardly installed.

  13. Stably Stratified Flow in a Shallow Valley (United States)

    Mahrt, L.


    Stratified nocturnal flow above and within a small valley of approximately 12-m depth and a few hundred metres width is examined as a case study, based on a network of 20 sonic anemometers and a central 20-m tower with eight levels of sonic anemometers. Several regimes of stratified flow over gentle topography are conceptually defined for organizing the data analysis and comparing with the existing literature. In our case study, a marginal cold pool forms within the shallow valley in the early evening but yields to larger ambient wind speeds after a few hours, corresponding to stratified terrain-following flow where the flow outside the valley descends to the valley floor. The terrain-following flow lasts about 10 h and then undergoes transition to an intermittent marginal cold pool towards the end of the night when the larger-scale flow collapses. During this 10-h period, the stratified terrain-following flow is characterized by a three-layer structure, consisting of a thin surface boundary layer of a few metres depth on the valley floor, a deeper boundary layer corresponding to the larger-scale flow, and an intermediate transition layer with significant wind-directional shear and possible advection of lee turbulence that is generated even for the gentle topography of our study. The flow in the valley is often modulated by oscillations with a typical period of 10 min. Cold events with smaller turbulent intensity and duration of tens of minutes move through the observational domain throughout the terrain-following period. One of these events is examined in detail.

  14. Restoring Hetch Hetchy Valley: The Role of Modeling in Policy (United States)

    Null, Sarah E.; Lund, Jay R.


    In 1923, following years of opposition and debate, the City of San Francisco, Calif., completed the O'Shaughnessy Dam, which flooded Hetch Hetchy Valley in California's Yosemite National Park. Today, the future of Hetch Hetchy Valley is still debated.

  15. Evapotranspiration Input Data for the Central Valley Hydrologic Model (CVHM) (United States)

    U.S. Geological Survey, Department of the Interior — This digital dataset contains monthly reference evapotranspiration (ETo) data for the Central Valley Hydrologic Model (CVHM). The Central Valley encompasses an...

  16. Measured compaction for 24 extensometers in the Central Valley (United States)

    U.S. Geological Survey, Department of the Interior — This digital dataset contains the compaction data for 24 extensometers used for observations in the Central Valley Hydrologic Model (CVHM). The Central Valley...

  17. Measured compaction for 24 extensometers in the Central Valley (United States)

    U.S. Geological Survey, Department of the Interior — This digital dataset contains the compaction data for 24 extensometers used for observations in the Central Valley Hydrologic Model (CVHM). The Central Valley...

  18. Mechanical control over valley magnetotransport in strained graphene

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Ning, E-mail: [Department of Physics, MOE Key Laboratory of Advanced Transducers and Intelligent Control System, Taiyuan University of Technology, Taiyuan 030024 (China); Department of Applied Physics, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi' an Jiaotong University, Xi' an 710049 (China); Zhang, Shengli, E-mail: [Department of Applied Physics, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi' an Jiaotong University, Xi' an 710049 (China); Liu, Daqing, E-mail: [School of Mathematics and Physics, Changzhou University, Changzhou 213164 (China)


    Recent experiments report that the graphene exhibits Landau levels (LLs) that form in the presence of a uniform strain pseudomagnetic field with magnitudes up to hundreds of tesla. We further reveal that the strain removes the valley degeneracy in LLs, and leads to a significant valley polarization with inversion symmetry broken. This accordingly gives rise to the well separated valley Hall plateaus and Shubnikov–de Haas oscillations. These effects are absent in strainless graphene, and can be used to generate and detect valley polarization by mechanical means, forming the basis for the new paradigm “valleytronics” applications. - Highlights: • We explore the mechanical strain effects on the valley magnetotransport in graphene. • We analytically derive the dc collisional and Hall conductivities under strain. • The strain removes the valley degeneracy in Landau levels. • The strain causes a significant valley polarization with inversion symmetry broken. • The strain leads to the well separated valley Hall and Shubnikov–de Haas effects.

  19. Molecular epidemiology of Rift Valley fever virus. (United States)

    Grobbelaar, Antoinette A; Weyer, Jacqueline; Leman, Patricia A; Kemp, Alan; Paweska, Janusz T; Swanepoel, Robert


    Phylogenetic relationships were examined for 198 Rift Valley fever virus isolates and 5 derived strains obtained from various sources in Saudi Arabia and 16 countries in Africa during a 67-year period (1944-2010). A maximum-likelihood tree prepared with sequence data for a 490-nt section of the Gn glycoprotein gene showed that 95 unique sequences sorted into 15 lineages. A 2010 isolate from a patient in South Africa potentially exposed to co-infection with live animal vaccine and wild virus was a reassortant. The potential influence of large-scale use of live animal vaccine on evolution of Rift Valley fever virus is discussed.

  20. A Comparison of Groundwater Storage Using GRACE Data, Groundwater Levels, and a Hydrological Model in Californias Central Valley (United States)

    Kuss, Amber; Brandt, William; Randall, Joshua; Floyd, Bridget; Bourai, Abdelwahab; Newcomer, Michelle; Skiles, Joseph; Schmidt, Cindy


    The Gravity Recovery and Climate Experiment (GRACE) measures changes in total water storage (TWS) remotely, and may provide additional insight to the use of well-based data in California's agriculturally productive Central Valley region. Under current California law, well owners are not required to report groundwater extraction rates, making estimation of total groundwater extraction difficult. As a result, other groundwater change detection techniques may prove useful. From October 2002 to September 2009, GRACE was used to map changes in TWS for the three hydrological regions (the Sacramento River Basin, the San Joaquin River Basin, and the Tulare Lake Basin) encompassing the Central Valley aquifer. Net groundwater storage changes were calculated from the changes in TWS for each of the three hydrological regions and by incorporating estimates for additional components of the hydrological budget including precipitation, evapotranspiration, soil moisture, snow pack, and surface water storage. The calculated changes in groundwater storage were then compared to simulated values from the California Department of Water Resource's Central Valley Groundwater- Surface Water Simulation Model (C2VSIM) and their Water Data Library (WDL) Geographic Information System (GIS) change in storage tool. The results from the three methods were compared. Downscaling GRACE data into the 21 smaller Central Valley sub-regions included in C2VSIM was also evaluated. This work has the potential to improve California's groundwater resource management and use of existing hydrological models for the Central Valley.

  1. Debris-flow observations in the Zermatt Valley (United States)

    Graf, Christoph


    In the Alps, a multitude of unstable slopes is located at altitudes of ~2700 m asl, where sediment transfers typically happen outside the range of humans or their infrastructure. The situation is slightly different in the Zermatt Valley, a high-elevation, north-south oriented glacial valley in the Swiss Alps, where the detachment of melting permafrost results in rock falls on steep slopes and debris flows in high-gradient gullies through which till is transferred directly to the inhabited valley floor at elevations between 1100 (N) and 1600 m asl (S). As a result of the excellent database on past disasters in the valley, recent developments and measurements in the local rock glacier bodies and current torrential events, I show data from some debris-flow torrents to document impacts of past, ongoing and possible future changes of debris flows originating from periglacial environments. Debris flows are typically initiated by the abrupt input of considerable quantities of water. The water-saturated masses of fragmented rock and soil slump down mountainsides into gullies which in turn mobilize stored sediment in the channels. In addition to triggering by extreme rainstorms, debris flows have also been reported to be released by rapid snowmelt, rain-on-snow storms, or the sudden emptying of glacier water bodies or through the rupture of landslide dams. More frequently, debris flows occur as a result of high-intensity, convective rainstorms of short duration or low-intensity advective precipitation events over several days. Displacement rates and instability of rock glaciers have increased further recently to show movement rates without historical precedents. At Grabengufer (Dorfbach) e.g., increasing air and ice temperatures have favoured the development of annual displacement rates from just a few decimetres in the past decades to 80 m in 2010. Similar behaviour was observed in catchments nearby. As a consequence of the enhanced movement of these permafrost bodies and

  2. Slope and valley flows at the Cerdanya valley in the Pyrenees


    Martínez Villagrasa, Daniel; Conangla Triviño, Laura; Tabarelli, Davidde; Jiménez, Maria Antònia; Miró, Josep Ramon; Zardi, Dino; Cuxart Rodamillans, Joan


    The Pyrenees are a mountain range running in the east-west direction. Most of their valleys are oriented in the north-south direction on both sides of the range. A significant exception is the Cerdanya valley, in Catalonia, which is a graben with NE-SW orientation , roughly 35 km long and 15 km wide with the bottom about 1000 m asl, surrounded by the main axis of the Pyrenees at the north (peaks above 2900 m asl) and by the Cadi range at the south (maximum high 2648 m asl). The valley bottom ...

  3. Soil properties, soil functions and soil security (United States)

    Poggio, Laura; Gimona, Alessandro


    Soil plays a crucial role in the ecosystem functioning such as food production, capture and storage of water, carbon and nutrients and in the realisation of a number of UN Sustainable Developments Goals. In this work we present an approach to spatially and jointly assess the multiple contributions of soil to the delivery of ecosystem services within multiple land-use system. We focussed on the modelling of the impact of soil on sediment retention, carbon storage, storing and filtering of nutrients, habitat for soil organisms and water regulation, taking into account examples of land use and climate scenarios. Simplified models were used for the single components. Spatialised Bayesian Belief networks were used for the jointly assessment and mapping of soil contribution to multiple land use and ecosystem services. We integrated continuous 3D soil information derived from digital soil mapping approaches covering the whole of mainland Scotland, excluding the Northern Islands. Uncertainty was accounted for and propagated across the whole process. The Scottish test case highlights the differences in roles between mineral and organic soils and provides an example of integrated study assessing the contributions of soil. The results show the importance of the multi-functional analysis of the contribution of soils to the ecosystem service delivery and UN SDGs.

  4. Modeling of Groundwater Quantity and Quality Management, Nile Valley, Egypt (United States)

    Owlia, R.; Fogg, G. E.


    Groundwater levels have been rising in the Luxor area of Egypt due to increased agricultural irrigation following the construction of the Aswan High Dam (AHD) in 1970. This has led to soil and groundwater salinity problems caused by increasing evapotranspiration from shallower water table, as well as the degradation of historical monuments whose foundations are weakening by capillary rise of water into the columns and stonework. While similar salinity problems exist elsewhere in the world (e.g., San Joaquin Valley of California), we hypothesize that as long as groundwater discharge to the Nile River continues and serves as a sink for the salt, the regional salt balance will be manageable and will not lead to irreversible salinization of soils. Further, we hypothesize that if a groundwater system such as this one becomes overdrafted, thereby cutting off groundwater discharge to the River, the system salt balance will be less manageable and possibly non-sustainable. With groundwater flow modeling we are investigating approaches for managing the irrigation and groundwater levels so as to eliminate water stresses on Egyptian monuments and antiquities. Consequences of possible actions for managing the water table through groundwater pumping and alternative irrigation practices will be presented. Moreover, through the use of high resolution modeling of system heterogeneity, we will simulate the long term salt balance of the system under various scenarios, including the overdraft case. The salt source will be a function of groundwater discharge to the surface via bare-soil evaporation and crop transpiration. The built-in heterogeneity will account for dispersion, fast transport in connected media and slow mass transfer between aquifer and aquitard materials. Key Words: Groundwater, modeling, water quality, sustainability, salinity, irrigated agriculture, Nile aquifer.

  5. A process model for simulating net primary productivity (NPP) based on the interaction of water-heat process and nitrogen: a case study in Lantsang valley

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hai-long; LIU Gao-huan; FENG Xian-feng


    Terrestrial carbon cycle and the global atmospheric CO2 budget are important foci in global climate change research. Simulating net primary productivity (NPP) of terrestrial ecosystems is important for carbon cycle research. In this study, a plant-atmosphere-soil continuum nitrogen (N) cycling model was developed and incorporated into the Boreal Ecosystem Productivity Simulator (BEPS) model. With the established database (leaf area index, land cover, daily meteorology data,vegetation and soil) at a 1 km resolution, daily maps of NPP for Lantsang valley in 2007 were produced, and the spatial-temporal patterns of NPP and mechanisms of its responses to soil N level were further explored.The total NPP and mean NPP of Lantsang valley in 2007 were 66.5 Tg C and 416 g·m-2·a-1 C, respectively. In addition, statistical analysis of NPP of different land cover types was conducted and investigated. Compared with BEPS model (without considering nitrogen effect), it was inferred that the plant carbon fixing for the upstream of Lantsang valley was also limited by soil available nitrogen besides temperature and precipitation.However, nitrogen has no evident limitation to NPP accumulation of broadleaf forest, which mainly distributed in the downstream of Lantsang valley.

  6. Landforms and soils in eastern Surinam (South America)

    NARCIS (Netherlands)

    Boer, de M.W.H.


    Quaternary geogenesis in eastern Surinam was studied by field methods and sedimentary-petrographic research. The development of the river valleys was explained in terms of changes in sea level, tectonic movements and changes in climate. A preliminary stratigraphy was established.Eight soil profiles

  7. 27 CFR 9.124 - Wild Horse Valley. (United States)


    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Wild Horse Valley. 9.124... Horse Valley. (a) Name. The name of the viticultural area described in this section is “Wild Horse Valley.” (b) Approved Map. The appropriate map for determining the boundaries of the “Wild Horse...

  8. 27 CFR 9.126 - Santa Clara Valley. (United States)


    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Santa Clara Valley. 9.126... Santa Clara Valley. (a) Name. The name of the viticultural area described in this section is “Santa Clara Valley.” (b) Approved Maps. The appropriate maps for determining the boundaries of the...

  9. Wetland survey of the X-10 Bethel Valley and Melton Valley groundwater operable units at Oak Ridge National Labortory Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Rosensteel, B.A.


    Executive Order 11990, Protection of Wetlands, (May 24, 1977) requires that federal agencies avoid, to the extent possible, adverse impacts associated with the destruction and modification of wetlands and that they avoid direct and indirect support of wetlands development when there is a practicable alternative. In accordance with Department of Energy (DOE) Regulations for Compliance with Floodplains and Wetlands Environmental Review Requirements (Subpart B, 10 CFR 1022.11), surveys for wetland presence or absence were conducted in both the Melton Valley and the Bethel Valley Groundwater Operable Units (GWOU) on the DOE Oak Ridge Reservation (ORR) from October 1994 through September 1995. As required by the Energy and Water Development Appropriations Act of 1992, wetlands were identified using the criteria and methods set forth in the Wetlands Delineation Manual (Army Corps of Engineers, 1987). Wetlands were identified during field surveys that examined and documented vegetation, soils, and hydrologic evidence. Most of the wetland boundary locations and wetland sizes are approximate. Boundaries of wetlands in Waste Area Grouping (WAG) 2 and on the former proposed site of the Advanced Neutron Source in the upper Melton Branch watershed were located by civil survey during previous wetland surveys; thus, the boundary locations and areal sizes in these areas are accurate. The wetlands were classified according to the system developed by Cowardin et al. (1979) for wetland and deepwater habitats of the United States. A total of 215 individual wetland areas ranging in size from 0.002 ha to 9.97 ha were identified in the Bethel Valley and Melton Valley GWOUs. The wetlands are classified as palustrine forested broad-leaved deciduous (PFO1), palustrine scrub-shrub broad-leaved deciduous (PSS1), and palustrine persistent emergent (PEM1).

  10. Assessing Rainfall Erosivity with Artificial Neural Networks for the Ribeira Valley, Brazil

    Directory of Open Access Journals (Sweden)

    Reginald B. Silva


    Full Text Available Soil loss is one of the main causes of pauperization and alteration of agricultural soil properties. Various empirical models (e.g., USLE are used to predict soil losses from climate variables which in general have to be derived from spatial interpolation of point measurements. Alternatively, Artificial Neural Networks may be used as a powerful option to obtain site-specific climate data from independent factors. This study aimed to develop an artificial neural network to estimate rainfall erosivity in the Ribeira Valley and Coastal region of the State of São Paulo. In the development of the Artificial Neural Networks the input variables were latitude, longitude, and annual rainfall and a mathematical equation of the activation function for use in the study area as the output variable. It was found among other things that the Artificial Neural Networks can be used in the interpolation of rainfall erosivity values for the Ribeira Valley and Coastal region of the State of São Paulo to a satisfactory degree of precision in the estimation of erosion. The equation performance has been demonstrated by comparison with the mathematical equation of the activation function adjusted to the specific conditions of the study area.

  11. Baseline risk assessment of ground water contamination at the Monument Valley uranium mill tailings site Cane Valley, Arizona

    Energy Technology Data Exchange (ETDEWEB)



    The U.S. Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (Phase I) and the Ground Water Project (Phase II). Under the UMTRA Surface Project, tailings, radioactive contaminated soil, equipment, and materials associated with the former uranium ore processing at UMTRA Project sites are placed into disposal cells. The cells are designed to reduce radon and other radiation emissions and to minimize further contamination of ground water. Surface cleanup at the Monument Valley UMTRA Project site near Cane Valley, Arizona, was completed in 1994. The Ground Water Project evaluates the nature and extent of ground water contamination that resulted from the uranium ore processing activities. The Ground Water Project is in its beginning stages. Human health may be at risk from exposure to ground water contaminated by uranium ore processing. Exposure could occur by drinking water pumped out of a hypothetical well drilled in the contaminated areas. Adverse ecological and agricultural effects may also result from exposure to contaminated ground water. For example, livestock should not be watered with contaminated ground water. A risk assessment describes a source of contamination, how that contamination reaches people and the environment, the amount of contamination to which people or the ecological environment may be exposed, and the health or ecological effects that could result from that exposure. This risk assessment is a site-specific document that will be used to evaluate current and potential future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site investigations will be used to determine a compliance strategy to comply with the UMTRA ground water standards.

  12. Irrigation channels of the Upper Rhone valley (Switzerland). Geomorphological analysis of a cultural heritage (United States)

    Reynard, Emmanuel


    are accentuated by high insulation and evaporation. Finally, foehn events are quite common. In a climatic point of view, the area can be divided in three main zones: (1) Upstream of Brig, the climate is characterised by cold and wet conditions, and irrigation is not necessary; (2) between Brig and Martigny, the rain shadow effect is responsible of irrigation needs in the lower altitudes, whereas at high altitudes rainfall is sufficient for plant growing without irrigation; (3) downstream of Martigny, the climate is wetter and irrigation is not necessary. In a palaeoclimatic point of view, the Rhone River catchment was characterised by numerous glaciations during the Quaternary. Quaternary glaciers have shaped the valleys (U-shaped valleys, hanged valleys) and the postglacial hydrographical network had to adapt to the glacial valleys (presence of numerous waterfalls, hanged valleys, postglacial gorges, alluvial fans). By crossing climatic and structural contexts, three groups of geomorphological contexts of irrigation channels can be highlighted: (1) In the tributary valleys situated South of the Rhone valley (Penninic Alps) the irrigation channels are simply dug in the valley slopes; several of them are affected by landslides typical of metamorphic rocks of Penninic Alps; (2) In the short tributary valleys of the crystalline Aar Massif - in the valleys North to the city of Visp -, the geomorphological context is characterised by steep slopes both in the tributary valleys and in the south-facing slopes dominating the Rhone River valley. In this area, water channels are cut into the rocks and in some parts they are built in wood pipes hanged along the rock walls; (3) In the tributary valleys of the Helvetic domain - North of the Rhone River between Leuk and Sion - the geological context highly influences the building techniques: due to geological dipping towards Southeast, the tributary valley are dissymmetric: in the dip slopes channels are simply cut in the soil

  13. Diagnostic approaches for Rift Valley Fever (United States)

    Disease outbreaks caused by arthropod-borne animal viruses (arboviruses) resulting in significant livestock and economic losses world-wide appear to be increasing. Rift Valley fever (RVF) virus (RVFV) is an important arbovirus that causes lethal disease in cattle, camels, sheep and goats in Sub-Saha...

  14. Unexpected Rift Valley fever outbreak, northern Mauritania. (United States)

    El Mamy, Ahmed B O; Baba, Mohamed Ould; Barry, Yahya; Isselmou, Katia; Dia, Mamadou L; El Kory, Mohamed O B; Diop, Mariam; Lo, Modou Moustapha; Thiongane, Yaya; Bengoumi, Mohammed; Puech, Lilian; Plee, Ludovic; Claes, Filip; de La Rocque, Stephane; Doumbia, Baba


    During September-October 2010, an unprecedented outbreak of Rift Valley fever was reported in the northern Sahelian region of Mauritania after exceptionally heavy rainfall. Camels probably played a central role in the local amplification of the virus. We describe the main clinical signs (hemorrhagic fever, icterus, and nervous symptoms) observed during the outbreak.

  15. Reemergence of Rift Valley fever, Mauritania, 2010. (United States)

    Faye, Ousmane; Ba, Hampathé; Ba, Yamar; Freire, Caio C M; Faye, Oumar; Ndiaye, Oumar; Elgady, Isselmou O; Zanotto, Paolo M A; Diallo, Mawlouth; Sall, Amadou A


    A Rift Valley fever (RVF) outbreak in humans and animals occurred in Mauritania in 2010. Thirty cases of RVF in humans and 3 deaths were identified. RVFV isolates were recovered from humans, camels, sheep, goats, and Culex antennatus mosquitoes. Phylogenetic analysis of isolates indicated a virus origin from western Africa.

  16. Pumpernickel Valley Geothermal Project Thermal Gradient Wells

    Energy Technology Data Exchange (ETDEWEB)

    Z. Adam Szybinski


    The Pumpernickel Valley geothermal project area is located near the eastern edge of the Sonoma Range and is positioned within the structurally complex Winnemucca fold and thrust belt of north-central Nevada. A series of approximately north-northeast-striking faults related to the Basin and Range tectonics are superimposed on the earlier structures within the project area, and are responsible for the final overall geometry and distribution of the pre-existing structural features on the property. Two of these faults, the Pumpernickel Valley fault and Edna Mountain fault, are range-bounding and display numerous characteristics typical of strike-slip fault systems. These characteristics, when combined with geophysical data from Shore (2005), indicate the presence of a pull-apart basin, formed within the releasing bend of the Pumpernickel Valley – Edna Mountain fault system. A substantial body of evidence exists, in the form of available geothermal, geological and geophysical information, to suggest that the property and the pull-apart basin host a structurally controlled, extensive geothermal field. The most evident manifestations of the geothermal activity in the valley are two areas with hot springs, seepages, and wet ground/vegetation anomalies near the Pumpernickel Valley fault, which indicate that the fault focuses the fluid up-flow. There has not been any geothermal production from the Pumpernickel Valley area, but it was the focus of a limited exploration effort by Magma Power Company. In 1974, the company drilled one exploration/temperature gradient borehole east of the Pumpernickel Valley fault and recorded a thermal gradient of 160oC/km. The 1982 temperature data from five unrelated mineral exploration holes to the north of the Magma well indicated geothermal gradients in a range from 66 to 249oC/km for wells west of the fault, and ~283oC/km in a well next to the fault. In 2005, Nevada Geothermal Power Company drilled four geothermal gradient wells, PVTG-1

  17. Babesiosis in Lower Hudson Valley, New York

    Centers for Disease Control (CDC) Podcasts


    This podcast discusses a study about an increase in babesiosis in the Lower Hudson Valley of New York state. Dr. Julie Joseph, Assistant Professor of Medicine at New York Medical College, shares details of this study.  Created: 5/12/2011 by National Center for Emerging Zoonotic and Infectious Diseases (NCEZID).   Date Released: 5/23/2011.

  18. Groundwater links between Kenyan Rift Valley lakes


    Becht, Robert; Mwango, Fred; Muno, Fred Amstrong


    The series of lakes in the bottom of the Kenyan Rift valley are fed by rivers and springs. Based on the water balance, the relative positions determining the regional groundwater flow systems and the analysis of natural isotopes it can be shown that groundwater flows from lake Naivasha to lake Magadi, Elementeita, Nakuru and Bogoria.

  19. Rift Valley fever: A neglected zoonotic disease? (United States)

    Rift Valley fever (RVF) is a serious viral disease of animals and humans in Africa and the Middle East that is transmitted by mosquitoes. First isolated in Kenya during an outbreak in 1930, subsequent outbreaks have had a significant impact on animal and human health, as well as national economies. ...

  20. Substance Abuse in the Rio Grande Valley. (United States)

    Zavaleta, Anthony N.


    In the Mexican American barrios of Texas' Lower Rio Grande Valley, existence is complicated by the interactive forces of culture, society, and economy. These three factors act in unison to create an etiology of alcohol and drug use and abuse which is poorly understood by persons outside the barrio's grasp. (Author/NQ)

  1. Native grasses for rehabilitating Hunter Valley minesites

    Energy Technology Data Exchange (ETDEWEB)

    Huxtable, C. [NSW Department of Land and Water Conservation, NSW (Australia)


    Introduced plant species, particularly grasses, have long been used to rehabilitate mined land in Australia. Interest in using native species spawned a research project in the Hunter Valley which has demonstrated the suitability of certain native species for rehabilitation and put forward guidelines to enhance the chance of their successful establishment. 4 photos., 1 tab.

  2. 76 FR 39261 - Tennessee Valley Authority Procedures (United States)


    ...). ACTION: Final rule. SUMMARY: The Tennessee Valley Authority is amending its regulations which currently.... 1301.63 Senior agency official. 1301.64 Original classification authority. 1301.65 Derivative... authority. Sec. 1301.65 Derivative classification. (a) In accordance with Part 2 of Executive Order...

