Hugoniot equation of state and dynamic strength of boron carbide
Energy Technology Data Exchange (ETDEWEB)
Grady, Dennis E. [Applied Research Associates, Southwest Division, 4300 San Mateo Blvd NE, A-220, Albuquerque, New Mexico 87110-129 (United States)
2015-04-28
Boron carbide ceramics have been particularly problematic in attempts to develop adequate constitutive model descriptions for purposes of analysis of dynamic response in the shock and impact environment. Dynamic strength properties of boron carbide ceramic differ uniquely from comparable ceramics. Furthermore, boron carbide is suspected, but not definitely shown, to undergoing polymorphic phase transformation under shock compression. In the present paper, shock-wave compression measurements conducted over the past 40 years are assessed for the purpose of achieving improved understanding of the dynamic equation of state and strength of boron carbide. In particular, attention is focused on the often ignored Los Alamos National Laboratory (LANL) Hugoniot measurements performed on porous sintered boron carbide ceramic. The LANL data are shown to exhibit two compression anomalies on the shock Hugoniot within the range of 20–60 GPa that may relate to crystallographic structure transitions. More recent molecular dynamics simulations on the compressibility of the boron carbide crystal lattice reveal compression transitions that bear similarities to the LANL Hugoniot results. The same Hugoniot data are complemented with dynamic isentropic compression data for boron carbide extracted from Hugoniot measurements on boron carbide and copper granular mixtures. Other Hugoniot measurements, however, performed on near-full-density boron carbide ceramic differ markedly from the LANL Hugoniot data. These later data exhibit markedly less compressibility and tend not to show comparable anomalies in compressibility. Alternative Hugoniot anomalies, however, are exhibited by the near-full-density data. Experimental uncertainty, Hugoniot strength, and phase transformation physics are all possible explanations for the observed discrepancies. It is reasoned that experimental uncertainty and Hugoniot strength are not likely explanations for the observed differences. The notable
Hugoniot equation of state and dynamic strength of boron carbide
Grady, Dennis E.
2015-04-01
Boron carbide ceramics have been particularly problematic in attempts to develop adequate constitutive model descriptions for purposes of analysis of dynamic response in the shock and impact environment. Dynamic strength properties of boron carbide ceramic differ uniquely from comparable ceramics. Furthermore, boron carbide is suspected, but not definitely shown, to undergoing polymorphic phase transformation under shock compression. In the present paper, shock-wave compression measurements conducted over the past 40 years are assessed for the purpose of achieving improved understanding of the dynamic equation of state and strength of boron carbide. In particular, attention is focused on the often ignored Los Alamos National Laboratory (LANL) Hugoniot measurements performed on porous sintered boron carbide ceramic. The LANL data are shown to exhibit two compression anomalies on the shock Hugoniot within the range of 20-60 GPa that may relate to crystallographic structure transitions. More recent molecular dynamics simulations on the compressibility of the boron carbide crystal lattice reveal compression transitions that bear similarities to the LANL Hugoniot results. The same Hugoniot data are complemented with dynamic isentropic compression data for boron carbide extracted from Hugoniot measurements on boron carbide and copper granular mixtures. Other Hugoniot measurements, however, performed on near-full-density boron carbide ceramic differ markedly from the LANL Hugoniot data. These later data exhibit markedly less compressibility and tend not to show comparable anomalies in compressibility. Alternative Hugoniot anomalies, however, are exhibited by the near-full-density data. Experimental uncertainty, Hugoniot strength, and phase transformation physics are all possible explanations for the observed discrepancies. It is reasoned that experimental uncertainty and Hugoniot strength are not likely explanations for the observed differences. The notable mechanistic
Energy Technology Data Exchange (ETDEWEB)
Luo, Shengnian [Los Alamos National Laboratory; Arman, Bedri [Los Alamos National Laboratory; Germann, Timothy C [Los Alamos National Laboratory; Cagin, Tahir [TEXAS A& M UNIV
2009-01-01
We investigate dynamic response of Cu{sub 46}Zr{sub 54} metallic glass under adiabatic planar shock wave loading (one-dimensional strain) wjth molecular dynamics simulations, including Hugoniot (shock) states, shock-induced plasticity and spallation. The Hugoniot states are obtained up to 60 CPa along with the von Mises shear flow strengths, and the dynamic spall strength, at different strain rates and temperatures. The spall strengths likely represent the limiting values achievable in experiments such as laser ablation. For the steady shock states, a clear elastic-plastic transition is identified (e.g., in the shock velocity-particle velocity curve), and the shear strength shows strain-softening. However, the elastic-plastic transition across the shock front displays transient stress overshoot (hardening) above the Hugoniot elastic limit followed by a relatively sluggish relaxation to the steady shock state, and the plastic shock front steepens with increasing shock strength. The local von Mises shear strain analysis is used to characterize local deformation, and the Voronoi tessellation analysis, the corresponding short-range structures at various stages of shock, release, tension and spallation. The plasticity in this glass is manifested as localized shear transformation zones and of local structure rather than thermal origin, and void nucleation occurs preferentially at the highly shear-deformed regions. The Voronoi and shear strain analyses show that the atoms with different local structures are of different shear resistances that lead to shear localization (e.g., the atoms indexed with (0,0,12,0) are most shear-resistant, and those with (0,2,8,1) are highly prone to shear flow). The dynamic changes in local structures are consistent with the observed deformation dynamics.
Non-equilibrium molecular dynamics simulations of spall in single crystal tantalum
Hahn, Eric N.; Germann, Timothy C.; Ravelo, Ramon J.; Hammerberg, James E.; Meyers, Marc A.
2017-01-01
Ductile tensile failure of tantalum is examined through large scale non-equilibrium molecular dynamics simulations. Several loading schemes including flyer plate impact, decaying shock loading via a frozen piston, and quasi-isentropic (constant strain-rate) expansion are employed to span tensile strain-rates of 108 to 1014 per second. Single crystals of orientation are specifically evaluated to eliminate grain boundary effects. Heterogeneous void nucleation occurs principally at the intersection of deformation twins in single crystals. At high strain rates, multiple spall events occur throughout the material and voids continue to nucleate until relaxation waves arrive from adjacent events. At ultra-high strain rates, those approaching or exceeding the atomic vibrational frequency, spall strength saturates near the maximum theoretical spall strength.
Institute of Scientific and Technical Information of China (English)
郭峰; 张红; 胡海泉; 程新路; 张利燕
2015-01-01
We investigate the Hugoniot curve, shock–particle velocity relations, and Chapman–Jouguet conditions of the hot dense system through molecular dynamics (MD) simulations. The detailed pathways from crystal nitromethane to reacted state by shock compression are simulated. The phase transition of N2 and CO mixture is found at about 10 GPa, and the main reason is that the dissociation of the C–O bond and the formation of C–C bond start at 10.0–11.0 GPa. The unreacted state simulations of nitromethane are consistent with shock Hugoniot data. The complete pathway from unreacted to reacted state is discussed. Through chemical species analysis, we find that the C–N bond breaking is the main event of the shock-induced nitromethane decomposition.
Dai, Jiayu; Zhao, Zengxiu; Wu, Yanqun; Yuan, Jianmin
2011-01-01
A new determined principal Hugoniot curve of Fe in the temperature range of 0.1-100 eV from Ab initio is presented, and the structural dynamics along this curve is shown. All experiments are on top or above our Hugoniot data, which are along the lower envelop of the distribution of experiments. The present data are the converged limit for experiments to remove the external effects such as preheating. In particular, the experimental data on the bottom of the distribution below 10 Mbar can be considered nearly free of errors caused by the external effects compared with our data. The dynamics of ionic structures shows the stable existence of complex clusters with persisted time length of hundreds of femto-seconds from cold to hot dense matter.
Liu, Gui-Rong; Wang, Gangyu; Peng, Qing; de, Suvranu
2015-06-01
HMX is a widely used high explosive. Hugoniot curve is a valuable tool for analyzing the equations of state, and is of importance for all energetic materials including HMX. The Hugoniot curves serve as one of the key character in continuum modeling of high explosives. It can be obtained from experimental measurements, and recently also from computational studies. In this study, the Hugoniot curve of HMX is calculated using a multi-scale shock technique via Molecular Dynamics (MD) simulations, where the reactive force field ReaxFF is obtained from Quantum Mechanics calculations and tailored for HMX. It is found that our MD Hugoniot curve of HMX from the optimized ReaxFF potential agree well with experiments. The MD Hugoniot curve of HMX is also incorporated in our in-house Smoothed Particle Hydrodynamics (SPH) code for the modeling of the macro-scale explosive behaviors of HMX explosives and HMX cased in a 3D cylinder. The authors would like to acknowledge the generous financial support from the Defense Threat Reduction Agency (DTRA) Grant HDTRA1-13-1-0025.
Energy Technology Data Exchange (ETDEWEB)
Cagliostro, D.J.; Warnes, R.H.; Johnson, N.L.; Fujita, R.K.
1987-01-01
Copper and tantalum hemishells are externally loaded by a hemishell of PBX 9501 detonated at its pole. Free-surface velocity histories of the metal hemishells are measured at the pole and at 50 from the pole with a Fabry-Perot interferometer. These histories are used to determine spall strengths and depths by simple wave-interaction analyses and are compared with hydro-code (CAVEAT) predictions using simple and void-growth spall models. 8 refs., 4 figs., 1 tab.
Shock-induced spall in copper: the effects of anisotropy, temperature, loading pulse and defect
Energy Technology Data Exchange (ETDEWEB)
Luo, Shengnian [Los Alamos National Laboratory; Germann, Timothy C [Los Alamos National Laboratory; An, Qi [Los Alamos National Laboratory; Han, Li - Bo [USTC
2009-07-28
Shock-induced spall in Cu is investigated with molecular dynamics simulations. We examine spallation in initially perfect crystals and defective solids with grain boundaries (columnar bicrystals), stacking faults or vacancies, as well as the effect of temperature and loading pulses. Spall in single crystal Cu is anisotropic, and defects and high temperature may reduce the spall strength. Taylor-wave (triangular shock-release wave) loading is explored in comparison with square wave shock loading.
Laser-driven flyer application in thin film dissimilar materials welding and spalling
Wang, Huimin; Wang, Yuliang
2017-10-01
This paper applied a low cost method to pack and drive laser-driven flyer in the applications of welding and spalling. The laser system has the maximum energy of 3.1 J, which is much lower than that used in the previous study. The chemical release energy from the ablative layer was estimated as 3.7 J. The flying characteristic of laser-driven flyer was studied by measuring the flyer velocity at different locations with photonic Doppler velocimetry (PDV). The application of laser-driven flyer in welding Al and Cu was investigated at different laser spot size. Weld strength was measured with the peel test. Weld interface was characterized with optical microscopy (OM) and scanning electron microscopy (SEM). The study of application of laser-driven flyer in spalling was carried out for both brittle and ductile materials. The impact pressure was calculated based on the Hugoniot data. The amount of spalling was not only related to the impact pressure but also related to the duration of impact pressure. The fractography of spalled fracture surface was studied and revealed that the fracture mode was related to the strain rate. The spall strength of Cu 110, Al 1100 and Ni 201was measured and was consistent with the literature data.
Quantum Mechanical Corrections to Simulated Shock Hugoniot Temperatures
Energy Technology Data Exchange (ETDEWEB)
Goldman, N; Reed, E; Fried, L E
2009-07-17
The authors present a straightforward method for the inclusion of quantum nuclear vibrational effects in molecular dynamics calculations of shock Hugoniot temperatures. Using a grueneisen equation of state and a quasi-harmonic approximation to the vibrational energies, they derive a simple, post-processing method for calculation of the quantum corrected Hugoniot temperatures. They have used our novel technique on ab initio simulations of both shock compressed water and methane. Our results indicate significantly closer agreement with all available experimental temperature data for these two systems. Our formalism and technique can be easily applied to a number of different shock compressed molecular liquids or covalent solids, and has the potential to decrease the large uncertainties inherent in many experimental Hugoniot temperature measurements of these systems.
Nuclear Quantum Vibrational Effects in Shock Hugoniot Temperatures
Energy Technology Data Exchange (ETDEWEB)
Goldman, N; Reed, E; Fried, L E
2009-07-23
We present a straightforward method for the inclusion of quantum nuclear vibrational effects in molecular dynamics calculations of shock Hugoniot temperatures. Using a Grueneisen equation of state and a quasiharmonic approximation to the vibrational energies, we derive a simple, post-processing method for calculation of the quantum corrected Hugoniot temperatures. We have used our novel technique on ab initio simulations of shock compressed water. Our results indicate significantly closer agreement with all available experimental temperature data. Our formalism and technique can be easily applied to a number of different shock compressed molecular liquids or solids.
Nuclear Quantum Vibrational Effects in Shock Hugoniot Temperatures
Energy Technology Data Exchange (ETDEWEB)
Goldman, N; Reed, E; Fried, L E
2009-07-23
We present a straightforward method for the inclusion of quantum nuclear vibrational effects in molecular dynamics calculations of shock Hugoniot temperatures. Using a Grueneisen equation of state and a quasiharmonic approximation to the vibrational energies, we derive a simple, post-processing method for calculation of the quantum corrected Hugoniot temperatures. We have used our novel technique on ab initio simulations of shock compressed water. Our results indicate significantly closer agreement with all available experimental temperature data. Our formalism and technique can be easily applied to a number of different shock compressed molecular liquids or solids.
Williams, C. L.; Farbaniec, L.; Kecskes, L.; Bradley, J.
2017-01-01
The effects of microstructure on the spall properties of two magnesium alloys fabricated via Equal-Channel Angular Extrusion (ECAE) and Spinning Water Atomization Process (SWAP) were investigated. The Hugoniot Elastic Limit (HEL) for both AZ31B-4E and AMX602 magnesium alloys were found to be approximately 0.181±0.003 GPa and 0.187±0.012 GPa, respectively. The spall strengths extracted from the free surface velocity profiles were found to decrease by approximately 4% for AZ31B-4E between 1.7 GPa to 4.6 GPa shock stress. Although this reduction in spall strength may lie within the experimental error, the microstructure of the post-shocked magnesium alloy show that manganese intermetallic inclusions in the AZ31B-4E magnesium were perhaps responsible for the reduction in spall strength as a function of shock stress. On the contrary, the spall strength for AMX602 was found to be random for the same shock stress range studied. This random behavior of the AMX602 was likely due to the incomplete sintering during mechanical processing. The fracture surfaces of both materials were dominated by nanovoids and the AMX602 fracture surface was found to be striated. A more in-depth study is needed to better understand the spall behavior of both materials.
Counterforce applied to prevent spalling
Energy Technology Data Exchange (ETDEWEB)
Glamheden, Rune; Bergkvist, Lars (Golder Associates AB (Sweden)); Faelth, Billy (Clay Technology AB, Lund (Sweden)); Jacobsson, Lars (SP Technical Research Institute of Sweden, Boraas (Sweden)); Harrstroem, Johan (Geosigma AB, Uppsala (Sweden)); Berglund, Johan (Vattenfall Power Consultant AB, Stockholm (Sweden))
2010-04-15
The field experiment within CAPS (Counterforce Applied to Prevent Spalling) was initiated to determine if the application of dry bentonite pellets is sufficient to suppress thermally-induced spalling in KBS-3 deposition holes. The experience gained from Aespoe Pillar Stability Experiment, conducted between 2002 and 2006, indicated that spalling could be controlled by the application of a small confining pressure in the deposition holes. The CAPS field experiment that included four pairs of boreholes with a diameter of approximately 0.5 m, was carried out as a series of demonstration experiments in the TASQ-tunnel. The first and second heating tests were performed in open holes, without any confining pressure on the borehole wall and the third and fourth heating tests with a confining pressure created by expanded clay pellets (LECA). The first heating test was initiated at the end of August 2008 and the final test was finished at the end of May 2009. The trials suggest that the small confining pressure offered by the LECA pellets was adequate to control spalling and prevent the formation of a highly conductive zone of fractured rock in the 500-mm-diameter holes. It is recommended that a full-scale test be carried out to assess if the findings are applicable to 1,750-mm-diameter deposition holes. Should the full scale tests support the findings from these initial trials, filling the gap between the bentonite blocks and rock wall with dry bentonite pellets will provide a viable engineered solution for controlling the effects of thermally induced spalling in the KBS-3 deposition holes
Brara, Ahmed
2015-09-01
An experimental method to test concrete in dynamic tension by spalling with a Hopkinson bar as loading and measuring tool was developed in 1999. The dynamic strength of concrete specimen and strain rate were indirectly derived from an accurate data processing of the signals measured on the Hopkinson bar surface. This method suggested by late Prof. Klepaczko, allowed for reaching the highest strain rate reported in literature for which an intriguing tensile strength increase was highlighted. This simple and efficient technique has been adopted by many researchers around the world. Some significant improvements in terms of definition and reproducibility of the incident loading pulse travelling along the bar and direct and/or contactless measurements on concrete specimens have been introduced. The very high rate sensitivity of concrete tensile strength was corroborated by the additional experimental data obtained with this experimental technique during the last fifteen years.
Spalling fracture behavior in (100) gallium arsenide
Sweet, Cassi A.
Record-high conversion efficiencies inherent in III-V solar cells make them ideal for one-sun photovoltaic applications. However, material costs associated with implementation prevent competitive standing with other solar technologies. This dissertation explores controlled exfoliation of III-V single junction photovoltaic devices from (100) GaAs substrates by spalling to enable wafer reuse for material cost reductions. Spalling is a type of fracture that occurs within the substrate of a bilayer under sufficient misfit stress. A spalling crack propagates parallel to the film/substrate interface at a steady-state spalling depth within the substrate. Spalling in (100) GaAs, a semiconductor with anisotropic fracture properties, presents unique challenges. Orientation of the cleavage plane is not parallel to the steady-state spalling depth which results in a faceted fracture surface. A model is developed by modifying Suo and Hutchinson's spalling mechanics to approximate quantitatively the spalling process parameter window and the thickness of the exfoliated film, i.e. spalling depth, for use with (100) GaAs and other semiconductor materials. Experimental data for faceted (100)-GaAs spalling is shown to be in agreement with this model. A faceted surface leads to undesirable waste material for low cost application to the solar industry. Therefore, methods to mitigate the facet size are explored. Trends in facet size and distribution are linked with both the stressor film deposition parameters and the spalling pull velocity. A spalling fracture is a high energy process where damage to the exfoliated material is a concern. Spalled material quality is assessed directly by dislocation density analysis and indirectly by characterization of electrical performance of high quality spalled photovoltaic devices sensitive to material damage such as dislocation and microcrack occurrence. Controlled application of spalling in (100) GaAs is achieved by exfoliation of a high
Limits of Spalling of Fire Exposed Concrete
DEFF Research Database (Denmark)
Hertz, Kristian Dahl
1998-01-01
The supporting document describes the present knowledge about explosive spalling of traditional concrete and dense concrete based on 36 references and the authors own tests and observations.The document concludes that the risk of spalling is limited for traditional concretes within 3-4 percent mo...
Dynamic strength of reaction-sintered boron carbide ceramic
Savinykh, A. S.; Garkushin, G. V.; Razorenov, S. V.; Rumyantsev, V. I.
2015-06-01
The shock compression wave profiles in three modifications of boron carbide ceramic are studied in the compressive stress range 3-19 GPa. The Hugoniot elastic limit and the spall strength of the materials are determined. It is confirmed that the spall strength of high-hardness ceramic changes nonmonotonically with the compressive stress in a shock wave.
Spall fracture in additive manufactured Ti-6Al-4V
Jones, D. R.; Fensin, S. J.; Dippo, O.; Beal, R. A.; Livescu, V.; Martinez, D. T.; Trujillo, C. P.; Florando, J. N.; Kumar, M.; Gray, G. T.
2016-10-01
We present a study on the spall strength of additive manufactured (AM) Ti-6Al-4V. Samples were obtained from two pieces of selective laser melted (SLM, a powder bed fusion technique) Ti-6Al-4V such that the response to dynamic tensile loading could be investigated as a function of the orientation between the build layers and the loading direction. A sample of wrought bar-stock Ti-6Al-4V was also tested to act as a baseline representing the traditionally manufactured material response. A single-stage light gas-gun was used to launch a thin flyer plate into the samples, generating a region of intense tensile stress on a plane normal to the impact direction. The rear free surface velocity time history of each sample was recorded with laser-based velocimetry to allow the spall strength to be calculated. The samples were also soft recovered to enable post-mortem characterization of the spall damage evolution. Results showed that when the tensile load was applied normal to the interfaces between the build layers caused by the SLM fabrication process the spall strength was drastically reduced, dropping to 60% of that of the wrought material. However, when loaded parallel to the AM build layer interfaces the spall strength was found to remain at 95% of the wrought control, suggesting that when loading normal to the AM layer interfaces, void nucleation is facilitated more readily due to weaknesses along these boundaries. Quasi-static testing of the same sample orientations revealed a much lower degree of anisotropy, demonstrating the importance of rate-dependent studies for damage evolution in AM materials.
High precision Hugoniot measurements of D2 near maximum compression
Benage, John; Knudson, Marcus; Desjarlais, Michael
2015-11-01
The Hugoniot response of liquid deuterium has been widely studied due to its general importance and to the significant discrepancy in the inferred shock response obtained from early experiments. With improvements in dynamic compression platforms and experimental standards these results have converged and show general agreement with several equation of state (EOS) models, including quantum molecular dynamics (QMD) calculations within the Generalized Gradient Approximation (GGA). This approach to modeling the EOS has also proven quite successful for other materials and is rapidly becoming a standard approach. However, small differences remain among predictions obtained using different local and semi-local density functionals; these small differences show up in the deuterium Hugoniot at ~ 30-40 GPa near the region of maximum compression. Here we present experimental results focusing on that region of the Hugoniot and take advantage of advancements in the platform and standards, resulting in data with significantly higher precision than that obtained in previous studies. These new data may prove to distinguish between the subtle differences predicted by the various density functionals. Results of these experiments will be presented along with comparison to various QMD calculations. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin company, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Hugoniot model for Si from L140
Energy Technology Data Exchange (ETDEWEB)
Whitley, H. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wu, C. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2016-09-20
In this document, we provide the Hugoniot for silicon from LEOS table L140. The Hugoniot pressures are supplied for temperatures between 298.0 and 1:16 10^{9} Kelvin and densities of 2.329 and 10.07 g/cc. This EOS model was developed by the quotidian EOS methodology, which is a widely used and robust method for producing tabular EOS data.[1, 2] Table 1 lists the included quantities and units of those data.
Spalling Resistance Fast-drying Refractory Castables
Institute of Scientific and Technical Information of China (English)
Wang Jing; Peng Xigao
2010-01-01
@@ 1 Scope This standard specifies the term and definition,classification, technical requirements, test methods,quality appraisal procedures, packing, marking, transportation, storage, and quality certificate of spalling resistance fast-drying refractory castables.
Differential diagnosis of spall vs. cracks in the gear tooth fillet region: Experimental validation
Endo, H.; Randall, R. B.; Gosselin, C.
2009-04-01
This paper presents a technique to differentially diagnose two types of localized gear tooth faults: a spall and a crack in the gear tooth fillet region. These faults could have very different prognoses, but existing diagnostic techniques only detect the presence of localized tooth faults without being able to differentiate between a spall and a crack. The effects of spalls and cracks on the behaviour of gear assemblies were studied using static and dynamic simulation models. Changes in the kinematics of a pair of meshing gears due to a gear tooth fillet crack (TFC) and a tooth flank spall were compared using a static analysis model. The difference in the variation of the transmission error (TE) caused by the two faults reveals their characteristics. The effect of a tooth crack depends on the change in stiffness of the tooth while the effect of a spall is dominantly determined by the geometry of the fault. A technique has previously been proposed to detect spalls [M. EL Badaoui, J. Antoni, F. Guillet, J. Daniere, Use of the moving cepstrum integral to detect and localize tooth spalls in gears, Mechanical System and Signal Processing, 15 (5) (2001) 873-885; M. EL Badaoui, V. Cahouet, F. Guillet, J. Daniere P. Velex, Modelling and detection of localized tooth defects in geared systems, Transaction of ASME, 123 (2001) 422-430], using the cepstrum to detect a negative echo in the signal (from entry into and exit from the spall) and successfully performed differential diagnosis on the simulated vibration signals. While the result of the experimental study showed some differences from the result of the simulation study, the differential diagnosis was successfully performed based on the technique presented in this paper. Further investigation revealed non-linear gearmesh behaviour which was causing differences in the experimental and simulation model results.
Hugoniot Measurements of Silicon Shock Compressed to 25 Mbar
Henderson, B.; Polsin, D. N.; Boehly, T. R.; Gregor, M. C.; Hu, S. X.; Collins, G. W.; Rygg, J. R.; Fratanduono, D. E.; Celliers, P. M.
2016-10-01
We present results of laser-driven shock experiments that compressed silicon samples to 25 Mbar. Impedance matching to a quartz reference provided Hugoniot data. Since silicon is opaque, a quartz witness was placed adjacent to the silicon samples; this afforded the use of the unsteady wave correction to increase the precision of the transit-time measurements of shock velocity. Results are compared both SESAME tables and to quantum molecular dynamics calculations. This material is based upon work supported by the Department Of Energy National Nuclear Security Administration under Award Number DE-NA0001944.
The Liquid Krypton Hugoniot at Megabar Pressures
Root, Seth; Magyar, Rudy J.; Mattsson, Ann E.; Hanson, David L.; Mattsson, Thomas R.
2011-06-01
Krypton is an ideal candidate to study multi-Mbar pressure effects on elements with filled-shell electron configurations. Few experimental data on Kr at high pressures exist, however, with prior Hugoniot data limited to below 1 Mbar. Similar to liquid xenon, the current Kr equation of state (EOS) models agree with the data and each other below 1 Mbar, but diverge with increasing pressure. We examine the liquid Kr Hugoniot up to 8 Mbar by using density functional theory (DFT) methods and by performing shock compression experiments on the Sandia Z - accelerator. Our initial DFT Kr Hugoniot calculations indicated the standard PAW potential is inadequate at the high pressures and temperatures occurring under strong shock compression. A new Kr PAW potential was constructed giving improved scattering properties of the atom at high energies. The Z Hugoniot measurements above 1 Mbar validated the DFT results and the pseudo-potential. The DFT and Z results suggest that the current EOS models require some modifications. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U. S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Equation of state of dolomite from shock Hugoniot and static compression studies
Grady, D. E.
2017-01-01
Comparisons are made between shock Hugoniot data and recent high-pressure static DAC (diamond anvil cell) data on dolomite mineral. Stark disparities are noted. DAC measurements reveal first order phase transformation within the pressure range of approximately 17-37 GPa. The preponderance of shock data failed to reveal phase transformation on the Hugoniot. Early time-resolved pressure reveal a possible transformation in the neighborhood of 20-25 GPa impeded by transformation kinetics. Static and dynamic data are contrasted and the underlying mechanisms assessed.
The shock and spall response of AA 7010-T7651
Hazell, Paul; Appleby-Thomas, Gareth; Wood, David; Painter, Jonathan
2013-06-01
Aluminium alloys are used extensively in armour. Their use as armour materials is primarily due to their relatively low densities and their high strength characteristics. The aerospace-grade 7000-series alloy Al7010-T7651 is one possible contender for armour. In this study a series of plate-impact experiments were undertaken to investigate the behaviour of this alloy under shock. Manganin stress gauges and a heterodyne velocimeter system were used to interrogate both strength and dynamic tensile failure (spall) respectively; with microscopic analysis of recovered samples providing insight into the development of failure in the material.
Numerical modelling and experimental assessment of concrete spalling in fire
Shamalta, M.; Breunese, A.; Peelen, W.; Fellinger, J.
2005-01-01
In this paper, the phenomenon of spalling of concrete in fire has been studied using a numerical model. Spalling is the violent or non-violent breaking off of layers or pieces of concrete when it is exposed to high temperatures as experienced in fires. The types and mechanisms of spalling have been
Limits of Spalling of Fire-Exposed Concrete
DEFF Research Database (Denmark)
Hertz, Kristian Dahl
2003-01-01
on the nature of spalling, add the latest findings from the research of the author, and derives limits within which spalling should not take place. Some guidelines are formulated based on experience from research and practise for reducing the spalling risk for constructions beyond the safe design limits...
Numerical modelling and experimental assessment of concrete spalling in fire
Shamalta, M.; Breunese, A.J.; Peelen, W.H.A.; Fellinger, J.H.H.
2005-01-01
In this paper, the phenomenon of spalling of concrete in fire has been studied using a numerical model. Spalling is the violent or non-violent breaking off of layers or pieces of concrete when it is exposed to high temperatures as experienced in fires. The types and mechanisms of spalling have been
Measuring Hugoniot, reshock and release properties of natural snow and simulants
Energy Technology Data Exchange (ETDEWEB)
Furnish, M.D.; Boslough, M.B.
1996-02-01
We describe methods for measuring dynamical properties for underdense materials (e.g. snow) over a stress range of roughly 0. 1 - 4 GPa. Particular material properties measured by the present methods include Hugoniot states, reshock states and release paths. The underdense materials may pose three primary experimental difficulties. Snow in particular is perishable; it can melt or sublime during storage, preparation and testing. Many of these materials are brittle and crushable; they cannot withstand such treatment as traditional machining or launch in a gun system. Finally, with increasing porosity the calculated Hugoniot density becomes rapidly more sensitive to errors in wave time-of-arrival measurements. A family of 36 impact tests was conducted on snow and six proposed snow simulants at Sandia, yielding reliable Hugoniot states, somewhat less reliable reshock 3 states, and limited release property information. Natural snow of density {approximately}0.5 gm/cm{sup 3}, a lightweight concrete of density {approximately}0.7 gm/cm{sup 3} and a {open_quotes}snow-matching grout{close_quotes} of density {approximately}0.28 gm/cm 3 were the subjects of the majority of the tests. Hydrocode calculations using CTH were performed to elucidate sensitivities to edge effects as well as to assess the applicability of SESAME 2-state models to these materials. Simulations modeling snow as porous water provided good agreement for Hugoniot stresses to 1 GPa; a porous ice model was preferred for higher Hugoniot stresses. On the other hand, simulations of tests on snow, lightweight concrete and the snow-matching grout based on (respectively) porous ice, tuff and polyethylene showed a too-stiff response. Other methods for characterizing these materials are discussed. Based on the Hugoniot properties, the snow-matching grout appears to be a better snow simulant than does the lightweight concrete.
Recent Advances in Modeling Hugoniots with Cheetah
Glaesemann, K. R.; Fried, L. E.
2006-07-01
We describe improvements to the Cheetah thermochemical-kinetics code's equilibrium solver to enable it to find a wider range of thermodynamic states. Cheetah supports a wide range of elements, condensed detonation products, and gas phase reactions. Therefore, Cheetah can be applied to a wide range of shock problems involving both energetic and non-energetic materials. An improve equation of state is also introduced. New experimental validations of Cheetah's equation of state methodology have been performed, including both reacted and unreacted Hugoniots.
On some principal features of data processing of spall fracture tests
Volkov, G. A.; Petrov, Yu. V.; Utkin, A. A.
2017-02-01
A method for processing the results of dynamic spall fracture tests, based on the exact solution of the wave equation, and its commonly used simplified version based on the assumed unique relation between the free surface velocity drop and the ultimate medium fracture stress, are analyzed. Using the considered exact solutions of the wave technique, tensile stress pulses during spalling are determined. The obtained stress levels at the fracture point are compared with the spall strength calculated by the velocity drop technique. The cases of agreement and disagreement of the results obtained using both techniques are shown. By the example of differently shaped loading pulses, possible scenarios of sample fracture are presented, in particular, the probability of the fracture delay effect is shown, which can be lost in the simplified processing method.
Dynamic compressive and tensile strengths of spark plasma sintered alumina
Girlitsky, I.; Zaretsky, E.; Kalabukhov, S.; Dariel, M. P.; Frage, N.
2014-06-01
Fully dense submicron grain size alumina samples were manufactured from alumina nano-powder using Spark Plasma Sintering and tested in two kinds of VISAR-instrumented planar impact tests. In the first kind, samples were loaded by 1-mm tungsten impactors, accelerated to a velocity of about 1 km/s. These tests were aimed at studying the Hugoniot elastic limit (HEL) of Spark Plasma Sintering (SPS)-processed alumina and the decay, with propagation distance, of the elastic precursor wave. In the tests of the second kind, alumina samples of 3-mm thickness were loaded by 1-mm copper impactors accelerated to 100-1000 m/s. These tests were aimed at studying the dynamic tensile (spall) strength of the alumina specimens. The tensile fracture of the un-alloyed alumina shows a monotonic decline of the spall strength with the amplitude of the loading stress pulse. Analysis of the decay of the elastic precursor wave allowed determining the rate of the irreversible (inelastic) strains in the SPS-processed alumina at the initial stages of the shock-induced inelastic deformation and to clarify the mechanisms responsible for the deformation. The 1-% addition of Cr2O3 decreases the HEL of the SPS-processed alumina by 5-% and its spall strength by 50% but barely affects its static properties.
The virtual fields method applied to spalling tests on concrete
Pierron, F.; Forquin, P.
2012-08-01
For one decade spalling techniques based on the use of a metallic Hopkinson bar put in contact with a concrete sample have been widely employed to characterize the dynamic tensile strength of concrete at strain-rates ranging from a few tens to two hundreds of s-1. However, the processing method mainly based on the use of the velocity profile measured on the rear free surface of the sample (Novikov formula) remains quite basic and an identification of the whole softening behaviour of the concrete is out of reach. In the present paper a new processing method is proposed based on the use of the Virtual Fields Method (VFM). First, a digital high speed camera is used to record the pictures of a grid glued on the specimen. Next, full-field measurements are used to obtain the axial displacement field at the surface of the specimen. Finally, a specific virtual field has been defined in the VFM equation to use the acceleration map as an alternative `load cell'. This method applied to three spalling tests allowed to identify Young's modulus during the test. It was shown that this modulus is constant during the initial compressive part of the test and decreases in the tensile part when micro-damage exists. It was also shown that in such a simple inertial test, it was possible to reconstruct average axial stress profiles using only the acceleration data. Then, it was possible to construct local stress-strain curves and derive a tensile strength value.
The dynamic response of carbon fiber-filled polymer composites
Directory of Open Access Journals (Sweden)
Patterson B.
2012-08-01
Full Text Available The dynamic (shock responses of two carbon fiber-filled polymer composites have been quantified using gas gun-driven plate impact experimentation. The first composite is a filament-wound, highly unidirectional carbon fiber-filled epoxy with a high degree of porosity. The second composite is a chopped carbon fiber- and graphite-filled phenolic resin with little-to-no porosity. Hugoniot data are presented for the carbon fiber-epoxy (CE composite to 18.6 GPa in the through-thickness direction, in which the shock propagates normal to the fibers. The data are best represented by a linear Rankine-Hugoniot fit: Us = 2.87 + 1.17 ×up(ρ0 = 1.536g/cm3. The shock wave structures were found to be highly heterogeneous, both due to the anisotropic nature of the fiber-epoxy microstructure, and the high degree of void volume. Plate impact experiments were also performed on a carbon fiber-filled phenolic (CP composite to much higher shock input pressures, exceeding the reactants-to-products transition common to polymers. The CP was found to be stiffer than the filament-wound CE in the unreacted Hugoniot regime, and transformed to products near the shock-driven reaction threshold on the principal Hugoniot previously shown for the phenolic binder itself. [19] On-going research is focused on interrogating the direction-dependent dyanamic response and dynamic failure strength (spall for the CE composite in the TT and 0∘ (fiber directions.
The dynamic response of carbon fiber-filled polymer composites
Dattelbaum, D. M.; Gustavsen, R. L.; Sheffield, S. A.; Stahl, D. B.; Scharff, R. J.; Rigg, P. A.; Furmanski, J.; Orler, E. B.; Patterson, B.; Coe, J. D.
2012-08-01
The dynamic (shock) responses of two carbon fiber-filled polymer composites have been quantified using gas gun-driven plate impact experimentation. The first composite is a filament-wound, highly unidirectional carbon fiber-filled epoxy with a high degree of porosity. The second composite is a chopped carbon fiber- and graphite-filled phenolic resin with little-to-no porosity. Hugoniot data are presented for the carbon fiber-epoxy (CE) composite to 18.6 GPa in the through-thickness direction, in which the shock propagates normal to the fibers. The data are best represented by a linear Rankine-Hugoniot fit: Us = 2.87 + 1.17 ×up(ρ0 = 1.536g/cm3). The shock wave structures were found to be highly heterogeneous, both due to the anisotropic nature of the fiber-epoxy microstructure, and the high degree of void volume. Plate impact experiments were also performed on a carbon fiber-filled phenolic (CP) composite to much higher shock input pressures, exceeding the reactants-to-products transition common to polymers. The CP was found to be stiffer than the filament-wound CE in the unreacted Hugoniot regime, and transformed to products near the shock-driven reaction threshold on the principal Hugoniot previously shown for the phenolic binder itself. [19] On-going research is focused on interrogating the direction-dependent dyanamic response and dynamic failure strength (spall) for the CE composite in the TT and 0∘ (fiber) directions.
Effect of compressive loading on the risk of spalling
Directory of Open Access Journals (Sweden)
Carré H.
2013-09-01
Full Text Available Mechanical loading is an important parameter of spalling phenomenon likely to occur in concrete during heating. Several tests in laboratory have shown an increase of the risk of spalling in the compressed areas. In this study, a specific metallic frame has been developed to apply uniaxial and biaxial stresses on slabs during fire tests. Tests carried out on an ordinary concrete (fc28 = 37 MPa exposed to ISO 834-1 temperature curve with several levels of uniaxial loading are presented. No spalling was observed when samples were loaded at 0, 5 and 10 MPa. In the opposite, spalling was observed when the compressive stress was increased to 15 MPa.
Spalling Resistant Bauxite Based Bricks for Cement Kiln
Institute of Scientific and Technical Information of China (English)
Zhang Xiaohui; Peng Xigao
2011-01-01
@@ 1.Scope This standard specifies the term,definition,classification,labeling,technical requirements,test methods,inspection rules,packing,marking,transportation,storage,and quality certificate of spalling resistant bauxite based bricks for cement kiln.This standard is applicable to the spalling resistant bauxite based bricks for cement kiln.
Explosive spalling of concrete, the mitigating effect of Polypropylene Fibres
DEFF Research Database (Denmark)
Sørensen, Lars Schiøtt
2003-01-01
This paper briefly describes the main results of a recent investigation on the influence of polypropylene fibres and restraint on the susceptibility of concrete to explosive spalling at high temperatures. The results suggest that polypropylene fibres may prevent spalling in both unstrained...
Auger Spectroscopy Analysis of Spalled LEU-10Mo Foils
Energy Technology Data Exchange (ETDEWEB)
Lawrence, Samantha Kay [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Schulze, Roland K. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2017-08-03
Presentation includes slides on Surface Science used to probe LEU-10Mo Spall; Auger highlights graphitic-like inclusions and Mo-deficient oxide on base metal; Higher C concentration detected within spall area Images Courtesy; Depth profiling reveals thick oxide; Mo concentration nears nominal only at depths ~400 nm; and lastly Key Findings.
The Hugoniot Elastic Limit Decay Limit
Billingsley, J. P.
1997-07-01
The Hugoniot Elastic Limit(HEL) precursor decay in shock loaded solids has been the subject of considerable experimental and theoretical investigation. Comparative evidence is presented to show that the elastic precursor wave particle velocity, UPHEL, for certain materials decays asymptotically with propagation distance to the DeBroglie velocity, V1, level. This is demonstrated for the following materials: iron, aluminum alloy 6061-T6, plexiglas(PMMA), nickel alloy(MAR-M200), and lithium flouride(LiF). The DeBroglie velocity, V1, equals h/2md, where h is Planck's Constant, m is the mass of one atom, and d is the closest distance between atoms. Thus a relationship has been established between a microscopically derived velocity, V1, and a macroscopically observed velocity, UPHEL.
层裂试验的数值模拟%Numerical Simulation of Spalling Test
Institute of Scientific and Technical Information of China (English)
冯峰
2014-01-01
Spalling test has been adopted recently for the dynamic tensile testing of brittle materials . Scholars have put forward the methods of measuring spall strength with initial spall location or the free surface ve -locity.The accuracy of these two methods needs to be studied .This paper mainly investigated spalling test using finite element simulation .The result shows that the method of calculating spall strength with initial spall location can achieve adequate accuracy but should be carefully taken to the influence of the waveform in which asymmet -ric waveform ( time of the rising and falling edge of the pulse are different ) should be adopted .The spall strength can also be measured from the free surface velocity of the specimen .The waveform , of which the rising time is less than the falling time , should be adopted .However , the free surface velocity measurement method is based on the simple wave theory which can bring non -negligible error , further research should be carried on .%近年来，层裂试验被用于测量脆性材料的动态拉伸强度，学者们提出通过初始层裂位置以及自由表面速度来计算层裂强度的方法，这两种方法的计算精度需要进一步研究。本文通过有限元模拟研究了层裂试验，结果表明，采用层裂位置来计算层裂强度的方法可以获得较高的精度，但是对波形有一定的要求。不应该采用半正弦波，而应该采用上升沿和下降沿部队称的波形。采用自由表面速度来计算层裂强度的方法应该采用上升沿时长小于下降沿的波形，但是无论采用什么样的波形，此方法基于简单波理论，带来不可忽略的误差，还需要进一步的改进和研究。
The virtual fields method applied to spalling tests on concrete
Directory of Open Access Journals (Sweden)
Forquin P.
2012-08-01
Full Text Available For one decade spalling techniques based on the use of a metallic Hopkinson bar put in contact with a concrete sample have been widely employed to characterize the dynamic tensile strength of concrete at strain-rates ranging from a few tens to two hundreds of s−1. However, the processing method mainly based on the use of the velocity profile measured on the rear free surface of the sample (Novikov formula remains quite basic and an identification of the whole softening behaviour of the concrete is out of reach. In the present paper a new processing method is proposed based on the use of the Virtual Fields Method (VFM. First, a digital high speed camera is used to record the pictures of a grid glued on the specimen. Next, full-field measurements are used to obtain the axial displacement field at the surface of the specimen. Finally, a specific virtual field has been defined in the VFM equation to use the acceleration map as an alternative ‘load cell’. This method applied to three spalling tests allowed to identify Young’s modulus during the test. It was shown that this modulus is constant during the initial compressive part of the test and decreases in the tensile part when micro-damage exists. It was also shown that in such a simple inertial test, it was possible to reconstruct average axial stress profiles using only the acceleration data. Then, it was possible to construct local stress-strain curves and derive a tensile strength value.
Institute of Scientific and Technical Information of China (English)
Zhang Feng-Guo; Zhou Hong-Qiang; Hu Jun; Shao Jian-Li; Zhang Guang-Ca; Hong Tao; He Bin
2012-01-01
A statistical model of dynamic spall damage due to void nucleation and growth is proposed for ductile materials under intense loading,which takes into account inertia,the elastic-plastic effect,and initial void size.To some extent,void interaction could be accounted for in this approach.Based on this model,the simulation of spall experiments for copper is performed by using the Lagrangian finite element method.The simulation results are in good agreement with experimental data for the free surface velocity profile,stress record behind copper target,final porosity,and void concentrations across the target. The influence of elastic-plastic effect upon the damage evolution is explored.The correlation between the damage evolution and the history of the stress near the spall plane is also analyzed.
Spalling tests on embedded cores and slabs: A comparative study
Directory of Open Access Journals (Sweden)
Pimienta P.
2013-09-01
Full Text Available A comparative analysis of the spalling of (a cores made of 3 concrete mixes embedded into 3 slabs made of the 3 same concrete mixes; and (b 3 reference slabs made again of the same 3 concrete mixes has been made. Samples have been exposed to the French Increased HydroCarbon temperature curve. Results confirm that concrete spalling phenomena is not only related to the material properties. Concrete spalling is also very much influenced by the geometry of the samples.
The effect of spall on Lg waves
Institute of Scientific and Technical Information of China (English)
HE Yong-feng; CHEN Xiao-fei; ZHANG Hai-ming
2005-01-01
The generation mechanism of Lg wave from underground nuclear explosion is still not clear at present. The general viewpoint is that the S wave generated by the near-source scattering of explosion-generated Rg appears to be the primary contributor to the low-frequency Lg (0.2～2.0 Hz) from nuclear explosions. The viewpoint is supported by the analysis of regional data from several Yucca Flats, NTS explosions by Patton and Taylor (1995), who further indicated that the prominent low-frequency spectral null in Lg is due to Rg from a compensated linear vector dipole (CLVD) source. In the paper, the data from Kazakstan Test Sites are investigated by a spectral ratio method. We have found that the spectral ratio of Lg waves is characterized by a spectral scalloping and a pronounced null, and the spectral null does not shift with spall dwell times, showing a strong dependence on shot depth and a very good agreement with those expected from Rg due to a CLVD source.
Microstructural analysis of explosively driven spall in A36 steel
Koby, Joseph R.
The phenomenon of spallation, which is the ejection of material from a solid subjected to mechanical shock, has been known for the last 100 years. Studies of the micromechanics of this failure mechanism have been performed with a wide variety of materials and shock sources. Much of this micromechanical research focuses on the initiation behavior of spall, and its propagation mechanisms. By contrast, very scant data is available concerning the effects of the residual stress wave traveling through a material after spall has taken place. This project sought to examine the microstructural behavior of an A36 steel target following a spall event driven by the high explosive PBX-9501. The microscopy was not limited to the immediate vicinity of the spall fracture, but rather encompassed the entire cross section of material from the spall zone to the crater floor left by the explosive. The objective was to locate and characterize regions of damage inside the target. This damage was expected to consist of void formation, and localized or widely distributed regions exhibiting yielding and/or plastic deformation indicative of an impending fracture. Over the course of this project, three samples of A36 steel were analyzed. These samples were taken from the same piece of 3/4 inch plate stock, so the initial properties were identical for all three. One sample was left as received, while the other two were shocked with 2.9g and 9.5g charges of PBX-9501, with production of spall as the end objective. The samples were then sectioned, and the microstructure of each was analyzed. The analysis included locations near the spall surface, along with locations within the sample interior. Sub-surface void formation was successfully observed within the material at distances up to 1 millimeter below the spall site, both in front of and behind the fracture. This behavior was documented in a sample which underwent incipient spall, with all target material remaining captive, and was also seen in
Hugoniot Models for Na and LiF from LEOS
Energy Technology Data Exchange (ETDEWEB)
Whitley, Heather D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wu, Christine J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2016-10-12
In this document, we provide the Hugoniot for sodium from two models: LEOS table L110 and Lynx table 110. We also provide the Hugoniot for lithium fluoride from LEOS (L2240) and Lynx (2240). The Hugoniot pressures are supplied for temperatures between 338.0 and 1.16×10^{9} Kelvin and densities between 0.968 and 11.5 g/cc. These LEOS models were developed by the quotidian EOS methodology, which is a widely used and robust method for producing tabular EOS data. Tables list the model data for LEOS 110, Lynx 110, LEOS 2240, and Lynx 2240. The Lynx models follow the same methodology as the LEOS models; however, the Purgatorio average-atom DFT code was used to compute the electron thermal part of the EOS. The models for Lynx are only listed at high compression due to known issues with the Lynx library at lower pressures.
Schulze, Peter A; Dang, Nhan C; Bolme, Cynthia A; Brown, Kathryn E; McGrane, Shawn D; Moore, David S
2013-07-25
Laser shock Hugoniot data were obtained using ultrafast dynamic ellipsometry (UDE) for both nonideal (ethanol/water solutions with mole percent χ(ethanol) = 0%, 3.4%, 5.4%, 7.5%, 9.7%, 11%, 18%, 33%, 56%, 100%) and ideal liquid mixtures (toluene/fluorobenzene solutions with mole percent χ(toluene) = 0%, 26.0%, 49.1%, 74.9%, 100%). The shock and particle velocities obtained from the UDE data were compared to the universal liquid Hugoniot (ULH) and to literature shock (plate impact) data where available. It was found that the water UDE data fit to a ULH-form equation suggests an intercept of 1.32 km/s, lower than the literature ambient sound speed in water of 1.495 km/s (Mijakovic et al. J. Mol. Liq. 2011, 164, 66-73). Similarly, the ethanol UDE data fit to a ULH-form equation suggests an intercept of 1.45 km/s, which lies above the literature ambient sound speed in ethanol of 1.14 km/s. Both the literature plate impact and UDE Hugoniot data lie below the ULH for water. Likewise, the literature plate impact and UDE Hugoniot data lie above the ULH for ethanol. The UDE Hugoniot data for the mixtures of water and ethanol cross the predictions of the ULH near the same concentration where the sound speed reaches a maximum. In contrast, the UDE data from the ideal liquids and their mixtures are well behaved and agree with ULH predictions across the concentration range. The deviations of the nonideal ethanol/water data from the ULH suggest that complex hydrogen bonding networks in ethanol/water mixtures alter the compressibility of the mixture.
Calculation of Hugoniot properties for shocked nitromethane based on the improved Tsien's EOS
Zhao, Bo; Cui, Ji-Ping; Fan, Jing
2010-06-01
We have calculated the Hugoniot properties of shocked nitromethane based on the improved Tsien’s equation of state (EOS) that optimized by “exact” numerical molecular dynamic data at high temperatures and pressures. Comparison of the calculated results of the improved Tsien’s EOS with the existed experimental data and the direct simulations show that the behavior of the improved Tsien’s EOS is very good in many aspects. Because of its simple analytical form, the improved Tsien’s EOS can be prospectively used to study the condensed explosive detonation coupling with chemical reaction.
Dynamic yield and tensile strengths of spark plasma sintered alumina
Girlitsky, I.; Zaretsky, E.; Kalabukhov, S.; Dariel, M.; Frage, N.
2014-05-01
Fully dense alumina samples with 0.6 μm grain size were produced from alumina powder using Spark Plasma Sintering and tested in two types of VISAR-instrumented planar impact tests. In the tests of the first type the samples of 0.28 to 6-mm thickness were loaded by 1-mm tungsten impactors accelerated up to a velocity of about 1 km/s. These tests were aimed to study the Hugoniot elastic limit (HEL) of the SPS-processed alumina and the decay of the elastic precursor wave with propagation distance. In the second type of test the samples of ~3-mm thickness were loaded by 1-mm copper impactors accelerated up to velocities 100-1000 m/s. These tests were aimed to study the dynamic tensile (spall) strength of the alumina. The data on tensile fracture of the alumina demonstrate a monotonic decline of the spall strength with the amplitude of the loading stress pulse. The data on the decay of the elastic precursor wave allows for determining the rates of the irreversible (inelastic) strains in the SPS-processed alumina at the initial stages of shock-induced inelastic deformation and, thus, to derive some conclusions concerning the mechanisms responsible of the deformation.
Phase Transitions of MgO Along the Hugoniot (Invited)
Root, S.; Shulenburger, L.; Lemke, R. W.; Cochrane, K. R.; Mattsson, T. R.
2013-12-01
The formation of terrestrial planets and planetary structure has become of great interest because of recent exoplanet discoveries of super earths. MgO is a major constituent of Earth's mantle, the rocky cores of gas giants such as Jupiter, and likely constitutes the interiors of many exoplanets. The high pressure - high temperature behavior of MgO directly affects equation of state models for planetary structure and formation. In this work, we examine single crystal MgO under shock compression utilizing experimental and density functional theory (DFT) methods to determine phase transformations along the Hugoniot. We perform plate impact experiments using Sandia's Z - facility on MgO up to 11.6 Mbar. The plate impact experiments generate highly accurate Hugoniot state data. The experimental results show the B1 - B2 solid - solid phase transition occurs near 4 Mbar on the Hugoniot. The solid - liquid transition is determined to be near 7 Mbar with a large region of B2-liquid coexistence. Using DFT methods, we also determine melt along the B1 and B2 solid phase boundaries as well as along the Hugoniot. The combined experimental and DFT results have determined the phase boundaries along the Hugoniot, which can be implemented into new planetary and EOS models. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Securities Administration under Contract No. DE-AC04-94AL85000.
Zhao, Shijun; Kang, Wei; Li, Zi; Zhang, Ping; He, Xian-Tu
2015-01-01
Principal Hugoniot and K-shell X-ray absorption spectra of warm dense KCl are calculated using the first-principles molecular dynamics method. Evolution of electronic structures as well as the influence of the approximate description of ionization on pressure (caused by the underestimation of the energy gap between conduction bands and valence bands) in the first-principles method are illustrated by the calculation. Pressure ionization and thermal smearing are shown as the major factors to prevent the deviation of pressure from global accumulation along the Hugoniot. In addition, cancellation between electronic kinetic pressure and virial pressure further reduces the deviation. The calculation of X-ray absorption spectra shows that the band gap of KCl persists after the pressure ionization of the $3p$ electrons of Cl and K taking place at lower energy, which provides a detailed understanding to the evolution of electronic structures of warm dense matter.
