Institute of Scientific and Technical Information of China (English)
Huan Zhang; Xiao-Xi Duan; Chen Zhang; Hao Liu; Hui-Ge Zhang; Quan-Xi Xue; Qing Ye
2016-01-01
One of the most challenging tasks in the laser-driven Hugoniot experiment is how to increase the reproducibility and precision of the experimental data to meet the stringent requirement in validating equation of state models.In such cases,the contribution of intrinsic uncertainty becomes important and cannot be ignored.A detailed analysis of the intrinsic uncertainty of the aluminum-iron impedance-match experiment based on the measurement of velocities is presented.The influence of mirror-reflection approximation on the shocked pressure of Fe and intrinsic uncertainties from the equation of state uncertainty of standard material are quantified.Furthermore,the comparison of intrinsic uncertainties of four different experimental approaches is presented.It is shown that,compared with other approaches including the most widely used approach which relies on the measurements of the shock velocities of Al and Fe,the approach which relies on the measurement of the particle velocity of Al and the shock velocity of Fe has the smallest intrinsic uncertainty,which would promote such work to significantly improve the diagnostics precision in such an approach.
Investigating velocity spectra at the Hugoniot state of shock loaded heterogenous materials
LaJeunesse, Jeff; Stewart, Sarah T.; Kennedy, Greg; Thadhani, Naresh; Borg, John P.
2017-01-01
Particle velocity and stress profiles measured in planar impact experiments on heterogeneous materials have shown significant deviations about the idealized final shock state plateau in both experimental and simulated tests. These deviations arise from the scattering of the transmitted shock wave due to the presence of internal interfaces within heterogeneous materials. The goal of this work is to determine if the spectra of oscillatory behavior can be associated to characteristic length scales of the corresponding un-shocked heterogeneous material. Similarities between experimental and simulated particle velocity profiles from planar impacts on dry sand are compared.
Li, Zhi-Guo; Chen, Qi-Feng; Gu, Yun-Jun; Zheng, Jun; Chen, Xiang-Rong
2016-10-01
The accurate hydrodynamic description of an event or system that addresses the equations of state, phase transitions, dissociations, ionizations, and compressions, determines how materials respond to a wide range of physical environments. To understand dense matter behavior in extreme conditions requires the continual development of diagnostic methods for accurate measurements of the physical parameters. Here, we present a comprehensive diagnostic technique that comprises optical pyrometry, velocity interferometry, and time-resolved spectroscopy. This technique was applied to shock compression experiments of dense gaseous deuterium-helium mixtures driven via a two-stage light gas gun. The advantage of this approach lies in providing measurements of multiple physical parameters in a single experiment, such as light radiation histories, particle velocity profiles, and time-resolved spectra, which enables simultaneous measurements of shock velocity, particle velocity, pressure, density, and temperature and expands understanding of dense high pressure shock situations. The combination of multiple diagnostics also allows different experimental observables to be measured and cross-checked. Additionally, it implements an accurate measurement of the principal Hugoniots of deuterium-helium mixtures, which provides a benchmark for the impedance matching measurement technique.
Use of the Hugoniot elastic limit in laser shockwave experiments to relate velocity measurements
Smith, James A.; Lacy, Jeffrey M.; Lévesque, Daniel; Monchalin, Jean-Pierre; Lord, Martin
2016-02-01
The US National Nuclear Security Agency has a Global Threat Reduction Initiative (GTRI) with the goal of reducing the worldwide use of high-enriched uranium (HEU). A salient component of that initiative is the conversion of research reactors from HEU to low enriched uranium (LEU) fuels. An innovative fuel is being developed to replace HEU in high-power research reactors. The new LEU fuel is a monolithic fuel made from a U-Mo alloy foil encapsulated in Al-6061 cladding. In order to support the fuel qualification process, the Laser Shockwave Technique (LST) is being developed to characterize the clad-clad and fuel-clad interface strengths in fresh and irradiated fuel plates. This fuel-cladding interface qualification will ensure the survivability of the fuel plates in the harsh reactor environment even under abnormal operating conditions. One of the concerns of the project is the difficulty of calibrating and standardizing the laser shock technique. An analytical study under development and experimental testing supports the hypothesis that the Hugoniot Elastic Limit (HEL) in materials can be a robust and simple benchmark to compare stresses generated by different laser shock systems.
Analytical Method to Evaluate Hugoniot of Metallic Materials with Different Initial Temperatures
Institute of Scientific and Technical Information of China (English)
WANG Qing-Song; LAN Qiang; HU Jian-Bo; WU Jing; DAI Cheng-Da
2008-01-01
@@ An analytical method is proposed to evaluate the Hugoniot parameters of preheated metallic materials by relating to its principal Hugoniot.Modelling calculations for 1100 AI, Cu and Ta show that the preheating lowers to a certain extent the shock impedance and the degree of lowering the shock impedance increases with increasing pre-heating temperature.The Hugoniots of 6061-T6 AI and TC4 preheated flyers at known preheating temperatures are evaluated, and are utilized to calculate the particle velocity and shock pressure using the impedance-match method based on the measured shock wave velocity and impact velocity reported in Z pinch-driven and threestage gun-driven Hugoniot experiments.The presented method allows a reasonable evaluation for Hugoniot of the preheated metallic flyers.
Shock Hugoniots of molecular liquids and the principle of corresponding states
Energy Technology Data Exchange (ETDEWEB)
Chisolm, Eric D [Los Alamos National Laboratory; Crockett, Scott D [Los Alamos National Laboratory; Shaw, Milton S [Los Alamos National Laboratory
2009-01-01
We observe that the shock velocity-particle velocity Hugoniots for various liquids (e.g. nitrogen, oxygen, carbon dioxide, argon) lie almost on top of one another. Recalling the work of Ross and Ree [J. Chem. Phys. 73, 6146-6152 (1980)], we hypothesize that these materials obey a principle of corresponding states. We use the principle to deduce how the Hugoniots of two corresponding materials should be related, and we compare the results with data and find good agreement. We suggest this as a method for estimating the Hugoniot of a material of the appropriate type in the absence of shock data, and we illustrate with fluorine.
Hugoniot Information for Bromonitromethane, Isopropyl Nitrate, and 90 wt% H_2O_2
Sheffield, Stephen A.; Davis, Lloyd; Engelke, Ray
1998-03-01
Hugoniot curves and related information are reported for three liquid explosives: bromonitromethane (BrNM), isopropyl nitrate (IPN), and 90/10 wt% hydrogen peroxide/water (H_2O_2). Hugoniot curves were determined using the measured sound speeds and the universal liquid Hugoniot empirical form(Woolfolk, R. W.; Cowperthwaite, M.; Shaw, R. Thermochimica Acta,) 1973, 5, 409-414. which only requires the initial sound speed as a parameter. We measured sound speeds for these liquids. In addition, gas gun experiments were conducted to determine experimental Hugoniot states for BrNM and IPN. Magnetic gauges were used to measure the input particle velocity and to track the shock front (a shock velocity measurement), providing the necessary information to determine a Hugoniot state. These measured states were compared to those predicted using the universal liquid Hugoniot and agreement was found to be very good. Using the calculated Hugoniot curves and the detonation velocities for IPN and H_2O_2, von Neumann spike detonation conditions were estimated and compared to nitromethane (NM). BrNM was also found to be more sensitive to shock initiation than neat NM.
The Hugoniot Elastic Limit Decay Limit
Billingsley, J. P.
1997-07-01
The Hugoniot Elastic Limit(HEL) precursor decay in shock loaded solids has been the subject of considerable experimental and theoretical investigation. Comparative evidence is presented to show that the elastic precursor wave particle velocity, UPHEL, for certain materials decays asymptotically with propagation distance to the DeBroglie velocity, V1, level. This is demonstrated for the following materials: iron, aluminum alloy 6061-T6, plexiglas(PMMA), nickel alloy(MAR-M200), and lithium flouride(LiF). The DeBroglie velocity, V1, equals h/2md, where h is Planck's Constant, m is the mass of one atom, and d is the closest distance between atoms. Thus a relationship has been established between a microscopically derived velocity, V1, and a macroscopically observed velocity, UPHEL.
Effect of shear strength on Hugoniot-compression curve and the equation of state of tungsten (W)
Energy Technology Data Exchange (ETDEWEB)
Mashimo, Tsutomu, E-mail: mashimo@gpo.kumamoto-u.ac.jp; Liu, Xun [Institute of Pulsed Power Science, Kumamoto University, Kumamoto 860-8555 (Japan); Kodama, Masao [Sojo University, Kumamoto 860-0082 (Japan); Zaretsky, Eugene [Ben-Gurion University of the Negev, P.O. Box 653, Beer Sheva 84105 (Israel); Katayama, Masahide [Itochu Techno-Solutions Corporation, Tokyo 100-6080 (Japan); Nagayama, Kunihiko [Kyushu University, Fukuoka 812-8581 (Japan)
2016-01-21
The Hugoniot data for highly dense polycrystalline tungsten were obtained for pressures above 200 GPa, and the equation of state (EOS) was determined taking into account shear strength effects. For this study, we have made some improvements in measurement system and analyses of the shock wave data. Symmetric-impact Hugoniot measurements were performed using the high-time resolution streak camera system equipped on a one-stage powder gun and two-stage light gas gun, where the effects of tilting and bowing of flyer plate on the Hugoniot data were carefully considered. The shock velocity–particle velocity (U{sub S}–U{sub P}) Hugoniot relation in the plastic regime was determined to be U{sub S} = 4.137 + 1.242U{sub P} km/s (U{sub P} < 2 km/s). Ultrasonic and Velocity Interferometer System for Any Reflector measurements were also performed in this study. The zero-intercept value of the U{sub S}–U{sub P} Hugoniot relation was found to be slightly larger than the ultrasonic bulk sound velocity (4.023 km/s). The hypothetical hydrostatic isothermal U{sub s}–U{sub p} Hugoniot curve, which corresponds to the hydrostatic isothermal compression curve derived from the Hugoniot data using the strength data, converged to the bulk sound velocity, clearly showing shear strength dependence in the Hugoniot data. The EOS for tungsten is derived from the hydrostatic isothermal compression curve using the strength data.
Transport velocities of coal and sand particles
Energy Technology Data Exchange (ETDEWEB)
Adanez, J. (Inst. de Carboquimica, Zaragoza (Spain)); Diego, L.F. de (Inst. de Carboquimica, Zaragoza (Spain)); Gayan, P. (Inst. de Carboquimica, Zaragoza (Spain))
1993-10-01
Transport velocities of narrow cut sizes of coarse particles of sand and coal were determined at room temperature and atmospheric pressure. These velocities were obtained by four different methods previously utilized by other authors with fine particles. The four methods tested gave good predictions of the transport velocities. The method based on the measurement of the time required for all the solids to leave the bed without feeding in any fresh solid is specially interesting because of its rapidity and simplicity. The determined transport velocities were strongly dependent on the solid particle size and density. The experimental values were fitted to an equation which fitted both the experimental results obtained in this work and other published results obtained with fine particles. (orig.)
A novel two dimensional particle velocity sensor
Pjetri, Olti; Wiegerink, Remco J.; Lammerink, Theo S.; Krijnen, Gijs J.
2013-01-01
In this paper we present a two wire, two-dimensional particle velocity sensor. The miniature sensor of size 1.0x2.5x0.525 mm, consisting of only two crossed wires, shows excellent directional sensitivity in both directions, thus requiring no directivity calibration, and is relatively easy to fabrica
Tomographic Particle Localization and Velocity Measurement
Kirner, S.; Forster, G.; Schein, J.
2015-01-01
Wire arc spraying is one of the most common and elementary thermal spray processes. Due to its easy handling, high deposition rate, and relative low process costs, it is a frequently used coating technology for the production of wear and corrosion resistant coatings. In order to produce reliable and reproducible coatings, it is necessary to be able to control the coating process. This can be achieved by analyzing the parameters of the particles deposited. Essential for the coating quality are, for example, the velocity, the size, and the temperature of the particles. In this work, an innovative diagnostic for particle velocity and location determination is presented. By the use of several synchronized CMOS-Cameras positioned around the particle jet, a series of images from different directions is simultaneously taken. The images contain the information that is necessary to calculate the 3D-location-vector of the particles and finally with the help of the exposure time the trajectory can be determined. In this work, the experimental setup of the tomographic diagnostic is presented, the mathematical method of the reconstruction is explained, and first measured velocity distributions are shown.
Electrophoresis of particles with Navier velocity slip.
Park, Hung Mok
2013-03-01
In the present investigation, it is found that the electrophoretic mobility of hydrophobic particles is affected not only by the zeta potential but also by the velocity slip at the particle surface. From a physicochemical viewpoint, zeta potential represents the surface charge properties and the slip coefficient indicates the hydrophobicity of the particle surface. Thus, it is necessary to separate the contribution of zeta potential from that of slip coefficient to the particle mobility, since zeta potential can be changed by varying the bulk ionic concentration while the slip coefficient can be modified by adjusting surfactant concentration. In the present investigation, a method is devised that allows a simultaneous estimation of zeta potential and slip coefficient of micro and nanoparticles using measurements of electrophoretic mobility at various bulk ionic concentrations. Employing a nonlinear curve-fitting technique and an analytic solution of electrophoresis for a particle with velocity slip, the present technique predicts both zeta potential and slip coefficient simultaneously with reasonable accuracy using the measured values of electrophoretic mobility at various bulk ionic concentrations.
Institute of Scientific and Technical Information of China (English)
郭峰; 张红; 胡海泉; 程新路; 张利燕
2015-01-01
We investigate the Hugoniot curve, shock–particle velocity relations, and Chapman–Jouguet conditions of the hot dense system through molecular dynamics (MD) simulations. The detailed pathways from crystal nitromethane to reacted state by shock compression are simulated. The phase transition of N2 and CO mixture is found at about 10 GPa, and the main reason is that the dissociation of the C–O bond and the formation of C–C bond start at 10.0–11.0 GPa. The unreacted state simulations of nitromethane are consistent with shock Hugoniot data. The complete pathway from unreacted to reacted state is discussed. Through chemical species analysis, we find that the C–N bond breaking is the main event of the shock-induced nitromethane decomposition.
Hugoniot equation of state of rock materials under shock compression.
Zhang, Q B; Braithwaite, C H; Zhao, J
2017-01-28
Two sets of shock compression tests (i.e. conventional and reverse impact) were conducted to determine the shock response of two rock materials using a plate impact facility. Embedded manganin stress gauges were used for the measurements of longitudinal stress and shock velocity. Photon Doppler velocimetry was used to capture the free surface velocity of the target. Experimental data were obtained on a fine-grained marble and a coarse-grained gabbro over a shock pressure range of approximately 1.5-12 GPa. Gabbro exhibited a linear Hugoniot equation of state (EOS) in the pressure-particle velocity (P-up) plane, while for marble a nonlinear response was observed. The EOS relations between shock velocity (US) and particle velocity (up) are linearly fitted as US = 2.62 + 3.319up and US = 5.4 85 + 1.038up for marble and gabbro, respectively.This article is part of the themed issue 'Experimental testing and modelling of brittle materials at high strain rates'.
DYNAMIC ANALYSIS OF PARTICLE FLYING VELOCITY IN HIGH VELOCITY OXYGEN FUEL SPRAY
Institute of Scientific and Technical Information of China (English)
Wang Zhiping; Dong Zujue; Huo Shubin
2000-01-01
Based on gas dynamics,thermodynamics,fluid dynamics of multiphase systems and other theories,the dynamic analyses of the particle flying velocity in a high velocity oxygen fuel spray (HVOF) is accomplished.The relationships between the flying velocity of a particle and the flying time or flying length,particle size,hot gas velocity,and pressure or density of the gas are proposed.Meanwhile,the influences of the velocity and mass rate of flow of the flame gas of a HVOF gun,and particle size on the particle flying velocity are discussed in detail.The dynamic pressure concept is introduced to express the flow capacity of hot gas of a HVOF gun,and the relationship between the dynamic pressure of a HVOF gun and the velocity of a particle for depositing is presented.
Experimental investigation of particle velocity distributions in windblown sand movement
Institute of Scientific and Technical Information of China (English)
2008-01-01
With the PDPA(Phase Doppler Particle Analyzer) measurement technology,the probability distributions of particle impact and lift-off velocities on bed surface and the particle velocity distributions at different heights are detected in a wind tunnel. The results show that the probability distribution of impact and lift-off velocities of sand grains can be expressed by a log-normal function,and that of impact and lift-off angles complies with an exponential function. The mean impact angle is between 28° and 39°,and the mean lift-off angle ranges from 30° to 44°. The mean lift-off velocity is 0.81-0.9 times the mean impact velocity. The proportion of backward-impacting particles is 0.05-0.11,and that of backward-entrained particles ranges from 0.04 to 0.13. The probability distribution of particle horizontal velocity at 4 mm height is positive skew,the horizontal velocity of particles at 20 mm height varies widely,and the variation of the particle horizontal velocity at 80 mm height is less than that at 20 mm height. The probability distribution of particle vertical velocity at different heights can be described as a normal function.
Theoretical Particle Limiting Velocity From The Bicubic Equation: Neutrino Example
Soln, Josip
2014-01-01
There has been a lot of interest in measuring the velocities of massive elementary particles, particularly the neutrinos. Some neutrino experi- ments at first observed superluminal neutrinos, thus violating the velocity of light c as a limiting velocity. But, after eliminating some mistakes, such as, for the OPERA experiments plugging the cable correctly and calibrat- ing the clock correctly, the measured neutrino velocity complied with c. Pursuing the theoretical side of particle limiting velocities, here directly from the special relativistic kinematics, in which all physical quantities are in the overall mathematical consistency with each other, one treats formally the velocity of light c as yet to be deduced particle limiting ve- locity, and derives the bicubic equation for the particle limiting velocity in the arbitrary reference frame.
Result of search for low velocity exotic particles
Institute of Scientific and Technical Information of China (English)
MA Xin-Hua; DING Lin-Kai; GUO Ya-Nan; HE Zuo-Xiu; HUO An-Xiang; JING Cai-Liu; KUANG Hao-Huai; MA Yu-Qian; QING Cheng-Rui; SHEN Chang-Quan; YU Zhong-Qiang; ZHANG Chao; ZHU Qing-Qi
2009-01-01
The L3+C experiment, taking advantage of the L3 muon magnetic spectrometer, measured the spatial tracks of charged cosmic ray particles to obtain rigidity as well as velocity. One possible low velocity exotic particle is observed. The existing uncertainties are discussed, and the flux upper limit of the low velocity exotic particles from this observation is deduced based on the assumption of a null observation. The result is 6.2×10-10 cm-2.s-1.sr-1 at 90% confidence level in the velocity range from 0.04c to 0.5c.
Analytical Equation for Estimating Terminal Velocities of Spheroidal Particles
Energy Technology Data Exchange (ETDEWEB)
Marshall, Douglas W.
2007-06-01
An analytical method for estimating the terminal velocities of spheroidal particles in a fluid medium has been derived form a graphical approach proposed by Haider and Levenspiel. Using an analytical equation enables the researcher to calculate the terminal velocities without resorting to graphical interpolations, thereby reducing errors and enabling terminal velocities to be estimated in automated calculations.
Schulze, Peter A; Dang, Nhan C; Bolme, Cynthia A; Brown, Kathryn E; McGrane, Shawn D; Moore, David S
2013-07-25
Laser shock Hugoniot data were obtained using ultrafast dynamic ellipsometry (UDE) for both nonideal (ethanol/water solutions with mole percent χ(ethanol) = 0%, 3.4%, 5.4%, 7.5%, 9.7%, 11%, 18%, 33%, 56%, 100%) and ideal liquid mixtures (toluene/fluorobenzene solutions with mole percent χ(toluene) = 0%, 26.0%, 49.1%, 74.9%, 100%). The shock and particle velocities obtained from the UDE data were compared to the universal liquid Hugoniot (ULH) and to literature shock (plate impact) data where available. It was found that the water UDE data fit to a ULH-form equation suggests an intercept of 1.32 km/s, lower than the literature ambient sound speed in water of 1.495 km/s (Mijakovic et al. J. Mol. Liq. 2011, 164, 66-73). Similarly, the ethanol UDE data fit to a ULH-form equation suggests an intercept of 1.45 km/s, which lies above the literature ambient sound speed in ethanol of 1.14 km/s. Both the literature plate impact and UDE Hugoniot data lie below the ULH for water. Likewise, the literature plate impact and UDE Hugoniot data lie above the ULH for ethanol. The UDE Hugoniot data for the mixtures of water and ethanol cross the predictions of the ULH near the same concentration where the sound speed reaches a maximum. In contrast, the UDE data from the ideal liquids and their mixtures are well behaved and agree with ULH predictions across the concentration range. The deviations of the nonideal ethanol/water data from the ULH suggest that complex hydrogen bonding networks in ethanol/water mixtures alter the compressibility of the mixture.
Particle Velocity Fluctuations in Steady State Sedimentation: Stratification Controlled Correlations
Segrè, P N
2007-01-01
The structure and dynamics of steady state sedimentation of semi-concentrated ($\\phi=0.10$) monodisperse spheres are studied in liquid fluidized beds. Laser turbidity and particle imaging methods are used to measure the particle velocity fluctuations and the steady state concentration profiles. Using a wide range of particle and system sizes, we find that the measured gradients $\
Near-wall velocity measurements by Particle-Shadow-Tracking
Lancien, Pierre; Métivier, François; 10.1007/s00348-007-0260-z
2009-01-01
We report a new method to measure the velocity of a fluid in the vicinity of a wall. The method, that we call Particle-Shadow Tracking (PST), simply consists in seeding the fluid with a small number of fine tracer particles of density close to that of the fluid. The position of each particle and of its shadow on the wall are then tracked simultaneously, allowing one to accurately determine the distance separating tracers from the wall and therefore to extract the velocity field. We present an application of the method to the determination of the velocity profile inside a laminar density current flowing along an inclined plane.
Correlation Between Particle Velocities and Conditions of Abrasive Waterjet Formation
Chen, Wei-Long
1990-01-01
The velocities of water and abrasive particles in abrasive waterjet(AWJ) were measured by the use of Laser Transit Anemometer(LTA). A setup for the velocity measurement was constructed and a statistical technique was used to improve the accuracy of the velocity determination. A comparison of the magnitude of velocities determined by LTA, Piezoelectric Force Transducer and Schlieren Photograph clearly indicates the feasibility of the use of LTA. The velocities of water and particles were measured for different diameters of water and slurry nozzles, abrasive mass flow rates and particle sizes. The performed experiments enabled us to evaluate the effects of conditions of jet formation on the particles velocities. An empirical equation for the prediction of particles velocities was constructed by the use of obtained results. The coefficient of correlation between experimental and computed results is equal to 0.93. The acquired information can be used to select the operational parameters in AWJ cutting. The obtained results also provide information on the acceleration mechanism of entrained particles, which may be used to improve the design of slurry nozzle.
Increasing of horizontal velocity of particles leaving a belt conveyor
Directory of Open Access Journals (Sweden)
Tavares Abraão
2017-01-01
Full Text Available We investigate the transport of granular materials by a conveyor belt via numerical simulations. We report an unusual increasing of particles horizontal velocity when they leave the belt and initiate free-fall. Using Discrete Elements Method, the mechanism underlying this phenomenon were investigated, and a study on how particle and system properties influences this effect were conducted.
Glassy dynamics of Brownian particles with velocity-dependent friction
Yazdi, Anoosheh; Sperl, Matthias
2016-09-01
We consider a two-dimensional model system of Brownian particles in which slow particles are accelerated while fast particles are damped. The motion of the individual particles is described by a Langevin equation with Rayleigh-Helmholtz velocity-dependent friction. In the case of noninteracting particles, the time evolution equations lead to a non-Gaussian velocity distribution. The velocity-dependent friction allows negative values of the friction or energy intakes by slow particles, which we consider active motion, and also causes breaking of the fluctuation dissipation relation. Defining the effective temperature proportional to the second moment of velocity, it is shown that for a constant effective temperature the higher the noise strength, the lower the number of active particles in the system. Using the Mori-Zwanzig formalism and the mode-coupling approximation, the equations of motion for the density autocorrelation function are derived. The equations are solved using the equilibrium structure factors. The integration-through-transients approach is used to derive a relation between the structure factor in the stationary state considering the interacting forces, and the conventional equilibrium static structure factor.
Meyer, M.; Yin, S.; Lupoi, R.
2017-01-01
Cold spray (CS) is attracting interest of research and industry due to its rapid, solid-state particle deposition process and respective advantages over conventional deposition technologies. The acceleration of the particles is critical to the efficiency of CS, and previous investigations rarely consider the particle feed rate. However, because higher particle loadings are typically used in the process, the effect of this cannot be assumed negligible. This study therefore investigates the particle velocities in the supersonic jet of an advanced CS system at low- and high pressure levels and varying particle feed rates using particle image velocimetry. The particle dispersion and velocity evolution along the jet axis were investigated for several feedstock materials. It was found that the average particle velocity noticeably decreases with increasing particulate loading in all cases. The velocity distribution and particle dispersion were also observed to be influenced by the feed rate. Effects are driven by both mass loading and volume fraction, depending on the feedstock's particle velocity parameter. Increased particle feed rates hence affect the magnitude and distribution of impact velocity and consequently the efficiency of CS. In particular, numerical models neglecting this interconnection are required to be further improved, based on these experimental studies.
Magnetophoretic velocities of superparamagnetic particles, agglomerates and complexes
Energy Technology Data Exchange (ETDEWEB)
Wise, Naomi, E-mail: naomi.wise@eng.ox.ac.uk [Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, United Kindom (United Kingdom); Grob, Tim [Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, United Kindom (United Kingdom); Morten, Karl [Nuffield Department of Obstetrics and Gynaecology, University of Oxford, The Women Centre, John Radcliffe Hospital, Headley Way, Headington, Oxford OX3 9DU (United Kingdom); Thompson, Ian; Sheard, Steve [Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, United Kindom (United Kingdom)
2015-06-15
A study into the magnetically induced mobility of four types of superparamagnetic particles (SMPs) was conducted using a video camera, an inverted light microscope and ImageJ tracking software. The objective is to improve the understanding of how SMP-capture assays perform by measuring mobilities of SMPs, when aggregated together or attached to non-magnetic beads (NMB). The magnetically induced velocities of self-assembled SMP chains were measured and found to meet the proposed models. A study into the zeta potential of the SMPs was completed to determine a scenario for maximal electrostatic interactions and efficient capture of the SMPs to a target. SMPs were bound to biotinylated NMBs, representing attachment to a disease biomarker. The drift velocity of SMP chains and SMP–NMB complexes in a gradient magnetic field was compared. It is expected that the observable changes to the magnetophoretic mobility of SMPs attached to a disease biomarker will lead to new biosensor technology. - Highlights: • Analysis of the magnetically induced drift velocity of superparamagnetic particles. • Zeta potential of superparamagnetic particles and non-magnetic particles found. • Drift velocity of single particles, chains and complexes determined experimentally. • Magnetic drift velocities of chains and complexes predicted by simple models.
Settling velocity of marine microplastic particles: laboratory tests
Isachenko, Igor; Khatmullina, Lilia; Chubarenko, Irina; Stepanova, Natalia
2016-04-01
An assessment of the settling velocity of different classes of microplastic particles (microplastic particles is usually outside the Stokes range (Re 105). Even for such transitional regime, the settling velocity of the particles that could be treated as more or less smooth spheres can be predicted with high accuracy by relationships available in publications. This is not the case for the non-spherical particles like fibres or flakes. There are quite a large number of quasi-theoretical or semi-empirical approaches that take into account the shape and roughness of the particles, usually in the applications to transport of natural sediments. Some engineering formulas for the settling velocity are also developed which have simpler structure along with high degree of accuracy on the set of experimental data. For marine microplastic particles, the absence of relationship between the settling velocity and the properties of the particle requires testing on the samples of marine microplastics. Besides small fragments of rigid plastic (granules, microbeads), there are also fibres and thin plastic sheets (flakes) with some degree of flexibility. The applicability of available formulae to thin and/or flexible plastic particles again requires verification by experiments. The set of laboratory experiments on settling of microplastic particles of various shapes and excess densities in homogeneous water is reported. The particles were collected in water column, bottom sediments and on the beaches of the South-Eastern Baltic. The experiments demonstrate not just different regimes of motion but different manner of the sinking of spheres, flakes and fibres. The very definition of the "settling velocity" has a specific meaning for every kind of a particle shape. The results of test measurements are compared with predictions by several published semi-empirical formulae. We conclude that there are several new questions to discuss in this regard: (i) proper definition of the meaning of
High precision measurements of the diamond Hugoniot in and above the melt region
Energy Technology Data Exchange (ETDEWEB)
Hicks, D; Boehly, T; Celliers, P; Bradley, D; Eggert, J; McWilliams, R S; Collins, G
2008-08-05
High precision laser-driven shock wave measurements of the diamond principal Hugoniot have been made at pressures between 6 and 19 Mbar. Shock velocities were determined with 0.3-1.1% precision using a velocity interferometer. Impedance matching analysis, incorporating systematic errors in the equation-of-state of the quartz standard, was used to determine the Hugoniot with 1.2-2.7% precision in density. The results are in good agreement with published ab initio calculations which predict a small negative melt slope along the Hugoniot, but disagree with previous laser-driven shock wave experiments which had observed a large density increase in the melt region. In the extensive solid-liquid coexistence regime between 6 and 10 Mbar these measurements indicate that the mixed phase may be slightly more dense than would be expected from a simple interpolation between liquid and solid Hugoniots.
Gibson, L.; Dattelbaum, Dana; Bartram, Brian; Sheffield, Stephen; Gustavsen, Richard; Handley, Caroline; Shock and Detonation Physics Team; Explosives Modelling Team
2013-06-01
Composition-B (Comp-B) is a solid cast explosive comprised of 59.5 wt% cyclotrimethylene-trinitramine (RDX), 39.5 wt% 2,4,6-trinitrotoluene (TNT), and 1 wt% wax. Its initial density depends on formulation method and as a result, the detonation properties of Comp-B have generally been studied at densities of 1.69 g/cm3 and 1.72 g/cm3. The shock initiation sensitivity (Pop-plot) of Comp-B has been reported previously; obtained using both explosively-driven wedge tests and embedded manganin gauge techniques. We describe the results of a series of gas-gun-driven plate-impact initiation experiments on Comp-B (ρ0 = 1.72 g/cm3) using embedded electromagnetic gauges to obtain in situ particle velocity wave profiles at 10 Lagrangian positions in each experiment. From the wave profiles, an unreacted Hugoniot locus, the run-distance-to-detonation, and initiation waveforms are obtained in each experiment. The results indicate that Comp-B at ρ0 = 1.72 g/cm3 is more sensitive than reported previously. Comparisons are made of the new Hugoniot states with an earlier Hugoniot-based EOS. Measurements of the detonation wave profile using photonic Doppler velocimetry are also presented and discussed in the context of ZND detonation theory.
Particle position and velocity measurement in dusty plasmas using particle tracking velocimetry
Feng, Yan; Goree, J.; Haralson, Zach; Wong, Chun-Shang; Kananovich, A.; Li, Wei
2016-06-01
> Methods of imaging and image analysis are presented for dusty plasma experiments. Micron-sized polymer spheres, electrically suspended in a partially ionized gas, are illuminated by a sheet of laser light and imaged by video cameras. Image analysis methods yield particle positions and velocities of individual particles in each video image. Methods to minimize errors in the particle positions and velocities, which are now commonly used in the dusty plasma community, are described.
Energy Technology Data Exchange (ETDEWEB)
Zhang, J.Y.; Zhu, Y.; Tian, Y.J.; Xie, K.C. [Fuzhou University, Fuzhou (China). Inst. of Chemical Engineering & Technology
2007-02-15
The coking observation and particle flow behaviour in both thermal plasma and cold plexiglas downers were investigated in a binary particle system formed by injecting coarse inert particles (carrying coke away and scouring wall) and fine coal powders into the downer reactor. The results demonstrate that this scheme is a rational selection to prevent coking on downer walls and improve particle velocity distribution along the radial direction. When injected coarse particles mixed with fine powders in downers, the fluctuation of local particle velocity in the radial direction becomes smaller and two peaks in the radial distribution of local particle velocity occur due to the improved dispersing character and flow structure, which are beneficial to the thermo-plasma coal cracking reaction and coking prevention.
Shock Hugoniot measurements on Ta to 0. 78 TPa
Energy Technology Data Exchange (ETDEWEB)
Froeschner, K.E.; Lee, R.S.; Chau, H.H.; Weingart, R.C.
1983-08-18
Symmetric impact shock Hugoniot measurements have been made on Ta with an electrically exploded foil gun system. The results obtained to date for the Hugoniot of Ta cover the range 0.19 to 0.78 TPa (impact velocities from 4.0 to 9.7 km/s) and agree with data obtained by other researchers to within 2.7% rms. Recent improvements in the system include electromagnetic shielding of impactor and target, continuous measurement of impactor velocity with a Fabry-Perot interferometer and computer-aided analysis of shot film. Conservative extrapolation from current operating conditions indicate that pressures of 1.1 to 1.5 TPa could be achieved with little difficulty.
Hugoniot based equation of state for solid polyurea and polyurea aerogel foams
Pacheco, Adam; Gustavsen, Richard; Aslam, Tariq; Bartram, Brian
2015-06-01
The shock response of solid polyurea and polyurea aerogel foams were studied using gas-gun driven plate impact experiments. The materials reported on here are commercially available, brand named AIRLOY X103, and supplied by Aerogel Technologies, LLC. PolyUrea Solid, with nominal density 1.13 g/cm3, and two aerogel foams, with nominal densities of 0.20 and 0.35 g/cm3, were studied. Most experiments were of the multi-slug type in which a sample of each density was mounted on an oxygen free high conductivity copper or 6061 aluminum baseplate. In these experiments, shock velocity was measured and other shock states calculated by the impedance matching technique. Other experiments were of the front surface impact type in which the foam sample was mounted in the projectile and impacted a lithium fluoride window. Shock states were calculated using the measured particle velocity, the projectile velocity, and the lithium fluoride Hugoniot. Peak particle velocity obtained in the foam was > 4.3 km/s, and peak pressure in the solid was > 29 GPa. A break in the data for the solid above particle velocities of 2.0 km/s (~ 18 GPa) indicates a probable decomposition reaction. A p- α model with Mie-Grueneisen form for the solid reasonably replicates the data.
Low-velocity collisions of a many-particle-system
Weidling, René; Blum, Jurgen; Güttler, Carsten
To understand the formation of planetesimals, it is important to study collisions between dust aggregates. As shown in the collision model by Güttler et al. (2010, Astronomy & Astrophysics, in press), the results of dust-aggregate collisions vary according to size, velocity and porosity of the particles. While many experiments were performed for velocities above ˜0.1 m/s, it is very difficult to achieve lower velocities. In our drop tower-experiment, an ensemble of dust-particles undergoes inelastic collisions and by this dynamically 'cools' down so that velocities below 1 cm/s can be reached. In order to achieve even lower velocities than in the drop tower, the experiment will be part of MEDEA-payload onboard a suborbital flight of Blue Origin, providing about 180 seconds of reduced gravity. During this time we will not only be able to observe many more collisions, but allow the many-particle system to show collective effects like clustering, which have so far never been studied in dust aggregation experiments.
Particle Velocity Measurement for Spherical Wave in Solid
Institute of Scientific and Technical Information of China (English)
ZHENG Xue-feng; WANG Zhan-jiang; LIN Jun-de; SHEN Jun-yi
2006-01-01
An experimental technique for research on spherical divergent wave propagation in a solid has been developed,in which the source of generating spherical wave is a center initiating explosive charge designed in a mini-spherical shape with yield equivalent to 0.125 g and 0. 486 g TNT and a set of circular electromagnetic particle velocity gages is used to record the particle velocity histories. By using the circular electromagnetic particle velocity gages, the signal outputs not only are unattenuated due to the geometrical divergence, but also represent the average of the measured dynamic states of the medium over a circle on the wavefront. The distinctive features of this technique are very useful for the study of spherical divergent wave propagation in a solid, especially in an inhomogeneous solid, and the corresponding material dynamics.Many experimental measurements were conducted in polymethylmethacrylate (PMMA) and granite by means of the technique, and the reproducibility of tests was shown to be good. The measurement technique of the circular electromagnetic particle velocity gages is also suitable to the case of cylindrical wave.
A simple formula for predicting settling velocity of sediment particles
Directory of Open Access Journals (Sweden)
Song Zhiyao
2008-03-01
Full Text Available Based on the general relationship described by Cheng between the drag coefficient and the Reynolds number of a particle, a new relationship between the Reynolds number and a dimensionless particle parameter is proposed. Using a trial-and-error procedure to minimize errors, the coefficients were determined and a formula was developed for predicting the settling velocity of natural sediment particles. This formula has higher prediction accuracy than other published formulas and it is applicable to all Reynolds numbers less than 2×105.
A generalized transport-velocity formulation for smoothed particle hydrodynamics
Energy Technology Data Exchange (ETDEWEB)
Zhang, Chi; Hu, Xiangyu Y., E-mail: xiangyu.hu@tum.de; Adams, Nikolaus A.
2017-05-15
The standard smoothed particle hydrodynamics (SPH) method suffers from tensile instability. In fluid-dynamics simulations this instability leads to particle clumping and void regions when negative pressure occurs. In solid-dynamics simulations, it results in unphysical structure fragmentation. In this work the transport-velocity formulation of Adami et al. (2013) is generalized for providing a solution of this long-standing problem. Other than imposing a global background pressure, a variable background pressure is used to modify the particle transport velocity and eliminate the tensile instability completely. Furthermore, such a modification is localized by defining a shortened smoothing length. The generalized formulation is suitable for fluid and solid materials with and without free surfaces. The results of extensive numerical tests on both fluid and solid dynamics problems indicate that the new method provides a unified approach for multi-physics SPH simulations.
Special relativity with an arbitrary limiting velocity of particle
Parvan, A S
2012-01-01
It is shown that a generalized special theory of relativity (GSTR) with an arbitrary limiting velocity of particle different or equal to the speed of light in vacuum can be constructed from the canonical equation of the 4-dimensional hyperboloid of revolution. In particular, when the limiting velocity equals the speed of light, the special theory of relativity (STR), which corresponds to the equation of the equilateral hyperboloid of revolution, is recovered. The (generalized) Lorentz transformations were obtained. It was established that the rest mass of a space-like particle is real. Our results strongly suggest that the muon neutrino in the OPERA experiment is most likely a time-like or a light-like superluminal particle, whose limiting velocity may exceed the speed of light in vacuum, rather than a superluminal space-like particle (tachyon) with a speed limit equal to speed of light for which the rest mass $mc^{2}=117.1^{+11.0}_{-10.5}$ MeV.
Particle velocity non-uniformity and steady-wave propagation
Meshcheryakov, Yu. I.
2017-03-01
A constitutive equation grounded in dislocation dynamics is shown to be incapable of describing the propagation of shock fronts in solids. Shock wave experiments and theoretical investigations motivate an additional collective mechanism of stress relaxation that should be incorporated into the model through the standard deviation of the particle velocity, which is found to be proportional to the strain rate. In this case, the governing equation system results in a second-order differential equation of square non-linearity. Solution to this equation and calculations for D16 aluminum alloy show a more precise coincidence of the theoretical and experimental velocity profiles.
Turbulence-Induced Relative Velocity of Dust Particles I: Identical Particles
Pan, Liubin
2013-01-01
We study the relative velocity of inertial particles suspended in turbulent flows and discuss implications for dust particle collisions in protoplanetay disks. We simulate a weakly compressible turbulent flow at 512^3 and evolve 14 species of particles with different friction timescales, tau_p. The Stoke number, St, of the smallest particles is ~0.1, where St is the ratio of tau_p to the Kolmorgorov timescale, while the largest particles have tau_p =54T_L, where T_L is the flow Lagrangian correlation timescale. We find that the model by Pan & Padoan (PP10) gives satisfactory predictions for the rms relative velocity between identical particles. The model shows that the relative velocity of two same-size particles is determined by the particle memory of the flow velocity difference along their trajectories, and thus depends on the particle pair separation backward in time. We compute the collision kernel accounting for the effect of turbulent clustering. The kernel per unit cross section shows an abrupt ri...
Sound field separation with sound pressure and particle velocity measurements
DEFF Research Database (Denmark)
Fernandez Grande, Efren; Jacobsen, Finn; Leclère, Quentin
2012-01-01
separation techniques make it possible to distinguish between outgoing and incoming waves from the two sides, and thus NAH can be applied. In this paper, a separation method based on the measurement of the particle velocity in two layers and another method based on the measurement of the pressure...... and the velocity in a single layer are proposed. The two methods use an equivalent source formulation with separate transfer matrices for the outgoing and incoming waves, so that the sound from the two sides of the array can be modeled independently. A weighting scheme is proposed to account for the distance...... pressure-velocity method, although it requires an additional measurement surface. On the whole, the separation methods can be useful when the disturbance of the incoming field is significant. Otherwise the direct reconstruction is more accurate and straightforward. © 2012 Acoustical Society of America....
Fluorescence-Doped Particles for Simultaneous Temperature and Velocity Imaging
Danehy, Paul M.; Tiemsin, Pacita I.; Wohl, Chrostopher J.; Verkamp, Max; Lowe, T.; Maisto, P.; Byun, G.; Simpson, R.
2012-01-01
Polystyrene latex microspheres (PSLs) have been used for particle image velocimetry (PIV) and laser Doppler velocimetry (LDV) measurements for several decades. With advances in laser technologies, instrumentation, and data processing, the capability to collect more information about fluid flow beyond velocity is possible using new seed materials. To provide additional measurement capability, PSLs were synthesized with temperature-sensitive fluorescent dyes incorporated within the particle. These multifunctional PSLs would have the greatest impact if they could be used in large scale facilities with minimal modification to the facilities or the existing instrumentation. Consequently, several potential dyes were identified that were amenable to existing laser systems currently utilized in wind tunnels at NASA Langley Research Center as well as other wind and fluid (water) tunnels. PSLs incorporated with Rhodamine B, dichlorofluorescein (DCF, also known as fluorescein 548 or fluorescein 27) and other dyes were synthesized and characterized for morphology and spectral properties. The resulting particles were demonstrated to exhibit fluorescent emission, which would enable determination of both fluid velocity and temperature. They also would allow near-wall velocity measurements whereas laser scatter from surfaces currently prevents near-wall measurements using undoped seed materials. Preliminary results in a wind tunnel facility located at Virginia Polytechnic Institute and State University (Virginia Tech) have verified fluorescent signal detection and temperature sensitivity of fluorophore-doped PSLs.
About the velocity operator for spinning particles in quantum mechanics
Energy Technology Data Exchange (ETDEWEB)
Salesi, Giovanni [Universita Statale di Catania (Italy). Dipt. di Fisica]|[Istituto Nazionale di Fisica Nucleare, Catania (Italy); Recami, Erasmo; Rodrigues Junior, Waldyr A. [Universidade Estadual de Campinas, SP (Brazil). Dept. de Matematica Aplicada
1995-12-01
Starting from the formal expressions of the hydrodynamical (or local) quantities employed in the applications of Clifford Algebras to quantum mechanics, we introduce - in terms of the ordinary tensorial framework - a new definition for the field of a generic quantity. By translating from Clifford into sensor algebra, we also propose a new (non-relativistic) velocity operator for a spin 1/2 particle. This operator is the sum of the ordinary part p/m describing the mean motion (the motion of the center-of-mass), and of a second part associated with the so-called Zitterbewegung, which is the spin internal motion observed in the center-of-mass frame. This spin component of the velocity operator is non-zero not only in the Pauli theoretical framework in presence of external magnetic fields and spin precession, but also in the Schroedinger case, when the wave-function is a spin eigenstate. In the latter case, one gets a decomposition of the velocity field for the Madelueng fluid into two distinct parts: which constitutes the non-relativistic analogue of the Gordon decomposition for the Dirac current. We find furthermore that the Zitterbewegung motion involves a velocity field which is solenoidal, and that the local angular velocity is parallel to the spin vector. In presence of a non-constant spin vector (Pauli case) we have, besides the component normal to spin present even in the Schroedinger theory, also a component of the local velocity which is parallel to the rotor of the spin vector. (author). 19 refs.
The Hugoniot and chemistry of ablator plastic below 100 GPa
Akin, M. C.; Fratanduono, D. E.; Chau, R.
2016-01-01
The equation of state of glow discharge polymer (GDP) was measured to high precision using the two-stage light gas gun at Lawrence Livermore National Laboratory at pressures up to 70 GPa. Both absolute measurements and impedance matching techniques were used to determine the principal and secondary Hugoniots. GDP likely reacts at about 30 GPa, demonstrated by specific emission at 450 nm coupled with changes to the Hugoniot and reshock points. As a result of these reactions, the shock pressure in GDP evolves in time, leading to a possible decrease in pressure as compression increases, or negative compressibility, and causing complex pressure profiles within the plastic. Velocity wave profile variation was observed as a function of position on each shot, suggesting some internal variation of GDP may be present, which would be consistent with previous observations. The complex temporal and possibly structural evolution of GDP under shock compression suggests that calculations of compression and pressure based upon bulk or mean measurements may lead to artificially low pressures and high compressions. Evidence for this includes a large shift in calculating reshock pressures based on the reflected Hugoniot. These changes also suggest other degradation mechanisms for inertial confinement fusion implosions.
Hugoniot model for Si from L140
Energy Technology Data Exchange (ETDEWEB)
Whitley, H. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wu, C. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2016-09-20
In this document, we provide the Hugoniot for silicon from LEOS table L140. The Hugoniot pressures are supplied for temperatures between 298.0 and 1:16 10^{9} Kelvin and densities of 2.329 and 10.07 g/cc. This EOS model was developed by the quotidian EOS methodology, which is a widely used and robust method for producing tabular EOS data.[1, 2] Table 1 lists the included quantities and units of those data.
Quantum-statistical equation-of-state models of dense plasmas: high-pressure Hugoniot shock adiabats
Pain, Jean-Christophe
2007-01-01
We present a detailed comparison of two self-consistent equation-of-state models which differ from their electronic contribution: the atom in a spherical cell and the atom in a jellium of charges. It is shown that both models are well suited for the calculation of Hugoniot shock adiabats in the high pressure range (1 Mbar-10 Gbar), and that the atom-in-a-jellium model provides a better treatment of pressure ionization. Comparisons with experimental data are also presented. Shell effects on shock adiabats are reviewed in the light of these models. They lead to additional features not only in the variations of pressure versus density, but also in the variations of shock velocity versus particle velocity. Moreover, such effects are found to be responsible for enhancement of the electronic specific heat.
Velocity operator and velocity field for spinning particles in (non-relativistic) quantum mechanics
Energy Technology Data Exchange (ETDEWEB)
Recami, E. [Bergamo Univ. (Italy). Facolta` di Ingegneria]|[INFN, Milan (Italy)]|[Campinas State Univ., SP (Brazil). Dept. of Applied Math.; Salesi, G. [Catania Univ. (Italy). Dip. di Fisica
1995-06-01
Starting from the formal expressions of the hydrodynamical (or local) quantities employed in the applications of Clifford Algebras to quantum mechanics, the paper introduces - in terms of the ordinary tensorial framework - a new definition for the field of a generic quantity. By translating from Clifford into tensor algebra, a new (non-relativistic) velocity operator for a spin 1/2 particle is also proposed. This operator is the sum of the ordinary part p/m describing the mean motion (the motion of the center-of-mass), and of a second part associated with the so-called Zitterbewegung, which is the spin internal motion observed in the center-of- mass frame. This spin component of the velocity operator is non-zero not only in the Pauli theoretical framework, i.e. in presence of external magnetic fields and spin precession, but also in the Schroedinger case, when the wave-function is a spin eigenstate. In the latter case, one gets a decomposition of the velocity field for the Madelueng fluid into two distinct parts: which the constitutes the non-relativistic analogue of the Gordon decomposition for the Dirac current.
Particle fluctuation velocity in gas-fluidized beds
Cody, George
1998-11-01
The stability of the uniform state of a gas-fluidized bed was first discussed by Wilhelm and Kwauk in 1948, modeled by Jackson in 1963, and summarized in empirical rules by Geldart in 1973. Particles (Geldart-A) below a critical diameter fluidize before bubbling, and those above that diameter (Geldart-B) bubble at fluidization - why? The critical stability parameter is the mean-squared particle fluctuation velocity, or granular temperature, T*. It was first measured for monodispersed glass spheres by acoustic shot-noise excitation of the wall (Cody et al., 1996), and by diffusing-wave optical spectroscopy at the wall (Menon and Durian, 1997). For Geldart-B spheres the data agree, and both agree with a recent statistical model for T* based on random particle impact (Buyevich and Kapbasov, 1998). T* of Cody et al. jumps by tenfold at the Geldart-B/A transition, sufficient to make these Geldart-A spheres stable in the Jackson theory. It is proposed that the absence of this jump in the Menon and Durian data reflects the significant difference in bed geometry and circulation in the two experiments, and the dominant effect of random shear fluctuations on T* for sphere diameters in the Geldart-A regime (Cody, Kapbasov, Buyevich, Symp. B-1, Annual Meeting. AIChE 11/15-20/98).
Hugoniot Measurements of Silicon Shock Compressed to 25 Mbar
Henderson, B.; Polsin, D. N.; Boehly, T. R.; Gregor, M. C.; Hu, S. X.; Collins, G. W.; Rygg, J. R.; Fratanduono, D. E.; Celliers, P. M.
2016-10-01
We present results of laser-driven shock experiments that compressed silicon samples to 25 Mbar. Impedance matching to a quartz reference provided Hugoniot data. Since silicon is opaque, a quartz witness was placed adjacent to the silicon samples; this afforded the use of the unsteady wave correction to increase the precision of the transit-time measurements of shock velocity. Results are compared both SESAME tables and to quantum molecular dynamics calculations. This material is based upon work supported by the Department Of Energy National Nuclear Security Administration under Award Number DE-NA0001944.
Particle size effect on velocity of gold particle embedded laser driven plastic targets
Dhareshwar, L. J.; Chaurasia, S.; Manmohan, K.; Badziak, J.; Wolowski, J.; Kasperczuk, A.; Pisarczyk, T.; Ryc, L.; Rosinski, M.; Parys, P.; Pisarczyk, P.; Ullschmidt, J.; Krousky, E.; Masek, K.
2013-11-01
A scheme to enhance the target foil velocity has been investigated for a direct drive inertial fusion target. Polymer PVA (polyvinyl alcohol or (C2H4O)n) target foils of thickness 15-20 μm were used in plain form and also embedded with gold in the nano-particle (Au-np) or micro-particle (Au-mp) form. Nano-particles were of 20-50 nm and micro-particles of 2-3 μm in size. 17% higher target velocity was measured for foils embedded with nano-particle gold (Au-np) as compared to targets embedded with micro-particles gold (Au-mp). The weight of gold in both cases was in the range 40-55% of the full target weight (atomic percentage of about 22%). Experiments were performed with the single beam of the Prague Asterix Laser System (PALS) at 0.43 μm wavelength (3ω of the fundamental wavelength), 120 Joule energy and 300 psec pulse duration. Laser intensity on the target was about 1015 W/cm2. A simple model has been proposed to explain the experimental results.
Particle size effect on velocity of gold particle embedded laser driven plastic targets
Directory of Open Access Journals (Sweden)
Dhareshwar L.J.
2013-11-01
Full Text Available A scheme to enhance the target foil velocity has been investigated for a direct drive inertial fusion target. Polymer PVA (polyvinyl alcohol or (C2H4On target foils of thickness 15–20 μm were used in plain form and also embedded with gold in the nano-particle (Au-np or micro-particle (Au-mp form. Nano-particles were of 20–50 nm and micro-particles of 2–3 μm in size. 17% higher target velocity was measured for foils embedded with nano-particle gold (Au-np as compared to targets embedded with micro-particles gold (Au-mp. The weight of gold in both cases was in the range 40–55% of the full target weight (atomic percentage of about 22%. Experiments were performed with the single beam of the Prague Asterix Laser System (PALS at 0.43 μm wavelength (3ω of the fundamental wavelength, 120 Joule energy and 300 psec pulse duration. Laser intensity on the target was about 1015 W/cm2. A simple model has been proposed to explain the experimental results.
Shock Hugoniot measurements of CH at Gbar pressures at the NIF
Kritcher, A. L.; Doeppner, T.; Swift, D.; Hawreliak, J.; Nilsen, J.; Hammer, J.; Bachmann, B.; Collins, G.; Landen, O.; Keane, C.; Glenzer, S.; Rothman, S.; Chapman, D.; Kraus, D.; Falcone, R. W.
2016-03-01
Laboratory measurements of the shock Hugoniot at high pressure, exceeding several hundred Mbar, are of great importance in the understanding and accurate modeling of matter at extreme conditions. In this work we present a platform to measure the material properties, specifically the single shock Hugoniot and electron temperature, at extreme pressures of ∼Gbar at the National Ignition Facility (NIF). In these experiments we launch spherically convergent shocks into solid CH, using a Hohlraum radiation drive. X-ray radiography is applied to measure the shock speed and infer the mass density profile, enabling determining of the material pressure and Hugoniot equation of state. X-ray scattering is applied to measure the electron temperature through measurement of the electron velocity distribution.
The Hugoniot and Strength of Ultem 1000 Polyetherimide
Neel, Christopher; Chhabildas, Lalit
2015-06-01
Parallel-plate impact studies using a single stage powder gun have been performed to investigate the shock and subsequent release behavior of the commercial polyetherimide polymer Ultem™ up to 14 GPa. Two different types of setups were used to observe both the shock and unloading behavior. In one setup, the unloading was continuously tracked, and in the other the unloading was inferred from observing stress wave reverberations in a metallic plate on the sample. The results from the two methods concerning the loading behavior agreed very well and the resulting Hugoniot was found to be US = 2.42 + 1.601*UP. This study also demonstrated that the metallic plate reverberation method of following the unloading response, though not observing the continuous unloading of the sample, agrees extremely well with the unloading response recorded using continuous data obtained using interferometry windows. The results are used to build a case that the strength τ of Ultem when shock loaded to 1-8 GPa is ~0.05 GPa. Furthermore, an investigation of the ratio of the release wave velocity to the shock wave velocity indicates that a transition to bulk liquid (no strength) behavior is not achieved until Hugoniot strains exceed 0.35 for amorphous polymers such as Ultem.
Zaghloul, Mofreh R
2015-01-01
We present computational results and tables of the equation-of-state, thermodynamic properties, and shock Hugoniot for hot dense fluid deuterium. The present results are generated using a recently developed chemical model that takes into account different high density effects such as Coulomb interactions among charged particles, partial degeneracy, and intensive short range hard core repulsion. Internal partition functions are evaluated in a statistical-mechanically consistent way implementing recent developments in the literature. The shock Hugoniot curve derived from the present tables is in reasonable overall agreement with the Hugoniot derived from the Nova-laser shock wave experiments on liquid deuterium, showing that deuterium has a significantly higher compressibility than predicted by the SESAME tables or by Path Integral Monte Carlo (PIMC) calculations. Computational results are presented as surface plots for the dissociated fraction, degree of ionization, pressure, and specific internal energy for d...
Del Bello, Elisabetta; Taddeucci, Jacopo; de’ Michieli Vitturi, Mattia; Scarlato, Piergiorgio; Andronico, Daniele; Scollo, Simona; Kueppers, Ulrich; Ricci, Tullio
2017-01-01
Most of the current ash transport and dispersion models neglect particle-fluid (two-way) and particle-fluid plus particle-particle (four-way) reciprocal interactions during particle fallout from volcanic plumes. These interactions, a function of particle concentration in the plume, could play an important role, explaining, for example, discrepancies between observed and modelled ash deposits. Aiming at a more accurate prediction of volcanic ash dispersal and sedimentation, the settling of ash particles at particle volume fractions (ϕp) ranging 10‑7-10‑3 was performed in laboratory experiments and reproduced by numerical simulations that take into account first the two-way and then the four-way coupling. Results show that the velocity of particles settling together can exceed the velocity of particles settling individually by up to 4 times for ϕp ~ 10‑3. Comparisons between experimental and simulation results reveal that, during the sedimentation process, the settling velocity is largely enhanced by particle-fluid interactions but partly hindered by particle-particle interactions with increasing ϕp. Combining the experimental and numerical results, we provide an empirical model allowing correction of the settling velocity of particles of any size, density, and shape, as a function of ϕp. These corrections will impact volcanic plume modelling results as well as remote sensing retrieval techniques for plume parameters.
Del Bello, Elisabetta; Taddeucci, Jacopo; de’ Michieli Vitturi, Mattia; Scarlato, Piergiorgio; Andronico, Daniele; Scollo, Simona; Kueppers, Ulrich; Ricci, Tullio
2017-01-01
Most of the current ash transport and dispersion models neglect particle-fluid (two-way) and particle-fluid plus particle-particle (four-way) reciprocal interactions during particle fallout from volcanic plumes. These interactions, a function of particle concentration in the plume, could play an important role, explaining, for example, discrepancies between observed and modelled ash deposits. Aiming at a more accurate prediction of volcanic ash dispersal and sedimentation, the settling of ash particles at particle volume fractions (ϕp) ranging 10−7-10−3 was performed in laboratory experiments and reproduced by numerical simulations that take into account first the two-way and then the four-way coupling. Results show that the velocity of particles settling together can exceed the velocity of particles settling individually by up to 4 times for ϕp ~ 10−3. Comparisons between experimental and simulation results reveal that, during the sedimentation process, the settling velocity is largely enhanced by particle-fluid interactions but partly hindered by particle-particle interactions with increasing ϕp. Combining the experimental and numerical results, we provide an empirical model allowing correction of the settling velocity of particles of any size, density, and shape, as a function of ϕp. These corrections will impact volcanic plume modelling results as well as remote sensing retrieval techniques for plume parameters. PMID:28045056
Investigation on in-flight particle velocity in supersonic plasma spraying
Institute of Scientific and Technical Information of China (English)
Li Changqing; Ma Shining; Ye Xionglin
2005-01-01
In-flight particle velocity and flux distribution were measured using CCD thermal spray monitor system during supersonic plasma spray processing with nano-structured Al203-TiO2 feed stocks. According to the results of particle flux measurement, the largest radian of the divergent particle stream is about 0. 2. Within the measuring range, top speed of inflight particles reached 800 m/s. Particle acceleration was accomplished within 4 cm down stream of the nozzle. Average particle velocity ( about 450 m/s) exceeded local sound speed (340 m/s) even at a mean standoff distance of 17 cm. With increasing mean standoff distance, average velocity of in-flight particle decreased according to a parabolic rule approximately.Image diagnosis showed that the result of in-flight particle velocity measurement is credible.
