WorldWideScience

Sample records for hugoniots dynamic spall

  1. Dynamic strength properties and alpha-phase shock Hugoniot of iron and steel

    Science.gov (United States)

    Thomas, S. A.; Hawkins, M. C.; Matthes, M. K.; Gray, G. T.; Hixson, R. S.

    2018-05-01

    The properties of iron and steel are of considerable interest scientifically to the dynamic materials properties' community, as well as to a broader audience, for many applications. This is true in part because of the existence of a solid-solid phase (α-ɛ) transition at relatively modest stress (13 GPa). Because of this, there is a significant amount of data on iron and steel alloy shock compression properties at stresses above 13 GPa, but much less fundamental data under stress conditions lower than that, where the metals are in the α-phase. New data have been obtained under relatively low stress (below 10 GPa) conditions in which samples are subjected to low-velocity symmetric impact on the order of 0.2 to 0.4 km/s. We used well-developed flyer plate impact methods combined with velocity interferometry to measure wave speeds and strength properties in compression and tension. The shock α-phase Hugoniot data reported here are compared with literature values. A comparison of spall strength and Hugoniot elastic limit is made between different types of steel studied and for pure iron.

  2. Spall Strength Measurements in Transparent Epoxy Polymers

    Science.gov (United States)

    Pepper, Jonathan; Rahmat, Meysam; Petel, Oren

    2017-06-01

    Polymer nanocomposites are seeing more frequent use in transparent armour applications. The role of the microstructure on the performance of these materials under dynamic tensile loading conditions is of particular interest. In the present study, a series of plate impact experiments was conducted in order to evaluate the dynamic response of an epoxy (EPON 828) cured with two differed hardeners. The purpose was to compare the role of these hardeners on the dynamic performance of the resulting transparent epoxy. The material response was resolved with a multi-channel photonic Doppler velocimeter. This system was used to determine the shock Hugoniot and dynamic tensile (spall) strength of the materials. The experimental results are presented in reference to spall theory and are evaluated against results predicted by an analytical model of the impacts. While varying the hardener did not change the shock Hugoniot of the epoxy, it did have an effect on the measured spall strengths.

  3. Edge Effects at Spall Fracture for Titanium Alloys of Varying Oxygen Content

    National Research Council Canada - National Science Library

    Razorenov, Sergey

    1998-01-01

    ...% have been tested in about 50 shock-wave experiments. In the experiments performed the Hugoniot elastic limit, the spall strength, and the critical diameter for the spall element separation were measured...

  4. Variability in dynamic properties of tantalum : spall, attenuation and load/unload.

    Energy Technology Data Exchange (ETDEWEB)

    Furnish, Michael David; Reinhart, William Dodd; Trott, Wayne Merle; Vogler, Tracy John; Chhabildas, Lalit Chandra

    2005-07-01

    A suite of impact experiments was conducted to assess spatial and shot-to-shot variability in dynamic properties of tantalum. Samples had a uniform refined {approx}20 micron grain structure with a strong axisymmetric [111] crystallographic texture. Two experiments performed with sapphire windows (stresses of approximately 7 and 12 GPa) clearly showed elastic-plastic loading and slightly hysteretic unloading behavior. An HEL amplitude of 2.8 GPa (corresponding to Y 1.5 GPa) was observed. Free-surface spall experiments showed clear wave attenuation and spallation phenomena. Here, loading stresses were {approx} 12.5 GPa and various ratios of impactor to target thicknesses were used. Spatial and shot-to-shot variability of the spall strength was {+-} 20%, and of the HEL, {+-} 10%. Experiments conducted with smaller diameter flyer plates clearly showed edge effects in the line and point VISAR records, indicating lateral release speeds of roughly 5 km/s.

  5. Modelling Dynamic Behaviour and Spall Failure of Aluminium Alloy AA7010

    Science.gov (United States)

    Ma'at, N.; Nor, M. K. Mohd; Ismail, A. E.; Kamarudin, K. A.; Jamian, S.; Ibrahim, M. N.; Awang, M. K.

    2017-10-01

    A finite strain constitutive model to predict the dynamic deformation behaviour of Aluminium Alloy 7010 including shockwaves and spall failure is developed in this work. The important feature of this newly hyperelastic-plastic constitutive formulation is a new Mandel stress tensor formulated using new generalized orthotropic pressure. This tensor is combined with a shock equation of state (EOS) and Grady spall failure. The Hill’s yield criterion is adopted to characterize plastic orthotropy by means of the evolving structural tensors that is defined in the isoclinic configuration. This material model was developed and integration into elastic and plastic parts. The elastic anisotropy is taken into account through the newly stress tensor decomposition of a generalized orthotropic pressure. Plastic anisotropy is considered through yield surface and an isotropic hardening defined in a unique alignment of deviatoric plane within the stress space. To test its ability to describe shockwave propagation and spall failure, the new material model was implemented into the LLNL-DYNA3D code of UTHM’s. The capability of this newly constitutive model were compared against published experimental data of Plate Impact Test at 234m/s, 450m/s and 895m/s impact velocities. A good agreement is obtained between experimental and simulation in each test.

  6. Spall strength, dynamic elastic limit and fracture of ittrya dopped tetragonal zirconia

    Science.gov (United States)

    Milyavskiy, Vladimir; Savinykh, Andrey; Schlothauer, Thomas; Lukin, Evgeny; Akopov, Felix

    2013-06-01

    Specimens of the ceramics based on zirconia partially stabilized by yttrium oxide of the composition of 97 mol % ZrO2 + 3 mol % Y2O3 were prepared. The densities of the specimens were 5.79 and 6.01 g/cc. The ceramics mainly have the tetragonal structure (93-98 wt. % of t-ZrO2) . The mechanical action on the ceramic activates the transformation of the tetragonal phase into the monoclinic one: at the abrasive cutting or at the fracture by hammer shock, the content of the monoclinic phase is increasing. The same trend was observed in the specimens, recovered after stepwise shock compression up to 36, 52 and 99 GPa. It was found that shock compression do not initiates tetragonal-monoclinic phase transition directly, and this transition is caused by the destruction. Recovered specimens do not reveal any traces of the phase change which was observed by Mashimo et al. under the pressures 30-35 GPa (J. Appl. Phys. 1995. V. 77. P. 5069). Recording of the profiles of the free surface velocity of the specimens during single-stage shock compression allowed us to determine the dynamic elastic limit, as well as spall strength of the material versus maximal shock stress. In addition, the ceramics were subjected to the action of low temperatures. There were no significant changes in the specimens recovered after storage in liquid nitrogen and helium. The work was supported by The State Atomic Energy Corporation ROSATOM.

  7. Multibillion-atom Molecular Dynamics Simulations of Plasticity, Spall, and Ejecta

    Science.gov (United States)

    Germann, Timothy C.

    2007-06-01

    Modern supercomputing platforms, such as the IBM BlueGene/L at Lawrence Livermore National Laboratory and the Roadrunner hybrid supercomputer being built at Los Alamos National Laboratory, are enabling large-scale classical molecular dynamics simulations of phenomena that were unthinkable just a few years ago. Using either the embedded atom method (EAM) description of simple (close-packed) metals, or modified EAM (MEAM) models of more complex solids and alloys with mixed covalent and metallic character, simulations containing billions to trillions of atoms are now practical, reaching volumes in excess of a cubic micron. In order to obtain any new physical insights, however, it is equally important that the analysis of such systems be tractable. This is in fact possible, in large part due to our highly efficient parallel visualization code, which enables the rendering of atomic spheres, Eulerian cells, and other geometric objects in a matter of minutes, even for tens of thousands of processors and billions of atoms. After briefly describing the BlueGene/L and Roadrunner architectures, and the code optimization strategies that were employed, results obtained thus far on BlueGene/L will be reviewed, including: (1) shock compression and release of a defective EAM Cu sample, illustrating the plastic deformation accompanying void collapse as well as the subsequent void growth and linkup upon release; (2) solid-solid martensitic phase transition in shock-compressed MEAM Ga; and (3) Rayleigh-Taylor fluid instability modeled using large-scale direct simulation Monte Carlo (DSMC) simulations. I will also describe our initial experiences utilizing Cell Broadband Engine processors (developed for the Sony PlayStation 3), and planned simulation studies of ejecta and spall failure in polycrystalline metals that will be carried out when the full Petaflop Opteron/Cell Roadrunner supercomputer is assembled in mid-2008.

  8. Modeling Dynamic Anisotropic Behaviour and Spall Failure in Commercial Aluminium Alloys AA7010

    Science.gov (United States)

    Mohd Nor, M. K.; Ma'at, N.; Ho, C. S.

    2018-04-01

    This paper presents a finite strain constitutive model to predict a complex elastoplastic deformation behaviour involves very high pressures and shockwaves in orthotropic materials of aluminium alloys. The previous published constitutive model is used as a reference to start the development in this work. The proposed formulation that used a new definition of Mandel stress tensor to define Hill's yield criterion and a new shock equation of state (EOS) of the generalised orthotropic pressure is further enhanced with Grady spall failure model to closely predict shockwave propagation and spall failure in the chosen commercial aluminium alloy. This hyperelastic-plastic constitutive model is implemented as a new material model in the Lawrence Livermore National Laboratory (LLNL)-DYNA3D code of UTHM's version, named Material Type 92 (Mat92). The implementations of a new EOS of the generalised orthotropic pressure including the spall failure are also discussed in this paper. The capability of the proposed constitutive model to capture the complex behaviour of the selected material is validated against range of Plate Impact Test data at 234, 450 and 895 ms-1 impact velocities.

  9. Spall response of single-crystal copper

    Science.gov (United States)

    Turley, W. D.; Fensin, S. J.; Hixson, R. S.; Jones, D. R.; La Lone, B. M.; Stevens, G. D.; Thomas, S. A.; Veeser, L. R.

    2018-02-01

    We performed a series of systematic spall experiments on single-crystal copper in an effort to determine and isolate the effects of crystal orientation, peak stress, and unloading strain rate on the tensile spall strength. Strain rates ranging from 0.62 to 2.2 × 106 s-1 and peak shock stresses in the 5-14 GPa range, with one additional experiment near 50 GPa, were explored as part of this work. Gun-driven impactors, called flyer plates, generated flat top shocks followed by spall. This work highlights the effect of crystal anisotropy on the spall strength by showing that the spall strength decreases in the following order: [100], [110], and [111]. Over the range of stresses and strain rates explored, the spall strength of [100] copper depends strongly on both the strain rate and shock stress. Except at the very highest shock stress, the results for the [100] orientation show linear relationships between the spall strength and both the applied compressive stress and the strain rate. In addition, hydrodynamic computer code simulations of the spall experiments were performed to calculate the relationship between the strain rate near the spall plane in the target and the rate of free surface velocity release during the pullback. As expected, strain rates at the spall plane are much higher than the strain rates estimated from the free surface velocity release rate. We have begun soft recovery experiments and molecular dynamics calculations to understand the unusual recompression observed in the spall signature for [100] crystals.

  10. Spalling of concrete walls under blast load

    International Nuclear Information System (INIS)

    Kot, C.A.

    1977-01-01

    A common effect of the detonation of explosives in close proximity of concrete shield walls is the spalling (scabbing) of the back face of the wall. Spalling is caused by the free surface reflection of the shock wave induced in the wall by high pressure air blast and occurs whenever the dynamic tensile rupture strength is exceeded. While a complex process, reasonable analytical spall estimates can be obtained for brittle materials with low tensile strengths, such as concrete, by assuming elastic material behavior and instantaneous spall formation. Specifically, the spall thicknesses and velocities for both normal and oblique incidence of the shock wave on the back face of the wall are calculated. The complex exponential decay wave forms of the air blast are locally approximated by simple power law expressions. Variations of blast wave strength with distance to the wall, charge weight and angle of incidence are taken into consideration. The shock wave decay in the wall is also accounted for by assuming elastic wave propagation. For explosions close-in to the wall, where the reflected blast wave pressures are sufficiently high, multiple spall layers are formed. Successive spall layers are of increasing thickness, at the same time the spall velocities decrease. The spall predictions based on elastic theory are in overall agreement with experimntal results and provide a rapid means of estimating spalling trends of concrete walls subjected to air blast. (Auth.)

  11. Shock-induced mechanical response and spall fracture behavior of an extra-low interstitial grade Ti–6Al–4V alloy

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Yu; Wang, Fuchi [School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081 (China); National Key Laboratory of Science and Technology on Materials Under Shock and Impact, Beijing Institute of Technology, Beijing 100081 (China); Tan, Chengwen, E-mail: tanchengwen@126.com [School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081 (China); National Key Laboratory of Science and Technology on Materials Under Shock and Impact, Beijing Institute of Technology, Beijing 100081 (China); Wang, Shuyou [State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081 (China); Yu, Xiaodong [School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081 (China); National Key Laboratory of Science and Technology on Materials Under Shock and Impact, Beijing Institute of Technology, Beijing 100081 (China); Jiang, Jianwei [State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081 (China); Ma, Honglei [China Astronaut Research and Training Center, Beijing 100094 (China); Cai, Hongnian [School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081 (China); National Key Laboratory of Science and Technology on Materials Under Shock and Impact, Beijing Institute of Technology, Beijing 100081 (China)

    2013-08-20

    The mechanical response and spall fracture behavior of an extra-low interstitial (ELI) grade Ti–6Al–4V alloy are systemically investigated during one-dimensional shock loading. The effects of oxygen content on the shock response and dynamic failure characteristic of Ti–6Al–4V are also shown through the comparison of the obtained results with those for commercial Ti–6Al–4V. The measured Hugoniot elastic limit (HEL) of Ti–6Al–4V ELI is lower than that of commercial Ti–6Al–4V. While the fitted shock parameters and the measured Hugoniot in the stress-particle velocity space of Ti–6Al–4V ELI are found to be almost identical to those of commercial Ti–6Al–4V. These results indicate that the oxygen content can significantly affect the HEL of Ti–6Al–4V, but has little or no influence on the shock response of this alloy beyond the HEL. The postshock Ti–6Al–4V ELI does not display shock-induced strengthening during quasistatic and dynamic compression tests. Transmission electron microscopy (TEM) analyses reveal that the lack of high density dislocations or dislocation cells limits the shock-induced strengthening effect, although dislocation multiplication and tangles lead to increased yield strength and strain hardening rate of the reloaded material. Finally, Ti–6Al–4V ELI is demonstrated to spall in a ductile manner, and has similar spall strengths to those of commercial Ti–6Al–4V under different shock loading conditions. The oxygen content exerts no effect on the spall fracture manner of Ti–6Al–4V, although reducing the oxygen content enables this alloy to endure more micro-damages.

  12. Shock-induced mechanical response and spall fracture behavior of an extra-low interstitial grade Ti–6Al–4V alloy

    International Nuclear Information System (INIS)

    Ren, Yu; Wang, Fuchi; Tan, Chengwen; Wang, Shuyou; Yu, Xiaodong; Jiang, Jianwei; Ma, Honglei; Cai, Hongnian

    2013-01-01

    The mechanical response and spall fracture behavior of an extra-low interstitial (ELI) grade Ti–6Al–4V alloy are systemically investigated during one-dimensional shock loading. The effects of oxygen content on the shock response and dynamic failure characteristic of Ti–6Al–4V are also shown through the comparison of the obtained results with those for commercial Ti–6Al–4V. The measured Hugoniot elastic limit (HEL) of Ti–6Al–4V ELI is lower than that of commercial Ti–6Al–4V. While the fitted shock parameters and the measured Hugoniot in the stress-particle velocity space of Ti–6Al–4V ELI are found to be almost identical to those of commercial Ti–6Al–4V. These results indicate that the oxygen content can significantly affect the HEL of Ti–6Al–4V, but has little or no influence on the shock response of this alloy beyond the HEL. The postshock Ti–6Al–4V ELI does not display shock-induced strengthening during quasistatic and dynamic compression tests. Transmission electron microscopy (TEM) analyses reveal that the lack of high density dislocations or dislocation cells limits the shock-induced strengthening effect, although dislocation multiplication and tangles lead to increased yield strength and strain hardening rate of the reloaded material. Finally, Ti–6Al–4V ELI is demonstrated to spall in a ductile manner, and has similar spall strengths to those of commercial Ti–6Al–4V under different shock loading conditions. The oxygen content exerts no effect on the spall fracture manner of Ti–6Al–4V, although reducing the oxygen content enables this alloy to endure more micro-damages

  13. On the Processing of Spalling Experiments. Part II: Identification of Concrete Fracture Energy in Dynamic Tension

    Science.gov (United States)

    Lukić, Bratislav B.; Saletti, Dominique; Forquin, Pascal

    2017-12-01

    This paper presents a second part of the study aimed at investigating the fracture behavior of concrete under high strain rate tensile loading. The experimental method together with the identified stress-strain response of three tests conducted on ordinary concrete have been presented in the paper entitled Part I (Forquin and Lukić in Journal of Dynamic Behavior of Materials, 2017. https://doi.org/10.1007/s40870-017-0135-1). In the present paper, Part II, the investigation is extended towards directly determining the specific fracture energy of each observed fracture zone by visualizing the dynamic cracking process with a temporal resolution of 1 µs. Having access to temporal displacement fields of the sample surface, it is possible to identify the fracture opening displacement (FOD) and the fracture opening velocity of any principle (open) and secondary (closed) fracture at each measurement instance, that may or may not lead to complete physical failure of the sample. Finally, the local Stress-FOD curves were obtained for each observed fracture zone, opposed to previous works where indirect measurements were used. The obtained results indicated a much lower specific fracture energy compared to the results often found in the literature. Furthermore, numerical simulations were performed with a damage law to evaluate the validity of the proposed experimental data processing and compare it to the most often used one in the previous works. The results showed that the present method can reliably predict the specific fracture energy needed to open one macro-fracture and suggested that indirect measurement techniques can lead to an overestimate of specific fracture energy due to the stringent assumption of linear elasticity up-to the peak and the inability of having access to the real post-peak change of axial stress.

  14. Comparing Numerical Spall Simulations with a Nonlinear Spall Formation Model

    Science.gov (United States)

    Ong, L.; Melosh, H. J.

    2012-12-01

    Spallation accelerates lightly shocked ejecta fragments to speeds that can exceed the escape velocity of the parent body. We present high-resolution simulations of nonlinear shock interactions in the near surface. Initial results show the acceleration of near-surface material to velocities up to 1.8 times greater than the peak particle velocity in the detached shock, while experiencing little to no shock pressure. These simulations suggest a possible nonlinear spallation mechanism to produce the high-velocity, low show pressure meteorites from other planets. Here we pre-sent the numerical simulations that test the production of spall through nonlinear shock interactions in the near sur-face, and compare the results with a model proposed by Kamegai (1986 Lawrence Livermore National Laboratory Report). We simulate near-surface shock interactions using the SALES_2 hydrocode and the Murnaghan equation of state. We model the shock interactions in two geometries: rectangular and spherical. In the rectangular case, we model a planar shock approaching the surface at a constant angle phi. In the spherical case, the shock originates at a point below the surface of the domain and radiates spherically from that point. The angle of the shock front with the surface is dependent on the radial distance of the surface point from the shock origin. We model the target as a solid with a nonlinear Murnaghan equation of state. This idealized equation of state supports nonlinear shocks but is tem-perature independent. We track the maximum pressure and maximum velocity attained in every cell in our simula-tions and compare them to the Hugoniot equations that describe the material conditions in front of and behind the shock. Our simulations demonstrate that nonlinear shock interactions in the near surface produce lightly shocked high-velocity material for both planar and cylindrical shocks. The spall is the result of the free surface boundary condi-tion, which forces a pressure gradient

  15. Spall study in one dimension

    International Nuclear Information System (INIS)

    Glenn, H.D.

    1976-01-01

    A SOC one-dimensional calculation of an underground nuclear test is presented to exemplify the shock propagation and spall phenomenology commonly predicted. Then to examine the effects of spherical divergence on spall, a series of SOC calculations, at different radii of curvature, are conducted and prediction of depth and velocity for the first spall zone are compared with predictions from simple analytic theory. The excellent agreement in this comparison verifies that the SOC code accurately represents the physics of spalling. This study also indicates that the total spall depth is independent of divergence because of the compensating effect that subsequent convergence has on the reflected wave. The latter result implies that the total depth of spall calculated for each underground nuclear tests must be critically examined and evaluated. Finally, SOC calculations for nuclear detonations in tuff and granite are performed to demonstrate the significant effect that variations in material response under shock loading have on shock propagation and spall

  16. Hugoniot measurements near 50 MBAR

    International Nuclear Information System (INIS)

    Ragan, C.E. III.

    1979-01-01

    A planar shock generated in the vicinity of an underground nuclear explosion was used to obtain Hugoniot data at 6.7 TPa for uranium relative to a molybdenum standard in an impedance matching experiment. Twenty-seven electrical contact pins were used to measure shock velocities of 27.0 and 22.8 km/s (+- 1%) in the molybdenum and uranium, respectively. The measurement differs from theory by more than 2.5 times the experimental uncertainty and represents the highest pressure at which Hugoniot data have been obtained

  17. The influence of microstructure on the shock and spall behaviour of the magnesium alloy, Elektron 675

    International Nuclear Information System (INIS)

    Hazell, P.J.; Appleby-Thomas, G.J.; Wielewski, E.; Stennett, C.; Siviour, C.

    2012-01-01

    Alloying elements such as aluminium, zinc and rare earth metals allow precipitation hardening of magnesium (Mg). The low densities of such strengthened Mg alloys have led to their adoption as aerospace materials and (more recently) they are being considered as armour materials. Consequently, understanding their response to high strain-rate loading is becoming increasingly important. Here, the plate-impact technique was employed to measure stress evolution in an armour-grade wrought Mg alloy (Elektron 675) under one-dimensional shock loading. The effects of sample orientation and heat treatment were examined. The spall behaviour was interrogated using a heterodyne velocimeter system, with an estimate made of the material’s spall strength and Hugoniot elastic limit (HEL) for both aged and unaged materials. In particular, it is shown that the HEL and spall strength values are higher along the extrusion direction. It is thought that this is caused by striations of relatively small grains that run along the extrusion direction.

  18. Shock-induced spall in copper: the effects of anisotropy, temperature, loading pulse and defect

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Shengnian [Los Alamos National Laboratory; Germann, Timothy C [Los Alamos National Laboratory; An, Qi [Los Alamos National Laboratory; Han, Li - Bo [USTC

    2009-07-28

    Shock-induced spall in Cu is investigated with molecular dynamics simulations. We examine spallation in initially perfect crystals and defective solids with grain boundaries (columnar bicrystals), stacking faults or vacancies, as well as the effect of temperature and loading pulses. Spall in single crystal Cu is anisotropic, and defects and high temperature may reduce the spall strength. Taylor-wave (triangular shock-release wave) loading is explored in comparison with square wave shock loading.

  19. Shockless spalling damage of alumina ceramic

    Science.gov (United States)

    Erzar, B.; Buzaud, E.

    2012-05-01

    Ceramic materials are commonly used to build multi-layer armour. However reliable test data is needed to identify correctly models and to be able to perform accurate numerical simulation of the dynamic response of armour systems. In this work, isentropic loading waves have been applied to alumina samples to induce spalling damage. The technique employed allows assessing carefully the strain-rate at failure and the dynamic strength. Moreover, specimens have been recovered and analysed using SEM. In a damaged but unbroken specimen, interactions between cracks has been highlighted illustrating the fragmentation process.

  20. Microstructural Effects on the Spall Properties of ECAE-Processed AZ31B Magnesium Alloy

    Science.gov (United States)

    2016-10-01

    stresses using 51 mm and 105 mm bore gas guns . The Hugoniot Elastic Limit (HEL) was measured to be approximately 181 ± 3 MPa. The spall strengths...MD 21218, USA b Institute of Shock Physics, Imperial College London, London SW7 2AZ, UK c U.S. Army Research Laboratory, Aberdeen Proving Ground, MD...21005, USA d Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA A R T I C L E I N F O Article history: Received

  1. The Principal Hugoniot of Forsterite to 950 GPa

    Science.gov (United States)

    Root, Seth; Townsend, Joshua P.; Davies, Erik; Lemke, Raymond W.; Bliss, David E.; Fratanduono, Dayne E.; Kraus, Richard G.; Millot, Marius; Spaulding, Dylan K.; Shulenburger, Luke; Stewart, Sarah T.; Jacobsen, Stein B.

    2018-05-01

    Forsterite (Mg2SiO4) single crystals were shock compressed to pressures between 200 and 950 GPa using independent plate-impact steady shocks and laser-driven decaying shock compression experiments. Additionally, we performed density functional theory-based molecular dynamics to aid interpretation of the experimental data and to investigate possible phase transformations and phase separations along the Hugoniot. We show that the experimentally obtained Hugoniot cannot distinguish between a pure liquid Mg2SiO4 and an assemblage of solid MgO plus liquid magnesium silicate. The measured reflectivity is nonzero and increases with pressure, which implies that the liquid is a poor electrical conductor at low pressures and that the conductivity increases with pressure.

  2. Counterforce applied to prevent spalling

    International Nuclear Information System (INIS)

    Glamheden, Rune; Bergkvist, Lars; Faelth, Billy; Jacobsson, Lars; Harrstroem, Johan; Berglund, Johan

    2010-04-01

    The field experiment within CAPS (Counterforce Applied to Prevent Spalling) was initiated to determine if the application of dry bentonite pellets is sufficient to suppress thermally-induced spalling in KBS-3 deposition holes. The experience gained from Aespoe Pillar Stability Experiment, conducted between 2002 and 2006, indicated that spalling could be controlled by the application of a small confining pressure in the deposition holes. The CAPS field experiment that included four pairs of boreholes with a diameter of approximately 0.5 m, was carried out as a series of demonstration experiments in the TASQ-tunnel. The first and second heating tests were performed in open holes, without any confining pressure on the borehole wall and the third and fourth heating tests with a confining pressure created by expanded clay pellets (LECA). The first heating test was initiated at the end of August 2008 and the final test was finished at the end of May 2009. The trials suggest that the small confining pressure offered by the LECA pellets was adequate to control spalling and prevent the formation of a highly conductive zone of fractured rock in the 500-mm-diameter holes. It is recommended that a full-scale test be carried out to assess if the findings are applicable to 1,750-mm-diameter deposition holes. Should the full scale tests support the findings from these initial trials, filling the gap between the bentonite blocks and rock wall with dry bentonite pellets will provide a viable engineered solution for controlling the effects of thermally induced spalling in the KBS-3 deposition holes

  3. Counterforce applied to prevent spalling

    Energy Technology Data Exchange (ETDEWEB)

    Glamheden, Rune; Bergkvist, Lars (Golder Associates AB (Sweden)); Faelth, Billy (Clay Technology AB, Lund (Sweden)); Jacobsson, Lars (SP Technical Research Institute of Sweden, Boraas (Sweden)); Harrstroem, Johan (Geosigma AB, Uppsala (Sweden)); Berglund, Johan (Vattenfall Power Consultant AB, Stockholm (Sweden))

    2010-04-15

    The field experiment within CAPS (Counterforce Applied to Prevent Spalling) was initiated to determine if the application of dry bentonite pellets is sufficient to suppress thermally-induced spalling in KBS-3 deposition holes. The experience gained from Aespoe Pillar Stability Experiment, conducted between 2002 and 2006, indicated that spalling could be controlled by the application of a small confining pressure in the deposition holes. The CAPS field experiment that included four pairs of boreholes with a diameter of approximately 0.5 m, was carried out as a series of demonstration experiments in the TASQ-tunnel. The first and second heating tests were performed in open holes, without any confining pressure on the borehole wall and the third and fourth heating tests with a confining pressure created by expanded clay pellets (LECA). The first heating test was initiated at the end of August 2008 and the final test was finished at the end of May 2009. The trials suggest that the small confining pressure offered by the LECA pellets was adequate to control spalling and prevent the formation of a highly conductive zone of fractured rock in the 500-mm-diameter holes. It is recommended that a full-scale test be carried out to assess if the findings are applicable to 1,750-mm-diameter deposition holes. Should the full scale tests support the findings from these initial trials, filling the gap between the bentonite blocks and rock wall with dry bentonite pellets will provide a viable engineered solution for controlling the effects of thermally induced spalling in the KBS-3 deposition holes

  4. Layer transfer by controlled spalling

    International Nuclear Information System (INIS)

    Bedell, Stephen W; Fogel, Keith; Lauro, Paul; Shahrjerdi, Davood; Ott, John A; Sadana, Devendra

    2013-01-01

    In this communication, we present what may be the simplest method yet devised for removing surface layers from brittle substrates. The process is called controlled spalling technology (CST) and works by depositing a tensile stressor layer on the surface of a substrate, introducing a crack near the edge of the substrate, and mechanically guiding the crack as a single fracture front across the surface. The entire process is performed at room-temperature using only common laboratory equipment. We present here, for the first time, the specific process conditions required for controlled spalling of Ge 〈0 0 1〉 substrates using Ni as the stressor layer. We also illustrate the versatility of CST by removing completed CMOS circuits from a Si wafer and demonstrate functionality of the flexible circuits. Raman spectroscopy of spalled circuits with the Ni stressor intact indicates a residual compressive Si strain of 0.0029, in good agreement with the calculated value of 0.0022. Therefore, CST also permits new opportunities for strain engineering of nanoscale devices. (fast track communication)

  5. Combining Kohn-Sham and orbital-free density-functional theory for Hugoniot calculations to extreme pressures.

    Science.gov (United States)

    Sheppard, Daniel; Kress, Joel D; Crockett, Scott; Collins, Lee A; Desjarlais, Michael P

    2014-12-01

    The shock Hugoniot for lithium 6 deuteride ((6)LiD) was calculated via first principles using Kohn-Sham density-functional theory molecular dynamics (KSMD) for temperatures of 0.5-25 eV. The upper limit of 25 eV represents a practical limit where KSMD is no longer computationally feasible due to the number of electronic bands which are required to be populated. To push the Hugoniot calculations to higher temperatures we make use of orbital-free density-functional theory molecular dynamics (OFMD). Thomas-Fermi-Dirac-based OFMD gives a poor description of the electronic structure at low temperatures so the initial state is not well defined. We propose a method of bootstrapping the Hugoniot from OFMD to the Hugoniot from KSMD between 10 and 20 eV, where the two methods are in agreement. The combination of KSMD and OFMD allows construction of a first-principles Hugoniot from the initial state to 1000 eV. Theoretical shock-compression results are in good agreement with available experimental data and exhibit the appropriate high-temperature limits. We show that a unified KSMD-OFMD Hugoniot can be used to assess the quality of the existing equation-of-state (EOS) models and inform better EOS models based on justifiable physics.

  6. A physics-based algorithm for the estimation of bearing spall width using vibrations

    Science.gov (United States)

    Kogan, G.; Klein, R.; Bortman, J.

    2018-05-01

    Evaluation of the damage severity in a mechanical system is required for the assessment of its remaining useful life. In rotating machines, bearings are crucial components. Hence, the estimation of the size of spalls in bearings is important for prognostics of the remaining useful life. Recently, this topic has been extensively studied and many of the methods used for the estimation of spall size are based on the analysis of vibrations. A new tool is proposed in the current study for the estimation of the spall width on the outer ring raceway of a rolling element bearing. The understanding and analysis of the dynamics of the rolling element-spall interaction enabled the development of a generic and autonomous algorithm. The algorithm is generic in the sense that it does not require any human interference to make adjustments for each case. All of the algorithm's parameters are defined by analytical expressions describing the dynamics of the system. The required conditions, such as sampling rate, spall width and depth, defining the feasible region of such algorithms, are analyzed in the paper. The algorithm performance was demonstrated with experimental data for different spall widths.

  7. Structural properties of the Hugoniot curve

    International Nuclear Information System (INIS)

    Chaisse, F.

    2002-01-01

    This report is devoted to the structural properties analysis of the HUGONIOT curve, independently of the equation of state (E 0 S) display. The general properties so coming out are applied to the shock waves interacting studies. When phase transitions are present we investigate the splitting of shock waves and also the rarefaction waves. To end with, we present the shock instabilities and the non-uniqueness of solutions when specific E 0 S are present. (author)

  8. Recent Advances in Modeling Hugoniots with Cheetah

    Science.gov (United States)

    Glaesemann, K. R.; Fried, L. E.

    2006-07-01

    We describe improvements to the Cheetah thermochemical-kinetics code's equilibrium solver to enable it to find a wider range of thermodynamic states. Cheetah supports a wide range of elements, condensed detonation products, and gas phase reactions. Therefore, Cheetah can be applied to a wide range of shock problems involving both energetic and non-energetic materials. An improve equation of state is also introduced. New experimental validations of Cheetah's equation of state methodology have been performed, including both reacted and unreacted Hugoniots.

  9. Low pressure hugoniot cusp in polymeric materials

    Science.gov (United States)

    Sheffield, S. A.; Bloomquist, D. D.

    1982-04-01

    It has previously been shown that polymethyl methacrylate (PMMA) exhibits a cusp in the shock Hugoniot at about 2.0 GPa which corresponds with the beginning of shock-induced polarization and the beginning of an exothermic reaction measured in thermocouple and resistivity gauge temperature studies. We now report results we have recently obtained from an ongoing study which indicate that other polymers have similar behavior at about the same pressure. Quartz gauge impact experiments have been performed using polypyro-ellitimide (Vespel) and polysulfone impactors to obtain Hugoniot information and the stress history at the impact plane. In the case of Vespel a slight Hugoniot cusp was observed at about 1.8 GPa which coincides with the start of shock-induced polarization. Polysulfone does not appear to have a cusp but does show stress relaxation at the impact plane beginning at about 1.8 GPa, again coinciding with the start of shock-induced polarization. It has been suggested earlier that the abnormal behavior in PMMA is the result of a shock-induced chemical reaction. This new information suggests that a stress of about 2 GPa is a threshold for shock-induced chemical reaction in several polymers.

  10. The principal Hugoniot of Mg2SiO4 to 950 GPa

    Science.gov (United States)

    Townsend, J. P.; Root, S.; Shulenburger, L.; Lemke, R. W.; Kraus, R. G.; Jacobsen, S. B.; Spaulding, D.; Davies, E.; Stewart, S. T.

    2017-12-01

    We present new measurements and ab-initio calculations of the principal Hugoniot states of forsterite Mg2SiO4 in the liquid regime between 200-950 GPa.Forsterite samples were shock compressed along the principal Hugoniot using plate-impact shock compression experiments on the Sandia National Laboratories Z machine facility.In order to gain insight into the physical state of the liquid, we performed quantum molecular dynamics calculations of the Hugoniot and compare the results to experiment.We show that the principal Hugoniot is consistent with that of a single molecular fluid phase of Mg2SiO4, and compare our results to previous dynamic compression experiments and QMD calculations.Finally, we discuss how the results inform planetary accretion and impact models.Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

  11. Experimental and numerical study of the micro-spalling of metallic targets subjected to laser shock

    International Nuclear Information System (INIS)

    Loison, D.

    2012-01-01

    Micro-spalling is a failure phenomenon consisting in dynamic fragmentation of a material after partial or full melting under intense shock wave loading. High power pulsed lasers are used as shock wave generators in laboratory for scientific and industrial purposes, such as research on inertial confinement fusion. In this context, the production of high velocity fragments can damage the facilities where shock experiments are conducted. This thesis, realized in collaboration with different teams from CEA, aims at understanding and modeling the different processes involved in micro-spalling phenomenon. Experiments to study micro-spalling of laser shock-loaded tin and aluminum targets have been performed. Various and complementary diagnostics (photonic Doppler velocimetry, soft recovery of debris and microtomography) have been used to characterize the ballistic properties (size distributions and velocities) of droplets constituting the micro-spalling cloud. In parallel, phase transition and fragmentation models have been adapted to simulate micro-spalling. These models have been implemented in a code to predict the sizes and velocities of debris. The combination of experimental and numerical results allows characterizing the successive stages of micro-spalling from laser-matter interaction to the ejection of droplets. (author)

  12. Hugoniot and refractive indices of bromoform under shock compression

    Science.gov (United States)

    Liu, Q. C.; Zeng, X. L.; Zhou, X. M.; Luo, S. N.

    2018-01-01

    We investigate physical properties of bromoform (liquid CHBr3) including compressibility and refractive index under dynamic extreme conditions of shock compression. Planar shock experiments are conducted along with high-speed laser interferometry. Our experiments and previous results establish a linear shock velocity-particle velocity relation for particle velocities below 1.77 km/s, as well as the Hugoniot and isentropic compression curves up to ˜21 GPa. Shock-state refractive indices of CHBr3 up to 2.3 GPa or ˜26% compression, as a function of density, can be described with a linear relation and follows the Gladstone-Dale relation. The velocity corrections for laser interferometry measurements at 1550 nm are also obtained.

  13. Hugoniot and refractive indices of bromoform under shock compression

    Directory of Open Access Journals (Sweden)

    Q. C. Liu

    2018-01-01

    Full Text Available We investigate physical properties of bromoform (liquid CHBr3 including compressibility and refractive index under dynamic extreme conditions of shock compression. Planar shock experiments are conducted along with high-speed laser interferometry. Our experiments and previous results establish a linear shock velocity−particle velocity relation for particle velocities below 1.77 km/s, as well as the Hugoniot and isentropic compression curves up to ∼21 GPa. Shock-state refractive indices of CHBr3 up to 2.3 GPa or ∼26% compression, as a function of density, can be described with a linear relation and follows the Gladstone-Dale relation. The velocity corrections for laser interferometry measurements at 1550 nm are also obtained.

  14. Study of flow stress and spall strength of additively manufactured Ti-6-4 alloy

    Science.gov (United States)

    Cohen, Amitay; Paris, Vitaly; Yosef-Hai, Arnon; Gudinetsky, Eli; Tiferet, Eitan

    2017-06-01

    The use of additive manufacturing (AM) by Electron Beam Melting (EBM) or Selective Laser Melting (SLM) has extensively grown in the past few years. A major goal in AM is to manufacture materials with mechanical properties at least as good as traditionally manufactured materials. In this work we present results of planar impact tests and Split Hopkinson Pressure Bar tests (SHPB) on Ti-6-4 manufactured by EBM and SLM processes. Results of planar impact tests on SLM samples display slightly higher spall strength compared to EBM while the stress at Hugoniot elastic limit (HEL) is practically the same. Stress strain curves based on SHPB measurements at two different strain rates present similar plastic flow stresses for SLM and EBM processed Ti-6-4 alloy, while the flow stress is about 20% higher than reported for commercial reference material. The strain to failure of both materials shows considerable strain rate sensitivity. The results of post-mortem analysis of spall fracture will also be presented.

  15. Dynamic material properties of refractory metals: tantalum and tantalum/tungsten alloys

    International Nuclear Information System (INIS)

    Furnish, M.D.; Lassila, D.H.; Chhabildas, L.C.; Steinberg, D.J.

    1996-01-01

    We have made a careful set of impact wave-profile measurements (16 profiles) on tantalum and tantalum-tungsten alloys at relatively low stresses (to 15 GPa). Alloys used were Ta 96.5 W 3.5 and Ta 86.5 W 13.5 (wt%) with oxygen contents of 30 endash 70 ppm. Information available from these experiments includes Hugoniot, elastic limits, loading rates, spall strength, unloading paths, reshock structure and specimen thickness effects. Hugoniot and spall properties are illustrated, and are consistent with expectations from earlier work. Modeling the tests with the Steinberg-Guinan-Lund rate-dependent material model provides for an excellent match of the shape of the plastic loading wave. The release wave is not well modeled due to the absence of the dynamic Bauschinger effect. There is also a discrepancy between experiments and calculations regarding the relative timing of the elastic and plastic waves that may be due to texture effects. copyright 1996 American Institute of Physics

  16. The shock and spall response of AA 7010-T7651

    Science.gov (United States)

    Hazell, Paul; Appleby-Thomas, Gareth; Wood, David; Painter, Jonathan

    2013-06-01

    Aluminium alloys are used extensively in armour. Their use as armour materials is primarily due to their relatively low densities and their high strength characteristics. The aerospace-grade 7000-series alloy Al7010-T7651 is one possible contender for armour. In this study a series of plate-impact experiments were undertaken to investigate the behaviour of this alloy under shock. Manganin stress gauges and a heterodyne velocimeter system were used to interrogate both strength and dynamic tensile failure (spall) respectively; with microscopic analysis of recovered samples providing insight into the development of failure in the material.

  17. The dynamic response of carbon fiber-filled polymer composites

    Directory of Open Access Journals (Sweden)

    Patterson B.

    2012-08-01

    Full Text Available The dynamic (shock responses of two carbon fiber-filled polymer composites have been quantified using gas gun-driven plate impact experimentation. The first composite is a filament-wound, highly unidirectional carbon fiber-filled epoxy with a high degree of porosity. The second composite is a chopped carbon fiber- and graphite-filled phenolic resin with little-to-no porosity. Hugoniot data are presented for the carbon fiber-epoxy (CE composite to 18.6 GPa in the through-thickness direction, in which the shock propagates normal to the fibers. The data are best represented by a linear Rankine-Hugoniot fit: Us = 2.87 + 1.17 ×up(ρ0 = 1.536g/cm3. The shock wave structures were found to be highly heterogeneous, both due to the anisotropic nature of the fiber-epoxy microstructure, and the high degree of void volume. Plate impact experiments were also performed on a carbon fiber-filled phenolic (CP composite to much higher shock input pressures, exceeding the reactants-to-products transition common to polymers. The CP was found to be stiffer than the filament-wound CE in the unreacted Hugoniot regime, and transformed to products near the shock-driven reaction threshold on the principal Hugoniot previously shown for the phenolic binder itself. [19] On-going research is focused on interrogating the direction-dependent dyanamic response and dynamic failure strength (spall for the CE composite in the TT and 0∘ (fiber directions.

  18. Structural properties of the Hugoniot curve; Proprietes structurales de la courte d'Hugoniot

    Energy Technology Data Exchange (ETDEWEB)

    Chaisse, F

    2002-07-01

    This report is devoted to the structural properties analysis of the HUGONIOT curve, independently of the equation of state (E 0 S) display. The general properties so coming out are applied to the shock waves interacting studies. When phase transitions are present we investigate the splitting of shock waves and also the rarefaction waves. To end with, we present the shock instabilities and the non-uniqueness of solutions when specific E 0 S are present. (author)

  19. The spalling mechanism of fire exposed concrete

    NARCIS (Netherlands)

    Lottman, B.B.G.

    2017-01-01

    --- ENGLISH VERSION --- The spalling damage observed to concrete structures after severe fire exposure has been the topic of scientific research for the past decades. This phenomenon is commonly characterised by the sudden and in some cases violent breaking off of concrete pieces from the

  20. Spalling of concrete as studied by NMR

    NARCIS (Netherlands)

    Pel, L.; Heijden, van der G.H.A.; Huinink, H.P.; Marchand, J.; Bissonnette, B.; Gagné, R.; Jolin, M.

    2006-01-01

    During the past twenty years concrete has developed in both strength and durability. A downside to these improvements is the increased risk of explosive spalling in case of fire. Different factors such as heating rate, applied loading, permeability, and moisture saturation play an important role in

  1. Low temperature spalling of silicon: A crack propagation study

    Energy Technology Data Exchange (ETDEWEB)

    Bertoni, Mariana; Uberg Naerland, Tine; Stoddard, Nathan; Guimera Coll, Pablo

    2017-06-08

    Spalling is a promising kerfless method for cutting thin silicon wafers while doubling the yield of a silicon ingot. The main obstacle in this technology is the high total thickness variation of the spalled wafers, often as high as 100% of the wafer thickness. It has been suggested before that a strong correlation exists between low crack velocities and a smooth surface, but this correlation has never been shown during a spalling process in silicon. The reason lies in the challenge associated to measuring such velocities. In this contribution, we present a new approach to assess, in real time, the crack velocity as it propagates during a low temperature spalling process. Understanding the relationship between crack velocity and surface roughness during spalling can pave the way to attain full control on the surface quality of the spalled wafer.

  2. Limits of Spalling of Fire-Exposed Concrete

    DEFF Research Database (Denmark)

    Hertz, Kristian Dahl

    2003-01-01

    on the nature of spalling, add the latest findings from the research of the author, and derives limits within which spalling should not take place. Some guidelines are formulated based on experience from research and practise for reducing the spalling risk for constructions beyond the safe design limits....... The limits provided are those, which can be stated at present, but further research is in progress, identifying more precisely the range of materials susceptible to spalling and contributing to the full understanding of the phenomenon....

  3. Spalling of concrete subjected to blast loading

    Directory of Open Access Journals (Sweden)

    Foglar M.

    2013-09-01

    Full Text Available This paper presents outcomes of the blast field tests of FRC and reinforced concrete specimens, which were performed in cooperation with the Czech Army corps and Police of the Czech Republic in the military training area Boletice. The numerical evaluation of the experiments focused on the spalling of concrete subjected to blast loading started after the first set of the tests, took almost 3 years and required further small-scale experiments performed in the labs of the Czech Technical University.

  4. The virtual fields method applied to spalling tests on concrete

    Directory of Open Access Journals (Sweden)

    Forquin P.

    2012-08-01

    Full Text Available For one decade spalling techniques based on the use of a metallic Hopkinson bar put in contact with a concrete sample have been widely employed to characterize the dynamic tensile strength of concrete at strain-rates ranging from a few tens to two hundreds of s−1. However, the processing method mainly based on the use of the velocity profile measured on the rear free surface of the sample (Novikov formula remains quite basic and an identification of the whole softening behaviour of the concrete is out of reach. In the present paper a new processing method is proposed based on the use of the Virtual Fields Method (VFM. First, a digital high speed camera is used to record the pictures of a grid glued on the specimen. Next, full-field measurements are used to obtain the axial displacement field at the surface of the specimen. Finally, a specific virtual field has been defined in the VFM equation to use the acceleration map as an alternative ‘load cell’. This method applied to three spalling tests allowed to identify Young’s modulus during the test. It was shown that this modulus is constant during the initial compressive part of the test and decreases in the tensile part when micro-damage exists. It was also shown that in such a simple inertial test, it was possible to reconstruct average axial stress profiles using only the acceleration data. Then, it was possible to construct local stress-strain curves and derive a tensile strength value.

  5. Copper Hugoniot measurements to 2.8 TPa on Z.

    Energy Technology Data Exchange (ETDEWEB)

    Furnish, Michael D.; Haill, Thomas A

    2018-04-01

    We conducted three Hugoniot and release experiments on copper on the Z machine at Hugoniot stress levels of 0.34 and 2.6 TPa, using two-layer copper/aluminum impactors travelling at 8 and 27 km/s and Z-quartz windows. Velocity histories were recorded for 4 samples of different thicknesses and 5 locations on the flyer plate (3 and 4 for the first two experiments). On-sample measurements provided Hugoniot points (via transit time) and partial release states (via Z-quartz wavespeed). Fabrication of the impactor required thick plating and several diamond-machining steps. The lower-pressure test was planned as a 2.5 TPa test, but a failure on the Z machine degraded its performance; however, these results corroborated earlier Cu data in the same stress region. The second test suffered from significant flyer plate bowing, but the third did not. The Hugoniot data are compared with the APtshuler/Nellis nuclear-driven data, other data from Z and elsewhere, and representative Sesame models.

  6. Hugoniot curve of vitreous silica and crystallisation under shock

    International Nuclear Information System (INIS)

    Viard, Jean

    1959-01-01

    The Hugoniot curve of vitreous silica shows a discontinuity of slope towards 135 kb, a sign of the passage, from the vitreous state to a crystalline structure in the shock wave. Reprint of a paper published in Comptes rendus des seances de l'Academie des Sciences, t. 249, p. 820-822, sitting of 10 August 1959 [fr

  7. Spall behavior of cast iron with varying microstructures

    International Nuclear Information System (INIS)

    Plume, Gifford; Rousseau, Carl-Ernst

    2014-01-01

    The spall strength of cast iron with varying microstructures has been investigated using plate impact at moderate speed. Stress history measurements were made with manganin stress gauges embedded between the back face of the specimen and a low impedance polycarbonate backing. Five separate cast irons were tested. Four of these consisted of gray cast iron with graphite in flake form, with three classified as Type VII A2 and the fourth containing a bimodal distribution of Types VII A4 and VII D8. The fifth casting consisted of ductile cast iron with graphite in nodular form, classified as Type I, size class 5. The spall strength for the Type VII A2 gray cast irons varied between 40 and 370 MPa, and that of the additional gray cast iron, between 410 and 490 MPa. The spall strength of the ductile cast iron fell within the range of 0.94–1.2 GPa. It is shown that the spall strength is linked to the damage level at the spall plane, where an increased level of tensile stress is required to generate higher levels of damage. Post mortem analysis was performed on the recovered samples, revealing the graphite phase to be the primary factor governing the spall fracture of cast irons, where crack nucleation is directly correlated to the debonding of graphite from the metal matrix. The average length of graphite found within a casting is linked to the material's strength, where strength increases as a function of decreasing length. The morphology and mean free path of graphite precipitates further govern the subsequent coalescence of initiated cracks to form a complete fracture plane. In cases where graphite spacing is large, increased energy level is required to complete the fracture process. A secondary factor governing the spall fracture of cast irons has also been linked to the microstructure of the metal matrix, with pearlite yielding higher spall strengths than free ferrite.

  8. Spall behavior of cast iron with varying microstructures

    Energy Technology Data Exchange (ETDEWEB)

    Plume, Gifford; Rousseau, Carl-Ernst, E-mail: rousseau@uri.edu [Mechanical Engineering, University of Rhode Island, 92 Upper College Rd., Kingston, Rhode Island 02881 (United States)

    2014-07-21

    The spall strength of cast iron with varying microstructures has been investigated using plate impact at moderate speed. Stress history measurements were made with manganin stress gauges embedded between the back face of the specimen and a low impedance polycarbonate backing. Five separate cast irons were tested. Four of these consisted of gray cast iron with graphite in flake form, with three classified as Type VII A2 and the fourth containing a bimodal distribution of Types VII A4 and VII D8. The fifth casting consisted of ductile cast iron with graphite in nodular form, classified as Type I, size class 5. The spall strength for the Type VII A2 gray cast irons varied between 40 and 370 MPa, and that of the additional gray cast iron, between 410 and 490 MPa. The spall strength of the ductile cast iron fell within the range of 0.94–1.2 GPa. It is shown that the spall strength is linked to the damage level at the spall plane, where an increased level of tensile stress is required to generate higher levels of damage. Post mortem analysis was performed on the recovered samples, revealing the graphite phase to be the primary factor governing the spall fracture of cast irons, where crack nucleation is directly correlated to the debonding of graphite from the metal matrix. The average length of graphite found within a casting is linked to the material's strength, where strength increases as a function of decreasing length. The morphology and mean free path of graphite precipitates further govern the subsequent coalescence of initiated cracks to form a complete fracture plane. In cases where graphite spacing is large, increased energy level is required to complete the fracture process. A secondary factor governing the spall fracture of cast irons has also been linked to the microstructure of the metal matrix, with pearlite yielding higher spall strengths than free ferrite.

  9. Shock Hugoniot measurements on Ta to 0.78 TPa

    International Nuclear Information System (INIS)

    Froeschner, K.E.; Lee, R.S.; Chau, H.H.; Weingart, R.C.

    1983-01-01

    Symmetric impact shock Hugoniot measurements have been made on Ta with an electrically exploded foil gun system. The results obtained to date for the Hugoniot of Ta cover the range 0.19 to 0.78 TPa (impact velocities from 4.0 to 9.7 km/s) and agree with data obtained by other researchers to within 2.7% rms. Recent improvements in the system include electromagnetic shielding of impactor and target, continuous measurement of impactor velocity with a Fabry-Perot interferometer and computer-aided analysis of shot film. Conservative extrapolation from current operating conditions indicate that pressures of 1.1 to 1.5 TPa could be achieved with little difficulty

  10. Spall behaviors of high purity copper under sweeping detonation

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yang, E-mail: yangyanggroup@163.com [School of Material Science and Engineering, Central South University, Changsha 410083 (China); Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621900 (China); National Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081 (China); Key Laboratory of Nonferrous Metals Material Science and Engineering of Ministry of Education, Central South University, Changsha 410083 (China); Zhi-qiang, Peng; Xing-zhi, Chen [School of Material Science and Engineering, Central South University, Changsha 410083 (China); Key Laboratory of Nonferrous Metals Material Science and Engineering of Ministry of Education, Central South University, Changsha 410083 (China); Zhao-liang, Guo; Tie-gang, Tang; Hai-bo, Hu [Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621900 (China); Qing-ming, Zhang [National Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081 (China)

    2016-01-10

    Suites of sweeping detonation experiments were conducted to assess the spall behavior of high purity copper samples with different heat treatment histories. Incipient spall samples were obtained at different sweeping detonation condition. Metallographic and Electron Backscattered Diffraction (EBSD) analyses were performed on the soft-recovered samples. The effects of grain boundaries, grain size, crystal orientation and loading direction on the spall behaviors were discussed. Spall plane branching was found in the main spall plane of the damage samples. For similar microstructure, the area of voids increase with the increase of shock stress, and the coalescence of voids also become more obvious. Results from EBSD analysis show that the grain sizes were decreased and the grains were elongated along the direction of the plate width. Triple junctions composed of two or more general high angle boundaries are the preferred locations for intergranular damage. Voids prefer to nucleate in the grain boundaries composed of grain with high Taylor Factor (TF) than other grains. The damage areas in the grains with high TF are more severe. Boundaries close to perpendicular to the loading direction are more susceptible to void nucleation than the boundaries close to parallel to the loading direction, but the difference of voids nucleated in these two boundaries is less significant than the results obtained by plate impact experiment. It would be caused by the obliquity between the shock loading direction and the plate normal.

  11. Spall Strength Measurements of Concrete for Varying Aggregate Sizes

    International Nuclear Information System (INIS)

    Chhabildas, Lalit C.; Kipp, Marlin E.; Reinhart, William D.; Wilson, Leonard T.

    1999-01-01

    Controlled impact experiments have been performed to determine the spall strength of four different concrete compositions. The four concrete compositions are identified as, 'SAC-5, CSPC', (''3/4'') large, and (''3/8'') small, Aggregate. They differ primarily in aggregate size but with average densities varying by less than five percent. Wave profiles from sixteen experiments, with shock amplitudes of 0.07 to 0.55 GPa, concentrate primarily within the elastic regime. Free-surface particle velocity measurements indicate consistent pullback signals in the release profiles, denoting average span strength of approximately 40 MPa. It is the purpose of this paper to present spall measurements under uniaxial strain loading. Notwithstanding considerable wave structure that is a unique characteristic to the heterogeneous nature of the scaled concrete, the spall amplitudes appear reproducible and consistent over the pressure range reported in this study

  12. Spall behaviour of single crystal aluminium at three principal orientations

    Science.gov (United States)

    Owen, G. D.; Chapman, D. J.; Whiteman, G.; Stirk, S. M.; Millett, J. C. F.; Johnson, S.

    2017-10-01

    A series of plate impact experiments have been conducted to study the spall strength of the three principal crystallographic orientations of single crystal aluminium ([100], [110] and, [111]) and ultra-pure polycrystalline aluminium. The samples have been shock loaded at two impact stresses (4 GPa and 10 GPa). Significant differences have been observed in the elastic behaviour, the pullback velocities, and the general shape of the wave profiles, which can be accounted for by considerations of the microscale homogeneity, the dislocation density, and the absence of grain boundaries in the single crystal materials. The data have shown that there is a consistent order of spall strength measured for the four sample materials. The [111] orientation has the largest spall strength and elastic limit, followed closely by [110], [100], and then the polycrystalline material. This order is consistent with both quasi-static data and geometrical consideration of Schmid factors.