Simplified stochastic modeling of concrete spalling due to fire
Straalen, IJ.J. van; Steenbergen, R.D.J.M.; Lentzen, S.S.K.; Vries, R. de
2013-01-01
Predicting spalling of concrete due to fire loading is undoubtedly a complex task to come across. Existing numerical models are dealing with the phenomena on different complexity levels of describing the physical/chemical processes and material behavior. But still they do not take the highly stochas
A pressure-transferable coarse-grained potential for modeling the shock Hugoniot of polyethylene
Agrawal, Vipin; Peralta, Pedro; Li, Yiyang; Oswald, Jay
2016-09-01
We investigate the thermomechanical response of semi-crystalline polyethylene under shock compression by performing molecular dynamics (MD) simulations using a new coarse-graining scheme inspired by the embedded atom method. The coarse-graining scheme combines the iterative Boltzmann inversion method and least squares optimization to parameterize interactions between coarse-grained sites, including a many-body potential energy designed to improve the representability of the model across a wide range of thermodynamic states. We demonstrate that a coarse-grained model of polyethylene, calibrated to match target structural and thermodynamic data generated from isothermal MD simulations at different pressures, can also accurately predict the shock Hugoniot response. Analysis of the rise in temperature along the shock Hugoniot and comparison with analytical predictions from the Mie-Grüneisen equation of state are performed to thoroughly explore the thermodynamic consistency of the model. As the coarse-graining model affords nearly two orders of magnitude reduction in simulation time compared to all-atom MD simulations, the proposed model can help identify how nanoscale structure in semi-crystalline polymers, such as polyethylene, influences mechanical behavior under extreme loading.
Dissociation along the principal Hugoniot of the Laser Mégajoule ablator material
Colin-Lalu, P.; Recoules, V.; Salin, G.; Plisson, T.; Brambrink, E.; Vinci, T.; Bolis, R.; Huser, G.
2016-08-01
Glow discharge polymer hydrocarbon (GDP-CH) is used as the ablator material in inertial confinement fusion (ICF) capsules for the Laser Mégajoule and National Ignition Facility. Due to its fabrication process, GDP-CH chemical composition and structure differ from commercially available plastics and detailed knowledge of its properties in the warm dense matter regime is needed to achieve accurate design of ICF capsules. First-principles ab initio simulations of the GDP-CH principal Hugoniot up to 8 Mbar were performed using the quantum molecular dynamics (QMD) code abinit and showed that atomic bond dissociation has an effect on the compressibility. Results from these simulations are used to parametrize a quantum semiempirical model in order to generate a tabulated equation of state that includes dissociation. Hugoniot measurements obtained from an experiment conducted at the LULI2000 laser facility confirm QMD simulations as well as EOS modeling. We conclude by showing the EOS model influence on shock timing in a hydrodynamic simulation.
Shock Hugoniot measurements on Ta to 0. 78 TPa
Energy Technology Data Exchange (ETDEWEB)
Froeschner, K.E.; Lee, R.S.; Chau, H.H.; Weingart, R.C.
1983-08-18
Symmetric impact shock Hugoniot measurements have been made on Ta with an electrically exploded foil gun system. The results obtained to date for the Hugoniot of Ta cover the range 0.19 to 0.78 TPa (impact velocities from 4.0 to 9.7 km/s) and agree with data obtained by other researchers to within 2.7% rms. Recent improvements in the system include electromagnetic shielding of impactor and target, continuous measurement of impactor velocity with a Fabry-Perot interferometer and computer-aided analysis of shot film. Conservative extrapolation from current operating conditions indicate that pressures of 1.1 to 1.5 TPa could be achieved with little difficulty.
Ultrasonic detection of spall damage nucleation under low-velocity repeated impact
Directory of Open Access Journals (Sweden)
Watanabe T.
2012-08-01
Full Text Available Repeated plate impact testing with impact stress well below the threshold spall-stress (2.6 GPa on medium carbon steel was carried out to the identical target plate by impacting the flyer plate. Occurrence of spall damage under low-velocity repeated impact was evaluated nondestructively with a low frequency scanning acoustic microscope. We observed the spall damage distribution by the B- and C-scan images. In order to initiate the spall damage (voids in a ductile material or cracks in a brittle one the particular value of threshold spall-stress should be exceeded what already belongs to a commonly accepted knowledge. Generally, the spall damage development is dependent on the amplitude and the duration of the stress pulse. If the stress is high and duration is long enough to create tensile failure of material, the voids or cracks nucleate along the spall plane, and consequently, they form macrocracks. Therefore, the spall damage does not create when the first impact stress is less than the threshold spall-stress. However, after the fifth low-velocity repeated impact test, the generation of the spall damage was detected, even if the impact stress (1.1–1.7 GPa was lower than the threshold spall-stress (2.6 GPa.
The Hugoniot and chemistry of ablator plastic below 100 GPa
Akin, M. C.; Fratanduono, D. E.; Chau, R.
2016-01-01
The equation of state of glow discharge polymer (GDP) was measured to high precision using the two-stage light gas gun at Lawrence Livermore National Laboratory at pressures up to 70 GPa. Both absolute measurements and impedance matching techniques were used to determine the principal and secondary Hugoniots. GDP likely reacts at about 30 GPa, demonstrated by specific emission at 450 nm coupled with changes to the Hugoniot and reshock points. As a result of these reactions, the shock pressure in GDP evolves in time, leading to a possible decrease in pressure as compression increases, or negative compressibility, and causing complex pressure profiles within the plastic. Velocity wave profile variation was observed as a function of position on each shot, suggesting some internal variation of GDP may be present, which would be consistent with previous observations. The complex temporal and possibly structural evolution of GDP under shock compression suggests that calculations of compression and pressure based upon bulk or mean measurements may lead to artificially low pressures and high compressions. Evidence for this includes a large shift in calculating reshock pressures based on the reflected Hugoniot. These changes also suggest other degradation mechanisms for inertial confinement fusion implosions.
Hugoniot Models for Na and LiF from LEOS
Energy Technology Data Exchange (ETDEWEB)
Whitley, Heather D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wu, Christine J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2016-10-12
In this document, we provide the Hugoniot for sodium from two models: LEOS table L110 and Lynx table 110. We also provide the Hugoniot for lithium fluoride from LEOS (L2240) and Lynx (2240). The Hugoniot pressures are supplied for temperatures between 338.0 and 1.16×109 Kelvin and densities between 0.968 and 11.5 g/cc. These LEOS models were developed by the quotidian EOS methodology, which is a widely used and robust method for producing tabular EOS data.[1, 2] Table 1 lists the model data for LEOS 110, Table 2 contains Lynx 110, Table 3 contains LEOS 2240, and Table 4 contains Lynx 2240. The Lynx models follow the same methodology as the LEOS models, however the Purgatorio[3] average-atom DFT code was used to compute the electron ther- mal part of the EOS. The models for Lynx are only listed at high compression due to known issues with the Lynx library at lower pressures.
Expedient Spall Repair Methods and Equipment for Airfield Pavements Preprint
2009-08-01
portable pneumatic jackhammer. ACI RAP Bulletin 7 recommends that jackhammers larger than 30 lbs not be used, because they may cause damage to the...cold planer, designed for restoration of asphalt and concrete surfaces for small paving jobs, has a drum width of 24 inches. The drum featured 60...Application Procedures: Spall Repair of 21 Horizontal Concrete Surfaces, ACI RAP Bulletin 7, American Concrete Institute, 2005. 5. International
Numerical test of spalling of iron sulfide concretions in thin seam
Energy Technology Data Exchange (ETDEWEB)
Jiang, Jin-quan; Qu, Tian-zhi; Dai, Jin; Li, Hong; Tian, Zhi-chao [Shandong University of Science and Technology, Tai' an (China). Department of Resource and Civil Engineering
2009-04-15
Numerical tests which focused on typical concretions of different exposed status and drum pick focal points in different parts of concretions were carried out on the spalling of concretions. The spalling mechanism forms and conditions were analyzed. Transfixion damaged areas were shaped when the concretions affected by the pick. Acoustic emission (AE) distributed along the coal around the concretions intensively and there were translation spalling, rotating spalling, loosing spalling and pressure spalling - 4 overall spalling forms. The load to overall spall of typical concretions (200 mm x 150 mm) is 6.8 to 13.8 kN. The required load to spall is less when the depth of concretions in coal wall is less. When the thickness of concretions is smaller than 45 mm, the truncated form of spalling will appear and there are fractured areas in the middle and the surrounding area of concretions. AE distributes along the middle lane and around the concretions. 7 refs., 8 figs., 3 tabs.
Spall response of annealed copper to direct explosive loading
Finnegan, S. G.; Burns, M. J.; Markland, L.; Goff, M.; Ferguson, J. W.
2017-01-01
Taylor wave spall experiments were conducted on annealed copper targets using direct explosive loading. The targets were mounted on the back of an explosive disc which was being used for a shock to detonation transition (SDT) test in a gas gun. This technique allows two experiments to be conducted with one piece of explosive. Explosive loading creates a high stress state within the target with a lower strain rate than an equivalent plate impact experiment, although the shock front will also have some curvature. Three shots were performed on two differently annealed batches of copper to investigate the viability of the technique and the effect of annealing on the spall response. One pair of targets was annealed at 850°C for four hours and the other target was annealed at 600°C for one hour. The free surface velocity (FSV) profiles were recorded using a Photonic Doppler Velocimetry (PDV) probe focused on the center of the target. The profiles were compared to predictions from the CREST reactive burn model. One profile recorded a significantly lower peak velocity which was attributed to the probe being located off center. Despite this, all three calculated spall strengths closely agreed and it was concluded that the technique is a viable one for loading an inert target.
A New Hugoniot Equation of State for Shocked Porous Materials
Institute of Scientific and Technical Information of China (English)
耿华运; 谭华; 吴强
2002-01-01
A thermodynamic equation of state (EOS) is derived to be appropriate for investigating the thermodynamic variations along isobaric paths to predict the compression behaviour of porous materials. This EOS model is tested on porous iron, copper, lead and tungsten with different initial densities. The calculated temperature and Hugoniot are in good agreement with the corresponding experimental and theoretical data published previously. It is interesting that this model can satisfactorily predict the shock behaviour of porous materials over a wide range of porosity and pressure.
Calculation of Shock Hugoniot Curves of Precompressed Liquid Deuterium
Energy Technology Data Exchange (ETDEWEB)
Militzer, B
2002-11-18
Path integral Monte Carlo simulations have been used to study deuterium at high pressure and temperature. The equation of state has been derived in the temperature and density region of 10,000 {le} T {le} 1,000,000 and 0.6 {le} {rho} {le} 2.5 g cm{sup -3}. A series of shock Hugoniot curves is computed for different initial compressions in order to compare with current and future shock wave experiments using liquid deuterium samples precompressed in diamond anvil cells.
Spalling and Mechanical Properties of Fiber Reinforced High-performance Concrete Subjected to Fire
Institute of Scientific and Technical Information of China (English)
DONG Xiangjun; DING Yining; WANG Tianfeng
2008-01-01
Spalling and mechanical properties of FRHPC subjected to fire were tested on notched beams. The results confirm that the internal vapor pressure is the leading reason for spalling of high-performance concrete (HPC). At the same time, the temperature-increasing velocity and constrained conditions of concrete element also play significant roles in spalling. Steel fibers cannot reduce the risk of spalling, although they have obvious beneficial effects on the mechanical properties of concrete before and after exposure to fire. Polypropylene (PP) fibers are very useful in preventing HPC from spalling, however, they have negative effects on the strengths. By using hybrid fibers (steel fibers+PP fibers), both good anti-spalling performance and improved mechanical properties come true, which may provide necessary safe guarantee for the rescue work and structure repair after fire disaster.
Directory of Open Access Journals (Sweden)
Qahir N. S. Al-Kadi
2016-06-01
Full Text Available This research presents an experimental study on the spalling of self-compacting concrete (SCC with and without polypropylene (PP fibres subjected to elevated temperatures and at 2 and 4 hour exposure times. The results showed spalling occurred in all specimens that did not contain PP fibre in the concrete mixture above 400oC. On the other hand, spalling did not occur in specimens containing PP fibres above 0.05 % by volume. Spalling resistance performance was significantly improved. The hardened densities, weight losses, permeability, and scanning electron microscopy tests showed that the main cause for spalling was the low permeability of the SCC and the presence of water inside the concrete. Vapour developed inside the concrete during a fire finds it difficult to escape and will produce high internal stresses that lead to spalling. Statistical models were devised for the above test.
Prediction of the spatial occurrence of fire induced spalling in concrete slabs using random fields
Directory of Open Access Journals (Sweden)
Van Coile R.
2013-09-01
Full Text Available As the loss of concrete cover can significantly influence the reliability of concrete elements during fire, spalling should be taken into account when performing reliability calculations. However, the occurrence and spatial variation of spalling are highly uncertain. A first step towards a probabilistic analysis of spalling is made by combining existing deterministic models with a stochastic representation of the concrete tensile strength and by using random fields to model the tensile strength spatial variation.
Controlled exfoliation of (100) GaAs-based devices by spalling fracture
Sweet, Cassi A.; Schulte, Kevin L.; Simon, John D.; Steiner, Myles A.; Jain, Nikhil; Young, David L.; Ptak, Aaron J.; Packard, Corinne E.
2016-01-01
The importance of exfoliation techniques increases as the semiconductor industry progresses toward thinner devices as a way to reduce material costs and improve performance. The controlled spalling technique is a recently developed substrate removal process that utilizes the physics of fracture to create wafer cleavage parallel to the surface at a precise depth. In this letter, we apply principles of linear elastic fracture mechanics to predict the process conditions needed to exfoliate (100) GaAs of a desired thickness. Spalling can be initiated in a controllable manner, by depositing a stressor film of a residual stress value just below the threshold value to induce a spontaneous spall. Experimental data show process window requirements to controllably spall (100) GaAs. Additionally, experimental spall depth in (100) GaAs compares well to spalling mechanics predictions when the effects of wafer thickness and modulus are considered. To test spalled material quality, III-V single junction photovoltaic devices are lifted off of a (100)-GaAs substrate by spalling methods and electrical characteristics are recorded. No degradation is observed in the spalled device, illustrating the potential of this method to rapidly produce thin, high quality devices.
Preventive effect on spalling of UFC using jute fiber at high temperature
Directory of Open Access Journals (Sweden)
Ozawa M.
2013-09-01
Full Text Available In this study, we examined the relationship between spalling behaviour and spalling ratio of UFC with three kinds of short fibers (jute, polypropylene, water-soluble polyvinyl alcohol at high temperature. The heating temperatures were 400 °C and 600 °C. Although the specimen with jute fiber dosage of 0.19% by volume was occurred explosive spalling, the damage of specimen was slightly small. It appears that the addition of jute fiber to UFC is effective for preventing spalling.
Analytical Method to Evaluate Hugoniot of Metallic Materials with Different Initial Temperatures
Institute of Scientific and Technical Information of China (English)
WANG Qing-Song; LAN Qiang; HU Jian-Bo; WU Jing; DAI Cheng-Da
2008-01-01
@@ An analytical method is proposed to evaluate the Hugoniot parameters of preheated metallic materials by relating to its principal Hugoniot.Modelling calculations for 1100 AI, Cu and Ta show that the preheating lowers to a certain extent the shock impedance and the degree of lowering the shock impedance increases with increasing pre-heating temperature.The Hugoniots of 6061-T6 AI and TC4 preheated flyers at known preheating temperatures are evaluated, and are utilized to calculate the particle velocity and shock pressure using the impedance-match method based on the measured shock wave velocity and impact velocity reported in Z pinch-driven and threestage gun-driven Hugoniot experiments.The presented method allows a reasonable evaluation for Hugoniot of the preheated metallic flyers.
Hugoniot measurements at near Gbar pressures at the NIF
Kritcher, Andrea; Swift, Damian; Doeppner, Tilo; Collins, Gilbert; Bachmann, Benjamin; Nilsen, Joe; Chapman, Dave; Correa, Alfredo; Sterne, Phil; Benedict, Lorin; Gaffney, Jim; Kraus, Dominik; Falcone, Roger; Glenzer, Siegfried; Rothman, Steve
2015-11-01
Laboratory measurements of the Equation of State (EOS) of matter at high pressure are of great importance in the understanding and accurate modeling of matter at extreme conditions. For example, at hundreds of Mbars - Gbar pressures atomic shell effects may come into play, which can change the predicted compressibility at given pressure due to pressure and temperature ionization. In this work we present measurements of the strong shock hugoniot, at pressures up to 720 Mbar for CH and 630 Mbar for High Density Carbon (HDC, or diamond) at the National Ignition Facility (NIF). Spherically convergent shocks are launched into solid CH or diamond samples, using a hohlraum radiation drive. X-ray radiography is applied to measure the shock speed and infer the mass density profile, enabling determining of the shock pressure and Hugoniot equation of state. This work was performed under the auspices of the U.S. Department of Energy by University of California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48. Supported by LDRD 08-ERI-003.
The Hugoniot and Strength of Ultem 1000 Polyetherimide
Neel, Christopher; Chhabildas, Lalit
2015-06-01
Parallel-plate impact studies using a single stage powder gun have been performed to investigate the shock and subsequent release behavior of the commercial polyetherimide polymer Ultem™ up to 14 GPa. Two different types of setups were used to observe both the shock and unloading behavior. In one setup, the unloading was continuously tracked, and in the other the unloading was inferred from observing stress wave reverberations in a metallic plate on the sample. The results from the two methods concerning the loading behavior agreed very well and the resulting Hugoniot was found to be US = 2.42 + 1.601*UP. This study also demonstrated that the metallic plate reverberation method of following the unloading response, though not observing the continuous unloading of the sample, agrees extremely well with the unloading response recorded using continuous data obtained using interferometry windows. The results are used to build a case that the strength τ of Ultem when shock loaded to 1-8 GPa is ~0.05 GPa. Furthermore, an investigation of the ratio of the release wave velocity to the shock wave velocity indicates that a transition to bulk liquid (no strength) behavior is not achieved until Hugoniot strains exceed 0.35 for amorphous polymers such as Ultem.
Test method for spalling of fire exposed concrete
DEFF Research Database (Denmark)
Sørensen, Lars Schiøtt
2005-01-01
A new material test method is presented for determining whether or not an actual concrete may suffer from explosive spalling at a specified moisture level. The method takes into account the effect of stresses from hindered thermal expansion at the fire-exposed surface. Cylinders are used, which...... in many countries serve as standard specimens for testing the compressive strength. Consequently, the method is quick, cheap and easy to use in comparison to the alternative of testing full-scale or semi full-scale structures with correct humidity, load and boundary conditions. A number of concretes have...
Test Method for Spalling of Fire Exposed Concrete
DEFF Research Database (Denmark)
Hertz, Kristian Dahl; Sørensen, Lars Schiøtt
2005-01-01
A new material test method is presented for determining whether or not an actual concrete may suffer from explosive spalling at a specified moisture level. The method takes into account the effect of stresses from hindered thermal expansion at the fire-exposed surface. Cylinders are used, which...... in many countries serve as standard specimens for testing the compressive strength. Consequently, the method is quick, cheap and easy to use in comparison to the alternative of testing full-scale or semi full-scale structures with correct humidity, load and boundary conditions. A number of concretes have...
Spalling of concrete: A synthesis of experimental tests on slabs
Directory of Open Access Journals (Sweden)
Taillefer Nicolas
2013-09-01
Full Text Available The article reviews the results of many commercial or research tests carried out in CSTB on middle size concrete slabs. They concern 22 concrete slabs, made of normal and high strength concrete, for a rather wide range of thickness and compressive strength classes. Test procedures and a synthesis of main results are presented in order to provide deeper understanding of near-reality conditions of concrete structures. The tests concerned both new and existing tunnels. Results are detailed in relation with main parameters that are identified as impacting spalling in previous studies, such as concrete composition, concrete properties and specimen size.
Hugoniot Information for Bromonitromethane, Isopropyl Nitrate, and 90 wt% H_2O_2
Sheffield, Stephen A.; Davis, Lloyd; Engelke, Ray
1998-03-01
Hugoniot curves and related information are reported for three liquid explosives: bromonitromethane (BrNM), isopropyl nitrate (IPN), and 90/10 wt% hydrogen peroxide/water (H_2O_2). Hugoniot curves were determined using the measured sound speeds and the universal liquid Hugoniot empirical form(Woolfolk, R. W.; Cowperthwaite, M.; Shaw, R. Thermochimica Acta,) 1973, 5, 409-414. which only requires the initial sound speed as a parameter. We measured sound speeds for these liquids. In addition, gas gun experiments were conducted to determine experimental Hugoniot states for BrNM and IPN. Magnetic gauges were used to measure the input particle velocity and to track the shock front (a shock velocity measurement), providing the necessary information to determine a Hugoniot state. These measured states were compared to those predicted using the universal liquid Hugoniot and agreement was found to be very good. Using the calculated Hugoniot curves and the detonation velocities for IPN and H_2O_2, von Neumann spike detonation conditions were estimated and compared to nitromethane (NM). BrNM was also found to be more sensitive to shock initiation than neat NM.
Energy Technology Data Exchange (ETDEWEB)
Kicker, Dwayne Curtis; Herrick, Courtney G; Zeitler, Todd
2016-01-01
The numerical code DRSPALL (from direct release spallings) is written to calculate the volume of Waste Isolation Pilot Plant solid waste subject to material failure and transport to the surface (i.e., spallings) as a result of a hypothetical future inadvertent drilling intrusion into the repository. An error in the implementation of the DRSPALL finite difference equations was discovered and documented in a software problem report in accordance with the quality assurance procedure for software requirements. This paper describes the corrections to DRSPALL and documents the impact of the new spallings data from the modified DRSPALL on previous performance assessment calculations. Updated performance assessments result in more simulations with spallings, which generally translates to an increase in spallings releases to the accessible environment. Total normalized radionuclide releases using the modified DRSPALL data were determined by forming the summation of releases across each potential release pathway, namely borehole cuttings and cavings releases, spallings releases, direct brine releases, and transport releases. Because spallings releases are not a major contributor to the total releases, the updated performance assessment calculations of overall mean complementary cumulative distribution functions for total releases are virtually unchanged. Therefore, the corrections to the spallings volume calculation did not impact Waste Isolation Pilot Plant performance assessment calculation results.
Energy Technology Data Exchange (ETDEWEB)
Kicker, Dwayne Curtis [Stoller Newport News Nuclear, Inc., Carlsbad, NM (United States); Herrick, Courtney G [Sandia National Laboratories., Carlsbad, NM (United States); Zeitler, Todd [Sandia National Laboratories., Carlsbad, NM (United States)
2015-11-01
The numerical code DRSPALL (from direct release spallings) is written to calculate the volume of Waste Isolation Pilot Plant solid waste subject to material failure and transport to the surface (i.e., spallings) as a result of a hypothetical future inadvertent drilling intrusion into the repository. An error in the implementation of the DRSPALL finite difference equations was discovered and documented in a software problem report in accordance with the quality assurance procedure for software requirements. This paper describes the corrections to DRSPALL and documents the impact of the new spallings data from the modified DRSPALL on previous performance assessment calculations. Updated performance assessments result in more simulations with spallings, which generally translates to an increase in spallings releases to the accessible environment. Total normalized radionuclide releases using the modified DRSPALL data were determined by forming the summation of releases across each potential release pathway, namely borehole cuttings and cavings releases, spallings releases, direct brine releases, and transport releases. Because spallings releases are not a major contributor to the total releases, the updated performance assessment calculations of overall mean complementary cumulative distribution functions for total releases are virtually unchanged. Therefore, the corrections to the spallings volume calculation did not impact Waste Isolation Pilot Plant performance assessment calculation results.
Shock Hugoniot behavior of single crystal titanium using atomistic simulations
Mackenchery, Karoon; Dongare, Avinash
2017-01-01
Atomistic shock simulations are performed for single crystal titanium using four different interatomic potentials at impact velocities ranging from 0.5 km/s to 2.0 km/s. These potentials comprise of three parameterizations in the formulation of the embedded atom method and one formulation of the modified embedded atom method. The capability of the potentials to model the shock deformation and failure behavior is investigated by computing the shock hugoniot response of titanium and comparing to existing experimental data. In addition, the capability to reproduce the shock induced alpha (α) to omega (ω) phase transformation seen in Ti is investigated. The shock wave structure is discussed and the velocities for the elastic, plastic and the α-ω phase transformation waves are calculated for all the interatomic potentials considered.
Standing Rankine-Hugoniot Shocks in Black Hole Accretion Discs
Institute of Scientific and Technical Information of China (English)
GU Wei-Min; LU Ju-Fu
2004-01-01
@@ We study the problem of standing shocks in viscous disc-like accretion flows around black holes. For the first time we parametrize such a flow with two physical constants, namely the specific angular momentum accreted by the black hole j and the energy quantity K. By providing the global dependence of shock formation in the j - K parameter space, we show that a significant parameter region can ensure solutions with Rankine-Hugoniot shocks; and that the possibilities of shock formation are the largest for inviscid flows, decreasing with increasing viscosity, and ceasing to exist for a strong enough viscosity. Our results support the view that the standing shock is an essential ingredient in black hole accretion discs and is a general phenomenon in astrophysics, and that there should be a continuous change from the properties of inviscid flows to those of viscous ones.
Shock Hugoniots of molecular liquids and the principle of corresponding states
Energy Technology Data Exchange (ETDEWEB)
Chisolm, Eric D [Los Alamos National Laboratory; Crockett, Scott D [Los Alamos National Laboratory; Shaw, Milton S [Los Alamos National Laboratory
2009-01-01
We observe that the shock velocity-particle velocity Hugoniots for various liquids (e.g. nitrogen, oxygen, carbon dioxide, argon) lie almost on top of one another. Recalling the work of Ross and Ree [J. Chem. Phys. 73, 6146-6152 (1980)], we hypothesize that these materials obey a principle of corresponding states. We use the principle to deduce how the Hugoniots of two corresponding materials should be related, and we compare the results with data and find good agreement. We suggest this as a method for estimating the Hugoniot of a material of the appropriate type in the absence of shock data, and we illustrate with fluorine.
High precision measurements of the diamond Hugoniot in and above the melt region
Energy Technology Data Exchange (ETDEWEB)
Hicks, D; Boehly, T; Celliers, P; Bradley, D; Eggert, J; McWilliams, R S; Collins, G
2008-08-05
High precision laser-driven shock wave measurements of the diamond principal Hugoniot have been made at pressures between 6 and 19 Mbar. Shock velocities were determined with 0.3-1.1% precision using a velocity interferometer. Impedance matching analysis, incorporating systematic errors in the equation-of-state of the quartz standard, was used to determine the Hugoniot with 1.2-2.7% precision in density. The results are in good agreement with published ab initio calculations which predict a small negative melt slope along the Hugoniot, but disagree with previous laser-driven shock wave experiments which had observed a large density increase in the melt region. In the extensive solid-liquid coexistence regime between 6 and 10 Mbar these measurements indicate that the mixed phase may be slightly more dense than would be expected from a simple interpolation between liquid and solid Hugoniots.
Explosive Spalling of Fire Exposed Resource Saving Concrete Structures
DEFF Research Database (Denmark)
Sørensen, Lars Schiøtt; Hertz, Kristian Dahl; Kristiansen, Finn Harken
2003-01-01
, Hertz, Sørensen [1]. The main idea was to establish a test method by means of which it should be possible to assess whether a particular concrete has an increased risk of spalling compared to traditional concretes as defined in Hertz [2] and only using ordinary standard cylinders as test specimens......The paper describes briefly a new test facility, which has been developed within the project “Resource Saving Concrete Structures”, also called “Green Concrete” and some test results from the project. A full report is available from the home page of the Department of Civil Engineering Kristiansen....... The method has been applied on the green concretes of the project and later also as a first indicator in other projects. The method appears to be a valuable tool for the first investigation of new concretes...
Hugoniot equation of state of rock materials under shock compression.
Zhang, Q B; Braithwaite, C H; Zhao, J
2017-01-28
Two sets of shock compression tests (i.e. conventional and reverse impact) were conducted to determine the shock response of two rock materials using a plate impact facility. Embedded manganin stress gauges were used for the measurements of longitudinal stress and shock velocity. Photon Doppler velocimetry was used to capture the free surface velocity of the target. Experimental data were obtained on a fine-grained marble and a coarse-grained gabbro over a shock pressure range of approximately 1.5-12 GPa. Gabbro exhibited a linear Hugoniot equation of state (EOS) in the pressure-particle velocity (P-up) plane, while for marble a nonlinear response was observed. The EOS relations between shock velocity (US) and particle velocity (up) are linearly fitted as US = 2.62 + 3.319up and US = 5.4 85 + 1.038up for marble and gabbro, respectively.This article is part of the themed issue 'Experimental testing and modelling of brittle materials at high strain rates'.
Spall fracture of copper under loading by shock waves with duration less 1 microsecond
Directory of Open Access Journals (Sweden)
Tkachenko M.I.
2011-01-01
Full Text Available The paper presents results of experimental researches on spall fracture of polycrystalline copper when loading by shock waves with intensity of 20–33 GPa and duration < 1 μs. It is shown that decrease of copper spall strength is observed behind SW front at SW intensity of ∼ 33 GPa (above threshold of formation of heterogeneous deformation bands. When reducing SW intensity to 27 GPa, spall strength is restored. Duration of the softened copper state does not exceed ∼ 0.5 μs. The method for spall strength evaluation is based on measurement of maximum damage in post-test samples.
The Spalling of Geopolymer High Strength Concrete Wall Panels and Cylinders Under Hydrocarbon Fire
Directory of Open Access Journals (Sweden)
Mohd Ali Ahmad Zurisman
2016-01-01
Full Text Available Concrete structures were designed to withstand various types of environment conditions from mild to very severe conditions. Fire represents one of the most severe environmental conditions to which concrete structures may be subjected especially in close conduct structure like tunnel. This paper focuses on the spalling of geopolymer high strength concrete exposed to hydrocarbon fire for minimum 2 hours. From the fire test, geopolymer concrete can be classified as a good fire resistance construction materials based on spalling performance of high strength concrete when exposed to hydrocarbon fire. A maximum of 1% (excluding water moisture loss of spalling recorded for high strength geopolymer concrete wall panel. No explosive spallings were observed for high strength geopolymer concrete.
First-principles Equations of State and Shock Hugoniots of First- and Second-Row Plasmas
Driver, Kevin; Soubiran, Francois; Zhang, Shuai; Militzer, Burkhard
A first-principles methodology for studying high energy density physics and warm dense matter is important for the stewardship of plasma science and guiding inertial confinement fusion experiments. In order to address this challenge, we have been developing the capability of path integral Monte Carlo (PIMC) for studying dense plasmas comprised of increasingly heavy elements, including nitrogen, oxygen, and neon. In recent work, we have extended PIMC methodology beyond the free-particle node approximation by implementing localized nodal surfaces capable of describing bound plasma states in second-row elements, such as silicon. We combine results from PIMC with results from density functional theory molecular dynamics (DFT-MD) calculations to produce a coherent equation of state that bridges the entire WDM regime. Analysis of pair-correlation functions and the electronic density of states reveals an evolving plasma structure and ionization process that is driven by temperature and pressure. We also compute shock Hugoniot curves for a wide range of initial densities, which generally reveal an increase in compression as the second and first shells are ionized. This work is funded by the NSF/DOE Partnership in Basic Plasma Science and Engineering (DE-SC0010517).
Neglected transport equations: extended Rankine-Hugoniot conditions and J -integrals for fracture
Davey, K.; Darvizeh, R.
2016-09-01
Transport equations in integral form are well established for analysis in continuum fluid dynamics but less so for solid mechanics. Four classical continuum mechanics transport equations exist, which describe the transport of mass, momentum, energy and entropy and thus describe the behaviour of density, velocity, temperature and disorder, respectively. However, one transport equation absent from the list is particularly pertinent to solid mechanics and that is a transport equation for movement, from which displacement is described. This paper introduces the fifth transport equation along with a transport equation for mechanical energy and explores some of the corollaries resulting from the existence of these equations. The general applicability of transport equations to discontinuous physics is discussed with particular focus on fracture mechanics. It is well established that bulk properties can be determined from transport equations by application of a control volume methodology. A control volume can be selected to be moving, stationary, mass tracking, part of, or enclosing the whole system domain. The flexibility of transport equations arises from their ability to tolerate discontinuities. It is insightful thus to explore the benefits derived from the displacement and mechanical energy transport equations, which are shown to be beneficial for capturing the physics of fracture arising from a displacement discontinuity. Extended forms of the Rankine-Hugoniot conditions for fracture are established along with extended forms of J -integrals.
Colvin, Jeffrey D.; Jankowski, Alan F.; Kumar, Mukul; MoberlyChan, Warren J.; Reed, Bryan W.; Paisley, Dennis L.; Tierney, Thomas E.
2009-01-01
We previously reported [Colvin et al., J. Appl. Phys. 101, 084906 (2007)] on the microstructure morphology of pure Bi metal subjected to rapid laser-shock-driven melting and subsequent resolidification upon release of pressure, where the estimated effective undercooling rates were of the order of 109-1010 K/s. More recently, we repeated these experiments, but with a Bi/Zn alloy (Zn atomic fraction of 2%-4%) instead of elemental Bi and with a change in target design to suppress spall in the Bi/Zn samples. We observed a similar microstructure morphology in the two sets of experiments, with initially columnar grains recrystallizing to larger equiaxed grains. The Bi samples, however, exhibited micron-scale dendrites on the spall surfaces, whereas there were no dendritic structures anywhere in the nonspalled Bi/Zn, even down to the nanometer scale as observed by transmission electron microscopy. We present the simulations and the interferometry data that show that the samples in the two sets of experiments followed nearly identical hydrodynamic and thermodynamic paths apart from the presence of (probably partially liquid) spall in pure Bi. Simulations also show that the spall occurs right at the moving phase front and, hence, the spall itself cuts off the principal direction for latent heat dissipation across the phase boundary. We suggest that it is the liquid spall itself that creates the conditions for dendrite formation.
DRSPALL :spallings model for the Waste Isolation Pilot Plant 2004 recertification.
Energy Technology Data Exchange (ETDEWEB)
Gilkey, Amy P. (GRAM Inc., Albuquerque, NM); Hansen, Clifford W.; Schatz, John F. (John F. Schatz Research & Consulting, Inc., Del Mar, CA); Rudeen, David Keith (GRAM Inc., Albuquerque, NM); Lord, David L.
2006-02-01
This report presents a model to estimate the spallings releases for the Waste Isolation Pilot Plant Performance Assessment (WIPP PA). A spallings release in the context of WIPP PA refers to a portion of the solid waste transported from the subsurface repository to the ground surface due to inadvertent oil or gas drilling into the WIPP repository at some time after site closure. Some solid waste will be removed by the action of the drillbit and drilling fluid; this waste is referred to as cuttings and cavings. If the repository is pressurized above hydrostatic at the time of intrusion, solid waste material local to the borehole may be subject to mechanical failure and entrainment in high-velocity gases as the repository pressure is released to the borehole. Solid material that fails and is transported into the wellbore and thus to the surface comprise the spallings releases. The spallings mechanism is analogous to a well blowout in the modern oil and gas drilling industry. The current spallings conceptual model and associated computer code, DRSPALL, were developed for the 2004 recertification because the prior spallings model used in the 1996 WIPP Compliance Certification Application (CCA) was judged by an independent peer review panel as inadequate (DOE 1996, 9.3.1). The current conceptual model for spallings addresses processes that take place several minutes before and after a borehole intrusion of a WIPP waste room. The model couples a pipe-flow wellbore model with a porous flow repository model, allowing high-pressure gas to flow from the repository to the wellbore through a growing cavity region at the well bottom. An elastic stress model is applied to the porous solid domain that allows for mechanical failure of repository solids if local tensile stress exceeds the tensile strength of the waste. Tensile-failed solids may be entrained into the wellbore flow stream by a fluidized bed model, in which case they are ultimately transported to the land surface
Interaction between measurement time and observed Hugoniot cusp due to chemical reactions
McGrane, S. D.; Brown, K. E.; Bolme, C. A.; Moore, D. S.
2017-01-01
Chemistry occurring on picosecond timescales can be observed through ultrafast laser shock drive experiments that measure Hugoniot data and transient absorption. The shock stress needed to induce chemical reactions on picosecond time scales is significantly larger than the stress needed to induce reactions on nanosecond time scales typical of gas gun and explosively driven plate impact experiments. This discrepancy is consistent with the explanation that increased shock stress leads to increased temperature, which drives thermally activated processes at a faster rate. While the data are qualitatively consistent with the interpretation of thermally dominated reactions, they are not a critical test of this interpretation. In this paper, we review data from several shocked liquids that illustrate a Hugoniot cusp due to volume changing reactions that occurs at higher shock stress states in picosecond experiments than in nanosecond to microsecond experiments. We also correlate the observed Hugoniot cusp states with transient absorption changes that occur due to the buildup of reaction products.
Zaghloul, Mofreh R
2015-01-01
We present computational results and tables of the equation-of-state, thermodynamic properties, and shock Hugoniot for hot dense fluid deuterium. The present results are generated using a recently developed chemical model that takes into account different high density effects such as Coulomb interactions among charged particles, partial degeneracy, and intensive short range hard core repulsion. Internal partition functions are evaluated in a statistical-mechanically consistent way implementing recent developments in the literature. The shock Hugoniot curve derived from the present tables is in reasonable overall agreement with the Hugoniot derived from the Nova-laser shock wave experiments on liquid deuterium, showing that deuterium has a significantly higher compressibility than predicted by the SESAME tables or by Path Integral Monte Carlo (PIMC) calculations. Computational results are presented as surface plots for the dissociated fraction, degree of ionization, pressure, and specific internal energy for d...
Shock Hugoniot measurements of CH at Gbar pressures at the NIF
Kritcher, A. L.; Doeppner, T.; Swift, D.; Hawreliak, J.; Nilsen, J.; Hammer, J.; Bachmann, B.; Collins, G.; Landen, O.; Keane, C.; Glenzer, S.; Rothman, S.; Chapman, D.; Kraus, D.; Falcone, R. W.
2016-03-01
Laboratory measurements of the shock Hugoniot at high pressure, exceeding several hundred Mbar, are of great importance in the understanding and accurate modeling of matter at extreme conditions. In this work we present a platform to measure the material properties, specifically the single shock Hugoniot and electron temperature, at extreme pressures of ∼Gbar at the National Ignition Facility (NIF). In these experiments we launch spherically convergent shocks into solid CH, using a Hohlraum radiation drive. X-ray radiography is applied to measure the shock speed and infer the mass density profile, enabling determining of the material pressure and Hugoniot equation of state. X-ray scattering is applied to measure the electron temperature through measurement of the electron velocity distribution.
Spall fracture and strength of uranium, plutonium and their alloys under shock wave loading
Golubev, Vladimir
2015-06-01
Numerous results on studying the spall fracture phenomenon of uranium, two its alloys with molybdenum and zirconium, plutonium and its alloy with gallium under shock wave loading are presented in the paper. The majority of tests were conducted with the samples in the form of disks 4mm in thickness. They were loaded by the impact of aluminum plates 4mm thick through a copper screen serving as the cover or bottom part of a special container. The initial temperature of samples was changed in the range of -196 - 800 C degree for uranium and 40 - 315 C degree for plutonium. The character of spall failure of materials and the degree of damage for all tested samples were observed on the longitudinal metallographic sections of recovered samples. For a concrete test temperature, the impact velocity was sequentially changed and therefore the loading conditions corresponding to the consecutive transition from microdamage nucleation up to complete macroscopic spall fracture were determined. Numerical calculations of the conditions of shock wave loading and spall fracture of samples were performed in the elastoplastic approach. Several two- and three-dimensional effects of loading were taken into account. Some results obtained under conditions of intensive impulse irradiation and intensive explosive loading are presented too. The rather complete analysis and comparison of obtained results with the data of other researchers on the spall fracture of examined materials were conducted.
Directory of Open Access Journals (Sweden)
Rossino Chiara
2013-09-01
Full Text Available The phisyco-mechanical processes triggering concrete explosive spalling are related to the heat-induced micro- and meso-structural changes. To have new information on concrete properties at the microstructural level, as well as on how concrete spalling sensitivity is affected by polypropylene and steel fibers, and by aggregate type, ordinary and high-performance concretes are investigated in this research project, after being heated to different temperatures. The focus is on the relationship among porosity, vapor permeability, pore pressure and microcracking inside the cementitious matrix. Polypropylene fibers are shown to increase the total porosity, to favor microcracking and to reduce significantly pore pressure, to the advantage of concrete resistance to explosive spalling, whose risk is markedly reduced – or even zeroed.
Energy Technology Data Exchange (ETDEWEB)
Zaghloul, Mofreh R. [Department of Physics, College of Science, United Arab Emirates University, P.O. Box 15551, Al-Ain (United Arab Emirates)
2015-11-15
We present computational results and tables of the equation-of-state, thermodynamic properties, and shock Hugoniot for hot dense fluid deuterium. The present results are generated using a recently developed chemical model that takes into account different high density effects such as Coulomb interactions among charged particles, partial degeneracy, and intensive short range hard core repulsion. Internal partition functions are evaluated in a statistical-mechanically consistent way implementing recent developments in the literature. The shock Hugoniot curve derived from the present tables is overall in reasonable agreement with the Hugoniot derived from the Nova-laser shock wave experiments on liquid deuterium, showing that deuterium has a significantly higher compressibility than predicted by the SESAME tables or by Path Integral Monte Carlo calculations. Computational results are presented as surface plots for the dissociated fraction, degree of ionization, pressure, and specific internal energy for densities ranging from 0.0001 to 40 g/cm{sup 3} and temperatures from 2000 to ∼10{sup 6 }K. Tables for values of the above mentioned quantities in addition to the specific heat at constant pressure, c{sub p}, ratio of specific heats, c{sub p}/c{sub v}, sound speed and Hugoniot curve (for a specific initial state) are presented for practical use.
Mechanism of the rib spalling and the controlling in the very soft coal seam
Energy Technology Data Exchange (ETDEWEB)
Wang Jia-chen [China University of Mining and Technology, Beijing (China). Laboratory of Coal Resources and Mine Safety Technology
2007-08-15
The mechanism of rib spalling was studied and a way of controlling it was proposed by decreasing coal wall pressure and increasing the shear strength of the coal wall. Using the top coal caving technique and increasing the resistance of the support can reduce the pressure on the coal wall. The cohesion and shear strength of the coal wall may be increased by means of water infusion through the coal wall. These are effective ways of preventing rib spalling. The quick advance of the coal wall and having the correct low wall height are also advantageous to wall stability. 2 refs., 11 figs.
Laser-induced spalling of thin metal film from silica substrate followed by inflation of microbump
Inogamov, N. A.; Zhakhovsky, V. V.; Migdal, K. P.
2016-04-01
Dynamics of a thin gold film on a silica substrate triggered by fast heating with the use of a subpicosecond laser pulse is studied. The pressure waves generated by such heating may result in spalling (delamination) of the film and its flying away from the substrate after an acoustic time defined by the film thickness and speed of sound in metal. Intensity of the heating laser beam has the spatial Gaussian distribution in a cross section. Therefore, the heating of film surface is non-uniform along cylindrical radius measured from the beam axis. As a result of such heating, the velocity distribution in material flying away from the substrate has a maximum at the beam axis. Thus, the separated film has dome-like shape which inflates with time. Volume of an empty cavity between the separated film and the substrate increases during inflation. Typical flight velocities are in the range of 30-200 m/s. The inflation stage can last from few to several tens of nanoseconds if the diffraction-limited micron-sized laser focal spots are used. Capillary forces acting along the warped flying film decelerate the inflation of dome. Capillary deceleration of a bulging dome focuses mass flow along the dome shell in the direction of its axis. This results in formation of an axial jet and droplet in a tip of the dome. Our new simulation results and comparisons with experiments are presented. The results explain appearance of debris in a form of frozen droplets on a surface of an irradiated spot. This is the consequence of the capillary return of a droplet.
DYNAMIC STRENGTH AND STRAIN RATE EFFECTS ON FRACTURE BEHAVIOR OF TUNGSTEN AND TUNGSTEN ALLOYS
Zurek, A; G. Gray
1991-01-01
An investigation of the stress-strain response as a function of strain rate, spall strength, and dynamic fracture behavior of pure W, W-26Re, W-Ni- Fe and W-Ni-Fe-Co has been performed. Spall strength measurements, obtained in symmetric-impact tests, showed an increase in spall strength from 0.4 GPa for pure tungsten to 3.8 GPa for 90W-7Ni-3Fe. Concurrent with the increase in spall strength was a change in fracture mode from cleavage (for pure W) to a mixture of transgranular and intergranula...
Numerical Modelling of a Void Behind Shaft Lining using FDM with a Concrete Spalling Algorithm
Directory of Open Access Journals (Sweden)
Slawomir Bock
2014-01-01
Originality/value: An important limitation of all continuous methods is the inability (except when using some additional tools to simulate the rotations of predefined elements (blocks and their separation from the rest of the object. The concrete spalling algorithm presented extends the capabilities of FLAC3D with the possibility of simulating the detachment and separation of destroyed lining fragments.
Peeling behavior and spalling resistance of CFRP sheets bonded to bent concrete surfaces
Yuan, Hong; Li, Faping
2010-05-01
In this paper, the peeling behavior and the spalling resistance effect of carbon fiber reinforced polymer (CFRP) sheets externally bonded to bent concrete surfaces are firstly investigated experimentally. Twenty one curved specimens and seven plane specimens are studied in the paper, in which curved specimens with bonded CFRP sheets can simulate the concrete spalling in tunnel, culvert, arch bridge etc., whereas plane specimens with bonded CFRP sheets can simulate the concrete spalling in beam bridge, slab bridge and pedestrian bridge. Three kinds of curved specimens with different radii of curvature are chosen by referring to practical tunnel structures, and plane specimens are used for comparison with curved ones. A peeling load is applied on the FRP sheet by loading a circular steel tube placed into the central notch of beam to debond CFRP sheets from the bent concrete surface, meanwhile full-range load-deflection curves are recorded by a MTS 831.10 Elastomer Test System. Based on the experimental results, a theoretical analysis is also conducted for the specimens. Both theoretical and experimental results show that only two material parameters, the interfacial fracture energy of CFRP-concrete interface and the tensile stiffness of CFRP sheets, are needed for describing the interfacial spalling behavior. It is found that the radius of curvature has remarkable influence on peeling load-deflection curves. The test methods and test results given in the paper are helpful and available for reference to the designer of tunnel strengthening.
Screening method to assess the risk of explosive spalling on fire exposed concrete
DEFF Research Database (Denmark)
Sørensen, Lars Schiøtt
2003-01-01
At the Technical University of Denmark (BYG.DTU)a new test set-up is under development to screen various concretes to assess their risk of explosive spalling. The test exposes a standard cylinder to compressive ring stresses together with rapid heating of the cylinder end....
Meso-Scale Modeling of Spall in a Heterogeneous Two-Phase Material
Energy Technology Data Exchange (ETDEWEB)
Springer, Harry Keo [Univ. of California, Davis, CA (United States)
2008-07-11
The influence of the heterogeneous second-phase particle structure and applied loading conditions on the ductile spall response of a model two-phase material was investigated. Quantitative metallography, three-dimensional (3D) meso-scale simulations (MSS), and small-scale spall experiments provided the foundation for this study. Nodular ductile iron (NDI) was selected as the model two-phase material for this study because it contains a large and readily identifiable second- phase particle population. Second-phase particles serve as the primary void nucleation sites in NDI and are, therefore, central to its ductile spall response. A mathematical model was developed for the NDI second-phase volume fraction that accounted for the non-uniform particle size and spacing distributions within the framework of a length-scale dependent Gaussian probability distribution function (PDF). This model was based on novel multiscale sampling measurements. A methodology was also developed for the computer generation of representative particle structures based on their mathematical description, enabling 3D MSS. MSS were used to investigate the effects of second-phase particle volume fraction and particle size, loading conditions, and physical domain size of simulation on the ductile spall response of a model two-phase material. MSS results reinforce existing model predictions, where the spall strength metric (SSM) logarithmically decreases with increasing particle volume fraction. While SSM predictions are nearly independent of applied load conditions at lower loading rates, which is consistent with previous studies, loading dependencies are observed at higher loading rates. There is also a logarithmic decrease in SSM for increasing (initial) void size, as well. A model was developed to account for the effects of loading rate, particle size, matrix sound-speed, and, in the NDI-specific case, the probabilistic particle volume fraction model. Small-scale spall experiments were designed
Rock stress orientation measurements using induced thermal spalling in slim boreholes
Energy Technology Data Exchange (ETDEWEB)
Hakami, Eva [Geosigma AB, Uppsala (Sweden)
2011-05-15
In the planning and design of a future underground storage for nuclear waste based on the KBS-3 method, one of the aims is to optimize the layout of deposition tunnels such that the rock stresses on the boundaries of deposition holes are minimized. Previous experiences from heating of larger scale boreholes at the Aespoe Hard Rock Laboratory (AHRL) gave rise to the idea that induced borehole breakouts using thermal loading in smaller diameter boreholes, could be a possible way of determining the stress orientation. Two pilot experiments were performed, one at the Aespoe Hard Rock Laboratory and one at ONKALO research site in Finland. An acoustic televiewer logger was used to measure the detailed geometrical condition of the borehole before and after heating periods. The acoustic televiewer gives a value for each 0.7 mm large pixel size around the borehole periphery. The results from the loggers are presented as images of the borehole wall, and as curves for the maximum, mean and minimum values at each depth. Any changes in the borehole wall geometry may thus be easily detected by comparisons of the logging result images. In addition, using an optical borehole televiewer a good and detailed realistic colour picture of the borehole wall is obtained. From these images the character of the spalls identified may be evaluated further. The heating was performed in a 4 m long section, using a heating cable centred in an 8 m deep vertical borehole, drilled from the floor of the tunnels. For the borehole in the Q-tunnel of AHRL the results from the loggings of the borehole before the heating revealed that breakouts existed even before this pilot test due to previous heating experiments at the site (CAPS). Quite consistent orientation and the typical shape of small breakouts were observed. After the heating the spalling increased slightly at the same locations and a new spalling location also developed at a deeper location in the borehole. At ONKALO three very small changes
Effect of shear strength on Hugoniot-compression curve and the equation of state of tungsten (W)
Energy Technology Data Exchange (ETDEWEB)
Mashimo, Tsutomu, E-mail: mashimo@gpo.kumamoto-u.ac.jp; Liu, Xun [Institute of Pulsed Power Science, Kumamoto University, Kumamoto 860-8555 (Japan); Kodama, Masao [Sojo University, Kumamoto 860-0082 (Japan); Zaretsky, Eugene [Ben-Gurion University of the Negev, P.O. Box 653, Beer Sheva 84105 (Israel); Katayama, Masahide [Itochu Techno-Solutions Corporation, Tokyo 100-6080 (Japan); Nagayama, Kunihiko [Kyushu University, Fukuoka 812-8581 (Japan)
2016-01-21
The Hugoniot data for highly dense polycrystalline tungsten were obtained for pressures above 200 GPa, and the equation of state (EOS) was determined taking into account shear strength effects. For this study, we have made some improvements in measurement system and analyses of the shock wave data. Symmetric-impact Hugoniot measurements were performed using the high-time resolution streak camera system equipped on a one-stage powder gun and two-stage light gas gun, where the effects of tilting and bowing of flyer plate on the Hugoniot data were carefully considered. The shock velocity–particle velocity (U{sub S}–U{sub P}) Hugoniot relation in the plastic regime was determined to be U{sub S} = 4.137 + 1.242U{sub P} km/s (U{sub P} < 2 km/s). Ultrasonic and Velocity Interferometer System for Any Reflector measurements were also performed in this study. The zero-intercept value of the U{sub S}–U{sub P} Hugoniot relation was found to be slightly larger than the ultrasonic bulk sound velocity (4.023 km/s). The hypothetical hydrostatic isothermal U{sub s}–U{sub p} Hugoniot curve, which corresponds to the hydrostatic isothermal compression curve derived from the Hugoniot data using the strength data, converged to the bulk sound velocity, clearly showing shear strength dependence in the Hugoniot data. The EOS for tungsten is derived from the hydrostatic isothermal compression curve using the strength data.