  3. 27 CFR 9.210 - Lehigh Valley. (United States)


    ... Section 9.210 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT...), Pennsylvania, 1979; (4) Carbon County, Pennsylvania, 1991; (5) Monroe County, Pennsylvania, 1980; (6... Valley viticultural area is located in portions of Lehigh, Northampton, Berks, Schuylkill, Carbon,...

  4. Potential hydrologic characterization wells in Amargosa Valley

    Energy Technology Data Exchange (ETDEWEB)

    Lyles, B.; Mihevc, T.


    More than 500 domestic, agricultural, and monitoring wells were identified in the Amargosa Valley. From this list, 80 wells were identified as potential hydrologic characterization wells, in support of the US Department of Energy (DOE) Underground Test Area/Remedial Investigation and Feasibility Study (UGTA/RIFS). Previous hydrogeologic studies have shown that groundwater flow in the basin is complex and that aquifers may have little lateral continuity. Wells located more than 10 km or so from the Nevada Test Site (NTS) boundary may yield data that are difficult to correlate to sources from the NTS. Also, monitoring well locations should be chosen within the guidelines of a hydrologic conceptual model and monitoring plan. Since these do not exist at this time, recompletion recommendations will be restricted to wells relatively close (approximately 20 km) to the NTS boundary. Recompletion recommendations were made for two abandoned agricultural irrigation wells near the town of Amargosa Valley (previously Lathrop Wells), for two abandoned wildcat oil wells about 10 km southwest of Amargosa Valley, and for Test Well 5 (TW-5), about 10 km east of Amargosa Valley.

  5. Off-grid in the Nemiah Valley

    Energy Technology Data Exchange (ETDEWEB)

    Swingler, Andrew [Xantrex Technology Inc., Vancouver (Canada); Colgate, George [Xeni Gwet' in Enterprise, Nemia Valley, BC (Canada)


    The people of the Xeni Gwet'in First National community of British Columbia's remote Nemiah Valley are pioneers of small off-grid photovoltaic power stations in Canada. Since 2006 the energy-progressive community has been testing two innovative PV-based technology applications. (orig.)

  6. Sign Plan : Minnesota Valley National Wildlife Refuge (United States)

    US Fish and Wildlife Service, Department of the Interior — The Minnesota Valley NWR Sign Plan explains how signs are used on the Refuge to help guide and educate visitors. An inventory of current signs is given as well as a...

  7. Business plan Hatchery Facility Zambezi Valley, Mozambique

    NARCIS (Netherlands)

    Vernooij, A.G.; Wilschut, S.


    This business plan focuses on the establishment of a hatchery, one of the essential elements of a sustainable and profitable poultry meat value chain. There is a growing demand for poultry meat in the Zambezi Valley, and currently a large part of the consumed broilers comes from other parts of the c

  8. Treasure Valley Health Manpower and Education Profile. (United States)

    Callen, John; And Others

    The profile is a concise description of the demographic and economic characteristics, existing health manpower employed, and health education programs for the Treasure Valley area of Idaho, one of seven surveyed in the Mountain States region (Idaho, Montana, Wyoming, and Nevada). The first section of the profile provides general population…

  9. Definition of a mobilizing volume of sediment in a valley interested by volcanic eruption: Rio Blanco valley (Chile) (United States)

    Oss-Cazzador, Daniele; Iroumé, Andrés; Picco, Lorenzo


    Volcanic explosive activity can strongly affect the riverine environments. Deposition of tephra, pyroclastic and hyperconcentrated flows along both the valley bottom and hillslopes can radically change the environmental morphology. Accumulation and transport of pyroclastic material can increase hazards and risks for anthropic activities. The aims of this research are to evaluate and quantify the amount of erodible sediment that can be transported along a gravel bed river affected by a volcanic eruption. The Rio Blanco valley (Chile) was upset by the plinian-type eruption of Chaiten volcano in 2008. The great amount of tephra released in the initial phase and the subsequent pyroclastic flows, accumulated up to 8 m of sediment over a great portion of the Rio Blanco valley. Using aerial photographs was possible to define the extension of vegetated zones affected by the eruption. The area was interested by a high mortality of vegetation, as confirmed by field surveys. Dendrometric measurements permitted to quantify the volume of wood and observe that renewal and herbal layer are almost absent, determining low soil cohesion and easier erosion by superficial and river erosion processes. Analysis of sediment accumulation allowed quantifying the volume of sediment that can be transported downstream. The analyses were carried out considering 7 km-long a reach, from the river mouth to the confluence between Caldera creek and Rio Blanco. After the eruption, was possible to define as a total area of about 2.19 km2 was affected by tephra deposition, the 40% (0,87 km2) was eroded by flows, while 60% (1,32 km2) is still present and composed by tephra, buried large wood (LW) and dead standing trees. Considering an average high of 5 m, the potential erodible sediment is around 6,5 x 106 m3, moreover there is a potential amount of about 7,3 x 104 m3 of LW that can be transported towards mouth. These analyses can be useful to better define the management plan for the river delta. In

  10. Groundwater Quality in Mura Valley (Slovenia) (United States)

    Zajc Benda, T.; Souvent, P.; Bračič Železnik, B.; Čenčur Curk, B.


    Groundwater quality is one of the most important parameters in drinking water supply management. For safe drinking water supply, the quality of groundwater in the water wells on the recharge area has to be controlled. Groundwater quality data will be presented for one test area in the SEE project CC-WaterS (Climate Change and Impacts on Water Supply) Mura valley, which lies in the northeastern part of Slovenia. The Mura valley is a part of the Pannonian basin tectonic unit, which is filled with Tertiary and Quaternary gravel and sand sediments. The porous aquifer is 17 m thick in average and recharges from precipitation (70 %) and from surface waters (30 %). The aquifer is the main source of drinking water in the area for almost 53.000 inhabitants. Most of the aquifer lies beneath the agricultural area what represents the risk of groundwater quality. The major groundwater pollutants in the Mura valley are nitrates, atrazine, desethyl-atrazine, trichloroethane and tetrachloroethene. National groundwater quality monitoring is carried out twice a year, so some polluting events could be missed. The nitrate concentrations in the past were up to 140 mg/l. Concentration trends are decreasing and are now below 60 mg/l. Concentrations of atrazine and desethyl-atrazine, are decreasing as well and are below 0,1 µg/l. Trichloroethene and tetrachloroethene were detected downstream of main city in Mura valley, in the maximum concentrations of 280 μg/l in June 2005 (trichloroethene) and 880 μg/l in October 1997 (tetrachloroethene). So, it can be summarized that the trends for most pollutants in the Mura valley are decreasing, what is a good prediction for the future. Input estimation of the total nitrogen (N) (mineral and organic fertilizers) in the Mura valley shows, that the risk of leaching is enlarged in the areas, where the N input is larger than 250 kg/ha, this is at 6,3 % of all agricultural areas. Prediction for the period 2021-2050 indicates that the leaching of N

  11. Erosion of steepland valleys by debris flows (United States)

    Stock, J.D.; Dietrich, W.E.


    Episodic debris flows scour the rock beds of many steepland valleys. Along recent debris-flow runout paths in the western United States, we have observed evidence for bedrock lowering, primarily by the impact of large particles entrained in debris flows. This evidence may persist to the point at which debris-flow deposition occurs, commonly at slopes of less than ???0.03-0.10. We find that debris-flow-scoured valleys have a topographic signature that is fundamentally different from that predicted by bedrock river-incision models. Much of this difference results from the fact that local valley slope shows a tendency to decrease abruptly downstream of tributaries that contribute throughgoing debris flows. The degree of weathering of valley floor bedrock may also decrease abruptly downstream of such junctions. On the basis of these observations, we hypothesize that valley slope is adjusted to the long-term frequency of debris flows, and that valleys scoured by debris flows should not be modeled using conventional bedrock river-incision laws. We use field observations to justify one possible debris-flow incision model, whose lowering rate is proportional to the integral of solid inertial normal stresses from particle impacts along the flow and the number of upvalley debris-flow sources. The model predicts that increases in incision rate caused by increases in flow event frequency and length (as flows gain material) downvalley are balanced by rate reductions from reduced inertial normal stress at lower slopes, and stronger, less weathered bedrock. These adjustments lead to a spatially uniform lowering rate. Although the proposed expression leads to equilibrium long-profiles with the correct topographic signature, the crudeness with which the debris-flow dynamics are parameterized reveals that we are far from a validated debris-flow incision law. However, the vast extent of steepland valley networks above slopes of ???0.03-0.10 illustrates the need to understand debris

  12. Soil formation.

    NARCIS (Netherlands)

    Breemen, van N.; Buurman, P.


    Soil Formation deals with qualitative and quantitative aspects of soil formation (or pedogenesis) and the underlying chemical, biological, and physical processes. The starting point of the text is the process - and not soil classification. Effects of weathering and new formation of minerals, mobilis

  13. Valley-dependent beam manipulators based on photonic graphene (United States)

    Deng, Fu-Sheng; Sun, Yong; Dong, Li-Juan; Liu, Yan-Hong; Shi, Yun-Long


    Trigonal warping distortion in energy band lifts the degeneracy of two valleys (K and K' points) of graphene. In this situation, electron transport becomes valley dependent, which can be used to design the valley beam splitter, collimator, or guiding device. Here, valley-dependent beam manipulators are designed based on artificial photonic graphene. In this scheme, the finite-size artificial photonic graphene is intentionally designed to realize the novel device functionalities. This kind of valley-dependent beam manipulators can work at an arbitrary range of electromagnetic waves from microwave to visible light. It potentially paves the way for the application of photonic graphene in future integrated photonic devices.

  14. On the possible impact of natural sources of reactive ozone precursors in the valley of Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz-Suarez, L.G.; Martinez, R.; Hernandez, F.


    LANDSAT TM images were used to classify land use in the Valley of Mexico. Forest, grass and farming land areas were used to obtain emission inventories of non-methane biogenic hydrocarbons (NMBHC). These may be equivalent to as much as 10% of total reactive organic compounds (ROC) emissions. However these may be on a one to one ratio with the olefinic fraction of anthropogenic ROCs. Grass and farming areas were used to estimate the possible impact of episodic NO emissions from soil after early rains just prior to the onset of rain season.

  15. Soil metagenomics and tropical soil productivity


    Karen A Garrett


    This presentation summarizes research in the soil metagenomics cross cutting research activity. Soil metagenomics studies soil microbial communities as contributors to soil health.C CCRA-4 (Soil Metagenomics)

  16. Soil microbiology and soil health assessment (United States)

    Soil scientists have long recognized the importance of soil biology in ecological health. In particular, soil microbes are crucial for many soil functions including decomposition, nutrient cycling, synthesis of plant growth regulators, and degradation of synthetic chemicals. Currently, soil biologis...

  17. Soils - Volusia County Soils (Polygons) (United States)

    NSGIC GIS Inventory (aka Ramona) — Soils: 1:24000 SSURGO Map. Polygon boundaries of Soils in Volusia County, downloaded from SJRWMD and created by NRCS and SJRWMD. This data set is a digital version...

  18. Graphene Nanobubbles as Valley Filters and Beam Splitters (United States)

    Settnes, Mikkel; Power, Stephen R.; Brandbyge, Mads; Jauho, Antti-Pekka


    The energy band structure of graphene has two inequivalent valleys at the K and K' points of the Brillouin zone. The possibility to manipulate this valley degree of freedom defines the field of valleytronics, the valley analogue of spintronics. A key requirement for valleytronic devices is the ability to break the valley degeneracy by filtering and spatially splitting valleys to generate valley polarized currents. Here, we suggest a way to obtain valley polarization using strain-induced inhomogeneous pseudomagnetic fields (PMFs) that act oppositely on the two valleys. Notably, the suggested method does not involve external magnetic fields, or magnetic materials, unlike previous proposals. In our proposal the strain is due to experimentally feasible nanobubbles, whose associated PMFs lead to different real space trajectories for K and K' electrons, thus allowing the two valleys to be addressed individually. In this way, graphene nanobubbles can be exploited in both valley filtering and valley splitting devices, and our simulations reveal that a number of different functionalities are possible depending on the deformation field.

  19. Spatial valley separation in strained graphene pn junction (United States)

    Tian, HongYu; Wang, Jun


    Valleytronics in analogy to spintronics aims to use the electron valley degree of freedom to carry and manipulate information, and one of urgent tasks in this field is to generate valley-polarized electrons. In this work, we propose using the electron focusing effect in a strained graphene pn junction to separate valleys spatially through a beam of valley-unpolarized electrons, since the strain-induced pseudo-gauge potentials are opposite for K and K^\\prime valleys and severely affect the trajectories of K and K^\\prime electron propagation. We numerically simulate this valley-separated Veselago lens effect in a lattice model and demonstrate that pseudo-gauge potentials can efficiently control valley separation patterns.

  20. Geology and ground water in Napa and Sonoma Valleys, Napa and Sonoma Counties, California (United States)

    Kunkel, Fred; Upson, Joseph Edwin


    COIM3ists of interbedded deposits of unconsolidated gravel. sand, silt. and. locally, peat. These deposits underlie the flood plains and channels of the Napa River. Sonoma Creek, and their tributaries, low alluvial fans or plains graded to these streams. and the tidal marshlands. The older alluvium of Napa and Sonoma Valleys is composed of lenticular deposits of unconsolidated and poorly sorted clay, silt. sand. and gravel. Where exposed, claypan or hardpan soil is characteristically developed at the surface. The Huichica formation is composed of deformed continental beds consisting mostly of yellow silt with some interbedded lenses of silt and gravel, and silt and boulders. At the base are beds of redeposited volcanic material, silt, clay, and lenses of coarse gravel and boulders. The Glen Ellen fcrmation consists of alluvial clay, silt, sand, and gravel in clearly stratified but generally lenticular beds. The Sonoma volcanics constitute a thick and highly variate series of continental volcanic rocks, including andesite, basalt, and minor rhyolite flows and interbedded coarse- to fine-grained pyroclastic tuff and breccia, redeposited tuff and pumice, and diatomaceous mud, silt, and sand. A prominent body of rhyolite flows and tuff with some obsidian and perlitic glass, called the St. Helena rhyolite member, occurs in the upper part. Estimated ground-water pumpage for all uses in the year 1949-50 was about 5,600 acre-feet in Napa Valley and about 2,400 acre-feet in Sonoma Valley. Of this quantity the amounts pumped for irrigation were about 2,900 and 1,900 acre-feet, respectively. Water levels in wells in the central parts of the valleys range from a few feet above the land surface to about 50 feet below, with an average of about 25 feet. The quality of the water in most wells is satisfactory for domestic use and irrigation. Locally at the southern end of the valley some contamination of the native waters is caused by the movement of salty wate

  1. Soil pollution and soil protection.

    NARCIS (Netherlands)

    Haan, de F.A.M.; Visser-Reijneveld, M.I.


    This book was compiled from lecture handouts prepared for the international postgraduate course on soil quality, entitled 'Soil Pollution and Soil Protection' given jointly by the universities of Wageningen (The Netherlands), Gent and Leuven (Belgium), under the auspices of the international

  2. Buried Quaternary Valleys In NW Europe - Aquifers and Drilling Hazards (United States)

    Huuse, M.; Lykke-Andersen, H.; Piotrowski, J.

    Buried Quaternary valleys are extremely widespread in the formerly glaciated, low- land areas of NW Europe (Huuse &Lykke-Andersen 2000, Fig. 4). The valleys may be several hundred metres deep, some kilometres across and few to several tens of kilometres long. Most of the deep valleys have irregular length profiles with sills and basins, unlike standard subaerial river systems. We interpret these as overdeepened valleys, formed mainly by subglacial meltwater erosion. Buried valleys located on- shore often provide sheltered reservoirs of clean groundwater, and much attention is presently focused on locating onshore valleys and quantifying their potential as groundwater aquifers. In nearshore areas, buried valleys may be a risk factor by pro- viding pathways of salt-water intrusion of onshore groundwater aquifers. Far offshore, buried valleys are located in the shallow subsurface above the prolific oil and gas fields of the central North Sea. Here, the valleys pose a risk for drilling operations by hosting shallow gas and potentially unstable sediments. The central North Sea is now largely covered by 3D seismic data, which often image the buried valleys in a level of de- tail much greater than that available onshore. Hence offshore valleys imaged by 3D seismic data may be used as analogues for groundwater reservoirs onshore NW Eu- rope. Here, we present examples of buried valleys from onshore, nearshore and far offshore locations, to illustrate how genetically and morphologically identical valleys may benefit or hamper the exploitation of subsurface accummulations of groundwater and hydrocarbons. Huuse, M. &Lykke-Andersen, H. 2000. Buried Quaternary valleys in the eastern Dan- ish North Sea: morphology and origin. Quaternary Science Reviews 19, 1233-1253.

  3. Soil infiltrometer

    Energy Technology Data Exchange (ETDEWEB)

    Mehler, M.R.


    This patent describes an infiltrometer useful for field testing soil permeability. It comprises: a large reservoir having an open bottom resting on the soil; a small reservoir having an open bottom resting on the soil, the small reservoir being positioned within the large reservoir; the small reservoir comprising a relatively large receptacle adjacent the soil and a relatively small receptacle connected thereto and extending upwardly therefrom; the volume of the large reservoir greatly exceeding the volume of the small reservoir; the ratio of the upper surface area of liquid in the large reservoir to the surface area of the soil covered thereby greatly exceeding the ratio of the upper surface area of liquid in the relatively small receptacle of the small reservoir to the surface area of the soil covered thereby; and means for determining the amount of liquid from the small reservoir permeating into the soil.

  4. Pre-and post-Missoula flood geomorphology of the Pre-Holocene ancestral Columbia River Valley in the Portland forearc basin, Oregon and Washington, USA (United States)

    Peterson, Curt D.; Minor, Rick; Peterson, Gary L.; Gates, Edward B.


    Geomorphic landscape development in the pre-Holocene ancestral Columbia River Valley (1-5 km width) in the Portland forearc basin (~ 50 km length) is established from depositional sequences, which pre-date and post-date the glacial Lake Missoula floods. The sequences are observed from selected borehole logs (150 in number) and intact terrace soil profiles (56 in number) in backhoe trenches. Four sequences are widespread, including (1) a vertically aggraded Pleistocene alluvial plain, (2) a steep sided valley that is incised (125-150 m) into the Pleistocene gravel plain, (3) Missoula flood terraces (19-13 ka) abandoned on the sides of the ancestral valley, and (4) Holocene flooding surfaces (11-8 ka) buried at 70-30 m depth in the axial Columbia River Valley. Weathering rims and cementation are used for relative dating of incised Pleistocene gravel units. Soil development on the abandoned Missoula flood terraces is directly related to terrace deposit lithology, including thin Bw horizons in gravel, irregular podzols in sand, and multiple Bw horizons in thicker loess-capping layers. Radiocarbon dating of sand and mud alluvium in the submerged axial valley ties Holocene flooding surfaces to a local sea level curve and establishes Holocene sedimentation rates of 1.5 cm year- 1 during 11-9 ka and 0.3 cm year- 1 during 9-0 ka. The sequences of Pleistocene gravel aggradation, river valley incision, cataclysmic Missoula flooding, and Holocene submergence yield complex geomorphic landscapes in the ancestral lower Columbia River Valley.

  5. Groundwater discharge by evapotranspiration, Dixie Valley, west-central Nevada, March 2009-September 2011 (United States)

    Garcia, C. Amanda; Huntington, Jena M; Buto, Susan G.; Moreo, Michael T.; Smith, J. LaRue; Andraski, Brian J.


    With increasing population growth and land-use change, urban communities in the desert Southwest are progressively looking toward remote basins to supplement existing water supplies. Pending applications by Churchill County for groundwater appropriations from Dixie Valley, Nevada, a primarily undeveloped basin east of the Carson Desert, have prompted a reevaluation of the quantity of naturally discharging groundwater. The objective of this study was to develop a revised, independent estimate of groundwater discharge by evapotranspiration (ETg) from Dixie Valley using a combination of eddy-covariance evapotranspiration (ET) measurements and multispectral satellite imagery. Mean annual ETg was estimated during water years 2010 and 2011 at four eddy-covariance sites. Two sites were in phreatophytic shrubland dominated by greasewood, and two sites were on a playa. Estimates of total ET and ETg were supported with vegetation cover mapping, soil physics considerations, water‑level measurements from wells, and isotopic water sourcing analyses to allow partitioning of ETg into evaporation and transpiration components. Site-based ETg estimates were scaled to the basin level by combining remotely sensed imagery with field reconnaissance. Enhanced vegetation index and brightness temperature data were compared with mapped vegetation cover to partition Dixie Valley into five discharging ET units and compute basin-scale ETg. Evapotranspiration units were defined within a delineated groundwater discharge area and were partitioned as (1) playa lake, (2) playa, (3) sparse shrubland, (4) moderate-to-dense shrubland, and (5) grassland.

  6. Potential effects of geothermal energy conversion on Imperial Valley ecosystems. [Seven workshop presentations

    Energy Technology Data Exchange (ETDEWEB)

    Shinn, J.H. (ed.)


    This workshop on potential effcts of geothermal energy conversion on the ecology of Imperial Valley brought together personnel of Lawrence Livermore Laboratory and many collaborators under the sponsorship of the ERDA Imperial Valley Environmental Project (IVEP). The LLL Integrated Assessment Team identified the electric power potential and its associated effluents, discharges, subsidence, water requirements, land use, and noise. The Working Groups addressed the ecological problems. Water resource management problems include forces on water use, irrigation methods and water use for crops, water production, and water allocation. Agricultural problems are the contamination of edible crops and the reclamation of soil. A strategy is discussed for predevelopment baseline data and for identification of source term tracers. Wildlife resources might be threatened by habitat destruction, powerline impacts, noise and disturbance effects, gas emissions, and secondary impacts such as population pressure. Aquatic ecosystems in both the Salton Sea and fresh waters have potential hazards of salinity and trace metal effects, as well as existing stresses; baseline and bioassay studies are discussed. Problems from air pollution resulting from geothermal resource development might occur, particularly to vegetation and pollinator insects. Conversion of injury data to predicted economic damage isneeded. Finally, Imperial Valley desert ecosystems might be threatened by destruction of habitat and the possible effects on community structure such as those resulting from brine spills.

  7. Estimates for biogenic non-methane hydrocarbons and nitric oxide emissions in the Valley of Mexico (United States)

    Velasco, Erik

    Biogenic non-methane hydrocarbons (NMHC), 2-methyl-3-buten-2-ol (methylbutenol or MBO) and nitrogen oxide (NO) emissions were estimated for the Valley of Mexico developing a spatially and temporally resolved emission inventory for air quality models. The modeling domain includes all the Metropolitan Mexico City Area, the surrounding forests and agriculture fields. The estimates were based on several sources of land use and land cover data and a biogenic emission model; the biomass density and tree characteristics were obtained from reforestation program data. The biogenic emissions depend also on climatic conditions, mainly temperature and solar radiation. The temperature was obtained from a statistical revision of the last 10 yr data reported by the Mexico City Automatic Atmospheric Monitoring Network, while the solar radiation data were obtained from measurements performed in a typical oak forest in the Valley and from sources of total solar radiation data for Mexico City. The results indicated that 7% of total hydrocarbon emissions in Mexico Valley are due to vegetation and NO emissions from soil contribute with 1% to the total NO x emissions.

  8. A climatology of airborne dust for the Red River Valley of North Dakota (United States)

    Godon, Nancy A.; Todhunter, Paul E.

    The Red River Valley of North Dakota has been identified as one of the highest potential dust production regions in the United States. This paper provides a climatological summary of the airborne dust environment in the region using historical meteorological data for Fargo, North Dakota. Data for the period 1948-1994 were extracted for all 3-hourly weather observations which recorded an obstruction to vision due to dust, blowing dust or dust storms. Data were compiled on the year, month, day and hour of each observation, as well as the horizontal visibility, wind speed, wind direction, and other present weather occurring at the time of each event. Airborne dust events in the Red River Valley of the North normally involve local entrainment of dust, and show a strong peak in the frequency of occurrence during the afternoon and spring seasons, although a secondary winter peak is also present. Dust events have decreased in frequency over the study period, apparently in response to improved farm management practices. Most events fall into two basic categories: winter events generated by passing cold fronts or strong regional pressure gradients, and often accompanied by blowing snow and light snow showers, and spring events triggered by the passage of cyclones and fronts, and normally not accompanied by other prevailing weather at the time of the observation. Results are discussed in relation to the unique soil, meteorological and surface cover conditions of the Red River Valley of North Dakota.

  9. Human biomonitoring for Cd, Hg and Pb in blood of inhabitants of the Sacco Valley (Italy

    Directory of Open Access Journals (Sweden)

    Sonia D'Ilio


    Full Text Available INTRODUCTION. The Sacco Valley (Lazio, Italy is characterized by high density population and several industrial chemical productions that during the time had led to a substantial amount of by-products. The result was a severe environmental pollution of the area and in particular of the river Sacco. In 1991, the analysis of water and soils samples of three industrial landfills revealed the presence of organochlorine compounds and heavy metals. A research project named "Health of residents living in Sacco Valley area", coordinated by the regional Department of Epidemiology, was undertaken and financed to evaluate the state of health of the population living near those polluted areas. MATERIALS AND METHODS. Cd, Hg and Pb were quantified in 246 blood samples of potentially exposed residents of the Sacco Valley by quadrupole inductively coupled plasma mass spectrometry (Q-ICP-MS. RESULTS. Individuals who agreed to be sampled did not exhibit high levels of the elements. The distance from the river does not seem to be directly connected with the elements levels in blood. The contribution of these contaminants to the total intake due to ingestion of food was difficult to evaluate. The unclear trend of data would require a characterization of the polluted site with environmental sampling of different matrices.