Shock Hugoniot behavior of single crystal titanium using atomistic simulations
Mackenchery, Karoon; Dongare, Avinash
2017-01-01
Atomistic shock simulations are performed for single crystal titanium using four different interatomic potentials at impact velocities ranging from 0.5 km/s to 2.0 km/s. These potentials comprise of three parameterizations in the formulation of the embedded atom method and one formulation of the modified embedded atom method. The capability of the potentials to model the shock deformation and failure behavior is investigated by computing the shock hugoniot response of titanium and comparing to existing experimental data. In addition, the capability to reproduce the shock induced alpha (α) to omega (ω) phase transformation seen in Ti is investigated. The shock wave structure is discussed and the velocities for the elastic, plastic and the α-ω phase transformation waves are calculated for all the interatomic potentials considered.
Zero-velocity magnetophoretic method for the determination of particle magnetic susceptibility.
Watarai, Hitoshi; Duc, Hoang Trong Tien; Lan, Tran Thi Ngoc; Zhang, Tianyi; Tsukahara, Satoshi
2014-01-01
A simple zero-velocity method to determine the particle magnetic susceptibility by measuring the magnetophoretic velocity was proposed. The principle is that the magnetophoretic velocity of a particle in a liquid medium must be zero when the magnetic susceptibilities of the medium and the particle are equal, or the gravity force and the magnetophoretic force are balanced. By changing the medium magnetic susceptibility and measuring the magnetophoretic velocity of a particle, the particle magnetic susceptibility was determined from the medium magnetic susceptibility under the zero-velocity condition. The feasibility of the method was demonstrated for polystyrene particles using a Dy(III) solution in the horizontal migration mode and different organic solvents in the vertical migration mode.
Directory of Open Access Journals (Sweden)
Roy G.
2011-01-01
Full Text Available Lithium fluoride (LiF windows are extensively used in traditional shock wave experiments because of their transparency beyond 100 GPa along [100] axis. A correct knowledge of the optical and mechanical properties of these windows is essential in order to analyze the experimental data and to determine the equation of state on a large variety of metals. This in mind, the windows supply is systematically characterized in order to determine the density, the thermal expansion and the crystalline orientation. Furthermore, an experimental campaign is conducted in order to characterize the windows properties under shock loading at 300 K and preheated conditions (450 K. This article describes the experiments, details the analysis and presents the results. Particle velocity measurements are carried out at the interface of a multiple windows stack using interferometer diagnostic (VISAR and IDL at 532 nm wavelength. Shock velocity is calculated as a function of the time of flight through each window. The optical correction is calculated as the ratio of the apparent velocity gap and the particle velocity at the free surface. To go further, the Rankine-Hugoniot relations are applied to calculate the pressure and the density. Then, the results and uncertainties are presented and compared with literature data.
DEFF Research Database (Denmark)
Nakhaei, Mohammadhadi; Lessani, B.
2016-01-01
The effect of solid inertial particles on the velocity and temperature statistics of a non-isothermal turbulentchannel flow is studied using direct numerical simulation. The particles inertia is varied by changingthe particles diameter. The density of particles is kept constant. A two-way coupled...
The Liquid Krypton Hugoniot at Megabar Pressures
Root, Seth; Magyar, Rudy J.; Mattsson, Ann E.; Hanson, David L.; Mattsson, Thomas R.
2011-06-01
Krypton is an ideal candidate to study multi-Mbar pressure effects on elements with filled-shell electron configurations. Few experimental data on Kr at high pressures exist, however, with prior Hugoniot data limited to below 1 Mbar. Similar to liquid xenon, the current Kr equation of state (EOS) models agree with the data and each other below 1 Mbar, but diverge with increasing pressure. We examine the liquid Kr Hugoniot up to 8 Mbar by using density functional theory (DFT) methods and by performing shock compression experiments on the Sandia Z - accelerator. Our initial DFT Kr Hugoniot calculations indicated the standard PAW potential is inadequate at the high pressures and temperatures occurring under strong shock compression. A new Kr PAW potential was constructed giving improved scattering properties of the atom at high energies. The Z Hugoniot measurements above 1 Mbar validated the DFT results and the pseudo-potential. The DFT and Z results suggest that the current EOS models require some modifications. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U. S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Jacobs, Corrine; Jendrassak, Marek; Limpasuvan, Varavut; Gurka, Roi; Hackett, Erin E
2015-01-01
The settling velocities of natural, synthetic, and industrial particles were measured in a grid turbulence facility using optical measurement techniques. Particle Image Velocimetry and 2D Particle Tracking were used to measure the instantaneous velocities of the flow and the particles' trajectories simultaneously. We find that for particles examined in this study (Rep = 0.4 - 123), settling velocity is either enhanced or unchanged relative to stagnant flow for the range of investigated turbulence conditions. The smallest particles scaled best with a Kolmogorov-based Stokes number indicating the dissipative scales influence their dynamics. In contrast, the mid-sized particles scaled better with a Stokes number based on the integral time scale. The largest particles were largely unaffected by the flow conditions. Using Proper Orthogonal Decomposition (POD), the flow pattern scales are compared to particle trajectory curvature to complement results obtained through dimensional analysis using Stokes numbers. The ...
Biofilm effects on size gradation, drag coefficient and settling velocity of sediment particles
Institute of Scientific and Technical Information of China (English)
Qian-qian SHANG; Hong-wei FANG; Hui-ming ZHAO; Guo-jian HE; Zheng-hui CUI
2014-01-01
Sediment particles are often colonized by biofilm in a natural aquatic ecological system, especially in eutrophic water body. A series of laboratory experiments on particle size gradation, drag coefficient and settling velocity were conducted after natural sediment was colonized by biofilm for 5, 10, 15 and 20 days. Particle image acquisition, particle tracking techniques of Particle Image Velocimetry and Particle Tracking Velocimetry were utilized to analyze the changes of these properties. The experimental results indicate that the size gradation, the drag force exerted on bio-particles, and the settling velocity of bio-particles underwent significant change due to the growth of biofilm onto the sediment surface. The study proposes a characteristic particle size formula and a bio-particle settling velocity formula based on the regression of experiment results, that the settling velocity is only 50% to 60%as the single particle which has the same diameter and density. However, biofilm growth causes large particle which the settling velocities are approximately 10 times larger than that of primary particles. These results may be specifically used in the low energy reservoir or lake environment.
Two-dimensional acoustic particle velocity sensors based on a crossing wires topology
Pjetri, O.
2016-01-01
This thesis describes the design and realization of two-dimensional acoustic particle velocity sensors based on thermal convection. The sensors are of the order of 1 mm×1 mm and consist of two crossing wires with each wire sensing the acoustic particle velocity in the direction parallel to it. Their
Institute of Scientific and Technical Information of China (English)
ZHANG Jia-Lin; YU Hong-Wei
2005-01-01
@@ We show that the velocity and position dispersions of a test particle with a nonzero constant classical velocity undergoing Brownian motion caused by electromagnetic vacuum fluctuations in a space with plane boundaries can be obtained from those of the static case by Lorentz transformation. We explicitly derive the Lorentz transformations relating the dispersions of the two cases and then apply them to the case of the Brownian motion of a test particle with a constant classical velocity parallel to the boundary between two conducting planes. Our results show that the influence of a nonzero initial velocity is negligible for nonrelativistic test particles.
Directory of Open Access Journals (Sweden)
Chon Chan
2011-01-01
Full Text Available Abstract An alternative insight is presented concerning heat propagation velocity scales in predicting the effective thermal conductivities of nanofluids. The widely applied Brownian particle velocities in published literature are often found too slow to describe the relatively higher nanofluid conductivities. In contrast, the present model proposes a faster heat transfer velocity at the same order as the speed of sound, rooted in a modified kinetic principle. In addition, this model accounts for both nanoparticle heat dissipation as well as coagulation effects. This novel model of effective thermal conductivities of nanofluids agrees well with an extended range of experimental data.
Del Bello, E.; Taddeucci, J.; De'Michieli Vitturi, M.; Scarlato, P.; Andronico, D.; Scollo, S.; Kueppers, U.
2015-12-01
We present the first report of experimental measurements of the enhanced settling velocity of volcanic particles as function of particle volume fraction. In order to investigate the differences in the aerodynamic behavior of ash particles when settling individually or in mass, we performed systematic large-scale ash settling experiments using natural basaltic and phonolitic ash. By releasing ash particles at different, controlled volumetric flow rates, in an unconstrained open space and at minimal air movement, we measured their terminal velocity, size, and particle volume fraction with a high-speed camera at 2000 fps. Enhanced settling velocities of individual particles increase with increasing particle volume fraction. This suggests that particle clustering during fallout may be one reason explaining larger than theoretical depletion rates of fine particles from volcanic ash clouds. We provide a quantitative empirical model that allows to calculate, from a given particle size and density, the enhanced velocity resulting from a given particle volume fraction. The proposed model has the potential to serve as a simple tool for the prediction of the terminal velocity of ash of an hypothetical distribution of ash of known particle size and volume fraction. This is of particular importance for advection-diffusion transport model of ash where generally a one-way coupling is adopted, considering only the flow effects on particles. To better quantify the importance of the enhanced settling velocity in ash dispersal, we finally introduced the new formulation in a Lagrangian model calculating for realistic eruptive conditions the resulting ash concentration in the atmosphere and on the ground.
Gopalan, Balaji; Shaffer, Frank
2013-11-01
Fluid flows that are loaded with high concentration of solid particles are common in oil and chemical processing industries. However, the opaque nature of the flow fields and the complex nature of the flow have hampered the experimental and computational study of these processes. This has led to the development of a number of customized experimental techniques for high concentration particle flows for evaluation and improvement of CFD models. This includes techniques that track few individual particles, measures average particle velocity over a small sample volume and those over a large sample volume. In this work novel high speed PIV (HsPIV), with individual particle tracking, was utilized to measure velocities of individual particles in gas-particle flow fields at the walls circulating and bubbling fluidized bed. The HsPIV measurement technique has the ability to simultaneously recognize and track thousands of individual particles in flows of high particle concentration. To determine the effect of the size of the sample volume on particle velocity measurements, the PDF of Lagrangian particle velocity was compared with the PDF of Eulerian for different domain sizes over a range of flow conditions. The results will show that measured particle velocity distribution can vary from technique to technique and this bias has to be accounted in comparison with CFD simulations.
Statistics of particle pair relative velocity in the homogeneous shear flow
Gualtieri, P.; Picano, F.; Sardina, G.; Casciola, C. M.
2012-02-01
Small scale clustering of inertial particles and relative velocity of particle pairs have been fully characterized for statistically steady homogeneous isotropic flows. Depending on the particle Stokes relaxation time, the spatial distribution of the disperse phase results in a multi-scale manifold characterized by local particle concentration and voids and, because of finite inertia, the two nearby particles have high probability to exhibit large relative velocities. Both effects might explain the speed-up of particle collision rate in turbulent flows. Recently it has been shown that the large scale geometry of the flow plays a crucial role in organizing small scale particle clusters. For instance, a mean shear preferentially orients particle patterns. In this case, depending on the Stokes time, anisotropic clustering may occur even in the inertial range of scales where the turbulent fluctuations which drive the particles have already recovered isotropy. Here we consider the statistics of particle pair relative velocity in the homogeneous shear flow, the prototypical flow which manifests anisotropic clustering at small scales. We show that the mean shear, by imprinting anisotropy on the large scale velocity fluctuations, dramatically affects the particle relative velocity distribution even in the range of small scales where the anisotropic mechanisms of turbulent kinetic energy production are sub-dominant with respect to the inertial energy transfer which drives the carrier fluid velocity towards isotropy. We find that the particles’ populations which manifest strong anisotropy in their relative velocities are the same which exhibit small scale clustering. In contrast to any Kolmogorov-like picture of turbulent transport these phenomena may persist even below the smallest dissipative scales where the residual level of anisotropy may eventually blow-up. The observed anisotropy of particle relative velocity and spatial configuration is suggested to influence the
Flow Scales of Influence on the Settling Velocities of Particles with Varying Characteristics
Jacobs, Corrine N.; Merchant, Wilmot; Jendrassak, Marek; Limpasuvan, Varavut; Gurka, Roi; Hackett, Erin E.
2016-01-01
The settling velocities of natural, synthetic, and industrial particles were measured in a grid turbulence facility using optical measurement techniques. Particle image velocimetry and 2D particle tracking were used to measure the instantaneous velocities of the flow and the particles’ trajectories simultaneously. We find that for particles examined in this study (Rep = 0.4–123), settling velocity is either enhanced or unchanged relative to stagnant flow for the range of investigated turbulence conditions. The smallest particles’ normalized settling velocities exhibited the most consistent trends when plotted versus the Kolmogorov-based Stokes numbers suggesting that the dissipative scales influence their dynamics. In contrast, the mid-sized particles were better characterized with a Stokes number based on the integral time scale. The largest particles were largely unaffected by the flow conditions. Using proper orthogonal decomposition (POD), the flow pattern scales are compared to particle trajectory curvature to complement results obtained through dimensional analysis using Stokes numbers. The smallest particles are found to have trajectories with curvatures of similar scale as the small flow scales (higher POD modes) whilst mid-sized particle trajectories had curvatures that were similar to the larger flow patterns (lower POD modes). The curvature trajectories of the largest particles did not correspond to any particular flow pattern scale suggesting that their trajectories were more random. These results provide experimental evidence of the “fast tracking” theory of settling velocity enhancement in turbulence and demonstrate that particles align themselves with flow scales in proportion to their size. PMID:27513958
Boschan, A; Annichini, M; Gauthier, G
2016-01-01
A study on the spatial organization and velocity fluctuations of non Brownian spherical particles settling at low Reynolds number in a vertical Hele-Shaw cell is reported. The particle volume fraction ranged from 0.005 to 0.05, while the distance between cell plates ranged from 5 to 15 times the particle radius. Particle tracking revealed that particles were not uniformly distributed in space but assembled in transient settling clusters. The population distribution of these clusters followed an exponential law. The measured velocity fluctuations are in agreement with that predicted theoretically for spherical clusters, from the balance between the apparent weight and the drag force. This result suggests that particle clustering, more than a spatial distribution of particles derived from random and independent events, is at the origin of the velocity fluctuations.
Near-field acoustic holography with sound pressure and particle velocity measurements
DEFF Research Database (Denmark)
Fernandez Grande, Efren
of particle velocity measurements and combined pressure-velocity measurements in NAH, the relation between the near-field and the far-field radiation from sound sources via the supersonic acoustic intensity, and finally, the reconstruction of sound fields using rigid spherical microphone arrays. Measurement...... of the particle velocity has notable potential in NAH, and furthermore, combined measurement of sound pressure and particle velocity opens a new range of possibilities that are examined in this study. On this basis, sound field separation methods have been studied, and a new measurement principle based on double...... layer measurements of the particle velocity has been proposed. Also, the relation between near-field and far-field radiation from sound sources has been examined using the concept of the supersonic intensity. The calculation of this quantity has been extended to other holographic methods, and studied...
Inertialess Velocity Change and a Two Particle Model of the Photon
David L. Spencer
2017-01-01
Building on the idea presented earlier that the gravitational fields outside of basic particles are those particles’ inertia and that acceleration results only from inertial field imbalances, inertialess velocity changes may result when motivation for motion arises from within basic particles. A two particle model of the photon shows how this might work
On the velocity of ghost particles and the bias errors in Tomographic-PIV
Elsinga, G.E.; Westerweel, J.; Scarano, F.; Novara, M.
2010-01-01
The paper discusses bias errors introduced in Tomographic-PIV velocity measurements by the coherent motion of ghost particles under some circumstances. It occurs when a ghost particle is formed from the same set of actual particles in both reconstructed volumes used in the cross-correlation analysis
Particle descending velocity near the wall of a rolling circulating fluidized bed
Zhao, Tong; Takei, Masahiro; Murata, Hiroyuki; Liu, Kai
2014-04-01
As part of the study to develop compact and efficient marine exhaust gas treatment system with circulating fluidized bed (CFB), effects of the swing motion of a ship on gas-solid flow in the CFB was investigated. The heat transfer efficiency of the CFB is closely related with the particle flow near the wall of riser. As a trial to evaluate the particle flow near the wall of riser quantitatively, descending velocity of particles at upright and swing condition was measured by a particle image velocimetry (PIV) system. Particle motion near the wall of riser was recorded through an observation window by a high speed camera. The recorded images were processed to evaluate the local descending velocity of particles under different swing amplitude and period. As results, the swing motion affects the down-flow of particles, namely, descending particle flow along the wall of riser. The time-averaged descending velocity near the wall of riser is remarkably decreased by the motion. Effect of the swing period on the particle descending velocity is really small. But as the swing amplitude increases, the descending velocity of particle decreased significantly.
Recent Advances in Modeling Hugoniots with Cheetah
Glaesemann, K. R.; Fried, L. E.
2006-07-01
We describe improvements to the Cheetah thermochemical-kinetics code's equilibrium solver to enable it to find a wider range of thermodynamic states. Cheetah supports a wide range of elements, condensed detonation products, and gas phase reactions. Therefore, Cheetah can be applied to a wide range of shock problems involving both energetic and non-energetic materials. An improve equation of state is also introduced. New experimental validations of Cheetah's equation of state methodology have been performed, including both reacted and unreacted Hugoniots.
Turbulence-Induced Relative Velocity of Dust Particles II: The Bidisperse Case
Pan, Liubin; Scalo, John
2014-01-01
We investigate the relative velocity of inertial particles induced by turbulent motions, extending our earlier work on equal-size particles to the bidisperse case for different particles of arbitrary sizes. The model of Pan & Padoan (PP10) shows that the relative velocity between different particles has two contributions, named the generalized shear and acceleration terms, respectively. The generalized shear term represents the particles' memory of the spatial flow velocity difference across the particle distance at given times in the past, while the acceleration term is associated with the temporal flow velocity difference on individual particle trajectories. The latter vanishes for equal-size particles. Using a simulation, we compute the root-mean-square (rms) relative velocity, ^1/2, as a function of the particle friction times, tau_p1 and tau_p2, and show that the prediction of the PP10 model is in satisfactory agreement with the data, confirming the validity of its physical picture. For a given tau_p...
Scaling laws of impact induced shock pressure and particle velocity in planetary mantle
Monteux, J.; Arkani-Hamed, J.
2016-01-01
While major impacting bodies during accretion of a Mars type planet have very low velocities (propagation and, hence, the derived scaling laws are poorly known for these low velocity impacts. Here, we use iSALE-2D hydrocode simulations to calculate shock pressure and particle velocity in a Mars type body for impact velocities ranging from 4 to 10 km/s. Large impactors of 100-400 km in diameter, comparable to those impacted on Mars and created giant impact basins, are examined. To better represent the power law distribution of shock pressure and particle velocity as functions of distance from the impact site at the surface, we propose three distinct regions in the mantle: a near field regime, which extends to 1-3 times the projectile radius into the target, where the peak shock pressure and particle velocity decay very slowly with increasing distance, a mid field region, which extends to ∼4.5 times the impactor radius, where the pressure and particle velocity decay exponentially but moderately, and a more distant far field region where the pressure and particle velocity decay strongly with distance. These scaling laws are useful to determine impact heating of a growing proto-planet by numerous accreting bodies.
Energy Technology Data Exchange (ETDEWEB)
Zaghloul, Mofreh R. [Department of Physics, College of Science, United Arab Emirates University, P.O. Box 15551, Al-Ain (United Arab Emirates)
2015-11-15
We present computational results and tables of the equation-of-state, thermodynamic properties, and shock Hugoniot for hot dense fluid deuterium. The present results are generated using a recently developed chemical model that takes into account different high density effects such as Coulomb interactions among charged particles, partial degeneracy, and intensive short range hard core repulsion. Internal partition functions are evaluated in a statistical-mechanically consistent way implementing recent developments in the literature. The shock Hugoniot curve derived from the present tables is overall in reasonable agreement with the Hugoniot derived from the Nova-laser shock wave experiments on liquid deuterium, showing that deuterium has a significantly higher compressibility than predicted by the SESAME tables or by Path Integral Monte Carlo calculations. Computational results are presented as surface plots for the dissociated fraction, degree of ionization, pressure, and specific internal energy for densities ranging from 0.0001 to 40 g/cm{sup 3} and temperatures from 2000 to ∼10{sup 6 }K. Tables for values of the above mentioned quantities in addition to the specific heat at constant pressure, c{sub p}, ratio of specific heats, c{sub p}/c{sub v}, sound speed and Hugoniot curve (for a specific initial state) are presented for practical use.
Calculation of a velocity distribution from particle trajectory end-points.
Rasmussen, Lowell A.
1983-01-01
The longitudinal component of the velocity of a particle at or near a glacier surface is considered, its position as a function of time being termed its trajectory. Functional relationships are derived for obtaining the trajectory from the spatial distribution of velocity and for obtaining the velocity distribution from the trajectory. It is established that the trajectory end-points impose only an integral condition on the velocity distribution and that no individual point on the velocity distribution can be determined if only the end-points are known.-from Author
Gustavsson, K
2013-01-01
We calculate the Lyapunov exponents describing spatial clustering of particles advected in one- and two-dimensional random velocity fields at finite Kubo number Ku (a dimensionless parameter characterising the correlation time of the velocity field). In one dimension we obtain accurate results up to Ku ~ 1 by resummation of a perturbation expansion in Ku. At large Kubo numbers we compute the Lyapunov exponent by taking into account the fact that the particles follow the minima of the potential function corresponding to the velocity field. In two dimensions we compute the first four non-vanishing terms in the small-Ku expansion of the Lyapunov exponents. For large Kubo numbers we estimate the Lyapunov exponents by assuming that the particles sample stagnation points of the velocity field with det A > 0 and Tr A < 0 where A is the matrix of flow-velocity gradients.
Machicoane, Nathanaël
2015-01-01
We investigate the response of large inertial particle to turbulent fluctuations in a inhomogeneous and anisotropic flow. We conduct a Lagrangian study using particles both heavier and lighter than the surrounding fluid, and whose diameters are comparable to the flow integral scale. Both velocity and acceleration correlation functions are analyzed to compute the Lagrangian integral time and the acceleration time scale of such particles. The knowledge of how size and density affect these time scales is crucial in understanding partical dynamics and may permit stochastic process modelization using two-time models (for instance Saw-ford's). As particles are tracked over long times in the quasi totality of a closed flow, the mean flow influences their behaviour and also biases the velocity time statistics, in particular the velocity correlation functions. By using a method that allows for the computation of turbulent velocity trajectories, we can obtain unbiased Lagrangian integral time. This is particularly usef...
Formulation of the Settling Velocity of Small Particles Initially Situated inside an Inclined Vortex
Directory of Open Access Journals (Sweden)
Urbano Sánchez
2016-01-01
Full Text Available Both the estimation of the time that small heavy particles remain inside a 3D vortex and the estimation of the average settling velocity of those particles are some important features in many practical situations. Previous works focused on the case of a horizontal 2D vortex. In this paper, we simulate the dynamics of heavy particles initially situated inside a three-dimensional vortex obtaining a formula for their average settling velocity. In a previous paper we obtained the trajectories of the particles and a formula that provides the time that they need to escape, Te⁎. This work simulates and analyses the escape process, and its main result is the obtaining, from numerical simulation, of a theoretical formulation of the average settling velocity Vz⁎ and its relationship with the elapsed time. We prove that the permanence time is of the order of dp⁎-10 (with dp⁎ particle diameter and that the average settling velocity is of the order of Te⁎-1/5 for sufficiently small particles. Some applications of the settling velocity formula developed in this work would be the design of mixture devices, the design of particle separation devices, and the prediction of the settling of pollutant particles, seeds, and pollen.
Directory of Open Access Journals (Sweden)
Fedorov A.V.
2015-01-01
Full Text Available The results of experiments concerning the study of cavitational mechanism of liquid failure in a wide range of shock loading are presented in this paper. Free surface velocity of liquids and velocity spectrum of particles and jets were recorded using PDV method [1], their size was also determined. The value of spall strength of distilled water was defined.
Measuring the Variations of the Apparent Settling Velocity for Fine Particles
DEFF Research Database (Denmark)
Larsen, Torben
2000-01-01
This note establishes the fact that the settling velocity for fine flocculent particles in flowing aquatic systems vary considerably and the settling velocity should therefore be understood as a variable which varies temporally and spatially in the flow field. In the mathematical formulation...
A Raman anemometer for component-selective velocity measurements of particles in a flow
Florisson, O.; Mul, de F.F.M.; Winter, de H.G.
1981-01-01
An anemometer for the measurement of the velocity of particles of different components in a flow, separate and apart from that of the flow itself, is described. As a component-selective mechanism Raman scattering is used. The velocity is measured by relating the autocorrelated scattering signal to t
Gojani, A. B.; Ohtani, K.; Takayama, K.; Hosseini, S. H. R.
2016-01-01
This paper reports a result of experiments for the determination of reliable shock Hugoniot curves of liquids, in particular, at relatively low pressure region, which are needed to perform precise numerical simulations of shock wave/tissue interaction prior to the development of shock wave related therapeutic devices. Underwater shock waves were generated by explosions of laser ignited 10 mg silver azide pellets, which were temporally and spatially well controlled. Measuring temporal variation of shock velocities and over-pressures in caster oil, aqueous solutions of sodium chloride, sucrose and gelatin with various concentrations, we succeeded to determine shock Hugoniot curves of these liquids and hence parameters describing Tait type equations of state.
A high velocity impact experiment of micro-scale ice particles using laser-driven system
Yu, Hyeonju; Kim, Jungwook; Yoh, Jack J.
2014-11-01
A jet engine for high speed air breathing propulsion is subject to continuous wear as a result of impacts of micro-scale ice particles during a flight in the atmosphere. The inlet duct and compressor blades are exposed to on-coming frozen moisture particles that may result in the surface damage and significantly shorten the designed lifetime of the aircraft. Under such prolonged high-speed impact loading, the performance parameters such as flight instability and power loss of a jet engine can be significantly degraded. In this work, a laser-driven system was designed to accelerate micro-scale ice particles to the velocity up to Mach 2 using a Q-switched Nd:YAG laser beam at 100-600 mJ with 1064 nm wavelength and 9 ns pulse duration. The high speed images (Phantom v711) and double exposure shadowgraphs were used to calculate the average velocity of ice particles and their deceleration. Velocity Interferometer System for Any Reflector measurements were also utilized for the analysis of free surface velocity of a metal foil in order to understand the interfacial dynamics between the impacting particles and accepting metal target. The velocity of our ice particles is sufficiently fast for studying the effect of moisture particle collision on an air-breathing duct of high speed aircraft, and thus the results can provide insight into how minute space debris or micrometeorites cause damage to the orbiting spacecraft at large.
A zero-gravity instrument to study low velocity collisions of fragile particles at low temperatures
Salter, D. M.; Heisselmann, D.; Chaparro, G.; van der Wolk, G.; Reissaus, P.; Borst, A. G.; Dawson, R. W.; de Kuyper, E.; Drinkwater, G.; Gebauer, K.; Hutcheon, M.; Linnartz, H.; Molster, F. J.; Stoll, B.; van der Tuijn, P. C.; Fraser, H. J.; Blum, J.
2009-01-01
We discuss the design, operation, and performance of a vacuum setup constructed for use in zero (or reduced) gravity conditions to initiate collisions of fragile millimeter-sized particles at low velocity and temperature. Such particles are typically found in many astronomical settings and in region
On the advantage of a divergence-free velocity interpolation for particle-in
Wang, Hongliang; Agrusta, Roberto; van Hunen, Jeroen
2015-04-01
The Particle-in-cell (PIC) method is found to be the most flexible and robust method to model the geodynamic problems with chemical heterogeneity. The initial equally distributed particles, however, can disperse and cluster due to the inaccuracy of the particle velocity interpolation. Our models with analytical solution show this problem is independent of the choice of numerical stokes solver. Instead, it is caused by the fact that the different components of the velocity field are interpolated independently without considering the divergence of the velocity.By introducing a conservative velocity interpolation (divergence free for incompressible flow), our model results demonstrate that the dispersion and clustering of the particles are significantly reduced both in steady state flow problems and time-dependent flow problems. The new interpolation is able to maintain a more steady number of particles in any computation cell, without the need for very high particle densities or re-seeding during the calculation.Our results show that this method improves the particle distribution when used in common geodynamic settings with sharp viscosity such as subduction dynamics and lithosphere dynamics, both in 2D and 3D. Thus, the potential application of this improved particle displacement method and its extension in compressible flow is very promising.
Simultaneous PIV and PTV measurements of wind and sand particle velocities
Zhang, Wei; Wang, Yuan; Lee, Sang Joon
2008-08-01
Wind-blown sand is a typical example of two-phase particle-laden flows. Owing to lack of simultaneous measured data of the wind and wind-blown sand, interactions between them have not yet been fully understood. In this study, natural sand of 100-125 μm taken from Taklimakan Desert was tested at the freestream wind speed of 8.3 m/s in an atmospheric boundary layer wind tunnel. The captured flow images containing both saltating sand and small wind tracer particles, were separated by using a digital phase mask technique. The 2-D PIV (particle imaging velocimetry) and PTV (particle tracking velocimetry) techniques were employed to extract simultaneously the wind velocity field and the velocity field of dispersed sand particles, respectively. Comparison of the mean streamwise wind velocity profile and the turbulence statistics with and without sand transportation reveal a significant influence of sand movement on the wind field, especially in the dense saltating sand layer ( y/ δ < 0.1). The ensemble-averaged streamwise velocity profile of sand particles was also evaluated to investigate the velocity lag between the sand and the wind. This study would be helpful in improving the understanding of interactions between the wind and the wind-blown sand.
Particle fluxes in the deep Eastern Mediterranean basins: the role of ocean vertical velocities
Directory of Open Access Journals (Sweden)
L. Patara
2008-08-01
Full Text Available This paper analyzes the relationship between deep sedimentary fluxes and ocean current vertical velocities in an offshore area of the Ionian Sea, the deepest basin of the Eastern Mediterranean Sea. Sediment trap data are collected at 500 m and 2800 m depth in two successive moorings covering the period September 1999–May 2001. A tight coupling is observed between the upper and deep traps and the estimated particle sinking rates are higher than 200 m day^{−1}. The current vertical velocity field is computed from a high resolution Ocean General Circulation Model simulation and from the wind stress curl. Current vertical velocities are larger and more variable than Ekman vertical velocities, yet the general patterns are alike. Current vertical velocities are generally smaller than 1 m day^{−1}: we therefore exclude a direct effect of downward velocities in determining high sedimentation rates. However, we find that upward velocities in the subsurface layers of the water column are positively correlated with deep particle fluxes. We thus hypothesize that upwelling would produce an increase in upper ocean nutrient levels – thus stimulating primary production and grazing – a few weeks before an enhanced vertical flux is found in the sediment traps. By analyzing the delayed effects of ocean vertical velocities on deep particle fluxes we envisage a spectrum of particle sinking speeds ranging from about 100 m day^{−1} to more than 200 m day^{−1}. High particle sedimentation rates may be attained by means of rapidly sinking fecal pellets produced by gelatinous macro-zooplankton. Other sedimentation mechanisms, such as dust deposition, are also considered in explaining large pulses of deep particle fluxes. The fast sinking rates estimated in this study might be an evidence of the efficiency of the biological pump in sequestering organic carbon from the surface layers of the deep Eastern Mediterranean basins.
Micro-particle image velocimetry for velocity profile measurements of micro blood flows.
Pitts, Katie L; Fenech, Marianne
2013-04-25
Micro-particle image velocimetry (μPIV) is used to visualize paired images of micro particles seeded in blood flows. The images are cross-correlated to give an accurate velocity profile. A protocol is presented for μPIV measurements of blood flows in microchannels. At the scale of the microcirculation, blood cannot be considered a homogeneous fluid, as it is a suspension of flexible particles suspended in plasma, a Newtonian fluid. Shear rate, maximum velocity, velocity profile shape, and flow rate can be derived from these measurements. Several key parameters such as focal depth, particle concentration, and system compliance, are presented in order to ensure accurate, useful data along with examples and representative results for various hematocrits and flow conditions.
Sommer, Christian; Quint, Stephan; Spang, Peter; Walther, Thomas; Bassler, Michael
2014-07-01
According to the Segré-Silberberg effect, spherical particles migrate to a lateral equilibrium position in parabolic flow profiles. Here, for the first time, the corresponding equilibrium velocity is studied experimentally for micro particles in channels with rectangular cross section. Micro channels are fabricated in PMMA substrate based on a hot embossing process. To measure individual particle velocities at very high precision, the technique of spatially modulated emission is applied. It is found that the equilibrium velocity is size-dependent and the method offers a new way to measure particle size in microfluidic systems. The method is of particular interest for microfluidic flow cytometry as it delivers an alternative to the scatter signal for cell size determination.
Sound Velocity and Release Behaviour of Shock-Compressed LY12 Al
Institute of Scientific and Technical Information of China (English)
YU Yu-Ying; TAN Hua; DAI Cheng-Da; HU Jian-Bo; CHEN Da-Nian
2005-01-01
@@ A velocity interferometer system for any reflector (VISAR) is used to measure the sound velocity of LY12 Al shock-compressed to peak pressures of 20, 32, 55 and 71 GPa. Unloading wave velocities from these pressures are obtained from the observed particle velocity profiles at the LY12 Al/LiF window interface; and the longitudinal,bulk and shear sound velocities at the initial Hugoniot state are well determined. The histories of stress, strain,density or volume, and particle velocity along the release paths are calculated by the impedance-matching method based on the unloading sound velocity data. It is revealed that the release behaviour of shocked LY12 Al departures obviously from the elastic perfectly-plastic response.
Simultaneous measurement of particle velocity and size based on gray difference and autocorrelation
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
The gray of two images of a same particle taken by a digital camera with different exposure times is different too. Based on the gray difference of particle images in a double-exposed photo and autocorrelation processing of digital images,this paper proposes a method for measuring particle velocities and sizes simultaneously. This paper also introduces the theoretical foundation of this method,the process of particle imaging and image processing,and the simultaneous measurement of velocity and size of a low speed flow field with 35 μm and 75 μm standard particles. The graphical measurement results can really reflect the flow characteristics of the flow field. In addition,although the measured velocity and size histograms of these two kinds of standard particles are slightly wider than the theoretical ones,they are all still similar to the normal distribution,and the peak velocities and diameters of the histograms are consistent with the default values. Therefore,this measurement method is capable of providing moderate measurement accuracy,and it can be further developed for high-speed flow field measurements.
Analysis of sand particles' lift-off and incident velocities in wind-blown sand flux
Institute of Scientific and Technical Information of China (English)
Tian-Li Bo; Xiao-Jing Zheng; Shao-Zhen Duan; Yi-Rui Liang
2013-01-01
In the research of windblown sand movement,the lift-off and incident velocities of saltating sand particles play a significant role in bridging the spatial and temporal scales from single sand particle's motion to windblown sand flux.In this paper,we achieved wind tunnel measurements of the movement of sand particles near sand bed through improving the wind tunnel experimental scheme of paticle image velocimetry (PIV) and data processing method.And then the influence of observation height on the probability distributions of lift-off and incident velocities of sand particles was analyzed.The results demonstrate that the observation height has no obvious influence on the distribution pattern of the lift-off and incident velocities of sand particles,i.e.,the probability distribution of horizontal and vertical velocities of lift-off and incident sand particles follow a Gaussian distribution and a negative exponential distribution,respectively.However,it influences the center of the Gaussian distribution,the decay constant and the amplitude of the negative exponential distribution.
About scaling properties of relative velocity between heavy particles in turbulence
Energy Technology Data Exchange (ETDEWEB)
Lanotte, A S [ISAC-CNR, and INFN, Sez. Lecce, 73100 Lecce (Italy); Bee, J [Universite de Nice-Sophia Antipolis, CNRS- OCA, Laboratoire Cassiopee, 06300 Nice (France); Biferale, L [Department of Physics and INFN, University of Rome Tor Vergata, 00133 Rome (Italy); Cencini, M [INFM-CNR, SMC Department of Physics, University of Rome La Sapienza, and ISC-CNR, 00185 Roma (Italy); Toschi, F, E-mail: a.lanotte@isac.cnr.it [Department of Physics Technische Universiteit Eindhoven, 5600 MB Eindhoven (Netherlands)
2011-12-22
We present results obtained from high-resolution direct numerical simulations (DNS) of incompressible, statistically homogeneous and isotropic turbulence, up to a Taylor scale based Reynolds number Re{sub {lambda}} {approx_equal} 200 and with millions of heavy particles with different inertia. In our set-up, particles are assumed to be spherical and rigid, they simply move by viscous forces, such as the Stokes drag. The velocity statistics is found to be extremely intermittent, with an almost bi-fractal behavior. Here, we consider also a new data analysis for the stationary distribution of rescaled longitudinal velocity difference and further assess the intermittent character of the heavy particles velocities, characterized by the presence of quasi-algebraic tails.
Rosales-Guzmán, Carmelo; Belmonte, Aniceto; Torres, Juan P
2014-01-01
We measure the rotational and translational velocity components of particles moving in helical motion using the frequency shift they induced to the structured light beam illuminating them. Under Laguerre-Gaussian mode illumination, a particle with a helical motion reflects light that acquires an additional frequency shift proportional to the angular velocity of rotation in the transverse plane, on top of the usual frequency shift due to the longitudinal motion. We determined both the translational and rotational velocities of the particles by switching between two modes: by illuminating with a Gaussian beam, we can isolate the longitudinal frequency shift; and by using a Laguerre-Gaussian mode, the frequency shift due to the rotation can be determined. Our technique can be used to characterize the motility of microorganisms with a full three-dimensional movement.
Particle image velocimetry measurements of 2-dimensional velocity field around twisted tape
Energy Technology Data Exchange (ETDEWEB)
Song, Min Seop; Park, So Hyun; Kim, Eung Soo, E-mail: kes7741@snu.ac.kr
2016-11-01
Highlights: • Measurements of the flow field in a pipe with twisted tape were conducted by particle image velocimetry (PIV). • A novel matching index of refraction technique utilizing 3D printing and oil mixture was adopted to make the test section transparent. • Undistorted particle images were clearly captured in the presence of twisted tape. • 2D flow field in the pipe with twisted tape revealed the characteristic two-peak velocity profile. - Abstract: Twisted tape is a passive component used to enhance heat exchange in various devices. It induces swirl flow that increases the mixing of fluid. Thus, ITER selected the twisted tape as one of the candidates for turbulence promoting in the divertor cooling. Previous study was mainly focused on the thermohydraulic performance of the twisted tape. As detailed data on the velocity field around the twisted tape was insufficient, flow visualization study was performed to provide fundamental data on velocity field. To visualize the flow in a complex structure, novel matching index of refraction technique was used with 3-D printing and mixture of anise and mineral oil. This technique enables the camera to capture undistorted particle image for velocity field measurement. Velocity fields at Reynolds number 1370–9591 for 3 different measurement plane were obtained through particle image velocimetry. The 2-dimensional averaged velocity field data were obtained from 177 pair of instantaneous velocity fields. It reveals the characteristic two-peak flow motion in axial direction. In addition, the normalized velocity profiles were converged with increase of Reynolds numbers. Finally, the uncertainty of the result data was analyzed.
The measurement of abrasive particles velocities in the process of abrasive water jet generation
Zeleňák, Michal; Foldyna, Josef; Říha, Zdeněk
2014-08-01
An optimization of the design of the abrasive cutting head using the numerical simulation requires gathering as much information about processes occurring in the cutting head as possible. Detailed knowledge of velocities of abrasive particles in the process of abrasive water jet generation is vital for the verification of the numerical model. A method of measurement of abrasive particles at the exit of focusing tube using the FPIV technique was proposed and preliminary tests are described in the paper. Results of analysis of measured velocity fields are presented in the paper.
Energy Technology Data Exchange (ETDEWEB)
Somasundaram, Deepak S [UNLV; Trabia, Mohamed [UNLV; O' Toole, Brendan [UNLV; Hixson, Robert S [NSTec
2014-01-23
This paper describes our work to characterize the variables affecting the smoothed particle hydrodynamics (SPH) method in the LS-DYNA package for simulating high-velocity flyer plate impact experiments. LS-DYNA simulations are compared with one-dimensional experimental data of an oxygen-free high-conductivity (OFHC) copper flyer plate impacting another plate of the same material. The comparison is made by measuring the velocity of a point on the back surface of the impact plate using the velocity interferometer system for any reflector (VISAR) technique.
Effect of temperature on electrophoresis velocity of sol particles in water
Institute of Scientific and Technical Information of China (English)
鲍治宇; 顾大明
2002-01-01
Viscosity of water is affected by temperature and electrophoresis velocity is related to the viscosity of colloid. However, there hasn' t been any direct description about the relation between electrophoresis velocity of colloid and temperature. Based on a large number of tests, the relation between electrophoresis velocity and temperature is established as [ v = A + B( T-T°) ]. Meanwhile the ratio of the electric charge (q) of sol particles to their radium (r) is a constant is obtained. The results of above were testified in both experiment and theory.
The Hugoniot and chemistry of ablator plastic below 100 GPa
Energy Technology Data Exchange (ETDEWEB)
Akin, M. C., E-mail: akin1@llnl.gov; Fratanduono, D. E.; Chau, R. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)
2016-01-28
The equation of state of glow discharge polymer (GDP) was measured to high precision using the two-stage light gas gun at Lawrence Livermore National Laboratory at pressures up to 70 GPa. Both absolute measurements and impedance matching techniques were used to determine the principal and secondary Hugoniots. GDP likely reacts at about 30 GPa, demonstrated by specific emission at 450 nm coupled with changes to the Hugoniot and reshock points. As a result of these reactions, the shock pressure in GDP evolves in time, leading to a possible decrease in pressure as compression increases, or negative compressibility, and causing complex pressure profiles within the plastic. Velocity wave profile variation was observed as a function of position on each shot, suggesting some internal variation of GDP may be present, which would be consistent with previous observations. The complex temporal and possibly structural evolution of GDP under shock compression suggests that calculations of compression and pressure based upon bulk or mean measurements may lead to artificially low pressures and high compressions. Evidence for this includes a large shift in calculating reshock pressures based on the reflected Hugoniot. These changes also suggest other degradation mechanisms for inertial confinement fusion implosions.
Particle fluxes in the deep Eastern Mediterranean basins: the role of ocean vertical velocities
Directory of Open Access Journals (Sweden)
L. Patara
2009-03-01
Full Text Available This paper analyzes the relationship between deep sedimentary fluxes and ocean current vertical velocities in an offshore area of the Ionian Sea, the deepest basin of the Eastern Mediterranean Sea. Sediment trap data are collected at 500 m and 2800 m depth in two successive moorings covering the period September 1999–May 2001. A tight coupling is observed between the upper and deep traps and the estimated particle sinking rates are more than 200 m day^{−1}. The current vertical velocity field is computed from a 1/16°×1/16° Ocean General Circulation Model simulation and from the wind stress curl. Current vertical velocities are larger and more variable than Ekman vertical velocities, yet the general patterns are alike. Current vertical velocities are generally smaller than 1 m day^{−1}: we therefore exclude a direct effect of downward velocities in determining high sedimentation rates. However we find that upward velocities in the subsurface layers of the water column are positively correlated with deep particle fluxes. We thus hypothesize that upwelling would produce an increase in upper ocean nutrient levels – thus stimulating primary production and grazing – a few weeks before an enhanced vertical flux is found in the sediment traps. High particle sedimentation rates may be attained by means of rapidly sinking fecal pellets produced by gelatinous macro-zooplankton. Other sedimentation mechanisms, such as dust deposition, are also considered in explaining large pulses of deep particle fluxes. The fast sinking rates estimated in this study might be an evidence of the efficiency of the biological pump in sequestering organic carbon from the surface layers of the deep Eastern Mediterranean basins.
Particle Paths of Lagrangian Velocity Distribution Simulating the Spiral Arms of Galaxy M51
Institute of Scientific and Technical Information of China (English)
Tzu-Fang Chen; Georgios H. Vatistas; Sui Lin
2008-01-01
Galaxies are huge families of stars held together by their own gravities. The system M51 is a spiral galaxy. It possesses billions of stars. The range of the spiral arms extends hundred thousand light years. The present study is in an attempt in using the particle paths of the Lagrangian flow field to simulate the spiral arms of Galaxy M51.The Lagrangian flow field is introduced. The initial locations of fluid particles in the space between two concentric cylinders are first specified. Then a linear velocity distribution of the fluid particles is used with different angle rotations of the particles to obtain the particle paths in the Lagrangian diagram. For simulating the spiral arms of Galaxy M51, the Lagrangian M51 diagram is developed. The particle paths of the Lagrangian M51 diagram agree quite well with the spiral arms of Galaxy M51.
Massing, J.; Kaden, D.; Kähler, C. J.; Cierpka, C.
2016-11-01
The simultaneous and non-intrusive measurement of temperature and velocity fields in flows is of great scientific and technological interest. To sample the velocity and temperature, tracer particle based approaches have been developed, where the velocity is measured using PIV or PTV and the temperature is obtained from the intensity (LIF, thermographic phosphors) or frequency (TLC) of the light emitted or reflected by the tracer particles. In this article, a measurement technique is introduced, that relates the luminescent intensity ratio of individual dual-color luminescent tracer particles to temperature. Different processing algorithms are tested on synthetic particle images and compared with respect to their accuracy in estimating the intensity ratio. Furthermore, polymer particles which are doped with the temperature sensitive dye europium (III) thenoyltrifluoroacetonate (EuTTA) and the nearly temperature insensitive reference dye perylene are characterized as valid tracers. The results show a reduction of the temperature measurement uncertainty of almost 40% (95% confidence interval) compared to previously reported luminescent particle based measurement techniques for microfluidics.
Turbulence-Induced Relative Velocity of Dust Particles III: The Probability Distribution
Pan, Liubin; Scalo, John
2014-01-01
Motivated by its important role in the collisional growth of dust particles in protoplanetary disks, we investigate the probability distribution function (PDF) of the relative velocity of inertial particles suspended in turbulent flows. Using the simulation from our previous work, we compute the relative velocity PDF as a function of the friction timescales, tau_p1 and tau_p2, of two particles of arbitrary sizes. The friction time of particles included in the simulation ranges from 0.1 tau_eta to 54T_L, with tau_eta and T_L the Kolmogorov time and the Lagrangian correlation time of the flow, respectively. The relative velocity PDF is generically non-Gaussian, exhibiting fat tails. For a fixed value of tau_p1, the PDF is the fattest for equal-size particles (tau_p2~tau_p1), and becomes thinner at both tau_p2tau_p1. Defining f as the friction time ratio of the smaller particle to the larger one, we find that, at a given f in 1/2>T_L). These features are successfully explained by the Pan & Padoan model. Usin...
Energy Technology Data Exchange (ETDEWEB)
L. G. Hill; R. L. Gustavsen; R. R. Alcon; S. A. Sheffield
1999-09-01
We have used an embedded electromagnetic particle velocity gauge technique to measure the shock initiation behavior in PBX 9501 explosive. Up to twelve separate particle velocity wave profile measurements have been made at different depths in a single experiment. These detail the growth from an input shock to a detonation. In addition, another gauge element called a ''shock tracker'' has been used to monitor the progress of the shock front as a function of time and position as it moves through the explosive sample. This provides data similar to that obtained in a traditional explosively driven wedge test and is used to determine the position and time that the wave attains detonation. Run distance-to-detonation vs. input pressure (Pop-plot) data and particle velocity wave profile data have been obtained on new PBX 9501 pressed to densities of 1.826, 1.830, and 1.837 g/cm{sup 3}. In addition, the same measurements were performed on aged material recovered from dismantled W76 and W78 weapons. The input pressure range covered was 3.0 to 5.2 GPa. All results to date show shock sensitivity to be a function only of the initial density and not of age. PBX 9501 shock initiates the same after 17 years in stockpile as it does on the day it is pressed. Particle velocity wave profiles show mixed heterogeneous initiation (growth in the front) and homogeneous initiation (growth behind the front).
Imaginary particle tracking accelerometry based on time-resolved velocity fields
Wang, Zhongyi; Gao, Qi; Pan, Chong; Feng, Lihao; Wang, Jinjun
2017-09-01
An accurate calculation of material acceleration is important for particle image velocimetry-based pressure reconstruction. Therefore, an imaginary particle tracking accelerometry (IPTA) approach based on time-resolved velocity fields is described in this paper for a better determination of acceleration. Multi-velocity fields and a least squares polynomial fitting of the velocity along imaginary particle trajectories are introduced to improve the acceleration accuracy. The process of imaginary particle tracking is operated iteratively until a convergence condition is satisfied. Then the Lagrangian acceleration (or the material acceleration in the Eulerian coordinates) is acquired by the first-order time derivation of the fitting polynomial. In addition, the sensitivity of the IPTA approach to different levels of noise and parameters that affect its performance is investigated. A criterion is proposed to determine these parameters when using IPTA to calculate the acceleration. Performance of the IPTA method is compared with other velocity-based accelerometry methods, including both Eulerian and Lagrangian methods. Assessments are conducted in a synthetic solid body rotation flow, a synthetic flow of a vortex ring, and an experimental jet flow. The results show that IPTA is a robust method for experimental acceleration determination that can both improve the accuracy of acceleration and provide better physical characteristics of the flow field.
Relaxation Time of the Particle Beam with an Anisotropic Velocity Distribution
Directory of Open Access Journals (Sweden)
V.P. Vechirka
2012-11-01
Full Text Available The computer experiment for study of the relaxation time of the beam particles with an anisotropic velocity distribution is performed by the molecular dynamics. Obtained results agree with the characteristic times of thermal relaxation in plasma for the electronic coolers in modern storage rings.
Study on the physical basis of pressure and particle velocity combine processing
Institute of Scientific and Technical Information of China (English)
HUI Junying; LIU Hong; YU Huabing; FAN Minyi; LIANG Guolong
2001-01-01
Some basic studies of pressure and particle velocity combine processing such as correlation between them, average acoustic intensity processing, rotating and sharpening of directivity are described. Preliminary results based on theoretical analysis and lake trail will lay a foundation for further research.
An integrated 3D sound intensity sensor using four-wire particle velocity sensors: II. Modelling
Honschoten, van J.W.; Yntema, D.R.; Wiegerink, R.J.
2010-01-01
The sensitivity of a micromachined acoustic sensor consisting of four hot-wire particle velocity sensors is analysed theoretically and experimentally. The device and its fabrication have been presented in part 1 of this paper (Yntema et al 2010 J. Micromech. Microeng. 20 015042). A relatively straig
Kinetic theory of binary particles with unequal mean velocities and non-equipartition energies
Chen, Yanpei; Mei, Yifeng; Wang, Wei
2017-03-01
The hydrodynamic conservation equations and constitutive relations for a binary granular mixture composed of smooth, nearly elastic spheres with non-equipartition energies and different mean velocities are derived. This research is aimed to build three-dimensional kinetic theory to characterize the behaviors of two species of particles suffering different forces. The standard Enskog method is employed assuming a Maxwell velocity distribution for each species of particles. The collision components of the stress tensor and the other parameters are calculated from the zeroth- and first-order approximation. Our results demonstrate that three factors, namely the differences between two granular masses, temperatures and mean velocities all play important roles in the stress-strain relation of the binary mixture, indicating that the assumption of energy equipartition and the same mean velocity may not be acceptable. The collision frequency and the solid viscosity increase monotonously with each granular temperature. The zeroth-order approximation to the energy dissipation varies greatly with the mean velocities of both species of spheres, reaching its peak value at the maximum of their relative velocity.
Particle Size, Number Density, And Velocity Measurements In A 2800 K Combustion System
Farmer, W. M.; Schwartz, F. A.; Stallings, E. S.; Belz, R. A.
1983-10-01
Particle size and velocity measurements have been obtained in a low-speed (6 to 10 m/s), 2800 K combustor 30 cm in diameter. The measurements were obtained using a particle-sizing interferometer coupled to a 0.5 m spectrometer for background light rejection from radiant particles. Results obtained for the combustion of powdered coke clearly indicate the capabilities of this type of instrument to estimate combustor efficiency as a function of temperature. Comparison of the optically sampled measurements with other sampling techniques shows reasonable agreement.
Energy Technology Data Exchange (ETDEWEB)
Nayak, Arun K.; Kulkarni, Parimal P.; Singh, R.K.; Verma, Pumendra [Bhabha Atomic Research Centre (BARC), Mumbai (India). Reactor Engineering Div.; Gandhi, Mayur [University Institute of Chemical Technology, Mumbai (India). Dept. of Chemical Engineering
2014-06-15
The objective of the paper is to measure the velocity profiles of water based nanofluids for flow through channels in order to understand whether the nanofluids behave Newtonian. For this purpose, experiments were carried for flow through a rectangular channel in laminar regime. Four different nanofluids were used, i.e. Al{sub 2}O{sub 3}, CuO, TiO{sub 2} and SiO{sub 2} with base fluid as water. Experiments were conducted at low concentration of these particles. The velocity profiles were measured using Particle Image Velocimetry. The results indicate that the velocity profiles are similar for all the fluids indicating the flows to be Newtonian. (orig.)
Douillet, G. A.; Seybold, L.; Rasmussen, K. R.; Kueppers, U.,; Lo Castro, D.; Dingwell, D. B.
2012-04-01
Pyroclasts are particles emitted during explosive volcanic eruptions. They exhibit highly variable porosities, shapes, and densities. As such, their behaviors differ from the wind-blown and fluvial sand usually studied in clastic sedimentology. In order to better constrain the specificities of pyroclastic material, and gain insights into the flow and depositional processes within dilute pyroclastic density currents, the terminal fall velocity was experimentally measured in air and compared to surface roughness and saltation threshold data obtained from wind tunnel experiments as well as with shape parameters. Two types of particles were investigated (scoriaceous material and pumices), as well as different grain sizes (0.125-4mm for scoria and 0.125-16mm for pumices in half phi fractions). The terminal fall velocity corresponds to the velocity for which the drag exerted by air on a particle counteracts its weight, so that acceleration becomes null and the velocity constant. In order to measure the terminal fall velocity, particles were dropped in a closed and large vertical tube (to avoid any perturbation by air movement present in the lab) and the velocity derived from high speed video recorded near the bottom of the tube. By repeating the experiments from different heights, the velocity was seen to increase with increasing drop-height, until reaching a constant value, taken as the terminal fall velocity. The surface roughness is a value that defines how rough a bed of particles is seen by a wind. The saltation threshold corresponds to the near-bed shear-stress necessary for particles to leave the surface and begin to bounce on the bed. Both are derived from wind profiles experimentally measured in a wind tunnel in Aarhus (Denmark; see abstract 2128). Shape parameters were measured with a Camsizer (from Retsch) in Catania (Italy) and the sphericity, symmetry, aspect ratio, and convexity derived. Since the surface roughness, saltation threshold, and terminal fall
Hugoniot-based equations of state for two filled EPDM rubbers
Pacheco, A. H.; Dattelbaum, D. M.; Orler, E. B.; Bartram, B. D.; Gustavsen, R. L.
2014-05-01
Particle-filled elastomers are commonly used as engineering components due to their ability to provide structural support via their elastic mechanical response. Even small amounts of particle fillers are known to increase the mechanical strength of elastomers due to polymer-filler interactions. In this work, the shock response of two filled (SiO2 or silica and KevlarTMfillers) ethylene-propylene-diene (EPDM) rubbers were studied using single and two-stage gas gun-driven plate impact experiments. Hugoniot states were determined using standard plate impact methods. Both filled-EPDM elastomers exhibit high compressibility under shock loading and have a response similar to adiprene rubber.
Institute of Scientific and Technical Information of China (English)
2008-01-01
The scattering of elastic waves by a spherical particle with imperfect interface and the multiple scattering by many spherical particles with imperfect interface are studied in this paper. First,the scattering of elastic waves by a spherical particle with imperfect interface,i.e. spring interface model,is studied. Then,the multiple scattering by random distributed particles with interfacial damage in a composite material is investigated. The equations to evaluate velocity and attenuation of effective waves defined by statistic averaging are given. Furthermore,based on the established relation between the effective velocity and interfacial constants,a method to evaluate the interfacial damage nondestructively from the ultrasonic measure data is proposed. The numerical simulation is performed for the Sic-Al composites. The effective velocity is computed to show the influences of interface damage. By using the genetic algorithm,the interfacial damage is evaluated from the synthetic experimental data with various levels of error. The numerical results show the feasibility of the method proposed to approximately evaluate the interfacial damage in a composite material with reinforced particles based on ultrasonic data.
Direct multi-scale reconstruction of velocity fields from measurements of particle tracks
Kelley, Douglas H
2010-01-01
We present a method for reconstructing two-dimensional velocity fields at specified length scales using observational data from tracer particles in a flow, without the need for interpolation or smoothing. The algorithm, adapted from techniques proposed for oceanography, involves a least-squares projection of the measurements onto a set of two-dimensional, incompressible basis modes with known length scales. Those modes are constructed from components of the velocity potential function, which accounts for inflow and outflow at the open boundaries of the measurement region; and components of the streamfunction, which accounts for the remainder of the flow. All calculations are evaluated at particle locations, without interpolation onto an arbitrary grid. Since the modes have a well-defined length scales, scale-local flow properties are available directly. The technique eliminates outlier particles automatically and reduces the apparent compressibility of the data. Moreover the technique can be used to produce s...
Glazunov, A. A.; Ishchenko, A. N.; Afanasyeva, S. A.; Belov, N. N.; Burkin, V. V.; Rogaev, K. S.; Tabachenko, A. N.; Khabibulin, M. V.; Yugov, N. T.
2016-03-01
A computational-experimental investigation of stress-strain state and fracture of a porous heterogeneous material with an inorganic matrix, used as a thermal barrier coating of flying vehicles, under conditions of a high-velocity impact by a spherical steel projectile imitating a meteorite particle is discussed. Ballistic tests are performed at the velocities about 2.5 km/s. Numerical modeling of the high-velocity impact is described within the framework of a porous elastoplastic model including fracture and different phase states of the materials. The calculations are performed using the Euler and Lagrange numerical techniques for the velocities up to 10 km/s in a complete-space problem statement.