DETERMINATION OF THE SPEED OF SOUND ALONG THE HUGONIOT IN A SHOCKED MATERIAL
2017-04-25
REPORT DATE (DD-MM-YYYY) April 2017 2. REPORT TYPE Final 3. DATES COVERED (From – To) 4. TITLE AND SUBTITLE DETERMINATION OF THE SPEED OF SOUND...Hugoniot to the isentrope was developed. The linear us- up and Mie-Grüneisen equations of state were applied to construct a comparison of the computed...2 + | [1 − 1 2 (0 − )] Using the linear equation of state, us- up : = 0 + Which when
The Hugoniot and chemistry of ablator plastic below 100 GPa
Energy Technology Data Exchange (ETDEWEB)
Akin, M. C., E-mail: akin1@llnl.gov; Fratanduono, D. E.; Chau, R. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)
2016-01-28
The equation of state of glow discharge polymer (GDP) was measured to high precision using the two-stage light gas gun at Lawrence Livermore National Laboratory at pressures up to 70 GPa. Both absolute measurements and impedance matching techniques were used to determine the principal and secondary Hugoniots. GDP likely reacts at about 30 GPa, demonstrated by specific emission at 450 nm coupled with changes to the Hugoniot and reshock points. As a result of these reactions, the shock pressure in GDP evolves in time, leading to a possible decrease in pressure as compression increases, or negative compressibility, and causing complex pressure profiles within the plastic. Velocity wave profile variation was observed as a function of position on each shot, suggesting some internal variation of GDP may be present, which would be consistent with previous observations. The complex temporal and possibly structural evolution of GDP under shock compression suggests that calculations of compression and pressure based upon bulk or mean measurements may lead to artificially low pressures and high compressions. Evidence for this includes a large shift in calculating reshock pressures based on the reflected Hugoniot. These changes also suggest other degradation mechanisms for inertial confinement fusion implosions.
Directory of Open Access Journals (Sweden)
D'Aloia L.
2013-09-01
Full Text Available Several concrete mixes have been designed to evaluate the influence of an air entraining agent (AEA on spalling. Tests have been performed under the ISO curve (occasionally under the HCinc curve on specimens of various sizes and shapes to assess spalling. Results were somehow erratic on the smallest specimens whereas the beneficial effect of the air-bubble network could be emphasized on slabs.
Microstructural Effects on the Spall Properties of ECAE-Processed AZ31B Magnesium Alloy
2016-10-01
of in- termetallic inclusions and their weak interface strengths. © 2016 Elsevier Ltd. All rights reserved . 1. Introduction Magnesium (Mg) and its...microstructure and spall behavior because of the process-induced cracking of intermetallic inclusions and their weak interface strengths. 15. SUBJECT...target of the manufactur- ing industry, leading to the development of advanced alloys with enhanced properties. These require systematic studies of pure
The Influence of Specific Factors Affecting Spall in Explosively Loaded Soil.
1985-03-22
the Defense Nuclear Agency, RDA-TR-3601-002, DNA 3245F, October 1973. 15. Schuster, S.H., and J.S. Macales, "Note on the Airblast Boundary Pressure...2.4B0 Coa .0e .100 .159 .20 .S .63PLOT07OF1M VERSUS TiPOE FORI1 21 J. 25 1.230 .491 3.301 .3se .150 .150 .233 .250 TIME xIpom I SPALL RUN No. 5, 2M
Experimental discussion on the mechanisms behind the fire spalling of concrete
2014-01-01
International audience; The behaviour of six concretes at high temperature (600 °C) and in particular the risk of fire spalling is studied. Two of the four ordinary concretes are made with calcareous aggregates (including one with polypropylene fibres) and two are made with silico-calcareous aggregates (including one with polypropylene fibres). In complement, tests are also done on two high performance concretes. Tests are performed with two sizes of samples: small samples (300 x 300 x 120 mm...
Energy Technology Data Exchange (ETDEWEB)
Stump, B.W. [Southern Methodist Univ., Dallas, TX (United States). Dept. of Geological Sciences; Weaver, T.A. [Los Alamos National Lab., NM (United States)
1992-01-24
Spall, the tensile failure of near-surface layers, which is observed above contained explosions, has been identified as a possible secondary seismic source contributing to teleseismic and regional signals. The relative importance of this secondary source can be constrained if the motion field in the spall zone is characterized. Spall zone motions from nuclear explosions detonated above the water table at Pahute Mesa are analyzed to develop these models. Acceleration, velocity, displacement, and dwell time measurements are made from gauges placed directly above the explosion, most often at the free surface. Decay of peak motions are strongly affected by the free surface with little change in amplitude out to a free surface range of 100 m/kt{sup l/3} followed by rapid decay beyond. Free surface interactions are assessed with first-order elastic spherical wave calculations that match observed peak velocity decays. These results indicate that the spall zone motions may be strongly affected by the scaled depth of burial of the explosion. Spall zone velocities, displacements and dwell times are compared for consistency with a gravitational model. The data is in agreement with the functional form of theoretical models although observed displacements may be as much as a factor of two to four greater than the model predicts for observed velocities and dwell times. These differences may reflect the continuous nature of the spall process and/or the role of material strength in these phenomena.
Spall strength and ejecta production of gold under explosively driven shock wave compression
Energy Technology Data Exchange (ETDEWEB)
La Lone, B. M. [National Security Technologies, LLC. (NSTec), Mercury, NV (United States); Stevens, G. D. [National Security Technologies, LLC. (NSTec), Mercury, NV (United States); Turley, W. D. [National Security Technologies, LLC. (NSTec), Mercury, NV (United States); Veeser, L. R. [National Security Technologies, LLC. (NSTec), Mercury, NV (United States); Holtkamp, D. B. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2013-12-16
Explosively driven shock wave experiments were conducted to characterize the spall strength and ejecta production of high-purity cast gold samples. The samples were from 0.75 to 1.84 mm thick and 30 mm in diameter. Peak stresses up to 44 GPa in gold were generated using PBX-9501 high explosive. Sample free surface and ejecta velocities were recorded using photonic Doppler velocimetry techniques. Lithium niobate pins were used to quantify the time dependence of the ejecta density and the total ejected mass. An optical framing camera for time-resolved imaging and a single-image x-ray radiograph were used for additional characterization. Free surface velocities exhibited a range of spall strengths from 1.7 to 2.4 GPa (mean: 2.0 ±0.3 GPa). The pullback signals were faint, minimal ringing was observed in the velocity records, and the spall layer continued to decelerate after first pull back. These results suggest finite tensile strength was present for some time after the initial void formation. Ejecta were observed for every sample with a roughened free surface, and the ejecta density increased with increased surface roughness, which was different in every experiment. The total ejected mass is consistent with the missing mass model.
Chemical transformations in the zone of spall damageability
Buravova, S. N.; Petrov, E. V.; Alymov, M. I.
2016-07-01
The results of experiments on studying the perlite-ferrite structure in steels under short-term negative pressures are described. It is shown that in the localized deformation bands formed in the zone of interference of unloading waves, where the tension stress is lower than the dynamic strength of the material, the cementite bands in perlite are crushed, their fragments are in part dissolved and enriched with carbon, and the cementite can pass into a steady spherical form on the boundary with ferrite. At relatively high shock-wave amplitudes, the perlite in its entirety acquires a spheroidal shape.
Role of Material Processing on the Dynamic Strength & Damage Behavior of S200F Beryllium
Adams, Chris; Anderson, William; Blumenthal, William; Gray, George
2011-06-01
We have performed a number of plate impact experiments on both vacuum hot-pressed (VHP) and roll-textured S200F Be to gain insight into the role of initial material processing on the strength and damage behavior of this technologically important material. These experiments extend and supplement results reported earlier. Variations in Hugoniot elastic limit (HEL), HEL decay with shock run distance, spall strength, and deformation response observed in VISAR traces will be discussed with respect to the relative roles of twinning and dislocation mediated slip in the overall material mechanical response. We will also discuss the influence of strain rate on spall behavior and compare our plate impact results with those of explosively driven (Taylor-wave) loading experiments presented by L. H. Hull in Session Y2-6 of the 2009 APS-SCCM Conference. C. D. Adams, et. al., ``Shock Compression of Condensed Matter - 2009, AIP Conference Proceedings 1195, 1, 509-512, (2009).
Comparison of Hugoniots calculated for aluminum in the framework of three quantum-statistical models
Kadatskiy, Maxim A
2015-01-01
The results of calculations of thermodynamic properties of aluminum under shock compression in the framework of the Thomas--Fermi model, the Thomas--Fermi model with quantum and exchange corrections and the Hartree--Fock--Slater model are presented. The influences of the thermal motion and the interaction of ions are taken into account in the framework of three models: the ideal gas, the one-component plasma and the charged hard spheres. Calculations are performed in the pressure range from 1 to $10^7$ GPa. Calculated Hugoniots are compared with available experimental data.
Comparison of Hugoniots calculated for aluminum in the framework of three quantum-statistical models
Kadatskiy, M. A.; Khishchenko, K. V.
2015-11-01
The results of calculations of thermodynamic properties of aluminum under shock compression in the framework of the Thomas-Fermi model, the Thomas-Fermi model with quantum and exchange corrections and the Hartree-Fock-Slater model are presented. The influences of the thermal motion and the interaction of ions are taken into account in the framework of three models: the ideal gas, the one-component plasma and the charged hard spheres. Calculations are performed in the pressure range from 1 to 107 GPa. Calculated Hugoniots are compared with available experimental data.
Hugoniot-based equations of state for two filled EPDM rubbers
Pacheco, A. H.; Dattelbaum, D. M.; Orler, E. B.; Bartram, B. D.; Gustavsen, R. L.
2014-05-01
Particle-filled elastomers are commonly used as engineering components due to their ability to provide structural support via their elastic mechanical response. Even small amounts of particle fillers are known to increase the mechanical strength of elastomers due to polymer-filler interactions. In this work, the shock response of two filled (SiO2 or silica and KevlarTMfillers) ethylene-propylene-diene (EPDM) rubbers were studied using single and two-stage gas gun-driven plate impact experiments. Hugoniot states were determined using standard plate impact methods. Both filled-EPDM elastomers exhibit high compressibility under shock loading and have a response similar to adiprene rubber.
Shell-structure effects on high-pressure Rankine-Hugoniot shock adiabats
Pain, J C
2007-01-01
Rankine-Hugoniot shock adiabats are calculated in the pressure range 1 Mbar-10 Gbar with two atomic-structure models: the atom in a spherical cell and the atom in a jellium of charges. These quantum self-consistent-field models include shell effects, which have a strong impact on pressure and shock velocity along the shock adiabat. Comparisons with experimental data are presented and quantum effects are interpreted in terms of electronic specific heat. A simple analytical estimate for the maximum compression is proposed, depending on initial density, atomic weight and atomic number.
Gojani, A. B.; Ohtani, K.; Takayama, K.; Hosseini, S. H. R.
2016-01-01
This paper reports a result of experiments for the determination of reliable shock Hugoniot curves of liquids, in particular, at relatively low pressure region, which are needed to perform precise numerical simulations of shock wave/tissue interaction prior to the development of shock wave related therapeutic devices. Underwater shock waves were generated by explosions of laser ignited 10 mg silver azide pellets, which were temporally and spatially well controlled. Measuring temporal variation of shock velocities and over-pressures in caster oil, aqueous solutions of sodium chloride, sucrose and gelatin with various concentrations, we succeeded to determine shock Hugoniot curves of these liquids and hence parameters describing Tait type equations of state.
Absolute Hugoniot measurements for CH foams in the 1.5-8 Mbar range
Aglitskiy, Y.; Velikovich, A. L.; Schmitt, A. J.; Karasik, M.; Serlin, V.; Weaver, J. L.; Oh, J.; Obenschain, S. P.
2016-10-01
We report the absolute Hugoniot measurements for dry CH foams at 10% of solid polystyrene density. The 400 μm thick, 500 μm wide planar foam slabs covered with a 10 μm solid plastic ablator were driven with 4 ns long Nike KrF laser pulses whose intensity was varied between 10 and 50 TW/cm2. The trajectories of the shock front and the ablative piston, as well as the rarefaction fan emerging after the shock breakout from the rear surface of the target were clearly observed using the side-on monochromatic x-ray imaging radiography. From these measurements the shock density compression ratio and the shock pressure are evaluated directly. The observed compression ratios varied between 4 and 8, and the corresponding shock pressures - between 1.5 and 8 Mbar. The data was simulated with the FASTRAD3D hydrocode, using standard models of inverse bremsstrahlung absorption, flux-limited thermal conduction, and multi-group radiation diffusion. The demonstrated diagnostics technique applied in a cryo experiment would make it possible to make the first absolute Hugoniot measurements for liquid deuterium or DT-wetted CH foams, which is relevant for designing the wetted-foam indirect-drive ignition targets for NIF. This work was supported by the US DOE/NNSA.
Fire Spalling Prevention via Polypropylene Fibres: A Meso- and Macroscale Approach
Directory of Open Access Journals (Sweden)
G. Mazzucco
2016-01-01
Full Text Available A deep understanding of concrete at the mesoscale level is essential for a better comprehension of several concrete phenomena, such as creep, damage, and spalling. The latter one specifically corresponds to the separation of pieces of concrete from the surface of a structural element when it is exposed to high and rapidly rising temperatures; for this phenomenon a mesoscopic approach is fundamental since aggregates performance and their thermal properties play a crucial role. To reduce the risk of spalling of a concrete material under fire condition, the inclusion of a low dosage of polypropylene fibres in the mix design of concrete is largely recognized. PP fibres in fact evaporate above certain temperatures, thus increasing the porosity and reducing the internal pressure in the material by an increase of the voids connectivity in the cement paste. In this work, the contribution of polypropylene fibres on concrete behaviour, if subjected to elevated thermal ranges, has been numerically investigated thanks to a coupled hygrothermomechanical finite element formulation. Numerical analyses at the macro- and mesoscale levels have been performed.
Off-Hugoniot characterization of alternative inertial confinement fusion ablator materials.
Moore, Alastair S.; Prisbrey, Shon; Baker, Kevin L.; Celliers, Peter M.; Fry, Jonathan; Dittrich, Thomas R.; Wu, Kuang-Jen J.; Kervin, Margaret L.; Schoff, Michael E.; Farrell, Mike; Nikroo, Abbas; Hurricane, Omar A.
2016-05-01
The ablation material used during the National Ignition Campaign, a glow- discharge polymer (GDP), does not couple as efficiently as simulations indicated to the multiple- shock inducing radiation drive environment created by laser power profile [1]. We investigate the performance of two other ablators, boron carbide (B4C) and high-density carbon (HDC) and compare with GDP under the same hohlraum conditions. Ablation performance is determined through measurement of the shock speed produced in planar samples of the ablator subjected to the identical multiple-shock inducing radiation drive environments that are similar to a generic three-shock ignition drive. Simulations are in better agreement with the off-Hugoniot performance of B4C than either HDC or GDP.
Energy Technology Data Exchange (ETDEWEB)
Kicker, Dwayne Curtis [Stoller Newport News Nuclear, Inc., Carlsbad, NM (United States); Herrick, Courtney G. [Sandia National Lab. (SNL-NM), Carlsbad, NM (United States); Zeitler, Todd [Sandia National Lab. (SNL-NM), Carlsbad, NM (United States); Malama, Bwalya [Sandia National Lab. (SNL-NM), Carlsbad, NM (United States); Rudeen, David Keith [GRAM Inc., Albuquerque, NM (United States); Gilkey, Amy P. [GRAM Inc., Albuquerque, NM (United States)
2016-01-01
The numerical code DRSPALL (from direct release spallings) is written to calculate the volume of Waste Isolation Pilot Plant (WIPP) solid waste subject to material failure and transport to the surface as a result of a hypothetical future inadvertent drilling intrusion. An error in the implementation of the DRSPALL finite difference equations was discovered as documented in Software Problem Report (SPR) 13-001. The modifications to DRSPALL to correct the finite difference equations are detailed, and verification and validation testing has been completed for the modified DRSPALL code. The complementary cumulative distribution function (CCDF) of spallings releases obtained using the modified DRSPALL is higher compared to that found in previous WIPP performance assessment (PA) calculations. Compared to previous PAs, there was an increase in the number of vectors that result in a nonzero spallings volume, which generally translates to an increase in spallings releases. The overall mean CCDFs for total releases using the modified DRSPALL are virtually unchanged, thus the modification to DRSPALL did not impact WIPP PA calculation results.
Directory of Open Access Journals (Sweden)
Hager I.
2013-09-01
Full Text Available In this paper, an experimental study on the spalling behaviour and mechanical properties of Reactive Powder Concretes (RPCs in high temperature are presented. The research program was established to evaluate the impact of low melting temperature polypropylene fibres PP on mechanical properties evolution with temperature but also to verify the effectiveness of their addition to prevent spalling. Three sets of RPC specimens were prepared for this study with different amount of PP fibres (no fibres, 1.0 kg/m3 and 2.0 kg/m3. The addition of PP fibres reduces the initial compressive strength of the RPC material by approx. 14% no significant influence on modulus of elasticity was observed. Addition of 1 kg/m3 of PP fibres in RPC, seem not to give a sufficient protection against occurrence of spalling phenomenon. By adding 2 kg/m3 of PP fibres the risk of spalling is significantly reduced.
Modeling of thermal spalling during electrical discharge machining of titanium diboride
Energy Technology Data Exchange (ETDEWEB)
Gadalla, A.M.; Bozkurt, B.; Faulk, N.M. (Texas A and M Univ., Dept. of Chemical Engineering, College Station, TX (US))
1991-04-01
Erosion in electrical discharge machining has been described as occurring by melting and flushing the liquid formed. Recently, however, thermal spalling was reported as the mechanism for machining refractory materials with low thermal conductivity and high thermal expansion. The process is described in this paper by a model based on a ceramic surface exposed to a constant circular heating source which supplied a constant flux over the pulse duration. The calculations were based on TiB{sub 2} mechanical properties along a and c directions. Theoretical predictions were verified by machining hexagonal TiB{sub 2}. Large flakes of TiB{sub 2} with sizes close to grain size and maximum thickness close to the predicted values were collected, together with spherical particles of Cu and Zn eroded from cutting wire. The cutting surfaces consist of cleavage planes sometimes contaminated with Cu, Zn, and impurities from the dielectric fluid.
A Void Growth Model Considering the Bauschinger Effect and Its Application to Spall Fracture
Institute of Scientific and Technical Information of China (English)
CHEN Qian-Yi; LIE Kai-Xin
2011-01-01
@@ A void growth model considering the Bauschinger effect (BE) is proposed for ductile mater/Ms sustaining impact loading.Numerical simulations of two high-velocity impact problems are carried out by our newly developed Eulerian programs.The proposed model is tested by a plate impact problem and a qualitative agreement with the experiment is obtained.Then a more complicated problem, a plate impacted by a spherical projectile at a velocity of 6.0 km/s, is simulated.The numerical results are in better accordance with the experimental data when the BE is considered.The proposed model reveaJs that the BE has an obvious effect on the spall process.
Dynamical Mechanical Properties for AD90 Alumina
Institute of Scientific and Technical Information of China (English)
REN Hui-lan; NING Jian-guo; LI Ping
2007-01-01
The dynamic response of polycrystalline alumina was investigated in the pressure range of 0 -13 GPa by planar impact experiments.Velocity interferometer system for any reflector(VISAR) was used to obtain free surface velocity profile and determine the Hugoniot elastic limit,and manganin gauges were employed to obtain the stress-time histories and determine Hugoniot curve.Both the free surface particle velocity profiles and Hugoniot curves indicate the dispersion of the "plastic" wave for alumina.With the measured stress histories,the complete histories of strain,particle velocity,specific volume and specific internal energy are gained by using path line principle of Lagrange analysis.The dynamic mechanical behaviors for alumina under impact loading are analyzed,such as nonlinear characteristic,strain rate dependence,dispersion and declination of shock wave in the material.
Energy Technology Data Exchange (ETDEWEB)
Shaw, Milton Sam [Los Alamos National Laboratory; Coe, Joshua D [Los Alamos National Laboratory; Sewell, Thomas D [UNIV OF MISSOURI-COLUMBIA
2009-01-01
An optimized version of the Nested Markov Chain Monte Carlo sampling method is applied to the calculation of the Hugoniot for liquid nitrogen. The 'full' system of interest is calculated using density functional theory (DFT) with a 6-31 G* basis set for the configurational energies. The 'reference' system is given by a model potential fit to the anisotropic pair interaction of two nitrogen molecules from DFT calculations. The EOS is sampled in the isobaric-isothermal (NPT) ensemble with a trial move constructed from many Monte Carlo steps in the reference system. The trial move is then accepted with a probability chosen to give the full system distribution. The P's and T's of the reference and full systems are chosen separately to optimize the computational time required to produce the full system EOS. The method is numerically very efficient and predicts a Hugoniot in excellent agreement with experimental data.
Determination of Dynamic Response of Ceramics and Ceramic-Metals Under Shock Compression and Spall
2010-12-01
thesis is a velocity interferometer for any reflector. VISAR is a modified Michelson interferometer where velocity instead of displacement are...2 Figure 2. Relative strength/tensile modulus of advanced fiber composites (From Ong, 2009...RHA Rolled Homogeneous Armor SNL Sandia National Lab VISAR Velocity Interferometer System for Any Reflector xiv THIS PAGE INTENTIONALLY LEFT
Modeling Dynamic Plasticity and Spall Fracture in High Density Polycrystalline Alloys
2006-09-01
grain morphology, heat conduction, strain- and strain-rate hardening, and thermal softening on the elastoplastic deformation and shear localization...depending upon mode mixity and temperature represent the constitutive behavior in damaged re- gions at intergranular interfaces. Finite element meshes of...Ortiz, 1985), a typical assump- tion in finite elastoplasticity theory (Clayton et al., 2004). The symbol n denotes a dimensionless scalar internal
Institute of Scientific and Technical Information of China (English)
HUANG Hai-Jun; JING Fu-Qian; CAI Ling-Cang; Bi Yan
2005-01-01
@@ Based on the available data of specific heat Cv at constant volume and the Grüeisen parameter γ of both lattice and electron contributions, we present a consistent method for simultaneously calculating the effective or synthesized Grüeisen parameter along Hugoniot, γeH, covering solid, mixed, and liquid states, and the melting temperature Tm for ε-iron.The rationality validation for this method is confirmed as compared with the experimental data, including the measured Tm and Hugoniot bulk sound velocities Cb.The calculated γeH and Tm for ε-iron at the Earth's inner-core boundary (330GPa) are 1.58 and 5930K, respectively, which are close to the values of 1.53 and 6050K given by Anderson [J.Phys.Chem.Solids 64 (2003) 2125].This method for determination of γeH could be, in principle, also applicable to any thermodynamic state calculations, e.g., along isothermal and isentropic paths, other than the Hugoniot locus.
Gibson, L.; Dattelbaum, Dana; Bartram, Brian; Sheffield, Stephen; Gustavsen, Richard; Handley, Caroline; Shock and Detonation Physics Team; Explosives Modelling Team
2013-06-01
Composition-B (Comp-B) is a solid cast explosive comprised of 59.5 wt% cyclotrimethylene-trinitramine (RDX), 39.5 wt% 2,4,6-trinitrotoluene (TNT), and 1 wt% wax. Its initial density depends on formulation method and as a result, the detonation properties of Comp-B have generally been studied at densities of 1.69 g/cm3 and 1.72 g/cm3. The shock initiation sensitivity (Pop-plot) of Comp-B has been reported previously; obtained using both explosively-driven wedge tests and embedded manganin gauge techniques. We describe the results of a series of gas-gun-driven plate-impact initiation experiments on Comp-B (ρ0 = 1.72 g/cm3) using embedded electromagnetic gauges to obtain in situ particle velocity wave profiles at 10 Lagrangian positions in each experiment. From the wave profiles, an unreacted Hugoniot locus, the run-distance-to-detonation, and initiation waveforms are obtained in each experiment. The results indicate that Comp-B at ρ0 = 1.72 g/cm3 is more sensitive than reported previously. Comparisons are made of the new Hugoniot states with an earlier Hugoniot-based EOS. Measurements of the detonation wave profile using photonic Doppler velocimetry are also presented and discussed in the context of ZND detonation theory.
Dynamic properties of ceramic materials
Energy Technology Data Exchange (ETDEWEB)
Grady, D.E. [Sandia National Labs., Albuquerque, NM (United States). Experimental Impact Physics Dept.
1995-02-01
The present study offers new data and analysis on the transient shock strength and equation-of-state properties of ceramics. Various dynamic data on nine high strength ceramics are provided with wave profile measurements, through velocity interferometry techniques, the principal observable. Compressive failure in the shock wave front, with emphasis on brittle versus ductile mechanisms of deformation, is examined in some detail. Extensive spall strength data are provided and related to the theoretical spall strength, and to energy-based theories of the spall process. Failure waves, as a mechanism of deformation in the transient shock process, are examined. Strength and equation-of-state analysis of shock data on silicon carbide, boron carbide, tungsten carbide, silicon dioxide and aluminum nitride is presented with particular emphasis on phase transition properties for the latter two. Wave profile measurements on selected ceramics are investigated for evidence of rate sensitive elastic precursor decay in the shock front failure process.
Use of the Hugoniot elastic limit in laser shockwave experiments to relate velocity measurements
Smith, James A.; Lacy, Jeffrey M.; Lévesque, Daniel; Monchalin, Jean-Pierre; Lord, Martin
2016-02-01
The US National Nuclear Security Agency has a Global Threat Reduction Initiative (GTRI) with the goal of reducing the worldwide use of high-enriched uranium (HEU). A salient component of that initiative is the conversion of research reactors from HEU to low enriched uranium (LEU) fuels. An innovative fuel is being developed to replace HEU in high-power research reactors. The new LEU fuel is a monolithic fuel made from a U-Mo alloy foil encapsulated in Al-6061 cladding. In order to support the fuel qualification process, the Laser Shockwave Technique (LST) is being developed to characterize the clad-clad and fuel-clad interface strengths in fresh and irradiated fuel plates. This fuel-cladding interface qualification will ensure the survivability of the fuel plates in the harsh reactor environment even under abnormal operating conditions. One of the concerns of the project is the difficulty of calibrating and standardizing the laser shock technique. An analytical study under development and experimental testing supports the hypothesis that the Hugoniot Elastic Limit (HEL) in materials can be a robust and simple benchmark to compare stresses generated by different laser shock systems.
Hugoniot based equation of state for solid polyurea and polyurea aerogel foams
Pacheco, Adam; Gustavsen, Richard; Aslam, Tariq; Bartram, Brian
2015-06-01
The shock response of solid polyurea and polyurea aerogel foams were studied using gas-gun driven plate impact experiments. The materials reported on here are commercially available, brand named AIRLOY X103, and supplied by Aerogel Technologies, LLC. PolyUrea Solid, with nominal density 1.13 g/cm3, and two aerogel foams, with nominal densities of 0.20 and 0.35 g/cm3, were studied. Most experiments were of the multi-slug type in which a sample of each density was mounted on an oxygen free high conductivity copper or 6061 aluminum baseplate. In these experiments, shock velocity was measured and other shock states calculated by the impedance matching technique. Other experiments were of the front surface impact type in which the foam sample was mounted in the projectile and impacted a lithium fluoride window. Shock states were calculated using the measured particle velocity, the projectile velocity, and the lithium fluoride Hugoniot. Peak particle velocity obtained in the foam was > 4.3 km/s, and peak pressure in the solid was > 29 GPa. A break in the data for the solid above particle velocities of 2.0 km/s (~ 18 GPa) indicates a probable decomposition reaction. A p- α model with Mie-Grueneisen form for the solid reasonably replicates the data.
Institute of Scientific and Technical Information of China (English)
QI Mei-Lan; HE Hong-Liang; YAN Shi-Lin
2007-01-01
@@ With an impact velocity varying from 196.9m/s to 317.9m/s and ratios of flyer/sample thickness of 2:4 and 3:6, the free-surface velocity profiles of the shock compressed high purity aluminium (HPA 99.999%) samples are measured with a velocity interferometer system for any reflector. Based on the vibrating features of the velocity profiles, the damage behaviour of HPA is analysed. The results indicate that the vibrating amplitude incresdes with increasing shock stress, and the subsequent reverberations describing the spall become more obvious. When the shock stress in the material is below a critical or smaller than the threshold level, the free-surface velocity profile replicates virtually the form of the compression pulse inside the sample. When the impact stress exceeds a critical value (1.4 Gpa), the micro damage would appear, and the free-surface velocity profile changes significantly,showing a series of short-duration reverberations in the profile. When the impact stress exceeds the threshold of damage, a compressive disturbance called the "spall pulse" appears in the free-surface velocity profile, and the subsequent reverberation becomes regular again. The measured spall strength of HPA is much higher than those of commercially pure aluminium reported in many references. In addition, the strength of HPA is similar to that of single-crystal aluminium.
Description and evaluation of a mechanistically based conceptual model for spall
Energy Technology Data Exchange (ETDEWEB)
Hansen, F.D.; Knowles, M.K.; Thompson, T.W. [and others
1997-08-01
A mechanistically based model for a possible spall event at the WIPP site is developed and evaluated in this report. Release of waste material to the surface during an inadvertent borehole intrusion is possible if future states of the repository include high gas pressure and waste material consisting of fine particulates having low mechanical strength. The conceptual model incorporates the physics of wellbore hydraulics coupled to transient gas flow to the intrusion borehole, and mechanical response of the waste. Degraded waste properties using of the model. The evaluations include both numerical and analytical implementations of the conceptual model. A tensile failure criterion is assumed appropriate for calculation of volumes of waste experiencing fragmentation. Calculations show that for repository gas pressures less than 12 MPa, no tensile failure occurs. Minimal volumes of material experience failure below gas pressure of 14 MPa. Repository conditions dictate that the probability of gas pressures exceeding 14 MPa is approximately 1%. For these conditions, a maximum failed volume of 0.25 m{sup 3} is calculated.
Directory of Open Access Journals (Sweden)
Lauri Kalle Tapio Uotinen
2017-01-01
Full Text Available An in situ concrete spalling experiment will be carried out in the ONKALO rock characterization facility. The purpose is to establish the failure strength of a thin concrete liner on prestressed rock surface, when the stress states in both rock and concrete are increased by heating. A cylindrical hole 1.5 m in diameter and 7.2 m in depth is reinforced with a 40 mm thin concrete liner from level −3 m down. Eight 6 m long 4 kW electrical heaters are installed around the hole 1 m away. The experiment setup is described and results from predictive numerical modelling are shown. Elastoplastic modelling using the Ottosen failure criterion predicts damage initiation on week 5 and the concrete ultimate strain limit of 0.0035 is exceeded on week 10. The support pressure generated by the liner is 3.2 MPa and the tangential stress of rock is reduced by −33%. In 2D fracture mechanical simulations, the support pressure is 3 MPa and small localized damage occurs after week 3 and damage process slowly continues during week 9 of the heating period. In conclusion, external heating is a potent way of inducing damage and thin concrete liner significantly reduces the amount of damage.
Prevalent material parameters governing spalling of a slag-impregnated refractory
Energy Technology Data Exchange (ETDEWEB)
Blond, E.; Schmitt, N.; Arnould, O.; Hild, F. [LMT-Cachan (ENS de Cachan / CNRS-UMR 8535 / Univ. Paris 6), Cachan (France); Blumenfeld, P. [CRDM / ARCELOR Grande Synthe, Dunkerque (France); Poirier, J. [CRDM / ARCELOR Grande Synthe, Dunkerque (France); CRMHT-CNRS, Orleans (France)
2004-07-01
In steel ladle linings, bauxite refractories in contact with iron and steel slag are subjected to complex loadings. To identify the causes of degradation in different reactor linings, a coupling diagram made up of three poles is established: namely, slag impregnation (I), Thermomechanics (TM) and phase transformations (P). The variation of the microstructure and the gradient of the chemical composition resulting from the (I-P) coupling are characterized by microprobe analyses; a natural impregnation tracer is identified. The (I-T) coupling is studied by modeling the refractory lining behavior subjected to a cyclic thermal loading within the framework of the mechanics of porous continua. Parameters governing the location and amplitude of the maximum pore pressure are obtained and their influences are studied. The analysis of the (TM) pole leads to the identification of a thermo-elasto-viscoplastic model for bauxite in various states of slag impregnation. Numerical simulations show that the stress state developed during the heating stages can induce spalling, probably generated by a localized over-pressure of slag. (orig.)
Directory of Open Access Journals (Sweden)
Guerrieri M.
2013-09-01
Full Text Available Small and large scale reinforced concrete panels/walls were tested under hydrocarbon fire conditions to investigate concrete spalling. Results indicated that spalling is caused by the combination of thermal stresses and pore water pressure build-up. The degree and magnitude of spalling is governed by a number of inter-dependent factors including panel size, thickness and compressive strengths, all of which are investigated in this research. High strength concrete panels of increased surface area and thickness had higher degrees of concrete spalling.
Gibson, L. L.; Dattelbaum, D. M.; Bartram, B. D.; Sheffield, S. A.; Gustavsen, R. L.; Brown, G. W.; Sandstrom, M. M.; Giambra, A. M.; Handley, C. A.
2014-05-01
A series of gas gun-driven plate impact experiments were performed on vacuum melt-cast Composition B to obtain new Hugoniot states and shock sensitivity (run-distance-to-detonation) information. The Comp B (ρ0 = 1.713 g/cm3) consisted of 59.5% RDX, 39.5% TNT, and 1% wax, with ~ 6.5% HMX in the RDX. The measured Hugoniot states were found to be consistent with earlier reports, with the compressibility on the shock adiabat softer than that of a 63% RDX material reported by Marsh.[4] The shock sensitivity was found to be more sensitive (shorter run distance to detonation at a given shock input condition) than earlier reports for Comp B-3 and a lower density (1.68-1.69 g/cm3) Comp B formulation. The reactive flow during the shock-to-detonation transition was marked by heterogeneous, hot spot-driven growth both in and behind the leading shock front.
Directory of Open Access Journals (Sweden)
Xiong, Ming-Xiang
2015-12-01
Full Text Available Experimental results of spalling and residual mechanical properties of ultra-high performance concrete after exposure to high temperatures are presented in this paper. The compressive strength of the ultra-high performance concrete ranged from 160 MPa~185 MPa. This study aimed to discover the effective way to prevent spalling for the ultra-high performance concrete and gauge its mechanical properties after it was subjected to fire. The effects of fiber type, fiber dosage, heating rate and curing condition were investigated. Test results showed that the compressive strength and elastic modulus of the ultra-high performance concrete declined slower than those of normal strength concrete after elevated temperatures. Polypropylene fiber rather than steel fiber was found effective to prevent spalling but affected workability. The effective fiber type and dosage were recommended to prevent spalling and ensure sufficient workability for casting and pumping of the ultra-high performance concrete.En este trabajo se presentan los resultados más relevantes del trabajo experimental realizado para valorar la laminación y las propiedades mecánicas residuales de hormigón de ultra-altas prestaciones tras su exposición a altas temperaturas. La resistencia a la compresión del hormigón de ultra-altas prestaciones osciló entre 160 MPa~185 MPa. El objetivo de este estudio fue descubrir una manera eficaz de prevenir desprendimientos y/o laminaciones en este hormigón y medir sus propiedades mecánicas después de ser sometido al fuego. Las variables estudiadas fueron la presencia y dosificación de fibras, velocidad de calentamiento y condiciones de curado. Los resultados mostraron, tras la exposición a altas temperaturas, que la resistencia a compresión y el módulo de elasticidad del hormigón de ultra-altas prestaciones disminuían más lento que las de un hormigón con resistencia normal. La fibra de polipropileno resultó más eficaz para prevenir
Quantum-statistical equation-of-state models of dense plasmas: high-pressure Hugoniot shock adiabats
Pain, Jean-Christophe
2007-01-01
We present a detailed comparison of two self-consistent equation-of-state models which differ from their electronic contribution: the atom in a spherical cell and the atom in a jellium of charges. It is shown that both models are well suited for the calculation of Hugoniot shock adiabats in the high pressure range (1 Mbar-10 Gbar), and that the atom-in-a-jellium model provides a better treatment of pressure ionization. Comparisons with experimental data are also presented. Shell effects on shock adiabats are reviewed in the light of these models. They lead to additional features not only in the variations of pressure versus density, but also in the variations of shock velocity versus particle velocity. Moreover, such effects are found to be responsible for enhancement of the electronic specific heat.
Recovery of entire shocked samples in a range of pressure from ~100 GPa to Hugoniot Elastic Limit
Nagaki, Keita; Sakaiya, Tatsuhiro; Kondo, Tadashi; Kurosawa, Kosuke; Hironaka, Yoichiro; Shigemori, Keisuke; Arakawa, Masahiko
2016-01-01
We carried out laser shock experiments and wholly recovered shocked olivine and quartz samples. We investigated the petrographic features based on optical micrographs of sliced samples and found that each recovered sample comprises three regions, I (optically dark), II (opaque) and III (transparent). Scanning electron microscopy combined with electron back-scattered diffraction shows that there are no crystal features in the region I; the materials in the region I have once melted. Moreover, numerical calculations performed with the iSALE shock physics code suggest that the boundary between regions II and III corresponds to Hugoniot Elastic Limit (HEL). Thus, we succeeded in the recovery of the entire shocked samples experienced over a wide range of pressures from HEL (~ 10 GPa) to melting pressure (~ 100 GPa) in a hierarchical order.
Equation of State of Al Based on Quantum Molecular Dynamics Calculations
Minakov, Dmitry V.; Levashov, Pavel R.; Khishchenko, Konstantin V.
2011-06-01
In this work, we present quantum molecular dynamics calculations of the shock Hugoniots of solid and porous samples as well as release isentropes and values of isentropic sound velocity behind the shock front for aluminum. We use the VASP code with an ultrasoft pseudopotential and GGA exchange-correlation functional. Up to 108 particles have been used in calculations. For the Hugoniots of Al we solve the Hugoniot equation numerically. To calculate release isentropes, we use Zel'dovich's approach and integrate an ordinary differential equation for the temperature thus restoring all thermodynamic parameters. Isentropic sound velocity is calculated by differentiation along isentropes. The results of our calculations are in good agreement with experimental data. Thus, quantum molecular dynamics results can be effectively used for verification or calibration of semiempirical equations of state under conditions of lack of experimental information at high energy densities. This work is supported by RFBR, grants 09-08-01129 and 11-08-01225.
Institute of Scientific and Technical Information of China (English)
R. YAHAYA; S.M. SAPUAN; M. JAWAID; Z. LEMAN; E.S. ZAINUDIN
2016-01-01
This paper presents the effect of kenaf fibre orientation on the mechanical properties of kenaf–aramid hybrid composites for military vehicle's spall liner application. It was observed that the tensile strength of woven kenaf hybrid composite is almost 20.78%and 43.55%higher than that of UD and mat samples respectively. Charpy impact strength of woven kenaf composites is 19.78%and 52.07%higher than that of UD and mat kenaf hybrid composites respectively. Morphological examinations were carried out using scanning electron microscopy. The results of this study indicate that using kenaf in the form of woven structure could produce a hybrid composite material with high tensile strength and impact resistance properties.
Energy Technology Data Exchange (ETDEWEB)
Morais, Marcus V.G. de, E-mail: mvmorais@unb.b [Cergy-Pontoise University - L2MGC, 5 mail Gay-Lussac Neuville sur Oise, 95031 Cergy-Pontoise Cedex (France); Pliya, Prosper [Cergy-Pontoise University - L2MGC, 5 mail Gay-Lussac Neuville sur Oise, 95031 Cergy-Pontoise Cedex (France); Noumowe, Albert, E-mail: Albert.Noumowe@u-cergy.f [Cergy-Pontoise University - L2MGC, 5 mail Gay-Lussac Neuville sur Oise, 95031 Cergy-Pontoise Cedex (France); Beaucour, Anne-Lise; Ortola, Sophie [Cergy-Pontoise University - L2MGC, 5 mail Gay-Lussac Neuville sur Oise, 95031 Cergy-Pontoise Cedex (France)
2010-10-15
The behaviour of concrete subjected to high temperature is studied. The aim of the study is to explain the spalling or bursting phenomenon observed during experimental studies in the laboratory. Mechanical computations are carried out with the finite element code CAST3M developed at the French Atomic Energy Agency (CEA). Heat gradient and water vapour pressure inside the concrete element are determined by using a thermo-hydrous model. Then, the mechanical stresses generated in the studied concrete element are calculated according to two behaviour assumptions: the linear isotropic elastic law and an elastoplastic model. Numerical simulations show that, during the heating cycles, tension stresses are developed in the central part and compression stresses at the surface of the cylindrical concrete element. The highest stresses appear when the surface temperature of the concrete element is about 300 {sup o}C. The tension stresses in the specimens then exceed the concrete tensile strength.
Energy Technology Data Exchange (ETDEWEB)
Taylor, S.R.; Cogbill, A.H.; Weaver, T.A. [Los Alamos National Lab., NM (United States); Miller, R.; Steeples, D. [Kansas Univ., Lawrence, KS (United States)
1992-12-31
In order to delineate the lateral and depth extent of spall from a buried nuclear explosion, we have performed a high-resolution pre- and post-shot seismic reflection survey from BEXAR. Although the data quality were marginal due to poor wave propagation through the volcanic tuffs of Pahute Mesa, a number of interesting differences are observed on the pre- and post-shot surveys. On the pre-shot survey, a reflector (reflector `` 1 ``) is observed at 250 ms (or about 150 m depth) using a stacking velocity of 1300 m/s. On the post-shot survey two reflectors are observed and a stacking velocity of 1150 m/s was used representing a 12% reduction in compressional velocity. With this stacking velocity, reflector `` 1 `` is recorded at 290 ms (still at about 150 m depth) and a new reflector ``2`` is observed at 210 ms (or about 100 m depth). These stacking velocities correspond well with available uphole travel times collected in U19ba and nearby U19ax (BEXAR and KEARSARGE emplacement holes, respectively). The cause for the differences observed in the pre- and post-shot surveys may be due to one of two reasons. First, it is possible that the near-surface rocks were damaged as part of the spallation process (thus reducing the in situ velocities) and reflector ``2`` represents a spall detachment surface. However, analysis of acceleration data collected close to the reflection line suggests that the ground motions were probably inadequate to damage the tuffs. Also, no evidence of actual spallation was actually observed. The second hypothesis is that the near-surface velocities of the tuffs were altered by the change in saturation state due to extensive rains occurring between the pre- and postshot surveys. Although the dependence of seismic velocity on saturation state is controlled by a number of complex factors, it cannot be ruled out.
Institute of Scientific and Technical Information of China (English)
Huan Zhang; Xiao-Xi Duan; Chen Zhang; Hao Liu; Hui-Ge Zhang; Quan-Xi Xue; Qing Ye
2016-01-01
One of the most challenging tasks in the laser-driven Hugoniot experiment is how to increase the reproducibility and precision of the experimental data to meet the stringent requirement in validating equation of state models.In such cases,the contribution of intrinsic uncertainty becomes important and cannot be ignored.A detailed analysis of the intrinsic uncertainty of the aluminum-iron impedance-match experiment based on the measurement of velocities is presented.The influence of mirror-reflection approximation on the shocked pressure of Fe and intrinsic uncertainties from the equation of state uncertainty of standard material are quantified.Furthermore,the comparison of intrinsic uncertainties of four different experimental approaches is presented.It is shown that,compared with other approaches including the most widely used approach which relies on the measurements of the shock velocities of Al and Fe,the approach which relies on the measurement of the particle velocity of Al and the shock velocity of Fe has the smallest intrinsic uncertainty,which would promote such work to significantly improve the diagnostics precision in such an approach.
Moore, Alastair S.; Prisbrey, Shon; Baker, Kevin L.; Celliers, Peter M.; Fry, Jonathan; Dittrich, Thomas R.; Wu, Kuang-Jen J.; Kervin, Margaret L.; Schoff, Michael E.; Farrell, Mike; Nikroo, Abbas; Hurricane, Omar A.
2016-09-01
The attainment of self-propagating fusion burn in an inertial confinement target at the National Ignition Facility will require the use of an ablator with high rocket-efficiency and ablation pressure. The ablation material used during the National Ignition Campaign (Lindl et al. 2014) [1], a glow-discharge polymer (GDP), does not couple as efficiently as simulations indicated to the multiple-shock inducing radiation drive environment created by laser power profile (Robey et al., 2012). We investigate the performance of two other ablators, boron carbide (B4C) and high-density carbon (HDC) compared to the performance of GDP under the same hohlraum conditions. Ablation performance is determined through measurement of the shock speed produced in planar samples of the ablator material subjected to the identical multiple-shock inducing radiation drive environments that are similar to a generic three-shock ignition drive. Simulations are in better agreement with the off-Hugoniot performance of B4C than either HDC or GDP, and analytic estimations of the ablation pressure indicate that while the pressure produced by B4C and GDP is similar when the ablator is allowed to release, the pressure reached by B4C seems to exceed that of HDC when backed by a Au/quartz layer.
Directory of Open Access Journals (Sweden)
Roy G.
2011-01-01
Full Text Available Lithium fluoride (LiF windows are extensively used in traditional shock wave experiments because of their transparency beyond 100 GPa along [100] axis. A correct knowledge of the optical and mechanical properties of these windows is essential in order to analyze the experimental data and to determine the equation of state on a large variety of metals. This in mind, the windows supply is systematically characterized in order to determine the density, the thermal expansion and the crystalline orientation. Furthermore, an experimental campaign is conducted in order to characterize the windows properties under shock loading at 300 K and preheated conditions (450 K. This article describes the experiments, details the analysis and presents the results. Particle velocity measurements are carried out at the interface of a multiple windows stack using interferometer diagnostic (VISAR and IDL at 532 nm wavelength. Shock velocity is calculated as a function of the time of flight through each window. The optical correction is calculated as the ratio of the apparent velocity gap and the particle velocity at the free surface. To go further, the Rankine-Hugoniot relations are applied to calculate the pressure and the density. Then, the results and uncertainties are presented and compared with literature data.
The Non-selfsimilar Riemann Problem for 2-D Zero-Pressure Flow in Gas Dynamics
Institute of Scientific and Technical Information of China (English)
Wenhua SUN; Wancheng SHENG
2007-01-01
The non-selfsimilar Riemann problem for two-dimensional zero-pressure flow in gas dynamics with two constant states separated by a convex curve is considered. By means of the generalized Rankine-Hugoniot relation and the generalized characteristic analysis method, the global solution involving delta shock wave and vacuum is constructed. The explicit solution for a special case is also given.
2009-10-01
requirements have led to the development of hybrid bearings with silicon nitride balls and metal raceways made of materials such as case hardened Pyrowear...raceways that lead to a spall. Voskamp [10, 11, 12] notes that the high level of cleanliness of bearing steels in current bearing technology is not...inner ring 40mm hybrid with M50 NiL raceways and half-inch diameter silicon nitride balls. The description of the test rig and testing procedures is
Dynamic High-Pressure Behavior of Hierarchical Heterogeneous Geological Materials
2016-04-01
pressure -density Hugoniot plots for simulations using the ‘mix 5’ option, as will be presented later. The volume weighted option for mixed cells (refered...AFRL-AFOSR-VA-TR-2016-0150 Dynamic High- Pressure Behavior of Geological Materials Naresh Thadhani GEORGIA TECH RESEARCH CORPORATION Final Report 04...31-12-2015 4. TITLE AND SUBTITLE Dynamic High- Pressure Behavior of Hierarchical Heterogeneous Geological Materials 5a. CONTRACT NUMBER 5b. GRANT
Observation of off-Hugoniot shocked states with ultrafast time resolution
Energy Technology Data Exchange (ETDEWEB)
Armstrong, M; Crowhurst, J; Bastea, S; Zaug, J
2010-02-23
We apply ultrafast single shot interferometry to determine the pressure and density of argon shocked from up to 7.8 GPa static initial pressure in a diamond anvil cell. This method enables the observation of thermodynamic states distinct from those observed in either single shock or isothermal compression experiments, and the observation of ultrafast dynamics in shocked materials. We also present a straightforward method for interpreting ultrafast shock wave data which determines the index of refraction at the shock front, and the particle and shock velocities for shock waves in transparent materials. Based on these methods, we observe shocked thermodynamic states between the room temperature isotherm of argon and the shock adiabat of cryogenic argon at final shock pressures up to 28 GPa.
Dynamic Properties of Fiber Reinforced Cement Mortar
Institute of Scientific and Technical Information of China (English)
唐志平; 徐松林; 胡晓军; 廖香丽; 蔡建
2004-01-01
Based on the shear wave tracing(SWT) technique proposed by Tang Z P, particle velocity gauge and the dual internal measurement for pressure and shear waves (IMPS) system are applied to investigate the responses of fiber reinforced cement subjected to impact loading. Series of experiments are conducted. The results show that there exist four critical points, A, B, C, D, in p-V Hugoniot curves. They correspond to the Hugoniot elastic limit (HEL) of the material, the critical point for shear strength limit and transition from damage state to failure state, void collapse, and solid compression, respectively. The critical point B is difficult to be aware of and never reported. However, it can be clearly disclosed with SWT method. Based on the analyses of shear strength, it can be concluded that the transversal wave, especially the unloading transversal wave, is especially important for the dynamic damage investigation of brittle materials.
Dynamic response of monolithic and laminate/particulate reactive mixtures
Wei, Chung-Ting
2011-01-01
Two dynamic compression methods were applied to a monolithic metal and reactive mixtures to investigate their responses: (a) Dynamic experiments using a split Hopkinson pressure bar were applied to reactive mixtures densified by explosive consolidation in order to establish their mechanical response and failure mechanisms. (b) Laser compression and release, which can impart high stresses, up to hundreds GPa, in times of nanoseconds and fractions thereof, was applied to establish the spalling ...
Laser Shock Compression and Spalling of Reactive Ni-Al Laminate Composites
Wei, C. T.; Maddox, B. R.; Weihs, T. P.; Stover, A. K.; Nesterenko, V. F.; Meyers, M. A.
2009-12-01
Reactive laminates produced by successive rolling and consisting of alternate layers of Ni and Al (with bi-layer thicknesses of 5 and 30 μm) were investigated by subjecting them to laser shock-wave loading. The laser intensity was varied between ˜2.68×1011 W/cm2 (providing an initial estimated pressure P˜25 GPa) and ˜1.28×1013 W/cm2 (P˜333 GPa) with two distinct initial pulse durations: 3 ns and 8 ns. Hydrodynamic calculations (using commercial code HYADES) were conducted to simulate the behavior of shock-wave propagation in the laminate structures. SEM, and XRD were carried out on the samples to study the reaction initiation, and the intermetallic compounds. It was found that the thinner bilayer thickness (5 μm) laminate exhibited the most intensive localized interfacial reaction at the higher laser intensity (1.28×1013 W/cm2); the reaction products were identified as NiAl and other Al-rich intermetallic compounds. The reaction front and the formation of intermetallic compounds extend into the sample with a thinner bilayer thickness (5 μm) to a depth of about 50 μm. Increase in the duration of laser shock wave induces increased reaction, which occurs also in the thicker bilayer laminate samples (30 μm bi-layer thickness). It is demonstrated that the methodology of laser shock is well suited to investigate the threshold conditions for dynamic mechanical reaction initiation caused by high intensity laser irradiation.
未反应乳化炸药冲击Hugoniot关系的测试%DETERMINATION OF SHOCK HUGONIOT RELATION OF UNREACTED EMULSION EXPLOSIVE
Institute of Scientific and Technical Information of China (English)
宋锦泉; 汪旭光; 焦彤
2001-01-01
未反应乳化炸药冲击Hugoniot关系是乳化炸药的 基本性能参数，它不仅是研究乳化炸药冲击引爆机理和确定其反应速率函数必不可少的数据 ，也是研究乳化炸药中冲击波演变为爆轰波的过程及进行乳化炸药爆轰数值模 拟的重要参数。本文利用设计的新型测试装置和建立的测试系统，较好地测 试了未反应乳化炸药冲击Hugoniot关系。%Shock Hugoniot relation is a basic characteristic parameter of emulsion explosive (EE).It's not only one of the absolutely necessary data for research of shock initiation and determination of the reaction rate function of EE,but also an important parameter in researching the evolution of shock-to-detonation waves in EE and for numerical simulation of EE detonation.In this paper,the shock Hugoniot relation of unreacted EE is determined by a new experimental system and good results have been gotten.
Saletti, D.; Forquin, P.