  13. A survey of high explosive-induced damage and spall in selected metals using proton radiography

    International Nuclear Information System (INIS)

    Holtkamp, D.B.; Clark, D.A.; Ferm, E.N.; Gallegos, R.A.; Hammon, D.; Hemsing, W.F.; Hogan, G.E.; Holmes, V.H.; King, N.S.P.; Lopez, R.P.; Merrill, F.E.; Morris, C.L.; Morley, K.B.; Murray, M.M.; Pazuchanics, P.D.; Prestridge, K.P.; Quintana, J.P.; Saunders, A.; Shinas, M.A.; Stacy, H.L.

    2004-01-01

    Multiple spall and damage layers can be created in metal when the free surface reflects a Taylor wave generated by high explosives. These phenomena have been explored in different thicknesses of several metals (tantalum, copper, 6061 T6-aluminum, and tin) using high-energy proton radiography. Multiple images (up to 21) can be produced of the dynamic evolution of damaged material on the microsecond time scale with a <50 ns 'shutter' time. Movies and multiframe still images of areal and (Abel inverted) volume densities are presented. An example of material that is likely melted on release (tin) is also presented

  14. Ultrasonic detection of spall damage nucleation under low-velocity repeated impact

    Directory of Open Access Journals (Sweden)

    Watanabe T.

    2012-08-01

    Full Text Available Repeated plate impact testing with impact stress well below the threshold spall-stress (2.6 GPa on medium carbon steel was carried out to the identical target plate by impacting the flyer plate. Occurrence of spall damage under low-velocity repeated impact was evaluated nondestructively with a low frequency scanning acoustic microscope. We observed the spall damage distribution by the B- and C-scan images. In order to initiate the spall damage (voids in a ductile material or cracks in a brittle one the particular value of threshold spall-stress should be exceeded what already belongs to a commonly accepted knowledge. Generally, the spall damage development is dependent on the amplitude and the duration of the stress pulse. If the stress is high and duration is long enough to create tensile failure of material, the voids or cracks nucleate along the spall plane, and consequently, they form macrocracks. Therefore, the spall damage does not create when the first impact stress is less than the threshold spall-stress. However, after the fifth low-velocity repeated impact test, the generation of the spall damage was detected, even if the impact stress (1.1–1.7 GPa was lower than the threshold spall-stress (2.6 GPa.

  15. RANKINE-HUGONIOT RELATIONS IN RELATIVISTIC COMBUSTION WAVES

    International Nuclear Information System (INIS)

    Gao Yang; Law, Chung K.

    2012-01-01

    As a foundational element describing relativistic reacting waves of relevance to astrophysical phenomena, the Rankine-Hugoniot relations classifying the various propagation modes of detonation and deflagration are analyzed in the relativistic regime, with the results properly degenerating to the non-relativistic and highly relativistic limits. The existence of negative-pressure downstream flows is noted for relativistic shocks, which could be of interest in the understanding of the nature of dark energy. Entropy analysis for relativistic shock waves is also performed for relativistic fluids with different equations of state (EoS), denoting the existence of rarefaction shocks in fluids with adiabatic index Γ < 1 in their EoS. The analysis further shows that weak detonations and strong deflagrations, which are rare phenomena in terrestrial environments, are expected to exist more commonly in astrophysical systems because of the various endothermic reactions present therein. Additional topics of relevance to astrophysical phenomena are also discussed.

  16. Mesoscale simulation of concrete spall failure

    Science.gov (United States)

    Knell, S.; Sauer, M.; Millon, O.; Riedel, W.

    2012-05-01

    Although intensively studied, it is still being debated which physical mechanisms are responsible for the increase of dynamic strength and fracture energy of concrete observed at high loading rates, and to what extent structural inertia forces on different scales contribute to the observation. We present a new approach for the three dimensional mesoscale modelling of dynamic damage and cracking in concrete. Concrete is approximated as a composite of spherical elastic aggregates of mm to cm size embedded in an elastic cement stone matrix. Cracking within the matrix and at aggregate interfaces in the μm range are modelled with adaptively inserted—initially rigid—cohesive interface elements. The model is applied to analyse the dynamic tensile failure observed in Hopkinson-Bar spallation experiments with strain rates up to 100/s. The influence of the key mesoscale failure parameters of strength, fracture energy and relative weakening of the ITZ on macromechanic strength, momentum and energy conservation is numerically investigated.

  17. Evaluation of TBM tunnels with respect to stability against spalling

    Science.gov (United States)

    Shaalan, Heyam; Ismail, Mohd Ashraf Mohd; Azit, Romziah

    2017-10-01

    As the depth of tunnels and underground construction increases, instability occurs in the form of rock bursting or spalling because of the induced stresses. Spalling may appear as a strong compressive stress causing crack growth behind the excavated surface and buckling of the thin rock slabs. In this paper, we describe how to reduce the rock spalling failure to increase the underground safety and the tunnel stability. Thus, a parametric study is implemented using 2-D Elasto-plastic finite elements stress analysis software to investigate the parameters that can minimize the extent and depth of the failure zone. The critical section of Pahang Selangor Raw Water Transfer Tunnel under high overburden is analyzed. The effect of the shotcrete lining thickness, tunnel size and the removal of fallouts or scaled v-notch on the failure zone depth is investigated. The results demonstrate that the shotcrete lining thickness has less influence on the failure depth, while a small tunnel diameter minimizes the failure depth. In addition, the stability of the tunnel improves by removing the loose rock mass.

  18. Prediction of the spatial occurrence of fire induced spalling in concrete slabs using random fields

    Directory of Open Access Journals (Sweden)

    Van Coile R.

    2013-09-01

    Full Text Available As the loss of concrete cover can significantly influence the reliability of concrete elements during fire, spalling should be taken into account when performing reliability calculations. However, the occurrence and spatial variation of spalling are highly uncertain. A first step towards a probabilistic analysis of spalling is made by combining existing deterministic models with a stochastic representation of the concrete tensile strength and by using random fields to model the tensile strength spatial variation.

  19. Hugoniot measurements of double-shocked precompressed dense xenon plasmas

    Science.gov (United States)

    Zheng, J.; Chen, Q. F.; Gu, Y. J.; Chen, Z. Y.

    2012-12-01

    The current partially ionized plasmas models for xenon show substantial differences since the description of pressure and thermal ionization region becomes a formidable task, prompting the need for an improved understanding of dense xenon plasmas behavior at above 100 GPa. We performed double-shock compression experiments on dense xenon to determine accurately the Hugoniot up to 172 GPa using a time-resolved optical radiation method. The planar strong shock wave was produced using a flyer plate impactor accelerated up to ˜6 km/s with a two-stage light-gas gun. The time-resolved optical radiation histories were acquired by using a multiwavelength channel optical transience radiance pyrometer. Shock velocity was measured and mass velocity was determined by the impedance-matching methods. The experimental equation of state of dense xenon plasmas are compared with the self-consistent fluid variational calculations of dense xenon in the region of partial ionization over a wide range of pressures and temperatures.

  20. Preventive effect on spalling of UFC using jute fiber at high temperature

    Directory of Open Access Journals (Sweden)

    Ozawa M.

    2013-09-01

    Full Text Available In this study, we examined the relationship between spalling behaviour and spalling ratio of UFC with three kinds of short fibers (jute, polypropylene, water-soluble polyvinyl alcohol at high temperature. The heating temperatures were 400 °C and 600 °C. Although the specimen with jute fiber dosage of 0.19% by volume was occurred explosive spalling, the damage of specimen was slightly small. It appears that the addition of jute fiber to UFC is effective for preventing spalling.

  1. Spall damage of a mild carbon steel: Effects of peak stress, strain rate and pulse duration

    International Nuclear Information System (INIS)

    Li, C.; Li, B.; Huang, J.Y.; Ma, H.H.; Zhu, M.H.; Zhu, J.; Luo, S.N.

    2016-01-01

    We investigate spall damage of a mild carbon steel under high strain-rate loading, regarding the effects of peak stress, strain rate, and pulse duration on spall strength and damage, as well as related microstructure features, using gas gun plate impact, laser velocimetry, and electron backscatter diffraction analysis. Our experiments demonstrate strong dependences of spall strength on peak stress and strain rate, and its weak dependence on pulse duration. We establish numerical relations between damage and peak stress or pulse duration. Brittle and ductile spall fracture modes are observed at different loading conditions. Damage nucleates at grain boundaries and triple junctions, either as transgranular cleavage cracks or voids.

  2. Spall damage of a mild carbon steel: Effects of peak stress, strain rate and pulse duration

    Energy Technology Data Exchange (ETDEWEB)

    Li, C. [College of Physical Science and Technology, Sichuan University, Chengdu, Sichuan 610064 (China); Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); The Peac Institute of Multiscale Sciences, Chengdu, Sichuan 610031 (China); Li, B.; Huang, J.Y. [The Peac Institute of Multiscale Sciences, Chengdu, Sichuan 610031 (China); CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027 (China); Ma, H.H. [CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027 (China); Zhu, M.H. [Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Zhu, J., E-mail: zhujun01@163.com [College of Physical Science and Technology, Sichuan University, Chengdu, Sichuan 610064 (China); Luo, S.N., E-mail: sluo@pims.ac.cn [The Peac Institute of Multiscale Sciences, Chengdu, Sichuan 610031 (China); Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China)

    2016-04-13

    We investigate spall damage of a mild carbon steel under high strain-rate loading, regarding the effects of peak stress, strain rate, and pulse duration on spall strength and damage, as well as related microstructure features, using gas gun plate impact, laser velocimetry, and electron backscatter diffraction analysis. Our experiments demonstrate strong dependences of spall strength on peak stress and strain rate, and its weak dependence on pulse duration. We establish numerical relations between damage and peak stress or pulse duration. Brittle and ductile spall fracture modes are observed at different loading conditions. Damage nucleates at grain boundaries and triple junctions, either as transgranular cleavage cracks or voids.

  3. Continuous Sound Velocity Measurements along the Shock Hugoniot Curve of Quartz

    Science.gov (United States)

    Li, Mu; Zhang, Shuai; Zhang, Hongping; Zhang, Gongmu; Wang, Feng; Zhao, Jianheng; Sun, Chengwei; Jeanloz, Raymond

    2018-05-01

    We report continuous measurements of the sound velocity along the principal Hugoniot curve of α quartz between 0.25 and 1.45 TPa, as determined from lateral release waves intersecting the shock front as a function of time in decaying-shock experiments. The measured sound velocities are lower than predicted by prior models, based on the properties of stishovite at densities below ˜7 g /cm3 , but agree with density functional theory molecular dynamics calculations and an empirical wide-regime equation of state presented here. The Grüneisen parameter calculated from the sound velocity decreases from γ ˜1 .3 at 0.25 TPa to 0.66 at 1.45 TPa. In combination with evidence for increased (configurational) specific heat and decreased bulk modulus, the values of γ suggest a high thermal expansion coefficient at ˜0. 25 - 0 .65 TPa , where SiO2 is thought to be a bonded liquid. From our measurements, dissociation of the molecular bonds persists to ˜0. 65 - 1 .0 TPa , consistent with estimates by other methods. At higher densities, the sound velocity is close to predictions from previous models, and the Grüneisen parameter approaches the ideal gas value.

  4. Test Method for Spalling of Fire Exposed Concrete

    DEFF Research Database (Denmark)

    Hertz, Kristian Dahl; Sørensen, Lars Schiøtt

    2005-01-01

    A new material test method is presented for determining whether or not an actual concrete may suffer from explosive spalling at a specified moisture level. The method takes into account the effect of stresses from hindered thermal expansion at the fire-exposed surface. Cylinders are used, which...... in many countries serve as standard specimens for testing the compressive strength. Consequently, the method is quick, cheap and easy to use in comparison to the alternative of testing full-scale or semi full-scale structures with correct humidity, load and boundary conditions. A number of concretes have...

  5. Twin boundary spacing effects on shock response and spall behaviors of hierarchically nanotwinned fcc metals

    International Nuclear Information System (INIS)

    Yuan, Fuping; Chen, Liu; Jiang, Ping; Wu, Xiaolei

    2014-01-01

    Atomistic deformation mechanisms of hierarchically nano-twinned (NT) Ag under shock conditions have been investigated using a series of large-scale molecular dynamics simulations. For the same grain size d and the same spacing of primary twins λ 1 , the average flow stress behind the shock front in hierarchically NT Ag first increases with decreasing spacing of secondary twins λ 2 , achieving a maximum at a critical λ 2 , and then drops as λ 2 decreases further. Above the critical λ 2 , the deformation mechanisms are dominated by three type strengthening mechanisms: (a) partial dislocations emitted from grain boundaries (GBs) travel across other boundaries; (b) partial dislocations emitted from twin boundaries (TBs) travel across other TBs; (c) formation of tertiary twins. Below the critical λ 2 , the deformation mechanism are dominated by two softening mechanisms: (a) detwinning of secondary twins; (b) formation of new grains by cross slip of partial dislocations. Moreover, the twin-free nanocrystalline (NC) Ag is found to have lower average flow stress behind the shock front than those of all hierarchically NT Ag samples except the one with the smallest λ 2 of 0.71 nm. No apparent correlation between the spall strength and λ 2 is observed in hierarchically NT Ag, since voids always nucleate at both GBs and boundaries of the primary twins. However, twin-free NC Ag is found to have higher spall strength than hierarchically NT Ag. Voids can only nucleate from GBs for twin-free NC Ag, therefore, twin-free NC Ag has less nucleation sources along the shock direction when compared to hierarchically NT Ag, which requiring higher tensile stress to create spallation. These findings should contribute to the understandings of deformation mechanisms of hierarchically NT fcc metals under extreme deformation conditions

  6. Investigation on Mie-Grüneisen type shock Hugoniot equation of state for concrete

    Directory of Open Access Journals (Sweden)

    M Katayama

    2017-09-01

    Full Text Available This paper ascertains that the bilinear shock Hugoniot equation of state (EOS can model the plasticizing process of the porous media like concrete material for high-velocity impact problems successfully. The negative slope of the bilinear Hugoniot for low particle velocity regime can simulate the process that the porosity of concrete may be compressed to form shock wave in concrete, through a series of numerical analyses over the investigation on the physical phenomena. The results of particle velocity for the concrete material are also discussed to be compared with those of non-porous aluminum alloy for 100 and 1000 m/s impact velocities. All the numerical simulations were carried out by applying the bilinear shock Hugoniot EOS to concrete which was linked to the binary object of a hydrocode: ANSYS Autodyn®[1−3] through a user’s subroutine.

  7. Shock Hugoniot and temperature data for polystyrene obtained with quartz standard

    International Nuclear Information System (INIS)

    Ozaki, N.; Kimura, T.; Miyanishi, K.; Endo, T.; Sano, T.; Shigemori, K.; Azechi, H.; Hironaka, Y.; Kadono, T.; Nagatomo, H.; Nakai, M.; Norimatsu, T.; Otani, K.; Shiroshita, A.; Sunahara, A.; Ikoma, M.; Hori, Y.; Vinci, T.; Ree, F. H.; Iwamoto, A.

    2009-01-01

    Equation-of-state data, not only pressure and density but also temperature, for polystyrene (CH) are obtained up to 510 GPa. The region investigated in this work corresponds to an intermediate region, bridging a large gap between available gas-gun data below 60 GPa and laser shock data above 500 GPa. The Hugoniot parameters and shock temperature were simultaneously determined by using optical velocimeters and pyrometers as the diagnostic tools and the α-quartz as a new standard material. The CH Hugoniot obtained tends to become stiffer than a semiempirical chemical theoretical model predictions at ultrahigh pressures but is consistent with other models and available experimental data.

  8. Explosive Spalling of Fire Exposed Resource Saving Concrete Structures

    DEFF Research Database (Denmark)

    Sørensen, Lars Schiøtt; Hertz, Kristian Dahl; Kristiansen, Finn Harken

    2003-01-01

    The paper describes briefly a new test facility, which has been developed within the project “Resource Saving Concrete Structures”, also called “Green Concrete” and some test results from the project. A full report is available from the home page of the Department of Civil Engineering Kristiansen......, Hertz, Sørensen [1]. The main idea was to establish a test method by means of which it should be possible to assess whether a particular concrete has an increased risk of spalling compared to traditional concretes as defined in Hertz [2] and only using ordinary standard cylinders as test specimens....... The method has been applied on the green concretes of the project and later also as a first indicator in other projects. The method appears to be a valuable tool for the first investigation of new concretes...

  9. Extension of the principles of the kinetic conception of strength to the process of spalling fracture

    International Nuclear Information System (INIS)

    Molodets, A.M.; Dremin, A.N.

    1983-01-01

    The universality and graphical physical meaning of the characteristic relationship for thermal activation processes and time stimulate attempts for its utilization to describe the time dependence of the spall strength. The involvement of this relationship to describe spall requires a definite model of the spall process first. It is also necessary to to consider the question of the relationship between the applied and local stresses and the selection of a definite connection between these variables. The phenomenological model of spall in which the analogue of the cumulative rudimentary discontinuity is isolated has already been proposed. In this paper, a model is proposed within the framework of this previously described model, taking into account the thermal activation processes and the mean level of the stresses. Comparisons of this model with experimental data on the spall in copper show good agreement. In the spall domain the overstress factor is approximately one third its limit value. This means that higher values of the applied stresses than those found under quasistatic conditions correspond to the identical local stress level. It is possible that the thermal activation stage proceeds during spall in metals exactly as under quasistatic conditions, namely; rudimentary discontinuities are submicrocracks of dimensions less than 10 -7 microns

  10. Influence of rock spalling on concrete lining in shaft sinking at the Horonobe Underground Research Laboratory

    International Nuclear Information System (INIS)

    Tsusaka, Kimikazu; Inagaki, Daisuke; Nago, Makito; Koike, Masashi; Matsubara, Makoto; Sugawara, Kentaro

    2013-01-01

    A shaft is the shortest way to access the deep underground. In shaft sinking through large-scale faults or under low competence factor, spalling of shaft walls is likely to occur. Although earlier studies indicated that rock spalling is an undesirable phenomenon that threatens safety in excavation work and causes delay in construction schedule, there have been few studies which discussed damage to concrete lining induced by spalling. Japan Atomic Energy Agency has been constructing three shafts (one for ventilation and the others for access) to a depth of 500 m in the Horonobe Underground Research Laboratory. During the construction of the Ventilation Shaft (4.5 m diameter) below a depth of 250 m, rock spalling occurred at several depths and an open crack developed in the concrete lining installed just above the location of the rock spalling. In this study, the geometry of the shaft wall was measured using a three-dimensional laser scanner. Numerical analysis was also conducted to estimate changes in stress distribution and deformation induced by rock spalling in both the concrete lining and the surrounding rock. As a result, it was clarified that rock spalling induced a vertical tensile stress in the concrete lining. Especially, the tensile stress in a concrete lining was likely to exceed the tensile strength of the concrete lining when it developed more than 100 cm into the wall rock. (author)

  11. Microstructure Effects on Spall Strength of Titanium-based Bulk Metallic Glass Composites

    Science.gov (United States)

    Diaz, Rene; Hofmann, Douglas; Thadhani, Naresh; Georgia Tech Team; GT-JPL Collaboration

    2017-06-01

    The spall strength of Ti-based metallic glass composites is investigated as a function of varying volume fractions (0-80%) of in-situ formed crystalline dendrites. With increasing dendrite content, the topology changes such that neither the harder glass nor the softer dendrites dominate the microstructure. Plate-impact experiments were performed using the 80-mm single-stage gas gun over impact stresses up to 18 GPa. VISAR interferometry was used to obtain rear free-surface velocity profiles revealing the velocity pullback spall failure signals. The spall strengths were higher than for Ti-6Al-4V alloy, and remained high up to impact stress. The influence of microstructure on the spall strength is indicated by the constants of the power law fit with the decompression strain rate. Differences in fracture behavior reveal void nucleation as a dominant mechanism affecting the spall strength. The microstructure with neither 100% glass nor with very high crystalline content, provides the most tortuous path for fracture and therefore highest spall strength. The results allow projection of spall strength predictions for design of in-situ formed metallic glass composites. ARO Grant # W911NF-09 ``1-0403 NASA JPL Contract # 1492033 ``Prime # NNN12AA01C; NSF GRFP Grant #DGE-1148903; and NDSE & G.

  12. Thermophysical properties of liquid carbon dioxide under shock compressions: quantum molecular dynamic simulations.

    Science.gov (United States)

    Wang, Cong; Zhang, Ping

    2010-10-07

    Quantum molecular dynamics were used to calculate the equation of state, electrical, and optical properties of liquid carbon dioxide along the Hugoniot at shock pressures up to 74 GPa. The principal Hugoniot derived from the calculated equation of state is in good agreement with experimental results. Molecular dissociation and recombination are investigated through pair correlation functions and decomposition of carbon dioxide is found to be between 40 and 50 GPa along the Hugoniot, where nonmetal-metal transition is observed. In addition, the optical properties of shock compressed carbon dioxide are also theoretically predicted along the Hugoniot.

  13. Assessment of the potential for rock spalling in the technical rooms of the ONKALO

    International Nuclear Information System (INIS)

    Siren, T.; Martinelli, D.; Uotinen, L.

    2011-06-01

    It is important to be able to predict the rock spalling in the ONKALO while the excavation advances deeper. When stresses at the excavation boundary reach the rock mass spalling strength, a brittle failure occurs that is often called 'spalling'. The spalling phenomenon occurs as a strong compressive stress induces crack growth behind the excavated surface. Spalling is, expressly, an event that can create problems in the ONKALO, not so much for the overall stability of all of the excavations, but rather in particular areas that can cause unnecessary and unintended over-excavations and hazards. For rock engineering and layout design purposes, the knowledge of the predicted spalling in the excavation surface is crucial. Optimization of the design is mainly done by directing the tunnels parallel to the major principal stress direction. However, due to the complex forms and crossing tunnels, especially at the shaft access drift area, sophisticated methods are required in order to minimize spalling and to support the unavoidable spalling that occurs. The complex tunnels require three-dimensional analysis. The software used for the main calculation has been MIDAS/GTS, a geotechnical 3-D FEM that is able to calculate complex geometries rather easily. Most of the models have also been verified with Rocscience Examine3D, which returns the results with a high precision at boundary. The area to model is large, and due to the computational limits, it is divided into six blocks. This analysis, carried out step by step for each block, permitted to draw a map of the spalling depth prevision in the whole tunnel contract 5 (TU5) area. The dominating rock types in the area are migmatitic gneiss and pegmatitic granite. The strength of these rocks has been broadly tested with point load and uniaxial compressive strength tests. The test results show a deviation of the UCS as well as other parameters. Due to this large deviation, a Monte Carlo has been used as an auxiliary analysis

  14. New data on the kinetics and governing factors of the spall fracture of metals

    Science.gov (United States)

    Kanel, G. I.; Razorenov, S. V.; Garkushin, G. V.; Savinykh, A. S.

    2018-01-01

    This paper presents two examples of significant departures from usual trends of varying the resistance to spall fracture (spall strength) with changing loading history, load duration and peak shock stress. In experiments with vanadium single crystals we observed an important decrease of spall strength when increasing the shock stress. This was interpreted in terms of disruption of the matter homogeneity as a result of its twinning at shock compression. In experiments with 12Kh18N10T austenitic stainless steel we observed a sharp increase of recorded spall strength value when short load pulses of a triangular profile were replaced by shock pulses of long duration having a trapezoidal shape. This anomaly is associated with formation of the deformation-induced martensitic phase.

  15. Role of spall in microstructure evolution during laser-shock-driven rapid undercooling and resolidification

    International Nuclear Information System (INIS)

    Colvin, Jeffrey D.; Jankowski, Alan F.; Kumar, Mukul; MoberlyChan, Warren J.; Reed, Bryan W.; Paisley, Dennis L.; Tierney, Thomas E.

    2009-01-01

    We previously reported [Colvin et al., J. Appl. Phys. 101, 084906 (2007)] on the microstructure morphology of pure Bi metal subjected to rapid laser-shock-driven melting and subsequent resolidification upon release of pressure, where the estimated effective undercooling rates were of the order of 10 9 -10 10 K/s. More recently, we repeated these experiments, but with a Bi/Zn alloy (Zn atomic fraction of 2%-4%) instead of elemental Bi and with a change in target design to suppress spall in the Bi/Zn samples. We observed a similar microstructure morphology in the two sets of experiments, with initially columnar grains recrystallizing to larger equiaxed grains. The Bi samples, however, exhibited micron-scale dendrites on the spall surfaces, whereas there were no dendritic structures anywhere in the nonspalled Bi/Zn, even down to the nanometer scale as observed by transmission electron microscopy. We present the simulations and the interferometry data that show that the samples in the two sets of experiments followed nearly identical hydrodynamic and thermodynamic paths apart from the presence of (probably partially liquid) spall in pure Bi. Simulations also show that the spall occurs right at the moving phase front and, hence, the spall itself cuts off the principal direction for latent heat dissipation across the phase boundary. We suggest that it is the liquid spall itself that creates the conditions for dendrite formation

  16. The Effect of Small Additions of Carbon Nanotubes on the Mechanical Properties of Epoxy Polymers under Static and Dynamic Loads

    Science.gov (United States)

    Tarasov, A. E.; Badamshina, E. R.; Anokhin, D. V.; Razorenov, S. V.; Vakorina, G. S.

    2018-01-01

    The results of measurements of the mechanical characteristics of cured epoxy composites containing small and ultrasmall additions of single-walled carbon nanotubes in the concentration range from 0 to 0.133 wt % under static and dynamic loads are presented. Static measurements of strength characteristics have been carried out under standard test conditions. Measurements of the Hugoniot elastic limit and spall strength were performed under a shock wave loading of the samples at a deformation rate of (0.8-1.5) ß 105 s-1 before the fracture using explosive devices by recording and subsequent analyzing the evolution of the full wave profiles. It has been shown that agglomerates of nanotubes present in the structure of the composites after curing cause a significant scatter of the measured strength parameters, both in the static and in the dynamic test modes. However, the effects of carbon nanotube additions in the studied concentration interval on the physical and mechanical characteristics of the parameters were not revealed for both types of loading.

  17. Hugoniot elastic limits and compression parameters for brittle materials

    International Nuclear Information System (INIS)

    Gust, W.H.

    1979-01-01

    The physical properties of brittle materials are of interest because of the rapidly expanding use of these material in high-pressure and shock wave techology, e.g., geophysics and explosive compaction as well as military applications. These materials are characterized by unusually high sonic velocities, have large dynamic impedances and exhibit large dynamic yield strengths

  18. DRSPALL :spallings model for the Waste Isolation Pilot Plant 2004 recertification.

    Energy Technology Data Exchange (ETDEWEB)

    Gilkey, Amy P. (GRAM Inc., Albuquerque, NM); Hansen, Clifford W.; Schatz, John F. (John F. Schatz Research & Consulting, Inc., Del Mar, CA); Rudeen, David Keith (GRAM Inc., Albuquerque, NM); Lord, David L.

    2006-02-01

    This report presents a model to estimate the spallings releases for the Waste Isolation Pilot Plant Performance Assessment (WIPP PA). A spallings release in the context of WIPP PA refers to a portion of the solid waste transported from the subsurface repository to the ground surface due to inadvertent oil or gas drilling into the WIPP repository at some time after site closure. Some solid waste will be removed by the action of the drillbit and drilling fluid; this waste is referred to as cuttings and cavings. If the repository is pressurized above hydrostatic at the time of intrusion, solid waste material local to the borehole may be subject to mechanical failure and entrainment in high-velocity gases as the repository pressure is released to the borehole. Solid material that fails and is transported into the wellbore and thus to the surface comprise the spallings releases. The spallings mechanism is analogous to a well blowout in the modern oil and gas drilling industry. The current spallings conceptual model and associated computer code, DRSPALL, were developed for the 2004 recertification because the prior spallings model used in the 1996 WIPP Compliance Certification Application (CCA) was judged by an independent peer review panel as inadequate (DOE 1996, 9.3.1). The current conceptual model for spallings addresses processes that take place several minutes before and after a borehole intrusion of a WIPP waste room. The model couples a pipe-flow wellbore model with a porous flow repository model, allowing high-pressure gas to flow from the repository to the wellbore through a growing cavity region at the well bottom. An elastic stress model is applied to the porous solid domain that allows for mechanical failure of repository solids if local tensile stress exceeds the tensile strength of the waste. Tensile-failed solids may be entrained into the wellbore flow stream by a fluidized bed model, in which case they are ultimately transported to the land surface

  19. Effect of shear strength on Hugoniot-compression curve and the equation of state of tungsten (W)

    Energy Technology Data Exchange (ETDEWEB)

    Mashimo, Tsutomu, E-mail: mashimo@gpo.kumamoto-u.ac.jp; Liu, Xun [Institute of Pulsed Power Science, Kumamoto University, Kumamoto 860-8555 (Japan); Kodama, Masao [Sojo University, Kumamoto 860-0082 (Japan); Zaretsky, Eugene [Ben-Gurion University of the Negev, P.O. Box 653, Beer Sheva 84105 (Israel); Katayama, Masahide [Itochu Techno-Solutions Corporation, Tokyo 100-6080 (Japan); Nagayama, Kunihiko [Kyushu University, Fukuoka 812-8581 (Japan)

    2016-01-21

    The Hugoniot data for highly dense polycrystalline tungsten were obtained for pressures above 200 GPa, and the equation of state (EOS) was determined taking into account shear strength effects. For this study, we have made some improvements in measurement system and analyses of the shock wave data. Symmetric-impact Hugoniot measurements were performed using the high-time resolution streak camera system equipped on a one-stage powder gun and two-stage light gas gun, where the effects of tilting and bowing of flyer plate on the Hugoniot data were carefully considered. The shock velocity–particle velocity (U{sub S}–U{sub P}) Hugoniot relation in the plastic regime was determined to be U{sub S} = 4.137 + 1.242U{sub P} km/s (U{sub P} < 2 km/s). Ultrasonic and Velocity Interferometer System for Any Reflector measurements were also performed in this study. The zero-intercept value of the U{sub S}–U{sub P} Hugoniot relation was found to be slightly larger than the ultrasonic bulk sound velocity (4.023 km/s). The hypothetical hydrostatic isothermal U{sub s}–U{sub p} Hugoniot curve, which corresponds to the hydrostatic isothermal compression curve derived from the Hugoniot data using the strength data, converged to the bulk sound velocity, clearly showing shear strength dependence in the Hugoniot data. The EOS for tungsten is derived from the hydrostatic isothermal compression curve using the strength data.

  20. Effect of shear strength on Hugoniot-compression curve and the equation of state of tungsten (W)

    International Nuclear Information System (INIS)

    Mashimo, Tsutomu; Liu, Xun; Kodama, Masao; Zaretsky, Eugene; Katayama, Masahide; Nagayama, Kunihiko

    2016-01-01

    The Hugoniot data for highly dense polycrystalline tungsten were obtained for pressures above 200 GPa, and the equation of state (EOS) was determined taking into account shear strength effects. For this study, we have made some improvements in measurement system and analyses of the shock wave data. Symmetric-impact Hugoniot measurements were performed using the high-time resolution streak camera system equipped on a one-stage powder gun and two-stage light gas gun, where the effects of tilting and bowing of flyer plate on the Hugoniot data were carefully considered. The shock velocity–particle velocity (U S –U P ) Hugoniot relation in the plastic regime was determined to be U S  = 4.137 + 1.242U P km/s (U P  < 2 km/s). Ultrasonic and Velocity Interferometer System for Any Reflector measurements were also performed in this study. The zero-intercept value of the U S –U P Hugoniot relation was found to be slightly larger than the ultrasonic bulk sound velocity (4.023 km/s). The hypothetical hydrostatic isothermal U s –U p Hugoniot curve, which corresponds to the hydrostatic isothermal compression curve derived from the Hugoniot data using the strength data, converged to the bulk sound velocity, clearly showing shear strength dependence in the Hugoniot data. The EOS for tungsten is derived from the hydrostatic isothermal compression curve using the strength data

  1. Hugoniot measurements in vanadium using the LNL two-stage light-gas gun

    International Nuclear Information System (INIS)

    Gathers, G.R.; Mitchell, A.C.; Holmes, N.C.

    1983-01-01

    Hugoniot measurements on vanadium have been made using the LLNL two-stage light-gas gun. The direct collision method with electrical pins and a tantalum flyer accelerated to 6.28 km/s was used. Alt'shuler, et. al., have reported Hugoniot measurements in vanadium using explosives and the impedance match method. They reported a kink in the U/sub s/ - U/sub p/ relationship at 183 GPa, and attribute it to electronic transitions. The upper portion of their curve is based on a single point at 339 GPa. The present work was performed to further investigate the equation-of-state in the high-pressure range

  2. The shock Hugoniot of the intermetallic alloy Ti-46.5Al-2Nb-2Cr

    International Nuclear Information System (INIS)

    Millett, Jeremy; Gray, George T. Rusty III; Bourne, Neil

    2000-01-01

    Plate impact experiments were conducted on a γ-titanium aluminide (TiAl) based ordered intermetallic alloy. Stress measurements were recorded using manganin stress gauges supported on the back of TiAl targets using polymethylmethacrylate windows. The Hugoniot in stress-particle velocity space for this TiAl alloy was deduced using impedance matching techniques. The results in this study are compared to the known Hugoniot data of the common alpha-beta engineering Ti-based alloy Ti-6Al-4V. The results of the current study on the intermetallic alloy TiAl support that TiAl possesses a significantly higher stress for a given particle velocity than the two-phase Ti-6Al-4V alloy. (c) 2000 American Institute of Physics

  3. Recent research on stishovite: Hugoniot and partial release Z experiments and DFT EOS calculations

    Science.gov (United States)

    Furnish, Michael; Shulenburger, Luke; Desjarlais, Michael; Fei, Yingwei

    2017-06-01

    We have conducted a series of ride-along experiments on the Z facility to ascertain the Hugoniot of silica centered in the stishovite phase over a range 0.4 - 1.0 TPa, together with partial release states produced at the interface between the sample and a fused silica window. The stishovite samples were synthesized in a large-volume multi-anvil press at 15 GPa and 1773 K, with an initial density of 4.29 gm/cc. The new Z experiments on stishovite fill in a gap between gas gun experiments and NIF experiments. The states are compared with the Hugoniots of quartz and fused silica for inferences as to EOS. They are generally consistent with Sesame 7360 predictions. Sound speed constraints from these data are discussed. The new Hugoniot data cross over the melting curve of stishovite, providing insight into the properties of solid and liquid under extreme conditions in conjunction with predictions from density-functional theory modeling. These data are fundamentally important for understanding the interior of silicate-based super-Earths. Sandia National Labs is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corp., for the U.S. Dept. of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  4. Recent research on stishovite: Hugoniot and partial release Z experiments and DFT EOS calculations.

    Energy Technology Data Exchange (ETDEWEB)

    Furnish, Michael D.; Shulenburger, Luke; Desjarlais, Michael; Fei, Yingwei

    2018-04-01

    We have conducted a series of ride-along experiments on the Z facility to ascertain the Hugoniot of silica centered in the stishovite phase over a range 0.4 - 1.0 TPa, together with partial release states produced at the interface between the sample and a fused silica window. The stishovite samples were synthesized in a large-volume multi-anvil press at 15 GPa and 1773 K, with an initial density of 4.29 gm/cc. The new Z experiments on stishovite fill in a gap between gas gun experiments and NIF experiments. The states are compared with the Hugoniots of quartz and fused silica for inferences as to EOS. They are generally consistent with Sesame 7360 predictions. Sound speed constraints from these data are discussed. The new Hugoniot data cross over the melting curve of stishovite; together with the partial-release data and predictions from density-functional theory modeling, they provide insights into the properties of solid and liquid under extreme conditions. These data are fundamentally important for understanding the interior of silicate-based super-Earths.

  5. The Hugoniot and chemistry of ablator plastic below 100 GPa

    Energy Technology Data Exchange (ETDEWEB)

    Akin, M. C., E-mail: akin1@llnl.gov; Fratanduono, D. E.; Chau, R. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2016-01-28

    The equation of state of glow discharge polymer (GDP) was measured to high precision using the two-stage light gas gun at Lawrence Livermore National Laboratory at pressures up to 70 GPa. Both absolute measurements and impedance matching techniques were used to determine the principal and secondary Hugoniots. GDP likely reacts at about 30 GPa, demonstrated by specific emission at 450 nm coupled with changes to the Hugoniot and reshock points. As a result of these reactions, the shock pressure in GDP evolves in time, leading to a possible decrease in pressure as compression increases, or negative compressibility, and causing complex pressure profiles within the plastic. Velocity wave profile variation was observed as a function of position on each shot, suggesting some internal variation of GDP may be present, which would be consistent with previous observations. The complex temporal and possibly structural evolution of GDP under shock compression suggests that calculations of compression and pressure based upon bulk or mean measurements may lead to artificially low pressures and high compressions. Evidence for this includes a large shift in calculating reshock pressures based on the reflected Hugoniot. These changes also suggest other degradation mechanisms for inertial confinement fusion implosions.

  6. Preliminary assessment of potential underground stability (wedge and spalling) at Forsmark, Simpevarp and Laxemar sites

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Derek [Univ. of Alberta, Edmonton (Canada). Geotechnical Engineering

    2005-12-15

    In SKB's Underground Design Premises the objective in the early design phase is to estimate if there is sufficient space for the repository at a site. One of the conditions that could limit the space available is stability of the underground openings, i.e., deposition tunnels and deposition boreholes. The purpose of this report is to provide a preliminary assessment of the potential for wedge instability and spalling that may be encountered at the Forsmark, Simpevarp and Laxemar sites based on information from the site investigations program up to July 30, 2004. The rock mass spalling strength was defined using the in-situ results from SKB's Aespoe Pillar Stability Experiment and AECL's Mine-by Experiment. These experiments suggest that the rock mass spalling strength for crystalline rocks can be estimated as 0.57 of the mean laboratory uniaxial compressive strength. A probability-based methodology utilizing this in-situ rock mass spalling strength has been developed for assessing the risk for spalling in a repository at the Forsmark, Simpevarp and Laxemar sites. The in-situ stresses and the uniaxial compressive strength data from these sites were used as the bases for the analyses. Preliminary findings from all sites suggest that, generally, the risk for spalling increases as the depth of the repository increases, simply because the stress magnitudes increase with depth. The depth at which the risk for spalling is significant, depends on the individual sites which are discussed below. The greatest uncertainty in the spalling analyses for Forsmark is related to the uncertainty in the horizontal stress magnitudes and associated stress gradients with depth. The confidence in these analyses can only be increased by increasing the confidence in the stress and geology model for the site. From the analyses completed it appears that spalling in the deposition tunnels can be controlled by orienting the tunnels approximately parallel to the maximum horizontal

  7. Influence of nano-size inclusions on spall fracture of copper single crystals

    International Nuclear Information System (INIS)

    Razorenov, S. V.; Ivanchihina, G. E.; Kanel, G. I.; Herrmann, B.; Zaretsky, E. B.

    2007-01-01

    Spall experiments have been carried out for copper in different structural states. The samples were copper single crystals, crystals of Cu+0.1% Si, copper crystals with silica particles of 180 nm average size, and polycrystalline copper. In experiments, the free surface velocity histories were recorded with the VISAR. The recovered samples were studied using optical microscopy and SEM. Solid solution Cu+0.1% Si demonstrates slower spall process than pure copper crystals. At longer pulse durations its spall strength is slightly less than that of pure crystals but approaches the latter with decreasing pulse duration. Fracture of copper with silica inclusions is completed much faster. The spall strength of this material is close to that of Cu+0.1% Si crystals at longer pulse duration and approaches the strength of polycrystalline copper with decreasing the load duration. Fractography of the spall surfaces correlates with the free surface velocity histories. The main fracture surface of the Cu+0.1% Si grains consists of net of dimples ∼4 μm to 40 μm mean diameter. The fracture surfaces of copper with silica inclusions is covered by a net of dimples of 1 μm to 5 μm size

  8. Influence of deposited nanoparticles on the spall strength of metals under the action of picosecond pulses of shock compression

    Science.gov (United States)

    Ebel, A. A.; Mayer, A. E.

    2018-01-01

    Molecular dynamic simulations of the generation and propagation of shock pulses of picosecond duration initiated by nanoscale impactors, and their interaction with the rear surface is carried out for aluminum and copper. It is shown that the presence of deposited nanoparticles on the rear surface increases the threshold value of the impact intensity leading to the rear spallation. The interaction of a shock wave with nanoparticles leads to severe plastic deformation in the surface layer of the metal including nanoparticles. A part of the compression pulse energy is expended on the plastic deformation, which suppresses the spall fracture. Spallation threshold substantially increases at large diameters of deposited nanoparticles, but instability develops on the rear surface of the target, which is accompanied by ejection of droplets. The instability disrupts the integrity of the rear surface, though the loss of integrity occurs through the ejection of mass, rather than a spallation.

  9. A study on spalling in soft rock under low confining stress

    International Nuclear Information System (INIS)

    Tomita, Atsunori; Ebina, Takahito; Toida, Masaru; Shirasagi, Suguru; Kishida, Kiyoshi; Adachi, Toshihisa

    2007-01-01

    The aim of this paper is to study spalling in soft rock excavation. During the test cavern excavation of the radioactive waste disposal project, spalling occurred. Therefore, it has been estimated performing the stress path simulation test and measuring the induced stress. In the stress path simulation test, the splitting failure has been confirmed under low confining stress. In the induced stress measurements, the rock mass around the cavern has shifted to the low radial confinement. Hence, spalling in soft rock was interpreted by the splitting failure caused by the induced stress under low confinement. Furthermore, the failure zone was proved by the numerical analysis applying the criterion based on the results of the above triaxial test. (author)

  10. Absolute Hugoniot measurements from a spherically convergent shock using x-ray radiography

    Science.gov (United States)

    Swift, Damian C.; Kritcher, Andrea L.; Hawreliak, James A.; Lazicki, Amy; MacPhee, Andrew; Bachmann, Benjamin; Döppner, Tilo; Nilsen, Joseph; Collins, Gilbert W.; Glenzer, Siegfried; Rothman, Stephen D.; Kraus, Dominik; Falcone, Roger W.

    2018-05-01

    The canonical high pressure equation of state measurement is to induce a shock wave in the sample material and measure two mechanical properties of the shocked material or shock wave. For accurate measurements, the experiment is normally designed to generate a planar shock which is as steady as possible in space and time, and a single state is measured. A converging shock strengthens as it propagates, so a range of shock pressures is induced in a single experiment. However, equation of state measurements must then account for spatial and temporal gradients. We have used x-ray radiography of spherically converging shocks to determine states along the shock Hugoniot. The radius-time history of the shock, and thus its speed, was measured by radiographing the position of the shock front as a function of time using an x-ray streak camera. The density profile of the shock was then inferred from the x-ray transmission at each instant of time. Simultaneous measurement of the density at the shock front and the shock speed determines an absolute mechanical Hugoniot state. The density profile was reconstructed using the known, unshocked density which strongly constrains the density jump at the shock front. The radiographic configuration and streak camera behavior were treated in detail to reduce systematic errors. Measurements were performed on the Omega and National Ignition Facility lasers, using a hohlraum to induce a spatially uniform drive over the outside of a solid, spherical sample and a laser-heated thermal plasma as an x-ray source for radiography. Absolute shock Hugoniot measurements were demonstrated for carbon-containing samples of different composition and initial density, up to temperatures at which K-shell ionization reduced the opacity behind the shock. Here we present the experimental method using measurements of polystyrene as an example.

  11. Using corresponding state theory to obtain intermolecular potentials to calculate pure liquid shock Hugoniots

    Energy Technology Data Exchange (ETDEWEB)

    Hobbs, M.L.

    1997-12-01

    Determination of product species, equations-of-state (EOS) and thermochemical properties of high explosives and pyrotechnics remains a major unsolved problem. Although, empirical EOS models may be calibrated to replicate detonation conditions within experimental variability (5--10%), different states, e.g. expansion, may produce significant discrepancy with data if the basic form of the EOS model is incorrect. A more physically realistic EOS model based on intermolecular potentials, such as the Jacobs Cowperthwaite Zwisler (JCZ3) EOS, is needed to predict detonation states as well as expanded states. Predictive capability for any EOS requires a large species data base composed of a wide variety of elements. Unfortunately, only 20 species have known JCZ3 molecular force constants. Of these 20 species, only 10 have been adequately compared to experimental data such as molecular scattering or shock Hugoniot data. Since data in the strongly repulsive region of the molecular potential is limited, alternative methods must be found to deduce force constants for a larger number of species. The objective of the present study is to determine JCZ3 product species force constants by using a corresponding states theory. Intermolecular potential parameters were obtained for a variety of gas species using a simple corresponding states technique with critical volume and critical temperature. A more complex, four parameter corresponding state method with shape and polarity corrections was also used to obtain intermolecular potential parameters. Both corresponding state methods were used to predict shock Hugoniot data obtained from pure liquids. The simple corresponding state method is shown to give adequate agreement with shock Hugoniot data.

  12. Rarefaction shock waves and Hugoniot curve in the presence of free and trapped particles

    International Nuclear Information System (INIS)

    Niknam, A. R.; Hashemzadeh, M.; Shokri, B.; Rouhani, M. R.

    2009-01-01

    The effects of the relativistic ponderomotive force and trapped particles in the presence of ponderomotive force on the rarefaction shock waves are investigated. The ponderomotive force alters the electron density distribution. This force and relativistic mass affect the plasma frequency. These physical parameters modify the total pressure and the existence condition of the rarefaction shock wave. Furthermore, the trapping of particles by the high frequency electromagnetic field considerably changes the existence condition of the rarefaction shock wave. The total pressure and Hugoniot curve are obtained by considering the relativistic ponderomotive force and trapped particles.

  13. Rarefaction shock waves and Hugoniot curve in the presence of free and trapped particles

    Science.gov (United States)

    Niknam, A. R.; Hashemzadeh, M.; Shokri, B.; Rouhani, M. R.

    2009-12-01

    The effects of the relativistic ponderomotive force and trapped particles in the presence of ponderomotive force on the rarefaction shock waves are investigated. The ponderomotive force alters the electron density distribution. This force and relativistic mass affect the plasma frequency. These physical parameters modify the total pressure and the existence condition of the rarefaction shock wave. Furthermore, the trapping of particles by the high frequency electromagnetic field considerably changes the existence condition of the rarefaction shock wave. The total pressure and Hugoniot curve are obtained by considering the relativistic ponderomotive force and trapped particles.

  14. Spalling stress in oxidized thermal barrier coatings evaluated by X-ray diffraction method

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, K. [Faculty of Education and Human Sciences, Niigata Univ., Niigata (Japan); Tanaka, K. [Dept. of Mechanical Engineering, Nagoya Univ., Furoh-cho, Chikusa-ku, Nagoya (Japan)

    2005-07-01

    The spallation of thermal barrier coatings (TBCs) is promoted by thermally grown oxide (TGO). To improve TBCs, it is very important to understand the influence of TGO on the spalling stress. In this study 'the TBCs were oxidized at 1373 K for four different periods: 0, 500,1000 and 2000 h. The distribution of the in-plane stress in oxidized TBCs, {sigma}{sub 1}, was obtained by repeating the X-ray stress measurement with low energy X-rays after successive removal of the surface layer. The distribution of the out-of-plane stress, {sigma}{sub 1} - {sigma}{sub 3}, was measured with hard synchrotron X-rays, because high energy X-rays have a large penetration depth. From the results by the low and high energy X-rays, the spalling stress in the oxidized TBCs, {sigma}{sub 3}, was evaluated. The evaluated value of the spalling stress for the oxidized TBC was a small tension beneath the surface, but steeply increased near the interface between the top and bond coating. This large tensile stress near the interface is responsible for the spalling of the top coating. (orig.)

  15. Effect of fire exposure on cracking, spalling and residual strength of fly ash geopolymer concrete

    International Nuclear Information System (INIS)

    Sarker, Prabir Kumar; Kelly, Sean; Yao, Zhitong

    2014-01-01

    Highlights: • Fire endurance of fly ash geopolymer concrete has been studied. • No spalling in geopolymer concrete cylinders up to 1000 °C fire. • Less cracking and better fire endurance of geopolymer concrete than OPC concrete. • Geopolymer microstructure remained stable up to 1000 °C fire. - Abstract: Fly ash based geopolymer is an emerging alternative binder to cement for making concrete. The cracking, spalling and residual strength behaviours of geopolymer concrete were studied in order to understand its fire endurance, which is essential for its use as a building material. Fly ash based geopolymer and ordinary portland cement (OPC) concrete cylinder specimens were exposed to fires at different temperatures up to 1000 °C, with a heating rate of that given in the International Standards Organization (ISO) 834 standard. Compressive strength of the concretes varied in the range of 39–58 MPa. After the fire exposures, the geopolymer concrete specimens were found to suffer less damage in terms of cracking than the OPC concrete specimens. The OPC concrete cylinders suffered severe spalling for 800 and 1000 °C exposures, while there was no spalling in the geopolymer concrete specimens. The geopolymer concrete specimens generally retained higher strength than the OPC concrete specimens. The Scanning Electron Microscope (SEM) images of geopolymer concrete showed continued densification of the microstructure with the increase of fire temperature. The strength loss in the geopolymer concrete specimens was mainly because of the difference between the thermal expansions of geopolymer matrix and the aggregates

  16. Analytic model for surface ground motion with spall induced by underground nuclear tests

    International Nuclear Information System (INIS)

    MacQueen, D.H.

    1982-04-01

    This report provides a detailed presentation and critique of a model used to characterize the surface ground motion following a contained, spalling underground nuclear explosion intended for calculation of the resulting atmospheric acoustic pulse. Some examples of its use are included. Some discussion of the general approach of ground motion model parameter extraction, not dependent on the specific model, is also presented

  17. Meso-Scale Modeling of Spall in a Heterogeneous Two-Phase Material

    Energy Technology Data Exchange (ETDEWEB)

    Springer, Harry Keo [Univ. of California, Davis, CA (United States)

    2008-07-11

    The influence of the heterogeneous second-phase particle structure and applied loading conditions on the ductile spall response of a model two-phase material was investigated. Quantitative metallography, three-dimensional (3D) meso-scale simulations (MSS), and small-scale spall experiments provided the foundation for this study. Nodular ductile iron (NDI) was selected as the model two-phase material for this study because it contains a large and readily identifiable second- phase particle population. Second-phase particles serve as the primary void nucleation sites in NDI and are, therefore, central to its ductile spall response. A mathematical model was developed for the NDI second-phase volume fraction that accounted for the non-uniform particle size and spacing distributions within the framework of a length-scale dependent Gaussian probability distribution function (PDF). This model was based on novel multiscale sampling measurements. A methodology was also developed for the computer generation of representative particle structures based on their mathematical description, enabling 3D MSS. MSS were used to investigate the effects of second-phase particle volume fraction and particle size, loading conditions, and physical domain size of simulation on the ductile spall response of a model two-phase material. MSS results reinforce existing model predictions, where the spall strength metric (SSM) logarithmically decreases with increasing particle volume fraction. While SSM predictions are nearly independent of applied load conditions at lower loading rates, which is consistent with previous studies, loading dependencies are observed at higher loading rates. There is also a logarithmic decrease in SSM for increasing (initial) void size, as well. A model was developed to account for the effects of loading rate, particle size, matrix sound-speed, and, in the NDI-specific case, the probabilistic particle volume fraction model. Small-scale spall experiments were designed

  18. Rock stress orientation measurements using induced thermal spalling in slim boreholes

    International Nuclear Information System (INIS)

    Hakami, Eva

    2011-05-01

    In the planning and design of a future underground storage for nuclear waste based on the KBS-3 method, one of the aims is to optimize the layout of deposition tunnels such that the rock stresses on the boundaries of deposition holes are minimized. Previous experiences from heating of larger scale boreholes at the Aespoe Hard Rock Laboratory (AHRL) gave rise to the idea that induced borehole breakouts using thermal loading in smaller diameter boreholes, could be a possible way of determining the stress orientation. Two pilot experiments were performed, one at the Aespoe Hard Rock Laboratory and one at ONKALO research site in Finland. An acoustic televiewer logger was used to measure the detailed geometrical condition of the borehole before and after heating periods. The acoustic televiewer gives a value for each 0.7 mm large pixel size around the borehole periphery. The results from the loggers are presented as images of the borehole wall, and as curves for the maximum, mean and minimum values at each depth. Any changes in the borehole wall geometry may thus be easily detected by comparisons of the logging result images. In addition, using an optical borehole televiewer a good and detailed realistic colour picture of the borehole wall is obtained. From these images the character of the spalls identified may be evaluated further. The heating was performed in a 4 m long section, using a heating cable centred in an 8 m deep vertical borehole, drilled from the floor of the tunnels. For the borehole in the Q-tunnel of AHRL the results from the loggings of the borehole before the heating revealed that breakouts existed even before this pilot test due to previous heating experiments at the site (CAPS). Quite consistent orientation and the typical shape of small breakouts were observed. After the heating the spalling increased slightly at the same locations and a new spalling location also developed at a deeper location in the borehole. At ONKALO three very small changes

  19. Rock stress orientation measurements using induced thermal spalling in slim boreholes

    Energy Technology Data Exchange (ETDEWEB)

    Hakami, Eva [Geosigma AB, Uppsala (Sweden)

    2011-05-15

    In the planning and design of a future underground storage for nuclear waste based on the KBS-3 method, one of the aims is to optimize the layout of deposition tunnels such that the rock stresses on the boundaries of deposition holes are minimized. Previous experiences from heating of larger scale boreholes at the Aespoe Hard Rock Laboratory (AHRL) gave rise to the idea that induced borehole breakouts using thermal loading in smaller diameter boreholes, could be a possible way of determining the stress orientation. Two pilot experiments were performed, one at the Aespoe Hard Rock Laboratory and one at ONKALO research site in Finland. An acoustic televiewer logger was used to measure the detailed geometrical condition of the borehole before and after heating periods. The acoustic televiewer gives a value for each 0.7 mm large pixel size around the borehole periphery. The results from the loggers are presented as images of the borehole wall, and as curves for the maximum, mean and minimum values at each depth. Any changes in the borehole wall geometry may thus be easily detected by comparisons of the logging result images. In addition, using an optical borehole televiewer a good and detailed realistic colour picture of the borehole wall is obtained. From these images the character of the spalls identified may be evaluated further. The heating was performed in a 4 m long section, using a heating cable centred in an 8 m deep vertical borehole, drilled from the floor of the tunnels. For the borehole in the Q-tunnel of AHRL the results from the loggings of the borehole before the heating revealed that breakouts existed even before this pilot test due to previous heating experiments at the site (CAPS). Quite consistent orientation and the typical shape of small breakouts were observed. After the heating the spalling increased slightly at the same locations and a new spalling location also developed at a deeper location in the borehole. At ONKALO three very small changes

  20. Shock Hugoniot and equations of states of water, castor oil, and aqueous solutions of sodium chloride, sucrose and gelatin

    Science.gov (United States)

    Gojani, A. B.; Ohtani, K.; Takayama, K.; Hosseini, S. H. R.