The terminal velocity of volcanic particles with shape obtained from 3D X-ray microtomography
Dioguardi, Fabio; Mele, Daniela; Dellino, Pierfrancesco; Dürig, Tobias
2017-01-01
New experiments of falling volcanic particles were performed in order to define terminal velocity models applicable in a wide range of Reynolds number Re. Experiments were carried out with fluids of various viscosities and with particles that cover a wide range of size, density and shape. Particle shape, which strongly influences fluid drag, was measured in 3D by High-resolution X-ray microtomography, by which sphericity Φ3D and fractal dimension D3D were obtained. They are easier to measure and less operator dependent than the 2D shape parameters used in previous papers. Drag laws that make use of the new 3D parameters were obtained by fitting particle data to the experiments, and single-equation terminal velocity models were derived. They work well both at high and low Re (3 × 10- 2 < Re < 104), while earlier formulations made use of different equations at different ranges of Re. The new drag laws are well suited for the modelling of particle transportation both in the eruptive column, where coarse and fine particles are present, and also in the distal part of the umbrella region, where fine ash is involved in the large-scale domains of atmospheric circulation. A table of the typical values of Φ3D and D3D of particles from known plinian, subplinian and ash plume eruptions is presented. Graphs of terminal velocity as a function of grain size are finally proposed as tools to help volcanologists and atmosphere scientists to model particle transportation of explosive eruptions.
Hugoniot equation of state and dynamic strength of boron carbide
Energy Technology Data Exchange (ETDEWEB)
Grady, Dennis E. [Applied Research Associates, Southwest Division, 4300 San Mateo Blvd NE, A-220, Albuquerque, New Mexico 87110-129 (United States)
2015-04-28
Boron carbide ceramics have been particularly problematic in attempts to develop adequate constitutive model descriptions for purposes of analysis of dynamic response in the shock and impact environment. Dynamic strength properties of boron carbide ceramic differ uniquely from comparable ceramics. Furthermore, boron carbide is suspected, but not definitely shown, to undergoing polymorphic phase transformation under shock compression. In the present paper, shock-wave compression measurements conducted over the past 40 years are assessed for the purpose of achieving improved understanding of the dynamic equation of state and strength of boron carbide. In particular, attention is focused on the often ignored Los Alamos National Laboratory (LANL) Hugoniot measurements performed on porous sintered boron carbide ceramic. The LANL data are shown to exhibit two compression anomalies on the shock Hugoniot within the range of 20–60 GPa that may relate to crystallographic structure transitions. More recent molecular dynamics simulations on the compressibility of the boron carbide crystal lattice reveal compression transitions that bear similarities to the LANL Hugoniot results. The same Hugoniot data are complemented with dynamic isentropic compression data for boron carbide extracted from Hugoniot measurements on boron carbide and copper granular mixtures. Other Hugoniot measurements, however, performed on near-full-density boron carbide ceramic differ markedly from the LANL Hugoniot data. These later data exhibit markedly less compressibility and tend not to show comparable anomalies in compressibility. Alternative Hugoniot anomalies, however, are exhibited by the near-full-density data. Experimental uncertainty, Hugoniot strength, and phase transformation physics are all possible explanations for the observed discrepancies. It is reasoned that experimental uncertainty and Hugoniot strength are not likely explanations for the observed differences. The notable
Hugoniot equation of state and dynamic strength of boron carbide
Grady, Dennis E.
2015-04-01
Boron carbide ceramics have been particularly problematic in attempts to develop adequate constitutive model descriptions for purposes of analysis of dynamic response in the shock and impact environment. Dynamic strength properties of boron carbide ceramic differ uniquely from comparable ceramics. Furthermore, boron carbide is suspected, but not definitely shown, to undergoing polymorphic phase transformation under shock compression. In the present paper, shock-wave compression measurements conducted over the past 40 years are assessed for the purpose of achieving improved understanding of the dynamic equation of state and strength of boron carbide. In particular, attention is focused on the often ignored Los Alamos National Laboratory (LANL) Hugoniot measurements performed on porous sintered boron carbide ceramic. The LANL data are shown to exhibit two compression anomalies on the shock Hugoniot within the range of 20-60 GPa that may relate to crystallographic structure transitions. More recent molecular dynamics simulations on the compressibility of the boron carbide crystal lattice reveal compression transitions that bear similarities to the LANL Hugoniot results. The same Hugoniot data are complemented with dynamic isentropic compression data for boron carbide extracted from Hugoniot measurements on boron carbide and copper granular mixtures. Other Hugoniot measurements, however, performed on near-full-density boron carbide ceramic differ markedly from the LANL Hugoniot data. These later data exhibit markedly less compressibility and tend not to show comparable anomalies in compressibility. Alternative Hugoniot anomalies, however, are exhibited by the near-full-density data. Experimental uncertainty, Hugoniot strength, and phase transformation physics are all possible explanations for the observed discrepancies. It is reasoned that experimental uncertainty and Hugoniot strength are not likely explanations for the observed differences. The notable mechanistic
Low-velocity pneumatic conveying in horizontal pipe for coarse particles and fine powders
Institute of Scientific and Technical Information of China (English)
Yuji Tomita; Vijay Kumar Agarwal; Hiroyuki Asou; Katsuya Funatsu
2008-01-01
First,the characteristics of low-velocity conveying of particles having different hardness are experimentally investigated in a horizontal pipeline in terms of flow pattern and pressure drop to show that the slug flow can be classified into two types depending on the settling of particles along the pipeline,and the period is small for slug flow without the settled layer,which is called solitary slug flow.The pressure drop for soft particles is shown to be larger than that for hard particles.Then,experimental results are presented on horizontal fluidized-bed conveying of fine powders to show that air release from the top surface of the conveying channel is an important factor for high mass flow rate of particles.
High Dynamic Velocity Range Particle Image Velocimetry Using Multiple Pulse Separation Imaging
Directory of Open Access Journals (Sweden)
Tadhg S. O’Donovan
2010-12-01
Full Text Available The dynamic velocity range of particle image velocimetry (PIV is determined by the maximum and minimum resolvable particle displacement. Various techniques have extended the dynamic range, however flows with a wide velocity range (e.g., impinging jets still challenge PIV algorithms. A new technique is presented to increase the dynamic velocity range by over an order of magnitude. The multiple pulse separation (MPS technique (i records series of double-frame exposures with different pulse separations, (ii processes the fields using conventional multi-grid algorithms, and (iii yields a composite velocity field with a locally optimized pulse separation. A robust criterion determines the local optimum pulse separation, accounting for correlation strength and measurement uncertainty. Validation experiments are performed in an impinging jet flow, using laser-Doppler velocimetry as reference measurement. The precision of mean flow and turbulence quantities is significantly improved compared to conventional PIV, due to the increase in dynamic range. In a wide range of applications, MPS PIV is a robust approach to increase the dynamic velocity range without restricting the vector evaluation methods.
Shell-structure effects on high-pressure Rankine-Hugoniot shock adiabats
Pain, J C
2007-01-01
Rankine-Hugoniot shock adiabats are calculated in the pressure range 1 Mbar-10 Gbar with two atomic-structure models: the atom in a spherical cell and the atom in a jellium of charges. These quantum self-consistent-field models include shell effects, which have a strong impact on pressure and shock velocity along the shock adiabat. Comparisons with experimental data are presented and quantum effects are interpreted in terms of electronic specific heat. A simple analytical estimate for the maximum compression is proposed, depending on initial density, atomic weight and atomic number.
Institute of Scientific and Technical Information of China (English)
Leifu Chen; Shaolin Peng; Jingang Liu; Qianqian Hou
2012-01-01
Dry deposition velocity of total suspended particles (TSP) is an effective parameter that describes the speed of atmospheric particulate matter deposit to the natural surface.It is also an important indicator to the capacity of atmosphere self-depuration.However,the spatial and temporal variations in dry deposition velocity of TSP at different urban landscapes and the relationship between dry deposition velocity and the meteorological parameters are subject to large uncertainties.We concurrently investigated this relationship at four different landscapes of Guangzhou,from October to December of 2009.The result of the average dry deposition velocity is (1.49 ±0.77),(1.44 ± 0.77),(1.13 ± 0.53) and (1.82 ± 0.82) cm/sec for urban commercial landscape,urban forest landscape,urban residential landscape and country landscape,respectively.This spatial variation can be explained by the difference of both particle size composition of TSP and meteorological parameters of sampling sites.Dry deposition velocity of TSP has a positive correlation with wind speed,and a negative correlation with temperature and relative humidity.Wind speed is the strongest factor that affects the magnitude of TSP dry deposition velocity,and the temperature is another considerable strong meteorological factor.We also find out that the relative humidity brings less impact,especially during the dry season.It is thus implied that the current global warming and urban heat island effect may lead to correlative changes in TSP dry deposition velocity,especially in the urban areas.
Honschoten, van J.W.; Druyvesteyn, W.F.; Kuipers, H.; Raangs, R.; Krijnen, G.J.M.
2004-01-01
In this paper a method is presented to reduce the noise level of a particle velocity sensor, a thermal two-wire sensor sensitive to acoustic particle velocities, which yields a reduction of the noise of 30 dB. The method is based on utilisation of cross- instead of auto-correlation spectra of two of
Flow rate of particles through apertures obtained from self-similar density and velocity profiles
2012-01-01
‘‘Beverloo’s law’’ is considered as the standard expression to estimate the ﬂow rate of particles through apertures. This relation was obtained by simple dimensional analysis and includes empirical parameters whose physical meaning is poorly justiﬁed. In this Letter, we study the density and velocity proﬁles in the ﬂow of particles through an aperture. We ﬁnd that, for the whole range of apertures studied, both proﬁles are self-similar. Hence, by means of the functionality obtained for the...
Particle velocity based universal algorithm for numerical simulation of hydraulic fractures
Wrobel, Michal
2014-01-01
In the paper, we propose a new effective mathematical formulation and resulting universal numerical algorithm capable of tackling various HF models in the framework of a unified approach. The presented numerical scheme is not limited to any particular elasticity model or crack propagation regime. Its basic assumptions are: i) proper choice of independent and dependent variables (with the direct utilization of a new one - the reduced particle velocity), ii) tracing the fracture front by use of the speed equation which can be integrated in a closed form and sets an explicit relation between the crack propagation speed and the coefficients in the asymptotic expansion of the crack opening, iii) proper regularization techniques, iv) improved temporal approximation, v) modular algorithm architecture. The application of the new dependent variable, the reduced particle velocity, instead of the usual fluid flow rate, facilitates the computation of the crack propagation speed from the local relation based on the speed ...
Energy Technology Data Exchange (ETDEWEB)
Gerber, Thomas; Liu Yuzhu; Knopp, Gregor; Hemberger, Patrick; Bodi, Andras; Radi, Peter; Sych, Yaroslav [Molecular Dynamics Group, Paul Scherrer Institut, 5232 Villigen (Switzerland)
2013-03-15
Velocity map imaging (VMI) is used in mass spectrometry and in angle resolved photo-electron spectroscopy to determine the lateral momentum distributions of charged particles accelerated towards a detector. VM-images are composed of projected Newton spheres with a common centre. The 2D images are usually evaluated by a decomposition into base vectors each representing the 2D projection of a set of particles starting from a centre with a specific velocity distribution. We propose to evaluate 1D projections of VM-images in terms of 1D projections of spherical functions, instead. The proposed evaluation algorithm shows that all distribution information can be retrieved from an adequately chosen set of 1D projections, alleviating the numerical effort for the interpretation of VM-images considerably. The obtained results produce directly the coefficients of the involved spherical functions, making the reconstruction of sliced Newton spheres obsolete.
Brandão, Eric; Flesch, Rodolfo C C; Lenzi, Arcanjo; Flesch, Carlos A
2011-07-01
The pressure-particle velocity (PU) impedance measurement technique is an experimental method used to measure the surface impedance and the absorption coefficient of acoustic samples in situ or under free-field conditions. In this paper, the measurement uncertainty of the the absorption coefficient determined using the PU technique is explored applying the Monte Carlo method. It is shown that because of the uncertainty, it is particularly difficult to measure samples with low absorption and that difficulties associated with the localization of the acoustic centers of the sound source and the PU sensor affect the quality of the measurement roughly to the same extent as the errors in the transfer function between pressure and particle velocity do.
Rainbow Particle Imaging Velocimetry for Dense 3D Fluid Velocity Imaging
Xiong, Jinhui
2017-04-11
Despite significant recent progress, dense, time-resolved imaging of complex, non-stationary 3D flow velocities remains an elusive goal. In this work we tackle this problem by extending an established 2D method, Particle Imaging Velocimetry, to three dimensions by encoding depth into color. The encoding is achieved by illuminating the flow volume with a continuum of light planes (a “rainbow”), such that each depth corresponds to a specific wavelength of light. A diffractive component in the camera optics ensures that all planes are in focus simultaneously. For reconstruction, we derive an image formation model for recovering stationary 3D particle positions. 3D velocity estimation is achieved with a variant of 3D optical flow that accounts for both physical constraints as well as the rainbow image formation model. We evaluate our method with both simulations and an experimental prototype setup.
Spatial coherences of the sound pressure and the particle velocity in underwater ambient noise
Institute of Scientific and Technical Information of China (English)
YAN Jin; LUO Xianzhi; HOU Chaohuan
2007-01-01
The spatial coherences were investigated between the sound pressure and the three orthogonal components of the particle velocity in underwater ambient noise. Based on the ray theory, integral expression was derived for the spatial coherence matrix of the sound pressure and the particle velocity in a stratified ocean with dipole noise sources homogenously distributed on the surface. The integrand includes a multiplying factor of the vertical directivity of the noise intensity, and the layered ocean environment affects the spatial coherences via this directivity factor. For a shallow water environment and a semi-infinite homogenous medium, the coherence calculation results were given. It was showed that the sound speed profile and the sea bottom could not be neglected in determining the spatial coherences of the ambient noise vector field.
Two-phase velocity measurements around cylinders using particle image velocimetry
Energy Technology Data Exchange (ETDEWEB)
Hassan, Y.A.; Philip, O.G.; Schmidl, W.D. [Texas A& M Univ., College Station, TX (United States)] [and others
1995-09-01
The particle Image Velocimetry flow measurement technique was used to study both single-phase flow and two-phase flow across a cylindrical rod inserted in a channel. First, a flow consisting of only a single-phase fluid was studied. The experiment consisted of running a laminar flow over four rods inserted in a channel. The water flow rate was 126 cm{sup 3}/s. Then a two-phase flow was studied. A mixture of water and small air bubbles was used. The water flow rate was 378 cm{sup 3}/s and the air flow rate was approximately 30 cm{sup 3}/s. The data are analyzed to obtain the velocity fields for both experiments. After interpretation of the velocity data, forces acting on a bubble entrained by the vortex were calculated successfully. The lift and drag coefficients were calculated using the velocity measurements and the force data.
Institute of Scientific and Technical Information of China (English)
HUI Junying; LI Chunxu; LIANG Guolong; LIU Hong
2001-01-01
Comparing with traditional underwater acoustic system which only utilizes pressure information, combine sensor system processes pressure together with particle velocity information of sound field. More information certainly brings nicer processing result. By using spatial directional information collected by combine sensor, the Coherent Interference Energy Suppress (CIES) technology, which can effectively suppress coherent interference and detect linear spectrum signal and wide-band continuous-spectrum signal as well, is presented. Current research has shown favorite result, and further research is going on.
Gurgiolo, Chris; Vinas, Adolfo F.
2009-01-01
This paper presents a spherical harmonic analysis of the plasma velocity distribution function using high-angular, energy, and time resolution Cluster data obtained from the PEACE spectrometer instrument to demonstrate how this analysis models the particle distribution function and its moments and anisotropies. The results show that spherical harmonic analysis produced a robust physical representation model of the velocity distribution function, resolving the main features of the measured distributions. From the spherical harmonic analysis, a minimum set of nine spectral coefficients was obtained from which the moment (up to the heat flux), anisotropy, and asymmetry calculations of the velocity distribution function were obtained. The spherical harmonic method provides a potentially effective "compression" technique that can be easily carried out onboard a spacecraft to determine the moments and anisotropies of the particle velocity distribution function for any species. These calculations were implemented using three different approaches, namely, the standard traditional integration, the spherical harmonic (SPH) spectral coefficients integration, and the singular value decomposition (SVD) on the spherical harmonic methods. A comparison among the various methods shows that both SPH and SVD approaches provide remarkable agreement with the standard moment integration method.
Particle velocity and sediment transport at the limit of deposition in sewers.
Ota, J J; Perrusquía, G S
2013-01-01
This paper focuses on the sediment particle while it is transported at the limit of deposition in storm sewers, i.e. as bed load at the limit of concentration that leads to sediment deposition. Although many empirical sediment transport equations are known in the literature, there is only limited knowledge concerning particle velocity. Sediment particle and sphere velocity measurements were carried out in two pipe channels and these results led to the development of a semi-theoretical equation for sediment transport at the limit of deposition in sewers. Even in the transport process without deposition, sediment movement is slower than water velocity and depends on the angle of repose of sediment with a diameter d on the roughness k of the pipe channel. Instead of classical dimensionless bed shear stress ψ, a modified dimensionless bed shear stress ψ (d/k)(2/3) was suggested, based on the angle of repose and this parameter was proved to be significant for quantifying the transport capacity. The main purpose of this article is to emphasize the importance of careful observation of experiments. Not only number of tests, but physical understanding are essential for better empirical equations.
Flow Rate of Particles through Apertures Obtained from Self-Similar Density and Velocity Profiles
Janda, Alvaro; Zuriguel, Iker; Maza, Diego
2012-06-01
“Beverloo’s law” is considered as the standard expression to estimate the flow rate of particles through apertures. This relation was obtained by simple dimensional analysis and includes empirical parameters whose physical meaning is poorly justified. In this Letter, we study the density and velocity profiles in the flow of particles through an aperture. We find that, for the whole range of apertures studied, both profiles are self-similar. Hence, by means of the functionality obtained for them the mass flow rate is calculated. The comparison of this expression with the Beverloo’s one reveals some differences which are crucial to understanding the mechanism that governs the flow of particles through orifices.
Variyar, Jayasankar E.; Kivelson, Daniel; Lynden-Bell, R. M.
1992-12-01
We have carried out molecular-dynamics simulations over a range of densities in two and three dimensions for particles that interact through soft repulsive potentials. We have also carried out calculations of the corresponding systems in which all particles except a tagged particle and its neighbors within a certain distance are frozen. Velocity autocorrelation functions for a single particle, for clusters containing the particle, and for the velocity of the particle relative to an embedding cluster were obtained. The single-particle velocity autocorrelation function can be resolved into correlation functions describing the local rattling in a cage or a cluster, the motion of the cluster itself, and a small cross-correlation term; the function for the single particle is sensitive to the structure of the fluid over a much shorter time scale than are those of clusters, and the shape of the single-particle velocity autocorrelation function comes primarily from rattling motion within a cage. We show that the velocity autocorrelation functions of clusters are probably better probes than that for the single particle for investigating incipient glass formation since they can be used to establish a correlation length which increases when a liquid is cooled. The dynamics of clusters at a given state point depend upon their sizes, and the nature of their motions changes qualitatively from ``rattling'' for small to ``diffusional'' for large clusters, the ``critical'' size at which the change occurs increasing with decreasing temperature. A simple model for this cluster behavior is presented.
Institute of Scientific and Technical Information of China (English)
Li-Xing Zhou; Yang Liu; Yi Xu
2011-01-01
In this paper the present authors measured the gas-particle two-phase velocity correlation in sudden expansion gas-particle flows with a phase Doppler particle anemometer(PDPA) and simulated the system behavior by using both a Reynolds-averaged Navier-Stokes(RANS)model and a large-eddy simulation(LES). The results of the measurements yield the axial and radial time-averaged velocities as well as the fluctuation velocities of gas and three particle-size groups(30μm,50μm,and 95μm) and the gasparticle velocity correlation for 30μm and 50μm particles.From the measurements,theoretical analysis,and simulation,it is found that the two-phase velocity correlation of sudden-expansion flows,like that of jet flows,is less than the gas and particle Reynolds stresses. What distinguishes the two-phase velocity correlations of sudden-expansion flow from those of jet and channel flows is the absence of a clear relationship between the two-phase velocity correlation and particle size in sudden-expansion flows. The measurements,theoretical analysis,and numerical simulation all lead to the above-stated conclusions. Quantitatively,the results of the LES are better than those of the RANS model.
Quantum Mechanical Corrections to Simulated Shock Hugoniot Temperatures
Energy Technology Data Exchange (ETDEWEB)
Goldman, N; Reed, E; Fried, L E
2009-07-17
The authors present a straightforward method for the inclusion of quantum nuclear vibrational effects in molecular dynamics calculations of shock Hugoniot temperatures. Using a grueneisen equation of state and a quasi-harmonic approximation to the vibrational energies, they derive a simple, post-processing method for calculation of the quantum corrected Hugoniot temperatures. They have used our novel technique on ab initio simulations of both shock compressed water and methane. Our results indicate significantly closer agreement with all available experimental temperature data for these two systems. Our formalism and technique can be easily applied to a number of different shock compressed molecular liquids or covalent solids, and has the potential to decrease the large uncertainties inherent in many experimental Hugoniot temperature measurements of these systems.
Hugoniot Models for Na and LiF from LEOS
Energy Technology Data Exchange (ETDEWEB)
Whitley, Heather D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wu, Christine J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2016-10-12
In this document, we provide the Hugoniot for sodium from two models: LEOS table L110 and Lynx table 110. We also provide the Hugoniot for lithium fluoride from LEOS (L2240) and Lynx (2240). The Hugoniot pressures are supplied for temperatures between 338.0 and 1.16×10^{9} Kelvin and densities between 0.968 and 11.5 g/cc. These LEOS models were developed by the quotidian EOS methodology, which is a widely used and robust method for producing tabular EOS data. Tables list the model data for LEOS 110, Lynx 110, LEOS 2240, and Lynx 2240. The Lynx models follow the same methodology as the LEOS models; however, the Purgatorio average-atom DFT code was used to compute the electron thermal part of the EOS. The models for Lynx are only listed at high compression due to known issues with the Lynx library at lower pressures.
Liu, Gui-Rong; Wang, Gangyu; Peng, Qing; de, Suvranu
2015-06-01
HMX is a widely used high explosive. Hugoniot curve is a valuable tool for analyzing the equations of state, and is of importance for all energetic materials including HMX. The Hugoniot curves serve as one of the key character in continuum modeling of high explosives. It can be obtained from experimental measurements, and recently also from computational studies. In this study, the Hugoniot curve of HMX is calculated using a multi-scale shock technique via Molecular Dynamics (MD) simulations, where the reactive force field ReaxFF is obtained from Quantum Mechanics calculations and tailored for HMX. It is found that our MD Hugoniot curve of HMX from the optimized ReaxFF potential agree well with experiments. The MD Hugoniot curve of HMX is also incorporated in our in-house Smoothed Particle Hydrodynamics (SPH) code for the modeling of the macro-scale explosive behaviors of HMX explosives and HMX cased in a 3D cylinder. The authors would like to acknowledge the generous financial support from the Defense Threat Reduction Agency (DTRA) Grant HDTRA1-13-1-0025.
Nuclear Quantum Vibrational Effects in Shock Hugoniot Temperatures
Energy Technology Data Exchange (ETDEWEB)
Goldman, N; Reed, E; Fried, L E
2009-07-23
We present a straightforward method for the inclusion of quantum nuclear vibrational effects in molecular dynamics calculations of shock Hugoniot temperatures. Using a Grueneisen equation of state and a quasiharmonic approximation to the vibrational energies, we derive a simple, post-processing method for calculation of the quantum corrected Hugoniot temperatures. We have used our novel technique on ab initio simulations of shock compressed water. Our results indicate significantly closer agreement with all available experimental temperature data. Our formalism and technique can be easily applied to a number of different shock compressed molecular liquids or solids.
Nuclear Quantum Vibrational Effects in Shock Hugoniot Temperatures
Energy Technology Data Exchange (ETDEWEB)
Goldman, N; Reed, E; Fried, L E
2009-07-23
We present a straightforward method for the inclusion of quantum nuclear vibrational effects in molecular dynamics calculations of shock Hugoniot temperatures. Using a Grueneisen equation of state and a quasiharmonic approximation to the vibrational energies, we derive a simple, post-processing method for calculation of the quantum corrected Hugoniot temperatures. We have used our novel technique on ab initio simulations of shock compressed water. Our results indicate significantly closer agreement with all available experimental temperature data. Our formalism and technique can be easily applied to a number of different shock compressed molecular liquids or solids.
Harris, Jeff; Lance, Blake; Skifton, Richard; Smith, Barton
2015-11-01
Two methods of computing the wall shear velocity from high-resolution particle image velocimetry (PIV) measurements are compared with and without a correction that accounts for seed gradient near the wall. It is crucial to know the wall position when computing the wall shear stress, but this can be difficult due to laser scatter on a wall. Furthermore, PIV is well known to be biased near walls due to seeding gradients. We compensate for these effects by replacing the cross-stream location of each vector with a value based on the centroid of the seeding in each interrogation region. The shear velocity and wall position resulting from methods outlined in the literature are presented. The boundary layer cases presented are influenced by buoyancy and the efficacy of these methods for convective flow will be discussed.
Hennessy, Ricky; Koo, Chiwan; Ton, Phuc; Han, Arum; Righetti, Raffaella; Maitland, Kristen C.
2011-03-01
Ultrasound poroelastography can quantify structural and mechanical properties of tissues such as stiffness, compressibility, and fluid flow rate. This novel ultrasound technique is being explored to detect tissue changes associated with lymphatic disease. We have constructed a macroscopic fluorescence imaging system to validate ultrasonic fluid flow measurements and to provide high resolution imaging of microfluidic phantoms. The optical imaging system is composed of a white light source, excitation and emission filters, and a camera with a zoom lens. The field of view can be adjusted from 100 mm x 75 mm to 10 mm x 7.5 mm. The microfluidic device is made of polydimethylsiloxane (PDMS) and has 9 channels, each 40 μm deep with widths ranging from 30 μm to 200 μm. A syringe pump was used to propel water containing 15 μm diameter fluorescent microspheres through the microchannels, with flow rates ranging from 0.5 μl/min to 10 μl/min. Video was captured at a rate of 25 frames/sec. The velocity of the microspheres in the microchannels was calculated using an algorithm that tracked the movement of the fluorescent microspheres. The imaging system was able to measure particle velocities ranging from 0.2 mm/sec to 10 mm/sec. The range of flow velocities of interest in lymph vessels is between 1 mm/sec to 10 mm/sec; therefore our imaging system is sufficient to measure particle velocity in phantoms modeling lymphatic flow.
The settling velocity of mineral, biomineral, and biological particles and aggregates in water
Maggi, Federico
2013-04-01
A new equation was developed to relate the size and settling velocity of particulate matter commonly recurring in aqueous ecosystems. This equation explicitly balanced the gravitational, buoyancy, viscous, and inertial forces as in Rubey () but was amended to describe in one instance both individual particles and granular aggregates with an internal fractal architecture. This approach allowed for an algebraic solution of the settling velocity, thus overcoming earlier approaches that required iterative numerical solutions. The equation was tested with mineral, biomineral, and biological suspended particles and granular aggregates from 52 existing experimental data sets, and resulted in average correlation coefficients R between 71% and 93.9%, and normilized residuals between 14.3% and 24.8% over Reynolds numbers ranging within 10-7 and 102. Accuracy of these results was generally better than for the Stokes' law, the Stokes' law modified with the Schiller-Naumann drag coefficient, and Rubey's equation. Estimated parameters ranged within observed ones, thus suggesting that the equation was robust. An analysis of the drag showed that inertial force was negligible only for biological cells (isolated cysts), whereas it contributed by not less than 5% to the drag on large mineral particles and up to 20% for biomineral and biological aggregates. Finally, a correlation was found between the organic matter content and fractal properties of granular aggregates, which were described by empirical equations proposed here for the first time. The hypothesis that the settling velocity is a function of linear and nonlinear drag, and is ultimately determined by physical characteristics as much as biological composition and internal aggregate geometry, is supported here by quantitative analyses.
Finn, Katherine; Whitworth, Nick; Handley, Caroline
2009-06-01
In recent years, a comprehensive suite of gas-gun particle velocity gauge experiments have been conducted by Gustavsen et al. A detailed analysis of this data has led to advances in the understanding of the shock to detonation transition in polymer bonded explosives, and hydrocode simulations of the experiments are often used to calibrate reactive-burn models. In these simulations, the gauges are often modeled using Lagrangian marker particles, with no physical representation. In contrast, the experimental gauge package, as developed by Vorthman et al. in the early 1980s, consists of etched aluminium sandwiched between two sheets of FEP Teflon, using an urethane-based glue. The resulting gauge package is approximately 60 micrometres thick and is positioned between two wedge-shaped pieces of explosive at an angle of 30 degrees, to form a right-circular cylinder. This paper investigates whether there is a need to include an accurate representation of the gauge package within future hydrocode simulations.
Institute of Scientific and Technical Information of China (English)
ZHANG Jia-Lin; YU Hong-Wei
2005-01-01
@@ We examine the random motion of a charged test particle with a nonzero classical velocity driven by quantum electromagnetic vacuum fluctuations in a cylindrical spacetime and calculate both the velocity and position dispersions of the test particle. It is found that the dispersions display different behaviour in different directions.These differences can be understood as a result of the topology of the configuration and initial physical conditions.
There is considerable interest to determine the threshold for aeolian dust emission on Earth and Mars. Existing schemes for threshold friction velocity are all deterministic in nature, but observations show that in the dust particle size range the threshold friction velocity scatters strongly due t...
Berry Phase, Lorentz Covariance, and Anomalous Velocity for Dirac and Weyl Particles
Stone, Michael; Zhou, Tianci
2014-01-01
We consider the relation between spin and the Berry-phase contribution to the anomalous velocity of massive and massless Dirac particles. We extend the Berry connection that depends only on the spatial components of the particle momentum to one that depends on the the space and time components in a covariant manner. We show that this covariant Berry connection captures the Thomas-precession part of the Bargmann-Michel-Telegdi spin evolution, and contrast it with the traditional (unitary, but not naturally covariant) Berry connection that describes spin-orbit coupling. We then consider how the covariant connection enters the classical relativistic dynamics of spinning particles due to Mathisson, Papapetrou and Dixon. We discuss the problems that arise with Lorentz covariance in the massless case, and trace them mathematically to a failure of the Wigner-translation part of the massless-particle little group to be an exact gauge symmetry in the presence of interactions, and physically to the fact that the measur...
Phase Transitions of MgO Along the Hugoniot (Invited)
Root, S.; Shulenburger, L.; Lemke, R. W.; Cochrane, K. R.; Mattsson, T. R.
2013-12-01
The formation of terrestrial planets and planetary structure has become of great interest because of recent exoplanet discoveries of super earths. MgO is a major constituent of Earth's mantle, the rocky cores of gas giants such as Jupiter, and likely constitutes the interiors of many exoplanets. The high pressure - high temperature behavior of MgO directly affects equation of state models for planetary structure and formation. In this work, we examine single crystal MgO under shock compression utilizing experimental and density functional theory (DFT) methods to determine phase transformations along the Hugoniot. We perform plate impact experiments using Sandia's Z - facility on MgO up to 11.6 Mbar. The plate impact experiments generate highly accurate Hugoniot state data. The experimental results show the B1 - B2 solid - solid phase transition occurs near 4 Mbar on the Hugoniot. The solid - liquid transition is determined to be near 7 Mbar with a large region of B2-liquid coexistence. Using DFT methods, we also determine melt along the B1 and B2 solid phase boundaries as well as along the Hugoniot. The combined experimental and DFT results have determined the phase boundaries along the Hugoniot, which can be implemented into new planetary and EOS models. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Securities Administration under Contract No. DE-AC04-94AL85000.
Directory of Open Access Journals (Sweden)
Seiji Kuroda et al
2008-01-01
Full Text Available In recent years, coating processes based on the impact of high-velocity solid particles such as cold spraying and aerosol deposition have been developed and attracting much industrial attention. A novel coating process called 'warm spraying' has been developed, in which coatings are formed by the high-velocity impact of solid powder particles heated to appropriate temperatures below the melting point of the powder material. The advantages of such process are as follows: (1 the critical velocity needed to form a coating can be significantly lowered by heating, (2 the degradation of feedstock powder such as oxidation can be significantly controlled compared with conventional thermal spraying where powder is molten, and (3 various coating structures can be realized from porous to dense ones by controlling the temperature and velocity of the particles. The principles and characteristics of this new process are discussed in light of other existing spray processes such as high-velocity oxy-fuel spraying and cold spraying. The gas dynamics of particle heating and acceleration by the spraying apparatus as well as the high-velocity impact phenomena of powder particles are discussed in detail. Several examples of depositing heat sensitive materials such as titanium, metallic glass, WC–Co cermet and polymers are described with potential industrial applications.
Institute of Scientific and Technical Information of China (English)
HUANG Hai-Jun; JING Fu-Qian; CAI Ling-Cang; Bi Yan
2005-01-01
@@ Based on the available data of specific heat Cv at constant volume and the Grüeisen parameter γ of both lattice and electron contributions, we present a consistent method for simultaneously calculating the effective or synthesized Grüeisen parameter along Hugoniot, γeH, covering solid, mixed, and liquid states, and the melting temperature Tm for ε-iron.The rationality validation for this method is confirmed as compared with the experimental data, including the measured Tm and Hugoniot bulk sound velocities Cb.The calculated γeH and Tm for ε-iron at the Earth's inner-core boundary (330GPa) are 1.58 and 5930K, respectively, which are close to the values of 1.53 and 6050K given by Anderson [J.Phys.Chem.Solids 64 (2003) 2125].This method for determination of γeH could be, in principle, also applicable to any thermodynamic state calculations, e.g., along isothermal and isentropic paths, other than the Hugoniot locus.
Institute of Scientific and Technical Information of China (English)
FU Xiang-Yun; YU Hong-Wei
2007-01-01
We study the random motion of a charged test particle with a normal classical constant velocity in a spacetime with a perfectly reflecting plane boundary and calculate both the velocity and position dispersions of the test particle. Our results show that the dispersions in the normal direction are weakened while those in the parallel directions are strengthened as compared to the classical static case when the test particle classically moves away from the boundary.However, if the classical motion reverses its direction, then the dispersions in the normal direction are reinforced while those in the parallel directions get weakened.
Ultrasonic device for real-time sewage velocity and suspended particles concentration measurements.
Abda, F; Azbaid, A; Ensminger, D; Fischer, S; François, P; Schmitt, P; Pallarès, A
2009-01-01
In the frame of a technological research and innovation network in water and environment technologies (RITEAU, Réseau de Recherche et d'Innovation Technologique Eau et Environnement), our research group, in collaboration with industrial partners and other research institutions, has been in charge of the development of a suitable flowmeter: an ultrasonic device measuring simultaneously the water flow and the concentration of size classes of suspended particles. Working on the pulsed ultrasound principle, our multi-frequency device (1 to 14 MHz) allows flow velocity and water height measurement and estimation of suspended solids concentration. Velocity measurements rely on the coherent Doppler principle. A self developed frequency estimator, so called Spectral Identification method, was used and compared to the classical Pulse-Pair method. Several measurements campaigns on one wastewater collector of the French city of Strasbourg gave very satisfactory results and showed smaller standard deviation values for the Doppler frequency extracted by the Spectral Identification method. A specific algorithm was also developed for the water height measurements. It relies on the water surface acoustic impedance rupture and its peak localisation and behaviour in the collected backscattering data. This algorithm was positively tested on long time measurements on the same wastewater collector. A large part of the article is devoted to the measurements of the suspended solids concentrations. Our data analysis consists in the adaptation of the well described acoustic behaviour of sand to the behaviour of wastewater particles. Both acoustic attenuation and acoustic backscattering data over multiple frequencies are analyzed for the extrapolation of size classes and respective concentrations. Under dry weather conditions, the massic backscattering coefficient and the overall size distribution showed similar evolution whatever the measurement site was and were suggesting a global
Sharma, Prabhakar; Poulsen, Tjalfe G
2010-07-01
Gas-phase dispersion in granular biofilter materials with a wide range of particle sizes was investigated using atmospheric air and nitrogen as tracer gases. Two types of materials were used: (1) light extended clay aggregates (LECA), consisting of highly porous particles, and (2) gravel, consisting of solid particles. LECA is a commercial material that is used for insulation, as a soil conditioner, and as a carrier material in biofilters for air cleaning. These two materials were selected to have approximately the same particle shape. Column gas transport experiments were conducted for both materials using different mean particle diameters, different particle size ranges, and different gas flow velocities. Measured breakthrough curves were modeled using the advection-dispersion equation modified for mass transfer between mobile and immobile gas phases. The results showed that gas dispersivity increased with increasing mean particle diameter for LECA but was independent of mean particle diameter for gravel. Gas dispersivity also increased with increasing particle size range for both media. Dispersivities in LECA were generally higher than for gravel. The mobile gas content in both materials increased with increasing gas flow velocity but it did not show any strong dependency on mean particle diameter or particle size range. The relative fraction of mobile gas compared with total porosity was highest for gravel and lowest for LECA likely because of its high internal porosity.
Finn, K. L.; James, H. R.; Whitworth, N. J.; Handley, C. A.
2009-12-01
In recent years a comprehensive suite of gas-gun particle velocity gauge experiments have been conducted at Los Alamos National Laboratory. Detailed analysis of this data has led to advances in the understanding of the shock to detonation transition in polymer bonded explosives hydrocode simulations of the experiments are frequently used to calibrate reactive-burn models. In these simulations the gauges are modelled using Lagrangian markers with no physical representation of the gauge package. In contrast the experimental gauge package consists of etched aluminium sandwiched between two sheets of FEP Teflon using an urethane-based glue. The gauge package is approximately 60 μm thick is positioned between two wedge-shaped pieces of explosive at an angle of 30 degrees to form a right circular cylinder. This paper investigates with one-dimensional calculations whether there is a need to include an accurate representation of the gauge package within future hydrocode simulations.
Shan, Chung-Lin
2014-01-01
In this paper, we extended our earlier work on the reconstruction of the (time-averaged) one-dimensional velocity distribution of Galactic Weakly Interacting Massive Particles (WIMPs) and introduce the Bayesian fitting procedure to the theoretically predicted velocity distribution functions. In this reconstruction process, the (rough) velocity distribution reconstructed by using raw data from direct Dark Matter detection experiments directly, i.e. measured recoil energies, with one or more different target materials, has been used as "reconstructed-input" information. By assuming a fitting velocity distribution function and scanning the parameter space based on the Bayesian analysis, the astronomical characteristic parameters, e.g. the Solar and Earth's orbital velocities, will be pinned down as the output results. Our Monte-Carlo simulations show that this Bayesian scanning procedure could reconstruct the true (input) WIMP velocity distribution function pretty precisely with negligible systematic deviations ...
Remo, John L.
2010-10-01
An electro-optic laser probe was developed to obtain parameters for high energy density equations of state (EoS), Hugoniot pressures (PH), and strain rates for high energy density laser irradiation intensity, I, experiments at ˜170 GW/cm2 (λ = 1064 nm) to ˜13 TW/cm2 (λ = 527 nm) on Al, Cu, Ti, Fe, Ni metal targets in a vacuum. At I ˜7 TW/cm2 front surface plasma pressures and temperatures reached 100's GPa and over two million K. Rear surface PH ranged from 7-120 GPa at average shock wave transit velocities 4.2-8.5 km/s, depending on target thickness and I. A surface plasma compression ˜100's GPa generated an impulsive radial expanding shock wave causing compression, rarefactions, and surface elastic and plastic deformations depending on I. A laser/fiber optic system measured rear surface shock wave emergence and particle velocity with ˜3 GHz resolution by monitoring light deflection from diamond polished rear surfaces of malleable metallic targets, analogous to an atomic force microscope. Target thickness, ˜0.5-2.9 mm, prevented front surface laser irradiation penetration, due to low radiation skin depth, from altering rear surface reflectivity (refractive index). At ˜10 TW electromagnetic plasma pulse noise generated from the target chamber overwhelmed detector signals. Pulse frequency analysis using Moebius loop antennae probed transient noise characteristics. Average shock (compression) and particle (rear surface displacement) velocity measurements determined rear surface PH and GPa) EoS that are compared with gas guns.
Energy Technology Data Exchange (ETDEWEB)
McCoy, M.G.
1975-11-01
The problem of the numerical simulation of turbulent diffusion is studied. The two-dimensional velocity fields are assumed to be incompressible, homogeneous and stationary, and they are represented as stochastic processes. A technique is offered which creates velocity fields accurately representing the input statistics once a two point correlation function or an energy spectrum is given. Various complicated energy spectra may be represented utilizing this model. The program is then used to extract information concerning Gaussian diffusion processes. Various theories of other workers are tested including Taylor's classical representation of dispersion for times long compared with the Lagrangian correlation time. Also, a study is made of the relation between the Lagrangian and the Eulerian correlation function and a hypothesis is advanced and successfully tested. Questions concerning the relation between small eddies and the energy spectrum are considered. A criterion is advanced and successfully tested to decide whether small scale flow can be detected within the large eddies for any given spectrum. A method is developed to determine whether this small scale motion is in any sense periodic. Finally, the relation between two particle dispersion and the energy spectrum is studied anew and various theories are tested. (auth)
Characterization of High-Velocity Single Particle Impacts on Plasma-Sprayed Ceramic Coatings
Kiilakoski, Jarkko; Lindroos, Matti; Apostol, Marian; Koivuluoto, Heli; Kuokkala, Veli-Tapani; Vuoristo, Petri
2016-08-01
High-velocity impact wear can have a significant effect on the lifetime of thermally sprayed coatings in multiple applications, e.g., in the process and paper industries. Plasma-sprayed oxide coatings, such as Cr2O3- and TiO2-based coatings, are often used in these industries in wear and corrosion applications. An experimental impact study was performed on thermally sprayed ceramic coatings using the High-Velocity Particle Impactor (HVPI) at oblique angles to investigate the damage, failure, and deformation of the coated structures. The impact site was characterized by profilometry, optical microscopy, and scanning electron microscopy (SEM). Furthermore, the connection between the microstructural details and impact behavior was studied in order to reveal the damage and failure characteristics at a more comprehensive level. Differences in the fracture behavior were found between the thermally sprayed Cr2O3 and TiO2 coatings, and a concept of critical impact energy is presented here. The superior cohesion of the TiO2 coating inhibited interlamellar cracking while the Cr2O3 coating suffered greater damage at high impact energies. The HVPI experiment has proven to be able to produce valuable information about the deformation behavior of coatings under high strain rates and could be utilized further in the development of wear-resistant coatings.
Park, Hyungkwon; Kim, Jinyoung; Lee, Sung Bo; Lee, Changhee
2016-12-01
Vacuum kinetic spraying (VKS) is a promising room-temperature process to fabricate dense ceramic films. However, unfortunately, the deposition mechanism is still not clearly understood. In this respect, the critical conditions for successful deposition were investigated. Based on simulation and microstructural analysis, it was found that as the particle velocity increased, fracture mode transition from tensile fracture to shear fracture occurred and particle did not bounce off anymore above a certain velocity. Simultaneously, particle underwent shock-induced plasticity and dynamic fragmentation. The plasticity assisted to prevent the fragments from rebounding by spending the excessive kinetic energy and fragmentation is essential for fragment bonding and film growth considering that the deposition rate increased as the fraction of fragmentation increased. Accordingly, plasticity and fragmentation take a crucial role for particle deposition. In this respect, the velocity that fracture mode transition occurs is newly defined as critical velocity. Consequently, for successful deposition, the particle should at least exceed the critical velocity and thus it is very crucial for film fabrication in VKS process at room temperature.
Del Bello, Elisabetta; Taddeucci, Jacopo; de’ Michieli Vitturi, Mattia; Scarlato, Piergiorgio; Andronico, Daniele; Scollo, Simona; Kueppers, Ulrich; Ricci, Tullio
2017-01-01
Most of the current ash transport and dispersion models neglect particle-fluid (two-way) and particle-fluid plus particle-particle (four-way) reciprocal interactions during particle fallout from volcanic plumes. These interactions, a function of particle concentration in the plume, could play an important role, explaining, for example, discrepancies between observed and modelled ash deposits. Aiming at a more accurate prediction of volcanic ash dispersal and sedimentation, the settling of ash...
High precision Hugoniot measurements of D2 near maximum compression
Benage, John; Knudson, Marcus; Desjarlais, Michael
2015-11-01
The Hugoniot response of liquid deuterium has been widely studied due to its general importance and to the significant discrepancy in the inferred shock response obtained from early experiments. With improvements in dynamic compression platforms and experimental standards these results have converged and show general agreement with several equation of state (EOS) models, including quantum molecular dynamics (QMD) calculations within the Generalized Gradient Approximation (GGA). This approach to modeling the EOS has also proven quite successful for other materials and is rapidly becoming a standard approach. However, small differences remain among predictions obtained using different local and semi-local density functionals; these small differences show up in the deuterium Hugoniot at ~ 30-40 GPa near the region of maximum compression. Here we present experimental results focusing on that region of the Hugoniot and take advantage of advancements in the platform and standards, resulting in data with significantly higher precision than that obtained in previous studies. These new data may prove to distinguish between the subtle differences predicted by the various density functionals. Results of these experiments will be presented along with comparison to various QMD calculations. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin company, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Hugoniot Models for Na and LiF from LEOS
Energy Technology Data Exchange (ETDEWEB)
Whitley, Heather D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wu, Christine J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2016-10-12
In this document, we provide the Hugoniot for sodium from two models: LEOS table L110 and Lynx table 110. We also provide the Hugoniot for lithium fluoride from LEOS (L2240) and Lynx (2240). The Hugoniot pressures are supplied for temperatures between 338.0 and 1.16×109 Kelvin and densities between 0.968 and 11.5 g/cc. These LEOS models were developed by the quotidian EOS methodology, which is a widely used and robust method for producing tabular EOS data.[1, 2] Table 1 lists the model data for LEOS 110, Table 2 contains Lynx 110, Table 3 contains LEOS 2240, and Table 4 contains Lynx 2240. The Lynx models follow the same methodology as the LEOS models, however the Purgatorio[3] average-atom DFT code was used to compute the electron ther- mal part of the EOS. The models for Lynx are only listed at high compression due to known issues with the Lynx library at lower pressures.
Acquista, C.; Narducci, L. M.
1980-01-01
An approach for measuring the non-Markoffian component in the relaxation mechanism of a Brownian particle is proposed which combines desirable features of both the shock wave experiment and conventional light scattering experiments. It is suggested that the radiation pressure generated by a C.W. laser be used to guide an individual spherical particle to terminal velocity. At an appropriate time, the beam intensity is suddenly lowered to a value at which the radiation pressure is negligible, and the ensuing velocity relaxation is measured directly.
Shih, WuRong; Diplas, Panayiotis; Celik, Ahmet Ozan; Dancey, Clinton
2017-03-01
Recent studies have demonstrated the importance of duration, in addition to magnitude, of energetic turbulent events on particle dislodgement under threshold of motion conditions. It is therefore proposed here that the use of turbulence sequences, instead of single instantaneous extreme events, is more appropriate for characterizing the role of fluctuating velocities and associated hydrodynamic forces on particle mobility. The validity of the proposed method is examined through the detailed analysis of directly measured velocity and pressure data sets. In an effort to relate the results of the conventional velocity quadrant analysis with the instantaneous pressure measurements, the concept of pressure quadrant analysis is introduced. The coupled sequences of the synchronous velocity and pressure quadrant events allow for a more complete description of the local turbulent flow characteristics, including the prevalent coherent structures, and more clear interpretation of their role on particle mobility. It is concluded here that large-scale sweep structures are capable of generating excessive and persistent force fluctuations which are predominantly responsible for the dynamic process of particle dislodgement. This result supports the impulse criterion as the proper way of accounting for the cumulative effect of coherent structures on particle movement.
Gai, Hongwei; Li, Ying; Silber-Li, Zhanhua; Ma, Yinfa; Lin, Bingcheng
2005-04-01
A laser-induced fluorescence imaging method was developed to simultaneously measure flow velocities in the middle and near wall of a channel with particles or single molecules, by selectively switching from the wide field excitation mode to the evanescent wave excitation mode. Fluorescent microbeads with a diameter of 175 nm were used to calibrate the system, and the collisions of microbeads with channel walls were directly observed. The 175 nm microbeads velocities in the main flow and at 275 nm from the bottom of the channel were measured. The measured velocities of particles or single molecules in two positions in a microchannel were consistent with the calculated value based on Poiseuille flow theory when the diameter of a microbead was considered. The errors caused by Brownian diffusion in our measurement were negligible compared to the flow velocity. Single lambda DNA molecules were then used as a flowing tracer to measure the velocities. The velocity can be obtained at a distance of 309.0 +/- 82.6 nm away from bottom surface of the channel. The technique may be potentially useful for studying molecular transportation both in the center and at the bottom of the channel, and interactions between molecules and microchannel surfaces. It is especially important that the technique can be permitted to measure both velocities in the same experiment to eliminate possible experimental inconsistencies.
Machicoane, Nathanael; Bourgoin, Mickael; Aliseda, Alberto; Volk, Romain
2016-01-01
This article describes two independent developments aimed at improving the Particle Tracking Method for measurements of flow or particle velocities. First, a stereoscopic multicamera calibration method that does not require any optical model is described and evaluated. We show that this new calibration method gives better results than the most commonly-used technique, based on the Tsai camera/optics model. Additionally, the methods uses a simple interpolant to compute the transformation matrix and it is trivial to apply for any experimental fluid dynamics visualization set up. The second contribution proposes a solution to remove noise from Eulerian measurements of velocity statistics obtained from Particle Tracking velocimetry, without the need of filtering and/or windowing. The novel method presented here is based on recomputing particle displacement measurements from two consecutive frames for multiple different time-step values between frames. We show the successful application of this new technique to re...
Bragg, Andrew D
2016-01-01
In this paper, we use our recently developed theory for the backward-in-time (BIT) relative dispersion of inertial particles in turbulence (Bragg \\emph{et al.}, Phys. Fluids 28, 013305, 2016) to develop the theoretical model by Pan \\& Padoan (J. Fluid Mech. 661 73, 2010) for inertial particle relative velocities in isotropic turbulence. We focus on the most difficult regime to model, the dissipation range, and find that the modified Pan \\& Padoan model (that uses the BIT dispersion theory) can lead to significantly improved predictions for the relative velocities, when compared with Direct Numerical Simulation (DNS) data. However, when the particle separation distance, $r$, is less than the Kolmogorov length scale, $\\eta$, the modified model overpredicts the DNS data. We explain how these overpredictions arise from two assumptions in the BIT dispersion theory, that are in general not satisfied when the final separation of the BIT dispersing particles is $<\\eta$. We then demonstrate the failure of b...
Experimental analysis of sand particles' lift-off and incident velocities in wind-blown sand flux
Institute of Scientific and Technical Information of China (English)
Li Xie; Zhibao Dong; Xiaojing Zheng
2005-01-01
The probability distributions of sand particles' lift-off and incident velocities in a wind-blown sand flux play very important roles in the simulation of the wind-blown sand movement. In this paper, the vertical and the horizontal speeds of sand particles located at 1.0 mm above a sand-bed in a wind-blown sand flux are observed with the aid of Phase Doppler Anemometry (PDA) in a wind tunnel. Based on the experimental data, the probability distributions of not only the vertical lift-off speed but also the lift-off velocity as well as its horizontal component and the incident velocity as well as its vertical and horizontal components can be obtained by the equal distance histogram method. It is found, according to the results of the χ2-test for these probability distributions, that the probability density functions (pdf's) of the sand particles' lift-off and incident velocities as well as their vertical components are described by the Gamma density function with different peak values and shapes and the downwind incident and lift-off horizontal speeds, respectively, can be described by the lognormal and the Gamma density functions. These pdf's depend on not only the sand particle diameter but also the wind speed.
Raangs, R.; Schlicke, Ted; Barham, Richard
2005-01-01
In this paper, a new method of calibrating an acoustic particle velocity sensor using laser Doppler anemometry (LDA) is discussed. The results were compared and were in good agreement with the results obtained by conventional methods, where the sensitivity of the microflown is obtained with the use
Shen, Y.; Shen, Z. J.; Shen, G. T.; Yang, B. C.
1996-01-01
By the measurement theory of quantum mechanics and the method of Fourier transform,we proved that the wave function psi(x,y,z,t)= (8/((2(pi)(2L(exp (1/2)))(exp 3))(Phi(L,t,x)Phi(L,t,y)Phi(L,t,z)). According to the theory that the velocity of any particle can not be larger than the velocity of light and the Born interpretation, when absolute value of delta greater than (ct+ L),Phi(L,t,delta) = 0. But according to the calculation, we proved that for some delta, even if absolute value of delta is greater than (ct+L), Phi(L,t,delta) is not equal to 0.
Institute of Scientific and Technical Information of China (English)
李萍阳; 蒋维楣; 孙鉴泞; 袁仁民
2003-01-01
Based on the research of the convective boundary layer (CBL) temperature field in a convective tank, this paper studies the characteristics of the CBL velocity field in the convective tank. Aluminium powder (400 orders) is used as a tracer particle in the application of the particle image velocimetry (PIV)technique. The experiment demonstrates: the velocity distribution in the mixed layer clearly possesses the characteristics of CBL thermals; the velocity distribution in the top zone of the mixed layer shows entrainment layer characteristics; the vertical distribution of turbulent characteristic variables is reasonable,which is similar to field observations and other tank results; the error analysis demonstrates the validity of aluminium powder, which implies the reliability of the results.
Low-velocity collisions of particles with a dry or wet wall
Kantak, Advait A.; Galvin, Janine E.; Wildemuth, Douglas J.; Davis, Robert H.
2005-03-01
Plastic and metal spheres were impacted at low velocities in the range 0.02-0.30 m/s with a quartz plate that was dry or covered with a thin oil layer. Collisions were performed with a specially designed device in the low-gravity environment provided by a KC-135 aircraft. A pendulum-based experimental set-up was also used to perform low-velocity collisions under normal gravity. The dry restitution coefficient (ratio of the rebound velocity and impact velocity) is found to decrease weakly with increasing approach velocity, as is the general case with materials exhibiting inelastic deformation. The wet restitution coefficient is zero below a critical velocity and then increases with the impact velocity before evening out to form a plateau. A simple model for the wet restitution coefficient, ewet=edry(1-Stc/St), was found to adequately predict the restitution coefficient, as has been reported in earlier studies at higher impact velocities, where edry is the dry restitution coefficient, St is the Stokes number and Stc is the critical Stokes number below which no rebound occurs. Surface asperities are seen to cause more scatter in the data at low velocities than at high velocities. The data from pendulum experiments coincide with those collected in low gravity, thereby affirming their applicability for performing low-velocity collisions.
A New Hugoniot Equation of State for Shocked Porous Materials
Institute of Scientific and Technical Information of China (English)
耿华运; 谭华; 吴强
2002-01-01
A thermodynamic equation of state (EOS) is derived to be appropriate for investigating the thermodynamic variations along isobaric paths to predict the compression behaviour of porous materials. This EOS model is tested on porous iron, copper, lead and tungsten with different initial densities. The calculated temperature and Hugoniot are in good agreement with the corresponding experimental and theoretical data published previously. It is interesting that this model can satisfactorily predict the shock behaviour of porous materials over a wide range of porosity and pressure.
Calculation of Shock Hugoniot Curves of Precompressed Liquid Deuterium
Energy Technology Data Exchange (ETDEWEB)
Militzer, B
2002-11-18
Path integral Monte Carlo simulations have been used to study deuterium at high pressure and temperature. The equation of state has been derived in the temperature and density region of 10,000 {le} T {le} 1,000,000 and 0.6 {le} {rho} {le} 2.5 g cm{sup -3}. A series of shock Hugoniot curves is computed for different initial compressions in order to compare with current and future shock wave experiments using liquid deuterium samples precompressed in diamond anvil cells.
Directory of Open Access Journals (Sweden)
Hong-fu Guo
2017-01-01
Full Text Available Particle size and distribution play an important role in ignition. The size and distribution of the cyclotetramethylene tetranitramine (HMX particles were investigated by Laser Particle Size Analyzer Malvern MS2000 before experiment and calculation. The mean size of particles is 161 μm. Minimum and maximum sizes are 80 μm and 263 μm, respectively. The distribution function is like a quadratic function. Based on the distribution of micron scale explosive particles, a microscopic model is established to describe the process of ignition of HMX particles under drop weight. Both temperature of contact zones and ignition probability of powder explosive can be predicted. The calculated results show that the temperature of the contact zones between the particles and the drop weight surface increases faster and higher than that of the contact zones between two neighboring particles. For HMX particles, with all other conditions being kept constant, if the drop height is less than 0.1 m, ignition probability will be close to 0. When the drop heights are 0.2 m and 0.3 m, the ignition probability is 0.27 and 0.64, respectively, whereas when the drop height is more than 0.4 m, ignition probability will be close to 0.82. In comparison with experimental results, the two curves are reasonably close to each other, which indicates our model has a certain degree of rationality.
Coltelli, M.; Miraglia, L.; Scollo, S.
2008-09-01
In this paper, we present a complete morphological characterization of the ash particles erupted on 18 December 2002 from Etna volcano, Italy. The work is based on the acquisition and processing of bidimensional digital images carried out by scanning electron microscopy (SEM) to obtain shape parameters by image analysis. We measure aspect ratio (AR), form factor (FF), compactness (CC), and rectangularity (RT) of 2065 ash particles with size between 0.026 and 1.122 mm. We evaluate the variation of these parameters as a function of the grain-size. Ash particles with a diameter of 0.250 mm are subelongate. We find that, on average, particles with a diameter of 0.50 mm are angular. Using this morphological analysis and an empirical relation between the drag coefficient ( C D) and Reynolds number ( R e) of Wilson and Huang (Earth Planet Sci Lett 44:311-324, 1979), we calculate the terminal settling velocities ( V WH). The comparisons between these velocities and those calculated with the formula of Kunii and Levenspiel ( Fluidization engineering. Wiley, New York, pp 97, 1969) ( V KL), which considers ash particles as spheres, show that V KL are in average 1.28 greater than V WH. Hence, we quantify the systematic error on the spatial distribution of the mass computed around the volcano carried out by tephra dispersal models when the particles are assumed to be spherical.