  10. Ultrasonic Extraction and TLC Determination of Glyphosate in the Spiked Red Soils

    Directory of Open Access Journals (Sweden)

    Sandra Babić


    Full Text Available Pesticides that get into soil bind mostly to its solid phase by physical or chemical processes. In the valley of the Neretva River the use of herbicides, especially of glyphosate is widespread and sometimes uncontrolled. In this work ultrasonic solvent extraction (USE followed by thin-layer chromatography (TLC was applied for determining glyphosate presence in soil. The experiments were conducted with two characterised soil types. The impact of soil composition on extraction efficiency is discussed. Chemical analysis showed that soil 1 contained much more iron and aluminium oxides than soil 2, which was richer in humic substances. Low glyphosate efficiency (ca 44 % in both soils could be attributed either to its binding to iron and aluminium oxides (soil 1, or to chemisorption on humic macromolecules (soil 2.

  11. Recovery of compacted soils in Mojave Desert ghost towns. (United States)

    Webb, R.H.; Steiger, J.W.; Wilshire, H.G.


    Residual compaction of soils was measured at seven sites in five Mojave Desert ghost towns. Soils in these Death Valley National Monument townsites were compacted by vehicles, animals, and human trampling, and the townsites had been completely abandoned and the buildings removed for 64 to 75 yr. Recovery times extrapolated using a linear recovery model ranged from 80 to 140 yr and averaged 100 yr. The recovery times were related to elevation, suggesting freeze-thaw loosening as an important factor in ameliorating soil compaction in the Mojave Desert. -from Authors

  12. Eco-Hydrological Modelling of Stream Valleys

    DEFF Research Database (Denmark)

    Johansen, Ole

    Predicting the effects of hydrological alterations on terrestrial stream valley ecosystems requires multidisciplinary approaches involving both engineers and ecologists. Groundwater discharge in stream valleys and other lowland areas support a number of species rich ecosystems, and their protection...... is prioritised worldwide. Protection requires improved knowledge on the functioning of these ecosystems and especially the linkages between vegetation, groundwater discharge and water level conditions are crucial for management applications. Groundwater abstraction affects catchment hydrology and thereby also...... groundwater discharge. Numerical hydrological modelling has been widely used for evaluation of sustainable groundwater resources and effects of abstraction, however, the importance of local scale heterogeneity becomes increasingly important in the assessment of local damage to these groundwater dependent...

  13. Reconnaissance geology of placer deposits containing radioactive minerals in the Bear Valley district, Valley County, Idaho (United States)

    Mackin, J. Hoover; Schmidt, Dwight Lyman


    A reconnaissance of the Bear Valley district was undertaken to provide a geologic interpretation of placer deposits drilled by the U.S. Bureau of Mines. The placer minerals are monazite and a group of uranium bearing rare earth columbates and tantalates here referred to loosely as radioactive blacks. The monazite is an accessory mineral in the granitic country rock; the radioactive blacks occur in pegmatite dikes. The supply of these minerals to the placers was controlled (1) by the geography of their occurrence in the parent rock, and (2) by the distribution of alpine glaciers during two late Pleistocene glacial stages. By reason of a favorable combination of these factors, the richest placer deposits of the district are in Big Meadow, a valley fill formed as a result of the blocking of Bear Creek by a glacier from a tributary valley during the Illinoian (?) stage. The Big Meadow fill consists of intertonguing depositional units formed by Bear Creek and its tributaries, including both normal alluvium and glacial outwash, and ranging from rich to barren. The richest phase that has been blocked out by drilling was derived from the drainage basin of Casner Creek, an east tributary of Bear Creek. The geologic relations suggest that a neighboring stream, Howard Creek, should have supplied equally rich material, but the part of the valley fill formed by Howard Creek has not been tested. The Howard Creek deposits and shallow alluvium in the upper valleys of Casner and Howard Creeks may considerably increase the reserves of the district.

  14. Spin-valley lifetimes in a silicon quantum dot with tunable valley splitting. (United States)

    Yang, C H; Rossi, A; Ruskov, R; Lai, N S; Mohiyaddin, F A; Lee, S; Tahan, C; Klimeck, G; Morello, A; Dzurak, A S


    Although silicon is a promising material for quantum computation, the degeneracy of the conduction band minima (valleys) must be lifted with a splitting sufficient to ensure the formation of well-defined and long-lived spin qubits. Here we demonstrate that valley separation can be accurately tuned via electrostatic gate control in a metal-oxide-semiconductor quantum dot, providing splittings spanning 0.3-0.8 meV. The splitting varies linearly with applied electric field, with a ratio in agreement with atomistic tight-binding predictions. We demonstrate single-shot spin read-out and measure the spin relaxation for different valley configurations and dot occupancies, finding one-electron lifetimes exceeding 2 s. Spin relaxation occurs via phonon emission due to spin-orbit coupling between the valley states, a process not previously anticipated for silicon quantum dots. An analytical theory describes the magnetic field dependence of the relaxation rate, including the presence of a dramatic rate enhancement (or hot-spot) when Zeeman and valley splittings coincide.

  15. 27 CFR 9.191 - Ramona Valley. (United States)


    ... miles to the 822-meter (2,697-foot) peak of Iron Mountain, T14S, R1W (El Cajon map); and (7) Proceed...-meter (2,894-foot) peak of Woodson Mountain, T13S, R1W, proceed straight north-northwest approximately 3.25 miles to the 652-meter (2,140-foot) peak of Starvation Mountain, T13S, R1W (Borrego Valley map...




    The Central Asia region, which is located in the very heart of the vast Eurasian continent at the crossroads where four of the largest civilizations (Russian, Chinese, Indian, and Islamic) meet, has a long and profuse history teeming with difficulties and conflicts. The Ferghana Valley is a territory where all the problems of the Central Asia region (border conflicts, poverty, shortage of fertile land and water resources, unemployment, ethnic disputes, and so on) are concentrated and come tog...


    Directory of Open Access Journals (Sweden)

    V. R. Alekseyev


    Full Text Available Due to local groundwater seeping and freezing in layers that accumulate over each other and create large ice clusters on the ground surface, specific conditions of energy and mass transfer are created in the atmosphere–soil–lithosphere system. In winter, the vertical temperature distribution curve is significantly deformed due to heat emission from the water layer above the ice cover during its freezing, and a thermocline is thus formed. Deformation of the temperature curve is gradually decreasing in size downward the profile and decays at the interface of frozen and thaw rocks. Values and numbers of temperature deviations from a 'normal' value depend on heat reserves of aufeis water and the number of water seeps/discharges at a given location. The production of the thermocline alters freezing conditions for underlying ground layers and changes the mechanism of ice saturation, thus leading to formation of two-layer ice-ground complexes (IGC. IGCs are drastically different from cryogenic formations in the neighbouring sections of the river valley. Based on genetic characteristics and the ratios of components in the surface and subsurface layers, seven types of aufeis IGCs are distinguished: massive-segregation, cement-basal, layered-segregation, basal-segregation, vacuum-filtration, pressure-injection, and fissure-vein. Annual processes of surface and subsurface icing and ice ablation are accompanied by highly hazardous geodynamic phenomena, such as winter flooding, layered water freezing, soil heaving/pingo, thermokarst and thermal erosion. Combined, these processes lead to rapid and often incidental reconfigurations of the surface and subsurface runoff channels, abrupt uplifting and subsiding of the ground surface, decompaction and 'shaking-up' of seasonally freezing/thawing rocks, thereby producing exceptionally unfavourable conditions for construction and operation of engineering structures.Formation and development of river networks are

  18. Age, genesis, and paleoclimatic interpretation of the Sangamon/Loveland complex in the Lower Mississippi Valley, USA (United States)

    Markewich, H.W.; Wysocki, D.A.; Pavich, M.J.; Rutledge, E.M.


    For more than a century, the Sangamon paleosol (the Sangamon) has been an integral part of geologic and pedologic investigations in the central United States, including the Upper Mississippi and Lower Missouri River Valleys. Compositional, pedologic, micromorphologic, stratigraphic, and age data indicate that the prominent reddish paleosol developed in silt-rich deposits of the Lower Mississippi Valley, from southernmost Illinois to northwestern Mississippi, represents multiple periods of soil formation, and is wholly or in part time equivalent to the Sangamon of the central United States. Thermoluminescence data, for localities where the Sangamon developed in loess, indicate that the primary period of loess deposition was from 190 to 130 ka (oxygen isotope stage, OIS6), that loess deposition continued intermittently from 130 to 74 ka (OIS5), and that deposition was wholly or in part coeval with Loveland loess deposition in the central United States. Beryllium-10, chemical, and pedologic data indicate that in the Lower Mississippi Valley: (1) the Sangamon represents a minimum time period of 60-80 k.y.; (2) there were at least two periods of soil formation, ca. 130-90 ka and 74-58 ka (OIS4); and (3) rates of weathering and pedogenesis equaled or exceeded the net loess-accumulation rate until at least 46 ka (OIS3) and resulted in development of a paleosol in the overlying basal Roxana Silt. Along a N-S transect from southern Illinois to western Mississippi, Sangamon macroscopic characteristics as well asthe micro-morphology, chemistry, and mineralogy, suggest a regional paleoclimate during periods of soil formation that: (1) was warm to hot, with a wider range in temperature, precipitation, and evapotranspiration than present; (2) had seasonal to decadal or longer periods of drought; and (3) had down-valley (southward) trends of increasing temperature and precipitation and decreasing seasonality and variation in annualto decadal precipitation. ?? 2011 Geological

  19. Investigation of ecosystems impacts from geothermal development in Imperial Valley, California

    Energy Technology Data Exchange (ETDEWEB)

    Shinn, J.H.; Ireland, R.R.; Kercher, J.R.; Koranda, J.J.; Tompkins, G.A.


    A summary of three years of field ecological investigation in Imperial Valley Environmental Program is presented. The potential terrestrial habitat impacts of geothermal development are discussed for shorebirds and waterfowl habitat, the endangered clapper rail, powerline corridors, noise effects, animal trace element burdens, and the desert community. Aquatic habitats are discussed in terms of Salton Sea salinity, effects of geothermal brine discharges to the Salton Sea, trace element baselines, and potential toxicity of brine spills in freshwater. Studies of impacts on agriculture involved brine movement in soil, release of trace metals, trace element baselines in soil and plants, water requirements of crops, and H{sub 2}S effects on crop production in the presence of CO{sub 2} and ozone.


    Institute of Scientific and Technical Information of China (English)

    YANG Zhi-feng; LIU Lu-liu; SHEN Zhen-yao; GORDON G. Huang


    A daily distributed hydrological model was developed using routine hydro-meteorological data on the basis of the raster DEM and land cover data.Then the model was used to model daily runoff of the Datong River Valley located in the upper catchment of the Yellow River Basin.The runoff comprises surface flow, subsurface flow and ground water flow.Evapotranspiration comprises canopy evaporation, snow sublimation and soil evapotranspiration.The infiltration to the soil was estimated with improved Green-Ampt model, and the potential evapotranspiration is estimated with Morton CRAE method, which only needs the routine meteorological data.Simulation results and the comparison with semi-distributed SLURP hydrological model show that the structure of the model presented herein is reasonable.

  1. GHG and black carbon emission inventories from Mezquital Valley: The main energy provider for Mexico Megacity

    Energy Technology Data Exchange (ETDEWEB)

    Montelongo-Reyes, M.M.; Otazo-Sánchez, E.M.; Romo-Gómez, C.; Gordillo-Martínez, A.J.; Galindo-Castillo, E.


    The greenhouse gases and black carbon emission inventory from IPCC key category Energy was accomplished for the Mezquital Valley, one of the most polluted regions in Mexico, as the Mexico City wastewater have been continuously used in agricultural irrigation for more than a hundred years. In addition, thermoelectric, refinery, cement and chemistry industries are concentrated in the southern part of the valley, near Mexico City. Several studies have reported air, soil, and water pollution data and its main sources for the region. Paradoxically, these sources contaminate the valley, but boosted its economic development. Nevertheless, no research has been done concerning GHG emissions, or climate change assessment. This paper reports inventories performed by the 1996 IPCC methodology for the baseline year 2005. Fuel consumption data were derived from priority sectors such as electricity generation, refineries, manufacturing & cement industries, transportation, and residential use. The total CO{sub 2} emission result was 13,894.9 Gg, which constituted three-quarters of Hidalgo statewide energy category. The principal CO{sub 2} sources were energy transformation (69%) and manufacturing (19%). Total black carbon emissions were estimated by a bottom-up method at 0.66 Gg. The principal contributor was on-road transportation (37%), followed by firewood residential consumption (26%) and cocked brick manufactures (22%). Non-CO{sub 2} gas emissions were also significant, particularly SO{sub 2} (255.9 Gg), which accounts for 80% of the whole Hidalgo State emissions. Results demonstrated the negative environmental impact on Mezquital Valley, caused by its role as a Megacity secondary fuel and electricity provider, as well as by the presence of several cement industries. - Highlights: • First GHG & black carbon inventory for Mezquital Valley: Mexico City energy supplier • Energy industries caused the largest CO{sub 2} and SO{sub 2} emissions from residual fuel oil. • Diesel

  2. GHG and black carbon emission inventories from Mezquital Valley: The main energy provider for Mexico Megacity. (United States)

    Montelongo-Reyes, M M; Otazo-Sánchez, E M; Romo-Gómez, C; Gordillo-Martínez, A J; Galindo-Castillo, E


    The greenhouse gases and black carbon emission inventory from IPCC key category Energy was accomplished for the Mezquital Valley, one of the most polluted regions in Mexico, as the Mexico City wastewater have been continuously used in agricultural irrigation for more than a hundred years. In addition, thermoelectric, refinery, cement and chemistry industries are concentrated in the southern part of the valley, near Mexico City. Several studies have reported air, soil, and water pollution data and its main sources for the region. Paradoxically, these sources contaminate the valley, but boosted its economic development. Nevertheless, no research has been done concerning GHG emissions, or climate change assessment. This paper reports inventories performed by the 1996 IPCC methodology for the baseline year 2005. Fuel consumption data were derived from priority sectors such as electricity generation, refineries, manufacturing & cement industries, transportation, and residential use. The total CO2 emission result was 13,894.9 Gg, which constituted three-quarters of Hidalgo statewide energy category. The principal CO2 sources were energy transformation (69%) and manufacturing (19%). Total black carbon emissions were estimated by a bottom-up method at 0.66 Gg. The principal contributor was on-road transportation (37%), followed by firewood residential consumption (26%) and cocked brick manufactures (22%). Non-CO2 gas emissions were also significant, particularly SO2 (255.9 Gg), which accounts for 80% of the whole Hidalgo State emissions. Results demonstrated the negative environmental impact on Mezquital Valley, caused by its role as a Megacity secondary fuel and electricity provider, as well as by the presence of several cement industries.

  3. Effect of Disturbance of Hydropower Project Construction to Quantity of Soil Microorganism in Dry-hot Valley Area%干热河谷地区水电工程建设干扰对土壤微生物数量的影响

    Institute of Scientific and Technical Information of China (English)

    梁茂; 李艳梅


    为研究水电工程建设干扰对土壤微生物数量的影响,选取云南禄劝普渡河甲岩水电站2种施工干扰类型(弃渣场、施工便道)的土壤为研究对象,以未受干扰的3种生境(林地、灌丛地、农田)的原地貌土壤作为对照,通过“外土壤取样及室内平板表面涂抹法和稀释法分别测定了上述干扰和未干扰的5种类型土壤的细菌、真菌、放线菌数量及总数量。结果表明:工程建设干扰对三大土壤微生物数量的影响程度各不相同,对表层土壤0~40 cm的细菌、真菌降低影响巨大。三大微生物在不同干扰生境中数量最多的是细菌,真菌和放线菌很少。干扰与未干扰生境土壤微生物数量均具有明显的垂直分布差异。除弃渣场微生物总量是随着土层加深而增加外,其他4种生境微生物总量均是随着土层深度增加而减少。%The present study is intended to illustrate the effects of different disturbed habitat to the quantity of soil microorganism,soil of two types of construction project disturbance such as abandoned dreg site and construction access road of Jayan Hydropower Station of Pudu River in Luquan,Yunnan was selected as study object,three soil types which undisturbed(forest land,shrub land,farmland)were selected as the control.The quantity and total quantity of bacteria,fungi and actinomyces of disturbed and undisturbed five types of soil were measured by soil sampling,flat surface smearing method and dilution method.The results were as followsthe engineering construction disturbed degree of impact on microbial number of three kinds of soil are not identical,bacteria and fungi the surface soil of 0~40 cm were great reduced.Among three kinds of microbe in different disturbed habitats,bacteria was the most popular,fungi and actinomyces were less.The disturbed and undisturbed soil microbial quantity habitats both had obvious differences in vertical distribution

  4. Effect of Different Cover after Irrigation on Soil Moisture and Growth Period of Moringa Oleifera Lam in the Dry-hot Valley of Yunmou, Yunnan Province%元谋干热河谷辣木人工林地灌水后不同覆盖措施对土壤水分及辣木物候的影响

    Institute of Scientific and Technical Information of China (English)

    龙会英; 郑益兴; 张燕平; 金杰; 史亮涛; 张明忠; 张德


    The effect of different cover after irrigation on soil moisture and growth period of Moringa oleifera was studied. The results showed that soil moisture content in 0-20 cm and 20-40 cm depth in mulched plots were higher than those in non-mulched plots for sandy loam and clayey soil, which leading to a decrease of growing stage of Moringa oleifera. Soil moisture content after 10 days' irrigation in 0-20 cm depth increased 1.2%~4.6% compared to the control for 2-year old Moringa oleifera under plastic films mulch while the value increased 2.6 % ~3.4% under grass mulch, and soil moisture content increased 1.8%~4.7% for 8-month old Moringa oleifera under plastic films mulch while the value increased 1.8%~4.6% under grass mulch. Additionally, the whole trend of soil moisture content in every soil type was increased with the increase of soil depth. Among three different types of soils of this study, clayey soil had obvious effect on the water-holding capacity.%根据元谋干热河谷气候特点,2010年初步研究了早坡地辣木人工林地灌溉后地表盖草和覆膜的土壤水分及其变化状况,研究结果得出:(1)在地面覆盖物作用下,无论是沙土、沙壤土还是粘土样地,耕作层0-20 cm、20-40cm土壤水分高于未覆盖样株的土壤水分,辣木生育期比未覆盖提前.总体表明,盖膜土壤水分增加最多,在0-20cm土层,2龄辣木树10d的土壤水分高于对照1.2%~4.6%,幼龄辣木树(栽植8个月)10 d的土壤水分高于对照1.8%~4.7%.其次是草覆盖,在0-20 cm土层,2龄辣木树10 d的土壤水分高于对照2.60%~3.4%,幼龄辣木树(栽植8个月)10d的土壤水分高于对照1.8%~4.6%.土层20-40 cm下土壤水分变化较小.(2)由于土壤质地差异,无论是灌水量的多少与处理的不同,沙土蒸发均高于沙壤土,而且变化较大,沙壤土变化均匀,黏土较保水.深层土壤水分总体趋势是随土壤深度增加而增加,增加幅度随之减少.

  5. (Contaminated soil)

    Energy Technology Data Exchange (ETDEWEB)

    Siegrist, R.L.


    The traveler attended the Third International Conference on Contaminated Soil, held in Karlsruhe, Germany. The Conference was a status conference for worldwide research and practice in contaminated soil assessment and environmental restoration, with more than 1500 attendees representing over 26 countries. The traveler made an oral presentation and presented a poster. At the Federal Institute for Water, Soil and Air Hygiene, the traveler met with Dr. Z. Filip, Director and Professor, and Dr. R. Smed-Hildmann, Research Scientist. Detailed discussions were held regarding the results and conclusions of a collaborative experiment concerning humic substance formation in waste-amended soils.

  6. Virgin Valley opal district, Humboldt County, Nevada (United States)

    Staatz, Mortimer Hay; Bauer, Herman L.


    The Virgin Valley opal district, Humboldt County, Nevada, is near the Oregon-Nevada border in the Sheldon Game Refuge. Nineteen claims owned by Jack and Toni Crane were examined, sampled, and tested radiometrically for uranium. Numerous discontinuous layers of opal are interbedded with a gently-dipping series of vitric tuff and ash which is at least 300 ft thick. The tuff and ash are capped by a dark, vesicular basalt in the eastern part of the area and by a thin layer of terrace qravels in the area along the west side of Virgin Valley. Silicification of the ash and tuff has produced a rock that ranges from partly opalized rock that resembles silicified shale to completely altered rock that is entirely translucent, and consists of massive, brown and pale-green opal. Carnotite, the only identified uranium mineral, occurs as fracture coatings or fine layers in the opal; in places, no uranium minerals are visible in the radioactive opal. The opal layers are irregular in extent and thickness. The exposed length of the layers ranges from 8 to 1, 200 ft or more, and the thickness of the layers ranges from 0. 1 to 3. 9 ft. The uranium content of each opal layer, and of different parts of the same layer, differs widely. On the east side of Virgin Valley four of the seven observed opal layers, nos. 3, 4, 5, and 7, are more radioactive than the average; and the uranium content ranges from 0. 002 to 0. 12 percent. Two samples, taken 5 ft apart across opal layer no. 7, contained 0. 003 and 0. -049 percent uranium. On the west side of the valley only four of the fifteen observed opal layers, nos; 9, , 10, 14, and 15, are more radioactive than the average; and the uranium content ranges from 0. 004 to 0. 047 percent. Material of the highest grade was found in a small discontinuous layer of pale-green opal (no. 4) on the east side of Virgin Valley. The grade of this layer ranged from 0. 027 to 0. 12 percent uranium.

  7. Fluorine content in soils of Northern Pomoravlje

    Directory of Open Access Journals (Sweden)

    Jakovljević Miodrag D.


    Full Text Available Soil sampling was carried out in the Velika Morava river valley, covering the area from Velika Plana to the mouth of Morava to the Danube. The composite soil samples, representing alluvial soils (22 samples, cambisols (14 and smonitzas (4, were taken from plough layers, based on a regular square grid with intervals set at 5x5 km, covering total area of 100,000 ha. The total and available fluorine contents were determined in the soils samples. The highest average amount of total fluorine was found for alluvial soils (391 mg kg-1, then for smonitzas (348 mg kg-1 and the lowest one for cambisols (285 mg kg-1. These amounts are within normal fluorine content for soils (150-400 mg kg-1, although the maximum found levels were even about 500 mg kg-1. The available fluorine content was very low (< 1 mg kg-1, being mostly less than 0.2 % from its total amount, so it could be concluded that there was no danger from fluorine accumulation in the plants. Statistically significant correlation coefficient between total and available fluorine contents was not obtained. The total and available fluorine contents have mostly been in the correlation (with positive sign with soil pH and the content of mechanical fraction silt+clay. Significant correlation coefficients between total fluorine content and the content of some heavy metals (Cr, Ni, Co, Cu, As were also found, which indicated their mutual geochemical origin.

  8. Deglacial Flood Origin of the Charleston Alluvial Fan, Lower Mississippi Alluvial Valley (United States)

    Porter, Donna A.; Guccione, Margaret J.


    Large-magnitude flooding of the Mississippi River from proglacial lakes Agassiz and Superior most likely occurred between 11,300 and 10,900 and 9900 and 9500 yr B.P. The Charleston alluvial fan, a depositional remnant of one of these floods, is located at the head of a wide alluvial plain near Charleston, Missouri. The fan is an elongate, convex-up sand body (16 × 24 km) composed of medium- and fine-grained sand at least 8 m thick. This sand contrasts with the older coarse-grained sand of the braided stream surface to the west and south and younger silty clay of the meandering stream level to the north and east. A weakly developed soil separates the underlying braided steam deposits from the alluvial fan. A bulk-soil radiocarbon date of 10,590 ± 200 yr B.P. from the contact between the fan and clays of the meandering stream system indicates that the Charleston fan was deposited near the end of the early interval of flooding from Lake Agassiz about 10,900 yr B.P. If the Charleston fan is the last remnant of deglacial flooding in the lower Mississippi Valley, then deposition of significant quantities of sediment from largemagnitude floods between 10,000 and 9500 yr B.P. did not extend into the lower Mississippi Valley through Thebes Gap.

  9. Collimation and splitting of valley electron diffraction in graphene (United States)

    Yang, Mou; Bai, Yan-Kui; Zhang, Wen-Lian; Wang, Rui-Qiang


    We reported the collimation and splitting effects of the diffraction of valley electrons in graphene. When the incident energy increases from the neutral point, the diffraction tends to be collimated for one valley and split for the other valley. The difference in the diffraction between valleys results in valley-dependent transport. We investigated the left-right conductance of a four-terminal graphene device. The conductance ratio between the two valleys was derived to be 1 -(8 /3 )E , where E is the incident energy in units of the atom-atom hopping. The ratio is independent of the device dimensions and reflects the intrinsic properties of the electronic structure of graphene.