    2016-01-01

    This paper reports a result of experiments for the determination of reliable shock Hugoniot curves of liquids, in particular, at relatively low pressure region, which are needed to perform precise numerical simulations of shock wave/tissue interaction prior to the development of shock wave related therapeutic devices. Underwater shock waves were generated by explosions of laser ignited 10 mg silver azide pellets, which were temporally and spatially well controlled. Measuring temporal variation of shock velocities and over-pressures in caster oil, aqueous solutions of sodium chloride, sucrose and gelatin with various concentrations, we succeeded to determine shock Hugoniot curves of these liquids and hence parameters describing Tait type equations of state.

  1. Melting along the Hugoniot and solid phase transition for Sn via sound velocity measurements

    Science.gov (United States)

    Song, Ping; Cai, Ling-cang; Tao, Tian-jiong; Yuan, Shuai; Chen, Hong; Huang, Jin; Zhao, Xin-wen; Wang, Xue-jun

    2016-11-01

    It is very important to determine the phase boundaries for materials with complex crystalline phase structures to construct their corresponding multi-phase equation of state. By measuring the sound velocity of Sn with different porosities, different shock-induced melting pressures along the solid-liquid phase boundary could be obtained. The incipient shock-induced melting of porous Sn samples with two different porosities occurred at a pressure of about 49.1 GPa for a porosity of 1.01 and 45.6 GPa for a porosity of 1.02, based on measurements of the sound velocity. The incipient shock-induced melting pressure of solid Sn was revised to 58.1 GPa using supplemental measurements of the sound velocity. Trivially, pores in Sn decreased the shock-induced melting pressure. Based on the measured longitudinal sound velocity data, a refined solid phase transition and the Hugoniot temperature-pressure curve's trend are discussed. No bcc phase transition occurs along the Hugoniot for porous Sn; further investigation is required to understand the implications of this finding.

  2. Hugoniot-based equations of state for two filled EPDM rubbers

    Science.gov (United States)

    Pacheco, Adam; Dattelbaum, Dana; Orler, E.; Gustavsen, R.

    2013-06-01

    The shock response of silica filled and Kevlar filled ethylene-propylene-diene (EPDM) rubbers was studied using gas gun-driven plate impact experiments. Both materials are proprietary formulations made by Kirkhill-TA, Brea CA USA, and are used for ablative internal rocket motor insulation. Two types of experiments were performed. In the first, the filled-EPDM sample was mounted on the front of the projectile and impacted a Lithium Fluoride (LiF) window. The Hugoniot state was determined from the measured projectile velocity, the EPDM/LiF interface velocity (measured using VISAR) and impedance matching to LiF. In the second type of experiment, electromagnetic particle velocity gauges were embedded between layers of filled-EPDM. These provided in situ particle velocity and shock velocity measurements. Experiments covered a pressure range of 0.34 - 14 GPa. Hugoniot-based equations of state were obtained for both materials, and will be compared to those of other filled elastomers such as silica-filled polydimethylsiloxane and adiprene. Work performed while at Los Alamos National Laboratory.

  3. Absolute Hugoniot measurements for CH foams in the 2-9 Mbar range

    Science.gov (United States)

    Aglitskiy, Y.; Velikovich, A. L.; Karasik, M.; Schmitt, A. J.; Serlin, V.; Weaver, J. L.; Oh, J.; Obenschain, S. P.; Cochrane, K. R.

    2018-03-01

    Absolute Hugoniot measurements for empty plastic foams at ˜10% of solid polystyrene density and supporting rad-hydro simulation results are reported. Planar foam slabs, ˜400 μm thick and ˜500 μm wide, some of which were covered with a 10 μm solid plastic ablator, were directly driven by 4 ns long Nike krypton-fluoride 248 nm wavelength laser pulses that produced strong shock waves in the foam. The shock and mass velocities in our experiments were up to 104 km/s and 84 km/s, respectively, and the shock pressures up to ˜9 Mbar. The motion of the shock and ablation fronts was recorded using side-on monochromatic x-ray imaging radiography. The steadiness of the observed shock and ablation fronts within ˜1% has been verified. The Hugoniot data inferred from our velocity measurements agree with the predictions of the SESAME and CALEOS equation-of-state models near the highest pressure ˜9 Mbar and density compression ratio ˜5. In the lower pressure range 2-5 Mbar, a lower shock density compression is observed than that predicted by the models. Possible causes for this discrepancy are discussed.

  4. In Situ Observation of Rock Spalling in the Deep Tunnels of the China Jinping Underground Laboratory (2400 m Depth)

    Science.gov (United States)

    Feng, Xia-Ting; Xu, Hong; Qiu, Shi-Li; Li, Shao-Jun; Yang, Cheng-Xiang; Guo, Hao-Sen; Cheng, Yuan; Gao, Yao-Hui

    2018-04-01

    To study rock spalling in deep tunnels at China Jinping Underground Laboratory Phase II (CJPL-II), photogrammetry method and digital borehole camera were used to quantify key features of rock spalling including orientation, thickness of slabs and the depth of spalling. The failure mechanism was analysed through scanning electron microscope and numerical simulation based on FLAC3D. Observation results clearly showed the process of rock spalling failure: a typical spalling pattern around D-shaped tunnels after top-heading and bottom bench were discovered. The orientation and thickness of the slabs were obtained. The slabs were parallel to the excavated surfaces of the tunnel and were related to the shape of the tunnel surface and orientation of the principal stress. The slabs were alternately thick and thin, and they gradually increased in thickness from the sidewall inwards. The form and mechanism of spalling at different locations in the tunnels, as influenced by stress state and excavation, were analysed. The result of this study was helpful to those rethinking the engineering design, including the excavation and support of tunnels, or caverns, at high risk of spalling.

  5. On the Existence of Shock Instabilities at Hugoniot Pressures Beyond the Minimum Volume

    Science.gov (United States)

    Heuzé, Olivier; Pain, Jean-Christophe; Salin, Gwenael

    2009-12-01

    Flow instabilities are among the main issues of ICF studies. Heterogeneities and defects of the material or the geometry are generally considered among the sources of instabilities which are strongly amplified in spherical geometries. According to the theory of D'yakov, some ranges of the Equation of State (EOS) also generate or amplify instabilities in shock waves, which can be considered among the origin of Richtmyer-Meshkov instabilities. It is well known that, on the Hugoniot curve of most materials, the volume decreases versus pressure down to a minimum and then increases with ionization towards an asymptotic value. Recent results in this range of pressure allow us to investigate now the stability conditions. The first question to raise is the possibility of existence of such instabilities. We focus here on the properties of several elements (aluminium, iron, copper) in this range of pressure to try to give a first answer to this question.

  6. Improving the behavior of concrete exposed to fire by using an air entraining agent (AEA: Assessment of spalling

    Directory of Open Access Journals (Sweden)

    D'Aloia L.

    2013-09-01

    Full Text Available Several concrete mixes have been designed to evaluate the influence of an air entraining agent (AEA on spalling. Tests have been performed under the ISO curve (occasionally under the HCinc curve on specimens of various sizes and shapes to assess spalling. Results were somehow erratic on the smallest specimens whereas the beneficial effect of the air-bubble network could be emphasized on slabs.

  7. Spall wave-profile and shock-recovery experiments on depleted uranium

    International Nuclear Information System (INIS)

    Hixson, R.S.; Vorthman, J.E.; Gustavsen, R.L.; Zurek, A.K.; Thissell, W.R.; Tonks, D.L.

    1998-01-01

    Depleted Uranium of two different purity levels has been studied to determine spall strength under shock wave loading. A high purity material with approximately 30 ppm of carbon impurities was shock compressed to two different stress levels, 37 and 53 kbar. The second material studied was uranium with about 300 ppm of carbon impurities. This material was shock loaded to three different final stress level, 37, 53, and 81 kbar. Two experimental techniques were used in this work. First, time-resolved free surface particle velocity measurements were done using a VISAR velocity interferometer. The second experimental technique used was soft recovery of samples after shock loading. These two experimental techniques will be briefly described here and VISAR results will be shown. Results of the spall recovery experiments and subsequent metallurgical analyses are described in another paper in these proceedings. copyright 1998 American Institute of Physics

  8. Review on the prevailing methods for the prediction of potential rock burst / rock spalling in tunnels

    OpenAIRE

    Panthi, Krishna Kanta

    2017-01-01

    Rock burst / rock spalling is among the prevailing stability challenges, which can be met while tunneling through hard rock mass. Especially, this is very relevant for the mountainous country like Norway where hard rock is dominating and many road, railway and hydropower tunnels have to be aligned deep into the mountain with steep valley slope topography. Tunnels passing beneath deep rock cover (overburden), in general, are subjected to high in-situ stresses. If the rock mass is relatively un...

  9. Spall strength and ejecta production of gold under explosively driven shock wave compression

    International Nuclear Information System (INIS)

    La Lone, B. M.; Stevens, G. D.; Turley, W. D.; Veeser, L. R.; Holtkamp, D. B.

    2013-01-01

    Explosively driven shock wave experiments were conducted to characterize the spall strength and ejecta production of high-purity cast gold samples. The samples were from 0.75 to 1.84 mm thick and 30 mm in diameter. Peak stresses up to 44 GPa in gold were generated using PBX-9501 high explosive. Sample free surface and ejecta velocities were recorded using photonic Doppler velocimetry techniques. Lithium niobate pins were used to quantify the time dependence of the ejecta density and the total ejected mass. An optical framing camera for time-resolved imaging and a single-image x-ray radiograph were used for additional characterization. Free surface velocities exhibited a range of spall strengths from 1.7 to 2.4 GPa (mean: 2.0 ±0.3 GPa). The pullback signals were faint, minimal ringing was observed in the velocity records, and the spall layer continued to decelerate after first pull back. These results suggest finite tensile strength was present for some time after the initial void formation. Ejecta were observed for every sample with a roughened free surface, and the ejecta density increased with increased surface roughness, which was different in every experiment. The total ejected mass is consistent with the missing mass model.

  10. The characteristics of void distribution in spalled high purity copper cylinder under sweeping detonation

    Science.gov (United States)

    Yang, Yang; Jiang, Zhi; Chen, Jixinog; Guo, Zhaoliang; Tang, Tiegang; Hu, Haibo

    2018-03-01

    The effects of different peak compression stresses (2-5 GPa) on the spallation behaviour of high purity copper cylinder during sweeping detonation were examined by Electron Backscatter Diffraction Microscopy, Doppler Pins System and Optical Microscopy techniques. The velocity history of inner surface and the characteristics of void distributions in spalled copper cylinder were investigated. The results indicated that the spall strength of copper in these experiments was less than that revealed in previous reports concerning plate impact loading. The geometry of cylindrical copper and the obliquity of incident shock during sweeping detonation may be the main reasons. Different loading stresses seemed to be responsible for the characteristics of the resultant damage fields, and the maximum damage degree increased with increasing shock stress. Spall planes in different cross-sections of sample loaded with the same shock stress of 3.29 GPa were found, and the distance from the initiation end has little effect on the maximum damage degree (the maximum damage range from 12 to 14%), which means that the spallation behaviour was stable along the direction parallel to the detonation propagation direction under the same shock stress.

  11. Measured Hugoniot states of a two-element fluid, O2 + N2, near 2 Mg/m3

    International Nuclear Information System (INIS)

    Schott, G.L.

    1983-01-01

    Measured single-shock Hugoniot quantities are reported for a 1:1 atomic mixture of the elements oxygen and nitrogen in each of two liquid initial states. One of these is the inert equimolar solution O 2 + N 2 , at T approx. = 85K, v approx. = 1.06 m 3 /Mg; the other is the pure explosive compound nitric oxide, NO, at T approx. = 122K, v approx. = 0.79 m 3 /Mg. First-shock pressures are in the range 10 to 30 GPa. The two Hugoniots have common values of specific volumes and energies near 20 GPa; that is, they intersect. This permits a novel test of attainment of steady waves with equilibrium composition, such that a single equation of state may describe the shocked reactive fluid. 5 figures

  12. Effect of material strength on the relationship between the principal Hugoniot and quasi-isentrope of beryllium and 6061-T6 aluminum below 35 GPa

    International Nuclear Information System (INIS)

    Moss, W.C.

    1985-01-01

    Quasi-isentropic (QI) compression can be achieved by loading a specimen with a low strain rate, long rise time uniaxial strain wave. Recent experimental data show that the quasi-isentrope of 6061-T6 aluminum lies a few percent above the principal Hugoniot, that is, at a given specific volume, the QI stress exceeds the principal Hugoniot stress. It has been suggested that this effect is due to material strength. Using Hugoniot data, shock-reshock, and shock-unload data for beryllium and 6061-T6 aluminum, we have constructed the quasi-isentropes as functions of specific volume. Our results show that the QI stress exceeds the principal Hugoniot stress above a Hugoniot stress of 8.4 GPa in beryllium, and between Hugoniot stresses of 3.8 and 21.4 GPa in aluminum. The effect is due to strength and implies that the QI yield strength can be large. Our calculations show that the QI yield strength is 0.9 GPa in aluminum at a QI stress of 9 GPa, and 5.2 GPa in beryllium at a QI stress of 35 GPa

  13. Spalling fracture of metals and alloys under intense x-radiation

    International Nuclear Information System (INIS)

    Molitvin, A.M.

    2001-01-01

    Creation of different power and irradiating installations assisted in studying mechanical properties of structural materials under the effect of high-power radiation fluxes: laser, electron, X-ray, ion beam etc. There are being widely investigated such phenomena as surface and deep hardening of metals and alloys under irradiation, generation of elastic and shock waves, materials failure under thermal shock etc.In the paper there are discussed the results of long researches of spalling fracture of materials and alloys under intense X-radiation. Model assemblies with consequently arranged samples (foils) of metals and alloys under investigation underwent pulse X-radiation. The energy flux of X-radiation was weakened to the needed value by dose filters intensively absorbing soft spectrum of X-radiation. At carrying out the researches the foils of copper, nickel, titanium, brass, bronze, molybdenum, tungsten, tantalum, cadmium, lead, zinc, silver and steels 0.005-1 mm thick were used as objects under investigation. The samples diameter (10-16 mm) was chosen to be quite large as compared to their thickness so that the side load does not affect the central part of the samples and the front (looking the source of X-radiation) and back (shadow) surfaces of the samples are free what makes it possible to consider the processes of spalling fracture in one-dimensional approximation. Within the frames of kinetic approach to the problem of solid states spalling fracture under pulse loading that considers fracture as progressing in time process there were found spalling fracture time dependencies of lead, cadmium, zinc, silver, copper, brass, bronze, nickel, titanium, molybdenum, tungsten, tantalum and steels under thermal shock initiated by X-radiation. It was demonstrated that longevity of metals and alloys under thermal shock exponentially decreases with the growth of rupture stresses amplitude and can be described in terms of kinetic concept of strength.Within the frames of

  14. Thin silicon foils produced by epoxy-induced spalling of silicon for high efficiency solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Martini, R., E-mail: roberto.martini@imec.be [Department of Electrical Engineering, KU Leuven, Kasteelpark 10, 3001 Leuven (Belgium); imec, Kapeldreef 75, 3001 Leuven (Belgium); Kepa, J.; Stesmans, A. [Department of Physics, KU Leuven, Celestijnenlaan 200 D, 3001 Leuven (Belgium); Debucquoy, M.; Depauw, V.; Gonzalez, M.; Gordon, I. [imec, Kapeldreef 75, 3001 Leuven (Belgium); Poortmans, J. [Department of Electrical Engineering, KU Leuven, Kasteelpark 10, 3001 Leuven (Belgium); imec, Kapeldreef 75, 3001 Leuven (Belgium); Universiteit Hasselt, Martelarenlaan 42, B-3500 Hasselt (Belgium)

    2014-10-27

    We report on the drastic improvement of the quality of thin silicon foils produced by epoxy-induced spalling. In the past, researchers have proposed to fabricate silicon foils by spalling silicon substrates with different stress-inducing materials to manufacture thin silicon solar cells. However, the reported values of effective minority carrier lifetime of the fabricated foils remained always limited to ∼100 μs or below. In this work, we investigate epoxy-induced exfoliated foils by electron spin resonance to analyze the limiting factors of the minority carrier lifetime. These measurements highlight the presence of disordered dangling bonds and dislocation-like defects generated by the exfoliation process. A solution to remove these defects compatible with the process flow to fabricate solar cells is proposed. After etching off less than 1 μm of material, the lifetime of the foil increases by more than a factor of 4.5, reaching a value of 461 μs. This corresponds to a lower limit of the diffusion length of more than 7 times the foil thickness. Regions with different lifetime correlate well with the roughness of the crack surface which suggests that the lifetime is now limited by the quality of the passivation of rough surfaces. The reported values of the minority carrier lifetime show a potential for high efficiency (>22%) thin silicon solar cells.

  15. Thin silicon foils produced by epoxy-induced spalling of silicon for high efficiency solar cells

    International Nuclear Information System (INIS)

    Martini, R.; Kepa, J.; Stesmans, A.; Debucquoy, M.; Depauw, V.; Gonzalez, M.; Gordon, I.; Poortmans, J.

    2014-01-01

    We report on the drastic improvement of the quality of thin silicon foils produced by epoxy-induced spalling. In the past, researchers have proposed to fabricate silicon foils by spalling silicon substrates with different stress-inducing materials to manufacture thin silicon solar cells. However, the reported values of effective minority carrier lifetime of the fabricated foils remained always limited to ∼100 μs or below. In this work, we investigate epoxy-induced exfoliated foils by electron spin resonance to analyze the limiting factors of the minority carrier lifetime. These measurements highlight the presence of disordered dangling bonds and dislocation-like defects generated by the exfoliation process. A solution to remove these defects compatible with the process flow to fabricate solar cells is proposed. After etching off less than 1 μm of material, the lifetime of the foil increases by more than a factor of 4.5, reaching a value of 461 μs. This corresponds to a lower limit of the diffusion length of more than 7 times the foil thickness. Regions with different lifetime correlate well with the roughness of the crack surface which suggests that the lifetime is now limited by the quality of the passivation of rough surfaces. The reported values of the minority carrier lifetime show a potential for high efficiency (>22%) thin silicon solar cells.

  16. Dynamic properties of nickel-titanium alloys

    International Nuclear Information System (INIS)

    Hackenberg, Robert; Thoma, Dan; Cooley, Jason; Swift, Damian; Paisley, Dennis; Bourne, Neil; Gray, George III; Hauer, Allan

    2004-01-01

    The shock response of near-equiatomic Ni-Ti alloys have been investigated to support studies of shock-induced martensitic transitions. The equation of state (EOS) and elasticity were predicted using ab initio quantum mechanics. Polycrystalline NiTi samples were prepared with a range of compositions, and thickesses between about 100 and 400 μm. Laser-driven flyer impact experiments were used to verify the EOS and to measure the flow stress from the amplitude of the elastic precursor; the spall strength was also obtained from these experiments. The laser flyer EOS data were consistent with Hugoniot points deduced from gas gun experiments. Decaying shocks were induced in samples, by direct laser irradiation with a variety of pressures and durations, to investigate the threshold for martensite formation

  17. Principles underlying the Fourth Power Nature of Structured Shock Waves

    Science.gov (United States)

    Grady, Dennis

    2017-06-01

    Steady structured shock waves in materials including metals, glasses, compounds and solid mixtures, when represented through plots of Hugoniot stress against a measure of the strain rate through which the Hugoniot state is achieved, have consistently demonstrated a dependence to the fourth power. A perhaps deeper observation is that the product of the energy dissipated through the transition to the Hugoniot state and the time duration of the Hugoniot state event exhibits invariance independent of the Hugoniot amplitude. Invariance of the energy-time product and the fourth-power trend are to first order equivalent. Further, constancy of this energy-time product is observed in other dynamic critical state failure events including spall fracture, dynamic compaction and adiabatic shear failure. The presentation pursues the necessary background exposing the foregoing shock physics observations and explores possible statistical physics principals that may underlie the collective dynamic observations.

  18. DRSPALL: Impact of the Modification of the Numerical Spallings Model on Waste Isolation Pilot Plant Performance Assessment.

    Energy Technology Data Exchange (ETDEWEB)

    Kicker, Dwayne Curtis [Stoller Newport News Nuclear, Inc., Carlsbad, NM (United States); Herrick, Courtney G. [Sandia National Lab. (SNL-NM), Carlsbad, NM (United States); Zeitler, Todd [Sandia National Lab. (SNL-NM), Carlsbad, NM (United States); Malama, Bwalya [Sandia National Lab. (SNL-NM), Carlsbad, NM (United States); Rudeen, David Keith [GRAM Inc., Albuquerque, NM (United States); Gilkey, Amy P. [GRAM Inc., Albuquerque, NM (United States)

    2016-01-01

    The numerical code DRSPALL (from direct release spallings) is written to calculate the volume of Waste Isolation Pilot Plant (WIPP) solid waste subject to material failure and transport to the surface as a result of a hypothetical future inadvertent drilling intrusion. An error in the implementation of the DRSPALL finite difference equations was discovered as documented in Software Problem Report (SPR) 13-001. The modifications to DRSPALL to correct the finite difference equations are detailed, and verification and validation testing has been completed for the modified DRSPALL code. The complementary cumulative distribution function (CCDF) of spallings releases obtained using the modified DRSPALL is higher compared to that found in previous WIPP performance assessment (PA) calculations. Compared to previous PAs, there was an increase in the number of vectors that result in a nonzero spallings volume, which generally translates to an increase in spallings releases. The overall mean CCDFs for total releases using the modified DRSPALL are virtually unchanged, thus the modification to DRSPALL did not impact WIPP PA calculation results.

  19. The impact of the amount of polypropylene fibres on spalling behaviour and residual mechanical properties of Reactive Powder Concretes

    Directory of Open Access Journals (Sweden)

    Hager I.

    2013-09-01

    Full Text Available In this paper, an experimental study on the spalling behaviour and mechanical properties of Reactive Powder Concretes (RPCs in high temperature are presented. The research program was established to evaluate the impact of low melting temperature polypropylene fibres PP on mechanical properties evolution with temperature but also to verify the effectiveness of their addition to prevent spalling. Three sets of RPC specimens were prepared for this study with different amount of PP fibres (no fibres, 1.0 kg/m3 and 2.0 kg/m3. The addition of PP fibres reduces the initial compressive strength of the RPC material by approx. 14% no significant influence on modulus of elasticity was observed. Addition of 1 kg/m3 of PP fibres in RPC, seem not to give a sufficient protection against occurrence of spalling phenomenon. By adding 2 kg/m3 of PP fibres the risk of spalling is significantly reduced.

  20. Dynamic properties of ceramic materials

    International Nuclear Information System (INIS)

    Grady, D.E.

    1995-02-01

    The present study offers new data and analysis on the transient shock strength and equation-of-state properties of ceramics. Various dynamic data on nine high strength ceramics are provided with wave profile measurements, through velocity interferometry techniques, the principal observable. Compressive failure in the shock wave front, with emphasis on brittle versus ductile mechanisms of deformation, is examined in some detail. Extensive spall strength data are provided and related to the theoretical spall strength, and to energy-based theories of the spall process. Failure waves, as a mechanism of deformation in the transient shock process, are examined. Strength and equation-of-state analysis of shock data on silicon carbide, boron carbide, tungsten carbide, silicon dioxide and aluminum nitride is presented with particular emphasis on phase transition properties for the latter two. Wave profile measurements on selected ceramics are investigated for evidence of rate sensitive elastic precursor decay in the shock front failure process

  1. ZrCuAl Bulk Metallic Glass spall induced by laser shock

    Science.gov (United States)

    Jodar, Benjamin; Loison, Didier; Yokoyama, Yoshihiko; Lescoute, Emilien; Berthe, Laurent; Sangleboeuf, Jean-Christophe

    2017-06-01

    To face High Velocity Impacts, the aerospace industry is always seeking for innovative materials usable as debris shielding components. Bulk Metallic Glasses (BMG) revealed interesting mechanical properties in case of static and quasi-static loading conditions: high elasticity, high tenacity, low density and high fracture threshold... The department of Mechanics and Glass of the Institut of Physics Rennes conducted on the ELFIE facility, laser shock experiments to study the behavior of a ternary ZrCuAl BMG under high strain rate, up-to fragmentation process. On the one hand, in-situ diagnostics were used to measure ejection velocities with PDV and debris morphologies were observed by Shadowgraphy. On the other hand, spalled areas (dimensions and features) were characterized through post-mortem analysis (optical observations, profilometry and SEM). These results are compared to experimental and numerical data on the crystalline forms of the ZrCuAl basic compounds.

  2. Modeling of thermal spalling during electrical discharge machining of titanium diboride

    International Nuclear Information System (INIS)

    Gadalla, A.M.; Bozkurt, B.; Faulk, N.M.

    1991-01-01

    Erosion in electrical discharge machining has been described as occurring by melting and flushing the liquid formed. Recently, however, thermal spalling was reported as the mechanism for machining refractory materials with low thermal conductivity and high thermal expansion. The process is described in this paper by a model based on a ceramic surface exposed to a constant circular heating source which supplied a constant flux over the pulse duration. The calculations were based on TiB 2 mechanical properties along a and c directions. Theoretical predictions were verified by machining hexagonal TiB 2 . Large flakes of TiB 2 with sizes close to grain size and maximum thickness close to the predicted values were collected, together with spherical particles of Cu and Zn eroded from cutting wire. The cutting surfaces consist of cleavage planes sometimes contaminated with Cu, Zn, and impurities from the dielectric fluid

  3. Specific features of the occurrence, development, and re-compaction of spall and shear fractures in spherically-convergent shells made of unalloyed iron and some steels under their spherical explosive loading

    International Nuclear Information System (INIS)

    Kozlov, E.A.; Brichikov, S.A.; Gorbachev, D.M.; Brodova, I.G.; Yablonskikh, T.I.

    2007-01-01

    Results of comparative metallographic examination of recovered shells exposed to explosive loading in two modes (with and without a heavy casing confining explosion products scatter) are presented. The shells were made of high-purity and technical-grade unalloyed iron with the initial grain size 250 and 125 μm, steel 30KhGSA in delivery state and quenched up to HR C 35...40, austenitic stainless steel 12Kh18N10T. The heavy casing used in experiments is demonstrated to ensure a rather compact convergence of shells destroyed at high radii. In the described comparative experiments, one managed to compile the 12Kh18N10T steel shell, after it was spalled at high radii and exposed to shear fracture and spallation layer fragmentation at medium radii, into a compact sphere but failed to do the same with the 30KhGSA quenched steel shell after it was fractured according to spall and shear mechanisms at high and medium radii. Polar zones of this steel shell have obvious undercompressed areas due to significant dissipative losses to overcome the shear strength. Occurrence, development, and re-compaction of spall and shear fractures in spherically-convergent shells made of materials, which were already carefully investigated in 1D- and 2D-geometry experiments, were systematically studied in order to verify and validate new physical models of dynamic fractures, as well as up-to-date used in 1D-, 2D- and 3D-numerical algorithms [ru

  4. Shock initiation sensitivity and Hugoniot-based equation of state of Composition B obtained using in situ electromagnetic gauging

    International Nuclear Information System (INIS)

    Gibson, L L; Bartram, B D; Sheffield, S A; Gustavsen, R L; Brown, G W; Sandstrom, M M; Giambra, A M; Dattelbaum, D M; Handley, C A

    2014-01-01

    A series of gas gun-driven plate impact experiments were performed on vacuum melt-cast Composition B to obtain new Hugoniot states and shock sensitivity (run-distance-to-detonation) information. The Comp B (ρ 0 = 1.713 g/cm 3 ) consisted of 59.5% RDX, 39.5% TNT, and 1% wax, with ∼ 6.5% HMX in the RDX. The measured Hugoniot states were found to be consistent with earlier reports, with the compressibility on the shock adiabat softer than that of a 63% RDX material reported by Marsh.[4] The shock sensitivity was found to be more sensitive (shorter run distance to detonation at a given shock input condition) than earlier reports for Comp B-3 and a lower density (1.68-1.69 g/cm 3 ) Comp B formulation. The reactive flow during the shock-to-detonation transition was marked by heterogeneous, hot spot-driven growth both in and behind the leading shock front.

  5. DYNAMIC PROPERTIES OF SHOCK LOADED THIN URANIUM FOILS

    International Nuclear Information System (INIS)

    Robbins, D.L.; Kelly, A.M.; Alexander, D.J.; Hanrahan, R.J.; Snow, R.C.; Gehr, R.J.; Rupp, Ted Dean; Sheffield, S.A.; Stahl, D.B.

    2001-01-01

    A series of spall experiments has been completed with thin depleted uranium targets, nominally 0.1 mm thick. The first set of uranium spall targets was cut and ground to final thickness from electro-refined, high-purity, cast uranium. The second set was rolled to final thickness from low purity uranium. The impactors for these experiments were laser-launched 0.05-mm thick copper flyers, 3 mm in diameter. Laser energies were varied to yield a range of flyer impact velocities. This resulted in varying degrees of damage to the uranium spall targets, from deformation to complete spall or separation at the higher velocities. Dynamic measurements of the uranium target free surface velocities were obtained with dual velocity interferometers. Uranium targets were recovered and sectioned after testing. Free surface velocity profiles were similar for the two types of uranium, but spall strengths (estimated from the magnitude of the pull-back signal) are higher for the high-purity cast uranium. Velocity profiles and microstructural evidence of spall from the sectioned uranium targets are presented.

  6. On the mechanism of polypropylene fibres in preventing fire spalling in self-compacting and high-performance cement paste

    International Nuclear Information System (INIS)

    Liu, X.; Ye, G.; De Schutter, G.; Yuan, Y.; Taerwe, L.

    2008-01-01

    With the increasing application of self-compacting concrete (SCC) in construction and infrastructure, the fire spalling behavior of SCC has been attracting due attention. In high performance concrete (HPC), addition of polypropylene fibers (PP fibers) is widely used as an effective method to prevent explosive spalling. Hence, it would be useful to investigate whether the PP fibers are also efficient in SCC to avoid explosive spalling. However, no universal agreement exists concerning the fundamental mechanism of reducing the spalling risk by adding PP fiber. For SCC, the reduction of flowability should be considered when adding a significant amount of fibres. In this investigation, both the micro-level and macro-level properties of pastes with different fiber contents were studied in order to investigate the role of PP fiber at elevated temperature in self-compacting cement paste samples. The micro properties were studied by backscattering electron microscopy (BSE) and mercury intrusion porosimetry (MIP) tests. The modification of the pore structure at elevated temperature was investigated as well as the morphology of the PP fibers. Some macro properties were measured, such as the gas permeability of self-compacting cement paste after heating at different temperatures. The factors influencing gas permeability were analyzed. It is shown that with the melting of PP fiber, no significant increase in total pore volume is obtained. However, the connectivity of isolated pores increases, leading to an increase of gas permeability. With the increase of temperature, the addition of PP fibers reduces the damage of cement pastes, as seen from the total pore volume and the threshold pore diameter changes. From this investigation, it is concluded that the connectivity of pores as well as the creation of micro cracks are the major factors which determine the gas permeability after exposure to high temperatures. Furthermore, the connectivity of the pores acts as a dominant factor

  7. Review and perspectives on spallings release models in the 1996 performance assessment for the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Knowles, M.K.; Hansen, F.D.; Thompson, T.W.; Schatz, J.F.; Gross, M.

    2000-01-01

    The Waste Isolation Pilot Plant was licensed for disposal of transuranic wastes generated by the US Department of Energy. The facility consists of a repository mined in a bedded salt formation, approximately 650 m below the surface. Regulations promulgated by the US Environmental Protection Agency require that performance assessment calculations for the repository include the possibility that an exploratory drilling operation could penetrate the waste disposal areas at some time in the future. Release of contaminated solids could reach the surface during a drilling intrusion. One of the mechanisms for release, known as spallings, can occur if gas pressures in the repository exceed the hydrostatic pressure of a column of drilling mud. Calculation of solids releases for spallings depends critically on the conceptual models for the waste, for the spallings process, and assumptions regarding driller parameters and practices. This paper presents a review of the evolution of these models during the regulatory review of the Compliance Certification Application for the repository. A summary and perspectives on the implementation of conservative assumptions in model development are also provided

  8. Review and perspectives on spallings release models in the 1996 performance assessment for the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Knowles, M.K; Hansen, F.D.; Thompson, T.W.; Schatz, J.F.; Gross, M.

    2000-01-01

    The Waste Isolation Pilot Plant was licensed for disposal of transuranic wastes generated by the US Department of Energy. The facility consists of a repository mined in a bedded salt formation, approximately 650 m below the surface. Regulations promulgated by the US Environmental Protection Agency require that performance assessment calculations for the repository include the possibility that an exploratory drilling operation could penetrate the waste disposal areas at some time in the future. Release of contaminated solids could reach the surface during a drilling intrusion. One of the mechanisms for release, known as spallings, can occur if gas pressures in the repository exceed the hydrostatic pressure of a column of drilling mud. Calculation of solids releases for spallings depends critically on the conceptual models for the waste, for the spallings process, and assumptions regarding driller parameters and practices. The paper presents a review of the evolution of these models during regulatory review of the Compliance Certification Application for the repository. A summary and perspectives on the implementation of conservative assumptions in model development are also provided

  9. Description and evaluation of a mechanistically based conceptual model for spall

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, F.D.; Knowles, M.K.; Thompson, T.W. [and others

    1997-08-01

    A mechanistically based model for a possible spall event at the WIPP site is developed and evaluated in this report. Release of waste material to the surface during an inadvertent borehole intrusion is possible if future states of the repository include high gas pressure and waste material consisting of fine particulates having low mechanical strength. The conceptual model incorporates the physics of wellbore hydraulics coupled to transient gas flow to the intrusion borehole, and mechanical response of the waste. Degraded waste properties using of the model. The evaluations include both numerical and analytical implementations of the conceptual model. A tensile failure criterion is assumed appropriate for calculation of volumes of waste experiencing fragmentation. Calculations show that for repository gas pressures less than 12 MPa, no tensile failure occurs. Minimal volumes of material experience failure below gas pressure of 14 MPa. Repository conditions dictate that the probability of gas pressures exceeding 14 MPa is approximately 1%. For these conditions, a maximum failed volume of 0.25 m{sup 3} is calculated.

  10. Description and evaluation of a mechanistically based conceptual model for spall

    International Nuclear Information System (INIS)

    Hansen, F.D.; Knowles, M.K.; Thompson, T.W.

    1997-08-01

    A mechanistically based model for a possible spall event at the WIPP site is developed and evaluated in this report. Release of waste material to the surface during an inadvertent borehole intrusion is possible if future states of the repository include high gas pressure and waste material consisting of fine particulates having low mechanical strength. The conceptual model incorporates the physics of wellbore hydraulics coupled to transient gas flow to the intrusion borehole, and mechanical response of the waste. Degraded waste properties using of the model. The evaluations include both numerical and analytical implementations of the conceptual model. A tensile failure criterion is assumed appropriate for calculation of volumes of waste experiencing fragmentation. Calculations show that for repository gas pressures less than 12 MPa, no tensile failure occurs. Minimal volumes of material experience failure below gas pressure of 14 MPa. Repository conditions dictate that the probability of gas pressures exceeding 14 MPa is approximately 1%. For these conditions, a maximum failed volume of 0.25 m 3 is calculated

  11. Prevalent material parameters governing spalling of a slag-impregnated refractory

    Energy Technology Data Exchange (ETDEWEB)

    Blond, E.; Schmitt, N.; Arnould, O.; Hild, F. [LMT-Cachan (ENS de Cachan / CNRS-UMR 8535 / Univ. Paris 6), Cachan (France); Blumenfeld, P. [CRDM / ARCELOR Grande Synthe, Dunkerque (France); Poirier, J. [CRDM / ARCELOR Grande Synthe, Dunkerque (France); CRMHT-CNRS, Orleans (France)

    2004-07-01

    In steel ladle linings, bauxite refractories in contact with iron and steel slag are subjected to complex loadings. To identify the causes of degradation in different reactor linings, a coupling diagram made up of three poles is established: namely, slag impregnation (I), Thermomechanics (TM) and phase transformations (P). The variation of the microstructure and the gradient of the chemical composition resulting from the (I-P) coupling are characterized by microprobe analyses; a natural impregnation tracer is identified. The (I-T) coupling is studied by modeling the refractory lining behavior subjected to a cyclic thermal loading within the framework of the mechanics of porous continua. Parameters governing the location and amplitude of the maximum pore pressure are obtained and their influences are studied. The analysis of the (TM) pole leads to the identification of a thermo-elasto-viscoplastic model for bauxite in various states of slag impregnation. Numerical simulations show that the stress state developed during the heating stages can induce spalling, probably generated by a localized over-pressure of slag. (orig.)

  12. Localized atomic segregation in the spalled area of a Zr50Cu40Al10 bulk metallic glasses induced by laser-shock experiment

    Science.gov (United States)

    Jodar, B.; Loison, D.; Yokoyama, Y.; Lescoute, E.; Nivard, M.; Berthe, L.; Sangleboeuf, J.-C.

    2018-02-01

    Laser-shock experiments were performed on a ternary {Zr50{Cu}40{Al}10} bulk metallic glass. A spalling process was studied through post-mortem analyses conducted on a recovered sample and spall. Scanning electron microscopy magnification of fracture surfaces revealed the presence of a peculiar feature known as cup-cone. Cups are found on sample fracture surface while cones are observed on spall. Two distinct regions can be observed on cups and cones: a smooth viscous-like region in the center and a flat one with large vein-pattern in the periphery. Energy dispersive spectroscopy measurements conducted on these features emphasized atomic distribution discrepancies both on the sample and spall. We propose a mechanism for the initiation and the growth of these features but also a process for atomic segregation during spallation. Cup and cones would originate from cracks arising from shear bands formation (softened paths). These shear bands result from a quadrupolar-shaped atomic disorder engendered around an initiation site by shock wave propagation. This disorder turns into a shear band when tensile front reaches spallation plane. During the separation process, temperature gain induced by shock waves and shear bands generation decreases material viscosity leading to higher atomic mobility. Once in a liquid-like form, atomic clusters migrate and segregate due to inertial effects originating from particle velocity variation (interaction of release waves). As a result, a high rate of copper is found in sample cups and high zirconium concentration is found on spall cones.

  13. Spalling behavior and residual resistance of fibre reinforced Ultra-High performance concrete after exposure to high temperatures

    Directory of Open Access Journals (Sweden)

    Xiong, Ming-Xiang

    2015-12-01

    Full Text Available Experimental results of spalling and residual mechanical properties of ultra-high performance concrete after exposure to high temperatures are presented in this paper. The compressive strength of the ultra-high performance concrete ranged from 160 MPa~185 MPa. This study aimed to discover the effective way to prevent spalling for the ultra-high performance concrete and gauge its mechanical properties after it was subjected to fire. The effects of fiber type, fiber dosage, heating rate and curing condition were investigated. Test results showed that the compressive strength and elastic modulus of the ultra-high performance concrete declined slower than those of normal strength concrete after elevated temperatures. Polypropylene fiber rather than steel fiber was found effective to prevent spalling but affected workability. The effective fiber type and dosage were recommended to prevent spalling and ensure sufficient workability for casting and pumping of the ultra-high performance concrete.En este trabajo se presentan los resultados más relevantes del trabajo experimental realizado para valorar la laminación y las propiedades mecánicas residuales de hormigón de ultra-altas prestaciones tras su exposición a altas temperaturas. La resistencia a la compresión del hormigón de ultra-altas prestaciones osciló entre 160 MPa~185 MPa. El objetivo de este estudio fue descubrir una manera eficaz de prevenir desprendimientos y/o laminaciones en este hormigón y medir sus propiedades mecánicas después de ser sometido al fuego. Las variables estudiadas fueron la presencia y dosificación de fibras, velocidad de calentamiento y condiciones de curado. Los resultados mostraron, tras la exposición a altas temperaturas, que la resistencia a compresión y el módulo de elasticidad del hormigón de ultra-altas prestaciones disminuían más lento que las de un hormigón con resistencia normal. La fibra de polipropileno resultó más eficaz para prevenir

  14. Direct releases to the surface and associated complementary cumulative distribution functions in the 1996 performance assessment for the Waste Isolation Pilot Plant: cuttings, cavings and spallings

    International Nuclear Information System (INIS)

    Berglund, J.W.; Garner, J.W.; Helton, J.C.; Johnson, J.D.; Smith, L.N.

    2000-01-01

    The following topics related to the treatment of cuttings, cavings and spallings releases to the surface environment in the 1996 performance assessment for the Waste Isolation Pilot Plant (WIPP) are presented: (i) mathematical description of models; (ii) uncertainty and sensitivity analysis results arising from subjective (i.e. epistemic) uncertainty for individual releases; (iii) construction of complementary cumulative distribution functions (CCDFs) arising from stochastic (i.e. aleatory) uncertainty; and (iv) uncertainty and sensitivity analysis results for CCDFs. The presented results indicate that direct releases due to cuttings, cavings and spallings do not constitute a serious threat to the effectiveness of the WIPP as a disposal facility for transuranic waste. Even when the effects of uncertain analysis inputs are taken into account, the CCDFs for cuttings, cavings and spallings releases fall substantially to the left of the boundary line specified in the US Environmental Protection Agency's standard for the geologic disposal of radioactive waste (40 CFR 191, 40 CFR 194)

  15. Direct releases to the surface and associated complementary cumulative distribution functions in the 1996 performance assessment for the Waste Isolation Pilot Plant: Cuttings, cavings and spallings

    International Nuclear Information System (INIS)

    Berglund, J.W.; Garner, J.W.; Helton, Jon Craig; Johnson, J.D.; Smith, L.N.; Anderson, R.P.

    2000-01-01

    The following topics related to the treatment of cuttings, cavings and spallings releases to the surface environment in the 1996 performance assessment for the Waste Isolation Pilot Plant (WIPP) are presented: (1) mathematical description of models. (2) uncertainty and sensitivity analysis results arising from subjective (i.e., epistemic) uncertainty for individual releases, (3) construction of complementary cumulative distribution functions (CCDFs) arising from stochastic (i.e., aleatory) uncertainty, and (4) uncertainty and sensitivity analysis results for CCDFs. The presented results indicate that direct releases due to cuttings, cavings and spallings do not constitute a serious threat to the effectiveness of the WIPP as a disposal facility for transuranic waste. Even when the effects of uncertain analysis inputs are taken into account, the CCDFs for cuttings, cavings and spallings releases fall substantially to the left of the boundary line specified in the US Environmental Protection Agency standard for the geologic disposal of radioactive waste (40 CFR 191, 40 CFR 194)

  16. The scale constituents and spalling characteristics of Ni-Fe(O-60%) alloys oxidized in air at 800-12000C

    International Nuclear Information System (INIS)

    Tomlinson, W.J.; Gardner, M.J.; Kowalski, R.J.

    1977-01-01

    The spalling behaviour of scales on Ni-Fe alloys containing 0, 2, 10, 20, 30, 40, 50 and 60% Fe oxidized in air at 900, 1000, 1100 and 1200 0 C for periods up to 165 h have been investigated. The phases present and their relative amounts in the scales formed at 1200 0 C have been determined. Spalling was most severe in the Ni-30% Fe alloy, which had a scale consisting of 30% Nisub(x)Fesub(3-x)O 4 and 70% Nisub(1-x)Fesub(x)O. (author)

  17. Quantum molecular dynamics simulations of the thermophysical properties of shocked liquid ammonia for pressures up to 1.3 TPa.

    Science.gov (United States)

    Li, Dafang; Zhang, Ping; Yan, Jun

    2013-10-07

    We investigate via quantum molecular-dynamics simulations the thermophysical properties of shocked liquid ammonia up to the pressure 1.3 TPa and temperature 120,000 K. The principal Hugoniot is predicted from the wide-range equation of state, which agrees well with the available experimental measurements up to 64 GPa. Our systematic study of the structural properties demonstrates that the liquid ammonia undergoes a gradual phase transition along the Hugoniot. At about 4800 K, the system transforms into a metallic, complex mixture state consisting of NH3, N2, H2, N, and H. Furthermore, we discuss the implications for the interiors of Uranus and Neptune.

  18. Computational model of spalling and effective fibers on toughening in fiber reinforced composites at an early stage of crack formation

    Directory of Open Access Journals (Sweden)

    Chong Wang

    Full Text Available This work suggests a computational model that takes account of effective fibers on toughening in FRC at an early stage of crack formation. We derived the distribution of pressure provoked by a random inclined fiber in the matrix and calculated stresses through integrating the pressure and tangent stress along the fiber/matrix interface with the Kelvin's fundamental solution and the Mindlin's complementary solution. The evolution of spalling in the matrix was traced. The percentages of effective fibers were evaluated with variations in strength, interface resistance, diameter and elasticity modulus. The main conclusion is that low elasticity modulus combined high strength of fibers raises dramatically the effective fibers, which would benefit toughening.

  19. Effect of fibre orientations on the mechanical properties of kenaf–aramid hybrid composites for spall-liner application

    Institute of Scientific and Technical Information of China (English)

    R. YAHAYA; S.M. SAPUAN; M. JAWAID; Z. LEMAN; E.S. ZAINUDIN

    2016-01-01

    This paper presents the effect of kenaf fibre orientation on the mechanical properties of kenaf–aramid hybrid composites for military vehicle's spall liner application. It was observed that the tensile strength of woven kenaf hybrid composite is almost 20.78%and 43.55%higher than that of UD and mat samples respectively. Charpy impact strength of woven kenaf composites is 19.78%and 52.07%higher than that of UD and mat kenaf hybrid composites respectively. Morphological examinations were carried out using scanning electron microscopy. The results of this study indicate that using kenaf in the form of woven structure could produce a hybrid composite material with high tensile strength and impact resistance properties.

  20. Contribution to the explanation of the spalling of small specimen without any mechanical restraint exposed to high temperature

    International Nuclear Information System (INIS)

    Morais, Marcus V.G. de; Pliya, Prosper; Noumowe, Albert; Beaucour, Anne-Lise; Ortola, Sophie

    2010-01-01

    The behaviour of concrete subjected to high temperature is studied. The aim of the study is to explain the spalling or bursting phenomenon observed during experimental studies in the laboratory. Mechanical computations are carried out with the finite element code CAST3M developed at the French Atomic Energy Agency (CEA). Heat gradient and water vapour pressure inside the concrete element are determined by using a thermo-hydrous model. Then, the mechanical stresses generated in the studied concrete element are calculated according to two behaviour assumptions: the linear isotropic elastic law and an elastoplastic model. Numerical simulations show that, during the heating cycles, tension stresses are developed in the central part and compression stresses at the surface of the cylindrical concrete element. The highest stresses appear when the surface temperature of the concrete element is about 300 o C. The tension stresses in the specimens then exceed the concrete tensile strength.

  1. Contribution to the explanation of the spalling of small specimen without any mechanical restraint exposed to high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Morais, Marcus V.G. de, E-mail: mvmorais@unb.b [Cergy-Pontoise University - L2MGC, 5 mail Gay-Lussac Neuville sur Oise, 95031 Cergy-Pontoise Cedex (France); Pliya, Prosper [Cergy-Pontoise University - L2MGC, 5 mail Gay-Lussac Neuville sur Oise, 95031 Cergy-Pontoise Cedex (France); Noumowe, Albert, E-mail: Albert.Noumowe@u-cergy.f [Cergy-Pontoise University - L2MGC, 5 mail Gay-Lussac Neuville sur Oise, 95031 Cergy-Pontoise Cedex (France); Beaucour, Anne-Lise; Ortola, Sophie [Cergy-Pontoise University - L2MGC, 5 mail Gay-Lussac Neuville sur Oise, 95031 Cergy-Pontoise Cedex (France)

    2010-10-15

    The behaviour of concrete subjected to high temperature is studied. The aim of the study is to explain the spalling or bursting phenomenon observed during experimental studies in the laboratory. Mechanical computations are carried out with the finite element code CAST3M developed at the French Atomic Energy Agency (CEA). Heat gradient and water vapour pressure inside the concrete element are determined by using a thermo-hydrous model. Then, the mechanical stresses generated in the studied concrete element are calculated according to two behaviour assumptions: the linear isotropic elastic law and an elastoplastic model. Numerical simulations show that, during the heating cycles, tension stresses are developed in the central part and compression stresses at the surface of the cylindrical concrete element. The highest stresses appear when the surface temperature of the concrete element is about 300 {sup o}C. The tension stresses in the specimens then exceed the concrete tensile strength.

  2. Delineation of spall zone from pre/post shot reflections studies: Preliminary results from BEXAR. Los Alamos Source Region Project

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, S.R.; Cogbill, A.H.; Weaver, T.A. [Los Alamos National Lab., NM (United States); Miller, R.; Steeples, D. [Kansas Univ., Lawrence, KS (United States)

    1992-12-31

    In order to delineate the lateral and depth extent of spall from a buried nuclear explosion, we have performed a high-resolution pre- and post-shot seismic reflection survey from BEXAR. Although the data quality were marginal due to poor wave propagation through the volcanic tuffs of Pahute Mesa, a number of interesting differences are observed on the pre- and post-shot surveys. On the pre-shot survey, a reflector (reflector `` 1 ``) is observed at 250 ms (or about 150 m depth) using a stacking velocity of 1300 m/s. On the post-shot survey two reflectors are observed and a stacking velocity of 1150 m/s was used representing a 12% reduction in compressional velocity. With this stacking velocity, reflector `` 1 `` is recorded at 290 ms (still at about 150 m depth) and a new reflector ``2`` is observed at 210 ms (or about 100 m depth). These stacking velocities correspond well with available uphole travel times collected in U19ba and nearby U19ax (BEXAR and KEARSARGE emplacement holes, respectively). The cause for the differences observed in the pre- and post-shot surveys may be due to one of two reasons. First, it is possible that the near-surface rocks were damaged as part of the spallation process (thus reducing the in situ velocities) and reflector ``2`` represents a spall detachment surface. However, analysis of acceleration data collected close to the reflection line suggests that the ground motions were probably inadequate to damage the tuffs. Also, no evidence of actual spallation was actually observed. The second hypothesis is that the near-surface velocities of the tuffs were altered by the change in saturation state due to extensive rains occurring between the pre- and postshot surveys. Although the dependence of seismic velocity on saturation state is controlled by a number of complex factors, it cannot be ruled out.

  3. Anomaly in the dynamic strength of austenitic stainless steel 12Cr19Ni10Ti under shock wave loading

    Science.gov (United States)

    Garkushin, G. V.; Kanel, G. I.; Razorenov, S. V.; Savinykh, A. S.

    2017-07-01

    Measurement results for the shock wave compression profiles of 12Cr19Ni10Ti steel and its dynamic strength in the strain rate range 105-106 s-1 are presented. The protracted viscous character of the spall fracture is revealed. With the previously obtained data taken into account, the measurement results are described by a polynomial relation, which can be used to construct the fracture kinetics. On the lower boundary of the range, the resistance to spall fracture is close to the value of the true strength of the material under standard low-rate strain conditions; on the upper boundary, the spall strength is more than twice greater than this quantity. An increase in the temperature results in a decrease in both the dynamic limit of elasticity and the spall fracture strength of steel. The most interesting result is the anomaly in the dependence of the spall fracture strength on the duration of the shock wave compression pulse, which is related to the formation of deformation martensite near the growing discontinuities.

  4. The Role of Second Phase Intermetallic Particles on the Spall Failure of 5083 Aluminum

    Science.gov (United States)

    2016-12-01

    Bradley Survice Engineering Company, Aberdeen, MD A reprint from Journal of Dynamic Behavior of Materials. 2016;2:476–483...Army Research Laboratory, Aberdeen Proving Ground, Aberdeen, MD, USA 2 Survice Engineering Company, Aberdeen Proving Ground, Aberdeen, MD, USA 123 J...2016) 2:476–483 479 123 ligaments between cracks and a second phase intermetallic particle (identified by black arrow) above the crack with an average

  5. X-ray diffraction studies of structures of Be, Al, LiF, Fe+3%Si, Si, SiO2, KCl under dynamic pressures from 2 Gpa to 20 Gpa

    International Nuclear Information System (INIS)

    Egorov, L.A.; Barenboim, A.I.; Mokhova, V.V.; Dorohin, V.V.; Samoilov, A.I.

    1997-01-01

    Currently, the only direct method to study behaviour of solid crystal substance structures under dynamic compression is method to record X-rays diffraction pictures of crystal structures under shock compression. Thepaper presents results of X-rays diffraction measurements concerning structural parameters of shock compressed substances at pressures higher than Hugoniot elastic limit (Be, Al, LiF, Fe+3%Si), lower than Hugoniot elastic limit (Si, SiO 2 , LiF) and in the area of pressures of phase transformation beginning (KCl, Si). Recorded states of shock-compressed substance structures demonstrate identity of structural deformations at pressures higher and lower than Hugoniot elastic limit as well as at pressures above the phase transformation point, which can be characterized as single-axial deformations. (orig.)

  6. Iron Damage and Spalling Behavior below and above Shock Induced α ε Phase Transition

    International Nuclear Information System (INIS)

    Voltz, Christophe; Buy, Francois; Roy, Gilles

    2006-01-01

    The study of dynamic damage and fracture of iron has been undertaken below and above phase transition by series of time resolved experiments using both light gas launcher and powder gun. Shock wave tests were conducted by symmetrical impacts of high purity iron. To reveal the material behavior we have done shock experiments where the target is covered with a window in order to limit release amplitude and to avoid specimen fragmentation. Metallurgical analysis of soft recovered samples yields information about damage and fracture processes related to thermo-mechanical loading paths. Tests conducted without window allow studying effects of both phase change and release transition. Optical and SEM characterizations lead us to observe several modes of damage: brittle, ductile diffuse with void growth and heavily localized smooth one. These figures are related with: rarefaction shock waves or interfaces between transformed and not transformed iron. Simulations are performed with the 1D to compare experimental data with numerical results. We explain post-mortem observations by the complex shock wave structure interactions: P1 and P2 shock fronts associated with some corresponding shock release during unloading stages

  7. The influence of the admixture of the fullerene C60 on the strength properties of aluminum and copper under shock-wave loading

    International Nuclear Information System (INIS)

    Bezruchko, G S; Razorenov, S V; Popov, M Y

    2014-01-01

    Hugoniot elastic limit (HEL) and dynamic (spall) strength measurements of pressed aluminum and copper samples with an admixture of the fullerene C60 with 2-5 wt% under shock-wave loading were carried out. The peak pressure in the shock-wave was equal to 6 GPa. The measurements of the elastic-plastic and strength properties were based on the recording and the subsequent analysis of the sample free surface velocity histories, recorded by Velocity Interferometric System for Any Reflection (VISAR). It was found that the admixture of 5 wt% fullerene in aluminum samples led to an increase of the Hugoniot elastic limit for aluminum samples by a factor of ten. The copper samples with the admixture of 2 wt% fullerene also demonstrated an increase of the Hugoniot elastic limit in comparison with commercial copper. The measured values of the Hugoniot elastic limit were equal to 0.82-1.56 GPa for aluminum samples and 1.35-3.46 GPa for copper samples, depending on their porosity. As expected, the spall strength of the samples with fullerene decreased by about three times in comparison with the undoped samples as a result of the influence of the solid fullerene particles which were concentrators of tension stresses in the material under dynamic fracture.

  8. Massive spalling of Cu-Zn and Cu-Al intermetallic compounds at the interface between solders and Cu substrate during liquid state reaction

    Science.gov (United States)

    Kotadia, H. R.; Panneerselvam, A.; Mokhtari, O.; Green, M. A.; Mannan, S. H.

