WorldWideScience

Sample records for huge ocean impact

  1. Impacts of Ocean Acidification

    Energy Technology Data Exchange (ETDEWEB)

    Bijma, Jelle (Alfred Wegener Inst., D-27570 Bremerhaven (Germany)) (and others)

    2009-08-15

    There is growing scientific evidence that, as a result of increasing anthropogenic carbon dioxide (CO{sub 2}) emissions, absorption of CO{sub 2} by the oceans has already noticeably increased the average oceanic acidity from pre-industrial levels. This global threat requires a global response. According to the Intergovernmental Panel on Climate Change (IPCC), continuing CO{sub 2} emissions in line with current trends could make the oceans up to 150% more acidic by 2100 than they were at the beginning of the Anthropocene. Acidification decreases the ability of the ocean to absorb additional atmospheric CO{sub 2}, which implies that future CO{sub 2} emissions are likely to lead to more rapid global warming. Ocean acidification is also problematic because of its negative effects on marine ecosystems, especially marine calcifying organisms, and marine resources and services upon which human societies largely depend such as energy, water, and fisheries. For example, it is predicted that by 2100 around 70% of all cold-water corals, especially those in the higher latitudes, will live in waters undersaturated in carbonate due to ocean acidification. Recent research indicates that ocean acidification might also result in increasing levels of jellyfish in some marine ecosystems. Aside from direct effects, ocean acidification together with other global change-induced impacts such as marine and coastal pollution and the introduction of invasive alien species are likely to result in more fragile marine ecosystems, making them more vulnerable to other environmental impacts resulting from, for example, coastal deforestation and widescale fisheries. The Marine Board-ESF Position Paper on the Impacts of Climate Change on the European Marine and Coastal Environment - Ecosystems indicated that presenting ocean acidification issues to policy makers is a key issue and challenge. Indeed, as the consequences of ocean acidification are expected to emerge rapidly and drastically, but are

  2. Southern Ocean biological impacts on global ocean oxygen

    Science.gov (United States)

    Keller, David P.; Kriest, Iris; Koeve, Wolfgang; Oschlies, Andreas

    2016-06-01

    Southern Ocean (SO) physical and biological processes are known to have a large impact on global biogeochemistry. However, the role that SO biology plays in determining ocean oxygen concentrations is not completely understood. These dynamics are investigated here by shutting off SO biology in two marine biogeochemical models. The results suggest that SO biological processes reduce the ocean's oxygen content, mainly in the deep ocean, by 14 to 19%. However, since these processes also trap nutrients that would otherwise be transported northward to fuel productivity and subsequent organic matter export, consumption, and the accompanying oxygen consumption in midlatitude to low-latitude waters, SO biology helps to maintain higher oxygen concentrations in these subsurface waters. Thereby, SO biology can influence the size of the tropical oxygen minimum zones. As a result of ocean circulation the link between SO biological processes and remote oxygen changes operates on decadal to centennial time scales.

  3. Oceanic Impact: Mechanisms and Environmental Perturbations

    Science.gov (United States)

    Gersonde, Rainer (Editor); Deutsch, Alex (Editor); Ivanov, Boris A. (Editor); Kyte, Frank T. (Editor)

    2002-01-01

    The contents include the following: Oceanic impacts-a growing field of fundamental geoscience. Shock metamorphism on the ocean floor (numerical simulations). Numerical modeling of impact-induced modifications of the deep-sea floor. Computer modelling of the water resurge at a marine impact: the Lockne crater, Sweden. Experimental investigation of the role of water in impact vaporization chemistry. Calcareous plankton stratigraphy around the Pliocene Eltanin asteroid impact area (SE Pacific): documentation and application for geological and paleoceanographic reconstruction. Composition of impact melt debris from the Eltanin impact strewn field, Bellingshausen Sea. Iridium concentrations and abundances of meteoritic ejecta from the Eltanin impact in sediment cores from Polarstern expedition ANT XII/4. Unmelted meteoritic debris collected from Eltanin ejecta in Polarstern cores from expedition ANT XII/4. Impact tsunami-Eltanin. Ancient impact structures on modern continental shelves: The Chesapeake Bay, Montagnais, and Toms Canyon craters, Atlantic margin of North America. The Mjolnir marine impact crater porosity anomaly. Kardla (Hiiu-maa Island, Estonia) - the buried and well-preserved Ordovician marine impact structure. Long-term effect of the Kardla crater (Hiiu-maa, Estonia) on Late Ordovician carbonate sedimentation. The middle Devonian Kaluga impact crater (Russia): new interpretation of marine setting.

  4. Revaluating ocean warming impacts on global phytoplankton

    Science.gov (United States)

    Behrenfeld, Michael J.; O'Malley, Robert T.; Boss, Emmanuel S.; Westberry, Toby K.; Graff, Jason R.; Halsey, Kimberly H.; Milligan, Allen J.; Siegel, David A.; Brown, Matthew B.

    2016-03-01

    Global satellite observations document expansions of the low-chlorophyll central ocean gyres and an overall inverse relationship between anomalies in sea surface temperature and phytoplankton chlorophyll concentrations. These findings can provide an invaluable glimpse into potential future ocean changes, but only if the story they tell is accurately interpreted. Chlorophyll is not simply a measure of phytoplankton biomass, but also registers changes in intracellular pigmentation arising from light-driven (photoacclimation) and nutrient-driven physiological responses. Here, we show that the photoacclimation response is an important component of temporal chlorophyll variability across the global ocean. This attribution implies that contemporary relationships between chlorophyll changes and ocean warming are not indicative of proportional changes in productivity, as light-driven decreases in chlorophyll can be associated with constant or even increased photosynthesis. Extension of these results to future change, however, requires further evaluation of how the multifaceted stressors of a warmer, higher-CO2 world will impact plankton communities.

  5. Ocean Data Impacts in Global HYCOM

    Science.gov (United States)

    2014-08-01

    Ocean Data Impacts in Global HYCOM* JAMES A. CUMMINGS Oceanography Division, Naval Research Laboratory, Monterey, California OLE MARTIN SMEDSTAD...separated into horizontal and vertical components. Horizontal corre- lation length scales are proportional to the first baro - clinic Rossby radius of...review and amodel with a nonlocal boundary layer parameterization.Rev. Geophys., 32, 363–403, doi:10.1029/ 94RG01872. Lea, D. J., M. J. Martin , and P

  6. The Economic Impact of Ocean Acidification on Coral Reefs

    OpenAIRE

    Brander, Luke M.; Rehdanz, Katrin; Tol, Richard S. J.; van Beukering, Pieter J.H.

    2009-01-01

    Because ocean acidification has only recently been recognized as a problem caused by CO2 emissions, impact studies are still rare and estimates of the economic impact are absent. This paper estimates the economic impact of ocean acidification on coral reefs which are generally considered to be economically as well as ecologically important ecosystems. First, we conduct an impact assessment in which atmospheric concentration of CO2 is linked to ocean acidity causing coral reef area loss. Next,...

  7. Ocean Acidification Impacts on Marine Carbon Export

    Science.gov (United States)

    Mathesius, Sabine; Schartau, Markus; Oschlies, Andreas

    2017-04-01

    As the oceans take up about 30% of anthropogenic CO2 emissions, a variety of biogeochemical processes are affected by the seawater's increasing acidity. In this model study, we investigate the effect of ocean acidification on marine carbon export, focusing on the role of transparent exopolymer particles (TEP). These gel particles are formed from dissolved polysaccharides, mainly released by phytoplankton, and have an impact on the aggregation and sinking of organic particles. We test the hypothesis that a higher CO2 concentration in the water leads to an enhanced export of particulate organic carbon. We build on observed biogeochemical relationships and calibrate our model with data from ocean acidification mesocosm experiments (e.g., PeECE III, Bergen, 2005). A one-dimensional model is devised for our analysis, simulating a water column of up to 20 meters. The vertical mixing in the model is a function of density gradients, calculated from observed temperature and salinity fields. This approach provides a well-mixed surface layer and a weakly-mixed pycnocline at a realistic depth for each simulated experiment. Our model explores different biogeochemical mechanisms to explain observed correlations and helps to complete the picture given by measurements and statistical analyses.

  8. Production of sulphate-rich vapour during the Chicxulub impact and implications for ocean acidification

    Science.gov (United States)

    Ohno, Sohsuke; Kadono, Toshihiko; Kurosawa, Kosuke; Hamura, Taiga; Sakaiya, Tatsuhiro; Shigemori, Keisuke; Hironaka, Yoichiro; Sano, Takayoshi; Watari, Takeshi; Otani, Kazuto; Matsui, Takafumi; Sugita, Seiji

    2014-04-01

    The mass extinction event at the Cretaceous/Palaeogene boundary 65.5 Myr ago has been widely attributed to the Chicxulub impact, but the mechanisms of extinction remain debated. In the oceans, near-surface planktonic foraminifera suffered severe declines, in contrast to the relatively high survival rates of bottom-dwelling benthic foraminifera. The vapour produced by an impact into Chicxulub's target rocks, which include sulphate-rich anhydrite, could have led to global acid rain, which can explain the pattern of oceanic extinctions. However, it has been suggested that most of the sulphur in the target rocks would have been released as sulphur dioxide and would have stayed in the stratosphere for a long time. Here we show, from impact experiments into anhydrite at velocities exceeding 10 km s-1, that sulphur trioxide dominates over sulphur dioxide in the resulting vapour cloud. Our experiments suggest that the Chicxulub impact released a huge quantity of sulphur trioxide into the atmosphere, where it would have rapidly combined with water vapour to form sulphuric acid aerosol particles. We also find, using a theoretical model of aerosol coagulation following the Chicxulub impact, that larger silicate particles ejected during the impact efficiently scavenge sulphuric acid aerosol particles and deliver the sulphuric acid to the surface within a few days. The rapid surface deposition of sulphuric acid would cause severe ocean acidification and account for preferential extinction of planktonic over benthic foraminifera.

  9. Projected climate change impact on oceanic acidification

    Directory of Open Access Journals (Sweden)

    McNeil Ben I

    2006-06-01

    Full Text Available Abstract Background Anthropogenic CO2 uptake by the ocean decreases the pH of seawater, leading to an 'acidification' which may have potential detrimental consequences on marine organisms 1. Ocean warming or circulation alterations induced by climate change has the potential to slowdown the rate of acidification of ocean waters by decreasing the amount of CO2 uptake by the ocean 2. However, a recent study showed that climate change affected the decrease in pH insignificantly 3. Here, we examine the sensitivity of future oceanic acidification to climate change feedbacks within a coupled atmosphere-ocean model and find that ocean warming dominates the climate change feedbacks. Results Our results show that the direct decrease in pH due to ocean warming is approximately equal to but opposite in magnitude to the indirect increase in pH associated with ocean warming (ie reduced DIC concentration of the upper ocean caused by lower solubility of CO2. Conclusion As climate change feedbacks on pH approximately cancel, future oceanic acidification will closely follow future atmospheric CO2 concentrations. This suggests the only way to slowdown or mitigate the potential biological consequences of future ocean acidification is to significantly reduce fossil-fuel emissions of CO2 to the atmosphere.

  10. Towards improved socio-economic assessments of ocean acidification's impacts.

    Science.gov (United States)

    Hilmi, Nathalie; Allemand, Denis; Dupont, Sam; Safa, Alain; Haraldsson, Gunnar; Nunes, Paulo A L D; Moore, Chris; Hattam, Caroline; Reynaud, Stéphanie; Hall-Spencer, Jason M; Fine, Maoz; Turley, Carol; Jeffree, Ross; Orr, James; Munday, Philip L; Cooley, Sarah R

    2013-01-01

    Ocean acidification is increasingly recognized as a component of global change that could have a wide range of impacts on marine organisms, the ecosystems they live in, and the goods and services they provide humankind. Assessment of these potential socio-economic impacts requires integrated efforts between biologists, chemists, oceanographers, economists and social scientists. But because ocean acidification is a new research area, significant knowledge gaps are preventing economists from estimating its welfare impacts. For instance, economic data on the impact of ocean acidification on significant markets such as fisheries, aquaculture and tourism are very limited (if not non-existent), and non-market valuation studies on this topic are not yet available. Our paper summarizes the current understanding of future OA impacts and sets out what further information is required for economists to assess socio-economic impacts of ocean acidification. Our aim is to provide clear directions for multidisciplinary collaborative research.

  11. Impact of Targeted Ocean Observations for Improving Ocean Model Initialization for Coupled Hurricane Forecasting

    Science.gov (United States)

    Halliwell, G. R.; Srinivasan, A.; Kourafalou, V. H.; Yang, H.; Le Henaff, M.; Atlas, R. M.