  10. Landslide Buries Valley of the Geysers (United States)


    Geysers are a rare natural phenomena found only in a few places, such as New Zealand, Iceland, the United States (Yellowstone National Park), and on Russia's far eastern Kamchatka Peninsula. On June 3, 2007, one of these rare geyser fields was severely damaged when a landslide rolled through Russia's Valley of the Geysers. The landslide--a mix of mud, melting snow, trees, and boulders--tore a scar on the land and buried a number of geysers, thermal pools, and waterfalls in the valley. It also blocked the Geyser River, causing a new thermal lake to pool upstream. The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite captured this infrared-enhanced image on June 11, 2007, a week after the slide. The image shows the valley, the landslide, and the new thermal lake. Even in mid-June, just days from the start of summer, the landscape is generally covered in snow, though the geologically heated valley is relatively snow free. The tree-covered hills are red (the color of vegetation in this false-color treatment), providing a strong contrast to the aquamarine water and the gray-brown slide. According to the Russian News and Information Agency (RIA) [English language], the slide left a path roughly a kilometer and a half (one mile) long and 200 meters (600 feet) wide. Within hours of the landslide, the water in the new lake inundated a number of additional geysers. The geysers directly buried under the landslide now lie under as much as 60 meters (180 feet) of material, according to RIA reports. It is unlikely that the geysers will be able to force a new opening through this thick layer, adds RIA. Among those directly buried is Pervenets (Firstborn), the first geyser found in the valley, in 1941. Other geysers, such as the Bolshoi (Greater) and Maly (Lesser) Geysers, were silenced when buried by water building up behind the new natural dam. According to Vladimir and Andrei Leonov of the Russian Federation Institute of

  11. Impact of Reforestation on Local Climate and Environment in a Semi-arid Urban Valley, Northwestern China (United States)

    Xia, D.; Yu, Y.; He, J.


    Since 1999 Chinese government has invested more than 800 million Yuan to reforest the southern and the northern mountains surrounding urban Lanzhou - a typical semi-arid city located in a river valley, Northwestern China. Until 2009 obvious land use change occurred, with 69.2% of the reforested area been changed from grasslands, croplands, barren or sparsely vegetated land to closed shrublands and 20.6% been changed from closed shrublands, grasslands, and croplands to forests. This study assesses the impact of these changes on local climate and environment in winter using WRF (Weather Research & Forecasting) model incorporated with high-resolution remotely sensed land cover data for 1999 and 2009 and the FLEXible PARTicle (FLEXPART) dispersion model. Results indicate that the changes in albedo, surface exchange coefficient and surface soil heat conductivity related to the reforestation led to the changes in surface net radiation and the surface energy partitioning, which in turn affected the meteorology fields and enhanced the mountain-valley wind circulation. The amount of air exchanged between the valley and the outside increased after reforestation during the day, with the largest increase of 10 %, while it changed little during the night on winter sunny day with no snow cover. The sensitivity analysis using FLEXPART-WRF model indicates that the reforestation affected the spatial distribution of pollutants and slightly improved the urban air quality in winter. And the greening program of Lanzhou has special reference to other valley urbans.

  12. Hydrogeology of the stratified-drift aquifers in the Cayuta Creek and Catatonk Creek valleys in parts of Tompkins, Schuyler, Chemung, and Tioga Counties, New York (United States)

    Miller, Todd S.; Pitman, Lacey M.


    The surficial deposits, areal extent of aquifers, and the water-table configurations of the stratified-drift aquifer systems in the Cayuta Creek and Catatonk Creek valleys and their large tributary valleys in Tompkins, Schuyler, Chemung, and Tioga Counties, New York were mapped in 2009, in cooperation with the New York State Department of Environmental Conservation. Well and test-boring records, surficial deposit maps, Light Detection and Ranging (LIDAR) data, soils maps, and horizontal-to-vertical ambient-noise seismic surveys were used to map the extent of the aquifers, construct geologic sections, and determine the depth to bedrock (thickness of valley-fill deposits) at selected locations. Geologic materials in the study area include sedimentary bedrock, unstratified drift (till), stratified drift (glaciolacustrine and glaciofluvial deposits), and recent alluvium. Stratified drift consisting of glaciofluvial sand and gravel is the major component of the valley fill in this study area. The deposits are present in sufficient amounts in most places to form extensive unconfined aquifers throughout the study area and, in some places, confined aquifers. Stratified drift consisting of glaciolacustrine fine sand, silt, and clay are present locally in valleys underlying the surficial sand and gravel deposits in the southern part of the Catatonk Creek valley. These unconfined and confined aquifers are the source of water for most residents, farms, and businesses in the valleys. A generalized depiction of the water table in the unconfined aquifer was constructed using water-level measurements made from the 1950s through 2010, as well as LIDAR data that were used to determine the altitudes of perennial streams at 10-foot contour intervals and water surfaces of ponds and wetlands that are hydraulically connected to the unconfined aquifer. The configuration of the water-table contours indicate that the general direction of groundwater flow within Cayuta Creek and Catatonk

  13. TDRS satellite over African Rift Valley, Kenya, Africa (United States)


    This post deploy view of a TDRS satellite shows a segment of the African Rift Valley near Lake Baringo, Kenya, Africa (3.0S, 36.0E). The African Rift Valley system is a geologic fault having its origins in southern Turkey, through the near east forming the bed of the Jordan River, Gulf of Aqaba, the Red Sea and down through east Africa. The line of lakes and valleys of east Africa are the result of the faulting activity.

  14. Origin of Apollo 17 rocks and soils (United States)

    Philpotts, J. A.; Schuhmann, S.; Kouns, C. W.; Lum, R. K. L.; Winzer, S.


    Lithophile trace element abundances have been determined by mass spectrometric isotope dilution for a suite of Apollo 17 samples. The six mare basalts have generally similar relative trace element abundances; they are also similar to Apollo 11 trace element poor basalts. It is suggested that these basalts were derived by partial fusion of cumulates. The Apollo 17 highland breccias show an order of magnitude range in trace element abundances although there is a clustering of KREEP-rich samples which are interpreted as mixtures. The Apollo 17 soils show only a limited range of trace element abundances. They are mixtures of highland breccias, mare basalts, and orange-black 'soil'. There appear to be two groups of soils, Light Mantle and the rest. Both groups seem to have the same basalt component, which is similar to Station 4 basalt from Shorty Crater and probably is the uppermost basalt unit throughout the Taurus-Littrow valley.

  15. Climate Variability and Water-Regulation Effects on Surface Water and Groundwater Interactions in California's Central Valley (United States)

    Munoz-Arriola, F.; Dettinger, M. D.; Hanson, R. T.; Faunt, C.; Cayan, D. R.


    California's Central Valley is one of the most important agricultural areas in the world and is highly dependent on the availability and management of surface water and groundwater. As such, it is a valuable large-scale system for investigating the interaction of climate variability and water-resource management on surface-water and groundwater interactions. In the Central Valley, multiple tools are available to allow scientists to understand these interactions. However, the full effect of human activities on the interactions occurring along the Aquifer-Soil-Plant-Atmosphere continuum remains uncertain. Two models were linked to investigate how non-regulated (natural conditions) and regulated (releases from dams) surface-water inflows from the surrounding contributing drainage areas to the alluvial plains of the Central Valley affects the valley's surface-water supply and groundwater pumpage under different climate conditions. The Variable Infiltration Capacity (VIC) macroscale (surface) hydrologic model was used to estimate the non-regulated streamflow. The U.S. Geological Survey's recently developed Central Valley Hydrologic Model (CVHM) was used to route both the regulated and non-regulated streamflow to the Central Valley and simulate the resulting hydrologic system. The CVHM was developed using MODFLOW's Farm Process (MF-FMP) in order to simulate agricultural water demand, surface-water deliveries, groundwater pumpage, and return flows in 21 water-balance subregions. As such, the CVHM simulates conjunctive use of water, providing a broad perspective on changes in the water systems of the Valley. Inflows from the contributing mountain watersheds are simulated in CVHM using the streamflow-routing package for the 1961-2003 time period. In order to analyze the affect of climate variability, dry and wet years were identified from below the 10th and above the 90th percentiles, respectively, in a multi-decadal time series (1961-2003) of surface-water inflows. The

  16. Willamette Valley Ecoregion: Chapter 3 in Status and trends of land change in the Western United States--1973 to 2000 (United States)

    Wilson, Tamara S.; Sorenson, Daniel G.


    The Willamette Valley Ecoregion (as defined by Omernik, 1987; U.S. Environmental Protection Agency, 1997) covers approximately 14,458 km² (5,582 mi2), making it one of the smallest ecoregions in the conterminous United States. The long, alluvial Willamette Valley, which stretches north to south more than 193 km and ranges from 32 to 64 km wide, is nestled between the sedimentary and metamorphic Coast Ranges (Coast Range Ecoregion) to the west and the basaltic Cascade Range (Cascades Ecoregion) to the east (fig. 1). The Lewis and Columbia Rivers converge at the ecoregion’s northern boundary in Washington state; however, the majority of the ecoregion falls within northwestern Oregon. Interstate 5 runs the length of the valley to its southern boundary with the Klamath Mountains Ecoregion. Topography here is relatively flat, with elevations ranging from sea level to 122 m. This even terrain, coupled with mild, wet winters, warm, dry summers, and nutrient-rich soil, makes the Willamette Valley the most important agricultural region in Oregon. Population centers are concentrated along the valley floor. According to estimates from the Oregon Department of Fish and Wildlife (2006), over 2.3 million people lived in Willamette Valley in 2000. Portland, Oregon, is the largest city, with 529,121 residents (U.S. Census Bureau, 2000). Other sizable cities include Eugene, Oregon; Salem (Oregon’s state capital); and Vancouver, Washington. Despite the large urban areas dotting the length of the Willamette Valley Ecoregion, agriculture and forestry products are its economic foundation (figs. 2,3). The valley is a major producer of grass seed, ornamental plants, fruits, nuts, vegetables, and grains, as well as poultry, beef, and dairy products. The forestry and logging industries also are primary employers of the valley’s rural residents (Rooney, 2008). These activities have affected the watershed significantly, with forestry and agricultural runoff contributing to river

  17. Mechanical control over valley magnetotransport in strained graphene (United States)

    Ma, Ning; Zhang, Shengli; Liu, Daqing


    Recent experiments report that the graphene exhibits Landau levels (LLs) that form in the presence of a uniform strain pseudomagnetic field with magnitudes up to hundreds of tesla. We further reveal that the strain removes the valley degeneracy in LLs, and leads to a significant valley polarization with inversion symmetry broken. This accordingly gives rise to the well separated valley Hall plateaus and Shubnikov-de Haas oscillations. These effects are absent in strainless graphene, and can be used to generate and detect valley polarization by mechanical means, forming the basis for the new paradigm "valleytronics" applications.

  18. Disorder-dependent valley properties in monolayer WSe2

    KAUST Repository

    Tran, Kha


    We investigate the effect of disorder on exciton valley polarization and valley coherence in monolayer WSe2. By analyzing the polarization properties of photoluminescence, the valley coherence (VC) and valley polarization (VP) are quantified across the inhomogeneously broadened exciton resonance. We find that disorder plays a critical role in the exciton VC, while affecting VP less. For different monolayer samples with disorder characterized by their Stokes shift (SS), VC decreases in samples with higher SS while VP does not follow a simple trend. These two methods consistently demonstrate that VC as defined by the degree of linearly polarized photoluminescence is more sensitive to disorder, motivating further theoretical studies.

  19. Extraction of Martian valley networks from digital topography (United States)

    Stepinski, T. F.; Collier, M. L.


    We have developed a novel method for delineating valley networks on Mars. The valleys are inferred from digital topography by an autonomous computer algorithm as drainage networks, instead of being manually mapped from images. Individual drainage basins are precisely defined and reconstructed to restore flow continuity disrupted by craters. Drainage networks are extracted from their underlying basins using the contributing area threshold method. We demonstrate that such drainage networks coincide with mapped valley networks verifying that valley networks are indeed drainage systems. Our procedure is capable of delineating and analyzing valley networks with unparalleled speed and consistency. We have applied this method to 28 Noachian locations on Mars exhibiting prominent valley networks. All extracted networks have a planar morphology similar to that of terrestrial river networks. They are characterized by a drainage density of approx.0.1/km, low in comparison to the drainage density of terrestrial river networks. Slopes of "streams" in Martian valley networks decrease downstream at a slower rate than slopes of streams in terrestrial river networks. This analysis, based on a sizable data set of valley networks, reveals that although valley networks have some features pointing to their origin by precipitation-fed runoff erosion, their quantitative characteristics suggest that precipitation intensity and/or longevity of past pluvial climate were inadequate to develop mature drainage basins on Mars.

  20. Impact of valley polarization on the resistivity in two dimensions. (United States)

    Takashina, K; Niida, Y; Renard, V T; Fujiwara, A; Fujisawa, T; Muraki, K; Hirayama, Y


    We examine the temperature dependence of resistivity in a two-dimensional electron system formed in a silicon-on-insulator quantum well. The device allows us to tune the valley splitting continuously in addition to the electron density. Our data provide a global picture of how the resistivity and its temperature dependence change with valley polarization. At the boundary between valley-polarized and partially polarized regions, we demonstrate that there is an insulating contribution from spin-degenerate electrons occupying the upper valley-subband edge.

  1. Spatially resolving valley quantum interference of a donor in silicon. (United States)

    Salfi, J; Mol, J A; Rahman, R; Klimeck, G; Simmons, M Y; Hollenberg, L C L; Rogge, S


    Electron and nuclear spins of donor ensembles in isotopically pure silicon experience a vacuum-like environment, giving them extraordinary coherence. However, in contrast to a real vacuum, electrons in silicon occupy quantum superpositions of valleys in momentum space. Addressable single-qubit and two-qubit operations in silicon require that qubits are placed near interfaces, modifying the valley degrees of freedom associated with these quantum superpositions and strongly influencing qubit relaxation and exchange processes. Yet to date, spectroscopic measurements have only probed wavefunctions indirectly, preventing direct experimental access to valley population, donor position and environment. Here we directly probe the probability density of single quantum states of individual subsurface donors, in real space and reciprocal space, using scanning tunnelling spectroscopy. We directly observe quantum mechanical valley interference patterns associated with linear superpositions of valleys in the donor ground state. The valley population is found to be within 5% of a bulk donor when 2.85 ± 0.45 nm from the interface, indicating that valley-perturbation-induced enhancement of spin relaxation will be negligible for depths greater than 3 nm. The observed valley interference will render two-qubit exchange gates sensitive to atomic-scale variations in positions of subsurface donors. Moreover, these results will also be of interest for emerging schemes proposing to encode information directly in valley polarization.

  2. Soil Solution

    NARCIS (Netherlands)

    Sonneveld, C.; Voogt, W.


    The characteristics of the soil solution in the root environment in the greenhouse industry differ much from those for field grown crops. This is caused firstly by the growing conditions in the greenhouse, which strongly differ from those in the field and secondly the function attributed to the soil

  3. Linking soil biodiversity and agricultural soil management

    NARCIS (Netherlands)

    Thiele-Bruhn, S.; Bloem, J.; Vries, de F.T.; Kalbitz, K.; Wagg, C.


    Soil biodiversity vastly exceeds aboveground biodiversity, and is prerequisite for ecosystem stability and services. This review presents recent findings in soil biodiversity research focused on interrelations with agricultural soil management. Richness and community structure of soil biota depend o

  4. Linking soil biodiversity and agricultural soil management

    NARCIS (Netherlands)

    Thiele-Bruhn, S.; Bloem, J.; de Vries, F.T.; Kalbitz, K.; Wagg, C.


    Soil biodiversity vastly exceeds aboveground biodiversity, and is prerequisite for ecosystem stability and services. This review presents recent findings in soil biodiversity research focused on interrelations with agricultural soil management. Richness and community structure of soil biota depend

  5. The Lower Tagus Valley (LTV) Fault System (United States)

    Besana-Ostman, G. M.; Fereira, H.; Pinheiro, A.; Falcao Flor, A. P.; Nemser, E.; Villanova, S. P.; Fonseca, J. D.


    The LTV fault and its associated historical seismic activity have been the focus of several scientific studies in Portugal. There are at least three historical earthquakes associated with the LTV fault, in 1344, 1531, and 1909. Magnitude estimates for these earthquakes range from 6.5 to 7.0. They caused widespread damage throughout the Lower Tagus Valley region with intensities ranging from VIII to X from Lisbon to Entroncamento. During the great 1755 earthquake, the LTV fault was likewise proposed to have ruptured coseismically. The Azambuja fault or the Vila Franca de Xira fault are suggested origins of the 1909 earthquake. Trenching activities together with borehole data analyses, geophysical investigations, and seismic hazard assessments were undertaken in the LTV in the recent years. Complex trench features along the excavated sections were argued to be either fault- or erosion-related phenomena. Borehole data and seismic profiles indicate subsurface structures within the Lower Tagus Valley and adjacent areas. Furthermore, recent attempts to improve seismic hazard assessment indicate that the highest values in Portugal for 10% probability of exceedance in 50 years correspond with the greater Lisbon area, with the LTV fault as the most probable source. Considering the above, efforts are being made to acquire more information about the location of the LTV seismic source taking into account the presence of extensive erosion and/or deposition processes within the valley, densely populated urban areas, heavily forested regions, and flooded sections such as the Tagus estuary. Results from recent mapping along the LTV reveal surface faulting that left-laterally displaced numerous geomorphic landforms within the Lower Tagus River valley. The mapped trace shows clear evidence of left-lateral displacement and deformation within the valley transecting the river, its tributaries, and innumerable young terraces. The trace has been mapped by analyzing topographic maps

  6. Predicted pH at the domestic and public supply drinking water depths, Central Valley, California (United States)

    Rosecrans, Celia Z.; Nolan, Bernard T.; Gronberg, Jo Ann M.


    model, and 334 wells (hold-out dataset) were used to validate the prediction model. The training r-squared was 0.70, and the root-mean-square error (RMSE) in standard pH units was 0.26. The hold-out r-squared was 0.43, and RMSE in standard pH units was 0.37. Predictor variables consisting of more than 60 variables from 7 sources were assembled to develop a model that incorporates regional-scale soil properties, soil chemistry, land use, aquifer textures, and aquifer hydrology. Previously developed Central Valley model outputs of textures (Central Valley Textural Model, CVTM; Faunt and others, 2010) and MODFLOW-simulated vertical water fluxes and predicted depth to water table (Central Valley Hydrologic Model, CVHM; Faunt, 2009) were used to represent aquifer textures and groundwater hydraulics, respectively. In this work, wells were attributed to predictor variable values in ArcGIS using a 500-meter buffer.Faunt, C.C., ed., 2009, Groundwater availability in the Central Valley aquifer, California: U.S. Geological Survey Professional Paper 1776, 225 p., accessed at, C.C., Belitz, K., and Hanson, R.T., 2010, Development of a three-dimensional model of sedimentary texture in valley-fill deposits of Central Valley, California, USA: Hydrogeology Journal, v. 18, no. 3, p. 625–649,

  7. The impact of weak synoptic forcing on the valley-wind circulation in the Alpine Inn Valley (United States)

    Zängl, Günther


    This paper investigates the impact of weak synoptic-scale forcing on the thermally induced valley-wind circulation in the Alpine Inn Valley and one of its largest tributaries, the Wipp Valley. To this end, high-resolution numerical simulations with realistic topography but idealized large-scale atmospheric conditions are performed. The large-scale flow has a speed increasing linearly from 5 m s-1 at sea level to 12.5 m s-1 at tropopause level, but its direction is varied between each experiment. For reference, an experiment without large-scale winds is conducted as well. The results indicate that the sensitivity to ambient flow forcing differs substantially between the Inn Valley and the Wipp Valley. The valley-wind circulation of the Inn Valley is found to be fairly robust against weak ambient forcing, changing by a much smaller amount than the along-valley component of the imposed large-scale flow. The valley wind tends to be intensified (weakened) when the ambient flow is aligned with (opposite to) the local valley orientation. However, the flow response is complicated by larger-scale interactions of the ambient flow with the Alpine massif. Most notably, northerly and northwesterly flow is deflected around the Alps, leading to the formation of a low-level jet along the northern edge of the Alps which in turn affects the valley-wind circulation in the lower Inn Valley. For the Wipp Valley, which is oriented approximately normal to the Alpine crest line and constitutes a deep gap in the Alpine crest, two distinctly different flow regimes are found depending on whether the large-scale flow has a significant southerly component or not. In the absence of a southerly flow component, the valley-wind circulation is similarly robust against ambient forcing as in the Inn Valley, with a fairly weak response of the local wind speeds. However, southerly ambient flow tends to force continuous downvalley (southerly) wind in the Wipp Valley. The flow dynamics can then be

  8. Factors Controlling Soil Microbial Biomass and Bacterial Diversity and Community Composition in a Cold Desert Ecosystem: Role of Geographic Scale


    Horn, David J. van; Lee Van Horn, M.; Barrett, John E.; Gooseff, Michael N.; Altrichter, Adam E; Geyer, Kevin M; Lydia H Zeglin; Takacs-Vesbach, Cristina D.


    Understanding controls over the distribution of soil bacteria is a fundamental step toward describing soil ecosystems, understanding their functional capabilities, and predicting their responses to environmental change. This study investigated the controls on the biomass, species richness, and community structure and composition of soil bacterial communities in the McMurdo Dry Valleys, Antarctica, at local and regional scales. The goals of the study were to describe the relationships between ...

  9. Aerosol deposition and origin in French mountains estimated with soil inventories of 210Pb and artificial radionuclides


    Le Roux, Gaël; Pourcelot, Laurent; Masson, Olivier; Duffa, Céline; Vray, Françoise; Renaud, Philippe


    International audience; Radionuclide inventories were measured in soils from different French mountainous areas: Chaîne des Puys (Massif Central), Eastern Corsica, Jura, Montagne Noire, Savoie, Vosges and Rhine Valley. 210Pb soil inventories were used to estimate long-term (>75 yr) deposition of submicron aerosols. Whereas 210Pb total deposition is explained partly by wet deposition, as demonstrated by increase of 210Pb inventory with annual rainfall; a part of 210Pb in the soils of higher al...

  10. 77 FR 33237 - Saline Valley Warm Springs Management Plan/Environmental Impact Statement, Death Valley National... (United States)


    ... Environmental Policy Act of 1969, the National Park Service (NPS) is initiating the conservation planning and... different approaches for managing the Saline Valley Warm Springs area to determine the potential impacts on... Assessment that will provide a framework for managing lands and resources surrounding Warm Springs. The...

  11. Engineering assessment of inactive uranium mill tailings: Monument Valley Site, Monument Valley, Arizona

    Energy Technology Data Exchange (ETDEWEB)


    Ford, Bacon and Davis Utah Inc. has reevalated the Monument Valley site in order to revise the March 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Monument Valley, Arizona. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposure of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 1.1 million tons of tailings at the Monument Valley site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors. The four alternative actions presented in this engineering assessment range from millsite decontamination with the addition of 3 m of stabilization cover material (Option I), to removal of the tailings to remote disposal sites and decontamination of the tailings site (Options II through IV). Cost estimates for the four options range from about $6,600,000 for stabilization in-place, to about $15,900,000 for disposal at a distance of about 15 mi. Three principal alternatives for reprocessing the Monument Valley tailings were examined: heap leaching; Treatment at an existing mill; and reprocessing at a new conventional mill constructed for tailings reprocessing. The cost of the uranium recovery is economically unattractive.

  12. Influence of hydrologic modifications on Fraxinus pennsylvanica in the Mississippi River Alluvial Valley, USA (United States)

    Gee, Hugo K.W.; King, Sammy L.; Keim, Richard F.


    We used tree-ring analysis to examine radial growth response of a common, moderately flood-tolerant species (Fraxinus pennsylvanica Marshall) to hydrologic and climatic variability for > 40 years before and after hydrologic modifications affecting two forest stands in the Mississippi River Alluvial Valley (USA): a stand without levees below dams and a stand within a ring levee. At the stand without levees below dams, spring flood stages decreased and overall growth increased after dam construction, which we attribute to a reduction in flood stress. At the stand within a ring levee, growth responded to the elimination of overbank flooding by shifting from being positively correlated with river stage to not being correlated with river stage. In general, growth in swales was positively correlated with river stage and Palmer Drought Severity Index (an index of soil moisture) for longer periods than flats. Growth decreased after levee construction, but swales were less impacted than flats likely because of differences in elevation and soils provide higher soil moisture. Results of this study indicate that broad-scale hydrologic processes differ in their effects on the flood regime, and the effects on growth of moderately flood-tolerant species such as F. pennsylvanica can be mediated by local-scale factors such as topographic position, which affects soil moisture.

  13. Surface slip during large Owens Valley earthquakes

    KAUST Repository

    Haddon, E. K.


    The 1872 Owens Valley earthquake is the third largest known historical earthquake in California. Relatively sparse field data and a complex rupture trace, however, inhibited attempts to fully resolve the slip distribution and reconcile the total moment release. We present a new, comprehensive record of surface slip based on lidar and field investigation, documenting 162 new measurements of laterally and vertically displaced landforms for 1872 and prehistoric Owens Valley earthquakes. Our lidar analysis uses a newly developed analytical tool to measure fault slip based on cross-correlation of sublinear topographic features and to produce a uniquely shaped probability density function (PDF) for each measurement. Stacking PDFs along strike to form cumulative offset probability distribution plots (COPDs) highlights common values corresponding to single and multiple-event displacements. Lateral offsets for 1872 vary systematically from approximate to 1.0 to 6.0 m and average 3.31.1 m (2 sigma). Vertical offsets are predominantly east-down between approximate to 0.1 and 2.4 m, with a mean of 0.80.5 m. The average lateral-to-vertical ratio compiled at specific sites is approximate to 6:1. Summing displacements across subparallel, overlapping rupture traces implies a maximum of 7-11 m and net average of 4.41.5 m, corresponding to a geologic M-w approximate to 7.5 for the 1872 event. We attribute progressively higher-offset lateral COPD peaks at 7.12.0 m, 12.8 +/- 1.5 m, and 16.6 +/- 1.4 m to three earlier large surface ruptures. Evaluating cumulative displacements in context with previously dated landforms in Owens Valley suggests relatively modest rates of fault slip, averaging between approximate to 0.6 and 1.6 mm/yr (1 sigma) over the late Quaternary.