2016-05-01
During the last decades, the spalling technique has been more and more used to characterize the tensile strength of geomaterials at high-strain-rates. In 2012, a new processing technique was proposed by Pierron and Forquin [1] to measure the stress level and apparent Young's modulus in a concrete sample by means of an ultra-high speed camera, a grid bonded onto the sample and the Virtual Fields Method. However the possible benefit to use the DIC (Digital Image Correlation) technique instead of the grid method has not been investigated. In the present work, spalling experiments were performed on two aluminum alloy samples with HPV1 (Shimadzu) ultra-high speed camera providing 1 Mfps maximum recording frequency and about 80 kpixel spatial resolution. A grid with 1 mm pitch was bonded onto the first sample whereas a speckle pattern was covering the second sample for DIC measurements. Both methods were evaluated in terms of displacement and acceleration measurements by comparing the experimental data to laser interferometer measurements. In addition, the stress and strain levels in a given cross-section were compared to the experimental data provided by a strain gage glued on each sample. The measurements allow discussing the benefit of each (grid and DIC) technique to obtain the stress-strain relationship in the case of using an 80-kpixel ultra-high speed camera.
Experimental study of dynamic fragmentation of shockloaded metals below and above melting
Directory of Open Access Journals (Sweden)
De Rességuier T.
2010-06-01
Full Text Available The breakout and reflection of a strong shock-wave upon the free surface of a metallic sample may lead to ejecta production of many types. Spall fracture is due to tensile stresses which result from the interaction of the incident and the reflected release waves. When the sample remains in solid state, one or several layers of finite thickness, called spalls, can be created and ejected. When melting is initiated during shock-wave propagation, tensile stresses are generated in a liquid medium and lead to the creation of an expanding cloud of liquid debris. This phenomenon, sometimes referred to as microspalling, consists in a dynamic fragmentation process in the melted material. The present paper is devoted to the experimental investigation of the transition from spall fracture in solid state to the micro-spalling process in molten metals. This study, realized on tin and on iron, involves different shock generators (gas gun, pulsed laser… and diagnostics (velocimetry, high-speed optical shadowgraphy, fragments recovery.
Riemann problem for the zero-pressure flow in gas dynamics
Institute of Scientific and Technical Information of China (English)
李杰权; 荔炜
2001-01-01
The Riemann problem for zero-pressure flow in gas dynamics in one dimension and two dimensions is investigated. Through studying the generalized Rankine-Hugoniot conditions of delta-shock waves, the one-dimensional Riemann solution is proposed which exhibits four different structures when the initial density involves Dirac measure. For the two-dimensional case, the Riemann solution with two pieces of initial constant states separated at a smooth curve is obtained.
Knudson, Marcus
2013-06-01
The past several years have seen tremendous increase in the number of identified extra-solar planetary systems. Our understanding of the formation of these systems is tied to our understanding of the internal structure of these exoplanets, which in turn rely upon equations of state of light elements and compounds such as water and hydrogen. Here we present shock compression data for water with unprecedented accuracy that shows commonly used models for water in planetary modeling significantly overestimate the compressibility at conditions relevant to planetary interiors. Furthermore, we show that its behavior at these conditions, including reflectivity and isentropic response, is well described by a recent first-principles based equation of state. These findings advocate the use of this model as the standard for modeling Neptune, Uranus, and ``hot Neptune'' exoplanets, and should contribute to improved understanding of the interior structure of these planets, and perhaps improved understanding of formation mechanisms of planetary systems. We also present very recent experiments on deuterium that have taken advantage of continued improvements in both experimental configuration and the understanding of the quartz shock standard to obtain Hugoniot data with a significant increase in precision. These data will prove to provide a stringent test for the equation of state of hydrogen and its isotopes. Sandia is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the US Department of Energy's National Nuclear Security Administration under Contract No. DE-ACO4-94AL85000.
Li, Zhi-Guo; Chen, Qi-Feng; Gu, Yun-Jun; Zheng, Jun; Chen, Xiang-Rong
2016-10-01
The accurate hydrodynamic description of an event or system that addresses the equations of state, phase transitions, dissociations, ionizations, and compressions, determines how materials respond to a wide range of physical environments. To understand dense matter behavior in extreme conditions requires the continual development of diagnostic methods for accurate measurements of the physical parameters. Here, we present a comprehensive diagnostic technique that comprises optical pyrometry, velocity interferometry, and time-resolved spectroscopy. This technique was applied to shock compression experiments of dense gaseous deuterium-helium mixtures driven via a two-stage light gas gun. The advantage of this approach lies in providing measurements of multiple physical parameters in a single experiment, such as light radiation histories, particle velocity profiles, and time-resolved spectra, which enables simultaneous measurements of shock velocity, particle velocity, pressure, density, and temperature and expands understanding of dense high pressure shock situations. The combination of multiple diagnostics also allows different experimental observables to be measured and cross-checked. Additionally, it implements an accurate measurement of the principal Hugoniots of deuterium-helium mixtures, which provides a benchmark for the impedance matching measurement technique.
Quantum molecular dynamics simulations of equation of state of warm dense ethane
Li, Chuan-Ying; Wang, Cong; Li, Yong-Sheng; Li, Da-Fang; Li, Zi; Zhang, Ping
2016-09-01
The equation of state of warm dense ethane is obtained using quantum molecular dynamics simulations based on finite-temperature density functional theory for densities from 0.1 g / cm 3 to 3.1 g / cm 3 and temperatures from 0.1 eV to 5.17 eV. The calculated pressure and internal energy are fitted with cubic polynomials in terms of density and temperature. Specific density-temperature-pressure tracks such as the principal and double shock Hugoniot curves along with release isentropes are predicted which are fundamental for the analysis and interpretation of high-pressure experiments. The principal and double shock Hugoniot curves are in agreement with the experimental data from the Sandia Z-Machine [Magyar et al., Phys. Rev. B 91, 134109 (2015)].
Remo, John L.
2010-10-01
An electro-optic laser probe was developed to obtain parameters for high energy density equations of state (EoS), Hugoniot pressures (PH), and strain rates for high energy density laser irradiation intensity, I, experiments at ˜170 GW/cm2 (λ = 1064 nm) to ˜13 TW/cm2 (λ = 527 nm) on Al, Cu, Ti, Fe, Ni metal targets in a vacuum. At I ˜7 TW/cm2 front surface plasma pressures and temperatures reached 100's GPa and over two million K. Rear surface PH ranged from 7-120 GPa at average shock wave transit velocities 4.2-8.5 km/s, depending on target thickness and I. A surface plasma compression ˜100's GPa generated an impulsive radial expanding shock wave causing compression, rarefactions, and surface elastic and plastic deformations depending on I. A laser/fiber optic system measured rear surface shock wave emergence and particle velocity with ˜3 GHz resolution by monitoring light deflection from diamond polished rear surfaces of malleable metallic targets, analogous to an atomic force microscope. Target thickness, ˜0.5-2.9 mm, prevented front surface laser irradiation penetration, due to low radiation skin depth, from altering rear surface reflectivity (refractive index). At ˜10 TW electromagnetic plasma pulse noise generated from the target chamber overwhelmed detector signals. Pulse frequency analysis using Moebius loop antennae probed transient noise characteristics. Average shock (compression) and particle (rear surface displacement) velocity measurements determined rear surface PH and GPa) EoS that are compared with gas guns.
Energy Technology Data Exchange (ETDEWEB)
Lemke, R. W., E-mail: rwlemke@sandia.gov; Dolan, D. H.; Dalton, D. G.; Brown, J. L.; Robertson, G. R.; Harding, E.; Mattsson, A. E.; Carpenter, J. H.; Drake, R. R.; Cochrane, K.; Robinson, A. C.; Mattsson, T. R. [Sandia National Laboratories, PO Box 5800, Albuquerque, New Mexico 87185-1189 (United States); Tomlinson, K.; Blue, B. E. [General Atomics, San Diego, California 92121 (United States); Knudson, M. D. [Sandia National Laboratories, PO Box 5800, Albuquerque, New Mexico 87185-1189 (United States); Institute for Shock Physics and Department of Physics, Washington State University, Pullman, Washington 99164 (United States)
2016-01-07
We report on a new technique for obtaining off-Hugoniot pressure vs. density data for solid metals compressed to extreme pressure by a magnetically driven liner implosion on the Z-machine (Z) at Sandia National Laboratories. In our experiments, the liner comprises inner and outer metal tubes. The inner tube is composed of a sample material (e.g., Ta and Cu) whose compressed state is to be inferred. The outer tube is composed of Al and serves as the current carrying cathode. Another aluminum liner at much larger radius serves as the anode. A shaped current pulse quasi-isentropically compresses the sample as it implodes. The iterative method used to infer pressure vs. density requires two velocity measurements. Photonic Doppler velocimetry probes measure the implosion velocity of the free (inner) surface of the sample material and the explosion velocity of the anode free (outer) surface. These two velocities are used in conjunction with magnetohydrodynamic simulation and mathematical optimization to obtain the current driving the liner implosion, and to infer pressure and density in the sample through maximum compression. This new equation of state calibration technique is illustrated using a simulated experiment with a Cu sample. Monte Carlo uncertainty quantification of synthetic data establishes convergence criteria for experiments. Results are presented from experiments with Al/Ta, Al/Cu, and Al liners. Symmetric liner implosion with quasi-isentropic compression to peak pressure ∼1000 GPa is achieved in all cases. These experiments exhibit unexpectedly softer behavior above 200 GPa, which we conjecture is related to differences in the actual and modeled properties of aluminum.
The Dynamic Behaviour of Ballistic Gelatin
Shepherd, C. J.; Appleby-Thomas, G. J.; Hazell, P. J.; Allsop, D. F.
2009-12-01
In order to characterise the effect of projectiles it is necessary to understand the mechanism of both penetration and resultant wounding in biological systems. Porcine gelatin is commonly used as a tissue simulant in ballistic tests because it elastically deforms in a similar manner to muscular tissue. Bullet impacts typically occur in the 350-850 m/s range; thus knowledge of the high strain-rate dynamic properties of both the projectile and target materials are desirable to simulate wounds. Unlike projectile materials, relatively little data exists on the dynamic response of flesh simulants. The Hugoniot for a 20 wt.% porcine gelatin, which exhibits a ballistic response similar to that of human tissues at room temperature, was determined using the plate-impact technique at impact velocities of 75-860 m/s. This resulted in impact stresses around three times higher than investigated elsewhere. In US-uP space the Hugoniot had the form US = 1.57+1.77 uP, while in P-uP space it was essentially hydrodynamic. In both cases this was in good agreement with the limited available data from the literature.
Beryllium strain under dynamic loading
Directory of Open Access Journals (Sweden)
Pushkov Victor
2015-01-01
Full Text Available There are some data (not much on dynamic characteristics of beryllium that are important, for example, when estimating construction performance at NPP emergencies. A number of data on stress-strain curves, spall strength, shear strength, fracture and structure responses of shock loaded beryllium have obtained in US and Russian laboratories. For today the model description of this complex metal behavior does not have a reasonable agreement with the experimental data, thus a wider spectrum of experimental data is required. This work presents data on dynamic compression-test diagrams of Russian beryllium. Experiments are performed using Hopkinson bar method (SHPB. Strain rates were ε ∼ 103 s−1.
The dynamic response of carbon fiber-filled polymer composites
Patterson B.; Orler E.B.; Furmanski J.; Rigg P.A.; Scharff R.J.; Stahl D.B.; Sheffield S.A.; Gustavsen R.L.; Dattelbaum D.M.; Coe J.D.
2012-01-01
The dynamic (shock) responses of two carbon fiber-filled polymer composites have been quantified using gas gun-driven plate impact experimentation. The first composite is a filament-wound, highly unidirectional carbon fiber-filled epoxy with a high degree of porosity. The second composite is a chopped carbon fiber- and graphite-filled phenolic resin with little-to-no porosity. Hugoniot data are presented for the carbon fiber-epoxy (CE) composite to 18.6 GPa in the through-thickness direction,...
Characterization of booster-rocket propellants and their simulants
Energy Technology Data Exchange (ETDEWEB)
Weirick, L.J.
1989-01-01
A series of shock-loading experiments on a composite and an energietic propellant and there simulants was conducted on a light-gas gun. The initial objectives were to obtain Hugoniot data, to investigate the pressure threshold at which a reaction occurs, and to measure spall threshold at various impact velocities. The Hugoniot data measured for the propellants fit the Hugoniot curves provided by the manufacturer of the propellants extremely well and the Hugoniot curves developed for the simulants matched those of the propellants. Threshold pressures to initiate reactions in the composite and energetic propellants were found to be 40 and 3 kbars, respectively. In spall tests, the composite propellant and its simulant exhibited spall strengths around 0.25 and 0.18 kbar, respectively. The energetic propellant and its simulant were somewhat stronger with spall strengths just above 0.33 and 0.22 kbar. 12 refs., 6 figs., 6 tabs.
Dynamic compaction of tungsten carbide powder.
Energy Technology Data Exchange (ETDEWEB)
Gluth, Jeffrey Weston; Hall, Clint Allen; Vogler, Tracy John; Grady, Dennis Edward
2005-04-01
The shock compaction behavior of a tungsten carbide powder was investigated using a new experimental design for gas-gun experiments. This design allows the Hugoniot properties to be measured with reasonably good accuracy despite the inherent difficulties involved with distended powders. The experiments also provide the first reshock state for the compacted powder. Experiments were conducted at impact velocities of 245, 500, and 711 m/s. A steady shock wave was observed for some of the sample thicknesses, but the remainder were attenuated due to release from the back of the impactor or the edge of the sample. The shock velocity for the powder was found to be quite low, and the propagating shock waves were seen to be very dispersive. The Hugoniot density for the 711 m/s experiment was close to ambient crystal density for tungsten carbide, indicating nearly complete compaction. When compared with quasi-static compaction results for the same material, the dynamic compaction data is seen to be significantly stiffer for the regime over which they overlap. Based on these initial results, recommendations are made for improving the experimental technique and for future work to improve our understanding of powder compaction.
Goodman, Lawrence E
2001-01-01
Beginning text presents complete theoretical treatment of mechanical model systems and deals with technological applications. Topics include introduction to calculus of vectors, particle motion, dynamics of particle systems and plane rigid bodies, technical applications in plane motions, theory of mechanical vibrations, and more. Exercises and answers appear in each chapter.
Energy Technology Data Exchange (ETDEWEB)
Furnish, M.D.
1990-08-01
Recently an appreciable number of continuous release profiles have been measured from dynamic experiments with geological materials. For each material an empirical generalization of the available release curves may be constructed to allow easy application of the experimental data to problems in much the same way as a linear shock velocity -- particle velocity fit allows easy application of Hugoniot data. This generalization is made in two steps. The first is to compute the Eulerian axial modulus at the Hugoniot pressure and its first three pressure derivatives along the release for each test. This corresponds to a partial Taylor series of the axial modulus, which integrates to give a very close match to the original release. An alternative formulation, which takes volume as the independent variable, fails because that Taylor series does not converge with the rapidity needed for these calculations. The second step is to plot each of these quantities against the Hugoniot pressure for the suite of tests, and fit these data. A release from an arbitrary pressure within the general range of the experimental data may be computed by using the interpolated modulus and its interpolated derivatives. This generalization, which allows volume to be computed as a function of pressure, reproduces the experimental curves fairly well. We present the results of applying this technique to release data for Mini Jade 2 grout, and briefly compare these results with those from several Nevada Test Site tuffs, saturated and dry Indiana Limestone, and aluminum. Finally, we use the generalized Mini Jade 2 data to solve a sample problem, that of estimating the error produced by making the release = Hugoniot'' assumption in the analysis of ground motion gauges in an underground test. 12 refs., 14 figs., 5 tabs.
Effect of shock wave duration on dynamic failure of tungsten heavy alloy
Escobedo, J. P.; Trujillo, C. P.; Cerreta, E. K.; Gray, G. T., III; Brown, E. N.
2014-05-01
It has been well established that dynamic fracture or spall is a complex process strongly influenced by both microstructure and the loading profile imparted to the specimen. Having previously considered ductile materials with damage and deformation kinetics that are volume additive and therefore relative slow, here we consider a brittle material with damage and deformation kinetics that are fast. The present study elucidates the effect of loading profile on the fundamental mechanisms of brittle fracture in brittle tungsten heavy alloy (WHA) specimens. Spall experiments are performed with two significantly distinct shock pulse durations and accompanying unloading rates. For both profiles, it is observed that the failure in WHA is by brittle trans-particle crack growth with additional energy dissipation through crack branching in the more brittle tungsten particles. We also observe that for the 15.4 GPa peak shock stress, the wave profile does not influence the spall strength significantly. This is believed to be directly linked to the relative insensitivity of WHA to time dependent processes.
Nucleation and evolution of dynamic damage at Cu/Pb interfaces using molecular dynamics
Fensin, S. J.; Valone, S. M.; Cerreta, E. K.; Gray, G. T.; Shao, S.
2017-01-01
For ductile metals, the process of dynamic fracture occurs through nucleation, growth and coalescence of voids. For high purity single-phase metals, it has been observed by numerous investigators that voids tend to heterogeneously nucleate at grain boundaries and all grain boundaries are not equally susceptible to void nucleation. However, for materials of engineering significance, especially those with second phase particles, it is less clear if the type of bi-metal interface between the two phases will affect void nucleation and growth. To approach this problem in a systematic manner two bi-metal interfaces between Cu and Pb have been investigated: {111} and {100}. Qualitative and quantitative analysis of the collected data from molecular dynamics shock and spall simulations suggests that Pb becomes disordered during shock compression and is the preferred location for void nucleation under tension. Despite the interfaces being aligned with the spall plane (by design), they are not the preferred location for void nucleation irrespective of interface type.
Shock-wave dynamics during oil-filled transformer explosions
Efremov, V. P.; Ivanov, M. F.; Kiverin, A. D.; Utkin, A. V.
2017-05-01
This paper presents a numerical and experimental study of the shock-wave processes evolving inside a closed vessel filled with mineral oil. Obtained experimental Hugoniot data for oil are compared with the corresponding data for water. It is found that compression of mineral oil and water can be described by approximately the same Hugoniot over a wide pressure range. Such similarity allows the use of water instead of mineral oil in the transformer explosion experiments and to describe the compression processes in both liquids using similar equations of state. The Kuznetsov equation of state for water is adopted for a numerical study of mineral oil compression. The features of the evolution of shock waves within mineral oil are analyzed using two-dimensional numerical simulations. Numerical results show that different energy sources may cause different scenarios of loading on the shell. The principal point is the phase transition taking place at relatively high temperatures for the case of high-power energy sources. In this case, a vapor-gaseous bubble emerges that qualitatively changes the dynamics of compression waves and the pattern of loads induced on the shell. Taking into account the features of the process together with the concept of water-oil similarity, the present work presents a new approach for experimental modeling of transformer shell destruction using an explosion with given characteristics in a water-filled shell.
Shock-wave dynamics during oil-filled transformer explosions
Efremov, V. P.; Ivanov, M. F.; Kiverin, A. D.; Utkin, A. V.
2016-08-01
This paper presents a numerical and experimental study of the shock-wave processes evolving inside a closed vessel filled with mineral oil. Obtained experimental Hugoniot data for oil are compared with the corresponding data for water. It is found that compression of mineral oil and water can be described by approximately the same Hugoniot over a wide pressure range. Such similarity allows the use of water instead of mineral oil in the transformer explosion experiments and to describe the compression processes in both liquids using similar equations of state. The Kuznetsov equation of state for water is adopted for a numerical study of mineral oil compression. The features of the evolution of shock waves within mineral oil are analyzed using two-dimensional numerical simulations. Numerical results show that different energy sources may cause different scenarios of loading on the shell. The principal point is the phase transition taking place at relatively high temperatures for the case of high-power energy sources. In this case, a vapor-gaseous bubble emerges that qualitatively changes the dynamics of compression waves and the pattern of loads induced on the shell. Taking into account the features of the process together with the concept of water-oil similarity, the present work presents a new approach for experimental modeling of transformer shell destruction using an explosion with given characteristics in a water-filled shell.
Atomistic Molecular Dynamics Simulations of Shock Compressed Quartz
Farrow, Matthew R
2011-01-01
Atomistic non-equilibrium molecular dynamics (NEMD) simulations of shock wave compression of quartz have been performed using the so-called BKS semi-empirical potential of van Beest, Kramer and van Santen to construct the Hugoniot of quartz. Our scheme mimics the real world experimental set up by using a flyer-plate impactor to initiate the shock wave and is the first shock wave simulation that uses a geom- etry optimised system of a polar slab in a 3-dimensional system employing periodic boundary conditions. Our scheme also includes the relaxation of the surface dipole in the polar quartz slab which is an essential pre-requisite to a stable simulation. The original BKS potential is unsuited to shock wave calculations and so we propose a simple modification. With this modification, we find that our calculated Hugoniot is in good agreement with experimental shock wave data up to 25 GPa, but significantly diverges beyond this point. We conclude that our modified BKS potential is suitable for quartz under repres...
Quantum molecular dynamics simulations of beryllium at high pressures
Desjarlais, Michael; Knudson, Marcus
2008-03-01
The phase boundaries and high pressure melt properties of beryllium have been the subject of several recent experimental and theoretical studies. The interest is motivated in part by the use of beryllium as an ablator material in inertial confinement fusion capsule designs. In this work, the high pressure melt curve, Hugoniot crossings, sound speeds, and phase boundaries of beryllium are explored with DFT based quantum molecular dynamics calculations. The entropy differences between the various phases of beryllium are extracted in the vicinity of the melt curve and agree favorably with earlier theoretical work on normal melting. High velocity flyer plate experiments with beryllium targets on Sandia's Z machine have generated high quality data for the Hugoniot, bulk sound speeds, and longitudinal sound speeds. This data provides a tight constraint on the pressure for the onset of shock melting of beryllium and intriguing information on the solid phase prior to melt. The results of the QMD calculations and the experimental results will be compared, and implications for the HCP and BCC phase boundaries of beryllium will be presented.
Energy Technology Data Exchange (ETDEWEB)
Furnish, M.D.; Boslough, M.B. [Sandia National Labs., Albuquerque, NM (United States); Gray, G.T. III [Los Alamos National Lab., NM (United States); Remo, J.L. [Quantametrics, Inc., St. James, NY (United States)
1994-07-01
We describe methods for measuring dynamical properties for two material categories of interest in understanding large-scale extraterrestrial impacts: iron-nickel and underdense materials (e.g. snow). Particular material properties measured by the present methods include Hugoniot release paths and constitutive properties (stress vs. strain). The iron-nickel materials lend themselves well to conventional shock and quasi-static experiments. As examples, a suite of experiments is described including six impact tests (wave profile compression/release) over the stress range 2--20 GPa, metallography, quasi-static and split Hopkinson pressure bar (SHPB) mechanical testing, and ultrasonic mapping and sound velocity measurements. Temperature sensitivity of the dynamic behavior was measured at high and low strain rates. Among the iron-nickel materials tested, an octahedrite was found to have behavior close to that of Armco iron under shock and quasi-static conditions, while an ataxite exhibited a significantly larger quasi-static yield strength than did the octahedrite or a hexahedrite. The underdense materials pose three primary experimental difficulties. First, the samples are friable; they can melt or sublimate during storage, preparation and testing. Second, they are brittle and crushable; they cannot withstand such treatment as traditional machining or launch in a gun system. Third, with increasing porosity the calculated Hugoniot density becomes rapidly more sensitive to errors in wave time-of-arrival measurements. Carefully chosen simulants eliminate preservation (friability) difficulties, but the other difficulties remain. A family of 36 impact tests was conducted on snow and snow simulants at Sandia, yielding reliable Hugoniot and reshock states, but limited release property information. Other methods for characterizing these materials are discussed.
Furnish, M. D.; Boslough, M. B.; Gray, G. T., III; Remo, J. L.
We describe methods for measuring dynamical properties for two material categories of interest in understanding large-scale extraterrestrial impacts: iron-nickel and underdense materials (e.g. snow). Particular material properties measured by the present methods include Hugoniot release paths and constitutive properties (stress vs. strain). The iron-nickel materials lend themselves well to conventional shock and quasi-static experiments. As examples, a suite of experiments is described including six impact tests (wave profile compression/release) over the stress range 2-20 GPa, metallography, quasi-static and split Hopkinson pressure bar (SHPB) mechanical testing, and ultrasonic mapping and sound velocity measurements. Temperature sensitivity of the dynamic behavior was measured at high and low strain rates. Among the iron-nickel materials tested, an octahedrite was found to have behavior close to that of Armco iron under shock and quasi-static conditions, while an ataxite exhibited a significantly larger quasi-static yield strength than did the octahedrite or a hexahedrite. The underdense materials pose three primary experimental difficulties. First, the samples are friable; they can melt or sublimate during storage, preparation and testing. Second, they are brittle and crushable; they cannot withstand such treatment as traditional machining or launch in a gun system. Third, with increasing porosity the calculated Hugoniot density becomes rapidly more sensitive to errors in wave time-of-arrival measurements. Carefully chosen simulants eliminate preservation (friability) difficulties, but the other difficulties remain. A family of 36 impact tests was conducted on snow and snow simulants at Sandia, yielding reliable Hugoniot and reshock states, but limited release property information. Other methods for characterizing these materials are discussed.
The effect of shockwave profile shape on dynamic brittle failure
Directory of Open Access Journals (Sweden)
Gray G.T.
2012-08-01
Full Text Available The role of shock wave loading profile is investigated for the failure processes in a brittle material. The dynamic damage response of ductile metals has been demonstrated to be critically dependent on the shockwave profile and the stress-state of the shock. Changing from a square to triangular (Taylor profile with an identical peak compressive stress has been reported to increase the “spall strength” by over a factor of two and suppress damage mechanisms. The spall strength of tungsten heavy alloy (WHA based on plate impact square-wave loading has been extensively reported in the literature. Here a triangular wave loading profile is achieved with a composite flyer plate of graded density in contrast to the square-wave loading. Counter to the strong dependence in wave profile in ductile metals, for WHA, both square and triangle wave profiles the failure is by brittle cleavage fracture with additional energy dissipation through crack branching in the more brittle tungsten particles, largely indistinguishable between wave profiles. The time for crack nucleation is negligible compared to the duration of the experiment and the crack propagation rate is limited to the sound speed as defined by the shock velocity.
Piron, R.; Blenski, T.
2011-02-01
The numerical code VAAQP (variational average atom in quantum plasmas), which is based on a fully variational model of equilibrium dense plasmas, is applied to equation-of-state calculations for aluminum, iron, copper, and lead in the warm-dense-matter regime. VAAQP does not impose the neutrality of the Wigner-Seitz ion sphere; it provides the average-atom structure and the mean ionization self-consistently from the solution of the variational equations. The formula used for the electronic pressure is simple and does not require any numerical differentiation. In this paper, the virial theorem is derived in both nonrelativistic and relativistic versions of the model. This theorem allows one to express the electron pressure as a combination of the electron kinetic and interaction energies. It is shown that the model fulfills automatically the virial theorem in the case of local-density approximations to the exchange-correlation free-energy. Applications of the model to the equation-of-state and Hugoniot shock adiabat of aluminum, iron, copper, and lead in the warm-dense-matter regime are presented. Comparisons with other approaches, including the inferno model, and with available experimental data are given. This work allows one to understand the thermodynamic consistency issues in the existing average-atom models. Starting from the case of aluminum, a comparative study of the thermodynamic consistency of the models is proposed. A preliminary study of the validity domain of the inferno model is also included.
Piron, R; Blenski, T
2011-02-01
The numerical code VAAQP (variational average atom in quantum plasmas), which is based on a fully variational model of equilibrium dense plasmas, is applied to equation-of-state calculations for aluminum, iron, copper, and lead in the warm-dense-matter regime. VAAQP does not impose the neutrality of the Wigner-Seitz ion sphere; it provides the average-atom structure and the mean ionization self-consistently from the solution of the variational equations. The formula used for the electronic pressure is simple and does not require any numerical differentiation. In this paper, the virial theorem is derived in both nonrelativistic and relativistic versions of the model. This theorem allows one to express the electron pressure as a combination of the electron kinetic and interaction energies. It is shown that the model fulfills automatically the virial theorem in the case of local-density approximations to the exchange-correlation free-energy. Applications of the model to the equation-of-state and Hugoniot shock adiabat of aluminum, iron, copper, and lead in the warm-dense-matter regime are presented. Comparisons with other approaches, including the inferno model, and with available experimental data are given. This work allows one to understand the thermodynamic consistency issues in the existing average-atom models. Starting from the case of aluminum, a comparative study of the thermodynamic consistency of the models is proposed. A preliminary study of the validity domain of the inferno model is also included.
Explicit and implicit soil modelling for dynamic soil-structure interaction problems
Dasgupta, Aaron
1986-10-01
Increased application of nonlinear viscoelastic materials in structures and consideration of operating environments require modeling of interaction of such structures with the surrounding soil medium which significantly influences the dynamic response when subjected to an impulse or blast overpressure loading. The need is accentuated by the rapid advances in numerical modeling of dynamic problems using either finite difference or finite element techniques of structural analysis. An explicit modeling technique is recommended whereby a few layers of soil surrounding the base of the structure are modeled as an assembly of elements in contact with the structure. The interfacing contact elements for both structure and soil are allowed to stick, slide or separate from each other to simulate the appropriate boundary conditions. The explicit modeling technique using a finite element code requires characterization of constitutive relationship of geological materials from shock compression behavior of such materials and their Hugoniot characteristics. The characterization technique used here is currently restricted to materials with linear Hugoniot characteristics at all pressure ranges.
Energy Technology Data Exchange (ETDEWEB)
Kanel, G. I.; Razorenov, S. V.; Baumung, K.; Singer, J.
2001-07-01
This article presents experimental results of the dynamic yield strength and dynamic tensile strength ({open_quotes}spall strength{close_quotes}) of aluminum single crystals at shock-wave loading as a function of temperature. The load duration was {similar_to}40 and {similar_to}200 ns. The temperature varied from 20 to 650{degree}C which is only by 10{degree}C below the melting temperature. A linear growth of the dynamic yield strength by more than a factor of 4 was observed within this temperature range. This is attributed to the phonon drag effect on the dislocation motion. High dynamic tensile strength was maintained over the whole temperature range, including the conditions at which melting should start in a material under tension. This could be an indication of the existence of superheated states in solid crystals. {copyright} 2001 American Institute of Physics.
Shock responses of nanoporous aluminum by molecular dynamics simulations
Xiang, Meizhen; Yang, Yantao; Liao, Yi; Wang, Kun; Chen, Yun; Chen, Jun
2016-01-01
We present systematic investigations on the shock responses of nanoporous aluminum (np-Al) by nonequilibrium molecular dynamics simulations. The dislocation nucleation sites are found to concentrate in low latitude region near the equator of the spherical void surfaces. We propose a continuum wave reflection theory and a resolved shear stress model to explain the distribution of dislocation nucleation sites. The simulations reveals two mechanisms of void collapse: the plasticity mechanism and the internal jetting mechanism. The plasticity mechanism, which leads to transverse collapse of voids, prevails under relatively weaker shocks; while the internal jetting mechanism, which leads to longitudinal filling of the void vacuum, plays more significant role as the shock intensity increases. In addition, an abnormal thermodynamic phenomenon (i.e., arising of temperature with pressure dropping) in shocked np-Al is discovered. This phenomenon is incompatible with the conventional Rankine-Hugoniot theory, and is expl...
A Direct Comparison between Static and Dynamic Melting Temperature Determinations below 100 GPa
Institute of Scientific and Technical Information of China (English)
SUN Yu-Huai; HUANG Hai-Jun; LIU Fu-Sheng; YANG Mei-Xia; JING Fu-Qian
2005-01-01
@@ A preliminary experiment of sound velocity measurements for porous iron with initial average density of 6.275 g/cm3 has been performed at pressures below 100 GPa, in order to clarify a long-standing problem that the static melting temperature Tm, mostly below 100 GPa due to its technical limitations, is notably lower than the extrapolated melting data inferred from the shock wave experiments made above 200 GPa, for the sake of making a direct comparison between the experimental static and dynamic melting temperatures in the same pressure region.With the lately proposed Hugoniot sound velocity data analysis technique [Chin. Phys. Lett. 22 (2005) 863], the results deduced from this Hugoniot sound velocity measurement is Tm = 3200 K at 87GPa and Tm = 3080 K at80 GPa, which are in good agreement with the two latest static data ofTm = 3510 K at 105 GPa and Tm = 2750 K at 58 GPa, which utilized modern improved double-side laser heating and in situ accurate x-ray diffraction techniques in experiments. It can be concluded that consensus Tm data would be obtained from static and shock wave experiments in the case that the recently improved techniques are adopted in investigations.
Martin, Morgana
2008-10-01
The research involved performing controlled impact experiments on BMG composites consisting of amorphous Zr57Nb5Cu 15:4Ni12:6Al10 (LM106 or Vitreloy106) with crystalline tungsten reinforcement particles. Monolithic LM106 was also examined to aid in the understanding of the composite. The mechanical behavior of the composite was investigated over a range of strain rates (10-3 s -1 to 106 s-1), stress states (compression, compression-shear, tension), and temperatures (RT to 600°C) to determine the dependence of mechanical properties and deformation and failure modes (i.e., homogeneous deformation vs. inhomogeneous shear banding) on these parameters. Mechanical testing in the quasi-static to intermediate strain-rate regimes was performed using an Instron, Drop Weight Tower, and Split Hopkinson Pressure Bar, respectively. High-strain-rate mechanical properties of the BMG-matrix composite and monolithic BMG were investigated using dynamic compression (reverse Taylor) and dynamic tension (spall) impact experiments performed using a gas gun instrumented with velocity interferometry and high-speed digital photography. These experiments provided information about dynamic strength and deformation modes, and allowed for validation of constitutive models via comparison of experimental and simulated transient deformation profiles and free surface velocity traces. Hugoniot equation of state measurements were performed on the monolithic BMG to investigate the high pressure phase stability of the glass and the possible implications of a high pressure phase transformation on mechanical properties. Specimens were recovered for post-impact microstructural and thermal analysis to gain information about the mechanisms of dynamic deformation and fracture, and to examine for possible shock-induced phase transformations of the amorphous phase. For the composite, mechanical testing revealed positive strain-rate sensitivity of its yield stress and negative strain-rate sensitivity of its
Gas-dynamic Variable Relation on Opposite Sides of the Gas-dynamic Discontinuity
Directory of Open Access Journals (Sweden)
Pavel Viktorovich Bulat
2015-04-01
Full Text Available The goal of this study is to study the conditions of dynamic compatibility on gas-dynamic discontinuities written in the form of a generalized adiabat. We have considered the basic concepts of the gas-dynamic discontinuity theory, the ratios permitting to calculate pressure shocks. Recommendations for rational problem definition and methods of solution of the typical computational problems are given. The dependences for calculation of parameters behind the shock according to the known parameters of a stream and the shock intensity recorded for the first time with the help of a generalized adiabatic line are considered. Substituting in these relations equations of adiabatic line of Laplace-Poisson, Rankine-Hugoniot and Chapman-Jouget, you can calculate the parameters behind, accordingly: simple waves, shockwaves and detonation waves. There are given in friendly graphic form the dependence on the Mach number of incoming flow and gas adiabatic index of the most relevant parameters of shocks: maximum intensity, stream deviation angle on the shock, critical angle of the stream deviation, shock angle according to the critical angle of a the stream deviation. The work can be recommended to the experts, engineers and scientists working in the field of aerospace engineering, metallurgy and metal hardening, for usage of control technologies for hypersonic currents containing gas-dynamic discontinuity.
Energy Technology Data Exchange (ETDEWEB)
Loison, D.; Resseguier, T. de; Dragon, A. [Institut P' , UPR 3346, CNRS, Universite de Poitiers, ISAE-ENSMA - 1, av Clement Ader, 86961 Futuroscope (France); Mercier, P.; Benier, J.; Deloison, G.; Lescoute, E.; Sollier, A. [CEA, DAM, DIF - 91297 Arpajon (France)
2012-12-01
Dynamic fragmentation in the liquid state after shock-induced melting, usually referred to as micro-spallation, is an issue of great interest for both basic and applied sciences. Recent efforts have been devoted to the characterization of the resulting ejecta, which consist in a cloud of fine molten droplets. Major difficulties arise from the loss of free surface reflectivity at shock breakout and from the wide distribution of particle velocities within this cloud. We present laser shock experiments on tin and aluminium, to pressures ranging from about 70 to 160 GPa, with complementary diagnostics including a photonic Doppler velocimeter set at a small tilt angle from the normal to the free surface, which enables probing the whole cloud of ejecta. The records are roughly consistent with a one-dimensional theoretical description accounting for laser shock loading, wave propagation, phase transformations, and fragmentation. The main discrepancies between measured and calculated velocity profiles are discussed in terms of edge effects evidenced by transverse shadowgraphy.
Institute of Scientific and Technical Information of China (English)
段泉义; 徐俊; 程其华; 姚寿军
2012-01-01
To serious situation of backup roll bearing no-normal scrapped of 1220mm cold tandem mill of Baosteel, the causes were analyzed from lubrication and sealing. Therefore, some countermeasures were applied, including increasing oil level of lubrication oil tank from 30% to 70%~80%, shortening cycles of oil and water separation, changing cycles of seal replacement from 3~6 months to 3 months, strengthening bearing statue tracking and maintenance, and the number of support roller bearing scrapped due to the outer ring crack spalling was significantly reduced.%针对宝山钢铁股份有限公司冷轧薄板厂1220mm冷连轧机组支撑辊轴承非正常报废情况较为严重的问题,结合现场实际,从润滑、密封等多个角度分析了引起冷轧支撑辊轴承外圈裂纹剥落的深层原因,通过将润滑油油箱液位由30％增加到70％～80％,缩短润滑油的油水分离周期,将密封圈更换周期由原来的3～6个月改为固定的3个月,加强轴承状态跟踪及管理维护,使支撑辊轴承因外圈裂纹剥落而报废的数量明显降低.
Experimental Study on Common and Steel Fiber Reinforced Concrete Under Dynamic Tensile Stress
Institute of Scientific and Technical Information of China (English)
董新龙; 陈江瑛; 高培正; 祁振林; 王永忠; 王永刚; 王礼立
2004-01-01
Split Hopkinson technique has been developed to test the strength of common concrete and steel fiber reinforced concrete under dynamic tensile stress. Two types of test methods are considered, the splitting tensile test and a modified spalling test in which a specimen is loaded under uniaxial stress. The result shows that the dynamic strength enhancement of concrete is remarkable by using the reinforcing fiber. But for the common concrete, the base of compressive strength seems to show little effect on the tensile strength under dynamic loading. The experimental results also show that the resistance to tensile fracture of the steel fiber reinforced concrete for C100-mix is higher than those of C40-mix.
Dynamic tensile fracture of mortar at ultra-high strain-rates
Energy Technology Data Exchange (ETDEWEB)
Erzar, B., E-mail: benjamin.erzar@cea.fr; Buzaud, E.; Chanal, P.-Y. [CEA, DAM, GRAMAT, F-46500 Gramat (France)
2013-12-28
During the lifetime of a structure, concrete and mortar may be exposed to highly dynamic loadings, such as impact or explosion. The dynamic fracture at high loading rates needs to be well understood to allow an accurate modeling of this kind of event. In this work, a pulsed-power generator has been employed to conduct spalling tests on mortar samples at strain-rates ranging from 2 × 10{sup 4} to 4 × 10{sup 4} s{sup −1}. The ramp loading allowed identifying the strain-rate anytime during the test. A power law has been proposed to fit properly the rate-sensitivity of tensile strength of this cementitious material over a wide range of strain-rate. Moreover, a specimen has been recovered damaged but unbroken. Micro-computed tomography has been employed to study the characteristics of the damage pattern provoked by the dynamic tensile loading.
Dynamic analysis of granite rockburst based on the PIV technique
Institute of Scientific and Technical Information of China (English)
Wang Hongjian; Liu Da’an; Gong Weili; Li Liyun
2015-01-01
This paper describes the deep rockburst simulation system to reproduce the granite instantaneous rock-burst process. Based on the PIV (Particle Image Velocimetry) technique, quantitative analysis of a rock-burst, the images of tracer particle, displacement and strain fields can be obtained, and the debris trajectory described. According to the observation of on-site tests, the dynamic rockburst is actually a gas–solid high speed flow process, which is caused by the interaction of rock fragments and surrounding air. With the help of analysis on high speed video and PIV images, the granite rockburst failure process is composed of six stages of platey fragment spalling and debris ejection. Meanwhile, the elastic energy for these six stages has been calculated to study the energy variation. The results indicate that the rockburst process can be summarized as:an initiating stage, intensive developing stage and gradual decay stage. This research will be helpful for our further understanding of the rockburst mechanism.
A shock-fitting technique for cell-centered finite volume methods on unstructured dynamic meshes
Zou, Dongyang; Xu, Chunguang; Dong, Haibo; Liu, Jun
2017-09-01
In this work, the shock-fitting technique is further developed on unstructured dynamic meshes. The shock wave is fitted and regarded as a special boundary, whose boundary conditions and boundary speed (shock speed) are determined by solving Rankine-Hugoniot relations. The fitted shock splits the entire computational region into subregions, in which the flows are free from shocks and flow states are solved by a shock-capturing code based on arbitrary Lagrangian-Eulerian algorithm. Along with the motion of the fitted shock, an unstructured dynamic meshes algorithm is used to update the internal node's position to maintain the high quality of computational meshes. The successful applications prove the present shock-fitting to be a valid technique.
Neogi, Anupam; Mitra, Nilanjan
2015-06-01
Atomistic molecular dynamics in conjunction with multi-scale shock technique is utilized to investigate shock wave response of bulk amorphous polyvinyl chloride. Dependence of chain length on physical and mechanical behaviour of polymeric material at ambient condition of temperature and pressure are well known but unknown for extreme conditions. Non-reactive force fields PCFF, COMPASS and PCFF+ were used to determine applicability of the force field for the study of the material subjected to shock loads. Several samples of PVC with various chain lengths were subjected to a range of shock compression from 1.5-10.0 km/s. Even though dependence of chain length was observed for lower shock strengths but was not for intense shock loads. The principle Hugoniot points, calculated by applying hydrostatic Rankine-Hugoniot equations and as well as multi-scale shock technique, were compared against LASL experimental shock data, demonstrating superior performance of PCFF+ force-field over PCFF and COMPASS. Shock induced melting characteristic and vibrational spectroscopic study were conducted and compared with experimental data to observe differences in response with relation to different force fields, chain length of the material for different shock intensities.
Rapid Set Materials for Advanced Spall Repair
2010-08-01
cement -based polymer- cement mortar and concrete • Magnesium -ammonium- phosphate - cement mortar and concrete • Polymer-based mortar and concrete...material or lodged debris from the joint or crack. • Place a small bead of caulk over the joint or crack. • If using a cement -based repair material, soak...placement equipment immediately after use. • When using cement repair materials, either wet cure or apply curing compound. • Remove the compressible spacer
Liu, Hao; Kang, Wei; Zhang, Ping; Duan, Huiling; He, X T
2016-01-01
We present a molecular dynamics simulation of shock waves propagating in dense deuterium with the electron force field method [J. T. Su and W. A. Goddard, Phys. Rev. Lett. 99, 185003 (2007)], which explicitly takes the excitation of electrons into consideration. Non-equilibrium features associated with the excitation of electrons are systematically investigated. We show that chemical bonds in D$_2$ molecules lead to a more complicated shock wave structure near the shock front, compared with the results of classical molecular dynamics simulation. Charge separation can bring about accumulation of net charges on the large scale, instead of the formation of a localized dipole layer, which might cause extra energy for the shock wave to propagate. In addition, the simulations also display that molecular dissociation at the shock front is the major factor corresponding to the "bump" structure in the principal Hugoniot. These results could help to build a more realistic picture of shock wave propagation in fuel mater...
Chen, Ya-Zhou; Zhou, Liu-Cheng; He, Wei-Feng; Sun, Yu; Li, Ying-Hong; Jiao, Yang; Luo, Si-Hai
2017-01-01
Molecular dynamics simulations were used to study the plastic behavior of monocrystalline nickel under shock compression along the [100] and [110] orientations. The shock Hugoniot relation, local stress curve, and process of microstructure development were determined. Results showed the apparent anisotropic behavior of monocrystalline nickel under shock compression. The separation of elastic and plastic waves was also obvious. Plastic deformation was more severely altered along the [110] direction than the [100] direction. The main microstructure phase transformed from face-centered cubic to body-centered cubic and generated a large-scale and low-density stacking fault along the family of { 111 } crystal planes under shock compression along the [100] direction. By contrast, the main mechanism of plastic deformation in the [110] direction was the nucleation of the hexagonal, close-packed phase, which generated a high density of stacking faults along the [110] and [1̅10] directions.
Dynamic X-ray diffraction observation of shocked solid iron up to 170 GPa
Denoeud, Adrien; Ozaki, Norimasa; Benuzzi-Mounaix, Alessandra; Uranishi, Hiroyuki; Kondo, Yoshihiko; Kodama, Ryosuke; Brambrink, Erik; Ravasio, Alessandra; Bocoum, Maimouna; Boudenne, Jean-Michel; Harmand, Marion; Guyot, François; Mazevet, Stephane; Riley, David; Makita, Mikako; Sano, Takayoshi; Sakawa, Youichi; Inubushi, Yuichi; Gregori, Gianluca; Koenig, Michel; Morard, Guillaume
2016-01-01
Investigation of the iron phase diagram under high pressure and temperature is crucial for the determination of the composition of the cores of rocky planets and for better understanding the generation of planetary magnetic fields. Here we present X-ray diffraction results from laser-driven shock-compressed single-crystal and polycrystalline iron, indicating the presence of solid hexagonal close-packed iron up to pressure of at least 170 GPa along the principal Hugoniot, corresponding to a temperature of 4,150 K. This is confirmed by the agreement between the pressure obtained from the measurement of the iron volume in the sample and the inferred shock strength from velocimetry deductions. Results presented in this study are of the first importance regarding pure Fe phase diagram probed under dynamic compression and can be applied to study conditions that are relevant to Earth and super-Earth cores. PMID:27357672
Static and dynamic cyclic oxidation of 12 nickel-, cobalt-, and iron-base high-temperature alloys
Barrett, C. A.; Johnston, J. R.; Sanders, W. A.
1978-01-01
Twelve typical high-temperature nickel-, cobalt-, and iron-base alloys were tested by 1 hr cyclic exposures at 1038, 1093, and 1149 C and 0.05 hr exposures at 1093 C. The alloys were tested in both a dynamic burner rig at Mach 0.3 gas flow and in static air furnace for times up to 100 hr. The alloys were evaluated in terms of specific weight loss as a function of time, and X-ray diffraction analysis and metallographic examination of the posttest specimens. A method previously developed was used to estimate specific metal weight loss from the specific weight change of the sample. The alloys were then ranked on this basis. The burner-rig test was more severe than a comparable furnace test and resulted in an increased tendency for oxide spalling due to volatility of Cr in the protective scale and the more drastic cooling due to the air-blast quench of the samples. Increased cycle frequency also increased the tendency to spall for a given test exposure. The behavior of the alloys in both types of tests was related to their composition and their tendency to form scales. The alloys with the best overall behavior formed alpha-Al2O3 aluminate spinels.
Direct anharmonic correction method by molecular dynamics
Liu, Zhong-Li; Li, Rui; Zhang, Xiu-Lu; Qu, Nuo; Cai, Ling-Cang
2017-04-01
The quick calculation of accurate anharmonic effects of lattice vibrations is crucial to the calculations of thermodynamic properties, the construction of the multi-phase diagram and equation of states of materials, and the theoretical designs of new materials. In this paper, we proposed a direct free energy interpolation (DFEI) method based on the temperature dependent phonon density of states (TD-PDOS) reduced from molecular dynamics simulations. Using the DFEI method, after anharmonic free energy corrections we reproduced the thermal expansion coefficients, the specific heat, the thermal pressure, the isothermal bulk modulus, and the Hugoniot P- V- T relationships of Cu easily and accurately. The extensive tests on other materials including metal, alloy, semiconductor and insulator also manifest that the DFEI method can easily uncover the rest anharmonicity that the quasi-harmonic approximation (QHA) omits. It is thus evidenced that the DFEI method is indeed a very efficient method used to conduct anharmonic effect corrections beyond QHA. More importantly it is much more straightforward and easier compared to previous anharmonic methods.
A study on the strength of an armour-grade aluminum under high strain-rate loading
Appleby-Thomas, G. J.; Hazell, P. J.
2010-06-01
The aluminum alloy 5083 in tempers such as H32 and H131 is an established light-weight armour material. While its dynamic response under high strain-rates has been investigated elsewhere, little account of the effect of material orientation has been made. In addition, little information on its strength under such loadings is available in the literature. Here, both the longitudinal and lateral components of stress have been measured using embedded manganin stress gauges during plate-impact experiments on samples with the rolling direction aligned both orthogonal and parallel to the impact axis. The Hugoniot elastic limit, spall, and shear strengths were investigated for incident pressures in the range 1-8 GPa, providing an insight into the response of this alloy under shock loading. Further, the time dependence of lateral stress behind the shock front was investigated to give an indication of material response.
Erzar, B.; Forquin, P.; Pontiroli, C.; Buzaud, E.
2010-06-01
Concrete is a material widely used in civil engineering. Thus the knowledge of its mechanical behaviour is a major safety issue to evaluate the ability of a structure to resist to an intense dynamic loading. In this study, two experimental techniques have been applied to a micro-concrete and a common concrete to assess the influence of the aggregate size on the dynamic response. First, spalling tests on dry and wet specimens have been performed to characterize the tensile strength of concrete at strain rates in the range 30 - 150/s. Then, edge-on impact tests in sarcophagus configuration have been conducted. The cracking pattern of the micro-concrete and the concrete plates in wet and dry conditions have been compared to appraise the influence of aggregate size and free water on the damaging process.
Static and dynamic oxidation of Ti-14Al-21Nb and coatings
Wiedemann, K. E.; Sankaran, S. N.; Clark, R. K.; Wallace, T. A.
1989-01-01
The oxidation of Ti-14Al-21Nb (wt pct) was studied under static conditions at 649 to 1093 C for as long as 120 hr, and under simulated hypersonic flight (dynamic oxidation) conditions at 982 C for as many as 16 half-hour cycles. Under simulated hypersonic flight conditions heavy oxidation and spalling of the oxide was observed. It was concluded that titanium aluminides used in hypersonic applications must have oxidation-protective coatings. In this preliminary study coatings about 1 micron thick were applied by sputter deposition, from solutions, and from sol-gels. It was found that, because of cracks and porosity, the sputter-deposited coatings did not have sufficient film integrity to shield the alloy. Some of the coatings applied from sol-gels demonstrated film integrity in 1 hr exposures at 982 C.
Dynamic behavior of nano-voids in magnesium under hydrostatic tensile stress
Ponga, Mauricio; Ramabathiran, Amuthan A.; Bhattacharya, Kaushik; Ortiz, Michael
2016-08-01
We investigate the mechanisms responsible for nano-void growth in single crystal magnesium under dynamic hydrostatic tensile stress. A key conclusion derived from our study is that there is no secondary strain hardening near the nano-void. This behavior, which is in remarkable contrast to face-centered cubic and body-centered cubic materials, greatly limits the peak stress and explains the relatively lower spall strength of magnesium. The lack of secondary strain hardening is due to the fact that pyramidal dislocations do not interact with basal or prismatic dislocations. Our analysis also shows that for loads applied at moderate strain rates (\\overset{\\centerdot}{ɛ} ≤slant {{10}6} s-1) the peak stress, dislocation velocity and temperature distribution converge asymptotically. However at very high strain rates (\\overset{\\centerdot}{ɛ} ≥slant {{10}8} s-1), there is a sharp transition in these quantities.
Du, Kun; Tao, Ming; Li, Xi-bing; Zhou, Jian
2016-09-01
Slabbing/spalling and rockburst are unconventional types of failure of hard rocks under conditions of unloading and various dynamic loads in environments with high and complex initial stresses. In this study, the failure behaviors of different rock types (granite, red sandstone, and cement mortar) were investigated using a novel testing system coupled to true-triaxial static loads and local dynamic disturbances. An acoustic emission system and a high-speed camera were used to record the real-time fracturing processes. The true-triaxial unloading test results indicate that slabbing occurred in the granite and sandstone, whereas the cement mortar underwent shear failure. Under local dynamically disturbed loading, none of the specimens displayed obvious fracturing at low-amplitude local dynamic loading; however, the degree of rock failure increased as the local dynamic loading amplitude increased. The cement mortar displayed no failure during testing, showing a considerable load-carrying capacity after testing. The sandstone underwent a relatively stable fracturing process, whereas violent rockbursts occurred in the granite specimen. The fracturing process does not appear to depend on the direction of local dynamic loading, and the acoustic emission count rate during rock fragmentation shows that similar crack evolution occurred under the two test scenarios (true-triaxial unloading and local dynamically disturbed loading).