    2012-12-01

    The accuracy of hurricane intensity forecasts produced by coupled forecast models is influenced by errors and biases in SST forecasts produced by the ocean model component and the resulting impact on the enthalpy flux from ocean to atmosphere that powers the storm. Errors and biases in fields used to initialize the ocean model seriously degrade SST forecast accuracy. One strategy for improving ocean model initialization is to design a targeted observing program using airplanes and in-situ devices such as floats and drifters so that assimilation of the additional data substantially reduces errors in the ocean analysis system that provides the initial fields. Given the complexity and expense of obtaining these additional observations, observing system design methods such as OSSEs are attractive for designing efficient observing strategies. A new fraternal-twin ocean OSSE system based on the HYbrid Coordinate Ocean Model (HYCOM) is used to assess the impact of targeted ocean profiles observed by hurricane research aircraft, and also by in-situ float and drifter deployments, on reducing errors in initial ocean fields. A 0.04-degree HYCOM simulation of the Gulf of Mexico is evaluated as the nature run by determining that important ocean circulation features such as the Loop Current and synoptic cyclones and anticyclones are realistically simulated. The data-assimilation system is run on a 0.08-degree HYCOM mesh with substantially different model configuration than the nature run, and it uses a new ENsemble Kalman Filter (ENKF) algorithm optimized for the ocean model's hybrid vertical coordinates. The OSSE system is evaluated and calibrated by first running Observing System Experiments (OSEs) to evaluate existing observing systems, specifically quantifying the impact of assimilating more than one satellite altimeter, and also the impact of assimilating targeted ocean profiles taken by the NOAA WP-3D hurricane research aircraft in the Gulf of Mexico during the Deepwater

  12. The Impact of Ocean Observations in Seasonal Climate Prediction

    Science.gov (United States)

    Rienecker, Michele; Keppenne, Christian; Kovach, Robin; Marshak, Jelena

    2010-01-01

    The ocean provides the most significant memory for the climate system. Hence, a critical element in climate forecasting with coupled models is the initialization of the ocean with states from an ocean data assimilation system. Remotely-sensed ocean surface fields (e.g., sea surface topography, SST, winds) are now available for extensive periods and have been used to constrain ocean models to provide a record of climate variations. Since the ocean is virtually opaque to electromagnetic radiation, the assimilation of these satellite data is essential to extracting the maximum information content. More recently, the Argo drifters have provided unprecedented sampling of the subsurface temperature and salinity. Although the duration of this observation set has been too short to provide solid statistical evidence of its impact, there are indications that Argo improves the forecast skill of coupled systems. This presentation will address the impact these different observations have had on seasonal climate predictions with the GMAO's coupled model.

  13. Impact of Atmospheric Forcing on the Ocean Prediction under Typhoon

    Science.gov (United States)

    Ko, D. S.; Wu, C.

    2012-12-01

    The impact of atmospheric forcing on the ocean prediction under Typhoon Fanapi and Typhoon Megi (2010) is investigated applying an ocean nowcast/forecast system (EASNFS) that covers the northwestern Pacific Ocean and the East Asian marginal seas. The model resolution is ~ 8 km at the study area. There are 40 vertical layers with dense upper layers to better resolve upper ocean variations. Ocean model assimilates the altimetry data to produce important subsurface oceanic mesoscale features for the impact study. The atmospheric forcing is provided by an atmospheric model on a triple (54/18/6 km) nested grid that moves with typhoon. The 10-m wind and sea level air pressure are applied to drive ocean model. The wind and air pressure are interpolated onto the ocean model grid and meshed with prediction from NOGAPS (Navy Operational Global Atmospheric Prediction System) to account for the area that the triple nested grid does not cover. The simulation is conducted for the time period from September 1 to October 1, 2010 for the duration of Typhoon Fanapi and from October 1 to November 1, 2010 for Megi. To compare, a parallel simulation driven by NOGAPS forcing alone for the same periods is also conducted. The impact of atmospheric forcing is examined by comparison of ocean model predictions with remote sensing and in-situ data taken during ITOP 2010 Intensive Observation Period.

  14. MANAGEMENT OF HUGE ENCEPHALOCELE

    Directory of Open Access Journals (Sweden)

    Rajeev

    2015-11-01

    Full Text Available Among all neural tube defects, encephalocele incidents are 1 in 5000 live births. (1 Newborn with encephalocele may be associated with other congenital malformations. Encephalocele patient’s management pose many challenge to neurosurgeon due to other associated anomalies that may present like ventriculocele, Dandy Walker and Arnold-Chiari malformation, and difficult positioning airway management to anaesthesiologist. We discuss a case of huge encephalocele and its management

  15. Impact of hydrothermalism on the ocean iron cycle

    Science.gov (United States)

    Tagliabue, Alessandro; Resing, Joseph

    2016-11-01

    As the iron supplied from hydrothermalism is ultimately ventilated in the iron-limited Southern Ocean, it plays an important role in the ocean biological carbon pump. We deploy a set of focused sensitivity experiments with a state of the art global model of the ocean to examine the processes that regulate the lifetime of hydrothermal iron and the role of different ridge systems in governing the hydrothermal impact on the Southern Ocean biological carbon pump. Using GEOTRACES section data, we find that stabilization of hydrothermal iron is important in some, but not all regions. The impact on the Southern Ocean biological carbon pump is dominated by poorly explored southern ridge systems, highlighting the need for future exploration in this region. We find inter-basin differences in the isopycnal layer onto which hydrothermal Fe is supplied between the Atlantic and Pacific basins, which when combined with the inter-basin contrasts in oxidation kinetics suggests a muted influence of Atlantic ridges on the Southern Ocean biological carbon pump. Ultimately, we present a range of processes, operating at distinct scales, that must be better constrained to improve our understanding of how hydrothermalism affects the ocean cycling of iron and carbon. This article is part of the themed issue 'Biological and climatic impacts of ocean trace element chemistry'.

  16. Fukushima- Ocean Impacts and Public Concerns

    Science.gov (United States)

    Buesseler, K.

    2015-12-01

    The triple disaster of the March 11, 2011 earthquake, tsunami, and subsequent radiation releases at Fukushima Dai-ichi were unprecedented events for the ocean and society. This presentation will provide an overview of studies of Fukushima radionuclides in the ocean. The radioactive releases from Fukushima will be compared to natural and prior human sources. The fate of cesium is largely determined by its soluble nature in seawater, though uptake in sediments does occur via cesium's association with both detrital particles and biological uptake and sedimentation. Cesium's continued supply from the rivers and ongoing leakages at the nuclear power plants suggests that coastal sediments may remain contaminated for decades to come. Although levels of cesium in the ocean and being released from Fukushima more than four years later are orders of magnitude lower than in 2011, other isotopes such as strontium-90 remain of interest as they are elevated relative to cesium in the groundwater and storage tanks at the reactor site. Across the Pacific, Fukushima cesium is starting to be detectable along the west coast of North America. Although models suggest cesium will be at levels well below those considered of human health concern, the public is worried about the lack of ocean monitoring of Fukushima radionuclides. We addressed these public concerns by creating "Our Radioactive Ocean" a citizen-scientist crowd-funded campaign that provides a sampling kit that can use to sample their favorite beach. Once collected, samples are returned to WHOI for analyses of the isotopes of cesium that allow us to distinguish Fukushima cesium from other sources (http://OurRadioactiveOcean.org ). However to measure the low levels of cesium already in the ocean 20 liter samples are needed. To increase public participation, we will also present results from a new wearable sample collector, the "RadBand" which contains a small amount of cesium selective resin that surfers and swimmers can wear on

  17. Ocean-atmosphere interactions modulate irrigation's climate impacts

    Science.gov (United States)

    Krakauer, Nir Y.; Puma, Michael J.; Cook, Benjamin I.; Gentine, Pierre; Nazarenko, Larissa

    2016-11-01

    Numerous studies have focused on the local and regional climate effects of irrigated agriculture and other land cover and land use change (LCLUC) phenomena, but there are few studies on the role of ocean-atmosphere interaction in modulating irrigation climate impacts. Here, we compare simulations with and without interactive sea surface temperatures of the equilibrium effect on climate of contemporary (year 2000) irrigation geographic extent and intensity. We find that ocean-atmosphere interaction does impact the magnitude of global-mean and spatially varying climate impacts, greatly increasing their global reach. Local climate effects in the irrigated regions remain broadly similar, while non-local effects, particularly over the oceans, tend to be larger. The interaction amplifies irrigation-driven standing wave patterns in the tropics and midlatitudes in our simulations, approximately doubling the global-mean amplitude of surface temperature changes due to irrigation. The fractions of global area experiencing significant annual-mean surface air temperature and precipitation change also approximately double with ocean-atmosphere interaction. Subject to confirmation with other models, these findings imply that LCLUC is an important contributor to climate change even in remote areas such as the Southern Ocean, and that attribution studies should include interactive oceans and need to consider LCLUC, including irrigation, as a truly global forcing that affects climate and the water cycle over ocean as well as land areas.

  18. Hydrothermal impacts on trace element and isotope ocean biogeochemistry

    Science.gov (United States)

    German, C. R.; Casciotti, K. A.; Dutay, J.-C.; Heimbürger, L. E.; Jenkins, W. J.; Measures, C. I.; Mills, R. A.; Obata, H.; Schlitzer, R.; Tagliabue, A.; Turner, D. R.; Whitby, H.

    2016-11-01

    Hydrothermal activity occurs in all ocean basins, releasing high concentrations of key trace elements and isotopes (TEIs) into the oceans. Importantly, the calculated rate of entrainment of the entire ocean volume through turbulently mixing buoyant hydrothermal plumes is so vigorous as to be comparable to that of deep-ocean thermohaline circulation. Consequently, biogeochemical processes active within deep-ocean hydrothermal plumes have long been known to have the potential to impact global-scale biogeochemical cycles. More recently, new results from GEOTRACES have revealed that plumes rich in dissolved Fe, an important micronutrient that is limiting to productivity in some areas, are widespread above mid-ocean ridges and extend out into the deep-ocean interior. While Fe is only one element among the full suite of TEIs of interest to GEOTRACES, these preliminary results are important because they illustrate how inputs from seafloor venting might impact the global biogeochemical budgets of many other TEIs. To determine the global impact of seafloor venting, however, requires two key questions to be addressed: (i) What processes are active close to vent sites that regulate the initial high-temperature hydrothermal fluxes for the full suite of TEIs that are dispersed through non-buoyant hydrothermal plumes? (ii) How do those processes vary, globally, in response to changing geologic settings at the seafloor and/or the geochemistry of the overlying ocean water? In this paper, we review key findings from recent work in this realm, highlight a series of key hypotheses arising from that research and propose a series of new GEOTRACES modelling, section and process studies that could be implemented, nationally and internationally, to address these issues. This article is part of the themed issue 'Biological and climatic impacts of ocean trace element chemistry'.