  14. Holywell Coombe, Folkestone: A 13,000 year history of an English Chalkland Valley (United States)

    Preece, R. C.; Bridgland, D. R.


    Holywell Coombe is a valley cut into the scarp-face of the North Downs Chalk cuesta, near Folkestone, Kent. Its geological importance stems from a highly fossiliferous sequence of Lateglacial and Holocene deposits that line the valley floor. These have yielded a molluscan succession of particular importance, providing a record of environmental change throughout the past 13,000 radiocarbon years. Waterlogging of the basal deposits has prevented oxidation, leading to the preservation of a range of organic fossils, such as plant and insect remains, that normally do not survive in calcareous environments. This enables linkage between faunal and vegetational records, allowing the differential rates of response of particular groups to be critically compared. The importance of the site was revealed in 1968 in trial pits connected with an aborted Channel Tunnel project. Resurrection of plans to build a tunnel led in 1987 to major 'rescue' excavations and multidisciplinary investigations, the results of which are reviewed here. A three-dimensional picture of the valley infill was established from a network of 180 boreholes. Critical parts of the sequence were investigated in specially excavated trenches and sections exposed during construction of the tunnel. Systematic sampling at a number of locations within the valley provided a palaeontological record from the full stratigraphical succession. A number of Lateglacial and Holocene soils were found to be represented in the sequence, including that formed during the Allerød phase of the Lateglacial interstadial. The molluscan zonation scheme previously defined at Holywell Coombe, and applicable over large areas of southern Britain and possibly further afield, has been refined and dated with greater precision. The Lateglacial sequence has been extended back to the early part of the Lateglacial interstadial by this study and the site chronology is now underpinned by over 35 new radiocarbon dates. Quantitative palaeoclimatic

  15. Arsenic in the soils of Zimapán, Mexico. (United States)

    Ongley, Lois K; Sherman, Leslie; Armienta, Aurora; Concilio, Amy; Salinas, Carrie Ferguson


    Arsenic concentrations of 73 soil samples collected in the semi-arid Zimapán Valley range from 4 to 14 700 mg As kg(-1). Soil arsenic concentrations decrease with distance from mines and tailings and slag heaps and exceed 400 mg kg(-1) only within 500 m of these arsenic sources. Soil arsenic concentrations correlate positively with Cu, Pb, and Zn concentrations, suggesting a strong association with ore minerals known to exist in the region. Some As was associated with Fe and Mn oxyhydroxides, this association is less for contaminated than for uncontaminated samples. Very little As was found in the mobile water-soluble or exchangeable fractions. The soils are not arsenic contaminated at depths greater than 100 cm below the surface. Although much of the arsenic in the soils is associated with relatively immobile solid phases, this represents a long-term source of arsenic to the environment.

  16. Generating Interest in Soil Science through Collegiate Soils Contests (United States)

    Baxter, Christopher; Valentine, Joe


    The inaugural National Collegiate Soils Contest (NCSC) was hosted by the University of Kentucky in Lexington, KY in 1961 and has been held every year since. Initially the NCSC was an open contest in which any team could participate, but due to increased interest, it became an event which only qualifying teams are invited to participate. To facilitate qualification, the U.S. was divided up into seven regions. Teams qualify for the NCSC by placing among the top teams within their regional contests, which are held in the fall prior to the NCSC. Typically 18-22 institutions and 80-100 students attend the NCSC each year. The NCSC is sponsored by the Soil Science Society of America (SSSA) and is organized by a committee of SSSA members that include previous and future hosts of the NCSC. The committee maintains the official rules for the NCSC and makes any necessary changes during an annual meeting. The NCSC host rotates among the seven regions and among teams within the respective regions. In 2014, the NCSC hosted by Delaware Valley College in Doylestown, PA served as qualifying contest for the team representing the U.S. at the inaugural International Soil Judging Contest in JeJu, South Korea.

  17. The uncanny valley in games and animation

    CERN Document Server

    Tinwell, Angela


    Advances in technology have enabled animators and video game designers to design increasingly realistic, human-like characters in animation and games. Although it was intended that this increased realism would allow viewers to appreciate the emotional state of characters, research has shown that audiences often have a negative reaction as the human likeness of a character increases. This phenomenon, known as the Uncanny Valley, has become a benchmark for measuring if a character is believably realistic and authentically human like. This book is an essential guide on how to overcome the Uncanny

  18. The Environment Dependence of the Green Valley (United States)

    Coenda, V.; Martínez, H. J.; Muriel, H.


    To shed light on the impact of internal and external quenching mechanisms upon galaxies, in this paper we compare properties of star forming, passive and transition galaxies in three discrete environments: field, groups as representative of intermediate mass systems, and the most massive virialised systems in the Universe, X-ray clusters. We classify galaxies into three sequences: passive (PS), green valley (GV) and star forming (SFS), by means of their UV-optical colour 0.1(NUV-r). We study a number of galaxy properties: UV-optical colour, stellar mass, morphology, specific star formation rate and the history of star formation.

  19. Biogeochemistry of Kenyan Rift Valley Lake Sediments (United States)

    Grewe, Sina; Kallmeyer, Jens


    The numerous lakes in the Kenyan Rift Valley show strong hydrochemical differences due to their varying geologic settings. There are freshwater lakes with a low alkalinity like Lake Naivasha on the one hand and very salt-rich lakes with high pH values like Lake Logipi on the other. It is known that the underlying lake sediments are influenced by the lake chemistry and by the microorganisms in the sediment. The aim of this work is to provide a biogeochemical characterization of the lake sediments and to use these data to identify the mechanisms that control lake chemistry and to reconstruct the biogeochemical evolution of each lake. The examined rift lakes were Lakes Logipi and Eight in the Suguta Valley, Lakes Baringo and Bogoria south of the valley, as well as Lakes Naivasha, Oloiden, and Sonachi on the Kenyan Dome. The porewater was analysed for different ions and hydrogen sulphide. Additionally, alkalinity and salinity of the lake water were determined as well as the cell numbers in the sediment, using fluorescent microscopy. The results of the porewater analysis show that the overall chemistry differs considerably between the lakes. In some lakes, concentrations of fluoride, chloride, sulphate, and/or hydrogen sulphide show strong concentration gradients with depth, whereas in other lakes the concentrations show only minor variations. Fluoride is present in all lakes; the lowest concentration is found in Lake Oloiden (60 - 90 mg/l), the highest one in Lake Bogoria (1,025 - 1,930 mg/l). The lakes show also large differences in sulphate concentrations. The values vary between 2 mg/l in Lake Baringo and 15,250 mg/l in Lake Eight. In all cores, sulphate concentration does not change significantly with depth; however, there is a distinct peak in each core, raising the question of synchronicity. As expected, chloride concentrations correlate with total salinity. There is no hydrogen sulphide present in the porewater of Lakes Naivasha, Baringo, and Oloiden, whereas in

  20. Water Supply of Indian Wells Valley, California. (United States)


    finite. Water pumipage and consuniptive water use exceeds (he natura rehre to the idale ’s griund-water supplN. In 1984 28.000 acre feet of’ water was...XEROPHY’TES ARTEMISiA PHREATOPHYTES SALTBRUSH PICKLEWEED WATER TABLE 𔃻A 60 ~50 SALTGRASS, ALKALI SACATONE, SAITBAUSH ~40 C-. z cc PASTURE ...limit on the amount of useful water stored in the Valley (Photo 12). MAIN GATE NWC B ONTI 2500 / MODERN ALLUVIUM "-, ~GOO’’- -0.S.5 -300 PPM _ Lu 2000

  1. Surface Deformation in Quetta Valley, Balochistan, Pakistan (United States)

    Huang, J.; Shuhab, K.; Wulamu, A.; Crupa, W.; Khan, A. S.; Kakar, D. M.; Kasi, A.


    In February 2011, several ground fissures up to ~1.8 km in length appeared in the Quetta Valley, Balochsitan, Pakistan. It is not clear what caused the sudden occurrence of these fissures. The region is tectonically active and bounded to the west by several regional strike-slip faults including the north-south striking left-lateral Chaman fault system that slips at ~10 mm per year. Several large earthquakes have occurred recently in this area, one fatal 6.4 magnitude (Mw) earthquake occurred on October 28th, 2008. Some parts of Quetta Valley are subsiding; GPS data from two stations in Quetta that span mid-2006 - 2009 recorded subsidence rates of ~10 cm per year. Although subsidence in urban areas is generally attributed to groundwater depletion, it is not clear whether ground fissures are caused by water withdrawal or related to tectonics of the region. This study is designed to quantify and assess the source of surface deformation in Quetta Valley using InSAR, GPS, seismic and earthquake centroid moment tensor data. To detect and map the spatial-temporal features of the processes that led to the surface deformation, we used two time series, i.e., 15 European Remote Sensing (ERS-1/2) satellite images from 1992 - 1999 and 27 ENVISAT images spanning 2003 - 2010. A Differential Interferometric Synthetic Aperture Radar (DInSAR) Small Baseline Subset (SBAS) technique was used to investigate surface deformation. Eleven continuous-GPS stations within the InSAR antenna footprint were compared with the InSAR time series for quality control. Preliminary InSAR results revealed that the areas in and around the fissures are subsiding at 5 cm per year. Five seismic lines totaling ~60 km, acquired in 2003, were used to interpret faults beneath Holocene alluvium in the Quetta Valley. One of the blind faults is a north-south striking thrust fault mapped north into the Takatu range. However, a focal mechanism for the 2008 earthquake in this region indicated northwest

  2. Valley Interfaith Child Care Center CMS


    Kramolisch, Andrew; Mack, Nate


    Included files:,,, viccc_final_paper.doc. The project consisted of revamping Valley Interfaith Child Care Center's website to be more modern and feature media. The goal was to cater to two diverse audiences: the families that needed their services and the investors who helped them keep running. This system is the result of efforts to do that. To run this software locally requires: Ruby 1.9.2 or newer, the bundler gem and either SQLite or PostgreSQL. The ...

  3. Volume of Valley Networks on Mars and Its Hydrologic Implications (United States)

    Luo, W.; Cang, X.; Howard, A. D.; Heo, J.


    Valley networks on Mars are river-like features that offer the best evidence for water activities in its geologic past. Previous studies have extracted valley network lines automatically from digital elevation model (DEM) data and manually from remotely sensed images. The volume of material removed by valley networks is an important parameter that could help us infer the amount of water needed to carve the valleys. A progressive black top hat (PBTH) transformation algorithm has been adapted from image processing to extract valley volume and successfully applied to simulated landform and Ma'adim Valles, Mars. However, the volume of valley network excavation on Mars has not been estimated on a global scale. In this study, the PBTH method was applied to the whole Mars to estimate this important parameter. The process was automated with Python in ArcGIS. Polygons delineating the valley associated depressions were generated by using a multi-flow direction growth method, which started with selected high point seeds on a depth grid (essentially an inverted valley) created by PBTH transformation and grew outward following multi-flow direction on the depth grid. Two published versions of valley network lines were integrated to automatically select depression polygons that represent the valleys. Some crater depressions that are connected with valleys and thus selected in the previous step were removed by using information from a crater database. Because of large distortion associated with global dataset in projected maps, the volume of each cell within a valley was calculated using the depth of the cell multiplied by the spherical area of the cell. The volumes of all the valley cells were then summed to produce the estimate of global valley excavation volume. Our initial result of this estimate was ~2.4×1014 m3. Assuming a sediment density of 2900 kg/m3, a porosity of 0.35, and a sediment load of 1.5 kg/m3, the global volume of water needed to carve the valleys was

  4. Remedial investigation report on the Melton Valley watershed at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Volume 3: Appendix C

    Energy Technology Data Exchange (ETDEWEB)



    The Melton Valley watershed presents a multifaceted management and decision-making challenge because of the very heterogeneous conditions that exist with respect to contaminant type, disposal unit age, mode of disposal, release mechanism, and potential risk-producing pathways. The investigation presented here has assembled relevant site data in the geographic context with the intent of enabling program managers and decision-makers to understand site conditions and evaluate the necessity, relative priority, and scope of potential remedial actions. The industrial and recreational exposure scenarios are used to provide a risk assessment reference context to evaluate levels of contamination in surface water, groundwater, soil, and sediment within each subbasin of the Melton Valley watershed. All available analytical results for the media of interest that could be qualified for use in the risk assessment were screened to determine carcinogenic risk values and noncarcinogenic hazard indexes and to identify the chemicals of concern (COCs) for each evaluated media in each subbasin.

  5. Multimethod characterization of the French Pyrenean valley of Bagn\\`eres-de-Bigorre for seismic hazard evaluation: observations and models

    CERN Document Server

    Souriau, Annie; Cornou, Cécile; Margerin, Ludovic; Calvet, Marie; Maury, Julie; Wathelet, Marc; Grimaud, Franck; Ponsolles, Christrian; Péquegnat, Catherine; Langlais, Mickael; Gueguen, Philippe; 10.1785/ 0120100293


    A narrow rectilinear valley in the French Pyrenees, affected in the past by damaging earthquakes, has been chosen as a test site for soil response characterization. The main purpose of this initiative was to compare experimental and numerical approaches. A temporary network of 10 stations has been deployed along and across the valley during two years; parallel various experiments have been conducted, in particular ambient noise recording, and seismic profiles with active sources for structure determination at the 10 sites. Classical observables have been measured for site amplification evaluation, such as spectral ratios of horizontal or vertical motions between site and reference stations using direct S waves and S coda, and spectral ratios between horizontal and vertical (H/V) motions at single stations using noise and S-coda records. Vertical shear-velocity profiles at the stations have first been obtained from a joint inversion of Rayleigh wave dispersion curves and ellipticity. They have subsequently bee...


    African Journals Online (AJOL)

    production of fodder, fuel and providing protection against soil erosion ... created the mosaics (e.g., different species of trees and fire) is therefore necessary ... Habernosa Cattle Ranch enclosure/,' Senkele Sanctuary, Abjata-Shalla and Awash.

  7. Soil Chemistry as a measure of the distinctiveness of American Viticultural Areas of the Pacific Northwest, USA (United States)

    Pogue, K. R.; Pitcavage, E.


    The Columbia Basin of Washington State is the second largest wine grape growing region in the United States and presently contains 10 American Viticultural Areas (AVAs). Eight of the Columbia Basin's AVAs are smaller subdivisions (sub-AVAs) of the 46,100 km2 Columbia Valley AVA. Although legally distinct, the Columbia Basin AVAs are generally similar with regard to climate, landscape, and soils, the principle components of physical terroir. To test whether the AVAs of the Columbia Basin are distinguishable based on the chemical properties of their soils, 53 samples were collected from vineyards considered to be representative within their respective AVAs. Vineyard soils from the other major viticultural regions of the Pacific Northwest, the Willamette Valley and Snake River Valley, were also sampled for comparison. Soils were sampled from a depth of 50-75 cm and analyzed for bulk chemistry and plant-available nutrients. Based on the analyzed components, only the Columbia Gorge, Walla Walla Valley, and Lake Chelan AVAs were distinctive. The chemical differences that that account for the distinctiveness are attributed to variations in climate and parent material. Columbia Gorge AVA soils are the most distinctive, with significantly higher iron, manganese, and titanium, and significantly lower calcium, soluble salts, and pH. These characteristics can be attributed a greater influence of basaltic bedrock on soil composition, and an average annual precipitation of 76 cm, which is three times that received by most of the Columbia Basin. Another wetter-than-normal part of the Columbia Basin is the Walla Walla Valley where orographic lifting by the Blue Mountains increases the average annual precipitation in the eastern part of the AVA to near 50 cm. Vineyard soils of the Walla Walla Valley, like those of the Columbia Gorge, have higher iron, and lower calcium and soluble salts. The uniqueness of Lake Chelan AVA soils is reflected in decreased concentrations of iron

  8. 河谷地形的地震反应分析%Seismic Response Analysis of Valley Topography

    Institute of Scientific and Technical Information of China (English)

    盛志强; 卢育霞; 石玉成; 刘琨; 万秀红


    The earthquake damage phenomenon indicates that the distribution of earthquake ground motion differs significantly in various parts of bedrock valley areas. The amplitude of ground motion has an important direct impact on the extent of the seismic hazard; larger amplitudes result in more severe disasters. Many towns located in the valley areas are widely distributed over Shanxi, Gansu, and Sichuan provinces and sustain severe damages from earthquakes. Research on this type of area has recently increased with particular emphasis on valley terrain. Many scholars have reported that input data is a significant problem for calculating the parameters of ground motion during strong shocks in such cities because microzoning is often closely related to the characteristics of soil strata and the geomorphological conditions. Nevertheless, the conditions of terrain and geology are interdependent with each other and have an impact on ground motion; it is widely accepted that terrain has an important effect on ground motion. Common valley terrain can be divided into three categories including V valley, inverted trapezoidal valley, and trapezoidal valley. V valley and inverted trapezoidal valley are widespread and are the topics ofnumerous studies. The bottom of V valley is narrow, and many geological disasters such as rock-falls occur in trapezoidal valleys. The inverted trapezoidal valley is more suitable for residency; therefore, research on this type of valley terrain is important. Because the drainage systems and valley landforms are generally not symmetric, homogeneous terrain models with various slope angles, depth-to-width ratios, and asymmetry of valley are used to analyze the variation of peak ground acceleration (PGA) in valley areas. By comparing the PGA, seismic spectra, and acceleration time history, the relationship between ground motion and topography is analyzed in this study. The results show that 1) the ground motion amplitude at the valley bottom appears to

  9. Soil mechanics (United States)

    Mitchell, J. K.; Carrier, W. D., III; Houston, W. N.; Scott, R. F.; Bromwell, L. G.; Durgunoglu, H. T.; Hovland, H. J.; Treadwell, D. D.; Costes, N. C.


    Preliminary results are presented of an investigation of the physical and mechanical properties of lunar soil on the Descartes slopes, and the Cayley Plains in the vicinity of the LM for Apollo 16. The soil mechanics data were derived form (1) crew commentary and debriefings, (2) television, (3) lunar surface photography, (4) performance data and observations of interactions between soil and lunar roving vehicle, (5) drive-tube and deep drill samples, (6) sample characteristics, and (7) measurements using the SRP. The general characteristics, stratigraphy and variability are described along with the core samples, penetrometer test results, density, porosity and strength.

  10. Highlands of the upper Jequitinhonha valley, Brazil: I - characterization and classification

    Directory of Open Access Journals (Sweden)

    Fábio Henrique Alves Bispo


    Full Text Available In the upper Jequitinhonha valley, state of Minas Gerais, Brazi, there are large plane areas known as "chapadas", which are separated by areas dissected by tributaries of the Jequitinhonha and Araçuaí rivers. These dissected areas have a surface drainage system with tree, shrub, and grass vegetation, more commonly known as "veredas", i.e., palm swamps. The main purpose of this study was to characterize soil physical, chemical and morphological properties of a representative toposequence in the watershed of the Vereda Lagoa do Leandro, a swamp near Minas Novas, MG, on "chapadas", the highlands of the Alto Jequitinhonha region Different soil types are observed in the landscape: at the top - Typic Haplustox (LVA, in the middle slope - Xanthic Haplustox (LA, at the footslope - Xanthic Haplustox, gray color, here called "Gray Haplustox" ("LAC" and, at the bottom of the palm swamp - Typic Albaquult (GXbd. These soils were first morphologically described; samples of disturbed and undisturbed soils were collected from all horizons and subhorizons, to evaluate their essential physical and chemical properties, by means of standard determination of Fe, Al, Mn, Ti and Si oxides after sulfuric extraction. The contents of Fe, Al and Mn, extracted with dithionite-citrate-bicarbonate and oxalate treatments, were also determined. In the well-drained soils of the slope positions, the typical morphological, physical and chemical properties of Oxisols were found. The GXbd sample, from the bottom of the palm swamp, is grayish and has high texture gradient (B/A and massive structure. The reduction of the proportion of crystalline iron compounds and the low crystallinity along the slope confirmed the loss of iron during pedogenesis, which is reflected in the current soil color. The Si and Al contents were lowest in the "LAC" soil. There was a decrease of the Fe2O3/TiO2 ratio downhill, indicating progressive drainage restriction along the toposequence. The genesis

  11. Buried paleoindian-age landscapes in stream valleys of the central plains, USA (United States)

    Mandel, R.D.


    A systematic study of late-Quaternary landscape evolution in the Central Plains documented widespread, deeply buried paleosols that represent Paleoindian-age landscapes in terrace fills of large streams (> 5th order), in alluvial fans, and in draws in areas of western Kansas with a thick loess mantle. Alluvial stratigraphic sections were investigated along a steep bio-climatic gradient extending from the moist-subhumid forest-prairie border of the east-central Plains to the dry-subhumid and semi-arid shortgrass prairie of the west-central Plains. Radiocarbon ages indicate that most large streams were characterized by slow aggradation accompanied by cumulic soil development from ca. 11,500 to 10,000??14C yr B.P. In the valleys of some large streams, such as the Ninnescah and Saline rivers, these processes continued into the early Holocene. The soil-stratigraphic record in the draws of western Kansas indicates slow aggradation punctuated by episodes of landscape stability and pedogenesis beginning as early as ca. 13,300??14C yr B.P. and spanning the Pleistocene-Holocene boundary. The development record of alluvial fans in western Kansas is similar to the record in the draws; slow aggradation was punctuated by multiple episodes of soil development between ca. 13,000 and 9000??14C yr B.P. In eastern Kansas and Nebraska, development of alluvial fans was common during the early and middle Holocene, but evidence shows fan development as early as ca. 11,300??14C yr B.P. Buried soils dating between ca. 12,600 and 9000??14C yr B.P. were documented in fans throughout the region. In stream valleys across the Central Plains, rapid alluviation after ca. 9000??14C yr B.P. resulted in deeply buried soils that may harbor Paleoindian cultural deposits. Hence, the paucity of recorded stratified Paleoindian sites in the Central Plains is probably related to poor visibility (i.e., deep burial in alluvial deposits) instead of limited human occupation in the region during the terminal

  12. Biogeochemical plant site conditions in stream valleys after winter flooding: a phytometer approach

    Directory of Open Access Journals (Sweden)

    V. Beumer


    Full Text Available Reintroduction of winter flooding events will have strong effects on the plant growth conditions in the parts of stream valleys that have not been accustomed to flooding in recent years. The major goal of this research is, firstly, to investigate the plant growth conditions in floodplain soils in the period after a winter flood and, secondly, to assess whether a phytometer setup is suitable for the evaluation of winter flooding on plant growth conditions. Soil cores of three agricultural and three semi-natural grassland sites have been exposed to a simulated winter flooding event. Then, cores were subjected to spring conditions in a growth chamber and were planted with seedlings of Anthoxantum odoratum and Lythrum salicaria. The growth conditions changed in opposite directions for our two phytometer species, expressed as biomass and nutrient changes. We discuss possible causes of an increase or decrease in biomass, such as (1 soil nutrient effects (N, P and K, (2 toxic effects of NH4, Fe and Al, and (3 possible shortage of other macro- and micronutrients. The conclusions are that plant growth after winter flooding was affected by enhanced nutrient and toxicant availabilities in agricultural sites and mainly by soil nutrients in the semi-natural sites. The use of the two species selected had clear advantages: Lythrum salicaria is well-suited to assess the nutrient status in previously flooded soils, because it is a well-known invader of wetlands and not easily hampered by potentially toxic compounds, while A. odoratum is less frequently found at wetland soils and more sensitive to toxic compounds and, therefore, a better indicator of possible toxic effects as a result of winter flooding than L. salicaria.