Albeverio, S; Shelkovich, V M
2011-01-01
We introduce integral identities to define delta-shock wave type solutions for the multidimensional zero-pressure gas dynamics Using these integral identities, the Rankine-Hugoniot conditions for delta-shocks are obtained. We derive the balance laws describing mass, momentum, and energy transport from the area outside the delta-shock wave front onto this front. These processes are going on in such a way that the total mass, momentum, and energy are conserved and at the same time mass and energy of the moving delta-shock wave front are increasing quantities. In addition, the total kinetic energy transfers into the total internal energy. The process of propagation of delta-shock waves is also described. These results can be used in modeling of mediums which can be treated as a {pressureless continuum} (dusty gases, two-phase flows with solid particles or droplets, granular gases).
Experimental study on dynamic mechanical behaviors of polycarbonate
Zhang, Wei; Gao, Yubo; Ye, Nan; Huang, Wei; Li, Dacheng
2017-01-01
Polycarbonate (PC) is a widely used engineering material in aerospace field, since it has excellent mechanical and optical property. In present study, both compressive and tensile tests of PC were conducted at high strain rates by using a split Hopkinson pressure bar. The high-speed camera and 2D Digital Image Correlation method (DIC) were used to analyze the dynamic deformation behavior of PC. Meanwhile, the plate impact experiment was carried out to measure the equation of state of PC in a single-stage gas gun, which consists of asymmetric impact technology, manganin gauges, PVDF, electromagnetic particle velocity gauges. The results indicate that the yield stress of PC increased with the strain rates in both dynamic compression and tension tests. The same phenomenon was similar to elasticity modulus at different strain rate. A constitutive model was used to describe the mechanical behaviors of PC accurately in different strain rates by contrast with the results of 2D-DIC. At last, The D-u Hugoniot curve of polycarbonate in high pressure was fitted by the least square method.
Accelerated electronic structure-based molecular dynamics simulations of shock-induced chemistry
Cawkwell, Marc
2015-06-01
The initiation and progression of shock-induced chemistry in organic materials at moderate temperatures and pressures are slow on the time scales available to regular molecular dynamics simulations. Accessing the requisite time scales is particularly challenging if the interatomic bonding is modeled using accurate yet expensive methods based explicitly on electronic structure. We have combined fast, energy conserving extended Lagrangian Born-Oppenheimer molecular dynamics with the parallel replica accelerated molecular dynamics formalism to study the relatively sluggish shock-induced chemistry of benzene around 13-20 GPa. We model interatomic bonding in hydrocarbons using self-consistent tight binding theory with an accurate and transferable parameterization. Shock compression and its associated transient, non-equilibrium effects are captured explicitly by combining the universal liquid Hugoniot with a simple shrinking-cell boundary condition. A number of novel methods for improving the performance of reactive electronic structure-based molecular dynamics by adapting the self-consistent field procedure on-the-fly will also be discussed. The use of accelerated molecular dynamics has enabled us to follow the initial stages of the nucleation and growth of carbon clusters in benzene under thermodynamic conditions pertinent to experiments.
Wise, J. L.; Adams, D. P.; Nishida, E. E.; Song, B.; Maguire, M. C.; Carroll, J.; Reedlunn, B.; Bishop, J. E.; Palmer, T. A.
2017-01-01
Gas-gun experiments have probed the compression and release behavior of impact-loaded 304L stainless steel specimens that were machined from additively manufactured (AM) blocks as well as baseline ingot-derived bar stock. The AM technology permits direct fabrication of net- or near-net-shape metal parts. For the present investigation, velocity interferometer (VISAR) diagnostics provided time-resolved measurements of sample response for one-dimensional (i.e., uniaxial strain) shock compression to peak stresses ranging from 0.2 to 7.0 GPa. The acquired wave-profile data have been analyzed to determine the comparative Hugoniot Elastic Limit (HEL), Hugoniot equation of state, spall strength, and high-pressure yield strength of the AM and conventional materials. The possible contributions of various factors, such as composition, porosity, microstructure (e.g., grain size and morphology), residual stress, and/or sample axis orientation relative to the additive manufacturing deposition trajectory, are considered to explain differences between the AM and baseline 304L dynamic material results.
Wise, J. L.; Adams, D. P.; Nishida, E. E.; Song, B.; Maguire, M. C.; Carroll, J.; Reedlunn, B.; Bishop, J. E.
2015-06-01
Gas-gun experiments have probed the compression and release behavior of impact-loaded 304L stainless steel specimens machined from additively manufactured (AM) blocks as well as baseline ingot-derived bar stock. The AM technology allows direct fabrication of metal parts. For the present study, a velocity interferometer (VISAR) measured the time-resolved motion of samples subjected to one-dimensional (i.e., uniaxial strain) shock compression to peak stresses ranging from 0.2 to 7.5 GPa. The acquired wave-profile data have been analyzed to determine the comparative Hugoniot Elastic Limit (HEL), Hugoniot equation of state, spall strength, and high-pressure yield strength of the AM and conventional materials. Observed differences in shock loading and unloading characteristics for the two 304L source variants have been correlated to complementary Kolsky bar results for compressive and tensile testing at lower strain rates. The effects of composition, porosity, microstructure (e.g., grain size and morphology), residual stress, and sample axis orientation relative to the additive manufacturing deposition trajectory have been assessed to explain differences between the AM and baseline 304L dynamic mechanical properties. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.
Lifetime prediction for the subsurface crack propagation using three-dimensional dynamic FEA model
Yin, Yuan; Chen, Yun-Xia; Liu, Le
2017-03-01
The subsurface crack propagation is one of the major interests for gear system research. The subsurface crack propagation lifetime is the number of cycles remaining for a spall to appear, which can be obtained through either stress intensity factor or accumulated plastic strain analysis. In this paper, the heavy loads are applied to the gear system. When choosing stress intensity factor, the high compressive stress suppresses Mode I stress intensities and severely reduces Mode II stress intensities in the heavily loaded lubricated contacts. Such that, the accumulated plastic strain is selected to calculate the subsurface crack propagation lifetime from the three-dimensional FEA model through ANSYS Workbench transient analysis. The three-dimensional gear FEA dynamic model with the subsurface crack is built through dividing the gears into several small elements. The calculation of the total cycles of the elements is proposed based on the time-varying accumulated plastic strain, which then will be used to calculate the subsurface crack propagation lifetime. During this process, the demonstration from a subsurface crack to a spall can be uncovered. In addition, different sizes of the elements around the subsurface crack are compared in this paper. The influences of the frictional coefficient and external torque on the crack propagation lifetime are also discussed. The results show that the lifetime of crack propagation decreases significantly when the external load T increasing from 100 N m to 150 N m. Given from the distributions of the accumulated plastic strain, the lifetime shares no significant difference when the frictional coefficient f ranging in 0.04-0.06.
Measuring the dynamic compression and release behavior of rocks associated with HYDROPLUS (Part 2)
Energy Technology Data Exchange (ETDEWEB)
Furnish, M.D.
1995-07-01
Three sets of rock samples have been subjected to planar impact to characterize loading, Hugoniot and release responses. A slate form Pennsylvania was tested over the stress range of 5 GPa to 140 GPa. Phyllite from the Lupin Mine (Canada) was tested over the 14--50 GPa stress region. Finally, granite samples from the SHIST test site (New Mexico) were tested over the 10--20 GPa stress region. The granite tests included a transmitted-wave experiment at about 10 GPa. In 12 of the 13 tests, a reverse-ballistic configuration (optimized for Hugoniot and release measurements) was used. The remaining test (conducted on the granite) provided a transmitted waveform from which precursor, Hugoniot and release properties were obtained. Velocity interferometry (VISAR) was used as the primary diagnostic throughout. The slate data showed an unexpected inflection downward in the Hugoniot at around 8 GPa. The slate and granite showed release paths lying below the Hugoniot for lower stress levels (below {approx} 60 GPa), while the slate release paths were ``normal`` (above the Hugoniot) at higher stress levels. In addition, the granite releases were found to lie substantially below the Hugoniot in the 30--40 GPa region; this may be related to the quartz-stishovite transition. The present results are generally consistent with earlier work.
Energy Technology Data Exchange (ETDEWEB)
Seppala, E T; Belak, J; Rudd, R E
2003-10-07
The effect of stress-triaxiality on growth of a void in a three dimensional single-crystal face-centered-cubic (FCC) lattice has been studied. Molecular dynamics (MD) simulations using an embedded-atom (EAM) potential for copper have been performed at room temperature and using strain controlling with high strain rates ranging from 10{sup 7}/sec to 10{sup 10}/sec. Strain-rates of these magnitudes can be studied experimentally, e.g. using shock waves induced by laser ablation. Void growth has been simulated in three different conditions, namely uniaxial, biaxial, and triaxial expansion. The response of the system in the three cases have been compared in terms of the void growth rate, the detailed void shape evolution, and the stress-strain behavior including the development of plastic strain. Also macroscopic observables as plastic work and porosity have been computed from the atomistic level. The stress thresholds for void growth are found to be comparable with spall strength values determined by dynamic fracture experiments. The conventional macroscopic assumption that the mean plastic strain results from the growth of the void is validated. The evolution of the system in the uniaxial case is found to exhibit four different regimes: elastic expansion; plastic yielding, when the mean stress is nearly constant, but the stress-triaxiality increases rapidly together with exponential growth of the void; saturation of the stress-triaxiality; and finally the failure.
Institute of Scientific and Technical Information of China (English)
叶东东; 陈建钧; 张新宇; 王忠建; 陈广; 阴子良
2016-01-01
利用自主设计的拉矫机对热轧带钢施加不同的压下量或张紧力进行拉矫破鳞试验，使试验钢表面获得不同的应力状态，观察了破鳞前后氧化皮/基体的界面形貌；采用拉伸试验研究了不同应力状态下氧化皮/基体界面的结合强度；采用电位导数首零方法对试验钢进行酸洗试验，研究了应力状态对酸洗速率的影响.结果表明：不论是拉应力还是压应力，随着应力值的增大，氧化皮的全剥落率不断增大，且压应力时的全剥落效果好于拉应力时的，最终受压应力面和受拉应力面氧化皮的全剥落率稳定值分别为24．1％和6．3％；当全剥落率相同或相近时，拉应力对氧化皮/基体结合强度的降低效果和对酸洗速率的提升效果都好于压应力的；当压下量相同或相近时，压应力对酸洗速率的提升效果好于拉应力的.%In order to obtain different stress states,the self designed descaling tension leveler was applied to conduct scale breaking test on hot-rolled steel strip at different reductions or tension forces.The interface morphology of oxide scale/substrate before and after descaling were observed,and tensile test was used to study bonding strength of oxide scale/substrate interface in different stress states.The pickling test was carried out to study the effect of stress state on pickling rate with first zero potential differential value method.The results show that complete spalling rate of oxide scale increased with the increase of the tensile stress and compressive stress values.The compressive stress had a stronger effect than the tensile stress on complete spallation rate.The stable values of oxide scale full spalling rate at compressive stress and tensile stress were approximately 24.1% and 6.3%. The tensile stress had a stronger effect than compressive stress on decreasing oxide scale/substrate bonding strength and increasing pickling time when the full
Wave packet molecular dynamics simulations of warm dense hydrogen
Knaup, M; Toepffer, C; Zwicknagel, G
2003-01-01
Recent shock-wave experiments with deuterium in a regime where a plasma phase-transition has been predicted and their theoretical interpretation are the matter of a controversial discussion. In this paper, we apply 'wave packet molecular dynamics' (WPMD) simulations to investigate warm dense hydrogen. The WPMD method was originally used by Heller for a description of the scattering of composite particles such as simple atoms and molecules; later it was applied to Coulomb systems by Klakow et al. In the present version of our model the protons are treated as classical point-particles, whereas the electrons are represented by a completely anti-symmetrized Slater sum of periodic Gaussian wave packets. We present recent results for the equation of state of hydrogen at constant temperature T = 300 K and of deuterium at constant Hugoniot E - E sub 0 + 1/2(1/n - 1/n sub 0)(p + p sub 0) = 0, and compare them with the experiments and several theoretical approaches.
Preparation and Dynamic Tensile Behavior of C200 Green Reactive Powder Concrete
Institute of Scientific and Technical Information of China (English)
ZHANG Yunsheng; SUN Wei; LIU Sifeng; JIAO Chujie; LAI Jianzhong
2006-01-01
A new type of green reactive powder concrete (GRPC) with compressive strength of 200 MPa is prepared by utilizing composite mineral admixtures,natural fine aggregates,and short and fine steel fibers.The quasi-static mechanical properties (mechanical strength,toughness,fracture energy and interracial bonding strength) of GRPC specimens,cured in three different types of regimes,are investigated.The experimental results show that the mechanical properties of the C200 GRPC made with the powder binders that is composed of 40% of Portland cement,25% of ultra fine slag,25% of ultra fine fly ash and 10% of silica fume are better than the others'.The corresponding compressive strength,flexural strength and fracture energy are more than 200 MPa,and 30 000 J/m2 respectively.The dynamic tensile behavior of the C200 GRPC is also investigated through the split Hopkinson pressure bar (SHPB) according to the spalling phenomenon.The dynamic testing results demonstrate that strain rate has an important effect on the dynamic tensile behavior of GRPC.With the increase of strain rate,its peak stress and relevant strain increase.The GRPC exhibits an excellent strain ratio stiffening effect under the dynamic tensile Ioad with high strain ratio,resulting in a significant change of the fracture pattern.
Dynamic design method for deep hard rock tunnels and its application
Institute of Scientific and Technical Information of China (English)
Xia-Ting Feng; Chuanqing Zhang; Shili Qiu; Hui Zhou; Quan Jiang; Shaojun Li
2016-01-01
Numerous deep underground projects have been designed and constructed in China, which are beyond the current specifications in terms of scale and construction difficulty. The severe failure problems induced by high in situ stress, such as rockburst, spalling, damage of deep surrounding rocks, and time-dependent damage, were observed during construction of these projects. To address these problems, the dynamic design method for deep hard rock tunnels is proposed based on the disintegration process of surrounding rocks using associated dynamic control theories and technologies. Seven steps are basically employed: (i) determination of design objective, (ii) characteristics of site, rock mass and project, and identification of constraint conditions, (iii) selection or development of global design strategy, (iv) determination of modeling method and software, (v) preliminary design, (vi) comprehensive integrated method and dynamic feedback analysis, and (vii) final design. This dynamic method was applied to the construction of the headrace tunnels at Jinping II hydropower station. The key technical issues encountered during the construction of deep hard rock tunnels, such as in situ stress distribution along the tunnels, mechanical properties and constitutive model of deep hard rocks, determination of me-chanical parameters of surrounding rocks, stability evaluation of surrounding rocks, and optimization design of rock support and lining, have been adequately addressed. The proposed method and its application can provide guidance for deep underground projects characterized with similar geological conditions.
Multi-scale modeling of deformation and fracture of ceramic materials under dynamic loading
Skripnyak, Evgeniya; Skripnyak, Vladimir; Skripnyak, Vladimir; Vaganova, Irina; Skripnyak, Nataliya
2013-06-01
The multi-scale approach to dynamic analysis of deformation and fracture, taking place in structured condensed matter show a great promise in prediction of the mechanical response for new materials. In present work the results of two-level simulations on deformation and fracture mechanisms for brittle materials subjected to impulse and shock-wave loadings are demonstrated. The dynamic effects occurring in structured representative volumes of the ceramics and the processes relating to damage and fracture of the ceramic materials with porous structures, ceramic composites and nanocomposites were modeled using the SPH methods. The grain, phase and porous structures were simulated in an explicit form. The presence of dispersed inclusions, dislocation substructures, nano - and micro-voids at the lower structural level were taking into account in an implicit form. The two-level model allows taking into account different relaxation and fracturing characteristic times at the different structural levels. This approach suggest to describe the relaxation process at the higher structural level in terms of integrated effect of the lower level processes. It is found that clusters of nano-voids in ceramic materials are the centers of damage nucleation. The presence of the clusters of nano-voids in ceramic materials subjected to dynamic loadings results in decrease of the Hugoniot elastic limit value.
Krupnyj, G I; Yanovich, A A
2000-01-01
The cross sections for the sup 7 Be, sup 2 sup 2 Na and 2 sup 4 Na production in reactions on aluminium target were measured in the range of proton energy from 37 MeV up to 70 GeV on the accelerate system. On the injector the measurement of the sup 2 sup 7 Al(p, spall) sup 7 Be, sup 2 sup 7 Al(p, 3p3n) sup 2 sup 2 Na and sup 2 sup 7 Al(p, 3pn) sup 2 sup 4 Na cross sections were taken on the disposed from the accelerate by the 350, 420, 800, 1000, 1320 MeV proton beam with the spread of energy no more than 1 % and error no more than +- 5 %. On the accelerator the cross sections of the same reactions were measured in the regime of slow spread of protons from the accelerator. The numerical values of the measured cross sections and their errors, as well as ratios of cross sections of the sup 7 Be and sup 2 sup 2 Na production on aluminium to cross section of the sup 2 sup 7 Al(p, 3pn) sup 2 sup 4 Na reaction are demonstrated
A new cable truss support system for coal roadways affected by dynamic pressure
Institute of Scientific and Technical Information of China (English)
Hong Yan; Fulian He
2012-01-01
The support of coal roadways is seriously affected by intense dynamic pressures.This can lead to problems with large deformation of the roof and the two side walls of coal roadways.Rapid convergence of the walls and roof,a high damage rate to the bolts and cables,or even abrupt roof collapse or rib spalling can occur during the service period of these coal roadways.Analyzing the main support measures used in China leads to a proposed new cable truss supporting system.Thorough study of the entire structure shows the superiority of this design for roadways suffering under dynamic pressure.A corresponding mechanical model of the rock surrounding the cable truss system is described in this paper and formulas for calculating pre-tightening forces of the truss cable,and the minimum anchoring forces,were deduced.The new support system was applied to a typical roadway affected by intensive dynamic pressure that is located in the Xinyuan Coal Mine.The results show that the largest subsidence of the roof was 97 mm,the convergence of the two sides was less than 248 mm,and the average depth of the loose,fractured layer was only 6.12 mm.This proves that the new support system is feasible and effective.
Fast Quantum Molecular Dynamics Simulations of Shock-induced Chemistry in Organic Liquids
Cawkwell, Marc
2014-03-01
The responses of liquid formic acid and phenylacetylene to shock compression have been investigated via quantum-based molecular dynamics simulations with the self-consistent tight-binding code LATTE. Microcanonical Born-Oppenheimer trajectories with precise conservation of the total energy were computed without relying on an iterative self-consistent field optimization of the electronic degrees of freedom at each time step via the Fast Quantum Mechanical Molecular Dynamics formalism [A. M. N. Niklasson and M. J. Cawkwell, Phys. Rev. B, 86, 174308 (2012)]. The conservation of the total energy in our trajectories was pivotal for the capture of adiabatic shock heating as well as temperature changes arising from endo- or exothermic chemistry. Our self-consistent tight-binding parameterizations yielded very good predictions for the gas-phase geometries of formic acid and phenylacetylene molecules and the principal Hugoniots of the liquids. In accord with recent flyer-plate impact experiments, our simulations revealed i) that formic acid reacts at relatively low impact pressures but with no change in volume between products and reactants, and ii) a two-step polymerization process for phenylacetylene. Furthermore, the evolution of the HOMO-LUMO gap tracked on-the-fly during our simulations could be correlated with changes transient absorption measured during laser-driven shock compression experiments on these liquids.
Institute of Scientific and Technical Information of China (English)
闫振东; 刘波; 张为远; 李鹏; 赵子江; 刘东好
2012-01-01
国内外尚没有一种很好地适应厚煤层中小型矿井短壁开采的采煤工艺和综采设备,晋城煤业集团研制的新型高效一次采全高钻采法采煤机及其配套设备可解决这一难题.将新型采煤机在大采高综采工作面进行了工业试验,结果表明,首创“采内放外”采煤工艺的新型钻采法采煤机,具有先进性、低耗能性,经济高效.工作面矿压实测结果表明:工作面老顶为Ⅱ级老顶,来压显现明显；回采期间,巷道支护效果良好；液压支架工作阻力具有良好的安全储备,能够有效地控制顶板,保证工作面安全,为新型采煤机的安全开采提供设备支持；新型采煤机安全高效开采表明其具有广阔应用前景.%Nowadays there is not a good kind of mining technology or mining equipment which can well adapt to short-wall mining of medium and small coal mines with a thick coal seam, while it is the new and effective drilling-spalling continuous mining shearer with its corollary equipment produced from Jincheng Coal Mining Group that can perfectly solve this difficult problem. In order to achieve the widespread use of this kind of equipment, field experiment about the new and effective shearer is done in high cutting height mechanized workface. The results indicate that the new drilling-spalling continuous mining shearer with the first " cutting the inner and caving the outer" coal mining, has the advantages of advanced lower energy consumption and cost effectively. The observations on the pressure behaviour indicate that the main roof of the mechanized workface is the roof of category II, and the pressure appearance is significant. During the mining, the mine tunnel pressure observations show its good supporting effect. The working resistance of hydraulic support has good security reserve and can control the roof effectively, ensuring the safety of workface and providing the new equipment for the safety mining of the new shearer
Fracture Behavior of CrN Coatings Under Indentation and Dynamic Cycle Impact
Institute of Scientific and Technical Information of China (English)
TIAN Linhai; ZHU Ruihua; YAO Xiaohong; YANG Yaojun; TANG Bin
2012-01-01
Fracture behavior of CrN coatings deposited on the surface of silicon and AISI52100 steel by different energy ion beam assisted magnetrun sputtering technique (IBAMS) was studied using indentation and dynamic cycle impact.It is found that,for the coatings on silicon substrate,the cracks form in the indentation comers and then propagate outward under Vickers indentation.The coating prepared using ion assisted energy of 800 eV shows the highest fracture resistance due to its compact structure.Under Rockwell indentation,only finer radial cracks are found in the CrN coating on AISI 52100 steel without ion assisting while in the condition of ion assisting energy of 800 eV,radial,lateral cracks and spalling appear in the vicinity of indentation.The fracture of CrN coatings under dynamic cycle impact is similar to fatigue.The impact fracture resistance of CrN coatings increases with the increase of ion assisting energy.
Institute of Scientific and Technical Information of China (English)
Yuan Yong; Tu Shihao; Zhang Xiaogang; Li Bo
2013-01-01
Fully mechanized mining with large mining height (FMMLMH) is widely used in thick coal seam mining face for its higher recovery ratio, especially where the thickness is less than 7.0 m. However, because of the great mining height and intense rock pressure, the coal wall rib spalling, roof falling and the instabil-ity of support occur more likely in FMMLMH working face, and the above three types of disasters interact with each other with complicated relationships. In order to get the relationship between each two of coal wall, roof, floor and support, and reduce the occurrence probability of the three types of disasters, we established the system dynamics (SD) model of the support-surrounding rock system which is composed of‘coal wall-roof-floor-support’ (CW-R-F-S) in a FMMLMH working face based on the condition of No. 15104 working face in Sijiazhuang coal mine. With the software of Vensim, we also simulated the inter-action process between each two factors of roof, floor, coal wall and the support. The results show that the SD model of ‘CW-R-F-S’ system can reveal the complicated and interactive relationship clearly between the support and surrounding rock in the FMMLMH working face. By increasing the advancing speed of working face, the support resistance or the length of support guard, or by decreasing the tip-to-face distance, the stability of ‘CW-R-F-S’ system will be higher and the happening probability of the disasters such as coal wall rib spalling, roof falling or the instability of support will be lower. These research findings have been testified in field application in No. 15104 working face, which can provide a new approach for researching the interaction relationship of support and surrounding rock.
Dynamic Logics of Dynamical Systems
Platzer, André
2012-01-01
We survey dynamic logics for specifying and verifying properties of dynamical systems, including hybrid systems, distributed hybrid systems, and stochastic hybrid systems. A dynamic logic is a first-order modal logic with a pair of parametrized modal operators for each dynamical system to express necessary or possible properties of their transition behavior. Due to their full basis of first-order modal logic operators, dynamic logics can express a rich variety of system properties, including safety, controllability, reactivity, liveness, and quantified parametrized properties, even about relations between multiple dynamical systems. In this survey, we focus on some of the representatives of the family of differential dynamic logics, which share the ability to express properties of dynamical systems having continuous dynamics described by various forms of differential equations. We explain the dynamical system models, dynamic logics of dynamical systems, their semantics, their axiomatizations, and proof calcul...
Bolesta, Alexey V.; Zheng, Lianqing; Thompson, Donald L.; Sewell, Thomas D.
2007-12-01
We report a method that enables long-time molecular dynamics (MD) simulations of shock wave loading. The goal is to mitigate the severe interference effects that arise at interfaces or free boundaries when using standard nonequilibrium MD shock wave approaches. The essence of the method is to capture between two fixed pistons the material state at the precise instant in time when the shock front, initiated by a piston with velocity up at one end of the target sample, traverses the contiguous boundary between the target and a second, stationary piston located at the opposite end of the sample, at which point the second piston is also assigned velocity up and the simulation is continued. Thus, the target material is captured in the energy-volume Hugoniot state resulting from the initial shock wave, and can be propagated forward in time to monitor any subsequent chemistry, plastic deformation, or other time-dependent phenomena compatible with the spatial scale of the simulation. For demonstration purposes, we apply the method to shock-induced chemistry in methane based on the adaptive intermolecular reactive empirical bond order force field [S. J. Stuart , J. Chem. Phys. 112, 6472 (2000)].
Li, Zhi-Guo; Cheng, Yan; Chen, Qi-Feng; Chen, Xiang-Rong
2016-05-01
The equation of state, self-diffusion, and viscosity coefficients of helium have been investigated by quantum molecular dynamics (QMD) simulations in the warm dense matter regime. Our simulations are validated through the comparison with the reliable experimental data. The calculated principal and reshock Hugoniots of liquid helium are in good agreement with the gas-gun data. On this basis, we revisit the issue for helium, i.e., the possibility of the instabilities predicted by chemical models at around 2000 GPa and 10 g/cm3 along the pressure isotherms of 6309, 15 849, and 31 623 K. Our calculations show no indications of instability in this pressure-temperature region, which reconfirm the predictions of previous QMD simulations. The self-diffusion and viscosity coefficients of warm dense helium have been systematically investigated by the QMD simulations. We carefully test the finite-size effects and convergences of statistics, and obtain numerically converged self-diffusion and viscosity coefficients by using the Kubo-Green formulas. The present results have been used to evaluate the existing one component plasma models. Finally, the validation of the Stokes-Einstein relationship for helium in the warm dense regime is discussed.
Path integral Monte Carlo and density functional molecular dynamics simulations of hot, dense helium
Militzer, B.
2009-04-01
Two first-principles simulation techniques, path integral Monte Carlo (PIMC) and density functional molecular dynamics (DFT-MD), are applied to study hot, dense helium in the density-temperature range of 0.387-5.35gcm-3 and 500K-1.28×108K . One coherent equation of state is derived by combining DFT-MD data at lower temperatures with PIMC results at higher temperatures. Good agreement between both techniques is found in an intermediate-temperature range. For the highest temperatures, the PIMC results converge to the Debye-Hückel limiting law. In order to derive the entropy, a thermodynamically consistent free-energy fit is used that reproduces the internal energies and pressure derived from the first-principles simulations. The equation of state is presented in the form of a table as well as a fit and is compared with different free-energy models. Pair-correlation functions and the electronic density of states are discussed. Shock Hugoniot curves are compared with recent laser shock-wave experiments.
Structure and Dynamics of Shock-Induced Nanobubble Collapse in Water
Vedadi, Mohammad; Choubey, Amit; Nomura, Ken-Ichi; Kalia, Rajiv; Nakano, Aiichiro; Vashishta, Priya; van Duin, Adri
2011-03-01
Structure of water under shock and shock-induced collapse of nanobubbles in water are investigated with molecular dynamics simulations based on a reactive force field. Shock induces dramatic structural changes, including an ice-VII-like structural motif at a particle velocity of 1 km/s. The incipient ice VII formation and the calculated Hugoniot curve are in good agreement with experimental results. In the presence of a nanobubble, we observe a focused nanojet at the onset of nanobubble shrinkage and a secondary shock wave upon nanobubble collapse. The secondary shock wave propagates spherically backwards and induces high pressure as it propagates. Both the propagation velocity and the induced pressure are larger than those of the primary shock. We explored effects of nanobubble radius and shock amplitude on nanojet formation. The nanojet size increases by increasing particle velocity but the effect of increasing radius is more significant. The jet length scales linearly with the nanobubble radius, as observed in experiments on micron-to-millimeter size bubbles. Shock-induced collapse of a nanobubble in the vicinity of a cell membrane creates a transient nanopore when the nanojet impacts the membrane. Transient cell poration has potential applications in drug delivery.
Comparison of geometrical shock dynamics and kinematic models for shock-wave propagation
Ridoux, J.; Lardjane, N.; Monasse, L.; Coulouvrat, F.
2017-09-01
Geometrical shock dynamics (GSD) is a simplified model for nonlinear shock-wave propagation, based on the decomposition of the shock front into elementary ray tubes. Assuming small changes in the ray tube area, and neglecting the effect of the post-shock flow, a simple relation linking the local curvature and velocity of the front, known as the A{-}M rule, is obtained. More recently, a new simplified model, referred to as the kinematic model, was proposed. This model is obtained by combining the three-dimensional Euler equations and the Rankine-Hugoniot relations at the front, which leads to an equation for the normal variation of the shock Mach number at the wave front. In the same way as GSD, the kinematic model is closed by neglecting the post-shock flow effects. Although each model's approach is different, we prove their structural equivalence: the kinematic model can be rewritten under the form of GSD with a specific A{-}M relation. Both models are then compared through a wide variety of examples including experimental data or Eulerian simulation results when available. Attention is drawn to the simple cases of compression ramps and diffraction over convex corners. The analysis is completed by the more complex cases of the diffraction over a cylinder, a sphere, a mound, and a trough.
Wang, Cong; Long, Yao; Tian, Ming-Feng; He, Xian-Tu; Zhang, Ping
2013-04-01
We have calculated the equations of state, the viscosity and self-diffusion coefficients, and electronic transport coefficients of beryllium in the warm dense regime for densities from 4.0 to 6.0 g/cm(3) and temperatures from 1.0 to 10.0 eV by using quantum molecular dynamics simulations. The principal Hugoniot curve is in agreement with underground nuclear explosive and high-power laser experimental results up to ~20 Mbar. The calculated viscosity and self-diffusion coefficients are compared with the one-component plasma model, using effective charges given by the average-atom model. The Stokes-Einstein relationship, which connects viscosity and self-diffusion coefficients, is found to hold fairly well in the strong coupling regime. The Lorenz number, which is the ratio between thermal and electrical conductivities, is computed via Kubo-Greenwood formula and compared to the well-known Wiedemann-Franz law in the warm dense region.
Cawkwell, Marc; Sanville, Edward; Coe, Joshua; Niklasson, Anders
2012-02-01
Shock-induced reactions in liquid hydrocarbons have been studied using quantum-based, self-consistent tight-binding (SC-TB) molecular dynamics simulations with an accurate and transferable model for interatomic bonding. Our SC-TB code LATTE enables explicit simulations of shock compression using the universal liquid Hugoniot. Furthermore, the effects of adiabatic shock heating are captured precisely using Niklasson's energy conserving extended Lagrangian Born-Oppenheimer Molecular Dynamics formalism. We have been able to perform relatively large-scale SC-TB simulations by either taking advantage of the sparsity of the density matrix to achieve O(N) performance or by using graphics processing units to accelerate O(N^3) algorithms. We have developed the capability for the on-the-fly computation of Raman spectra from the Fourier transform of the polarizability autocorrelation function via the density matrix perturbation theory of Niklasson and Challacombe. These time-resolved Raman spectra enable us compare the results of our simulations with identical diagnostics collected experimentally. We will illustrate these capabilities with a series of simulations of shock-induced reaction paths in a number of simple molecules.
Liu, Hao; Zhang, Yin; Kang, Wei; Zhang, Ping; Duan, Huiling; He, X. T.
2017-02-01
We present a molecular dynamics simulation of shock waves propagating in dense deuterium with the electron force field method [J. T. Su and W. A. Goddard, Phys. Rev. Lett. 99, 185003 (2007), 10.1103/PhysRevLett.99.185003], which explicitly takes the excitation of electrons into consideration. Nonequilibrium features associated with the excitation of electrons are systematically investigated. We show that chemical bonds in D2 molecules lead to a more complicated shock wave structure near the shock front, compared with the results of classical molecular dynamics simulation. Charge separation can bring about accumulation of net charges on large scales, instead of the formation of a localized dipole layer, which might cause extra energy for the shock wave to propagate. In addition, the simulations also display that molecular dissociation at the shock front is the major factor that accounts for the "bump" structure in the principal Hugoniot. These results could help to build a more realistic picture of shock wave propagation in fuel materials commonly used in the inertial confinement fusion.
Liu, Hao; Zhang, Yin; Kang, Wei; Zhang, Ping; Duan, Huiling; He, X T
2017-02-01
We present a molecular dynamics simulation of shock waves propagating in dense deuterium with the electron force field method [J. T. Su and W. A. Goddard, Phys. Rev. Lett. 99, 185003 (2007)PRLTAO0031-900710.1103/PhysRevLett.99.185003], which explicitly takes the excitation of electrons into consideration. Nonequilibrium features associated with the excitation of electrons are systematically investigated. We show that chemical bonds in D_{2} molecules lead to a more complicated shock wave structure near the shock front, compared with the results of classical molecular dynamics simulation. Charge separation can bring about accumulation of net charges on large scales, instead of the formation of a localized dipole layer, which might cause extra energy for the shock wave to propagate. In addition, the simulations also display that molecular dissociation at the shock front is the major factor that accounts for the "bump" structure in the principal Hugoniot. These results could help to build a more realistic picture of shock wave propagation in fuel materials commonly used in the inertial confinement fusion.
Final Report 02-ERD-033: Rapid Resolidification of Metals using Dynamic Compression
Energy Technology Data Exchange (ETDEWEB)
Streitz, F H; Nguyen, J H; Orlikowski, D; Minich, R; Moriarty, J A; Holmes, N C
2005-02-11
The purpose of this project is to develop a greater understanding of the kinetics involved during a liquid-solid phase transition occurring at high pressure and temperature. Kinetic limitations are known to play a large role in the dynamics of solidification at low temperatures, determining, e.g., whether a material crystallizes upon freezing or becomes an amorphous solid. The role of kinetics is not at all understood in transitions at high temperature when extreme pressures are involved. In order to investigate time scales during a dynamic compression experiment we needed to create an ability to alter the length of time spent by the sample in the transition region. Traditionally, the extreme high-pressure phase diagram is studied through a few static and dynamic techniques: static compression involving diamond anvil cells (DAC) [1], shock compression [2, 3], and quasi-isentropic compression [4, 5, 6, 7, 8, 9, 10]. Static DAC experiments explore equilibrium material properties along an isotherm or an isobar [1]. Dynamic material properties can be explored with shock compression [2, 3], probing single states on the Hugoniot, or with quasi-isentropic compression [4, 5, 6, 7, 8, 9, 10]. In the case of shocks, pressures variation typically occurs on a sub-nanosecond time scale or faster [11]. Previous quasi-isentropic techniques have yielded pressure ramps on the 10-100 nanosecond time-scale for samples that are several hundred microns thick [4, 5, 6, 7]. In order to understand kinetic effects at high temperatures and high pressures, we need to span a large dynamic range (strain rates, relaxation times, etc.) as well as control the thermodynamic path that the material experiences. Compression rates, for instance, need to bridge those of static experiments (seconds to hours) and those of the Z-accelerator (10{sup 6} s{sup -1}) [4] or even laser ablation techniques (10{sup 6} s{sup -1} to 10{sup 8} s{sup -1}) [7]. Here, we present a new technique that both extends the
New Approach to Predict Hugoniot Properties of Explosives Materials
2015-03-12
TATB) were conducted using quantum mechanics and analytical methods. Furthermore, using the pressure p and the ratio of specific densities, v/v0, p-v...fitting algorithms , new constants were obtained, to determine the detonation velocity, D, which was then used to define the Raleigh line. The ratio of...parameters that define detonation process and establish a DRDC-RDDC-2014-N35 completely numerical approach by using quantum mechanics and
First-Principle-Based Calculations of the Hugoniot of Cu
Institute of Scientific and Technical Information of China (English)
XIANG Shi-Kai; CAI Ling-Cang; JING Fu-Qian; WANG Shun-Jin
2005-01-01
@@ The equation of state of face-centred-cubic (fcc) copper crystals at pressures up to 500 GPa and relative volume to 0.55 have been evaluated by using the full-potential linear muffin-tin orbital (FPLMTO) total-energy method combining with a mean-field model of the vibrational partition function. The mean-field is constructed from the sum of all the pair potentials between the reference atom and the others of the system. The calculated properties are in good agreement with the available shock-wave experimental measurements.
Plasticity and Spall in High Density Polycrystals: Modeling and Simulation
2006-09-01
may 311 find more details in the references [2,3]. The kinematics of thermo- elastoplasticity within each phase of the bulk material is described...stress at the interface, and the remaining symbols entering Eq. (5) are material parameters. Upon damage initiation, the response of the degraded...which the damaged zone behaves as two free surfaces. NUMERICAL IMPLEMENTATION The constitutive models for the pure W and binder phases
Evaluation of Rapid-Setting Concretes for Airfield Spall Repair
1991-04-01
is advisable to use the material within 6 months (check expiration dates on containers). "-..- , ..- ... " TOXICITY INFORMATION . .-,!,,. Acute oral ...out NE NO7 ESTABLISHED However. no warranty ai expresed o impld regard i the accuracy of isutie no rUsPftaiblitty for injury to vehicls Or thrd paapb
Thermal stress weathering and the spalling of Antarctic rocks
Lamp, J. L.; Marchant, D. R.; Mackay, S. L.; Head, J. W.
2017-01-01
Using in situ field measurements, laboratory analyses, and numerical modeling, we test the potential efficacy of thermal stress weathering in the flaking of millimeter-thick alteration rinds observed on cobbles and boulders of Ferrar Dolerite on Mullins Glacier, McMurdo Dry Valleys (MDV). In particular, we examine whether low-magnitude stresses, arising from temperature variations over time, result in thermal fatigue weathering, yielding slow crack propagation along existing cracks and ultimate flake detachment. Our field results show that during summer months clasts of Ferrar Dolerite experience large-temperature gradients across partially detached alteration rinds (>4.7°C mm-1) and abrupt fluctuations in surface temperature (up to 12°C min-1); the latter are likely due to the combined effects of changing solar irradiation and cooling from episodic winds. The results of our thermal stress model, coupled with subcritical crack growth theory, suggest that thermal stresses induced at the base of thin alteration rinds 2 mm thick, common on rocks exposed for 105 years, may be sufficient to cause existing cracks to propagate under present-day meteorological forcing, eventually leading to rind detachment. The increase in porosity observed within alteration rinds relative to unaltered rock interiors, as well as predicted decreases in rind strength based on allied weathering studies, likely facilitates thermal stress crack propagation through a reduction of fracture toughness. We conclude that thermal stress weathering may be an active, though undervalued, weathering process in hyperarid, terrestrial polar deserts such as the stable upland region of the MDV.
Basic Mechanisms of Spall from Near-Surface Explosions.
1980-11-30
procedures require the theory of elasticity or plasticity to deduce the tensile stress state in soil at the time the specimen fails. He advocated a program...volumetric strain is VT -VTo ( Vs +Vv) - ( Vs +Vvo) Vv - Vvo VTo VTo VTo V vo n (B-4) V To 1 Therefore, the ratio of current to initial void (air) volume is Vv V...21. Glas ~tone, S. and P. J. Dolan, THE EFFECTS OF NUCLEAR WEAPONS, Third Edition, U. S. Government Printing Office, (1977). 22. Grady, D., "Tension
Xie, Huimin
The following sections are included: * Definition of Dynamical Languages * Distinct Excluded Blocks * Definition and Properties * L and L″ in Chomsky Hierarchy * A Natural Equivalence Relation * Symbolic Flows * Symbolic Flows and Dynamical Languages * Subshifts of Finite Type * Sofic Systems * Graphs and Dynamical Languages * Graphs and Shannon-Graphs * Transitive Languages * Topological Entropy
Isolation of kinetic and spatial properties of uni-axial dynamic tensile loading of OFHC copper
Directory of Open Access Journals (Sweden)
Mourad H.
2012-08-01
Full Text Available Materials performance is recognized as being central to many emergent technologies. Future technologies will place increasing demands on materials performance with respect to extremes in stress, strain, temperature, and pressure. In this study, the dynamic ductile damage evolution of OFHC Cu is explored as a test bed to understand the role of spatial effects due to loading profile and defect density as well as the role of the kinetics of tensile pulse evolution. Well-characterized OFHC Cu samples of 30 μm, 60 μm, 100 μm, and 200 μm grain sizes were subjected to plate impact uniaxial strain loading in spall geometry to produce early stage (incipient damage. Using 2D metallographic techniques, soft recovered samples were studied to statistically link mesoscale processes to continuum level observations of free surface particle velocity measured with VISAR. Based on these findings, mechanisms for the void nucleation/growth and coalescence are proposed.
DYNAMIC DUCTILE EVOLUTION AND TENSILE FRACTURE: NEW EXPERIMENTAL INSIGHTS FOR MODELS EVALUATION
Energy Technology Data Exchange (ETDEWEB)
A. ZUREK
2000-08-01
Under dynamic loading conditions, the rapid nature of the fracture process may simultaneously activate a considerable number of nucleation sites for void formation at the region of the tensile stress field. The growth and coalescence of these voids forms the deformation plane and eventually the fracture surface. Attempts to quantify damage evolution during fracture using microstructural observations, specifically for spallation, were pioneered by Seaman and his coworkers. They performed incipient spallation experiments in which they imposed a peak stress below the spall strength of the material, thereby developing an incipient spallation zone rather than complete separation. When this experimental methodology is applied, recovery techniques are utilized to recover the deformed samples without introducing any additional damage. Seaman and his coworkers, and later Lacomme, et al., developed damage quantification techniques based on area measurements of incipient fracture. However, measuring the area of a fracture opening with a certain degree of precision from a two dimensional image can be extremely inaccurate due to the irregular shape of the image. In recent years several techniques have been developed, or improved, that may allow a better and more accurate quantification of image features observed in metallographic analyses in incipient damage of fracture surfaces. Many of these measured quantities are essential towards developing a solid, robust understanding necessary for a good constitutive model.
2011-06-01
method was used vice more accurate immersion techniques based on Archimedes principle . The initial volume of the technical sand was determined by filling...of Porous Materials In solid materials small stresses and strains are very close to being the same as the shock Hugoniot and the principle isentrope...experiment is no longer a traditional shock Hugoniot experiment but is rather more analogous to a ‘plate push ’ experiment. Multiple wave interactions
Sichani, Mehrdad M.; Spearot, Douglas E.
2016-07-01
The molecular dynamics simulation method is used to investigate the dependence of crystal orientation and shock wave strength on dislocation density evolution in single crystal Cu. Four different shock directions , , , and are selected to study the role of crystal orientation on dislocation generation immediately behind the shock front and plastic relaxation as the system reaches the hydrostatic state. Dislocation density evolution is analyzed for particle velocities between the Hugoniot elastic limit ( up H E L ) for each orientation up to a maximum of 1.5 km/s. Generally, dislocation density increases with increasing particle velocity for all shock orientations. Plastic relaxation for shock in the , , and directions is primarily due to a reduction in the Shockley partial dislocation density. In addition, plastic anisotropy between these orientations is less apparent at particle velocities above 1.1 km/s. In contrast, plastic relaxation is limited for shock in the orientation. This is partially due to the emergence of sessile stair-rod dislocations with Burgers vectors of 1/3 and 1/6. The nucleation of 1/6 dislocations at lower particle velocities is mainly due to the reaction between Shockley partial dislocations and twin boundaries. On the other hand, for the particle velocities above 1.1 km/s, the nucleation of 1/3 dislocations is predominantly due to reaction between Shockley partial dislocations at stacking fault intersections. Both mechanisms promote greater dislocation densities after relaxation for shock pressures above 34 GPa compared to the other three shock orientations.
Energy Technology Data Exchange (ETDEWEB)
Ladd, A.J.C.
1988-08-01
The basic methodology of equilibrium molecular dynamics is described. Examples from the literature are used to illustrate how molecular dynamics has been used to resolve theoretical controversies, provide data to test theories, and occasionally to discover new phenomena. The emphasis is on the application of molecular dynamics to an understanding of the microscopic physics underlying the transport properties of simple fluids. 98 refs., 4 figs.
Federal Laboratory Consortium — The Dynamics Lab replicates vibration environments for every Navy platform. Testing performed includes: Flight Clearance, Component Improvement, Qualification, Life...
Sternberg, Shlomo
2010-01-01
Celebrated mathematician Shlomo Sternberg, a pioneer in the field of dynamical systems, created this modern one-semester introduction to the subject for his classes at Harvard University. Its wide-ranging treatment covers one-dimensional dynamics, differential equations, random walks, iterated function systems, symbolic dynamics, and Markov chains. Supplementary materials offer a variety of online components, including PowerPoint lecture slides for professors and MATLAB exercises.""Even though there are many dynamical systems books on the market, this book is bound to become a classic. The the
Failure mechanism and coupled static-dynamic loading theory in deep hard rock mining: A review
Directory of Open Access Journals (Sweden)
Xibing Li
2017-08-01
Full Text Available Rock failure phenomena, such as rockburst, slabbing (or spalling and zonal disintegration, related to deep underground excavation of hard rocks are frequently reported and pose a great threat to deep mining. Currently, the explanation for these failure phenomena using existing dynamic or static rock mechanics theory is not straightforward. In this study, new theory and testing method for deep underground rock mass under coupled static-dynamic loading are introduced. Two types of coupled loading modes, i.e. “critical static stress + slight disturbance” and “elastic static stress + impact disturbance”, are proposed, and associated test devices are developed. Rockburst phenomena of hard rocks under coupled static-dynamic loading are successfully reproduced in the laboratory, and the rockburst mechanism and related criteria are demonstrated. The results of true triaxial unloading compression tests on granite and red sandstone indicate that the unloading can induce slabbing when the confining pressure exceeds a certain threshold, and the slabbing failure strength is lower than the shear failure strength according to the conventional Mohr-Column criterion. Numerical results indicate that the rock unloading failure response under different in situ stresses and unloading rates can be characterized by an equivalent strain energy density. In addition, we present a new microseismic source location method without premeasuring the sound wave velocity in rock mass, which can efficiently and accurately locate the rock failure in hard rock mines. Also, a new idea for deep hard rock mining using a non-explosive continuous mining method is briefly introduced.
Bergstra, J.A.; Bethke, I.
2002-01-01
Molecular dynamics is a model for the structure and meaning of object based programming systems. In molecular dynamics the memory state of a system is modeled as a fluid consisting of a collection of molecules. Each molecule is a collection of atoms with bindings between them. A computation is model
Blackburn, P.; Venema, Y.
2008-01-01
This paper examines various propositional logics in which the dynamic implication connective (discussed in Groenendijk and Stokhof's (1992) Dynamic Predicate Logic and Kamp's (1981) Discourse Representation Theory) plays the central role. Our approach is modal: the basic idea is to view as a binary
DEFF Research Database (Denmark)
Robe, Dominic M.; Boettcher, Stefan; Sibani, Paolo
2016-01-01
When quenched rapidly beyond their glass transition, colloidal suspensions fall out of equilibrium. The pace of their dynamics then slows down with the system age, i.e., with the time elapsed after the quench. This breaking of time translational invariance is associated with dynamical observables...
DEFF Research Database (Denmark)
Brorsen, Michael
These lecture notes are intended mainly for the 7th semester course "Fluid Dynamics" offered by the Study Committee on Civil Engineering, Aalborg University.......These lecture notes are intended mainly for the 7th semester course "Fluid Dynamics" offered by the Study Committee on Civil Engineering, Aalborg University....
Weisbuch, Gérard; Deffuant, Guillaume; Amblard, Frédéric
2005-08-01
We here discuss a model of continuous opinion dynamics in which agents adjust continuous opinions as a result of random binary encounters whenever their difference in opinion is below a given threshold. We concentrate on the version of the model in the presence of few extremists which might drive the dynamics to generalized extremism. A network version of the dynamics is presented here, and its results are compared to those previously obtained for the full-mixing case. The same dynamical regimes are observed, but in rather different parameter regions. We here show that the combination of meso-scale features resulting from the first interaction steps determines the asymptotic state of the dynamics.
Laird, Philip
1992-01-01
We distinguish static and dynamic optimization of programs: whereas static optimization modifies a program before runtime and is based only on its syntactical structure, dynamic optimization is based on the statistical properties of the input source and examples of program execution. Explanation-based generalization is a commonly used dynamic optimization method, but its effectiveness as a speedup-learning method is limited, in part because it fails to separate the learning process from the program transformation process. This paper describes a dynamic optimization technique called a learn-optimize cycle that first uses a learning element to uncover predictable patterns in the program execution and then uses an optimization algorithm to map these patterns into beneficial transformations. The technique has been used successfully for dynamic optimization of pure Prolog.
Institute of Scientific and Technical Information of China (English)
李涛; 谭多望; 李强; 谭兴春; 傅华
2014-01-01
块体金属玻璃具有极高的力学强度，存在潜在的军事应用价值，实现其应用的关键在于认识材料在高应变率下的动力学行为特性。为此，利用飞片驱动速度可达3．5 km/s 的电炮加载装置，对一种新制备的锆基块体金属玻璃的动力学响应进行了实验研究。实验中，基于高精度DPS激光干涉仪测得的样品/窗口界面粒子速度波剖面，获得了新材料在应变率约为106/s下的冲击响应特性参数。在加载压力15～25GPa 范围下，确定的 Hugoniot弹性极限约为2．4GPa，线性拟合得到的冲击 Hugoniot关系为Ds＝（4．4±0．1）＋（0．58±0．08）up。%As a novel material with high strength,bulk metallic glass received concern of many researchers all over the world.For potential military applications,it was important to un-derstand the dynamic response of this material under high strain rate.To this end,Electric Gun was chosen to study dynamic response of a newly prepared Zr-based bulk metallic glass.In the E-lectric Gun experiments,the velocity of electric explosion driven plastic flyer in 0.5 mm thick-ness could reach 3 .5 km/s.Based on bulk metallic glass sample/window interface particle veloci-ty profiles measured by high resolution DPS laser interferometer,two important dynamic behav-iors were obtained under high strain rate about 106/s.In a shock pressure range of 15~25GPa, the Hugoniot elastic limit was determined to be about 2 .4GPa,and the shock wave velocity (Ds) vs.particle velocity (up)Hugoniot data were linearly fitted by Ds= (4.4±0.1)+(0.58±0.08)up.
Hill, David P.; Prejean, Stephanie; Schubert, Gerald
2015-01-01
Dynamic stresses propagating as seismic waves from large earthquakes trigger a spectrum of responses at global distances. In addition to locally triggered earthquakes in a variety of tectonic environments, dynamic stresses trigger tectonic (nonvolcanic) tremor in the brittle–plastic transition zone along major plate-boundary faults, activity changes in hydrothermal and volcanic systems, and, in hydrologic domains, changes in spring discharge, water well levels, soil liquefaction, and the eruption of mud volcanoes. Surface waves with periods of 15–200 s are the most effective triggering agents; body-wave trigger is less frequent. Triggering dynamic stresses can be < 1 kPa.