  19. Chapter 1. Impacts of the oceans on climate change.

    Science.gov (United States)

    Reid, Philip C; Fischer, Astrid C; Lewis-Brown, Emily; Meredith, Michael P; Sparrow, Mike; Andersson, Andreas J; Antia, Avan; Bates, Nicholas R; Bathmann, Ulrich; Beaugrand, Gregory; Brix, Holger; Dye, Stephen; Edwards, Martin; Furevik, Tore; Gangstø, Reidun; Hátún, Hjálmar; Hopcroft, Russell R; Kendall, Mike; Kasten, Sabine; Keeling, Ralph; Le Quéré, Corinne; Mackenzie, Fred T; Malin, Gill; Mauritzen, Cecilie; Olafsson, Jón; Paull, Charlie; Rignot, Eric; Shimada, Koji; Vogt, Meike; Wallace, Craig; Wang, Zhaomin; Washington, Richard

    2009-01-01

    The oceans play a key role in climate regulation especially in part buffering (neutralising) the effects of increasing levels of greenhouse gases in the atmosphere and rising global temperatures. This chapter examines how the regulatory processes performed by the oceans alter as a response to climate change and assesses the extent to which positive feedbacks from the ocean may exacerbate climate change. There is clear evidence for rapid change in the oceans. As the main heat store for the world there has been an accelerating change in sea temperatures over the last few decades, which has contributed to rising sea-level. The oceans are also the main store of carbon dioxide (CO2), and are estimated to have taken up approximately 40% of anthropogenic-sourced CO2 from the atmosphere since the beginning of the industrial revolution. A proportion of the carbon uptake is exported via the four ocean 'carbon pumps' (Solubility, Biological, Continental Shelf and Carbonate Counter) to the deep ocean reservoir. Increases in sea temperature and changing planktonic systems and ocean currents may lead to a reduction in the uptake of CO2 by the ocean; some evidence suggests a suppression of parts of the marine carbon sink is already underway. While the oceans have buffered climate change through the uptake of CO2 produced by fossil fuel burning this has already had an impact on ocean chemistry through ocean acidification and will continue to do so. Feedbacks to climate change from acidification may result from expected impacts on marine organisms (especially corals and calcareous plankton), ecosystems and biogeochemical cycles. The polar regions of the world are showing the most rapid responses to climate change. As a result of a strong ice-ocean influence, small changes in temperature, salinity and ice cover may trigger large and sudden changes in regional climate with potential downstream feedbacks to the climate of the rest of the world. A warming Arctic Ocean may lead to

  20. Environmental impacts of ocean disposal of CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Adams, E.; Herzog, H.; Auerbach, D. [and others

    1995-11-01

    One option to reduce atmospheric CO{sub 2} levels is to capture and sequester power plant CO{sub 2} Commercial CO{sub 2} capture technology, though expensive, exists today. However, the ability to dispose of large quantities of CO{sub 2} is highly uncertain. The deep ocean is one of only a few possible CO{sub 2} disposal options (others are depleted oil and gas wells or deep, confined aquifers) and is a prime candidate because the deep ocean is vast and highly unsaturated in CO{sub 2}. The term disposal is really a misnomer because the atmosphere and ocean eventually equilibrate on a timescale of 1000 years regardless of where the CO{sub 2} is originally discharged. However, peak atmospheric CO{sub 2} concentrations expected to occur in the next few centuries could be significantly reduced by ocean disposal. The magnitude of this reduction will depend upon the quantity of CO{sub 2} injected in the ocean, as well as the depth and location of injection. Ocean disposal of CO{sub 2} will only make sense if the environmental impacts to the ocean are significantly less than the avoided impacts of atmospheric release. Our project has been examining these ocean impacts through a multi-disciplinary effort designed to summarize the current state of knowledge. The end-product will be a report issued during the summer of 1996 consisting of two volumes an executive summary (Vol I) and a series of six, individually authored topical reports (Vol II). A workshop with invited participants from the U.S. and abroad will review the draft findings in January, 1996.

  1. Ocean Biological Pump Sensitivities and Implications for Climate Change Impacts

    Science.gov (United States)

    Romanou, Anastasia

    2013-01-01

    The ocean is one of the principal reservoirs of CO2, a greenhouse gas, and therefore plays a crucial role in regulating Earth's climate. Currently, the ocean sequesters about a third of anthropogenic CO2 emissions, mitigating the human impact on climate. At the same time, the deeper ocean represents the largest carbon pool in the Earth System and processes that describe the transfer of carbon from the surface of the ocean to depth are intimately linked to the effectiveness of carbon sequestration.The ocean biological pump (OBP), which involves several biogeochemical processes, is a major pathway for transfer of carbon from the surface mixed layer into the ocean interior. About 75 of the carbon vertical gradient is due to the carbon pump with only 25 attributed to the solubility pump. However, the relative importance and role of the two pumps is poorly constrained. OBP is further divided to the organic carbon pump (soft tissue pump) and the carbonate pump, with the former exporting about 10 times more carbon than the latter through processes like remineralization.Major uncertainties about OBP, and hence in the carbon uptake and sequestration, stem from uncertainties in processes involved in OBP such as particulate organicinorganic carbon sinkingsettling, remineralization, microbial degradation of DOC and uptakegrowth rate changes of the ocean biology. The deep ocean is a major sink of atmospheric CO2 in scales of hundreds to thousands of years, but how the export efficiency (i.e. the fraction of total carbon fixation at the surface that is transported at depth) is affected by climate change remains largely undetermined. These processes affect the ocean chemistry (alkalinity, pH, DIC, particulate and dissolved organic carbon) as well as the ecology (biodiversity, functional groups and their interactions) in the ocean. It is important to have a rigorous, quantitative understanding of the uncertainties involved in the observational measurements, the models and the

  2. Atmospheric Nitrogen Inputs to the Ocean and their Impact

    Science.gov (United States)

    Jickells, Tim D.

    2016-04-01

    Atmospheric Nitrogen Inputs to the Ocean and their Impact T Jickells (1), K. Altieri (2), D. Capone (3), E. Buitenhuis (1), R. Duce (4), F. Dentener (5), K. Fennel (6), J. Galloway (7), M. Kanakidou (8), J. LaRoche (9), K. Lee (10), P. Liss (1), J. Middleburg (11), K. Moore (12), S. Nickovic (13), G. Okin (14), A. Oschilies (15), J. Prospero (16), M. Sarin (17), S. Seitzinger (18), J. Scharples (19), P. Suntharalingram (1), M. Uematsu (20), L. Zamora (21) Atmospheric nitrogen inputs to the ocean have been identified as an important source of nitrogen to the oceans which has increased greatly as a result of human activity. The significance of atmospheric inputs for ocean biogeochemistry were evaluated in a seminal paper by Duce et al., 2008 (Science 320, 893-7). In this presentation we will update the Duce et al 2008 study estimating the impact of atmospheric deposition on the oceans. We will summarise the latest model estimates of total atmospheric nitrogen deposition to the ocean, their chemical form (nitrate, ammonium and organic nitrogen) and spatial distribution from the TM4 model. The model estimates are somewhat smaller than the Duce et al estimate, but with similar spatial distributions. We will compare these flux estimates with a new estimate of the impact of fluvial nitrogen inputs on the open ocean (Sharples submitted) which estimates some transfer of fluvial nitrogen to the open ocean, particularly at low latitudes, compared to the complete trapping of fluvial inputs on the continental shelf assumed by Duce et al. We will then estimate the impact of atmospheric deposition on ocean primary productivity and N2O emissions from the oceans using the PlankTOM10 model. The impacts of atmospheric deposition we estimate on ocean productivity here are smaller than those predicted by Duce et al impacts, consistent with the smaller atmospheric deposition estimates. However, the atmospheric input is still larger than the estimated fluvial inputs to the open ocean

  3. Ecogenomics and biogeochemical impacts of uncultivated globally abundant ocean viruses

    KAUST Repository

    Roux, Simon

    2016-05-12

    Ocean microbes drive global-scale biogeochemical cycling, but do so under constraints imposed by viruses on host community composition, metabolism, and evolutionary trajectories. Due to sampling and cultivation challenges, genome-level viral diversity remains poorly described and grossly understudied in nature such that <1% of observed surface ocean viruses, even those that are abundant and ubiquitous, are ?known?. Here we analyze a global map of abundant, double stranded DNA (dsDNA) viruses and viral-encoded auxiliary metabolic genes (AMGs) with genomic and ecological contexts through the Global Ocean Viromes (GOV) dataset, which includes complete genomes and large genomic fragments from both surface and deep ocean viruses sampled during the Tara Oceans and Malaspina research expeditions. A total of 15,222 epi- and mesopelagic viral populations were identified that comprised 867 viral clusters (VCs, approximately genus-level groups). This roughly triples known ocean viral populations, doubles known candidate bacterial and archaeal virus genera, and near-completely samples epipelagic communities at both the population and VC level. Thirty-eight of the 867 VCs were identified as the most impactful dsDNA viral groups in the oceans, as these were locally or globally abundant and accounted together for nearly half of the viral populations in any GOV sample. Most of these were predicted in silico to infect dominant, ecologically relevant microbes, while two thirds of them represent newly described viruses that lacked any cultivated representative. Beyond these taxon-specific ecological observations, we identified 243 viral-encoded AMGs in GOV, only 95 of which were known. Deeper analyses of 4 of these AMGs revealed that abundant viruses directly manipulate sulfur and nitrogen cycling, and do so throughout the epipelagic ocean. Together these data provide a critically-needed organismal catalog and functional context to begin meaningfully integrating viruses into

  4. Exploring oceanic impact crater mechanics through numerical models

    Science.gov (United States)

    Wünnemann, K.; Lange, M. A.

    2002-12-01

    The mechanics of oceanic impact events differ in several ways from the processes that accompany the strike of an asteroid on land. In order to explore the cratering process on a water-covered target, a series of 2D hydrocode simulations have been carried out. Whereas crater structures on continental targets are the result of a gravity-driven collapse of the transient cavity that is formed immediately after the impact, we show that oceanic impact structures are additionally modified by strong water movements along the ocean-sea floor interface. Water currents directed both inwardly and outwardly from the impact point result in significant structural disturbances of the pelagic sediments. These currents are treated in the numerical models through an analysis of massless tracer particles movement initially placed in the target. In the models it is shown, that the modification of the ocean floor by water currents takes place, regardless of whether or not the residual kinetic energy of the impactor is large enough to penetrate the water column and to form a crater at the ocean floor. This hypothesis verified by an investigation of the so far only known deep sea impact structure, the Eltanin impact structure. Here a zone of chaotically deposited sediments was found but no depression in the ocean floor has been detected. Strong water surges play also an import role in the modification of crater structures at relatively shallow water depth on the continental shelf. This has been observed in the formation of gullies at the Lockne structure in Sweden. Even more surprisingly is the existence of a ringed impact structure in the North Sea, the Silverpit crater, which has a diameter of only 20 km. We explain the formation of a ring structure, which has not previously been thought possible at such a small scale, via numerical modelling by extremely weak strength properties of the target rocks. This kind of strength softening may be due to the fact, that water is involved in the

  5. Impact of the oceanic geothermal heat flux on a glacial ocean state

    Science.gov (United States)

    Ballarotta, M.; Roquet, F.; Falahat, S.; Zhang, Q.; Madec, G.

    2015-08-01

    The oceanic geothermal heating (OGH) has a significant impact on the present-day ocean state, but its role during glacial periods, when the ocean circulation and stratification were different from those of today, remains poorly known. In the present study, we analyzed the response of the glacial ocean to OGH, by comparing ocean simulations of the Last Glacial Maximum (LGM, ∼ 21 ka ago) including or not geothermal heating. We found that applying the OGH warmed the Antarctic Bottom Waters (AABW) by ∼ 0.4 °C and increased the abyssal circulation by 15 to 30 % north of 30° S in the deep Pacific and Atlantic basins. The geothermally heated deep waters were then advected toward the Southern Ocean where they upwelled to the surface due to the Ekman transport. The extra heat transport towards Antarctica acted to reduce the amount of sea ice contributing to the freshening of the whole AABW overturning cell. The global amount of salt being conserved, this bottom freshening induced a salinification of the North Atlantic and North Pacific surface and intermediate waters, contributing to the deepening of the North Atlantic Deep Water. This indirect mechanism is responsible for the largest observed warming, found in the North Atlantic deep western boundary current between 2000 and 3000 m (up to 2 °C). The characteristic time scale of the ocean response to the OGH corresponds to an advective time scale (associated with the overturning of the AABW cell) rather than a diffusive time scale. The OGH might facilitate the transition from a glacial to an inter-glacial state but its effect on the deep stratification seems insufficient to drive alone an abrupt climate change.

  6. On the weak impact of the 26 December Indian Ocean tsunami on the Bangladesh coast

    Science.gov (United States)

    Ioualalen, M.; Pelinovsky, E.; Asavanant, J.; Lipikorn, R.; Deschamps, A.

    2007-01-01

    The 26 December 2004 Indian Ocean tsunami damaged severely most of the Gulf of Bengal's coastal areas, but the coast of Bangladesh which stands at the edge of an extraordinarily extended continental shelf. This latter feature has been built through huge discharges of river sediments along the Brahmaputra and Ganges rivers. As a result of this enormous discharge, another interesting feature of the area is the deep underwater Canyon, connected with the estuaries, running NE-SW from 25 km off the coast towards the continental slope. We investigate here how these two geological features may have modified/perturbed the Indian ocean tsunami propagation and impact on the Coast of Bangladesh. For that purpose we have realized an ensemble of numerical simulations based on Funwave Boussinesq numerical model and a validated coseismic source. It is found, at first order, that the extended shallow bathymetric profile of the continental shelf plays a key role in flattening the waveform through a defocussing process while the Canyon delays the process. The wave evolution seems to be related at first order to the bathymetric profile rather than to dynamical processes like nonlinearity, dispersion or bottom friction.