  13. Use of ground-water reservoirs for storage of surface water in the San Joaquin Valley, California (United States)

    Davis, G.H.; Lofgren, B.E.; Mack, Seymour


    occurs in alluvial and lacustrine deposits of late Pliocene age or older; and 3) a body of saline connate water contained in marine sediments of middle Pliocene or older age, which underlies the fresh-water body throughout the area. In much of the eastern part of the valley, especially in the areas of the major streams, the Corcoran clay member is not present and ground water occurs as one fresh-water body to considerable depth. The ground-water body is replenished by infiltration of rainfall, by infiltration from streams, canals, and ditches, by underflow entering the valley from tributary stream canyons, and by infiltration of excess irrigation water. In much of the valley, however, the annual rainfall is so low that little penetrates deeply, and soil-moisture deficiency is perennial. Infiltration from stream channels and canals and from irrigated fields are the principal sources of groundwater recharge. The ground-water storage capacity of the San Joaquin Valley has been estimated in an earlier report (Davis and others, 1959) as 93 million acre-feet. This is the quantity of water that would drain by gravity from the valley deposits if the regional water level were lowered from 10 to 200 feet below the land surface. Storage capacity was estimated for only the part of the valley considered to be potentially usable as a ground-water reservoir. In this study, a 200foot depth was selected as a practical valley-wide depth limit for unwatering under full utilization of the ground-water reservoir, even though in localized areas sections in excess of 350 feet in depth have already been dewatered. Some of the factors that locally limit the utilization of the ground-water reservoir are inferior water quality, relatively impermeable surface soils, and relatively impermeable subsurface deposits. On the basis of a detailed analysis of la peg model, the subsurface geology of the San Joaquin Valley was subdivided into predominantly permeable and impermeable zones in the 1

  14. Energy Balance, Evapo-transpiration and Dew deposition in the Dead Sea Valley (United States)

    Metzger, Jutta; Corsmeier, Ulrich


    The Dead Sea is a unique place on earth. It is a terminal hypersaline lake, located at the lowest point on earth with a lake level of currently -429 m above mean sea level (amsl). It is located in a transition zone of semiarid to arid climate conditions, which makes it highly sensible to climate change (Alpert1997, Smiatek2011). The Virtual Institute DEad SEa Research Venue (DESERVE) is an international project funded by the German Helmholtz Association and was established to study coupled atmospheric hydrological, and lithospheric processes in the changing environment of the Dead Sea. At the moment the most prominent environmental change is the lake level decline of approximately 1 m / year due to anthropogenic interferences (Gertman, 2002). This leads to noticeable changes in the fractions of the existing terrestrial surfaces - water, bare soil and vegetated areas - in the valley. Thus, the partitioning of the net radiation in the valley changes as well. To thoroughly study the atmospheric and hydrological processes in the Dead Sea valley, which are driven by the energy balance components, sound data of the energy fluxes of the different surfaces are necessary. Before DESERVE no long-term monitoring network simultaneously measuring the energy balance components of the different surfaces in the Dead Sea valley was available. Therefore, three energy balance stations were installed at three characteristic sites at the coast-line, over bare soil, and within vegetation, measuring all energy balance components by using the eddy covariance method. The results show, that the partitioning of the energy into sensible and latent heat flux on a diurnal scale is totally different at the three sites. This results in gradients between the sites, which are e.g. responsible for the typical diurnal wind systems at the Dead Sea. Furthermore, driving forces of evapo-transpiration at the sites were identified and a detailed analysis of the daily evaporation and dew deposition rates

  15. Imperial Valley College 2+2+2 Project Handbook. (United States)

    Marquez, Ralph

    This handbook of the Imperial Valley College (IVC) 2+2+2 Project provides an overview of the development of an articulated education program for business and law enforcement careers, involving six local high schools and San Diego State University, Imperial Valley Campus. Following a brief introduction to the 2+2+2 project in section I, section II…

  16. Evidence of late glacial runoff in the lower Mississippi Valley (United States)

    Saucier, Roger T.

    Thousands of cubic kilometers of massive coarse-grained glacial outwash underlie the alluvial plain of the Lower Mississippi Valley between Cairo, Illinois, and the Gulf of Mexico. However, valley trains deposited by braided streams characterize less than one-third of the valley area, and those attributable to runoff from the Laurentide Ice Sheet cover less than 15,000 km2, mostly in the St. Francis Basin segment of the valley. There they form a series of subdued terraces that reflect episodes of meltwater release and possibly catastrophic flood events. Radiocarbon-dated sediment cores establish that the initial runoff entered the basin about 16.3 ka BP and continued without a significant lull for about 5000 years. The distribution of archeological sites tends to support an effective brief cessation of runoff to the valley about 11.0 ka BP when meltwater is thought to have been diverted from the Mississippi River Valley to the St. Lawrence Valley. Both radiocarbon dates and archeological evidence document a final pulse of outwash to the (Lower) Mississippi Valley about 10.0 ka BP when the Mississippi River occupied Thebes Gap near Cairo and created the Charleston Fan. All outwash deposition ended, and the river adopted a meandering regime not later than 9.8 ka BP.

  17. Epidemiology of the neural tube defects in Kashmir Valley

    Directory of Open Access Journals (Sweden)

    Masood Ahmed Laharwal


    Conclusions: The incidence rates of NTDs is very high for Kashmir Valley. Geographical distribution of NTDs at this place confirms a relationship between the socioeconomic status, educational status, maternal too young or advanced age, and environmental factors for the development of a NTD. The results of this study point to the importance establishing a health policy to prevent NTD in Kashmir Valley.

  18. Revisiting Sustainable Development of Dry Valleys in Hengduan Mountains Region

    Institute of Scientific and Technical Information of China (English)

    TANG Ya; XIE Jiasui; SUN Hui


    Dry valleys are a striking geographic landscape in Hengduan Mountains Region and are characterized by low rainfall, desert type of vegetation and fragile environment. Past efforts and resources have been concentrated mainly on rehabilitation of degraded ecosystem and fragile environment,particularly reforestation, while socio-economic development has been largely overlooked. Despite successes in pocket areas, the overall trend of unsustainability and environmental deterioration are continuing. It is important to understand that uplift of the Tibetan Plateau is the root cause of development of dry valleys, and development and formation of dry valleys is a natural process. Human intervention has played a secondary role in development of dry valleys and degradation of dry valleys though human intervention in many cases has speeded up environmental degradation of the dry valleys. It is important to understand that dry valleys are climatic enclaves and an integrated approach that combines rehabilitation of degraded ecosystems and socio-economic development should be adopted if the overall goal of sustainable development of dry valleys is to be achieved. Promotion of niche-based cash crops, rural energy including hydropower, solar energy, biogas and fuelwood plantation is recommended as the priority activities.

  19. 27 CFR 9.27 - Lime Kiln Valley. (United States)


    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Lime Kiln Valley. 9.27... OF THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.27 Lime Kiln Valley. (a) Name. The name of the viticultural area described in this section is “Lime Kiln...

  20. 27 CFR 9.44 - Solano County Green Valley. (United States)


    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Solano County Green Valley. 9.44 Section 9.44 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU... Solano County Green Valley. (a) Name. The name of the viticultural area described in this section...

  1. Enhanced Valley Splitting for Quantum Electronics in Silicon (United States)

    Saraiva, Andre


    Silicon is a placid environment for quantum degrees of freedom with long spin and valley coherence times. A natural drawback is that the same features that protect the quantum state from its environment also hamper its control with external fields. Indeed, engineered nanostructures typically lead to sub-meV splittings between valley states, hindering the implementation of both spin and valley based quantum devices. We will discuss the microscopic theory of valley splitting, presenting three schemes to control valleys on a scale higher than 1 meV: a) in a quantum well, the adoption of a barrier constituted of a layered heterostructure might lead to constructive reflection if the layer thicknesses match the electron wavelength, in analogy with a Bragg mirror; b) the disparity between the high valley splitting in a impurity donor potential and the low splitting in a Si/Insulator interface may be harnessed controlling the tunneling between these two states, so that the valley splitting may be controlled digitally; c) intrinsic Tamm/Shockley interface states might strongly hybridize with conduction states, leading to a much enhanced valley splitting, and its contribution to the 2DEG ground state may be experimentally identified. We argue that this effect is responsible for the enhanced splitting in Si/BOX interfaces.

  2. Agro-ecological characterization of inland valleys in West Arica

    NARCIS (Netherlands)

    Andriesse, W.; Windmeijer, P.N.; Duivenbooden, van N.


    Conceptual issues related to inland valleys, their morphology, hydrology and agro-ecosystems are discussed, as well as a method for their step-wise characterization at different levels of detail. A definition of inland valleys is given, including the description of the main landscape elements (uplan

  3. Technology Finds Its Place in Silicon Valley Schools (United States)

    Hundley, Paula; Scigliano, Marie


    Technology today is poised to usher in the best of times. Exploring what other districts do highlights the common themes as well as the unique challenges. Three very different districts in Silicon Valley--Portola Valley School District, Campbell Union School District and San Jose Unified School District--explain the strategies they use to enhance…

  4. Geddes, Zoos and the Valley Section

    Directory of Open Access Journals (Sweden)

    Catherine Thompson


    Full Text Available The development of Edinburgh Zoological Garden was a pioneering example of the modern approach to animal display, placing animals in naturalistic settings that demanded innovative landscape design. The concept for Edinburgh Zoo, opened in 1913, was devised by Patrick Geddes and developed in collaboration with Frank C Mears and Geddes's daughter, Norah. This paper draws on Welter's (2002 important study of Geddes's vision of the city and on Geddes biographies, as well as on original archive material, to explore aspects of Geddes's vision for landscape architecture in the early twentieth century. The paper discusses Geddes's contribution to contemporary design and planning theory through the concept of the valley section, which comes to an understanding of the global through the local and in turn inspires a vision of the universal. Geddes was influenced by Hagenbeck's design for his zoo, near Hamburg, and by the New York Zoological Park, in developing displays for Edinburgh zoo that attempted to show animal behaviour as it would be in its natural habitat. The work of the German evolutionary biologist, Ernst Haeckel, further inspired Geddes to conceptualise the design as one where, just as ontogeny recapitulates phylogeny, so human civilisation might be recapitulated. He developed a three-dimensional expression of his hypothetical 'valley section' as a model for interaction between life and the environment. The zoo 'within' a city becomes a model for the ideal city, a city 'within' its region, reflecting the highest attainment of human development, yet still linked to the most primitive of origins.

  5. Hoopa Valley Small Scale Hydroelectric Feasibility Project

    Energy Technology Data Exchange (ETDEWEB)

    Curtis Miller


    This study considered assessing the feasibility of developing small scale hydro-electric power from seven major tributaries within the Hoopa Valley Indian Reservation of Northern California ( This study pursued the assessment of seven major tributaries of the Reservation that flow into the Trinity River. The feasibility of hydropower on the Hoopa Valley Indian Reservation has real potential for development and many alternative options for project locations, designs, operations and financing. In order to realize this opportunity further will require at least 2-3 years of intense data collection focusing on stream flow measurements at multiple locations in order to quantify real power potential. This also includes on the ground stream gradient surveys, road access planning and grid connectivity to PG&E for sale of electricity. Imperative to this effort is the need for negotiations between the Hoopa Tribal Council and PG&E to take place in order to finalize the power rate the Tribe will receive through any wholesale agreement that utilizes the alternative energy generated on the Reservation.

  6. Towards Biological Restoration of Tehran Megalopolis River Valleys- Case Study: Farahzad River (United States)

    Samadi, Nafishe; Oveis Torabi, Seyed; Akhani, Hossein


    surrounding steep slopes. The rare local endemic Convolvulus gracillimus still occurs in surrounding dry slopes. Ailanthus altissima is an invasive introduced tree largely occupied disturbed habitats and slopes of the valley associated with large number of ruderals belonging to genera Amaranthus, Bassia, Chenopodium, Echinochloa, Heliotropium, Tribulus etc. Restoration plan include 1. Study of past biological and geomorphological conditions of the area based on remnants of vegetation and aerial and satellite imaginary data 2. Survey of present environmental conditions of the area including identification native and introduced plants and animals, assessing the degree of originality of existing vegetation and cultural landscapes and abiotic factors. 3. Soil reclamation and topography improvements towards cultivation and/or formation of natural vegetation.

  7. Viscous flow lobes in central Taylor Valley, Antarctica: Origin as remnant buried glacial ice (United States)

    Swanger, Kate M.; Marchant, David R.; Kowalewski, Douglas E.; Head, James W., III


    Viscous flow lobes are common throughout the McMurdo Dry Valleys (MDV) of Antarctica. These features have been described as rock glaciers, gelifluction lobes, solifluction lobes, talus mobilized by pore ice and/or segregation ice, and debris-covered glaciers. We investigate the origin, modification, and flow of a 2-km-long lobe (East Stocking Lobe or ESL) along the north wall of central Taylor Valley using field mapping techniques, shallow seismic surveys, time-dependent displacement surveys, and isotopic analyses of buried-ice samples. On the basis of these integrated analyses, we show that the ESL is cored with remnant glacier ice, most probably derived from an advance of nearby Stocking Glacier ˜ 130 kyr BP. Seismic data, coupled with results from ice-flow modeling assuming plastic flow of clean ice, suggest that the buried core of glacier ice is ˜ 14- to 30-m thick. Near its terminus, the ESL flows at a rate of ˜ 2.4 to 6.7 mm a - 1 . The loose drift that caps the buried ice (typically analyses of samples from the upper 30 cm of the ice lie on a slope of ˜ 5.8 (when plotted on a δD vs. δ18O graph), well below the local meteoric water line of 7.75, suggesting modification by freeze/thaw processes and evaporation/sublimation. Measured air and soil temperatures show that intermittent melting is most likely possible during summer months where buried ice is ≤ 35 cm below the ground surface. Morphological comparisons with ice-cored deposits in upland regions of the Dry Valleys, e.g., Mullins and Beacon Valleys (30 km inland and ˜ 500 m higher in elevation), and near the coast (40 km distant and ˜ 500 m lower) reveal marked contrasts in the style of near-surface ice degradation and cryoturbation. From these morphological comparisons, we infer that buried-ice deposits in the stable upland zone have not experienced the relatively warm climate conditions now found at the ESL and at lower elevations in the Dry Valleys region (e.g. sustained summertime

  8. Seismic local site effects characterization in the Andarax River Valley (SE Spain) from ambient seismic noise (United States)

    Carmona, Enrique; García-Jerez, Antonio; Luzón, Francisco; Sánchez-Martos, Francisco; Sánchez-Sesma, Francisco J.; Piña, José


    This work is focused on the characterization of seismic local effects in the Low Andarax River Valley (SE Spain). The Low Andarax River valley is located in an active seismic region, with the higher seismic hazard values in Spain. The landform is composed mainly by sedimentary materials which increase its seismic hazard due to the amplification of the seismic inputs and spectral resonances. We study seismic local effects in the Low Andarax River by analyzing the Horizontal-to-Vertical Spectral Ratio (HVSR) of ambient noise records. The noise data were recorded during two field campaigns in 2012 and 2013. There have been a total of 374 noise measurements with 15 and 30 minutes duration. The acquisition was performed with a Digital Broadband Seismometer Guralp CMG-6TD. The distance between measurements was about 200 meters, covering an area around 40 km2. There have been 6 significant peak frequencies between 0.3 Hz and 5 Hz. It was possible to find interesting areas with similar spectral peaks that coincide with zones with similar microgravimetric anomalies at the alluvial valley. It is also observed a decrease in the frequency peaks from West to East suggesting increased sediment layer. We also compute the soil models at those sites where geotechnical information is available, assuming that the seismic noise is diffuse. We invert the HVSR for these places using horizontally layered models and in the imaginary part the Green functions at the source. It is observed that the S wave velocity inverted models are consistent with the known geotechnical information obtained from drilled boreholes. We identify the elastodynamic properties of the limestone-dolomite materials with a formation of phyllites and quartzite that form the basement of the depression, and those properties of the Miocene and Pliocene detrital deposits (marls, sandy silts, sands and conglomerates) that fill the valley. These results together with the observed resonant frequencies along the Andarax

  9. Influence of drainage status on soil and water chemistry, litter decomposition and soil respiration in central Amazonian forests on sandy soils

    Directory of Open Access Journals (Sweden)

    Antônio Ocimar Manzi


    Full Text Available Central Amazonian rainforest landscape supports a mosaic of tall terra firme rainforest and ecotone campinarana, riparian and campina forests, reflecting topography-induced variations in soil, nutrient and drainage conditions. Spatial and temporal variations in litter decomposition, soil and groundwater chemistry and soil CO2 respiration were studied in forests on sandy soils, whereas drought sensitivity of poorly-drained valley soils was investigated in an artificial drainage experiment. Slightly changes in litter decomposition or water chemistry were observed as a consequence of artificial drainage. Riparian plots did experience higher litter decomposition rates than campina forest. In response to a permanent lowering of the groundwater level from 0.1 m to 0.3 m depth in the drainage plot, topsoil carbon and nitrogen contents decreased substantially. Soil CO2 respiration decreased from 3.7±0.6 µmol m-2 s-1 before drainage to 2.5±0.2 and 0.8±0.1 µmol m-2 s-1 eight and 11 months after drainage, respectively. Soil respiration in the control plot remained constant at 3.7±0.6 µmol m-2 s-1. The above suggests that more frequent droughts may affect topsoil carbon and nitrogen content and soil respiration rates in the riparian ecosystem, and may induce a transition to less diverse campinarana or short-statured campina forest that covers areas with strongly-leached sandy soil.

  10. Groundwater quality in the Santa Clara River Valley, California (United States)

    Burton, Carmen A.; Landon, Matthew K.; Belitz, Kenneth


    The Santa Clara River Valley (SCRV) study unit is located in Los Angeles and Ventura Counties, California, and is bounded by the Santa Monica, San Gabriel, Topatopa, and Santa Ynez Mountains, and the Pacific Ocean. The 460-square-mile study unit includes eight groundwater basins: Ojai Valley, Upper Ojai Valley, Ventura River Valley, Santa Clara River Valley, Pleasant Valley, Arroyo Santa Rosa Valley, Las Posas Valley, and Simi Valley (California Department of Water Resources, 2003; Montrella and Belitz, 2009). The SCRV study unit has hot, dry summers and cool, moist winters. Average annual rainfall ranges from 12 to 28 inches. The study unit is drained by the Ventura and Santa Clara Rivers, and Calleguas Creek. The primary aquifer system in the Ventura River Valley, Ojai Valley, Upper Ojai Valley, and Simi Valley basins is largely unconfined alluvium. The primary aquifer system in the remaining groundwater basins mainly consists of unconfined sands and gravels in the upper portion and partially confined marine and nonmarine deposits in the lower portion. The primary aquifer system in the SCRV study unit is defined as those parts of the aquifers corresponding to the perforated intervals of wells listed in the California Department of Public Health (CDPH) database. Public-supply wells typically are completed in the primary aquifer system to depths of 200 to 1,100 feet below land surface (bls). The wells contain solid casing reaching from the land surface to a depth of about 60-700 feet, and are perforated below the solid casing to allow water into the well. Water quality in the primary aquifer system may differ from the water in the shallower and deeper parts of the aquifer. Land use in the study unit is approximately 40 percent (%) natural (primarily shrubs, grassland, and wetlands), 37% agricultural, and 23% urban. The primary crops are citrus, avocados, alfalfa, pasture, strawberries, and dry beans. The largest urban areas in the study unit are the cities of

  11. Agriculture: Soils (United States)

    Productive soils, a favorable climate, and clean and abundant water resources are essential for growing crops, raising livestock, and for ecosystems to continue to provide the critical provisioning services that humans need.

  12. Modeling the long-term fate of agricultural nitrate in groundwater in the San Joaquin Valley, California (United States)

    Chapelle, Francis H.; Campbell, Bruce G.; Widdowson, Mark A.; Landon, Mathew K.


    Nitrate contamination of groundwater systems used for human water supplies is a major environmental problem in many parts of the world. Fertilizers containing a variety of reduced nitrogen compounds are commonly added to soils to increase agricultural yields. But the amount of nitrogen added during fertilization typically exceeds the amount of nitrogen taken up by crops. Oxidation of reduced nitrogen compounds present in residual fertilizers can produce substantial amounts of nitrate which can be transported to the underlying water table. Because nitrate concentrations exceeding 10 mg/L in drinking water can have a variety of deleterious effects for humans, agriculturally derived nitrate contamination of groundwater can be a serious public health issue. The Central Valley aquifer of California accounts for 13 percent of all the groundwater withdrawals in the United States. The Central Valley, which includes the San Joaquin Valley, is one of the most productive agricultural areas in the world and much of this groundwater is used for crop irrigation. However, rapid urbanization has led to increasing groundwater withdrawals for municipal public water supplies. That, in turn, has led to concern about how contaminants associated with agricultural practices will affect the chemical quality of groundwater in the San Joaquin Valley. Crop fertilization with various forms of nitrogen-containing compounds can greatly increase agricultural yields. However, leaching of nitrate from soils due to irrigation has led to substantial nitrate contamination of shallow groundwater. That shallow nitrate-contaminated groundwater has been moving deeper into the Central Valley aquifer since the 1960s. Denitrification can be an important process limiting the mobility of nitrate in groundwater systems. However, substantial denitrification requires adequate sources of electron donors in order to drive the process. In many cases, dissolved organic carbon (DOC) and particulate organic carbon

  13. Aggregate Resources Study, Cave and Steptoe Valleys, Nevada. (United States)


    Quartzite Creek Range 8 CV-AS Bgan Range Do Dolomite 9 CV-A9 Cave Valley Ls Limestone 10 Cv-Xf0- Egan Range Qtz Quartzite 11 CV-All Egan Range LS...Limestone 12 CV-A12 Cave Valley Aaf a Sandy Gravel G-GM 13 CV-A13 Bgan Range Vii Quartz Latite 14 CV-A14 Cave Valley Ls Limestone 7r 7 FIELD OBSERVATIONS...SO-A2 Bgan Range Vu Dacitic Ash-flow Tuff 25 SO-A3 Steptoe Aalf Sandy Gravel GP-GM Valley 26 SO-A4 Steptoe Aafs Sandy Gravel GE-GM Valley 27 S0-A5

  14. Valleytronics. The valley Hall effect in MoS₂ transistors. (United States)

    Mak, K F; McGill, K L; Park, J; McEuen, P L


    Electrons in two-dimensional crystals with a honeycomb lattice structure possess a valley degree of freedom (DOF) in addition to charge and spin. These systems are predicted to exhibit an anomalous Hall effect whose sign depends on the valley index. Here, we report the observation of this so-called valley Hall effect (VHE). Monolayer MoS2 transistors are illuminated with circularly polarized light, which preferentially excites electrons into a specific valley, causing a finite anomalous Hall voltage whose sign is controlled by the helicity of the light. No anomalous Hall effect is observed in bilayer devices, which have crystal inversion symmetry. Our observation of the VHE opens up new possibilities for using the valley DOF as an information carrier in next-generation electronics and optoelectronics.

  15. Four newly recorded species of Dryopteridaceae from Kashmir valley, India

    Directory of Open Access Journals (Sweden)



    Full Text Available Mir SA, Mishra AK, Reshi ZA, Sharma MP. 2014. Four newly recorded species of Dryopteridaceae from Kashmir valley, India. Biodiversitas 15: 6-11. Habitat diversity, elevation, cloud cover, rainfall, seasonal and temperature variations have created many ideal sites for the luxuriant growth of pteridophytes in the Kashmir valley, yet all the regions of the valley have not been surveyed. In Kashmir valley the family Dryopteridaceae is represented by 31 species. During the recent extensive field surveys of Shopian district four more species viz., Dryopteris caroli-hopei Fraser-Jenkins, Dryopteris blanfordii subsp. nigrosquamosa (Ching Fraser-Jenkins, Dryopteris pulvinulifera (Bedd. Kuntze and Polystichum Nepalense (Spreng C. Chr. have been recorded for the first time from the valley. The taxonomic description, synonyms, distribution and photographs of each species are given in this article.

  16. Partitioning Evapotranspiration over a Vineyard in California's Central Valley (United States)

    Alfieri, J. G.; Kustas, W. P.; Prueger, J. H.; Agam, N.


    The increasing demand for limited water resources due to the ongoing California drought hampers crop production and damages the state's economy. In order to ameliorate the negative consequences of drought and ensure the sustainability of California agriculture, policymakers, resource managers, and agricultural producers must maximize the effective use of the available water. In turn, achieving this goal is predicated on accurate information regarding crop water productivity, the fraction of the total evapotranspiration (ET) that contributes to crop yield expressed in terms of transpiration. However, while a number of approaches, such as isotope analysis and microlysimeter systems, have been developed to partition ET between soil evaporation (E) and transpiration (T), these approaches can be both costly and labor-intensive. Collecting reliable continuous measurements at field scales remains problematic. This study presents the application of a recently developed correlation-based technique that overcomes these difficulties by leveraging high frequency data measured via eddy covariance. Specifically, this scheme combines wavelet decomposition and the theoretical relationship between stomatal and non-stomatal moisture and carbon fluxes to separate E and T. The technique was evaluated over a drip-irrigated vineyard located in California's Central Valley using data collected during the 2015 growing season as a part of the GRAPEX (Grape Remote sensing and Atmospheric Profile Experiment) field campaign. The results indicate a clear diurnal pattern in the fraction of ET due to T with a mid-day peak averaging 80% during the growing season. Similarly, there is a strong seasonal trend with the fraction of ET due T increasing in proportion to the increasing vine biomass during the growing season; at its maximum T accounts for approximately 90% of the total moisture flux. These results are in agreement with those from microlysimeter and sapflow measurements collected at the

  17. Fracture controls on valley persistence: the Cairngorm Granite pluton, Scotland (United States)

    Hall, A. M.; Gillespie, M. R.


    Valleys are remarkably persistent features in many different tectonic settings, but the reasons for this persistence are rarely explored. Here, we examine the structural controls on valleys in the Cairngorms Mountains, Scotland, part of the passive margin of the eastern North Atlantic. We consider valleys at three scales: straths, glens and headwater valleys. The structural controls on valleys in and around the Cairngorm Granite pluton were examined on satellite and aerial photographs and by field survey. Topographic lineaments, including valleys, show no consistent orientation with joint sets or with sheets of microgranite and pegmatitic granite. In this granite landscape, jointing is not a first-order control on valley development. Instead, glens and headwater valleys align closely to quartz veins and linear alteration zones (LAZs). LAZs are zones of weakness in the granite pluton in which late-stage hydrothermal alteration and hydro-fracturing have greatly reduced rock mass strength and increased permeability. LAZs, which can be kilometres long and >700 m deep, are the dominant controls on the orientation of valleys in the Cairngorms. LAZs formed in the roof zone of the granite intrusion. Although the Cairngorm pluton was unroofed soon after emplacement, the presence of Old Red Sandstone (ORS) outliers in the terrain to the north and east indicates that the lower relief of the sub-ORS basement surface has been lowered by 1 km of vertical erosion and for 400 Myr. This valley persistence is a combined product of regionally low rates of basement exhumation and of the existence of LAZs in the Cairngorm pluton and sub-parallel Caledonide fractures in the surrounding terrain with depths that exceed 1 km.