Binney, James
2008-01-01
Since it was first published in 1987, Galactic Dynamics has become the most widely used advanced textbook on the structure and dynamics of galaxies and one of the most cited references in astrophysics. Now, in this extensively revised and updated edition, James Binney and Scott Tremaine describe the dramatic recent advances in this subject, making Galactic Dynamics the most authoritative introduction to galactic astrophysics available to advanced undergraduate students, graduate students, and researchers. Every part of the book has been thoroughly overhauled, and many section
Danel, J-F; Kazandjian, L
2015-01-01
We test two isothermal-isobaric mixing rules, respectively based on excess-pressure and total-pressure equilibration, applied to the equation of state of a dense plasma. While the equation of state is generally known for pure species, that of arbitrary mixtures is not available so that the validation of accurate mixing rules, that implies resorting to first-principles simulations, is very useful. Here we consider the case of a plastic with composition C(2)H(3) and we implement two complementary ab initio approaches adapted to the dense plasma domain: quantum molecular dynamics, limited to low temperature by its computational cost, and orbital-free molecular dynamics, that can be implemented at high temperature. The temperature and density range considered is 1-10 eV and 0.6-10 g/cm(3) for quantum molecular dynamics, and 5-1000 eV and 1-10 g/cm(3) for orbital-free molecular dynamics. Simulations for the full C(2)H(3) mixture are the benchmark against which to assess the mixing rules, and both pressure and internal energy are compared. We find that the mixing rule based on excess-pressure equilibration is overall more accurate than that based on total-pressure equilibration; except for quantum molecular dynamics and a thermodynamic domain characterized by very low or negative excess pressures, it gives pressures which are generally within statistical error or within 1% of the exact ones. Besides, its superiority is amplified in the calculation of a principal Hugoniot.
DEFF Research Database (Denmark)
Grünbaum, Niels Nolsøe; Stenger, Marianne
2013-01-01
it was dominated by a lack of systematism, assessment, monitoring, marketing speculations and feasibility calculation. Furthermore, the sphere was dictated by asymmetric supplier-customer relationships and negotiation power leading, among other possible factors, to meager profitability.......The consequences of dynamic capabilities (i.e. innovation performance and profitability) is an under researched area in the growing body of literature on dynamic capabilities and innovation management. This study aims to examine the relationship between dynamic capabilities, innovation performance...... and profitability of small and medium sized manufacturing enterprises operating in volatile environments. A multi-case study design was adopted as research strategy. The findings reveal a positive relationship between dynamic capabilities and innovation performance in the case companies, as we would expect. It was...
A Nonlocal Peridynamic Plasticity Model for the Dynamic Flow and Fracture of Concrete.
Energy Technology Data Exchange (ETDEWEB)
Vogler, Tracy; Lammi, Christopher James
2014-10-01
A nonlocal, ordinary peridynamic constitutive model is formulated to numerically simulate the pressure-dependent flow and fracture of heterogeneous, quasi-brittle ma- terials, such as concrete. Classical mechanics and traditional computational modeling methods do not accurately model the distributed fracture observed within this family of materials. The peridynamic horizon, or range of influence, provides a characteristic length to the continuum and limits localization of fracture. Scaling laws are derived to relate the parameters of peridynamic constitutive model to the parameters of the classical Drucker-Prager plasticity model. Thermodynamic analysis of associated and non-associated plastic flow is performed. An implicit integration algorithm is formu- lated to calculate the accumulated plastic bond extension and force state. The gov- erning equations are linearized and the simulation of the quasi-static compression of a cylinder is compared to the classical theory. A dissipation-based peridynamic bond failure criteria is implemented to model fracture and the splitting of a concrete cylinder is numerically simulated. Finally, calculation of the impact and spallation of a con- crete structure is performed to assess the suitability of the material and failure models for simulating concrete during dynamic loadings. The peridynamic model is found to accurately simulate the inelastic deformation and fracture behavior of concrete during compression, splitting, and dynamically induced spall. The work expands the types of materials that can be modeled using peridynamics. A multi-scale methodology for simulating concrete to be used in conjunction with the plasticity model is presented. The work was funded by LDRD 158806.
Experimental study of mechanical properties of liquids under shock wave loading
Bannikova, I. A.; Uvarov, S. V.; Zubareva, A. N.; Utkin, A. V.; Naimark, O. B.
2016-11-01
Glycerol and silicone oil were studied experimentally under shock-wave loading conditions at different temperatures and strain rates. It was found that the temperature has a significant influence on the spall strength of glycerol near the point of phase transition and weak influence on the spall strength of silicone oil. The spall strength of the silicone oil does not depend on the strain rate also. Dynamic viscosity of glycerol measured at the wave front found to be strain rate sensitive.
DEFF Research Database (Denmark)
Sannino, Francesco
2013-01-01
We propose an alternative paradigm to the conjectured Miransky scaling potentially underlying the physics describing the transition from the conformally broken to the conformally restored phase when tuning certain parameters such as the number of flavors in gauge theories. According to the new...... paradigm the physical scale and henceforth also the massive spectrum of the theory jump at the lower boundary of the conformal window. In particular we propose that a theory can suddenly jump from a Quantum Chromodynamics type spectrum, at the lower boundary of the conformal window, to a conformal one...... without particle interpretation. The jumping scenario, therefore, does not support a near-conformal dynamics of walking type. We will also discuss the impact of jumping dynamics on the construction of models of dynamical electroweak symmetry breaking....
1991-01-01
Dynamical Bifurcation Theory is concerned with the phenomena that occur in one parameter families of dynamical systems (usually ordinary differential equations), when the parameter is a slowly varying function of time. During the last decade these phenomena were observed and studied by many mathematicians, both pure and applied, from eastern and western countries, using classical and nonstandard analysis. It is the purpose of this book to give an account of these developments. The first paper, by C. Lobry, is an introduction: the reader will find here an explanation of the problems and some easy examples; this paper also explains the role of each of the other paper within the volume and their relationship to one another. CONTENTS: C. Lobry: Dynamic Bifurcations.- T. Erneux, E.L. Reiss, L.J. Holden, M. Georgiou: Slow Passage through Bifurcation and Limit Points. Asymptotic Theory and Applications.- M. Canalis-Durand: Formal Expansion of van der Pol Equation Canard Solutions are Gevrey.- V. Gautheron, E. Isambe...
Birkhoff, George D
1927-01-01
His research in dynamics constitutes the middle period of Birkhoff's scientific career, that of maturity and greatest power. -Yearbook of the American Philosophical Society The author's great book€¦is well known to all, and the diverse active modern developments in mathematics which have been inspired by this volume bear the most eloquent testimony to its quality and influence. -Zentralblatt MATH In 1927, G. D. Birkhoff wrote a remarkable treatise on the theory of dynamical systems that would inspire many later mathematicians to do great work. To a large extent, Birkhoff was writing about his o
Frelich, Lee
2016-01-01
Forest dynamics encompass changes in stand structure, species composition, and species interactions with disturbance and environment over a range of spatial and temporal scales. For convenience, spatial scale is defined as individual tree, neighborhood, stand, and landscape. Whether a given canopy-leveling disturbance will initiate a sequence of development in structure with little change in composition or initiate an episode of succession depends on a match or mismatch, respectively, with traits of the dominant tree species that allow the species to survive disturbance. When these match, certain species-disturbance type combinations lock in a pattern of stand and landscape dynamics that can persist for several generations of trees; thus, dominant tree species regulate, as well as respond to, disturbance. A complex interaction among tree species, neighborhood effects, disturbance type and severity, landform, and soils determines how stands of differing composition form and the mosaic of stands that compose the landscape. Neighborhood effects (e.g., serotinous seed rain, sprouting, shading, leaf-litter chemistry, and leaf-litter physical properties) operate at small spatial extents of the individual tree and its neighbors but play a central role in forest dynamics by contributing to patch formation at stand scales and dynamics of the entire landscape. Dominance by tree species with neutral to negative neighborhood effects leads to unstable landscape dynamics in disturbance-prone regions, wherein most stands are undergoing succession; stability can only occur under very low-severity disturbance regimes. Dominance by species with positive effects leads to stable landscape dynamics wherein only a small proportion of stands undergo succession at any one time. Positive neighborhood effects are common in temperate and boreal zones, whereas negative effects are more common in tropical climates. Landscapes with positive dynamics have alternate categories of dynamics
Rutten, R.J.
1995-01-01
This review places current research in quiet-Sun chromospheric dynamics in the context of past and future work, concentrating on observational aspects of three-minute oscillations and Ca II K2V grains. The subject is of interest at present because observations and simulations come together to permit
Strømmen, Einar N
2014-01-01
This book introduces to the theory of structural dynamics, with focus on civil engineering structures that may be described by line-like beam or beam-column type of systems, or by a system of rectangular plates. Throughout this book the mathematical presentation contains a classical analytical description as well as a description in a discrete finite element format, covering the mathematical development from basic assumptions to the final equations ready for practical dynamic response predictions. Solutions are presented in time domain as well as in frequency domain. Structural Dynamics starts off at a basic level and step by step brings the reader up to a level where the necessary safety considerations to wind or horizontal ground motion induced dynamic design problems can be performed. The special theory of the tuned mass damper has been given a comprehensive treatment, as this is a theory not fully covered elsewhere. For the same reason a chapter on the problem of moving loads on beams has been included.
Bakker, W.T.
1998-01-01
This book deals on "Coastal Dynamics", which will be defined in a narrow sense as a mathematical theory, which starts from given equations of motion for the sediment, which leads with the continuity equation and given boundary conditions to a calculated (eventually schematized) coastal topography,
DEFF Research Database (Denmark)
Bendix, Pól Martin
2015-01-01
Current topics include membrane-protein interactions with regard to membrane deformation or curvature sensing by BAR domains. Also, we study the dynamics of membrane tubes of both cells and simple model membrane tubes. Finally, we study membrane phase behavior which has important implications...... for the lateral organization of membranes as wells as for physical properties like bending, permeability and elasticity...
DEFF Research Database (Denmark)
Jensen, Henrik J.; Sibani, Paolo
2007-01-01
The term glassy dynamics is often used to refer to the extremely slow relaxation observed in several types of many component systems. The time span needed to reach a steady, time independent, state will typically be far beyond experimentally accessible time scales. When melted alloys are cooled d...
Díez, F.J.; Gerven, M.A.J. van
2011-01-01
One of the objectives of artificial intelligence is to build decision-support models for systems that evolve over time and include several types of uncertainty. Dynamic limited-memory influence diagrams (DLIMIDs) are a new type of model proposed recently for this kind of problems. DLIMIDs are simila
Díez, F.J.; Gerven, M.A.J. van
2011-01-01
One of the objectives of artificial intelligence is to build decision-support models for systems that evolve over time and include several types of uncertainty. Dynamic limited-memory influence diagrams (DLIMIDs) are a new type of model proposed recently for this kind of problems. DLIMIDs are simila
DEFF Research Database (Denmark)
Robe, Dominic M.; Boettcher, Stefan; Sibani, Paolo
2016-01-01
-facto irreversible and become increasingly harder to achieve. Thus, a progression of record-sized dynamical barriers are traversed in the approach to equilibration. Accordingly, the statistics of the events is closely described by a log-Poisson process. Originally developed for relaxation in spin glasses...
Morecroft, John
System dynamics is an approach for thinking about and simulating situations and organisations of all kinds and sizes by visualising how the elements fit together, interact and change over time. This chapter, written by John Morecroft, describes modern system dynamics which retains the fundamentals developed in the 1950s by Jay W. Forrester of the MIT Sloan School of Management. It looks at feedback loops and time delays that affect system behaviour in a non-linear way, and illustrates how dynamic behaviour depends upon feedback loop structures. It also recognises improvements as part of the ongoing process of managing a situation in order to achieve goals. Significantly it recognises the importance of context, and practitioner skills. Feedback systems thinking views problems and solutions as being intertwined. The main concepts and tools: feedback structure and behaviour, causal loop diagrams, dynamics, are practically illustrated in a wide variety of contexts from a hot water shower through to a symphony orchestra and the practical application of the approach is described through several real examples of its use for strategic planning and evaluation.
Greenwood, Donald T
1997-01-01
Graduate-level text for science and technology students provides strong background in the more abstract and intellectually satisfying areas of dynamical theory. Topics include d'Alembert's principle and the idea of virtual work, Hamilton's equations, Hamilton-Jacobi theory, canonical transformations, more. Problems and references at chapter ends.
Rutten, R.J.
2001-01-01
This review places current research in quiet-Sun chromospheric dynamics in the context of past and future work, concentrating on observational aspects of three-minute oscillations and Ca II K2V grains. The subject is of interest at present because observations and simulations come together to permit
Institute of Scientific and Technical Information of China (English)
唐孝威
1996-01-01
A new model for mitotic dynamics of eukaryotic cells is proposed. In the kinetochore mo-tor-midzone motor model two kinds of motors, the kinetochore motors and the midzone motors, play important roles in chromosome movement. Using this model the chromosome congression during prometaphase, the chromosome oscillation during metaphase and the chromatid segregation during anaphase are described in a unified way.
Discrete dynamics versus analytic dynamics
DEFF Research Database (Denmark)
Toxværd, Søren
2014-01-01
For discrete classical Molecular dynamics obtained by the “Verlet” algorithm (VA) with the time increment h there exists a shadow Hamiltonian H˜ with energy E˜(h) , for which the discrete particle positions lie on the analytic trajectories for H˜ . Here, we proof that there, independent...
Schiehlen, Werner
2014-01-01
Applied Dynamics is an important branch of engineering mechanics widely applied to mechanical and automotive engineering, aerospace and biomechanics as well as control engineering and mechatronics. The computational methods presented are based on common fundamentals. For this purpose analytical mechanics turns out to be very useful where D’Alembert’s principle in the Lagrangian formulation proves to be most efficient. The method of multibody systems, finite element systems and continuous systems are treated consistently. Thus, students get a much better understanding of dynamical phenomena, and engineers in design and development departments using computer codes may check the results more easily by choosing models of different complexity for vibration and stress analysis.
Bernard, Peter S
2015-01-01
This book presents a focused, readable account of the principal physical and mathematical ideas at the heart of fluid dynamics. Graduate students in engineering, applied math, and physics who are taking their first graduate course in fluids will find this book invaluable in providing the background in physics and mathematics necessary to pursue advanced study. The book includes a detailed derivation of the Navier-Stokes and energy equations, followed by many examples of their use in studying the dynamics of fluid flows. Modern tensor analysis is used to simplify the mathematical derivations, thus allowing a clearer view of the physics. Peter Bernard also covers the motivation behind many fundamental concepts such as Bernoulli's equation and the stream function. Many exercises are designed with a view toward using MATLAB or its equivalent to simplify and extend the analysis of fluid motion including developing flow simulations based on techniques described in the book.
DEFF Research Database (Denmark)
Grünbaum, Niels Nolsøe; Stenger, Marianne
2013-01-01
and profitability of small and medium sized manufacturing enterprises operating in volatile environments. A multi-case study design was adopted as research strategy. The findings reveal a positive relationship between dynamic capabilities and innovation performance in the case companies, as we would expect. It was...... it was dominated by a lack of systematism, assessment, monitoring, marketing speculations and feasibility calculation. Furthermore, the sphere was dictated by asymmetric supplier-customer relationships and negotiation power leading, among other possible factors, to meager profitability....
2014-08-20
envisioned) Science of Cybersecurity: Soul: Security (concepts) Brain: Cybersecurity Dynamics (kind of Complexity Science) Muscle & Blood ...Complexity Science) Muscle & Blood : Probability Theory, Number Theory, Abstract Algebra, etc. Thrust I: Building a systematic theory of...Under-specification, composition and emergent properties. In Proc. NSPW’97, pp. 83–93. [11] A. Kubík. Toward a formalization of emergence. Artif . Life
Dynamic analysis of intake tower in Darab Dam located on limestone
Energy Technology Data Exchange (ETDEWEB)
Abbasi, H. [Islamic Azad Univ., Tehran (Iran, Islamic Republic of); Hosseini, Y.; Jalaly, H. [Ab-Niru Consulting Engineers, Tehran (Iran, Islamic Republic of); Aghajani, K. [Elam Univ., Elam (Iran, Islamic Republic of)
2006-07-01
The Darab dam is located on the Roodbal River in Iran. This paper provided details of the dry intake tower which was designed using 3-D dynamic analysis with the response spectrum method. The intake tower has a 7 meter inner diameter and is 57 meters high with a 70 cm concrete lining connected to the inlet structure of the diversion tunnel. Seismic design criteria were obtained using the annual exceedance probability of 1:500 years. The tower was designed to maintain normal operating conditions after an operating basis earthquake (OBE), maximum design earthquake (MDE) and maximum credible earthquake (MCE). Design accelerogram were derived for the dam site for various return periods. The intake tower was analyzed for 3 accelerograms to cover a range of dam responses. Material and strength properties used for the intake tower were presented. The stress-strain relationship was used for concrete with a limiting concrete compressive strain of 0.004 to avoid excessive damage and spalling of cover concrete. The model included the confining effect provided by transverse steel. The hydrodynamic interaction effect of the surrounding and contained water in the analysis were approximated using an equivalent added mass of water. The tower was modelled using a finite element method. The calculated shear and moment were compared with base shear and base moment. The response spectrum analysis showed that the maximum displacement at the top point of the intake tower with hydrodynamic pressure was 55.21, and 25.10 without hydrodynamic pressure. The time history analysis showed a maximum compressive strain limit of 0.004. The ultimate thickness of the concrete was calculated based on the response spectrum analysis result and compared with the time history analysis. It was concluded that the appropriate thickness of the concrete was determined as 70 cm for the entire height of the tower. 9 refs., 1 tab., 7 figs.
Vilasi, Gaetano
2001-01-01
This is both a textbook and a monograph. It is partially based on a two-semester course, held by the author for third-year students in physics and mathematics at the University of Salerno, on analytical mechanics, differential geometry, symplectic manifolds and integrable systems. As a textbook, it provides a systematic and self-consistent formulation of Hamiltonian dynamics both in a rigorous coordinate language and in the modern language of differential geometry. It also presents powerful mathematical methods of theoretical physics, especially in gauge theories and general relativity. As a m
PREFACE: Cooperative dynamics Cooperative dynamics
Gov, Nir
2011-09-01
The dynamics within living cells are dominated by non-equilibrium processes that consume chemical energy (usually in the form of ATP, adenosine triphosphate) and convert it into mechanical forces and motion. The mechanisms that allow this conversion process are mostly driven by the components of the cytoskeleton: (i) directed (polar) polymerization of filaments (either actin or microtubules) and (ii) molecular motors. The forces and motions produced by these two components of the cytoskeleton give rise to the formation of cellular shapes, and drive the intracellular transport and organization. It is clear that these systems present a multi-scale challenge, from the physics of the molecular processes to the organization of many interacting units. Understanding the physical nature of these systems will have a large impact on many fundamental problems in biology and break new grounds in the field of non-equilibrium physics. This field of research has seen a rapid development over the last ten years. Activities in this area range from theoretical and experimental work on the underlying fundamental (bio)physics at the single-molecule level, to investigations (in vivo and in vitro) of the dynamics and patterns of macroscopic pieces of 'living matter'. In this special issue we have gathered contributions that span the whole spectrum of length- and complexity-scales in this field. Some of the works demonstrate how active forces self-organize within the polymerizing cytoskeleton, on the level of cooperative cargo transport via motors or due to active fluxes at the cell membrane. On a larger scale, it is shown that polar filaments coupled to molecular motors give rise to a huge variety of surprising dynamics and patterns: spontaneously looping rings of gliding microtubules, and emergent phases of self-organized filaments and motors in different geometries. All of these articles share the common feature of being out-of-equilibrium, driven by metabolism. As demonstrated here
Dynamic transition between fixed- and mobile-bed: mathematical and numerical aspects
Zugliani, Daniel; Pasqualini, Matteo; Rosatti, Giorgio
2017-04-01
a dynamic time variation of the erodibility variable. The issue of the dynamic transition between fixed- and mobile-bed condition is tackled, from a numerical point of view, using a particular predictor corrector technique that compare the transported concentration related with the fixed bed and the equilibrium concentration, deriving from a closure relation, associated to the mobile bed condition. Through a comparison between exact solution, built using the generalized Rankine - Hugoniot condition, and the numeric results, we highlight capabilities and limits of this enhanced technique. Bibliography: G. Rosatti and D. Zugliani, 2015. "Modelling the transition between fixed and mobile bed conditions in two-phase free-surface flows: The Composite Riemann Problem and its numerical solution". Journal of Computational Physics, 285:226-250
Carleson, Lennart
1993-01-01
Complex dynamics is today very much a focus of interest. Though several fine expository articles were available, by P. Blanchard and by M. Yu. Lyubich in particular, until recently there was no single source where students could find the material with proofs. For anyone in our position, gathering and organizing the material required a great deal of work going through preprints and papers and in some cases even finding a proof. We hope that the results of our efforts will be of help to others who plan to learn about complex dynamics and perhaps even lecture. Meanwhile books in the field a. re beginning to appear. The Stony Brook course notes of J. Milnor were particularly welcome and useful. Still we hope that our special emphasis on the analytic side will satisfy a need. This book is a revised and expanded version of notes based on lectures of the first author at UCLA over several \\Vinter Quarters, particularly 1986 and 1990. We owe Chris Bishop a great deal of gratitude for supervising the production of cour...
High-power laser shock-induced dynamic fracture of aluminum and microscopic observation of samples
Directory of Open Access Journals (Sweden)
Fan Zhang
2015-01-01
Full Text Available High-power laser induced shocks generated by “ShenGuang II” laser facility has been used to study spall fracture of polycrystalline aluminum at strain rates more than 106/s. The free surface velocity histories of shock-loaded samples, 150 μm thick and with initial temperature from 293 K to 873 K, have been recorded using velocity interferometer system for any reflector (VISAR. From the free surface velocity profile, spall strength and yield stress are calculated, it demonstrates that spall strength will decline and yield strength increase with initial temperature. The loaded samples are recovered to obtain samples' section and free surface metallographic pictures through Laser Scanning Confocal Microscopy. It is found that there are more micro-voids and more opportunity to appear bigger voids near the spall plane and the grain size increases with temperature slowly but smoothly except the sharply change at 893 K (near melting point. Besides, the fracture mechanisms change from mainly intergranular fracture to transgranular fracture with the increase of initial temperature.
Directory of Open Access Journals (Sweden)
Cooch, E. G.
2004-06-01
Full Text Available Increases or decreases in the size of populations over space and time are, arguably, the motivation for much of pure and applied ecological research. The fundamental model for the dynamics of any population is straightforward: the net change over time in the abundance of some population is the simple difference between the number of additions (individuals entering the population minus the number of subtractions (individuals leaving the population. Of course, the precise nature of the pattern and process of these additions and subtractions is often complex, and population biology is often replete with fairly dense mathematical representations of both processes. While there is no doubt that analysis of such abstract descriptions of populations has been of considerable value in advancing our, there has often existed a palpable discomfort when the ‘beautiful math’ is faced with the often ‘ugly realities’ of empirical data. In some cases, this attempted merger is abandoned altogether, because of the paucity of ‘good empirical data’ with which the theoretician can modify and evaluate more conceptually–based models. In some cases, the lack of ‘data’ is more accurately represented as a lack of robust estimates of one or more parameters. It is in this arena that methods developed to analyze multiple encounter data from individually marked organisms has seen perhaps the greatest advances. These methods have rapidly evolved to facilitate not only estimation of one or more vital rates, critical to population modeling and analysis, but also to allow for direct estimation of both the dynamics of populations (e.g., Pradel, 1996, and factors influencing those dynamics (e.g., Nichols et al., 2000. The interconnections between the various vital rates, their estimation, and incorporation into models, was the general subject of our plenary presentation by Hal Caswell (Caswell & Fujiwara, 2004. Caswell notes that although interest has traditionally
Energy Technology Data Exchange (ETDEWEB)
Turchetti, G. (Bologna Univ. (Italy). Dipt. di Fisica)
1989-01-01
Research in nonlinear dynamics is rapidly expanding and its range of applications is extending beyond the traditional areas of science where it was first developed. Indeed while linear analysis and modelling, which has been very successful in mathematical physics and engineering, has become a mature science, many elementary phenomena of intrinsic nonlinear nature were recently experimentally detected and investigated, suggesting new theoretical work. Complex systems, as turbulent fluids, were known to be governed by intrinsically nonlinear laws since a long time ago, but received purely phenomenological descriptions. The pioneering works of Boltzmann and Poincare, probably because of their intrinsic difficulty, did not have a revolutionary impact at their time; it is only very recently that their message is reaching a significant number of mathematicians and physicists. Certainly the development of computers and computer graphics played an important role in developing geometric intuition of complex phenomena through simple numerical experiments, while a new mathematical framework to understand them was being developed.
Gömöry, F
2014-01-01
Superconductors used in magnet technology could carry extreme currents because of their ability to keep the magnetic flux motionless. The dynamics of the magnetic flux interaction with superconductors is controlled by this property. The cases of electrical transport in a round wire and the magnetization of wires of various shapes (circular, elliptical, plate) in an external magnetic field are analysed. Resistance to the magnetic field penetration means that the field produced by the superconducting magnet is no longer proportional to the supplied current. It also leads to a dissipation of electromagnetic energy. In conductors with unequal transverse dimensions, such as flat cables, the orientation with respect to the magnetic field plays an essential role. A reduction of magnetization currents can be achieved by splitting the core of a superconducting wire into fine filaments; however, new kinds of electrical currents that couple the filaments consequently appear. Basic formulas allowing qualitative analyses ...
Energy Technology Data Exchange (ETDEWEB)
Fujimoto, Keizo, E-mail: keizo.fujimoto@nao.ac.jp [Division of Theoretical Astronomy, National Astronomical Observatory of Japan, 2-21-1 Ohsawa, Mitaka, Tokyo 181-8588 (Japan); Takamoto, Makoto [Department of Earth and Planetary Science, The University of Tokyo, Bunkyo-ku, Tokyo 114-0015 (Japan)
2016-01-15
We have investigated the ion and electron dynamics generating the Hall current in the reconnection exhaust far downstream of the x-line where the exhaust width is much larger than the ion gyro-radius. A large-scale particle-in-cell simulation shows that most ions are accelerated through the Speiser-type motion in the current sheet formed at the center of the exhaust. The transition layers formed at the exhaust boundary are not identified as slow mode shocks. (The layers satisfy mostly the Rankine-Hugoniot conditions for a slow mode shock, but the energy conversion hardly occurs there.) We find that the ion drift velocity is modified around the layer due to a finite Larmor radius effect. As a result, the ions are accumulated in the downstream side of the layer, so that collimated ion jets are generated. The electrons experience two steps of acceleration in the exhaust. The first is a parallel acceleration due to the out-of-plane electric field E{sub y} which has a parallel component in most area of the exhaust. The second is a perpendicular acceleration due to E{sub y} at the center of the current sheet and the motion is converted to the parallel direction. Because of the second acceleration, the electron outflow velocity becomes almost uniform over the exhaust. The difference in the outflow profile between the ions and electrons results in the Hall current in large area of the exhaust. The present study demonstrates the importance of the kinetic treatments for collisionless magnetic reconnection even far downstream from the x-line.
Ruban, Anatoly I
This is the first book in a four-part series designed to give a comprehensive and coherent description of Fluid Dynamics, starting with chapters on classical theory suitable for an introductory undergraduate lecture course, and then progressing through more advanced material up to the level of modern research in the field. The present Part 1 consists of four chapters. Chapter 1 begins with a discussion of Continuum Hypothesis, which is followed by an introduction to macroscopic functions, the velocity vector, pressure, density, and enthalpy. We then analyse the forces acting inside a fluid, and deduce the Navier-Stokes equations for incompressible and compressible fluids in Cartesian and curvilinear coordinates. In Chapter 2 we study the properties of a number of flows that are presented by the so-called exact solutions of the Navier-Stokes equations, including the Couette flow between two parallel plates, Hagen-Poiseuille flow through a pipe, and Karman flow above an infinite rotating disk. Chapter 3 is d...
Klingshirn, C.
The purpose of this chapter is to present the results of the dynamics of exciton (polariton)s or more generally of electron-hole pairs. For a recent review of this topic concentrating on quantum wells, see Davies and Jagadish (Laser Photon. Rev. 3(1), 1(2008)). We neither consider the dynamics of carriers, for example, their relaxation time entering in Hall mobility or electrical conductivity, nor the dynamics of phonons or spins, respectively. We give here only a very small selection of references to these topics (Baxter and Schmuttenmaer, J. Phys. Chem. B, 110:25229, 2006; Queiroz et al. Superlattice Microstruct. 42:270, 2007; Niehaus and Schwarz, Superlattice Microstruct. 42:299, 2007; Lee et al., J. Appl. Phys. 93:4939, 2003; A. K Azad, J. Han, W. Zhang, Appl. Phys. Lett. 88:021103, 2006; Janssen et al., QELS 2008 IEEE 2; D. Lagarde et al., Phys. Stat. Sol. C 4:472, 2007; S. Gosh et al., Appl. Phys. Lett. 86:232507, 2005; W. K. Liu et al. Phys. Rev. Lett. 98:186804, 2007). The main characteristic time constants relevant to optical properties close to the fundamental absorption edge are the dephasing time T 2, (i.e. the time after which the polarization amplitude of the optically excited electron-hole pair loses the coherence with the driving light field), the intra band or inter sub band relaxation times T 3 (i.e. the time it takes for the electron-hole pairs to relax from their initial state of excitation to a certain other state e.g. to a thermal distribution with a temperature equal to or possibly still above lattice temperature) and finally the lifetime T 1 (i.e. the time until the electron-hole pairs recombine). The characteristic time constants T 2 and T 1 are also known as transverse and longitudinal relaxation times, respectively. Their inverses are the corresponding rate constants. T 2 is inversely proportional to the homogeneous width Γ, and T 1 includes both the radiative and the generally dominating non-radiative recombination (Hauser et al., Appl
Lukose, Rajan Mathew
The World Wide Web and the Internet are rapidly expanding spaces, of great economic and social significance, which offer an opportunity to study many phenomena, often previously inaccessible, on an unprecedented scale and resolution with relative ease. These phenomena are measurable on the scale of tens of millions of users and hundreds of millions of pages. By virtue of nearly complete electronic mediation, it is possible in principle to observe the time and ``spatial'' evolution of nearly all choices and interactions. This cyber-space therefore provides a view into a number of traditional research questions (from many academic disciplines) and creates its own new phenomena accessible for study. Despite its largely self-organized and dynamic nature, a number of robust quantitative regularities are found in the aggregate statistics of interesting and useful quantities. These regularities can be understood with the help of models that draw on ideas from statistical physics as well as other fields such as economics, psychology and decision theory. This thesis develops models that can account for regularities found in the statistics of Internet congestion and user surfing patterns and discusses some practical consequences. practical consequences.
Impact effects of explosively formed projectiles on normal strength concrete
Bookout, Laurin; Baird, Jason
2012-03-01
This paper will address the experimental results of the impact of 101.6 mm (4 in) explosively formed projectiles on normal strength concrete targets. Five projectiles were recovered using a soft recovery system to determine the average mass and nose shape of the projectiles. Velocity data for each test was measured with a high speed camera. The average projectile nose shape and mass plus the striking velocity, and the penetration depths from ten tests were compared to existing penetration equations to see if one or more of the equations is applicable for this type of projectile impact. The coarse aggregate gradation used in the concrete mix has Hugoniot data available. The Hugoniot data allows comparison of any observed spalling with the theoretical predictions.
Padilla, Nelson D.; Paz, Dante; Lares, Marcelo; Ceccarelli, Laura; Lambas, Diego Garcí A.; Cai, Yan-Chuan; Li, Baojiu
2016-10-01
Cosmic voids are becoming key players in testing the physics of our Universe.Here we concentrate on the abundances and the dynamics of voids as these are among the best candidatesto provide information on cosmological parameters. Cai, Padilla & Li (2014)use the abundance of voids to tell apart Hu & Sawicki f(R) models from General Relativity. An interestingresult is that even though, as expected, voids in the dark matter field are emptier in f(R) gravity due to the fifth force expellingaway from the void centres, this result is reversed when haloes are used to find voids. The abundance of voids in this casebecomes even lower in f(R) compared to GR for large voids. Still, the differences are significant and thisprovides a way to tell apart these models. The velocity field differences between f(R) and GR, on the other hand, arethe same for halo voids and for dark matter voids.Paz et al. (2013), concentrate on the velocity profiles around voids. First they show the necessityof four parameters to describe the density profiles around voids given two distinct voidpopulations, voids-in-voids and voids-in-clouds. This profile is used to predict peculiar velocities around voids,and the combination of the latter with void density profiles allows the construction of modelvoid-galaxy cross-correlation functions with redshift space distortions. When these modelsare tuned to fit the measured correlation functions for voids and galaxies in the SloanDigital Sky Survey, small voids are found to be of the void-in-cloud type, whereas largerones are consistent with being void-in-void. This is a novel result that is obtaineddirectly from redshift space data around voids. These profiles can be used toremove systematics on void-galaxy Alcock-Pacinsky tests coming from redshift-space distortions.
Influence of Material Properties on the Ballistic Performance of Ceramics for Personal Body Armour
Directory of Open Access Journals (Sweden)
Christian Kaufmann
2003-01-01
Full Text Available In support of improved personal armour development, depth of penetration tests have been conducted on four different ceramic materials including alumina, modified alumina, silicon carbide and boron carbide. These experiments consisted of impacting ceramic tiles bonded to aluminum cylinders with 0.50 caliber armour piercing projectiles. The results are presented in terms of ballistic efficiency, and the validity of using ballistic efficiency as a measure of ceramic performance was examined. In addition, the correlation between ballistic performance and ceramic material properties, such as elastic modulus, hardness, spall strength and Hugoniot Elastic Limit, has been considered.
Dynamical system synchronization
Luo, Albert C J
2013-01-01
Dynamical System Synchronization (DSS) meticulously presents for the first time the theory of dynamical systems synchronization based on the local singularity theory of discontinuous dynamical systems. The book details the sufficient and necessary conditions for dynamical systems synchronizations, through extensive mathematical expression. Techniques for engineering implementation of DSS are clearly presented compared with the existing techniques. This book also: Presents novel concepts and methods for dynamical system synchronization Extends beyond the Lyapunov theory for dynamical system synchronization Introduces companion and synchronization of discrete dynamical systems Includes local singularity theory for discontinuous dynamical systems Covers the invariant domains of synchronization Features more than 75 illustrations Dynamical System Synchronization is an ideal book for those interested in better understanding new concepts and methodology for dynamical system synchronization, local singularity...
Measuring the dynamic compression and release behavior of rocks and grouts associated with HYDROPLUS
Energy Technology Data Exchange (ETDEWEB)
Furnish, M.D.
1993-10-01
Gas-gun impact tests were performed on twelve rocks and rock simulants pertinent to the HYDROPLUS nuclear yield measurement program: A variety of tuffs, rhyolites, carbonates, grouts, an epoxy-alumina mixture and quartzite permafrost samples recovered in an apparently preserved frozen state from northern Canada. The present report presents results for all of these materials except for the carbonates. Two classes of impact techniques were employed for measuring equation-of-state properties for these materials. Both use velocity interferometry diagnostics. One, employing a sample-in-projectile geometry, provides high-precision Hugoniot data and continuous release trajectories for dry or water-saturated materials. The majority of the experiments were performed with this geometry. The other, employing a sample-in-target geometry, provides loading path and Hugoniot data as well as limited release data. Uncertainties in the results have been estimated by analyzing the effects of errors in observables and ancillary material properties.
Fundamentals of structural dynamics
Craig, Roy R
2006-01-01
From theory and fundamentals to the latest advances in computational and experimental modal analysis, this is the definitive, updated reference on structural dynamics.This edition updates Professor Craig's classic introduction to structural dynamics, which has been an invaluable resource for practicing engineers and a textbook for undergraduate and graduate courses in vibrations and/or structural dynamics. Along with comprehensive coverage of structural dynamics fundamentals, finite-element-based computational methods, and dynamic testing methods, this Second Edition includes new and e
Petrescu, Florian Ion Tiberiu; Polytechnic University of Bucharest; Petrescu, Relly Victoria Virgil; Polytechnic University of Bucharest
2016-01-01
Otto engine dynamics are similar in almost all common internal combustion engines. We can speak so about dynamics of engines: Lenoir, Otto, and Diesel. The dynamic presented model is simple and original. The first thing necessary in the calculation of Otto engine dynamics, is to determine the inertial mass reduced at the piston. It uses then the Lagrange equation. The dynamic equation of motion of the piston, obtained by integrating the Lagrange equation, takes a new form. It presents a new r...
Dynamical systems theory for music dynamics
Boon, J P
1994-01-01
Abstract:We show that, when music pieces are cast in the form of time series of pitch variations, the concepts and tools of dynamical systems theory can be applied to the analysis of {\\it temporal dynamics} in music. (i) Phase space portraits are constructed from the time series wherefrom the dimensionality is evaluated as a measure of the {\\pit global} dynamics of each piece. (ii) Spectral analysis of the time series yields power spectra (\\sim f^{-\
Shock equation of state properties of concrete
Energy Technology Data Exchange (ETDEWEB)
Grady, D.
1996-03-01
Unique shock compression experiments have been developed and pursued which provide material equation of state data for dynamic strength, pore crush, shock Hugoniot and adiabatic decompression. Experimental data have been obtained on an aggregate concrete to Hugoniot pressures of 25 GPa. New analytic methods were developed to extract equation-of-state properties from dynamic test data. Unexpected residual strain results are compared with expected thermal expansion and dilatancy properties of concrete.
Directory of Open Access Journals (Sweden)
Wassim M. Haddad
2001-01-01
Full Text Available In this paper we develop a unified dynamical systems framework for a general class of systems possessing left-continuous flows; that is, left-continuous dynamical systems. These systems are shown to generalize virtually all existing notions of dynamical systems and include hybrid, impulsive, and switching dynamical systems as special cases. Furthermore, we generalize dissipativity, passivity, and nonexpansivity theory to left-continuous dynamical systems. Specifically, the classical concepts of system storage functions and supply rates are extended to left-continuous dynamical systems providing a generalized hybrid system energy interpretation in terms of stored energy, dissipated energy over the continuous-time dynamics, and dissipated energy over the resetting events. Finally, the generalized dissipativity notions are used to develop general stability criteria for feedback interconnections of left-continuous dynamical systems. These results generalize the positivity and small gain theorems to the case of left-continuous, hybrid, and impulsive dynamical systems.
Luo, Albert C J
2012-01-01
Presents a systematic view of vibro-impact dynamics based on the nonlinear dynamics analysis Comprehensive understanding of any vibro-impact system is critically impeded by the lack of analytical tools viable for properly characterizing grazing bifurcation. The authors establish vibro-impact dynamics as a subset of the theory of discontinuous systems, thus enabling all vibro-impact systems to be explored and characterized for applications. Vibro-impact Dynamics presents an original theoretical way of analyzing the behavior of vibro-impact dynamics that can be extended to discontinuous dynamic
Dynamic statistical information theory
Institute of Scientific and Technical Information of China (English)
XING; Xiusan
2006-01-01
In recent years we extended Shannon static statistical information theory to dynamic processes and established a Shannon dynamic statistical information theory, whose core is the evolution law of dynamic entropy and dynamic information. We also proposed a corresponding Boltzmman dynamic statistical information theory. Based on the fact that the state variable evolution equation of respective dynamic systems, i.e. Fokker-Planck equation and Liouville diffusion equation can be regarded as their information symbol evolution equation, we derived the nonlinear evolution equations of Shannon dynamic entropy density and dynamic information density and the nonlinear evolution equations of Boltzmann dynamic entropy density and dynamic information density, that describe respectively the evolution law of dynamic entropy and dynamic information. The evolution equations of these two kinds of dynamic entropies and dynamic informations show in unison that the time rate of change of dynamic entropy densities is caused by their drift, diffusion and production in state variable space inside the systems and coordinate space in the transmission processes; and that the time rate of change of dynamic information densities originates from their drift, diffusion and dissipation in state variable space inside the systems and coordinate space in the transmission processes. Entropy and information have been combined with the state and its law of motion of the systems. Furthermore we presented the formulas of two kinds of entropy production rates and information dissipation rates, the expressions of two kinds of drift information flows and diffusion information flows. We proved that two kinds of information dissipation rates (or the decrease rates of the total information) were equal to their corresponding entropy production rates (or the increase rates of the total entropy) in the same dynamic system. We obtained the formulas of two kinds of dynamic mutual informations and dynamic channel
National Aeronautics and Space Administration — A searchable database of all Solar Dynamics Observatory data including EUV, magnetograms, visible light and X-ray. SDO: The Solar Dynamics Observatory is the first...
Dynamic Interactive Learning Systems
Sabry, Khaled; Barker, Jeff
2009-01-01
This paper reviews and discusses the notions of interactivity and dynamicity of learning systems in relation to information technologies and design principles that can contribute to interactive and dynamic learning. It explores the concept of dynamic interactive learning systems based on the emerging generation of information as part of a…
Intramolecular and nonlinear dynamics
Energy Technology Data Exchange (ETDEWEB)
Davis, M.J. [Argonne National Laboratory, IL (United States)
1993-12-01
Research in this program focuses on three interconnected areas. The first involves the study of intramolecular dynamics, particularly of highly excited systems. The second area involves the use of nonlinear dynamics as a tool for the study of molecular dynamics and complex kinetics. The third area is the study of the classical/quantum correspondence for highly excited systems, particularly systems exhibiting classical chaos.
Bergshoeff, Eric; Gomis, Joaquim; Longhi, Giorgio
2014-01-01
We investigate particles whose dynamics are invariant under the Carroll group. Although a single, free such Carroll particle has no non-trivial dynamics (the Carroll particle does not move), we show that non-trivial dynamics exists for a set of interacting Carroll particles. Furthermore, we gauge th
Van Geert, P. L. C.; Steenbeek, H.W.
2005-01-01
In this article we have reinterpreted a relatively standard definition of scaffolding in the context of dynamic systems theory. Our main point is that scaffolding cannot be understood outside the context of a dynamic approach of learning and (formal or informal) teaching. We provide a dynamic system
Energy Technology Data Exchange (ETDEWEB)
Sylvia Ceyer, Nancy Ryan Gray
2010-05-04
The 2009 Gordon Conference on Dynamics at Surfaces is the 30th anniversary of a meeting held every two years that is attended by leading researchers in the area of experimental and theoretical dynamics at liquid and solid surfaces. The conference focuses on the dynamics of the interaction of molecules with either liquid or solid surfaces, the dynamics of the outermost layer of liquid and solid surfaces and the dynamics at the liquid-solid interface. Specific topics that are featured include state-to-state dynamics, non-adiabatic interactions in molecule-metal systems, photon induced desorption from semiconductor and metal surfaces, ultrafast x-ray and electron diffraction as probes of the dynamics of ablation, ultrafast vibrational spectroscopy of water surface dynamics, dynamics of a single adsorbate, growth at nano-scale mineral surfaces, dynamics of atom recombination on interstellar dust grains and the dynamics of the interaction of water with lipid bilayers. The conference brings together investigators from a variety of scientific disciplines including chemistry, physics, materials science, geology and biophysics.
Variable Dynamic Testbed Vehicle: Dynamics Analysis
Lee, A. Y.; Le, N. T.; Marriott, A. T.
1997-01-01
The Variable Dynamic Testbed Vehicle (VDTV) concept has been proposed as a tool to evaluate collision avoidance systems and to perform driving-related human factors research. The goal of this study is to analytically investigate to what extent a VDTV with adjustable front and rear anti-roll bar stiffnesses, programmable damping rates, and four-wheel-steering can emulate the lateral dynamics of a broad range of passenger vehicles.
Grujicic, M.; He, T.; Pandurangan, B.; Svingala, F. R.; Settles, G. S.; Hargather, M. J.
2012-01-01
Numerous experimental investigations reported in the open literature over the past decade have clearly demonstrated that the use of polyurea external coatings and/or inner layers can substantially enhance both the blast resistance (the ability to withstand shock loading) and the ballistic performance (the ability to defeat various high-velocity projectiles such as bullets, fragments, shrapnel, etc. without penetration, excessive deflection or spalling) of buildings, vehicles, combat-helmets, etc. It is also well established that the observed high-performance of polyurea is closely related to its highly complex submicron scale phase-segregated microstructure and the associated microscale phenomena and processes (e.g., viscous energy dissipation at the internal phase boundaries). As higher and higher demands are placed on blast/ballistic survivability of the foregoing structures, a need for the use of the appropriate transient nonlinear dynamics computational analyses and the corresponding design-optimization methods has become ever apparent. A critical aspect of the tools used in these analyses and methods is the availability of an appropriate physically based, high-fidelity material model for polyurea. There are presently several public domain and highly diverse material models for polyurea. In the present work, an attempt is made to critically assess these models as well as the experimental methods and results used in the process of their formulation. Since these models are developed for use in the high-rate loading regime, they are employed in the present work, to generate the appropriate shock-Hugoniot relations. These relations are subsequently compared with their experimental counterparts in order to assess the fidelity of these models.
Complexity and Dynamical Depth
Directory of Open Access Journals (Sweden)
Terrence Deacon
2014-07-01
Full Text Available We argue that a critical difference distinguishing machines from organisms and computers from brains is not complexity in a structural sense, but a difference in dynamical organization that is not well accounted for by current complexity measures. We propose a measure of the complexity of a system that is largely orthogonal to computational, information theoretic, or thermodynamic conceptions of structural complexity. What we call a system’s dynamical depth is a separate dimension of system complexity that measures the degree to which it exhibits discrete levels of nonlinear dynamical organization in which successive levels are distinguished by local entropy reduction and constraint generation. A system with greater dynamical depth than another consists of a greater number of such nested dynamical levels. Thus, a mechanical or linear thermodynamic system has less dynamical depth than an inorganic self-organized system, which has less dynamical depth than a living system. Including an assessment of dynamical depth can provide a more precise and systematic account of the fundamental difference between inorganic systems (low dynamical depth and living systems (high dynamical depth, irrespective of the number of their parts and the causal relations between them.
Synchronization dynamics of two different dynamical systems
Energy Technology Data Exchange (ETDEWEB)
Luo, Albert C.J., E-mail: aluo@siue.edu [Department of Mechanical and Industrial Engineering, Southern Illinois University Edwardsville, Edwardsville, IL 62026-1805 (United States); Min Fuhong [Department of Mechanical and Industrial Engineering, Southern Illinois University Edwardsville, Edwardsville, IL 62026-1805 (United States)
2011-06-15
Highlights: > Synchronization dynamics of two distinct dynamical systems. > Synchronization, de-synchronization and instantaneous synchronization. > A controlled pendulum synchronizing with the Duffing oscillator. > Synchronization invariant set. > Synchronization parameter map. - Abstract: In this paper, synchronization dynamics of two different dynamical systems is investigated through the theory of discontinuous dynamical systems. The necessary and sufficient conditions for the synchronization, de-synchronization and instantaneous synchronization (penetration or grazing) are presented. Using such a synchronization theory, the synchronization of a controlled pendulum with the Duffing oscillator is systematically discussed as a sampled problem, and the corresponding analytical conditions for the synchronization are presented. The synchronization parameter study is carried out for a better understanding of synchronization characteristics of the controlled pendulum and the Duffing oscillator. Finally, the partial and full synchronizations of the controlled pendulum with periodic and chaotic motions are presented to illustrate the analytical conditions. The synchronization of the Duffing oscillator and pendulum are investigated in order to show the usefulness and efficiency of the methodology in this paper. The synchronization invariant domain is obtained. The technique presented in this paper should have a wide spectrum of applications in engineering. For example, this technique can be applied to the maneuvering target tracking, and the others.
Multiscale Gentlest Ascent Dynamics
Zhou, Xiang
2016-01-01
The gentlest ascent dynamics (E and Zhou in {\\it Nonlinearity} vol 24, p1831, 2011) locally converges to a nearby saddle point with one dimensional unstable manifold. Here we present a multiscale gentlest ascent dynamics for stochastic slow-fast systems in order to compute saddle point associated with the effective dynamics of the slow variable. Such saddle points, as the candidates of transition states, are important in non-equilibrium transitions for the coarse-grained slow variables; they are also helpful to explore free energy surface. We derive the expressions of the gentlest ascent dynamics for the averaged system, and propose the multiscale numerical methods to efficiently solve the multiscale gentlest ascent dynamics for search of saddle point. The examples of stochastic ordinary and partial differential equations are presented to illustrate the performance of this multiscale gentlest ascent dynamics.
Traag, V A; Hicks, J; van Klinken, G
2014-01-01
Studies of human attention dynamics analyses how attention is focused on specific topics, issues or people. In online social media, there are clear signs of exogenous shocks, bursty dynamics, and an exponential or powerlaw lifetime distribution. We here analyse the attention dynamics of traditional media, focussing on co-occurrence of people in newspaper articles. The results are quite different from online social networks and attention. Different regimes seem to be operating at two different time scales. At short time scales we see evidence of bursty dynamics and fast decaying edge lifetimes and attention. This behaviour disappears for longer time scales, and in that regime we find Poissonian dynamics and slower decaying lifetimes. We propose that a cascading Poisson process may take place, with issues arising at a constant rate over a long time scale, and faster dynamics at a shorter time scale.
DEFF Research Database (Denmark)
Sørensen, Kim
Traditionally, boilers have been designed mainly focussing on the static operation of the plant. The dynamic capability has been given lower priority and the analysis has typically been limited to assuring that the plant was not over-stressed due to large temperature gradients. New possibilities...... for buying and selling energy has increased the focus on the dynamic operation capability, efciency, emissions etc. For optimizing the design of boilers for dynamic operation a quantication of the dynamic capability is needed. A framework for optimizing design of boilers for dynamic operation has been...... developed. Analyzing boilers for dynamic operation gives rise to a number of opposing aims: shrinking and swelling, steam quality, stress levels, control system/philosophy, pressurization etc. Common for these opposing aims is that an optimum can be found for selected operation conditions. The framework has...
Dynamic Capabilities and Performance
DEFF Research Database (Denmark)
Wilden, Ralf; Gudergan, Siegfried P.; Nielsen, Bo Bernhard
2013-01-01
Dynamic capabilities are widely considered to incorporate those processes that enable organizations to sustain superior performance over time. In this paper, we argue theoretically and demonstrate empirically that these effects are contingent on organizational structure and the competitive...... are contingent on the competitive intensity faced by firms. Our findings demonstrate the performance effects of internal alignment between organizational structure and dynamic capabilities, as well as the external fit of dynamic capabilities with competitive intensity. We outline the advantages of PLS...
Dynamical Constraints on Exoplanets
Horner, Jonti; Tinney, Chris; Hinse, Tobias C; Marshall, Jonathan P
2013-01-01
Dynamical studies of new exoplanet systems are a critical component of the discovery and characterisation process. Such studies can provide firmer constraints on the parameters of the newly discovered planets, and may even reveal that the proposed planets do not stand up to dynamical scrutiny. Here, we demonstrate how dynamical studies can assist the characterisation of such systems through two examples: QS Virginis and HD 73526.
ON NONDETERMINISTIC DYNAMIC PROGRAMMING
2008-01-01
R. Bellman left a lot of research problems in his work “Dynamic Programming" (1957). Having received ideas from Bellman, S. Iwamoto has extracted, out of his problems, a problem on nondeterministic dynamic programming (NDP). Instead of stochastic dynamic programming which has been well studied, Iwamoto has opened a gate to NDP. This report presents speci_c optimal solutions for NDPs on continuous state and decision spaces.
Directory of Open Access Journals (Sweden)
Godefroit J.-L.
2012-08-01
Full Text Available Conventional shock wave experiments need interferometric windows in order to determine the equation of state of a large variety of metals. Lithium fluoride (LiF and sapphire are extensively used for that purpose because their optical transparencies enable the optical diagnostics at interfaces under a given range of shock pressure. In order to simulate and analyse the experiments it is necessary to gather a correct knowledge of the optical and mechanical properties of these windows. Therefore, our window supplies are systematically characterized and an experimental campaign under shock loading is conducted. Our preliminary work on LiF windows at 532 nm is in good agreement with literature data at room temperature and the new characterization at 450 K enables a better interpretation of our preheated target experiments. It confirms the predominant effect of density on optical properties under pressure and temperature. The present work demonstrates that the initial density determination is a key point and that the uncertainties need to be improved. For that purpose, complementary experiments are conducted on LiF windows with simplified target designs and enriched diagnostics, coupling VISAR (532 nm and PdV (1550 nm diagnostics. Furthermore, a similar campaign is conducted on sapphire windows with symmetric impact configuration.
Generalized multi-polytropic Rankine-Hugoniot relations and the entropy condition
Scherer, Klaus; Fahr, Hans Jörg; Röken, Christian; Kleimann, Jens
2016-01-01
The study aims at a derivation of generalized \\RH relations, especially that for the entropy, for the case of different upstream/downstream polytropic indices and their implications. We discuss the solar/stellar wind interaction with the interstellar medium for different polytropic indices and concentrate on the case when the polytropic index changes across hydrodynamical shocks. We use first a numerical mono-fluid approach with constant polytropic index in the entire integration region to show the influence of the polytropic index on the thickness of the helio-/astrosheath and on the compression ratio. Second, the Rankine-Hugonoit relations for a polytropic index changing across a shock are derived analytically, particularly including a new form of the entropy condition. In application to the/an helio-/astrosphere, we find that the size of the helio-/astrosheath as function of the polytropic index decreases in a mono-fluid model for indices less than $\\gamma=5/3$ and increases for higher ones and vice versa ...