Hugoniot measurements at near Gbar pressures at the NIF
Kritcher, Andrea; Swift, Damian; Doeppner, Tilo; Collins, Gilbert; Bachmann, Benjamin; Nilsen, Joe; Chapman, Dave; Correa, Alfredo; Sterne, Phil; Benedict, Lorin; Gaffney, Jim; Kraus, Dominik; Falcone, Roger; Glenzer, Siegfried; Rothman, Steve
2015-11-01
Laboratory measurements of the Equation of State (EOS) of matter at high pressure are of great importance in the understanding and accurate modeling of matter at extreme conditions. For example, at hundreds of Mbars - Gbar pressures atomic shell effects may come into play, which can change the predicted compressibility at given pressure due to pressure and temperature ionization. In this work we present measurements of the strong shock hugoniot, at pressures up to 720 Mbar for CH and 630 Mbar for High Density Carbon (HDC, or diamond) at the National Ignition Facility (NIF). Spherically convergent shocks are launched into solid CH or diamond samples, using a hohlraum radiation drive. X-ray radiography is applied to measure the shock speed and infer the mass density profile, enabling determining of the shock pressure and Hugoniot equation of state. This work was performed under the auspices of the U.S. Department of Energy by University of California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48. Supported by LDRD 08-ERI-003.
Furbish, David J.; Schmeeckle, Mark; Schumer, Rina; Fathel, Siobhan L.
2016-01-01
We describe the most likely forms of the probability distributions of bed load particle velocities, accelerations, hop distances, and travel times, in a manner that formally appeals to inferential statistics while honoring mechanical and kinematic constraints imposed by equilibrium transport conditions. The analysis is based on E. Jaynes's elaboration of the implications of the similarity between the Gibbs entropy in statistical mechanics and the Shannon entropy in information theory. By maximizing the information entropy of a distribution subject to known constraints on its moments, our choice of the form of the distribution is unbiased. The analysis suggests that particle velocities and travel times are exponentially distributed and that particle accelerations follow a Laplace distribution with zero mean. Particle hop distances, viewed alone, ought to be distributed exponentially. However, the covariance between hop distances and travel times precludes this result. Instead, the covariance structure suggests that hop distances follow a Weibull distribution. These distributions are consistent with high-resolution measurements obtained from high-speed imaging of bed load particle motions. The analysis brings us closer to choosing distributions based on our mechanical insight.
DEFF Research Database (Denmark)
Zhao, Bo; Blanke, Mogens; Skjetne, Roger
2012-01-01
This paper presents a fault tolerant navigation system for a remotely operated vehicle (ROV). The navigation system uses hydro-acoustic position reference (HPR) and Doppler velocity log (DVL) measurements to achieve an integrated navigation. The fault tolerant functionality is based on a modied...... particle lter. This particle lter is able to run in an asynchronous manner to accommodate the measurement drop out problem, and it overcomes the measurement outliers by switching observation models. Simulations with experimental data show that this fault tolerant navigation system can accurately estimate...
Energy Technology Data Exchange (ETDEWEB)
Himpel, Michael, E-mail: himpel@physik.uni-greifswald.de; Killer, Carsten; Melzer, André [Institute of Physics, Ernst-Moritz-Arndt-University, 17489 Greifswald (Germany); Bockwoldt, Tim; Piel, Alexander [IEAP, Christian-Albrechts-Universität Kiel, D-24098 Kiel (Germany); Ole Menzel, Kristoffer [ABB Switzerland Ltd, Corporate Research Center, 5405 Dättwil (Switzerland)
2014-03-15
Experiments on dust-density waves have been performed in dusty plasmas under the microgravity conditions of parabolic flights. Three-dimensional measurements of a dust density wave on a single particle level are presented. The dust particles have been tracked for many oscillation periods. A Hilbert analysis is applied to obtain trajectory parameters such as oscillation amplitude and three-dimensional velocity amplitude. While the transverse motion is found to be thermal, the velocity distribution in wave propagation direction can be explained by harmonic oscillations with added Gaussian (thermal) noise. Additionally, it is shown that the wave properties can be reconstructed by means of a pseudo-stroboscopic approach. Finally, the energy dissipation mechanism from the kinetic oscillation energy to thermal motion is discussed and presented using phase-resolved analysis.
Localization of massless Dirac particles via spatial modulations of the Fermi velocity
Downing, C. A.; Portnoi, M. E.
2017-08-01
The electrons found in Dirac materials are notorious for being difficult to manipulate due to the Klein phenomenon and absence of backscattering. Here we investigate how spatial modulations of the Fermi velocity in two-dimensional Dirac materials can give rise to localization effects, with either full (zero-dimensional) confinement or partial (one-dimensional) confinement possible depending on the geometry of the velocity modulation. We present several exactly solvable models illustrating the nature of the bound states which arise, revealing how the gradient of the Fermi velocity is crucial for determining fundamental properties of the bound states such as the zero-point energy. We discuss the implications for guiding electronic waves in few-mode waveguides formed by Fermi velocity modulation.
Planken, K.L.|info:eu-repo/dai/nl/304841099
2008-01-01
Several case studies of the sedimentation velocity of non-interacting, attractive and repulsive colloids are discussed. After a brief introduction that highlights historical facts, basic analytical ultracentrifugation theory, some instrument issues and experiments are reviewed. The existence of disc
Février, Pierre; Simonin, Olivier; Squires, Kyle D.
2005-06-01
The velocity distribution of dilute suspensions of heavy particles in gas-solid turbulent flows is investigated. A statistical approach - the mesoscopic Eulerian formalism (MEF) - is developed in which an average conditioned on a realization of the turbulent carrier flow is introduced and enables a decomposition of the instantaneous particle velocity into two contributions. The first is a contribution from an underlying continuous turbulent velocity field shared by all the particles - the mesoscopic Eulerian particle velocity field (MEPVF) - that accounts for all particle-particle and fluid-particle two-point correlations. The second contribution corresponds to a distribution - the quasi-Brownian velocity distribution (QBVD) - that represents a random velocity component satisfying the molecular chaos assumption that is not spatially correlated and identified with each particle of the system. The MEF is used to investigate properties of statistically stationary particle-laden isotropic turbulence. The carrier flow is computed using direct numerical simulation (DNS) or large-eddy simulation (LES) with discrete particle tracking employed for the dispersed phase. Particle material densities are much larger than that of the fluid and the force of the fluid on the particle is assumed to reduce to the drag contribution. Computations are performed in the dilute regime for which the influences of inter-particle collisions and fluid-turbulence modulation are neglected. The simulations show that increases in particle inertia increase the contribution of the quasi-Brownian component to the particle velocity. The particle velocity field is correlated at larger length scales than the fluid, with the integral length scales of the MEPVF also increasing with particle inertia. Consistent with the previous work of Abrahamson (1975), the MEF shows that in the limiting case of large inertia, particle motion becomes stochastically equivalent to a Brownian motion with a random spatial
Velocity Distribution of Slurry in Horizontal Pipe When Solid Particles Sliding
Institute of Scientific and Technical Information of China (English)
ZhangShilin; XuZhenliang; Shaolongtan
2004-01-01
Based on the laws of momentum conservation and impulse in accelerating process, the distribution on speed of ununiform slurry flow in a horizontal pipe was studied. According to the momentum change of solid particles and conveying liquid of slurry flow during accelerating, and some effect factors, the relationship between the speed of solid particles and the speed of conveying liquid was obtained.When dealing with the friction between sliding solid particles and pipe, it is pivotal to reasonably distribute component of friction to each solid particle. The friction coefficient between solid particles was obtained by forces analysis and theoretic calculation, and can be used to calculate the friction force on every solid particle. The effect of friction on speed of ever), solid particle was investigated through the impulse law. The result is more accurate than that by using uniform friction on solid particles. It is completely new method to use above theory to get solid particles speed distribution, conveying liquid speed distribution and slurry speed distribution.
Standing Rankine-Hugoniot Shocks in Black Hole Accretion Discs
Institute of Scientific and Technical Information of China (English)
GU Wei-Min; LU Ju-Fu
2004-01-01
@@ We study the problem of standing shocks in viscous disc-like accretion flows around black holes. For the first time we parametrize such a flow with two physical constants, namely the specific angular momentum accreted by the black hole j and the energy quantity K. By providing the global dependence of shock formation in the j - K parameter space, we show that a significant parameter region can ensure solutions with Rankine-Hugoniot shocks; and that the possibilities of shock formation are the largest for inviscid flows, decreasing with increasing viscosity, and ceasing to exist for a strong enough viscosity. Our results support the view that the standing shock is an essential ingredient in black hole accretion discs and is a general phenomenon in astrophysics, and that there should be a continuous change from the properties of inviscid flows to those of viscous ones.
Entropy production by active particles: Coupling of odd and even functions of velocity
Chaudhuri, Debasish
2016-01-01
Non-equilibrium stochastic dynamics of several active Brownian systems are modeled in terms of non-linear velocity dependent force. In general, this force may consist of both even and odd functions of velocity. We derive the expression for total entropy production in such systems using Fokker-Planck equation. The result is consistent with the expression for stochastic entropy production in the reservoir, that we obtain from probabilities of time-forward and time-reversed trajectories, leading to fluctuation theorems. Numerical simulation is used to find probability distribution of entropy production, which shows good agreement with the detailed fluctuation theorem.
Quantization of a particle with a force quadratic in the velocity
Energy Technology Data Exchange (ETDEWEB)
Sa Borges, J.; Epele, L.N.; Fanchiotti, H.; Garcia Canal, C.A.; Sima-tildeo, F.R.A.
1988-09-15
The quantization of a system subject to a force quadratic in the velocity and position dependence is carried out in the phase-space path-integral framework. The resulting Hamiltonian coincides with that obtained by using the Weyl-ordering canonical prescription.
Lugli, Marco; Fine, Michael L
2007-11-01
The most sensitive hearing and peak frequencies of courtship calls of the stream goby, Padogobius martensii, fall within a quiet window at around 100 Hz in the ambient noise spectrum. Acoustic pressure was previously measured although Padogobius likely responds to particle motion. In this study a combination pressure (p) and particle velocity (u) detector was utilized to describe ambient noise of the habitat, the characteristics of the goby's sounds and their attenuation with distance. The ambient noise (AN) spectrum is generally similar for p and u (including the quiet window at noisy locations), although the energy distribution of u spectrum is shifted up by 50-100 Hz. The energy distribution of the goby's sounds is similar for p and u spectra of the Tonal sound, whereas the pulse-train sound exhibits larger p-u differences. Transmission loss was high for sound p and u: energy decays 6-10 dB10 cm, and sound pu ratio does not change with distance from the source in the nearfield. The measurement of particle velocity of stream AN and P. martensii sounds indicates that this species is well adapted to communicate acoustically in a complex noisy shallow-water environment.
Smeulders, R. J.; Mischgofsky, F. H.; Frankena, H. J...
1983-12-01
A technique is described to observe shape development and particle displacements of fast moving solidifying particles during stir casting. The optical set-up consists of a Ruby la-ser (generating pulse pairs), a frequency doubled Nd3+:YAG laser (generating single pulses at a 10 Hz repetition rate), a model device of an actual metal stir casting apparatus filled with a transparent organic alloy and three different recording systems. Double exposure holograms and microphotographs are used to analyse the three- and two-dimensional particle displacements, respectively. Simultaneously recorded videotapes, microphotographs and holograms provide the opportunity to study the shape development at a repetition rate of 10 Hz over periods of 103 seconds in an imaging volume of 3 x 2 x 2 mm3. We found that a NPA-water alloy nucleates initially as equiaxed dendritic particles. After a period of stirring, the dendrite tips become more rounded. Finally the particles obtain the shape of a bunch of grapes. This final state is in good agreement with the morphology of stir casted metal alloys. Further we found that the flow behaviour at the start of the experiment can be decisive for the solidification process. We observed Taylor vortices and measured particle displacements, that occur in the direction of rotation and also along the axis of rotation (although there was no flow pressure excerted in that direction) and in the radial direction, too.
Dou, Zhongwang; Bragg, Andrew; Hammond, Adam; Liang, Zach; Collins, Lance; Meng, Hui
2016-11-01
Effects of Reynolds number (Rλ) and Stokes number (St) on particle-pair relative velocity (RV) were studied using four-frame particle tracking in an enclosed turbulence chamber. Two tests were performed: varying Rλ between 246 and 357 at six St values, and varying St between 0.02 and 4.63 at five Rλ values. By comparing experimental and DNS results of mean inward particle-pair RV, , we observed excellent agreement for all test conditions across a large range of particle separation distance (r) ; however at r values were higher than simulation. At fixed St , was found to be independent of Rλ in the observable St , r, and Rλ ranges. At fixed Rλ, increased with St at small r and decreased with St at large r. We further compared and variance of RV, , between experiments, DNS and theoretical predictions by Pan and Padoan (2010). At 0 theory-predicted and matched with DNS and experiment in the range of r = 1 - 60 η . As St increased, theoretical predictions were lower than experiment and DNS results. The potential causes of these trends are explored. Additionally, we discuss the observed electrostatic charge effect on particle relative motion in isotropic turbulence and our plans of studying this effect using an integrated experimental, numerical and theoretical approach. This work was supported by NSF CBET-0967407 and CBET-0967349.
DEFF Research Database (Denmark)
Mogensen, Klaus Bo; Kwok, Y.C.; Eijkel, J.C.T.
2003-01-01
A microfabricated capillary electrophoresis device for velocity measurements of flowing particles is presented. It consists of a 1 x 128 planar waveguide beam splitter monolithically integrated with an electrically insulated fluidic channel network for fluorescence excitation at multiple points...... optics. The integrated planar waveguide beam splitter was, furthermore, permanently connected to the light source by a glued-on optical fiber, to achieve a robust and alignment-free operation of the system. The velocity was measured using a Fourier transformation with a Shah function, since the response...... of the fight array was designed to approximate a square profile. Deviations from this response were observed as a result of the multimode nature of the integrated waveguides....
Energy Technology Data Exchange (ETDEWEB)
Jun, Jin Yong; Lee, Byeong Jun; Song, Dong Joo [Yeungnam University, Gyeongsan (Korea, Republic of)
2016-05-15
Combustion characteristics of a mixture of nano- and micron-sized aluminum powder in ice were experimentally studied. Round barshaped bare strand was casted with a frozen mixture of aluminum and water and then electrically ignited in the air or argon environment. Propagating flame was recorded using a camcorder with an optical filter. Burning rate, defined as the slope in the graph of average flame position movement versus time, was also evaluated. The burning velocity peaked at equivalence ratio of 0.8. Flame propagation velocity increased with a pressure exponent of 0.61 for = 0.8 and pressure range of 0.1-0.8 MPa. For nano/micro-mixture at = 0.8, flame propagation was not feasible if the mass fraction of micron-sized particles in fuel is higher than 0.5.
Neglected transport equations: extended Rankine-Hugoniot conditions and J -integrals for fracture
Davey, K.; Darvizeh, R.
2016-09-01
Transport equations in integral form are well established for analysis in continuum fluid dynamics but less so for solid mechanics. Four classical continuum mechanics transport equations exist, which describe the transport of mass, momentum, energy and entropy and thus describe the behaviour of density, velocity, temperature and disorder, respectively. However, one transport equation absent from the list is particularly pertinent to solid mechanics and that is a transport equation for movement, from which displacement is described. This paper introduces the fifth transport equation along with a transport equation for mechanical energy and explores some of the corollaries resulting from the existence of these equations. The general applicability of transport equations to discontinuous physics is discussed with particular focus on fracture mechanics. It is well established that bulk properties can be determined from transport equations by application of a control volume methodology. A control volume can be selected to be moving, stationary, mass tracking, part of, or enclosing the whole system domain. The flexibility of transport equations arises from their ability to tolerate discontinuities. It is insightful thus to explore the benefits derived from the displacement and mechanical energy transport equations, which are shown to be beneficial for capturing the physics of fracture arising from a displacement discontinuity. Extended forms of the Rankine-Hugoniot conditions for fracture are established along with extended forms of J -integrals.
Shukla, Chandrasekhar; Patel, Kartik
2016-01-01
We carry out Particle-in-Cell (PIC) simulations to study the instabilities associated with a 2-D sheared electron flow configuration against a neutralizing background of ions. Both weak and strong relativistic flow velocities are considered. In the weakly relativistic case, we observe the development of electromagnetic Kelvin Helmholtz instability with similar characteristics as that predicted by the electron Magnetohydrodynamic (EMHD) model. On other hand, in strong relativistic case the compressibility effects of electron fluid dominate and introduce upper hybrid electrostatic oscillations transverse to the flow which are very distinct from EMHD fluid behaviour. In the nonlinear regime, both weak and strong relativistic cases lead to turbulence with broad power law spectrum.
CSIR Research Space (South Africa)
Milev, AM
2002-03-01
Full Text Available Final Project Report The meaningful use of peak particle velocities at excavation surfaces for the optimisation of the rockburst criteria for tunnels and stopes A.M. Milev, S.M. Spottiswoode, B.R. Noble, L.M. Linzer, M. van Zyl, A. Daehnke & E... and Ventersdorp Contact Reef sites were carried out. A total number of 41 sites were monitored: • TauTona gold mine: a total number of 15 139 seismic events with a maximum PPV of 3 m/s was recorded during 2 437 site days; • Kloof gold mine: a total number of 6...
Cheng, David; Yoshinaka, Akio
2014-11-01
Electromagnetic velocity (EMV) gauges are a class of film gauges which permit the direct in-situ measurement of shocked material flow velocity. The active sensing element, typically a metallic foil, requires exposure to a known external magnetic field in order to produce motional electromotive force (emf). Due to signal distortion caused by mutual inductance between sample and EMV gauge, this technique is typically limited to shock waves in non-conductive materials. In conductive samples, motional emf generated in the EMV gauge has to be extracted from the measured signal which results from the combined effects of both motional emf and voltage changes from induced currents. An electromagnetic technique is presented which analytically models the dynamics of induced current between a copper disk moving as a rigid body with constant 1D translational velocity toward an EMV gauge, where both disk and gauge are exposed to a uniform external static magnetic field. The disk is modelled as a magnetic dipole loop where its Foucault current is evaluated from the characteristics of the fields, whereas the EMV gauge is modelled as a circuit loop immersed in the field of the magnetic dipole loop, the intensity of which is calculated as a function of space and, implicitly, time. Equations of mutual induction are derived and the current induced in the EMV gauge loop is solved, allowing discrimination of the motional emf. Numerical analysis is provided for the step response of the induced EMV gauge current with respect to the Foucault current in the moving copper sample.
Energy Technology Data Exchange (ETDEWEB)
Oliveira, Diego F.M., E-mail: diegofregolente@gmail.com [Institute for Multiscale Simulations, Friedrich-Alexander Universität, D-91052, Erlangen (Germany); Leonel, Edson D., E-mail: edleonel@rc.unesp.br [Departamento de Estatística, Matemática Aplicada e Computação, UNESP, Univ. Estadual Paulista, Av. 24A, 1515, Bela Vista, 13506-900, Rio Claro, SP (Brazil); Departamento de Física, UNESP, Univ. Estadual Paulista, Av. 24A, 1515, 13506-900, Rio Claro, SP (Brazil)
2012-11-01
We study some dynamical properties for the problem of a charged particle in an electric field considering both the low velocity and relativistic cases. The dynamics for both approaches is described in terms of a two-dimensional and nonlinear mapping. The structure of the phase spaces is mixed and we introduce a hole in the chaotic sea to let the particles to escape. By changing the size of the hole we show that the survival probability decays exponentially for both cases. Additionally, we show for the relativistic dynamics, that the introduction of dissipation changes the mixed phase space and attractors appear. We study the parameter space by using the Lyapunov exponent and the average energy over the orbit and show that the system has a very rich structure with infinite family of self-similar shrimp shaped embedded in a chaotic region.
There has been no evaluation of sulfur-based autotrophic denitrification using fluidized biofilters in a recirculating aquaculture system to mitigate nitrate-nitrogen loads. The objectives of this work were to quantify the particle size distribution, specific surface area, and fluidization velocitie...
2015-09-30
1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Observation of the Near-seabed Velocity and Particles...likely form the continuous sediment waves on the seafloor [Ma et al., 2008 and Reeder et al., 2011]. To our knowledge, there are no direct observations ...of near-bottom velocity and sediment resuspension during ISW events. The main objectives are to measure the near bottom velocities and observe the
First-principles Equations of State and Shock Hugoniots of First- and Second-Row Plasmas
Driver, Kevin; Soubiran, Francois; Zhang, Shuai; Militzer, Burkhard
A first-principles methodology for studying high energy density physics and warm dense matter is important for the stewardship of plasma science and guiding inertial confinement fusion experiments. In order to address this challenge, we have been developing the capability of path integral Monte Carlo (PIMC) for studying dense plasmas comprised of increasingly heavy elements, including nitrogen, oxygen, and neon. In recent work, we have extended PIMC methodology beyond the free-particle node approximation by implementing localized nodal surfaces capable of describing bound plasma states in second-row elements, such as silicon. We combine results from PIMC with results from density functional theory molecular dynamics (DFT-MD) calculations to produce a coherent equation of state that bridges the entire WDM regime. Analysis of pair-correlation functions and the electronic density of states reveals an evolving plasma structure and ionization process that is driven by temperature and pressure. We also compute shock Hugoniot curves for a wide range of initial densities, which generally reveal an increase in compression as the second and first shells are ionized. This work is funded by the NSF/DOE Partnership in Basic Plasma Science and Engineering (DE-SC0010517).
Wall effects on the terminal velocity of spherical particles in Newtonian and non-Newtonian fluids
Directory of Open Access Journals (Sweden)
ATAÍDE C. H.
1999-01-01
Full Text Available The objective of this work is to study the effect of confining walls on the free settling of spherical particles along the axes of five vertical cylindrical tubes in Newtonian and non-Newtonian liquids. Experimental results were predominantly obtained in the particle flow region between the Stokes and the Newton regimes (intermediate region and displayed Reynolds numbers in the ranges 0.7
Anandkumar, R.; Almeida, A.; Vilar, R.; Ocelik, V.; De Hosson, J. Th M.
2009-01-01
The influence of powder particle injection velocity on the microstructure of coatings consisting of an Al-Si matrix reinforced with SiC particles prepared by laser cladding from mixtures of powders of Al-12 wt.% Si alloy and SiC was investigated both experimentally and by modeling. At low injection
Bidabadi, Mehdi; Haghiri, Ali; Rahbari, Alireza
2010-04-15
In this study, an attempt has been made to analytically investigate the concentration and velocity profiles of particles across flame propagation through a micro-iron dust cloud. In the first step, Lagrangian particle equation of motion during upward flame propagation in a vertical duct is employed and then forces acting upon the particle, such as thermophoretic force (resulted from the temperature gradient), gravitation and buoyancy are introduced; and consequently, the velocity profile as a function of the distance from the leading edge of the combustion zone is extracted. In the resumption, a control volume above the leading edge of the combustion zone is considered and the change in the particle number density in this control volume is obtained via the balance of particle mass fluxes passing through it. This study explains that the particle concentration at the leading edge of the combustion zone is more than the particle agglomeration in a distance far from the flame front. This increase in the particle aggregation above the combustion zone has a remarkable effect on the lower flammability limits of combustible particle cloud. It is worth noticing that the velocity and particle concentration profiles show a reasonable compatibility with the experimental data.
Differential Velocity between Solar Wind Protons and Alpha Particles in Pressure Balance Structures
Yamauchi, Yohei; Suess, Steven T.; Steinberg, John T.; Sakurai, Takashi
2004-01-01
Pressure balance structures (PBSs) are a common high-plasma beta feature in high-latitude, high-speed solar wind. They have been proposed as remnants of coronal plumes. If true, they should reflect the observation that plumes are rooted in unipolar magnetic flux concentrations in the photosphere and are heated as oppositely directed flux is advected into and reconnects with the flux concentration. A minimum variance analysis (MVA) of magnetic discontinuities in PBSs showed there is a larger proportion of tangential discontinuities than in the surrounding high-speed wind, supporting the hypothesis that plasmoids or extended current sheets are formed during reconnection at the base of plumes. To further evaluate the character of magnetic field discontinuities in PBSs, differential streaming between alpha particles and protons is analyzed here for the same sample of PBSs used in the MVA. Alpha particles in high-speed wind generally have a higher radial flow speed than protons. However, if the magnetic field is folded back on itself, as in a large-amplitude Alfven wave, alpha particles will locally have a radial flow speed less than protons. This characteristic is used here to distinguish between folded back magnetic fields (which would contain rotational discontinuities) and tangential discontinuities using Ulysses high-latitude, high-speed solar wind data. The analysis indicates that almost all reversals in the radial magnetic field in PBSs are folded back field lines. This is found to also be true outside PBSs, supporting existing results for typical high-speed, high-latitude wind. There remains a small number of cases that appear not to be folds in the magnetic field and which may be flux tubes with both ends rooted in the Sun. The distinct difference in MVA results inside and outside PBSs remains unexplained.
Energy Technology Data Exchange (ETDEWEB)
Takahashi, H. (Muroran Inst. of Tech., Hokkaido (Japan)); Honda, Y. (Snow Brand Milk Products Co. Ltd., Sapporo (Japan))
1992-11-10
Based on a particle flow model (stress-shear strain velocity relational expression) which takes account of the bulk volume expansion effect during shearing deformation of particles, a new estimation method for particle velocity distribution and stress distribution is proposed. The method is applied to a crossflow moving bed and to a moving bed for comparison with the experimental values to examine its validity. The method is further extended to predict the velocity profile and stress profile of moving beds in a vertical tube (countercurrent and concurrent) accompanying gas flow. It is indicated that the bulk volume expansion effect differs according to dimensions. The velocity distribution and the stress distribution of flows in a vertical tube are greatly influenced by the nature of the flow, i.e. whether it is a counterflow or a concurrent flow, and the frictional force of solids on a wall surface increases markedly in a concurrent flow, which induces considerable lag of particle velocity. The parameter which is contained in the model and indicates the bulk volume expansion effect is a function of the particle velocity, and it is almost unaffected by the flow rate of gas moving. 7 refs., 10 figs.
Shukla, Chandrasekhar; Das, Amita; Patel, Kartik
2016-08-01
We carry out particle-in-cell simulations to study the instabilities associated with a 2-D sheared electron flow configuration against a neutralizing background of ions. Both weak and strong relativistic flow velocities are considered. In the weakly relativistic case, we observe the development of electromagnetic Kelvin-Helmholtz instability with similar characteristics as that predicted by the electron Magnetohydrodynamic (EMHD) model. On the contrary, in a strong relativistic case, the compressibility effects of electron fluid dominate and introduce upper hybrid electrostatic oscillations transverse to the flow which are very distinct from EMHD fluid behavior. In the nonlinear regime, both weak and strong relativistic cases lead to turbulence with broad power law spectrum.
Sound velocities in shocked liquid deuterium
Energy Technology Data Exchange (ETDEWEB)
Holmes, N.C.; Nellis, W.J.; Ross, M. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)
1998-07-01
Recent measurements of shock temperatures and laser-driven Hugoniot measurements of shocked liquid deuterium strongly indicate that molecular dissociation is important above 20 GPa. Since the effect of dissociation is small on the Hugoniot pressure up to the 30 GPa limit of conventional impact experiments, other methods must be used to test our understanding of the physics of highly compressed deuterium in this regime. We have recently performed experiments to measure the sound velocity of deuterium which test the isentropic compressibility, a derivative quantity. We used the shock overtake method to measure the shock velocity at 28 GPa. These preliminary data provide support for a recently developed molecular dissociation model. {copyright} {ital 1998 American Institute of Physics.}
Hughes, R. Scott; Wang, Joseph; Decyk, Viktor K.; Gary, S. Peter
2016-04-01
This paper investigates how the physics of the whistler anisotropy instability (WAI) is affected by variations in the electron thermal velocity vte, referred to here in terms of the ratio v̂ t e=vt e/c , where c is the speed of light. The WAI is driven by the electron condition RT>1 , where RT=Te ⊥/Te ∥ is the temperature anisotropy ratio and ⊥/∥ signify directions perpendicular/parallel to the background magnetic field B0 . While a typical value of v̂ t e in the solar wind is ˜0.005 , electromagnetic (EM) particle-in-cell (PIC) simulations often use a value near 0.1 in order to maximize the computational time step. In this study, a two-dimensional (2D) Darwin particle-in-cell (DPIC) code, MDPIC2, is used. The time step in the DPIC model is not affected by the choice of v̂ t e , making DPIC suited for this study. A series of simulations are carried out under the condition that the electron βe is held fixed, while v̂ t e is varied over the range 0.1 ≥v̂ t e≥0.025 . The results show that, with βe held fixed, the linear dispersion properties and the nonlinear saturation amplitude and pitch angle scattering rates associated with the WAI are insensitive to the value of v̂ t e . A supplementary investigation is conducted which characterizes how the WAI model is affected at various values of v̂ t e by noise associated with the limited number of particles in a typical PIC simulation. It is found that the evolution of the WAI is more strongly influenced by electrostatic noise as v̂ t e is decreased. The electrostatic noise level is inversely proportional to the number of particles per computational cell ( Nc ); this implies that the number of particles required to remove nonphysical effects from the PIC simulation increases as v̂ t e decreases. It is concluded that PIC simulations of this instability which use an artificially large value of v̂ t e accurately reproduce the response of a cooler plasma as long as a realistic value of βe is used
Min, Kyungguk; Liu, Kaijun
2016-01-01
Linear dispersion theory and electromagnetic particle-in-cell (PIC) simulations are used to investigate linear growth and nonlinear saturation of the proton velocity ring-driven instabilities, namely, ion Bernstein instability and Alfvén-cyclotron instability, which lead to fast magnetosonic waves and electromagnetic ion cyclotron waves in the inner magnetosphere, respectively. The proton velocity distribution is assumed to consist of 10% of a ring distribution and 90% of a low-temperature Maxwellian background. Here two cases with ring speeds vr/vA=1 and 2 (vA is the Alfvén speed) are examined in detail. For the two cases, linear theory predicts that the maximum growth rate γm of the Bernstein instability is 0.16Ωp and 0.19Ωp, respectively, and γm of the Alfvén-cyclotron instability is 0.045Ωp and 0.15Ωp, respectively, where Ωp is the proton cyclotron frequency. Two-dimensional PIC simulations are carried out for the two cases to examine the instability development and the corresponding evolution of the particle distributions. Initially, Bernstein waves develop and saturate with strong electrostatic fluctuations. Subsequently, electromagnetic Alfvén-cyclotron waves grow and saturate. Despite their smaller growth rate, the saturation levels of the Alfvén-cyclotron waves for both cases are larger than those of the Bernstein waves. Resonant interactions with the Bernstein waves lead to scattering of ring protons predominantly along the perpendicular velocity component (toward both decreasing and, at a lesser extent, increasing speeds) without substantial change of either the parallel temperature or the temperature anisotropy. Consequently, the Alfvén-cyclotron instability can still grow. Furthermore, the free energy resulting from the pitch angle scattering by the Alfvén-cyclotron waves is larger than the free energy resulting from the perpendicular energy scattering, thereby leading to the larger saturation level of the Alfvén-cyclotron waves.
Interaction between measurement time and observed Hugoniot cusp due to chemical reactions
McGrane, S. D.; Brown, K. E.; Bolme, C. A.; Moore, D. S.
2017-01-01
Chemistry occurring on picosecond timescales can be observed through ultrafast laser shock drive experiments that measure Hugoniot data and transient absorption. The shock stress needed to induce chemical reactions on picosecond time scales is significantly larger than the stress needed to induce reactions on nanosecond time scales typical of gas gun and explosively driven plate impact experiments. This discrepancy is consistent with the explanation that increased shock stress leads to increased temperature, which drives thermally activated processes at a faster rate. While the data are qualitatively consistent with the interpretation of thermally dominated reactions, they are not a critical test of this interpretation. In this paper, we review data from several shocked liquids that illustrate a Hugoniot cusp due to volume changing reactions that occurs at higher shock stress states in picosecond experiments than in nanosecond to microsecond experiments. We also correlate the observed Hugoniot cusp states with transient absorption changes that occur due to the buildup of reaction products.
Aramburu, Jorge; Antón, Raúl; Rivas, Alejandro; Ramos, Juan Carlos; Sangro, Bruno; Bilbao, José Ignacio
2016-11-07
Liver radioembolization is a treatment option for patients with primary and secondary liver cancer. The procedure consists of injecting radiation-emitting microspheres via an intra-arterially placed microcatheter, enabling the deposition of the microspheres in the tumoral bed. The microcatheter location and the particle injection rate are determined during a pretreatment work-up. The purpose of this study was to numerically study the effects of the injection characteristics during the first stage of microsphere travel through the bloodstream in a patient-specific hepatic artery (i.e., the near-tip particle-hemodynamics and the segment-to-segment particle distribution). Specifically, the influence of the distal direction of an end-hole microcatheter and particle injection point and velocity were analyzed. Results showed that the procedure targeted the right lobe when injecting from two of the three injection points under study and the remaining injection point primarily targeted the left lobe. Changes in microcatheter direction and injection velocity resulted in an absolute difference in exiting particle percentage for a given liver segment of up to 20% and 30%, respectively. It can be concluded that even though microcatheter placement is presumably reproduced in the treatment session relative to the pretreatment angiography, the treatment may result in undesired segment-to-segment particle distribution and therefore undesired treatment outcomes due to modifications of any of the parameters studied, i.e., microcatheter direction and particle injection point and velocity.
Li, Jian; Kong, Ming; Xu, Chuanlong; Wang, Shimin; Fan, Ying
2015-12-10
The online and continuous measurement of velocity, concentration and mass flow rate of pneumatically conveyed solid particles for the high-efficiency utilization of energy and raw materials has become increasingly significant. In this paper, an integrated instrumentation system for the velocity, concentration and mass flow rate measurement of dense phase pneumatically conveyed solid particles based on electrostatic and capacitance sensorsis developed. The electrostatic sensors are used for particle mean velocity measurement in combination with the cross-correlation technique, while the capacitance sensor with helical surface-plate electrodes, which has relatively homogeneous sensitivity distribution, is employed for the measurement of particle concentration and its capacitance is measured by an electrostatic-immune AC-based circuit. The solid mass flow rate can be further calculated from the measured velocity and concentration. The developed instrumentation system for velocity and concentration measurement is verified and calibrated on a pulley rig and through static experiments, respectively. Finally the system is evaluated with glass beads on a gravity-fed rig. The experimental results demonstrate that the system is capable of the accurate solid mass flow rate measurement, and the relative error is within -3%-8% for glass bead mass flow rates ranging from 0.13 kg/s to 0.9 kg/s.
Directory of Open Access Journals (Sweden)
Jian Li
2015-12-01
Full Text Available The online and continuous measurement of velocity, concentration and mass flow rate of pneumatically conveyed solid particles for the high-efficiency utilization of energy and raw materials has become increasingly significant. In this paper, an integrated instrumentation system for the velocity, concentration and mass flow rate measurement of dense phase pneumatically conveyed solid particles based on electrostatic and capacitance sensorsis developed. The electrostatic sensors are used for particle mean velocity measurement in combination with the cross-correlation technique, while the capacitance sensor with helical surface-plate electrodes, which has relatively homogeneous sensitivity distribution, is employed for the measurement of particle concentration and its capacitance is measured by an electrostatic-immune AC-based circuit. The solid mass flow rate can be further calculated from the measured velocity and concentration. The developed instrumentation system for velocity and concentration measurement is verified and calibrated on a pulley rig and through static experiments, respectively. Finally the system is evaluated with glass beads on a gravity-fed rig. The experimental results demonstrate that the system is capable of the accurate solid mass flow rate measurement, and the relative error is within −3%–8% for glass bead mass flow rates ranging from 0.13 kg/s to 0.9 kg/s.
Kumar, R. K.; Kamaraj, M.; Seetharamu, S.; Pramod, T.; Sampathkumaran, P.
2016-08-01
The hydro plants utilizing silt-laden water for power generation suffer from severe metal wastage due to particle-induced erosion and cavitation. High-velocity oxy-fuel process (HVOF)-based coatings is widely applied to improve the erosion life. The process parameters such as particle velocity, size, powder feed rate, temperature, affect their mechanical properties. The high-velocity air fuel (HVAF) technology, with higher particle velocities and lower spray temperatures, gives dense and substantially nonoxidized coating. In the present study, the cavitation resistance of 86WC-10Co4Cr-type HVOF coating processed at 680 m/s spray particle velocity was compared with HVAF coatings made at 895, 960, and 1010 m/s. The properties such as porosity, hardness, indentation toughness, and cavitation resistance were investigated. The surface damage morphology has been analyzed in SEM. The cohesion between different layers has been examined qualitatively through scratch depth measurements across the cross section. The HVAF coatings have shown a lower porosity, higher hardness, and superior cavitation resistance. Delamination, extensive cracking of the matrix interface, and detachment of the WC grains were observed in HVOF coating. The rate of metal loss is low in HVAF coatings implying that process parameters play a vital role in achieving improved cavitation resistance.
Measuring Hugoniot, reshock and release properties of natural snow and simulants
Energy Technology Data Exchange (ETDEWEB)
Furnish, M.D.; Boslough, M.B.
1996-02-01
We describe methods for measuring dynamical properties for underdense materials (e.g. snow) over a stress range of roughly 0. 1 - 4 GPa. Particular material properties measured by the present methods include Hugoniot states, reshock states and release paths. The underdense materials may pose three primary experimental difficulties. Snow in particular is perishable; it can melt or sublime during storage, preparation and testing. Many of these materials are brittle and crushable; they cannot withstand such treatment as traditional machining or launch in a gun system. Finally, with increasing porosity the calculated Hugoniot density becomes rapidly more sensitive to errors in wave time-of-arrival measurements. A family of 36 impact tests was conducted on snow and six proposed snow simulants at Sandia, yielding reliable Hugoniot states, somewhat less reliable reshock 3 states, and limited release property information. Natural snow of density {approximately}0.5 gm/cm{sup 3}, a lightweight concrete of density {approximately}0.7 gm/cm{sup 3} and a {open_quotes}snow-matching grout{close_quotes} of density {approximately}0.28 gm/cm 3 were the subjects of the majority of the tests. Hydrocode calculations using CTH were performed to elucidate sensitivities to edge effects as well as to assess the applicability of SESAME 2-state models to these materials. Simulations modeling snow as porous water provided good agreement for Hugoniot stresses to 1 GPa; a porous ice model was preferred for higher Hugoniot stresses. On the other hand, simulations of tests on snow, lightweight concrete and the snow-matching grout based on (respectively) porous ice, tuff and polyethylene showed a too-stiff response. Other methods for characterizing these materials are discussed. Based on the Hugoniot properties, the snow-matching grout appears to be a better snow simulant than does the lightweight concrete.
Strutz, Tessa J; Hornbruch, Götz; Dahmke, Andreas; Köber, Ralf
2016-08-01
Successful groundwater remediation by injecting nanoscale zero-valent iron (NZVI) particles requires efficient particle transportation and distribution in the subsurface. This study focused on the influence of injection velocity and particle concentration on the spatial NZVI particle distribution, the deposition processes and on quantifying the induced decrease in hydraulic conductivity (K) as a result of particle retention by lab tests and numerical simulations. Horizontal column tests of 2m length were performed with initial Darcy injection velocities (q0) of 0.5, 1.5, and 4.1m/h and elemental iron input concentrations (Fe(0)in) of 0.6, 10, and 17g/L. Concentrations of Fe(0) in the sand were determined by magnetic susceptibility scans, which provide detailed Fe(0) distribution profiles along the column. NZVI particles were transported farther at higher injection velocity and higher input concentrations. K decreased by one order of magnitude during injection in all experiments, with a stronger decrease after reaching Fe(0) concentrations of about 14-18g/kg(sand). To simulate the observed nanoparticle transport behavior the existing finite-element code OGS has been successfully extended and parameterized for the investigated experiments using blocking, ripening, and straining as governing deposition processes. Considering parameter relationships deduced from single simulations for each experiment (e.g. deposition rate constants as a function of flow velocity) one mean parameter set has been generated reproducing the observations in an adequate way for most cases of the investigated realistic injection conditions. An assessment of the deposition processes related to clogging effects showed that the percentage of retention due to straining and ripening increased during experimental run time resulting in an ongoing reduction of K. Clogging is mainly evoked by straining which dominates particle deposition at higher flow velocities, while blocking and ripening play a
Equation of state of dolomite from shock Hugoniot and static compression studies
Grady, D. E.
2017-01-01
Comparisons are made between shock Hugoniot data and recent high-pressure static DAC (diamond anvil cell) data on dolomite mineral. Stark disparities are noted. DAC measurements reveal first order phase transformation within the pressure range of approximately 17-37 GPa. The preponderance of shock data failed to reveal phase transformation on the Hugoniot. Early time-resolved pressure reveal a possible transformation in the neighborhood of 20-25 GPa impeded by transformation kinetics. Static and dynamic data are contrasted and the underlying mechanisms assessed.
Fu, X. R.; Cowee, M. M.; Liu, K.; Peter Gary, S.; Winske, D.
2014-04-01
The velocity space scattering of an anisotropic electron beam (T⊥b/T∥b>1) flowing along a background magnetic field B0 through a cold plasma is investigated using both linear theory and 2D particle-in-cell simulations. Here, ⊥ and ∥ represent the directions perpendicular and parallel to B0, respectively. In this scenario, we find that two primary instabilities contribute to the scattering in electron pitch angle: an electrostatic electron beam instability and a predominantly parallel-propagating electromagnetic whistler anisotropy instability. Our results show that at relative beam densities nb/ne≤0.05 and beam temperature anisotropies Tb ⊥/Tb ∥≤25, the electrostatic beam instability grows much faster than the whistler instabilities for a reasonably fast hot beam. The enhanced fluctuating fields from the beam instability scatter the beam electrons, slowing their average speed and increasing their parallel temperature, thereby increasing their pitch angles. In an inhomogeneous magnetic field, such as the geomagnetic field, this could result in beam electrons scattered out of the loss cone. After saturation of the electrostatic instability, the parallel-propagating whistler anisotropy instability shows appreciable growth, provided that the beam density and late-time anisotropy are sufficiently large. Although the whistler anisotropy instability acts to pitch-angle scatter the electrons, reducing perpendicular energy in favor of parallel energy, these changes are weak compared to the pitch-angle increases resulting from the deceleration of the beam due to the electrostatic instability.
Directory of Open Access Journals (Sweden)
Bernhard eGatternig
2014-11-01
Full Text Available Agglomeration of the bed material is one of the main obstacles for biomass utilization in fluidized bed combustors. Especially high-potential fuels such as fast growing energy crops or biogeneous residues are affected, due to their high content of alkaline metals. Despite ongoing research efforts, the knowledge base on what fuels are affected is still limited. This paper describes the design and installation of two lab-scale reactors for the experimental determination of agglomeration temperatures. The reactor concept and measurement method were developed under consideration of experiences from existing test rigs published in literature. Preliminary tests confirmed a reproducibility of ±5°C for both new reactors.The results of an extended measurement campaign (156 test runs of 25 fuel species at a wide range of the operational parameters bed particle size, gas velocity, bed ash accumulation, based on design of experiment criteria, showed high agglomeration tendencies for residues (e.g., dried distillery grains, corn cobs while woody energy crops (e.g., willow, alder exhibited very stable combustion behavior. The operating parameters influenced the agglomeration behavior to a lesser degree than different ash compositions of fuel species tested. An interpolation within the design of experiment factor space allowed for a subsequent comparison of our results with experiments reported in literature. Good agreement was reached for fuels of comparable ash composition considering the interpolation errors of ±32°C on average.
Nakamura, T K M; Hasegawa, H; Shinohara, I
2010-04-01
Ion-to-magnetohydrodynamic scale physics of the transverse velocity shear layer and associated Kelvin-Helmholtz instability (KHI) in a homogeneous, collisionless plasma are investigated by means of full particle simulations. The shear layer is broadened to reach a kinetic equilibrium when its initial thickness is close to the gyrodiameter of ions crossing the layer, namely, of ion-kinetic scale. The broadened thickness is larger in B⋅Ω0 case, where Ω is the vorticity at the layer. This is because the convective electric field, which points out of (into) the layer for B⋅Ω0), extends (reduces) the gyrodiameters. Since the kinetic equilibrium is established before the KHI onset, the KHI growth rate depends on the broadened thickness. In the saturation phase of the KHI, the ion vortex flow is strengthened (weakened) for B⋅Ω0), due to ion centrifugal drift along the rotational plasma flow. In ion inertial scale vortices, this drift effect is crucial in altering the ion vortex size. These results indicate that the KHI at Mercury-like ion-scale magnetospheric boundaries could show clear dawn-dusk asymmetries in both its linear and nonlinear growth.
Energy Technology Data Exchange (ETDEWEB)
Lee, Sang Yong; Song, Si Hong; Koh, Kwang Woong; Kim, Joo Yeon; Kim, Jong Moon; Choi, Chul Jin [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)
1995-08-01
The main objective is to develop a high performance software routine to process the output signals from the phase/Doppler device for simultaneous measurement of drop sizes and two-dimensional velocities of spray drops/particles. The present work has been carried out as an extension work of the first year`s research, where the principles and the limitation of this measuring technique have been thoroughly reviewed. In order to verify the performance and reliability of this software for simultaneous measurement of sizes and velocities of spray drops with two-dimensional motions, the results were compared with those from commercial signal processor DSA by Aerometrics, and concluded to be satisfactory. The routine developed throughout this project is applicable not only to the DCH model experiments but also to the measurements of sizes and velocities of drops/particles in combustors, dryers, humidifiers, and in various two-phase equipments. 20 refs., 5 tabs., 21 figs. (author)
Yeuan, Jian Jong
1992-04-01
The objective of this research work is to simulate a single solid particle impact on a solid target using elastic-plastic theory. The entire impact process involves the adhesion, deformation and rebound process interacting between the solid particle and the target. The governing equations for two dimensional elastic-plastic flow are formulated in Lagrangian coordinates. The equation of state in the elastic region is the time rate of change of Hooke's law. In the plastic region, the experimental Hugoniot equation of state and the yield condition of R. von Mises are used. The effect of strain rate on the material strength is considered using a semi-empirical formulation. The developed computer program employs a finite volume numerical technique and two step explicit MacCormack scheme, which is second order accurate in time, allowing finer resolution of the transient phenomena of impact. Results are presented for a hard tool steel particle impacting on a mild steel target at impact angles of 20 to 90 degrees. The computational results are compared with experimental data for a range of impacting velocities up to 350 m/sec. The effect of particle in the particle rebound characteristics are also investigated. In the previous research, the particle rebound characteristics obtained from experiments were correlated and used in the calculation of particle trajectories in turbomachinery flows. Here, the computational results are applied to predict solid particle trajectories in a highly loaded axial flow turbine.
Experimental Measurement for Shock Velocity-Mass Velocity Relationship of Liquid Argon Up to 46 GPa
Institute of Scientific and Technical Information of China (English)
孟川民; 施尚春; 董石; 杨向东; 谭华; 经福谦
2003-01-01
Shock properties of liquid argon were measured in the shock pressure up to 46 GPa by employing the two-stage light gas gun. Liquid nitrogen was used as coolant liquid. The cryogenic target system has been improved to compare with the previous work. Shock velocities were measured with self-shorting electrical probes. Impactor velocities were measured with an electrical-magnetic induction system. Mass velocities were obtained by mean of shock impedance matching method. The experimental data shows that the slope of experimental Hugoniot curve of liquid argon begins to decrease above 30 GPa.
Directory of Open Access Journals (Sweden)
Mehdi Jadidi
2015-10-01
Full Text Available In thermal spraying processes, molten, semi-molten, or solid particles, which are sufficiently fast in a stream of gas, are deposited on a substrate. These particles can plastically deform while impacting on the substrate, which results in the formation of well-adhered and dense coatings. Clearly, particles in flight conditions, such as velocity, trajectory, temperature, and melting state, have enormous influence on the coating properties and should be well understood to control and improve the coating quality. The focus of this study is on the high velocity oxygen fuel (HVOF spraying and high velocity suspension flame spraying (HVSFS techniques, which are widely used in academia and industry to generate different types of coatings. Extensive numerical and experimental studies were carried out and are still in progress to estimate the particle in-flight behavior in thermal spray processes. In this review paper, the fundamental phenomena involved in the mentioned thermal spray techniques, such as shock diamonds, combustion, primary atomization, secondary atomization, etc., are discussed comprehensively. In addition, the basic aspects and emerging trends in simulation of thermal spray processes are reviewed. The numerical approaches such as Eulerian-Lagrangian and volume of fluid along with their advantages and disadvantages are explained in detail. Furthermore, this article provides a detailed review on simulation studies published to date.
New Approach to Predict Hugoniot Properties of Explosives Materials
2015-03-12
TATB) were conducted using quantum mechanics and analytical methods. Furthermore, using the pressure p and the ratio of specific densities, v/v0, p-v...fitting algorithms , new constants were obtained, to determine the detonation velocity, D, which was then used to define the Raleigh line. The ratio of...parameters that define detonation process and establish a DRDC-RDDC-2014-N35 completely numerical approach by using quantum mechanics and
Directory of Open Access Journals (Sweden)
Yuri Mendez
2015-01-01
Full Text Available This paper follows previous work regarding the settling velocity of non spherical particles in creeping motion. In this paper, we summarize the flow model, present solutions for the slender plate and the cylinder (Stoke’s paradox, demonstrate the application for euhedral pseudo hexagonal plates (KGa-1 and show the match to the experimental data. In addition, we derive the stream function for the sphere, the slender cylinder and the plate, develop the relationships to compute the flow about a settling particle, back calculate the momentum equation and examine the result
Directory of Open Access Journals (Sweden)
Horst Koch
2013-03-01
Full Text Available The high speed of biological processes such as photosynthesis, enzymatic reactions or neuronal activity cannot completely be explained on the basis of classic physical approaches. Different quantum biology effects such as tunnelling have been postulated. We hypothetically admit that deceleration of electron velocity based on light-particle duality of electrons leads to time acceleration. Deceleration from the status of light towards a status of a particle may therefore speed up biochemical or biophysical reactions in the atomic or molecular dimension. Electrophysiological and biological phenomena are discussed on the basis of the hypothesis
DEFF Research Database (Denmark)
Perinati, E.; Diebold, S.; Kendziorra, E.;
2012-01-01
We report on our activities, currently in progress, aimed at performing accelerator experiments with soft protons and hyper-velocity dust particles. They include tests of different types of X-ray detectors and related components (such as filters) and measurements of scattering of soft protons...... and hyper-velocity dust particles off X-ray mirror shells. These activities have been identified as a goal in the context of a number of ongoing space projects in order to assess the risk posed by environmental radiation and dust and qualify the adopted instrumentation with respect to possible damage...... or performance degradation. In this paper we focus on tests for the Silicon Drift Detectors (SDDs) used aboard the LOFT space mission. We use the Van de Graaff accelerators at the University of T\\"ubingen and at the Max Planck Institute for Nuclear Physics (MPIK) in Heidelberg, for soft proton and hyper...
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
In order to solve the problem of DOA (direction of arrival) estimation of underwater remote targets, a novel subspace-decomposition method based on the cross covariance matrix of the pressure and the particle velocity of acoustic vector sensor arrays (AVSA) was proposed.Whereafter, using spatio-temporal virtual tapped-delay-line, a new eigenvector-based criteria of detection of number of sources and of subspace partition is also presented. The theoretical analysis shows that the new source detection and direction finding method is different from existing AVSA based DOA estimation methods using particle velocity information of acoustic vector sensor (AVS) as an independent array element. It is entirely based on the combined information processing of pressure and particle velocity, has better estimation performance than existing methods in isotropic noise field. Computer simulations with data from lake trials demonstrate, the proposed method is effective and obviously outperforms existing methods in resolution and accuracy in the case of low signal-to-noise ratio (SNR).
DETERMINATION OF THE SPEED OF SOUND ALONG THE HUGONIOT IN A SHOCKED MATERIAL
2017-04-25
REPORT DATE (DD-MM-YYYY) April 2017 2. REPORT TYPE Final 3. DATES COVERED (From – To) 4. TITLE AND SUBTITLE DETERMINATION OF THE SPEED OF SOUND...Hugoniot to the isentrope was developed. The linear us- up and Mie-Grüneisen equations of state were applied to construct a comparison of the computed...2 + | [1 − 1 2 (0 − )] Using the linear equation of state, us- up : = 0 + Which when
Segura, Rodrigo; Rossi, Massimiliano; Cierpka, Christian; Kähler, Christian J
2015-02-07
A combination of cutting edge developments is presented to characterize three-dimensional (3D) temperature and velocity fields in microscopic flows. An emulsion of non-encapsulated thermo-liquid crystal (TLC) micro spheres, with a narrow size distribution is used to track the flow's motion and temperature distribution. A state-of-the-art light engine, which combines the spectrum of six light pipes, provides a balanced illumination which allows for strong and detectable color patterns across the TLC's temperature response range. Lastly, the ability of the TLC material to reflect select wavelength bands with an unchanging and independent circular polarization chirality is exploited by a filter that blocks background noise, while exclusively transmitting the color signal of the TLC particles. This approach takes advantage of the peculiar physical properties of TLCs to allow the estimation of individual TLC particle's 3D position, for the first time, using Astigmatism Particle Tracking Velocimetry (APTV).
Shan, Tzu-Ray; Thompson, Aidan; Wixom, Ryan; Mattsson, Ann
2012-02-01
Predicting the behavior of energetic materials requires a detailed description of how chemical reaction, energy and pressure fronts propagate during initial stages of detonation. In this talk, classical molecular dynamics (MD) simulations are used to examine orientation and shock velocity dependences in single crystal pentaerythritol tetranitrate (PETN). This work utilizes an empirical, variable charge reactive force field (ReaxFF) that is implemented in the LAMMPS package with a time-averaged bond-order method for on-the-fly chemical species identification. The accuracy of ReaxFF is validated by comparisons of activation barriers for dissociation of a single PETN molecule along various dissociation channels with higher-fidelity, but more expensive, density functional theory (DFT) calculations. The response of single-crystal PETN to shock compression is simulated using the multi-scale shock technique (MSST) along the insensitive (100) directions, as well as the sensitive (001) and (110) directions, at steady shock velocities ranging from 6-10 km/s. Hugoniot curves, particle velocities of shocked molecules, and evolution of reaction products with time from MD simulations with ReaxFF will be discussed and compared to that from DFT calculations.
Perinati, E; Kendziorra, E; Santangelo, A; Tenzer, C; Jochum, J; Bugiel, S; Srama, R; Del Monte, E; Feroci, M; Rubini, A; Rachevski, A; Zampa, G; Zampa, N; Rashevskaya, I; Vacchi, A; Azzarello, P; Bozzo, E; Herder, J -W den; Zane, S; Brandt, S; Hernanz, M; Leutenegger, M A; Kelley, R L; Kilbourne, C A; Meidinger, N; Strüder, L; Cordier, B; Götz, D; Fraser, G W; Osborne, J P; Dennerl, K; Freyberg, M; Friedrich, P
2012-01-01
We report on our activities, currently in progress, aimed at performing accelerator experiments with soft protons and hyper-velocity dust particles. They include tests of different types of X-ray detectors and related components (such as filters) and measurements of scattering of soft protons and hyper-velocity dust particles off X-ray mirror shells. These activities have been identified as a goal in the context of a number of ongoing space projects in order to assess the risk posed by environmental radiation and dust and qualify the adopted instrumentation with respect to possible damage or performance degradation. In this paper we focus on tests for the Silicon Drift Detectors (SDDs) used aboard the LOFT space mission. We use the Van de Graaff accelerators at the University of T\\"ubingen and at the Max Planck Institute for Nuclear Physics (MPIK) in Heidelberg, for soft proton and hyper-velocity dust tests respectively. We present the experimental set-up adopted to perform the tests, status of the activities...
Energy Technology Data Exchange (ETDEWEB)
Wei, Hua-Rong; Liu, Fu-Hu [Shanxi University, Institute of Theoretical Physics, Shanxi (China); Lacey, Roy A. [Stony Brook University, Departments of Chemistry and Physics, Stony Brook, NY (United States)
2016-04-15
The transverse momentum spectra of final-state light flavor particles produced in proton-proton (p-p), copper-copper (Cu-Cu), gold-gold (Au-Au), lead-lead (Pb-Pb), and proton-lead (p -Pb) collisions for different centralities at relativistic heavy ion collider (RHIC) and large hadron collider (LHC) energies are studied in the framework of a multisource thermal model. The experimental data measured by the STAR, CMS, and ALICE Collaborations are consistent with the results calculated by the multi-component Erlang distribution and Tsallis Statistics. The effective temperature and real temperature (kinetic freeze-out temperature) of the interacting system at the stage of kinetic freeze-out, the mean transverse flow velocity and mean flow velocity of particles, and the relationships between them are extracted. The dependences of effective temperature and mean (transverse) momentum on rest mass, moving mass, centrality, and center-of-mass energy, and the dependences of kinetic freeze-out temperature and mean (transverse) flow velocity on centrality, center-of-mass energy, and system size are obtained. (orig.)
Granik, Alex
2014-01-01
The kinematics of a particle with the upper bound on the particle's speed (a modification of classical kinematics where such a restriction is absent) has been developed in [arXiv:1204.5740]. It was based solely on classical mechanics without employing any concepts , associated with the time dilatation or/and length contraction. It yielded the 1-D Lorentz transformation (LT), free of inconsistencies (inherent in the canonical derivation and interpretations of the LT). Here we apply the same approach to derive the LT for the 3-dimensional motion of a particle and the attendant law of velocity composition. As a result, the infinite set of four-parameter transformations is obtained. The requirement of linearity of these transformations selects out of this set the two-parameter subset . The values of the remaining two parameters ,dictated by physics of the motion, is explicitly determined , yielding the canonical form of the 3-dimensional LT. The generalized law of velocity composition and the attendant invariant ...
Cizek, Jan; Dlouhy, Ivo; Siska, Filip; Khor, Khiam Aik
2014-12-01
The study presents a comprehensive research on the plasma spray fabrication of TiO2 coatings with microstructural properties adjustable via controlling the respective in-flight properties of the feedstock particles. The in-flight properties can be, in return, governed by tuning the plasma system spray parameters. By determining and linking the two interrelationships, a connection between the important coating characteristics (composition, microstructure, surface and mechanical properties) to the plasma system settings was established. It was shown that by changing the values of six parameters representing the flexibility of the plasma system, the temperatures and velocities of the particles within the jet can be altered from 2125 to 2830 K and 137 to 201 m s-1, respectively. The values of the in-flight temperature critically influenced the efficiency of the coating build-up (values ranging from 8 to 84 μm per 1 torch pass) and the content of anatase phase in the fabricated coatings (0-5.8%), while the in-flight velocity of the TiO2 particles was found to be connected to the porosity of the coatings (ranging from 14.4 to 26.2%) and the adhesion strength at the coating-substrate interface (2.6 × difference).