    2012-04-01

    The interfacial intermetallic compound (IMC) formation between Cu substrate and Sn-3.8Ag-0.7Cu-X (wt.%) solder alloys has been studied, where X consists of 0-5% Zn or 0-2% Al. The study has focused on the effect of solder volume as well as the Zn or Al concentration. With low solder volume, when the Zn and Al concentrations in the solder are also low, the initial Cu-Zn and Al-Cu IMC layers, which form at the solder/substrate interface, are not stable and spall off, displaced by a Cu6Sn5 IMC layer. As the total Zn or Al content in the system increases by increasing solder volume, stable CuZn or Al2Cu IMCs form on the substrate and are not displaced. Increasing concentration of Zn has a similar effect of stabilizing the Cu-Zn IMC layer and also of forming a stable Cu5Zn8 layer, but increasing Al concentration alone does not prevent spalling of Al2Cu. These results are explained using a combination of thermodynamic- and kinetics-based arguments.

  9. Solving the relativistic Rankine-Hugoniot condition in the presence of a magnetic field in the astrophysical scenario of a neutron star

    International Nuclear Information System (INIS)

    Mallick, Ritam

    2011-01-01

    The Rankine-Hugoniot condition has been solved to study phase transition in an astrophysical scenario mainly in the case of phase transition from a neutron star (NS) to a quark star (QS). The equations of state and temperature play a huge role in determining the nature of the front propagation, which brings about the phase transition in a NS. The shock jump conditions can be solved analytically, but the situation changes drastically by the inclusion of the magnetic field. High magnetic fields, which are always associated with a NS play a huge role in determining the structure and evolution of a NS. So, a magnetic field has been introduced in the shock jump condition in the de Hoffmann-Teller frame. The modified conservation condition for the perpendicular and oblique shocks is obtained in this frame. Numerical solution of the perpendicular shock has been obtained, which shows considerable deviation from the nonmagnetic case. The results show that the magnetic field helps in shock generation. It also indirectly hints at the instability of the matter and thereby the NS for very high magnetic field, implying that NSs can only support a magnetic field of some finite strength.

  10. Probing planetary interiors: Shock compression of water to 700 GPa and 3.8 g/cc, and recent high precision Hugoniot measurements of deuterium

    Science.gov (United States)

    Knudson, Marcus

    2013-06-01

    The past several years have seen tremendous increase in the number of identified extra-solar planetary systems. Our understanding of the formation of these systems is tied to our understanding of the internal structure of these exoplanets, which in turn rely upon equations of state of light elements and compounds such as water and hydrogen. Here we present shock compression data for water with unprecedented accuracy that shows commonly used models for water in planetary modeling significantly overestimate the compressibility at conditions relevant to planetary interiors. Furthermore, we show that its behavior at these conditions, including reflectivity and isentropic response, is well described by a recent first-principles based equation of state. These findings advocate the use of this model as the standard for modeling Neptune, Uranus, and ``hot Neptune'' exoplanets, and should contribute to improved understanding of the interior structure of these planets, and perhaps improved understanding of formation mechanisms of planetary systems. We also present very recent experiments on deuterium that have taken advantage of continued improvements in both experimental configuration and the understanding of the quartz shock standard to obtain Hugoniot data with a significant increase in precision. These data will prove to provide a stringent test for the equation of state of hydrogen and its isotopes. Sandia is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the US Department of Energy's National Nuclear Security Administration under Contract No. DE-ACO4-94AL85000.

  11. Experimental study of dynamic fragmentation of shockloaded metals below and above melting

    Directory of Open Access Journals (Sweden)

    De Rességuier T.

    2010-06-01

    Full Text Available The breakout and reflection of a strong shock-wave upon the free surface of a metallic sample may lead to ejecta production of many types. Spall fracture is due to tensile stresses which result from the interaction of the incident and the reflected release waves. When the sample remains in solid state, one or several layers of finite thickness, called spalls, can be created and ejected. When melting is initiated during shock-wave propagation, tensile stresses are generated in a liquid medium and lead to the creation of an expanding cloud of liquid debris. This phenomenon, sometimes referred to as microspalling, consists in a dynamic fragmentation process in the melted material. The present paper is devoted to the experimental investigation of the transition from spall fracture in solid state to the micro-spalling process in molten metals. This study, realized on tin and on iron, involves different shock generators (gas gun, pulsed laser… and diagnostics (velocimetry, high-speed optical shadowgraphy, fragments recovery.

  12. Experimental investigation of dynamic compression and spallation of Cerium at pressures up to 6 GPa

    Science.gov (United States)

    Zubareva, A. N.; Kolesnikov, S. A.; Utkin, A. V.

    2014-05-01

    In this study the experiments on one-dimensional dynamic compression of Cerium (Ce) samples to pressures of 0.5 to 6 GPa using various types of explosively driven generators were conducted. VISAR laser velocimeter was used to obtain Ce free surface velocity profiles. The isentropic compression wave was registered for γ-phase of Ce at pressures lower than 0.76 GPa that corresponds to γ-α phase transition pressure in Ce. Shock rarefaction waves were also registered in several experiments. Both observations were the result of the anomalous compressibility of γ-phase of Ce. On the basis of our experimental results the compression isentrope of Ce γ-phase was constructed. Its comparison with volumetric compression curves allowed to estimate the magnitude of shear stress at dynamic compression conditions for Ce. Spall strength measurements were also conducted for several samples. They showed a strong dependence of the spall strength of Ce on the strain rate.

  13. Experimental investigation of dynamic compression and spallation of cerium at pressures up to 6 GPa

    International Nuclear Information System (INIS)

    Zubareva, A N; Kolesnikov, S A; Utkin, A V

    2014-01-01

    In this study the experiments on one-dimensional dynamic compression of Cerium (Ce) samples to pressures of 0.5 to 6 GPa using various types of explosively driven generators were conducted. VISAR laser velocimeter was used to obtain Ce free surface velocity profiles. The isentropic compression wave was registered for γ-phase of Ce at pressures lower than 0.76 GPa that corresponds to γ-α phase transition pressure in Ce. Shock rarefaction waves were also registered in several experiments. Both observations were the result of the anomalous compressibility of γ-phase of Ce. On the basis of our experimental results the compression isentrope of Ce γ-phase was constructed. Its comparison with volumetric compression curves allowed to estimate the magnitude of shear stress at dynamic compression conditions for Ce. Spall strength measurements were also conducted for several samples. They showed a strong dependence of the spall strength of Ce on the strain rate.

  14. Aspects of simulating the dynamic compaction of a granular ceramic

    International Nuclear Information System (INIS)

    Borg, John P; Vogler, Tracy J

    2009-01-01

    Mesoscale hydrodynamic calculations have been conducted in order to gain further insight into the dynamic compaction characteristics of granular ceramics. With a mesoscale approach each individual grain, as well as the porosity, is modeled explicitly; the bulk behavior of the porous material can be resolved as a result. From these calculations bulk material characteristics such as shock speed, stress and density have been obtained and compared with experimental results. A parametric study has been conducted in order to explore the variation and sensitivity of the computationally derived dynamic response characteristics to micro-scale material properties such as Poisson's ratio, dynamic yield and tensile failure strength; macro-scale parameters such as volume fraction, particle morphology and size distribution were explored as well. The results indicate that the baseline bulk Hugoniot response under-predicts the experimentally measured response. These results are sensitive to the volume fraction, dynamic yield strength and particle arrangement, somewhat sensitive to failure strength and insensitive to the micro-scale Hugoniot and grain morphology. A discussion as to the shortcomings in the mesoscale modeling technique, as well as future considerations, is included

  15. Investigation of fused silica dynamic behaviour

    International Nuclear Information System (INIS)

    Malaise, F.; Chevalier, J.M.; Bertron, I.; Malka, F.

    2006-01-01

    The survivability of the fused silica shields to shrapnel impacts is a key factor for the affordable operation of the intense laser irradiation future facility Laser Mega Joule (LMJ). This paper presents experimental data and computational modelling for LMJ fused silica upon shock wave loading and unloading. Gas-gun flyer plate impact and explosively driven tests have been conducted to investigate the dynamic behaviour of this material. Hugoniot states and the Hugoniot Elastic Limit of LMJ fused silica have been obtained. These experimental data are useful for determining some constitutive model constants of the 'Crack-Model', a continuum tensile and compressive failure model with friction based. This model has been improved by taking into account nonlinear elasticity. The numerical results obtained by performing computations of the previous tests and some ballistic impact tests are discussed. The numerical comparisons with the experimental data show good agreement. Further developments to simulate the permanent densification and the solid-to-solid phase transformation of fused silica are required. (authors)

  16. Use of acoustic emission technique to study the spalling behaviour of oxide scales on Ni-10Cr-8Al containing sulphur and/or yttrium impurity

    International Nuclear Information System (INIS)

    Khanna, A.S.; Quadakkers, W.J.; Jonas, H.

    1989-01-01

    It is now well established that the presence of small amounts of sulphur impurity in a NiCrAl-based alloy causes a deleterious effect on their high temperature oxidation behaviour. It is, however, not clear whether the adverse effect is due to a decrease in the spalling resistance of the oxide scale or due to an enhanced scale growth. In order to confirm which of the factors is dominating, two independent experimental techniques were used in the investigation of the oxidation behaviour of Ni-10Cr-8Al containing sulphur- and/or yttrium additions: conventional thermogravimetry, to study the scale growth rates and acoustic emission analysis to study the scale adherence. The results indicated that the dominant factor responsible for the deleterious effect of sulphur impurity on the oxidation of a Ni-10Cr-8Al alloy, was a significant change in the growth rate and the composition of the scale. Addition of yttrium improved the oxidation behaviour, not only by increasing the scale adherence, but also by reducing the scale growth due to gettering of sulphur. (orig.) [de

  17. Dynamics

    CERN Document Server

    Goodman, Lawrence E

    2001-01-01

    Beginning text presents complete theoretical treatment of mechanical model systems and deals with technological applications. Topics include introduction to calculus of vectors, particle motion, dynamics of particle systems and plane rigid bodies, technical applications in plane motions, theory of mechanical vibrations, and more. Exercises and answers appear in each chapter.

  18. Dynamic fragmentation of laser shock-melted tin: experiment and modelling

    Energy Technology Data Exchange (ETDEWEB)

    De Resseguier, T. [CNRS ENSMA, Lab Combust and Deton, F-86961 Futuroscope (France); Signor, L.; Dragon, A. [CNRS ENSMA, Mecan and Phys Mat Lab, F-86961 Futuroscope (France); Signor, L.; Roy, G. [CEA Valduc, 21 - Is-sur-Tille (France)

    2010-07-01

    Dynamic fragmentation of shock-loaded metals is an issue of considerable importance for both basic science and a variety of technological applications, such as pyrotechnics or inertial confinement fusion, the latter involving high energy laser irradiation of thin metallic shells. Whereas spall fracture in solid materials has been extensively studied for many years, little data can be found yet about the evolution of this phenomenon after partial or full melting on compression or on release. Here, we present an investigation of dynamic fragmentation in laser shock-melted tin, from the 'micro-spall' process (ejection of a cloud of fine droplets) occurring upon reflection of the compressive pulse from the target free surface, to the late rupture observed in the un-spalled melted layer (leading to the formation of larger spherical fragments). Experimental results consist of time-resolved velocity measurements and post-shock observations of recovered targets and fragments. They provide original information regarding the loss of tensile strength associated with melting, the cavitation mechanism likely to occur in the melted metal, the sizes of the subsequent fragments and their ejection velocities. A theoretical description based on an energetic approach adapted to the case of a liquid metal is implemented as a failure criterion in a one-dimensional hydro-code including a multi-phase equation of state for tin. The resulting predictions of the micro-spall process are compared with experimental data. In particular, the use of a new experimental technique to quantify the fragment size distributions leads to a much better agreement with theory than previously reported. Finally, a complementary approach focused on cavitation is proposed to evaluate the role of this phenomenon in the fragmentation of the melted metal. (authors)

  19. Stress relaxation in vanadium under shock and shockless dynamic compression

    International Nuclear Information System (INIS)

    Kanel, G. I.; Razorenov, S. V.; Garkushin, G. V.; Savinykh, A. S.; Zaretsky, E. B.

    2015-01-01

    Evolutions of elastic-plastic waves have been recorded in three series of plate impact experiments with annealed vanadium samples under conditions of shockless and combined ramp and shock dynamic compression. The shaping of incident wave profiles was realized using intermediate base plates made of different silicate glasses through which the compression waves were entered into the samples. Measurements of the free surface velocity histories revealed an apparent growth of the Hugoniot elastic limit with decreasing average rate of compression. The growth was explained by “freezing” of the elastic precursor decay in the area of interaction of the incident and reflected waves. A set of obtained data show that the current value of the Hugoniot elastic limit and plastic strain rate is rather associated with the rate of the elastic precursor decay than with the local rate of compression. The study has revealed the contributions of dislocation multiplications in elastic waves. It has been shown that independently of the compression history the material arrives at the minimum point between the elastic and plastic waves with the same density of mobile dislocations

  20. Spall Strength of Tungsten Carbide

    Science.gov (United States)

    2004-09-01

    1 PCS GROUP CAVENDISH LABORATORY W G PROUD MADINGLEY RD CAMBRIDGE UNITED KINGDOM 1 CENTRE D ETUDES DE GRAMAT J Y TRANCHET...46500 GRAMAT FRANCE 1 MINISTERE DE LA DEFENSE DR G BRAULT DGA DSP STTC 4 RUE DE LA PORTE DISSY 75015 PARIS FRANCE 1 SPART

  1. Microdamage in polycrystalline ceramics under dynamic compression and tension

    International Nuclear Information System (INIS)

    Zhang, K.S.; Zhang, D.; Feng, R.; Wu, M.S.

    2005-01-01

    In-grain microplasticity and intergranular microdamage in polycrystalline hexagonal-structure ceramics subjected to a sequence of dynamic compression and tension are studied computationally using the Voronoi polycrystal model, by which the topological heterogeneity and material anisotropy of the crystals are simulated explicitly. The constitutive modeling considers crystal plasticity by basal slip, intergranular shear damage during compression, and intergranular mode-I cracking during tension. The model parameters are calibrated with the available shock compression and spall strength data on polycrystalline α-6H silicon carbide. The numerical results show that microplasticity is a more plausible micromechanism for the inelastic response of the material under shock compression. On the other hand, the spallation behavior of the shocked material can be well predicted by intergranular mode-I microcracking during load reversal from dynamic compression to tension. The failure process and the resulting spall strength are, however, affected strongly by the intensity of local release heterogeneity induced by heterogeneous microplasticity, and by the grain-boundary shear damage during compression

  2. Dynamic tensile response of alumina-Al composites

    International Nuclear Information System (INIS)

    Atisivan, R.; Bandyopadhyay, A.; Gupta, Y. M.

    2002-01-01

    Plate impact experiments were carried out to examine the high strain-rate tensile response of alumina-aluminum (Al) composites with tailored microstructures. A novel processing technique was used to fabricate interpenetrating phase alumina-aluminum composites with controlled microstructures. Fused deposition modeling (FDM), a commercially available rapid prototyping technique, was used to produce the controlled porosity mullite ceramic preforms. Alumina-Al composites were then processed via reactive metal infiltration of porous mullite ceramics. With this approach, both the micro as well as the macro structures can be designed via computer aided design (CAD) to tailor the properties of the composites. Two sets of dynamic tensile experiments were performed. In the first, the metal content was varied between 23 and 39 wt. percent. In the second, the microstructure was varied while holding the metal content nearly constant. Samples with higher metal content, as expected, displayed better spall resistance. For a given metal content, samples with finer metal diameter showed better spall resistance. Relationship of the microstructural parameters on the dynamic tensile response of the structured composites is discussed here

  3. Molecular-dynamic simulations of the thermophysical properties of hexanitrohexaazaisowurtzitane single crystal at high pressures and temperatures

    Science.gov (United States)

    Kozlova, S. A.; Gubin, S. A.; Maklashova, I. V.; Selezenev, A. A.

    2017-11-01

    Molecular dynamic simulations of isothermal compression parameters are performed for a hexanitrohexaazaisowurtzitane single crystal (C6H6O12N12) using a modified ReaxFF-log reactive force field. It is shown that the pressure-compression ratio curve for a single C6H6O12N12 crystal at constant temperature T = 300 K in pressure range P = 0.05-40 GPa is in satisfactory agreement with experimental compression isotherms obtained for a single C6H6O12N12 crystal. Hugoniot molecular-dynamic simulations of the shock-wave hydrostatic compression of a single C6H6O12N12 crystal are performed. Along with Hugoniot temperature-pressure curves, calculated shock-wave pressure-compression ratios for a single C6H6O12N12 crystal are obtained for a wide pressure range of P = 1-40 GPa. It is established that the percussive adiabat obtained for a single C6H6O12N12 crystal is in a good agreement with the experimental data. All calculations are performed using a LAMMPS molecular dynamics simulation software package that provides a ReaxFF-lg reactive force field to support the approach.

  4. Molecular dynamics study of shock compression in porous silica glass

    Science.gov (United States)

    Jones, Keith; Lane, J. Matthew D.; Vogler, Tracy J.

    2017-06-01

    The shock response of porous amorphous silica is investigated using classical molecular dynamics, over a range of porosity ranging from fully dense (2.21 g/cc) down to 0.14 g/cc. We observe an enhanced densification in the Hugoniot response at initial porosities above 50 %, and the effect increases with increasing porosity. In the lowest initial densities, after an initial compression response, the systems expand with increased pressure. These results show good agreement with experiments. Mechanisms leading to enhanced densification will be explored, which appear to differ from mechanisms observed in similar studies in silicon. Sandia National Laboratories is a multi mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  5. Evolution of elastic precursor and plastic shock wave in copper via molecular dynamics simulations

    International Nuclear Information System (INIS)

    Perriot, Romain; Zhakhovsky, Vasily V; Oleynik, Ivan I; Inogamov, Nail A

    2014-01-01

    Large-scale molecular dynamics (MD) simulations are performed to investigate shock propagation in single crystal copper. It is shown that the P-V plastic Hugoniot is unique regardless of the sample's orientation, its microstructure, or its length. However, the P-V pathway to the final state is not, and depends on many factors. Specifically, it is shown that the pressure in the elastic precursor (the Hugoniot elastic limit (HEL)) decreases as the shock wave propagates in a micron-sized sample. The attenuation of the HEL in sufficiently-long samples is the main source of disagreement between previous MD simulations and experiment: while single crystal experiments showed that the plastic shock speed is orientation-independent, the simulated plastic shock speed was observed to be orientation-dependent in relatively short single-crystal samples. Such orientation dependence gradually disappears for relatively long, micrometer-sized, samples for all three low-index crystallographic directions (100), (110), and (111), and the plastic shock velocities for all three directions approach the one measured in experiment. The MD simulations also demonstrate the existence of subsonic plastic shock waves generated by relatively weak supporting pressures.

  6. Dynamic Tensile Experimental Techniques for Geomaterials: A Comprehensive Review

    Science.gov (United States)

    Heard, W.; Song, B.; Williams, B.; Martin, B.; Sparks, P.; Nie, X.

    2018-01-01

    This review article is dedicated to the Dynamic Behavior of Materials Technical Division for celebrating the 75th anniversary of the Society for Experimental Mechanics (SEM). Understanding dynamic behavior of geomaterials is critical for analyzing and solving engineering problems of various applications related to underground explosions, seismic, airblast, and penetration events. Determining the dynamic tensile response of geomaterials has been a great challenge in experiments due to the nature of relatively low tensile strength and high brittleness. Various experimental approaches have been made in the past century, especially in the most recent half century, to understand the dynamic behavior of geomaterials in tension. In this review paper, we summarized the dynamic tensile experimental techniques for geomaterials that have been developed. The major dynamic tensile experimental techniques include dynamic direct tension, dynamic split tension, and spall tension. All three of the experimental techniques are based on Hopkinson or split Hopkinson (also known as Kolsky) bar techniques and principles. Uniqueness and limitations for each experimental technique are also discussed.

  7. Dynamic tensile fracture of mortar at ultra-high strain-rates

    International Nuclear Information System (INIS)

    Erzar, B.; Buzaud, E.; Chanal, P.-Y.

    2013-01-01

    During the lifetime of a structure, concrete and mortar may be exposed to highly dynamic loadings, such as impact or explosion. The dynamic fracture at high loading rates needs to be well understood to allow an accurate modeling of this kind of event. In this work, a pulsed-power generator has been employed to conduct spalling tests on mortar samples at strain-rates ranging from 2 × 10 4 to 4 × 10 4  s −1 . The ramp loading allowed identifying the strain-rate anytime during the test. A power law has been proposed to fit properly the rate-sensitivity of tensile strength of this cementitious material over a wide range of strain-rate. Moreover, a specimen has been recovered damaged but unbroken. Micro-computed tomography has been employed to study the characteristics of the damage pattern provoked by the dynamic tensile loading

  8. Fracture strength of aluminium alloys under rapid loading conditions

    International Nuclear Information System (INIS)

    Joshi, K.D.; Rav, Amit S.; Sur, Amit; Kaushik, T.C.; Gupta, Satish C.

    2016-04-01

    Spall fracture strength and dynamic yield strength of aluminium alloys have been measured at high strain rates generated in plate impact experiments carried out at different impact velocities ranging from 174 m/s to 560 m/s using single stage gas gun facility. In each experiment, the free surface velocity history of the sample plate of aluminium alloy has been derived from time resolved Doppler shift measured employing indigenously developed velocity interferometer system for any reflector (VISAR). The free surface velocity history so determined has been used to evaluate the spall fracture strength and dynamic yield strength of the target material. The two kinds of alloys of aluminium namely Al2014-T4 and Al2024-T4 have been investigated in these experiments. In Al2014-T4 target plates, the spall strength determined from free surface velocity history recorded for impact velocities of 179 m/s, 307 m/s, 398 m/s and 495m/s is 0.90 GPa, 0.96 GPa, 1.0 GPa and 1.1 GPa, respectively. The average strain rates just ahead of spall pulse have been found to vary from ∼ 1.1×10 4 /s to 2.4×10 4 /s. The dynamic yield strength derived from the measured Hugoniot elastic limit ranges from 0.36 GPa to 0.40 GPa. The spall strength for Al2024-T4 samples has been determined to be 1.11 GPa, 1.18 GPa and 1.42 GPa, at impact velocities of 174 m/s, 377 m/s and 560 m/s, respectively. The corresponding average strain rates range from 1.9×104/s to 2.5×104/s. The dynamic yield strength of Al2024-T4 at these impact velocities has been found to vary from 0.37 GPa to 0.43 GPa. The measured spall strengths in all these experiments are higher than the quasi-static value of 0.511 GPa for Al2014-T4 and 0.470 GPa for Al2024. Similarly, the dynamic yield strengths are also larger than the quasi-static value of 0.355 GPa for Al2014-T4 and 0.360 GPa for Al2024-T4. These experimental studies suggest that at high strain rates, both the alloys of aluminium offer higher resistance against the tensile

  9. Analogy between soap film and gas dynamics. I. Equations and shock jump conditions

    Energy Technology Data Exchange (ETDEWEB)

    Wen, C.Y.; Lai, J.Y. [Department of Mechanical Engineering, Da-Yeh University, Chang-Hwa (Taiwan)

    2003-01-01

    The governing equations of compressible flows in soap films are formulated based on the very specific property equations of soap films. The basic normal shock relations and the Rankine-Hugoniot equation are derived for steady one-dimensional flows in soap films. The results are similar to those of compressible gases. The analogy between compressible flows in soap films and that in gases is discussed. On short time scales, the dynamic response of the film is characterized by the Marangoni elasticity, and soap films are shown to be analogous to compressible gases with a specific heat ratio of {gamma}=1.0. Results for Gibbs elasticity are also presented for reference, and no clear analogy to compressible gases is obtained. (orig.)

  10. Quantum molecular dynamics of warm dense iron and a five-phase equation of state

    Science.gov (United States)

    Sjostrom, Travis; Crockett, Scott

    2018-05-01

    Through quantum molecular dynamics (QMD), utilizing both Kohn-Sham (orbital-based) and orbital-free density functional theory, we calculate the equation of state of warm dense iron in the density range 7 -30 g/cm 3 and temperatures from 1 to 100 eV. A critical examination of the iron pseudopotential is made, from which we find a significant improvement at high pressure to the previous QMD calculations of Wang et al. [Phys. Rev. E 89, 023101 (2014), 10.1103/PhysRevE.89.023101]. Our results also significantly extend the ranges of density and temperature that were attempted in that prior work. We calculate the shock Hugoniot and find very good agreement with experimental results to pressures over 20 TPa. These results are then incorporated with previous studies to generate a five-phase equation of state for iron.

  11. A study on the strength of an armour-grade aluminum under high strain-rate loading

    Science.gov (United States)

    Appleby-Thomas, G. J.; Hazell, P. J.

    2010-06-01

    The aluminum alloy 5083 in tempers such as H32 and H131 is an established light-weight armour material. While its dynamic response under high strain-rates has been investigated elsewhere, little account of the effect of material orientation has been made. In addition, little information on its strength under such loadings is available in the literature. Here, both the longitudinal and lateral components of stress have been measured using embedded manganin stress gauges during plate-impact experiments on samples with the rolling direction aligned both orthogonal and parallel to the impact axis. The Hugoniot elastic limit, spall, and shear strengths were investigated for incident pressures in the range 1-8 GPa, providing an insight into the response of this alloy under shock loading. Further, the time dependence of lateral stress behind the shock front was investigated to give an indication of material response.

  12. A systematization of glaze spalling in azulejos

    Directory of Open Access Journals (Sweden)

    João Manuel Mimoso

    2016-01-01

    Full Text Available The detachment of the glaze in azulejos is the ultimate form of decay, since it leads to the loss of the pictorial content. The detachment is usually considered in a diffuse way, however a close observation allows recognizing several types, often related to crazing, which this paper proposes to systematize.

  13. A study on the dynamic behavior of the Meuse/Haute-Marne argillite

    Science.gov (United States)

    Cai, M.; Kaiser, P. K.; Suorineni, F.; Su, K.

    Excavation of underground tunnels can be conducted by tunnel boring machines (TBM) or drill-and-blast. TBMs cause minimum damage to excavation walls. Blasting effects on excavation walls depend on the care with which the blasting is executed. For blast-induced damage in excavation walls, two issues have to be addressed: rate of loss of confinement (rate of excavation) and dynamic loading from wave propagation that causes both intended and unintended damage. To address these two aspects, laboratory dynamic tests were conducted for the determination of the dynamic properties of the Meuse/Haute-Marne argillite. In the present study, 17 tensile (Brazilian) and 15 compression split Hopkinson pressure bar (SHPB) tests were conducted. The test revealed that the dynamic strengths of the argillite are strain rate dependent. The average dynamic increase factors (ratio of dynamic strength to static strength) for tensile and compressive strength are about 3.3 and 2.4, respectively. A high-speed video camera was used to visualize the initiation of failure and subsequent deformation of the specimens. The direct compression specimens were found to deform and fail uniformly around the circumference of the specimen, by a spalling process. The SHPB Brazilian tests indicated that failure occurred in tension along the line of load application. Radial fractures were also observed. The test results can be used for the development of a dynamic constitutive model for the argillite for the prediction of damage in underground excavation utilizing the drill-and blast method.

  14. Investigation of the dynamic behavior in materials submitted to sub-picosecond laser driven shock

    International Nuclear Information System (INIS)

    Cuq-Lelandais, Jean-Paul

    2010-01-01

    Laser driven shocks allow to investigate materials behavior at high strain rate and present a great interest for research and industrial applications. The latest laser technologies evolutions provide an access to shorter regimes in duration, below the picosecond. This work, which results from a collaboration between the P' institute, the PIMM laboratory and the CEA-DAM, is dedicated to the characterization of the metallic material behavior in this ultra-short mode (aluminium, tantalum), leading to extreme dynamic solicitation in the target (>10 7 s -1 ). The study includes the validation of experimental results obtained on the LULI 100 TW facility by comparison with numerical model. First, the study is orientated to the femtosecond (fs) laser-matter interaction, which is different from what happens in nanosecond regime. Indeed, the characteristic duration scale is comparable to several molecular phenomena like non-equilibrium electrons-ions states. The aim is to determine the equivalent pressure loading induced by the laser pulse on the target. Then, the shock wave propagation within the target has been studied and particularly its pressure decay, notably strong in this regime. In this configuration, the spalls observed are thin, a few μm order, and show a planar rupture morphology. The results obtained by post-mortem observation show that the spall thickness is thinner if the target thickness is reduced. The spalls are characterized by the VISAR measurement. Within the framework of dynamic damage modeling and rupture criteria dimensioning, particularly those which have been validated in the ns regime as Kanel, shots with different thicknesses have been carried out to determine the damage properties in function of strain rate and validate the parameters by prolongation to the ultra-shorts modes. Then, the study has been generalized to the 2D propagation waves, which can explain the spall diameter evolutions. Meanwhile, microscopic simulations of ultra-short laser

  15. Modeling shockwave deformation via molecular dynamics

    International Nuclear Information System (INIS)

    Holian, B.L.

    1987-01-01

    Molecular dynamics (MD), where the equations of motion of up to thousands of interacting atoms are solved on the computer, has proven to be a powerful tool for investigating a wide variety of nonequilibrium processes from the atomistic viewpoint. Simulations of shock waves in three-dimensional (3D) solids and fluids have shown conclusively that shear-stress relaxation is achieved through atomic rearrangement. In the case of fluids, the transverse motion is viscous, and the constitutive model of Navier-Stokes hydrodynamics has been shown to be accurate - even on the time and distance scales of MD experiments. For strong shocks in solids, the plastic flow that leads to shear-stress relaxation in MD is highly localized near the shock front, involving a slippage along close-packed planes. For shocks of intermediate strength, MD calculations exhibit an elastic precursor running out in front of the steady plastic wave, where slippage similar in character to that in the very strong shocks leads to shear-stress relaxation. An interesting correlation between the maximum shear stress and the Hugoniot pressure jump is observed for both 3D and fluid shockwave calculations, which may have some utility in modeling applications. At low shock strengths, the MD simulations show only elastic compression, with no permanent transverse atomic strains. The result for perfect 3D crystals is also seen in calculations for 1D chains. It is speculated that, if it were practical, a very large MD system containing dislocations could be expected to exhibit more realistic plastic flow for weak shock waves, too

  16. Anisotropic damage and dynamic behavior of reinforced concrete structures until failure

    International Nuclear Information System (INIS)

    Chambart, M.

    2009-09-01

    Dynamic loadings such as impact on reinforced concrete structures lead to degradations and structural failures significantly different to the ones observed for quasi-static loadings. Local effects (spalling, compaction...) and global mechanisms (bending, shear, perforation...) are experimentally observed. Wave propagation due to dynamics loadings can lead to failure in tension in a part of a structure or a component previously in compression. Induced damage anisotropy in concrete is partly responsible for the dissymmetry of behavior between tension and compression. Concrete anisotropy can be modelled by means of a second order damage tensor. In the damage model considered, damage growth is governed by the positive extensions. The model, written in the thermodynamics framework, is robust and is able to compute efficiently Reinforced Concrete (RC) structures. The initial anisotropic model is here extended to dynamics by introducing a viscosity law to govern dynamic damage evolution. The strain rate effect observed experimentally in tension (strength increases with strain rate) is reproduced. In compression no strain rate is introduced since inertial forces seem sufficient to reproduce the strength enhancement in dynamics. One also focuses on regularization issues. For high strain rates the solution is regularized since the characteristic time introduced indirectly defines an internal length and since the damage rate is bounded by a maximum damage rate parameter (visco/delay damage law). This visco/delay regularization is efficient at large strain rates, otherwise, the delay in damage evolution is too small to let damage grow in a wide enough zone. For quasi-static or low speed dynamic cases, the regularization is gained by means of classical non-local damage. For intermediary loading rates where both the strain rate effect and the non-local regularization are needed, a non-local delay-damage model is written (and used in 3D computations). The example of a dynamic

  17. Dynamic design method for deep hard rock tunnels and its application

    Directory of Open Access Journals (Sweden)

    Xia-Ting Feng

    2016-08-01

    Full Text Available Numerous deep underground projects have been designed and constructed in China, which are beyond the current specifications in terms of scale and construction difficulty. The severe failure problems induced by high in situ stress, such as rockburst, spalling, damage of deep surrounding rocks, and time-dependent damage, were observed during construction of these projects. To address these problems, the dynamic design method for deep hard rock tunnels is proposed based on the disintegration process of surrounding rocks using associated dynamic control theories and technologies. Seven steps are basically employed: (i determination of design objective, (ii characteristics of site, rock mass and project, and identification of constraint conditions, (iii selection or development of global design strategy, (iv determination of modeling method and software, (v preliminary design, (vi comprehensive integrated method and dynamic feedback analysis, and (vii final design. This dynamic method was applied to the construction of the headrace tunnels at Jinping II hydropower station. The key technical issues encountered during the construction of deep hard rock tunnels, such as in situ stress distribution along the tunnels, mechanical properties and constitutive model of deep hard rocks, determination of mechanical parameters of surrounding rocks, stability evaluation of surrounding rocks, and optimization design of rock support and lining, have been adequately addressed. The proposed method and its application can provide guidance for deep underground projects characterized with similar geological conditions.

  18. On the characterisation of the dynamic compressive behaviour of silicon carbides subjected to isentropic compression experiments

    Directory of Open Access Journals (Sweden)

    Zinszner Jean-Luc

    2015-01-01

    Full Text Available Ceramic materials are commonly used as protective materials particularly due to their very high hardness and compressive strength. However, the microstructure of a ceramic has a great influence on its compressive strength and on its ballistic efficiency. To study the influence of microstructural parameters on the dynamic compressive behaviour of silicon carbides, isentropic compression experiments have been performed on two silicon carbide grades using a high pulsed power generator called GEPI. Contrary to plate impact experiments, the use of the GEPI device and of the lagrangian analysis allows determining the whole loading path. The two SiC grades studied present different Hugoniot elastic limit (HEL due to their different microstructures. For these materials, the experimental technique allowed evaluating the evolution of the equivalent stress during the dynamic compression. It has been observed that these two grades present a work hardening more or less pronounced after the HEL. The densification of the material seems to have more influence on the HEL than the grain size.

  19. Release path temperatures of shock-compressed tin from dynamic reflectance and radiance measurements

    Energy Technology Data Exchange (ETDEWEB)

    La Lone, B. M., E-mail: lalonebm@nv.doe.gov; Stevens, G. D.; Turley, W. D. [National Security Technologies, LLC, Special Technologies Laboratory, Santa Barbara, California 93111 (United States); Holtkamp, D. B. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Iverson, A. J. [National Security Technologies, LLC, Los Alamos Operations, Los Alamos, New Mexico 87544 (United States); Hixson, R. S.; Veeser, L. R. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); National Security Technologies, LLC, Los Alamos Operations, Los Alamos, New Mexico 87544 (United States)

    2013-08-14

    Dynamic reflectance and radiance measurements were conducted for tin samples shock compressed to 35 GPa and released to 15 GPa using high explosives. We determined the reflectance of the tin samples glued to lithium fluoride windows using an integrating sphere with an internal xenon flashlamp as an illumination source. The dynamic reflectance (R) was determined at near normal incidence in four spectral bands with coverage in visible and near-infrared spectra. Uncertainties in R/R{sub 0} are <2%, and uncertainties in absolute reflectance are <5%. In complementary experiments, thermal radiance from the tin/glue/lithium fluoride interface was recorded with similar shock stress and spectral coverage as the reflectance measurements. The two sets of experiments were combined to obtain the temperature history of the tin surface with an uncertainty of <2%. The stress at the interface was determined from photonic Doppler velocimetry and combined with the temperatures to obtain temperature-stress release paths for tin. We discuss the relationship between the experimental release paths and release isentropes that begin on the principal shock Hugoniot.

  20. Delay-active damage versus non-local enhancement for anisotropic damage dynamics computations with alternated loading

    International Nuclear Information System (INIS)

    Desmorat, R.; Chambart, M.; Gatuingt, F.; Guilbaud, D.

    2010-01-01

    Anisotropic damage thermodynamics framework allows to model the concrete-like materials behavior and in particular their dissymmetric tension/compression response. To deal with dynamics applications such as impact, it is furthermore necessary to take into account the strain rate effect observed experimentally. This is done in the present work by means of anisotropic visco-damage, by introducing a material strain rate effect in the cases of positive hydrostatic stresses only. The proposed delay-damage law assumes no viscous effect in compression as the consideration of inertia effects proves sufficient to model the apparent material strength increase. High-rate dynamics applications imply to deal with wave propagation and reflection which can generate alternated loading in the impacted structure. In order to do so, the key concept of active damage is defined and introduced within both the damage criterion and the delay-damage evolution law. At the structural level, strain localization often leads to spurious mesh dependency. Three-dimensional Finite Element computations of dynamic tensile tests by spalling are presented, with visco-damage and either without or with non-local enhancement. Delay-damage, as introduced, regularizes the solution in fast dynamics. The location of the macro-crack initiated is found influenced by non-local regularization. The strain rate range in which each enhancement, delay-damage or non-local enhancement, has a regularizing effect is studied. (authors)

  1. Ground state structure of U2Mo: static and lattice dynamics study

    International Nuclear Information System (INIS)

    Mukherjee, D.; Sahoo, B.D.; Joshi, K.D.; Kaushik, T.C.

    2016-01-01

    According to experimental reports, the ground state stable structure of U 2 Mo is tetragonal. However, various theoretical studies performed in past do not get tetragonal phase as the stable structure at ambient conditions. Therefore, the ground state structure of U 2 Mo is still unresolved. In an attempt to understand the ground state properties of this system, we have carried out first principle electronic band structure calculations. The structural stability analysis carried out using evolutionary structure search algorithm in conjunction with ab-inito method shows that a hexagonal structure (space group P6/mmm) is the lowest enthalpy structure at ambient condition and remains stable upto 200 GPa. The elastic and lattice dynamical stability further supports the stability of this phase at ambient condition. Further, using the 0 K calculations in conjunction with finite temperature corrections, we have derived the isotherm and shock adiabat (Hugoniot) of this material. Various equilibrium properties such as ambient pressure volume, bulk modulus, pressure derivative of bulk modulus etc. are derived from equation of state. (author)

  2. Dynamical Effects in Metal-Organic Frameworks: The Microporous Materials as Shock Absorbers

    Science.gov (United States)

    Banlusan, Kiettipong; Strachan, Alejandro

    2017-06-01

    Metal-organic frameworks (MOFs) are a class of nano-porous crystalline solids consisting of inorganic units coordinated to organic linkers. The unique molecular structures and outstanding properties with ultra-high porosity and tunable chemical functionality by various choices of metal clusters and organic ligands make this class of materials attractive for many applications. The complex and quite unique responses of these materials to mechanical loading including void collapse make them attractive for applications in energy absorption and storage. We will present using large-scale molecular dynamics simulations to investigate shock propagation in zeolitic imidazolate framework ZIF-8 and MOF-5. We find that for shock strengths above a threshold a two-wave structure develops with a leading elastic precursor followed by a second wave of structural collapse to relax the stress. Structural transition of MOFs in response to shock waves corresponds to the transition between two Hugoniot curves, and results in abrupt change in temperature. The pore-collapse wave propagates at slower velocity than the leading wave and weakens it, resulting in shock attenuation. Increasing piston speed results in faster propagation of pore-collapse wave, but the leading elastic wave remains unchanged below the overdriven regime. We discuss how the molecular structure of the MOFs and shock propagation direction affect the response of the materials and their ability to weaken shocks. Office of Naval Research, MURI 2012 02341 01.

  3. Equation of state and transport properties of warm dense helium via quantum molecular dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhi-Guo [College of Physical Science and Technology, Sichuan University, Chengdu 610064 (China); National Key Laboratory for Shock Wave and Detonation Physics Research, Institute of Fluid Physics, Chinese Academy of Engineering Physics, Mianyang 621900 (China); Key Laboratory of High Energy Density Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610064 (China); Cheng, Yan [College of Physical Science and Technology, Sichuan University, Chengdu 610064 (China); Key Laboratory of High Energy Density Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610064 (China); Chen, Qi-Feng, E-mail: chenqf01@gmail.com, E-mail: xrchen@scu.edu.cn [National Key Laboratory for Shock Wave and Detonation Physics Research, Institute of Fluid Physics, Chinese Academy of Engineering Physics, Mianyang 621900 (China); Chen, Xiang-Rong, E-mail: chenqf01@gmail.com, E-mail: xrchen@scu.edu.cn [College of Physical Science and Technology, Sichuan University, Chengdu 610064 (China)

    2016-05-15

    The equation of state, self-diffusion, and viscosity coefficients of helium have been investigated by quantum molecular dynamics (QMD) simulations in the warm dense matter regime. Our simulations are validated through the comparison with the reliable experimental data. The calculated principal and reshock Hugoniots of liquid helium are in good agreement with the gas-gun data. On this basis, we revisit the issue for helium, i.e., the possibility of the instabilities predicted by chemical models at around 2000 GPa and 10 g/cm{sup 3} along the pressure isotherms of 6309, 15 849, and 31 623 K. Our calculations show no indications of instability in this pressure-temperature region, which reconfirm the predictions of previous QMD simulations. The self-diffusion and viscosity coefficients of warm dense helium have been systematically investigated by the QMD simulations. We carefully test the finite-size effects and convergences of statistics, and obtain numerically converged self-diffusion and viscosity coefficients by using the Kubo-Green formulas. The present results have been used to evaluate the existing one component plasma models. Finally, the validation of the Stokes-Einstein relationship for helium in the warm dense regime is discussed.

  4. System dynamics

    International Nuclear Information System (INIS)

    Kim, Do Hun; Mun, Tae Hun; Kim, Dong Hwan

    1999-02-01

    This book introduces systems thinking and conceptual tool and modeling tool of dynamics system such as tragedy of single thinking, accessible way of system dynamics, feedback structure and causal loop diagram analysis, basic of system dynamics modeling, causal loop diagram and system dynamics modeling, information delay modeling, discovery and application for policy, modeling of crisis of agricultural and stock breeding products, dynamic model and lesson in ecosystem, development and decadence of cites and innovation of education forward system thinking.

  5. Final Report 02-ERD-033: Rapid Resolidification of Metals using Dynamic Compression

    International Nuclear Information System (INIS)

    Streitz, F H; Nguyen, J H; Orlikowski, D; Minich, R; Moriarty, J A; Holmes, N C

    2005-01-01

    The purpose of this project is to develop a greater understanding of the kinetics involved during a liquid-solid phase transition occurring at high pressure and temperature. Kinetic limitations are known to play a large role in the dynamics of solidification at low temperatures, determining, e.g., whether a material crystallizes upon freezing or becomes an amorphous solid. The role of kinetics is not at all understood in transitions at high temperature when extreme pressures are involved. In order to investigate time scales during a dynamic compression experiment we needed to create an ability to alter the length of time spent by the sample in the transition region. Traditionally, the extreme high-pressure phase diagram is studied through a few static and dynamic techniques: static compression involving diamond anvil cells (DAC) [1], shock compression [2, 3], and quasi-isentropic compression [4, 5, 6, 7, 8, 9, 10]. Static DAC experiments explore equilibrium material properties along an isotherm or an isobar [1]. Dynamic material properties can be explored with shock compression [2, 3], probing single states on the Hugoniot, or with quasi-isentropic compression [4, 5, 6, 7, 8, 9, 10]. In the case of shocks, pressures variation typically occurs on a sub-nanosecond time scale or faster [11]. Previous quasi-isentropic techniques have yielded pressure ramps on the 10-100 nanosecond time-scale for samples that are several hundred microns thick [4, 5, 6, 7]. In order to understand kinetic effects at high temperatures and high pressures, we need to span a large dynamic range (strain rates, relaxation times, etc.) as well as control the thermodynamic path that the material experiences. Compression rates, for instance, need to bridge those of static experiments (seconds to hours) and those of the Z-accelerator (10 6 s -1 ) [4] or even laser ablation techniques (10 6 s -1 to 10 8 s -1 ) [7]. Here, we present a new technique that both extends the compression time to several

  6. Strength properties and structure of a submicrocrystalline Al-Mg-Mn alloy under shock compression

    Science.gov (United States)

    Petrova, A. N.; Brodova, I. G.; Razorenov, S. V.

    2017-06-01

    The results of studying the strength of a submicrocrystalline aluminum A5083 alloy (chemical composition was 4.4Mg-0.6Mn-0.11Si-0.23Fe-0.03Cr-0.02Cu-0.06Ti wt % and Al base) under shockwave compression are presented. The submicrocrystalline structure of the alloy was produced in the process of dynamic channel-angular pressing at a strain rate of 104 s-1. The average size of crystallites in the alloy was 180-460 nm. Hugoniot elastic limit σHEL, dynamic yield stress σy, and the spall strength σSP of the submicrocrystalline alloy were determined based on the free-surface velocity profiles of samples during shock compression. It has been established that upon shock compression, the σHEL and σy of the submicrocrystalline alloy are higher than those of the coarse-grained alloy and σsp does not depend on the grain size. The maximum value of σHEL reached for the submicrocrystalline alloy is 0.66 GPa, which is greater than that in the coarse-crystalline alloy by 78%. The dynamic yield stress is σy = 0.31 GPa, which is higher than that of the coarse-crystalline alloy by 63%. The spall strength is σsp = 1.49 GPa. The evolution of the submicrocrystalline structure of the alloy during shock compression was studied. It has been established that a mixed nonequilibrium grain-subgrain structure with a fragment size of about 400 nm is retained after shock compression, and the dislocation density and the hardness of the alloy are increased.

  7. Dynamical Languages

    Science.gov (United States)

    Xie, Huimin

    The following sections are included: * Definition of Dynamical Languages * Distinct Excluded Blocks * Definition and Properties * L and L″ in Chomsky Hierarchy * A Natural Equivalence Relation * Symbolic Flows * Symbolic Flows and Dynamical Languages * Subshifts of Finite Type * Sofic Systems * Graphs and Dynamical Languages * Graphs and Shannon-Graphs * Transitive Languages * Topological Entropy

  8. Semiclassical dynamics

    International Nuclear Information System (INIS)

    Balazs, N.L.

    1979-01-01

    It is pointed out that in semiclassical dynamics one is encouraged to study the evolution of those curves in phase space which classically represent ensembles corresponding to wave functions. It is shown that the fixed points generate new time scales so that for times longer than the critical times, quantum dynamics will profoundly differ from classical dynamics. (P.L.)

  9. Discrete dynamics versus analytic dynamics

    DEFF Research Database (Denmark)

    Toxværd, Søren

    2014-01-01

    For discrete classical Molecular dynamics obtained by the “Verlet” algorithm (VA) with the time increment h there exists a shadow Hamiltonian H˜ with energy E˜(h) , for which the discrete particle positions lie on the analytic trajectories for H˜ . Here, we proof that there, independent...... of such an analytic analogy, exists an exact hidden energy invariance E * for VA dynamics. The fact that the discrete VA dynamics has the same invariances as Newtonian dynamics raises the question, which of the formulations that are correct, or alternatively, the most appropriate formulation of classical dynamics....... In this context the relation between the discrete VA dynamics and the (general) discrete dynamics investigated by Lee [Phys. Lett. B122, 217 (1983)] is presented and discussed....

  10. Properties of a Laser Shock Wave in Al-Cu Alloy under Elevated Temperatures: A Molecular Dynamics Simulation Study

    Directory of Open Access Journals (Sweden)

    Xiankai Meng

    2017-01-01

    Full Text Available The laser shock wave (LSW generated by the interaction between a laser and a material has been widely used in laser manufacturing, such as laser shock peening and laser shock forming. However, due to the high strain rate, the propagation of LSW in materials, especially LSW at elevated temperatures, is difficult to study through experimental methods. A molecular dynamics simulation was used in this study to investigate the propagation of LSW in an Al-Cu alloy. The Hugoniot relations of LSW were obtained at different temperatures and the effects of elevated temperatures on shock velocity and shock pressure were analyzed. Then the elastic and plastic wave of the LSW was researched. Finally, the evolution of dislocations induced by LSW and its mechanism under elevated temperatures was explored. The results indicate that the shock velocity and shock pressure induced by LSW both decrease with the increasing temperatures. Moreover, the velocity of elastic wave and plastic wave both decrease with the increasing treatment temperature, while their difference decreases as the temperature increases. Moreover, the dislocation atoms increases with the increasing temperatures before 2 ps, while it decreases with the increasing temperatures after 2 ps. The reason for the results is related to the formation and evolution of extended dislocations.

  11. Shock-induced transformations in crystalline RDX: a uniaxial constant-stress Hugoniostat molecular dynamics simulation study.

    Science.gov (United States)

    Bedrov, Dmitry; Hooper, Justin B; Smith, Grant D; Sewell, Thomas D

    2009-07-21

    Molecular dynamics (MD) simulations of uniaxial shock compression along the [100] and [001] directions in the alpha polymorph of hexahydro-1,3,5-trinitro-1,3,5-triazine (alpha-RDX) have been conducted over a wide range of shock pressures using the uniaxial constant stress Hugoniostat method [Ravelo et al., Phys. Rev. B 70, 014103 (2004)]. We demonstrate that the Hugoniostat method is suitable for studying shock compression in atomic-scale models of energetic materials without the necessity to consider the extremely large simulation cells required for an explicit shock wave simulation. Specifically, direct comparison of results obtained using the Hugoniostat approach to those reported by Thompson and co-workers [Phys. Rev. B 78, 014107 (2008)] based on large-scale MD simulations of shocks using the shock front absorbing boundary condition (SFABC) approach indicates that Hugoniostat simulations of systems containing several thousand molecules reproduced the salient features observed in the SFABC simulations involving roughly a quarter-million molecules, namely, nucleation and growth of nanoscale shear bands for shocks propagating along the [100] direction and the polymorphic alpha-gamma phase transition for shocks directed along the [001] direction. The Hugoniostat simulations yielded predictions of the Hugoniot elastic limit for the [100] shock direction consistent with SFABC simulation results.

  12. Dynamics Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Dynamics Lab replicates vibration environments for every Navy platform. Testing performed includes: Flight Clearance, Component Improvement, Qualification, Life...

  13. Dynamical systems

    CERN Document Server

    Sternberg, Shlomo

    2010-01-01

    Celebrated mathematician Shlomo Sternberg, a pioneer in the field of dynamical systems, created this modern one-semester introduction to the subject for his classes at Harvard University. Its wide-ranging treatment covers one-dimensional dynamics, differential equations, random walks, iterated function systems, symbolic dynamics, and Markov chains. Supplementary materials offer a variety of online components, including PowerPoint lecture slides for professors and MATLAB exercises.""Even though there are many dynamical systems books on the market, this book is bound to become a classic. The the

  14. Structure/property (constitutive and dynamic strength/damage) characterization of additively manufactured 316L SS

    Science.gov (United States)

    Gray, G. T., III; Livescu, V.; Rigg, P. A.; Trujillo, C. P.; Cady, C. M.; Chen, S. R.; Carpenter, J. S.; Lienert, T. J.; Fensin, S.

    2015-09-01

    For additive manufacturing (AM), the certification and qualification paradigm needs to evolve as there exists no "ASTM-type" additive manufacturing certified process or AM-material produced specifications. Accordingly, utilization of AM materials to meet engineering applications requires quantification of the constitutive properties of these evolving materials in comparison to conventionally-manufactured metals and alloys. Cylinders of 316L SS were produced using a LENS MR-7 laser additive manufacturing system from Optomec (Albuquerque, NM) equipped with a 1kW Yb-fiber laser. The microstructure of the AM-316L SS is detailed in both the as-built condition and following heat-treatments designed to obtain full recrystallization. The constitutive behavior as a function of strain rate and temperature is presented and compared to that of nominal annealed wrought 316L SS plate. The dynamic damage evolution and failure response of all three materials was probed using flyer-plate impact driven spallation experiments at a peak stress of 4.5 GPa to examine incipient spallation response. The spall strength of AM-produced 316L SS was found to be very similar for the peak shock stress studied to that of annealed wrought or AM-316L SS following recrystallization. The damage evolution as a function of microstructure was characterized using optical metallography.

  15. Static and dynamic oxidation of Ti-14Al-21Nb and coatings

    International Nuclear Information System (INIS)

    Wiedemann, K.E.; Sankaran, S.N.; Clark, R.K.; Wallace, T.A.

    1988-01-01

    This paper reports the oxidation of Ti-14Al-21Nb (wt.%) studied under static conditions at 649 to 1093 degrees C for as long as 120 hr. and under simulated hypersonic flight (dynamic oxidation) conditions at 982 degrees C for as many as 16 half-hour cycles. Under simulated hypersonic flight conditions heavy oxidation and spalling of the oxide was observed. It was concluded that titanium aluminides used in hypersonic applications must have oxidation protective coatings. In this preliminary study coatings about one micrometer thick were applied by sputter deposition, form solutions, and from sol-gels. The materials applied by sputter deposition were oxides or fluorides thought to be stable against the metal and the materials applied from solutions and sol-gels were generally glass-formers and were intended for use in the final coating formulation as topcoats to the sputter-deposited coatings. Form weight gain and cross-sectional microscopy of the coated materials after oxidation exposure for 1 hr at 982 degrees C, it was found that because of cracks and porosity the sputter-deposited coatings did not have sufficient film integrity to shield the alloy

  16. Structure/property (constitutive and dynamic strength/damage characterization of additively manufactured 316L SS

    Directory of Open Access Journals (Sweden)

    Gray III G.T.

    2015-01-01

    Full Text Available For additive manufacturing (AM, the certification and qualification paradigm needs to evolve as there exists no “ASTM-type” additive manufacturing certified process or AM-material produced specifications. Accordingly, utilization of AM materials to meet engineering applications requires quantification of the constitutive properties of these evolving materials in comparison to conventionally-manufactured metals and alloys. Cylinders of 316L SS were produced using a LENS MR-7 laser additive manufacturing system from Optomec (Albuquerque, NM equipped with a 1kW Yb-fiber laser. The microstructure of the AM-316L SS is detailed in both the as-built condition and following heat-treatments designed to obtain full recrystallization. The constitutive behavior as a function of strain rate and temperature is presented and compared to that of nominal annealed wrought 316L SS plate. The dynamic damage evolution and failure response of all three materials was probed using flyer-plate impact driven spallation experiments at a peak stress of 4.5 GPa to examine incipient spallation response. The spall strength of AM-produced 316L SS was found to be very similar for the peak shock stress studied to that of annealed wrought or AM-316L SS following recrystallization. The damage evolution as a function of microstructure was characterized using optical metallography.

  17. Dynamics Modeling and Analysis of Local Fault of Rolling Element Bearing

    Directory of Open Access Journals (Sweden)

    Lingli Cui

    2015-01-01

    Full Text Available This paper presents a nonlinear vibration model of rolling element bearings with 5 degrees of freedom based on Hertz contact theory and relevant bearing knowledge of kinematics and dynamics. The slipping of ball, oil film stiffness, and the nonlinear time-varying stiffness of the bearing are taken into consideration in the model proposed here. The single-point local fault model of rolling element bearing is introduced into the nonlinear model with 5 degrees of freedom according to the loss of the contact deformation of ball when it rolls into and out of the local fault location. The functions of spall depth corresponding to defects of different shapes are discussed separately in this paper. Then the ode solver in Matlab is adopted to perform a numerical solution on the nonlinear vibration model to simulate the vibration response of the rolling elements bearings with local fault. The simulation signals analysis results show a similar behavior and pattern to that observed in the processed experimental signals of rolling element bearings in both time domain and frequency domain which validated the nonlinear vibration model proposed here to generate typical rolling element bearings local fault signals for possible and effective fault diagnostic algorithms research.