A Family of Reference Hugoniots for Two-phase Porous Materials
2015-06-01
material, which are the adiabatic compression of the gaseous phase and the heat due to plastic work generated from the deformation of particles. The...heating mechanisms mentioned in the literature [7] are cracking, adiabatic shear banding, cumulative jetting, etc. In addition, the flow from the... compression and adiabatic expansion of condensed substances, [in Russian], Sarov, Russian Federal Nuclear Centre - VNIIEF, 2nd ed., 2006. 13. van Thiel M
Hugoniot based equation of state for solid polyurea and polyurea aerogels
Pacheco, A. H.; Gustavsen, R. L.; Aslam, T. D.; Bartram, B. D.
2017-01-01
The shock response of solid polyurea and two polyurea aerogels were studied using gas-gun driven plate impact experiments. The materials reported on here are commercially available, brand named AIRLOY, and supplied by Aerogel Technologies, LLC. Polyurea Solid, with nominal density 1.13 g/cm3, and two aerogels, with nominal densities of 0.20 and 0.35 g/cm3, were studied. Most experiments were of the multi-slug type in which a sample of each density was mounted on an oxygen free high conductivity copper or 6061 aluminum baseplate. In these experiments, shock velocity was measured and other shock states calculated by the impedance matching technique. Peak particle velocity obtained in the 0.2 g/cm3 aerogel was > 4.3 km/s, and peak pressure in the solid was > 29 GPa. A break in the data for the solid above particle velocities of 2.0 km/s (˜ 18 GPa) indicates a probable reaction with higher density products. A P - α model with Mie-Grueneisen form for the solid reasonably replicates the data.
Investigating velocity spectra at the Hugoniot state of shock loaded heterogenous materials
LaJeunesse, Jeff; Stewart, Sarah T.; Kennedy, Greg; Thadhani, Naresh; Borg, John P.
2017-01-01
Particle velocity and stress profiles measured in planar impact experiments on heterogeneous materials have shown significant deviations about the idealized final shock state plateau in both experimental and simulated tests. These deviations arise from the scattering of the transmitted shock wave due to the presence of internal interfaces within heterogeneous materials. The goal of this work is to determine if the spectra of oscillatory behavior can be associated to characteristic length scales of the corresponding un-shocked heterogeneous material. Similarities between experimental and simulated particle velocity profiles from planar impacts on dry sand are compared.
Calibration and Testing of a Large-Scale Electric Gun for Shock Hugoniot Measurements
1993-10-01
Fibre - optic coupler Figure 9: Single...break-beam arrangement. Beam Barrel displacing prism ’• • • •.__--I f He--Ne laser Laser line fi fi ter Fibre - optic cable Fibre - optic 0 coupler Figure...10: Dual break-beam arrangement. 16 Barrel Laser beams Flyer plate - 4 Photodetector Fibreoptic Figure 11: Thefront-on fibre optic impact
Gils, S; Hoveijn, I; Takens, F; Nonlinear Dynamical Systems and Chaos
1996-01-01
Symmetries in dynamical systems, "KAM theory and other perturbation theories", "Infinite dimensional systems", "Time series analysis" and "Numerical continuation and bifurcation analysis" were the main topics of the December 1995 Dynamical Systems Conference held in Groningen in honour of Johann Bernoulli. They now form the core of this work which seeks to present the state of the art in various branches of the theory of dynamical systems. A number of articles have a survey character whereas others deal with recent results in current research. It contains interesting material for all members of the dynamical systems community, ranging from geometric and analytic aspects from a mathematical point of view to applications in various sciences.
Dresig, Hans
2010-01-01
Dynamic loads and disturbing oscillations increase with higher speed of the machines and more lightweight constructions. Industrial safety standards require better oscillation reduction and noise control. The book by Dresig/Holzweissig deals with these topics. It presents the classical areas of modeling, dynamics of rigid bodies, balancing, torsional and bending vibrations, problems of vibration isolation and the dynamic behavior of complex vibrating systems. Typical dynamic effects, i.e., the gyroscopic effect, the damping of oscillations, resonances of k-th order, subharmonic and nonlinear f
Structural Dynamics Laboratory (SDL)
Federal Laboratory Consortium — Structural dynamic testing is performed to verify the survivability of a component or assembly when exposed to vibration stress screening, or a controlled simulation...
Symplectic algebraic dynamics algorithm
Institute of Scientific and Technical Information of China (English)
2007-01-01
Based on the algebraic dynamics solution of ordinary differential equations andintegration of ,the symplectic algebraic dynamics algorithm sn is designed,which preserves the local symplectic geometric structure of a Hamiltonian systemand possesses the same precision of the na ve algebraic dynamics algorithm n.Computer experiments for the 4th order algorithms are made for five test modelsand the numerical results are compared with the conventional symplectic geometric algorithm,indicating that sn has higher precision,the algorithm-inducedphase shift of the conventional symplectic geometric algorithm can be reduced,and the dynamical fidelity can be improved by one order of magnitude.
Nonlinear dynamics and complexity
Luo, Albert; Fu, Xilin
2014-01-01
This important collection presents recent advances in nonlinear dynamics including analytical solutions, chaos in Hamiltonian systems, time-delay, uncertainty, and bio-network dynamics. Nonlinear Dynamics and Complexity equips readers to appreciate this increasingly main-stream approach to understanding complex phenomena in nonlinear systems as they are examined in a broad array of disciplines. The book facilitates a better understanding of the mechanisms and phenomena in nonlinear dynamics and develops the corresponding mathematical theory to apply nonlinear design to practical engineering.
Essential dynamics and relativity
O'Donnell, Peter J
2014-01-01
Essential Dynamics & Relativity provides students with an introduction to the core aspects of dynamics and special relativity. The author reiterates important ideas and terms throughout and covers concepts that are often missing from other textbooks at this level. He also places each topic within the wider constructs of the theory, without jumping from topic to topic to illustrate a point.The first section of the book focuses on dynamics, discussing the basic aspects of single particle motion and analyzing the motion of multi-particle systems. The book also explains the dynamical behavior of b
Introduction to dynamic programming
Cooper, Leon; Rodin, E Y
1981-01-01
Introduction to Dynamic Programming provides information pertinent to the fundamental aspects of dynamic programming. This book considers problems that can be quantitatively formulated and deals with mathematical models of situations or phenomena that exists in the real world.Organized into 10 chapters, this book begins with an overview of the fundamental components of any mathematical optimization model. This text then presents the details of the application of dynamic programming to variational problems. Other chapters consider the application of dynamic programming to inventory theory, Mark
Dynamic power flow controllers
Divan, Deepakraj M.; Prasai, Anish
2017-03-07
Dynamic power flow controllers are provided. A dynamic power flow controller may comprise a transformer and a power converter. The power converter is subject to low voltage stresses and not floated at line voltage. In addition, the power converter is rated at a fraction of the total power controlled. A dynamic power flow controller controls both the real and the reactive power flow between two AC sources having the same frequency. A dynamic power flow controller inserts a voltage with controllable magnitude and phase between two AC sources; thereby effecting control of active and reactive power flows between two AC sources.
Partial Dynamical Symmetry and Mixed Dynamics
Leviatan, A
1996-01-01
Partial dynamical symmetry describes a situation in which some eigenstates have a symmetry which the quantum Hamiltonian does not share. This property is shown to have a classical analogue in which some tori in phase space are associated with a symmetry which the classical Hamiltonian does not share. A local analysis in the vicinity of these special tori reveals a neighbourhood of phase space foliated by tori. This clarifies the suppression of classical chaos associated with partial dynamical symmetry. The results are used to divide the states of a mixed system into ``chaotic'' and ``regular'' classes.
Dynamical Non-Equilibrium Molecular Dynamics
Directory of Open Access Journals (Sweden)
Giovanni Ciccotti
2013-12-01
Full Text Available In this review, we discuss the Dynamical approach to Non-Equilibrium Molecular Dynamics (D-NEMD, which extends stationary NEMD to time-dependent situations, be they responses or relaxations. Based on the original Onsager regression hypothesis, implemented in the nineteen-seventies by Ciccotti, Jacucci and MacDonald, the approach permits one to separate the problem of dynamical evolution from the problem of sampling the initial condition. D-NEMD provides the theoretical framework to compute time-dependent macroscopic dynamical behaviors by averaging on a large sample of non-equilibrium trajectories starting from an ensemble of initial conditions generated from a suitable (equilibrium or non-equilibrium distribution at time zero. We also discuss how to generate a large class of initial distributions. The same approach applies also to the calculation of the rate constants of activated processes. The range of problems treatable by this method is illustrated by discussing applications to a few key hydrodynamic processes (the “classical” flow under shear, the formation of convective cells and the relaxation of an interface between two immiscible liquids.
Dynamic normal forms and dynamic characteristic polynomial
DEFF Research Database (Denmark)
Frandsen, Gudmund Skovbjerg; Sankowski, Piotr
2011-01-01
with relative error 2−b in additional O(nlog2nlogb) time. Furthermore, it can be used to dynamically maintain the singular value decomposition (SVD) of a generic matrix. Together with the algorithm, the hardness of the problem is studied. For the symmetric case, we present an Ω(n2) lower bound for rank...
Bisimulation of Dynamical Systems
Schaft, Arjan van der
2004-01-01
A general notion of bisimulation is studied for dynamical systems. An algebraic characterization of bisimulation together with an algorithm for computing the maximal bisimulation relation is derived using geometric control theory. Bisimulation of dynamical systems is shown to be a concept which
Dynamic Calorimetry for Students
Kraftmakher, Yaakov
2007-01-01
A student experiment on dynamic calorimetry is described. Dynamic calorimetry is a powerful technique for calorimetric studies, especially at high temperatures and pressures. A low-power incandescent lamp serves as the sample. The ScienceWorkshop data-acquisition system with DataStudio software from PASCO Scientific displays the results of the…
Dynamic Latent Classification Model
DEFF Research Database (Denmark)
Zhong, Shengtong; Martínez, Ana M.; Nielsen, Thomas Dyhre
as possible. Motivated by this problem setting, we propose a generative model for dynamic classification in continuous domains. At each time point the model can be seen as combining a naive Bayes model with a mixture of factor analyzers (FA). The latent variables of the FA are used to capture the dynamics...... in the process as well as modeling dependences between attributes....
Gómez, Gerard; Barrabés Vera, Esther
2011-01-01
The term Space Manifold Dynamics (SMD) has been proposed for encompassing the various applications of Dynamical Systems methods to spacecraft mission analysis and design, ranging from the exploitation of libration orbits around the collinear Lagrangian points to the design of optimal station-keeping and eclipse avoidance manoeuvres or the determination of low energy lunar and interplanetary transfers
Gorman, Jamie C; Amazeen, Polemnia G; Cooke, Nancy J
2010-07-01
Team coordination consists of both the dynamics of team member interaction and the environmental dynamics to which a team is subjected. Focusing on dynamics, an approach is developed that contrasts with traditional aggregate-static concepts of team coordination as characterized by the shared mental model approach. A team coordination order parameter was developed to capture momentary fluctuations in coordination. Team coordination was observed in three-person uninhabited air vehicle teams across two experimental sessions. The dynamics of the order parameter were observed under changes of a team familiarity control parameter. Team members returned for the second session to either the same (Intact) or different (Mixed) team. 'Roadblock' perturbations, or novel changes in the task environment, were introduced in order to probe the stability of team coordination. Nonlinear dynamic methods revealed differences that a traditional approach did not: Intact and Mixed team coordination dynamics looked very different; Mixed teams were more stable than Intact teams and explored the space of solutions without the need for correction. Stability was positively correlated with the number of roadblock perturbations that were overcome successfully. The novel and non-intuitive contribution of a dynamical analysis was that Mixed teams, who did not have a long history working together, were more adaptive. Team coordination dynamics carries new implications for traditional problems such as training adaptive teams.
Energy Technology Data Exchange (ETDEWEB)
Crosby, Sean Michael; Doak, Justin E.; Haas, Jason Juedes.; Helinski, Ryan; Lamb, Christopher C.
2013-02-01
On September 5th and 6th, 2012, the Dynamic Defense Workshop: From Research to Practice brought together researchers from academia, industry, and Sandia with the goals of increasing collaboration between Sandia National Laboratories and external organizations, de ning and un- derstanding dynamic, or moving target, defense concepts and directions, and gaining a greater understanding of the state of the art for dynamic defense. Through the workshop, we broadened and re ned our de nition and understanding, identi ed new approaches to inherent challenges, and de ned principles of dynamic defense. Half of the workshop was devoted to presentations of current state-of-the-art work. Presentation topics included areas such as the failure of current defenses, threats, techniques, goals of dynamic defense, theory, foundations of dynamic defense, future directions and open research questions related to dynamic defense. The remainder of the workshop was discussion, which was broken down into sessions on de ning challenges, applications to host or mobile environments, applications to enterprise network environments, exploring research and operational taxonomies, and determining how to apply scienti c rigor to and investigating the eld of dynamic defense.
Gladwell, Graham ML
2011-01-01
The papers in this volume present an overview of the general aspects and practical applications of dynamic inverse methods, through the interaction of several topics, ranging from classical and advanced inverse problems in vibration, isospectral systems, dynamic methods for structural identification, active vibration control and damage detection, imaging shear stiffness in biological tissues, wave propagation, to computational and experimental aspects relevant for engineering problems.
Transformations, Dynamics and Complexity
Glazunov, Nikolaj
2011-01-01
We review and investigate some new problems and results in the field of dynamical systems generated by iteration of maps, {\\beta}-transformations, partitions, group actions, bundle dynamical systems, Hasse-Kloosterman maps, and some aspects of complexity of the systems.
DEFF Research Database (Denmark)
Citi, Manuele
2013-01-01
and change in the EU in light of the two models of policy dynamics currently existing in the literature: the incrementalist model and the punctuated equilibrium model. The analysis of long series of original data extracted from the EU budget shows that EU policies do not evolve following an incrementalist...... pattern, but by a punctuated equilibrium dynamic....
Dynamic public service mediation
Hofman, W.; Staalduinen, M. van
2010-01-01
This paper presents an approach to dynamic public service mediation. It is based on a conceptual model and the use of search and ranking algorithms. The conceptual model is based on Abstract State Machine theory. Requirements for dynamic service mediation were derived from a real-world case. The con
Probabilistic Dynamic Epistemic Logic
Kooi, B.P.
2003-01-01
In this paper I combine the dynamic epistemic logic of Gerbrandy (1999) with the probabilistic logic of Fagin and Halpern (1999). The result is a new probabilistic dynamic epistemic logic, a logic for reasoning about probability, information, and information change that takes higher order informatio
Visualizing Dynamic Memory Allocations
Moreta, Sergio; Telea, Alexandru
2007-01-01
We present a visualization tool for dynamic memory allocation information obtained from instrumenting the runtime allocator used by C programs. The goal of the presented visualization techniques is to convey insight in the dynamic behavior of the allocator. The purpose is to help the allocator desig
Minkenberg, C.B.
2012-01-01
In this thesis the development of surfactant aggregates with fast exchange dynamics between the aggregated and non-aggregated state is described. Dynamic surfactant exchange plays an important role in natural systems, for instance in cell signaling, cell division, and uptake and release of cargo. Re
Applications of fluid dynamics
Energy Technology Data Exchange (ETDEWEB)
Round, G.R.; Garg, V.K.
1986-01-01
This book describes flexible and practical approach to learning the basics of fluid dynamics. Each chapter is a self-contained work session and includes a fluid dynamics concept, an explanation of the principles involved, an illustration of their application and references on where more detailed discussions can be found.
Dynamic Calorimetry for Students
Kraftmakher, Yaakov
2007-01-01
A student experiment on dynamic calorimetry is described. Dynamic calorimetry is a powerful technique for calorimetric studies, especially at high temperatures and pressures. A low-power incandescent lamp serves as the sample. The ScienceWorkshop data-acquisition system with DataStudio software from PASCO Scientific displays the results of the…
Dynamic reservoir well interaction
Sturm, W.L.; Belfroid, S.P.C.; Wolfswinkel, O. van; Peters, M.C.A.M.; Verhelst, F.J.P.C.M.
2004-01-01
In order to develop smart well control systems for unstable oil wells, realistic modeling of the dynamics of the well is essential. Most dynamic well models use a semi-steady state inflow model to describe the inflow of oil and gas from the reservoir. On the other hand, reservoir models use steady s
Evaluation of Spalling Fallout on Excavation Disturbed Zone under Deep Hard Rock Tunnel
Azit, Romziah; Ashraf Mohamaed Ismail, Mohd; You Jiang, Thang
2017-08-01
The prediction of compressive stress-induced failures is of concern when designing and constructing facilities in rock for deep underground excavation. The purpose of this study is to model compressive stress-induced failure and fallouts with appropriate material models and strength parameters for deep hard rock tunnel excavation. Three method of numerical modelling are used, which are Generalised Hoek-Brown; Mohr-Coulomb; and Mohr-Coulomb with Cohesion Softening Friction Hardening (CSFH) material models for capturing the observed rock behaviour. A parametric study was also carried out to verify that the peak friction angle of 10° used in CSFH model. The results show that numerical models used only Generalised Hoek-Brown and Mohr Coulomb strength parameters does not show a good agreement with the observed fallout. The comparison revealed that the numerical models using the Mohr-Coulomb with CSFH provides most realistic to the observation fallout length. This model is valid for prediction of failure and fallouts in hard rock masses with high quality (GSI >65 MPa; intact rock compressive strength >70MPa).
Effect of steel area reduction on flexural behaviour of spalled concrete beams
2014-01-01
M.Tech. (Civil Engineering) Every year, millions of Rands are being spent in rehabilitation, repairs and maintenance of reinforced concrete structures projects around the country due to corrosion. There are a number of studies and investigations that have been done recently to address the effect of corrosion on reinforced concrete structures. Concrete provides an ideal environment for steel, supplying both physical and chemical protection from corrosive attack. The effect of corrosion on r...
A model for spalling of HPC thin plates exposed to fire
DEFF Research Database (Denmark)
Hulin, Thomas; Hodicky, Kamil; Schmidt, Jacob Wittrup;
2013-01-01
to disclose the temperature distributions during the test. A non-linear coupled model for time dependent heat and mass transfer in concrete thin plates was used for temperature and pore pressure computations. Results from modelling and tests are compared and discussed. Moisture content was found......An experimental program was carried out to investigate the behaviour of high performance concrete (HPC) thin plates in fire for use in sandwich panels. To reveal the influence of moisture two initial moisture contents for wet and dry samples were examined. In addition, two thicknesses were used...
On the Shock Stress, Substructure Evolution, and Spall Response of Commercially Pure 1100-O Aluminum
2014-12-01
involves the annihilation of dislocations by glide and cross-slip in mixed sub-boundaries. It is strongly influenced by thermal activation but can...1984, p. 415. [27] B. Kazmi, L.E. Murr, Scr . Metall. 13 (1979) 993. [28] M.A. Meyers, U.R. Andrade, A.H. Chokshi, Metall. Mater. Trans. A 26A (1995...LA-UR-91-610, 1991. [46] J. Gil Sevillano, P. van Houtte, E. Aernoudt, Prog. Mater. Sci. 25 (1981) 174. [47] F. Cheval, L. Priester, Scr . Metall. 23
Spall formation in solution mined storage caverns based on a creep and fracture analysis
Energy Technology Data Exchange (ETDEWEB)
MUNSON,DARRELL E.
2000-02-02
Because of limited direct observation, understanding of the interior conditions of the massive storage caverns constructed in Gulf Coast salt domes is realizable only through predictions of salt response. Determination of the potential for formation of salt spans, leading to eventual salt falls, is based on salt creep and fracture using the Multimechanism-Deformation Coupled Fracture (MCDF) model. This is a continuum model for creep, coupled to continuum damage evolution. The model has been successfully tested against underground results of damage around several test rooms at the Waste Isolation Pilot Plant (WIPP). Model simulations, here, evaluate observations made in the Strategic Petroleum Reserve (SPR) storage caverns, namely, the accumulation of material on cavern floors and evidence of salt falls. A simulation of a smooth cavern wall indicates damage is maximum at the surface but diminishes monotonically into the salt, which suggests the source of salt accumulation is surface sluffing. If a protuberance occurs on the wall, fracture damage can form beneath the protuberance, which will eventually cause fracture, and lead to a salt fall.
Stress generation in thermally grown oxide films. [oxide scale spalling from superalloy substrates
Kumnick, A. J.; Ebert, L. J.
1981-01-01
A three dimensional finite element analysis was conducted, using the ANSYS computer program, of the stress state in a thin oxide film thermally formed on a rectangular piece of NiCrAl alloy. The analytical results indicate a very high compressive stress in the lateral directions of the film (approximately 6200 MPa), and tensile stresses in the metal substrate that ranged from essentially zero to about 55 MPa. It was found further that the intensity of the analytically determined average stresses could be approximated reasonably well by the modification of an equation developed previously by Oxx for stresses induced into bodies by thermal gradients.
The Role of Second Phase Intermetallic Particles on the Spall Failure of 5083 Aluminum
2016-12-01
Thomas GJ, Hazell PJ (2010) A study on the strength of an armour -grade aluminum under high strain-rate loading. J Appl Phys 107:123508 3. Whelchel RL...weight and strain-hardened material used in high strain-rate applications such as those experienced under shock loading. Symmetric real-time (in...experienced under shock loading. Symmetric real-time (in situ) and end-state (ex situ recovery) plate impact shock experiments were conducted to
Rajamani, Rajesh
2012-01-01
Vehicle Dynamics and Control provides a comprehensive coverage of vehicle control systems and the dynamic models used in the development of these control systems. The control system applications covered in the book include cruise control, adaptive cruise control, ABS, automated lane keeping, automated highway systems, yaw stability control, engine control, passive, active and semi-active suspensions, tire-road friction coefficient estimation, rollover prevention, and hybrid electric vehicle. In developing the dynamic model for each application, an effort is made to both keep the model simple enough for control system design but at the same time rich enough to capture the essential features of the dynamics. A special effort has been made to explain the several different tire models commonly used in literature and to interpret them physically. In the second edition of the book, chapters on roll dynamics, rollover prevention and hybrid electric vehicles have been added, and the chapter on electronic stability co...
Nonlinear dynamics of structures
Oller, Sergio
2014-01-01
This book lays the foundation of knowledge that will allow a better understanding of nonlinear phenomena that occur in structural dynamics. This work is intended for graduate engineering students who want to expand their knowledge on the dynamic behavior of structures, specifically in the nonlinear field, by presenting the basis of dynamic balance in non‐linear behavior structures due to the material and kinematics mechanical effects. Particularly, this publication shows the solution of the equation of dynamic equilibrium for structure with nonlinear time‐independent materials (plasticity, damage and frequencies evolution), as well as those time dependent non‐linear behavior materials (viscoelasticity and viscoplasticity). The convergence conditions for the non‐linear dynamic structure solution are studied, and the theoretical concepts and its programming algorithms are presented.
Michael, Fredrick; Johnson, M. D.
2003-03-01
A necessary precondition for modeling financial markets is a complete understanding of their statistics, including dynamics. Distributions derived from nonextensive Tsallis statistics are closely connected with dynamics described by a nonlinear Fokker-Planck equation. The combination shows promise in describing stochastic processes with power-law distributions and superdiffusive dynamics. We investigate intra-day price changes in the S& P500 stock index within this framework. We find that the power-law tails of the distributions, and the index's anomalously diffusing dynamics, are very accurately described by this approach. Our results show good agreement between market data and Fokker-Planck dynamics. This approach may be applicable in any anomalously diffusing system in which the correlations in time can be accounted for by an Ito-Langevin process with a simple time-dependent diffusion coefficient.
Kobayashi, A. S.; Ramulu, M.
1985-01-01
Dynamic fracture and crack propagation concepts for ductile materials are reviewed. The equations for calculating dynamic stress integrity and the dynamic energy release rate in order to study dynamic crack propagation are provided. The stress intensity factor versus crack velocity relation is investigated. The uses of optical experimental techniques and finite element methods for fracture analyses are described. The fracture criteria for a rapidly propagating crack under mixed mode conditions are discussed; crack extension and fracture criteria under combined tension and shear loading are based on maximum circumferential stress or energy criteria such as strain energy density. The development and use of a Dugdale model and finite element models to represent crack and fracture dynamics are examined.
Mattsson, Thomas R.
2011-11-01
Significant progress has over the last few years been made in high energy density physics (HEDP) by executing high-precision multi-Mbar experiments and performing first-principles simulations for elements ranging from carbon [1] to xenon [2]. The properties of water under HEDP conditions are of particular importance in planetary science due to the existence of ice-giants like Neptune and Uranus. Modeling the two planets, as well as water-rich exoplanets, requires knowing the equation of state (EOS), the pressure as a function of density and temperature, of water with high accuracy. Although extensive density functional theory (DFT) simulations have been performed for water under planetary conditions [3] experimental validation has been lacking. Accessing thermodynamic states along planetary isentropes in dynamic compression experiments is challenging because the principal Hugoniot follows a significantly different path in the phase diagram. In this talk, we present experimental data for dynamic compression of water up to 700 GPa, including in a regime of the phase-diagram intersected by the Neptune isentrope and water-rich models for the exoplanet GJ436b. The data was obtained on the Z-accelerator at Sandia National Laboratories by performing magnetically accelerated flyer plate impact experiments measuring both the shock and re-shock in the sample. The high accuracy makes it possible for the data to be used for detailed model validation: the results validate first principles based thermodynamics as a reliable foundation for planetary modeling and confirm the fine effect of including nuclear quantum effects on the shock pressure. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. [4pt] [1] M.D. Knudson, D.H. Dolan, and M.P. Desjarlais, SCIENCE
Dynamics of aesthetic appreciation
Carbon, Claus-Christian
2012-03-01
Aesthetic appreciation is a complex cognitive processing with inherent aspects of cold as well as hot cognition. Research from the last decades of empirical has shown that evaluations of aesthetic appreciation are highly reliable. Most frequently, facial attractiveness was used as the corner case for investigating aesthetic appreciation. Evaluating facial attractiveness shows indeed high internal consistencies and impressively high inter-rater reliabilities, even across cultures. Although this indicates general and stable mechanisms underlying aesthetic appreciation, it is also obvious that our taste for specific objects changes dynamically. Aesthetic appreciation on artificial object categories, such as fashion, design or art is inherently very dynamic. Gaining insights into the cognitive mechanisms that trigger and enable corresponding changes of aesthetic appreciation is of particular interest for research as this will provide possibilities to modeling aesthetic appreciation for longer durations and from a dynamic perspective. The present paper refers to a recent two-step model ("the dynamical two-step-model of aesthetic appreciation"), dynamically adapting itself, which accounts for typical dynamics of aesthetic appreciation found in different research areas such as art history, philosophy and psychology. The first step assumes singular creative sources creating and establishing innovative material towards which, in a second step, people adapt by integrating it into their visual habits. This inherently leads to dynamic changes of the beholders' aesthetic appreciation.
From Molecular Dynamics to Brownian Dynamics
Erban, Radek
2014-01-01
Three coarse-grained molecular dynamics (MD) models are investigated with the aim of developing and analyzing multiscale methods which use MD simulations in parts of the computational domain and (less detailed) Brownian dynamics (BD) simulations in the remainder of the domain. The first MD model is formulated in one spatial dimension. It is based on elastic collisions of heavy molecules (e.g. proteins) with light point particles (e.g. water molecules). Two three-dimensional MD models are then investigated. The obtained results are applied to a simplified model of protein binding to receptors on the cellular membrane. It is shown that modern BD simulators of intracellular processes can be used in the bulk and accurately coupled with a (more detailed) MD model of protein binding which is used close to the membrane.
Dynamic Recrystallization: The Dynamic Deformation Regime
Murr, L. E.; Pizaña, C.
2007-11-01
Severe plastic deformation (PD), especially involving high strain rates (>103 s 1), occurs through solid-state flow, which is accommodated by dynamic recrystallization (DRX), either in a continuous or discontinuous mode. This flow can be localized in shear instability zones (or adiabatic shear bands (ASBs)) with dimensions smaller than 5 μ, or can include large volumes with flow zone dimensions exceeding centimeters. This article illustrates these microstructural features using optical and electron metallography to examine a host of dynamic deformation examples: shaped charge jet formation, high-velocity and hypervelocity impact crater formation, rod penetration into thick targets (which includes rod and target DRX flow and mixing), large projectile-induced target plug formation and failure, explosive welding, and friction-stir welding and processing. The DRX is shown to be a universal mechanism that accommodates solid-state flow in extreme (or severe) PD regimes.
Babu, V
2014-01-01
Fundamentals of Gas Dynamics, Second Edition isa comprehensively updated new edition and now includes a chapter on the gas dynamics of steam. It covers the fundamental concepts and governing equations of different flows, and includes end of chapter exercises based on the practical applications. A number of useful tables on the thermodynamic properties of steam are also included.Fundamentals of Gas Dynamics, Second Edition begins with an introduction to compressible and incompressible flows before covering the fundamentals of one dimensional flows and normal shock wav
Directory of Open Access Journals (Sweden)
C. J. A. Vos
2002-08-01
Full Text Available The dynamics of leadership This article reflects on the need for dynamic leadership. An organisation'sfunctionality is dependent on the intellectual, emotional andphysical energy which the people involved in the organisation arewilling to contribute. The process of energy release is determined mainlyby two concepts: vision and mission. A vision is inextricably linked to astrategy. Leadership plays an essential part in the realisation of anorganisation's vision and mission. In this article different leadershipmodels are discussed. Autocratic leadership is critically analysed.Dynamic leadership, which encompasses inspirational and imaginativeleadership is discussed. The community of faith and society both have alife-long need for inspirational leadership.
Shadowing in dynamical systems
Pilyugin, Sergei Yu
1999-01-01
This book is an introduction to the theory of shadowing of approximate trajectories in dynamical systems by exact ones. This is the first book completely devoted to the theory of shadowing. It shows the importance of shadowing theory for both the qualitative theory of dynamical systems and the theory of numerical methods. Shadowing Methods allow us to estimate differences between exact and approximate solutions on infinite time intervals and to understand the influence of error terms. The book is intended for specialists in dynamical systems, for researchers and graduate students in the theory of numerical methods.
Stability of dynamical systems
Liao, Xiaoxin; Yu, P 0
2007-01-01
The main purpose of developing stability theory is to examine dynamic responses of a system to disturbances as the time approaches infinity. It has been and still is the object of intense investigations due to its intrinsic interest and its relevance to all practical systems in engineering, finance, natural science and social science. This monograph provides some state-of-the-art expositions of major advances in fundamental stability theories and methods for dynamic systems of ODE and DDE types and in limit cycle, normal form and Hopf bifurcation control of nonlinear dynamic systems.ʺ Presents
Elements of analytical dynamics
Kurth, Rudolph; Stark, M
1976-01-01
Elements of Analytical Dynamics deals with dynamics, which studies the relationship between motion of material bodies and the forces acting on them. This book is a compilation of lectures given by the author at the Georgia and Institute of Technology and formed a part of a course in Topological Dynamics. The book begins by discussing the notions of space and time and their basic properties. It then discusses the Hamilton-Jacobi theory and Hamilton's principle and first integrals. The text concludes with a discussion on Jacobi's geometric interpretation of conservative systems. This book will
Real estate investment dynamics
Gruber, Johannes
2010-01-01
This thesis is motivated by the steadily increasing interest in the dynamic relationship between the macro-economy and the real estate sector. One of the main issues in this respect is to study the investment dynamics. Since the bursting of the U.S. housing bubble in 2006 is identified as the point of origin of the so called subprime crises, which led to the collapse of the U.S. financial system, the dynamics of real estate investments is of particular interest. In the first part of my the...
Rathakrishnan, Ethirajan
2014-01-01
This is an introductory level textbook which explains the elements of high temperature and high-speed gas dynamics. written in a clear and easy to follow style, the author covers all the latest developments in the field including basic thermodynamic principles, compressible flow regimes and waves propagation in one volume covers theoretical modeling of High Enthalpy Flows, with particular focus on problems in internal and external gas-dynamic flows, of interest in the fields of rockets propulsion and hypersonic aerodynamics High enthalpy gas dynamics is a compulsory course for aerospace engine
Anderson, James C
2012-01-01
A concise introduction to structural dynamics and earthquake engineering Basic Structural Dynamics serves as a fundamental introduction to the topic of structural dynamics. Covering single and multiple-degree-of-freedom systems while providing an introduction to earthquake engineering, the book keeps the coverage succinct and on topic at a level that is appropriate for undergraduate and graduate students. Through dozens of worked examples based on actual structures, it also introduces readers to MATLAB, a powerful software for solving both simple and complex structural d
Recovery of dynamic interference
Baghery, Mehrdad; Rost, Jan M
2016-01-01
We develop general quantitative criteria for dynamic interference, a manifestation of double-slit interference in time which should be realizable with brilliant state-of-the-art high-frequency laser sources. Our analysis reveals that the observation of dynamic interference hinges upon maximizing the difference between the dynamic polarization of the initial bound and the final continuum state of the electron during the light pulse, while keeping depletion of the initial state small. Confirmed by numerical results, we predict that this is impossible for the hydrogen ground-state but feasible with excited states explicitly exemplified with the hydrogen 2p-state.
Shivamoggi, Bhimsen K
1998-01-01
"Although there are many texts and monographs on fluid dynamics, I do not know of any which is as comprehensive as the present book. It surveys nearly the entire field of classical fluid dynamics in an advanced, compact, and clear manner, and discusses the various conceptual and analytical models of fluid flow." - Foundations of Physics on the first edition. Theoretical Fluid Dynamics functions equally well as a graduate-level text and a professional reference. Steering a middle course between the empiricism of engineering and the abstractions of pure mathematics, the author focuses
Wuensche, Andrew
DDLab is interactive graphics software for creating, visualizing, and analyzing many aspects of Cellular Automata, Random Boolean Networks, and Discrete Dynamical Networks in general and studying their behavior, both from the time-series perspective — space-time patterns, and from the state-space perspective — attractor basins. DDLab is relevant to research, applications, and education in the fields of complexity, self-organization, emergent phenomena, chaos, collision-based computing, neural networks, content addressable memory, genetic regulatory networks, dynamical encryption, generative art and music, and the study of the abstract mathematical/physical/dynamical phenomena in their own right.
Thermofield dynamics and Gravity
Nair, V P
2015-01-01
Thermofield dynamics is presented in terms of a path-integral using coherent states, equivalently, using a coadjoint orbit action. A field theoretic formulation in terms of fields on a manifold ${\\mathcal M} \\times {\\tilde{\\mathcal M}}$ where the two components have opposite orientation is also presented. We propose formulating gravitational dynamics for noncommutative geometry using thermofield dynamics, doubling the Hilbert space modeling the noncommutative space. We consider 2+1 dimensions in some detail and since ${\\mathcal M}$ and ${\\tilde{\\mathcal M}}$ have opposite orientation, the commutative limit leads to the Einstein-Hilbert action as the difference of two Chern-Simons actions.
Pechersky, E; Sadowski, G; Yambartsev, A
2014-01-01
We suggest a model that describes a mutual dynamic of tectonic plates. The dynamic is a sort of stick-slip one which is modeled by a Markov random process. The process defines a microlevel of the dynamic. A macrolevel is obtained by a scaling limit which leads to a system of integro-differential equations which determines a kind of mean field systems. Conditions when Gutenberg-Richter empirical law are presented on the mean field level. These conditions are rather universal and do not depend on features of resistant forces.
2014-01-01
We suggest a model that describes a mutual dynamic of tectonic plates. The dynamic is a sort of stick-slip one which is modeled by a Markov random process. The process defines a microlevel of the dynamic. A macrolevel is obtained by a scaling limit which leads to a system of integro-differential equations which determines a kind of mean field systems. Conditions when Gutenberg-Richter empirical law are presented on the mean field level. These conditions are rather universal and do not depend ...
Fiszdon, W
1965-01-01
Fluid Dynamics Transactions, Volume 2 compiles 46 papers on fluid dynamics, a subdiscipline of fluid mechanics that deals with fluid flow. The topics discussed in this book include developments in interference theory for aeronautical applications; diffusion from sources in a turbulent boundary layer; unsteady motion of a finite wing span in a compressible medium; and wall pressure covariance and comparison with experiment. The certain classes of non-stationary axially symmetric flows in magneto-gas-dynamics; description of the phenomenon of secondary flows in curved channels by means of co
Process Fairness and Dynamic Consistency
S.T. Trautmann (Stefan); P.P. Wakker (Peter)
2010-01-01
textabstractAbstract: When process fairness deviates from outcome fairness, dynamic inconsistencies can arise as in nonexpected utility. Resolute choice (Machina) can restore dynamic consistency under nonexpected utility without using Strotz's precommitment. It can similarly justify dynamically
Chiral Gauge Dynamics and Dynamical Supersymmetry Breaking
Energy Technology Data Exchange (ETDEWEB)
Poppitz, Erich; /Toronto U.; Unsal, Mithat; /SLAC /Stanford U.
2009-05-07
We study the dynamics of a chiral SU(2) gauge theory with a Weyl fermion in the I = 3/2 representation and of its supersymmetric generalization. In the former, we find a new and exotic mechanism of confinement, induced by topological excitations that we refer to as magnetic quintets. The supersymmetric version was examined earlier in the context of dynamical supersymmetry breaking by Intriligator, Seiberg, and Shenker, who showed that if this gauge theory confines at the origin of moduli space, one may break supersymmetry by adding a tree level superpotential. We examine the dynamics by deforming the theory on S{sup 1} x R{sup 3}, and show that the infrared behavior of this theory is an interacting CFT at small S{sup 1}. We argue that this continues to hold at large S{sup 1}, and if so, that supersymmetry must remain unbroken. Our methods also provide the microscopic origin of various superpotentials in SQCD on S{sup 1} x R{sup 3}--which were previously obtained by using symmetry and holomorphy--and resolve a long standing interpretational puzzle concerning a flux operator discovered by Affleck, Harvey, and Witten. It is generated by a topological excitation, a 'magnetic bion', whose stability is due to fermion pair exchange between its constituents. We also briefly comment on composite monopole operators as leading effects in two dimensional antiferromagnets.
Assimilation Dynamic Network (ADN) Project
National Aeronautics and Space Administration — The Assimilation Dynamic Network (ADN) is a dynamic inter-processor communication network that spans heterogeneous processor architectures, unifying components,...
Bossé, Michael J.; Adu-Gyamfi, Kwaku; Chandler, Kayla; Lynch-Davis, Kathleen
2016-01-01
Dynamic mathematical environments allow users to reify mathematical concepts through multiple representations, transform mathematical relations and organically explore mathematical properties, investigate integrated mathematics, and develop conceptual understanding. Herein, we integrate Boolean algebra, the functionalities of a dynamic…
Dynamic plasmonic colour display
Duan, Xiaoyang; Kamin, Simon; Liu, Na
2017-02-01
Plasmonic colour printing based on engineered metasurfaces has revolutionized colour display science due to its unprecedented subwavelength resolution and high-density optical data storage. However, advanced plasmonic displays with novel functionalities including dynamic multicolour printing, animations, and highly secure encryption have remained in their infancy. Here we demonstrate a dynamic plasmonic colour display technique that enables all the aforementioned functionalities using catalytic magnesium metasurfaces. Controlled hydrogenation and dehydrogenation of the constituent magnesium nanoparticles, which serve as dynamic pixels, allow for plasmonic colour printing, tuning, erasing and restoration of colour. Different dynamic pixels feature distinct colour transformation kinetics, enabling plasmonic animations. Through smart material processing, information encoded on selected pixels, which are indiscernible to both optical and scanning electron microscopies, can only be read out using hydrogen as a decoding key, suggesting a new generation of information encryption and anti-counterfeiting applications.
Ansatz for dynamical hierarchies
DEFF Research Database (Denmark)
Rasmussen, S.; Baas, N.A.; Mayer, B.
2001-01-01
Complex, robust functionalities can be generated naturally in at least two ways: by the assembly of structures and by the evolution of structures. This work is concerned with spontaneous formation of structures. We define the notion of dynamical hierarchies in natural systems and show...... the importance of this particular kind of organization for living systems. We then define a framework that enables us to formulate, investigate, and manipulate such dynamical hierarchies. This framework allows us to simultaneously investigate different levels of description together with them interrelationship...... three. Formulating this system as a simple two-dimensional molecular dynamics (MD) lattice gas allows us within one dynamical system to demonstrate the successive emergence of two higher levels (three levels all together) of robust structures with associated properties. Second, we demonstrate how...
The Dynamics of Standardization
DEFF Research Database (Denmark)
Brunsson, Nils; Rasche, Andreas; Seidl, David
2012-01-01
This paper suggests that when the phenomenon of standards and standardization is examined from the perspective of organization studies, three aspects stand out: the standardization of organizations, standardization by organizations and standardization as (a form of) organization. Following......, and show that, while standards and standardization are typically associated with stability and sameness, they are essentially a dynamic phenomenon. The paper highlights the contributions of this special issue to the topic of standards as a dynamic phenomenon in organization studies and makes suggestions...... a comprehensive overview of existing research in these three areas, we argue that the dynamic aspects of standardization are under-represented in the scholarly discourse. Furthermore, we identify the main types of tension associated with standardization and the dynamics they generate in each of those three areas...
Transonic Dynamics Tunnel (TDT)
Federal Laboratory Consortium — The Transonic Dynamics Tunnel (TDT) is a continuous flow wind-tunnel facility capable of speeds up to Mach 1.2 at stagnation pressures up to one atmosphere. The TDT...
Market Squid Population Dynamics
National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains population dynamics data on paralarvae, juvenile and adult market squid collected off California and the US Pacific Northwest. These data were...
Veenstra, René; Dijkstra, Jan; Steglich, Christian; Van Zalk, Maarten H. W.
2013-01-01
Researchers have become increasingly interested in disentangling selection and influence processes. This literature review provides context for the special issue on network-behavior dynamics. It brings together important conceptual, methodological, and empirical contributions focusing on longitudina
Edelman, Mark
2014-01-01
In this paper the author presents the results of the preliminary investigation of fractional dynamical systems based on the results of numerical simulations of fractional maps. Fractional maps are equivalent to fractional differential equations describing systems experiencing periodic kicks. Their properties depend on the value of two parameters: the non-linearity parameter, which arises from the corresponding regular dynamical systems; and the memory parameter which is the order of the fractional derivative in the corresponding non-linear fractional differential equations. The examples of the fractional Standard and Logistic maps demonstrate that phase space of non-linear fractional dynamical systems may contain periodic sinks, attracting slow diverging trajectories, attracting accelerator mode trajectories, chaotic attractors, and cascade of bifurcations type trajectories whose properties are different from properties of attractors in regular dynamical systems. The author argues that discovered properties s...
Federal Laboratory Consortium — The Gun Dynamics Laboratory is a research multi-task facility, which includes two firing bays, a high bay area and a second floor laboratory space. The high bay area...
Salinelli, Ernesto
2014-01-01
This book provides an introduction to the analysis of discrete dynamical systems. The content is presented by an unitary approach that blends the perspective of mathematical modeling together with the ones of several discipline as Mathematical Analysis, Linear Algebra, Numerical Analysis, Systems Theory and Probability. After a preliminary discussion of several models, the main tools for the study of linear and non-linear scalar dynamical systems are presented, paying particular attention to the stability analysis. Linear difference equations are studied in detail and an elementary introduction of Z and Discrete Fourier Transform is presented. A whole chapter is devoted to the study of bifurcations and chaotic dynamics. One-step vector-valued dynamical systems are the subject of three chapters, where the reader can find the applications to positive systems, Markov chains, networks and search engines. The book is addressed mainly to students in Mathematics, Engineering, Physics, Chemistry, Biology and Economic...
Invitation to dynamical systems
Scheinerman, Edward R
2012-01-01
This text is designed for those who wish to study mathematics beyond linear algebra but are unready for abstract material. Rather than a theorem-proof-corollary exposition, it stresses geometry, intuition, and dynamical systems. 1996 edition.
Bird, R. Byron
1980-01-01
Problems in polymer fluid dynamics are described, including development of constitutive equations, rheometry, kinetic theory, flow visualization, heat transfer studies, flows with phase change, two-phase flow, polymer unit operations, and drag reduction. (JN)
Arrighi, Pablo
2012-01-01
We generalize the theory of Cellular Automata to arbitrary, time-varying graphs. In other words we formalize, and prove theorems about, the intuitive idea of a labelled graph which evolves in time - but under the natural constraint that information can only ever be transmitted at a bounded speed, with respect to the distance given by the graph. The notion of translation-invariance is also generalized. The definition we provide for these `causal graph dynamics' is simple and axiomatic. The theorems we provide also show that it is robust. For instance, causal graph dynamics are stable under composition and under restriction to radius one. In the finite case some fundamental facts of Cellular Automata theory carry through: causal graph dynamics admit a characterization as continuous functions and they are stable under inversion. The provided examples suggest a wide range of applications of this mathematical object, from complex systems science to theoretical physics. Keywords: Dynamical networks, Boolean network...
Discrete Wigner function dynamics
Energy Technology Data Exchange (ETDEWEB)
Klimov, A B; Munoz, C [Departamento de Fisica, Universidad de Guadalajara, Revolucion 1500, 44410, Guadalajara, Jalisco (Mexico)
2005-12-01
We study the evolution of the discrete Wigner function for prime and the power of prime dimensions using the discrete version of the star-product operation. Exact and semiclassical dynamics in the limit of large dimensions are considered.
DEFF Research Database (Denmark)
Advances in Soil Dynamics, Volume 3, represents the culmination of the work undertaken by the Advances in Soil Dynamics Monograph Committee, PM-45-01, about 15 years ago to summarize important developments in this field over the last 35 years. When this project was initiated, the main goal...... was to abridge major strides made in the general area of soil dynamics during the sixties, seventies, and eighties. However, by about the mid-nineties soil dynamics research in the US and much of the developed world had come to a virtual standstill. Although significant progress was made prior to the mid......-nineties, we still do not have a sound fundamental knowledge of soil-machine and soil-plant interactions. It is the hope of the editors that these three volumes will provide a ready reference for much needed future research in this area....
DEFF Research Database (Denmark)
Advances in Soil Dynamics, Volume 3, represents the culmination of the work undertaken by the Advances in Soil Dynamics Monograph Committee, PM-45-01, about 15 years ago to summarize important developments in this field over the last 35 years. When this project was initiated, the main goal...... was to abridge major strides made in the general area of soil dynamics during the sixties, seventies, and eighties. However, by about the mid-nineties soil dynamics research in the US and much of the developed world had come to a virtual standstill. Although significant progress was made prior to the mid......-nineties, we still do not have a sound fundamental knowledge of soil-machine and soil-plant interactions. It is the hope of the editors that these three volumes will provide a ready reference for much needed future research in this area....
Institute of Scientific and Technical Information of China (English)
LU WENLIAN; CHEN TIANPING
2004-01-01
The authors investigate the existence and the global stability of periodic solution for dynamical systems with periodic interconnections, inputs and self-inhibitions. The model is very general, the conditions are quite weak and the results obtained are universal.
Stochastic dynamics and irreversibility
Tomé, Tânia
2015-01-01
This textbook presents an exposition of stochastic dynamics and irreversibility. It comprises the principles of probability theory and the stochastic dynamics in continuous spaces, described by Langevin and Fokker-Planck equations, and in discrete spaces, described by Markov chains and master equations. Special concern is given to the study of irreversibility, both in systems that evolve to equilibrium and in nonequilibrium stationary states. Attention is also given to the study of models displaying phase transitions and critical phenomema both in thermodynamic equilibrium and out of equilibrium. These models include the linear Glauber model, the Glauber-Ising model, lattice models with absorbing states such as the contact process and those used in population dynamic and spreading of epidemic, probabilistic cellular automata, reaction-diffusion processes, random sequential adsorption and dynamic percolation. A stochastic approach to chemical reaction is also presented.The textbook is intended for students of ...
Supervision and group dynamics
DEFF Research Database (Denmark)
Hansen, Søren; Jensen, Lars Peter
2004-01-01
as well as at Aalborg University. The first visible result has been participating supervisors telling us that the course has inspired them to try supervising group dynamics in the future. This paper will explore some aspects of supervising group dynamics as well as, how to develop the Aalborg model...... An important aspect of the problem based and project organized study at Aalborg University is the supervision of the project groups. At the basic education (first year) it is stated in the curriculum that part of the supervisors' job is to deal with group dynamics. This is due to the experience...... that many students are having difficulties with practical issues such as collaboration, communication, and project management. Most supervisors either ignore this demand, because they do not find it important or they find it frustrating, because they do not know, how to supervise group dynamics...
Nonequilibrium molecular dynamics
Energy Technology Data Exchange (ETDEWEB)
Hoover, W.G. (California Univ., Davis, CA (USA). Dept. of Applied Science Lawrence Livermore National Lab., CA (USA))
1990-11-01
The development of nonequilibrium molecular dynamics is described, with emphasis on massively-parallel simulations involving the motion of millions, soon to be billions, of atoms. Corresponding continuum simulations are also discussed. 14 refs., 8 figs.
Institute of Scientific and Technical Information of China (English)
Florian von Hofen[GER
2013-01-01
Concepts and methods for dynamic stage designs were introduced ranging from different ifelds of TV live shows, exhibitions and theatre performances, and a special emphasis was put on solution to the theatre stage design.
Dynamic performance management system
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
An integrated, efficient and effective performance management system, "dynamic performance management system", is presented, which covers the entire performance management process including measures design, analysis, and dynamic update. The analysis of performance measures using causal loop diagrams, qualitative inference and analytic network process is mainly discussed. A real world case study is carried out throughout the paper to explain how the framework works. A software tool for DPMS, Performance Analyzer, is also introduced.
Photochemical reaction dynamics
Energy Technology Data Exchange (ETDEWEB)
Moore, B.C. [Lawrence Berkeley Laboratory, Livermore, CA (United States)
1993-12-01
The purpose of the program is to develop a fundamental understanding of unimolecular and bimolecular reaction dynamics with application in combustion and energy systems. The energy dependence in ketene isomerization, ketene dissociation dynamics, and carbonyl substitution on organometallic rhodium complexes in liquid xenon have been studied. Future studies concerning unimolecular processes in ketene as well as energy transfer and kinetic studies of methylene radicals are discussed.
Dynamics in artifact ecologies
DEFF Research Database (Denmark)
Bødker, Susanne; Klokmose, Clemens Nylandsted
2012-01-01
We increasingly interact with multiple interactive artifacts with overlapping capabilities during our daily activities. It has previously been shown that the use of an interactive artifact cannot be understood in isolation, but artifacts must be understood as part of an artifact ecology, where ar...... in artifact ecologies cannot be understood as static, instead they evolve dynamically over time. We provide activity theory-based concepts to explain these dynamics....
Pelce, Pierre
1989-01-01
In recent years, much progress has been made in the understanding of interface dynamics of various systems: hydrodynamics, crystal growth, chemical reactions, and combustion. Dynamics of Curved Fronts is an important contribution to this field and will be an indispensable reference work for researchers and graduate students in physics, applied mathematics, and chemical engineering. The book consist of a 100 page introduction by the editor and 33 seminal articles from various disciplines.
García Sakai, Victoria; Chen, Sow-Hsin
2012-01-01
Dynamics of Soft Matter: Neutron Applications provides an overview of neutron scattering techniques that measure temporal and spatial correlations simultaneously, at the microscopic and/or mesoscopic scale. These techniques offer answers to new questions arising at the interface of physics, chemistry, and biology. Knowledge of the dynamics at these levels is crucial to understanding the soft matter field, which includes colloids, polymers, membranes, biological macromolecules, foams, emulsions towards biological & biomimetic systems, and phenomena involving wetting, friction, adhesion, or micr
Dynamically Generated $\\Xi (1690)$
Sekihara, Takayasu
2016-01-01
We show that the $\\Xi (1690)$ resonance can be dynamically generated in the $s$-wave $\\bar{K} \\Sigma$-$\\bar{K} \\Lambda$-$\\pi \\Xi$-$\\eta \\Xi$ coupled-channels chiral unitary approach. In our model, the $\\Xi (1690)$ resonance appears near the $\\bar{K} \\Sigma$ threshold as a $\\bar{K} \\Sigma$ molecular state and the experimental data are reproduced well. We discuss properties of the dynamically generated $\\Xi (1690)$.