Jung, Sung Yong; Lee, Sang Joon
2012-04-01
An x-ray particle image velocimetry (PIV) system using a cone-beam type x-ray was developed. The field of view and the spatial resolution are 36 × 24.05 mm(2) and 20 μm, respectively. The three-dimensional velocity field was reconstructed by adopting the least squares minimum residue and simultaneous multiplicative algebraic reconstruction techniques. According to a simulation study with synthetic images, the reconstructions were acceptable with 7 projections and 50 iterations. The reconstructed and supplied flow rates differed by only about 6.49% in experimental verification. The x-ray tomographic PIV system would be useful for 3D velocity field information of opaque flows.
Sharma, Anand; Bauer, Carsten; Rueckriegel, Andreas; Kopietz, Peter
We use a nonperturbative functional renormalization group approach to calculate the renormalized quasiparticle velocity v (k) and the static dielectric function ɛ (k) of suspended graphene as function of an external momentum k. We fit our numerical result for v (k) to v (k) /vF = A + Bln (Λ0 / k) , where vF is the bare Fermi velocity, Λ0 is an ultraviolet cutoff, and A = 1 . 37 , B = 0 . 51 for the physically relevant value (e2 /vF = 2 . 2) of the coupling constant. In stark contrast to calculations based on the static random-phase approximation, we find that ɛ (k) approaches unity for k --> 0 . Our result for v (k) agrees very well with a recent measurement by Elias etal. [Nat. Phys. 7, 701 (2011)]. With in the same approximation, we also explore an alternative scheme in order to understand the true nature of the low energy (momentum) behavior in graphene.
Tayong, Rostand; Dupont, Thomas; Leclaire, Philippe
2010-05-01
The acoustic behavior of micro-perforated panels (MPP) is studied theoretically and experimentally at high level of pressure excitation. A model based on Forchheimer's regime of flow velocity in the perforations is proposed. This model is valid at relatively high Reynolds numbers and low Mach numbers. The experimental method consists in measuring the acoustical pressure at three different positions in an impedance tube, the two measurement positions usually considered in an impedance tube and one measurement in the vicinity of the rear surface of the MPP. The impedance tube is equipped with a pressure driver instead of the usual loudspeaker and capable of delivering a high sound pressure level up to 160 dB. MPP specimens made out of steel, dural and polypropylene were tested. Measurements using random noise or sinusoidal excitation in a frequency range between 200 and 1600 Hz were carried out on MPPs backed by air cavities. It was observed that the maximum of absorption can be a positive or a negative function of the flow velocity in the perforations. This suggests the existence of a maximum of absorption as a function of flow velocity. This behavior was predicted by the model and confirmed experimentally.
Comparison of Hugoniots calculated for aluminum in the framework of three quantum-statistical models
Kadatskiy, Maxim A
2015-01-01
The results of calculations of thermodynamic properties of aluminum under shock compression in the framework of the Thomas--Fermi model, the Thomas--Fermi model with quantum and exchange corrections and the Hartree--Fock--Slater model are presented. The influences of the thermal motion and the interaction of ions are taken into account in the framework of three models: the ideal gas, the one-component plasma and the charged hard spheres. Calculations are performed in the pressure range from 1 to $10^7$ GPa. Calculated Hugoniots are compared with available experimental data.
Calculation of Hugoniot properties for shocked nitromethane based on the improved Tsien's EOS
Zhao, Bo; Cui, Ji-Ping; Fan, Jing
2010-06-01
We have calculated the Hugoniot properties of shocked nitromethane based on the improved Tsien’s equation of state (EOS) that optimized by “exact” numerical molecular dynamic data at high temperatures and pressures. Comparison of the calculated results of the improved Tsien’s EOS with the existed experimental data and the direct simulations show that the behavior of the improved Tsien’s EOS is very good in many aspects. Because of its simple analytical form, the improved Tsien’s EOS can be prospectively used to study the condensed explosive detonation coupling with chemical reaction.
Comparison of Hugoniots calculated for aluminum in the framework of three quantum-statistical models
Kadatskiy, M. A.; Khishchenko, K. V.
2015-11-01
The results of calculations of thermodynamic properties of aluminum under shock compression in the framework of the Thomas-Fermi model, the Thomas-Fermi model with quantum and exchange corrections and the Hartree-Fock-Slater model are presented. The influences of the thermal motion and the interaction of ions are taken into account in the framework of three models: the ideal gas, the one-component plasma and the charged hard spheres. Calculations are performed in the pressure range from 1 to 107 GPa. Calculated Hugoniots are compared with available experimental data.
Koullapis, P G; Kassinos, S C; Bivolarova, M P; Melikov, A K
2016-07-26
Understanding the multitude of factors that control pulmonary deposition is important in assessing the therapeutic or toxic effects of inhaled particles. The use of increasingly sophisticated in silico models has improved our overall understanding, but model realism remains elusive. In this work, we use Large Eddy Simulations (LES) to investigate the deposition of inhaled aerosol particles with diameters of dp=0.1,0.5,1,2.5,5 and 10μm (particle density of 1200kg/m(3)). We use a reconstructed geometry of the human airways obtained via computed tomography and assess the effects of inlet flow conditions, particle size, electrostatic charge, and flowrate. While most computer simulations assume a uniform velocity at the mouth inlet, we found that using a more realistic inlet profile based on Laser Doppler Anemometry measurements resulted in enhanced deposition, mostly on the tongue. Nevertheless, flow field differences due to the inlet conditions are largely smoothed out just a short distance downstream of the mouth inlet as a result of the complex geometry. Increasing the inhalation flowrate from sedentary to activity conditions left the mean flowfield structures largely unaffected. Nevertheless, at the higher flowrates turbulent intensities persisted further downstream in the main bronchi. For dp>2.5μm, the overall Deposition Fractions (DF) increased with flowrate due to greater inertial impaction in the oropharynx. Below dp=1.0μm, the DF was largely independent of particle size; it also increased with flowrate, but remained significantly lower. Electrostatic charge increased the overall DF of smaller particles by as much as sevenfold, with most of the increase located in the mouth-throat. Moreover, significant enhancement in deposition was found in the left and right lung sub-regions of our reconstructed geometry. Although there was a relatively small impact of inhalation flowrate on the deposition of charged particles for sizes dp<2.5μm, impaction prevailed over
Hugoniot based equation of state for solid polyurea and polyurea aerogels
Pacheco, A. H.; Gustavsen, R. L.; Aslam, T. D.; Bartram, B. D.
2017-01-01
The shock response of solid polyurea and two polyurea aerogels were studied using gas-gun driven plate impact experiments. The materials reported on here are commercially available, brand named AIRLOY, and supplied by Aerogel Technologies, LLC. Polyurea Solid, with nominal density 1.13 g/cm3, and two aerogels, with nominal densities of 0.20 and 0.35 g/cm3, were studied. Most experiments were of the multi-slug type in which a sample of each density was mounted on an oxygen free high conductivity copper or 6061 aluminum baseplate. In these experiments, shock velocity was measured and other shock states calculated by the impedance matching technique. Peak particle velocity obtained in the 0.2 g/cm3 aerogel was > 4.3 km/s, and peak pressure in the solid was > 29 GPa. A break in the data for the solid above particle velocities of 2.0 km/s (˜ 18 GPa) indicates a probable reaction with higher density products. A P - α model with Mie-Grueneisen form for the solid reasonably replicates the data.
Alves, M. V.; Barbosa, M. V. G.; Simoes, F. J. L., Jr.
2016-12-01
Observations have shown that several regions in space plasmas exhibit non-Maxwellian distributions with high energy superthermal tails. Kappa velocity distribution functions can describe many of these regions and have been used since the 60's. They suit well to represent superthermal tails in solar wind as well as to obtain plasma parameters of plasma within planetary magnetospheres. A set of initial velocities following kappa distribution functions is used in KEMPO1 particle simulation code to analyze the normal modes of wave propagation. Initial conditions are determined using observed characteristics for Saturńs magnetosphere. Two electron species with different temperatures and densities and ions as a third species are used. Each electron population is described by a different kappa index. Particular attention is given to perpendicular propagation, Bernstein modes, and parallel propagation, Langmuir and electron-acoustic modes. The dispersion relation for the Bernstein modes is strongly influenced by the shape of the velocity distribution and consequently by the value of kappa index. Simulation results are compared with numerical solutions of the dispersion relation obtained in the literature and they are in good agreement.
Institute of Scientific and Technical Information of China (English)
Sui Lin; Tzu-Fang Chen
2007-01-01
The particle paths of the Lagrangian flow field simulate very well the interface curve of the Yin-Yang balance in the ancient Tai-Chi diagram. There are four forms called the "four states" in the Tai-Chi diagram. Of the four states, under Yang are the Major Yang and the Minor Yin, and under Yin are the Major Yin and the Minor Yang. The present study provides the proper positions of the four states in the ancient Tai-Chi diagram. The Fu Xi's Eight Trigrams Chart located along the ancient Tai-Chi diagram is also developed in the present study. The interface curve of Yin-Yang in the ancient Tai-Chi diagram has never been described mathematically. It can now be formulated by the equations describing the particle paths in the Lagrangian flow field.
Energy Technology Data Exchange (ETDEWEB)
Le Fevre, A. [Paris-7 Univ., 75 (France)
1997-05-14
This work is focused on the study of fragment and light particle production mechanisms in the multifragmentation process of hot nuclei, which are formed in the central collisions of Xe+Sn at 50 MeV/u. The experiment has been performed with the INDRA multidetector. The central collision events, selected via the flow angle variable, exhibit the presence of a heavy (Z=90) and highly excited (E{sup *}=12.5 MeV/u) isotropic emission source. The comparison of the data with a statistical multifragmentation model (MMMC) and a dynamical model (BNV) makes us conclude that the multifragmentation can only be explained in the frame of a relatively cold process, around 6 MeV/u of thermal excitation energy, preceded by a primary emission stage of the expanding source, during which nearly one third of the excitation energy is dissipated. In addition, it appears that the fragment energy spectra are not explained by a purely thermal process, and that one has to put forward an expansion collective motion, of 2 MeV/u of energy, following the compression of the compound system. In order to precise the existence of a two-step particle emission (primary and secondary), we have developed and applied an original method of reduced velocity correlations between particles and fragments. It has allowed us to underline two distinct origins for the particle production: one corresponding to secondary emissions, coming from the fragments, and the other one, associated with emissions which occur prior to the fragment production. At last, it has allowed us, also to bring out a hierarchy in the emission time in the decay process, with respect to the particle type. (author) 90 refs.
Institute of Scientific and Technical Information of China (English)
张济宇; 祝媛; 田亚峻; 谢克昌
2007-01-01
The coking observation and particle flow behaviour in both thermal plasma and cold plexiglas downers were investigated in a binary particle system formed by injecting coarse inert particles (carrying coke away and scouring wall) and fine coal powders into the downer reactor. The results demonstrate that this scheme is a rational selection to prevent coking on downer walls and improve particle velocity distribution along the radial direction.When injected coarse particles mixed with fine powders in downers, the fluctuation of local particle velocity in the radial direction becomes smaller and two peaks in the radial distribution of local particle velocity occur due to the improved dispersing character and flow structure, which are beneficial to the thermo-plasma coal cracking reaction and coking prevention.
Absolute Hugoniot measurements for CH foams in the 1.5-8 Mbar range
Aglitskiy, Y.; Velikovich, A. L.; Schmitt, A. J.; Karasik, M.; Serlin, V.; Weaver, J. L.; Oh, J.; Obenschain, S. P.
2016-10-01
We report the absolute Hugoniot measurements for dry CH foams at 10% of solid polystyrene density. The 400 μm thick, 500 μm wide planar foam slabs covered with a 10 μm solid plastic ablator were driven with 4 ns long Nike KrF laser pulses whose intensity was varied between 10 and 50 TW/cm2. The trajectories of the shock front and the ablative piston, as well as the rarefaction fan emerging after the shock breakout from the rear surface of the target were clearly observed using the side-on monochromatic x-ray imaging radiography. From these measurements the shock density compression ratio and the shock pressure are evaluated directly. The observed compression ratios varied between 4 and 8, and the corresponding shock pressures - between 1.5 and 8 Mbar. The data was simulated with the FASTRAD3D hydrocode, using standard models of inverse bremsstrahlung absorption, flux-limited thermal conduction, and multi-group radiation diffusion. The demonstrated diagnostics technique applied in a cryo experiment would make it possible to make the first absolute Hugoniot measurements for liquid deuterium or DT-wetted CH foams, which is relevant for designing the wetted-foam indirect-drive ignition targets for NIF. This work was supported by the US DOE/NNSA.
A pressure-transferable coarse-grained potential for modeling the shock Hugoniot of polyethylene
Agrawal, Vipin; Peralta, Pedro; Li, Yiyang; Oswald, Jay
2016-09-01
We investigate the thermomechanical response of semi-crystalline polyethylene under shock compression by performing molecular dynamics (MD) simulations using a new coarse-graining scheme inspired by the embedded atom method. The coarse-graining scheme combines the iterative Boltzmann inversion method and least squares optimization to parameterize interactions between coarse-grained sites, including a many-body potential energy designed to improve the representability of the model across a wide range of thermodynamic states. We demonstrate that a coarse-grained model of polyethylene, calibrated to match target structural and thermodynamic data generated from isothermal MD simulations at different pressures, can also accurately predict the shock Hugoniot response. Analysis of the rise in temperature along the shock Hugoniot and comparison with analytical predictions from the Mie-Grüneisen equation of state are performed to thoroughly explore the thermodynamic consistency of the model. As the coarse-graining model affords nearly two orders of magnitude reduction in simulation time compared to all-atom MD simulations, the proposed model can help identify how nanoscale structure in semi-crystalline polymers, such as polyethylene, influences mechanical behavior under extreme loading.
Dissociation along the principal Hugoniot of the Laser Mégajoule ablator material
Colin-Lalu, P.; Recoules, V.; Salin, G.; Plisson, T.; Brambrink, E.; Vinci, T.; Bolis, R.; Huser, G.
2016-08-01
Glow discharge polymer hydrocarbon (GDP-CH) is used as the ablator material in inertial confinement fusion (ICF) capsules for the Laser Mégajoule and National Ignition Facility. Due to its fabrication process, GDP-CH chemical composition and structure differ from commercially available plastics and detailed knowledge of its properties in the warm dense matter regime is needed to achieve accurate design of ICF capsules. First-principles ab initio simulations of the GDP-CH principal Hugoniot up to 8 Mbar were performed using the quantum molecular dynamics (QMD) code abinit and showed that atomic bond dissociation has an effect on the compressibility. Results from these simulations are used to parametrize a quantum semiempirical model in order to generate a tabulated equation of state that includes dissociation. Hugoniot measurements obtained from an experiment conducted at the LULI2000 laser facility confirm QMD simulations as well as EOS modeling. We conclude by showing the EOS model influence on shock timing in a hydrodynamic simulation.
Energy Technology Data Exchange (ETDEWEB)
Nishioka, S., E-mail: nishioka@ppl.appi.keio.ac.jp; Goto, I.; Hatayama, A. [Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan); Miyamoto, K. [School of Natural and Living Sciences Education, Naruto University of Education, 748 Nakashima, Takashima, Naruto-cho, Naruto-shi, Tokushima 772-8502 (Japan); Okuda, S.; Fukano, A. [Toshiba, 33 Isogo-chou, Isogo-ku, Yokohama-shi, Kanagawa 235-001 (Japan)
2014-02-15
Our previous study by two dimension in real space and three dimension in velocity space-particle in cell model shows that the curvature of the plasma meniscus causes the beam halo in the negative ion sources. The negative ions extracted from the periphery of the meniscus are over-focused in the extractor due to the electrostatic lens effect, and consequently become the beam halo. The purpose of this study is to verify this mechanism with the full 3D model. It is shown that the above mechanism is essentially unchanged even in the 3D model, while the fraction of the beam halo is significantly reduced to 6%. This value reasonably agrees with the experimental result.
Understanding the Acceleration of Energetic Particles at the Termination Shock
Gloeckler, G.; Fisk, L. A.
2006-05-01
Voyager 1 observations of energetic particles during the crossing of the Termination Shock of the solar wind present a number of puzzles, and challenges to existing acceleration theories. For example, downstream from the shock the low-energy phase space density spectra are power laws exhibiting a remarkably constant spectral index, which is difficult to understand in terms of standard diffusive shock acceleration. Upstream from the shock there are beams of highly anisotropic energetic particles, with varying spectral shapes. Again, diffusive shock acceleration has difficultly in dealing with such large anisotropies. Here we show that the observed, constant spectral index of -5 can be accounted for by a simple theory in which the pressure in the accelerated particles behaves according to the Rankine-Hugoniot relationship of an ideal gas at the shock. We also demonstrate that the observed varying spectral shapes of the upstream beams result from velocity dispersion of a downstream spectrum with index of -5 propagating along magnetic flux tubes connecting the termination shock to Voyager 1. We show that even though the beams dominate the upstream foreshock region, they do not have an appreciable effect on the shock acceleration process. The implications of our theory for the acceleration of the Anomalous Cosmic Rays in the heliosheath are also discussed.
Directory of Open Access Journals (Sweden)
P.K. Das
2016-03-01
Full Text Available Classical Q-learning takes huge computation to calculate the Q-value for all possible actions in a particular state and takes large space to store its Q-value for all actions, as a result of which its convergence rate is slow. This paper proposed a new methodology to determine the optimize trajectory of the path for multi-robots in clutter environment using hybridization of improving classical Q-learning based on four fundamental principles with improved particle swarm optimization (IPSO by modifying parameters and differentially perturbed velocity (DV algorithm for improving the convergence. The algorithms are used to minimize path length and arrival time of all the robots to their respective destination in the environment and reducing the turning angle of each robot to reduce the energy consumption of each robot. In this proposed scheme, the improve classical Q-learning stores the Q-value of the best action of the state and thus save the storage space, which is used to decide the Pbest and gbest of the improved PSO in each iteration, and the velocity of the IPSO is adjusted by the vector differential operator inherited from differential evolution (DE. The validation of the algorithm is studied in simulated and Khepera-II robot.
Energy Technology Data Exchange (ETDEWEB)
Lemke, R. W., E-mail: rwlemke@sandia.gov; Dolan, D. H.; Dalton, D. G.; Brown, J. L.; Robertson, G. R.; Harding, E.; Mattsson, A. E.; Carpenter, J. H.; Drake, R. R.; Cochrane, K.; Robinson, A. C.; Mattsson, T. R. [Sandia National Laboratories, PO Box 5800, Albuquerque, New Mexico 87185-1189 (United States); Tomlinson, K.; Blue, B. E. [General Atomics, San Diego, California 92121 (United States); Knudson, M. D. [Sandia National Laboratories, PO Box 5800, Albuquerque, New Mexico 87185-1189 (United States); Institute for Shock Physics and Department of Physics, Washington State University, Pullman, Washington 99164 (United States)
2016-01-07
We report on a new technique for obtaining off-Hugoniot pressure vs. density data for solid metals compressed to extreme pressure by a magnetically driven liner implosion on the Z-machine (Z) at Sandia National Laboratories. In our experiments, the liner comprises inner and outer metal tubes. The inner tube is composed of a sample material (e.g., Ta and Cu) whose compressed state is to be inferred. The outer tube is composed of Al and serves as the current carrying cathode. Another aluminum liner at much larger radius serves as the anode. A shaped current pulse quasi-isentropically compresses the sample as it implodes. The iterative method used to infer pressure vs. density requires two velocity measurements. Photonic Doppler velocimetry probes measure the implosion velocity of the free (inner) surface of the sample material and the explosion velocity of the anode free (outer) surface. These two velocities are used in conjunction with magnetohydrodynamic simulation and mathematical optimization to obtain the current driving the liner implosion, and to infer pressure and density in the sample through maximum compression. This new equation of state calibration technique is illustrated using a simulated experiment with a Cu sample. Monte Carlo uncertainty quantification of synthetic data establishes convergence criteria for experiments. Results are presented from experiments with Al/Ta, Al/Cu, and Al liners. Symmetric liner implosion with quasi-isentropic compression to peak pressure ∼1000 GPa is achieved in all cases. These experiments exhibit unexpectedly softer behavior above 200 GPa, which we conjecture is related to differences in the actual and modeled properties of aluminum.
波粒二象性理论与波速问题探讨%Discussion on the Particle-Wave Duality and the Wave Velocity Problem
Institute of Scientific and Technical Information of China (English)
黄志洵
2014-01-01
of the velocity definition,we have v→=▽S/m[ m is the particle’ s mass and ψ=Aexp( jS/ћ) ] . This method builds the relation of velocity and wave function,but it is not the necessary and useful concept of wave’ s speed. The velocity of light in vacuum is a common basic constant of physics,however QM also need this parameter obviously,i. e. the new wave mechanics is on need of this physical quantity. The process and result of people’ s practice show that,scientist has intended to bring forth in the measure-ment of c with very high accuracy does stand out,if he used the scalar equation c=fλ. Modern physics maintain that the wave velocities ( phase velocityvp、group velocity vg ) are scalars,not vectors.The wave has its special scientific features;the regular pattern is different from the Classical Mechan-ics ( CM) . It needs supports of the QM,but it is not identical with the serious QM. Now,it has not only a theory that can explain the wave problems perfectly,so it is support by the classical physics and quantum physics. The quantization process of EM fields explains the particle-wave duality mathematically. Post quanti-zation,from the EM fields we obtained the photons. But scientist still is puzzled by a difficult question:“what is photon”. As the common knowledge,the matter waves of photon still a paradox in physics. In ad-dition,the electronic probability waves corresponding the Schrödinger equation,but people says the pho-tonic probability waves have not that wave equation. In other words, the physical meanings of matter wave’ s phase velocity are not clear,and why the phase velocity of de Broglie waves is faster-than-light, many explanations will be needed. Many instances similar to these examples make the particle- wave duality still the magic ghost in modern physics. Finally,the study on negative wave velocity( NWV) in recent years has a great deal of ex-perience on wave sciences,and bring the new chance on theoretical thinking.
Directory of Open Access Journals (Sweden)
Ching-Lun Su and Yen-Hsyang Chu
2007-01-01
Full Text Available The backscatter from precipitation particles observed by the vertically pointed antenna beam of the Chung-Li VHF radar and the drop size distributions measured by a ground-based disdrometer co-located at the radar site are analyzed and studied in this article. We find that the disdrometermeasured drop size distribution can be well approximated to a Gamma distribution. On the basis of this property and a power law approximation to the fallspeed-diameter relation VD = ADB, we derive the theoretical relation between terminal velocity VD and range-corrected VHF backscatter P of the precipitation particles. We find that the VD - P relation follows a power law in the form of VD = _ where _ _ both the functions of the precipitation parameters. Chu et al. (1999 first found that the relation between _ _ be empirically approximated to an exponential form of _ _ where _ a function of B and _ a factor associated with precipitation. In this article, under the assumptions of the Gamma distribution of the drop size distribution and the power-law relation between VD and D, we theoretically show that the analytical relation between _ _ follows an exponential form of _ _ where _ a function of the drop size distribution. The experimental results obtained by the Chung-Li VHF radar combined with the ground-based disdrometer measurements validate the exponential approximation to the _ _ The uses of the _ _ for the investigations of the rainfall rate and properties of drop size distribution are presented and discussed.
Off-Hugoniot characterization of alternative inertial confinement fusion ablator materials.
Moore, Alastair S.; Prisbrey, Shon; Baker, Kevin L.; Celliers, Peter M.; Fry, Jonathan; Dittrich, Thomas R.; Wu, Kuang-Jen J.; Kervin, Margaret L.; Schoff, Michael E.; Farrell, Mike; Nikroo, Abbas; Hurricane, Omar A.
2016-05-01
The ablation material used during the National Ignition Campaign, a glow- discharge polymer (GDP), does not couple as efficiently as simulations indicated to the multiple- shock inducing radiation drive environment created by laser power profile [1]. We investigate the performance of two other ablators, boron carbide (B4C) and high-density carbon (HDC) and compare with GDP under the same hohlraum conditions. Ablation performance is determined through measurement of the shock speed produced in planar samples of the ablator subjected to the identical multiple-shock inducing radiation drive environments that are similar to a generic three-shock ignition drive. Simulations are in better agreement with the off-Hugoniot performance of B4C than either HDC or GDP.
Particle Velocity in the Three-phase Flow of Solid-liquid-gas in a Flotation Cell%浮选槽中固-液-气三相流中颗粒的速度
Institute of Scientific and Technical Information of China (English)
曾克文; 薛玉兰; 余永富
2001-01-01
采用PDA激光流速测试技术，在固-液-气三相体系中对浮选槽中固体颗粒进行了流速测定，获得了固体颗粒的速度分布，为矿粒与气泡粘附过程和脱附过程机理的研究提供可靠数据。%PDA laser flow velocity testing technique was used to measure the flow velocity of solid particles in the solid-liquid-gas three-phase system in a flotation cell and obtained the velocity distribution of solid particles so as to provide reliable data for the study on adsorption and deadsoption mechanism of particles onto and off from bubbles.
Observation of off-Hugoniot shocked states with ultrafast time resolution
Energy Technology Data Exchange (ETDEWEB)
Armstrong, M; Crowhurst, J; Bastea, S; Zaug, J
2010-02-23
We apply ultrafast single shot interferometry to determine the pressure and density of argon shocked from up to 7.8 GPa static initial pressure in a diamond anvil cell. This method enables the observation of thermodynamic states distinct from those observed in either single shock or isothermal compression experiments, and the observation of ultrafast dynamics in shocked materials. We also present a straightforward method for interpreting ultrafast shock wave data which determines the index of refraction at the shock front, and the particle and shock velocities for shock waves in transparent materials. Based on these methods, we observe shocked thermodynamic states between the room temperature isotherm of argon and the shock adiabat of cryogenic argon at final shock pressures up to 28 GPa.
Institute of Scientific and Technical Information of China (English)
佟鼎; 黄宁
2011-01-01
Sand velocity in aeolian sand transport is measured using the PIV system（Particle Imaging Velocimetry） in a wind tunnel.The velocity probability distribution of ascending and descending particles,as well the influences of sand ripple on the sand particle motion are analyzed.The results show that velocity distributions of take-off particles and particles during sand movement accord with logarithm normal distribution.The mean incident velocity of sand particles is 1.005-1.4 times higher than take-off ones with different wind speed.It is found that sand ripples play an important role on the sand particles motion,which is a key factor that can not be neglected.%采用PIV（Particle Image Velocimetry）系统测量了天然混合沙风沙两相流中沙粒的速度分布特征,得到了沙粒入射以及起跳的速度分布情况,并且分析了沙波纹对风沙运动的影响。结果表明：沙粒运动过程中的速度分布与沙粒起跳速度的分布可以应用对数正态分布来表明;当有沙波纹存在时,沙粒总体速度分布与平坦沙床面差别很大,是不可忽略的重要因素;平坦沙床面沙粒平均入射速度是起跳平均速度的1.005倍~1.4倍,具体关系可以应用线性函数来拟合。
The Microflown particle velocity sensor
DEFF Research Database (Denmark)
Jacobsen, Finn; de Bree, Hans-Elias
2008-01-01
The Handbook of Signal Processing in Acoustics will compile the techniques and applications of signal processing as they are used in the many varied areas of Acoustics. The Handbook will emphasize the interdisciplinary nature of signal processing in acoustics. Each Section of the Handbook will pr...
Directory of Open Access Journals (Sweden)
Janevski Jelena N.
2016-01-01
Full Text Available This paper presents the results of the kinetics research into the drying of fine grained material in a two-component fluidized bed. A review of theoretical and experimental investigations of aerodynamics of the fluidized bed is given, with a special insight into two-component fluidized beds, as well as the basics of heat and material transfer through a fluidized bed. Apart from the theoretical basis of convective drying of wet materials in a stagnant fluidized bed, the paper also emphasizes different approaches to fine grained material drying kinetics. Based on the experimental investigations, where zealots used as a representative of fine grained material and polyethylene as a representative of inert material (another component, an analysis of the influence of working parameters on drying in a two-component fluidized bed is performed. It is established that, apart from the influence of the considered parameters, such as fluidization velocity, diameter of fine grained material particles and drying agent temperature, on the drying curve, the participation of inert material can considerably increase the intensity of heat and material transfer in the fluidized bed. A comparison of the experimental drying curves of fine grained material in the two-component fluidized bed with the results from the studies by other authors shows satisfactory agreement.
Dai, Jiayu; Zhao, Zengxiu; Wu, Yanqun; Yuan, Jianmin
2011-01-01
A new determined principal Hugoniot curve of Fe in the temperature range of 0.1-100 eV from Ab initio is presented, and the structural dynamics along this curve is shown. All experiments are on top or above our Hugoniot data, which are along the lower envelop of the distribution of experiments. The present data are the converged limit for experiments to remove the external effects such as preheating. In particular, the experimental data on the bottom of the distribution below 10 Mbar can be considered nearly free of errors caused by the external effects compared with our data. The dynamics of ionic structures shows the stable existence of complex clusters with persisted time length of hundreds of femto-seconds from cold to hot dense matter.
Energy Technology Data Exchange (ETDEWEB)
Shaw, Milton Sam [Los Alamos National Laboratory; Coe, Joshua D [Los Alamos National Laboratory; Sewell, Thomas D [UNIV OF MISSOURI-COLUMBIA
2009-01-01
An optimized version of the Nested Markov Chain Monte Carlo sampling method is applied to the calculation of the Hugoniot for liquid nitrogen. The 'full' system of interest is calculated using density functional theory (DFT) with a 6-31 G* basis set for the configurational energies. The 'reference' system is given by a model potential fit to the anisotropic pair interaction of two nitrogen molecules from DFT calculations. The EOS is sampled in the isobaric-isothermal (NPT) ensemble with a trial move constructed from many Monte Carlo steps in the reference system. The trial move is then accepted with a probability chosen to give the full system distribution. The P's and T's of the reference and full systems are chosen separately to optimize the computational time required to produce the full system EOS. The method is numerically very efficient and predicts a Hugoniot in excellent agreement with experimental data.
Zhao, Shijun; Kang, Wei; Li, Zi; Zhang, Ping; He, Xian-Tu
2015-01-01
Principal Hugoniot and K-shell X-ray absorption spectra of warm dense KCl are calculated using the first-principles molecular dynamics method. Evolution of electronic structures as well as the influence of the approximate description of ionization on pressure (caused by the underestimation of the energy gap between conduction bands and valence bands) in the first-principles method are illustrated by the calculation. Pressure ionization and thermal smearing are shown as the major factors to prevent the deviation of pressure from global accumulation along the Hugoniot. In addition, cancellation between electronic kinetic pressure and virial pressure further reduces the deviation. The calculation of X-ray absorption spectra shows that the band gap of KCl persists after the pressure ionization of the $3p$ electrons of Cl and K taking place at lower energy, which provides a detailed understanding to the evolution of electronic structures of warm dense matter.
Energy velocity and group velocity
Institute of Scientific and Technical Information of China (English)
陈宇
1995-01-01
A new Lagrangian method for studying the relationship between the energy velocity and the group velocity is described. It is proved that under the usual quasistatic electric field, the energy velocity is identical to the group velocity for acoustic waves in anisotropic piezoelectric (or non-piezoelectric) media.
Settling Velocity of Single Particle Sediment Measured By High-speed Video%基于高速摄像的单颗粒泥沙沉速试验
Institute of Scientific and Technical Information of China (English)
宋佳苑; 孙志林
2016-01-01
Settling velocity is an important issue in the mechanics of sediment transport. A new measurement method for settling velocity was proposed. Utilizing the precise timing of a high-speed video camera, settling velocities of a single particle was measured by the record of the settling process. The analysis of the data predicted when the particle size is small, the measured settling velocity is bigger than the one calculated by the formulas. Besides, the smaller the particle size is, the more obviously of the phenomenon reveals. Effective resistance of the sediment particle is related to the geometric mean of stagnant resistance and turbulent resistance. Single particle sedimentation formula was derived in the transition zone, and determined the coefficients based on experimental data. The calculated results matched the data of the experiment well.%沉速是泥沙运动研究的关键课题。利用高速摄像仪的高精度计时能力，记录单颗粒泥沙在水体中的下沉过程，测得沉降速度。从结果分析，当颗粒粒径较小时，实测的沉速比常用沉速公式计算值偏大，且粒径越小这一现象越明显。认为泥沙颗粒受到的有效阻力与滞流阻力和紊流阻力的几何平均正相关，推导出单颗粒在过渡区的沉降公式，并根据实验数据确定其系数。经验证，计算公式与试验结果符合度良好。
Institute of Scientific and Technical Information of China (English)
李涛; 谭多望; 李强; 谭兴春; 傅华
2014-01-01
块体金属玻璃具有极高的力学强度，存在潜在的军事应用价值，实现其应用的关键在于认识材料在高应变率下的动力学行为特性。为此，利用飞片驱动速度可达3．5 km/s 的电炮加载装置，对一种新制备的锆基块体金属玻璃的动力学响应进行了实验研究。实验中，基于高精度DPS激光干涉仪测得的样品/窗口界面粒子速度波剖面，获得了新材料在应变率约为106/s下的冲击响应特性参数。在加载压力15～25GPa 范围下，确定的 Hugoniot弹性极限约为2．4GPa，线性拟合得到的冲击 Hugoniot关系为Ds＝（4．4±0．1）＋（0．58±0．08）up。%As a novel material with high strength,bulk metallic glass received concern of many researchers all over the world.For potential military applications,it was important to un-derstand the dynamic response of this material under high strain rate.To this end,Electric Gun was chosen to study dynamic response of a newly prepared Zr-based bulk metallic glass.In the E-lectric Gun experiments,the velocity of electric explosion driven plastic flyer in 0.5 mm thick-ness could reach 3 .5 km/s.Based on bulk metallic glass sample/window interface particle veloci-ty profiles measured by high resolution DPS laser interferometer,two important dynamic behav-iors were obtained under high strain rate about 106/s.In a shock pressure range of 15~25GPa, the Hugoniot elastic limit was determined to be about 2 .4GPa,and the shock wave velocity (Ds) vs.particle velocity (up)Hugoniot data were linearly fitted by Ds= (4.4±0.1)+(0.58±0.08)up.
Ovryn, Ben; Khaydarov, John D.
1997-04-01
We have combined Mie scattering theory and image theory to predict the forward scattering of light from spherical particles in a seeded fluid using high numerical aperture collection optics. Using this method, it is possible to determine all three components of a fluid's velocity by measuring the scattering from homogeneous spherical particles without moving the optics. The transverse velocity component is determined by following the centroid of the scattering pattern (with respect to time), while the component along the optical axis is determined by comparing the experimental data with numerical computations. We have verified our theoretical model and computer code by measuring the scattering from polystyrene particles illuminated with partially coherent, Koehler illumination in a transmitted light microscope. The three-dimensional scattering data is in quite good agreement with our model. To further verify our approach, we have measured the three- dimensional (parabolic) profile of a parallel flow of a low viscosity, seeded fluid in a straight channel (6 mm by 48 mm by 0.315 mm). The channel was placed on the stage of a conventional microscope equipped with a long working distance microscope objective, with the narrow dimension along the optical axis (OA). Instead of directly imaging the seed particles, the forward scattered light is recorded from the spherical, polystyrene seed particles (7 micrometer diameter).
Energy Technology Data Exchange (ETDEWEB)
Shu, Hua; Fu, Sizu; Huang, Xiuguang; Wu, Jiang; Xie, Zhiyong; Zhang, Fan; Ye, Junjian; Jia, Guo; Zhou, Huazhen [Shanghai Institute of Laser Plasma, P.O. BOX 800-229, Shanghai 201800 (China)
2014-08-15
In this paper, we systematically study preheating in laser-direct-drive shocks by using a velocity interferometer system for any reflector (VISAR). Using the VISAR, we measured free surface velocity histories of Al samples over time, 10–70 μm thick, driven directly by a laser at different frequencies (2ω, 3ω). Analyzing our experimental results, we concluded that the dominant preheating source was X-ray radiation. We also discussed how preheating affected the material initial density and the measurement of Hugoniot data for high-Z materials (such as Au) using impedance matching. To reduce preheating, we proposed and tested three kinds of targets.
Superluminal Recession Velocities
Davis, T M; Davis, Tamara M.; Lineweaver, Charles H.
2000-01-01
Hubble's Law, v=HD (recession velocity is proportional to distance), is a theoretical result derived from the Friedmann-Robertson-Walker metric. v=HD applies at least as far as the particle horizon and in principle for all distances. Thus, galaxies with distances greater than D=c/H are receding from us with velocities greater than the speed of light and superluminal recession is a fundamental part of the general relativistic description of the expanding universe. This apparent contradiction of special relativity (SR) is often mistakenly remedied by converting redshift to velocity using SR. Here we show that galaxies with recession velocities faster than the speed of light are observable and that in all viable cosmological models, galaxies above a redshift of three are receding superluminally.
Minimal information in velocity space
Evrard, Guillaume
1995-01-01
Jaynes' transformation group principle is used to derive the objective prior for the velocity of a non-zero rest-mass particle. In the case of classical mechanics, invariance under the classical law of addition of velocities, leads to an improper constant prior over the unbounded velocity space of classical mechanics. The application of the relativistic law of addition of velocities leads to a less simple prior. It can however be rewritten as a uniform volumetric distribution if the relativistic velocity space is given a non-trivial metric.
Gibson, L. L.; Dattelbaum, D. M.; Bartram, B. D.; Sheffield, S. A.; Gustavsen, R. L.; Brown, G. W.; Sandstrom, M. M.; Giambra, A. M.; Handley, C. A.
2014-05-01
A series of gas gun-driven plate impact experiments were performed on vacuum melt-cast Composition B to obtain new Hugoniot states and shock sensitivity (run-distance-to-detonation) information. The Comp B (ρ0 = 1.713 g/cm3) consisted of 59.5% RDX, 39.5% TNT, and 1% wax, with ~ 6.5% HMX in the RDX. The measured Hugoniot states were found to be consistent with earlier reports, with the compressibility on the shock adiabat softer than that of a 63% RDX material reported by Marsh.[4] The shock sensitivity was found to be more sensitive (shorter run distance to detonation at a given shock input condition) than earlier reports for Comp B-3 and a lower density (1.68-1.69 g/cm3) Comp B formulation. The reactive flow during the shock-to-detonation transition was marked by heterogeneous, hot spot-driven growth both in and behind the leading shock front.
Lanzanò, G; Geraci, M; Pagano, A; Aiello, S; Cunsolo, A; Fonte, R; Foti, A; Sperduto, M L; Volant, C; Charvet, J L; Dayras, R; Legrain, R
2001-01-01
We present a three source analysis of velocity spectra of light charged particles (LCP) and neutrons emitted in the reaction sup 4 sup 0 Ar+ sup 2 sup 7 Al at 44 A MeV. The light particle (LP) velocity spectra are studied as a function of the detection angle (1.5 deg.
DEFF Research Database (Denmark)
Koullapis, P. G.; Kassinos, S. C.; Bivolarova, Mariya Petrova
2016-01-01
Understanding the multitude of factors that control pulmonary deposition is important in assessing the therapeutic or toxic effects of inhaled particles. The use of increasingly sophisticated in silico models has improved our overall understanding, but model realism remains elusive. In this work......, we use Large Eddy Simulations (LES) to investigate the deposition of inhaled aerosol particles with diameters of dp=0.1,0.5,1,2.5,5dp=0.1,0.5,1,2.5,5 and 10μm (particle density of 1200 kg/m3). We use a reconstructed geometry of the human airways obtained via computed tomography and assess the effects....... Nevertheless, flow field differences due to the inlet conditions are largely smoothed out just a short distance downstream of the mouth inlet as a result of the complex geometry. Increasing the inhalation flowrate from sedentary to activity conditions left the mean flowfield structures largely unaffected...
Measurements of the sound velocity of shock-compressed liquid silica to 1100 GPa
McCoy, C. A.; Gregor, M. C.; Polsin, D. N.; Fratanduono, D. E.; Celliers, P. M.; Boehly, T. R.; Meyerhofer, D. D.
2016-12-01
The sound velocity in a shocked material provides information about its off-Hugoniot behavior of a material at high pressures. This information can be used to extend the knowledge gained in Hugoniot experiments and to model the re-shock and release behavior. Silica is one of the most important materials for equation of state studies because of its prevalence in the earth's interior and the well-defined properties of α-quartz. This article presents the sound velocity measurements of amorphous fused silica over the range 200 to 1100 GPa using laser-driven shocks and an α-quartz standard. These measurements demonstrate the technique proposed by Fratanduono et al. [J. Appl. Phys. 116, 033517 (2014)] to determine the sound velocity from the arrival of acoustic perturbations. The results compare favorably to the SESAME 7386 equation-of-state table. The Grüneisen parameter was calculated from the sound velocity data and found to be Γ=0.66 ±0.05 at densities above 6 g/cm3, an increase in precision by a factor of two over previous measurements.
Recovery of entire shocked samples in a range of pressure from ~100 GPa to Hugoniot Elastic Limit
Nagaki, Keita; Sakaiya, Tatsuhiro; Kondo, Tadashi; Kurosawa, Kosuke; Hironaka, Yoichiro; Shigemori, Keisuke; Arakawa, Masahiko
2016-01-01
We carried out laser shock experiments and wholly recovered shocked olivine and quartz samples. We investigated the petrographic features based on optical micrographs of sliced samples and found that each recovered sample comprises three regions, I (optically dark), II (opaque) and III (transparent). Scanning electron microscopy combined with electron back-scattered diffraction shows that there are no crystal features in the region I; the materials in the region I have once melted. Moreover, numerical calculations performed with the iSALE shock physics code suggest that the boundary between regions II and III corresponds to Hugoniot Elastic Limit (HEL). Thus, we succeeded in the recovery of the entire shocked samples experienced over a wide range of pressures from HEL (~ 10 GPa) to melting pressure (~ 100 GPa) in a hierarchical order.
A DAMAGE ACCUMULATING MODELING OF FAILURE WAVES IN GLASS UNDER HIGH VELOCITY IMPACT
Institute of Scientific and Technical Information of China (English)
刘占芳; 姚国文; 詹先义
2001-01-01
The failure wave phenomenon was interpreted in glass media under the high velocity impact with the stress levels below the Hugoniot elastic limit. In view of the plate impact experimental observations a damage-accumulating model predominated by the deviatoric stress impulse was proposed while Heaviside function was adopted in the damageaccumulating model to describe the failure delay in the interior of materials. Features of the failure layer and propagation mechanism as well as their dynamic characteristics were further presented. The reduction in failure wave propagation speed is pointed out as the reflected rarefaction waves reflect again from the failure layer boundary.
Directory of Open Access Journals (Sweden)
Gonzalo Salinas-Salas
2007-12-01
Full Text Available La velocidad de sedimentación de las partículas presentes en una suspensión sufre una caída monótona en función de la concentración volumétrica de éstas, por efecto de las fuerzas hidrodinámicas y electroquímicas que se presentan en una suspensión. El valor efectivo que alcanza la velocidad de sedimentación puede evaluarse a partir de la velocidad de sedimentación teórica de una partícula única, multiplicada por la denominada función de corrección de velocidad o función obstáculo, la que considera tanto el régimen de escurrimiento como la concentración volumétrica de partículas. Los valores determinados para esta función por Richardson y Zaki en 1954 [14] son los más utilizados actualmente, donde el valor propuesto para el caso de regímenes de escurrimiento del fluido por sobre las partículas, cuyos números de Reynolds sean menores a 0,25, se establece un valor único de 4,65, independientemente del tamaño de las partículas. El presente artículo muestra los resultados alcanzados a partir de un trabajo experimental desarrollado con micro partículas calibradas de óxido de silicio (SiO2, que indica que el valor del exponente de la función de corrección depende inversamente del tamaño, para el caso de partículas de orden micrométrico, lo que daría lugar a un nuevo valor para el exponente.The sedimentation velocity of micro-particles in suspension decreases with increasing concentration due to hydrodynamic and electrostatic forces. This velocity can be estimated on the basis of the theoretical velocity of a single particle, multiplied by a correction factor which depends on the flow regime as well as the volumetric concentration of the particles. The most commonly used values are those determined by Richardson and Zaki in 1954 [14]. For flow regimes characterized by a Reynolds' number less than 0,25, a constant value of 4,65 is used which does not depend on the particle size. The present article presents
Schumaker, Merit G.; Kennedy, Gregory; Thadhani, Naresh; Hankin, Markos; Stewart, Sarah T.; Borg, John P.
2017-01-01
Determining stress and temperature distributions of dynamically compacted particles is of interest to the geophysical and astrological research communities. However, the researcher cannot easily observe particle interactions during a planar shock experiment. By using mesoscale simulations, we can unravel granular particle interactions. Unlike homogenous materials, the averaged Hugoniot state for heterogeneous granular materials differs from the individual stress and temperature states of particles during a shock event. From planar shock experiments for dry and water-saturated Oklahoma sand, we constructed simulations using Sandia National Laboratory code known as CTH and then compared these simulated results to the experimental results. This document compares and presents stress and temperature distributions from simulations, with a discussion on the difference between Hugoniot measurements and distribution peaks for dry and water-saturated sand.
Kriging Interpolating Cosmic Velocity Field
Yu, Yu; Jing, Yipeng; Zhang, Pengjie
2015-01-01
[abridge] Volume-weighted statistics of large scale peculiar velocity is preferred by peculiar velocity cosmology, since it is free of uncertainties of galaxy density bias entangled in mass-weighted statistics. However, measuring the volume-weighted velocity statistics from galaxy (halo/simulation particle) velocity data is challenging. For the first time, we apply the Kriging interpolation to obtain the volume-weighted velocity field. Kriging is a minimum variance estimator. It predicts the most likely velocity for each place based on the velocity at other places. We test the performance of Kriging quantified by the E-mode velocity power spectrum from simulations. Dependences on the variogram prior used in Kriging, the number $n_k$ of the nearby particles to interpolate and the density $n_P$ of the observed sample are investigated. (1) We find that Kriging induces $1\\%$ and $3\\%$ systematics at $k\\sim 0.1h{\\rm Mpc}^{-1}$ when $n_P\\sim 6\\times 10^{-2} ({\\rm Mpc}/h)^{-3}$ and $n_P\\sim 6\\times 10^{-3} ({\\rm Mpc...
Institute of Scientific and Technical Information of China (English)
吴祖堂; 李进; 王占江; 张景森; 黄晓飞
2011-01-01
发散波作用下粒子速度的二维电磁测试关键技术包括恒定强磁场、动态载荷与磁场同步、交叉干扰项信号消除等.研究并设计了米级尺度的Helmholtz线圈,对Helmholtz线圈施加脉冲电流,获得了持续时间8.26～30.62 ms的恒定磁场平台,峰值波动误差为0.1％～1.0％.设计了新型二维发散波电磁粒子速度计,采用“对称双S型”布局感应线圈,消除干扰项,获取有效的微弱信号.有机玻璃样品中粒子速度的一维和二维电磁测试对比实验结果表明:粒子速度首峰值随爆心距的变化关系、信号时间特性符合物理规律.为有分界面、沟槽或节理的非均匀分层介质中发散波传播规律研究提供了有效的测试手段.%The key techniques of the electromagnetic test of two-dimension particle velocity under divergent waves included the pulse magnetic field with invariable platform, the synchronization between dynamic load and magnetic field and the elimination of the interference signal of down-lead in the two-dimension magnetic field. The characteristic of a Helmholtz coil with a diameter of up to 1.5 meter in the action of pulse current was analyzed and a magnetic field with a platform duration from 8.26 ms to 30.62 ms with a fluctuation from 0. 1% to 1% was gained. A novel two-dimension electromagnetic particle velocity gauge was designed by adopting the symmetrical dual-S type induce coil to eliminate the interference and obtain valid weak signal. The performance was verified through the contrast experiment of electromagnetic measurement of one-dimension and two-dimension particle velocity in PMMA. The time domain characteristic of particle velocity signal and the relation between the first peak value and the scale distance accorded with physics law. It is a more efficient means for the propagation research of divergent wave in inhomogeneous mediums even with interfaces, grooves and joints.
Measurement of the velocity of a quantum object: A role of phase and group velocities
Lapinski, Mikaila; Rostovtsev, Yuri V.
2017-08-01
We consider the motion of a quantum particle in a free space. Introducing an explicit measurement procedure for velocity, we demonstrate that the measured velocity is related to the group and phase velocities of the corresponding matter waves. We show that for long distances the measured velocity coincides with the matter wave group velocity. We discuss the possibilities to demonstrate these effects for the optical pulses in coherently driven media or for radiation propagating in waveguides.
Institute of Scientific and Technical Information of China (English)
李凌志; 程攻; 刘英杰; 卢炳武
2012-01-01
通过由一个声压换能器和一个质点速度换能器所构成的传感器(p-u声强探头)同时测量材料表面附近的声压和质点振动速度,可直接得到其声学阻抗,进而得到材料的反射因子、吸声系数.本文利用一个p-u探头声强测量系统,在半消声室内测量了三聚氰胺泡沫的吸声系数,分析了声源高度和入射角度、材料样本尺寸和厚度对吸声系数测量的影响,并和阻抗管中测量得到的法向吸声系数进行了对比.最后分析了声阻抗率的幅值和相位误差对吸声系数的影响,推导了它们的误差传递公式.%Using a combined particle velocity-pressure sensor (p-u sound intensity probe), the acoustic impedance of an absorbing materials, and consequently its reflection factor and absorption coefficient, can be determined by simultaneous measurements of sound pressure and particle velocity at a position near the surface of the materials. Using a p-u intensity probe system in a semi-anechoic room, we measured the acoustic impedance of melamine, and analyzed how the source height, incidence angle, the size and thickness of the materials sample affect the measurement, and compared to the normal impedance measured using a standing wave tube. We also analyzed how the amplitude and phase error of the acoustic impedance affect the absorption coefficient, and derived an error propagation formula.
Mandroyan, A; Doche, M L; Hihn, J Y; Viennet, R; Bailly, Y; Simonin, L
2009-01-01
Sonoelectrochemical experiments differ from sonochemical ones by the introduction of electrodes in the sonicated reaction vessel. The aim of the study is to characterize the changes in the ultrasonic activity induced by the presence of an electrode located in front of the transducer. The scope of our investigations concerns two low frequency vibration modes: 20 and 40 kHz. For this purpose, two laser visualization techniques have been used. The first part of the study, described in a previous paper (Part I), deals with the laser tomography technique which provides an accurate picture of the reactor active zones, related to numerous cavitation events. The second part of the paper (Part II) will describe the particle image velocimetry (PIV) technique used to measure the velocity vector field in the fluid portion between the horn and the electrode. As for the previous study, two parameters were studied: the electrical power supplied to the transducer and the electrode/transducer distance. The velocity vector fields show a main flow in the reactor axis. This flow seems to correspond to the conical cavitation bubbles structure which is observed on the laser tomography pictures. When an electrode is introduced into the reactor, two additional symmetric transversal flows can be quantified on both sides of the electrode.
A Family of Reference Hugoniots for Two-phase Porous Materials
2015-06-01
material, which are the adiabatic compression of the gaseous phase and the heat due to plastic work generated from the deformation of particles. The...heating mechanisms mentioned in the literature [7] are cracking, adiabatic shear banding, cumulative jetting, etc. In addition, the flow from the... compression and adiabatic expansion of condensed substances, [in Russian], Sarov, Russian Federal Nuclear Centre - VNIIEF, 2nd ed., 2006. 13. van Thiel M
Minimum Length - Maximum Velocity
Panes, Boris
2011-01-01
We study a framework where the hypothesis of a minimum length in space-time is complemented with the notion of reference frame invariance. It turns out natural to interpret the action of the obtained reference frame transformations in the context of doubly special relativity. As a consequence of this formalism we find interesting connections between the minimum length properties and the modified velocity-energy relation for ultra-relativistic particles. For example we can predict the ratio between the minimum lengths in space and time using the results from OPERA about superluminal neutrinos.
Moore, Alastair S.; Prisbrey, Shon; Baker, Kevin L.; Celliers, Peter M.; Fry, Jonathan; Dittrich, Thomas R.; Wu, Kuang-Jen J.; Kervin, Margaret L.; Schoff, Michael E.; Farrell, Mike; Nikroo, Abbas; Hurricane, Omar A.
2016-09-01
The attainment of self-propagating fusion burn in an inertial confinement target at the National Ignition Facility will require the use of an ablator with high rocket-efficiency and ablation pressure. The ablation material used during the National Ignition Campaign (Lindl et al. 2014) [1], a glow-discharge polymer (GDP), does not couple as efficiently as simulations indicated to the multiple-shock inducing radiation drive environment created by laser power profile (Robey et al., 2012). We investigate the performance of two other ablators, boron carbide (B4C) and high-density carbon (HDC) compared to the performance of GDP under the same hohlraum conditions. Ablation performance is determined through measurement of the shock speed produced in planar samples of the ablator material subjected to the identical multiple-shock inducing radiation drive environments that are similar to a generic three-shock ignition drive. Simulations are in better agreement with the off-Hugoniot performance of B4C than either HDC or GDP, and analytic estimations of the ablation pressure indicate that while the pressure produced by B4C and GDP is similar when the ablator is allowed to release, the pressure reached by B4C seems to exceed that of HDC when backed by a Au/quartz layer.
Institute of Scientific and Technical Information of China (English)
刘瑜; 夏唐代
2011-01-01
6 sand samples are made by use of Fujian standard sand, Hangzhou sand and man-made quartz sand, respectively, with each sample composed of the single sand particle in diameter.The average particle roughness of every sample and the shear wave velocities (Vs) of each sample in different porosities are obtained by electron microscope and bender element testing equipment.The analytic results indicate that Vs is greatly influenced by the particle roughness, and the magnitude of Vs decreases with the increase of the particle roughness.The roughness coefficient is introduced to deduce the formula of Vs by means of the researches on micro fabrics and constitutive relations of granular materials, elastic contact of rough particles, etc.Moreover, the results drawn from the present method are compared with the measured data, and the calculating method of the roughness coefficient for low sands is obtained.In addition, the relationship between the roughness coefficient and the stress is discussed.%将福建标准砂、杭州黄砂和人工石英砂制备成6个砂样,每个砂样只由一种粒径的砂颗粒组成,从每个砂样中选取一定数量的颗粒进行电镜扫描并分析砂样的颗粒平均粗糙度,用弯曲元测试仪测试各砂样在不同孔隙比下的剪切波速(Vs).对比分析说明颗粒粗糙度对Vs的影响显著,Vs随着颗粒粗糙度的增大而减小.引入粗糙度修正系数,在散粒体介质细观组构与本构关系、弹性粗糙颗粒接触等研究的基础上推导了砂土Vs计算公式.将计算结果与试验实测值进行对比,得到了浅层砂土的粗糙度修正系数的计算方法,讨论了粗糙度修正系数随应力大小的变化趋势.
Velocity dependant splash behaviour
Hamlett, C. A. E.; Shirtcliffe, N. J.; McHale, G.; Ahn, S.; Doerr, S. H.; Bryant, R.; Newton, M. I.
2012-04-01
Extreme soil water repellency can occur in nature via condensation of volatile organic compounds released during wildfires and can lead to increased erosion rate. Such extreme water repellent soil can be classified as superhydrophobic and shares similar chemical and topographical features to specifically designed superhydrophobic surfaces. Previous studies using high speed videography to investigate single droplet impact behaviour on artificial superhydrophobic have revealed three distinct modes of splash behaviour (rebound, pinned and fragmentation) which are dependent on the impact velocity of the droplet. In our studies, using high-speed videography, we show that such splash behaviour can be replicated on fixed 'model' water repellent soils (hydrophobic glass beads/particles). We show that the type of splash behaviour is dependent on both the size and chemical nature of the fixed particles. The particle shape also influences the splash behaviour as shown by drop impact experiments on fixed sand samples. We have also studied soil samples, as collected from the field, which shows that the type of droplet splash behaviour can lead to enhanced soil particle transport.
2005-01-01
A new all-electronic Particle Image Velocimetry technique that can efficiently map high speed gas flows has been developed in-house at the NASA Lewis Research Center. Particle Image Velocimetry is an optical technique for measuring the instantaneous two component velocity field across a planar region of a seeded flow field. A pulsed laser light sheet is used to illuminate the seed particles entrained in the flow field at two instances in time. One or more charged coupled device (CCD) cameras can be used to record the instantaneous positions of particles. Using the time between light sheet pulses and determining either the individual particle displacements or the average displacement of particles over a small subregion of the recorded image enables the calculation of the fluid velocity. Fuzzy logic minimizes the required operator intervention in identifying particles and computing velocity. Using two cameras that have the same view of the illumination plane yields two single exposure image frames. Two competing techniques that yield unambiguous velocity vector direction information have been widely used for reducing the single-exposure, multiple image frame data: (1) cross-correlation and (2) particle tracking. Correlation techniques yield averaged velocity estimates over subregions of the flow, whereas particle tracking techniques give individual particle velocity estimates. For the correlation technique, the correlation peak corresponding to the average displacement of particles across the subregion must be identified. Noise on the images and particle dropout result in misidentification of the true correlation peak. The subsequent velocity vector maps contain spurious vectors where the displacement peaks have been improperly identified. Typically these spurious vectors are replaced by a weighted average of the neighboring vectors, thereby decreasing the independence of the measurements. In this work, fuzzy logic techniques are used to determine the true
Institute of Scientific and Technical Information of China (English)
GONG Zi-Zheng; XIE Hong-Sen; JING Fu-Qian; LIU Yong-Gang; GUO Jie; XU Jian
2000-01-01
Using the differences of sound velocity and temperature on the Hugoniot and isoentropic state, the temperature coefficients of sound velocity of perovskite-enstatite under high pressure were obtained. For compressional, shear and bulk wave velocities, their temperature coefficients decrease from 0.386, 0.251, 0.255m/(s.K) at 40GPa to 0.197, 0.131, 0. 162m/(s.K) at 140GPa, respectively. Extrapolating these to zero pressure results in ( K/ T)0 =-0.0279 GPa. K-1, which is consistent very well with the value got by hydrostatic pressure experiment. On the basis of our data, we conclude that the compressional wave velocity anomaly of 0.1-0.2% in the deep lower mantle and 2% in the D" region would imply lateral thermal heterogeneity with amplitude of 53-106 K and 1066 K in these regions, respectively.