  18. Molecular dynamics simulation of shock wave and spallation phenomena in metal foils irradiated by femtosecond laser pulse

    Science.gov (United States)

    Zhakhovsky, Vasily; Demaske, Brian; Inogamov, Nail; Oleynik, Ivan

    2010-03-01

    Femtosecond laser irradiation of metals is an effective technique to create a high-pressure frontal layer of 100-200 nm thickness. The associated ablation and spallation phenomena can be studied in the laser pump-probe experiments. We present results of a large-scale MD simulation of ablation and spallation dynamics developing in 1,2,3μm thick Al and Au foils irradiated by a femtosecond laser pulse. Atomic-scale mechanisms of laser energy deposition, transition from pressure wave to shock, reflection of the shock from the rear-side of the foil, and the nucleation of cracks in the reflected tensile wave, having a very high strain rate, were all studied. To achieve a realistic description of the complex phenomena induced by strong compression and rarefaction waves, we developed new embedded atom potentials for Al and Au based on cold pressure curves. MD simulations revealed the complex interplay between spallation and ablation processes: dynamics of spallation depends on the pressure profile formed in the ablated zone at the early stage of laser energy absorption. It is shown that the essential information such as material properties at high strain rate and spall strength can be extracted from the simulated rear-side surface velocity as a function of time.

  19. Dynamic Capabilities

    DEFF Research Database (Denmark)

    Grünbaum, Niels Nolsøe; Stenger, Marianne

    2013-01-01

    The findings reveal a positive relationship between dynamic capabilities and innovation performance in the case enterprises, as we would expect. It was, however, not possible to establish a positive relationship between innovation performance and profitability. Nor was there any positive...... relationship between dynamic capabilities and profitability....

  20. Spalled, aerodynamically modified moldavite from Slavice, Moravia, Czechoslovakia

    Science.gov (United States)

    Chao, E.C.T.

    1964-01-01

    A Czechoslovakian tektite or moldavite shows clear, indirect evidence of aerodynamic ablation. This large tektite has the shape of a teardrop, with a strongly convex, deeply corroded, but clearly identifiable front and a planoconvex, relatively smooth, posterior surface. In spite of much erosion and corrosion, demarcation of the posterior and the anterior part of the specimen (the keel) is clearly preserved locally. This specimen provides the first tangible evidence that moldavites entered the atmosphere cold, probably at a velocity exceeding 5 kilometers per second; the result was selective heating of the anterior face and perhaps ablation during the second melting. This provides evidence of the extraterrestial origin of moldavites.

  1. Metallurgical analysis of spalled work roll of hot strip mill

    International Nuclear Information System (INIS)

    Khan, M.M.; Khan, M.A.

    1993-01-01

    In this study failure analysis of four work roll of the Hot Strip Mill is carried out. The microstructure is correlated with the chemical composition of shell and roll-life. It was concluded that for the longer service of the roll, cementite, graphite and martensite should be balanced (as per working requirement of the mill). (author)

  2. Jumping Dynamics

    DEFF Research Database (Denmark)

    Sannino, Francesco

    2013-01-01

    paradigm the physical scale and henceforth also the massive spectrum of the theory jump at the lower boundary of the conformal window. In particular we propose that a theory can suddenly jump from a Quantum Chromodynamics type spectrum, at the lower boundary of the conformal window, to a conformal one...... without particle interpretation. The jumping scenario, therefore, does not support a near-conformal dynamics of walking type. We will also discuss the impact of jumping dynamics on the construction of models of dynamical electroweak symmetry breaking....

  3. Galactic dynamics

    CERN Document Server

    Binney, James

    2008-01-01

    Since it was first published in 1987, Galactic Dynamics has become the most widely used advanced textbook on the structure and dynamics of galaxies and one of the most cited references in astrophysics. Now, in this extensively revised and updated edition, James Binney and Scott Tremaine describe the dramatic recent advances in this subject, making Galactic Dynamics the most authoritative introduction to galactic astrophysics available to advanced undergraduate students, graduate students, and researchers. Every part of the book has been thoroughly overhauled, and many section

  4. Failure mechanism and coupled static-dynamic loading theory in deep hard rock mining: A review

    Directory of Open Access Journals (Sweden)

    Xibing Li

    2017-08-01

    Full Text Available Rock failure phenomena, such as rockburst, slabbing (or spalling and zonal disintegration, related to deep underground excavation of hard rocks are frequently reported and pose a great threat to deep mining. Currently, the explanation for these failure phenomena using existing dynamic or static rock mechanics theory is not straightforward. In this study, new theory and testing method for deep underground rock mass under coupled static-dynamic loading are introduced. Two types of coupled loading modes, i.e. “critical static stress + slight disturbance” and “elastic static stress + impact disturbance”, are proposed, and associated test devices are developed. Rockburst phenomena of hard rocks under coupled static-dynamic loading are successfully reproduced in the laboratory, and the rockburst mechanism and related criteria are demonstrated. The results of true triaxial unloading compression tests on granite and red sandstone indicate that the unloading can induce slabbing when the confining pressure exceeds a certain threshold, and the slabbing failure strength is lower than the shear failure strength according to the conventional Mohr-Column criterion. Numerical results indicate that the rock unloading failure response under different in situ stresses and unloading rates can be characterized by an equivalent strain energy density. In addition, we present a new microseismic source location method without premeasuring the sound wave velocity in rock mass, which can efficiently and accurately locate the rock failure in hard rock mines. Also, a new idea for deep hard rock mining using a non-explosive continuous mining method is briefly introduced.

  5. Space dynamics

    International Nuclear Information System (INIS)

    Corno, S.E.

    1995-01-01

    Analytical methods for Space Dynamics of fission reactors, are presented. It is shown how a few sample problems in space dynamics can be solved, within the one and two group diffusion model, by purely analytical tools, essentially based on Laplace transform and complex Green function techniques. A quite suggestive generalization of this approach, applicable to the fluid core reactors, whose fuel is undergoing a violent mixing, is reported and briefly discussed. (author)

  6. Structural Dynamics

    International Nuclear Information System (INIS)

    Kim, Du Gi

    2005-08-01

    This book introduces summary of structural dynamics, the reason of learning of structural dynamics, single-degree of freedom system, simple harmonic vibration and application, numerical analysis method, such as time domain and frequency domain and nonlinear system, multi-degree of freedom system random vibration over discrete distribution, continuous distribution and extreme value distribution, circumstance vibration, earth quake vibration, including input earthquake, and earthquake-resistant design and capacity spectrum method, wind oscillation wave vibration, vibration control and maintenance control.

  7. Dynamic High-Pressure Behavior of Hierarchical Heterogeneous Geological Materials

    Science.gov (United States)

    2016-04-01

    plate-impact experiments. The peak stress, particle velocity, or shock velocity, are measured using point diagnostics employing either stress gauges or...and porous geological materials. In this prior work, they obtained the Hugoniot states for a 60:40 volumetric mixture of ice and sand [8], to...in copper capsule, backed with PMMA. The instrumentation includes two PVDF stress gauges , VISAR, and ToA shorting pins. 44mm ø ~5mm thick sample

  8. Dynamic Bifurcations

    CERN Document Server

    1991-01-01

    Dynamical Bifurcation Theory is concerned with the phenomena that occur in one parameter families of dynamical systems (usually ordinary differential equations), when the parameter is a slowly varying function of time. During the last decade these phenomena were observed and studied by many mathematicians, both pure and applied, from eastern and western countries, using classical and nonstandard analysis. It is the purpose of this book to give an account of these developments. The first paper, by C. Lobry, is an introduction: the reader will find here an explanation of the problems and some easy examples; this paper also explains the role of each of the other paper within the volume and their relationship to one another. CONTENTS: C. Lobry: Dynamic Bifurcations.- T. Erneux, E.L. Reiss, L.J. Holden, M. Georgiou: Slow Passage through Bifurcation and Limit Points. Asymptotic Theory and Applications.- M. Canalis-Durand: Formal Expansion of van der Pol Equation Canard Solutions are Gevrey.- V. Gautheron, E. Isambe...

  9. Dynamic Pricing

    DEFF Research Database (Denmark)

    Sharifi, Reza; Anvari-Moghaddam, Amjad; Fathi, S. Hamid

    2017-01-01

    Dynamic pricing scheme, also known as real-time pricing (RTP), can be more efficient and technically beneficial than the other price-based schemes (such as flat-rate or time-of-use (TOU) pricing) for enabling demand response (DR) actions. Over the past few years, advantages of RTP-based schemes h...... of dynamic pricing can lead to increased willingness of consumers to participate in DR programs which in turn improve the operation of liberalized electricity markets.......Dynamic pricing scheme, also known as real-time pricing (RTP), can be more efficient and technically beneficial than the other price-based schemes (such as flat-rate or time-of-use (TOU) pricing) for enabling demand response (DR) actions. Over the past few years, advantages of RTP-based schemes...

  10. Record dynamics

    DEFF Research Database (Denmark)

    Robe, Dominic M.; Boettcher, Stefan; Sibani, Paolo

    2016-01-01

    When quenched rapidly beyond their glass transition, colloidal suspensions fall out of equilibrium. The pace of their dynamics then slows down with the system age, i.e., with the time elapsed after the quench. This breaking of time translational invariance is associated with dynamical observables...... which depend on two time-arguments. The phenomenology is shared by a broad class of aging systems and calls for an equally broad theoretical description. The key idea is that, independent of microscopic details, aging systems progress through rare intermittent structural relaxations that are de......-facto irreversible and become increasingly harder to achieve. Thus, a progression of record-sized dynamical barriers are traversed in the approach to equilibration. Accordingly, the statistics of the events is closely described by a log-Poisson process. Originally developed for relaxation in spin glasses...

  11. Dynamical systems

    CERN Document Server

    Birkhoff, George D

    1927-01-01

    His research in dynamics constitutes the middle period of Birkhoff's scientific career, that of maturity and greatest power. -Yearbook of the American Philosophical Society The author's great book€¦is well known to all, and the diverse active modern developments in mathematics which have been inspired by this volume bear the most eloquent testimony to its quality and influence. -Zentralblatt MATH In 1927, G. D. Birkhoff wrote a remarkable treatise on the theory of dynamical systems that would inspire many later mathematicians to do great work. To a large extent, Birkhoff was writing about his o

  12. Glassy Dynamics

    DEFF Research Database (Denmark)

    Jensen, Henrik J.; Sibani, Paolo

    2007-01-01

    The term glassy dynamics is often used to refer to the extremely slow relaxation observed in several types of many component systems. The time span needed to reach a steady, time independent, state will typically be far beyond experimentally accessible time scales. When melted alloys are cooled...... down they typically do not enter a crystalline ordered state. Instead the atoms retain the amorphous arrangement characteristic of the liquid high temperature phase while the mobility of the molecules decreases very many orders of magnitude. This colossal change in the characteristic dynamical time...

  13. Forest dynamics.

    Science.gov (United States)

    Frelich, Lee

    2016-01-01

    Forest dynamics encompass changes in stand structure, species composition, and species interactions with disturbance and environment over a range of spatial and temporal scales. For convenience, spatial scale is defined as individual tree, neighborhood, stand, and landscape. Whether a given canopy-leveling disturbance will initiate a sequence of development in structure with little change in composition or initiate an episode of succession depends on a match or mismatch, respectively, with traits of the dominant tree species that allow the species to survive disturbance. When these match, certain species-disturbance type combinations lock in a pattern of stand and landscape dynamics that can persist for several generations of trees; thus, dominant tree species regulate, as well as respond to, disturbance. A complex interaction among tree species, neighborhood effects, disturbance type and severity, landform, and soils determines how stands of differing composition form and the mosaic of stands that compose the landscape. Neighborhood effects (e.g., serotinous seed rain, sprouting, shading, leaf-litter chemistry, and leaf-litter physical properties) operate at small spatial extents of the individual tree and its neighbors but play a central role in forest dynamics by contributing to patch formation at stand scales and dynamics of the entire landscape. Dominance by tree species with neutral to negative neighborhood effects leads to unstable landscape dynamics in disturbance-prone regions, wherein most stands are undergoing succession; stability can only occur under very low-severity disturbance regimes. Dominance by species with positive effects leads to stable landscape dynamics wherein only a small proportion of stands undergo succession at any one time. Positive neighborhood effects are common in temperate and boreal zones, whereas negative effects are more common in tropical climates. Landscapes with positive dynamics have alternate categories of dynamics

  14. A Nonlocal Peridynamic Plasticity Model for the Dynamic Flow and Fracture of Concrete.

    Energy Technology Data Exchange (ETDEWEB)

    Vogler, Tracy; Lammi, Christopher James

    2014-10-01

    A nonlocal, ordinary peridynamic constitutive model is formulated to numerically simulate the pressure-dependent flow and fracture of heterogeneous, quasi-brittle ma- terials, such as concrete. Classical mechanics and traditional computational modeling methods do not accurately model the distributed fracture observed within this family of materials. The peridynamic horizon, or range of influence, provides a characteristic length to the continuum and limits localization of fracture. Scaling laws are derived to relate the parameters of peridynamic constitutive model to the parameters of the classical Drucker-Prager plasticity model. Thermodynamic analysis of associated and non-associated plastic flow is performed. An implicit integration algorithm is formu- lated to calculate the accumulated plastic bond extension and force state. The gov- erning equations are linearized and the simulation of the quasi-static compression of a cylinder is compared to the classical theory. A dissipation-based peridynamic bond failure criteria is implemented to model fracture and the splitting of a concrete cylinder is numerically simulated. Finally, calculation of the impact and spallation of a con- crete structure is performed to assess the suitability of the material and failure models for simulating concrete during dynamic loadings. The peridynamic model is found to accurately simulate the inelastic deformation and fracture behavior of concrete during compression, splitting, and dynamically induced spall. The work expands the types of materials that can be modeled using peridynamics. A multi-scale methodology for simulating concrete to be used in conjunction with the plasticity model is presented. The work was funded by LDRD 158806.

  15. Classical dynamics

    CERN Document Server

    Greenwood, Donald T

    1997-01-01

    Graduate-level text for science and technology students provides strong background in the more abstract and intellectually satisfying areas of dynamical theory. Topics include d'Alembert's principle and the idea of virtual work, Hamilton's equations, Hamilton-Jacobi theory, canonical transformations, more. Problems and references at chapter ends.

  16. Expansion dynamics

    International Nuclear Information System (INIS)

    Knoll, J.

    1985-10-01

    A quantum dynamical model is suggested which describes the expansion and disassembly phase of highly excited compounds formed in energetic heavy-ion collisions. First applications in two space and one time dimensional model world are discussed and qualitatively compared to standard freeze-out concepts. (orig.)

  17. Membrane dynamics

    DEFF Research Database (Denmark)

    Bendix, Pól Martin

    2015-01-01

    Current topics include membrane-protein interactions with regard to membrane deformation or curvature sensing by BAR domains. Also, we study the dynamics of membrane tubes of both cells and simple model membrane tubes. Finally, we study membrane phase behavior which has important implications...... for the lateral organization of membranes as wells as for physical properties like bending, permeability and elasticity...

  18. Random dynamics

    International Nuclear Information System (INIS)

    Bennett, D.L.; Brene, N.; Nielsen, H.B.

    1986-06-01

    The goal of random dynamics is the derivation of the laws of Nature as we know them (standard model) from inessential assumptions. The inessential assumptions made here are expressed as sets of general models at extremely high energies: gauge glass and spacetime foam. Both sets of models lead tentatively to the standard model. (orig.)

  19. Dynamic LIMIDS

    NARCIS (Netherlands)

    Díez, F.J.; Gerven, M.A.J. van; Sucar, L.E.; Morales, E.F.; Hoey, J.

    2011-01-01

    One of the objectives of artificial intelligence is to build decision-support models for systems that evolve over time and include several types of uncertainty. Dynamic limited-memory influence diagrams (DLIMIDs) are a new type of model proposed recently for this kind of problems. DLIMIDs are

  20. System Dynamics

    Science.gov (United States)

    Morecroft, John

    System dynamics is an approach for thinking about and simulating situations and organisations of all kinds and sizes by visualising how the elements fit together, interact and change over time. This chapter, written by John Morecroft, describes modern system dynamics which retains the fundamentals developed in the 1950s by Jay W. Forrester of the MIT Sloan School of Management. It looks at feedback loops and time delays that affect system behaviour in a non-linear way, and illustrates how dynamic behaviour depends upon feedback loop structures. It also recognises improvements as part of the ongoing process of managing a situation in order to achieve goals. Significantly it recognises the importance of context, and practitioner skills. Feedback systems thinking views problems and solutions as being intertwined. The main concepts and tools: feedback structure and behaviour, causal loop diagrams, dynamics, are practically illustrated in a wide variety of contexts from a hot water shower through to a symphony orchestra and the practical application of the approach is described through several real examples of its use for strategic planning and evaluation.

  1. Coastal Dynamics

    NARCIS (Netherlands)

    Roelvink, J.A.; Steetzel, H.J.; Bliek, A.; Rakhorst, H.D.; Roelse, P.; Bakker, W.T.

    1998-01-01

    This book deals on "Coastal Dynamics", which will be defined in a narrow sense as a mathematical theory, which starts from given equations of motion for the sediment, which leads with the continuity equation and given boundary conditions to a calculated (eventually schematized) coastal topography,

  2. Structural dynamics

    CERN Document Server

    Strømmen, Einar N

    2014-01-01

    This book introduces to the theory of structural dynamics, with focus on civil engineering structures that may be described by line-like beam or beam-column type of systems, or by a system of rectangular plates. Throughout this book the mathematical presentation contains a classical analytical description as well as a description in a discrete finite element format, covering the mathematical development from basic assumptions to the final equations ready for practical dynamic response predictions. Solutions are presented in time domain as well as in frequency domain. Structural Dynamics starts off at a basic level and step by step brings the reader up to a level where the necessary safety considerations to wind or horizontal ground motion induced dynamic design problems can be performed. The special theory of the tuned mass damper has been given a comprehensive treatment, as this is a theory not fully covered elsewhere. For the same reason a chapter on the problem of moving loads on beams has been included.

  3. Random dynamics

    International Nuclear Information System (INIS)

    Bennett, D.L.

    1987-01-01

    The goal of random dynamics is the derivation of the laws of Nature as we know them (standard model) from inessential assumptions. The inessential assumptions made here are expressed as sets of general models at extremely high energies: Gauge glass and spacetime foam. Both sets of models lead tentatively to the standard model. (orig.)

  4. Random Dynamics

    Science.gov (United States)

    Bennett, D. L.; Brene, N.; Nielsen, H. B.

    1987-01-01

    The goal of random dynamics is the derivation of the laws of Nature as we know them (standard model) from inessential assumptions. The inessential assumptions made here are expressed as sets of general models at extremely high energies: gauge glass and spacetime foam. Both sets of models lead tentatively to the standard model.

  5. Applied dynamics

    CERN Document Server

    Schiehlen, Werner

    2014-01-01

    Applied Dynamics is an important branch of engineering mechanics widely applied to mechanical and automotive engineering, aerospace and biomechanics as well as control engineering and mechatronics. The computational methods presented are based on common fundamentals. For this purpose analytical mechanics turns out to be very useful where D’Alembert’s principle in the Lagrangian formulation proves to be most efficient. The method of multibody systems, finite element systems and continuous systems are treated consistently. Thus, students get a much better understanding of dynamical phenomena, and engineers in design and development departments using computer codes may check the results more easily by choosing models of different complexity for vibration and stress analysis.

  6. Delta Dynamics

    DEFF Research Database (Denmark)

    Bendixen, Mette

    . The warming air temperature affects the soil temperature and permafrost thaws and destabilizes the material in the coastal zone. In Greenland, the warming temperature lowers the surface mass balance of the Greenland Ice Sheet and more material is transported to the coastal zone. The sea ice extent is thinning...... of a fjord and the second type is a wider fan-shaped open delta. Most deltas are directly coupled to the Greenland Ice Sheet or local icecaps and are highly influenced by the dynamics in the catchments. It is demonstrated how a modern changing climate directly affects delta dynamics, and that Greenlandic...... deltas are prograding, contrary to the global trend showing eroding Arctic coasts. Moreover, it is revealed that the increasing proglacial freshwater runoff, caused by a lowering of the surface mass balance of the Greenland Ice Sheet is the main determining agent in delta progradation. The final part...

  7. Fluid dynamics

    CERN Document Server

    Bernard, Peter S

    2015-01-01

    This book presents a focused, readable account of the principal physical and mathematical ideas at the heart of fluid dynamics. Graduate students in engineering, applied math, and physics who are taking their first graduate course in fluids will find this book invaluable in providing the background in physics and mathematics necessary to pursue advanced study. The book includes a detailed derivation of the Navier-Stokes and energy equations, followed by many examples of their use in studying the dynamics of fluid flows. Modern tensor analysis is used to simplify the mathematical derivations, thus allowing a clearer view of the physics. Peter Bernard also covers the motivation behind many fundamental concepts such as Bernoulli's equation and the stream function. Many exercises are designed with a view toward using MATLAB or its equivalent to simplify and extend the analysis of fluid motion including developing flow simulations based on techniques described in the book.

  8. Superconductor Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Gömöry, F [Bratislava, Inst. Elect. Eng. (Slovakia)

    2014-07-01

    Superconductors used in magnet technology could carry extreme currents because of their ability to keep the magnetic flux motionless. The dynamics of the magnetic flux interaction with superconductors is controlled by this property. The cases of electrical transport in a round wire and the magnetization of wires of various shapes (circular, elliptical, plate) in an external magnetic field are analysed. Resistance to the magnetic field penetration means that the field produced by the superconducting magnet is no longer proportional to the supplied current. It also leads to a dissipation of electromagnetic energy. In conductors with unequal transverse dimensions, such as flat cables, the orientation with respect to the magnetic field plays an essential role. A reduction of magnetization currents can be achieved by splitting the core of a superconducting wire into fine filaments; however, new kinds of electrical currents that couple the filaments consequently appear. Basic formulas allowing qualitative analyses of various flux dynamic cases are presented.

  9. Beam dynamics

    International Nuclear Information System (INIS)

    Abell, D; Adelmann, A; Amundson, J; Dragt, A; Mottershead, C; Neri, F; Pogorelov, I; Qiang, J; Ryne, R; Shalf, J; Siegerist, C; Spentzouris, P; Stern, E; Venturini, M; Walstrom, P

    2006-01-01

    We describe some of the accomplishments of the Beam Dynamics portion of the SciDAC Accelerator Science and Technology project. During the course of the project, our beam dynamics software has evolved from the era of different codes for each physical effect to the era of hybrid codes combining start-of-the-art implementations for multiple physical effects to the beginning of the era of true multi-physics frameworks. We describe some of the infrastructure that has been developed over the course of the project and advanced features of the most recent developments, the interplay betwen beam studies and simulations and applications to current machines at Fermilab. Finally we discuss current and future plans for simulations of the International Linear Collider

  10. Hamiltonian dynamics

    CERN Document Server

    Vilasi, Gaetano

    2001-01-01

    This is both a textbook and a monograph. It is partially based on a two-semester course, held by the author for third-year students in physics and mathematics at the University of Salerno, on analytical mechanics, differential geometry, symplectic manifolds and integrable systems. As a textbook, it provides a systematic and self-consistent formulation of Hamiltonian dynamics both in a rigorous coordinate language and in the modern language of differential geometry. It also presents powerful mathematical methods of theoretical physics, especially in gauge theories and general relativity. As a m

  11. Dynamic transition between fixed- and mobile-bed: mathematical and numerical aspects

    Science.gov (United States)

    Zugliani, Daniel; Pasqualini, Matteo; Rosatti, Giorgio

    2017-04-01

    a dynamic time variation of the erodibility variable. The issue of the dynamic transition between fixed- and mobile-bed condition is tackled, from a numerical point of view, using a particular predictor corrector technique that compare the transported concentration related with the fixed bed and the equilibrium concentration, deriving from a closure relation, associated to the mobile bed condition. Through a comparison between exact solution, built using the generalized Rankine - Hugoniot condition, and the numeric results, we highlight capabilities and limits of this enhanced technique. Bibliography: G. Rosatti and D. Zugliani, 2015. "Modelling the transition between fixed and mobile bed conditions in two-phase free-surface flows: The Composite Riemann Problem and its numerical solution". Journal of Computational Physics, 285:226-250

  12. Complex dynamics

    CERN Document Server

    Carleson, Lennart

    1993-01-01

    Complex dynamics is today very much a focus of interest. Though several fine expository articles were available, by P. Blanchard and by M. Yu. Lyubich in particular, until recently there was no single source where students could find the material with proofs. For anyone in our position, gathering and organizing the material required a great deal of work going through preprints and papers and in some cases even finding a proof. We hope that the results of our efforts will be of help to others who plan to learn about complex dynamics and perhaps even lecture. Meanwhile books in the field a. re beginning to appear. The Stony Brook course notes of J. Milnor were particularly welcome and useful. Still we hope that our special emphasis on the analytic side will satisfy a need. This book is a revised and expanded version of notes based on lectures of the first author at UCLA over several \\Vinter Quarters, particularly 1986 and 1990. We owe Chris Bishop a great deal of gratitude for supervising the production of cour...

  13. Population dynamics

    Directory of Open Access Journals (Sweden)

    Cooch, E. G.

    2004-06-01

    Full Text Available Increases or decreases in the size of populations over space and time are, arguably, the motivation for much of pure and applied ecological research. The fundamental model for the dynamics of any population is straightforward: the net change over time in the abundance of some population is the simple difference between the number of additions (individuals entering the population minus the number of subtractions (individuals leaving the population. Of course, the precise nature of the pattern and process of these additions and subtractions is often complex, and population biology is often replete with fairly dense mathematical representations of both processes. While there is no doubt that analysis of such abstract descriptions of populations has been of considerable value in advancing our, there has often existed a palpable discomfort when the ‘beautiful math’ is faced with the often ‘ugly realities’ of empirical data. In some cases, this attempted merger is abandoned altogether, because of the paucity of ‘good empirical data’ with which the theoretician can modify and evaluate more conceptually–based models. In some cases, the lack of ‘data’ is more accurately represented as a lack of robust estimates of one or more parameters. It is in this arena that methods developed to analyze multiple encounter data from individually marked organisms has seen perhaps the greatest advances. These methods have rapidly evolved to facilitate not only estimation of one or more vital rates, critical to population modeling and analysis, but also to allow for direct estimation of both the dynamics of populations (e.g., Pradel, 1996, and factors influencing those dynamics (e.g., Nichols et al., 2000. The interconnections between the various vital rates, their estimation, and incorporation into models, was the general subject of our plenary presentation by Hal Caswell (Caswell & Fujiwara, 2004. Caswell notes that although interest has traditionally

  14. Bile dynamics

    International Nuclear Information System (INIS)

    Harding, L.K.; Donovan, I.A.

    1986-01-01

    The availability of new biliary radiopharamaceutical led to the expectation that the physiology and the pathophysiology of bile would be resolved. Some aspects of the physiology of bile have clarified and it has been shown that nasogastric intubation does not cause bile reflux. Careful analysis of excretion patterns has allowed detection of obstruction of the bile duct after cholecystectomy, and the radiopharmaceuticals have proved helpful in the diagnosis of acute colecystitis. In chronic cholecystitis, however, varying results have been obtained. Information on the incidence and amount of reflux in normal subjects is also confused, since several different techniques have been used with widely varying results. The clinical value of biliary dynamic studies is at present limited in patients with chronic cholecystitis, peptic ulcer, or symptoms suggestive of bile reflux. More data, with appropriate control subjects, is required to identify abnormal reflux, determine its effects, and decide on appropriate treatment

  15. Group dynamics.

    Science.gov (United States)

    Scandiffio, A L

    1990-12-01

    Group dynamics play a significant role within any organization, culture, or unit. The important thing to remember with any of these structures is that they are made up of people--people with different ideas, motivations, background, and sometimes different agendas. Most groups, formal or informal, look for a leader in an effort to maintain cohesiveness of the unit. At times, that cultural bond must be developed; once developed, it must be nurtured. There are also times that one of the group no longer finds the culture comfortable and begins to act out behaviorally. It is these times that become trying for the leader as she or he attempts to remain objective when that which was once in the building phase of group cohesiveness starts to fall apart. At all times, the manager must continue to view the employee creating the disturbance as an integral part of the group. It is at this time that it is beneficial to perceive the employee exhibiting problem behaviors as a special employee, as one who needs the benefit of your experience and skills, as one who is still part of the group. It is also during this time that the manager should focus upon her or his own views in the area of power, communication, and the corporate culture of the unit that one has established before attempting to understand another's point of view. Once we understand our own motivation and accept ourselves, it is then that we may move on to offer assistance to another. Once we understand our insecurities recognizing staff dysfunction as a symptom of system dysfunction will not be so threatening to the concept of the manager that we perceive ourselves to be. It takes a secure person to admit that she or he favors staff before deciding to do something to change things. The important thing to know is that it can be done. The favored staff can find a new way of relating to others, the special employee can find new modes of behavior (and even find self-esteem in the process), the group can find new ways

  16. Fluid dynamics

    CERN Document Server

    Ruban, Anatoly I

    This is the first book in a four-part series designed to give a comprehensive and coherent description of Fluid Dynamics, starting with chapters on classical theory suitable for an introductory undergraduate lecture course, and then progressing through more advanced material up to the level of modern research in the field. The present Part 1 consists of four chapters. Chapter 1 begins with a discussion of Continuum Hypothesis, which is followed by an introduction to macroscopic functions, the velocity vector, pressure, density, and enthalpy. We then analyse the forces acting inside a fluid, and deduce the Navier-Stokes equations for incompressible and compressible fluids in Cartesian and curvilinear coordinates. In Chapter 2 we study the properties of a number of flows that are presented by the so-called exact solutions of the Navier-Stokes equations, including the Couette flow between two parallel plates, Hagen-Poiseuille flow through a pipe, and Karman flow above an infinite rotating disk. Chapter 3 is d...

  17. Internet dynamics

    Science.gov (United States)

    Lukose, Rajan Mathew

    The World Wide Web and the Internet are rapidly expanding spaces, of great economic and social significance, which offer an opportunity to study many phenomena, often previously inaccessible, on an unprecedented scale and resolution with relative ease. These phenomena are measurable on the scale of tens of millions of users and hundreds of millions of pages. By virtue of nearly complete electronic mediation, it is possible in principle to observe the time and ``spatial'' evolution of nearly all choices and interactions. This cyber-space therefore provides a view into a number of traditional research questions (from many academic disciplines) and creates its own new phenomena accessible for study. Despite its largely self-organized and dynamic nature, a number of robust quantitative regularities are found in the aggregate statistics of interesting and useful quantities. These regularities can be understood with the help of models that draw on ideas from statistical physics as well as other fields such as economics, psychology and decision theory. This thesis develops models that can account for regularities found in the statistics of Internet congestion and user surfing patterns and discusses some practical consequences. practical consequences.

  18. Relativistic stellar dynamics

    International Nuclear Information System (INIS)

    Contopoulos, G.

    1983-01-01

    In this paper, three main areas of relativistic stellar dynamics are reviewed: (a) The dynamics of clusters, or nuclei of galaxies, of very high density; (b) The dynamics of systems containing a massive black hole; and (c) The dynamics of particles (and photons) in an expanding Universe. The emphasis is on the use of orbit perturbations. (Auth.)

  19. Principles of magnetoplasma dynamics

    International Nuclear Information System (INIS)

    Woods, L.C.

    1987-01-01

    A self-contained account is given of magnetoplasma dynamics covering fluid dynamics, thermodynamics, kinetic theory of gases, particle dynamics and electromagnetism. The six chapter headings are, basic concepts, magnetohydrodynamics, dynamics of charged particles, transport in a magnetoplasma, magnetoplasma shock waves, and transport in tokamaks. There are 231 references. (U.K.)

  20. Influence of Material Properties on the Ballistic Performance of Ceramics for Personal Body Armour

    Directory of Open Access Journals (Sweden)

    Christian Kaufmann

    2003-01-01

    Full Text Available In support of improved personal armour development, depth of penetration tests have been conducted on four different ceramic materials including alumina, modified alumina, silicon carbide and boron carbide. These experiments consisted of impacting ceramic tiles bonded to aluminum cylinders with 0.50 caliber armour piercing projectiles. The results are presented in terms of ballistic efficiency, and the validity of using ballistic efficiency as a measure of ceramic performance was examined. In addition, the correlation between ballistic performance and ceramic material properties, such as elastic modulus, hardness, spall strength and Hugoniot Elastic Limit, has been considered.

  1. The resistance to deformation and facture of magnesium ma2-1 under shock-wave loading at 293 k and 823 k of the temperature

    Science.gov (United States)

    Garkushin, Gennady; Kanel, Gennady I.; Razorenov, Sergey V.

    2012-03-01

    The Hugoniot elastic limit and spall strength of Ma2-1 magnesium deformable alloy were measured at the sample thickness varied from 0.25 mm to 10 mm at room and elevated temperatures. By means of analysis of decay of an elastic precursor wave it is found that initial plastic strain rate decreases from 2×105 s-1 at distance of 0.25 mm to 103 s-1 at distance of 10 mm. The strain rate in plastic shock wave is by order of magnitude higher at the same value of the shear stress. The spall strength of the alloy grows with increasing the strain rate and decreases with approach to the solidus temperature.

  2. Fundamentals of structural dynamics

    CERN Document Server

    Craig, Roy R

    2006-01-01

    From theory and fundamentals to the latest advances in computational and experimental modal analysis, this is the definitive, updated reference on structural dynamics.This edition updates Professor Craig's classic introduction to structural dynamics, which has been an invaluable resource for practicing engineers and a textbook for undergraduate and graduate courses in vibrations and/or structural dynamics. Along with comprehensive coverage of structural dynamics fundamentals, finite-element-based computational methods, and dynamic testing methods, this Second Edition includes new and e

  3. Dynamic light scattering. Observation of polymer dynamics

    International Nuclear Information System (INIS)

    Hiroi, Takashi

    2015-01-01

    Dynamic light scattering is a technique to measure properties of polymer solutions such as size distribution. Principle of dynamic light scattering is briefly explained. Sometime dynamic light scattering is regarded as the observation of Doppler shift of scattered light. First, the difficulty for the direct observation of this Doppler shift is mentioned. Then the measurement by using a time correlation function is introduced. Measuring techniques for dynamic light scattering are also introduced. In addition to homodyne and heterodyne detection techniques, the technique called partial heterodyne method is also introduced. This technique is useful for the analysis of nonergodic medium such as polymer gels. Then the application of this technique to condensed suspension is briefly reviewed. As one of the examples, a dynamic light scattering microscope is introduced. By using this apparatus, we can measure the concentration dependence of the size distribution of polymer solutions. (author)

  4. Dynamic statistical information theory

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    In recent years we extended Shannon static statistical information theory to dynamic processes and established a Shannon dynamic statistical information theory, whose core is the evolution law of dynamic entropy and dynamic information. We also proposed a corresponding Boltzmman dynamic statistical information theory. Based on the fact that the state variable evolution equation of respective dynamic systems, i.e. Fokker-Planck equation and Liouville diffusion equation can be regarded as their information symbol evolution equation, we derived the nonlinear evolution equations of Shannon dynamic entropy density and dynamic information density and the nonlinear evolution equations of Boltzmann dynamic entropy density and dynamic information density, that describe respectively the evolution law of dynamic entropy and dynamic information. The evolution equations of these two kinds of dynamic entropies and dynamic informations show in unison that the time rate of change of dynamic entropy densities is caused by their drift, diffusion and production in state variable space inside the systems and coordinate space in the transmission processes; and that the time rate of change of dynamic information densities originates from their drift, diffusion and dissipation in state variable space inside the systems and coordinate space in the transmission processes. Entropy and information have been combined with the state and its law of motion of the systems. Furthermore we presented the formulas of two kinds of entropy production rates and information dissipation rates, the expressions of two kinds of drift information flows and diffusion information flows. We proved that two kinds of information dissipation rates (or the decrease rates of the total information) were equal to their corresponding entropy production rates (or the increase rates of the total entropy) in the same dynamic system. We obtained the formulas of two kinds of dynamic mutual informations and dynamic channel

  5. Development velocity interferometer system for any reflector for measurement of mechanical properties of materials during high strain - rate compression and decompression process

    International Nuclear Information System (INIS)

    Joshi, K.D.; Rav, Amit S.; Gupta, Satish C.

    2011-02-01

    Velocity interferometer system for any reflector (VISAR) has been developed to study the dynamic mechanical properties of materials subjected to high strain rates. This instrument is essentially a wide angle Michelson interferometer for measuring the Doppler shift of the monochromatic light from a laser (in our case λ 0 = 532 nm) after it gets reflected off the free surface of the moving target. A fiber optical arrangement directs the laser beam to the target and transports the scattered light signal into the interferometer. The interferometer beats the light signals reflected from the target at the two different instant of time separated by the delay (τ) decided by the length of the etalon in one of the leg of the interferometer. The interferometer signal is fed to the photomultiplier tube, the output of which is recorded in a digital storage oscilloscope. The oscilloscope record is then analysed to deduce the velocity history of moving free surface of target which is then used to determine various important mechanical properties during high strain rate compression and decompression. This instrument has been used to determine the Hugoniot elastic limit (σ HEL ), spall strength (σ s ) and dynamic yield strength (Y) of Al2024-T4 and SS304 alloys shocked to peak pressures of 4.4 GPa and 12 GPa, respectively in gas gun experiments. The σ HEL , σ s and Y determined from measured free surface velocity profiles of shocked Al2024-T4 target plate are 0.70 GPa, 1.46 GPa and 0.36 GPa, respectively. These values determined for SS304 target plate are 1.35 GPa, 2.6 GPa and 0.8 GPa, respectively. (author)

  6. Structure, Reactivity and Dynamics

    Indian Academy of Sciences (India)

    Understanding structure, reactivity and dynamics is the core issue in chemical ... functional theory (DFT) calculations, molecular dynamics (MD) simulations, light- ... between water and protein oxygen atoms, the superionic conductors which ...

  7. Modeling dynamic swarms

    KAUST Repository

    Ghanem, Bernard; Ahuja, Narendra

    2013-01-01

    This paper proposes the problem of modeling video sequences of dynamic swarms (DSs). We define a DS as a large layout of stochastically repetitive spatial configurations of dynamic objects (swarm elements) whose motions exhibit local spatiotemporal

  8. Spaces of Dynamical Systems

    CERN Document Server

    Pilyugin, Sergei Yu

    2012-01-01

    Dynamical systems are abundant in theoretical physics and engineering. Their understanding, with sufficient mathematical rigor, is vital to solving many problems. This work conveys the modern theory of dynamical systems in a didactically developed fashion.In addition to topological dynamics, structural stability and chaotic dynamics, also generic properties and pseudotrajectories are covered, as well as nonlinearity. The author is an experienced book writer and his work is based on years of teaching.

  9. Dynamics of Media Attention

    NARCIS (Netherlands)

    Traag, V.A.; Reinanda, R.; Hicks, J.; van Klinken, G.; Aziz-Alaoui, M.A.; Bertelle, C.; Liu, X.; Olivier, D.

    2014-01-01

    Studies of human attention dynamics analyses how attention is focused on specific topics, issues or people. In online social media, there are clear signs of exogenous shocks, bursty dynamics, and an exponential or powerlaw lifetime distribution. We here analyse the attention dynamics of traditional

  10. Intramolecular and nonlinear dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Davis, M.J. [Argonne National Laboratory, IL (United States)

    1993-12-01

    Research in this program focuses on three interconnected areas. The first involves the study of intramolecular dynamics, particularly of highly excited systems. The second area involves the use of nonlinear dynamics as a tool for the study of molecular dynamics and complex kinetics. The third area is the study of the classical/quantum correspondence for highly excited systems, particularly systems exhibiting classical chaos.

  11. PREFACE: Dynamics of wetting Dynamics of wetting

    Science.gov (United States)

    Grest, Gary S.; Oshanin, Gleb; Webb, Edmund B., III

    2009-11-01

    Capillary phenomena associated with fluids wetting other condensed matter phases have drawn great scientific interest for hundreds of years; consider the recent bicentennial celebration of Thomas Young's paper on equilibrium contact angles, describing the geometric shape assumed near a three phase contact line in terms of the relevant surface energies of the constituent phases [1]. Indeed, nearly a century has passed since the seminal papers of Lucas and Washburn, describing dynamics of capillary imbibition [2, 3]. While it is generally appreciated that dynamics of fluid wetting processes are determined by the degree to which a system is out of capillary equilibrium, myriad complications exist that challenge the fundamental understanding of dynamic capillary phenomena. The topic has gathered much interest from recent Nobel laureate Pierre-Gilles de Gennes, who provided a seminal review of relevant dissipation mechanisms for fluid droplets spreading on solid surfaces [4] Although much about the dynamics of wetting has been revealed, much remains to be learned and intrinsic technological and fundamental interest in the topic drives continuing high levels of research activity. This is enabled partly by improved experimental capabilities for resolving wetting processes at increasingly finer temporal, spatial, and chemical resolution. Additionally, dynamic wetting research advances via higher fidelity computational modeling capabilities, which drive more highly refined theory development. The significance of this topic both fundamentally and technologically has resulted in a number of reviews of research activity in wetting dynamics. One recent example addresses the evaluation of existing wetting dynamics theories from an experimentalist's perspective [5]. A Current Opinion issue was recently dedicated to high temperature capillarity, including dynamics of high temperature spreading [6]. New educational tools have recently emerged for providing instruction in wetting

  12. Interferometric windows characterization up to 450 K for shock wave experiments: Hugoniot curves and refractive index

    Directory of Open Access Journals (Sweden)

    Godefroit J.-L.

    2012-08-01

    Full Text Available Conventional shock wave experiments need interferometric windows in order to determine the equation of state of a large variety of metals. Lithium fluoride (LiF and sapphire are extensively used for that purpose because their optical transparencies enable the optical diagnostics at interfaces under a given range of shock pressure. In order to simulate and analyse the experiments it is necessary to gather a correct knowledge of the optical and mechanical properties of these windows. Therefore, our window supplies are systematically characterized and an experimental campaign under shock loading is conducted. Our preliminary work on LiF windows at 532 nm is in good agreement with literature data at room temperature and the new characterization at 450 K enables a better interpretation of our preheated target experiments. It confirms the predominant effect of density on optical properties under pressure and temperature. The present work demonstrates that the initial density determination is a key point and that the uncertainties need to be improved. For that purpose, complementary experiments are conducted on LiF windows with simplified target designs and enriched diagnostics, coupling VISAR (532 nm and PdV (1550 nm diagnostics. Furthermore, a similar campaign is conducted on sapphire windows with symmetric impact configuration.

  13. Dynamic link: user's manual

    International Nuclear Information System (INIS)

    Harada, Hiroo; Asai, Kiyoshi; Kihara, Kazuhisa.

    1981-09-01

    The purpose of dynamic link facility is to link a load module dynamically only when it is used in execution time. The facility is very useful for development, execution and maintenance of a large scale computer program which is too big to be saved as one load module in main memory, or it is poor economy to save it due to many unused subroutines depending on an input. It is also useful for standardization and common utilization of programs. Standard usage of dynamic link facility of FACOM M-200 computer system, a software tool which analyzes the effect of dynamic link facility and application of dynamic link to nuclear codes are described. (author)

  14. Complexity and Dynamical Depth

    Directory of Open Access Journals (Sweden)

    Terrence Deacon

    2014-07-01

    Full Text Available We argue that a critical difference distinguishing machines from organisms and computers from brains is not complexity in a structural sense, but a difference in dynamical organization that is not well accounted for by current complexity measures. We propose a measure of the complexity of a system that is largely orthogonal to computational, information theoretic, or thermodynamic conceptions of structural complexity. What we call a system’s dynamical depth is a separate dimension of system complexity that measures the degree to which it exhibits discrete levels of nonlinear dynamical organization in which successive levels are distinguished by local entropy reduction and constraint generation. A system with greater dynamical depth than another consists of a greater number of such nested dynamical levels. Thus, a mechanical or linear thermodynamic system has less dynamical depth than an inorganic self-organized system, which has less dynamical depth than a living system. Including an assessment of dynamical depth can provide a more precise and systematic account of the fundamental difference between inorganic systems (low dynamical depth and living systems (high dynamical depth, irrespective of the number of their parts and the causal relations between them.

  15. Dynamic and quasi-dynamic multileaf collimation

    International Nuclear Information System (INIS)

    Bortfeld, T.

    1995-01-01

    Several recent investigations deal with the problem of how to produce arbitrary two-dimensional x-ray fluence distributions by means of a multileaf collimator (MLC), an approach, which could be called multileaf modulation. The goal of this approach is to facilitate the delivery of compensated or intensity-modulated fields. The present work gives an overview of these developments. The hardware requirements on MLCs for this special application are specified. Most commercially available MLCs fulfill these requirement sufficiently, however, the MLC control software is generally not capable of controlling an MLC dynamically. There is also the question of how to verify the dynamic movement of the leaves. Some minimum requirements on a control software suitable for application in clinical practice are therefore specified. An alternative, the stepwise or 'quasi-dynamic' movement of the MLC-leaves, is also discussed with respect to practicality. In this case the control is easier, but the demands on the stability of the accelerator for small dose deliveries are higher. Nevertheless, it can be expected that, for reasons of ease of control and verification, the quasi-dynamic technique will become the method of choice in the near future, while the slightly more effective fully dynamic technique will become available later in the future. In any case, multileaf modulation is an interesting and important alternative to the tomotherapy-concept

  16. Synchronization dynamics of two different dynamical systems

    International Nuclear Information System (INIS)

    Luo, Albert C.J.; Min Fuhong

    2011-01-01

    Highlights: → Synchronization dynamics of two distinct dynamical systems. → Synchronization, de-synchronization and instantaneous synchronization. → A controlled pendulum synchronizing with the Duffing oscillator. → Synchronization invariant set. → Synchronization parameter map. - Abstract: In this paper, synchronization dynamics of two different dynamical systems is investigated through the theory of discontinuous dynamical systems. The necessary and sufficient conditions for the synchronization, de-synchronization and instantaneous synchronization (penetration or grazing) are presented. Using such a synchronization theory, the synchronization of a controlled pendulum with the Duffing oscillator is systematically discussed as a sampled problem, and the corresponding analytical conditions for the synchronization are presented. The synchronization parameter study is carried out for a better understanding of synchronization characteristics of the controlled pendulum and the Duffing oscillator. Finally, the partial and full synchronizations of the controlled pendulum with periodic and chaotic motions are presented to illustrate the analytical conditions. The synchronization of the Duffing oscillator and pendulum are investigated in order to show the usefulness and efficiency of the methodology in this paper. The synchronization invariant domain is obtained. The technique presented in this paper should have a wide spectrum of applications in engineering. For example, this technique can be applied to the maneuvering target tracking, and the others.

  17. Dynamic Boiler Performance

    DEFF Research Database (Denmark)

    Sørensen, Kim

    Traditionally, boilers have been designed mainly focussing on the static operation of the plant. The dynamic capability has been given lower priority and the analysis has typically been limited to assuring that the plant was not over-stressed due to large temperature gradients. New possibilities...... developed. Analyzing boilers for dynamic operation gives rise to a number of opposing aims: shrinking and swelling, steam quality, stress levels, control system/philosophy, pressurization etc. Common for these opposing aims is that an optimum can be found for selected operation conditions. The framework has...... for buying and selling energy has increased the focus on the dynamic operation capability, efciency, emissions etc. For optimizing the design of boilers for dynamic operation a quantication of the dynamic capability is needed. A framework for optimizing design of boilers for dynamic operation has been...

  18. Nonlinear dynamics and astrophysics

    International Nuclear Information System (INIS)

    Vallejo, J. C.; Sanjuan, M. A. F.

    2000-01-01

    Concepts and techniques from Nonlinear Dynamics, also known as Chaos Theory, have been applied successfully to several astrophysical fields such as orbital motion, time series analysis or galactic dynamics, providing answers to old questions but also opening a few new ones. Some of these topics are described in this review article, showing the basis of Nonlinear Dynamics, and how it is applied in Astrophysics. (Author)

  19. Record Statistics and Dynamics

    DEFF Research Database (Denmark)

    Sibani, Paolo; Jensen, Henrik J.

    2009-01-01

    with independent random increments. The term record dynamics covers the rather new idea that records may, in special situations, have measurable dynamical consequences. The approach applies to the aging dynamics of glasses and other systems with multiple metastable states. The basic idea is that record sizes...... fluctuations of e. g. the energy are able to push the system past some sort of ‘edge of stability’, inducing irreversible configurational changes, whose statistics then closely follows the statistics of record fluctuations....

  20. Dynamics of unstable systems

    International Nuclear Information System (INIS)

    Posch, H.A.; Narnhofer, H.; Thirring, W.

    1990-01-01

    We study the dynamics of classical particles interacting with attractive Gaussian potentials. This system is thermodynamically not stable and exhibits negative specific heat. The results of the computer simulation of the dynamics are discussed in comparison with various theories. In particular, we find that the condensed phase is a stationary solution of the Vlasov equation, but the Vlasov dynamics cannot describe the collapse. 14 refs., 1 tab., 11 figs. (Authors)

  1. Dynamical principles in neuroscience

    International Nuclear Information System (INIS)

    Rabinovich, Mikhail I.; Varona, Pablo; Selverston, Allen I.; Abarbanel, Henry D. I.

    2006-01-01

    Dynamical modeling of neural systems and brain functions has a history of success over the last half century. This includes, for example, the explanation and prediction of some features of neural rhythmic behaviors. Many interesting dynamical models of learning and memory based on physiological experiments have been suggested over the last two decades. Dynamical models even of consciousness now exist. Usually these models and results are based on traditional approaches and paradigms of nonlinear dynamics including dynamical chaos. Neural systems are, however, an unusual subject for nonlinear dynamics for several reasons: (i) Even the simplest neural network, with only a few neurons and synaptic connections, has an enormous number of variables and control parameters. These make neural systems adaptive and flexible, and are critical to their biological function. (ii) In contrast to traditional physical systems described by well-known basic principles, first principles governing the dynamics of neural systems are unknown. (iii) Many different neural systems exhibit similar dynamics despite having different architectures and different levels of complexity. (iv) The network architecture and connection strengths are usually not known in detail and therefore the dynamical analysis must, in some sense, be probabilistic. (v) Since nervous systems are able to organize behavior based on sensory inputs, the dynamical modeling of these systems has to explain the transformation of temporal information into combinatorial or combinatorial-temporal codes, and vice versa, for memory and recognition. In this review these problems are discussed in the context of addressing the stimulating questions: What can neuroscience learn from nonlinear dynamics, and what can nonlinear dynamics learn from neuroscience?

  2. Dynamical principles in neuroscience

    Science.gov (United States)

    Rabinovich, Mikhail I.; Varona, Pablo; Selverston, Allen I.; Abarbanel, Henry D. I.

    2006-10-01

    Dynamical modeling of neural systems and brain functions has a history of success over the last half century. This includes, for example, the explanation and prediction of some features of neural rhythmic behaviors. Many interesting dynamical models of learning and memory based on physiological experiments have been suggested over the last two decades. Dynamical models even of consciousness now exist. Usually these models and results are based on traditional approaches and paradigms of nonlinear dynamics including dynamical chaos. Neural systems are, however, an unusual subject for nonlinear dynamics for several reasons: (i) Even the simplest neural network, with only a few neurons and synaptic connections, has an enormous number of variables and control parameters. These make neural systems adaptive and flexible, and are critical to their biological function. (ii) In contrast to traditional physical systems described by well-known basic principles, first principles governing the dynamics of neural systems are unknown. (iii) Many different neural systems exhibit similar dynamics despite having different architectures and different levels of complexity. (iv) The network architecture and connection strengths are usually not known in detail and therefore the dynamical analysis must, in some sense, be probabilistic. (v) Since nervous systems are able to organize behavior based on sensory inputs, the dynamical modeling of these systems has to explain the transformation of temporal information into combinatorial or combinatorial-temporal codes, and vice versa, for memory and recognition. In this review these problems are discussed in the context of addressing the stimulating questions: What can neuroscience learn from nonlinear dynamics, and what can nonlinear dynamics learn from neuroscience?

  3. Computational Fluid Dynamics

    International Nuclear Information System (INIS)

    Myeong, Hyeon Guk

    1999-06-01

    This book deals with computational fluid dynamics with basic and history of numerical fluid dynamics, introduction of finite volume method using one-dimensional heat conduction equation, solution of two-dimensional heat conduction equation, solution of Navier-Stokes equation, fluid with heat transport, turbulent flow and turbulent model, Navier-Stokes solution by generalized coordinate system such as coordinate conversion, conversion of basic equation, program and example of calculation, application of abnormal problem and high speed solution of numerical fluid dynamics.

  4. Double dynamic scaling in human communication dynamics

    Science.gov (United States)

    Wang, Shengfeng; Feng, Xin; Wu, Ye; Xiao, Jinhua

    2017-05-01

    In the last decades, human behavior has been deeply understanding owing to the huge quantities data of human behavior available for study. The main finding in human dynamics shows that temporal processes consist of high-activity bursty intervals alternating with long low-activity periods. A model, assuming the initiator of bursty follow a Poisson process, is widely used in the modeling of human behavior. Here, we provide further evidence for the hypothesis that different bursty intervals are independent. Furthermore, we introduce a special threshold to quantitatively distinguish the time scales of complex dynamics based on the hypothesis. Our results suggest that human communication behavior is a composite process of double dynamics with midrange memory length. The method for calculating memory length would enhance the performance of many sequence-dependent systems, such as server operation and topic identification.

  5. Introduction to dynamic programming

    CERN Document Server

    Cooper, Leon; Rodin, E Y

    1981-01-01

    Introduction to Dynamic Programming provides information pertinent to the fundamental aspects of dynamic programming. This book considers problems that can be quantitatively formulated and deals with mathematical models of situations or phenomena that exists in the real world.Organized into 10 chapters, this book begins with an overview of the fundamental components of any mathematical optimization model. This text then presents the details of the application of dynamic programming to variational problems. Other chapters consider the application of dynamic programming to inventory theory, Mark

  6. Essential dynamics and relativity

    CERN Document Server

    O'Donnell, Peter J

    2014-01-01

    Essential Dynamics & Relativity provides students with an introduction to the core aspects of dynamics and special relativity. The author reiterates important ideas and terms throughout and covers concepts that are often missing from other textbooks at this level. He also places each topic within the wider constructs of the theory, without jumping from topic to topic to illustrate a point.The first section of the book focuses on dynamics, discussing the basic aspects of single particle motion and analyzing the motion of multi-particle systems. The book also explains the dynamical behavior of b

  7. Dynamical Systems Conference

    CERN Document Server

    Gils, S; Hoveijn, I; Takens, F; Nonlinear Dynamical Systems and Chaos

    1996-01-01

    Symmetries in dynamical systems, "KAM theory and other perturbation theories", "Infinite dimensional systems", "Time series analysis" and "Numerical continuation and bifurcation analysis" were the main topics of the December 1995 Dynamical Systems Conference held in Groningen in honour of Johann Bernoulli. They now form the core of this work which seeks to present the state of the art in various branches of the theory of dynamical systems. A number of articles have a survey character whereas others deal with recent results in current research. It contains interesting material for all members of the dynamical systems community, ranging from geometric and analytic aspects from a mathematical point of view to applications in various sciences.