Nonuniversality in level dynamics
Kunstman, P; Zakrzewski, J A; Kunstman, Pawe{\\l}; Zyczkowski, Karol \\.; Zakrzewski, Jakub
1997-01-01
Statistical properties of parametric motion in ensembles of Hermitian banded random matrices are studied. We analyze the distribution of level velocities and level curvatures as well as their correlation functions in the crossover regime between three universality classes. It is shown that the statistical properties of level dynamics are in general non-universal and strongly depend on the way in which the parametric dynamics is introduced.
Nonuniversality in level dynamics
Energy Technology Data Exchange (ETDEWEB)
Kunstman, P.; Zyczkowski, K.; Zakrzewski, J. [Instytut Fizyki Mariana Smoluchowskiego, Uniwersytet Jagiellonski, ulica Reymonta 4, 30-059 Krakow (Poland)
1997-03-01
Statistical properties of parametric motion in ensembles of Hermitian banded random matrices are studied. We analyze the distribution of level velocities and level curvatures as well as their correlation functions in the crossover regime between three universality classes. It is shown that the statistical properties of level dynamics are in general {ital nonuniversal} and strongly depend on the way in which the parametric dynamics is introduced. {copyright} {ital 1997} {ital The American Physical Society}
2012-09-30
1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Ocean Dynamics: Dynamo Robert Pinkel Marine Physical...execution of the Dynamo Leg IV Experiment in December 2011. Our objective was to document the development of the diurnal surface layer and its...2. REPORT TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE Ocean Dynamics: Dynamo 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM
2013-01-01
We present an introduction to the study of chaos in discrete and continuous dynamical systems using the CAS Maxima. These notes are intended to cover the standard topics and techniques: discrete and continuous logistic equation to model growth population, staircase plots, bifurcation diagrams and chaos transition, nonlinear continuous dynamics (Lorentz system and Duffing oscillator), Lyapunov exponents, Poincar\\'e sections, fractal dimension and strange attractors. The distinctive feature her...
2014-09-30
Dynamics: Vietnam DRI Robert Pinkel Marine Physical Laboratory Scripps Institution of Oceanography La Jolla California 92093-0213 Phone: (858) 534...DATES COVERED 00-00-2014 to 00-00-2014 4. TITLE AND SUBTITLE Ocean Dynamics: Vietnam DRI 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM...cycle.. The Thorpe-scale estimates are local to Site III. South China Sea Process Cruise 2014 Under Vietnam DRI funding, Researcher Drew Lucas
Dynamical quantum teleportation
Energy Technology Data Exchange (ETDEWEB)
Muschik, Christine [ICFO-Institut de Ciencies Fotoniques (Spain); Polzik, Eugene [Niels Bohr Institute (Denmark); Cirac, Ignacio [Max-Planck-Institute (Germany)
2013-07-01
We introduce two protocols for inducing non-local dynamics between two separate parties. The first scheme allows for the engineering of an interaction between the two remote systems, while the second protocol induces a dynamics in one of the parties, which is controlled by the other one. Both schemes apply to continuous variable systems, run continuously in time and are based on instantaneous feedback.
Assimilating seizure dynamics.
Directory of Open Access Journals (Sweden)
Ghanim Ullah
2010-05-01
Full Text Available Observability of a dynamical system requires an understanding of its state-the collective values of its variables. However, existing techniques are too limited to measure all but a small fraction of the physical variables and parameters of neuronal networks. We constructed models of the biophysical properties of neuronal membrane, synaptic, and microenvironment dynamics, and incorporated them into a model-based predictor-controller framework from modern control theory. We demonstrate that it is now possible to meaningfully estimate the dynamics of small neuronal networks using as few as a single measured variable. Specifically, we assimilate noisy membrane potential measurements from individual hippocampal neurons to reconstruct the dynamics of networks of these cells, their extracellular microenvironment, and the activities of different neuronal types during seizures. We use reconstruction to account for unmeasured parts of the neuronal system, relating micro-domain metabolic processes to cellular excitability, and validate the reconstruction of cellular dynamical interactions against actual measurements. Data assimilation, the fusing of measurement with computational models, has significant potential to improve the way we observe and understand brain dynamics.
Liang, Xuecheng
Dynamic hardness (Pd) of 22 different pure metals and alloys having a wide range of elastic modulus, static hardness, and crystal structure were measured in a gas pulse system. The indentation contact diameter with an indenting sphere and the radius (r2) of curvature of the indentation were determined by the curve fitting of the indentation profile data. r 2 measured by the profilometer was compared with that calculated from Hertz equation in both dynamic and static conditions. The results indicated that the curvature change due to elastic recovery after unloading is approximately proportional to the parameters predicted by Hertz equation. However, r 2 is less than the radius of indenting sphere in many cases which is contradictory to Hertz analysis. This discrepancy is believed due to the difference between Hertzian and actual stress distributions underneath the indentation. Factors which influence indentation elastic recovery were also discussed. It was found that Tabor dynamic hardness formula always gives a lower value than that directly from dynamic hardness definition DeltaE/V because of errors mainly from Tabor's rebound equation and the assumption that dynamic hardness at the beginning of rebound process (Pr) is equal to kinetic energy change of an impact sphere over the formed crater volume (Pd) in the derivation process for Tabor's dynamic hardness formula. Experimental results also suggested that dynamic to static hardness ratio of a material is primarily determined by its crystal structure and static hardness. The effects of strain rate and temperature rise on this ratio were discussed. A vacuum rotating arm apparatus was built to measure Pd at 70, 127, and 381 mum sphere sizes, these results exhibited that Pd is highly depended on the sphere size due to the strain rate effects. P d was also used to substitute for static hardness to correlate with abrasion and erosion resistance of metals and alloys. The particle size effects observed in erosion were
A HYBRID DYNAMIC PROGRAM SLICING
Institute of Scientific and Technical Information of China (English)
Yi Tong; Wu Fangjun
2005-01-01
This letter proposes a hybrid method for computing dynamic program slicing. The key element is to construct a Coverage-Testing-based Dynamic Dependence Graph (CTDDG),which makes use of both dynamic and static information to get execution status. The approach overcomes the limitations of previous dynamic slicing methods, which have to redo slicing if slice criterion changes.
Dynamics in Epistasis Analysis.
Awdeh, Aseel; Phenix, Hilary; Kaern, Mads; Perkins, Theodore
2017-01-16
Finding regulatory relationships between genes, including the direction and nature of influence between them, is a fundamental challenge in the field of molecular genetics. One classical approach to this problem is epistasis analysis. Broadly speaking, epistasis analysis infers the regulatory relationships between a pair of genes in a genetic pathway by considering the patterns of change in an observable trait resulting from single and double deletion of genes. While classical epistasis analysis has yielded deep insights on numerous genetic pathways, it is not without limitations. Here, we explore the possibility of dynamic epistasis analysis, in which, in addition to performing genetic perturbations of a pathway, we drive the pathway by a time-varying upstream signal. We explore the theoretical power of dynamical epistasis analysis by conducting an identifiability analysis of Boolean models of genetic pathways, comparing static and dynamic approaches. We find that even relatively simple input dynamics greatly increases the power of epistasis analysis to discriminate alternative network structures. Further, we explore the question of experiment design, and show that a subset of short time-varying signals, which we call dynamic primitives, allow maximum discriminative power with a reduced number of experiments.
Ogilvie, Gordon I.
2016-06-01
> These lecture notes and example problems are based on a course given at the University of Cambridge in Part III of the Mathematical Tripos. Fluid dynamics is involved in a very wide range of astrophysical phenomena, such as the formation and internal dynamics of stars and giant planets, the workings of jets and accretion discs around stars and black holes and the dynamics of the expanding Universe. Effects that can be important in astrophysical fluids include compressibility, self-gravitation and the dynamical influence of the magnetic field that is `frozen in' to a highly conducting plasma. The basic models introduced and applied in this course are Newtonian gas dynamics and magnetohydrodynamics (MHD) for an ideal compressible fluid. The mathematical structure of the governing equations and the associated conservation laws are explored in some detail because of their importance for both analytical and numerical methods of solution, as well as for physical interpretation. Linear and nonlinear waves, including shocks and other discontinuities, are discussed. The spherical blast wave resulting from a supernova, and involving a strong shock, is a classic problem that can be solved analytically. Steady solutions with spherical or axial symmetry reveal the physics of winds and jets from stars and discs. The linearized equations determine the oscillation modes of astrophysical bodies, as well as their stability and their response to tidal forcing.
Semipredictable dynamical systems
García-Morales, Vladimir
2016-10-01
A new class of deterministic dynamical systems, termed semipredictable dynamical systems, is presented. The spatiotemporal evolution of these systems have both predictable and unpredictable traits, as found in natural complex systems. We prove a general result: The dynamics of any deterministic nonlinear cellular automaton (CA) with p possible dynamical states can be decomposed at each instant of time in a superposition of N layers involving p0, p1, …, pN - 1 dynamical states each, where the pk ∈ N , k ∈ [ 0 , N - 1 ] are divisors of p. If the divisors coincide with the prime factors of p this decomposition is unique. Conversely, we also prove that N CA working on symbols p0, p1, …, pN - 1 can be composed to create a graded CA rule with N different layers. We then show that, even when the full spatiotemporal evolution can be unpredictable, certain traits (layers) can exactly be predicted. We present explicit examples of such systems involving compositions of Wolfram's 256 elementary CA and a more complex CA rule acting on a neighborhood of two sites and 12 symbols and whose rule table corresponds to the smallest Moufang loop M12(S3, 2).
Ghanem, Bernard
2013-01-01
This paper proposes the problem of modeling video sequences of dynamic swarms (DSs). We define a DS as a large layout of stochastically repetitive spatial configurations of dynamic objects (swarm elements) whose motions exhibit local spatiotemporal interdependency and stationarity, i.e., the motions are similar in any small spatiotemporal neighborhood. Examples of DS abound in nature, e.g., herds of animals and flocks of birds. To capture the local spatiotemporal properties of the DS, we present a probabilistic model that learns both the spatial layout of swarm elements (based on low-level image segmentation) and their joint dynamics that are modeled as linear transformations. To this end, a spatiotemporal neighborhood is associated with each swarm element, in which local stationarity is enforced both spatially and temporally. We assume that the prior on the swarm dynamics is distributed according to an MRF in both space and time. Embedding this model in a MAP framework, we iterate between learning the spatial layout of the swarm and its dynamics. We learn the swarm transformations using ICM, which iterates between estimating these transformations and updating their distribution in the spatiotemporal neighborhoods. We demonstrate the validity of our method by conducting experiments on real and synthetic video sequences. Real sequences of birds, geese, robot swarms, and pedestrians evaluate the applicability of our model to real world data. © 2012 Elsevier Inc. All rights reserved.
Dynamic stiffness of suction caissons
DEFF Research Database (Denmark)
Ibsen, Lars Bo; Liingaard, Morten; Andersen, Lars
The purpose of this report is to evaluate the dynamic soil-structure interaction of suction caissons for offshore wind turbines. The investigation is limited to a determination of the vertical dynamic stiffness of suction caissons. The soil surrounding the foundation is homogenous with linear...... of the skirt length, Poisson's ratio and the ratio between soil stiffness and skirt stiffness. Finally the dynamic behaviour at high frequencies is investigated....... viscoelastic properties. The dynamic stiffness of the suction caisson is expressed by dimensionless frequency-dependent dynamic stiffness coefficients corresponding to the vertical degree of freedom. The dynamic stiffness coefficients for the foundations are evaluated by means of a dynamic three...
System dynamics with interaction discontinuity
Luo, Albert C J
2015-01-01
This book describes system dynamics with discontinuity caused by system interactions and presents the theory of flow singularity and switchability at the boundary in discontinuous dynamical systems. Based on such a theory, the authors address dynamics and motion mechanism of engineering discontinuous systems due to interaction. Stability and bifurcations of fixed points in nonlinear discrete dynamical systems are presented, and mapping dynamics are developed for analytical predictions of periodic motions in engineering discontinuous dynamical systems. Ultimately, the book provides an alternative way to discuss the periodic and chaotic behaviors in discontinuous dynamical systems.
Vehicle dynamics theory and application
Jazar, Reza N
2017-01-01
This intermediate textbook is appropriate for students in vehicle dynamics courses, in their last year of undergraduate study or their first year of graduate study. It is also appropriate for mechanical engineers, automotive engineers, and researchers in the area of vehicle dynamics for continuing education or as a reference. It addresses fundamental and advanced topics, and a basic knowledge of kinematics and dynamics, as well as numerical methods, is expected. The contents are kept at a theoretical-practical level, with a strong emphasis on application. This third edition has been reduced by 25%, to allow for coverage over one semester, as opposed to the previous edition that needed two semesters for coverage. The textbook is composed of four parts: Vehicle Motion: covers tire dynamics, forward vehicle dynamics, and driveline dynamics Vehicle Kinematics: covers applied kinematics, applied mechanisms, steering dynamics, and suspension mechanisms Vehicle Dynamics: covers applied dynamics, vehicle planar dynam...
Conference on Multibody Dynamics
Multibody Dynamics : Computational Methods and Applications
2014-01-01
By having its origin in analytical and continuum mechanics, as well as in computer science and applied mathematics, multibody dynamics provides a basis for analysis and virtual prototyping of innovative applications in many fields of contemporary engineering. With the utilization of computational models and algorithms that classically belonged to different fields of applied science, multibody dynamics delivers reliable simulation platforms for diverse highly-developed industrial products such as vehicle and railway systems, aeronautical and space vehicles, robotic manipulators, smart structures, biomechanical applications and nano-technologies. The chapters of this volume are based on the revised and extended versions of the selected scientific papers from amongst 255 original contributions that have been accepted to be presented within the program of the distinguished international ECCOMAS conference. It reflects state-of-the-art in the advances of multibody dynamics, providing excellent insight in the recen...
Fractional Dynamics and Control
Machado, José; Luo, Albert
2012-01-01
Fractional Dynamics and Control provides a comprehensive overview of recent advances in the areas of nonlinear dynamics, vibration and control with analytical, numerical, and experimental results. This book provides an overview of recent discoveries in fractional control, delves into fractional variational principles and differential equations, and applies advanced techniques in fractional calculus to solving complicated mathematical and physical problems.Finally, this book also discusses the role that fractional order modeling can play in complex systems for engineering and science. Discusses how fractional dynamics and control can be used to solve nonlinear science and complexity issues Shows how fractional differential equations and models can be used to solve turbulence and wave equations in mechanics and gravity theories and Schrodinger’s equation Presents factional relaxation modeling of dielectric materials and wave equations for dielectrics Develops new methods for control and synchronization of...
Complex dynamics in nanosystems.
Ni, Xuan; Ying, Lei; Lai, Ying-Cheng; Do, Younghae; Grebogi, Celso
2013-05-01
Complex dynamics associated with multistability have been studied extensively in the past but mostly for low-dimensional nonlinear dynamical systems. A question of fundamental interest is whether multistability can arise in high-dimensional physical systems. Motivated by the ever increasing widespread use of nanoscale systems, we investigate a prototypical class of nanoelectromechanical systems: electrostatically driven Si nanowires, mathematically described by a set of driven, nonlinear partial differential equations. We develop a computationally efficient algorithm to solve the equations. Our finding is that multistability and complicated structures of basins of attraction are common types of dynamics, and the latter can be attributed to extensive transient chaos. Implications of these phenomena to device operations are discussed.
Dynamical laser spike processing
Shastri, Bhavin J; Tait, Alexander N; Rodriguez, Alejandro W; Wu, Ben; Prucnal, Paul R
2015-01-01
Novel materials and devices in photonics have the potential to revolutionize optical information processing, beyond conventional binary-logic approaches. Laser systems offer a rich repertoire of useful dynamical behaviors, including the excitable dynamics also found in the time-resolved "spiking" of neurons. Spiking reconciles the expressiveness and efficiency of analog processing with the robustness and scalability of digital processing. We demonstrate that graphene-coupled laser systems offer a unified low-level spike optical processing paradigm that goes well beyond previously studied laser dynamics. We show that this platform can simultaneously exhibit logic-level restoration, cascadability and input-output isolation---fundamental challenges in optical information processing. We also implement low-level spike-processing tasks that are critical for higher level processing: temporal pattern detection and stable recurrent memory. We study these properties in the context of a fiber laser system, but the addit...
Dynamics of Paroxysmal Tachycardia
Glass, Leon
2004-03-01
Parosxysmal tachycardia refers to abnormally fast cardiac arrhythmias that suddenly start and stop. Paroxysmal tachycardias can occur in many regions of the heart and may be associated with many different mechanisms. In order to study paroxysmal tachycardias, we have analyzed tissue cultures of cells from embryonic chick heart that are imaged using calcium and voltage sensitive dyes. This model system displays a number of different types of dynamics including dynamics originating from pacemakers, triggered dynamics in which an excitation leads to the initiation of a sequence of waves originating from a single source, and spontaneously iniitiating and terminating rotating spiral waves. Theoretical models that include heterogeneity, spontaneous pacemaker activity, and fatigue or reduced excitability arising as a consequence of rapid excitation can be used to account for these behaviors.
Dynamics of aerospace vehicles
Schmidt, David K.
1991-01-01
The focus of this research was to address the modeling, including model reduction, of flexible aerospace vehicles, with special emphasis on models used in dynamic analysis and/or guidance and control system design. In the modeling, it is critical that the key aspects of the system being modeled be captured in the model. In this work, therefore, aspects of the vehicle dynamics critical to control design were important. In this regard, fundamental contributions were made in the areas of stability robustness analysis techniques, model reduction techniques, and literal approximations for key dynamic characteristics of flexible vehicles. All these areas are related. In the development of a model, approximations are always involved, so control systems designed using these models must be robust against uncertainties in these models.
DEFF Research Database (Denmark)
Tsakalidis, Konstantinos
We study dynamic data structures for diﬀerent variants of orthogonal range reporting query problems. In particular, we consider (1) the planar orthogonal 3-sided range reporting problem: given a set of points in the plane, report the points that lie within a given 3-sided rectangle with one....... Dynamic problems like the above arise in various applications of network optimization, VLSI layout design, computer graphics and distributed computing. For the ﬁrst problem, we present dynamic data structures for internal and external memory that support planar orthogonal 3-sided range reporting queries......, and insertions and deletions of points eﬃciently over an average case sequence of update operations. The external memory data structures ﬁnd applications in constraint and temporal databases. In particular, we assume that the coordinates of the points are drawn from diﬀerent probabilistic distributions...
Safe Dynamic Multiple Inheritance
DEFF Research Database (Denmark)
Ernst, Erik
2002-01-01
Multiple inheritance and similar mechanisms are usually only supported at compile time in statically typed languages. Nevertheless, dynamic multiple inheritance would be very useful in the development of complex systems, because it allows the creation of many related classes without an explosion...... in the size and level of redundancy in the source code. In fact, dynamic multiple inheritance is already available. The language gbeta is statically typed and has supported run-time combination of classes and methods since 1997, by means of the combination operator '&'. However, with certain combinations...... of operands the '&' operator fails; as a result, dynamic creation of new classes and methods was considered a dangerous operation in all cases. This paper presents a large and useful category of combinations, and proves that combinations in this category will always succeed....
Pfeiffer, Friedrich
2015-01-01
This concise textbook for students preferably of a postgraduate level, but also for engineers in practice, contains the basic kinematical and kinetic structures of dynamics together with carefully selected applications. The book is a condensed introduction to the fundamental laws of kinematics and kinetics, on the most important principles of mechanics and presents the equations of motion in the form of Lagrange and Newton-Euler. Selected problems of linear and nonlinear dynamics are treated, as well as problems of vibration formation. The presented selection of topics gives a useful basis for stepping into more advanced problems of dynamics. The contents of this book represent the result of a regularly revised course, which has been and still is given for masters students at the Technische Universität München. .
Flight Dynamics Laboratory overview
Sandford, Thaddeus
1986-01-01
The Flight Dynamics Laboratory (FDL) is one of four Air Force Wright Aeronautical Laboratories (AFWAL) and part of the Aeronautical Systems Division located at Wright-Patterson AFB, Ohio. The FDL is responsible for the planning and execution of research and development programs in the areas of structures and dynamics, flight controls, vehicle equipment/subsystems, and aeromechanics. Some of the areas being researched in the four FDL divisions are as follows: large space structures (LSS) materials and controls; advanced cockpit designs; bird-strike-tolerant windshields; and hypersonic interceptor system studies. Two of the FDL divisions are actively involved in programs that deal directly with LSS control/structures interaction: the Flight Controls Division and the Structures and Dynamics Division.
Dynamics of Immobilized Flagella
Fry, D; Ludu, A
2003-01-01
Although the auger-like 'swimming' motility of the African trypanosome was described upon its discovery over one hundred years ago, the precise biomechanical and biophysical properties of trypanosome flagellar motion has not been elucidated. In this study, we describe five different modes of flagellar beat/wave patterns in African trypanosomes by microscopically examining the flagellar movements of chemically tethered cells. The dynamic nature of the different beat/wave patterns suggests that flagellar motion in Trypanosoma brucei is a complex mixture of oscillating waves, rigid bends, helical twists and non-linear waves. Interestingly, we have observed soliton-like depression waves along the flagellar membrane, suggesting a nonlinear mechanism for the dynamics of this system. The physical model is inspired by the 2-dimensional elastic dynamics of a beam, and by taking into account uniform distribution of molecular motors torque and nonlinear terms in the curvature.
Dynamics in geometrical confinement
Kremer, Friedrich
2014-01-01
This book describes the dynamics of low molecular weight and polymeric molecules when they are constrained under conditions of geometrical confinement. It covers geometrical confinement in different dimensionalities: (i) in nanometer thin layers or self supporting films (1-dimensional confinement) (ii) in pores or tubes with nanometric diameters (2-dimensional confinement) (iii) as micelles embedded in matrices (3-dimensional) or as nanodroplets.The dynamics under such conditions have been a much discussed and central topic in the focus of intense worldwide research activities within the last two decades. The present book discusses how the resulting molecular mobility is influenced by the subtle counterbalance between surface effects (typically slowing down molecular dynamics through attractive guest/host interactions) and confinement effects (typically increasing the mobility). It also explains how these influences can be modified and tuned, e.g. through appropriate surface coatings, film thicknesses or pore...
DEFF Research Database (Denmark)
Tsakalidis, Konstantinos
We study dynamic data structures for diﬀerent variants of orthogonal range reporting query problems. In particular, we consider (1) the planar orthogonal 3-sided range reporting problem: given a set of points in the plane, report the points that lie within a given 3-sided rectangle with one....... Dynamic problems like the above arise in various applications of network optimization, VLSI layout design, computer graphics and distributed computing. For the ﬁrst problem, we present dynamic data structures for internal and external memory that support planar orthogonal 3-sided range reporting queries...... unbounded side, (2) the planar orthogonal range maxima reporting problem: given a set of points in the plane, report the points that lie within a given orthogonal range and are not dominated by any other point in the range, and (3) the problem of designing fully persistent B-trees for external memory...
Fundamental composite electroweak dynamics
DEFF Research Database (Denmark)
Arbey, Alexandre; Cacciapaglia, Giacomo; Cai, Haiying
2017-01-01
Using the recent joint results from the ATLAS and CMS collaborations on the Higgs boson, we determine the current status of composite electroweak dynamics models based on the expected scalar sector. Our analysis can be used as a minimal template for a wider class of models between the two limiting...... cases of composite Goldstone Higgs and Technicolor-like ones. This is possible due to the existence of a unified description, both at the effective and fundamental Lagrangian levels, of models of composite Higgs dynamics where the Higgs boson itself can emerge, depending on the way the electroweak...... space at the effective Lagrangian level. We show that a wide class of models of fundamental composite electroweak dynamics are still compatible with the present constraints. The results are relevant for the ongoing and future searches at the Large Hadron Collider....
Dynamic responses in hollow concrete cylinders under hazardous thermal loads
Energy Technology Data Exchange (ETDEWEB)
Huang, C.L.D.; Ahmed, G.N. (Kansas State Univ., Manhattan, KS (United States). Dept. of Mechanical Engineering)
1991-10-01
Prediction of the structural integrity of high temperature nuclear reactors under hostile thermal environments is of considerable concern in safety assessments of reactors. A mathematical model, simulating the coupled heat and mass transfer in concrete structures exposed to extremely high temperatures, has been developed and numerically solved. With the prediction of the pore pressure, temperature, and moisture redistribution, the effect of various rates of thermal loads on the concrete response is investigated. The rate of moisture clog penetration into the concrete cylinder and hence the locations of the maximum pore pressure peaks developed under different rates of the severe thermal loads are determined. Thus, the possibilities of concrete spallings occurring under these conditions are studied and predicted. (author).
The Dynamic Performance of Concrete under Impact Loading
Directory of Open Access Journals (Sweden)
Wei Shi
2013-07-01
Full Text Available The process of concrete under symmetric impact was experimentally investigated in the case of primary gas gun and was analyzed with Lagrange method. The value-time relations of u, v, e on every lagrange position are gained. The relationship of strain-stress is also obtained. The whole process is numerical simulated by LSDYNA970. It indicate that the damage effect of concrete under impact loading can be described by the function with plasticity strain at constant volume, equivalence plasticity strain and pressure. The manganin pressure gauge is used to measure the pressure-time curves of the samples. The parameters of high-pressure equation are obtained by the numerical simulation. Numerical simulation is a necessary complement to the test. The spall phenomenon is observed by the numerical simulation.
Skadsem, Julie A.
1997-01-01
Examines the effects of conductor verbalization, dynamic markings, conductor gesture, and choir dynamic level on individual singers' dynamic responses. Indicates that verbal instructions from the conductor elicited significantly stronger dynamic performance responses than did the other instructional conditions. Suggests that additional research…
Hill, Rodney
2013-01-01
Principles of Dynamics presents classical dynamics primarily as an exemplar of scientific theory and method. This book is divided into three major parts concerned with gravitational theory of planetary systems; general principles of the foundations of mechanics; and general motion of a rigid body. Some of the specific topics covered are Keplerian Laws of Planetary Motion; gravitational potential and potential energy; and fields of axisymmetric bodies. The principles of work and energy, fictitious body-forces, and inertial mass are also looked into. Other specific topics examined are kinematics
Paultre, Patrick
2013-01-01
This book covers structural dynamics from a theoretical and algorithmic approach. It covers systems with both single and multiple degrees-of-freedom. Numerous case studies are given to provide the reader with a deeper insight into the practicalities of the area, and the solutions to these case studies are given in terms of real-time and frequency in both geometric and modal spaces. Emphasis is also given to the subject of seismic loading. The text is based on many lectures on the subject of structural dynamics given at numerous institutions and thus will be an accessible and practical aid to
Blazek, Jiri
2015-01-01
Computational Fluid Dynamics: Principles and Applications, Third Edition presents students, engineers, and scientists with all they need to gain a solid understanding of the numerical methods and principles underlying modern computation techniques in fluid dynamics. By providing complete coverage of the essential knowledge required in order to write codes or understand commercial codes, the book gives the reader an overview of fundamentals and solution strategies in the early chapters before moving on to cover the details of different solution techniques. This updated edition includes new
Leviatan, A
2010-01-01
This overview focuses on the notion of partial dynamical symmetry (PDS), for which a prescribed symmetry is obeyed by a subset of solvable eigenstates, but is not shared by the Hamiltonian. General algorithms are presented to identify interactions, of a given order, with such intermediate-symmetry structure. Explicit bosonic and fermionic Hamiltonians with PDS are constructed in the framework of models based on spectrum generating algebras. PDSs of various types are shown to be relevant to nuclear spectroscopy, quantum phase transitions and systems with mixed chaotic and regular dynamics.
Statistics of football dynamics
Mendes, R S; Anteneodo, C
2007-01-01
We investigate the dynamics of football matches. Our goal is to characterize statistically the temporal sequence of ball movements in this collective sport game, searching for traits of complex behavior. Data were collected over a variety of matches in South American, European and World championships throughout 2005 and 2006. We show that the statistics of ball touches presents power-law tails and can be described by $q$-gamma distributions. To explain such behavior we propose a model that provides information on the characteristics of football dynamics. Furthermore, we discuss the statistics of duration of out-of-play intervals, not directly related to the previous scenario.
Gas Dynamics Equations: Computation
Chen, Gui-Qiang G
2012-01-01
Shock waves, vorticity waves, and entropy waves are fundamental discontinuity waves in nature and arise in supersonic or transonic gas flow, or from a very sudden release (explosion) of chemical, nuclear, electrical, radiation, or mechanical energy in a limited space. Tracking these discontinuities and their interactions, especially when and where new waves arise and interact in the motion of gases, is one of the main motivations for numerical computation for the gas dynamics equations. In this paper, we discuss some historic and recent developments, as well as mathematical challenges, in designing and formulating efficient numerical methods and algorithms to compute weak entropy solutions for the Euler equations for gas dynamics.
Substructured multibody molecular dynamics.
Energy Technology Data Exchange (ETDEWEB)
Grest, Gary Stephen; Stevens, Mark Jackson; Plimpton, Steven James; Woolf, Thomas B. (Johns Hopkins University, Baltimore, MD); Lehoucq, Richard B.; Crozier, Paul Stewart; Ismail, Ahmed E.; Mukherjee, Rudranarayan M. (Rensselaer Polytechnic Institute, Troy, NY); Draganescu, Andrei I.
2006-11-01
We have enhanced our parallel molecular dynamics (MD) simulation software LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator, lammps.sandia.gov) to include many new features for accelerated simulation including articulated rigid body dynamics via coupling to the Rensselaer Polytechnic Institute code POEMS (Parallelizable Open-source Efficient Multibody Software). We use new features of the LAMMPS software package to investigate rhodopsin photoisomerization, and water model surface tension and capillary waves at the vapor-liquid interface. Finally, we motivate the recipes of MD for practitioners and researchers in numerical analysis and computational mechanics.
Dynamical Structure of Baryons
Aleksejevs, A
2013-01-01
Compton scattering offers a unique opportunity to study the dynamical structure of hadrons over a wide kinematic range, with polarizabilities characterizing the hadron active internal degrees of freedom. We present calculations and detailed analysis of electric and magnetic and the spin-dependent dynamical polarizabilities for the lowest in mass SU(3) octet of baryons. These extensive calculations are made possible by the recent implementation of semi-automatized calculations in chiral perturbation theory which allows evaluating polarizabilities from Compton scattering up to next-to-the-leading order. The dependencies for the range of photon energies covering the majority of the meson photoproduction channels are analyzed.
Dynamically assisted Schwinger mechanism.
Schützhold, Ralf; Gies, Holger; Dunne, Gerald
2008-09-26
We study electron-positron pair creation from the Dirac vacuum induced by a strong and slowly varying electric field (Schwinger effect) which is superimposed by a weak and rapidly changing electromagnetic field (dynamical pair creation). In the subcritical regime where both mechanisms separately are strongly suppressed, their combined impact yields a pair creation rate which is dramatically enhanced. Intuitively speaking, the strong electric field lowers the threshold for dynamical particle creation--or, alternatively, the fast electromagnetic field generates additional seeds for the Schwinger mechanism. These findings could be relevant for planned ultrahigh intensity lasers.
Maeda, Kei-ichi; Uzawa, Kunihito
2016-12-01
We discuss the dynamical D p -brane solutions describing any number of D p branes whose relative orientations are given by certain SU(2) rotations. These are the generalization of the static angled D p -brane solutions. We study the collision of the dynamical D3 brane with angles in type-II string theory, and show that the particular orientation of the smeared D3-brane configuration can provide an example of colliding branes if they have the same charges. Otherwise a singularity appears before D3 branes collide.
Introduction to cluster dynamics
Reinhard, Paul-Gerhard
2008-01-01
Clusters as mesoscopic particles represent an intermediate state of matter between single atoms and solid material. The tendency to miniaturise technical objects requires knowledge about systems which contain a ""small"" number of atoms or molecules only. This is all the more true for dynamical aspects, particularly in relation to the qick development of laser technology and femtosecond spectroscopy. Here, for the first time is a highly qualitative introduction to cluster physics. With its emphasis on cluster dynamics, this will be vital to everyone involved in this interdisciplinary subje
Dynamic Global Currency Hedging
DEFF Research Database (Denmark)
Christensen, Bent Jesper; Varneskov, Rasmus T.
2016-01-01
This paper proposes a model for discrete-time hedging based on continuous-time movements in portfolio and foreign currency exchange rate returns. In particular, the vector of optimal currency exposures is shown to be given by the negative realized regression coefficients from a one......-period conditional expectation of the intra-period quadratic covariation matrix for portfolio and foreign exchange rate returns. These are labelled the realized currency betas. The model, hence, facilitates dynamic hedging strategies that depend exclusively on the dynamic evolution of the ex-post quadratic...
Dynamics of Catalyst Nanoparticles
DEFF Research Database (Denmark)
Hansen, Thomas Willum; Cavalca, Filippo; Wagner, Jakob Birkedal
under gas exposure, dynamic phenomena such as sintering and growth can be observed with sub-Ångstrøm resolution. Metal nanoparticles contain the active sites in heterogeneous catalysts, which are important for many industrial applications including the production of clean fuels, chemicals...... and pharmaceuticals, and the cleanup of exhaust from automobiles and stationary power plants. Sintering, or thermal deactivation, is an important mechanism for the loss of catalyst activity. In order to initiate a systematic study of the dynamics and sintering of nanoparticles, various catalytic systems have been...
Dynamic gamma knife radiosurgery.
Luan, Shuang; Swanson, Nathan; Chen, Zhe; Ma, Lijun
2009-03-21
Gamma knife has been the treatment of choice for various brain tumors and functional disorders. Current gamma knife radiosurgery is planned in a 'ball-packing' approach and delivered in a 'step-and-shoot' manner, i.e. it aims to 'pack' the different sized spherical high-dose volumes (called 'shots') into a tumor volume. We have developed a dynamic scheme for gamma knife radiosurgery based on the concept of 'dose-painting' to take advantage of the new robotic patient positioning system on the latest Gamma Knife C and Perfexion units. In our scheme, the spherical high dose volume created by the gamma knife unit will be viewed as a 3D spherical 'paintbrush', and treatment planning reduces to finding the best route of this 'paintbrush' to 'paint' a 3D tumor volume. Under our dose-painting concept, gamma knife radiosurgery becomes dynamic, where the patient moves continuously under the robotic positioning system. We have implemented a fully automatic dynamic gamma knife radiosurgery treatment planning system, where the inverse planning problem is solved as a traveling salesman problem combined with constrained least-square optimizations. We have also carried out experimental studies of dynamic gamma knife radiosurgery and showed the following. (1) Dynamic gamma knife radiosurgery is ideally suited for fully automatic inverse planning, where high quality radiosurgery plans can be obtained in minutes of computation. (2) Dynamic radiosurgery plans are more conformal than step-and-shoot plans and can maintain a steep dose gradient (around 13% per mm) between the target tumor volume and the surrounding critical structures. (3) It is possible to prescribe multiple isodose lines with dynamic gamma knife radiosurgery, so that the treatment can cover the periphery of the target volume while escalating the dose for high tumor burden regions. (4) With dynamic gamma knife radiosurgery, one can obtain a family of plans representing a tradeoff between the delivery time and the dose
Housner, J. M.; Anderson, M.; Belvin, W.; Horner, G.
1985-01-01
Dynamic analysis of large space antenna systems must treat the deployment as well as vibration and control of the deployed antenna. Candidate computer programs for deployment dynamics, and issues and needs for future program developments are reviewed. Some results for mast and hoop deployment are also presented. Modeling of complex antenna geometry with conventional finite element methods and with repetitive exact elements is considered. Analytical comparisons with experimental results for a 15 meter hoop/column antenna revealed the importance of accurate structural properties including nonlinear joints. Slackening of cables in this antenna is also a consideration. The technology of designing actively damped structures through analytical optimization is discussed and results are presented.
Dynamic gamma knife radiosurgery
Luan, Shuang; Swanson, Nathan; Chen, Zhe; Ma, Lijun
2009-03-01
Gamma knife has been the treatment of choice for various brain tumors and functional disorders. Current gamma knife radiosurgery is planned in a 'ball-packing' approach and delivered in a 'step-and-shoot' manner, i.e. it aims to 'pack' the different sized spherical high-dose volumes (called 'shots') into a tumor volume. We have developed a dynamic scheme for gamma knife radiosurgery based on the concept of 'dose-painting' to take advantage of the new robotic patient positioning system on the latest Gamma Knife C™ and Perfexion™ units. In our scheme, the spherical high dose volume created by the gamma knife unit will be viewed as a 3D spherical 'paintbrush', and treatment planning reduces to finding the best route of this 'paintbrush' to 'paint' a 3D tumor volume. Under our dose-painting concept, gamma knife radiosurgery becomes dynamic, where the patient moves continuously under the robotic positioning system. We have implemented a fully automatic dynamic gamma knife radiosurgery treatment planning system, where the inverse planning problem is solved as a traveling salesman problem combined with constrained least-square optimizations. We have also carried out experimental studies of dynamic gamma knife radiosurgery and showed the following. (1) Dynamic gamma knife radiosurgery is ideally suited for fully automatic inverse planning, where high quality radiosurgery plans can be obtained in minutes of computation. (2) Dynamic radiosurgery plans are more conformal than step-and-shoot plans and can maintain a steep dose gradient (around 13% per mm) between the target tumor volume and the surrounding critical structures. (3) It is possible to prescribe multiple isodose lines with dynamic gamma knife radiosurgery, so that the treatment can cover the periphery of the target volume while escalating the dose for high tumor burden regions. (4) With dynamic gamma knife radiosurgery, one can obtain a family of plans representing a tradeoff between the delivery time and the
Dynamic gamma knife radiosurgery
Energy Technology Data Exchange (ETDEWEB)
Luan Shuang; Swanson, Nathan; Chen Zhe [Department of Computer Science, University of New Mexico, Albuquerque, NM 87131 (United States); Ma Lijun [Department of Radiation Oncology, University of California San Francisco, San Francisco, CA 94143 (United States)], E-mail: sluan@cs.unm.edu, E-mail: nate@cs.unm.edu, E-mail: zchen@cs.unm.edu, E-mail: lijunma@radonc.ucsf.edu
2009-03-21
Gamma knife has been the treatment of choice for various brain tumors and functional disorders. Current gamma knife radiosurgery is planned in a 'ball-packing' approach and delivered in a 'step-and-shoot' manner, i.e. it aims to 'pack' the different sized spherical high-dose volumes (called 'shots') into a tumor volume. We have developed a dynamic scheme for gamma knife radiosurgery based on the concept of 'dose-painting' to take advantage of the new robotic patient positioning system on the latest Gamma Knife C(TM) and Perfexion(TM) units. In our scheme, the spherical high dose volume created by the gamma knife unit will be viewed as a 3D spherical 'paintbrush', and treatment planning reduces to finding the best route of this 'paintbrush' to 'paint' a 3D tumor volume. Under our dose-painting concept, gamma knife radiosurgery becomes dynamic, where the patient moves continuously under the robotic positioning system. We have implemented a fully automatic dynamic gamma knife radiosurgery treatment planning system, where the inverse planning problem is solved as a traveling salesman problem combined with constrained least-square optimizations. We have also carried out experimental studies of dynamic gamma knife radiosurgery and showed the following. (1) Dynamic gamma knife radiosurgery is ideally suited for fully automatic inverse planning, where high quality radiosurgery plans can be obtained in minutes of computation. (2) Dynamic radiosurgery plans are more conformal than step-and-shoot plans and can maintain a steep dose gradient (around 13% per mm) between the target tumor volume and the surrounding critical structures. (3) It is possible to prescribe multiple isodose lines with dynamic gamma knife radiosurgery, so that the treatment can cover the periphery of the target volume while escalating the dose for high tumor burden regions. (4) With dynamic gamma knife radiosurgery, one can
Gravitational Lensing & Stellar Dynamics
Koopmans, L V E
2005-01-01
Strong gravitational lensing and stellar dynamics provide two complementary and orthogonal constraints on the density profiles of galaxies. Based on spherically symmetric, scale-free, mass models, it is shown that the combination of both techniques is powerful in breaking the mass-sheet and mass-anisotropy degeneracies. Second, observational results are presented from the Lenses Structure & Dynamics (LSD) Survey and the Sloan Lens ACS (SLACS) Survey collaborations to illustrate this new methodology in constraining the dark and stellar density profiles, and mass structure, of early-type galaxies to redshifts of unity.
Complexified dynamical systems
Energy Technology Data Exchange (ETDEWEB)
Bender, Carl M [Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Holm, Darryl D [Department of Mathematics, Imperial College, London SW7 2AZ (United Kingdom); Hook, Daniel W [Blackest Laboratory, Imperial College, London SW7 2BZ (United Kingdom)
2007-08-10
Many dynamical systems, such as the Lotka-Volterra predator-prey model and the Euler equations for the free rotation of a rigid body, are PT symmetric. The standard and well-known real solutions to such dynamical systems constitute an infinitessimal subclass of the full set of complex solutions. This paper examines a subset of the complex solutions that contains the real solutions, namely those having PT symmetry. The condition of PT symmetry selects out complex solutions that are periodic. (fast track communication)
Palamar, Todd
2009-01-01
The only hands-on book devoted to mastering Maya's dynamics tools for water, wind, and fire. In the world of animation, the ability to create realistic water, wind, and fire effects is key. Autodesk Maya software includes powerful dynamics tools that have been used to design breathtaking effects for movies, games, commercials, and short films. This professional guide teaches you the primary techniques you need to make the most of Maya's toolkit, so you'll soon be creating water that ripples, gusting winds and gentle breezes, and flickering fires the way Hollywood pros do. The one-of-a-kind boo
Organisations’ evolutionary dynamics: a group dynamics approach
Directory of Open Access Journals (Sweden)
Germán Eduardo Vargas
2010-04-01
Full Text Available Colombian entrepreneurs’ straggling, reactionary and inertial orientation has been inconsistently lustified by the availability of internal and leveraged resources, a concept intensifying deficient technological capacity. Company activity (seen as being a socioeconomic unit has been integrally orientated within an evolutionary framework by company identity and cohesion as well as adaptation and evolutionary mechanisms. The present document uses a group dynamics’ model to illustrate how knowledge-based strategic orientation and integration for innovation have become an imperative for development, from slight leverage, distinguishing between two evolutionary company forms: traditional economic (inertial, as they introduce sporadic incremental improvements and modern companies (dynamic and radical innovators. Revealing conclusions obtained from such model may be used for intervening in and modernising company activity.
Dynamic Analysis of a Pendulum Dynamic Automatic Balancer
Directory of Open Access Journals (Sweden)
Jin-Seung Sohn
2007-01-01
Full Text Available The automatic dynamic balancer is a device to reduce the vibration from unbalanced mass of rotors. Instead of considering prevailing ball automatic dynamic balancer, pendulum automatic dynamic balancer is analyzed. For the analysis of dynamic stability and behavior, the nonlinear equations of motion for a system are derived with respect to polar coordinates by the Lagrange's equations. The perturbation method is applied to investigate the dynamic behavior of the system around the equilibrium position. Based on the linearized equations, the dynamic stability of the system around the equilibrium positions is investigated by the eigenvalue analysis.
DEFF Research Database (Denmark)
Thomsen, Per Grove
1996-01-01
A one-dimensional model with axial discretization of engine components has been formulated using tha balance equations for mass energy and momentum and the ideal gas equation of state. ODE's that govern the dynamic behaviour of the regenerator matrix temperatures are included in the model. Known ...
Dynamics of Information Systems
Hirsch, Michael J; Murphey, Robert
2010-01-01
Our understanding of information and information dynamics has outgrown classical information theory. This book presents the research explaining the importance of information in the evolution of a distributed or networked system. It presents techniques for measuring the value or significance of information within the context of a system
Gomes, Henrique
2011-01-01
This thesis consists of two parts, connected by one central theme: the dynamics of the "shape of space". The first part of the thesis concerns the construction of a theory of gravity dynamically equivalent to general relativity (GR) in 3+1 form (ADM). What is special about this theory is that it does not possess foliation invariance, as does ADM. It replaces that "symmetry" by another: local conformal invariance. In so doing it more accurately reflects a theory of the "shape of space", giving us reason to call it \\emph{shape dynamics} (SD). In the first part we will try to present some of the highlights of results so far, and indicate what we can and cannot do with shape dynamics. Because this is a young, rapidly moving field, we have necessarily left out some interesting new results which are not yet in print and were developed alongside the writing of the thesis. The second part of the thesis will develop a gauge theory for "shape of space"--theories. To be more precise, if one admits that the physically re...
Directory of Open Access Journals (Sweden)
2006-01-01
Full Text Available Generators f for σ -algebras can be used to view the dynamics of an invertible measurable transformation T in terms of the range values of f ∘ T . Such generators are the norm rather than the exception. Related measurable and quantitative methods of estimating a function from the behavior of ergodic averages are also discussed.
OKeefe, John D.; Stewart, Sarah T.; Ahrens, Thomas J.
2001-01-01
We modeled in detail the ejecta dynamics associated with the Chicxulub impact. We determined: (1) ejecta trajectories, (2) stratigraphic motions, (3) depth of ejecta stages, (4) thermodynamic histories of the ejecta particles, and (5) the final ejecta distribution. Additional information is contained in the original extended abstract.
CERN. Geneva
2007-01-01
efficacy at making predictions in the real world. About the speaker Bernardo Huberman is a Senior HP Fellow and Director of the Information Dynamics Lab at Hewlett Packard Laboratories. He received his Ph.D. in Physics from the University of Pennsylvania, and is currently a Consulting Professor in the Department of Applied Physics at Stanford University...
Screw bondgraph contact dynamics
Visser, Martijn; Stramigioli, Stefano; Heemskerk, Cock
2002-01-01
This paper presents an elegant contact dynamics model in screw bondgraph form. It can model the contact between any two objects of finite curvature. It does so by defining a Gauss frame on the surfaces of both objects in the points that are closest to each other. Then it describes how the Gauss fram
DEFF Research Database (Denmark)
Thomsen, Per Grove
1996-01-01
A one-dimensional model with axial discretization of engine components has been formulated using tha balance equations for mass energy and momentum and the ideal gas equation of state. ODE's that govern the dynamic behaviour of the regenerator matrix temperatures are included in the model. Known...
Electronic Spectroscopy & Dynamics
Energy Technology Data Exchange (ETDEWEB)
Mark Maroncelli, Nancy Ryan Gray
2010-06-08
The Gordon Research Conference (GRC) on Electronic Spectroscopy and Dynamics was held at Colby College, Waterville, NH from 07/19/2009 thru 07/24/2009. The Conference was well-attended with participants (attendees list attached). The attendees represented the spectrum of endeavor in this field coming from academia, industry, and government laboratories, both U.S. and foreign scientists, senior researchers, young investigators, and students. The GRC on Electronic Spectroscopy & Dynamics showcases some of the most recent experimental and theoretical developments in electronic spectroscopy that probes the structure and dynamics of isolated molecules, molecules embedded in clusters and condensed phases, and bulk materials. Electronic spectroscopy is an important tool in many fields of research, and this GRC brings together experts having diverse backgrounds in physics, chemistry, biophysics, and materials science, making the meeting an excellent opportunity for the interdisciplinary exchange of ideas and techniques. Topics covered in this GRC include high-resolution spectroscopy, biological molecules in the gas phase, electronic structure theory for excited states, multi-chromophore and single-molecule spectroscopies, and excited state dynamics in chemical and biological systems.
Dynamic Contingency Analysis Tool
Energy Technology Data Exchange (ETDEWEB)
2016-01-14
The Dynamic Contingency Analysis Tool (DCAT) is an open-platform and publicly available methodology to help develop applications that aim to improve the capabilities of power system planning engineers to assess the impact and likelihood of extreme contingencies and potential cascading events across their systems and interconnections. Outputs from the DCAT will help find mitigation solutions to reduce the risk of cascading outages in technically sound and effective ways. The current prototype DCAT implementation has been developed as a Python code that accesses the simulation functions of the Siemens PSS�E planning tool (PSS/E). It has the following features: It uses a hybrid dynamic and steady-state approach to simulating the cascading outage sequences that includes fast dynamic and slower steady-state events. It integrates dynamic models with protection scheme models for generation, transmission, and load. It models special protection systems (SPSs)/remedial action schemes (RASs) and automatic and manual corrective actions. Overall, the DCAT attempts to bridge multiple gaps in cascading-outage analysis in a single, unique prototype tool capable of automatically simulating and analyzing cascading sequences in real systems using multiprocessor computers.While the DCAT has been implemented using PSS/E in Phase I of the study, other commercial software packages with similar capabilities can be used within the DCAT framework.
Predictability in community dynamics
DEFF Research Database (Denmark)
Blonder, Benjamin; Moulton, Derek E; Blois, Jessica
2017-01-01
prominent in disequilibrium ecology, proposing that communities track climate change following a fixed function or with a time delay. However, more complex dynamics are possible and may lead to memory effects and alternate unstable states. We develop graphical and analytic methods for assessing...
Gravitational lensing & stellar dynamics
Koopmans, L. V. E.; Mamon, GA; Combes, F; Deffayet, C; Fort, B
2006-01-01
Strong gravitational lensing and stellar dynamics provide two complementary and orthogonal constraints on the density profiles of galaxies. Based on spherically symmetric, scale-free, mass models, it is shown that the combination of both techniques is powerful in breaking the mass-sheet and mass-ani
Models for Dynamic Applications
DEFF Research Database (Denmark)
2011-01-01
be applied to formulate, analyse and solve these dynamic problems and how in the case of the fuel cell problem the model consists of coupledmeso and micro scale models. It is shown how data flows are handled between the models and how the solution is obtained within the modelling environment....
Organizational knowledge dynamics
Simona VASILACHE
2008-01-01
The paper addresses the main issues concerning knowledge conceptualization and knowledge dynamics, in the context of Romanian organizations. The links between organizational knowledge, organizational learning and organizational culture are being investigated, with the aim of conceptual clarification and paradigm unification, in a domain of increasing research interest, where increasing complexity implies the risk of increasing confusion.
Dynamic Contingency Analysis Tool
Energy Technology Data Exchange (ETDEWEB)
2016-01-14
The Dynamic Contingency Analysis Tool (DCAT) is an open-platform and publicly available methodology to help develop applications that aim to improve the capabilities of power system planning engineers to assess the impact and likelihood of extreme contingencies and potential cascading events across their systems and interconnections. Outputs from the DCAT will help find mitigation solutions to reduce the risk of cascading outages in technically sound and effective ways. The current prototype DCAT implementation has been developed as a Python code that accesses the simulation functions of the Siemens PSS/E planning tool (PSS/E). It has the following features: It uses a hybrid dynamic and steady-state approach to simulating the cascading outage sequences that includes fast dynamic and slower steady-state events. It integrates dynamic models with protection scheme models for generation, transmission, and load. It models special protection systems (SPSs)/remedial action schemes (RASs) and automatic and manual corrective actions. Overall, the DCAT attempts to bridge multiple gaps in cascading-outage analysis in a single, unique prototype tool capable of automatically simulating and analyzing cascading sequences in real systems using multiprocessor computers.While the DCAT has been implemented using PSS/E in Phase I of the study, other commercial software packages with similar capabilities can be used within the DCAT framework.
Garcia Melo, Fatima; Smulders, Maarten M.J.
2016-01-01
This Highlight presents an overview of the rapidly growing field of dynamic covalent polymers. This class of polymers combines intrinsic reversibility with the robustness of covalent bonds, thus enabling formation of mechanically stable, polymer-based materials that are responsive to external
Dynamics of homogeneous nucleation
DEFF Research Database (Denmark)
Toxværd, Søren
2015-01-01
The classical nucleation theory for homogeneous nucleation is formulated as a theory for a density fluctuation in a supersaturated gas at a given temperature. But molecular dynamics simulations reveal that it is small cold clusters which initiates the nucleation. The temperature in the nucleating...
Dynamic public lighting (DYNO)
Kaptein, N.A.; Hogema, J.H.; Folles, E.
1997-01-01
In The Netherlands the concept of Dynamic Public Lighting (DYNO) has been introduced, which implies that road lighting is continuously adapted to the prevailing conditions, finding a balance between traffic safety and environment. For instance, in case of favourable weather conditions and low
Gravitational lensing & stellar dynamics
Koopmans, L. V. E.; Mamon, GA; Combes, F; Deffayet, C; Fort, B
2006-01-01
Strong gravitational lensing and stellar dynamics provide two complementary and orthogonal constraints on the density profiles of galaxies. Based on spherically symmetric, scale-free, mass models, it is shown that the combination of both techniques is powerful in breaking the mass-sheet and