Group Settling Velocity of Non-Cohesive Sediment Mixtures
Institute of Scientific and Technical Information of China (English)
WU Hualin; SHEN Huanting; ZHU Jianrong; ZHANG Xiaofeng
2000-01-01
Settling velocity is a fundamental parameter in sediment transport dynamics. For uniform par-ticles, there are abundant formulas for calculation of their settling velocities. But in natural fields, sediment consists of non-uniform particles. The interaction among particles is complex and should not be neglected. In this paper, based on the analysis of settling mechanism of non-cohesive and non-uniform particles, a theoretical model to describe settling mechanism is proposed. Besides suspension concentration andupward turbulent flow caused by other particles, collision among particles is another main factor influencing settling velocity. By introducing the collision theory, equations of fall velocity before collision, collision probability, and fall velocity after collision are established. Finally, a formula used to calculate the settling velocity of non-cohesive particles with wide grain gradation is presented, which agrees well with the experimental data.
Kriging interpolating cosmic velocity field
Yu, Yu; Zhang, Jun; Jing, Yipeng; Zhang, Pengjie
2015-10-01
Volume-weighted statistics of large-scale peculiar velocity is preferred by peculiar velocity cosmology, since it is free of the uncertainties of galaxy density bias entangled in observed number density-weighted statistics. However, measuring the volume-weighted velocity statistics from galaxy (halo/simulation particle) velocity data is challenging. Therefore, the exploration of velocity assignment methods with well-controlled sampling artifacts is of great importance. For the first time, we apply the Kriging interpolation to obtain the volume-weighted velocity field. Kriging is a minimum variance estimator. It predicts the most likely velocity for each place based on the velocity at other places. We test the performance of Kriging quantified by the E-mode velocity power spectrum from simulations. Dependences on the variogram prior used in Kriging, the number nk of the nearby particles to interpolate, and the density nP of the observed sample are investigated. First, we find that Kriging induces 1% and 3% systematics at k ˜0.1 h Mpc-1 when nP˜6 ×1 0-2(h-1 Mpc )-3 and nP˜6 ×1 0-3(h-1 Mpc )-3 , respectively. The deviation increases for decreasing nP and increasing k . When nP≲6 ×1 0-4(h-1 Mpc )-3 , a smoothing effect dominates small scales, causing significant underestimation of the velocity power spectrum. Second, increasing nk helps to recover small-scale power. However, for nP≲6 ×1 0-4(h-1 Mpc )-3 cases, the recovery is limited. Finally, Kriging is more sensitive to the variogram prior for a lower sample density. The most straightforward application of Kriging on the cosmic velocity field does not show obvious advantages over the nearest-particle method [Y. Zheng, P. Zhang, Y. Jing, W. Lin, and J. Pan, Phys. Rev. D 88, 103510 (2013)] and could not be directly applied to cosmology so far. However, whether potential improvements may be achieved by more delicate versions of Kriging is worth further investigation.
Explicit 3D continuum fracture modeling with smooth particle hydrodynamics
Benz, W.; Asphaug, E.
1993-01-01
Impact phenomena shaped our solar system. As usual for most solar system processes, the scales are far different than we can address directly in the laboratory. Impact velocities are often much higher than we can achieve, sizes are often vastly larger, and most impacts take place in an environment where the only gravitational force is the mutual pull of the impactors. The Smooth Particle Hydrodynamics (SPH) technique has been applied in the past to the simulations of giant impacts. In these simulations, the colliding objects were so massive (at least a sizeable fraction of the Earth's mass) that material strength was negligible compared to gravity. This assumption can no longer be made when the bodies are much smaller. To this end, we have developed a 3D SPH code that includes a strength model to which we have added a von Mises yielding relation for stresses beyond the Hugoniot Elastic Limit. At the lower stresses associated with brittle failure, we use a rate-dependent strength based on the nucleation of incipient flaws whose number density is given by a Weibull distribution. Following Grady and Kipp and Melosh et al., we introduce a state variable D ('damage'), 0 less than D less than 1, which expresses the local reduction in strength due to crack growth under tensile loading. Unfortunately for the hydrodynamics, Grady and Kipp's model predicts which fragments are the most probable ones and not the ones that are really formed. This means, for example, that if a given laboratory experiment is modeled, the fragment distribution obtained from the Grady-Kipp theory would be equivalent to a ensemble average over many realizations of the experiment. On the other hand, the hydrodynamics itself is explicit and evolves not an ensemble average but very specific fragments. Hence, there is a clear incompatibility with the deterministic nature of the hydrodynamics equations and the statistical approach of the Grady-Kipp dynamical fracture model. We remedy these shortcomings
未反应乳化炸药冲击Hugoniot关系的测试%DETERMINATION OF SHOCK HUGONIOT RELATION OF UNREACTED EMULSION EXPLOSIVE
Institute of Scientific and Technical Information of China (English)
宋锦泉; 汪旭光; 焦彤
2001-01-01
未反应乳化炸药冲击Hugoniot关系是乳化炸药的 基本性能参数，它不仅是研究乳化炸药冲击引爆机理和确定其反应速率函数必不可少的数据 ，也是研究乳化炸药中冲击波演变为爆轰波的过程及进行乳化炸药爆轰数值模 拟的重要参数。本文利用设计的新型测试装置和建立的测试系统，较好地测 试了未反应乳化炸药冲击Hugoniot关系。%Shock Hugoniot relation is a basic characteristic parameter of emulsion explosive (EE).It's not only one of the absolutely necessary data for research of shock initiation and determination of the reaction rate function of EE,but also an important parameter in researching the evolution of shock-to-detonation waves in EE and for numerical simulation of EE detonation.In this paper,the shock Hugoniot relation of unreacted EE is determined by a new experimental system and good results have been gotten.
Energy Technology Data Exchange (ETDEWEB)
Geller, R. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires
1965-07-01
A DC ion current of 50 mA/cm{sup 2} has been obtained with approximately 100 volts extraction from the plasma created by the CIRCE device, and a still stronger electron current was obtained with a still lower extraction. These results are an order of magnitude higher than the ordinary characteristics. In the neutral plasma beam produced in the CIRCE device, the ions have mainly longitudinal energy whereas the electron energy is transverse. This situation makes the charge separation easier. In the present paper one tries to explain partially the result on a basis of current increase due to the initial velocity of the particles. (author) [French] On a verifie qu'il etait possible d'extraire, en regime continu, du plasma fourni par la machine CIRCE des courants de protons d'environ 50 mA/cm{sup 2} avec des tensions d'extraction d'environ 100 volts et des courants d'electrons d'une intensite encore plus forte avec quelques volts d'extraction. Ces resultats sont d'un ordre de grandeur superieur aux performances des sources classiques. Dans le faisceau neutre produit par CIRCE les ions sont doues d'une energie essentiellement longitudinale alors que l'energie des electrons est surtout transverse. Cette situation est favorable a une separation. Dans le present rapport nous essayons de donner une explication du mecanisme physique d'une partie du phenomene: celle concernant l'accroissement du courant de protons, du a leur vitesse dirigee. (auteur)
Video measurements of fluid velocities and water levels in breaking waves
CSIR Research Space (South Africa)
Govender, K
2002-01-01
Full Text Available The cost-effective measurement of the velocity flow fields in breaking water waves, using particle and correlation image velocimetry, is described. The fluid velocities are estimated by tracking the motion of neutrally buoyant particles and aeration...
DEFF Research Database (Denmark)
Cernuschi, Federico; Rothleitner, Christian; Clausen, Sønnik
2017-01-01
Accurate particle mass and velocity measurement is needed for interpreting test results in erosion tests of materials and coatings. The impact and damage of a surface is influenced by the kinetic energy of a particle, i.e. particle mass and velocity. Particle mass is usually determined with optic...
The Velocity Distribution of Isolated Radio Pulsars
Arzoumanian, Z; Cordes, J M
2002-01-01
(Abridged) We infer the velocity distribution of radio pulsars by modelling their birth, evolution, and detection in large-scale 0.4 GHz pulsar surveys, and by comparing model distributions of measurable pulsar properties with survey data using a likelihood function. We test models that characterize a population's birth rate, luminosity, shutoff of radio emission, birth locations, and birth velocities. We infer that the radio beam luminosity (i) is comparable to the energy flux of relativistic particles in models for spin-driven magnetospheres, signifying that radio emission losses reach nearly 100% for the oldest pulsars; and (ii) scales approximately as sqrt(Edot) which, in magnetosphere models, is proportional to the voltage drop available for acceleration of particles. We find that a two-component velocity distribution with characteristic velocities of 90 km/s and 500 km/s is greatly preferred to any one-component distribution. We explore some consequences of the preferred birth velocity distribution: (i)...
Effect of Pressure on Minimum Fluidization Velocity
Institute of Scientific and Technical Information of China (English)
Zhu Zhiping; Na Yongjie; Lu Qinggang
2007-01-01
Minimum fluidization velocity of quartz sand and glass bead under different pressures of 0.5, 1.0, 1.5 and 2.0 Mpa were investigated. The minimum fluidization velocity decreases with the increasing of pressure. The influence of pressure to the minimum fluidization velocities is stronger for larger particles than for smaller ones.Based on the test results and Ergun equation, an experience equation of minimum fluidization velocity is proposed and the calculation results are comparable to other researchers' results.
Velocity anticipation in the optimal velocity model
Institute of Scientific and Technical Information of China (English)
DONG Li-yun; WENG Xu-dan; LI Qing-ding
2009-01-01
In this paper,the velocity anticipation in the optimal velocity model (OVM) is investigated.The driver adjusts the velocity of his vehicle by the desired headway,which depends on both instantaneous headway and relative velocity.The effect of relative velocity is measured by a sensitivity function.A specific form of the sensitivity function is supposed and the involved parameters are determined by the both numerical simulation and empirical data.It is shown that inclusion of velocity anticipation enhances the stability of traffic flow.Numerical simulations show a good agreement with empirical data.This model provides a better description of real traffic,including the acceleration process from standing states and the deceleration process approaching a stopped car.
Burns, Malcolm J.; Gustavsen, Richard L.; Bartram, Brian D.
2012-09-01
Eight one-dimensional plate impact experiments have been performed to study both the Shock to Detonation Transition and Hugoniot state in the cyclotetramethylene tetranitramine (HMX) based explosive EDC32. The experiments covered shock pressures ranging from 0.59 to 7.5 GPa with sustained shocks, double shocks, and short pulse shocks. Experiments were instrumented with embedded magnetic particle velocity gauges. Results include; (1) wave profiles of particle velocity vs. time vs. depth in the explosive, (2) time-distance coordinates for onset of detonation vs. initial shock pressure (aka the Pop-plot), (3) a reactants Hugoniot, and (4) measurement of the Hugoniot Elastic Limit of 0.22.GPa.
Apparatus for measuring particle properties
Rader, D.J.; Castaneda, J.N.; Grasser, T.W.; Brockmann, J.E.
1998-08-11
An apparatus is described for determining particle properties from detected light scattered by the particles. The apparatus uses a light beam with novel intensity characteristics to discriminate between particles that pass through the beam and those that pass through an edge of the beam. The apparatus can also discriminate between light scattered by one particle and light scattered by multiple particles. The particle`s size can be determined from the intensity of the light scattered. The particle`s velocity can be determined from the elapsed time between various intensities of the light scattered. 11 figs.
Velocity Fluctuations in Electrostatically Driven Granular Media
Aranson, I. S.; Olafsen, J. S.
2001-01-01
We study experimentally the particle velocity fluctuations in an electrostatically driven dilute granular gas. The experimentally obtained velocity distribution functions have strong deviations from Maxwellian form in a wide range of parameters. We have found that the tails of the distribution functions are consistent with a stretched exponential law with typical exponents of the order 3/2. Molecular dynamic simulations shows qualitative agreement with experimental data. Our results suggest t...
Institute of Scientific and Technical Information of China (English)
罗运文
2012-01-01
超流关键的物理量就是临界速度，MIT（麻省理工学院）实验组用激光来同扫描凝聚体的方法测出BEC超流体的临界速度，但是与理论值相比小得多．考虑到非凝聚态粒子的影响，发现MIT组测得的实验值并不是临界速度，而是玻色气体获得能量的最小速度，实际临界速度比测得的速度要大．通过修正玻色气体获得能量的速率公式从而得出临界速度与实验测量数据的关系，并发现修正后的临界速度的实验值符合理论值．%The key physical quantity is the critical velocity of superfluity. The MIT group tested the critical velocity of condensate by moving a laser beam through the condensate at different velocities, but its data was much small than the data of theory. In this research, the effect made by the noncondensates was considered, and it was found that the data made by experiments was not the real critical velocity, but the velocity of Bose gas got energy. The real critical velocity was bigger than the experimental data. The relation between critical velocity and experimental data by modifying the formula of energy transfer rate has been found, and it has shown that the modified experimental data agree well with the theory date.
Wakker, BP; vanWoerden, H
1997-01-01
High-velocity clouds (HVCs) consist of neutral hydrogen (HI) at velocities incompatible with a simple model of differential galactic rotation; in practice one uses \\v(LSR)\\ greater than or equal to 90 km/s to define HVCs. This review describes the main features of the sky and velocity distributions,
Transverse Spectral Velocity Estimation
DEFF Research Database (Denmark)
Jensen, Jørgen Arendt
2014-01-01
A transverse oscillation (TO)-based method for calculating the velocity spectrum for fully transverse flow is described. Current methods yield the mean velocity at one position, whereas the new method reveals the transverse velocity spectrum as a function of time at one spatial location. A convex...
Peculiar velocities in dynamic spacetimes
Bini, Donato
2014-01-01
We investigate the asymptotic behavior of peculiar velocities in certain physically significant time-dependent gravitational fields. Previous studies of the motion of free test particles have focused on the \\emph{collapse scenario}, according to which a double-jet pattern with Lorentz factor $\\gamma \\to \\infty$ develops asymptotically along the direction of complete gravitational collapse. In the present work, we identify a second \\emph{wave scenario}, in which a single-jet pattern with Lorentz factor $\\gamma \\to \\infty$ develops asymptotically along the direction of wave propagation. The possibility of a connection between the two scenarios for the formation of cosmic jets is critically examined.
Minimum length-maximum velocity
Panes, Boris
2012-03-01
We study a framework where the hypothesis of a minimum length in space-time is complemented with the notion of reference frame invariance. It turns out natural to interpret the action of the obtained reference frame transformations in the context of doubly special relativity. As a consequence of this formalism we find interesting connections between the minimum length properties and the modified velocity-energy relation for ultra-relativistic particles. For example, we can predict the ratio between the minimum lengths in space and time using the results from OPERA on superluminal neutrinos.
Analysis of particle kinematics in spheronization via particle image velocimetry.
Koester, Martin; Thommes, Markus
2013-02-01
Spheronization is a wide spread technique in pellet production for many pharmaceutical applications. Pellets produced by spheronization are characterized by a particularly spherical shape and narrow size distribution. The particle kinematic during spheronization is currently not well-understood. Therefore, particle image velocimetry (PIV) was implemented in the spheronization process to visualize the particle movement and to identify flow patterns, in order to explain the influence of various process parameters. The spheronization process of a common formulation was recorded with a high-speed camera, and the images were processed using particle image velocimetry software. A crosscorrelation approach was chosen to determine the particle velocity at the surface of the pellet bulk. Formulation and process parameters were varied systematically, and their influence on the particle velocity was investigated. The particle stream shows a torus-like shape with a twisted rope-like motion. It is remarkable that the overall particle velocity is approximately 10-fold lower than the tip speed of the friction plate. The velocity of the particle stream can be correlated to the water content of the pellets and the load of the spheronizer, while the rotation speed was not relevant. In conclusion, PIV was successfully applied to the spheronization process, and new insights into the particle velocity were obtained.
Karimipour, Arash; D'Orazio, Annunziata; Shadloo, Mostafa Safdari
2017-02-01
The forced convection of nanofluid flow in a long microchannel is studied numerically according to the finite volume approach and by using a developed computer code. Microchannel domain is under the influence of a magnetic field with uniform strength. The hot inlet nanofluid is cooled by the heat exchange with the cold microchannel walls. Different types of nanoparticles such as Al2O3 and Ag are examined while the base fluid is considered as water. Reynolds number are chosen as Re=10 and Re=100. Slip velocity and temperature jump boundary conditions are simulated along the microchannel walls at different values of slip coefficient for different amounts of Hartmann number. The investigation of magnetic field effect on slip velocity and temperature jump of nanofluid is presented for the first time. The results are shown as streamlines and isotherms; moreover the profiles of slip velocity and temperature jump are drawn. It is observed that more slip coefficient corresponds to less Nusselt number and more slip velocity especially at larger Hartmann number. It is recommended to use Al2O3-water nanofluid instead of Ag-water to increase the heat transfer rate from the microchannel walls at low values of Re. However at larger amounts of Re, the nanofluid composed of nanoparticles with higher thermal conductivity works better.
Velocity selective optical pumping
Aminoff, C. G.; Pinard, M.
1982-01-01
We consider optical pumping with a quasi monochromatic tunable light beam, in the low intensity limit where a rate equation regime is obtained The velocity selective optical pumping (V.S.O.P.) introduces a correlation between atomic velocity and internal variables in the ground (or metastable) state. The aim of this article is to evaluate these atomic observables (orientation, alignment, population) as a function of velocity, using a phenomenological description of the relaxation effect of co...
High velocity collisions of nanoparticles
Johnson, Donald F.; Mattson, William D.
2017-01-01
Nanoparticles (NPs) are a unique class of material with highly functionalizable surfaces and exciting applications. With a large surface-to-volume ratio and potentially high surface tension, shocked nanoparticles might display unique materials behavior. Using density functional theory, we have simulated high-velocity NP collisions under a variety of conditions. NPs composed of diamond-C, cubic-BN, and diamond-Si were considered with particle sizes up to 3.5 nm diameter. Additional simulations involved NPs that were destabilized by incorporating internal strain. The initial spherical NP structures were carved out of bulk crystals while the NPs with internal strain were constructed as a dense core (compressive strain) encompassed by a thin shell (tensile strain). Both on-axis and off-axis collisions were simulated at 10 km/s relative velocity. The amount of internal strain was artificially increased by creating a dense inner core with bond lengths compressed up to 8%. Collision dynamics, shock propagation, and fragmentation will be analyzed, but the simulation are ongoing and results are not finalized. The effect of material properties, internal strain, and collision velocity will be discussed.
DEFF Research Database (Denmark)
2000-01-01
Using a pulsed ultrasound field, the two-dimensional velocity vector can be determined with the invention. The method uses a transversally modulated ultrasound field for probing the moving medium under investigation. A modified autocorrelation approach is used in the velocity estimation. The new...
DEFF Research Database (Denmark)
2000-01-01
Using a pulsed ultrasound field, the two-dimensional velocity vector can be determined with the invention. The method uses a transversally modulated ultrasound field for probing the moving medium under investigation. A modified autocorrelation approach is used in the velocity estimation. The new...
Velocity distributions in dilute granular systems.
van Zon, J S; MacKintosh, F C
2005-11-01
We investigate the idea that velocity distributions in granular gases are determined mainly by eta, the coefficient of restitution and q, which measures the relative importance of heating (or energy input) to collisions. To this end, we study by numerical simulation the properties of inelastic gases as functions of eta, concentration phi, and particle number N with various heating mechanisms. For a wide range of parameters, we find Gaussian velocity distributions for uniform heating and non-Gaussian velocity distributions for boundary heating. Comparison between these results and velocity distributions obtained by other heating mechanisms and for a simple model of a granular gas without spatial degrees of freedom, shows that uniform and boundary heating can be understood as different limits of q, with q>1 and q < or approximately 1 respectively. We review the literature for evidence of the role of q in the recent experiments.
Velocity moments of dark matter haloes
Wojtak, R; Gottlöber, S; Mamon, G A; Wojtak, Radoslaw; Lokas, Ewa L.; Gottloeber, Stefan; Mamon, Gary A.
2006-01-01
Using cosmological N-body simulations we study the line-of-sight velocity distribution of dark matter haloes focusing on the lowest-order even moments, dispersion and kurtosis, and their application to estimate the mass profiles of cosmological structures. For each of the ten massive haloes selected from the simulation box we determine the virial mass, concentration and the anisotropy parameter. In order to emulate observations from each halo we choose randomly 300 particles and project their velocities and positions along the line of sight and on the surface of the sky, respectively. After removing interlopers we calculate the profiles of the line-of-sight velocity moments and fit them with the solutions of the Jeans equations. The estimates of virial mass, concentration parameter and velocity anisotropy obtained in this way are in good agreement with the values found from the full 3D analysis.
Knudson, Marcus
2013-06-01
The past several years have seen tremendous increase in the number of identified extra-solar planetary systems. Our understanding of the formation of these systems is tied to our understanding of the internal structure of these exoplanets, which in turn rely upon equations of state of light elements and compounds such as water and hydrogen. Here we present shock compression data for water with unprecedented accuracy that shows commonly used models for water in planetary modeling significantly overestimate the compressibility at conditions relevant to planetary interiors. Furthermore, we show that its behavior at these conditions, including reflectivity and isentropic response, is well described by a recent first-principles based equation of state. These findings advocate the use of this model as the standard for modeling Neptune, Uranus, and ``hot Neptune'' exoplanets, and should contribute to improved understanding of the interior structure of these planets, and perhaps improved understanding of formation mechanisms of planetary systems. We also present very recent experiments on deuterium that have taken advantage of continued improvements in both experimental configuration and the understanding of the quartz shock standard to obtain Hugoniot data with a significant increase in precision. These data will prove to provide a stringent test for the equation of state of hydrogen and its isotopes. Sandia is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the US Department of Energy's National Nuclear Security Administration under Contract No. DE-ACO4-94AL85000.
Continuous Time Random Walks for the Evolution of Lagrangian Velocities
Dentz, Marco; Comolli, Alessandro; Borgne, Tanguy Le; Lester, Daniel R
2016-01-01
We develop a continuous time random walk (CTRW) approach for the evolution of Lagrangian velocities in steady heterogeneous flows based on a stochastic relaxation process for the streamwise particle velocities. This approach describes persistence of velocities over a characteristic spatial scale, unlike classical random walk methods, which model persistence over a characteristic time scale. We first establish the relation between Eulerian and Lagrangian velocities for both equidistant and isochrone sampling along streamlines, under transient and stationary conditions. Based on this, we develop a space continuous CTRW approach for the spatial and temporal dynamics of Lagrangian velocities. While classical CTRW formulations have non-stationary Lagrangian velocity statistics, the proposed approach quantifies the evolution of the Lagrangian velocity statistics under both stationary and non-stationary conditions. We provide explicit expressions for the Lagrangian velocity statistics, and determine the behaviors of...
Rotational diffusion of particles in turbulence
Meyer, Colin R
2013-01-01
Through laboratory measurements, we compare the rotation of spherical and ellipsoidal particles in homogeneous, isotropic turbulence. We find that the particles' angular velocity statistics are well described by an Ornstein-Uhlenbeck (OU) process. This theoretical model predicts that the Lagrangian autocovariance of particles' angular velocity will decay exponentially. We measure the autocovariance using stereoscopic particle image velocimetry (SPIV) applied to particles whose size is within the inertial subrange of the ambient turbulence. The SPIV resolves the motion of points interior to the particles, from which we calculate the solid body rotation of the particles. This provides us with the angular velocity time series for individual particles. Through ensemble statistics, we determine the autocovariance of angular velocity and confirm that it matches the form predicted by an OU process. We can further use the autocovariance curve to quantify the turbulent rotational diffusivity.
Simultaneous temperature and velocity Lagrangian measurements in turbulent thermal convection
Liot, O; Zonta, F; Chibbaro, S; Coudarchet, T; Gasteuil, Y; Pinton, J -F; Salort, J; Chillà, F
2015-01-01
We report joint Lagrangian velocity and temperature measurements in turbulent thermal convection. Measurements are performed using an improved version (extended autonomy) of the neutrally-buoyant instrumented particle that was used by to performed experiments in a parallelepipedic Rayleigh-Benard cell. The temperature signal is obtained from a RFtransmitter. Simultaneously, we determine particle's position and velocity with one camera, which grants access to the Lagrangian heat flux. Due to the extended autonomy of the present particle, we obtain well converged temperature and velocity statistics, as well as pseudo-eulerian maps of velocity and heat flux. Present experimental results have also been compared with the results obtained by a corresponding campaign of Direct Numerical Simulations and Lagrangian Tracking of massless tracers. The comparison between experimental and numerical results show the accuracy and reliability of our experimental measurements. Finally, the analysis of lagrangian velocity and t...
Energy Technology Data Exchange (ETDEWEB)
Taniguchi, H. (Science Education Institute of Osaka Prefecture, Osaka (Japan)); Kamata, K.; Sange, K. (Kobe University, Kobe (Japan). Faculty of Science); Nakada, S. (Kyushu University, Fukuoka (Japan). Faculty of Science); Kamata, H. (Geological Survey of Japan, Osaka Office, Osaka (Japan))
1992-08-01
This paper describes development of a penetrator intended of measuring temperatures, pressures, and particle velocities of air blasts and pyroclastic surges occurring in volcanos, and its airdropping experiment. This device forms a spear with a total length of 150 cm to 160 cm disposed with wings at the tail, and a stopper to prevent the spear from penetrating into ground deeper than 60 cm. The device for measuring temperatures suspends metal pieces of 16 kinds in total including such metals as lead and tin, and such alloys as eutectic solders and type lead to enable measuring a temperature range from 100[degree]C to 810[degree]C . The device for measuring pressures consists of a square pipe with a length little shorter than one meter, twisted to 22.5[degree] at three locations, each of the 16 faces made from the twisting being attached with two blast meters (using lead and copper foils, serving also as particle velocity meters). Twelve prototype devices have been dropped (not having been recovered yet) on five points of the east side slope of Mt. Unzen using a helicopter. 5 refs., 3 figs.
Momentum particle swarm optimizer
Institute of Scientific and Technical Information of China (English)
Liu Yu; Qin Zheng; Wang Xianghua; He Xingshi
2005-01-01
The previous particle swarm optimizers lack direct mechanism to prevent particles beyond predefined search space, which results in invalid solutions in some special cases. A momentum factor is introduced into the original particle swarm optimizer to resolve this problem. Furthermore, in order to accelerate convergence, a new strategy about updating velocities is given. The resulting approach is mromentum-PSO which guarantees that particles are never beyond predefined search space without checking boundary in every iteration. In addition, linearly decreasing wight PSO (LDW-PSO) equipped with a boundary checking strategy is also discussed, which is denoted as LDWBC-PSO. LDW-PSO, LDWBC-PSO and momentum-PSO are compared in optimization on five test functions. The experimental results show that in some special cases LDW-PSO finds invalid solutions and LDWBC-PSO has poor performance, while momentum-PSO not only exhibits good performance but also reduces computational cost for updating velocities.
Significance of relative velocity in drag force or drag power estimation for a tethered float
Digital Repository Service at National Institute of Oceanography (India)
Vethamony, P.; Sastry, J.S.
There is difference in opinion regarding the use of relative velocity instead of particle velocity alone in the estimation of drag force or power. In the present study, a tethered spherical float which undergoes oscillatory motion in regular waves...
... Your Health Particle Pollution Public Health Issues Particle Pollution Recommend on Facebook Tweet Share Compartir Particle pollution ... see them in the air. Where does particle pollution come from? Particle pollution can come from two ...
Perotti, Jose; Voska, Ned (Technical Monitor)
2002-01-01
This presentation provides an overview of the development of new hurricane wind sensor (Extreme Velocity Wind Sensor) for the Kennedy Space Center (KSC) which is designed to withstand winds of up to three hundred miles an hour. The proposed Extreme Velocity Wind Sensor contains no moveable components that would be exposed to extreme wind conditions. Topics covered include: need for new hurricane wind sensor, conceptual design, software applications, computational fluid dynamic simulations of design concept, preliminary performance tests, and project status.
Fine velocity structures collisional dissipation in plasmas
Pezzi, Oreste; Valentini, Francesco; Veltri, Pierluigi
2016-04-01
In a weakly collisional plasma, such as the solar wind, collisions are usually considered far too weak to produce any significant effect on the plasma dynamics [1]. However, the estimation of collisionality is often based on the restrictive assumption that the particle velocity distribution function (VDF) shape is close to Maxwellian [2]. On the other hand, in situ spacecraft measurements in the solar wind [3], as well as kinetic numerical experiments [4], indicate that marked non-Maxwellian features develop in the three-dimensional VDFs, (temperature anisotropies, generation of particle beams, ring-like modulations etc.) as a result of the kinetic turbulent cascade of energy towards short spatial scales. Therefore, since collisional effects are proportional to the velocity gradients of the VDF, the collisionless hypothesis may fail locally in velocity space. Here, the existence of several characteristic times during the collisional relaxation of fine velocity structures is investigated by means of Eulerian numerical simulations of a spatially homogeneous force-free weakly collisional plasma. The effect of smoothing out velocity gradients on the evolution of global quantities, such as temperature and entropy, is discussed, suggesting that plasma collisionality can increase locally due to the velocity space deformation of the particle velocity distribution. In particular, by means of Eulerian simulations of collisional relaxation of a spatially homogeneous force-free plasma, in which collisions among particles of the same species are modeled through the complete Landau operator, we show that the system entropy growth occurs over several time scales, inversely proportional to the steepness of the velocity gradients in the VDF. We report clear evidences that fine velocity structures are dissipated by collisions in a time much shorter than global non-Maxwellian features, like, for example, temperature anisotropies. Moreover we indicate that, if small-scale structures
Viscosity of particle laden films
Timounay, Yousra; Rouyer, Florence
2017-06-01
We perform retraction experiments on soap films where large particles bridge the two interfaces. Local velocities are measured by PIV during the unstationnary regime. The velocity variation in time and space can be described by a continuous fluid model from which effective viscosity (shear and dilatational) of particulate films is measured. The 2D effective viscosity of particulate films η2D increases with particle surface fraction ϕ: at low ϕ, it tends to the interfacial dilatational viscosity of the liquid/air interfaces and it diverges at the critical particle surface fraction ϕc ≃ 0.84. Experimental data agree with classical viscosity laws of hard spheres suspensions adapted to the 2D geometry, assuming viscous dissipation resulting from the squeeze of the liquid/air interfaces between the particles. Finally, we show that the observed viscous dissipation in particulate films has to be considered to describe the edge velocity during a retraction experiment at large particle coverage.
Transport of active ellipsoidal particles in ratchet potentials
Energy Technology Data Exchange (ETDEWEB)
Ai, Bao-Quan, E-mail: aibq@scnu.edu.cn; Wu, Jian-Chun [Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, 510006 Guangzhou (China)
2014-03-07
Rectified transport of active ellipsoidal particles is numerically investigated in a two-dimensional asymmetric potential. The out-of-equilibrium condition for the active particle is an intrinsic property, which can break thermodynamical equilibrium and induce the directed transport. It is found that the perfect sphere particle can facilitate the rectification, while the needlelike particle destroys the directed transport. There exist optimized values of the parameters (the self-propelled velocity, the torque acting on the body) at which the average velocity takes its maximal value. For the ellipsoidal particle with not large asymmetric parameter, the average velocity decreases with increasing the rotational diffusion rate, while for the needlelike particle (very large asymmetric parameter), the average velocity is a peaked function of the rotational diffusion rate. By introducing a finite load, particles with different shapes (or different self-propelled velocities) will move to the opposite directions, which is able to separate particles of different shapes (or different self-propelled velocities)
Bayliss, Matthew. B.; Zengo, Kyle; Ruel, Jonathan; Benson, Bradford A.; Bleem, Lindsey E.; Bocquet, Sebastian; Bulbul, Esra; Brodwin, Mark; Capasso, Raffaella; Chiu, I.-non; McDonald, Michael; Rapetti, David; Saro, Alex; Stalder, Brian; Stark, Antony A.; Strazzullo, Veronica; Stubbs, Christopher W.; Zenteno, Alfredo
2017-03-01
The velocity distribution of galaxies in clusters is not universal; rather, galaxies are segregated according to their spectral type and relative luminosity. We examine the velocity distributions of different populations of galaxies within 89 Sunyaev Zel’dovich (SZ) selected galaxy clusters spanning 0.28population. We find good agreement with simulations regarding the shape of the relationship between the measured velocity dispersion and the fraction of passive versus star-forming galaxies used to measure it, but we find a small offset between this relationship as measured in data and simulations, which suggests that our dispersions are systematically low by as much as 3% relative to simulations. We argue that this offset could be interpreted as a measurement of the effective velocity bias that describes the ratio of our observed velocity dispersions and the intrinsic velocity dispersion of dark matter particles in a published simulation result. Measuring velocity bias in this way suggests that large spectroscopic surveys can improve dispersion-based mass-observable scaling relations for cosmology even in the face of velocity biases, by quantifying and ultimately calibrating them out.
Institute of Scientific and Technical Information of China (English)
姚舜译; 袁雪梅; 杨新瑶; 邓仕槐
2016-01-01
采用室内柱迁移实验，研究了在不同离子强度下多孔介质粒径和孔隙水流速对大肠杆菌在饱和石英砂柱中沉积与释放行为的影响。结果表明，介质粒径和孔隙水流速均能影响大肠杆菌在石英砂中的迁移过程。介质粒径的减小可增强大肠杆菌在多孔介质中的筛滤效应，增加其沉积率和滞留率，减小水化学扰动引起的释放效应；流速的降低有利于提高大肠杆菌的沉积率和滞留率。离子强度的高低可改变粒径和流速对大肠杆菌迁移影响的大小，在较高离子强度条件下，减小介质粒径和孔隙水流速对提高大肠杆菌的沉积率和滞留率的作用增强。由于自然环境的复杂性，今后的研究应注重真实地下水环境中多因素对大肠杆菌迁移行为的复合影响，以便更加准确地掌握大肠杆菌在多孔介质中迁移的规律。%The transport of pathogenic microbes in porous media is critical to groundwater quality. This study investigated the combined ef-fects of particle size and pore water velocity on the deposition and release behavior of Escherichia coli(E. coli)in saturated quartz sands at different ionic strengths. Results showed that both particle size and pore water velocity affected the transport of E. coli in porous media. De-creasing particle size increased straining effect, deposition and thus retention rates of E. coli. Moreover, the enhanced straining effect result-ed in lower releases of E. coli from the smaller particles. Reducing pore water velocity tended to increase deposition and retention rates of E. coli. At greater ionic strength, decreases in both particle size and pore water velocity further enhanced deposition and retention rates of E. coli. These results would improve our understanding of releases and transport of biocolloids under transient ionic strength.
Balasubramaniam, K. S.; Keil, S. L.; Smaldone, L. A.
1996-05-01
We investigate the three dimensional structure of solar pores and their surroundings using high spatial and spectral resolution data. We present evidence that surface velocities decrease around pores with a corresponding increase in the line-of-sight (LOS) velocities. LOS velocities in pores increase with the strength of the magnetic field. Surface velocities show convergence toward a weak downflow which appear to trace boundaries resembling meso-granular and super granular flows. The observed magnetic fields in the pores appear near these boundaries. We analyze the vertical velocity structure in pores and show that they generally have downflows decreasing exponentially with height, with a scale height of about 90 km. Evidence is also presented for the expanding nature of flux tubes. Finally we describe a phenomenological model for pores. This work was supported by AFOSR Task 2311G3. LAS was partially supported by the Progetto Nazionale Astrofisica e Fisica Cosmica of MURST and Scambi Internazionali of the Universita degli Studi di Napoli Frederico II. National Solar Observatory, NOAO, is operated for the National Science Foundation by AURA, Inc.
Analysis on Velocity Characteristics of Cavitation Flow Around Hydrofoil
Institute of Scientific and Technical Information of China (English)
LI Xiang-bin; LIU Shu-yan; WANG Guo-yu; ZHANG Bo; ZHANG Min-di
2010-01-01
The time-averaged velocity distributions in flows around a hydronautics hydrofoil were measured by using a digit-al particle image velocimeter (DPIV) system. The results show that the velocity distribution in the whole flow field depends on the development of cavitation structures with the decreasing of cavitation number. The high-fluctuation region with lower velocity relates to the cavitation area. The lowest velocity distribution in the cavity core becomes more uniform, and its in-fluence becomes smaller gradually as moving to downstream. The main-stream velocity distribution is even, then fluctuate and even at last. In the supercavitation stage, the fluid velocity in the cavitation region, corresponding to the front of the hydrofoil's suction surface, has a distribution close to the main stream, while the fluid velocity in other cavitation area is lower.
Energy Technology Data Exchange (ETDEWEB)
Bayliss, Matthew.B. [MIT, MKI; Zengo, Kyle [Colby Coll.; Ruel, Jonathan [Harvard U., Phys. Dept.; Benson, Bradford A. [Fermilab; Bleem, Lindsey E. [Argonne; Bocquet, Sebastian [Argonne; Bulbul, Esra [MIT, MKI; Brodwin, Mark [Missouri U., Kansas City; Capasso, Raffaella [Munich, Tech. U., Universe; Chiu, I-non [Taiwan, Natl. Tsing Hua U.; McDonald, Michael [MIT, MKI; Rapetti, David [NASA, Ames; Saro, Alex [Munich, Tech. U., Universe; Stalder, Brian [Inst. Astron., Honolulu; Stark, Antony A. [Harvard-Smithsonian Ctr. Astrophys.; Strazzullo, Veronica [Munich, Tech. U., Universe; Stubbs, Christopher W. [Harvard-Smithsonian Ctr. Astrophys.; Zenteno, Alfredo [Cerro-Tololo InterAmerican Obs.
2016-12-08
The velocity distribution of galaxies in clusters is not universal; rather, galaxies are segregated according to their spectral type and relative luminosity. We examine the velocity distributions of different populations of galaxies within 89 Sunyaev Zel'dovich (SZ) selected galaxy clusters spanning $ 0.28 < z < 1.08$. Our sample is primarily draw from the SPT-GMOS spectroscopic survey, supplemented by additional published spectroscopy, resulting in a final spectroscopic sample of 4148 galaxy spectra---2868 cluster members. The velocity dispersion of star-forming cluster galaxies is $17\\pm4$% greater than that of passive cluster galaxies, and the velocity dispersion of bright ($m < m^{*}-0.5$) cluster galaxies is $11\\pm4$% lower than the velocity dispersion of our total member population. We find good agreement with simulations regarding the shape of the relationship between the measured velocity dispersion and the fraction of passive vs. star-forming galaxies used to measure it, but we find a small offset between this relationship as measured in data and simulations in which suggests that our dispersions are systematically low by as much as 3\\% relative to simulations. We argue that this offset could be interpreted as a measurement of the effective velocity bias that describes the ratio of our observed velocity dispersions and the intrinsic velocity dispersion of dark matter particles in a published simulation result. Measuring velocity bias in this way suggests that large spectroscopic surveys can improve dispersion-based mass-observable scaling relations for cosmology even in the face of velocity biases, by quantifying and ultimately calibrating them out.
HIGH VELOCITY THERMAL GUN FOR SURFACE PREPARATION AND TREATMENT
Directory of Open Access Journals (Sweden)
I.A. Gorlach
2012-01-01
Full Text Available Many surface preparation and treatment processes utilise compressed air to propel particles against surfaces in order to clean and treat them. The effectiveness of the processes depends on the velocity of the particles, which in turn depends on the pressure of the compressed air. This paper describes a thermal gun built on the principles of High Velocity Air Fuel (HVAF and High Velocity Oxy Fuel (HVOF processes. The designed apparatus can be used for abrasive blasting, coating of surfaces, cutting of rocks, removing rubber from mining equipment, cleaning of contaminations etc.
Quantitative velocity modulation spectroscopy
Hodges, James N.; McCall, Benjamin J.
2016-05-01
Velocity Modulation Spectroscopy (VMS) is arguably the most important development in the 20th century for spectroscopic study of molecular ions. For decades, interpretation of VMS lineshapes has presented challenges due to the intrinsic covariance of fit parameters including velocity modulation amplitude, linewidth, and intensity. This limitation has stifled the growth of this technique into the quantitative realm. In this work, we show that subtle changes in the lineshape can be used to help address this complexity. This allows for determination of the linewidth, intensity relative to other transitions, velocity modulation amplitude, and electric field strength in the positive column of a glow discharge. Additionally, we explain the large homogeneous component of the linewidth that has been previously described. Using this component, the ion mobility can be determined.
Experimental Studies of the Effect of Wall Roughness on Particle Behavior in Gas-Particle Flows
Institute of Scientific and Technical Information of China (English)
周力行; 张夏
2004-01-01
The effect of wall roughness on particle behavior in two-phase flows in a horizontal backward-facing step is studied using a phase-Doppler particle anemometer. The results show that the wall roughness widens the particle velocity probability density distribution, enhances the redistribution of particle velocity into different directions,reduces the particle longitudinal mean velocity and increases the longitudinal and transverse fluctuation velocities and Reynolds shear stress. The effect of roughness on particle motion in the recirculation zone is weaker than that in the fully developed flow region. The effect of roughness for small particles is restricted only in the near-wall region, while that for large particle diffuses to the whole flow field.
Wang, Guiji; Sun, Chengwei; Tan, Fuli; Zhao, Jianheng; Zhang, Ning; Liu, Cangli; Mo, Jianjun; Wang, Ganghua; Wang, Xiaosong
2008-05-01
Based on the low inductance capacitor, the parallel-plate transmission line, and the explosive network closing switch, a compact pulsed power generator CQ-1.5 has been developed at the Institute of Fluid Physics and is capable to deliver a current of peak of 1.5 MA within rise time of 500-570 ns into a 2-3 nH inductive load. The work is motivated to do isentropic compression experiments (ICEs) on metals up to 30-50 GPa and to launch flyer plates at velocities over 8 kms. The experiments were conducted with the diagnostics of both Doppler pin system and velocity interferometer system for any reflectors, and the measured free surface velocity histories of ICE samples were treated with a backward integration code. The results show that the isentropes of Cu and Al samples under 35 GPa are close to their Hugoniots within a deviation of 3%. The LY12 aluminum flyer plates were accelerated to a velocity over 8.96 kms.
The Prescribed Velocity Method
DEFF Research Database (Denmark)
Nielsen, Peter Vilhelm
The- velocity level in a room ventilated by jet ventilation is strongly influenced by the supply conditions. The momentum flow in the supply jets controls the air movement in the room and, therefore, it is very important that the inlet conditions and the numerical method can generate a satisfactory...... description of this momentum flow. The Prescribed Velocity Method is a practical method for the description of an Air Terminal Device which will save grid points close to the opening and ensure the right level of the momentum flow....
Cirrus Crystal Terminal Velocities.
Heymsfield, Andrew J.; Iaquinta, Jean
2000-04-01
Cirrus crystal terminal velocities are of primary importance in determining the rate of transport of condensate from upper- to middle-tropospheric levels and profoundly influence the earth's radiation balance through their effect on the rate of buildup or decay of cirrus clouds. In this study, laboratory and field-based cirrus crystal drag coefficient data, as well as analytical descriptions of cirrus crystal shapes, are used to derive more physically based expressions for the velocities of cirrus crystals than have been available in the past.Polycrystals-often bullet rosettes-are shown to be the dominant crystal types in synoptically generated cirrus, with columns present in varying but relatively large percentages, depending on the cloud. The two critical parameters needed to calculate terminal velocity are the drag coefficient and the ratio of mass to cross-sectional area normal to their fall direction. Using measurements and calculations, it is shown that drag coefficients from theory and laboratory studies are applicable to crystals of the types found in cirrus. The ratio of the mass to area, which is shown to be relatively independent of the number of bullets in the rosette, is derived from an analytic model that represents bullet rosettes containing one to eight bullets in 19 primary geometric configurations. The ratio is also derived for columns. Using this information, a general set of equations is developed to calculate the terminal velocities and masses in terms of the aspect ratio (width divided by length), ice density, and rosette maximum dimension. Simple expressions for terminal velocity and mass as a function of bullet rosette maximum dimension are developed by incorporating new information on bullet aspect ratios.The general terminal velocity and mass relations are then applied to a case from the First International Satellite Cloud Climatology Project (ISCCP) Research Experiment (FIRE) 2, when size spectra from a balloon-borne ice crystal
Critical Landau velocity in helium nanodroplets.
Brauer, Nils B; Smolarek, Szymon; Loginov, Evgeniy; Mateo, David; Hernando, Alberto; Pi, Marti; Barranco, Manuel; Buma, Wybren J; Drabbels, Marcel
2013-10-11
The best-known property of superfluid helium is the vanishing viscosity that objects experience while moving through the liquid with speeds below the so-called critical Landau velocity. This critical velocity is generally considered a macroscopic property as it is related to the collective excitations of the helium atoms in the liquid. In the present work we determine to what extent this concept can still be applied to nanometer-scale, finite size helium systems. To this end, atoms and molecules embedded in helium nanodroplets of various sizes are accelerated out of the droplets by means of optical excitation, and the speed distributions of the ejected particles are determined. The measurements reveal the existence of a critical velocity in these systems, even for nanodroplets consisting of only a thousand helium atoms. Accompanying theoretical simulations based on a time-dependent density functional description of the helium confirm and further elucidate this experimental finding.
Discrete particle simulation of the homogeneous fluidization of Geldart A particles
Ye, M.; Hoef, van der, M.A.; J.A.M. Kuipers
2004-01-01
The homogeneous fluidization of Geldart A particles has been studied with a 2D soft-sphere discrete particle model. We find that the homogeneous fluidization regime represents a quasi-equilibrium state where the force balance exists at the macroscopic-level, but not at the level of individual particles. The velocity fluctuation of particles is an exponential function of the squared superficial gas velocity in the homogeneous fluidization regime, not a linear function as found by Cody et al.
Lagrangian multi-particle statistics
DEFF Research Database (Denmark)
Lüthi, Beat; Berg, Jacob; Ott, Søren
2007-01-01
Combined measurements of the Lagrangian evolution of particle constellations and the coarse-grained velocity derivative tensor. partial derivative(u) over tilde (i) /partial derivative x(j) are presented. The data are obtained from three-dimensional particle tracking measurements in a quasi isotr...
Saltation and suspension of wind-blown particle movement
Institute of Scientific and Technical Information of China (English)
2008-01-01
Several factors that affect the trajectories of sand particles in a wind-blown sand flux are analyzed by considering the stochastic movement of sand particles transported within turbulent flow in the atmospheric boundary layer. The results show that there are remarkably different trajectories for particles with the same diameter, the same vertical liftoff velocity from sand bed and the same friction ve-locity of wind because of the presence of turbulence flow. The vertical fluctuating velocity of sand particles can be regarded as a reflection of the transport mode, which is related to not only the diameters and liftoff velocity of sand particles but also the shear stress velocity of wind. The critical liftoff velocity and the fraction of each transport mode are calculated for the given particle diameter and friction ve-locity of wind. A comparison of the predicted fraction and the statistical fraction with and without the wind-sand couple effect is made.
Dorman, L. I.; Kobilinski, Z.
1975-01-01
The modulation of galactic cosmic rays is studied by the magnetic heterogeneities stream on the assumption that the diffusion coefficient is reduced whereas the solar wind velocity is increased with the growth of the angle between the sun's rotation axis and the direction of solar plasma motion. The stationary plane problem of isotropic diffusion is solved as it applies to two cases: (1) with due account of particle retardation by the antiphermium mechanism; and (2) without an account of the above mechanism. This problem is solved by the grid method in the polar coordinate system. The results of the calculations are followed by a discussion of the method of solution and of the errors.
Note: A helical velocity selector for continuous molecular beams.
Szewc, Carola; Collier, James D; Ulbricht, Hendrik
2010-10-01
We report on a modern realization of the classic helical velocity selector for gas phase particle beams. The device operates stably under high vacuum conditions at rotational frequencies limited only by commercial dc motor capabilities. Tuning the rotational frequency allows selective scanning over a broad velocity band. The width of the selected velocity distributions at full-width-half-maximum is as narrow as a few percent of the selected mean velocity and independent of the rotational speed of the selector. The selector generates low vibrational noise amplitudes comparable to mechanically damped state-of-the-art turbo-molecular pumps and is therefore compatible with vibration sensitive experiments like molecule interferometry.
Brand, Neal; Quintanilla, John A.
2013-01-01
Using a simultaneously falling softball as a stopwatch, the terminal velocity of a whiffle ball can be obtained to surprisingly high accuracy with only common household equipment. This classroom activity engages students in an apparently daunting task that nevertheless is tractable, using a simple model and mathematical techniques at their…
Rotational Diffusion of Particles in Turbulence
Variano, Evan; Meyer, Colin; Byron, Margaret
2011-11-01
We experimentally compare the rotation of spherical and ellipsoidal particles in homogeneous, isotropic turbulence. We find that the particle orientation is well described by a Gaussian diffusion process. This theoretical model would predict that the Lagrangian autocorrelation function for angular velocity is a negative exponential. We measure this Lagrangian autocorrelation function using stereoscopic particle image velocimetry (SPIV) applied to particles whose size is within the inertial subrange of the ambient turbulence. The SPIV resolves 3 velocity components in a nearly 2-dimensional planar volume, which we use as inputs for a nonlinear optimization to quantify the solid body rotation of the particles. This provides us the angular velocity timeseries for individual particles. Through ensemble statistics, we determine the Lagrangian autocorrelation function of angular velocity, from which we can quantify the turbulent rotational diffusivity and its behavior between the extremes of short-term non-Fickian transport and long-term Fickian diffusion.
An Extended Particle Swarm Optimizer
Institute of Scientific and Technical Information of China (English)
XU Jun-jie; XIN Zhan-hong
2005-01-01
An Extended Particle Swarm Optimizer (EPSO) is proposed in this paper. In this new algorithm, not only the local but also the global best position will impact the particle's velocity updating process. EPSO is an integration of Local Best paradigm (LBEST) and Global Best paradigm (GBEST) and it significantly enhances the performance of the conventional particle swarm optimizers. The experiment results have proved that EPSO deserves to be investigated.
Thermophoresis of charged colloidal particles.
Fayolle, Sébastien; Bickel, Thomas; Würger, Alois
2008-04-01
Thermally induced particle flow in a charged colloidal suspension is studied in a fluid-mechanical approach. The force density acting on the charged boundary layer is derived in detail. From Stokes' equation with no-slip boundary conditions at the particle surface, we obtain the particle drift velocity and the thermophoretic transport coefficients. The results are discussed in view of previous work and available experimental data.
Thermophoresis of charged colloidal particles
Fayolle, Sébastien; Bickel, Thomas; Würger, Alois
2008-01-01
International audience; Thermally induced particle flow in a charged colloidal suspension is studied in a fluid-mechanical approach. The force density acting on the charged boundary layer is derived in detail. From Stokes' equation with no-slip boundary conditions at the particle surface, we obtain the particle drift velocity and the thermophoretic transport coefficients. The results are discussed in view of previous work and available experimental data.
Wave propagation and group velocity
Brillouin, Léon
1960-01-01
Wave Propagation and Group Velocity contains papers on group velocity which were published during the First World War and are missing in many libraries. It introduces three different definitions of velocities: the group velocity of Lord Rayleigh, the signal velocity of Sommerfeld, and the velocity of energy transfer, which yields the rate of energy flow through a continuous wave and is strongly related to the characteristic impedance. These three velocities are identical for nonabsorbing media, but they differ considerably in an absorption band. Some examples are discussed in the last chapter
Fall velocity of multi-shaped clasts
Le Roux, Jacobus P.
2014-12-01
Accurate settling velocity predictions of differently shaped micro- or macroclasts are required in many branches of science and engineering. Here, a single, dimensionally correct equation is presented that yields a significant improvement on previous settling formulas for a wide range of clast shapes. For smooth or irregular clasts with known axial dimensions, a partially polynomial equation based on the logarithmic values of dimensionless sizes and settling velocities is presented, in which the values of only one coefficient and one exponent need to be adapted for different shapes, irrespective of the Reynolds number. For irregular, natural clasts with unknown axial dimensions, a polynomial equation of the same form is applied, but with different coefficients. Comparison of the predicted and measured settling velocities of 8 different shape classes as well as natural grains with unknown axial dimensions in liquids, representing a total of 390 experimental data points, shows a mean percentage error of - 0.83% and a combined R2 value of 0.998. The settling data of 169 differently shaped particles of pumice, glass and feldspar falling in air were also analyzed, which demonstrates that the proposed equation is also valid for these conditions. Two additional shape classes were identified in the latter data set, although the resultant equations are less accurate than for liquids. An Excel spreadsheet is provided to facilitate the calculation of fall velocities for grains settling individually and in groups, or alternatively to determine the equivalent sieve size from the settling velocity, which can be used to calibrate settling tubes.
Limitations of estimating turbulent convection velocities from PIV
de Kat, Roeland; Dawson, James R; Ganapathisubramani, Bharathram
2013-01-01
This paper deals with determination of turbulent convection velocities from particle image velocimetry (PIV). Turbulent convection velocities are of interest because they can be used to map temporal information into space. Convection velocity can be defined in several different ways. One approach is to use the phase-spectrum of two signals with a time-separation. Obtaining convection velocity per wavenumber involves determining a spatial spectrum. PIV data is limited in spatial resolution and sample length. The influence of truncation of both spatial resolution and frequency resolution is investigated, as well as the influences of spatial filtering and measurement noise. These issues are investigated by using a synthetic data set obtained by creating velocity-time data with an imposed spectrum. Results from the validation show that, when applying a Hamming window before determining the phase spectrum, there is a usable range of wavenumbers for which convection velocities can be determined. Simulation of flow ...
Roy, Arpita; Mahadevan, S.; Chakraborty, A.; Pathan, F. M.; Anandarao, B. G.
2010-01-01
The Physical Research Laboratory Advanced Radial-velocity All-sky Search (PARAS) is an efficient fiber-fed cross-dispersed high-resolution echelle spectrograph that will see first light in early 2010. This instrument is being built at the Physical Research laboratory (PRL) and will be attached to the 1.2m telescope at Gurushikhar Observatory at Mt. Abu, India. PARAS has a single-shot wavelength coverage of 370nm to 850nm at a spectral resolution of R 70000 and will be housed in a vacuum chamber (at 1x10-2 mbar pressure) in a highly temperature controlled environment. This renders the spectrograph extremely suitable for exoplanet searches with high velocity precision using the simultaneous Thorium-Argon wavelength calibration method. We are in the process of developing an automated data analysis pipeline for echelle data reduction and precise radial velocity extraction based on the REDUCE package of Piskunov & Valenti (2002), which is especially careful in dealing with CCD defects, extraneous noise, and cosmic ray spikes. Here we discuss the current status of the PARAS project and details and tests of the data analysis procedure, as well as results from ongoing PARAS commissioning activities.
On the modification of particle dispersion in isotropic turbulence by free rotation of particle
Park, Yongnam; Lee, Changhoon
2008-11-01
Effect of a particle's spin is investigated numerically by considering the effect of lift occurring due to difference of rotations of a particle and of fluid such as the Saffman lift and Magnus force. These lift forces have been neglected in many previous works on particle-laden turbulence. The trajectory of particles can be changed by the lift forces, resulting in significant modification of the stochastic characteristics of heavy particles. Probability density functions and autocorrelations are examined of velocity, acceleration of solid particle and acceleration of fluid at the position of solid particle. Changes in velocity statistics are negligible but statistics related with acceleration are a little bit changed by particle's rotation. When a laden particle encounters with coherent structures during the motion, the particle's rotation might significantly affects the motion due to intermittently large fluid acceleration near coherent structures. The result can be used for development of stochastic model for particle dispersion. Detailed physical interpretation will be presented in the meeting.
Gravity-driven clustering of inertial particles in turbulence.
Park, Yongnam; Lee, Changhoon
2014-06-01
We report a different kind of particle clustering caused purely by gravity, discovered in our simulation of particle-laden turbulence. Clustering in a vertical strip pattern forms when strong gravity acts on heavy particles. This phenomenon is explained by the skewness of the flow velocity gradient in the gravitational direction experienced by particles, which causes horizontal convergence of particles.
Suspension flow: do particles act as mixers?
Boschan, A; Gauthier, G
2015-01-01
Recently, Roht et al. [J. Contam. Hydrol. 145, 10-16 (2013)] observed that the presence of suspended non-Brownian macroscopic particles decreased the dispersivity of a passive solute, for a pressure-driven flow in a narrow parallel-plates channel at low Reynolds number. This result contradicts the idea that the streamline distortion caused by the random diffusive motion of the particles increases the dispersion and mixing of the solute. Therefore, to estimate the influence of this motion on the dispersivity of the solute, and investigate the origin of the reported decrease, we experimentally studied the probability density functions (pdf) of the particle velocities, and spatio-temporal correlations, in the same experimental configuration. We observed that, as the mean suspension velocity exceeds a critical value, the pdf of the streamwise velocities of the particles markedly changes from a symmetric distribution to an asymmetric one strongly skewed to high velocities and with a peak of most probable velocity ...
Experimental analysis of turbulence effect in settling velocity of suspended sediments
Directory of Open Access Journals (Sweden)
H. Salinas–Tapia
2008-01-01
Full Text Available Settling velocities of sediment particles for different size ranges were measured in this work using PIV with the help of discriminatory filters. An experimental channel 10x15 cm cross section was used in order to obtain two set of turbulent characteristics corresponding with two different flow rates. The purpose was to analyze the effect of turbulence on the solids settling velocity. The technique allowed us to measure the individual settling velocity of the particles and the flow velocity field of the fluid. Capture and image analysis was performed with digital cameras (CCD using the software Sharp–provision PIV and the statistical cross correlation technique. Results showed that settling velocity of particles is affected by turbulence which enhances the fluid drag coefficient. Physical explanation of this phenomenon is related with the magnitude of the vertical fluctuating velocity of the fluid. However, more research is needed in order to define settling velocity formulas that takes into account this effect
Transverse velocity shifts in protostellar jets: rotation or velocity asymmetries?