  7. On the weak impact of the 26 December Indian Ocean tsunami on the Bangladesh coast

    Directory of Open Access Journals (Sweden)

    M. Ioualalen

    2007-01-01

    Full Text Available The 26 December 2004 Indian Ocean tsunami damaged severely most of the Gulf of Bengal's coastal areas, but the coast of Bangladesh which stands at the edge of an extraordinarily extended continental shelf. This latter feature has been built through huge discharges of river sediments along the Brahmaputra and Ganges rivers. As a result of this enormous discharge, another interesting feature of the area is the deep underwater Canyon, connected with the estuaries, running NE-SW from 25 km off the coast towards the continental slope. We investigate here how these two geological features may have modified/perturbed the Indian ocean tsunami propagation and impact on the Coast of Bangladesh. For that purpose we have realized an ensemble of numerical simulations based on Funwave Boussinesq numerical model and a validated coseismic source. It is found, at first order, that the extended shallow bathymetric profile of the continental shelf plays a key role in flattening the waveform through a defocussing process while the Canyon delays the process. The wave evolution seems to be related at first order to the bathymetric profile rather than to dynamical processes like nonlinearity, dispersion or bottom friction.

  8. The Impact of "Bad" Argo Profiles on Ocean Data Assimilation

    Institute of Scientific and Technical Information of China (English)

    YAN Chang-Xiang; ZHU Jiang

    2010-01-01

    Recent studies have found cold biases in a fraction of Argo profiles (hereinafter referred to as bad Array for Real-time Geostrophic Oceanography (Argo) profiles) due to the pressure drifts during 2003 and 2006. These bad Argo profiles have had an important impact on in situ observation-based global ocean heat content estimates. This study investigated the impact of bad Argo profiles on ocean data assimilation results that were based on observations from diverse ocean observation systems, such as in situ profiles (e.g., Argo, expendable bathythermograph (XBT), and Tropical Atmosphere Ocean (TAO), remote-sensing sea surface temperature products and satellite altimetry between 2004 and 2006. Results from this work show that the upper ocean heat content analysis is vulnerable to bad Argo profiles and demonstrate a cooling trend in the studied period despite the multiple independent data types that were assimilated. When the bad Argo profiles were excluded from the assimilation, the decreased heat content disappeared and a warming occurred. Combination of satellite altimetry and mass variation data from gravity satellite demonstrated an increase, which agrees well with the increased heat content. Additionally, when an additional Argo profile quality control procedure was utilized that simply removed the profiles that presented static unstable water columns, the results were very similar to those obtained when the bad Argo profiles were excluded from the assimilation. This indicates that an ocean data assimilation that uses multiple data sources with improved quality control could be less vulnerable to a major observation system failure, such as a bad Argo event.

  9. Impact of near-future ocean acidification on echinoderms.

    Science.gov (United States)

    Dupont, S; Ortega-Martínez, O; Thorndyke, M

    2010-03-01

    As a consequence of increasing atmospheric CO(2), the world's oceans are warming and slowly becoming more acidic (ocean acidification, OA) and profound changes in marine ecosystems are certain. Calcification is one of the primary targets for studies of the impact of CO(2)-driven climate change in the oceans and one of the key marine groups most likely to be impacted by predicted climate change events are the echinoderms. Echinoderms are a vital component of the marine environment with representatives in virtually every ecosystem, where they are often keystone ecosystem engineers. This paper reviews and analyses what is known about the impact of near-future ocean acidification on echinoderms. A global analysis of the literature reveals that echinoderms are surprisingly robust to OA and that important differences in sensitivity to OA are observed between populations and species. However, this is modulated by parameters such as (1) exposure time with rare longer term experiments revealing negative impacts that are hidden in short or midterm ones; (2) bottlenecks in physiological processes and life-cycle such as stage-specific developmental phenomena that may drive the whole species responses; (3) ecological feedback transforming small scale sub lethal effects into important negative effects on fitness. We hypothesize that populations/species naturally exposed to variable environmental pH conditions may be pre-adapted to future OA highlighting the importance to understand and monitor environmental variations in order to be able to to predict sensitivity to future climate changes. More stress ecology research is needed at the frontier between ecotoxicology and ecology, going beyond standardized tests using model species in order to address multiple water quality factors (e.g. pH, temperature, toxicants) and organism health. However, available data allow us to conclude that near-future OA will have negative impact on echinoderm taxa with likely significant consequences

  10. Two- and Three-Dimensional Simulations of Asteroid Ocean Impacts

    Science.gov (United States)

    Gisler, G.; Weaver, R. P.; Mader, C. L.; Gittings, M. L.

    2003-01-01

    We have performed a series of two-dimensional and three-dimensional simulations of asteroid impacts into an ocean using the SAGE code from Los Alamos National Laboratory and Science Applications International Corporation. The SAGE code is a compressible Eulerian hydrodynamics code using continuous adaptive mesh refinement for following discontinuities with a fine grid while treating the bulk of the simulation more coarsely. We have used tabular equations of state for the atmosphere, water, the oceanic crust, and the mantle. In two dimensions, we simulated asteroid impactors moving at 20 km/s vertically through an exponential atmosphere into a 5 km deep ocean. The impactors were composed of mantle material (3.32 g/cc) or iron (7.8 g/cc) with diameters from 250m to 10 km. In our three-dimensional runs we simulated asteroids of 1 km diameter composed of iron moving at 20 km/s at angles of 45 and 60 degrees from the vertical. All impacts, including the oblique ones, produce large underwater cavities with nearly vertical walls followed by a collapse starting from the bottom and subsequent vertical jetting. Substantial amounts of water are vaporized and lofted high into the atmosphere. In the larger impacts, significant amounts of crustal and even mantle material are lofted as well. Tsunamis up to a kilometer in initial height are generated by the collapse of the vertical jet. These waves are initially complex in form, and interact strongly with shocks propagating through the water and the crust. The tsunami waves are followed out to 100 km from the point of impact. Their periods and wavelengths show them to be intermediate type waves, and not (in general) shallow-water waves. At great distances, the waves decay faster than the inverse of the distance from the impact point, ignoring sea-floor topography. For all impactors smaller than about 2 km diameter, the impacting body is highly fragmented and its remains lofted into the stratosphere with the water vapor and crustal

  11. TWO- AND THREE-DIMENSIONAL SIMULATIONS OF ASTEROID OCEAN IMPACTS

    Directory of Open Access Journals (Sweden)

    Michael Gittings

    2003-01-01

    Full Text Available We have performed a series of two-dimensional and three-dimensional simulations of asteroid impacts into an ocean using the SAGE code from Los Alamos National Laboratory and Science Applications International Corporation. The SAGE code is a compressible Eulerian hydrodynamics code using continuous adaptive mesh refinement for following discontinuities with a fine grid while treating the bulk of the simulation more coarsely. We have used realistic equations of state for the atmosphere, sea water, the oceanic crust, and the mantle. In two dimensions, we simulated asteroid impactors moving at 20 km/s vertically through an exponential atmosphere into a 5 km deep ocean. The impactors were composed of mantle material (3.32 g/cc or iron (7.8 g/cc with diameters from 250m to 10 km. In our three-dimensional runs we simulated asteroids of 1 km diameter composed of iron moving at 20 km/s at angles of 45 and 60 degrees from the vertical. All impacts, including the oblique ones, produce a large underwater cavities with nearly vertical walls followed by a collapse starting from the bottom and subsequent vertical jetting. Substantial amounts of water are vaporized and lofted high into the atmosphere. In the larger impacts, significant amounts of crustal and even mantle material are lofted as well. Tsunamis up to a kilometer in initial height are generated by the collapse of the vertical jet. These waves are initially complex in form, and interact strongly with shocks propagating through the water and the crust. The tsunami waves are followed out to 100 km from the point of impact. Their periods and wavelengths show them to be intermediate type waves, and not (in general shallow-water waves. At great distances, the waves decay as the inverse of the distance from the impact point, ignoring sea-floor topography. For all impactors smaller than about 2 km diameter, the impacting body is highly fragmented and its remains lofted into the stratosphere with the water

  12. Ocean acidification and its impacts: an expert survey

    Science.gov (United States)

    Gattuso, J.; Mach, K.; Morgan, M. G.

    2011-12-01

    The number of scientists investigating ocean acidification as well as the number of papers published on this issue have increased considerably in the past few years. On the one hand, the advances are welcome for the assessment of ocean acidification and its impacts. On the other hand, the volume and rapidity of the scientific developments as well as some contradictory results have created challenges for assessing the current state of knowledge and informing policy makers. Two tools are being used to synthesize the current information: meta-analysis and expert survey. In January this year, Working Groups I and II of the IPCC organized an expert meeting on ocean acidification in Okinawa. Following this meeting, we built a set of 22 statements, in consultation with several of the meeting participants. An expert survey was then conducted. It involved 52 experts who provided a considerable amount of information. The statements covered a broad array of research fields and were grouped in 3 categories: chemical aspects, biological and biogeochemical responses, and policy and socio-economic aspects. The survey results indicate a relatively strong consensus for most statements related to the past, present and future chemical aspects. Examples of consensual issues are: non-anthropogenic ocean acidification events have occurred in the geological past, anthropogenic CO2 emissions is the main (but not the only) mechanism generating the current ocean acidification event, and ocean acidification will be felt for centuries. The experts generally agreed that there will be impacts on biological and ecological processes and biogeochemical feedbacks, but for such statements, the levels of agreement were lower overall, with more variability across responses. Levels of agreements among experts surveyed were comparatively higher for statements regarding calcification, primary production and nitrogen fixation, as compared to impacts on food-webs. The levels of agreement for statements

  13. The impact of oceanic heat transport on the atmospheric circulation

    Directory of Open Access Journals (Sweden)

    M.-A. Knietzsch

    2014-11-01

    Full Text Available A general circulation model of intermediate complexity with an idealized earthlike aquaplanet setup is used to study the impact of changes in the oceanic heat transport on the global atmospheric circulation. Focus is put on the Lorenz energy cycle and the atmospheric mean meridional circulation. The latter is analysed by means of the Kuo–Eliassen equation. The atmospheric heat transport compensates the imposed oceanic heat transport changes to a large extent in conjunction with significant modification of the general circulation. Up to a maximum about 3 PW, an increase of the oceanic heat transport leads to an increase of the global mean near-surface temperature and a decrease of its equator-to-pole gradient. For larger transports, the gradient is reduced further but the global mean remains approximately constant. This is linked to a cooling and a reversal of the temperature gradient in the tropics. A larger oceanic heat transport leads to a reduction of all reservoirs and conversions of the Lorenz energy cycle but of different relative magnitude for the individual components. The available potential energy of the zonal mean flow and its conversion to eddy available potential energy are affected most. Both the Hadley and Ferrel cell show a decline for increasing oceanic heat transport, with the Hadley cell being more sensitive. Both cells exhibit a poleward shift of their maxima, and the Hadley cell broadens for larger oceanic transports. The partitioning, by means of the Kuo–Eliassen equation, reveals that zonal mean diabatic heating and friction are the most important sources for changes of the Hadley cell, while the behaviour of the Ferrell cell is mostly controlled by friction.

  14. Impact of Scatterometer Ocean Wind Vector Data on NOAA Operations

    Science.gov (United States)

    Jelenak, Z.; Chang, P.; Brennan, M. J.; Sienkiewicz, J. M.

    2015-12-01

    Near real-time measurements of ocean surface vector winds (OSVW), including both wind speed and direction from non-NOAA satellites, are being widely used in critical operational NOAA forecasting and warning activities. The scatterometer wind data data have had major operational impact in: a) determining wind warning areas for mid-latitude systems (gale, storm,hurricane force); b) determining tropical cyclone 34-knot and 50-knot wind radii. c) tracking the center location of tropical cyclones, including the initial identification of their formation. d) identifying and warning of extreme gap and jet wind events at all latitudes. e) identifying the current location of frontal systems and high and low pressure centers. f) improving coastal surf and swell forecasts Much has been learned about the importance and utility of satellite OSVW data in operational weather forecasting and warning by exploiting OSVW research satellites in near real-time. Since December 1999 when first data from QuikSCAT scatterometer became available in near real time NOAA operations have been benefiting from ASCAT scatterometer observations on MetOp-A and B, Indian OSCAT scatterometer on OceanSat-3 and lately NASA's RapidScat mission on International Space Station. With oceans comprising over 70 percent of the earth's surface, the impacts of these data have been tremendous in serving society's needs for weather and water information and in supporting the nation's commerce with information for safe, efficient, and environmentally sound transportation and coastal preparedness. The satellite OSVW experience that has been gained over the past decade by users in the operational weather community allows for realistic operational OSVW requirements to be properly stated for future missions. Successful model of transitioning research data into operation implemented by Ocean Winds Team in NOAA's NESDIS/STAR office and subsequent data impacts will be presented and discussed.