  18. Soil production in forested landscapes (Invited) (United States)

    Roering, J. J.; Booth, A. M.


    One of the most fundamental characteristics that defines landscapes is the presence or absence of a soil mantle. In actively eroding terrain, soil (and other natural resources that depend on it) persists only when the rate of soil production is not eclipsed by denudation. Despite successful efforts to empirically estimate long-term rates of soil production, little predictive capability exists as soil formation results from a complex interplay of biological, physical, and chemical processes. Here, we synthesize a suite of observations from the steep, forested Oregon Coast Range (OCR) and anlayze the role of trees in the conversion of bedrock to soil. Pit/mound topography on forest floors attests to the persistent, wholesale overturning of soil by tree root activity. Using airborne LiDAR data for our study site in the western Oregon Coast Range, we calculated how terrain roughness varies with spatial scale. At scales greater than 10m, the well-established ridge/valley structure of the landscape defines the topography; whereas for scales less than 7m, terrain roughness increases rapidly reflecting the stochastic nature of bioturbation associated with large, coniferous trees. Empirical estimates of soil production in the OCR by Heimsath et al (2001, ESPL) reveal that production rates decrease exponentially with depth and the decay constant is 2.68 (1/m). From dozens of soil pits in the OCR, we show that the density of trees roots declines exponentially with depth at a similar rate, 2.57 (1/m). In other words, rates of soil production appear to be well-correlated with root density. Bedrock is often excavated during tree turnover events and we documented that the volume of bedrock incorporated in overturned coniferous rootwads increases rapidly for tree diameters greater than 0.5m (which correponds to a 60-80 yr old Douglas fir tree in Western Oregon). Smaller (and thus younger) trees entrain negligible bedrock when overturned, suggesting that their root systems are

  19. Napa Valley Community College District and Napa Valley College Faculty Association/CTA/NEA 1988-89 Agreement. (United States)

    Napa Valley Community Coll. District, Napa, CA.

    The collective bargaining agreement between the Board of Trustees of the Napa Valley Community College District and the Napa Valley College Faculty Association/California Teachers Association/National Education Association is presented. This contract, in effect from June 1988 through July 1989, deals with the following topics: bargaining agent…

  20. Water resources of Parowan Valley, Iron County, Utah (United States)

    Marston, Thomas M.


    Parowan Valley, in Iron County, Utah, covers about 160 square miles west of the Red Cliffs and includes the towns of Parowan, Paragonah, and Summit. The valley is a structural depression formed by northwest-trending faults and is, essentially, a closed surface-water basin although a small part of the valley at the southwestern end drains into the adjacent Cedar Valley. Groundwater occurs in and has been developed mainly from the unconsolidated basin-fill aquifer. Long-term downward trends in groundwater levels have been documented by the U.S. Geological Survey (USGS) since the mid-1950s. The water resources of Parowan Valley were assessed during 2012 to 2014 with an emphasis on refining the understanding of the groundwater and surface-water systems and updating the groundwater budget.Surface-water discharge of five perennial mountain streams that enter Parowan Valley was measured from 2013 to 2014. The total annual surface-water discharge of the five streams during 2013 to 2014 was about 18,000 acre-feet (acre-ft) compared to the average annual streamflow of about 22,000 acre-ft from USGS streamgages operated on the three largest of these streams from the 1940s to the 1980s. The largest stream, Parowan Creek, contributes more than 50 percent of the annual surface-water discharge to the valley, with smaller amounts contributed by Red, Summit, Little, and Cottonwood Creeks.Average annual recharge to the Parowan Valley groundwater system was estimated to be about 25,000 acre-ft from 1994 to 2013. Nearly all recharge occurs as direct infiltration of snowmelt and rainfall on the Markagunt Plateau east of the valley. Smaller amounts of recharge occur as infiltration of streamflow and unconsumed irrigation water near the east side of the valley on alluvial fans associated with mountain streams at the foot of the Red Cliffs. Subsurface flow from the mountain block to the east of the valley is a significant source of groundwater recharge to the basin-fill aquifer

  1. Plant water use characteristics of five dominant shrub species of the Lower Rio Grande Valley, Texas, USA: implications for shrubland restoration and conservation. (United States)

    Adhikari, Arjun; White, Joseph D


    The biogeographic distribution of plant species is inherently associated with the plasticity of physiological adaptations to environmental variation. For semi-arid shrublands with a legacy of saline soils, characterization of soil water-tolerant shrub species is necessary for habitat restoration given future projection of increased drought magnitude and persistence in these ecosystems. Five dominant native shrub species commonly found in the Lower Rio Grande Valley, TX, USA, were studied, namely Acacia farnesiana, Celtis ehrenbergiana, Forestiera angustifolia, Parkinsonia aculeata and Prosopis glandulosa. To simulate drought conditions, we suspended watering of healthy, greenhouse-grown plants for 4 weeks. Effects of soil salinity were also studied by dosing plants with 10% NaCl solution with suspended watering. For soil water deficit treatment, the soil water potential of P. glandulosa was the highest (-1.20 MPa), followed by A. farnesiana (-4.69 MPa), P. aculeata (-5.39 MPa), F. angustifolia (-6.20 MPa) and C. ehrenbergiana (-10.02 MPa). For the soil salinity treatment, P. glandulosa also had the highest soil water potential value (-1.60 MPa), followed by C. ehrenbergiana (-1.70 MPa), A. farnesiana (-1.84 MPa), P. aculeata (-2.04 MPa) and F. angustifolia (-6.99 MPa). Within the species, only C. ehrenbergiana and F. angustifolia for soil water deficit treatment and A. farnesiana for the salinity treatment had significantly lower soil water potential after 4 weeks of treatment (P water potential, stomatal conductance and net photosynthesis of the species significantly reduced over time for both treatments (P water availability, some species demonstrated limited tolerance for extreme water stress that may be important for management of future shrub diversity in Lower Rio Grande Valley.

  2. Benchmark soils on alluvial, fluvial and fluvio-glacial formations of the upper-Segre valley Suelos de referencia en formaciones aluviales, fluviales y fluvio-glaciales de la cabecera del río Segre Solos de referência em formações aluviais, fluviais e fluvio-glaciais da cabeceira do rio Segre

    Directory of Open Access Journals (Sweden)

    Rosa María Poch Claret


    Full Text Available The upper reaches of the Segre river, flowing through the Pyrenees, offers a variety of geomorphic surfaces that allow us to study soil chronosequences. The objective of this work is to widen the knowledge about the main characteristics and formation processes of some benchmark soils developed on fluvio-glacial, alluvial-fan and terrace materials of Pleistocene and Holocene age related to the Segre river, either siliceous or carbonatic. This knowledge will allow us to identify soil forming processes, commonly found in Mediterranean environments such as carbonate redistribution, clay formation and mobilization and rubefaction, all as functions of parent material and age. Five profiles, ranging from the Lower Pleistocene to the Holocene were classified according to Soil Taxonomy/WRB. The Montferrer profile (Calcic Palexeralf /Calcic Cutanic Luvisol (Chromic is a deep, partly decarbonated soil, with calcium carbonate accumulation in depth covering glacial features. The Torre del Remei profile (Typic Paleustalf /Cutanic Luvisol developed on silicic moraines and shows an extreme clay formation and illuviation. The Alp (Typic Haplustalf /Cutanic Luvisol and Tartera (Petric Calciustept /Petric Calcisol soils are developed on alluvial fans with calcium carbonate sources. The former is partly decarbonated, whilst the latter is rubefacted on top and shows speleothem-like carbonate pendants with superposition of clay illuviation. The youngest profile, Abellerols, (Typic Calciustept /Typic Calcisol shows only a partial decarbonation and calcite accumulation at depth. The results show that soil development is determined by the age of the surface and the source of calcite, either in the parent rock or brought by subsurface flow: clay illuviation is extreme in absence of it. Special morphologies of carbonate pendants are indicators of environmental conditions. The coexistence of clay coatings and secondary calcite can be explained by recarbonatation or by

  3. Local and regional influences over soil microbial metacommunities in the Transantarctic Mountains


    Sokol, E. R.; Herbold, C.W.; C.K. LEE; Cary, S. C.; Barrett, J E


    The metacommunity concept provides a useful framework to assess the influence of local and regional controls over diversity patterns. Culture-independent studies of soil microbial communities in the McMurdo Dry Valleys of East Antarctica (77 degrees S) have shown that bacterial diversity is related to soil geochemical gradients, while studies targeting edaphic cyanobacteria have linked local diversity patterns to dispersal-based processes. In this study, we increased the spatial extent of obs...

  4. The Valley Bottom Extraction Tool (V-BET): A GIS tool for delineating valley bottoms across entire drainage networks (United States)

    Gilbert, Jordan T.; Macfarlane, William W.; Wheaton, Joseph M.


    The shape, size and extent of a valley bottom dictates the form and function of the associated river or stream. Consequently, accurate, watershed-wide delineation of valley bottoms is increasingly recognized as a necessary component of watershed management. While many valley bottom delineation approaches exist, methods that can be effectively applied across entire drainage networks to produce reasonably accurate results are lacking. Most existing tools are designed to work using high resolution topography data (i.e. > 2 m resolution Digital Elevation Model (DEM)) and can only be applied over relatively short reach lengths due to computational or data availability limitations. When these precise mapping approaches are applied throughout drainage networks (i.e. 102-104 km), the computational techniques often either do not scale, or the algorithms perform inconsistently. Other tools that produce outputs at broader scale extents generally utilize coarser input topographic data to produce more poorly resolved valley bottom approximations. To fill this methodology gap and produce relatively accurate valley bottoms over large areas, we developed an algorithm that accepts terrain data from one to 10 m with slope and valley width parameters that scale based on drainage area, allowing for watershed-scale valley bottom delineation. We packaged this algorithm in the Valley Bottom Extraction Tool (V-BET) as an open-source ArcGIS toolbox for ease of use. To illustrate V-BET's scalability and test the tool's robustness across different physiographic settings, we delineated valley bottoms for the entire perennial drainage network of Utah as well as twelve watersheds across the interior Columbia River Basin (totaling 55,400 km) using 10 m DEMs. We found that even when driven with relatively coarse data (10 m DEMs), V-BET produced a relatively accurate approximation of valley bottoms across the entire watersheds of these diverse physiographic regions.

  5. A soil emergence trap for collections of phlebotomine sand flies

    Directory of Open Access Journals (Sweden)

    Casanova Cláudio


    Full Text Available The identification of breeding sites of sand flies is of great epidemiological interest. A soil emergence trap for investigating potential sand fly breeding sites is described. The trap was tested in two rural areas in the Mogi Guaçu River Valley where the American cutaneous leishmaniasis is an endemic disease. Seventy-three sand fly individuals of three species, Lutzomyia intermedia s. l., L. whitmani and L. pessoai, were collected on the forest floor and peridomicile.

  6. Soil archives of mardel deposits: the impact of Late Holocene vegetation development, climatic oscillations and historical land use on soil erosion in Luxembourg (United States)

    van Mourik, Jan; Slotboom, Ruud


    Mardel genesis. Mardels are small scale circular to elongated closed depressions (Ø > 50 m). They occur in Luxembourg on the Lias plateau in the Gutland, but also in other regions with landscapes, developed on Keuper and Lias deposits (as Lorraine). We can distinguish geogenetic and anthropogenic mardels. There are two types of genetic mardels, sink holes (controlled by diaclases in the Luxembourger sandstone and 'true mardels' or subsidence basins (controlled by dissolved gypsic lenses in marls of the Keuper deposits). These mardels developed during the Holocene. The age of the mardel sediments is Subatlantic; the sediments have been deposited on a palaeosol. Anthropogenic mardels are the result of historic clay excavation (Roman Time or younger). The age of these mardels is Subatlantic. The age of the sediments is also Subatlantic; the sediments have been deposited on a truncated soil in excavations. In all the genetic types of mardels, the sediments can consist of peat, peaty loam, or colluvic clayloam and the mardel sediments contain always valuable soil archives for the reconstruction of the impact of vegetation development, climatic oscillations and land use on soil erosion and deposition. Comparison of mardel deposits and valley deposits. - Pre-Holocene mardels have been eroded during the Weichselian. Geogenic mardels have been developed during the Holocene, anthropogenic mardels have been excavated since Roman Time. The age of the clastic (colluvic) deposits in mardels is Subatlantic - In the Late Glacial, valley bottoms were rather broad and covered with a gravelly bed load. Till the Subboreal river incision was active in primary valleys and peat accumulation took place on broad valley bottoms of secondary valleys. Since Celtic/Roman Time deforestation and extension of agriculture. During the Subatlantic colluvic/alluvic sedimentation took place on all the valley bottoms. The Subatlantic is a period of accelerated sedimentation of clastic sediments in

  7. Field Scale Groundwater Nitrate Loading Model for the Central Valley, California, 1945-Current (United States)

    Harter, T.; Dzurella, K.; Bell, A.; Kourakos, G.


    Anthropogenic groundwater nitrate contamination in the Central Valley aquifer system, California, is widespread, with over 40% of domestic wells in some counties exceeding drinking water standards. Sources of groundwater nitrate include leaky municipal wastewater systems, municipal wastewater recharge, onsite wastewater treatment (septic) systems, atmospheric nitrogen deposition, animal farming, application of organic waste materials (sludge, biosolids, animal manure) to agricultural lands, and synthetic fertilizer. At the site or field scale, nitrogen inputs to the landscape are balanced by plant nitrogen uptake and harvest, atmospheric nitrogen losses, surface runoff of nitrogen, soil nitrogen storage changes, and leaching to groundwater. Irrigated agriculture is a dominant player in the Central Valley nitrogen cycle: The largest nitrogen fluxes are synthetic fertilizer and animal manure applications to cropland, crop nitrogen uptake, and groundwater nitrogen losses. We construct a historic field/parcel scale groundwater nitrogen loading model distinguishing urban and residential areas, individual animal farming areas, leaky wastewater lagoons, and approximately 50 different categories of agricultural crops. For non-agricultural landuses, groundwater nitrate loading is based on reported leaching values, animal population, and human population. For cropland, groundwater nitrate loading is computed from mass balance, taking into account diverse and historically changing management practices between different crops. Groundwater nitrate loading is estimated for 1945 to current. Significant increases in groundwater nitrate loading are associated with the expansion of synthetic fertilizer use in the 1950s to 1970s. Nitrate loading from synthetic fertilizer use has stagnated over the past 20 years due to improvements in nutrient use efficiency. However, an unbroken 60 year exponential increase in dairy production until the late 2000s has significantly impacted the

  8. Suitability evaluation and zoning in ecological natural restoration of soil and water conservation in Funiu Mountains Area of Huaihe River Valley%淮河流域伏牛山区水土保持生态自然修复适宜性评价与分区

    Institute of Scientific and Technical Information of China (English)

    徐志强; 张光灿; 刘霞; 王冰; 赵瑜; 李欢; 吴迪


    伏牛山区水土流失危害严重,实施水土保持生态修复是加快区域水土流失防治步伐的有效措施.针对大区域生态修复工程建设亟待解决的适宜性区划问题,采用主导因子分级组合及其专题图叠加分析法,对伏牛山区生态自然修复的适宜性进行评价与分区.1)提出地貌类型、土地覆被类型和地面坡度3个主导因子作为生态自然修复适宜性评价与分区指标,并对其进行分级(分类)和分区;2)按照实施封禁保育(促进生态自然修复)措施的适宜程度,提出“适宜”、“暂不适宜”和“不适宜”3个生态自然修复适宜性等级,并确定其区域分布格局;3)将伏牛山区的生态自然修复适宜性划分为2个大区(一级区)、4个亚区(二级区)和15个类型区(三级区).研究结果可为伏牛山区水土保持生态自然修复工程的规划布局提供技术支撑.%The soil erosion in Funiu Mountains Area is serious,and the implementation of ecological restoration in soil and water conservation is an effective way to solve the problem of soil and water loss.Aiming at resolving the suitability division problems in large-scale ecological restoration project,the dominant factor grading combination and the analysis methods of thematic map overlay were used to evaluate and zone the suitability of ecological natural restoration in Funiu Mountains Area.The results showed that 1) the three dominant factors including geomorphological types,land-cover types and the slopes of the ground,were proposed as the indexes in the suitability assessment and classification of ecological natural restoration; 2) According to the degree of suitability in the implement of protected conservation,namely the ecological natural restoration,three suitability grades of ecological natural restoration including suitability,temporarily unsuitability and unsuitability,were proposed in Funiu Mountains Area,and their regional distribution patterns were

  9. Rift Valley fever: the Nigerian story

    Directory of Open Access Journals (Sweden)

    Adewale A. Adeyeye


    Full Text Available Rift Valley fever (RVF is an arthropod-borne zoonotic disease of livestock. It is characterised by fever, salivation, abdominal pain, diarrhoea, mucopurulent to bloody nasal discharge, abortion, rapid decrease in milk production and death in animals. Infected humans experience an influenza-like illness that is characterised by fever, malaise, headaches, nausea and epigastric pain followed by recovery, although mortality can occur. RVF was thought to be a disease of sub-Saharan Africa but with the outbreaks in Egypt and the Arabian Peninsula, it may be extending its range further afield. Virological and serological evidence indicates that the virus exists in Nigeria and, with the warning signal sent by international organisations to countries in Africa about an impending outbreak, co-ordinated research between veterinarians and physicians in Nigeria is advocated.

  10. Elk Valley Coal innovation paving the way

    Energy Technology Data Exchange (ETDEWEB)

    Chen, C.; Ednie, H.; Weldon, H.


    Elk Valley Coal maintains performance optimization across its six metallurgical coal operations. Performance, personnel issues, and training are discussed. Programmes at Fording River, Greenhills, and Coal Mountain are described. Fording River is implementing new computer systems and high-speed wireless networks. The pit control system and the equipment maintenance and remote maintenance programmes are being improved. The Glider Kit program to rebuild major equipment is described. Safety and productivity measures at Greenhills include testing and evaluation of innovations such as the Drilling and Blasting System (DABS), a payload monitor on a shovel, and two GPS-based systems. Blasting methods, a timing study that examines wall stability, fragmentation simulation, and the Six Mine structure at Coal Mountain are described. 5 photos.

  11. An epidemiological model of Rift Valley fever

    Directory of Open Access Journals (Sweden)

    Nicole P. Leahy


    Full Text Available We present and explore a novel mathematical model of the epidemiology of Rift Valley Fever (RVF. RVF is an Old World, mosquito-borne disease affecting both livestock and humans. The model is an ordinary differential equation model for two populations of mosquito species, those that can transmit vertically and those that cannot, and for one livestock population. We analyze the model to find the stability of the disease-free equlibrium and test which model parameters affect this stability most significantly. This model is the basis for future research into the predication of future outbreaks in the Old World and the assessment of the threat of introduction into the New World.

  12. Organic and nitrogen fertilization of soil under Syrah grapevine: effects on soil chemical properties and nitrate concentration.


    Davi José Silva; Luís Henrique Bassoi; Marlon Gomes da Rocha; Alexsandro Oliveira da Silva; Magnus Dall’Igna Deon


    ABSTRACT Viticulture is an activity of great social and economic importance in the lower-middle region of the São Francisco River valley in northeastern Brazil. In this region, the fertility of soils under vineyards is generally poor. To assess the effects of organic and nitrogen fertilization on chemical properties and nitrate concentrations in an Argissolo Vermelho-Amarelo (Typic Plinthustalf), a field experiment was carried out in Petrolina, Pernambuco, on Syrah grapevines. Treatments cons...

  13. Organic and Nitrogen Fertilization of Soil under ‘Syrah’ Grapevine: Effects on Soil Chemical Properties and Nitrate Concentration


    Silva,Davi José; Bassoi,Luís Henrique; Rocha,Marlon Gomes da; Silva, Alexsandro Oliveira da [UNESP; Deon,Magnus Dall'Igna


    ABSTRACT Viticulture is an activity of great social and economic importance in the lower-middle region of the São Francisco River valley in northeastern Brazil. In this region, the fertility of soils under vineyards is generally poor. To assess the effects of organic and nitrogen fertilization on chemical properties and nitrate concentrations in an Argissolo Vermelho-Amarelo (Typic Plinthustalf), a field experiment was carried out in Petrolina, Pernambuco, on Syrah grapevines. Treatments cons...

  14. Effects of winery wastewater on soil, grape nutrition, and wine quality (United States)

    Many wineries are interested in recycling wastewater for irrigation. This project investigates the effects on winemaking when winery wastewater (WW) is recycledfor irrigation. Water samples and soils samples were collected from one Napa Valley and one Sonoma vineyard. Leaf and berry samples were col...

  15. Decisive key-factors influencing farm households' soil and water conservation investments

    NARCIS (Netherlands)

    Kessler, A.


    In the inter-Andean valleys of Bolivia decisive key-factors influencing farm households' soil and water conservation investments were determined. The household's progressiveness most influences the decision how much to invest; dynamic and responsible families are among the first. Economic stratum is

  16. Thermal shock and splash effects on burned gypseous soils from the Ebro Basin (NE Spain)

    NARCIS (Netherlands)

    Leon, J.; Seeger, M.; Badia, D.; Peters, P.; Echeverria, M.T.


    Fire is a natural factor of landscape evolution in Mediterranean ecosystems. The middle Ebro Valley has extreme aridity, which results in a low plant cover and high soil erodibility, especially on gypseous substrates. The aim of this research is to analyze the effects of moderate heating on physical

  17. Direct measurement of exciton valley coherence in monolayer WSe2

    KAUST Repository

    Hao, Kai


    In crystals, energy band extrema in momentum space can be identified by a valley index. The internal quantum degree of freedom associated with valley pseudospin indices can act as a useful information carrier, analogous to electronic charge or spin. Interest in valleytronics has been revived in recent years following the discovery of atomically thin materials such as graphene and transition metal dichalcogenides. However, the valley coherence time—a crucial quantity for valley pseudospin manipulation—is difficult to directly probe. In this work, we use two-dimensional coherent spectroscopy to resonantly generate and detect valley coherence of excitons (Coulomb-bound electron–hole pairs) in monolayer WSe2 (refs ,). The imposed valley coherence persists for approximately one hundred femtoseconds. We propose that the electron–hole exchange interaction provides an important decoherence mechanism in addition to exciton population recombination. This work provides critical insight into the requirements and strategies for optical manipulation of the valley pseudospin for future valleytronics applications.

  18. Geothermal hydrology of Warner Valley, Oregon: a reconnaissance study

    Energy Technology Data Exchange (ETDEWEB)

    Sammel, E.A.; Craig, R.W.


    Warner Valley and its southern extension, Coleman Valley, are two of several high-desert valleys in the Basin and Range province of south-central Oregon that contain thermal waters. At least 20 thermal springs, defined as having temperatures of 20/sup 0/C or more, issue from Tertiary basaltic flows and tuffs in and near the valleys. Many shallow wells also produce thermal waters. The highest measured temperature is 127/sup 0/C, reported from a well known as Crump geyser, at a depth of 200 meters. The hottest spring, located near Crump geyser, has a surface temperature of 78/sup 0/C. The occurrence of these thermal waters is closely related to faults and fault intersections in the graben and horst structure of the valleys. Chemical analyses show that the thermal waters are of two types: sodium chloride and sodium bicarbonate waters. Chemical indicators show that the geothermal system is a hot-water rather than a vapor-dominated system. Conductive heat flow in areas of the valley unaffected by hydrothermal convection is probably about 75 milliwatts per square meter. The normal thermal gradient in valley-fill dpeosits in these areas may be about 40/sup 0/C per kilometer. Geothermometers and mixing models indicate that temperatures of equilibration are at least 170/sup 0/C for the thermal components of the hotter waters. The size and location of geothermal reservoirs are unknown.