De Colle, Fabio; Riera, Angels
2016-01-01
Observations of several protostellar jets show systematic differences in radial velocity transverse to the jet propagation direction, which have been interpreted as evidence of rotation in the jets. In this paper we discuss the origin of these velocity shifts, and show that they could be originated by rotation in the flow, or by side to side asymmetries in the shock velocity, which could be due to asymmetries in the jet ejection velocity/density or in the ambient medium. For typical poloidal jet velocities (~ 100-200 km/s), an asymmetry >~ 10% can produce velocity shifts comparable to those observed. We also present three dimensional numerical simulations of rotating, precessing and asymmetric jets, and show that, even though for a given jet there is a clear degeneracy between these effects, a statistical analysis of jets with different inclination angles can help to distinguish between the alternative origins of transverse velocity shifts. Our analysis indicate that side to side velocities asymmetries could ...
Application of a Schlieren diagnostic to the behavior of exploding bridge wire and laser detonators
Energy Technology Data Exchange (ETDEWEB)
Murphy, Michael J [Los Alamos National Laboratory; Clarke, Steven A [Los Alamos National Laboratory; Munger, Alan C [Los Alamos National Laboratory; Thomas, Keith A [Los Alamos National Laboratory
2009-01-01
Even though the exploding bridge wire (EBW) detonator has been in use for over 60 years, there are still discussions about the mechanism for achieving detonation. Los Alamos has been developing a high-power laser detonator to function in a manner similar to an EBW. Schlieren imaging techniques are applied to laser-driven detonator output in polydimethylsiloxane (POMS) samples to investigate the time-dependent geometry of the shock wave and to obtain instantaneous measurements of shock-front velocity. Velocity Hugoniot data are used to convert measured shock velocities to corresponding particle velocities, allowing instantaneous shock pressures to be obtained via Rankine-Hugoniot relations across the shock.
Errors in particle tracking velocimetry with high-speed cameras
Feng, Yan; Liu, Bin
2011-01-01
Velocity errors in particle tracking velocimetry (PTV) are studied. When using high-speed video cameras, the velocity error may increase at a high camera frame rate. This increase in velocity error is due to particle-position uncertainty, which is one of two sources of velocity errors studied here. The other source of error is particle acceleration, which has the opposite trend of diminishing at higher frame rates. Both kinds of errors can propagate into quantities calculated from velocity, such as the kinetic temperature of particles or correlation functions. As demonstrated in a dusty plasma experiment, the kinetic temperature of particles has no unique value when measured using PTV, but depends on the sampling time interval or frame rate. It is also shown that an artifact appears in an autocorrelation function computed from particle positions and velocities, and it becomes more severe when a small sampling-time interval is used. Schemes to reduce these errors are demonstrated.
Dark Matter Velocity Spectroscopy.
Speckhard, Eric G; Ng, Kenny C Y; Beacom, John F; Laha, Ranjan
2016-01-22
Dark matter decays or annihilations that produce linelike spectra may be smoking-gun signals. However, even such distinctive signatures can be mimicked by astrophysical or instrumental causes. We show that velocity spectroscopy-the measurement of energy shifts induced by relative motion of source and observer-can separate these three causes with minimal theoretical uncertainties. The principal obstacle has been energy resolution, but upcoming experiments will have the precision needed. As an example, we show that the imminent Astro-H mission can use Milky Way observations to separate possible causes of the 3.5-keV line. We discuss other applications.
Dark Matter Velocity Spectroscopy
Speckhard, Eric G; Beacom, John F; Laha, Ranjan
2016-01-01
Dark matter decays or annihilations that produce line-like spectra may be smoking-gun signals. However, even such distinctive signatures can be mimicked by astrophysical or instrumental causes. We show that velocity spectroscopy-the measurement of energy shifts induced by relative motion of source and observer-can separate these three causes with minimal theoretical uncertainties. The principal obstacle has been energy resolution, but upcoming and proposed experiments will make significant improvements. As an example, we show that the imminent Astro-H mission can use Milky Way observations to separate possible causes of the 3.5-keV line. We discuss other applications.
An active particle in a complex fluid
Datt, Charu; Hatzikiriakos, Savvas; Elfring, Gwynn J
2016-01-01
In this work, we study active particles with prescribed surface velocities in non-Newtonian fluids. We employ the reciprocal theorem to derive a general form of the propulsion velocity of a single active particle (or swimmer) in a weakly non-Newtonian background flow in the absence of inertia. Using this formulation, we obtain the velocity of an active spherical particle with an arbitrary axisymmetric slip-velocity in an otherwise quiescent second-order fluid. Finally, we determine how the motion of a diffusiophoretic Janus particle is affected by complex fluid rheology, namely viscoelasticity and shear-thinning. We find that a Janus particle may go faster or slower in a viscoelastic fluid, but is always slower in a shear-thinning fluid as compared to a Newtonian fluid.
A Typical Path Model of Tracheobronchial Clearance of Inhaled Particles in Rats
2002-01-01
A mathematical description of particle clearance from the ciliated conducting airways (tracheobronchial region) of the lungs in rats was developed...particle transport velocities for given generations of airways were estimated from reported tracheal transport velocities. Using typical rat airway geometry...and estimated particle transport velocities solutions of sets of rate equations for transport from each generation of airways were summed to estimate
Movement of heavy particles in tornadoes
Ingel, L. Kh.
2017-07-01
The horizontal movement of inertial particles in the intensive vortices, where the centrifugal force can be substantially higher than the gravity, is studied analytically. A similar problem was studied earlier for small (Stokes) particles at low Reynolds number, which allow one to be limited to the linear resistance law. It is shown that the previous results to a great extent can be extrapolated to the case of considerably heavier particles (e.g., water droplets with a diameter up to 1 mm at Reynolds numbers up to 103). The nonlinear nature of the resistance, i.e., its dependence on the particle velocity relative to the medium, should be taken into account for such particles. Some general laws are established for particle dynamics. In particular, their tangential velocity is close to the velocity of the medium, while the radial velocity is substantially lower (it is close on the order of magnitude to the geometric mean of the particle tangential velocity and the difference between the latter and the tangential velocity of the medium). The limits of applicability of the results are found, i.e., the restrictions to the size and mass/density of particles.
Superluminal Velocities in the Synchronized Space-Time
Directory of Open Access Journals (Sweden)
Medvedev S. Yu.
2014-07-01
Full Text Available Within the framework of the non-gravitational generalization of the special relativity, a problem of possible superluminal motion of particles and signals is considered. It has been proven that for the particles with non-zero mass the existence of anisotropic light barrier with the shape dependent on the reference frame velocity results from the Tangherlini transformations. The maximal possible excess of neutrino velocity over the absolute velocity of light related to the Earth (using th e clock with instantaneous synchronization has been estimated. The illusoriness of t he acausality problem has been illustrated and conclusion is made on the lack of the upper limit of velocities of signals of informational nature.
Critical superfluid velocity in a trapped dipolar gas.
Wilson, Ryan M; Ronen, Shai; Bohn, John L
2010-03-01
We investigate the superfluid properties of a dipolar Bose-Einstein condensate (BEC) in a fully three-dimensional trap. Specifically, we estimate a superfluid critical velocity for this system by applying the Landau criterion to its discrete quasiparticle spectrum. We test this critical velocity by direct numerical simulation of condensate depletion as a blue-detuned laser moves through the condensate. In both cases, the presence of the roton in the spectrum serves to lower the critical velocity beyond a critical particle number. Since the shape of the dispersion, and hence the roton minimum, is tunable as a function of particle number, we thereby propose an experiment that can simultaneously measure the Landau critical velocity of a dipolar BEC and demonstrate the presence of the roton in this system.
Hard-sphere interactions in velocity-jump models
Franz, Benjamin; Taylor-King, Jake P.; Yates, Christian; Erban, Radek
2016-07-01
Group-level behavior of particles undergoing a velocity-jump process with hard-sphere interactions is investigated. We derive N -particle transport equations that include the possibility of collisions between particles and apply different approximation techniques to get expressions for the dependence of the collective diffusion coefficient on the number of particles and their diameter. The derived approximations are compared with numerical results obtained from individual-based simulations. The theoretical results compare well with Monte Carlo simulations providing the excluded-volume fraction is small.
Hard-sphere interactions in velocity jump models
Franz, Benjamin; Yates, Christian; Erban, Radek
2014-01-01
Group-level behaviour of particles undergoing a velocity jump process with hard-sphere interactions is investigated. We derive $N$-particle transport equations that include the possibility of collisions between particles and apply different approximation techniques to get expressions for the dependence of the collective diffusion coefficient on the number of particles and their diameter. The derived approximations are compared with numerical results obtained from individual-based simulations. The theoretical results compare well with Monte Carlo simulations providing the excluded volume fraction is small.
Anomalous particle pinch in Tokamaks
Energy Technology Data Exchange (ETDEWEB)
Miskane, F.; Garbet, X. [Association Euratom-CEA/Cadarache, Dept. de Recherches sur la Fusion Controlee, DRFC, 13 - Saint-Paul-lez-Durance (France); Dezairi, A.; Saifaoui, D. [Faculte des Sciences Ain Chok, Casablanca (Morocco)
2000-06-01
The diffusion coefficient in phase space usually varies with the particle energy. A consequence is the dependence of the fluid particle flux on the temperature gradient. If the diffusion coefficient in phase space decreases with the energy in the bulk of the thermal distribution function, the particle thermodiffusion coefficient which links the particle flux to the temperature gradient is negative. This is a possible explanation for the inward particle pinch that is observed in tokamaks. A quasilinear theory shows that such a thermodiffusion is generic for a tokamak electrostatic turbulence at low frequency. This effect adds to the particle flux associated with the radial gradient of magnetic field. This behavior is illustrated with a perturbed electric potential, for which the trajectories of charged particle guiding centers are calculated. The diffusion coefficient of particles is computed and compared to the quasilinear theory, which predicts a divergence at low velocity. It is shown that at low velocity, the actual diffusion coefficient increases, but remains lower than the quasilinear value. Nevertheless, this differential diffusion between cold and fast particles leads to an inward flux of particles. (author)
Modified constriction particle swarm optimization algorithm
Institute of Scientific and Technical Information of China (English)
Zhe Zhang; Limin Jia; Yong Qin
2015-01-01
To deal with the demerits of constriction particle swarm optimization (CPSO), such as relapsing into local optima, slow convergence velocity, a modified CPSO algorithm is proposed by improving the velocity update formula of CPSO. The random ve-locity operator from local optima to global optima is added into the velocity update formula of CPSO to accelerate the convergence speed of the particles to the global optima and reduce the likeli-hood of being trapped into local optima. Final y the convergence of the algorithm is verified by calculation examples.
A probability density function of liftoff velocities in mixed-size wind sand flux
Institute of Scientific and Technical Information of China (English)
2008-01-01
With the discrete element method(DEM) ,employing the diameter distribution of natural sands sampled from the Tengger Desert,a mixed-size sand bed was produced and the particle-bed collision was simulated in the mixed-size wind sand movement. In the simulation,the shear wind velocity,particle diameter,incident velocity and incident angle of the impact sand particle were given the same values as the experimental results. After the particle-bed collision,we collected all the initial velocities of rising sand particles,including the liftoff angular velocities,liftoff linear velocities and their horizontal and vertical components. By the statistical analysis on the velocity sample for each velocity component,its probability density functions were obtained,and they are the functions of the shear wind velocity. The liftoff velocities and their horizontal and vertical components are distributed as an exponential density function,while the angular velocities are distributed as a normal density function.
Dynamical Mechanical Properties for AD90 Alumina
Institute of Scientific and Technical Information of China (English)
REN Hui-lan; NING Jian-guo; LI Ping
2007-01-01
The dynamic response of polycrystalline alumina was investigated in the pressure range of 0 -13 GPa by planar impact experiments.Velocity interferometer system for any reflector(VISAR) was used to obtain free surface velocity profile and determine the Hugoniot elastic limit,and manganin gauges were employed to obtain the stress-time histories and determine Hugoniot curve.Both the free surface particle velocity profiles and Hugoniot curves indicate the dispersion of the "plastic" wave for alumina.With the measured stress histories,the complete histories of strain,particle velocity,specific volume and specific internal energy are gained by using path line principle of Lagrange analysis.The dynamic mechanical behaviors for alumina under impact loading are analyzed,such as nonlinear characteristic,strain rate dependence,dispersion and declination of shock wave in the material.
Indirect determination of the turbulent velocity profile origin
Lukerchenko, N.; Vlasák, P. (Pavel)
2012-01-01
The vertical co-ordinate of the logarithmic turbulent velocity profile origin yo is an important characteristic of turbulent flow in conduit with rough walls. Because length and height of saltation depend strongly on the position of the velocity profile origin, it can be determined by comparison of experimental values of particle saltation and their numerical simulation. The parameter y0 can be expressed as function of saltation length or height, or the boundary Reynolds number, and it was sh...
Dense velocity reconstruction from tomographic PTV with material derivatives
Schneiders, Jan F. G.; Scarano, Fulvio
2016-09-01
A method is proposed to reconstruct the instantaneous velocity field from time-resolved volumetric particle tracking velocimetry (PTV, e.g., 3D-PTV, tomographic PTV and Shake-the-Box), employing both the instantaneous velocity and the velocity material derivative of the sparse tracer particles. The constraint to the measured temporal derivative of the PTV particle tracks improves the consistency of the reconstructed velocity field. The method is christened as pouring time into space, as it leverages temporal information to increase the spatial resolution of volumetric PTV measurements. This approach becomes relevant in cases where the spatial resolution is limited by the seeding concentration. The method solves an optimization problem to find the vorticity and velocity fields that minimize a cost function, which includes next to instantaneous velocity, also the velocity material derivative. The velocity and its material derivative are related through the vorticity transport equation, and the cost function is minimized using the limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithm. The procedure is assessed numerically with a simulated PTV experiment in a turbulent boundary layer from a direct numerical simulation (DNS). The experimental validation considers a tomographic particle image velocimetry (PIV) experiment in a similar turbulent boundary layer and the additional case of a jet flow. The proposed technique (`vortex-in-cell plus', VIC+) is compared to tomographic PIV analysis (3D iterative cross-correlation), PTV interpolation methods (linear and adaptive Gaussian windowing) and to vortex-in-cell (VIC) interpolation without the material derivative. A visible increase in resolved details in the turbulent structures is obtained with the VIC+ approach, both in numerical simulations and experiments. This results in a more accurate determination of the turbulent stresses distribution in turbulent boundary layer investigations. Data from a jet
Analysis of particle-wall interactions during particle free fall.
Chein, Reiyu; Liao, Wenyuan
2005-08-01
In this study, the vertical motion of a particle in a quiescent fluid falling toward a horizontal plane wall is analyzed, based on simplified models. Using the distance between the particle and wall as a parameter, the effects of various forces acting on the particle and the particle motion are examined. Without the colloidal and Brownian forces being included, the velocity of small particles is found to be approximately equal to the inverse of the drag force correction function used in this study as the particle approaches the near-wall region. Colloidal force is added to the particle equation of motion as the particle moves a distance comparable to its size. It is found that the particle might become suspended above or deposited onto the wall, depending on the Hamaker constant, the surface potentials of the particle and wall, and the thickness of the electrical double layer (EDL). For strong EDL repulsive force and weaker van der Waals (VDW) attractive force, the particle will become suspended above the wall at a distance at which the particle velocity is zero. This location is referred to as the equilibrium distance. The equilibrium distance is found to increase with increased in EDL thickness when a repulsive force barrier appears in the colloidal force interaction. For the weak EDL repulsive force and strong VDW attractive force case, the particle can become deposited onto the wall without the Brownian motion effect. The Brownian jump length was found to be very small. Many Brownian jumps would be required in a direction toward the wall for a suspended particle to become deposited.
Kinematic determination of Electron-Hole velocities
Hutchinson, Ian H.; Zhou, C.
2016-10-01
Coherent self-sustaining BGK potential structures, like the electron holes that often form during nonlinear electrostatic instabilities and are frequently observed in space plasmas, have ``kinematic'' momentum conservation properties that determine their velocity. The electron and ion momentum, both internal and external to the hole, must be included. Momentum changes arise from hole acceleration and from hole depth growth, by energization processes we call jetting; and these must balance any additional external forces on the particles. Comprehensive analytic expressions for the contributions have been calculated for holes of arbitrary localized potential form. Using these, we can deduce velocity changes in various interesting situations such as the self-acceleration of electron holes during formation, the circumstances under which holes accelerate at the rate of the electrons in a background electric field, the influence of the ion stream pushing and pulling holes to higher or lower speeds, and the trapping of hole velocity between the velocity of two ion streams. The predictions are in excellent quantitative agreement with targeted PIC simulations. The kinematic theory thus explains why isolated holes behave the way they do. Partially supported by NSF/DOE Basic Plasma Grant DE-SC0010491.
Velocity centroids as tracers of the turbulent velocity statistics
Lazarian, A E A
2004-01-01
We use the results of magnetohydrodynamic (MHD) simulations to emulate spectroscopic observations, and produce maps of variations of velocity centroids to study their scaling properties. We compare them with those of the underlying velocity field, and analytic predictions presented in a previous paper (Lazarian & Esquivel 2003). We tested, with success, a criteria for recovering velocity statistics from velocity centroids derived in our previous work. That is, if >> (where S is a 2D map of ``unnormalized'', v velocity, and I integrated intensity map -column density-), then the structure function of the centroids is dominated by the structure function of velocity. We show that it is possible to extract the velocity statistics using centroids for subsonic and mildly supersonic turbulence (e.g. Mach numbers ~2.5). While, towards higher Mach numbers other effects could affect significantly the statistics of centroids.
Statistics of Velocity from Spectral Data Modified Velocity Centroids
Lazarian, A
2003-01-01
We address the problem of studying interstellar (ISM) turbulence using spectral line data. We construct a measure that we term modified velocity centroids (MVCs) and derive an analytical solution that relates the 2D spectra of the modified centroids with the underlying 3D velocity spectrum. We test our results using synthetic maps constructed with data obtained through simulations of compressible MHD turbulence. We prove that the MVCs are able to restore the underlying spectrum of turbulent velocity. We show that the modified velocity centroids (MVCs) are complementary to the the Velocity Channel Analysis (VCA) technique that we introduced earlier. Employed together they make determining of the velocity spectral index more reliable. At the same time we show that MVCs allow to determine velocity spectra when the underlying statistics is not a power law and/or the turbulence is subsonic.
Entropic Ratchet transport of interacting active Brownian particles
Energy Technology Data Exchange (ETDEWEB)
Ai, Bao-Quan, E-mail: aibq@hotmail.com [Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, 510006 Guangzhou (China); He, Ya-Feng [College of Physics Science and Technology, Hebei University, 071002 Baoding (China); Zhong, Wei-Rong, E-mail: wrzhong@jnu.edu.cn [Department of Physics and Siyuan Laboratory, College of Science and Engineering, Jinan University, 510632 Guangzhou (China)
2014-11-21
Directed transport of interacting active (self-propelled) Brownian particles is numerically investigated in confined geometries (entropic barriers). The self-propelled velocity can break thermodynamical equilibrium and induce the directed transport. It is found that the interaction between active particles can greatly affect the ratchet transport. For attractive particles, on increasing the interaction strength, the average velocity first decreases to its minima, then increases, and finally decreases to zero. For repulsive particles, when the interaction is very weak, there exists a critical interaction at which the average velocity is minimal, nearly tends to zero, however, for the strong interaction, the average velocity is independent of the interaction.
Ostoma, T; Ostoma, Tom; Trushyk, Mike
1999-01-01
We propose experiments that might be set up to detect the increase in the velocity of light in a vacuum in the laboratory frame for photons travelling between (and perpendicular to) the Casimir plates in a vacuum. The Casimir plates are two closely spaced, conductive plates, where an attractive force is observed to exist between the plates called the 'Casimir Force'. We propose that the velocity of light in a vacuum increases when propagating between two transparent Casimir Plates. We call this effect the 'Light Velocity Casimir Effect' or LVC effect. The LVC effect happens because the vacuum energy density in between the plates is lower than that outside the Casimir plates. The conductive plates disallow certain frequencies of electrically charged virtual particles to exist inside the plates, thus lowering the inside vacuum particle density, compared to the density outside the plates. The reduced (electrically charged) virtual particle density results in fewer photon scattering events inside the plates, whic...
Insights on tephra settling velocity from morphological observations
Alfano, Fabrizio; Bonadonna, Costanza; Delmelle, Pierre; Costantini, Licia
2011-12-01
In this study we present a systematic and detailed morphological characterization of tephra particles from different eruptions (Fontana Lapilli, Masaya, Nicaragua; Keanakāko'i Formation, Kilauea, USA; recent dome explosions of Soufriere Hills volcano, Montserrat) and the calculation of their Terminal Fall Velocity (TFV) as obtained based on different drag prediction models (i.e., Wilson and Huang, 1979; Haider and Levenspiel, 1989; Ganser, 1993; Dellino et al., 2005). In particular, particle sphericity, and, therefore, particle surface area, is essential for the calculation of TFV of irregular-shape particles but is of complex determination. Various attempts have been proposed. According to our results, 2D morphological characterization of volcanic particles is a fast and simple application for a wide range of particle size and provides consistent sphericity and settling-velocity values. 3D scanning also provides a promising tool for lapilli-sized tephra (> 2 cm). In contrast, gas-adsorption-derived surface area is not suitable for the calculation of TFV of volcanic particles mostly because it mainly describes the surface contribution of nanometric pores that are not expected to affect significantly TFV and because bulk-sample analysis is representative of neither individual particles nor of the whole particle population. Settling velocities calculated using values of surface area derived from gas adsorption analyses are up to two orders of magnitude lower than the values obtained through 2D analysis. In addition, our results also show how the influence of particle shape on TFV increases with particle size. In particular, calculated TFV converges at small particle sizes (≥ 3 ϕ) regardless of the model applied, suggesting that the spherical assumption is appropriate for this size fraction (discrepancies with the spherical model are within 10%). Discrepancies with the spherical model increase with particle size up to about 50% and depend on the choice of both the
Measuring Oscillatory Velocity Fields Due to Swimming Algae
Guasto, Jeffrey S; Gollub, J P
2010-01-01
In this fluid dynamics video, we present the first time-resolved measurements of the oscillatory velocity field induced by swimming unicellular microorganisms. Confinement of the green alga C. reinhardtii in stabilized thin liquid films allows simultaneous tracking of cells and tracer particles. The measured velocity field reveals complex time-dependent flow structures, and scales inversely with distance. The instantaneous mechanical power generated by the cells is measured from the velocity fields and peaks at 15 fW. The dissipation per cycle is more than four times what steady swimming would require.
Measurement of velocity field in parametrically excited solitary waves
Gordillo, Leonardo
2014-01-01
Paramerically excited solitary waves emerge as localized structures in high-aspect-ratio free surfaces subject to vertical vibrations. Herein, we provide the first experimental characterization of the hydrodynamics of thess waves using Particle Image Velocimetry. We show that the underlying velocity field of parametrically excited solitary waves is mainly composed by an oscillatory velocity field. Our results confirm the accuracy of Hamiltonian models with added dissipation in describing this field. Remarkably, our measurements also uncover the onset of a streaming velocity field which is shown to be as important as other crucial nonlinear terms in the current theory. The observed streaming pattern is particularly interesting due to the presence of oscillatory meniscii.
Superconducting spoke cavities for high-velocity applications
Energy Technology Data Exchange (ETDEWEB)
Hopper, Christopher S. [Old Dominion U.; Delayen, Jean R. [Old Dominion U., JLAB
2013-10-01
To date, superconducting spoke cavities have been designed, developed, and tested for particle velocities up to {beta}{sub 0}~0.6, but there is a growing interest in possible applications of multispoke cavities for high-velocity applications. We have explored the design parameter space for low-frequency, high-velocity, double-spoke superconducting cavities in order to determine how each design parameter affects the electromagnetic properties, in particular the surface electromagnetic fields and the shunt impedance. We present detailed design for cavities operating at 325 and 352 MHz and optimized for {beta}{sub 0}~=0.82 and 1.
Leading-Edge Velocities and Lifted Methane Jet Flame Stability
Directory of Open Access Journals (Sweden)
W. Wang
2010-01-01
Full Text Available Current interest exists in understanding reaction-zone dynamics and mechanisms with respect to how they counterpropagate against incoming reactants. Images of flame position and flow-field morphology are presented from flame chemiluminescence and particle image velocimetry (PIV measurements. In the present study, PIV experiments were carried out to measure the methane jet lifted-flame flow-field velocities in the vicinity of the flame leading edge. Specifically, velocity fields within the high-temperature zone were examined in detail, which complements previous studies, whose prime focus is the flow-field upstream of the high-temperature boundary. PIV data is used not only to determine the velocities, but, along with chemiluminescence images, to also indicate the approximate location of the reaction zone (further supported by/through the leading-edge flame velocity distributions. The velocity results indirectly support the concept that the flame is anchored primarily through the mechanism of partially premixed flame propagation.
Visual control of walking velocity.
François, Matthieu; Morice, Antoine H P; Bootsma, Reinoud J; Montagne, Gilles
2011-06-01
Even if optical correlates of self-motion velocity have already been identified, their contribution to the control of displacement velocity remains to be established. In this study, we used a virtual reality set-up coupled to a treadmill to test the role of both Global Optic Flow Rate (GOFR) and Edge Rate (ER) in the regulation of walking velocity. Participants were required to walk at a constant velocity, corresponding to their preferred walking velocity, while eye height and texture density were manipulated. This manipulation perturbed the natural relationship between the actual walking velocity and its optical specification by GOFR and ER, respectively. Results revealed that both these sources of information are indeed used by participants to control walking speed, as demonstrated by a slowing down of actual walking velocity when the optical specification of velocity by either GOFR or ER gives rise to an overestimation of actual velocity, and vice versa. Gait analyses showed that these walking velocity adjustments result from simultaneous adaptations in both step length and step duration. The role of visual information in the control of self-motion velocity is discussed in relation with other factors.
Dynamic Strengthening During High Velocity Shear Experiments with Siliceous Rocks
Liao, Z.; Chang, J. C.; Boneh, Y.; Chen, X.; Reches, Z.
2011-12-01
It is generally accepted that dynamic-weakening is essential for earthquake instability, and many experimental works have documented this weakening. Recent observations revealed also opposite trends of dynamic-strengthening in experiments (Reches & Lockner, 2010). We present here our experimental results of this dynamic-strengthening and discuss possible implications to earthquake behavior. We ran hundreds of experiments on experimental faults made of siliceous rock including granite, syenite, diorite, and quartzite. The experimental fault is comprised of two solid cylindrical blocks with a raised-ring contact of 7 cm diameter and 1 cm width. We recognized general, three regimes of strength-velocity relations: (I) Dynamic weakening (drop of 20-60% of static strength) as slip velocity increased from ~0.0003 m/s (lowest experimental velocity) to a critical velocity, Vc=0.008-0.16 m/s; (II) Abrupt transition to dynamic strengthening regime during which the fault strength almost regains its static strength; and (III) Quasi-constant strength with further possible drops as velocity approaches ~1 m/s. The critical velocity depends on the sample lithology: Vc is ~0.06 m/s for granite, ~0.008 m/s for syenite, ~0.01 m/s for diorite, and ~0.16 m/s for quartzite. The strengthening stage is associated with temperature increase, wear-rate increase, and the occurrence of intense, high frequency stick-slip events (Reches & Lockner, 2010). Sammis et al., (this meeting) attributed this strengthening to dehydration of the thin water layer that covers the gouge particles as the temperature increases. On the other hand, we note that tens of experiments with dolomite samples (non-siliceous), which were deformed under similar conditions, did not exhibit the velocity strengthening (unpublished). Based on the analyses by Andrews (2004, 2005), we speculate that velocity strengthening may bound the slip velocity. The numerical models of Andrews show that the slip velocity along a slip
Percolation velocity dependence on local concentration in bidisperse granular flows
Jones, Ryan P.; Xiao, Hongyi; Deng, Zhekai; Umbanhowar, Paul B.; Lueptow, Richard M.
The percolation velocity, up, of granular material in size or density bidisperse mixtures depends on the local concentration, particle size ratio, particle density ratio, and shear rate, γ ˙. Discrete element method computational results were obtained for bounded heap flows with size ratios between 1 and 3 and for density ratios between 1 and 4. The results indicate that small particles percolate downward faster when surrounded by large particles than large particles percolate upward when surrounded by small particles, as was recently observed in shear-box experiments. Likewise, heavy particles percolate downward faster when surrounded by light particles than light particles percolate upward when surrounded by heavy particles. The dependence of up / γ ˙ on local concentration results in larger percolation flux magnitudes at high concentrations of large (or light) particles compared to high concentrations of small (or heavy) particles, while local volumetric flux is conserved. The dependence of up / γ ˙ on local concentration can be incorporated into a continuum model, but the impact on global segregation patterns is usually minimal. Partially funded by Dow Chemical Company and NSF Grant No. CBET-1511450.
Diffusive transport by thermal velocity fluctuations.
Donev, Aleksandar; Bell, John B; de la Fuente, Anton; Garcia, Alejandro L
2011-05-20
We study the contribution of advection by thermal velocity fluctuations to the effective diffusion coefficient in a mixture of two identical fluids. We find good agreement between a simple fluctuating hydrodynamics theory and particle and finite-volume simulations. The enhancement of the diffusive transport depends on the system size L and grows as ln(L/L₀) in quasi-two-dimensional systems, while in three dimensions it scales as L₀⁻¹ - L⁻¹, where L₀ is a reference length. Our results demonstrate that fluctuations play an important role in the hydrodynamics of small-scale systems.
Particle Dispersion Behaviors of Dense Gas-Particle Flows in Bubble Fluidized Bed
Directory of Open Access Journals (Sweden)
Sihao Lv
2013-01-01
Full Text Available An Euler-Euler two-fluid model incorporating a developed momentum transfer empirical coefficient is developed to study the particle dispersion behaviors of dense gas-particle flows in gas-fluidization reactor. In this model, the four-way couplings among gas-particles, particle-gas, and particle-particle collisions are fully considered based on kinetic theory of granular flows and an improved smooth continuous drag coefficient is utilized. Gas turbulent flow is solved by large eddy simulation. The particle fraction, the time-averaged axial particle velocity, the histogram of particle fluctuation velocity, and the wavelet analysis of pressure signals are obtained. The results are in good agreement with experimental measurements. The mean value and the variance of axial particle velocity are greater than those of radial particle velocities. Particle collision frequencies at bubble vibrant movement regions along axial direction are much higher than those of radial direction and attenuated along height increase. Low-frequency component of pressure signal indicating the bubble movement behaviors in the center of reactor is stronger than wall regions. Furthermore, the negative values represent the passed bubble and positive peak values disclose the continuous motion of single bubble.
Sampara, Naresh; Turnbull, Barbara; Hill, Richard; Swift, Michael
2017-04-01
Granular interactions of ice occur in a range of geophysical, astrophysical and industrial applications. For example, Saturn's Rings are composed of icy particles from micrometers to kilometres in size - inertial and yet too small to interact gravitationally. In clouds, ice crystals are smashed to pieces before they re-aggregate to for snow floccules in a process that is very much open to interpretation. In a granular flow of ice particles, the energy spent in collisions can lead to localized surface changes and wetting, which in turn can promote aggregation. To understand the induced wetting and its effects, we present two novel experimental methods which provide snippets of insight into the collisional behaviour of macroscopic ice particles. Experiment 1: Microgravity experiments provide minute details of the contact between the ice particles during the collision. A diamagnetic levitation technique, as alternative to the parabolic flight or falling tower experiments, was used to understand the collisional behaviour of individual macroscopic icy bodies. A refrigerated cylinder, that can control ambient conditions, was inserted into the bore of an 18 Tesla superconducting magnet and cooled to -10°C. Initial binary collisions were created, where one 4 mm ice particle was levitated in the magnet bore whilst another particle was dropped vertically from the top of the bore. The trajectories of both particles were captured by high speed video to provide the three-dimensional particle velocities and track the collision outcome. Introducing complexity, multiple particles were levitated in the bore and an azimuthal turbulent air flow introduced, allowing the particles to collide with other particles within a coherent fluid structure (mimicking Saturn's rings, or an eddy in a cloud). In these experiments, a sequence of collisions occur, each one different to the previous one due to the changes in surface characteristics created by the collisions themselves. Aggregation
Development of an optimal velocity selection method with velocity obstacle
Energy Technology Data Exchange (ETDEWEB)
Kim, Min Geuk; Oh, Jun Ho [KAIST, Daejeon (Korea, Republic of)
2015-08-15
The Velocity obstacle (VO) method is one of the most well-known methods for local path planning, allowing consideration of dynamic obstacles and unexpected obstacles. Typical VO methods separate a velocity map into a collision area and a collision-free area. A robot can avoid collisions by selecting its velocity from within the collision-free area. However, if there are numerous obstacles near a robot, the robot will have very few velocity candidates. In this paper, a method for choosing optimal velocity components using the concept of pass-time and vertical clearance is proposed for the efficient movement of a robot. The pass-time is the time required for a robot to pass by an obstacle. By generating a latticized available velocity map for a robot, each velocity component can be evaluated using a cost function that considers the pass-time and other aspects. From the output of the cost function, even a velocity component that will cause a collision in the future can be chosen as a final velocity if the pass-time is sufficiently long enough.
Gaseous Detectors: Charged Particle Detectors - Particle Detectors and Detector Systems
Hilke, H J
2011-01-01
Gaseous Detectors in 'Charged Particle Detectors - Particle Detectors and Detector Systems', part of 'Landolt-Börnstein - Group I Elementary Particles, Nuclei and Atoms: Numerical Data and Functional Relationships in Science and Technology, Volume 21B1: Detectors for Particles and Radiation. Part 1: Principles and Methods'. This document is part of Part 1 'Principles and Methods' of Subvolume B 'Detectors for Particles and Radiation' of Volume 21 'Elementary Particles' of Landolt-Börnstein - Group I 'Elementary Particles, Nuclei and Atoms'. It contains the Subsection '3.1.2 Gaseous Detectors' of Section '3.1 Charged Particle Detectors' of Chapter '3 Particle Detectors and Detector Systems' with the content: 3.1.2 Gaseous Detectors 3.1.2.1 Introduction 3.1.2.2 Basic Processes 3.1.2.2.1 Gas ionization by charged particles 3.1.2.2.1.1 Primary clusters 3.1.2.2.1.2 Cluster size distribution 3.1.2.2.1.3 Total number of ion pairs 3.1.2.2.1.4 Dependence of energy deposit on particle velocity 3.1.2.2.2 Transport of...
Fuzzy logic particle tracking velocimetry
Wernet, Mark P.
1993-01-01
Fuzzy logic has proven to be a simple and robust method for process control. Instead of requiring a complex model of the system, a user defined rule base is used to control the process. In this paper the principles of fuzzy logic control are applied to Particle Tracking Velocimetry (PTV). Two frames of digitally recorded, single exposure particle imagery are used as input. The fuzzy processor uses the local particle displacement information to determine the correct particle tracks. Fuzzy PTV is an improvement over traditional PTV techniques which typically require a sequence (greater than 2) of image frames for accurately tracking particles. The fuzzy processor executes in software on a PC without the use of specialized array or fuzzy logic processors. A pair of sample input images with roughly 300 particle images each, results in more than 200 velocity vectors in under 8 seconds of processing time.
Examples of Vector Velocity Imaging
DEFF Research Database (Denmark)
Hansen, Peter M.; Pedersen, Mads M.; Hansen, Kristoffer L.
2011-01-01
To measure blood flow velocity in vessels with conventional ultrasound, the velocity is estimated along the direction of the emitted ultrasound wave. It is therefore impossible to obtain accurate information on blood flow velocity and direction, when the angle between blood flow and ultrasound wa...... with a 90° angle on the vessel. Moreover secondary flow in the abdominal aorta is illustrated by scanning on the transversal axis....
Ice Particle Impacts on a Moving Wedge
Vargas, Mario; Struk, Peter M.; Kreeger, Richard E.; Palacios, Jose; Iyer, Kaushik A.; Gold, Robert E.
2014-01-01
This work presents the results of an experimental study of ice particle impacts on a moving wedge. The experiment was conducted in the Adverse Environment Rotor Test Stand (AERTS) facility located at Penn State University. The wedge was placed at the tip of a rotating blade. Ice particles shot from a pressure gun intercepted the moving wedge and impacted it at a location along its circular path. The upward velocity of the ice particles varied from 7 to 12 meters per second. Wedge velocities were varied from 0 to 120 meters per second. Wedge angles tested were 0 deg, 30 deg, 45 deg, and 60 deg. High speed imaging combined with backlighting captured the impact allowing observation of the effect of velocity and wedge angle on the impact and the post-impact fragment behavior. It was found that the pressure gun and the rotating wedge could be synchronized to consistently obtain ice particle impacts on the target wedge. It was observed that the number of fragments increase with the normal component of the impact velocity. Particle fragments ejected immediately after impact showed velocities higher than the impact velocity. The results followed the major qualitative features observed by other researchers for hailstone impacts, even though the reduced scale size of the particles used in the present experiment as compared to hailstones was 4:1.
Velocity field calculation for non-orthogonal numerical grids
Energy Technology Data Exchange (ETDEWEB)
Flach, G. P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)
2015-03-01
Computational grids containing cell faces that do not align with an orthogonal (e.g. Cartesian, cylindrical) coordinate system are routinely encountered in porous-medium numerical simulations. Such grids are referred to in this study as non-orthogonal grids because some cell faces are not orthogonal to a coordinate system plane (e.g. xy, yz or xz plane in Cartesian coordinates). Non-orthogonal grids are routinely encountered at the Savannah River Site in porous-medium flow simulations for Performance Assessments and groundwater flow modeling. Examples include grid lines that conform to the sloping roof of a waste tank or disposal unit in a 2D Performance Assessment simulation, and grid surfaces that conform to undulating stratigraphic surfaces in a 3D groundwater flow model. Particle tracking is routinely performed after a porous-medium numerical flow simulation to better understand the dynamics of the flow field and/or as an approximate indication of the trajectory and timing of advective solute transport. Particle tracks are computed by integrating the velocity field from cell to cell starting from designated seed (starting) positions. An accurate velocity field is required to attain accurate particle tracks. However, many numerical simulation codes report only the volumetric flowrate (e.g. PORFLOW) and/or flux (flowrate divided by area) crossing cell faces. For an orthogonal grid, the normal flux at a cell face is a component of the Darcy velocity vector in the coordinate system, and the pore velocity for particle tracking is attained by dividing by water content. For a non-orthogonal grid, the flux normal to a cell face that lies outside a coordinate plane is not a true component of velocity with respect to the coordinate system. Nonetheless, normal fluxes are often taken as Darcy velocity components, either naively or with accepted approximation. To enable accurate particle tracking or otherwise present an accurate depiction of the velocity field for a non
Velocity Profiles between Two Baffles in a Horizontal Circular Tube
Institute of Scientific and Technical Information of China (English)
Tae-Hyun Chang; Hae-Soo Lee; Keon-Je Oh; Doeg Hee Doh; Chang-Hoan Lee
2014-01-01
The shell and tube heat exchanger is an essential part of a power plant for recovering heat transfer between the feed water of a boiler and the wasted heat.The baffles are also an important element inside the heat exchanger.Internal materials influence the flow pattern in the bed.The influence of baffles in the velocity profiles was observed using a three-dimensional particle image velocimetry around baffles in a horizontal circular tube.The velocity of the particles was measured before the baffle and between them in the test tube.Results show that the flows near the front baffle flow were parallel to the vertical wall,and then concentrate on the upper opening of the front baffle.The flows circulate in the front and rear baffles.These flow profiles are related to the Reynolds number (Re) or the flow intensity.The velocity profiles at lower Re number showed a complicated mixing,concentrating on the lower opening of the rear baffle as front wall.Swirling flow was employed in this study,which was produced using tangential velocities at the inlet.At the entrance of the front baffle,the velocity vector profiles with swirl were much different from that without swirl.However,velocities between two baffles are not much different from those without swirl.
Superconducting accelerating structures for very low velocity ion beams
Energy Technology Data Exchange (ETDEWEB)
Xu, J.; Shepard, K.W.; Ostroumov, P.N.; Fuerst, J.D.; Waldschmidt, G.; /Argonne; Gonin, I.V.; /Fermilab
2008-01-01
This paper presents designs for four types of very-low-velocity superconducting accelerating cavity capable of providing several MV of accelerating potential per cavity, and suitable for particle velocities in the range 0.006 < v/c < 0.06. Superconducting TEM-class cavities have been widely applied to CW acceleration of ion beams. SC linacs can be formed as an array of independently-phased cavities, enabling a variable velocity profile to maximize the output energy for each of a number of different ion species. Several laboratories in the US and Europe are planning exotic beam facilities based on SC linacs. The cavity designs presented here are intended for the front-end of such linacs, particularly for the post-acceleration of rare isotopes of low charge state. Several types of SC cavities have been developed recently to cover particle velocities above 0.06c. Superconducting four-gap quarter-wave resonators for velocities 0.008 < {beta} = v/c < 0.05 were developed about two decades ago and have been successfully operated at the ATLAS SC linac at Argonne National Laboratory. Since that time, progress in simulation tools, cavity fabrication and processing have increased SC cavity gradients by a factor of 3-4. This paper applies these tools to optimize the design of a four-gap quarter-wave resonator for exotic beam facilities and other low-velocity applications.
Superconducting accelerating structures for very low velocity ion beams
Directory of Open Access Journals (Sweden)
J. Xu
2008-03-01
Full Text Available This paper presents designs for four types of very-low-velocity superconducting (SC accelerating cavity capable of providing several MV of accelerating potential per cavity, and suitable for particle velocities in the range 0.006
Velocity profiles between two baffles in a horizontal circular tube
Chang, Tae-Hyun; Lee, Hae-Soo; Oh, Keon-Je; Doh, Doeg Hee; Lee, Chang-Hoan
2014-12-01
The shell and tube heat exchanger is an essential part of a power plant for recovering heat transfer between the feed water of a boiler and the wasted heat. The baffles are also an important element inside the heat exchanger. Internal materials influence the flow pattern in the bed. The influence of baffles in the velocity profiles was observed using a three-dimensional particle image velocimetry around baffles in a horizontal circular tube. The velocity of the particles was measured before the baffle and between them in the test tube. Results show that the flows near the front baffle flow were parallel to the vertical wall, and then concentrate on the upper opening of the front baffle. The flows circulate in the front and rear baffles. These flow profiles are related to the Reynolds number (Re) or the flow intensity. The velocity profiles at lower Re number showed a complicated mixing, concentrating on the lower opening of the rear baffle as front wall. Swirling flow was employed in this study, which was produced using tangential velocities at the inlet. At the entrance of the front baffle, the velocity vector profiles with swirl were much different from that without swirl. However, velocities between two baffles are not much different from those without swirl.
Motion of Euglena gracilis: Active fluctuations and velocity distribution
Romanczuk, P.; Romensky, M.; Scholz, D.; Lobaskin, V.; Schimansky-Geier, L.
2015-07-01
We study the velocity distribution of unicellular swimming algae Euglena gracilis using optical microscopy and active Brownian particle theory. To characterize a peculiar feature of the experimentally observed distribution at small velocities we use the concept of active fluctuations, which was recently proposed for the description of stochastically self-propelled particles [Romanczuk, P. and Schimansky-Geier, L., Phys. Rev. Lett. 106, 230601 (2011)]. In this concept, the fluctuating forces arise due to internal random performance of the propulsive motor. The fluctuating forces are directed in parallel to the heading direction, in which the propulsion acts. In the theory, we introduce the active motion via the depot model [Schweitzer, et al., Phys. Rev. Lett. 80(23), 5044 (1998)]. We demonstrate that the theoretical predictions based on the depot model with active fluctuations are consistent with the experimentally observed velocity distributions. In addition to the model with additive active noise, we obtain theoretical results for a constant propulsion with multiplicative noise.
Three Kinds of Velocity Structure Function in Turbulent Flows
Institute of Scientific and Technical Information of China (English)
LIU Wei; JIANG Nan
2004-01-01
Based on the local multi-scale eddy structures in turbulent flows, we elucidate the essential difference between the real turbulent field with a finite Reynolds number and the Kolmogorov fully developed random field. The motion of fluid particles in the real turbulent field is not fully random. There exist multi-scale structures due to the effect of viscosity. Actually the movements of fluid particles in the turbulent field are restricted by such eddy structures. Furthermore, concept of the locally averaged velocity structure function is put forward to describe the relative strain distortion of two adjacent turbulent eddy structures at a certain scale. The time sequence of the longitudinal velocity component at different vertical locations in turbulent boundary layer has been elaborately measured by the constant temperature anemometry of model IFA-300 in a wind tunnel. The experiment proves that the locally averaged velocity structure function is in agreement with the wavelet-coefficient structure function.
Asymmetry of Coordinate and Velocity in Noisy Oscillator
Institute of Scientific and Technical Information of China (English)
SONG Yan-Li; BAO Jing-Dong; WANG Hai-Yan; JI Qing
2005-01-01
The velocity variable of a noise oscillator as an internal or external noise is proposed, the spectrum of which is quite different from that of the coordinate variable of the same noise oscillator. The former leads to ballistic diffusion for a free particle in long time limit and the asymptotical results of the system are sensitive to the initial condition. However, diffusion process induced by the coordinate of noise oscillator is a normal one and depends on the initial condition only in the transient time. This allows us to classify two kinds of non-Markovian processes: normal one and strong one, just like the processes induced by the coordinate and the velocity of noise oscillator, respectively.Applying to a correlation ratchet, we have found that the steady current of a particle subjected to the velocity of noise oscillator is opposite to that subjected to its coordinate, thus the former shows greenness and the latter redness.
Velocity and rotation measurements in acoustically levitated droplets
Energy Technology Data Exchange (ETDEWEB)
Saha, Abhishek [University of Central Florida, Orlando, FL 32816 (United States); Basu, Saptarshi [Indian Institute of Science, Bangalore 560012 (India); Kumar, Ranganathan, E-mail: ranganathan.kumar@ucf.edu [University of Central Florida, Orlando, FL 32816 (United States)
2012-10-01
The velocity scale inside an acoustically levitated droplet depends on the levitator and liquid properties. Using Particle Imaging Velocimetry (PIV), detailed velocity measurements have been made in a levitated droplet of different diameters and viscosity. The maximum velocity and rotation are normalized using frequency and amplitude of acoustic levitator, and droplet viscosity. The non-dimensional data are fitted for micrometer- and millimeter-sized droplets levitated in different levitators for different viscosity fluids. It is also shown that the rotational speed of nanosilica droplets at an advanced stage of vaporization compares well with that predicted by exponentially fitted parameters. -- Highlights: ► Demonstrates the importance of rotation in a levitated droplet that leads to controlled morphology. ► Provides detailed measurements of Particle Image Velocimetry inside levitated droplets. ► Shows variation of vortex strength with the droplet diameter and viscosity of the liquid.
Sodium Velocity Maps on Mercury
Potter, A. E.; Killen, R. M.
2011-01-01
The objective of the current work was to measure two-dimensional maps of sodium velocities on the Mercury surface and examine the maps for evidence of sources or sinks of sodium on the surface. The McMath-Pierce Solar Telescope and the Stellar Spectrograph were used to measure Mercury spectra that were sampled at 7 milliAngstrom intervals. Observations were made each day during the period October 5-9, 2010. The dawn terminator was in view during that time. The velocity shift of the centroid of the Mercury emission line was measured relative to the solar sodium Fraunhofer line corrected for radial velocity of the Earth. The difference between the observed and calculated velocity shift was taken to be the velocity vector of the sodium relative to Earth. For each position of the spectrograph slit, a line of velocities across the planet was measured. Then, the spectrograph slit was stepped over the surface of Mercury at 1 arc second intervals. The position of Mercury was stabilized by an adaptive optics system. The collection of lines were assembled into an images of surface reflection, sodium emission intensities, and Earthward velocities over the surface of Mercury. The velocity map shows patches of higher velocity in the southern hemisphere, suggesting the existence of sodium sources there. The peak earthward velocity occurs in the equatorial region, and extends to the terminator. Since this was a dawn terminator, this might be an indication of dawn evaporation of sodium. Leblanc et al. (2008) have published a velocity map that is similar.
Deposition and Resuspension of Particles
DEFF Research Database (Denmark)
Lengweiler, P.; Nielsen, Peter V.; Moser, A.
To investigate the physical process of deposition and resuspension of particles in the indoor environment, scale experiments are used and a sampling method is established. The influences of surface orientation and turbulence and velocity of the air on the dust load on a surface are analysed....
Mello, Michael; Bhat, Harsha S.; Rosakis, Ares J.
2016-08-01
Fundamental spatiotemporal field properties and particle velocity waveform signatures of sub-Rayleigh and supershear ruptures were experimentally investigated through a series of laboratory earthquake experiments. We appeal to dynamic rupture theory to extract and highlight previously unnoticed aspects and results, which are of direct relevance to our new experiments. Kinematic relationships derived from both singular and non-singular solutions are applied to analyze and interpret various features observed in these experiments. A strong correspondence is demonstrated between particle velocity records obtained in lab experiments and synthetic particle velocity waveform profiles derived from theory. Predicted temporal profiles, sense of particle motion, and amplitude decay properties of sub-Rayleigh and supershear particle velocity waveforms are experimentally verified. In a particular set of supershear rupture experiments, the fault-normal (FN) and fault-parallel (FP) velocity waveforms were simultaneously recorded at fixed, off-fault field points as a shear Mach front swept these locations. Particle velocity records collected over a broad range of stable supershear rupture speeds validate the predicted scaling relationship δu˙1s / δu˙2s =√{Vr2 / Cs2-1 } =βs, between the FP (δu1ṡ) and the FN (δu2ṡ) velocity jumps propagated by a shear Mach front. Additional experimental findings include detailed rupture speed measurements of sub-Rayleigh and supershear ruptures and the observation of a supershear daughter crack with vanishing shear Mach front.
Introduction to vector velocity imaging
DEFF Research Database (Denmark)
Jensen, Jørgen Arendt; Udesen, Jesper; Hansen, Kristoffer Lindskov;
Current ultrasound scanners can only estimate the velocity along the ultrasound beam and this gives rise to the cos() factor on all velocity estimates. This is a major limitation as most vessels are close to perpendicular to the beam. Also the angle varies as a function of space and time making...
Instantaneous Velocity Using Photogate Timers
Wolbeck, John
2010-01-01
Photogate timers are commonly used in physics laboratories to determine the velocity of a passing object. In this application a card attached to a moving object breaks the beam of the photogate timer providing the time for the card to pass. The length L of the passing card can then be divided by this time to yield the average velocity (or speed)…
Directory of Open Access Journals (Sweden)
Sergey PLOTNIKOV
2014-09-01
Full Text Available The simulation from the motion of flat particle revealed that the fall depends on the height of the drop, the thickness and density of the particles and does not depend on its length and width. The drop in air is about 20% longer than in vacuum. During orientation from angular particles the velocity of rotating particles with a length of 150mm is reduced by 18%, for particles with a length of 75mm by 12%. This reduction increases linearly with decreasing density of particles. A velocity field acting on the particle in the fall and rotation was presented. The results of the study prove the possibility to reduce the scatter of the particles during the mat's formation, that in turns can increase the board’s bending strength.
Experimental study of high temperature particle dropping in coolant liquid
Institute of Scientific and Technical Information of China (English)
LI Tianshu; YANG Yanhua; LI Xiaoyan; HU Zhihua
2007-01-01
A series of experiments of the premixing stage of fuel-coolant interactions (FCI), namely the particles falling into water, were carried out. The force on the particles during the course of falling has been studied. The dropping character of hot particle was influenced by three main parameters, i.e., particle temperature, particle diameter and coolant subcooling that varied over a wide range. A high-speed camera recorded the falling speed of the particle and the moving curves were obtained. The experimental results showed that for the film boiling on the surface of particle and water, the temperature increase of either particle or coolant would slow down the particle falling velocity. The falling velocity of particle in small diameter is lower than that of the bigger particle. The present work can provide an experimental foundation for further investigation of high-speed transient evaporation heat transfer.
Streamwise decrease of the 'unsteady' virtual velocity of gravel tracers
Klösch, Mario; Gmeiner, Philipp; Habersack, Helmut
2017-04-01
Gravel tracers are usually inserted and transported on top of the riverbed, before they disperse vertically and laterally due to periods of intense bedload, the passage of bed forms, lateral channel migration and storage on bars. Buried grains have a lower probability of entrainment, resulting in a reduction of overall mobility, and, on average, in a deceleration of the particles with distance downstream. As a consequence, the results derived from tracer experiments and their significance for gravel transport may depend on the time scale of the investigation period, complicating the comparison of results from different experiments. We developed a regression method, which establishes a direct link between the transport velocity and the unsteady flow variables to yield an 'unsteady' virtual velocity, while considering the tracer slowdown with distance downstream in the regression. For that purpose, the two parameters of a linear excess shear velocity formula (the critical shear velocity u*c and coefficient a) were defined as functions of the travelled distance since the tracer's insertion. Application to published RFID tracer data from the Mameyes River, Puerto Rico, showed that during the investigation period the critical shear velocity u*c of tracers representing the median bed particle diameter (0.11 m) increased from 0.36 m s-1 to 0.44 m s-1, while the coefficient a decreased from the dimensionless value of 4.22 to 3.53, suggesting a reduction of the unsteady virtual velocity at the highest shear velocity in the investigation period from 0.40 m s-1 to 0.08 m s-1. Consideration of the tracer slowdown improved the root mean square error of the calculated mean displacements of the median bed particle diameter from 8.82 m to 0.34 m. As in previous work these results suggest the need of considering the history of transport when deriving travel distances and travel velocities, depending on the aim of the tracer study. The introduced method now allows estimating the
Rainbow Particle Imaging Velocimetry
Xiong, Jinhui
2017-04-27
Despite significant recent progress, dense, time-resolved imaging of complex, non-stationary 3D flow velocities remains an elusive goal. This work tackles this problem by extending an established 2D method, Particle Imaging Velocimetry, to three dimensions by encoding depth into color. The encoding is achieved by illuminating the flow volume with a continuum of light planes (a “rainbow”), such that each depth corresponds to a specific wavelength of light. A diffractive component in the camera optics ensures that all planes are in focus simultaneously. With this setup, a single color camera is sufficient to track 3D trajectories of particles by combining 2D spatial and 1D color information. For reconstruction, this thesis derives an image formation model for recovering stationary 3D particle positions. 3D velocity estimation is achieved with a variant of 3D optical flow that accounts for both physical constraints as well as the rainbow image formation model. The proposed method is evaluated by both simulations and an experimental prototype setup.
Diffraction imaging and velocity analysis using oriented velocity continuation
Decker, Luke
2014-08-05
We perform seismic diffraction imaging and velocity analysis by separating diffractions from specular reflections and decomposing them into slope components. We image slope components using extrapolation in migration velocity in time-space-slope coordinates. The extrapolation is described by a convection-type partial differential equation and implemented efficiently in the Fourier domain. Synthetic and field data experiments show that the proposed algorithm is able to detect accurate time-migration velocities by automatically measuring the flatness of events in dip-angle gathers.
Analysis of Enhanced Velocity Signals Observed during Solar Flares
Indian Academy of Sciences (India)
Brajesh Kumar; B. Ravindra
2006-12-01
Solar flares are known to release a large amount of energy. It is believed that the flares can excite velocity oscillations in active regions. We report here the changes in velocity signals in three active regions which have produced large X-class flares. The enhanced velocity signals appeared during the rise time of the GOES soft X-ray flux. These signals are located close to the vicinity of the hard X-ray source regions as observed with RHESSI. The power maps of the active region show enhancement in the frequency regime 5–6.5 mHz, while there is feeble or no enhancement of these signals in 2–4 mHz frequency band. High energy particles with sufficient momentum seem to be the cause for these observed enhanced velocity signals.
Reconstructing the three-dimensional local dark matter velocity distribution
Kavanagh, Bradley J
2016-01-01
Directionally sensitive dark matter (DM) direct detection experiments present the only way to observe the full three-dimensional velocity distribution of the Milky Way halo local to Earth. In this work we compare methods for extracting information about the local DM velocity distribution from a set of recoil directions and energies in a range of hypothetical directional and non-directional experiments. We compare a model independent empirical parameterisation of the velocity distribution based on an angular discretisation with a model dependent approach which assumes knowledge of the functional form of the distribution. The methods are tested under three distinct halo models which cover a range of possible phase space structures for the local velocity distribution: a smooth Maxwellian halo, a tidal stream and a debris flow. In each case we use simulated directional data to attempt to reconstruct the shape and parameters describing each model as well as the DM particle properties. We find that the empirical pa...
Effects of Particles Collision on Separating Gas–Particle Two-Phase Turbulent Flows
Sihao, L. V.
2013-10-10
A second-order moment two-phase turbulence model incorporating a particle temperature model based on the kinetic theory of granular flow is applied to investigate the effects of particles collision on separating gas–particle two-phase turbulent flows. In this model, the anisotropy of gas and solid phase two-phase Reynolds stresses and their correlation of velocity fluctuation are fully considered using a presented Reynolds stress model and the transport equation of two-phase stress correlation. Experimental measurements (Xu and Zhou in ASME-FED Summer Meeting, San Francisco, Paper FEDSM99-7909, 1999) are used to validate this model, source codes and prediction results. It showed that the particles collision leads to decrease in the intensity of gas and particle vortices and takes a larger effect on particle turbulent fluctuations. The time-averaged velocity, the fluctuation velocity of gas and particle phase considering particles colli-sion are in good agreement with experimental measurements. Particle kinetic energy is always smaller than gas phase due to energy dissipation from particle collision. Moreover, axial– axial and radial–radial fluctuation velocity correlations have stronger anisotropic behaviors. © King Fahd University of Petroleum and Minerals 2013
Are There Faster Than Light Particles?
Kreisler, Michael N.
1969-01-01
Based upon recent relativistic theory, the researcher describes the search for tachyons, particles having velocities greater than that of a light. The properties of these particles are speculated upon. The author delineates the difficulties anticipated in their detection and the assumptions underlying their methodology. (RR)
Flow of colloid particle solution past macroscopic bodies and drag crisis
Energy Technology Data Exchange (ETDEWEB)
Iordanskii, S. V., E-mail: iordansk@itp.ac.ru [Russian Academy of Sciences, Landau Institute for Theoretical Physics (Russian Federation)
2013-11-15
The motion of colloid particles in a viscous fluid flow is considered. Small sizes of colloid particles as compared to the characteristic scale of the flow make it possible to calculate their velocity relative to the liquid. If the density of a colloid particle is higher than the density of the liquid, the flow splits into regions in which the velocity of colloid particles coincides with the velocity of the liquid and regions of flow stagnation in which the colloid velocity is higher than the velocity of the fluid. This effect is used to explain qualitatively the decrease in the drag to the flows past macroscopic bodies and flows in pipes.