  15. The impact of oceanic heat transport on the atmospheric circulation

    CERN Document Server

    Knietzsch, Marc-Andre; Lunkeit, Frank

    2014-01-01

    A general circulation model of intermediate complexity with an idealized earthlike aquaplanet setup is used to study the impact of changes in the oceanic heat transport on the global atmospheric circulation. Focus is put on the Lorenz energy cycle and the atmospheric mean meridional circulation. The latter is analysed by means of the Kuo-Eliassen equation. The atmospheric heat transport compensates the imposed oceanic heat transport changes to a large extent in conjunction with significant modification of the general circulation. Up to a maximum about 3PW, an increase of the oceanic heat transport leads to an increase of the global mean near surface temperature and a decrease of its equator-to-pole gradient. For larger transports, the gradient is reduced further but the global mean remains approximately constant. This is linked to a cooling and a reversal of the temperature gradient in the tropics. A larger oceanic heat transport leads to a reduction of all reservoirs and conversions of the Lorenz energy cycl...

  16. Ocean Global Warming Impacts on the South America Climate

    Science.gov (United States)

    Ramos-Da-Silva, Renato

    2016-03-01

    The global Ocean-Land-Atmosphere Model (OLAM) model was used to estimate the impacts of the global oceanic warming on the climate projections for the 21st Century focusing on the South America region. This new model is able to represent simultaneously the global and regional scales using a refining grid approach for the region of interest. First, the model was run for a 31-year control period consisting on the years 1960-1990 using the monthly Sea Surface Temperature (SST) from the Atmospheric Model Intercomparison Project (AMIP) data as a driver for the ocean fluxes. Then, the model was run for the period 2010-2100 using the monthly projected SST from the Hadley Center model (HadCM3) as a driver for the oceanic changes. The model was set up with an icosahedral triangular global grid having about 250 km of grid spacing and with a refining grid resolution with the cells reaching about 32 km over the South America region. The results show an overall temperature increase mainly over the center of the Amazon basin caused by the increase of the greenhouse effect of the water vapor; a decrease on precipitation mainly over the northeast Brazil and an increase in the south and over the western Amazon region; and a major increase on the near surface wind speed. These results are similar to the global coupled models; however, OLAM has a novel type of grid that can provide the interaction between the global and regional scales simultaneously.

  17. Impacts of tropical cyclone inflow angle on ocean surface waves

    Institute of Scientific and Technical Information of China (English)

    ZHAO Wei; HONG Xin

    2011-01-01

    The inflow angle of tropical cyclones (TC) is generally neglected in numerical studies of ocean surface waves induced by TC. In this study, the impacts of TC inflow angle on ocean surface waves were investigated using a high-resolution wave model. Six numerical experiments were conducted to examine, in detail, the effects of inflow angle on mean wave parameters and the spectrum of wave directions. A comparison of the waves simulated in these experiments shows that inflow angle significantly modifies TC-induced ocean surface waves. As the inflow angle increases, the asymmetric axis of the significant wave height (SWH) field shifts 30° clockwise, and the maximum SWH moves from the front-right to the rear-right quadrant. Inflow angle also affects other mean wave parameters, especially in the rear-left quadrant, such as the mean wave direction, the mean wavelength, and the peak direction. Inflow angle is a key factor in wave models for the reproduction of double-peak or multi-peak patterns in the spectrum of wave directions. Sensitivity experiments also show that the simulation with a 40° inflow angle is the closest to that of the NOAA statistical SLOSH inflow angle. This suggests that 40° can be used as the inflow angle in future TC-induced ocean surface wave simulations when SLOSH or observed inflow angles are not available.

  18. Ocean Global Warming Impacts on the South America Climate

    Directory of Open Access Journals (Sweden)

    Renato eRamos-Da-Silva

    2016-03-01

    Full Text Available The global Ocean-Land-Atmosphere Model (OLAM model was used to estimate the impacts of the global oceanic warming on the climate projections for the 21st Century focusing on the South America region. This new model is able to represent simultaneously the global and regional scales using a refining grid approach for the region of interest. First, the model was run for a 31-year control period consisting on the years 1960-1990 using the monthly Sea Surface Temperature (SST from the Atmospheric Model Intercomparison Project (AMIP data as a driver for the ocean fluxes. Then, the model was run for the period 2010-2100 using the monthly projected SST from the Hadley Center model (HadCM3 as a driver for the oceanic changes. The model was set up with an icosahedral triangular global grid having about 250 km of grid spacing and with a refining grid resolution with the cells reaching about 32 km over the South America region. The results show an overall temperature increase mainly over the center of the Amazon basin caused by the increase of the greenhouse effect of the water vapor; a decrease on precipitation mainly over the northeast Brazil and an increase in the south and over the western Amazon region; and a major increase on the near surface wind speed. These results are similar to the global coupled models; however, OLAM has a novel type of grid that can provide the interaction between the global and regional scales simultaneously.

  19. Impacts of ocean acidification on sediment processes in shallow waters of the Arctic Ocean.

    Science.gov (United States)

    Gazeau, Frédéric; van Rijswijk, Pieter; Pozzato, Lara; Middelburg, Jack J

    2014-01-01

    Despite the important roles of shallow-water sediments in global biogeochemical cycling, the effects of ocean acidification on sedimentary processes have received relatively little attention. As high-latitude cold waters can absorb more CO2 and usually have a lower buffering capacity than warmer waters, acidification rates in these areas are faster than those in sub-tropical regions. The present study investigates the effects of ocean acidification on sediment composition, processes and sediment-water fluxes in an Arctic coastal system. Undisturbed sediment cores, exempt of large dwelling organisms, were collected, incubated for a period of 14 days, and subject to a gradient of pCO2 covering the range of values projected for the end of the century. On five occasions during the experimental period, the sediment cores were isolated for flux measurements (oxygen, alkalinity, dissolved inorganic carbon, ammonium, nitrate, nitrite, phosphate and silicate). At the end of the experimental period, denitrification rates were measured and sediment samples were taken at several depth intervals for solid-phase analyses. Most of the parameters and processes (i.e. mineralization, denitrification) investigated showed no relationship with the overlying seawater pH, suggesting that ocean acidification will have limited impacts on the microbial activity and associated sediment-water fluxes on Arctic shelves, in the absence of active bio-irrigating organisms. Only following a pH decrease of 1 pH unit, not foreseen in the coming 300 years, significant enhancements of calcium carbonate dissolution and anammox rates were observed. Longer-term experiments on different sediment types are still required to confirm the limited impact of ocean acidification on shallow Arctic sediment processes as observed in this study.

  20. Potential impacts of ocean acidification on the Puget Sound food web (NCEI Accession 0134852)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The ecosystem impacts of ocean acidification (OA) were explored by imposing scenarios designed to mimic OA on a food web model of Puget Sound, a large estuary in the...

  1. Mesoscale Ocean Altimetry Requirements and Impact of GPS-R measurements for Ocean Mesoscale Circulation Mapping

    CERN Document Server

    Le Traon, P Y; Ruffini, G; Cardellach, E

    2002-01-01

    In the framework of the PARIS Beta project, fundamental milestones have been reached for the definition of future GNSS-R (Global Navigation Satellite System signal Reflections) altimetry missions (the PARIS concept). The most important one is the confirmation of the significant impact that GNSS-R data can have on mesoscale oceanography, as we discuss here. In this report, we first briefly review the contribution of satellite altimetry to mesoscale oceanography. We then summarise recent results obtained on the mapping capabilities of existing and future altimeter missions. From these analyses, refined requirements for mesoscale ocean altimetry (in terms of space/time sampling and accuracy) are derived. A review of on-going and planned altimetric missions is then performed and we analyse how these configurations match the user requirements. Then we will describe the simulation approach and impact analysis of GPS-R data.

  2. Impacts of Ocean Acidification on Sensory Function in Marine Organisms.

    Science.gov (United States)

    Ashur, Molly M; Johnston, Nicole K; Dixson, Danielle L

    2017-07-01

    Ocean acidification has been identified as a major contributor to ocean ecosystem decline, impacting the calcification, survival, and behavior of marine organisms. Numerous studies have observed altered sensory perception of chemical, auditory, and visual cues after exposure to elevated CO2. Sensory systems enable the observation of the external environment and therefore play a critical role in survival, communication, and behavior of marine organisms. This review seeks to (1) summarize the current knowledge of sensory impairment caused by ocean acidification, (2) discuss potential mechanisms behind this disruption, and (3) analyze the expected taxa differences in sensitivities to elevated CO2 conditions. Although a lack of standardized methodology makes cross-study comparisons challenging, trends and biases arise from this synthesis including a substantial focus on vertebrates, larvae or juveniles, the reef ecosystem, and chemosensory perception. Future studies must broaden the scope of the field by diversifying the taxa and ecosystems studied, incorporating ontogenetic comparisons, and focusing on cryptic sensory systems such as electroreception, magnetic sense, and the lateral line system. A discussion of possible mechanisms reveals GABAA receptor reversal as the conspicuous physiological mechanism. However, the potential remains for alternative disruption through structure or cue changes. Finally, a taxonomic comparison of physiological complexity reveals few trends in sensory sensitivities to lowered pH, but we hypothesize potential correlations relating to habitat, life history or relative use of sensory systems. Elevated CO2, in concordance with other global and local stressors, has the potential to drastically shift community composition and structure. Therefore research addressing the extent of sensory impairment, the underlying mechanisms, and the differences between taxa is vital for improved predictions of organismal response to ocean acidification.

  3. Fukushima Daiichi Nuclear Plant accident: Atmospheric and oceanic impacts over the five years.

    Science.gov (United States)

    Hirose, Katsumi

    2016-06-01

    The Fukushima Daiichi Nuclear Plant (FDNPP) accident resulted in huge environmental and socioeconomic impacts to Japan. To document the actual environmental and socioeconomic effects of the FDNPP accident, we describe here atmospheric and marine contamination due to radionuclides released from the FDNPP accident using papers published during past five years, in which temporal and spatial variations of FDNPP-derived radionuclides in air, deposition and seawater and their mapping are recorded by local, regional and global monitoring activities. High radioactivity-contaminated area in land were formed by the dispersion of the radioactive cloud and precipitation, depending on land topography and local meteorological conditions, whereas extremely high concentrations of (131)I and radiocesium in seawater occurred due to direct release of radioactivity-contaminated stagnant water in addition to atmospheric deposition. For both of atmosphere and ocean, numerical model simulations, including local, regional and global-scale modeling, were extensively employed to evaluate source terms of the FDNPP-derived radionuclides from the monitoring data. These models also provided predictions of the dispersion and high deposition areas of the FDNPP-derived radionuclides. However, there are significant differences between the observed and simulated values. Then, the monitoring data would give a good opportunity to improve numerical modeling.

  4. Phytoplankton size impact on export flux in the global ocean

    Science.gov (United States)

    Mouw, Colleen B.; Barnett, Audrey; McKinley, Galen A.; Gloege, Lucas; Pilcher, Darren

    2016-10-01

    Efficiency of the biological pump of carbon to the deep ocean depends largely on biologically mediated export of carbon from the surface ocean and its remineralization with depth. Global satellite studies have primarily focused on chlorophyll concentration and net primary production (NPP) to understand the role of phytoplankton in these processes. Recent satellite retrievals of phytoplankton composition now allow for the size of phytoplankton cells to be considered. Here we improve understanding of phytoplankton size structure impacts on particle export, remineralization, and transfer. A global compilation of particulate organic carbon (POC) flux estimated from sediment traps and 234Th are utilized. Annual climatologies of NPP, percent microplankton, and POC flux at four time series locations and within biogeochemical provinces are constructed. Parameters that characterize POC flux versus depth (export flux ratio, labile fraction, and remineralization length scale) are fit for time series locations, biogeochemical provinces, and times of the year dominated by small and large phytoplankton cells where phytoplankton cell size show enough dynamic range over the annual cycle. Considering all data together, our findings support the idea of high export flux but low transfer efficiency in productive regions and vice versa for oligotrophic regions. However, when parsing by dominant size class, we find periods dominated by small cells to have both greater export flux efficiency and lower transfer efficiency than periods when large cells comprise a greater proportion of the phytoplankton community.