  8. Engineering quantum dynamics

    International Nuclear Information System (INIS)

    Lloyd, Seth; Viola, Lorenza

    2002-01-01

    The ability to perform measurements on a quantum system, combined with the ability to feed back the measurement results via coherent control, allows one to control the system to follow any desired coherent or incoherent quantum dynamics. Such universal dynamical control can be achieved, in principle, through the repeated application of only two coherent control operations and a simple 'Yes-No' measurement. As a consequence, a quantum computer can simulate an arbitrary open-system dynamics using just one qubit more than required to simulate closed-system dynamics

  9. Modern fluid dynamics

    CERN Document Server

    Kleinstreuer, Clement

    2018-01-01

    Modern Fluid Dynamics, Second Edition provides up-to-date coverage of intermediate and advanced fluids topics. The text emphasizes fundamentals and applications, supported by worked examples and case studies. Scale analysis, non-Newtonian fluid flow, surface coating, convection heat transfer, lubrication, fluid-particle dynamics, microfluidics, entropy generation, and fluid-structure interactions are among the topics covered. Part A presents fluids principles, and prepares readers for the applications of fluid dynamics covered in Part B, which includes computer simulations and project writing. A review of the engineering math needed for fluid dynamics is included in an appendix.

  10. Control of dynamical localization

    International Nuclear Information System (INIS)

    Gong Jiangbin; Woerner, Hans Jakob; Brumer, Paul

    2003-01-01

    Control over the quantum dynamics of chaotic kicked rotor systems is demonstrated. Specifically, control over a number of quantum coherent phenomena is achieved by a simple modification of the kicking field. These include the enhancement of the dynamical localization length, the introduction of classical anomalous diffusion assisted control for systems far from the semiclassical regime, and the observation of a variety of strongly nonexponential line shapes for dynamical localization. The results provide excellent examples of controlled quantum dynamics in a system that is classically chaotic and offer opportunities to explore quantum fluctuations and correlations in quantum chaos

  11. Nonlinear dynamics and complexity

    CERN Document Server

    Luo, Albert; Fu, Xilin

    2014-01-01

    This important collection presents recent advances in nonlinear dynamics including analytical solutions, chaos in Hamiltonian systems, time-delay, uncertainty, and bio-network dynamics. Nonlinear Dynamics and Complexity equips readers to appreciate this increasingly main-stream approach to understanding complex phenomena in nonlinear systems as they are examined in a broad array of disciplines. The book facilitates a better understanding of the mechanisms and phenomena in nonlinear dynamics and develops the corresponding mathematical theory to apply nonlinear design to practical engineering.

  12. Structural Dynamics Laboratory (SDL)

    Data.gov (United States)

    Federal Laboratory Consortium — Structural dynamic testing is performed to verify the survivability of a component or assembly when exposed to vibration stress screening, or a controlled simulation...

  13. Vegetation dynamics and dynamic vegetation science

    NARCIS (Netherlands)

    Van der Maarel, E

    1996-01-01

    his contribution presents a review of the development of the study of vegetation dynamics since 1979, in the framework of a jubilee meeting on progress in the study of vegetation. However, an exhaustive review is both impossible and unnecessary. It is impossible within the few pages available

  14. Dynamic defense workshop :

    Energy Technology Data Exchange (ETDEWEB)

    Crosby, Sean Michael; Doak, Justin E.; Haas, Jason Juedes.; Helinski, Ryan; Lamb, Christopher C.

    2013-02-01

    On September 5th and 6th, 2012, the Dynamic Defense Workshop: From Research to Practice brought together researchers from academia, industry, and Sandia with the goals of increasing collaboration between Sandia National Laboratories and external organizations, de ning and un- derstanding dynamic, or moving target, defense concepts and directions, and gaining a greater understanding of the state of the art for dynamic defense. Through the workshop, we broadened and re ned our de nition and understanding, identi ed new approaches to inherent challenges, and de ned principles of dynamic defense. Half of the workshop was devoted to presentations of current state-of-the-art work. Presentation topics included areas such as the failure of current defenses, threats, techniques, goals of dynamic defense, theory, foundations of dynamic defense, future directions and open research questions related to dynamic defense. The remainder of the workshop was discussion, which was broken down into sessions on de ning challenges, applications to host or mobile environments, applications to enterprise network environments, exploring research and operational taxonomies, and determining how to apply scienti c rigor to and investigating the eld of dynamic defense.

  15. Structural Dynamics, Vol. 9

    DEFF Research Database (Denmark)

    Nielsen, Søren R.K.

    This book has been prepared for the course on Computational Dynamics given at the 8th semester at the structural program in civil engineering at Aalborg University.......This book has been prepared for the course on Computational Dynamics given at the 8th semester at the structural program in civil engineering at Aalborg University....

  16. Nonlinear dynamics in Nuclotron

    International Nuclear Information System (INIS)

    Dinev, D.

    1997-01-01

    The paper represents an extensive study of the nonlinear beam dynamics in the Nuclotron. Chromatic effects, including the dependence of the betatron tunes on the amplitude, and chromatic perturbations have been investigated taking into account the measured field imperfections. Beam distortion, smear, dynamic aperture and nonlinear acceptance have been calculated for different particle energies and betatron tunes

  17. Dynamic Shannon Coding

    OpenAIRE

    Gagie, Travis

    2005-01-01

    We present a new algorithm for dynamic prefix-free coding, based on Shannon coding. We give a simple analysis and prove a better upper bound on the length of the encoding produced than the corresponding bound for dynamic Huffman coding. We show how our algorithm can be modified for efficient length-restricted coding, alphabetic coding and coding with unequal letter costs.

  18. Dynamic paradigm of turbulence

    International Nuclear Information System (INIS)

    Mukhamedov, Alfred M.

    2006-01-01

    In this paper a dynamic paradigm of turbulence is proposed. The basic idea consists in the novel definition of chaotic structure given with the help of Pfaff system of PDE associated with the turbulent dynamics. A methodological analysis of the new and the former paradigm is produced

  19. Dynamic Capabilities and Performance

    DEFF Research Database (Denmark)

    Wilden, Ralf; Gudergan, Siegfried P.; Nielsen, Bo Bernhard

    2013-01-01

    are contingent on the competitive intensity faced by firms. Our findings demonstrate the performance effects of internal alignment between organizational structure and dynamic capabilities, as well as the external fit of dynamic capabilities with competitive intensity. We outline the advantages of PLS...

  20. Dynamic Gaming Platform (DGP)

    Science.gov (United States)

    2009-04-01

    GAMING PLATFORM (DGP) Lockheed Martin Corporation...YYYY) APR 09 2. REPORT TYPE Final 3. DATES COVERED (From - To) Jul 07 – Mar 09 4. TITLE AND SUBTITLE DYNAMIC GAMING PLATFORM (DGP) 5a...CMU Carnegie Mellon University DGP Dynamic Gaming Platform GA Genetic Algorithm IARPA Intelligence Advanced Research Projects Activity LM ATL Lockheed Martin Advanced Technology Laboratories PAINT ProActive INTelligence

  1. Dynamic covalent surfactants

    NARCIS (Netherlands)

    Minkenberg, C.B.

    2012-01-01

    In this thesis the development of surfactant aggregates with fast exchange dynamics between the aggregated and non-aggregated state is described. Dynamic surfactant exchange plays an important role in natural systems, for instance in cell signaling, cell division, and uptake and release of cargo.

  2. Dynamics on the Circle

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 8; Issue 11. Dynamics on the Circle - Interval Dynamics and Rotation Number. Siddhartha Gadgil. General Article Volume 8 Issue 11 November 2003 pp 25-36. Fulltext. Click here to view fulltext PDF. Permanent link:

  3. Dynamic Speaking Assessments

    Science.gov (United States)

    Hill, Kent; Sabet, Mehran

    2009-01-01

    This article describes an attempt to adopt dynamic assessment (DA) methods in classroom speaking assessments. The study reported in this article focused on four particular applications of dynamic speaking assessment (DSA). The first, "mediated assistance" (MA), involves interaction between an assistor and a learner to reveal problems in…

  4. Dynamical supersymmetry breaking

    International Nuclear Information System (INIS)

    Affleck, I.

    1985-03-01

    Supersymmetry, and in particular, dynamical supersymmetry breaking, offers the hope of a natural solution of the gauge hierarchy problem in grand unification. I briefly review recent work on dynamical supersymmetry breaking in four-dimensional Higgs theories and its application to grand unified model building

  5. Dynamic Latent Classification Model

    DEFF Research Database (Denmark)

    Zhong, Shengtong; Martínez, Ana M.; Nielsen, Thomas Dyhre

    as possible. Motivated by this problem setting, we propose a generative model for dynamic classification in continuous domains. At each time point the model can be seen as combining a naive Bayes model with a mixture of factor analyzers (FA). The latent variables of the FA are used to capture the dynamics...

  6. Dynamic combinatorial chemistry

    NARCIS (Netherlands)

    Otto, Sijbren; Furlan, Ricardo L.E.; Sanders, Jeremy K.M.

    2002-01-01

    A combinatorial library that responds to its target by increasing the concentration of strong binders at the expense of weak binders sounds ideal. Dynamic combinatorial chemistry has the potential to achieve exactly this. In this review, we will highlight the unique features that distinguish dynamic

  7. Bursty human dynamics

    CERN Document Server

    Karsai, Márton; Kaski, Kimmo

    2018-01-01

    This book provides a comprehensive overview on emergent bursty patterns in the dynamics of human behaviour. It presents common and alternative understanding of the investigated phenomena, and points out open questions worthy of further investigations. The book is structured as follows. In the introduction the authors discuss the motivation of the field, describe bursty phenomena in case of human behaviour, and relate it to other disciplines. The second chapter addresses the measures commonly used to characterise heterogeneous signals, bursty human dynamics, temporal paths, and correlated behaviour. These definitions are first introduced to set the basis for the discussion of the third chapter about the observations of bursty human patterns in the dynamics of individuals, dyadic interactions, and collective behaviour. The subsequent fourth chapter discusses the models of bursty human dynamics. Various mechanisms have been proposed about the source of the heterogeneities in human dynamics, which leads to the in...

  8. Nonlinear dynamics of structures

    CERN Document Server

    Oller, Sergio

    2014-01-01

    This book lays the foundation of knowledge that will allow a better understanding of nonlinear phenomena that occur in structural dynamics.   This work is intended for graduate engineering students who want to expand their knowledge on the dynamic behavior of structures, specifically in the nonlinear field, by presenting the basis of dynamic balance in non‐linear behavior structures due to the material and kinematics mechanical effects.   Particularly, this publication shows the solution of the equation of dynamic equilibrium for structure with nonlinear time‐independent materials (plasticity, damage and frequencies evolution), as well as those time dependent non‐linear behavior materials (viscoelasticity and viscoplasticity). The convergence conditions for the non‐linear dynamic structure solution  are studied, and the theoretical concepts and its programming algorithms are presented.  

  9. Vehicle Dynamics and Control

    CERN Document Server

    Rajamani, Rajesh

    2012-01-01

    Vehicle Dynamics and Control provides a comprehensive coverage of vehicle control systems and the dynamic models used in the development of these control systems. The control system applications covered in the book include cruise control, adaptive cruise control, ABS, automated lane keeping, automated highway systems, yaw stability control, engine control, passive, active and semi-active suspensions, tire-road friction coefficient estimation, rollover prevention, and hybrid electric vehicle. In developing the dynamic model for each application, an effort is made to both keep the model simple enough for control system design but at the same time rich enough to capture the essential features of the dynamics. A special effort has been made to explain the several different tire models commonly used in literature and to interpret them physically. In the second edition of the book, chapters on roll dynamics, rollover prevention and hybrid electric vehicles have been added, and the chapter on electronic stability co...

  10. Bayesian dynamic mediation analysis.

    Science.gov (United States)

    Huang, Jing; Yuan, Ying

    2017-12-01

    Most existing methods for mediation analysis assume that mediation is a stationary, time-invariant process, which overlooks the inherently dynamic nature of many human psychological processes and behavioral activities. In this article, we consider mediation as a dynamic process that continuously changes over time. We propose Bayesian multilevel time-varying coefficient models to describe and estimate such dynamic mediation effects. By taking the nonparametric penalized spline approach, the proposed method is flexible and able to accommodate any shape of the relationship between time and mediation effects. Simulation studies show that the proposed method works well and faithfully reflects the true nature of the mediation process. By modeling mediation effect nonparametrically as a continuous function of time, our method provides a valuable tool to help researchers obtain a more complete understanding of the dynamic nature of the mediation process underlying psychological and behavioral phenomena. We also briefly discuss an alternative approach of using dynamic autoregressive mediation model to estimate the dynamic mediation effect. The computer code is provided to implement the proposed Bayesian dynamic mediation analysis. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  11. Dynamics of aesthetic appreciation

    Science.gov (United States)

    Carbon, Claus-Christian

    2012-03-01

    Aesthetic appreciation is a complex cognitive processing with inherent aspects of cold as well as hot cognition. Research from the last decades of empirical has shown that evaluations of aesthetic appreciation are highly reliable. Most frequently, facial attractiveness was used as the corner case for investigating aesthetic appreciation. Evaluating facial attractiveness shows indeed high internal consistencies and impressively high inter-rater reliabilities, even across cultures. Although this indicates general and stable mechanisms underlying aesthetic appreciation, it is also obvious that our taste for specific objects changes dynamically. Aesthetic appreciation on artificial object categories, such as fashion, design or art is inherently very dynamic. Gaining insights into the cognitive mechanisms that trigger and enable corresponding changes of aesthetic appreciation is of particular interest for research as this will provide possibilities to modeling aesthetic appreciation for longer durations and from a dynamic perspective. The present paper refers to a recent two-step model ("the dynamical two-step-model of aesthetic appreciation"), dynamically adapting itself, which accounts for typical dynamics of aesthetic appreciation found in different research areas such as art history, philosophy and psychology. The first step assumes singular creative sources creating and establishing innovative material towards which, in a second step, people adapt by integrating it into their visual habits. This inherently leads to dynamic changes of the beholders' aesthetic appreciation.

  12. Perspectives of nonlinear dynamics

    International Nuclear Information System (INIS)

    Jackson, E.A.

    1985-03-01

    Four lectures were given weekly in October and November, 1984, and some of the ideas presented here will be of use in the future. First, a brief survey of the historical development of nonlinear dynamics since about 1890 was given, and then, a few topics were discussed in detail. The objective was to introduce some of many concepts and methods which are presently used for describing nonlinear dynamics. The symbiotic relationship between sciences of all types and mathematics, two main categories of the models describing nature, the method for describing the dynamics of a system, the idea of control parameters and topological dimension, the asymptotic properties of dynamics, abstract dynamics, the concept of embedding, singular perturbation theory, strange attractor, Fermi-Pasta-Ulam phenomena, an example of computer heuristics, the idea of elementary catastrophe theory and so on were explained. The logistic map is the simplest introduction to complex dynamics. The complicated dynamics is referred to as strange attractors. Two-dimensional maps are the highest dimensional maps commonly studied. These were discussed in detail. (Kako, I.)

  13. Operational Dynamic Configuration Analysis

    Science.gov (United States)

    Lai, Chok Fung; Zelinski, Shannon

    2010-01-01

    Sectors may combine or split within areas of specialization in response to changing traffic patterns. This method of managing capacity and controller workload could be made more flexible by dynamically modifying sector boundaries. Much work has been done on methods for dynamically creating new sector boundaries [1-5]. Many assessments of dynamic configuration methods assume the current day baseline configuration remains fixed [6-7]. A challenging question is how to select a dynamic configuration baseline to assess potential benefits of proposed dynamic configuration concepts. Bloem used operational sector reconfigurations as a baseline [8]. The main difficulty is that operational reconfiguration data is noisy. Reconfigurations often occur frequently to accommodate staff training or breaks, or to complete a more complicated reconfiguration through a rapid sequence of simpler reconfigurations. Gupta quantified a few aspects of airspace boundary changes from this data [9]. Most of these metrics are unique to sector combining operations and not applicable to more flexible dynamic configuration concepts. To better understand what sort of reconfigurations are acceptable or beneficial, more configuration change metrics should be developed and their distribution in current practice should be computed. This paper proposes a method to select a simple sequence of configurations among operational configurations to serve as a dynamic configuration baseline for future dynamic configuration concept assessments. New configuration change metrics are applied to the operational data to establish current day thresholds for these metrics. These thresholds are then corroborated, refined, or dismissed based on airspace practitioner feedback. The dynamic configuration baseline selection method uses a k-means clustering algorithm to select the sequence of configurations and trigger times from a given day of operational sector combination data. The clustering algorithm selects a simplified

  14. Dynamic training algorithm for dynamic neural networks

    International Nuclear Information System (INIS)

    Tan, Y.; Van Cauwenberghe, A.; Liu, Z.

    1996-01-01

    The widely used backpropagation algorithm for training neural networks based on the gradient descent has a significant drawback of slow convergence. A Gauss-Newton method based recursive least squares (RLS) type algorithm with dynamic error backpropagation is presented to speed-up the learning procedure of neural networks with local recurrent terms. Finally, simulation examples concerning the applications of the RLS type algorithm to identification of nonlinear processes using a local recurrent neural network are also included in this paper

  15. Living with Dynamic Concepts in Dynamic Environments

    DEFF Research Database (Denmark)

    Rehm, Matthias

    2003-01-01

    a dynamic perspective, concepts depend on different factors like the learning process, the environment, i.e. the situational setting. It is indispensable for an agent to create individual concepts that adhere to restrictions imposed by the environment and the society it is living in. It is shown...... that changes in the environment lead to changes in existing concepts and to establishing new ones with only a small irritation in the use of the old ones....

  16. Fluid dynamics transactions

    CERN Document Server

    Fiszdon, W

    1965-01-01

    Fluid Dynamics Transactions, Volume 2 compiles 46 papers on fluid dynamics, a subdiscipline of fluid mechanics that deals with fluid flow. The topics discussed in this book include developments in interference theory for aeronautical applications; diffusion from sources in a turbulent boundary layer; unsteady motion of a finite wing span in a compressible medium; and wall pressure covariance and comparison with experiment. The certain classes of non-stationary axially symmetric flows in magneto-gas-dynamics; description of the phenomenon of secondary flows in curved channels by means of co

  17. Advances in Dynamic Games

    CERN Document Server

    Breton, Michele

    2011-01-01

    This book focuses on various aspects of dynamic game theory, presenting state-of-the-art research and serving as a testament to the vitality and growth of the field of dynamic games and their applications. The selected contributions, written by experts in their respective disciplines, are outgrowths of presentations originally given at the 13th International Symposium of Dynamic Games and Applications held in WrocACaw. The book covers a variety of topics, ranging from theoretical developments in game theory and algorithmic methods to applications, examples, and analysis in fields as varied as

  18. Basic structural dynamics

    CERN Document Server

    Anderson, James C

    2012-01-01

    A concise introduction to structural dynamics and earthquake engineering Basic Structural Dynamics serves as a fundamental introduction to the topic of structural dynamics. Covering single and multiple-degree-of-freedom systems while providing an introduction to earthquake engineering, the book keeps the coverage succinct and on topic at a level that is appropriate for undergraduate and graduate students. Through dozens of worked examples based on actual structures, it also introduces readers to MATLAB, a powerful software for solving both simple and complex structural d

  19. High enthalpy gas dynamics

    CERN Document Server

    Rathakrishnan, Ethirajan

    2014-01-01

    This is an introductory level textbook which explains the elements of high temperature and high-speed gas dynamics. written in a clear and easy to follow style, the author covers all the latest developments in the field including basic thermodynamic principles, compressible flow regimes and waves propagation in one volume covers theoretical modeling of High Enthalpy Flows, with particular focus on problems in internal and external gas-dynamic flows, of interest in the fields of rockets propulsion and hypersonic aerodynamics High enthalpy gas dynamics is a compulsory course for aerospace engine

  20. Shadowing in dynamical systems

    CERN Document Server

    Pilyugin, Sergei Yu

    1999-01-01

    This book is an introduction to the theory of shadowing of approximate trajectories in dynamical systems by exact ones. This is the first book completely devoted to the theory of shadowing. It shows the importance of shadowing theory for both the qualitative theory of dynamical systems and the theory of numerical methods. Shadowing Methods allow us to estimate differences between exact and approximate solutions on infinite time intervals and to understand the influence of error terms. The book is intended for specialists in dynamical systems, for researchers and graduate students in the theory of numerical methods.

  1. Dynamics from diffraction

    International Nuclear Information System (INIS)

    Goodwin, Andrew L.; Tucker, Matthew G.; Cope, Elizabeth R.; Dove, Martin T.; Keen, David A.

    2006-01-01

    We explore the possibility that detailed dynamical information might be extracted from powder diffraction data. Our focus is a recently reported technique that employs statistical analysis of atomistic configurations to calculate dynamical properties from neutron total scattering data. We show that it is possible to access the phonon dispersion of low-frequency modes using such an approach, without constraining the results in terms of some pre-defined dynamical model. The high-frequency regions of the phonon spectrum are found to be less well preserved in the diffraction data

  2. Fundamentals of gas dynamics

    CERN Document Server

    Babu, V

    2014-01-01

    Fundamentals of Gas Dynamics, Second Edition isa comprehensively updated new edition and now includes a chapter on the gas dynamics of steam. It covers the fundamental concepts and governing equations of different flows, and includes end of chapter exercises based on the practical applications. A number of useful tables on the thermodynamic properties of steam are also included.Fundamentals of Gas Dynamics, Second Edition begins with an introduction to compressible and incompressible flows before covering the fundamentals of one dimensional flows and normal shock wav

  3. Stability of dynamical systems

    CERN Document Server

    Liao, Xiaoxin; Yu, P 0

    2007-01-01

    The main purpose of developing stability theory is to examine dynamic responses of a system to disturbances as the time approaches infinity. It has been and still is the object of intense investigations due to its intrinsic interest and its relevance to all practical systems in engineering, finance, natural science and social science. This monograph provides some state-of-the-art expositions of major advances in fundamental stability theories and methods for dynamic systems of ODE and DDE types and in limit cycle, normal form and Hopf bifurcation control of nonlinear dynamic systems.ʺ Presents

  4. Dynamics at the nanoscale

    International Nuclear Information System (INIS)

    Stoneham, A.M.; Gavartin, J.L.

    2007-01-01

    However fascinating structures may be at the nanoscale, time-dependent behaviour at the nanoscale has far greater importance. Some of the dynamics is random, with fluctuations controlling rate processes and making thermal ratchets possible. Some of the dynamics causes the transfer of energy, of signals, or of charge. Such transfers are especially efficiently controlled in biological systems. Other dynamical processes occur when we wish to control the nanoscale, e.g., to avoid local failures of gate dielectrics, or to manipulate structures by electronic excitation, to use spin manipulation in quantum information processing. Our prime purpose is to make clear the enormous range and variety of time-dependent nanoscale phenomena

  5. Theoretical Fluid Dynamics

    CERN Document Server

    Shivamoggi, Bhimsen K

    1998-01-01

    "Although there are many texts and monographs on fluid dynamics, I do not know of any which is as comprehensive as the present book. It surveys nearly the entire field of classical fluid dynamics in an advanced, compact, and clear manner, and discusses the various conceptual and analytical models of fluid flow." - Foundations of Physics on the first edition. Theoretical Fluid Dynamics functions equally well as a graduate-level text and a professional reference. Steering a middle course between the empiricism of engineering and the abstractions of pure mathematics, the author focuses

  6. Discrete Dynamics Lab

    Science.gov (United States)

    Wuensche, Andrew

    DDLab is interactive graphics software for creating, visualizing, and analyzing many aspects of Cellular Automata, Random Boolean Networks, and Discrete Dynamical Networks in general and studying their behavior, both from the time-series perspective — space-time patterns, and from the state-space perspective — attractor basins. DDLab is relevant to research, applications, and education in the fields of complexity, self-organization, emergent phenomena, chaos, collision-based computing, neural networks, content addressable memory, genetic regulatory networks, dynamical encryption, generative art and music, and the study of the abstract mathematical/physical/dynamical phenomena in their own right.

  7. Dynamic Systems and Control Engineering

    International Nuclear Information System (INIS)

    Kim, Jong Seok

    1994-02-01

    This book deals with introduction of dynamic system and control engineering, frequency domain modeling of dynamic system, temporal modeling of dynamic system, typical dynamic system and automatic control device, performance and stability of control system, root locus analysis, analysis of frequency domain dynamic system, design of frequency domain dynamic system, design and analysis of space, space of control system and digital control system such as control system design of direct digital and digitalization of consecutive control system.

  8. Dynamic Systems and Control Engineering

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Seok

    1994-02-15

    This book deals with introduction of dynamic system and control engineering, frequency domain modeling of dynamic system, temporal modeling of dynamic system, typical dynamic system and automatic control device, performance and stability of control system, root locus analysis, analysis of frequency domain dynamic system, design of frequency domain dynamic system, design and analysis of space, space of control system and digital control system such as control system design of direct digital and digitalization of consecutive control system.

  9. Liquid Sloshing Dynamics

    Science.gov (United States)

    Ibrahim, Raouf A.

    2005-06-01

    The problem of liquid sloshing in moving or stationary containers remains of great concern to aerospace, civil, and nuclear engineers; physicists; designers of road tankers and ship tankers; and mathematicians. Beginning with the fundamentals of liquid sloshing theory, this book takes the reader systematically from basic theory to advanced analytical and experimental results in a self-contained and coherent format. The book is divided into four sections. Part I deals with the theory of linear liquid sloshing dynamics; Part II addresses the nonlinear theory of liquid sloshing dynamics, Faraday waves, and sloshing impacts; Part III presents the problem of linear and nonlinear interaction of liquid sloshing dynamics with elastic containers and supported structures; and Part IV considers the fluid dynamics in spinning containers and microgravity sloshing. This book will be invaluable to researchers and graduate students in mechanical and aeronautical engineering, designers of liquid containers, and applied mathematicians.

  10. Ansatz for dynamical hierarchies

    DEFF Research Database (Denmark)

    Rasmussen, S.; Baas, N.A.; Mayer, B.

    2001-01-01

    Complex, robust functionalities can be generated naturally in at least two ways: by the assembly of structures and by the evolution of structures. This work is concerned with spontaneous formation of structures. We define the notion of dynamical hierarchies in natural systems and show...... the importance of this particular kind of organization for living systems. We then define a framework that enables us to formulate, investigate, and manipulate such dynamical hierarchies. This framework allows us to simultaneously investigate different levels of description together with them interrelationship...... three. Formulating this system as a simple two-dimensional molecular dynamics (MD) lattice gas allows us within one dynamical system to demonstrate the successive emergence of two higher levels (three levels all together) of robust structures with associated properties. Second, we demonstrate how...

  11. Longitudinal beam dynamics

    International Nuclear Information System (INIS)

    Tecker, F

    2014-01-01

    The course gives a summary of longitudinal beam dynamics for both linear and circular accelerators. After discussing different types of acceleration methods and synchronism conditions, it focuses on the particle motion in synchrotrons

  12. Stochastic dynamics and irreversibility

    CERN Document Server

    Tomé, Tânia

    2015-01-01

    This textbook presents an exposition of stochastic dynamics and irreversibility. It comprises the principles of probability theory and the stochastic dynamics in continuous spaces, described by Langevin and Fokker-Planck equations, and in discrete spaces, described by Markov chains and master equations. Special concern is given to the study of irreversibility, both in systems that evolve to equilibrium and in nonequilibrium stationary states. Attention is also given to the study of models displaying phase transitions and critical phenomema both in thermodynamic equilibrium and out of equilibrium. These models include the linear Glauber model, the Glauber-Ising model, lattice models with absorbing states such as the contact process and those used in population dynamic and spreading of epidemic, probabilistic cellular automata, reaction-diffusion processes, random sequential adsorption and dynamic percolation. A stochastic approach to chemical reaction is also presented.The textbook is intended for students of ...

  13. Supervision and group dynamics

    DEFF Research Database (Denmark)

    Hansen, Søren; Jensen, Lars Peter

    2004-01-01

     An important aspect of the problem based and project organized study at Aalborg University is the supervision of the project groups. At the basic education (first year) it is stated in the curriculum that part of the supervisors' job is to deal with group dynamics. This is due to the experience...... that many students are having difficulties with practical issues such as collaboration, communication, and project management. Most supervisors either ignore this demand, because they do not find it important or they find it frustrating, because they do not know, how to supervise group dynamics...... as well as at Aalborg University. The first visible result has been participating supervisors telling us that the course has inspired them to try supervising group dynamics in the future. This paper will explore some aspects of supervising group dynamics as well as, how to develop the Aalborg model...

  14. Equivalent Dynamic Models.

    Science.gov (United States)

    Molenaar, Peter C M

    2017-01-01

    Equivalences of two classes of dynamic models for weakly stationary multivariate time series are discussed: dynamic factor models and autoregressive models. It is shown that exploratory dynamic factor models can be rotated, yielding an infinite set of equivalent solutions for any observed series. It also is shown that dynamic factor models with lagged factor loadings are not equivalent to the currently popular state-space models, and that restriction of attention to the latter type of models may yield invalid results. The known equivalent vector autoregressive model types, standard and structural, are given a new interpretation in which they are conceived of as the extremes of an innovating type of hybrid vector autoregressive models. It is shown that consideration of hybrid models solves many problems, in particular with Granger causality testing.

  15. Invitation to dynamical systems

    CERN Document Server

    Scheinerman, Edward R

    2012-01-01

    This text is designed for those who wish to study mathematics beyond linear algebra but are unready for abstract material. Rather than a theorem-proof-corollary exposition, it stresses geometry, intuition, and dynamical systems. 1996 edition.

  16. Transonic Dynamics Tunnel (TDT)

    Data.gov (United States)

    Federal Laboratory Consortium — The Transonic Dynamics Tunnel (TDT) is a continuous flow wind-tunnel facility capable of speeds up to Mach 1.2 at stagnation pressures up to one atmosphere. The TDT...

  17. Advances in soil dynamics

    DEFF Research Database (Denmark)

    Advances in Soil Dynamics, Volume 3, represents the culmination of the work undertaken by the Advances in Soil Dynamics Monograph Committee, PM-45-01, about 15 years ago to summarize important developments in this field over the last 35 years. When this project was initiated, the main goal...... was to abridge major strides made in the general area of soil dynamics during the sixties, seventies, and eighties. However, by about the mid-nineties soil dynamics research in the US and much of the developed world had come to a virtual standstill. Although significant progress was made prior to the mid......-nineties, we still do not have a sound fundamental knowledge of soil-machine and soil-plant interactions. It is the hope of the editors that these three volumes will provide a ready reference for much needed future research in this area....

  18. based dynamic voltage restorer

    African Journals Online (AJOL)

    HOD

    operation due to presence of increased use of nonlinear loads (computers, microcontrollers ... simulations of a dynamic voltage restorer (DVR) was achieved using MATLAB/Simulink. ..... using Discrete PWM generator, then the IGBT inverter.

  19. Peri-dynamics

    International Nuclear Information System (INIS)

    Littlewood, D.

    2015-01-01

    Peri-dynamics, a nonlocal extension of continuum mechanics, is a natural framework for capturing constitutive response and modelling pervasive material failure and fracture. Unlike classical approaches incorporating partial derivatives, the peri-dynamic governing equations utilise integral expressions that remain valid in the presence of discontinuities such as cracks. The mathematical theory of peri-dynamics unifies the mechanics of continuous media, cracks, and discrete particles. The result is a consistent framework for capturing a wide range of constitutive responses, including inelasticity, in combination with robust material failure laws. Peri-dynamics has been implemented in a number of computational simulation codes, including the open source code Peridigm and the Sierra/SolidMechanics analysis code at Sandia National Laboratories. (author)

  20. Mercury's Dynamic Magnetosphere

    Science.gov (United States)

    Imber, S. M.

    2018-05-01

    The global dynamics of Mercury's magnetosphere will be discussed, focussing on observed asymmetries in the magnetotail and on the precipitation of particles of magnetospheric origin onto the nightside planetary surface.

  1. Market Squid Population Dynamics

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains population dynamics data on paralarvae, juvenile and adult market squid collected off California and the US Pacific Northwest. These data were...

  2. Gun Dynamics Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Gun Dynamics Laboratory is a research multi-task facility, which includes two firing bays, a high bay area and a second floor laboratory space. The high bay area...

  3. Dual Dynamic Programming - DDP

    International Nuclear Information System (INIS)

    Velasquez Bermudez, Jesus M

    1998-01-01

    Objections are presented to the mathematical formulation of the denominated Dual Dynamic programming-PDD that is the theoretical base of several computational model available for the optimal formulation of interconnected hydrothermal systems

  4. Controlling Uncertain Dynamical Systems

    Indian Academy of Sciences (India)

    Author Affiliations. N Ananthkrishnan1 Rashi Bansal2. Head, CAE Analysis & Design Zeus Numerix Pvt Ltd. M-03, SINE, IIT Bombay Powai Mumbai 400076, India. MTech (Aerospace Engineering) with specialization in Dynamics & Control from IIT Bombay.

  5. Instantaneous and dynamical decoherence

    Science.gov (United States)

    Polonyi, Janos

    2018-04-01

    Two manifestations of decoherence, called instantaneous and dynamical, are investigated. The former reflects the suppression of the interference between the components of the current state while the latter reflects that within the initial state. These types of decoherence are computed in the case of the Brownian motion and the harmonic and anharmonic oscillators within the semiclassical approximation. A remarkable phenomenon, namely the opposite orientation of the time arrow of the dynamical variables compared to that of the quantum fluctuations generates a double exponential time dependence of the dynamical decoherence in the presence of a harmonic force. For the weakly anharmonic oscillator the dynamical decoherence is found to depend in a singular way on the amount of the anharmonicity.

  6. Structural dynamic modification

    Indian Academy of Sciences (India)

    and stiffness matrices) andaor modal parameters, in order to acquire some ... For the above reasons, another modification approach is presented here ... The data necessary to solve the direct problem are dynamic behaviour of the original.

  7. Dynamics of interstellar matter

    International Nuclear Information System (INIS)

    Kahn, F.D.

    1975-01-01

    A review of the dynamics of interstellar matter is presented, considering the basic equations of fluid flow, plane waves, shock waves, spiral structure, thermal instabilities and early star cocoons. (B.R.H.)

  8. Fish population dynamics

    National Research Council Canada - National Science Library

    Gulland, J. A

    1977-01-01

    This book describes how the dynamics of fish populations can be analysed in terms of the factors affecting their rates of growth, mortality and reproduction, with particular emphasis on the effects of fishing...

  9. Dynamics of glassy systems

    International Nuclear Information System (INIS)

    Cugliandolo, Leticia F.

    2003-09-01

    These lecture notes can be read in two ways. The first two Sections contain a review of the phenomenology of several physical systems with slow nonequilibrium dynamics. In the Conclusions we summarize the scenario for this temporal evolution derived from the solution to some solvable models (p spin and the like) that are intimately connected to the mode coupling approach (and similar ones) to super-cooled liquids. At the end we list a number of open problems of great relevance in this context. These Sections can be read independently of the body of the paper where we present some of the basic analytic techniques used to study the out of equilibrium dynamics of classical and quantum models with and without disorder. We start the technical part by briefly discussing the role played by the environment and by introducing and comparing its representation in the equilibrium and dynamic treatment of classical and quantum systems. We next explain the role played by explicit quenched disorder in both approaches. Later on we focus on analytical techniques; we expand on the dynamic functional methods, and the diagrammatic expansions and resummations used to derive macroscopic equations from the microscopic dynamics. We show why the macroscopic dynamic equations for disordered models and those resulting from self-consistent approximations to non-disordered ones coincide. We review some generic properties of dynamic systems evolving out of equilibrium like the modifications of the fluctuation-dissipation theorem, generic scaling forms of the correlation functions, etc. Finally we solve a family of mean-field models. The connection between the dynamic treatment and the analysis of the free-energy landscape of these models is also presented. We use pedagogical examples all along these lectures to illustrate the properties and results. (author)

  10. Quantum net dynamics

    International Nuclear Information System (INIS)

    Finkelstein, D.

    1989-01-01

    The quantum net unifies the basic principles of quantum theory and relativity in a quantum spacetime having no ultraviolet infinities, supporting the Dirac equation, and having the usual vacuum as a quantum condensation. A correspondence principle connects nets to Schwinger sources and further unifies the vertical structure of the theory, so that the functions of the many hierarchic levels of quantum field theory (predicate algebra, set theory, topology,hor-ellipsis, quantum dynamics) are served by one in quantum net dynamics

  11. Dynamics of curved fronts

    CERN Document Server

    Pelce, Pierre

    1989-01-01

    In recent years, much progress has been made in the understanding of interface dynamics of various systems: hydrodynamics, crystal growth, chemical reactions, and combustion. Dynamics of Curved Fronts is an important contribution to this field and will be an indispensable reference work for researchers and graduate students in physics, applied mathematics, and chemical engineering. The book consist of a 100 page introduction by the editor and 33 seminal articles from various disciplines.

  12. Dynamic map labeling.

    Science.gov (United States)

    Been, Ken; Daiches, Eli; Yap, Chee

    2006-01-01

    We address the problem of filtering, selecting and placing labels on a dynamic map, which is characterized by continuous zooming and panning capabilities. This consists of two interrelated issues. The first is to avoid label popping and other artifacts that cause confusion and interrupt navigation, and the second is to label at interactive speed. In most formulations the static map labeling problem is NP-hard, and a fast approximation might have O(nlogn) complexity. Even this is too slow during interaction, when the number of labels shown can be several orders of magnitude less than the number in the map. In this paper we introduce a set of desiderata for "consistent" dynamic map labeling, which has qualities desirable for navigation. We develop a new framework for dynamic labeling that achieves the desiderata and allows for fast interactive display by moving all of the selection and placement decisions into the preprocessing phase. This framework is general enough to accommodate a variety of selection and placement algorithms. It does not appear possible to achieve our desiderata using previous frameworks. Prior to this paper, there were no formal models of dynamic maps or of dynamic labels; our paper introduces both. We formulate a general optimization problem for dynamic map labeling and give a solution to a simple version of the problem. The simple version is based on label priorities and a versatile and intuitive class of dynamic label placements we call "invariant point placements". Despite these restrictions, our approach gives a useful and practical solution. Our implementation is incorporated into the G-Vis system which is a full-detail dynamic map of the continental USA. This demo is available through any browser.

  13. Dynamical quantum teleportation

    Energy Technology Data Exchange (ETDEWEB)

    Muschik, Christine [ICFO-Institut de Ciencies Fotoniques (Spain); Polzik, Eugene [Niels Bohr Institute (Denmark); Cirac, Ignacio [Max-Planck-Institute (Germany)

    2013-07-01

    We introduce two protocols for inducing non-local dynamics between two separate parties. The first scheme allows for the engineering of an interaction between the two remote systems, while the second protocol induces a dynamics in one of the parties, which is controlled by the other one. Both schemes apply to continuous variable systems, run continuously in time and are based on instantaneous feedback.

  14. Dynamic Strategic Information Transmission

    OpenAIRE

    Mikhail Golosov; Vasiliki Skreta; Aleh Tsyvinski; Andrea Wilson

    2011-01-01

    This paper studies strategic information transmission in a dynamic environment where, each period, a privately informed expert sends a message and a decision maker takes an action. Our main result is that, in contrast to a static environment, full information revelation is possible. The gradual revelation of information and the eventual full revelation is supported by the dynamic rewards and punishments. The construction of a fully revealing equilibrium relies on two key features. The first f...

  15. Dynamics and causality constraints

    International Nuclear Information System (INIS)

    Sousa, Manoelito M. de

    2001-04-01

    The physical meaning and the geometrical interpretation of causality implementation in classical field theories are discussed. Causality in field theory are kinematical constraints dynamically implemented via solutions of the field equation, but in a limit of zero-distance from the field sources part of these constraints carries a dynamical content that explains old problems of classical electrodynamics away with deep implications to the nature of physicals interactions. (author)

  16. Dynamics of magnetospheric plasmas

    International Nuclear Information System (INIS)

    Horwitz, J.L.

    1985-01-01

    The dynamical behavior of the magnetospheric plasmas which control the electrostatic charging of spacecraft is the result of the complex interaction of a variety of production, loss, transport, and energization mechanisms in the magnetosphere. This paper is intended to provide the spacecraft engineer with a foundation in the basic morphology and controlling processes pertaining to magnetospheric plasma dynamics in the inner magnetosphere, including the synchronous orbit region. 32 references

  17. Channeling and dynamic chaos

    Energy Technology Data Exchange (ETDEWEB)

    Bolotin, IU L; Gonchar, V IU; Truten, V I; Shulga, N F

    1986-01-01

    It is shown that axial channeling of relativistic electrons can give rise to the effect of dynamic chaos which involves essentially chaotic motion of a particle in the channel. The conditions leading to the effect of dynamic chaos and the manifestations of this effect in physical processes associated with the passage of particles through a crystal are examined using a silicon crystal as an example. 7 references.

  18. Fusion-fission dynamics

    International Nuclear Information System (INIS)

    Blocki, J.; Planeta, R.; Brzychczyk, J.; Grotowski, K.

    1992-01-01

    Classical dynamical calculations of the heavy ion induced fission processes have been performed for the reactions 40 Ar+ 141 Pr, 20 Ne+ 165 Ho and 12 C+ 175 Lu leading to the iridium like nucleus. As a result prescission lifetimes were obtained and compared with the experimental values. The comparison between the calculated and experimental lifetimes indicates that the one-body dissipation picture is much more relevant in describing the fusion-fission dynamics than the two-body one. (orig.)

  19. Photochemical reaction dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Moore, B.C. [Lawrence Berkeley Laboratory, Livermore, CA (United States)

    1993-12-01

    The purpose of the program is to develop a fundamental understanding of unimolecular and bimolecular reaction dynamics with application in combustion and energy systems. The energy dependence in ketene isomerization, ketene dissociation dynamics, and carbonyl substitution on organometallic rhodium complexes in liquid xenon have been studied. Future studies concerning unimolecular processes in ketene as well as energy transfer and kinetic studies of methylene radicals are discussed.

  20. Dynamics of Soft Matter

    CERN Document Server

    García Sakai, Victoria; Chen, Sow-Hsin

    2012-01-01

    Dynamics of Soft Matter: Neutron Applications provides an overview of neutron scattering techniques that measure temporal and spatial correlations simultaneously, at the microscopic and/or mesoscopic scale. These techniques offer answers to new questions arising at the interface of physics, chemistry, and biology. Knowledge of the dynamics at these levels is crucial to understanding the soft matter field, which includes colloids, polymers, membranes, biological macromolecules, foams, emulsions towards biological & biomimetic systems, and phenomena involving wetting, friction, adhesion, or micr

  1. The LHC dynamic aperture

    CERN Document Server

    Koutchouk, Jean-Pierre

    1999-01-01

    In 1996, the expected field errors in the dipoles and quadrupoles yielded a long-term dynamic aperture of some 8sigma at injection. The target was set to 12sigma to account for the limitations of our model (imperfections and dynamics). From scaling laws and tracking, a specification for the field imperfections yielding the target dynamic aperture was deduced. The gap between specification and expected errors is being bridged by i) an improvement of the dipole field quality, ii) a balance between geometric and persistent current errors, iii) additional correction circuits (a3 ,b4 ). With the goal in view, the emphasis has now turned to the sensitivity of the dynamic aperture to the optical parameters.The distortion of the dynamics at the lower amplitudes effectively reached by the particles is minimized by optimizing the distribution of the betatron phase advance. At collision energy, the dynamic aperture is limited by the field imperfections of the low-beta triplets, enhanced by the crossing angle. With corre...

  2. Dynamics in Complex Coacervates

    Science.gov (United States)

    Perry, Sarah

    Understanding the dynamics of a material provides detailed information about the self-assembly, structure, and intermolecular interactions present in a material. While rheological methods have long been used for the characterization of complex coacervate-based materials, it remains a challenge to predict the dynamics for a new system of materials. Furthermore, most work reports only qualitative trends exist as to how parameters such as charge stoichiometry, ionic strength, and polymer chain length impact self-assembly and material dynamics, and there is little information on the effects of polymer architecture or the organization of charges within a polymer. We seek to link thermodynamic studies of coacervation phase behavior with material dynamics through a carefully-controlled, systematic study of coacervate linear viscoelasticity for different polymer chemistries. We couple various methods of characterizing the dynamics of polymer-based complex coacervates, including the time-salt superposition methods developed first by Spruijt and coworkers to establish a more mechanistic strategy for comparing the material dynamics and linear viscoelasticity of different systems. Acknowledgment is made to the Donors of the American Chemical Society Petroleum Research Fund for support of this research.

  3. Mechanical Behavior of Nanostructured and Ultrafine Grained Materials under Shock Wave Loadings. Experimental Data and Results of Computer Simulation.

    Science.gov (United States)

    Skripnyak, Vladimir

    2011-06-01

    Features of mechanical behavior of nanostructured (NS) and ultrafine grained (UFG) metal and ceramic materials under quasistatic and shock wave loadings are discussed in this report. Multilevel models developed within the approach of computational mechanics of materials were used for simulation mechanical behavior of UFG and NS metals and ceramics. Comparisons of simulation results with experimental data are presented. Models of mechanical behavior of nanostructured metal alloys takes into account a several structural factors influencing on the mechanical behavior of materials (type of a crystal lattice, density of dislocations, a size of dislocation substructures, concentration and size of phase precipitation, and distribution of grains sizes). Results show the strain rate sensitivity of the yield stress of UFG and polycrystalline alloys is various in a range from 103 up to 106 1/s. But the difference of the Hugoniot elastic limits of a UFG and coarse-grained alloys may be not considerable. The spall strength, the yield stress of UFG and NS alloys are depend not only on grains size, but a number of factors such as a distribution of grains sizes, a concentration and sizes of voids and cracks, a concentration and sizes of phase precipitation. Some titanium alloys with grain sizes from 300 to 500 nm have the quasi-static yield strength and the tensile strength twice higher than that of coarse grained counterparts. But the spall strength of the UFG titanium alloys is only 10 percents above than that of coarse grained alloys. At the same time it was found the spall strength of the bulk UFG aluminium and magnesium alloys with precipitation strengthening is essentially higher in comparison of coarse-grained counterparts. The considerable decreasing of the strain before failure of UFG alloys was predicted at high strain rates. The Hugoniot elastic limits of oxide nanoceramics depend not only on the porosity, but also on sizes and volume distribution of voids.

  4. Offshore pipelaying dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Gullik Anthon

    2010-02-15

    This thesis considers three issues regarding modeling of of offshore pipe laying dynamics. These are: (i) the formulation of an offshore pipeline installation operation as a control problem, (ii) the development and passivity analysis of a robotic pipe model for a submerged pipe string, suitable for real-time applications in closed- loop control systems, and (iii) the development and validation of a nonlinear FEM model for simulation and control of the elastic pipeline dynamics, including FEM dynamics of a pipeline combined with vessel dynamics, for simulation and control of pipe lay operations under dynamic positioning Pipeline installation is defined as the operation of positioning a pipeline along a reference path on the seabed from a surface vessel. In control terms, this can be stated as a path-following control problem, where the pipe touchdown point tracks the reference path. However, the only controllers for the touchdown point are the pay-out of pipe into the water, and the motion of the surface vessel. Considering that the pipe is an elastic body, and that both the pipe and the vessel are subject to environmental loads, the control problem that must be considered is a dynamic target-tracking problem, where the surface vessel must track a moving target position on the surface in order to control the position of the touchdown point. A target-tracking controller may be implemented as a guidance system, by extending the dynamic positioning system that is common for pipe lay vessels. An important component in the guidance system is the dynamic pipe model mapping touchdown and surface vessel position. Motivated by robotics, a compact system formulation is derived for the suspended pipeline by considering it as a hyper-redundant manipulator with an arbitrary number of links. This model captures the main dynamics of the pipe, including its geometric configuration and top tension. The model is in the state- space, and on a vectorial form using minimal coordinates

  5. Summary: Hadron dynamics sessions

    International Nuclear Information System (INIS)

    Carroll, A.S.; Londergan, J.T.

    1993-01-01

    Four sessions on Hadron Dynamics were organized at this Workshop. The first topic, QCD Exclusive Reactions and Color Transparency, featured talks by Ralston, Heppelman and Strikman; the second, QCD and Inclusive Reactions had talks by Garvey, Speth and Kisslinger. The third dynamics session, Medium Modification of Elementary Interactions had contributions from Kopeliovich, Alves and Gyulassy; the fourth session Pre-QCD Dynamics and Scattering, had talks by Harris, Myhrer and Brown. An additional joint Spectroscopy/Dynamics session featured talks by Zumbro, Johnson and McClelland. These contributions are reviewed briefly in this summary. Two additional joint sessions between Dynamics and η physics are reviewed by the organizers of the Eta sessions. In such a brief review there is no way the authors can adequately summarize the details of the physics presented here. As a result, they concentrate only on brief impressionistic sketches of the physics topics discussed and their interrelations. They include no bibliography in this summary, but simply refer to the talks given in more detail in the Workshop proceedings. They focus on topics which were common to several presentations in these sessions. First, nuclear and particle descriptions of phenomena are now clearly converging, in both a qualitative and quantitative sense; they show several examples of this convergence. Second, an important issue in hadron dynamics is the extent to which elementary interactions are modified in nuclei at high energies and/or densities, and they illustrate some of these medium effects. Finally, they focus on those dynamical issues where hadron facilities can make an important, or even a unique, contribution to the knowledge of particle and nuclear physics

  6. Riverine habitat dynamics

    Science.gov (United States)

    Jacobson, R.B.

    2013-01-01

    The physical habitat template is a fundamental influence on riverine ecosystem structure and function. Habitat dynamics refers to the variation in habitat through space and time as the result of varying discharge and varying geomorphology. Habitat dynamics can be assessed at spatial scales ranging from the grain (the smallest resolution at which an organism relates to its environment) to the extent (the broadest resolution inclusive of all space occupied during its life cycle). In addition to a potentially broad range of spatial scales, assessments of habitat dynamics may include dynamics of both occupied and nonoccupied habitat patches because of process interactions among patches. Temporal aspects of riverine habitat dynamics can be categorized into hydrodynamics and morphodynamics. Hydrodynamics refers to habitat variation that results from changes in discharge in the absence of significant change of channel morphology and at generally low sediment-transport rates. Hydrodynamic assessments are useful in cases of relatively high flow exceedance (percent of time a flow is equaled or exceeded) or high critical shear stress, conditions that are applicable in many studies of instream flows. Morphodynamics refers to habitat variation resulting from changes to substrate conditions or channel/floodplain morphology. Morphodynamic assessments are necessary when channel and floodplain boundary conditions have been significantly changed, generally by relatively rare flood events or in rivers with low critical shear stress. Morphodynamic habitat variation can be particularly important as disturbance mechanisms that mediate population growth or for providing conditions needed for reproduction, such as channel-migration events that erode cutbanks and provide new pointbar surfaces for germination of riparian trees. Understanding of habitat dynamics is increasing in importance as societal goals shift toward restoration of riverine ecosystems. Effective investment in restoration

  7. Dynamic wall demonstration project

    Energy Technology Data Exchange (ETDEWEB)

    Nakatsui, L.; Mayhew, W.

    1990-12-01

    The dynamic wall concept is a ventilation strategy that can be applied to a single family dwelling. With suitable construction, outside air can be admitted through the exterior walls of the house to the interior space to function as ventilation air. The construction and performance monitoring of a demonstration house built to test the dynamic wall concept in Sherwood Park, Alberta, is described. The project had the objectives of demonstrating and assessing the construction methods; determining the cost-effectiveness of the concept in Alberta; analyzing the operation of the dynamic wall system; and determining how other components and systems in the house interact with the dynamic wall. The exterior wall construction consisted of vinyl siding, spun-bonded polyolefin-backed (SBPO) rigid fiberglass sheathing, 38 mm by 89 mm framing, fiberglass batt insulation and 12.7 mm drywall. The mechanical system was designed to operate in the dynamic (negative pressure) mode, however flexibility was provided to allow operation in the static (balanced pressure) mode to permit monitoring of the walls as if they were in a conventional house. The house was monitored by an extensive computerized monitoring system. Dynamic wall operation was dependent on pressure and temperature differentials between indoor and outdoor as well as wind speed and direction. The degree of heat gain was found to be ca 74% of the indoor-outdoor temperature differential. Temperature of incoming dynamic air was significantly affected by solar radiation and measurement of indoor air pollutants found no significant levels. 4 refs., 34 figs., 11 tabs.

  8. Astrophysical fluid dynamics

    Science.gov (United States)

    Ogilvie, Gordon I.

    2016-06-01

    > These lecture notes and example problems are based on a course given at the University of Cambridge in Part III of the Mathematical Tripos. Fluid dynamics is involved in a very wide range of astrophysical phenomena, such as the formation and internal dynamics of stars and giant planets, the workings of jets and accretion discs around stars and black holes and the dynamics of the expanding Universe. Effects that can be important in astrophysical fluids include compressibility, self-gravitation and the dynamical influence of the magnetic field that is `frozen in' to a highly conducting plasma. The basic models introduced and applied in this course are Newtonian gas dynamics and magnetohydrodynamics (MHD) for an ideal compressible fluid. The mathematical structure of the governing equations and the associated conservation laws are explored in some detail because of their importance for both analytical and numerical methods of solution, as well as for physical interpretation. Linear and nonlinear waves, including shocks and other discontinuities, are discussed. The spherical blast wave resulting from a supernova, and involving a strong shock, is a classic problem that can be solved analytically. Steady solutions with spherical or axial symmetry reveal the physics of winds and jets from stars and discs. The linearized equations determine the oscillation modes of astrophysical bodies, as well as their stability and their response to tidal forcing.

  9. Emergence in Dynamical Systems

    Directory of Open Access Journals (Sweden)

    John Collier

    2013-12-01

    Full Text Available Emergence is a term used in many contexts in current science; it has become fashionable. It has a traditional usage in philosophy that started in 1875 and was expanded by J. S. Mill (earlier, under a different term and C. D. Broad. It is this form of emergence that I am concerned with here. I distinguish it from uses like ‘computational emergence,’ which can be reduced to combinations of program steps, or its application to merely surprising new features that appear in complex combinations of parts. I will be concerned specifically with ontological emergence that has the logical properties required by Mill and Broad (though there might be some quibbling about the details of their views. I restrict myself to dynamical systems that are embodied in processes. Everything that we can interact with through sensation or action is either dynamical or can be understood in dynamical terms, so this covers all comprehensible forms of emergence in the strong (nonreducible sense I use. I will give general dynamical conditions that underlie the logical conditions traditionally assigned to emergence in nature.The advantage of this is that, though we cannot test logical conditions directly, we can test dynamical conditions. This gives us an empirical and realistic form of emergence, contrary those who say it is a matter of perspective.

  10. Modeling dynamic swarms

    KAUST Repository

    Ghanem, Bernard

    2013-01-01

    This paper proposes the problem of modeling video sequences of dynamic swarms (DSs). We define a DS as a large layout of stochastically repetitive spatial configurations of dynamic objects (swarm elements) whose motions exhibit local spatiotemporal interdependency and stationarity, i.e., the motions are similar in any small spatiotemporal neighborhood. Examples of DS abound in nature, e.g., herds of animals and flocks of birds. To capture the local spatiotemporal properties of the DS, we present a probabilistic model that learns both the spatial layout of swarm elements (based on low-level image segmentation) and their joint dynamics that are modeled as linear transformations. To this end, a spatiotemporal neighborhood is associated with each swarm element, in which local stationarity is enforced both spatially and temporally. We assume that the prior on the swarm dynamics is distributed according to an MRF in both space and time. Embedding this model in a MAP framework, we iterate between learning the spatial layout of the swarm and its dynamics. We learn the swarm transformations using ICM, which iterates between estimating these transformations and updating their distribution in the spatiotemporal neighborhoods. We demonstrate the validity of our method by conducting experiments on real and synthetic video sequences. Real sequences of birds, geese, robot swarms, and pedestrians evaluate the applicability of our model to real world data. © 2012 Elsevier Inc. All rights reserved.