    Directory of Open Access Journals (Sweden)

    Mihaela Lungu


    Full Text Available Selenium mobility in soil depends on a multitude of physical and chemical factors. The present paper highlights the selenium solubilization degree out of the total soil content in relation with its agrochemical properties. Soils samples were considered collected from different agricultural areas of the Country, with or without certain natural handicaps, from soils under industrial impact and long term agrochemical experiments. The selenium solubilization percentages out of the soil total content ranged between 3.57 and 8.15%. No solubilization percentage was calculated for Central and Southern Dobrudja and the South-Eastern Romanian Plane, because the total selenium quantities in these areas are lower and mobile selenium values are very low. The statistical analysis of the calculated percentage values highlighted homogeneous areas and areas with a higher scattering degree. Thus, in agricultural land, in acknowledged agrarian areas and in long term agricultural experiments, the percentage values are better grouped, showing (expectable soil homogeneousness, on one hand, and a significant soil selenium supply and its adequate solubilization for plant nutrition, on the other. The most scattered values occurred in the Călmăţui and Buzău valleys area in halomorphic soils, and in the Făgăraş Depression which is under the industrial polluting influence of chemical works. Among the causes for these differences is the uniformity or non-uniformity of the terrains, induced by land use and the existence or not of a handicap (polluting impact or halomorphic soils, for example. In general, there are no significant differences between the selenium mobility values and their grouping or scattering degree in the soil depth. A single exception stands out, namely in the Făgăraş Depression, where the selenium solubilization degree tends to increase with soil depth, as well as the scattering degree. In the Danube Delta diked areas Sireasa and Pardina very

  20. Estimation of landslides activities evolution due to land-use changes in a Pyrenean valley (United States)

    Vandromme, Rosalie; Desramaut, Nicolas; Cottin, Léa; Bernardie, Séverine; Grandjean, Gilles


    Global changes would have impacts worldwide, but their effects should be even more exacerbated in areas particularly vulnerable. Mountainous areas are among these vulnerable territories. Ecological systems are often at a fragile equilibrium, socio-economical activities are often climate-dependent and climate-driven natural hazards can be a major threat for human activities. In order to estimate the capacity of such mountainous valleys to face global changes (climate, but also climate- and human- induced land-use changes), it is necessary to be able to evaluate the evolution of the different threats. The present work presents a method to evaluate the influences of the evolution of both climate and vegetation cover on landslides activities over a whole valley, to propose adequate solutions for current and future forestry management. It is therefore necessary to properly estimate the vegetation influences on slope stabilities. In the present study, we develop a complementary module to our large-scale slope stability assessment tool to take into account the effects of vegetation on the mechanical soil properties (cohesion and over-load), but also on the slope hydrology (change in interceptions, run-off, and infiltration). Hence the proposed method combines a mechanical stability model (using finite slope analysis), a hydrological model, and a vegetation module which interfere with both aspects. All these elements are interfaced within a GIS-based solution. The whole chain is applied to a 100-km² Pyrenean Valley, for the ANR Project SAMCO (Society Adaptation for coping with Mountain risks in a global change COntext), as a first step in the chain for risk assessment for different climate and economical development scenarios, to evaluate the resilience of mountainous areas.

  1. [The impact of population growth on Tamba Kosi, a Himalayan valley in Nepal]. (United States)

    Verliat, S


    Two several-month-long stays in the isolated Tamba Kosi valley in Nepal in 1983 and 1986 allowed an assessment of the importance of changes in rural societies. In about 50 years, the oldest inhabitants of some villages have seen the number of houses quadruple. In the absence of reliable statistical data, the inhabitants say that the Tamba Kosi valley population has doubled in the last 25 years. This population growth exacerbates the multiethnic fight for good land (i.e., ground of modest slope, hot, and humid). Many people have emigrated, which has somewhat eased problems relative to population growth. Soil degradation, which is becoming more and more acute, drives the inhabitants to cut down trees and clear the land for cultivation of new plots. These new plots are running up against steep slopes and high altitude. Most families have barely two hectares, which must suffice to feed 5-6 people on average. This fuels intensification of agricultural production, resulting in low efficacy. Livestock mutilate forests with their hooves and teeth. The marked increase in the variety of livestock accelerates this destruction. Three types of building materials are used in this high valley: thatch, shingles (fir tree), and bamboo matting. The disappearance of wild grasses used to make thatch roofs and people moving to higher and higher altitudes resulted in use of shingles to make roofs. Buildings made of shingles, which demanded changes in construction techniques, changed the conception of homes. They became the preferred building type, which increased the demand for fir trees and deforestation. This lead to a demand for roofing material made of bamboo matting and another change in construction techniques. The retreat of the forest and disappearance of the most wanted plant species are the most spectacular impacts of population growth. This environmental degradation exacerbates erosion at all bioclimatic altitudes.

  2. Geochemical evidence for seasonal controls on the transportation of Holocene loess, Matanuska Valley, southern Alaska, USA (United States)

    Muhs, Daniel; Budahn, James R.; Skipp, Gary L.; McGeehin, John


    Loess is a widespread Quaternary deposit in Alaska and loess accretion occurs today in some regions, such as the Matanuska Valley. The source of loess in the Matanuska Valley has been debated for more than seven decades, with the Knik River and the Matanuska River, both to the east, being the leading candidates and the Susitna River, to the west, as a less favorable source. We report here new stratigraphic, mineralogic, and geochemical data that test the competing hypotheses of these river sources. Loess thickness data are consistent with previous studies that show that a source or sources lay to the east, which rules out the Susitna River as a source. Knik and Matanuska River silts can be distinguished using Sc–Th–La, LaN/YbN vs. Eu/Eu∗, Cr/Sc, and As/Sb. Matanuska Valley loess falls clearly within the range of values for these ratios found in Matanuska River silt. Dust storms from the Matanuska River are most common in autumn, when river discharge is at a minimum and silt-rich point bars are exposed, wind speed from the north is beginning to increase after a low-velocity period in summer, snow depth is still minimal, and soil temperatures are still above freezing. Thus, seasonal changes in climate and hydrology emerge as critical factors in the timing of aeolian silt transport in southern Alaska. These findings could be applicable to understanding seasonal controls on Pleistocene loess accretion in Europe, New Zealand, South America, and elsewhere in North America.

  3. Geochemical evidence for seasonal controls on the transportation of Holocene loess, Matanuska Valley, southern Alaska, USA (United States)

    Muhs, Daniel R.; Budahn, James R.; Skipp, Gary L.; McGeehin, John P.


    Loess is a widespread Quaternary deposit in Alaska and loess accretion occurs today in some regions, such as the Matanuska Valley. The source of loess in the Matanuska Valley has been debated for more than seven decades, with the Knik River and the Matanuska River, both to the east, being the leading candidates and the Susitna River, to the west, as a less favorable source. We report here new stratigraphic, mineralogic, and geochemical data that test the competing hypotheses of these river sources. Loess thickness data are consistent with previous studies that show that a source or sources lay to the east, which rules out the Susitna River as a source. Knik and Matanuska River silts can be distinguished using Sc-Th-La, LaN/YbN vs. Eu/Eu∗, Cr/Sc, and As/Sb. Matanuska Valley loess falls clearly within the range of values for these ratios found in Matanuska River silt. Dust storms from the Matanuska River are most common in autumn, when river discharge is at a minimum and silt-rich point bars are exposed, wind speed from the north is beginning to increase after a low-velocity period in summer, snow depth is still minimal, and soil temperatures are still above freezing. Thus, seasonal changes in climate and hydrology emerge as critical factors in the timing of aeolian silt transport in southern Alaska. These findings could be applicable to understanding seasonal controls on Pleistocene loess accretion in Europe, New Zealand, South America, and elsewhere in North America.

  4. Water Quality Parameters of the Yaqui Valley's Aquifer in Semiarid Northwest Mexico and Construction of a Proposed Integrated Salinity Index (United States)

    Cortes-Jimenez, J.; Troyo-Dieguez, E.; Murillo-Amador, B.; Garcia-Hernandez, J.; Garatuza-Payan, J.; Suh Lee, S.


    Salination (salinisation or salinization), a geochemical process related to the build up of salts in soil and groundwater, affects the agroecosystems, reduces the quality of soil, and limits the potential uses of ground water. Unplanned utilization of water resources may lead to the salination problems which cause land deterioration; in consequence, salination is one of the main problems related with degradation of irrigated cropland. In the northwest region of Mexico, the Yaqui Valley is the main agricultural area with 250,000 ha of irrigated cropland. In the historical context of the 'Green Revolution', this semiarid valley, where the 'improved variety-based agriculture' episode originated, used to be a productive agricultural district once flourishing with grain fields, but now vast rows of wheat farmland remain unplanted. As the reservoir which had supplied the irrigation water have reached critically low levels, reservoir water had to be pumped up out of diminished storage over the spillway in order to reach the channel that irrigates the valley. Since 1997 there has been a drastic reduction of the water storage in the reservoir system built on the Yaqui River. An option that temporarily solves the water shortage in this reservoir system consists in the development of deep well network by which 350 million cubic meters of ground water are to be extracted each year. Nevertheless, recent studies state that in 93% of these wells, the extracted water is classified as high salinity or very high salinity (C3 and C4). A strategic approach for sustainable soil and water management became necessary to cope with this problem. The objective of this work was to study the spatial distribution of water quality through GIS methods for the determination of a salination risk index (SRI) according to the soil texture, to identify the aquifer zones where there exists water of low quality, and in the same way, the zones with high concentration of sodium, chloride, bicarbonate

  5. Radiocesium storage in soil microbial biomass of undisturbed alpine meadow soils and its relation to {sup 137}Cs soil-plant transfer

    Energy Technology Data Exchange (ETDEWEB)

    Stemmer, Michael [Institute of Soil Research, University of Agricultural Sciences, Gregor-Mendel-Strasse 33, 1180 Vienna (Austria)]. E-mail:; Hromatka, Angelika [Department of Environmental Research, ARC Seibersdorf Research GmbH, 2444 Seibersdorf (Austria); Lettner, Herbert [Institute of Physics and Biophysics, University of Salzburg, Hellbrunner Strasse 34, 5020 Salzburg (Austria); Strebl, Friederike [Department of Environmental Research, ARC Seibersdorf Research GmbH, 2444 Seibersdorf (Austria)


    This study focuses on radiocesium storage in soil microbial biomass of undisturbed alpine meadow sites and its relation to the soil-to-plant transfer. Soil and plant samples were taken in August 1999 from an altitude transect (800-1600 m.a.s.l.) at Gastein valley, Austria. Soil samples were subdivided into 3-cm layers for analyses of total, K{sub 2}SO{sub 4}-extractable and microbially stored {sup 137}Cs. Microbial biomass was measured by the fumigation extraction method, and fungal biomass was quantified using ergosterol as biomarker molecule. In general, the quantity of {sup 137}Cs stored in the living soil microbial biomass was relatively small. At the high-altitude meadows, showing high amounts of fungal biomass, microbially stored {sup 137}Cs amounted to 0.64 {+-} 0.14 kBq m{sup -2} which corresponds to about 1.2-2.7% of the total {sup 137}Cs soil inventory. At lower altitudes, microbial {sup 137}Cs content was distinctly smaller and in most cases not measurable at all using the fumigation extraction method. However, a positive correlation between the observed soil-to-plant aggregated transfer factor, microbially stored {sup 137}Cs and fungal biomass was found, which indicates a possible role of fungal biomass in the storage and turnover of {sup 137}Cs in soils and in the {sup 137}Cs uptake by plants.

  6. Application of pesticide transport model for simulating diazinon runoff in California’s central valley (United States)

    Joyce, Brian A.; Wallender, Wesley W.; Mailapalli, Damodhara R.


    Dormant spray application of pesticides to almond and other stone fruit orchards is the main source of diazinon during the winter in California's central valley. Understanding the pesticide transport and the tradeoffs associated with the various management practices is greatly facilitated by the use of physically-based contaminant transport models. In this study, performance of Joyce's et al. (2008) pesticide transport model was evaluated using experimental data collected from two ground treatments such as resident vegetation and bare soil. The model simulation results obtained in calibration and validation process were analyzed for pesticide concentration and total load. The pesticide transport model accurately predicted the pesticide concentrations and total load in the runoff from bare field and was capable of simulating chemical responses to rainfall-runoff events. In case of resident vegetation, the model results exhibited a larger range of variation than was observed in the bare soil simulations due to increased model parameterization with the addition of foliage and thatch compartments. Furthermore, the model was applied to study the effect of runoff lag time, extent of crop cover, organic content of soil and post-application irrigation on the pesticide peak concentration and total load. Based on the model results, recommendations were suggested to growers prior to implementing certain management decisions to mitigate diazinon transport in the orchard's spray runoff.

  7. Soil sustainability and indigenous soil management practices ...

    African Journals Online (AJOL)

    Soil sustainability and indigenous soil management practices among food crop farmers in Ogun State, Nigeria. ... Journal of Environmental Extension ... describe and analyse the current soil management practices among food crop farmers in ...

  8. Soil Survey Geographic (SSURGO) - Magnesic Soils (United States)

    California Department of Resources — Magnesic soils is a subset of the SSURGO dataset containing soil family selected based on the magnesic content and serpentinite parent material. The following soil...

  9. Oscillating Nocturnal Slope Flow in a Coastal Valley

    DEFF Research Database (Denmark)

    Gryning, Sven-Erik; Larsen, Søren Ejling; Mahrt, Larry


    Observations of slope flows in a coastal valley are analyzed. The diurnal variation of upslope and downslope flows depends on season in a systematic way which appears to be related to the high latitude of the observational site and the presence of a nearby layer of marine air. Summer nocturnal flow...... over the sloping valley floor was studied during a special observing campaign. A downslope gravity flow interacts with even colder surface air at the valley floor. The latter originates as cold marine air or previous drainage of cold air. Regular oscillations which appear to be trapped, terrain...

  10. Oscillating Nocturnal Slope Flow in a Coastal Valley

    DEFF Research Database (Denmark)

    Gryning, Sven-Erik; Larsen, Søren Ejling; Mahrt, Larry


    Observations of slope flows in a coastal valley are analyzed. The diurnal variation of upslope and downslope flows depends on season in a systematic way which appears to be related to the high latitude of the observational site and the presence of a nearby layer of marine air. Summer nocturnal flow...... over the sloping valley floor was studied during a special observing campaign. A downslope gravity flow interacts with even colder surface air at the valley floor. The latter originates as cold marine air or previous drainage of cold air. Regular oscillations which appear to be trapped, terrain...

  11. 78 FR 27071 - Approval and Promulgation of Air Quality Implementation Plans; Alaska: Mendenhall Valley... (United States)


    ...: Mendenhall Valley Nonattainment Area PM Limited Maintenance Plan and Redesignation Request AGENCY... Mendenhall Valley nonattainment area (Mendenhall Valley NAA), and to concurrently redesignate the area to... Ambient Air Quality Standards B. Mendenhall Valley Nonattainment Area and Planning Background C. PM 10...

  12. Ecological niche modelling of Rift Valley fever virus vectors in Baringo, Kenya

    Directory of Open Access Journals (Sweden)

    Alfred O. Ochieng


    Full Text Available Background: Rift Valley fever (RVF is a vector-borne zoonotic disease that has an impact on human health and animal productivity. Here, we explore the use of vector presence modelling to predict the distribution of RVF vector species under climate change scenario to demonstrate the potential for geographic spread of Rift Valley fever virus (RVFV. Objectives: To evaluate the effect of climate change on RVF vector distribution in Baringo County, Kenya, with an aim of developing a risk map for spatial prediction of RVF outbreaks. Methodology: The study used data on vector presence and ecological niche modelling (MaxEnt algorithm to predict the effect of climatic change on habitat suitability and the spatial distribution of RVF vectors in Baringo County. Data on species occurrence were obtained from longitudinal sampling of adult mosquitoes and larvae in the study area. We used present (2000 and future (2050 Bioclim climate databases to model the vector distribution. Results: Model results predicted potential suitable areas with high success rates for Culex quinquefasciatus, Culex univitattus, Mansonia africana, and Mansonia uniformis. Under the present climatic conditions, the lowlands were found to be highly suitable for all the species. Future climatic conditions indicate an increase in the spatial distribution of Cx. quinquefasciatus and M. africana. Model performance was statistically significant. Conclusion: Soil types, precipitation in the driest quarter, precipitation seasonality, and isothermality showed the highest predictive potential for the four species.

  13. Anthropogenic causes of wetland loss and degradation in the lower Kłodnica valley (southern Poland

    Directory of Open Access Journals (Sweden)

    Wójcicki Krzysztof J.


    Full Text Available Loss and degradation of wetlands is now one of the most important environmental issues on a global scale. Previous research based on analyses of cartographic materials allow for quantification of changes in wetland area in recent centuries. The results of lithological research of peat cores, reported in this publication, have established that the processes of anthropogenic loss of wetlands can be much older and in the Kłodnica valley were initiated in the first millennium BC. As a result of increased mineral sedimentation accompanying soil erosion some peatlands have been fossilized whilst the area of others has been reduced. In total, the surface area of peat-forming wetlands in the bottom of the Kłodnica valley decreased by over 60% between the time of the Lusatian Culture settlement and the Middle Ages. Post-peatland habitats are recently used for agricultural or colonized by non-peat forming vegetation. These processes have played a more important role in the degradation of peatland ecosystems than the direct human impact in historic times. Changes in hydrographic networks, land drainage and regulation of water levels in rivers and canals in the last century have contributed to further reducing the wetland areas by almost 50% compared to the 1880s. These processes, however, have mainly affected ephemeral non-peat forming wetlands.

  14. Intensified dust storm activity and Valley fever infection in the southwestern United States (United States)

    Tong, Daniel Q.; Wang, Julian X. L.; Gill, Thomas E.; Lei, Hang; Wang, Binyu


    Climate models have consistently projected a drying trend in the southwestern United States, aiding speculation of increasing dust storms in this region. Long-term climatology is essential to documenting the dust trend and its response to climate variability. We have reconstructed long-term dust climatology in the western United States, based on a comprehensive dust identification method and continuous aerosol observations from the Interagency Monitoring of Protected Visual Environments (IMPROVE) network. We report here direct evidence of rapid intensification of dust storm activity over American deserts in the past decades (1988-2011), in contrast to reported decreasing trends in Asia and Africa. The frequency of windblown dust storms has increased 240% from 1990s to 2000s. This dust trend is associated with large-scale variations of sea surface temperature in the Pacific Ocean, with the strongest correlation with the Pacific Decadal Oscillation. We further investigate the relationship between dust and Valley fever, a fast-rising infectious disease caused by inhaling soil-dwelling fungus (Coccidioides immitis and C. posadasii) in the southwestern United States. The frequency of dust storms is found to be correlated with Valley fever incidences, with a coefficient (r) comparable to or stronger than that with other factors believed to control the disease in two endemic centers (Maricopa and Pima County, Arizona).

  15. Schoolground Soil Studies. (United States)

    Doyle, Charles


    Outlined are simple activities for studying soil, which can be conducted in the schoolyard. Concepts include soil profiles, topsoil, soil sizes, making soil, erosion, slope, and water absorption. (SJL)

  16. Drivers of archaeal ammonia-oxidizing communities in soil

    Directory of Open Access Journals (Sweden)

    Kateryna eZhalnina


    Full Text Available Soil ammonia-oxidizing archaea (AOA are highly abundant and play an important role in the nitrogen cycle. In addition, AOA have a significant impact on soil quality. AOA may cause nitrogen loss from soils, and the nitrate produced by AOA can lead to ground and surface water contamination, water eutrophication, and soil subsidence. The ammonia-oxidizing archaea discovered to date are classified in the phylum Thaumarchaeota. Only a few archaeal genomes are available in databases. As a result, AOA genes are not well annotated, and it is difficult to mine and identify archaeal genes within metagenomic libraries. Nevertheless, 16S rRNA and comparative analysis of ammonia monooxygenase sequences show that soils can vary greatly in the relative abundance of AOA. In some soils, AOA can comprise more than 10% of the total prokaryotic community. In other soils, AOA comprise less than 0.5% of the community. Many approaches have been used to measure the abundance and diversity of this group including DGGE, T-RFLP, q-PCR, and DNA sequencing. AOA have been studied across different soil types and various ecosystems from the Antarctic dry valleys to the tropical forests of South America to the soils near Mount Everest. Different studies have identified multiple soil factors that trigger the abundance of AOA. These factors include pH, concentration of available ammonia, organic matter content, moisture content, nitrogen content, clay content, as well as other triggers. Land use management appears to have a major effect on the abundance of AOA in soil, which may be the result of nitrogen fertilizer used in agricultural soils. This review summarizes the published results on this topic and suggests future work that will increase our understanding of how soil management and edaphoclimatic factors influence AOA.

  17. Desempenho de cultivares de cebola em cultivo orgânico e tipos de solo no Vale do São Francisco Evaluation of onion cultivars under organic cultivation in two soil types in the São Francisco Valley, Brazil

    Directory of Open Access Journals (Sweden)

    Nivaldo D Costa


    Full Text Available Com o objetivo de avaliar a produtividade de cultivares de cebola em cultivo orgânico no Vale do São Francisco, conduziram-se dois experimentos, de maio a outubro de 2005, nos Campos Experimentais de Bebedouro, Petrolina-PE, e Mandacaru, Juazeiro-BA, em ARGISSOLO e VERTISSOLO respectivamente. O delineamento experimental utilizado foi em blocos ao acaso, utilizando-se dezoito e quatorze cultivares de cebola, respectivamente e quatro repetições. Em ARGISSOLO a produtividade total de bulbos variou de 13,52 a 39,52 t/ha. A produtividade comercial oscilou de 7,45 a 38,32 t/ha, sobressaindo-se como mais produtivas as cultivares Brisa IPA-12 (38,32 t/ha e São Paulo (35,86 t/ha que não evidenciaram diferenças significativas entre si, assim como as cultivares Botucatu-150 (26,41 t/ha e Pira Ouro (26,37 t/ha, e menos produtivas as cultivares Conquista (7,45 t/ha e Crioula Alto Vale (7,81 t/ha. Em VERTISSOLO a produtividade total de bulbos variou de 6,87 a 24,68 t/ha. Sobressairam-se com produtividade comercial as cultivares Texas Grano PRR (21,56 t/ha e IPA-10 (17,50 t/ha, que não diferiram entre si. As cultivares Crioula Alto Vale, CNPH-6348, CNPH- 6436 e CNPH-6206 não tiveram produção comercial de bulbos.In this research were evaluated the yield of onion cultivars under organic growth in the São Francisco Valley. Two field trials were evaluated, one at the Experimental Farm Station of Embrapa Tropical Semi-Arid, in Petrolina, in an ultisol type and the other at the Experimental Farm Station of Mandacaru, in Juazeiro, in a vertisol type, from February to October of 2005. The experimental design was of randomized complete blocks, with 18 and 14 cultivars, respectively, and four replications. In the ultisol, the total yield of bulbs ranged from 13.52 to 39.52 t/ha. The commercial yield ranged from 7.45 to 38.32 t/ha where the cultivars Brisa (38.32 t/ha and São Paulo (35.86 t/ha showed the highest yield without statistical difference

  18. Assessment of long-term erosion in a mountain vineyard, Aosta Valley (NW Italy) (United States)

    Biddoccu, Marcella; Zecca, Odoardo; Barmaz, Andrea; Godone, Franco; Cavallo, Eugenio


    Tillage and chemical weeding are common soil management techniques adopted in mountain vineyards, with high slope gradient, to maintain bare soil. Both techniques exposes the soil to degradation, favoring runoff and soil losses, that may cause relevant on-site and off-site damage. Steep mountain slopes makes optimum conditions for grape-growing. In the mountain region of Aosta Valley, NW Italy, the vineyards were, in the past, traditionally grown on terraces supported by dry stone walls. Since the 1960s the plantation of vines in the direction of the slope became more and more widespread, also on very steep slopes. Generally, no particular measure to channel and control surface water is adopted in this area due to the low rainfall (560 mm/year). Nevertheless in steep mountain slope rainfall events can cause important runoff erosion. In order to evaluate the long-term effect of vineyard management techniques on soil erosion, a study was carried out on a mountain slope vineyard located near Aosta, at about 900 m above the sea level. The vineyard was planted at the end of 1960s and is managed by the Institut Agricole Régional. The rows are accommodated oriented along the slope, which is about 45%. The inter-rows' soil management of the vineyard included chemical weeding and, in first year after plantation, the adoption of irrigation (by fixed overhead sprinklers) and hilling-up/taking-out the soil around the vine plants, to protect them from cold weather. The long-term soil erosion rate was determined adopting the technique of botanical benchmark (Casalí et al.,2009). The grafting callus was used as a marker to identify the paleo-surface at the time of planting. A detailed topographic survey was carried out to determine the present surface of the vineyard while the current position of the grafting callus was recorded for a number of plants. The original position of the callus was estimated by data obtained by farmers and by a survey on reference vineyards. Two

  19. Radon in soil concentration levels in Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Segovia, N.; Tamez, E.; Mena, M


    Radon in soil surveys in Mexico have been carried out since 1974 both for uranium prospectus and to correlate mean values of the gas emanation with local telluric behaviour. The mapping includes the northern uranium mining region, the Mexican Neo volcanic Belt, the coastal areas adjacent to the zone of subduction of the Cocos Plate under the North American Plate, some of the active volcanoes of Southern Mexico and several sedimentary valleys in Central Mexico. Recording of {sup 222} Rn alpha decay is systematically performed with LR115 track detectors. Using mean values averaged over different observation periods at fixed monitoring stations, a radon in soil map covering one third of the Mexican territory is presented. The lowest mean values have been found in areas associated with active volcanoes. The highest levels are found in uranium ore zones. Intermediate values are obtained in regions with enhanced hydrothermal activity and stations associated with intrusive rocks. (Author)

  20. Correlation of climate cycles in middle Mississippi Valley loess and Greenland ice (United States)

    Wang, Hongfang; Hughes, R.E.; Steele, J.D.; Lepley, S.W.; Tian, J.


    Two complete late Wisconsin loess successions in the middle Mississippi River Valley reveal 39 and 41 alternating paleosol A- and C-horizons. Striking changes in soil color, iron content, and carbonate content define four major and two minor paleosol A-horizon complexes, which were interpreted to represent Wisconsin interstadials 1, 2, 3, 4, and semiinterstadials 1.5 and 2.5, respectively. The timing of Wisconsin interstadials matches that of corresponding Greenland interstadials. Midcontinent loess and Greenland ice records as well as rates of atmospheric 14C production have periodicities in common, suggesting a solar influence. Only a persistent heat and moisture supply could produce prominent paleosol complexes near the continental ice margin. This record suggests that El Nin??o-Southern Oscillation variability has amplified solar forcing, and resultant tropical heat and moisture transport played a significant role in millennial- and centennial-scale climate cycles during the late Wisconsin glaciation over the Northern Hemisphere.