  5. Ethnic Tourism -- A Helicopter from "Huge Graveyard" to Paradise? Social impacts of ethnic tourism development on the minority communities in Guizhou Province, Southwest China

    Directory of Open Access Journals (Sweden)

    Xiaoping Wu

    2000-01-01

    Full Text Available Since the beginning of the 1980s, ethnic tourism has been oneof the key industries promoted by the government of Guizhouprovince in Southwestern China. This industry has broughttremendous changes to the communities of local ethnic peoplesin destination areas, especially in improving their economiclife. However, although ethnic tourism does bring manypositive results to local peoples, it also has a negative sideas well. This paper investigates, from a local perspective,some of these impacts, taking the Miao/Hmong communities as acase study. The author contends that if ethnic governments andresidents want to sustain their culture and society, they musthave an awareness and understanding of both the positive andnegative impacts of tourism when considering a project intheir community.

  6. An observational study on patient admission in the anaesthesia gas monitor and minimum alveolar concentration monitoring: A deficiency with huge impact

    Directory of Open Access Journals (Sweden)

    Habib Md Reazaul Karim

    2017-01-01

    Full Text Available Background and Aims: Minimum alveolar concentration (MAC monitoring is an integral part of modern-day anaesthesia. Both MAC and MAC-awake are age dependant, and age of the patient needs to be entered in the monitor. This study was aimed to assess the practice of patient birth year entry in the anaesthesia monitor and its impact on MAC monitoring. Methods: Sixty volatile anaesthetic-based general anaesthetics (GAs were observed silently in two tertiary care teaching hospitals with regard to 'birth year' entry in the patient monitor. The impact on MAC for non-entry of age was assessed. The observed MAC reading and the MAC corrected for age (MACage of the patients were noted. Paired t-test was used to compare the differences in observed MAC and MACagevalues. P <0.05 was significant. Results: Sixty GAs of patients aged between 10 and 68 years were observed; 96.67% anaesthetics were conducted without entering 'birth year'. Thirty-four patients (mean age 35.14 ± 15.38 years were further assessed for impact of non-entry of age. The observed MAC was similar to MACage in patients aged 40 ± 5 years (36–45 years group. Nearly 79.41% of the observed MACs were incorrect; 55.88% patients were potentially underdosed whereas 23.53% were overdosed. Conclusion: Omitting patient age entry in the monitor results in erroneous MAC values, exposing patients <40 years to underdosing and older patients to overdose.

  7. Adaptation to Impacts of Greenhouse Gases on the Ocean (Invited)

    Science.gov (United States)

    Caldeira, K.

    2010-12-01

    Greenhouse gases are producing changes in ocean temperature and circulation, and these changes are already adversely affecting marine biota. Furthermore, carbon dioxide is absorbed by the oceans from the atmosphere, and this too is already adversely affecting some marine ecosystems. And, of course, sea-level rise affects both what is above and below the waterline. Clearly, the most effective approach to limit the negative impacts of climate change and acidification on the marine environment is to greatly diminish the rate of greenhouse gas emissions. However, there are other measures that can be taken to limit some of the negative effects of these stresses in the marine environment. Marine ecosystems are subject to multiple stresses, including overfishing, pollution, and loss of coastal wetlands that often serve as nurseries for the open ocean. The adaptive capacity of marine environments can be improved by limiting these other stresses. If current carbon dioxide emission trends continue, for some cases (e.g., coral reefs), it is possible that no amount of reduction in other stresses can offset the increase in stresses posed by warming and acidification. For other cases (e.g., blue-water top-predator fisheries), better fisheries management might yield improved population health despite continued warming and acidification. In addition to reducing stresses so as to improve the adaptive capacity of marine ecosystems, there is also the issue of adaptation in human communities that depend on this changing marine environment. For example, communities that depend on services provided by coral reefs may need to locate alternative foundations for their economies. The fishery industry will need to adapt to changes in fish abundance, timing and location. Most of the things we would like to do to increase the adaptive capacity of marine ecosystems (e.g., reduce fishing pressure, reduce coastal pollution, preserve coastal wetlands) are things that would make sense to do even in

  8. Puget Sound ocean acidification model outputs - Modeling the impacts of ocean acidification on ecosystems and populations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NWFSC OA team will model the effects of ocean acidification on regional marine species and ecosystems using food web models, life-cycle models, and bioenvelope...

  9. An observational study on patient admission in the anaesthesia gas monitor and minimum alveolar concentration monitoring: A deficiency with huge impact.

    Science.gov (United States)

    Karim, Habib Md Reazaul; Narayan, Anilkumar; Yunus, Md; Kumar, Sanjay; Prakash, Avinash; Sahoo, Sarasa Kumar

    2017-07-01

    Minimum alveolar concentration (MAC) monitoring is an integral part of modern-day anaesthesia. Both MAC and MAC-awake are age dependant, and age of the patient needs to be entered in the monitor. This study was aimed to assess the practice of patient birth year entry in the anaesthesia monitor and its impact on MAC monitoring. Sixty volatile anaesthetic-based general anaesthetics (GAs) were observed silently in two tertiary care teaching hospitals with regard to 'birth year' entry in the patient monitor. The impact on MAC for non-entry of age was assessed. The observed MAC reading and the MAC corrected for age (MACage) of the patients were noted. Paired t-test was used to compare the differences in observed MAC and MACage values. P MAC was similar to MACage in patients aged 40 ± 5 years (36-45 years group). Nearly 79.41% of the observed MACs were incorrect; 55.88% patients were potentially underdosed whereas 23.53% were overdosed. Omitting patient age entry in the monitor results in erroneous MAC values, exposing patients <40 years to underdosing and older patients to overdose.

  10. Impact of Surface Waves on SWOT's Projected Ocean Accuracy

    National Research Council Canada - National Science Library

    Eva Peral; Ernesto Rodríguez; Daniel Esteban-Fernandez

    2015-01-01

      The Surface Water and Ocean Topography (SWOT) mission being considered by NASA has, as one of its main objectives, to measure ocean topography with centimeter scale accuracy over kilometer scale spatial resolution...

  11. Chapter 1. Impacts of the oceans on climate change.

    OpenAIRE

    Reid, PC; Fischer, AC; Lewis-Brown, E; Meredith, MP; Sparrow, M; Andersson, AJ; Antia, A.; Bates, NR; Bathmann, U.; Beaugrand, G.; Brix, H.; Dye, S.; Edwards, M.; Furevik, T.; R. Gangstø

    2009-01-01

    The oceans play a key role in climate regulation especially in part buffering (neutralising) the effects of increasing levels of greenhouse gases in the atmosphere and rising global temperatures. This chapter examines how the regulatory processes performed by the oceans alter as a response to climate change and assesses the extent to which positive feedbacks from the ocean may exacerbate climate change. There is clear evidence for rapid change in the oceans. As the main heat store for the wor...

  12. Formation of simple biomolecules from alanine in ocean by impacts

    Science.gov (United States)

    Umeda, Y.; Sekine, T.; Furukawa, Y.; Kakegawa, T.; Kobayashi, T.

    2013-12-01

    The biomolecules on the Earth are thought either to have originated from the extraterrestrial parts carried with flying meteorites or to have been formed from the inorganic materials on the Earth through given energy. From the standpoint to address the importance of impact energy, it is required to simulate experimentally the chemical reactions during impacts, because violent impacts may have occurred 3.8-4.0 Gyr ago to create biomolecules initially. It has been demonstrated that shock reactions among ocean (H2O), atmospheric nitrogen, and meteoritic constitution (Fe) can induce locally reduction environment to form simple bioorganic molecules such as ammonia and amino acid (Nakazawa et al., 2005; Furukawa et al., 2009). We need to know possible processes for alanine how chemical reactions proceed during repeated impacts and how complicated biomolecules are formed. Alanine can be formed from glycine (Umeda et al., in preparation). In this study, we carried out shock recovery experiments at pressures of 4.4-5.7 GPa to investigate the chemical reactions of alanine. Experiments were carried out with a propellant gun. Stainless steel containers (30 mm in diameter, 30 mm long) with 13C-labeled alanine aqueous solution immersed in olivine or hematite powders were used as targets. Air gap was present in the sample room (18 mm in diameter, 2 mm thick) behind the sample. The powder, solution, and air represent meteorite, ocean, and atmosphere on early Earth, respectively. Two powders of olivine and hematite help to keep the oxygen fugacity low and high during experiments, respectively in order to investigate the effect of oxygen fugacity on chemical processes of alanine. The recovered containers, after cleaned completely, were immersed into liquid nitrogen to freeze sample solution and then we drilled on the impact surface to extract water-soluble run products using pure water. Thus obtained products were analyzed by LC/MS for four amino acids (glycine, alanine, valine, and

  13. Steroidal estrogen sources in a sewage-impacted coastal ocean.

    Science.gov (United States)

    Griffith, David R; Kido Soule, Melissa C; Eglinton, Timothy I; Kujawinski, Elizabeth B; Gschwend, Philip M

    2016-08-10

    Estrogens are known to be potent endocrine disrupting chemicals that are commonly found in wastewater effluents at ng L(-1) levels. Yet, we know very little about the distribution and fate of estrogens in coastal oceans that receive wastewater inputs. This study measured a wide range of steroidal estrogens in sewage-impacted seawater using ultra high performance liquid chromatography (UHPLC) tandem mass spectrometry (MS/MS) together with the method of standard addition. In Massachusetts Bay, we find conjugated, free, and halogenated estrogens at concentrations that are consistent with dilution at sites close to the sewage source. At a site 6 miles down current of the sewage source, we observe estrone (E1) concentrations (520 ± 180 pg L(-1)) that are nearly double the nearfield concentrations (320 ± 60 pg L(-1)) despite 9-fold dilution of carbamazepine, which was used as a conservative sewage tracer. Our results suggest that background E1 concentrations in Massachusetts Bay (∼270 ± 50 pg L(-1)) are derived largely from sources unrelated to wastewater effluent such as marine vertebrates.

  14. Ocean water cycle: its recent amplification and impact on ocean circulation

    Science.gov (United States)

    Vinogradova, Nadya

    2016-04-01

    Oceans are the largest reservoir of the world's water supply, accounting for 97% of the Earth's water and supplying more than 75% of the evaporated and precipitated water in the global water cycle. Therefore, in order to predict the future of the global hydrological cycle, it is essential to understand the changes in its largest component, which is the flux of freshwater over the oceans. Here we examine the change in the ocean water cycle and the ocean's response to such changes that were happening during the last two decades. The analysis is based on a data-constrained ocean state estimate that synthesizes all of the information available in the surface fluxes, winds, observations of sea level, temperature, salinity, geoid, etc., as well as in the physical constraints, dynamics, and conservation statements that are embedded in the equations of the MIT general circulation model. Closeness to observations and dynamical consistency of the solution ensures a physically realistic correspondence between the atmospheric forcing and oceanic fluxes, including the ocean's response to freshwater input. The results show a robust pattern of change in the ocean water cycle in the last twenty years. The pattern of changes indicates a general tendency of drying of the subtropics, and wetting in the tropics and mid-to-high latitudes, following the "rich get richer and the poor get poorer" paradigm in many ocean regions. Using a closed property budget analysis, we then investigate the changes in the oceanic state (salinity, temperature, sea level) during the same twenty-year period. The results are discussed in terms of the origin of surface signatures, and differentiated between those that are attributed to short-term natural variability and those that result from an intensified hydrological cycle due to warming climate.

  15. Ecological impacts of ocean acidification in coastal marine environments (Invited)

    Science.gov (United States)

    Harley, C.; Crim, R.; Gooding, R.; Nienhuis, S.; Tang, E.