  11. More dynamical supersymmetry breaking

    International Nuclear Information System (INIS)

    Csaki, C.; Randall, L.; Skiba, W.

    1996-01-01

    In this paper we introduce a new class of theories which dynamically break supersymmetry based on the gauge group SU(n) x SU(3) x U(1) for even n. These theories are interesting in that no dynamical superpotential is generated in the absence of perturbations. For the example SU(4) x SU(3) x U(1) we explicitly demonstrate that all flat directions can be lifted through a renormalizable superpotential and that supersymmetry is dynamically broken. We derive the exact superpotential for this theory, which exhibits new and interesting dynamical phenomena. For example, modifications to classical constraints can be field dependent. We also consider the generalization to SU(n) x SU(3) x U(1) models (with even n>4). We present a renormalizable superpotential which lifts all flat directions. Because SU(3) is not confining in the absence of perturbations, the analysis of supersymmetry breaking is very different in these theories from the n=4 example. When the SU(n) gauge group confines, the Yukawa couplings drive the SU(3) theory into a regime with a dynamically generated superpotential. By considering a simplified version of these theories we argue that supersymmetry is probably broken. (orig.)

  12. Dynamic behaviour of S200F beryllium

    International Nuclear Information System (INIS)

    Montoya, Dominique

    1991-01-01

    Compression tests have been made on a large scale of strain, strain rate (up to 2000 s -1 ) and temperature (between 20 C and 300 C). From these experiences, we have calculated a constitutive model for beryllium S200F, which can be used by computer codes. Its formulation is not far from Steinberg, Cochran and Guinan's. But in our case, the influences of temperature and strain rate appear clearly within the expression. To validate our equation, we have used it in a computer code. Its extrapolation for higher strain rates is in good agreement with experiments such as Taylor impact tests or plate impact tests (strain rates greater than 10 4 s -1 ). With micrography, we could settle a link between the main strain mode within the material, and the variation of one parameter of the model. Beside the constitutive model, we have shown that shock loaded beryllium behaves in two different ways. If the strain rate is lower than 5.10 6 s -1 , then it is proportional to the squared shock pressure. Beyond, it is a linear function of shock pressure to the power of four. By a spall study on beryllium, we have confirmed that it is excessively fragile. Its fracture is sudden, at a strength near 1 GPa. (author) [fr

  13. System dynamics with interaction discontinuity

    CERN Document Server

    Luo, Albert C J

    2015-01-01

    This book describes system dynamics with discontinuity caused by system interactions and presents the theory of flow singularity and switchability at the boundary in discontinuous dynamical systems. Based on such a theory, the authors address dynamics and motion mechanism of engineering discontinuous systems due to interaction. Stability and bifurcations of fixed points in nonlinear discrete dynamical systems are presented, and mapping dynamics are developed for analytical predictions of periodic motions in engineering discontinuous dynamical systems. Ultimately, the book provides an alternative way to discuss the periodic and chaotic behaviors in discontinuous dynamical systems.

  14. Vehicle dynamics theory and application

    CERN Document Server

    Jazar, Reza N

    2017-01-01

    This intermediate textbook is appropriate for students in vehicle dynamics courses, in their last year of undergraduate study or their first year of graduate study. It is also appropriate for mechanical engineers, automotive engineers, and researchers in the area of vehicle dynamics for continuing education or as a reference. It addresses fundamental and advanced topics, and a basic knowledge of kinematics and dynamics, as well as numerical methods, is expected. The contents are kept at a theoretical-practical level, with a strong emphasis on application. This third edition has been reduced by 25%, to allow for coverage over one semester, as opposed to the previous edition that needed two semesters for coverage. The textbook is composed of four parts: Vehicle Motion: covers tire dynamics, forward vehicle dynamics, and driveline dynamics Vehicle Kinematics: covers applied kinematics, applied mechanisms, steering dynamics, and suspension mechanisms Vehicle Dynamics: covers applied dynamics, vehicle planar dynam...

  15. Detection of hydrogen in hidden and spalled layers of turbine blade coatings

    Energy Technology Data Exchange (ETDEWEB)

    Zschau, H.-E. [DECHEMA e. V., Karl-Winnacker-Institut, Theodor-Heuss-Allee 25, D-60486 Frankfurt (Germany)]. E-mail: zschau@dechema.de; Dietrich, M. [DECHEMA e. V., Karl-Winnacker-Institut, Theodor-Heuss-Allee 25, D-60486 Frankfurt (Germany); Renusch, D. [DECHEMA e. V., Karl-Winnacker-Institut, Theodor-Heuss-Allee 25, D-60486 Frankfurt (Germany); Schuetze, M. [DECHEMA e. V., Karl-Winnacker-Institut, Theodor-Heuss-Allee 25, D-60486 Frankfurt (Germany); Meijer, J. [Ruhr-Universitaet-Bochum, Dynamitron-Tandem-Labor, Universitaetsstr. 150, D-44801 Bochum (Germany); Becker, H.-W. [Ruhr-Universitaet-Bochum, Dynamitron-Tandem-Labor, Universitaetsstr. 150, D-44801 Bochum (Germany)

    2006-08-15

    Gas turbine blades are covered with an outer ceramic top coat and an inner metallic bond coat, namely a thermal barrier coating system (TBC). The stability of the TBC is strongly influenced by the thermally growing oxide (TGO) which forms between the top and bond coat during turbine operation. This work is focused on the role of hydrogen in the adhesion of the top coat after oxidation at 1100 deg. C in dry and wet air at various time steps between 75 and 1150 h. To obtain the essential hydrogen information from the TGO the nuclear reaction {sup 1}H({sup 15}N, {alpha}{gamma}){sup 12}C is used with a unique scattering chamber (SDIBA). This equipment combines the defined exfoliation of the top coat by using a 4-points bending mechanism followed by IBA. This allows the determination of hydrogen concentration depth profiles at the TGO and first results are presented.

  16. Spall formation in solution mined storage caverns based on a creep and fracture analysis

    International Nuclear Information System (INIS)

    Munson, Darrell E.

    2000-01-01

    Because of limited direct observation, understanding of the interior conditions of the massive storage caverns constructed in Gulf Coast salt domes is realizable only through predictions of salt response. Determination of the potential for formation of salt spans, leading to eventual salt falls, is based on salt creep and fracture using the Multimechanism-Deformation Coupled Fracture (MCDF) model. This is a continuum model for creep, coupled to continuum damage evolution. The model has been successfully tested against underground results of damage around several test rooms at the Waste Isolation Pilot Plant (WIPP). Model simulations, here, evaluate observations made in the Strategic Petroleum Reserve (SPR) storage caverns, namely, the accumulation of material on cavern floors and evidence of salt falls. A simulation of a smooth cavern wall indicates damage is maximum at the surface but diminishes monotonically into the salt, which suggests the source of salt accumulation is surface sluffing. If a protuberance occurs on the wall, fracture damage can form beneath the protuberance, which will eventually cause fracture, and lead to a salt fall

  17. Thermal stress estimation in relation to spalling of HSC restrained with steel rings at high temperatures

    Directory of Open Access Journals (Sweden)

    Tanibe T.

    2013-09-01

    Full Text Available This paper reports on an experimental study regarding the behavior of steel ring-restrained concrete in response to fire exposure. The study was conducted to enable estimation of thermal stress based on steel ring strain in such concrete under the conditions of a RABT 30 heating curve. The specimens used were made from high-strength concrete (Fc: 80 MPa restrained using steel rings with thicknesses of 0.5, 8 and 18 mm.

  18. Spallation model for the high strain rates range

    Science.gov (United States)

    Dekel, E.; Eliezer, S.; Henis, Z.; Moshe, E.; Ludmirsky, A.; Goldberg, I. B.

    1998-11-01

    Measurements of the dynamic spall strength in aluminum and copper shocked by a high power laser to pressures of hundreds of kbars show a rapid increase in the spall strength with the strain rate at values of about 107 s-1. We suggest that this behavior is a result of a change in the spall mechanism. At low strain rates the spall is caused by the motion and coalescence of material's initial flaws. At high strain rates there is not enough time for the flaws to move and the spall is produced by the formation and coalescence of additional cavities where the interatomic forces become dominant. Material under tensile stress is in a metastable condition and cavities of a critical radius are formed in it due to thermal fluctuations. These cavities grow due to the tension. The total volume of the voids grow until the material disintegrates at the spall plane. Simplified calculations based on this model, describing the metal as a viscous liquid, give results in fairly good agreement with the experimental data and predict the increase in spall strength at high strain rates.

  19. Dynamics in geometrical confinement

    CERN Document Server

    Kremer, Friedrich

    2014-01-01

    This book describes the dynamics of low molecular weight and polymeric molecules when they are constrained under conditions of geometrical confinement. It covers geometrical confinement in different dimensionalities: (i) in nanometer thin layers or self supporting films (1-dimensional confinement) (ii) in pores or tubes with nanometric diameters (2-dimensional confinement) (iii) as micelles embedded in matrices (3-dimensional) or as nanodroplets.The dynamics under such conditions have been a much discussed and central topic in the focus of intense worldwide research activities within the last two decades. The present book discusses how the resulting molecular mobility is influenced by the subtle counterbalance between surface effects (typically slowing down molecular dynamics through attractive guest/host interactions) and confinement effects (typically increasing the mobility). It also explains how these influences can be modified and tuned, e.g. through appropriate surface coatings, film thicknesses or pore...

  20. Stochastic ice stream dynamics.

    Science.gov (United States)

    Mantelli, Elisa; Bertagni, Matteo Bernard; Ridolfi, Luca

    2016-08-09

    Ice streams are narrow corridors of fast-flowing ice that constitute the arterial drainage network of ice sheets. Therefore, changes in ice stream flow are key to understanding paleoclimate, sea level changes, and rapid disintegration of ice sheets during deglaciation. The dynamics of ice flow are tightly coupled to the climate system through atmospheric temperature and snow recharge, which are known exhibit stochastic variability. Here we focus on the interplay between stochastic climate forcing and ice stream temporal dynamics. Our work demonstrates that realistic climate fluctuations are able to (i) induce the coexistence of dynamic behaviors that would be incompatible in a purely deterministic system and (ii) drive ice stream flow away from the regime expected in a steady climate. We conclude that environmental noise appears to be crucial to interpreting the past behavior of ice sheets, as well as to predicting their future evolution.

  1. Introduction to dynamics

    CERN Document Server

    Pfeiffer, Friedrich

    2015-01-01

    This concise textbook for students preferably of a postgraduate level, but also for engineers in practice, contains the basic kinematical and kinetic structures of dynamics together with carefully selected applications. The book is a condensed introduction to the fundamental laws of kinematics and kinetics, on the most important principles of mechanics and presents the equations of motion in the form of Lagrange and Newton-Euler. Selected problems of linear and nonlinear dynamics are treated, as well as problems of vibration formation. The presented selection of topics gives a useful basis for stepping into more advanced problems of dynamics. The contents of this book represent the result of a regularly revised course, which has been and still is given for masters students at the Technische Universität München. .

  2. Dynamic Global Currency Hedging

    DEFF Research Database (Denmark)

    Christensen, Bent Jesper; Varneskov, Rasmus T.

    2016-01-01

    This paper proposes a model for discrete-time hedging based on continuous-time movements in portfolio and foreign currency exchange rate returns. In particular, the vector of optimal currency exposures is shown to be given by the negative realized regression coefficients from a one......-period conditional expectation of the intra-period quadratic covariation matrix for portfolio and foreign exchange rate returns. These are labelled the realized currency betas. The model, hence, facilitates dynamic hedging strategies that depend exclusively on the dynamic evolution of the ex-post quadratic...... covariation matrix. These hedging strategies are suggested implemented using modern, yet simple, non-parametric techniques to accurately measure and dynamically model historical quadratic covariation matrices. The empirical results from an extensive hedging exercise for equity investments illustrate...

  3. Butschli Dynamic Droplet System

    DEFF Research Database (Denmark)

    Armstrong, R.; Hanczyc, M.

    2013-01-01

    Dynamical oil-water systems such as droplets display lifelike properties and may lend themselves to chemical programming to perform useful work, specifically with respect to the built environment. We present Butschli water-in-oil droplets as a model for further investigation into the development...... reconstructed the Butschli system and observed its life span under a light microscope, observing chemical patterns and droplet behaviors in nearly three hundred replicate experiments. Self-organizing patterns were observed, and during this dynamic, embodied phase the droplets provided a means of introducing...... temporal and spatial order in the system with the potential for chemical programmability. The authors propose that the discrete formation of dynamic droplets, characterized by their lifelike behavior patterns, during a variable window of time (from 30 s to 30 min after the addition of alkaline water...

  4. Coherent dynamics in semiconductors

    DEFF Research Database (Denmark)

    Hvam, Jørn Märcher

    1998-01-01

    enhanced in quantum confined lower-dimensional systems, where exciton and biexciton effects dominate the spectra even at room temperature. The coherent dynamics of excitons are at modest densities well described by the optical Bloch equations and a number of the dynamical effects known from atomic......Ultrafast nonlinear optical spectroscopy is used to study the coherent dynamics of optically excited electron-hole pairs in semiconductors. Coulomb interaction implies that the optical inter-band transitions are dominated, at least at low temperatures, by excitonic effects. They are further...... and molecular systems are found and studied in the exciton-biexciton system of semiconductors. At densities where strong exciton interactions, or many-body effects, become dominant, the semiconductor Bloch equations present a more rigorous treatment of the phenomena Ultrafast degenerate four-wave mixing is used...

  5. Vorticity and vortex dynamics

    CERN Document Server

    Wu, Jie-Zhi; Zhou, M-D

    2006-01-01

    The importance of vorticity and vortex dynamics has now been well rec- nized at both fundamental and applied levels of ?uid dynamics, as already anticipatedbyTruesdellhalfcenturyagowhenhewrotethe?rstmonograph onthesubject, The Kinematics of Vorticity(1954);andasalsoevidencedby the appearance of several books on this ?eld in 1990s. The present book is characterizedbythefollowingfeatures: 1. A basic physical guide throughout the book. The material is directed by a basic observation on the splitting and coupling of two fundamental processes in ?uid motion, i.e., shearing (unique to ?uid) and compre- ing/expanding.Thevorticityplaysakeyroleintheformer,andavortex isnothingbuta?uidbodywithhighconcentrationofvorticitycompared to its surrounding ?uid. Thus, the vorticity and vortex dynamics is - cordinglyde?nedasthetheoryofshearingprocessanditscouplingwith compressing/expandingprocess. 2. A description of the vortex evolution following its entire life.Thisbegins from the generation of vorticity to the formation of thi...

  6. Lagrangian and Hamiltonian dynamics

    CERN Document Server

    Mann, Peter

    2018-01-01

    An introductory textbook exploring the subject of Lagrangian and Hamiltonian dynamics, with a relaxed and self-contained setting. Lagrangian and Hamiltonian dynamics is the continuation of Newton's classical physics into new formalisms, each highlighting novel aspects of mechanics that gradually build in complexity to form the basis for almost all of theoretical physics. Lagrangian and Hamiltonian dynamics also acts as a gateway to more abstract concepts routed in differential geometry and field theories and can be used to introduce these subject areas to newcomers. Journeying in a self-contained manner from the very basics, through the fundamentals and onwards to the cutting edge of the subject, along the way the reader is supported by all the necessary background mathematics, fully worked examples, thoughtful and vibrant illustrations as well as an informal narrative and numerous fresh, modern and inter-disciplinary applications. The book contains some unusual topics for a classical mechanics textbook. Mo...

  7. Predictability in community dynamics.

    Science.gov (United States)

    Blonder, Benjamin; Moulton, Derek E; Blois, Jessica; Enquist, Brian J; Graae, Bente J; Macias-Fauria, Marc; McGill, Brian; Nogué, Sandra; Ordonez, Alejandro; Sandel, Brody; Svenning, Jens-Christian

    2017-03-01

    The coupling between community composition and climate change spans a gradient from no lags to strong lags. The no-lag hypothesis is the foundation of many ecophysiological models, correlative species distribution modelling and climate reconstruction approaches. Simple lag hypotheses have become prominent in disequilibrium ecology, proposing that communities track climate change following a fixed function or with a time delay. However, more complex dynamics are possible and may lead to memory effects and alternate unstable states. We develop graphical and analytic methods for assessing these scenarios and show that these dynamics can appear in even simple models. The overall implications are that (1) complex community dynamics may be common and (2) detailed knowledge of past climate change and community states will often be necessary yet sometimes insufficient to make predictions of a community's future state. © 2017 John Wiley & Sons Ltd/CNRS.

  8. Fractional Dynamics and Control

    CERN Document Server

    Machado, José; Luo, Albert

    2012-01-01

    Fractional Dynamics and Control provides a comprehensive overview of recent advances in the areas of nonlinear dynamics, vibration and control with analytical, numerical, and experimental results. This book provides an overview of recent discoveries in fractional control, delves into fractional variational principles and differential equations, and applies advanced techniques in fractional calculus to solving complicated mathematical and physical problems.Finally, this book also discusses the role that fractional order modeling can play in complex systems for engineering and science. Discusses how fractional dynamics and control can be used to solve nonlinear science and complexity issues Shows how fractional differential equations and models can be used to solve turbulence and wave equations in mechanics and gravity theories and Schrodinger’s equation  Presents factional relaxation modeling of dielectric materials and wave equations for dielectrics  Develops new methods for control and synchronization of...

  9. Dynamical symmetries for fermions

    International Nuclear Information System (INIS)

    Guidry, M.

    1989-01-01

    An introduction is given to the Fermion Dynamical Symmetry Model (FDSM). The analytical symmetry limits of the model are then applied to the calculation of physical quantities such as ground-state masses and B(E 2 ) values in heavy nuclei. These comparisons with data provide strong support for a new principle of collective motion, the Dynamical Pauli Effect, and suggest that dynamical symmetries which properly account for the pauli principle are much more persistent in nuclear structure than the corresponding boson symmetries. Finally, we present an assessment of criticisms which have been voiced concerning the FDSM, and a discussion of new phenomena and ''exotic spectroscopy'' which may be suggested by the model. 14 refs., 8 figs., 4 tabs

  10. Conference on Multibody Dynamics

    CERN Document Server

    Multibody Dynamics : Computational Methods and Applications

    2014-01-01

    By having its origin in analytical and continuum mechanics, as well as in computer science and applied mathematics, multibody dynamics provides a basis for analysis and virtual prototyping of innovative applications in many fields of contemporary engineering. With the utilization of computational models and algorithms that classically belonged to different fields of applied science, multibody dynamics delivers reliable simulation platforms for diverse highly-developed industrial products such as vehicle and railway systems, aeronautical and space vehicles, robotic manipulators, smart structures, biomechanical applications and nano-technologies. The chapters of this volume are based on the revised and extended versions of the selected scientific papers from amongst 255 original contributions that have been accepted to be presented within the program of the distinguished international ECCOMAS conference. It reflects state-of-the-art in the advances of multibody dynamics, providing excellent insight in the recen...

  11. What are System Dynamics Insights?

    OpenAIRE

    Stave, K.; Zimmermann, N. S.; Kim, H.

    2016-01-01

    This paper explores the concept of system dynamics insights. In our field, the term “insight” is generally understood to mean dynamic insight, that is, a deep understanding about the relationship between structure and behavior. We argue this is only one aspect of the range of insights possible from system dynamics activities, and describe a broader range of potential system dynamics insights. We also propose an initial framework for discussion that relates different types of system dynamics a...

  12. Dynamically Assisted Schwinger Mechanism

    International Nuclear Information System (INIS)

    Schuetzhold, Ralf; Gies, Holger; Dunne, Gerald

    2008-01-01

    We study electron-positron pair creation from the Dirac vacuum induced by a strong and slowly varying electric field (Schwinger effect) which is superimposed by a weak and rapidly changing electromagnetic field (dynamical pair creation). In the subcritical regime where both mechanisms separately are strongly suppressed, their combined impact yields a pair creation rate which is dramatically enhanced. Intuitively speaking, the strong electric field lowers the threshold for dynamical particle creation--or, alternatively, the fast electromagnetic field generates additional seeds for the Schwinger mechanism. These findings could be relevant for planned ultrahigh intensity lasers

  13. Models for Dynamic Applications

    DEFF Research Database (Denmark)

    Sales-Cruz, Mauricio; Morales Rodriguez, Ricardo; Heitzig, Martina

    2011-01-01

    This chapter covers aspects of the dynamic modelling and simulation of several complex operations that include a controlled blending tank, a direct methanol fuel cell that incorporates a multiscale model, a fluidised bed reactor, a standard chemical reactor and finally a polymerisation reactor...... be applied to formulate, analyse and solve these dynamic problems and how in the case of the fuel cell problem the model consists of coupledmeso and micro scale models. It is shown how data flows are handled between the models and how the solution is obtained within the modelling environment....

  14. Dynamics of structures

    CERN Document Server

    Paultre, Patrick

    2013-01-01

    This book covers structural dynamics from a theoretical and algorithmic approach. It covers systems with both single and multiple degrees-of-freedom. Numerous case studies are given to provide the reader with a deeper insight into the practicalities of the area, and the solutions to these case studies are given in terms of real-time and frequency in both geometric and modal spaces. Emphasis is also given to the subject of seismic loading. The text is based on many lectures on the subject of structural dynamics given at numerous institutions and thus will be an accessible and practical aid to

  15. Dynamics in artifact ecologies

    DEFF Research Database (Denmark)

    Bødker, Susanne; Klokmose, Clemens Nylandsted

    2012-01-01

    We increasingly interact with multiple interactive artifacts with overlapping capabilities during our daily activities. It has previously been shown that the use of an interactive artifact cannot be understood in isolation, but artifacts must be understood as part of an artifact ecology, where...... artifacts influence the use of others. Understanding this interplay becomes more and more essential for interaction design as our artifact ecologies grow. This paper continues a recent discourse on artifact ecologies. Through interviews with iPhone users, we demonstrate that relationships between artifacts...... in artifact ecologies cannot be understood as static, instead they evolve dynamically over time. We provide activity theory-based concepts to explain these dynamics....

  16. Dynamic gamma knife radiosurgery

    International Nuclear Information System (INIS)

    Luan Shuang; Swanson, Nathan; Chen Zhe; Ma Lijun

    2009-01-01

    Gamma knife has been the treatment of choice for various brain tumors and functional disorders. Current gamma knife radiosurgery is planned in a 'ball-packing' approach and delivered in a 'step-and-shoot' manner, i.e. it aims to 'pack' the different sized spherical high-dose volumes (called 'shots') into a tumor volume. We have developed a dynamic scheme for gamma knife radiosurgery based on the concept of 'dose-painting' to take advantage of the new robotic patient positioning system on the latest Gamma Knife C(TM) and Perfexion(TM) units. In our scheme, the spherical high dose volume created by the gamma knife unit will be viewed as a 3D spherical 'paintbrush', and treatment planning reduces to finding the best route of this 'paintbrush' to 'paint' a 3D tumor volume. Under our dose-painting concept, gamma knife radiosurgery becomes dynamic, where the patient moves continuously under the robotic positioning system. We have implemented a fully automatic dynamic gamma knife radiosurgery treatment planning system, where the inverse planning problem is solved as a traveling salesman problem combined with constrained least-square optimizations. We have also carried out experimental studies of dynamic gamma knife radiosurgery and showed the following. (1) Dynamic gamma knife radiosurgery is ideally suited for fully automatic inverse planning, where high quality radiosurgery plans can be obtained in minutes of computation. (2) Dynamic radiosurgery plans are more conformal than step-and-shoot plans and can maintain a steep dose gradient (around 13% per mm) between the target tumor volume and the surrounding critical structures. (3) It is possible to prescribe multiple isodose lines with dynamic gamma knife radiosurgery, so that the treatment can cover the periphery of the target volume while escalating the dose for high tumor burden regions. (4) With dynamic gamma knife radiosurgery, one can obtain a family of plans representing a tradeoff between the delivery time and

  17. Stochastic Switching Dynamics

    DEFF Research Database (Denmark)

    Simonsen, Maria

    This thesis treats stochastic systems with switching dynamics. Models with these characteristics are studied from several perspectives. Initially in a simple framework given in the form of stochastic differential equations and, later, in an extended form which fits into the framework of sliding...... mode control. It is investigated how to understand and interpret solutions to models of switched systems, which are exposed to discontinuous dynamics and uncertainties (primarily) in the form of white noise. The goal is to gain knowledge about the performance of the system by interpreting the solution...

  18. Dynamics of Catalyst Nanoparticles

    DEFF Research Database (Denmark)

    Hansen, Thomas Willum; Cavalca, Filippo; Wagner, Jakob Birkedal

    and pharmaceuticals, and the cleanup of exhaust from automobiles and stationary power plants. Sintering, or thermal deactivation, is an important mechanism for the loss of catalyst activity. In order to initiate a systematic study of the dynamics and sintering of nanoparticles, various catalytic systems have been...... under gas exposure, dynamic phenomena such as sintering and growth can be observed with sub-Ångstrøm resolution. Metal nanoparticles contain the active sites in heterogeneous catalysts, which are important for many industrial applications including the production of clean fuels, chemicals...

  19. Safe Dynamic Multiple Inheritance

    DEFF Research Database (Denmark)

    Ernst, Erik

    2002-01-01

    Multiple inheritance and similar mechanisms are usually only supported at compile time in statically typed languages. Nevertheless, dynamic multiple inheritance would be very useful in the development of complex systems, because it allows the creation of many related classes without an explosion...... in the size and level of redundancy in the source code. In fact, dynamic multiple inheritance is already available. The language gbeta is statically typed and has supported run-time combination of classes and methods since 1997, by means of the combination operator '&'. However, with certain combinations...

  20. Fundamental composite electroweak dynamics

    DEFF Research Database (Denmark)

    Arbey, Alexandre; Cacciapaglia, Giacomo; Cai, Haiying

    2017-01-01

    Using the recent joint results from the ATLAS and CMS collaborations on the Higgs boson, we determine the current status of composite electroweak dynamics models based on the expected scalar sector. Our analysis can be used as a minimal template for a wider class of models between the two limitin...... space at the effective Lagrangian level. We show that a wide class of models of fundamental composite electroweak dynamics are still compatible with the present constraints. The results are relevant for the ongoing and future searches at the Large Hadron Collider....

  1. Introduction to cluster dynamics

    CERN Document Server

    Reinhard, Paul-Gerhard

    2008-01-01

    Clusters as mesoscopic particles represent an intermediate state of matter between single atoms and solid material. The tendency to miniaturise technical objects requires knowledge about systems which contain a ""small"" number of atoms or molecules only. This is all the more true for dynamical aspects, particularly in relation to the qick development of laser technology and femtosecond spectroscopy. Here, for the first time is a highly qualitative introduction to cluster physics. With its emphasis on cluster dynamics, this will be vital to everyone involved in this interdisciplinary subje

  2. Spectrally accurate contour dynamics

    International Nuclear Information System (INIS)

    Van Buskirk, R.D.; Marcus, P.S.

    1994-01-01

    We present an exponentially accurate boundary integral method for calculation the equilibria and dynamics of piece-wise constant distributions of potential vorticity. The method represents contours of potential vorticity as a spectral sum and solves the Biot-Savart equation for the velocity by spectrally evaluating a desingularized contour integral. We use the technique in both an initial-value code and a newton continuation method. Our methods are tested by comparing the numerical solutions with known analytic results, and it is shown that for the same amount of computational work our spectral methods are more accurate than other contour dynamics methods currently in use

  3. DYNAMIC LOAD DAMPER MODELING

    Directory of Open Access Journals (Sweden)

    Loktev Aleksey Alekseevich

    2013-01-01

    Full Text Available The authors present their findings associated with their modeling of a dynamic load damper. According to the authors, the damper is to be installed onto a structure or its element that may be exposed to impact, vibration or any other dynamic loading. The damper is composed of paralleled or consecutively connected viscous and elastic elements. The authors study the influence of viscosity and elasticity parameters of the damper produced onto the regular displacement of points of the structure to be protected and onto the regular acceleration transmitted immediately from the damper to the elements positioned below it.

  4. Fluid Dynamics for Physicists

    Science.gov (United States)

    Faber, T. E.

    1995-08-01

    This textbook provides an accessible and comprehensive account of fluid dynamics that emphasizes fundamental physical principles and stresses connections with other branches of physics. Beginning with a basic introduction, the book goes on to cover many topics not typically treated in texts, such as compressible flow and shock waves, sound attenuation and bulk viscosity, solitary waves and ship waves, thermal convection, instabilities, turbulence, and the behavior of anisotropic, non-Newtonian and quantum fluids. Undergraduate or graduate students in physics or engineering who are taking courses in fluid dynamics will find this book invaluable.

  5. Maya Studio Projects Dynamics

    CERN Document Server

    Palamar, Todd

    2009-01-01

    The only hands-on book devoted to mastering Maya's dynamics tools for water, wind, and fire. In the world of animation, the ability to create realistic water, wind, and fire effects is key. Autodesk Maya software includes powerful dynamics tools that have been used to design breathtaking effects for movies, games, commercials, and short films. This professional guide teaches you the primary techniques you need to make the most of Maya's toolkit, so you'll soon be creating water that ripples, gusting winds and gentle breezes, and flickering fires the way Hollywood pros do. The one-of-a-kind boo

  6. Substructured multibody molecular dynamics.

    Energy Technology Data Exchange (ETDEWEB)

    Grest, Gary Stephen; Stevens, Mark Jackson; Plimpton, Steven James; Woolf, Thomas B. (Johns Hopkins University, Baltimore, MD); Lehoucq, Richard B.; Crozier, Paul Stewart; Ismail, Ahmed E.; Mukherjee, Rudranarayan M. (Rensselaer Polytechnic Institute, Troy, NY); Draganescu, Andrei I.

    2006-11-01

    We have enhanced our parallel molecular dynamics (MD) simulation software LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator, lammps.sandia.gov) to include many new features for accelerated simulation including articulated rigid body dynamics via coupling to the Rensselaer Polytechnic Institute code POEMS (Parallelizable Open-source Efficient Multibody Software). We use new features of the LAMMPS software package to investigate rhodopsin photoisomerization, and water model surface tension and capillary waves at the vapor-liquid interface. Finally, we motivate the recipes of MD for practitioners and researchers in numerical analysis and computational mechanics.

  7. Complexified dynamical systems

    International Nuclear Information System (INIS)

    Bender, Carl M; Holm, Darryl D; Hook, Daniel W

    2007-01-01

    Many dynamical systems, such as the Lotka-Volterra predator-prey model and the Euler equations for the free rotation of a rigid body, are PT symmetric. The standard and well-known real solutions to such dynamical systems constitute an infinitessimal subclass of the full set of complex solutions. This paper examines a subset of the complex solutions that contains the real solutions, namely those having PT symmetry. The condition of PT symmetry selects out complex solutions that are periodic. (fast track communication)

  8. Dynamic gamma knife radiosurgery

    Energy Technology Data Exchange (ETDEWEB)

    Luan Shuang; Swanson, Nathan; Chen Zhe [Department of Computer Science, University of New Mexico, Albuquerque, NM 87131 (United States); Ma Lijun [Department of Radiation Oncology, University of California San Francisco, San Francisco, CA 94143 (United States)], E-mail: sluan@cs.unm.edu, E-mail: nate@cs.unm.edu, E-mail: zchen@cs.unm.edu, E-mail: lijunma@radonc.ucsf.edu

    2009-03-21

    Gamma knife has been the treatment of choice for various brain tumors and functional disorders. Current gamma knife radiosurgery is planned in a 'ball-packing' approach and delivered in a 'step-and-shoot' manner, i.e. it aims to 'pack' the different sized spherical high-dose volumes (called 'shots') into a tumor volume. We have developed a dynamic scheme for gamma knife radiosurgery based on the concept of 'dose-painting' to take advantage of the new robotic patient positioning system on the latest Gamma Knife C(TM) and Perfexion(TM) units. In our scheme, the spherical high dose volume created by the gamma knife unit will be viewed as a 3D spherical 'paintbrush', and treatment planning reduces to finding the best route of this 'paintbrush' to 'paint' a 3D tumor volume. Under our dose-painting concept, gamma knife radiosurgery becomes dynamic, where the patient moves continuously under the robotic positioning system. We have implemented a fully automatic dynamic gamma knife radiosurgery treatment planning system, where the inverse planning problem is solved as a traveling salesman problem combined with constrained least-square optimizations. We have also carried out experimental studies of dynamic gamma knife radiosurgery and showed the following. (1) Dynamic gamma knife radiosurgery is ideally suited for fully automatic inverse planning, where high quality radiosurgery plans can be obtained in minutes of computation. (2) Dynamic radiosurgery plans are more conformal than step-and-shoot plans and can maintain a steep dose gradient (around 13% per mm) between the target tumor volume and the surrounding critical structures. (3) It is possible to prescribe multiple isodose lines with dynamic gamma knife radiosurgery, so that the treatment can cover the periphery of the target volume while escalating the dose for high tumor burden regions. (4) With dynamic gamma knife radiosurgery, one can

  9. Dynamics on Lorentz manifolds

    CERN Document Server

    Adams, Scot

    2001-01-01

    Within the general framework of the dynamics of "large" groups on geometric spaces, the focus is on the types of groups that can act in complicated ways on Lorentz manifolds, and on the structure of the resulting manifolds and actions. This particular area of dynamics is an active one, and not all the results are in their final form. However, at this point, a great deal can be said about the particular Lie groups that come up in this context. It is impressive that, even assuming very weak recurrence of the action, the list of possible groups is quite restricted. For the most complicated of the

  10. Nonuniversal disordered Glauber dynamics.

    Science.gov (United States)

    Grynberg, Marcelo D; Stinchcombe, Robin B

    2013-06-01

    We consider the one-dimensional Glauber dynamics with coupling disorder in terms of bilinear fermion Hamiltonians. Dynamic exponents embodied in the spectrum gap of these latter are evaluated numerically by averaging over both binary and Gaussian disorder realizations. In the first case, these exponents are found to follow the nonuniversal values of those of plain dimerized chains. In the second situation their values are still nonuniversal and subdiffusive below a critical variance above which, however, the relaxation time is suggested to grow as a stretched exponential of the equilibrium correlation length.

  11. Principles of dynamics

    CERN Document Server

    Hill, Rodney

    2013-01-01

    Principles of Dynamics presents classical dynamics primarily as an exemplar of scientific theory and method. This book is divided into three major parts concerned with gravitational theory of planetary systems; general principles of the foundations of mechanics; and general motion of a rigid body. Some of the specific topics covered are Keplerian Laws of Planetary Motion; gravitational potential and potential energy; and fields of axisymmetric bodies. The principles of work and energy, fictitious body-forces, and inertial mass are also looked into. Other specific topics examined are kinematics

  12. Dynamic planar embeddings of dynamic graphs

    DEFF Research Database (Denmark)

    Holm, Jacob; Rotenberg, Eva

    2015-01-01

    -flip-linkable(u, v) providing a suggestion for a flip that will make them linkable if one exists. We will support all updates and queries in O(log2 n) time. Our time bounds match those of Italiano et al. for a static (flipless) embedding of a dynamic graph. Our new algorithm is simpler, exploiting...... that the complement of a spanning tree of a connected plane graph is a spanning tree of the dual graph. The primal and dual trees are interpreted as having the same Euler tour, and a main idea of the new algorithm is an elegant interaction between top trees over the two trees via their common Euler tour....

  13. Dynamic planar embeddings of dynamic graphs

    DEFF Research Database (Denmark)

    Holm, Jacob; Rotenberg, Eva

    2017-01-01

    query, one-flip- linkable(u,v) providing a suggestion for a flip that will make them linkable if one exists. We support all updates and queries in O(log 2 n) time. Our time bounds match those of Italiano et al. for a static (flipless) embedding of a dynamic graph. Our new algorithm is simpler......, exploiting that the complement of a spanning tree of a connected plane graph is a spanning tree of the dual graph. The primal and dual trees are interpreted as having the same Euler tour, and a main idea of the new algorithm is an elegant interaction between top trees over the two trees via their common...

  14. Dynamic Analysis of a Pendulum Dynamic Automatic Balancer

    Directory of Open Access Journals (Sweden)

    Jin-Seung Sohn

    2007-01-01

    Full Text Available The automatic dynamic balancer is a device to reduce the vibration from unbalanced mass of rotors. Instead of considering prevailing ball automatic dynamic balancer, pendulum automatic dynamic balancer is analyzed. For the analysis of dynamic stability and behavior, the nonlinear equations of motion for a system are derived with respect to polar coordinates by the Lagrange's equations. The perturbation method is applied to investigate the dynamic behavior of the system around the equilibrium position. Based on the linearized equations, the dynamic stability of the system around the equilibrium positions is investigated by the eigenvalue analysis.

  15. Dynamic Systems and Software

    DEFF Research Database (Denmark)

    Thomsen, Per Grove

    1996-01-01

    A one-dimensional model with axial discretization of engine components has been formulated using tha balance equations for mass energy and momentum and the ideal gas equation of state. ODE's that govern the dynamic behaviour of the regenerator matrix temperatures are included in the model. Known...

  16. PELE fragmentation dynamics

    NARCIS (Netherlands)

    Verreault, J.; Hinsberg, N.P. van; Abadjieva, E.

    2013-01-01

    An analytical model that describes the PELE fragmentation dynamics is presented and compared with experimental results from literature. The model accounts for strong shock effects and detailed interactions taking place between the filling – the inner core of the ammunition – and the target

  17. Rf quadrupole beam dynamics

    International Nuclear Information System (INIS)

    Stokes, R.H.; Crandall, K.R.; Stovall, J.E.; Swenson, D.A.

    1979-01-01

    A method has been developed to analyze the beam dynamics of the radiofrequency quadrupole accelerating structure. Calculations show that this structure can accept a dc beam at low velocity, bunch it with high capture efficiency, and accelerate it to a velocity suitable for injection into a drift tube linac

  18. Dynamics of Information Systems

    CERN Document Server

    Hirsch, Michael J; Murphey, Robert

    2010-01-01

    Our understanding of information and information dynamics has outgrown classical information theory. This book presents the research explaining the importance of information in the evolution of a distributed or networked system. It presents techniques for measuring the value or significance of information within the context of a system

  19. Studies in Chemical Dynamics

    International Nuclear Information System (INIS)

    Rabitz, Herschel; Ho, Tak-San

    2003-01-01

    This final report draws together the research carried from February, 1986 through January, 2003 concerning a series of topics in chemical dynamics. The specific areas of study include molecular collisions, chemical kinetics, data inversion to extract potential energy surfaces, and model reduction of complex kinetic systems

  20. Pathwise dynamic programming

    NARCIS (Netherlands)

    Bender, Christian; Gärtner, Christian; Schweizer, Nikolaus

    2017-01-01

    We present a novel method for deriving tight Monte Carlo confidence intervals for solutions of stochastic dynamic programming equations. Taking some approximate solution to the equation as an input, we construct pathwise recursions with a known bias. Suitably coupling the recursions for lower and

  1. Structural dynamics in FBR

    International Nuclear Information System (INIS)

    Bhoje, S.B.

    2003-01-01

    In view of thin walled large diameter shell structures with associated fluid effects, structural dynamics problems are very critical in a fast breeder reactor. Structural characteristics and consequent structural dynamics problems in typical pool type Fast Breeder Reactor are highlighted. A few important structural dynamics problems are pump induced as well as flow induced vibrations, seismic excitations, pressure transients in the intermediate heat exchangers and pipings due to a large sodium water reaction in the steam generator, and core disruptive accident loadings. The vibration problems which call for identification of excitation forces, formulation of special governing equations and detailed analysis with fluid structure interaction and sloshing effects, particularly for the components such as PSP, inner vessel, CP, CSRDM and TB are elaborated. Seismic design issues are presented in a comprehensive way. Other transient loadings which are specific to FBR, resulting from sodium-water reaction and core disruptive accident are highlighted. A few important results of theoretical as well as experimental works carried out for 500 MWe Prototype Fast Breeder Reactor (PFBR), in the domain of structural dynamics are presented. (author)

  2. Some Dynamics of Authorship.

    Science.gov (United States)

    Dunkin, Mick

    1992-01-01

    A study of the relationship between faculty publishing and career advancement at the University of Sydney (Australia) controlled for both gender and discipline. Results revealed some previously unseen dynamics of authorship, bringing into question common assumptions about solo vs. multiple authors and order of author names. Some discipline-related…

  3. Functional System Dynamics

    NARCIS (Netherlands)

    Ligterink, N.E.

    2007-01-01

    Functional system dynamics is the analysis, modelling, and simulation of continuous systems usually described by partial differential equations. From the infinite degrees of freedom of such systems only a finite number of relevant variables have to be chosen for a practical model description. The

  4. Dynamics of homogeneous nucleation

    DEFF Research Database (Denmark)

    Toxværd, Søren

    2015-01-01

    The classical nucleation theory for homogeneous nucleation is formulated as a theory for a density fluctuation in a supersaturated gas at a given temperature. But molecular dynamics simulations reveal that it is small cold clusters which initiates the nucleation. The temperature in the nucleating...

  5. ESSENTIAL DYNAMICS OF PROTEINS

    NARCIS (Netherlands)

    AMADEI, A; LINSSEN, ABM; BERENDSEN, HJC

    1993-01-01

    Analysis of extended molecular dynamics (MD) simulations of lysozyme in vacuo and in aqueous solution reveals that it is possible to separate the configurational space into two subspaces: (1) an ''essential'' subspace containing only a few degrees of freedom in which anharmonic motion occurs that

  6. Antiparallel Dynamic Covalent Chemistries

    NARCIS (Netherlands)

    Matysiak, Bartosz M.; Nowak, Piotr; Cvrtila, Ivica; Pappas, Charalampos G.; Liu, Bin; Komaromy, David; Otto, Sijbren

    2017-01-01

    The ability to design reaction networks with high, but addressable complexity is a necessary prerequisite to make advanced functional chemical systems. Dynamic combinatorial chemistry has, proven to be a useful tool in achieving complexity, however with some limitations in controlling it. Herein we

  7. Dynamics of human movement

    NARCIS (Netherlands)

    Koopman, Hubertus F.J.M.

    2010-01-01

    The part of (bio)mechanics that studies the interaction of forces on the human skeletal system and its effect on the resulting movement is called rigid body dynamics. Some basic concepts are presented: A mathematical formulation to describe human movement and how this relates on the mechanical loads

  8. Dynamic quantum secret sharing

    International Nuclear Information System (INIS)

    Jia, Heng-Yue; Wen, Qiao-Yan; Gao, Fei; Qin, Su-Juan; Guo, Fen-Zhuo

    2012-01-01

    In this Letter we consider quantum secret sharing (QSS) between a sender and a dynamic agent group, called dynamic quantum secret sharing (DQSS). In the DQSS, the change of the agent group is allowable during the procedure of sharing classical and quantum information. Two DQSS schemes are proposed based on a special kind of entangled state, starlike cluster states. Without redistributing all the shares, the changed agent group can reconstruct the sender's secret by their cooperation. Compared with the previous quantum secret sharing scheme, our schemes are more flexible and suitable for practical applications. -- Highlights: ► We consider quantum secret sharing between a sender and a dynamic agent group, called dynamic quantum secret sharing (DQSS). ► In the DQSS, the change of the agent group is allowable during the procedure of sharing classical and quantum information. ► Two DQSS schemes are proposed based on a special kind of entangled state, starlike cluster states. ► Without redistributing all the shares, the changed agent group can reconstruct the sender's secret by their cooperation. ► Compared with the previous quantum secret sharing scheme, our schemes are more flexible and suitable for practical applications.

  9. Overeducation Dynamics and Personality

    Science.gov (United States)

    Blazquez, Maite; Budria, Santiago

    2012-01-01

    In this paper, we use the 2000-2008 waves of the German Socioeconomic Panel to examine overeducation transitions. The results are based on a first-order Markov model that allows us to account for both the initial conditions problem and potential endogeneity in attrition. We found that overeducation dynamics, especially the probability of entering…

  10. Dynamic accelerator modeling

    International Nuclear Information System (INIS)

    Nishimura, Hiroshi.

    1993-05-01

    Object-Oriented Programming has been used extensively to model the LBL Advanced Light Source 1.5 GeV electron storage ring. This paper is on the present status of the class library construction with emphasis on a dynamic modeling

  11. Dynamic Optically Multiplexed Imaging

    Science.gov (United States)

    2015-07-29

    Dynamic Optically Multiplexed Imaging Yaron Rachlin, Vinay Shah, R. Hamilton Shepard, and Tina Shih Lincoln Laboratory, Massachusetts Institute of...V. Shah, and T. Shih “Design Architectures for Optically Multiplexed Imaging,” in submission 9 R. Gupta , P. Indyk, E. Price, and Y. Rachlin

  12. Quantum dynamical entropy revisited

    International Nuclear Information System (INIS)

    Hudetz, T.

    1996-10-01

    We define a new quantum dynamical entropy, which is a 'hybrid' of the closely related, physically oriented entropy introduced by Alicki and Fannes in 1994, and of the mathematically well-developed, single-argument entropy introduced by Connes, Narnhofer and Thirring in 1987. We show that this new quantum dynamical entropy has many properties similar to the ones of the Alicki-Fannes entropy, and also inherits some additional properties from the CNT entropy. In particular, the 'hybrid' entropy interpolates between the two different ways in which both the AF and the CNT entropy of the shift automorphism on the quantum spin chain agree with the usual quantum entropy density, resulting in even better agreement. Also, the new quantum dynamical entropy generalizes the classical dynamical entropy of Kolmogorov and Sinai in the same way as does the AF entropy. Finally, we estimate the 'hybrid' entropy both for the Powers-Price shift systems and for the noncommutative Arnold map on the irrational rotation C * -algebra, leaving some interesting open problems. (author)

  13. Dynamic Contingency Analysis Tool

    Energy Technology Data Exchange (ETDEWEB)

    2016-01-14

    The Dynamic Contingency Analysis Tool (DCAT) is an open-platform and publicly available methodology to help develop applications that aim to improve the capabilities of power system planning engineers to assess the impact and likelihood of extreme contingencies and potential cascading events across their systems and interconnections. Outputs from the DCAT will help find mitigation solutions to reduce the risk of cascading outages in technically sound and effective ways. The current prototype DCAT implementation has been developed as a Python code that accesses the simulation functions of the Siemens PSS/E planning tool (PSS/E). It has the following features: It uses a hybrid dynamic and steady-state approach to simulating the cascading outage sequences that includes fast dynamic and slower steady-state events. It integrates dynamic models with protection scheme models for generation, transmission, and load. It models special protection systems (SPSs)/remedial action schemes (RASs) and automatic and manual corrective actions. Overall, the DCAT attempts to bridge multiple gaps in cascading-outage analysis in a single, unique prototype tool capable of automatically simulating and analyzing cascading sequences in real systems using multiprocessor computers.While the DCAT has been implemented using PSS/E in Phase I of the study, other commercial software packages with similar capabilities can be used within the DCAT framework.

  14. Dynamics via measurability

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available Generators f for σ -algebras can be used to view the dynamics of an invertible measurable transformation T in terms of the range values of f ∘ T . Such generators are the norm rather than the exception. Related measurable and quantitative methods of estimating a function from the behavior of ergodic averages are also discussed.

  15. Molecular dynamics for fermions

    International Nuclear Information System (INIS)

    Feldmeier, H.; Schnack, J.

    2000-02-01

    The time-dependent variational principle for many-body trial states is used to discuss the relation between the approaches of different molecular dynamics models to describe indistinguishable fermions. Early attempts to include effects of the Pauli principle by means of nonlocal potentials as well as more recent models which work with antisymmetrized many-body states are reviewed under these premises. (orig.)

  16. Dynamic term structure models

    DEFF Research Database (Denmark)

    Andreasen, Martin Møller; Meldrum, Andrew

    This paper studies whether dynamic term structure models for US nominal bond yields should enforce the zero lower bound by a quadratic policy rate or a shadow rate specification. We address the question by estimating quadratic term structure models (QTSMs) and shadow rate models with at most four...

  17. Innovations in dynamic architecture

    Directory of Open Access Journals (Sweden)

    Abdulmajid Karanouh

    2015-11-01

    Full Text Available High performance adaptive solutions are capable of responding to the dynamic nature of users and context. These innovative and dynamic systems are steadily gaining ground over ubiquitous ‘best fit’ static models. These architectural elements often exist beyond the scope of mainstream building standards and traditional methods for data representation or communication. This presents major challenges to a highly standardized and compartmentalized industry in which ‘innovation’ is limited to a few signature practices that design iconic yet expensive structures, which often prioritize aesthetics over performance. This paper offers an overview of the benefits that integrated dynamic systems bring to buildings. Through an examination of an applied practice, this paper offers guidelines for communicating complex geometry in a clear design language across interdisciplinary collaborations. The use of diagrammatic grammar to translate underlying algorithmic rules into instructions for design allows complex, innovative solutions to be realized more effectively. The ideas presented here are based on the design principles of the competition-winning scheme of the Al-Bahr Towers. As lead consultant in Innovation Design & Research at AHR (former Aedas-UK, Abdulmajid Karanouh designed and spearheaded this project in close collaboration with Arup. The buildings won the Best Innovation Award 2012 by the Council for Tall Buildings and Urban Habitat (CTBUH. The pair of towers won recognition for its performance-driven form, and dynamic facade that operates following the movement of the sun.

  18. The Dynamics of Information

    CERN Multimedia

    CERN. Geneva

    2007-01-01

    efficacy at making predictions in the real world. About the speaker Bernardo Huberman is a Senior HP Fellow and Director of the Information Dynamics Lab at Hewlett Packard Laboratories. He received his Ph.D. in Physics from the University of Pennsylvania, and is currently a Consulting Professor in the Department of Applied Physics at Stanford University...

  19. Dynamical clockwork axions

    Science.gov (United States)

    Coy, Rupert; Frigerio, Michele; Ibe, Masahiro

    2017-10-01

    The clockwork mechanism is a novel method for generating a large separation between the dynamical scale and interaction scale of a theory. We demonstrate how the mechanism can arise from a sequence of strongly-coupled sectors. This framework avoids elementary scalar fields as well as ad hoc continuous global symmetries, both of which are subject to serious stability issues. The clockwork factor, q, is determined by the consistency of the strong dynamics. The preserved global U(1) of the clockwork appears as an accidental symmetry, resulting from discrete or U(1) gauge symmetries, and it is spontaneously broken by the chiral condensates. We apply such a dynamical clockwork to construct models with an effectively invisible QCD axion from TeV-scale strong dynamics. The axion couplings are determined by the localisation of the Standard Model interactions along the clockwork sequence. The TeV spectrum includes either coloured hadrons or vector-like quarks. Dark matter can be accounted for by the axion or the lightest neutral baryons, which are accidentally stable.

  20. INDIANA: Beam dynamics experiments

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    Beam dynamics experiments at the Indiana University Cooler Facility (IUCF) are helping to trace complicated non-linear effects in proton machines and could go on to pay important dividends in the detailed design of big new high energy proton storage rings

  1. Dynamics of Situation Definition

    Science.gov (United States)

    Park, Dongseop; Moro, Yuji

    2006-01-01

    Situation definition is the process and product of actors' interpretive activities toward a given situation. By reviewing a number of psychological studies conducted in experimental settings, we found that the studies have only explicated a part of the situation definition process and have neglected its dynamic aspects. We need to focus on the…

  2. Beam dynamics group summary

    International Nuclear Information System (INIS)

    Peggs, S.

    1994-01-01

    This paper summarizes the activities of the beam dynamics working group of the LHC Collective Effects Workshop that was held in Montreux in 1994. It reviews the presentations that were made to the group, the discussions that ensued, and the consensuses that evolved

  3. Functional System Dynamics

    OpenAIRE

    Ligterink, N.E.

    2007-01-01

    Functional system dynamics is the analysis, modelling, and simulation of continuous systems usually described by partial differential equations. From the infinite degrees of freedom of such systems only a finite number of relevant variables have to be chosen for a practical model description. The proper input and output of the system are an important part of the relevant variables.

  4. From symmetries to dynamics

    International Nuclear Information System (INIS)

    Stern, J.

    2000-01-01

    The problem of a uniform description of symmetries, their dynamic disturbing and the structure of the vacuum is discussed. The role which problems of this kind played in searching for and understanding the Standard Model of elementary particles from the 1960s till now is also highlighted. (Z.J.)

  5. Dynamic panel data models

    NARCIS (Netherlands)

    Bun, M.J.G.; Sarafidis, V.

    2013-01-01

    This Chapter reviews the recent literature on dynamic panel data models with a short time span and a large cross-section. Throughout the discussion we considerlinear models with additional endogenous covariates. First we give a broad overview of available inference methods placing emphasis on GMM.

  6. Unemployment Dynamics and Age

    NARCIS (Netherlands)

    Berg, van den G.J.; Gijsbert, A.; Lomwel, van C.; Ours, van Jan C.

    1998-01-01

    Youth unemployment is an issue of primary concern in WesternEuropean countries. In this paper we analyze dynamics in unemployment foryouths, adults (prime-aged individuals), and elderly. We use quarterly Frenchunemployment data, stratified by gender, age group, and duration, over theperiod

  7. The dynamics of awareness

    NARCIS (Netherlands)

    van Benthem, J.; Velázquez-Quesada, F.R.

    2010-01-01

    Classical epistemic logic describes implicit knowledge of agents about facts and knowledge of other agents based on semantic information. The latter is produced by acts of observation or communication that are described well by dynamic epistemic logics. What these logics do not describe, however, is

  8. Reactor dynamics calculations

    International Nuclear Information System (INIS)

    Devooght, J.; Lefvert, T.; Stankiewiez, J.