Dynamics of finite size neutrally buoyant particles in isotropic turbulence
Energy Technology Data Exchange (ETDEWEB)
Elhimer, M; Jean, A; Praud, O; Bazile, R; Marchal, M; Couteau, G, E-mail: elhimer@imft.fr [Universite de Toulouse, INPT, UPS, IMFT - Institut de Mecanique des Fluides de Toulouse, Allee Camille Soula, F-31400 Toulouse (France); CNRS, IMFT, F-31400 Toulouse (France)
2011-12-22
The dynamics of neutrally buoyant particles suspended in a turbulent flow is investigated experimentally, with particles having diameters larger than the Kolmogorov length scale. To that purpose, a turbulence generator have been constructed and the resulting flow characterized. The fluid was then seeded with polystyrene particles of diameter about 1 mm and their velocity measured separately and simultaneously with the surrounding fluid. Comparison of the velocities statistics between the two phases shows no appreciable discrepancy. However, simultaneous velocity measurement shows that particles may move in different direction from the underlying flow.
Three Component Velocity and Acceleration Measurement Using FLEET
Danehy, Paul M.; Bathel, Brett F.; Calvert, Nathan; Dogariu, Arthur; Miles, Richard P.
2014-01-01
The femtosecond laser electronic excitation and tagging (FLEET) method has been used to measure three components of velocity and acceleration for the first time. A jet of pure N2 issuing into atmospheric pressure air was probed by the FLEET system. The femtosecond laser was focused down to a point to create a small measurement volume in the flow. The long-lived lifetime of this fluorescence was used to measure the location of the tagged particles at different times. Simultaneous images of the flow were taken from two orthogonal views using a mirror assembly and a single intensified CCD camera, allowing two components of velocity to be measured in each view. These different velocity components were combined to determine three orthogonal velocity components. The differences between subsequent velocity components could be used to measure the acceleration. Velocity accuracy and precision were roughly estimated to be +/-4 m/s and +/-10 m/s respectively. These errors were small compared to the approx. 100 m/s velocity of the subsonic jet studied.
DEFF Research Database (Denmark)
Bekö, Gabriel; Weschler, Charles J.; Wierzbicka, Aneta;
2013-01-01
Particle number (PN) concentrations (10-300 nm in size) were continuously measured over a period of ∼45 h in 56 residences of nonsmokers in Copenhagen, Denmark. The highest concentrations were measured when occupants were present and awake (geometric mean, GM: 22.3 × 103 cm-3), the lowest when...... the homes were vacant (GM: 6.1 × 103 cm-3) or the occupants were asleep (GM: 5.1 × 103 cm-3). Diary entries regarding occupancy and particle related activities were used to identify source events and apportion the daily integrated exposure among sources. Source events clearly resulted in increased PN...... concentrations and decreased average particle diameter. For a given event, elevated particle concentrations persisted for several hours after the emission of fresh particles ceased. The residential daily integrated PN exposure in the 56 homes ranged between 37 × 103 and 6.0 × 106 particles per cm3·h/day (GM: 3...
Energy Technology Data Exchange (ETDEWEB)
Raju, M.R.
1993-09-01
Particle therapy has a long history. The experimentation with particles for their therapeutic application got started soon after they were produced in the laboratory. Physicists played a major role in proposing the potential applications in radiotherapy as well as in the development of particle therapy. A brief review of the current status of particle radiotherapy with some historical perspective is presented and specific contributions made by physicists will be pointed out wherever appropriate. The rationale of using particles in cancer treatment is to reduce the treatment volume to the target volume by using precise dose distributions in three dimensions by using particles such as protons and to improve the differential effects on tumors compared to normal tissues by using high-LET radiations such as neutrons. Pions and heavy ions combine the above two characteristics.
DEFF Research Database (Denmark)
Zhang, Y.-B.; Chen, X.-Z.; Jacobsen, Finn
2009-01-01
on particle velocity input data than when it is based on measurements of sound pressure data, and this is confirmed by a simulation study and by experimental results. A method that combines pressure- and particle velocity-based reconstructions in order to distinguish between contributions to the sound field......The advantage of using the normal component of the particle velocity rather than the sound pressure in the hologram plane as the input of conventional spatial Fourier transform based near field acoustic holography (NAH) and also as the input of the statistically optimized variant of NAH has...... recently been demonstrated. This paper examines whether there might be a similar advantage in using the particle velocity as the input of NAH based on the equivalent source method (ESM). Error sensitivity considerations indicate that ESM-based NAH is less sensitive to measurement errors when it is based...
A particle-particle collision strategy for arbitrarily shaped particles at low Stokes numbers
Daghooghi, Mohsen; Borazjani, Iman
2016-11-01
We present a collision strategy for particles with any general shape at low Stokes numbers. Conventional collision strategies rely upon a short -range repulsion force along particles centerline, which is a suitable choice for spherical particles and may not work for complex-shaped particles. In the present method, upon the collision of two particles, kinematics of particles are modified so that particles have zero relative velocity toward each other along the direction in which they have the minimum distance. The advantage of this novel technique is that it guaranties to prevent particles from overlapping without unrealistic bounce back at low Stokes numbers, which may occur if repulsive forces are used. This model is used to simulate sedimentation of many particles in a vertical channel and suspensions of non-spherical particles under simple shear flow. This work was supported by the American Chemical Society (ACS) Petroleum Research Fund (PRF) Grant Number 53099-DNI9. The computational resources were partly provided by the Center for Computational Research (CCR) at the University at Buffalo.
Martin, B R
2008-01-01
An essential introduction to particle physics, with coverage ranging from the basics through to the very latest developments, in an accessible and carefully structured text. Particle Physics: Third Edition is a revision of a highly regarded introduction to particle physics. In its two previous editions this book has proved to be an accessible and balanced introduction to modern particle physics, suitable for those students needed a more comprehensive introduction to the subject than provided by the 'compendium' style physics books. In the Third Edition the standard mod
An active particle in a complex fluid
Datt, Charu; Natale, Giovanniantonio; Hatzikiriakos, Savvas G.; Elfring, Gwynn J.
2016-11-01
Active particles are self-driven units capable of converting stored or ambient free-energy into systematic movement. We discuss here the case when such particles move through non-Newtonian fluids. Neglecting inertial forces, we employ the reciprocal theorem to calculate the propulsion velocity of a single swimmer in a weakly non-Newtonian fluid with background flow. We also derive a general expression for the velocity of an active particle modelled as a squirmer in a second-order fluid. We then discuss how active colloids are affected by the medium rheology, namely viscoelasticity and shear-thinning.
An angular momentum conserving Affine-Particle-In-Cell method
Jiang, Chenfanfu; Teran, Joseph
2016-01-01
We present a new technique for transferring momentum and velocity between particles and grid with Particle-In-Cell (PIC) calculations which we call Affine-Particle-In-Cell (APIC). APIC represents particle velocities as locally affine, rather than locally constant as in traditional PIC. We show that this representation allows APIC to conserve linear and angular momentum across transfers while also dramatically reducing numerical diffusion usually associated with PIC. Notably, conservation is achieved with lumped mass, as opposed to the more commonly used Fluid Implicit Particle (FLIP) transfers which require a 'full' mass matrix for exact conservation. Furthermore, unlike FLIP, APIC retains a filtering property of the original PIC and thus does not accumulate velocity modes on particles as FLIP does. In particular, we demonstrate that APIC does not experience velocity instabilities that are characteristic of FLIP in a number of Material Point Method (MPM) hyperelasticity calculations. Lastly, we demonstrate th...
DISPERSION OF CYLINDRICAL PARTICLES IN TURBULENT FLOWS
Institute of Scientific and Technical Information of China (English)
GAO Zhen-yu; LIN Jian-zhong
2004-01-01
With consideration of the Stokes drag and virtual mass force, the equations for mean and fluctuating velocities in rotation and translation were given for rigid cylindrical particles moving in a turbulent flow. Then the rotational and translational dispersion coefficients of particle were derived. The relationships between the dispersion coefficients and flow length scale as well as particle characteristic parameters were analyzed. The resulting dispersion coefficients were proved to decrease as the particle length increases. The conclusions are helpful for the further research on the motion of cylindrical particles in turbulent flows.
Particle Transport in Parallel-Plate Reactors
Energy Technology Data Exchange (ETDEWEB)
Rader, D.J.; Geller, A.S.
1999-08-01
velocity at the showerhead exit as a function of showerhead geometry, flow rate, and gas and particle properties. The particle showerhead-exit velocity is next used as an initial condition for particle transport between the plates to determine whether the particle deposits on the wafer, as a function of shower-head-exit particle velocity, the plate separation, flow rate, and gas and particle properties. Based on the numerical analysis, recommendations of best practices are presented that should help tool operators and designers reduce particle deposition in real tools. These guidelines are not intended to replace detailed calculations, but to provide the user with a general feel for inherently-clean practices.
About the kinematics of spinning particles
Energy Technology Data Exchange (ETDEWEB)
Salesi, G. [Catania Univ. (Italy). Dip. di Fisica]|[INFN, Sezione di Catania (Italy); Recami, E. [Bergamo Univ. (Italy). Facolta` di Ingegneria]|[INFN, Sezione di Milano (Italy)]|[Campinas State Univ., S.P. (Brazil). Dept. of Applied Mathematics
1995-06-01
Inserting the correct Lorentz factor into the definition of the 4-velocity v{mu} for spinning particles entails new kinematical properties for v{sup 2}. The well-know constraint (identically true for scalar particles, but entering also the Dirac theory, and assumed a priori in all spinning particle models) P{sub {mu}}v{sup {mu}}=m is here derived in a self-consistent way.
Neutrino Velocity and Neutrino Oscillations
Minakata, H
2012-01-01
We study distances of propagation and the group velocities of the muon neutrinos in the presence of mixing and oscillations assuming that Lorentz invariance holds. Oscillations lead to distortion of the $\
Statistics of Centroids of Velocity
Esquivel, A
2009-01-01
We review the use of velocity centroids statistics to recover information of interstellar turbulence from observations. Velocity centroids have been used for a long time now to retrieve information about the scaling properties of the turbulent velocity field in the interstellar medium. We show that, while they are useful to study subsonic turbulence, they do not trace the statistics of velocity in supersonic turbulence, because they are highly influenced by fluctuations of density. We show also that for sub-Alfv\\'enic turbulence (both supersonic and subsonic) two-point statistics (e.g. correlation functions or power-spectra) are anisotropic. This anisotropy can be used to determine the direction of the mean magnetic field projected in the plane of the sky.
Can phoretic particles swim in two dimensions?
Sondak, David; Heng, Siyu; Vinsonhaler, Rebecca; Lauga, Eric; Thiffeault, Jean-Luc
2016-01-01
Artificial phoretic particles swim using self-generated gradients in chemical species (self-diffusiophoresis) or charges and currents (self-electrophoresis). These particles can be used to study the physics of collective motion in active matter and might have promising applications in bioengineering. In the case of self-diffusiophoresis, the classical physical model relies on a steady solution of the diffusion equation, from which chemical gradients, phoretic flows and ultimately the swimming velocity, may be derived. Motivated by disk-shaped particles in thin films and under confinement, we examine the extension to two dimensions. Because the two-dimensional diffusion equation lacks a steady state with the correct boundary conditions, Laplace transforms must be used to study the long-time behavior of the problem and determine the swimming velocity. For fixed chemical fluxes on the particle surface, we find that the swimming velocity ultimately always decays logarithmically in time. In the case of finite Pecl...
Anisotropic enhancement of group velocity in a homogenized dielectric composite medium
Mackay, Tom G.; Lakhtakia, Akhlesh
2005-01-01
Under certain circumstances, the group velocity in a homogenized composite medium (HCM) can exceed the group velocity in its component material phases. We explore this phenomenon for a uniaxial dielectric HCM comprising isotropic component material phases distributed as oriented spheroidal particles. The theoretical approach is based upon the Bruggeman homogenization formalism. Enhancement in group velocity in the HCM with respect to the component material phases is shown to be sensitively de...
Event Detection by Velocity Pyramid
2014-01-01
In this paper, we propose velocity pyramid for multimediaevent detection. Recently, spatial pyramid matching is proposed to in-troduce coarse geometric information into Bag of Features framework,and is eective for static image recognition and detection. In video, notonly spatial information but also temporal information, which repre-sents its dynamic nature, is important. In order to fully utilize it, wepropose velocity pyramid where video frames are divided into motionalsub-regions. Our meth...
Echo particle image velocimetry.
DeMarchi, Nicholas; White, Christopher
2012-12-27
The transport of mass, momentum, and energy in fluid flows is ultimately determined by spatiotemporal distributions of the fluid velocity field.(1) Consequently, a prerequisite for understanding, predicting, and controlling fluid flows is the capability to measure the velocity field with adequate spatial and temporal resolution.(2) For velocity measurements in optically opaque fluids or through optically opaque geometries, echo particle image velocimetry (EPIV) is an attractive diagnostic technique to generate "instantaneous" two-dimensional fields of velocity.(3,4,5,6) In this paper, the operating protocol for an EPIV system built by integrating a commercial medical ultrasound machine(7) with a PC running commercial particle image velocimetry (PIV) software(8) is described, and validation measurements in Hagen-Poiseuille (i.e., laminar pipe) flow are reported. For the EPIV measurements, a phased array probe connected to the medical ultrasound machine is used to generate a two-dimensional ultrasound image by pulsing the piezoelectric probe elements at different times. Each probe element transmits an ultrasound pulse into the fluid, and tracer particles in the fluid (either naturally occurring or seeded) reflect ultrasound echoes back to the probe where they are recorded. The amplitude of the reflected ultrasound waves and their time delay relative to transmission are used to create what is known as B-mode (brightness mode) two-dimensional ultrasound images. Specifically, the time delay is used to determine the position of the scatterer in the fluid and the amplitude is used to assign intensity to the scatterer. The time required to obtain a single B-mode image, t, is determined by the time it take to pulse all the elements of the phased array probe. For acquiring multiple B-mode images, the frame rate of the system in frames per second (fps) = 1/δt. (See 9 for a review of ultrasound imaging.) For a typical EPIV experiment, the frame rate is between 20-60 fps
ADSORPTION OF NANO-PARTICLES ON BUBBLE SURFACE IN NANO-PARTICLE SUSPENSION
Institute of Scientific and Technical Information of China (English)
Buxuan Wang; Chunhui Li; Xiaofeng Peng
2005-01-01
The adsorption of nano-particles on bubble surface is discussed for saturated boiling on thin wire of nano-particle suspensions. Owing to the decrease of surface tension for suspensions, the nano-particles tend to adsorb on the bubble surface to decrease the Gibbs free energy for stability, and meanwhile the velocity of nano-particles would be smaller than that of bubble growth. The long-range van der Waals force existing between "water particles" and nano-particles is considered the attractive force between the nano-particles and the bubble surface. Thus, the nano-particles would attach on the bubble surface if the particle-surface distance is smaller than its critical value. The distribution of nano-particles on the bubble surface and in the adjacent region is also investigated.
Velocity Measurements of Turbulent Wake Flow Over a Circular Cylinder
Shih, Chang-Lung; Chen, Wei-Cheng; Chang, Keh-Chin; Wang, Muh-Rong
2016-06-01
There are two general concerns in the velocity measurements of turbulence. One is the temporal characteristics which governs the turbulent mixing process. Turbulence is rotational and is characterized by high levels of fluctuating vorticity. In order to obtain the information of vorticity dynamics, the spatial characteristics is the other concern. These varying needs can be satisfied by using a variety of diagnostic techniques such as invasive physical probes and non-invasive optical instruments. Probe techniques for the turbulent measurements are inherently simple and less expensive than optical methods. However, the presence of a physical probe may alter the flow field, and velocity measurements usually become questionable when probing recirculation zones. The non-invasive optical methods are mostly made of the foreign particles (or seeding) instead of the fluid flow and are, thus, of indirect method. The difference between the velocities of fluid and foreign particles is always an issue to be discussed particularly in the measurements of complicated turbulent flows. Velocity measurements of the turbulent wake flow over a circular cylinder will be made by using two invasive instruments, namely, a cross-type hot-wire anemometry (HWA) and a split-fiber hot-film anemometry (HFA), and a non-invasive optical instrument, namely, particle image velocimetry (PIV) in this study. Comparison results show that all three employed diagnostic techniques yield similar measurements in the mean velocity while somewhat deviated results in the root-mean-squared velocity, particularly for the PIV measurements. It is demonstrated that HFA possesses more capability than HWA in the flow measurements of wake flow. Wake width is determined in terms of either the flatness factor or shear-induced vorticity. It is demonstrated that flow data obtained with the three employed diagnostic techniques are capable of yielding accurate determination of wake width.
DISCRETE PARTICLE SIMULATION OF SIZE SEGREGATION OF PARTICLE MIXTURES IN A GAS FLUIDIZED BED
Institute of Scientific and Technical Information of China (English)
Y. Q. Feng; A. B. Yu
2006-01-01
This paper presents a study of the mixing/segregation behaviour of particle mixtures in a gas fluidized bed by use of the discrete particle simulation. Spherical particles with diameters 2 mm (jetsam) and 1 mm (flotsam) and density 2 500 kg·m-3 are used as solid mixtures with different volume fractions. The particles are initially packed uniformly in a rectangular bed and then fluidized by gas uniformly injected at the bottom of the bed. The gas injection velocities vary to cover fixed, partially and fully fluidized bed conditions. Segregation/mixing behaviour is discussed in terms of flow patterns, solid concentration profile and mixing kinetics. The results show that segregation, as a transient fluidization process, is strongly affected by gas injection velocities for a given particle mixture. With the increase of the volume fraction of flotsam, size segregation appears at lower velocities.
Direct numerical simulation of particles in a turbulent channel flow
Tyagi, Ankit; Kumaran, Vishwanathan
2016-11-01
Goswami and Kumaran(2009a,b,2011a) studied the effect of fluid turbulence on particle phase in DNS.However,their studies were restricted to one way coupling where the effect of particles on fluid turbulence was not incorporated. We have extended their work by formulating a reverse force treatment through multipole expansion for the particle disturbance to the fluid turbulence.Here,the fluid velocity, strain rate and rotation rate at the particle position are used,as a far field,to calculate the disturbance caused by the particle and relaxing the point particle approximation.The simulations are done at high Stokes number where the fluid velocity fluctuations are uncorrelated over time scales of the particle dynamics.The results indicate that the particle mean velocity and stress are reduced when reverse force is incorporated.Level of reduction increases with mass loading and Stokes number.The variance of particle distribution function is reduced due to reduction in the fluid turbulent intensities.The particle velocity,angular velocity distribution function and stresses are compared for simulations where only the reverse force is incorporated, and where the dipoles are also incorporated, to examine the effect of force dipoles on the fluid turbulence and the particle distributions.
提升管内稀相中颗粒的运动行为%MICRO FLOW BEHAVIOR OF PARTICLES IN DILUTE PHASE OF RISER
Institute of Scientific and Technical Information of China (English)
刘会娥; 魏飞; 金涌
2003-01-01
It has been acknowledged that a dilute-phase/dense-cluster two-phase micro flow structure exists in the riser. The particle velocity signals from Laser Doppler Velocimeter are analyzed and the velocity and turbulent velocity of particles in the dilute phase are obtained. The radial velocity distribution of particles in the dilute phase is similar to a parabola. A correlation, similar to the 1/n power law of gas velocity in turbulent state, is given to describe the velocity distribution quantitatively. The cross-sectional average velocity of particles in the dilute phase is nearly equal to the superficial gas velocity, which indicates that the particles in the dilute phase exist in individual particle state. A maximum value exists at the radial position r/R=0.5-0.8 for the turbulent velocity of particles in the dilute phase. This radial position may correspond to the boundary between the dilute phase controlled region and the dense cluster controlled region.
Low-velocity ion tracks in fine grain emulsion
Energy Technology Data Exchange (ETDEWEB)
Natsume, M. [F-lab., Department of Physics, Nagoya University, Nagoya 464-8602 (Japan)]. E-mail: natsume@flab.phys.nagoya-u.ac.jp; Hoshino, K. [F-lab., Department of Physics, Nagoya University, Nagoya 464-8602 (Japan); Kuwabara, K. [Digital and Photo Imaging Materials Research Laboratories, FUJIFILM Corporation, Minamiashigara, Kanagawa 250-0193 (Japan); Nakamura, M. [F-lab., Department of Physics, Nagoya University, Nagoya 464-8602 (Japan); Nakano, T. [F-lab., Department of Physics, Nagoya University, Nagoya 464-8602 (Japan); Niwa, K. [F-lab., Department of Physics, Nagoya University, Nagoya 464-8602 (Japan); Sato, O. [F-lab., Department of Physics, Nagoya University, Nagoya 464-8602 (Japan); Tani, T. [Digital and Photo Imaging Materials Research Laboratories, FUJIFILM Corporation, Minamiashigara, Kanagawa 250-0193 (Japan); Toshito, T. [F-lab., Department of Physics, Nagoya University, Nagoya 464-8602 (Japan)
2007-06-01
We have studied low-velocity Kr ion responses of nuclear emulsions for the possibility of tracking Ag and Br recoils from galactic dark matter particles. Tracks of 680-1180 km/s Kr ions have been observed in a 40 nm-sized AgBr grain emulsion with scanning electron microscopy. The tracks have a linear energy-dependency in range, angles biased along the incident direction, and a high developed-grain number density with respect to expected electronic stopping. We find that the fine grain emulsion is sensitive enough to low-velocity heavy ions whose energy losses are mainly governed by nuclear stopping.
Bateson, Colin; Aliseda, Alberto
2015-11-01
We present results from wind tunnel experiments on the evolution of small inertial (d ~ 10 - 200 μm) water droplets in homogeneous, isotropic, slowly decaying grid turbulence. High-speed imaging and a Particle Tracking algorithm are used to calculate relative velocity distributions. We analyze the preferential concentration, via the 2D Radial Distribution Function, and enhanced relative velocity of droplets resulting from their inertial interactions with the underlying turbulence. The two-dimensional particle velocities, measured from multi-image tracks along a streamwise plane, are conditionally analyzed with respect to the distance from the nearest particle. We focus on the non-normality of the statistics for the particle-particle separation velocity component to examine the influence of the inertial interaction with the turbulence on the dynamics of the droplets. We observe a negative bias (in the mean and mode) in the separation velocity of particles for short separations, signaling a tendency of particles to collide more frequently than a random agitation by turbulence would predict. The tails of the distribution are interpreted in terms of the collision/coalescence process and the probability of collisions that do not lead to coalescence.
Gait phase varies over velocities.
Liu, Yancheng; Lu, Kun; Yan, Songhua; Sun, Ming; Lester, D Kevin; Zhang, Kuan
2014-02-01
We sought to characterize the percent (PT) of the phases of a gait cycle (GC) as velocity changes to establish norms for pathological gait characteristics with higher resolution technology. Ninety five healthy subjects (49 males and 46 females with age 34.9 ± 11.8 yrs, body weight 64.0 ± 11.7 kg and BMI 23.5 ± 3.6) were enrolled and walked comfortably on a 10-m walkway at self-selected slower, normal, and faster velocities. Walking was recorded with a high speed camera (250 frames per second) and the eight phases of a GC were determined by examination of individual frames for each subject. The correlation coefficients between the mean PT of the phases of the three velocities gaits and PT defined by previous publications were all greater than 0.99. The correlation coefficient between velocity and PT of gait phases is -0.83 for loading response (LR), -0.75 for mid stance (MSt), and -0.84 for pre-swing (PSw). While the PT of the phases of three velocities from this study are highly correlated with PT described by Dr. Jacquenlin Perry decades ago, actual PT of each phase varied amongst these individuals with the largest coefficient variation of 24.31% for IC with slower velocity. From slower to faster walk, the mean PT of MSt diminished from 35.30% to 25.33%. High resolution recording revealed ambiguity of some gait phase definitions, and these data may benefit GC characterization of normal and pathological gait in clinical practice. The study results indicate that one should consider individual variations and walking velocity when evaluating gaits of subjects using standard gait phase classification.
Particle modulations to turbulence in two-phase round jets
Institute of Scientific and Technical Information of China (English)
Bing Wang; Huiqiang Zhang; Yi Liu; Xiaofen Yan; Xilin Wang
2009-01-01
The particle modulations to turbulence in round jets were experimentally studied by means of two-phase velocity measurements with Phase Doppler Anemometer (PDA). Laden with very large particles, no significant attenuations of turbulence intensities were measured in the far-fields, due to small two-phase slip velocities and particle Reynolds number. The gas-phase turbulence is enhanced by particles in the near-fields, but it is significantly attenuated by the small particles in the far-fields. The smaller particles have a more profound effect on the attenuation of turbulence intensities. The enhancements or attenuations of turbulence intensities in the far-fields depends on the energy production, transport and dissipation mechanisms between the two phases, which are determined by the particle prop-erties and two-phase velocity slips. The non-dimensional parameter CTI is introduced to represent the change of turbulence intensity.
Small Particle Impact Damage on Different Glass Substrates
Waxman, R.; Guven, I.; Gray, P.
2017-01-01
Impact experiments using sand particles were performed on four distinct glass substrates. The sand particles were characterized using the X-Ray micro-CT technique; 3-D reconstruction of the particles was followed by further size and shape analyses. High-speed video footage from impact tests was used to calculate the incoming and rebound velocities of the individual sand impact events, as well as particle volume. Further, video analysis was used in conjunction with optical and scanning electron microscopy to relate the incoming velocity and shape of the particles to subsequent fractures, including both radial and lateral cracks. Analysis was performed using peridynamic simulations.
Particle impact tests. [simulation of micrometeoroid damage to orbiter surface
Komatsu, G. K.
1978-01-01
Particle impact tests were performed on three types of orbiter surface with a micrometeoroid facility. The test equipment electrostatically accelerated micron sized particles to high velocities simulating micrometeoroid impacts. Test particles were titanium diboride with typical velocities in the range 1 to 2.3 km x sec/1 and equivalent particle diameters in the range 4 to 16 microns. Impact angles to the material surface were 90, 60 and 30 degrees. The particle impact sites were located on the sample surfaces and craters were photographed with a magnification of 400X.
THE TERMINAL VELOCITY OF THE DEEP IMPACT DUST EJECTA
Directory of Open Access Journals (Sweden)
M. Rengel
2009-01-01
Full Text Available The collision of the projectile released from NASA Deep Impact spacecraft on the nucleus of comet 9P/Tempel 1 generated a hot plume. Afterwards ejecta were created, and material moved slowly in a form of a dust cloud, which dissipated during several days after the impact. Here we report a study about the distribution of terminal velocities of the particles ejected by the impact. This is performed by the development and application of an illconditioned inverse problem approach. We model the light-curves as seen by the Narrow Angle Camera (NAC of OSIRIS onboard the ESA spacecraft Rosetta, and we compare them with the OSIRIS observations. Terminal velocities are derived using a maximum likelihood estimator. The dust velocity distribution is well constrained, and peaks at around 220 m s-1, which is in good agreement with published estimates of the expansion velocities of the dust cloud. Measured and modeled velocity of the dust cloud suggests that the impact ejecta were quickly accelerated by the gas in the cometary coma. This analysis provides a more thorough understanding of the properties (velocity and mass of dust of the Deep Impact dust cloud.
Residual velocities in combustion experiments on board of sounding rockets
Juste, G. L.
1996-12-01
Most combustion experiments on microgravity conditions require extensive testing time, thus making necessary the use of sounding rockets, satellites and spatial laboratories. Sounding rockets and satellites offer some advantages over spatial laboratories, i.e. less strict safety requirements than those in manned flights, the cost of the experiment is also lower. In combustion experiments, the gas velocities inside test modules must be smaller than the characteristic velocity of the process. The initial spin stabilization of sounding rockets has been identified as a possible origin of residual velocities inside the aforementioned modules. The object of the present work is to study the gas residual velocity in the module designed by SENER for carrying out of combustion experiments in microgravity conditions in sounding rockets. Particle image velocimetry was used to measure these velocities. The study shows that, after the spin stabilization, a rapid slowing down of such velocities is produced, decreasing by 5 mm/s after 10 s and down to 0.1 mm/s after 40 s.
Reconstructing the three-dimensional local dark matter velocity distribution
Kavanagh, Bradley J.; O'Hare, Ciaran A. J.
2016-12-01
Directionally sensitive dark matter (DM) direct detection experiments present the only way to observe the full three-dimensional velocity distribution of the Milky Way halo local to Earth. In this work we compare methods for extracting information about the local DM velocity distribution from a set of recoil directions and energies in a range of hypothetical directional and nondirectional experiments. We compare a model-independent empirical parametrization of the velocity distribution based on an angular discretization with a model-dependent approach which assumes knowledge of the functional form of the distribution. The methods are tested under three distinct halo models which cover a range of possible phase space structures for the local velocity distribution: a smooth Maxwellian halo, a tidal stream and a debris flow. In each case we use simulated directional data to attempt to reconstruct the shape and parameters describing each model as well as the DM particle properties. We find that the empirical parametrization is able to make accurate unbiased reconstructions of the DM mass and cross section as well as capture features in the underlying velocity distribution in certain directions without any assumptions about its true functional form. We also find that by extracting directionally averaged velocity parameters with this method one can discriminate between halo models with different classes of substructure.
Particles dispersion on fluid-liquid interfaces
Institute of Scientific and Technical Information of China (English)
Sathish Gurupatham; Bhavin Dalal; Md. Shahadat Hossain; Ian S. Fischer; Pushpendra Singh; Daniel D. Joseph
2011-01-01
This paper is concerned with the dispersion of particles on the fluid-liquid interface. In a previous study we have shown that when small particles,e.g.,flour,pollen,glass beads,etc.,contact an air-liquid interface,they disperse rapidly as ifthey were in an explosion. The rapid dispersion is due to the fact that the capillary force pulls particles into the interface causing them to accelerate to a large velocity. In this paper we show that motion of particles normal to the interface is inertia dominated: they oscillate vertically about their equilibrium position before coming to rest under viscous drag. This vertical motion of a particle causes a radially-outward lateral (secondary) flow on the interface that causes nearby particles to move away. The dispersion on a liquid-liquid interface,which is the primary focus of this study,was relatively weaker than on an air-liquid interface,and occurred over a longer period of time. When falling through an upper liquid the particles have a slower velocity than when falling through air because the liquid has a greater viscosity. Another difference for the liquid-liquid interface is that the separation of particles begins in the upper liquid before the particles reach the interface. The rate of dispersion depended on the size of the particles,the densities of the particle and liquids,the viscosities of the liquids involved,and the contact angle. For small particles,partial pinning and hysteresis of the three-phase contact line on the surface of the particle during adsorption on liquid-liquid interfaces was also important. The frequency of oscillation of particles about their floating equilibrium increased with decreasing particle size on both air-water and liquid-liquid interfaces,and the time to reach equilibrium decreased with decreasing particle size. These results are in agreement with our analysis.
Piron, R.; Blenski, T.
2011-02-01
The numerical code VAAQP (variational average atom in quantum plasmas), which is based on a fully variational model of equilibrium dense plasmas, is applied to equation-of-state calculations for aluminum, iron, copper, and lead in the warm-dense-matter regime. VAAQP does not impose the neutrality of the Wigner-Seitz ion sphere; it provides the average-atom structure and the mean ionization self-consistently from the solution of the variational equations. The formula used for the electronic pressure is simple and does not require any numerical differentiation. In this paper, the virial theorem is derived in both nonrelativistic and relativistic versions of the model. This theorem allows one to express the electron pressure as a combination of the electron kinetic and interaction energies. It is shown that the model fulfills automatically the virial theorem in the case of local-density approximations to the exchange-correlation free-energy. Applications of the model to the equation-of-state and Hugoniot shock adiabat of aluminum, iron, copper, and lead in the warm-dense-matter regime are presented. Comparisons with other approaches, including the inferno model, and with available experimental data are given. This work allows one to understand the thermodynamic consistency issues in the existing average-atom models. Starting from the case of aluminum, a comparative study of the thermodynamic consistency of the models is proposed. A preliminary study of the validity domain of the inferno model is also included.
Piron, R; Blenski, T
2011-02-01
The numerical code VAAQP (variational average atom in quantum plasmas), which is based on a fully variational model of equilibrium dense plasmas, is applied to equation-of-state calculations for aluminum, iron, copper, and lead in the warm-dense-matter regime. VAAQP does not impose the neutrality of the Wigner-Seitz ion sphere; it provides the average-atom structure and the mean ionization self-consistently from the solution of the variational equations. The formula used for the electronic pressure is simple and does not require any numerical differentiation. In this paper, the virial theorem is derived in both nonrelativistic and relativistic versions of the model. This theorem allows one to express the electron pressure as a combination of the electron kinetic and interaction energies. It is shown that the model fulfills automatically the virial theorem in the case of local-density approximations to the exchange-correlation free-energy. Applications of the model to the equation-of-state and Hugoniot shock adiabat of aluminum, iron, copper, and lead in the warm-dense-matter regime are presented. Comparisons with other approaches, including the inferno model, and with available experimental data are given. This work allows one to understand the thermodynamic consistency issues in the existing average-atom models. Starting from the case of aluminum, a comparative study of the thermodynamic consistency of the models is proposed. A preliminary study of the validity domain of the inferno model is also included.
Manipulation of dielectric particles with nondiffracting parabolic beams.
Ortiz-Ambriz, Antonio; Gutiérrez-Vega, Julio C; Petrov, Dmitri
2014-12-01
The trapping and manipulation of microscopic particles embedded in the structure of nondiffracting parabolic beams is reported. The particles acquire orbital angular momentum and exhibit an open trajectory following the parabolic fringes of the beam. We observe an asymmetry in the terminal velocity of the particles caused by the counteracting gradient and scattering forces.
Slipping motion of large neutrally-buoyant particles in turbulence
Cisse, Mamadou; Bec, Jeremie
2013-01-01
Direct numerical simulations are used to investigate the individual dynamics of large spherical particles suspended in a developed homogeneous turbulent flow. A definition of the direction of the particle motion relative to the surrounding flow is introduced and used to construct the mean fluid velocity profile around the particle. This leads to an estimate of the particle slipping velocity and its associated Reynolds number. The flow modifications due to the particle are then studied. The particle is responsible for a shadowing effect that occurs in the wake up to distances of the order of its diameter: the particle pacifies turbulent fluctuations and reduces the energy dissipation rate compared to its average value in the bulk. Dimensional arguments are presented to draw an analogy between particle effects on turbulence and wall flows. Evidence is obtained on the presence of a logarithmic sublayer at distances between the thickness of the viscous boundary layer and the particle diameter $\\Dp$. Finally, asym...
Velocity requirements for causality violation
Modanese, Giovanni
2013-01-01
It is known that the hypothetical existence of superluminal signals would imply the logical possibility of active causal violation: an observer in relative motion with respect to a primary source could in principle emit secondary superluminal signals (triggered by the primary ones) which go back in time and deactivate the primary source before the initial emission. This is a direct consequence of the structure of the Lorentz transformations, sometimes called "Regge-Tolman paradox". It is straightforward to find a formula for the velocity of the moving observer required to produce the causality violation. When applied to some recent claims of slight superluminal propagation, this formula yields a required velocity very close to the speed of light; this raises some doubts about the real physical observability of such violations. We re-compute this velocity requirement introducing a realistic delay between the reception of the primary signal and the emission of the secondary. It turns out that for -any- delay it...
Signal velocity in oscillator arrays
Cantos, C. E.; Veerman, J. J. P.; Hammond, D. K.
2016-09-01
We investigate a system of coupled oscillators on the circle, which arises from a simple model for behavior of large numbers of autonomous vehicles where the acceleration of each vehicle depends on the relative positions and velocities between itself and a set of local neighbors. After describing necessary and sufficient conditions for asymptotic stability, we derive expressions for the phase velocity of propagation of disturbances in velocity through this system. We show that the high frequencies exhibit damping, which implies existence of well-defined signal velocitiesc+ > 0 and c- < 0 such that low frequency disturbances travel through the flock as f+(x - c+t) in the direction of increasing agent numbers and f-(x - c-t) in the other.
Turbulent stresses and particle break-up criteria in particle-laden pipe flows
Oliveira, J.L.G.; van der Geld, C.W.M.; Kuerten, Johannes G.M.
Three-dimensional particle tracking velocimetry (3D-PTV) is applied to particle-laden pipe flows at Reynolds number 10,300, based on the bulk velocity and the pipe diameter. The effects of flow direction (upward or downward) and mean concentration (in the range 0.5 105–3.2 105) on the production of
Fractional Dynamics of Relativistic Particle
Tarasov, Vasily E
2011-01-01
Fractional dynamics of relativistic particle is discussed. Derivatives of fractional orders with respect to proper time describe long-term memory effects that correspond to intrinsic dissipative processes. Relativistic particle subjected to a non-potential four-force is considered as a nonholonomic system. The nonholonomic constraint in four-dimensional space-time represents the relativistic invariance by the equation for four-velocity u_{\\mu} u^{\\mu}+c^2=0, where c is a speed of light in vacuum. In the general case, the fractional dynamics of relativistic particle is described as non-Hamiltonian and dissipative. Conditions for fractional relativistic particle to be a Hamiltonian system are considered.
A statistical method for velocity detection in moving powder beds using image analysis
Willemsz, Tofan A.; Tran, Thanh N.; van der Hoeven, Martijn; Hooijmaijers, Ricardo; Frijlink, Henderik W.; Vromans, Herman; Maarschalk, Kees van der Voort
An existing method to measure particle velocity is particle image velocimetry which requires presence of tracer materials. This method of contrast enhancement is not always applicable in an industrial setting. Therefore a method to assess the movement of small, structures has been introduced, called
Reduced Photon Velocities in Agreement with the OPERA Neutrino Experiment
Franson, J D
2011-01-01
The recent OPERA experiment (Adam et al., arXiv:1109.4897v2) appears to show that neutrinos travel faster than the speed of light. A theory is considered here in which the virtual particles produced in quantum electrodynamics are assumed to have a gravitational potential energy that is the same as that of a real particle. This results in a reduction in the velocity of photons relative to neutrinos that is in good agreement with the experimental results with no adjustable parameters.
Patterns and velocity field in vertically vibrated granular materials
Ansari, Istafaul H.; Alam, Meheboob
2013-06-01
We report experimental results on pattern formation in vertically vibrated granular materials confined in a quasitwo-dimensional container. For a deep bed of mono-disperse particles, we uncovered a new transition from the bouncing bed to an f/4-wave (f is the frequency of shaking) which eventually gives birth to an f/2-undulation wave, with increasing shaking intensity. Other patterned states for mono-disperse particles and their transition-route are compared with previous experiments. The coarse-grained velocity field for each patterned state has been obtained which helped to characterize convective rolls as well as synchronous and sub-harmonic waves in this system.
A tale of two velocities: Threading vs Foliation
Gharechahi, R; Tavanfar, A
2015-01-01
Two different definitions of a 3-velocity assigned to a test particle following timelike geodesics in stationary spacetimes are introduced and analyzed. These definitions are based on $1+3$ (threading) and $3+1$ (foliation) spacetime decomposition formalisms. To exemplify their differences these are then calculated for a particle with a circular orbit in axially symmetric stationary spacetimes. The Kerr spacetime as the prototype and the most well known of stationary spacetimes was examined with respect to these definitions to highlight their main difference and look for its possible signature in astrophysical observations.
Hydrodynamics of multi-sized particles in stable regime of a swirling bed
Energy Technology Data Exchange (ETDEWEB)
Miin, Chin Swee; Sulaiman, Shaharin Anwar; Raghavan, Vijay Raj; Heikal, Morgan Raymond; Naz, Muhammad Yasin [Universiti Teknologi PETRONAS, Perak (Malaysia)
2015-11-15
Using particle imaging velocimetry (PIV), we observed particle motion within the stable operating regime of a swirling fluidized bed with an annular blade distributor. This paper presents velocity profiles of particle flow in an effort to determine effects from blade angle, particle size and shape and bed weight on characteristics of a swirling fluidized bed. Generally, particle velocity increased with airflow rate and shallow bed height, but decreased with bed weight. A 3 .deg. increase in blade angle reduced particle velocity by approximately 18%. In addition, particle shape, size and bed weight affected various characteristics of the swirling regime. Swirling began soon after incipience in the form of a supra-linear curve, which is the characteristic of a swirling regime. The relationship between particle and gas velocities enabled us to predict heat and mass transfer rates between gas and particles.
Particle-fluid interaction forces as the source of acceleration PDF invariance in particle size
Meller, Yosef
2014-01-01
The conditions allowing particle suspension in turbulent flow are of interest in many applications, but understanding them is complicated both by the nature of turbulence and by the interaction of flow with particles. Observations on small particles indicate an invariance of acceleration PDFs of small particles independent of size. We show to be true the postulated role of particle/fluid interaction forces in maintaining suspension. The 3D-PTV method, applied for two particle phases (tracers and inertial particles) simultaneously, was used to obtain velocity and acceleration data, and through the use of the particle's equation of motion the magnitude of forces representing either the flow or the particle interaction were derived and compared. The invariance of PDFs is shown to extend to the component forces, and lift forces are shown to be significant.
Angle independent velocity spectrum determination
DEFF Research Database (Denmark)
2014-01-01
An ultrasound imaging system (100) includes a transducer array (102) that emits an ultrasound beam and produces at least one transverse pulse-echo field that oscillates in a direction transverse to the emitted ultrasound beam and that receive echoes produced in response thereto and a spectral vel...... velocity estimator (110) that determines a velocity spectrum for flowing structure, which flows at an angle of 90 degrees and flows at angles less than 90 degrees with respect to the emitted ultrasound beam, based on the received echoes....
Particle tracking modeling of sediment-laden jets
Chan, S. N.; Lee, J. H. W.
2014-06-01
This paper presents a general model to predict the particulate transport and deposition from a sediment-laden horizontal momentum jet. A three-dimensional (3-D) stochastic particle tracking model is developed based on the governing equation of particle motion. The turbulent velocity fluctuations are modelled by a Lagrangian velocity autocorrelation function that captures the trapping of sediment particles in turbulent eddies, which result in the reduction of settling velocity. Using classical solutions of mean jet velocity, and turbulent fluctuation and dissipation rate profiles derived from computational fluid dynamics calculations of a pure jet, the equation of motion is solved numerically to track the particle movement in the jet flow field. The 3-D particle tracking model predictions of sediment deposition and concentration profiles are in excellent agreement with measured data. The computationally demanding Basset history force is shown to be negligible in the prediction of bottom deposition profiles.
Velocity profile of turbulent sediment-laden flows in open-channels
Institute of Scientific and Technical Information of China (English)
Deyu Zhong n; Lei Zhang; Baosheng Wu; Yongqiang Wang
2015-01-01
In this paper, a study was carried out on the velocity profile of sediment-laden flows in open channels using a two-phase mixture model for two-phase flows. The governing equations for water-sediment mixtures were derived based on the two-fluid equations for solid–liquid two-phase flows. The drift velocity, a key variable involved in the two-phase mixture equations, was derived from the equation of momentum conservation for the solid phase. The drift velocity shows that the inertia of flow, particle turbulence, and collisions effect contribute to the dispersion of the sediment particles in turbulent flows. Using the two-phase mixture equation, the vertical velocity profile of open channel flows was obtained. Further analysis indicated that the distribution of the velocity over depth of water-sediment mixtures, composed of two different phases, is significantly affected by the turbulence of water-sediment mixtures and the density stratification. However, the velocity distribution is also affected by other factors including collisions between particles and particle turbulence as a basic feature of two-phase flows where interphase interactions inevitably mark their influence on the velocity distribution. Comparisons of this approach with observations for a wide range of experimental conditions are presented in this paper, which show that this approach agrees well with the experiments.
Measurements of dust deposition velocity in a wind-tunnel experiment
Directory of Open Access Journals (Sweden)
J. Zhang
2014-04-01
Full Text Available In this study, we present the results of a wind-tunnel experiment on dust deposition. A new method is proposed to derive dust deposition velocity from the PDA (Particle Dynamics Analysis particle-velocity and particle-size measurements. This method has the advantage that the motions of individual dust particles are directly observed and all relevant data for computing dust deposition velocity is collected using a single instrument, and therefore the measurement uncertainties are reduced. The method is used in the wind-tunnel experiment to measure the dust deposition velocities for different particle sizes, wind speeds and surface conditions. For a sticky-smooth wood surface and a water surface, the observed dust deposition velocities are compared with the predictions using a dust deposition scheme, and the entire dataset is compared with the data found in the literature. From the wind-tunnel experiments, a relatively reliable dataset of dust deposition velocity is obtained, which is of considerable value for the development and validation of dust deposition schemes.
NanoRocks: Experimental Study of Collisional Damping and Aggregation at Low Velocities
Colwell, Joshua E.; Brisset, Julie; Dove, Adrienne R.; Metzger, Jessica; Rascon, Allison
2015-11-01
The NanoRocks experiment on the International Space Station consists of 8 separate sample trays of particles from ~0.1 mm - 2.0 mm in diameter that undergo collisional evolution. The microgravity environment of the ISS allows collision speeds of less than 1 mm/s to be studied. At these speeds the experiment reproduces the velocity dispersion found in unperturbed regions of Saturn’s rings. Observations of the rings from Cassini instruments hint at aggregation and fragmentation of clumps depending on the local surface mass density, particle size distribution and velocity dispersion.The eight NanoRocks samples include plastic beads, copper, glass, and JSC-1 lunar regolith simulant. The samples are shaken at 1 minute intervals to provide initial collision velocities of a few cm/s, and video is recorded of the collisional evolution of the particle samples. We derive mean coefficients of restitution for the different samples based on the damping of the mean velocity dispersion as well as tracking of individual particle trajectories. The evolution of the velocity distribution is consistent with a uniform random distribution of the coefficient of restitution, independent of collision velocity. This is consistent with results of Heißelmann et al. (Icarus Vol. 206, pp. 424-430, 2010) using larger icy particles. We also find the onset of cluster formation at speeds of a few mm/s. We will present our results and discuss applications to models of the collisional evolution of Saturn’s rings.
Near-wall velocity profile measurement for nanofluids
Kanjirakat, Anoop; Sadr, Reza
2016-01-01
We perform near-wall velocity measurements of a SiO2-water nanofluid inside a microchannel. Nanoparticle image velocimetry measurements at three visible depths within 500 nm of the wall are conducted. We evaluate the optical properties of the nanofluid and their effect on the measurement technique. The results indicate that the small effect of the nanoparticles on the optical properties of the suspension have a negligible effect on the measurement technique. Our measurements show an increase in nanofluid velocity gradients near the walls, with no measurable slip, relative to the equivalent basefluid flow. We conjecture that particle migration induced by shear may have caused this increase. The effect of this increase in the measured near wall velocity gradient has implications on the viscosity measurement for these fluids.
Near-wall velocity profile measurement for nanofluids
Directory of Open Access Journals (Sweden)
Anoop Kanjirakat
2016-01-01
Full Text Available We perform near-wall velocity measurements of a SiO2–water nanofluid inside a microchannel. Nanoparticle image velocimetry measurements at three visible depths within 500 nm of the wall are conducted. We evaluate the optical properties of the nanofluid and their effect on the measurement technique. The results indicate that the small effect of the nanoparticles on the optical properties of the suspension have a negligible effect on the measurement technique. Our measurements show an increase in nanofluid velocity gradients near the walls, with no measurable slip, relative to the equivalent basefluid flow. We conjecture that particle migration induced by shear may have caused this increase. The effect of this increase in the measured near wall velocity gradient has implications on the viscosity measurement for these fluids.
Velocity measurement by coherent x-ray heterodyning
Energy Technology Data Exchange (ETDEWEB)
Lhermitte, Julien R. M.; Rogers, Michael C.; Manet, Sabine; Sutton, Mark
2017-01-01
We present a small-angle coherent x-ray scattering technique used for measuring flow velocities in slow moving materials. The technique is an extension of X-ray Photon Correlation Spectroscopy (XPCS): It involves mixing the scattering from moving tracer particles with a static reference that heterodynes the signal. This acts to elongate temporal effects caused by flow in homodyne measurements, allowing for a more robust measurement of flow properties. Using coherent x-ray heterodyning, velocities ranging from 0.1 to 10 μm/s were measured for a viscous fluid pushed through a rectangular channel. We describe experimental protocols and theory for making these Poiseuille flow profile measurements and also develop the relevant theory for using heterodyne XPCS to measure velocities in uniform and Couette flows.
Development of a very-low-velocity superconducting linac
Energy Technology Data Exchange (ETDEWEB)
Shepard, K.W.
1987-01-01
Four types of superconducting accelerator structures are being developed for use in a low velocity positive-ion injector linac for the ATLAS heavy-ion accelerator. Prototypes of the first two of these have been tested. The structures are all variants of a quarter-wave line terminated with a four-gap interdigital drift-tube array. The two structure types so far tested operate at 48.5 mHz and have an active length of 10 cm (for the particle velocity - .008c type) and 16.5 cm (for the velocity - .014c type). Effective accelerating fields of 10 MV/m have been achieved with the 10 cm structure, corresponding to an effective accelerating potential of 1 MV. The 16.5 cm structure has been operated at field levels of 6 MV/m, also giving an effective potential of 1 MV. Prototypes of the remaining two resonant geometries are under construction.
A dissipative random velocity field for fully developed fluid turbulence
Pereira, Rodrigo M; Chevillard, Laurent
2015-01-01
We investigate the statistical properties, based on numerical simulations and analytical calculations, of a recently proposed stochastic model for the velocity field of an incompressible, homogeneous, isotropic and fully developed turbulent flow. A key step in the construction of this model is the introduction of some aspects of the vorticity stretching mechanism that governs the dynamics of fluid particles along their trajectory. An additional further phenomenological step aimed at including the long range correlated nature of turbulence makes this model depending on a single free parameter $\\gamma$ that can be estimated from experimental measurements. We confirm the realism of the model regarding the geometry of the velocity gradient tensor, the power-law behaviour of the moments of velocity increments (i.e. the structure functions), including the intermittent corrections, and the existence of energy transfers across scales. We quantify the dependence of these basic properties of turbulent flows on the free...
Velocity measurement by coherent x-ray heterodyning.
Lhermitte, Julien R M; Rogers, Michael C; Manet, Sabine; Sutton, Mark
2017-01-01
We present a small-angle coherent x-ray scattering technique used for measuring flow velocities in slow moving materials. The technique is an extension of X-ray Photon Correlation Spectroscopy (XPCS): It involves mixing the scattering from moving tracer particles with a static reference that heterodynes the signal. This acts to elongate temporal effects caused by flow in homodyne measurements, allowing for a more robust measurement of flow properties. Using coherent x-ray heterodyning, velocities ranging from 0.1 to 10 μm/s were measured for a viscous fluid pushed through a rectangular channel. We describe experimental protocols and theory for making these Poiseuille flow profile measurements and also develop the relevant theory for using heterodyne XPCS to measure velocities in uniform and Couette flows.
Carbon film deposition from high velocity rarefied flow
Energy Technology Data Exchange (ETDEWEB)
Rebrov, A.K., E-mail: rebrov@itp.nsc.ru; Emelyanov, A.A.; Yudin, I.B.
2015-01-30
The presented study is based on the idea of the activation of a gas-precursor high velocity flow by hot wire. The wire forms the channel for flow before expansion to substrate. The construction allows change of the specific flow rate, velocity, composition and temperature of a gas mixture by studying the film synthesis in conditions from free molecular to continuum flow at velocities from hundreds to thousands of m/s. At a high pressure, the film has typical and unusual hexagonal incorporations for diamond tetragonal particles. Raman spectrum with the pronounced diamond peak is typical for diamond-like film. X-ray diffraction points in the presence of lonsdaleite. Conditions of deposition were simulated by Monte Carlo method. Collisions with hot surfaces and chemical transformations were taken into consideration as well.
Motion of Euglena Gracilis: Active Fluctuations and Velocity Distribution
Romanczuk, Pawel; Scholz, Dimitri; Lobaskin, Vladimir; Schimansky-Geier, Lutz
2015-01-01
We study the velocity distribution of unicellular swimming algae Euglena gracilis using optical microscopy and theory. To characterize a peculiar feature of the experimentally observed distribution at small velocities we use the concept of active fluctuations, which was recently proposed for the description of stochastically self-propelled particles [Romanczuk, P. and Schimansky-Geier, L., Phys. Rev. Lett. 106, 230601 (2011)]. In this concept, the fluctuating forces arise due to internal random performance of the propulsive motor. The fluctuating forces are directed in parallel to the heading direction, in which the propulsion acts. In the theory, we introduce the active motion via the depot model [Schweitzer et al., Phys. Rev. Lett. 80, 23, 5044 (1998)]. We demonstrate that the theoretical predictions based on the depot model with active fluctuations are consistent with the experimentally observed velocity distributions. In addition to the model with additive active noise, we obtain theoretical results for a...
Particle rotation in a Couette flow
Ye, J.; Roco, M. C.
1992-02-01
The rotational velocity of neutrally buoyant particles was measured in a planar Couette flow. The flow cross section is rectangular with a 4-to-1 (200 mm/50 mm) aspect ratio. The mixtures consist of uniform polystyrene spheres and a glycerol-water solution of specific density 1.052. Four sphere sizes have been tested: 3, 4.76, 6.35, and 7.94 mm. Particle motion in turbulent flow was recorded with a high-speed SP-2000 motion analysis system. The characteristics of particle motion, including particle spin, were measured as a function of the distance from the wall, at three shear rates corresponding to Re=4.6, 6.8, and 9.2×104. It was found that the particle angular velocity normalized by shear rate is a function of the normalized distance to the moving and stationary walls. The flow conditions are defined with measurements on mean velocities, particle velocity fluctuations, kinetic energy, inertial stresses, and diffusion coefficients.
Velocity Fluctuations in Gas-Fluidized Beds
Cody, G. D.
1998-03-01
Increasing gas flow through a bed of particles produces, above a sharp threshold, a fluidized state which exhibits many of the properties of a liquid. Fluidized beds play a major role in refining, chemicals, and power generation, but the physics of the fluidized state is still uncertain, due to the complexity of the particle/gas interactions, the broad distribution of particle size, and the measurement challenge. One consequence can be the failure of sophisticated computer models to predict performance. Another is the failure to resolve fundamental questions, for example the source of the initial stability/instability of the uniform fluidized state, first addressed by Jackson in 1963(R. Jackson, in Fluidization, edited by J. F. Davidson et al. (Academic Press, New York, 1985), p. 47-72; G. K. Batchelor, J. Fluid Mech. 193, 75-110 (1988); M. Nicolas. J. Chomaz, and E. Guazelli, Phys. Fluids 6, 3936-3944 (1994).). To meet the measurement challenge, we have obtained the first comprehensive data on the mean squared fluctuation velocity, or granular temperature, T*, of monodispersed glass spheres of diameter, D, in a fluidized bed, by a novel acoustic shot noise probe of random particle impact on the wall(G. D. Cody, D. J. Goldfarb, G. V. Storch, Jr., A. N. Norris, Powder Technology 87, 211-232 (1996); G. D. Cody and D. J. Goldfarb, in Dynamics in Small Confining Systems-III, eds. M. Drake et al, (MRS, Pittsburgh, Pa, 1997), 464, p. 325-338.). Applying a dense gas kinetic model(D. Gidaspow, Multiphase Flow and Fluidization (Academic Press, San Diego, 1994).) to this data predicts values of particulate pressure, and viscosity, which are in excellent agreement with recent experiments, and encouraged us to revisit the stability question. We find that the unanticipated seven-fold bifurcation observed in T* for D less than 150 microns is sufficient, using Jackson's model, to account for the accepted empirical boundary of stable initial uniform fluidization for the spheres
Low-velocity impacts into cryogenic icy regolith
Brisset, Julie; Colwell, Josh E.; Dove, Adrienne; Rascon, Allison; Mohammed, Nadia; Cox, Christopher
2016-10-01
The first stages of planet formation take place in the protoplanetary disk (PPD), where µm-sized dust grains accrete into km-sized planetesimals. In the current discussion on the processes involved in accretion beyond the cm scale, the size distribution of the particles colliding at low speeds (a few m/s) inside the PPD is thought to play an important role. A few larger bodies that survived bouncing and fragmentation collisions accumulate the fine dust residue of the erosion and fragmentation of other particles that were destroyed in more energetic collisions. A significant component of this dust on bodies farther out in the PPD will be composed of ices.We have carried out a series of experiments to study the ejecta mass-velocity distribution from impacts of cm-scale particles into granular media at speeds below 3 m/s in both microgravity and 1-g conditions in vacuo and room temperature. Aggregate-aggregate collision experiments have shown bouncing and fragmentation at speeds above ~ 1 m/s. However, most planetesimal formation occurred beyond the frost line and at much lower temperatures than our earlier experiments. We have performed impact experiments at 1-g into JSC-1 lunar regolith simulant at low temperatures (mass-velocity distribution as well as the final crater size. Our goal is to determine if the cryogenic temperature and the presence of water ice in the regolith affects the dynamic response to low-velocity impacts and the production of regolith. We will present the results of the cryogenic impacts and compare them to the study performed at room temperature without water ice. The inclusion of water ice into the target sample is a first step towards better understanding the influence of the presence of water ice in the production of ejecta in response to low-velocity impacts. We will discuss the implications of our results for planetary ring particle collisions as well as planetesimal formation.
Computing a non-Maxwellian velocity distribution from first principles.
Cáceres, Manuel O
2003-01-01
We investigate a family of single-particle anomalous velocity distribution by solving a particular class of stochastic Liouville equations. The stationary state is obtained analytically and the Maxwell-Boltzmann distribution is reobtained in a particular limit. We discuss the comparison with other different methods to obtain the stationary state. Extensions when the models cannot be solved in an exact way are also pointed out in connection with the one-ficton approximation.
On the velocity of moving relativistic unstable quantum systems
Urbanowski, K
2015-01-01
We study properties of moving relativistic quantum unstable systems. We show that in contrast to the properties of classical particles and quantum stable objects the velocity of moving freely relativistic quantum unstable systems can not be constant in time. We show that this effect results from the fundamental principles of the quantum theory and physics: It is a consequence of the principle of conservation of energy and of the fact that the mass of the quantum unstable system is not definite.