    2010-12-01

    Rising atmospheric carbon dioxide concentrations are driving rapid and potentially unprecedented reductions in pH and carbonate ion availability in coastal marine environments. This process, known as ocean acidification (OA), has far-reaching implications for the performance and survival of marine organisms, particularly those with calcified shells and skeletons. Here, we highlight the ways in which OA impacts plants and animals in a coastal benthic food web, with an emphasis on what we know and what we don’t know about the ways in which the responses of individual organisms will scale up to long-term changes in community structure. Our system of interest is the rocky shore benthic community that is broadly represented from Alaska through California. Ecologically important species include producers (micro- and macro-algae), grazers (urchins and gastropods), filter feeders (mussels), and predators (sea stars). Although the direct effects of OA on coastal phytoplankton and kelps remain poorly understood, it appears as though elevated CO2 will increase the doubling rate of benthic diatoms. Small changes in food supply, however, may pale in comparison to the direct effects of OA on heavily calcified grazers and filter feeders. Sea urchin and mussel growth are both reduced by increased CO2 in the lab, and decadal-scale reductions in pH are associated with reduced turban snail growth in the field. Although adult abalone growth appears to be unaffected by CO2, larval development is impaired and larval survival is significantly reduced in acidified conditions. In contrast to the negative effects of OA on heavily calcified herbivores and filter feeders, lightly calcified sea stars actually grow faster when CO2 is experimentally increased. The acidification-induced changes described here are likely to result in substantial shifts in the benthic ecosystem. Increasing predation pressure may further reduce the abundance of grazers and filter feeders that are already suffering

  16. The Arctic Ocean marine carbon cycle: evaluation of air-sea CO2 exchanges, ocean acidification impacts and potential feedbacks

    Directory of Open Access Journals (Sweden)

    J. T. Mathis

    2009-07-01

    Full Text Available At present, although seasonal sea-ice cover mitigates atmosphere-ocean gas exchange, the Arctic Ocean takes up carbon dioxide (CO2 on the order of −65 to −175 Tg C year−1, contributing 5–14% to the global balance of CO2 sinks and sources. Because of this, the Arctic Ocean is an important influence on the global carbon cycle, with the marine carbon cycle and atmosphere-ocean CO2 exchanges sensitive to Arctic Ocean and global climate change feedbacks. In the near-term, further sea-ice loss and increases in phytoplankton growth rates are expected to increase the uptake of CO2 by Arctic surface waters, although mitigated somewhat by surface warming in the Arctic. Thus, the capacity of the Arctic Ocean to uptake CO2 is expected to alter in response to environmental changes driven largely by climate. These changes are likely to continue to modify the physics, biogeochemistry, and ecology of the Arctic Ocean in ways that are not yet fully understood. In surface waters, sea-ice melt, river runoff, cooling and uptake of CO2 through air-sea gas exchange combine to decrease the calcium carbonate (CaCO3 mineral saturation states (Ω of seawater that is counteracted by seasonal phytoplankton primary production (PP. Biological processes drive divergent trajectories for Ω in surface and subsurface waters of Arctic shelves with subsurface water experiencing undersaturation with respect to aragonite and calcite. Thus, in response to increased sea-ice loss, warming and enhanced phytoplankton PP, the benthic ecosystem of the Arctic shelves are expected to be negatively impacted by the biological amplification of ocean acidification. This in turn reduces the ability of many species to produce CaCO3 shells or tests with profound implications for Arctic marine ecosystems.

  17. Impacts of sea spray geoengineering on ocean biogeochemistry

    Science.gov (United States)

    Partanen, Antti-Ilari; Keller, David P.; Korhonen, Hannele; Matthews, H. Damon

    2016-07-01

    We used an Earth system model of intermediate complexity to study the effects of Solar Radiation Management (SRM) by sea spray geoengineering on ocean biogeochemistry. SRM slightly decreased global ocean net primary productivity (NPP) relative to the control run. The lower temperatures in the SRM run decreased NPP directly but also indirectly increased NPP in some regions due to changes in nutrient availability resulting from changes in ocean stratification and circulation. Reduced light availability had a minor effect on global total NPP but a major regional effect near the nutrient-rich upwelling region off the coast of Peru, where light availability is the main limiting factor for phytoplankton growth in our model. Unused nutrients from regions with decreased NPP also fueled NPP elsewhere. In the context of RCP4.5 simulation used here, SRM decreased ocean carbon uptake due to changes in atmospheric CO2 concentrations, seawater chemistry, NPP, temperature, and ocean circulation.

  18. Environmental Impact of Artificial Harbors in Tropic Pacific Oceanic Islands

    Institute of Scientific and Technical Information of China (English)

    XUE Chunting; Russell Howorth; HE Chaoxiong

    2004-01-01

    For loading and unloading of boats or ships round the clock, the access channel and its expanded part-a port are excavated on the lagoon and ocean reef flats in the tropic Pacific oceanic islands. Without moles, the access channel-port traps sediment and further transports it to the ocean or lagoon, resulting in coastal erosion. The wide uneven reef flat with a large catchment area tends to cause the formation of tide currents in the channel-port, while strong waves on the narrow even reef flat can give rise to rip currents. An access channel-port with a mole on one side or two moles on both sides results in less erosion. A model is recommended as an artificial harbor on the ocean coast, which is an excavated port surrounded by a mole, connected with the ocean by an access channel and with the shore by a bridge-shaped pier.

  19. EPOCA/EUR-OCEANS data-mining compilation on the impacts of ocean acidification

    Directory of Open Access Journals (Sweden)

    A.-M. Nisumaa

    2010-03-01

    Full Text Available The uptake of anthropogenic CO2 by the oceans has led to a rise in the oceanic partial pressure of CO2, and to a decrease in pH and carbonate ion concentration. This modification of the marine carbonate system is referred to as ocean acidification. Numerous papers report the effects of ocean acidification on marine organisms and communities but few have provided details concerning full carbonate chemistry and complementary observations. Additionally, carbonate system variables are often reported in different units, calculated using different sets of dissociation constants and on different pH scales. Hence the direct comparison of experimental results has been problematic and often misleading. The need was identified to (1 gather data on carbonate chemistry, biological and biogeochemical properties, and other ancillary data from published experimental data, (2 transform the information into common framework, and (3 make data freely available. The present paper is the outcome of an effort to integrate ocean carbonate chemistry data from the literature which has been supported by the European Network of Excellence for Ocean Ecosystems Analysis (EUR-OCEANS and the European Project on Ocean Acidification (EPOCA. A total of 166 papers were identified, 86 contained enough information to readily compute carbonate chemistry variables, and 67 datasets were archived at PANGAEA – The Publishing Network for Geoscientific & Environmental Data. This data compilation is regularly updated as an ongoing mission of EPOCA.

    Data access: http://doi.pangaea.de/10.1594/PANGAEA.735138

  20. Impacts of data assimilation on the global ocean carbonate system

    Science.gov (United States)

    Visinelli, L.; Masina, S.; Vichi, M.; Storto, A.; Lovato, T.

    2016-06-01

    In an ocean reanalysis, historical observations are combined with ocean and biogeochemical general circulation models to produce a reconstruction of the oceanic properties in past decades. This is one possible method to better constrain the role of the ocean carbon cycle in the determination of the air-sea CO2 flux. In this work, we investigate how the assimilation of physical variables and subsequently the combined assimilation of physical data and inorganic carbon variables - namely dissolved inorganic carbon (DIC) and alkalinity - affect the modelling of the marine carbonate system and the related air-sea CO2 fluxes. The performance of the two assimilation exercises are quantitatively assessed against the assimilated DIC and alkalinity data and the independent ocean surface pCO2 observations from global datasets. We obtain that the assimilation of physical observations has contrasting effects in different ocean basins when compared with the DIC and alkalinity data: it reduces the root-mean square error against the observed pCO2 in the Atlantic and Southern oceans, while increases the model error in the North Pacific and Indian Oceans. In both cases the corrected evaporation rates are the major factor determining the changes in concentrations. The assimilation of inorganic carbon variables on top of the physical data gives a generalized improvement in the model error of inorganic carbon variables, also improving the annual mean and spatial distribution of air-sea fluxes in agreement with other published estimates. These results indicate that data assimilation of physical and inorganic carbon data does not guarantee the improvement of the simulated pCO2 in all the oceanic regions; nevertheless, errors in pCO2 are reduced by a factor corresponding to those associated with the air-sea flux formulations.

  1. Impact of global warming on cyclonic storms over north Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    RameshKumar, M.R.; Sankar, S.

    The impact of global warming on the cyclonic storms over the north Indian Ocean have been studied using a suite of multiple datasets that includes the NCEP/NCAR Reanalysis, the extended reconstruction sea surface temperature (ERSST) and tracks...

  2. Two layers of Australian impact ejecta in the Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    ShyamPrasad, M.; Gupta, S.M.; Kodagali, V.N.

    Only 2 Australian tektites have been found in the Indian Ocean, and both are associated with surficial sediments. Cores from both locations are collected, where the tektites have been reported. The microtektites in these cores (and both the tekties...

  3. Ecogenomics and potential biogeochemical impacts of globally abundant ocean viruses.

    Science.gov (United States)

    Roux, Simon; Brum, Jennifer R; Dutilh, Bas E; Sunagawa, Shinichi; Duhaime, Melissa B; Loy, Alexander; Poulos, Bonnie T; Solonenko, Natalie; Lara, Elena; Poulain, Julie; Pesant, Stéphane; Kandels-Lewis, Stefanie; Dimier, Céline; Picheral, Marc; Searson, Sarah; Cruaud, Corinne; Alberti, Adriana; Duarte, Carlos M; Gasol, Josep M; Vaqué, Dolors; Bork, Peer; Acinas, Silvia G; Wincker, Patrick; Sullivan, Matthew B

    2016-09-29

    Ocean microbes drive biogeochemical cycling on a global scale. However, this cycling is constrained by viruses that affect community composition, metabolic activity, and evolutionary trajectories. Owing to challenges with the sampling and cultivation of viruses, genome-level viral diversity remains poorly described and grossly understudied, with less than 1% of observed surface-ocean viruses known. Here we assemble complete genomes and large genomic fragments from both surface- and deep-ocean viruses sampled during the Tara Oceans and Malaspina research expeditions, and analyse the resulting 'global ocean virome' dataset to present a global map of abundant, double-stranded DNA viruses complete with genomic and ecological contexts. A total of 15,222 epipelagic and mesopelagic viral populations were identified, comprising 867 viral clusters (defined as approximately genus-level groups). This roughly triples the number of known ocean viral populations and doubles the number of candidate bacterial and archaeal virus genera, providing a near-complete sampling of epipelagic communities at both the population and viral-cluster level. We found that 38 of the 867 viral clusters were locally or globally abundant, together accounting for nearly half of the viral populations in any global ocean virome sample. While two-thirds of these clusters represent newly described viruses lacking any cultivated representative, most could be computationally linked to dominant, ecologically relevant microbial hosts. Moreover, we identified 243 viral-encoded auxiliary metabolic genes, of which only 95 were previously known. Deeper analyses of four of these auxiliary metabolic genes (dsrC, soxYZ, P-II (also known as glnB) and amoC) revealed that abundant viruses may directly manipulate sulfur and nitrogen cycling throughout the epipelagic ocean. This viral catalog and functional analyses provide a necessary foundation for the meaningful integration of viruses into ecosystem models where they

  4. The ocean carbon sink - impacts, vulnerabilities and challenges

    Science.gov (United States)

    Heinze, C.; Meyer, S.; Goris, N.; Anderson, L.; Steinfeldt, R.; Chang, N.; Le Quéré, C.; Bakker, D. C. E.

    2015-06-01

    Carbon dioxide (CO2) is, next to water vapour, considered to be the most important natural greenhouse gas on Earth. Rapidly rising atmospheric CO2 concentrations caused by human actions such as fossil fuel burning, land-use change or cement production over the past 250 years have given cause for concern that changes in Earth's climate system may progress at a much faster pace and larger extent than during the past 20 000 years. Investigating global carbon cycle pathways and finding suitable adaptation and mitigation strategies has, therefore, become of major concern in many research fields. The oceans have a key role in regulating atmospheric CO2 concentrations and currently take up about 25% of annual anthropogenic carbon emissions to the atmosphere. Questions that yet need to be answered are what the carbon uptake kinetics of the oceans will be in the future and how the increase in oceanic carbon inventory will affect its ecosystems and their services. This requires comprehensive investigations, including high-quality ocean carbon measurements on different spatial and temporal scales, the management of data in sophisticated databases, the application of Earth system models to provide future projections for given emission scenarios as well as a global synthesis and outreach to policy makers. In this paper, the current understanding of the ocean as an important carbon sink is reviewed with respect to these topics. Emphasis is placed on the complex interplay of different physical, chemical and biological processes that yield both positive and negative air-sea flux values for natural and anthropogenic CO2 as well as on increased CO2 (uptake) as the regulating force of the radiative warming of the atmosphere and the gradual acidification of the oceans. Major future ocean carbon challenges in the fields of ocean observations, modelling and process research as well as the relevance of other biogeochemical cycles and greenhouse gases are discussed.