    1981-01-01

    This chapter deals with the work done in reactor dynamics within the Coordinated Research Program on Transport Theory and Advanced Reactor Calculations by three groups in Belgium, Poland, Sweden and Italy. Discretization methods in diffusion theory, collision probability methods in time-dependent neutron transport and singular perturbation method are represented in this paper

  9. Dynamics of chaotic strings

    International Nuclear Information System (INIS)

    Schaefer, Mirko

    2011-01-01

    The main topic of this thesis is the investigation of dynamical properties of coupled Tchebycheff map networks. The results give insights into the chaotic string model and its network generalization from a dynamical point of view. As a first approach, discrete symmetry transformations of the model are studied. These transformations are formulated in a general way in order to be also applicable to similar dynamics on bipartite network structures. The dynamics is studied numerically via Lyapunov measures, spatial correlations, and ergodic properties. It is shown that the zeros of the interaction energy are distinguished only with respect to this specific observable, but not by a more general dynamical principle. The original chaotic string model is defined on a one-dimensional lattice (ring-network) as the underlying network topology. This thesis studies a modification of the model based on the introduction of tunable disorder. The effects of inhomogeneous coupling weights as well as small-world perturbations of the ring-network structure on the interaction energy are discussed. Synchronization properties of the chaotic string model and its network generalization are studied in later chapters of this thesis. The analysis is based on the master stability formalism, which relates the stability of the synchronized state to the spectral properties of the network. Apart from complete synchronization, where the dynamics at all nodes of the network coincide, also two-cluster synchronization on bipartite networks is studied. For both types of synchronization it is shown that depending on the type of coupling the synchronized dynamics can display chaotic as well as periodic or quasi-periodic behaviour. The semi-analytical calculations reveal that the respective synchronized states are often stable for a wide range of coupling values even for the ring-network, although the respective basins of attraction may inhabit only a small fraction of the phase space. To provide

  10. Dynamic Topography Revisited

    Science.gov (United States)

    Moresi, Louis

    2015-04-01

    Dynamic Topography Revisited Dynamic topography is usually considered to be one of the trinity of contributing causes to the Earth's non-hydrostatic topography along with the long-term elastic strength of the lithosphere and isostatic responses to density anomalies within the lithosphere. Dynamic topography, thought of this way, is what is left over when other sources of support have been eliminated. An alternate and explicit definition of dynamic topography is that deflection of the surface which is attributable to creeping viscous flow. The problem with the first definition of dynamic topography is 1) that the lithosphere is almost certainly a visco-elastic / brittle layer with no absolute boundary between flowing and static regions, and 2) the lithosphere is, a thermal / compositional boundary layer in which some buoyancy is attributable to immutable, intrinsic density variations and some is due to thermal anomalies which are coupled to the flow. In each case, it is difficult to draw a sharp line between each contribution to the overall topography. The second definition of dynamic topography does seem cleaner / more precise but it suffers from the problem that it is not measurable in practice. On the other hand, this approach has resulted in a rich literature concerning the analysis of large scale geoid and topography and the relation to buoyancy and mechanical properties of the Earth [e.g. refs 1,2,3] In convection models with viscous, elastic, brittle rheology and compositional buoyancy, however, it is possible to examine how the surface topography (and geoid) are supported and how different ways of interpreting the "observable" fields introduce different biases. This is what we will do. References (a.k.a. homework) [1] Hager, B. H., R. W. Clayton, M. A. Richards, R. P. Comer, and A. M. Dziewonski (1985), Lower mantle heterogeneity, dynamic topography and the geoid, Nature, 313(6003), 541-545, doi:10.1038/313541a0. [2] Parsons, B., and S. Daly (1983), The

  11. Complexity in Dynamical Systems

    Science.gov (United States)

    Moore, Cristopher David

    The study of chaos has shown us that deterministic systems can have a kind of unpredictability, based on a limited knowledge of their initial conditions; after a finite time, the motion appears essentially random. This observation has inspired a general interest in the subject of unpredictability, and more generally, complexity; how can we characterize how "complex" a dynamical system is?. In this thesis, we attempt to answer this question with a paradigm of complexity that comes from computer science, we extract sets of symbol sequences, or languages, from a dynamical system using standard methods of symbolic dynamics; we then ask what kinds of grammars or automata are needed a generate these languages. This places them in the Chomsky heirarchy, which in turn tells us something about how subtle and complex the dynamical system's behavior is. This gives us insight into the question of unpredictability, since these automata can also be thought of as computers attempting to predict the system. In the culmination of the thesis, we find a class of smooth, two-dimensional maps which are equivalent to the highest class in the Chomsky heirarchy, the turning machine; they are capable of universal computation. Therefore, these systems possess a kind of unpredictability qualitatively different from the usual "chaos": even if the initial conditions are known exactly, questions about the system's long-term dynamics are undecidable. No algorithm exists to answer them. Although this kind of unpredictability has been discussed in the context of distributed, many-degree-of -freedom systems (for instance, cellular automata) we believe this is the first example of such phenomena in a smooth, finite-degree-of-freedom system.

  12. Dynamic stiffness of suction caissons

    DEFF Research Database (Denmark)

    Ibsen, Lars Bo; Liingaard, Morten; Andersen, Lars

    The purpose of this report is to evaluate the dynamic soil-structure interaction of suction caissons for offshore wind turbines. The investigation is limited to a determination of the vertical dynamic stiffness of suction caissons. The soil surrounding the foundation is homogenous with linear...... viscoelastic properties. The dynamic stiffness of the suction caisson is expressed by dimensionless frequency-dependent dynamic stiffness coefficients corresponding to the vertical degree of freedom. The dynamic stiffness coefficients for the foundations are evaluated by means of a dynamic three...

  13. NVU dynamics. II. Comparing to four other dynamics

    DEFF Research Database (Denmark)

    Ingebrigtsen, Trond; Toxværd, Søren; Schrøder, Thomas

    2011-01-01

    -potential-energy hypersurface. Here, simulations of NVU dynamics are compared to results for four other dynamics, both deterministic and stochastic. First, NVU dynamics is compared to the standard energy-conserving Newtonian NVE dynamics by simulations of the Kob-Andersen binary Lennard-Jones liquid, its WCA version (i.......e., with cut-off's at the pair potential minima), and the Lennard-Jones Gaussian liquid. We find identical results for all quantities probed: radial distribution functions, incoherent intermediate scattering functions, and mean-square displacement as function of time. Arguments are presented...... on the constant-potential-energy hypersurface, and to Nos-Hoover NVT dynamics. If time is scaled for the two stochastic dynamics to make single-particle diffusion constants identical to that of NVE dynamics, the simulations show that all five dynamics are equivalent at low temperatures except at short times....

  14. Truly random dynamics generated by autonomous dynamical systems

    Science.gov (United States)

    González, J. A.; Reyes, L. I.

    2001-09-01

    We investigate explicit functions that can produce truly random numbers. We use the analytical properties of the explicit functions to show that a certain class of autonomous dynamical systems can generate random dynamics. This dynamics presents fundamental differences with the known chaotic systems. We present real physical systems that can produce this kind of random time-series. Some applications are discussed.

  15. Double Dynamic Supramolecular Polymers of Covalent Oligo-Dynamers

    NARCIS (Netherlands)

    Schaeffer, Gaël; Buhler, Eric; Candau, Sauveur Jean; Lehn, Jean-Marie

    2013-01-01

    Double-dynamic polymers, incorporating both molecular and supramolecular dynamic features (“double dynamers”) have been generated, where these functions are present in a nonstoichiometric ratio in the main chain of the polymer. It has been achieved by (1) the formation of covalent oligo-dynamers in

  16. GIS and dynamic phenomena modeling

    Czech Academy of Sciences Publication Activity Database

    Klimešová, Dana

    2006-01-01

    Roč. 4, č. 4 (2006), s. 11-15 ISSN 0139-570X Institutional research plan: CEZ:AV0Z10750506 Keywords : dynamic modelling * temporal analysis * dynamics evaluation * temporal space Subject RIV: BC - Control Systems Theory

  17. Dynamic Approaches for Multichoice Solutions

    Directory of Open Access Journals (Sweden)

    Yu-Hsien Liao

    2011-01-01

    Full Text Available Based on alternative reduced games, several dynamic approaches are proposed to show how the three extended Shapley values can be reached dynamically from arbitrary efficient payoff vectors on multichoice games.

  18. Dynamic Flaps Electronic Scan Antenna

    National Research Council Canada - National Science Library

    Gonzalez, Daniel

    2000-01-01

    A dynamic FLAPS(TM) electronic scan antenna was the focus of this research. The novelty S of this SBIR resides in the use of plasma as the main component of this dynamic X-Band phased S array antenna...

  19. Dynamics of poroelastic foams

    Science.gov (United States)

    Forterre, Yoel; Sobac, Benjamin

    2010-11-01

    Soft poroelastic structures are widespread in biological tissues such as cartilaginous joints in bones, blood-filled placentae or plant organs. Here we investigate the dynamics of open elastic foams immersed in viscous fluids, as model soft poroelastic materials. The experiment consists in slowly compacting blocs of polyurethane solid foam embedded in silicon oil-tanks and studying their relaxation to equilibrium when the confining stress is suddenly released. Measurements of the local fluid pressure and foam velocity field are compared with a simple two-phase flow approach. For small initial compactions, the results show quantitative agreement with the classical diffusion theory of soil consolidation (Terzaghi, Biot). On the other hand, for large initial compactions, the dynamics exhibits long relaxation times and decompaction fronts, which are mainly controlled by the highly non-linear mechanical response of the foam. The analogy between this process and the evaporation of a polymer melt close to the glass transition will be briefly discussed.

  20. Contact Line Dynamics

    Science.gov (United States)

    Kreiss, Gunilla; Holmgren, Hanna; Kronbichler, Martin; Ge, Anthony; Brant, Luca

    2017-11-01

    The conventional no-slip boundary condition leads to a non-integrable stress singularity at a moving contact line. This makes numerical simulations of two-phase flow challenging, especially when capillarity of the contact point is essential for the dynamics of the flow. We will describe a modeling methodology, which is suitable for numerical simulations, and present results from numerical computations. The methodology is based on combining a relation between the apparent contact angle and the contact line velocity, with the similarity solution for Stokes flow at a planar interface. The relation between angle and velocity can be determined by theoretical arguments, or from simulations using a more detailed model. In our approach we have used results from phase field simulations in a small domain, but using a molecular dynamics model should also be possible. In both cases more physics is included and the stress singularity is removed.

  1. Dynamics and Relativity

    CERN Document Server

    Forshaw, Jeffrey

    2009-01-01

    A new title in the Manchester Physics Series, this introductory text emphasises physical principles behind classical mechanics and relativity. It assumes little in the way of prior knowledge, introducing relevant mathematics and carefully developing it within a physics context. Designed to provide a logical development of the subject, the book is divided into four sections, introductory material on dynamics, and special relativity, which is then followed by more advanced coverage of dynamics and special relativity. Each chapter includes problems ranging in difficulty from simple to challenging with?solutions for solving problems. Includes?solutions for solving problemsNumerous worked examples included throughout the bookMathematics is carefully explained and developed within a physics environmentSensitive to topics that can appear daunting or confusing

  2. Fluid dynamics an introduction

    CERN Document Server

    Rieutord, Michel

    2015-01-01

    This book is dedicated to readers who want to learn fluid dynamics from the beginning. It assumes a basic level of mathematics knowledge that would correspond to that of most second-year undergraduate physics students and examines fluid dynamics from a physicist’s perspective. As such, the examples used primarily come from our environment on Earth and, where possible, from astrophysics. The text is arranged in a progressive and educational format, aimed at leading readers from the simplest basics to more complex matters like turbulence and magnetohydrodynamics. Exercises at the end of each chapter help readers to test their understanding of the subject (solutions are provided at the end of the book), and a special chapter is devoted to introducing selected aspects of mathematics that beginners may not be familiar with, so as to make the book self-contained.

  3. Nonautonomous dynamical systems

    CERN Document Server

    Kloeden, Peter E

    2011-01-01

    The theory of nonautonomous dynamical systems in both of its formulations as processes and skew product flows is developed systematically in this book. The focus is on dissipative systems and nonautonomous attractors, in particular the recently introduced concept of pullback attractors. Linearization theory, invariant manifolds, Lyapunov functions, Morse decompositions and bifurcations for nonautonomous systems and set-valued generalizations are also considered as well as applications to numerical approximations, switching systems and synchronization. Parallels with corresponding theories of control and random dynamical systems are briefly sketched. With its clear and systematic exposition, many examples and exercises, as well as its interesting applications, this book can serve as a text at the beginning graduate level. It is also useful for those who wish to begin their own independent research in this rapidly developing area.

  4. Optimization by record dynamics

    DEFF Research Database (Denmark)

    Barettin, Daniele; Sibani, Paolo

    2014-01-01

    Large dynamical changes in thermalizing glassy systems are triggered by trajectories crossing record sized barriers, a behavior revealing the presence of a hierarchical structure in configuration space. The observation is here turned into a novel local search optimization algorithm dubbed record...... dynamics optimization,or RDO. RDO uses the Metropolis rule to accept or reject candidate solutions depending on the value of a parameter akin to the temperature and minimizes the cost function of the problem at hand through cycles where its ‘temperature’ is raised and subsequently decreased in order......), is applied to the same problem as a benchmark. RDO and PT turn out to produce solutions of similar quality for similar numerical effort, but RDO is simpler to program and additionally yields geometrical information on the system’s configuration space which is of interest in many applications. In particular...

  5. Fusion-fission dynamics

    International Nuclear Information System (INIS)

    Blocki, J.; Planeta, R.; Brzychczyk, J.; Grotowski, K.

    1991-04-01

    Classical dynamical calculations of the heavy ion induced fission process for the reactions 40 Ar+ 141 Pr, 20 Ne+ 165 Ho and 12 C+ 175 Lu leading to the iridium like nucleus have been performed. As a result prescission lifetimes were obtained and compared with the experimental values. The agreement between the calculated and experimental lifetimes indicates that the one-body dissipation picture is much more relevant in describing the fusion-fission dynamics than the two-body one. Somewhat bigger calculated times than the experimental ones in case of the C+Lu reaction at 16 MeV/nucleon may be a signal on the energy range applicability of the one-body dissipation model. (author)

  6. Corruption dynamics model

    Science.gov (United States)

    Malafeyev, O. A.; Nemnyugin, S. A.; Rylow, D.; Kolpak, E. P.; Awasthi, Achal

    2017-07-01

    The corruption dynamics is analyzed by means of the lattice model which is similar to the three-dimensional Ising model. Agents placed at nodes of the corrupt network periodically choose to perfom or not to perform the act of corruption at gain or loss while making decisions based on the process history. The gain value and its dynamics are defined by means of the Markov stochastic process modelling with parameters established in accordance with the influence of external and individual factors on the agent's gain. The model is formulated algorithmically and is studied by means of the computer simulation. Numerical results are obtained which demonstrate asymptotic behaviour of the corruption network under various conditions.

  7. Multiple time scale dynamics

    CERN Document Server

    Kuehn, Christian

    2015-01-01

    This book provides an introduction to dynamical systems with multiple time scales. The approach it takes is to provide an overview of key areas, particularly topics that are less available in the introductory form.  The broad range of topics included makes it accessible for students and researchers new to the field to gain a quick and thorough overview. The first of its kind, this book merges a wide variety of different mathematical techniques into a more unified framework. The book is highly illustrated with many examples and exercises and an extensive bibliography. The target audience of this  book are senior undergraduates, graduate students as well as researchers interested in using the multiple time scale dynamics theory in nonlinear science, either from a theoretical or a mathematical modeling perspective. 

  8. Microscopic dynamical Casimir effect

    Science.gov (United States)

    Souza, Reinaldo de Melo e.; Impens, François; Neto, Paulo A. Maia

    2018-03-01

    We consider an atom in its ground state undergoing a nonrelativistic oscillation in free space. The interaction with the electromagnetic quantum vacuum leads to two effects to leading order in perturbation theory. When the mechanical frequency is larger than the atomic transition frequency, the dominant effect is the motion-induced transition to an excited state with the emission of a photon carrying the excess energy. We compute the angular distribution of emitted photons and the excitation rate. On the other hand, when the mechanical frequency is smaller than the transition frequency, the leading-order effect is the parametric emission of photon pairs, which constitutes the microscopic counterpart of the dynamical Casimir effect. We discuss the properties of the microscopic dynamical Casimir effect and build a connection with the photon production by an oscillating macroscopic metallic mirror.

  9. Dynamic nuclear spin polarization

    Energy Technology Data Exchange (ETDEWEB)

    Stuhrmann, H B [GKSS-Forschungszentrum Geesthacht GmbH (Germany)

    1996-11-01

    Polarized neutron scattering from dynamic polarized targets has been applied to various hydrogenous materials at different laboratories. In situ structures of macromolecular components have been determined by nuclear spin contrast variation with an unprecedented precision. The experiments of selective nuclear spin depolarisation not only opened a new dimension to structural studies but also revealed phenomena related to propagation of nuclear spin polarization and the interplay of nuclear polarisation with the electronic spin system. The observation of electron spin label dependent nuclear spin polarisation domains by NMR and polarized neutron scattering opens a way to generalize the method of nuclear spin contrast variation and most importantly it avoids precontrasting by specific deuteration. It also likely might tell us more about the mechanism of dynamic nuclear spin polarisation. (author) 4 figs., refs.

  10. Dynamics of star clusters

    International Nuclear Information System (INIS)

    Goodman, J.; Hut, P.

    1985-01-01

    The enigma of core collapse receives much attention in this volume. In addition, several observational papers summarize recent techniques and results and discuss the stellar dynamical implications of the enormous progress in the quality of surface photometry, proper motion studies, radial velocity determinations, as well as space-based measurements in a variety of wavelengths. The value of these Proceedings as a standard reference work is enhanced by the inclusion of two appendices, featuring English translations of two seminal papers on stellar dynamics published in Russian and not previously available in a Western language. A third appendix contains an up-to-date catalogue of observationally determined parameters of galactic globular clusters, as well as theoretically inferred parameters. This catalogue will prove to be an essential reference for phenomenonological studies and an ideal testing ground for new theoretical developments. (orig.)

  11. Dynamic international oil markets

    International Nuclear Information System (INIS)

    van der Linde, C.

    1992-01-01

    Dynamic International Oil Market Developments and Structure 1860-1990 discusses the logic of changing market structures of the international oil industry. The market structures have, in the course of time, oscillated between competition and oligopoly, as the oil market expanded, matured, stagnated, and expanded again. This book provides a dynamic interpretation of the intensifying struggle among producer, and consumer governments, and oil companies, over the distribution of economic rents and profits. In particular, it shows the shifting fortunes of the governments and companies as they try to control the recurring capacity constraints between the upstream and downstream sectors, generated by the instability of the oil market. The first part of the book examines market conditions and developments between 1860 and 1990; the second part analyzes market structures after 1945

  12. Dynamic Data Structures

    DEFF Research Database (Denmark)

    Kejlberg-Rasmussen, Casper

    statements about our data structure, which are based on the structure of the underlying problem, that we are trying to solve. We can rely on the properties of the invariants when performing queries, and in return we need to ensure that the invariants remain true after we perform updates. When designing data......In this thesis I will address three dynamic data structure problems using the concept of invariants. The first problem is maintaining a dynamically changing set of keys – a dictionary – where the queries we can ask are: does it contain a given key? and what is the preceding (or succeeding) key...... to a given key? The updates we can do are: inserting a new key or deleting a given key. Our dictionary has the working set property, which means that the running time of a query depends on the query distribution. Specifically the time to search for a key depends on when we last searched for it. Our data...

  13. Dynamic coherent backscattering mirror

    Energy Technology Data Exchange (ETDEWEB)

    Zeylikovich, I.; Xu, M., E-mail: mxu@fairfield.edu [Physics Department, Fairfield University, Fairfield, CT 06824 (United States)

    2016-02-15

    The phase of multiply scattered light has recently attracted considerable interest. Coherent backscattering is a striking phenomenon of multiple scattered light in which the coherence of light survives multiple scattering in a random medium and is observable in the direction space as an enhancement of the intensity of backscattered light within a cone around the retroreflection direction. Reciprocity also leads to enhancement of backscattering light in the spatial space. The random medium behaves as a reciprocity mirror which robustly converts a diverging incident beam into a converging backscattering one focusing at a conjugate spot in space. Here we first analyze theoretically this coherent backscattering mirror (CBM) phenomenon and then demonstrate the capability of CBM compensating and correcting both static and dynamic phase distortions occurring along the optical path. CBM may offer novel approaches for high speed dynamic phase corrections in optical systems and find applications in sensing and navigation.

  14. Dislocation-dynamics method

    International Nuclear Information System (INIS)

    Van Brutzel, L.

    2015-01-01

    Dislocation-Dynamics (DD) technique is identified as the method able to model the evolution of material plastic properties as a function of the microstructural transformation predicted at the atomic scale. Indeed, it is the only simulation method capable of taking into account the collective behaviour of a large number of dislocations inside a realistic microstructure. DD simulations are based on the elastic dislocation theory following rules inherent to the dislocation core structure often call 'local rules'. All the data necessary to establish the local rules for DD have to come directly from experiment or alternatively from simulations carried out at the atomic scale such as molecular dynamics or ab initio calculations. However, no precise information on the interaction between two dislocations or between dislocations and defects induced by irradiation are available for nuclear fuels. Therefore, in this article the DD technique will be presented and some examples are given of what can be achieved with it. (author)

  15. Ultrafast magnetization dynamics

    OpenAIRE

    Woodford, Simon

    2008-01-01

    This thesis addresses ultrafast magnetization dynamics from a theoretical perspective. The manipulation of magnetization using the inverse Faraday effect has been studied, as well as magnetic relaxation processes in quantum dots. The inverse Faraday effect – the generation of a magnetic field by nonresonant, circularly polarized light – offers the possibility to control and reverse magnetization on a timescale of a few hundred femtoseconds. This is important both for the technological advant...

  16. Dynamics of Markets

    Science.gov (United States)

    McCauley, Joseph L.

    2004-06-01

    Standard texts and research in economics and finance ignore the absence of evidence from the analysis of real, unmassaged market data to support the notion of Adam Smith's stabilizing Invisible Hand. In stark contrast, this text introduces a new empirically-based model of financial market dynamics that explains the volatility of prices options correctly and clarifies the instability of financial markets. The emphasis is on understanding how real markets behave, not how they hypothetically 'should' behave.

  17. The chaotic dynamical aperture

    International Nuclear Information System (INIS)

    Lee, S.Y.; Tepikian, S.

    1985-01-01

    Nonlinear magnetic forces become more important for particles in the modern large accelerators. These nonlinear elements are introduced either intentionally to control beam dynamics or by uncontrollable random errors. Equations of motion in the nonlinear Hamiltonian are usually non-integrable. Because of the nonlinear part of the Hamiltonian, the tune diagram of accelerators is a jungle. Nonlinear magnet multipoles are important in keeping the accelerator operation point in the safe quarter of the hostile jungle of resonant tunes. Indeed, all the modern accelerator design have taken advantages of nonlinear mechanics. On the other hand, the effect of the uncontrollable random multipoles should be evaluated carefully. A powerful method of studying the effect of these nonlinear multipoles is using a particle tracking calculation, where a group of test particles are tracing through these magnetic multipoles in the accelerator hundreds to millions of turns in order to test the dynamical aperture of the machine. These methods are extremely useful in the design of a large accelerator such as SSC, LEP, HERA and RHIC. These calculations unfortunately take tremendous amount of computing time. In this paper, we try to apply the existing method in the nonlinear dynamics to study the possible alternative solution. When the Hamiltonian motion becomes chaotic, the tune of the machine becomes undefined. The aperture related to the chaotic orbit can be identified as chaotic dynamical aperture. We review the method of determining chaotic orbit and apply the method to nonlinear problems in accelerator physics. We then discuss the scaling properties and effect of random sextupoles

  18. Micro dynamics in mediation

    OpenAIRE

    Boserup, Hans

    2014-01-01

    The author has identified a number of styles in mediation, which lead to different processes and different outcomes. Through discourse and conversation analysis he examines the micro dynamics in three of these, the postmodern styles: systemic, transformative and narrative mediation. The differences between the three mediation ideologies and practice is illustrated through role play scripts enacted in each style. Mediator and providers of mediation and trainers in mediation are encouraged to a...

  19. Gas dynamic laser device

    International Nuclear Information System (INIS)

    Born, G.

    1975-01-01

    The gas dynamic laser device is provided with an expansion chamber arranged between a heating chamber for the CO-gas and the resonance chamber. The expansion chamber is initially evacuated for producing a rarefaction wave. Between the heating chamber and the expansion chamber there are arranged rapid release means such as a valve or a diaphragm. Pressure recovering means are connected to the other side of the resonance chamber

  20. Dynamics of Markets

    Science.gov (United States)

    McCauley, Joseph L.

    2009-09-01

    Preface; 1. Econophysics: why and what; 2. Neo-classical economic theory; 3. Probability and stochastic processes; 4. Introduction to financial economics; 5. Introduction to portfolio selection theory; 6. Scaling, pair correlations, and conditional densities; 7. Statistical ensembles: deducing dynamics from time series; 8. Martingale option pricing; 9. FX market globalization: evolution of the dollar to worldwide reserve currency; 10. Macroeconomics and econometrics: regression models vs. empirically based modeling; 11. Complexity; Index.

  1. Quasistatic Dynamics with Intermittency

    International Nuclear Information System (INIS)

    Leppänen, Juho; Stenlund, Mikko

    2016-01-01

    We study an intermittent quasistatic dynamical system composed of nonuniformly hyperbolic Pomeau–Manneville maps with time-dependent parameters. We prove an ergodic theorem which shows almost sure convergence of time averages in a certain parameter range, and identify the unique physical family of measures. The theorem also shows convergence in probability in a larger parameter range. In the process, we establish other results that will be useful for further analysis of the statistical properties of the model.

  2. Iteration and accelerator dynamics

    International Nuclear Information System (INIS)

    Peggs, S.

    1987-10-01

    Four examples of iteration in accelerator dynamics are studied in this paper. The first three show how iterations of the simplest maps reproduce most of the significant nonlinear behavior in real accelerators. Each of these examples can be easily reproduced by the reader, at the minimal cost of writing only 20 or 40 lines of code. The fourth example outlines a general way to iteratively solve nonlinear difference equations, analytically or numerically

  3. Generalized chiral membrane dynamics

    International Nuclear Information System (INIS)

    Cordero, R.; Rojas, E.

    2003-01-01

    We develop the dynamics of the chiral superconducting membranes (with null current) in an alternative geometrical approach. Besides of this, we show the equivalence of the resulting description with the one known Dirac-Nambu-Goto (DNG) case. Integrability for chiral string model is obtained using a proposed light-cone gauge. In a similar way, domain walls are integrated by means of a simple Ansatz. (Author)

  4. Quasistatic Dynamics with Intermittency

    Energy Technology Data Exchange (ETDEWEB)

    Leppänen, Juho; Stenlund, Mikko, E-mail: mikko.stenlund@helsinki.fi [University of Helsinki, Department of Mathematics and Statistics (Finland)

    2016-06-15

    We study an intermittent quasistatic dynamical system composed of nonuniformly hyperbolic Pomeau–Manneville maps with time-dependent parameters. We prove an ergodic theorem which shows almost sure convergence of time averages in a certain parameter range, and identify the unique physical family of measures. The theorem also shows convergence in probability in a larger parameter range. In the process, we establish other results that will be useful for further analysis of the statistical properties of the model.

  5. CSF dynamics in children

    International Nuclear Information System (INIS)

    Oi, Shizuo; Shose, Yoshiteru; Yamada, Hiroshi; Ijichi, Akihiro; Matsumoto, Satoshi.

    1986-01-01

    Cerebrospinal fluid (CSF) dynamics in infants and children is still obscure. This paper aims to analyze the characteristics of CSF dynamics in the younger age group and to clarify the changes both in the acute/chronic hydrocephalic status and in the post-shunt condition on the basis of our experience with 118 cases of metrizamide CT cisternography. In order to pursue the CSF passive movements, the exact regional CT numbers were obtained by means of the ROI method in each case at 3, 6, and 24 hours after metrizamide injection. The results revealed that, in the normal CSF dynamics in both the major and minor pathways in children, it took more than 24 hours until the regional metrizamide was completely cleared up. In the acute hydrocephalic state, the ventricular reflux and stasis of the contrast was remarkable, and stagnation in the Sylvian fissure continued more than 24 hours. In the minor pathway, the contrast moved into the brain parenchyma, with there obviously being more in the subependymal layer and the adjacent white matter, and lasted more than 24 hours. On the other hand, these phenomena were very much less prominent in the chronic phase of hydrocephalus. This fact may suggest the hypothesis that a reconstituted active major or minor fluid pathway does not play an important role in the compensation of the acute high-pressure progressive hydrocephalic state. The CSF dynamics in a shunted hydrocephalus are obviously improved when in stasis or when stagnated inside or outside of the ventricular system. The timing of the metrizamide clear-up was within 24 hours after achieving a high accumulation of the contrast in the lateral ventricle where the shunt is placed. The contrast movement in the brain parenchyma as the minor pathway was significantly less in a shunted hydrocephalus, and there was almost none in cases of slit-like ventricles. (author)

  6. Perspectives in Fluid Dynamics

    Science.gov (United States)

    Batchelor, G. K.; Moffatt, H. K.; Worster, M. G.

    2002-12-01

    With applications ranging from modelling the environment to automotive design and physiology to astrophysics, conventional textbooks cannot hope to give students much information on what topics in fluid dynamics are currently being researched, or how to choose between them. This book rectifies matters. It consists of eleven chapters that introduce and review different branches of the subject for graduate-level courses, or for specialists seeking introductions to other areas. Hb ISBN (2001): 0-521-78061-6

  7. Dynamics of polymers

    Energy Technology Data Exchange (ETDEWEB)

    Buchenau, U [Forschungszentrum Juelich GmbH (Germany). Inst. fuer Energieverfahrenstechnik

    1996-11-01

    Neutron scattering from amorphous polymers allows to switch from incoherent to coherent scattering in the same substance. The power of the tool for the study of the picosecond dynamics of disordered matter is illustrated for polybutadiene, polycarbonate and polystyrene. The results suggest a mixture of sound waves and localized modes, strongly interacting with each other, in the picosecond range. (author) 8 figs., tabs., 39 refs.

  8. Multifractality in Cardiac Dynamics

    Science.gov (United States)

    Ivanov, Plamen Ch.; Rosenblum, Misha; Stanley, H. Eugene; Havlin, Shlomo; Goldberger, Ary

    1997-03-01

    Wavelet decomposition is used to analyze the fractal scaling properties of heart beat time series. The singularity spectrum D(h) of the variations in the beat-to-beat intervals is obtained from the wavelet transform modulus maxima which contain information on the hierarchical distribution of the singularities in the signal. Multifractal behavior is observed for healthy cardiac dynamics while pathologies are associated with loss of support in the singularity spectrum.

  9. Dynamics of deforming drops

    OpenAIRE

    Bouwhuis, W.

    2015-01-01

    Liquid drops play a dominant role in numerous industrial applications, such as spray coating, spray painting, inkjet printing, lithography processes, and spraying/sprinkling in agriculture or gardening. In all of these examples, the generation, flight, impact, and spreading of drops are separate stages of the corresponding industrial processes, which are all thoroughly studied for many years. This thesis focuses on drop dynamics, impact phenomena, Leidenfrost drops, and pouring flows. Based o...

  10. Lattice dynamics of thorium

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, J [Agra Coll. (India). Dept. of Physics

    1977-03-01

    In the present work, a local model pseudopotential has been proposed to study the lattice dynamics of thorium. The model potential depends on the core and ionic radii, and accounts for the s-d-f hybridization effects in a phenomenological way. When this form of potential is applied to derive the photon dispersion curves of Th, sufficiently good agreement is found between the computed and experimental results.

  11. Beam Dynamics for ARIA

    Energy Technology Data Exchange (ETDEWEB)

    Ekdahl, Carl August Jr. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-10-14

    Beam dynamics issues are assessed for a new linear induction electron accelerator being designed for flash radiography of large explosively driven hydrodynamic experiments. Special attention is paid to equilibrium beam transport, possible emittance growth, and beam stability. It is concluded that a radiographic quality beam will be produced possible if engineering standards and construction details are equivalent to those on the present radiography accelerators at Los Alamos.

  12. Dynamical chiral bag model

    International Nuclear Information System (INIS)

    Colanero, K.; Chu, M.-C.

    2002-01-01

    We study a dynamical chiral bag model, in which massless fermions are confined within an impenetrable but movable bag coupled to meson fields. The self-consistent motion of the bag is obtained by solving the equations of motion exactly assuming spherical symmetry. When the bag interacts with an external meson wave we find three different kinds of resonances: fermionic, geometric, and σ resonances. We discuss the phenomenological implications of our results

  13. Sun's dynamics and nucleosynthesis

    International Nuclear Information System (INIS)

    Gavanescu, Adela; Rusu, Mircea V.

    2005-01-01

    Nucleosynthesis processes in the sun are one of the main results related to the evolution of the Sun. Dynamics and energetics of the Sun could be studied indirectly by their elements products in produced by nucleosynthesis. Also solar atmosphere and its characteristics reveled in its full development is observed during the solar eclipses. We try to correlate these facts in order to obtained data to be used in solar models. (authors)

  14. Dynamics of exponential maps

    OpenAIRE

    Rempe, Lasse

    2003-01-01

    This thesis contains several new results about the dynamics of exponential maps $z\\mapsto \\exp(z)+\\kappa$. In particular, we prove that periodic external rays of exponential maps with nonescaping singular value always land. This is an analog of a theorem of Douady and Hubbard for polynomials. We also answer a question of Herman, Baker and Rippon by showing that the boundary of an unbounded exponential Siegel disk always contains the singular value. In addition to the presentation of new resul...

  15. Quaternions in collective dynamics

    OpenAIRE

    Degond, Pierre; Frouvelle, Amic; Merino-Aceituno, Sara; Trescases, Ariane

    2017-01-01

    We introduce a model of multi-agent dynamics for self-organised motion; individuals travel at a constant speed while trying to adopt the averaged body attitude of their neighbours. The body attitudes are represented through unitary quaternions. We prove the correspondance with the model presented in a previous work by the three first authors where the body attitudes are represented by rotation matrices. Differently from this previous work, the individual based model (IBM) introduced here is b...

  16. Quaternions in collective dynamics

    OpenAIRE

    Degond, Pierre; Frouvelle, Amic; Merino-Aceituno, Sara; Trescases, Ariane

    2018-01-01

    We introduce a model of multi-agent dynamics for self-organised motion; individuals travel at a constant speed while trying to adopt the averaged body attitude of their neighbours. The body attitudes are represented through unitary quaternions. We prove the correspondance with the model presented in Ref. [16] where the body attitudes are represented by rotation matrices. Differently from this previous work, the individual based model (IBM) introduced here is based on nematic (rather than pola...

  17. Interactive Dynamic-System Simulation

    CERN Document Server

    Korn, Granino A

    2010-01-01

    Showing you how to use personal computers for modeling and simulation, Interactive Dynamic-System Simulation, Second Edition provides a practical tutorial on interactive dynamic-system modeling and simulation. It discusses how to effectively simulate dynamical systems, such as aerospace vehicles, power plants, chemical processes, control systems, and physiological systems. Written by a pioneer in simulation, the book introduces dynamic-system models and explains how software for solving differential equations works. After demonstrating real simulation programs with simple examples, the author

  18. Dynamical adaptation in photoreceptors.

    Directory of Open Access Journals (Sweden)

    Damon A Clark

    Full Text Available Adaptation is at the heart of sensation and nowhere is it more salient than in early visual processing. Light adaptation in photoreceptors is doubly dynamical: it depends upon the temporal structure of the input and it affects the temporal structure of the response. We introduce a non-linear dynamical adaptation model of photoreceptors. It is simple enough that it can be solved exactly and simulated with ease; analytical and numerical approaches combined provide both intuition on the behavior of dynamical adaptation and quantitative results to be compared with data. Yet the model is rich enough to capture intricate phenomenology. First, we show that it reproduces the known phenomenology of light response and short-term adaptation. Second, we present new recordings and demonstrate that the model reproduces cone response with great precision. Third, we derive a number of predictions on the response of photoreceptors to sophisticated stimuli such as periodic inputs, various forms of flickering inputs, and natural inputs. In particular, we demonstrate that photoreceptors undergo rapid adaptation of response gain and time scale, over ∼ 300[Formula: see text] ms-i. e., over the time scale of the response itself-and we confirm this prediction with data. For natural inputs, this fast adaptation can modulate the response gain more than tenfold and is hence physiologically relevant.

  19. Geophysical fluid dynamics

    CERN Document Server

    Pedlosky, Joseph

    1982-01-01

    The content of this book is based, largely, on the core curriculum in geophys­ ical fluid dynamics which land my colleagues in the Department of Geophysical Sciences at The University of Chicago have taught for the past decade. Our purpose in developing a core curriculum was to provide to advanced undergraduates and entering graduate students a coherent and systematic introduction to the theory of geophysical fluid dynamics. The curriculum and the outline of this book were devised to form a sequence of courses of roughly one and a half academic years (five academic quarters) in length. The goal of the sequence is to help the student rapidly advance to the point where independent study and research are practical expectations. It quickly became apparent that several topics (e. g. , some aspects of potential theory) usually thought of as forming the foundations of a fluid-dynamics curriculum were merely classical rather than essential and could be, however sadly, dispensed with for our purposes. At the same tim...

  20. Proton dynamics in cancer.

    Science.gov (United States)

    Huber, Veronica; De Milito, Angelo; Harguindey, Salvador; Reshkin, Stephan J; Wahl, Miriam L; Rauch, Cyril; Chiesi, Antonio; Pouysségur, Jacques; Gatenby, Robert A; Rivoltini, Licia; Fais, Stefano

    2010-06-15

    Cancer remains a leading cause of death in the world today. Despite decades of research to identify novel therapeutic approaches, durable regressions of metastatic disease are still scanty and survival benefits often negligible. While the current strategy is mostly converging on target-therapies aimed at selectively affecting altered molecular pathways in tumor cells, evidences are in parallel pointing to cell metabolism as a potential Achilles' heel of cancer, to be disrupted for achieving therapeutic benefit. Critical differences in the metabolism of tumor versus normal cells, which include abnormal glycolysis, high lactic acid production, protons accumulation and reversed intra-extracellular pH gradients, make tumor site a hostile microenvironment where only cancer cells can proliferate and survive. Inhibiting these pathways by blocking proton pumps and transporters may deprive cancer cells of a key mechanism of detoxification and thus represent a novel strategy for a pleiotropic and multifaceted suppression of cancer cell growth.Research groups scattered all over the world have recently started to investigate various aspects of proton dynamics in cancer cells with quite encouraging preliminary results. The intent of unifying investigators involved in this research line led to the formation of the "International Society for Proton Dynamics in Cancer" (ISPDC) in January 2010. This is the manifesto of the newly formed society where both basic and clinical investigators are called to foster translational research and stimulate interdisciplinary collaboration for the development of more specific and less toxic therapeutic strategies based on proton dynamics in tumor cell biology.

  1. Proton dynamics in cancer

    Directory of Open Access Journals (Sweden)

    Pouysségur Jacques

    2010-06-01

    Full Text Available Abstract Cancer remains a leading cause of death in the world today. Despite decades of research to identify novel therapeutic approaches, durable regressions of metastatic disease are still scanty and survival benefits often negligible. While the current strategy is mostly converging on target-therapies aimed at selectively affecting altered molecular pathways in tumor cells, evidences are in parallel pointing to cell metabolism as a potential Achilles' heel of cancer, to be disrupted for achieving therapeutic benefit. Critical differences in the metabolism of tumor versus normal cells, which include abnormal glycolysis, high lactic acid production, protons accumulation and reversed intra-extracellular pH gradients, make tumor site a hostile microenvironment where only cancer cells can proliferate and survive. Inhibiting these pathways by blocking proton pumps and transporters may deprive cancer cells of a key mechanism of detoxification and thus represent a novel strategy for a pleiotropic and multifaceted suppression of cancer cell growth. Research groups scattered all over the world have recently started to investigate various aspects of proton dynamics in cancer cells with quite encouraging preliminary results. The intent of unifying investigators involved in this research line led to the formation of the "International Society for Proton Dynamics in Cancer" (ISPDC in January 2010. This is the manifesto of the newly formed society where both basic and clinical investigators are called to foster translational research and stimulate interdisciplinary collaboration for the development of more specific and less toxic therapeutic strategies based on proton dynamics in tumor cell biology.

  2. Moyal dynamics and trajectories

    Science.gov (United States)

    Braunss, G.

    2010-01-01

    We give first an approximation of the operator δh: f → δhf := h*planckf - f*planckh in terms of planck2n, n >= 0, where h\\equiv h(p,q), (p,q)\\in {\\mathbb R}^{2 n} , is a Hamilton function and *planck denotes the star product. The operator, which is the generator of time translations in a *planck-algebra, can be considered as a canonical extension of the Liouville operator Lh: f → Lhf := {h, f}Poisson. Using this operator we investigate the dynamics and trajectories of some examples with a scheme that extends the Hamilton-Jacobi method for classical dynamics to Moyal dynamics. The examples we have chosen are Hamiltonians with a one-dimensional quartic potential and two-dimensional radially symmetric nonrelativistic and relativistic Coulomb potentials, and the Hamiltonian for a Schwarzschild metric. We further state a conjecture concerning an extension of the Bohr-Sommerfeld formula for the calculation of the exact eigenvalues for systems with classically periodic trajectories.

  3. Dynamical impurity problems

    International Nuclear Information System (INIS)

    Emery, V.J.; Kivelson, S.A.

    1993-01-01

    In the past few years there has been a resurgence of interest in dynamical impurity problems, as a result of developments in the theory of correlated electron systems. The general dynamical impurity problem is a set of conduction electrons interacting with an impurity which has internal degrees of freedom. The simplest and earliest example, the Kondo problem, has attracted interest since the mid-sixties not only because of its physical importance but also as an example of a model displaying logarithmic divergences order by order in perturbation theory. It provided one of the earliest applications of the renormalization group method, which is designed to deal with just such a situation. As we shall see, the antiferromagnetic Kondo model is controlled by a strong-coupling fixed point, and the essence of the renormalization group solution is to carry out the global renormalization numerically starting from the original (weak-coupling) Hamiltonian. In these lectures, we shall describe an alternative route in which we identify an exactly solvable model which renormalizes to the same fixed point as the original dynamical impurity problem. This approach is akin to determining the critical behavior at a second order phase transition point by solving any model in a given universality class

  4. Geophysical fluid dynamics

    CERN Document Server

    Pedlosky, Joseph

    1979-01-01

    The content of this book is based, largely, on the core curriculum in geophys­ ical fluid dynamics which I and my colleagues in the Department of Geophysical Sciences at The University of Chicago have taught for the past decade. Our purpose in developing a core curriculum was to provide to advanced undergraduates and entering graduate students a coherent and systematic introduction to the theory of geophysical fluid dynamics. The curriculum and the outline of this book were devised to form a sequence of courses of roughly one and a half academic years (five academic quarters) in length. The goal of the sequence is to help the student rapidly advance to the point where independent study and research are practical expectations. It quickly became apparent that several topics (e. g. , some aspects of potential theory) usually thought of as forming the foundations of a fluid-dynamics curriculum were merely classical rather than essential and could be, however sadly, dispensed with for our purposes. At the same ti...

  5. Dynamical impurity problems

    Energy Technology Data Exchange (ETDEWEB)

    Emery, V.J. [Brookhaven National Lab., Upton, NY (United States); Kivelson, S.A. [California Univ., Los Angeles, CA (United States). Dept. of Physics

    1993-12-31

    In the past few years there has been a resurgence of interest in dynamical impurity problems, as a result of developments in the theory of correlated electron systems. The general dynamical impurity problem is a set of conduction electrons interacting with an impurity which has internal degrees of freedom. The simplest and earliest example, the Kondo problem, has attracted interest since the mid-sixties not only because of its physical importance but also as an example of a model displaying logarithmic divergences order by order in perturbation theory. It provided one of the earliest applications of the renormalization group method, which is designed to deal with just such a situation. As we shall see, the antiferromagnetic Kondo model is controlled by a strong-coupling fixed point, and the essence of the renormalization group solution is to carry out the global renormalization numerically starting from the original (weak-coupling) Hamiltonian. In these lectures, we shall describe an alternative route in which we identify an exactly solvable model which renormalizes to the same fixed point as the original dynamical impurity problem. This approach is akin to determining the critical behavior at a second order phase transition point by solving any model in a given universality class.

  6. DESIGN AND IMPLEMENTATION OF DYNAMIC SYMBOLS IN DYNAMIC GIS

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Many Internet-GIS have been implemented on the web and they are increasingly bec oming an important part of multimedia cartography that has much more users as co mpared to traditional GIS production media.Internet GIS technology has provided the GIS dynamic information acquisition w ith technical support.Also,the visualization technology of electronic map ha s provided tools for GIS symbols with dynamic characteristics.On the basis of GI S dynamic information acquisition,the design idea and implementation methods of dynamic symbols in dynamic GIS are presented in this article.

  7. Dynamics on Networks of Manifolds

    Science.gov (United States)

    DeVille, Lee; Lerman, Eugene

    2015-03-01

    We propose a precise definition of a continuous time dynamical system made up of interacting open subsystems. The interconnections of subsystems are coded by directed graphs. We prove that the appropriate maps of graphs called graph fibrations give rise to maps of dynamical systems. Consequently surjective graph fibrations give rise to invariant subsystems and injective graph fibrations give rise to projections of dynamical systems.

  8. Industrial dynamic tomographic reconstruction

    International Nuclear Information System (INIS)

    Oliveira, Eric Ferreira de

    2016-01-01

    The state of the art methods applied to industrial processes is currently based on the principles of classical tomographic reconstructions developed for tomographic patterns of static distributions, or is limited to cases of low variability of the density distribution function of the tomographed object. Noise and motion artifacts are the main problems caused by a mismatch in the data from views acquired in different instants. All of these add to the known fact that using a limited amount of data can result in the presence of noise, artifacts and some inconsistencies with the distribution under study. One of the objectives of the present work is to discuss the difficulties that arise from implementing reconstruction algorithms in dynamic tomography that were originally developed for static distributions. Another objective is to propose solutions that aim at reducing a temporal type of information loss caused by employing regular acquisition systems to dynamic processes. With respect to dynamic image reconstruction it was conducted a comparison between different static reconstruction methods, like MART and FBP, when used for dynamic scenarios. This comparison was based on a MCNPx simulation as well as an analytical setup of an aluminum cylinder that moves along the section of a riser during the process of acquisition, and also based on cross section images from CFD techniques. As for the adaptation of current tomographic acquisition systems for dynamic processes, this work established a sequence of tomographic views in a just-in-time fashion for visualization purposes, a form of visually disposing density information as soon as it becomes amenable to image reconstruction. A third contribution was to take advantage of the triple color channel necessary to display colored images in most displays, so that, by appropriately scaling the acquired values of each view in the linear system of the reconstruction, it was possible to imprint a temporal trace into the regularly

  9. Dynamic secrets in communication security

    CERN Document Server

    Xiao, Sheng; Towsley, Donald

    2013-01-01

    Dynamic secrets are constantly generated and updated from messages exchanged between two communication users. When dynamic secrets are used as a complement to existing secure communication systems, a stolen key or password can be quickly and automatically reverted to its secret status without disrupting communication. 'Dynamic Secrets in Communication Security' presents unique security properties and application studies for this technology. Password theft and key theft no longer pose serious security threats when parties frequently use dynamic secrets. This book also illustrates that a dynamic

  10. Microsoft Dynamics GP 2013 implementation

    CERN Document Server

    Yudin, Victoria

    2013-01-01

    A step-by-step guide for planning and carrying out your Microsoft Dynamics GP 2013 implementation. Detailed descriptions and illustrations of setup screens and practical examples and advice are included for the Dynamics GP system and core modules.If you are a new or existing Microsoft Dynamics GP consultant or an end user who wants to implement, install, and set up core modules of Dynamics GP 2013, then this book is for you. A basic understanding of business management systems and either Dynamics GP or a similar application is recommended.

  11. Dynamic heterogeneity in life histories

    DEFF Research Database (Denmark)

    Tuljapurkar, Shripad; Steiner, Uli; Orzack, Steven Hecht

    2009-01-01

    or no fixed heterogeneity influences this trait. We propose that dynamic heterogeneity provides a 'neutral' model for assessing the possible role of unobserved 'quality' differences between individuals. We discuss fitness for dynamic life histories, and the implications of dynamic heterogeneity...... generate dynamic heterogeneity: life-history differences produced by stochastic stratum dynamics. We characterize dynamic heterogeneity in a range of species across taxa by properties of the Markov chain: the entropy, which describes the extent of heterogeneity, and the subdominant eigenvalue, which...... distributions of lifetime reproductive success. Dynamic heterogeneity contrasts with fixed heterogeneity: unobserved differences that generate variation between life histories. We show by an example that observed distributions of lifetime reproductive success are often consistent with the claim that little...

  12. SDI: Statistical dynamic interactions

    International Nuclear Information System (INIS)

    Blann, M.; Mustafa, M.G.; Peilert, G.; Stoecker, H.; Greiner, W.

    1991-01-01

    We focus on the combined statistical and dynamical aspects of heavy ion induced reactions. The overall picture is illustrated by considering the reaction 36 Ar + 238 U at a projectile energy of 35 MeV/nucleon. We illustrate the time dependent bound excitation energy due to the fusion/relaxation dynamics as calculated with the Boltzmann master equation. An estimate of the mass, charge and excitation of an equilibrated nucleus surviving the fast (dynamic) fusion-relaxation process is used as input into an evaporation calculation which includes 20 heavy fragment exit channels. The distribution of excitations between residue and clusters is explicitly calculated, as is the further deexcitation of clusters to bound nuclei. These results are compared with the exclusive cluster multiplicity measurements of Kim et al., and are found to give excellent agreement. We consider also an equilibrated residue system at 25% lower initial excitation, which gives an unsatisfactory exclusive multiplicity distribution. This illustrates that exclusive fragment multiplicity may provide a thermometer for system excitation. This analysis of data involves successive binary decay with no compressional effects nor phase transitions. Several examples of primary versus final (stable) cluster decay probabilities for an A = 100 nucleus at excitations of 100 to 800 MeV are presented. From these results a large change in multifragmentation patterns may be understood as a simple phase space consequence, invoking neither phase transitions, nor equation of state information. These results are used to illustrate physical quantities which are ambiguous to deduce from experimental fragment measurements. 14 refs., 4 figs

  13. Dynamic wake meandering modeling

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Gunner C.; Aagaard Madsen, H.; Bingoel, F. (and others)

    2007-06-15

    We present a consistent, physically based theory for the wake meandering phenomenon, which we consider of crucial importance for the overall description of wind turbine loadings in wind farms. In its present version the model is confined to single wake situations. The model philosophy does, however, have the potential to include also mutual wake interaction phenomenons. The basic conjecture behind the dynamic wake meandering model is that wake transportation in the atmospheric boundary layer is driven by the large scale lateral- and vertical turbulence components. Based on this conjecture a stochastic model of the downstream wake meandering is formulated. In addition to the kinematic formulation of the dynamics of the 'meandering frame of reference', models characterizing the mean wake deficit as well as the added wake turbulence, described in the meandering frame of reference, are an integrated part the model complex. For design applications, the computational efficiency of wake deficit prediction is a key issue. Two computationally low cost models are developed for this purpose. The character of the added wake turbulence, generated by the up-stream turbine in the form of shed and trailed vorticity, has been approached by analytical as well as by numerical studies. The dynamic wake meandering philosophy has been verified by comparing model predictions with extensive full-scale measurements. These comparisons have demonstrated good agreement, both qualitatively and quantitatively, concerning both flow characteristics and turbine load characteristics. Contrary to previous attempts to model wake loading, the dynamic wake meandering approach opens for a unifying description in the sense that turbine power and load aspects can be treated simultaneously. This capability is a direct and attractive consequence of the model being based on the underlying physical process, and it potentially opens for optimization of wind farm topology, of wind farm operation as

  14. RETRAN dynamic slip model

    International Nuclear Information System (INIS)

    McFadden, J.H.; Paulsen, M.P.; Gose, G.C.

    1981-01-01

    Thermal-hydraulic codes in general use for system calculations are based on extensive analyses of loss-of-coolant accidents following the postulated rupture of a large coolant pipe. In this study, time-dependent equation for the slip velocity in a two-phase flow condition has been incorporated into the RETRAN-02 computer code. This model addition was undertaken to remove a limitation in RETRAN-01 associated with the homogeneous equilibrium mixture model. The dynamic slip equation was derived from a set of two-fluid conservation equations. 18 refs

  15. Dynamic Underground Stripping Project

    International Nuclear Information System (INIS)

    Aines, R.; Newmark, R.; McConachie, W.; Udell, K.; Rice, D.; Ramirez, A.; Siegel, W.; Buettner, M.; Daily, W.; Krauter, P.; Folsom, E.; Boegel, A.J.; Bishop, D.; Udell, K.

    1992-01-01

    LLNL is collaborating with the UC Berkeley College of Engineering to develop and demonstrate a system of thermal remediation and underground imaging techniques for use in rapid cleanup of localized underground spills. Called ''Dynamic Stripping'' to reflect the rapid and controllable nature of the process, it will combine steam injection, direct electrical heating, and tomographic geophysical imaging in a cleanup of the LLNL gasoline spill. In the first 8 months of the project, a Clean Site engineering test was conducted to prove the field application of the techniques before moving the contaminated site in FY 92

  16. EU Budgetary Dynamics

    DEFF Research Database (Denmark)

    Citi, Manuele

    2013-01-01

    In this article I study the long-term evolution of the main categories of expenditure of the European Union (EU) budget (1984-2011). The aim is to assess the extent to which the EU is affected by a structural form of policy inertia, and to investigate the general pattern of policy stability...... and change in the EU in light of the two models of policy dynamics currently existing in the literature: the incrementalist model and the punctuated equilibrium model. The analysis of long series of original data extracted from the EU budget shows that EU policies do not evolve following an incrementalist...

  17. Collective nuclear dynamics. Proceedings

    International Nuclear Information System (INIS)

    Ivanyuk, F.A.

    1994-01-01

    The Fourth International school on nuclear physics was help on 29 Aug - 7 Sep, 1994 in Ukraine. The specialists discussed following subjects:liquid drop and the shell correction method; nuclear deformation energy and fission; nuclear structure at high spins, superdeformed states, structure of excited and exotic nuclei; nuclear fluid dynamics and large scale collective motion; order and chaos as they relate to the collective motion; quantum and interference phenomena in nuclear collisions; quasi-fission and multinucleon fragmentation effects; shell effects in non-nuclear systems; new nuclear facilities

  18. Topics in Nonlinear Dynamics

    DEFF Research Database (Denmark)

    Mosekilde, Erik

    Through a significant number of detailed and realistic examples this book illustrates how the insights gained over the past couple of decades in the fields of nonlinear dynamics and chaos theory can be applied in practice. Aomng the topics considered are microbiological reaction systems, ecological...... food-web systems, nephron pressure and flow regulation, pulsatile secretion of hormones, thermostatically controlled radiator systems, post-stall maneuvering of aircrafts, transfer electron devices for microwave generation, economic long waves, human decision making behavior, and pattern formation...... in chemical reaction-diffusion systems....

  19. Pulsar glitch dynamics

    Science.gov (United States)

    Morley, P. D.

    2018-01-01

    We discuss pulsar glitch dynamics from three different viewpoints: statistical description, neutron star equation of state description and finally an electromagnetic field description. For the latter, the pulsar glitch recovery times are the dissipation time constants of sheet surface currents created in response to the glitch-induced crustal magnetic field disruption. We mathematically derive these glitch time constants (Ohmic time constant and Hall sheet current time constant) from a perturbation analysis of the electromagnetic induction equation. Different crustal channels will carry the sheet surface current and their different electron densities determine the time constants.

  20. Dynamics of baby Skyrmions

    International Nuclear Information System (INIS)

    Piette, B.M.A.G.; Schroers, B.J.; Zakrzewski, W.J.

    1995-01-01

    Baby Skyrmions are topological solitons in a (2+1)-dimensional field theory which resembles the Skyrme model in important respects. We apply some of the techniques and approximations commonly used in discussions of the Skyrme model to the dynamics of baby Skyrmions and directly test them against numerical simulations. Specifically we study the effect of spin on the shape of a single baby Skyrmion, the dependence of the forces between two baby Skyrmions on the baby Skyrmions' relative orientation and the forces between two baby Skyrmions when one of them is spinning. ((orig.))