  5. Ecogenomics and potential biogeochemical impacts of globally abundant ocean viruses

    KAUST Repository

    Roux, Simon

    2016-09-20

    Ocean microbes drive biogeochemical cycling on a global scale. However, this cycling is constrained by viruses that affect community composition, metabolic activity, and evolutionary trajectories. Owing to challenges with the sampling and cultivation of viruses, genome-level viral diversity remains poorly described and grossly understudied, with less than 1% of observed surface-ocean viruses known. Here we assemble complete genomes and large genomic fragments from both surface-and deep-ocean viruses sampled during the Tara Oceans and Malaspina research expeditions, and analyse the resulting â global ocean virome\\' dataset to present a global map of abundant, double-stranded DNA viruses complete with genomic and ecological contexts. A total of 15,222 epipelagic and mesopelagic viral populations were identified, comprising 867 viral clusters (defined as approximately genus-level groups). This roughly triples the number of known ocean viral populations and doubles the number of candidate bacterial and archaeal virus genera, providing a near-complete sampling of epipelagic communities at both the population and viral-cluster level. We found that 38 of the 867 viral clusters were locally or globally abundant, together accounting for nearly half of the viral populations in any global ocean virome sample. While two-thirds of these clusters represent newly described viruses lacking any cultivated representative, most could be computationally linked to dominant, ecologically relevant microbial hosts. Moreover, we identified 243 viral-encoded auxiliary metabolic genes, of which only 95 were previously known. Deeper analyses of four of these auxiliary metabolic genes (dsrC, soxYZ, P-II (also known as glnB) and amoC) revealed that abundant viruses may directly manipulate sulfur and nitrogen cycling throughout the epipelagic ocean. This viral catalog and functional analyses provide a necessary foundation for the meaningful integration of viruses into ecosystem models where

  6. Ecogenomics and potential biogeochemical impacts of globally abundant ocean viruses

    Science.gov (United States)

    2016-09-01

    Ocean microbes drive biogeochemical cycling on a global scale. However, this cycling is constrained by viruses that affect community composition, metabolic activity, and evolutionary trajectories. Owing to challenges with the sampling and cultivation of viruses, genome-level viral diversity remains poorly described and grossly understudied, with less than 1% of observed surface-ocean viruses known. Here we assemble complete genomes and large genomic fragments from both surface- and deep-ocean viruses sampled during the Tara Oceans and Malaspina research expeditions, and analyse the resulting ‘global ocean virome’ dataset to present a global map of abundant, double-stranded DNA viruses complete with genomic and ecological contexts. A total of 15,222 epipelagic and mesopelagic viral populations were identified, comprising 867 viral clusters (defined as approximately genus-level groups). This roughly triples the number of known ocean viral populations and doubles the number of candidate bacterial and archaeal virus genera, providing a near-complete sampling of epipelagic communities at both the population and viral-cluster level. We found that 38 of the 867 viral clusters were locally or globally abundant, together accounting for nearly half of the viral populations in any global ocean virome sample. While two-thirds of these clusters represent newly described viruses lacking any cultivated representative, most could be computationally linked to dominant, ecologically relevant microbial hosts. Moreover, we identified 243 viral-encoded auxiliary metabolic genes, of which only 95 were previously known. Deeper analyses of four of these auxiliary metabolic genes (dsrC, soxYZ, P-II (also known as glnB) and amoC) revealed that abundant viruses may directly manipulate sulfur and nitrogen cycling throughout the epipelagic ocean. This viral catalog and functional analyses provide a necessary foundation for the meaningful integration of viruses into ecosystem models where

  7. The ocean carbon sink – impacts, vulnerabilities, and challenges

    Directory of Open Access Journals (Sweden)

    C. Heinze

    2014-12-01

    Full Text Available Carbon dioxide (CO2 is, next to water vapour, considered to be the most important natural greenhouse gas on Earth. Rapidly rising atmospheric CO2 concentrations caused by human actions such as fossil-fuel burning, land-use change or cement production over the past 250 years have given cause for concern that changes in Earth's climate system may progress at a much faster pace and larger extent than during the past 20 000 years. Investigating global carbon cycle pathways and finding suitable mitigation strategies has, therefore, become of major concern in many research fields. The oceans have a key role in regulating atmospheric CO2 concentrations and currently take up about 25% of annual anthropogenic carbon emissions to the atmosphere. Questions that yet need to be answered are what the carbon uptake kinetics of the oceans will be in the future and how the increase in oceanic carbon load will affect its ecosystems and their services. This requires comprehensive investigations, including high-quality ocean carbon measurements on different spatial and temporal scales, the management of data in sophisticated data bases, the application of state-of-the-art Earth system models to provide future projections for given emission scenarios as well as a global synthesis and outreach to policy makers. In this paper, the current understanding of the ocean as an important carbon sink is reviewed with respect to these topics. Emphasis is placed on the complex interplay of different physical, chemical, and biological processes that yield both positive and negative air–sea flux values for natural and anthropogenic CO2 as well as on increased CO2 (uptake as the regulating force of the radiative warming of the atmosphere and the gradual acidification of the oceans. Major future ocean carbon challenges in the fields of ocean observations, modelling, and process research as well as the relevance of other biogeochemical cycles and greenhouse gases are discussed.

  8. Ocean Basin Impact of Ambient Noise on Marine Mammal Detectability, Distribution, and Acoustic Communication

    Science.gov (United States)

    2015-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Ocean Basin Impact of Ambient Noise on Marine Mammal ... mammal acoustic communication and signal detection. How short term variability and long term changes of ocean basin acoustics impact signal detection...signal detection as it relates to marine mammal active acoustic space and acoustic communication. This work increases the spatial range and time scale

  9. IPCC workshop on impacts of ocean acidification on marine biology and ecosystems. Workshop report

    Energy Technology Data Exchange (ETDEWEB)

    Field, C.B.; Barros, V.; Stocker, T.F.; Dahe, Q.; Mach, K.J.; Plattner, G.-K.; Mastrandrea, M.D.; Tignor, M.; Ebi, K.L.

    2011-09-15

    Understanding the effects of increasing atmospheric CO{sub 2} concentrations on ocean chemistry, commonly termed ocean acidification, as well as associated impacts on marine biology and ecosystems, is an important component of scientific knowledge about global change. The Fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate Change (IPCC) will include comprehensive coverage of ocean acidification and its impacts, including potential feedbacks to the climate system. To support ongoing AR5 assessment efforts, Working Group II and Working Group I (WGII and WGI) of the IPCC held a joint Workshop on Impacts of Ocean Acidification on Marine Biology and Ecosystems in Okinawa, Japan, from 17 to 19 January 2011. The workshop convened experts from the scientific community, including WGII and WGI AR5 authors and review editors, to synthesise scientific understanding of changes in ocean chemistry due to increased CO{sub 2} and of impacts of this changing chemistry on marine organisms, ecosystems, and ecosystem services. This workshop report summarises the scientific content and perspectives presented and discussed during the workshop. It provides syntheses of these perspectives for the workshop's core topics: (i) the changing chemistry of the oceans, (ii) impacts of ocean acidification for individual organisms, and (iii) scaling up responses from individual organisms to ecosystems. It also presents summaries of workshop discussions of key cross-cutting themes, ranging from detection and attribution of ocean acidification and its impacts to understanding ocean acidification in the context of other stressors on marine systems. Additionally, the workshop report includes extended abstracts for keynote and poster presentations at the workshop. (Author)

  10. Climate change and ocean acidification impacts on lower trophic levels and the export of organic carbon to the deep ocean

    Directory of Open Access Journals (Sweden)

    A. Yool

    2013-02-01

    Full Text Available Most future projections forecast significant and ongoing climate change during the 21st century, but with the severity of impacts dependent on efforts to restrain or reorganise human activity to limit carbon dioxide (CO2 emissions. A major sink for atmospheric CO2, and a key source of biological resources, the World Ocean is widely anticipated to undergo profound physical and – via ocean acidification – chemical changes as direct and indirect results of these emissions. Given strong biophysical coupling, the marine biota is also expected to experience strong changes in response to this anthropogenic forcing. Here we examine the large-scale response of ocean biogeochemistry to climate and acidification impacts during the 21st century for Representative Concentration Pathways (RCPs 2.6 and 8.5 using an intermediate complexity global ecosystem model, Medusa–2.0. The primary impact of future change lies in stratification-led declines in the availability of key nutrients in surface waters, which in turn leads to a global decrease (1990s vs. 2090s in ocean productivity (−6.3%. This impact has knock-on consequences for the abundances of the low trophic level biogeochemical actors modelled by Medusa–2.0 (−5.8%, and these would be expected to similarly impact higher trophic level elements such as fisheries. Related impacts are found in the flux of organic material to seafloor communities (−40.7% at 1000 m, and in the volume of ocean suboxic zones (+12.5%. A sensitivity analysis removing an acidification feedback on calcification finds that change in this process significantly impacts benthic communities, suggesting that a better understanding of the OA-sensitivity of calcifying organisms, and their role in ballasting sinking organic carbon, may significantly improve forecasting of these ecosystems. For all processes, there is geographical variability in change, and changes are much more pronounced under RCP 8.5 than

  11. Climate change and ocean acidification impacts on lower trophic levels and the export of organic carbon to the deep ocean

    Directory of Open Access Journals (Sweden)

    A. Yool

    2013-09-01

    Full Text Available Most future projections forecast significant and ongoing climate change during the 21st century, but with the severity of impacts dependent on efforts to restrain or reorganise human activity to limit carbon dioxide (CO2 emissions. A major sink for atmospheric CO2, and a key source of biological resources, the World Ocean is widely anticipated to undergo profound physical and – via ocean acidification – chemical changes as direct and indirect results of these emissions. Given strong biophysical coupling, the marine biota is also expected to experience strong changes in response to this anthropogenic forcing. Here we examine the large-scale response of ocean biogeochemistry to climate and acidification impacts during the 21st century for Representative Concentration Pathways (RCPs 2.6 and 8.5 using an intermediate complexity global ecosystem model, MEDUSA-2.0. The primary impact of future change lies in stratification-led declines in the availability of key nutrients in surface waters, which in turn leads to a global decrease (1990s vs. 2090s in ocean productivity (−6.3%. This impact has knock-on consequences for the abundance of the low trophic level biogeochemical actors modelled by MEDUSA-2.0 (−5.8%, and these would be expected to similarly impact higher trophic level elements such as fisheries. Related impacts are found in the flux of organic material to seafloor communities (−40.7% at 1000 m, and in the volume of ocean suboxic zones (+12.5%. A sensitivity analysis removing an acidification feedback on calcification finds that change in this process significantly impacts benthic communities, suggesting that a~better understanding of the OA-sensitivity of calcifying organisms, and their role in ballasting sinking organic carbon, may significantly improve forecasting of these ecosystems. For all processes, there is geographical variability in change – for instance, productivity declines −21% in the Atlantic and increases +59% in

  12. Ocean acidification and its impact on ocean noise: phenomenology and analysis.

    Science.gov (United States)

    Reeder, D Benjamin; Chiu, Ching-Sang

    2010-09-01

    Ocean acidification has been observed since the beginning of the industrial era and is expected to further reduce ocean pH in the future. A significant increase in ocean noise has been suggested based upon the percentage change in acoustic absorption coefficient at low frequencies. Presented here is an analysis using transmission loss models of all relevant loss mechanisms for three environments experiencing a significant near-surface pH reduction of 8.1-7.4. Results show no observable change in the shallow water and surface duct environments, and a statistically insignificant change of less than 0.5 dB for all frequencies in the deep water environment.

  13. Volcanic impact on the Atlantic ocean over the last millennium

    Directory of Open Access Journals (Sweden)

    J. Mignot

    2011-08-01

    Full Text Available The oceanic response to volcanic eruptions over the last 1000 years is investigated with a focus on the North Atlantic Ocean, using a fully coupled AOGCM forced by a realistic time series of volcanic eruptions, total solar irradiance (TSI and atmospheric greenhouse gases concentration. The model simulates little response to TSI variations but a strong and long-lasting thermal and dynamical oceanic adjustment to volcanic forcing, which is shown to be a function of the time period of the volcanic eruptions, probably due to their different seasonality. The thermal response consists of a fast tropical cooling due to the radiative forcing by the volcanic eruptions, followed by a penetration of this cooling in the subtropical ocean interior one to five years after the eruption, and propagation of the anomalies toward the high latitudes. The oceanic circulation first adjusts rapidly to low latitude anomalous wind stress induced by the strong cooling. The Atlantic Meridional Overturning Circulation (AMOC shows a significant intensification 5 to 10 years after the eruptions of the period post-1400 AD, in response to anomalous atmospheric momentum forcing, and a slight weakening in the following decade. In response to the stronger eruptions occurring between 1100 and 1300, the AMOC shows no intensification and a stronger reduction after 10 years. This study thus stresses the diversity of AMOC response to volcanic eruptions in climate models and tentatively points to an important role of the seasonality of the eruptions.

  14. Indian Ocean Dipole and El Niño/Southern Oscillation impacts on regional chlorophyll anomalies in the Indian Ocean

    Directory of Open Access Journals (Sweden)

    J. C. Currie

    2013-10-01

    Full Text Available The Indian Ocean Dipole (IOD and the El Niño/Southern Oscillation (ENSO are independent climate modes, which frequently co-occur, driving significant interannual changes within the Indian Ocean. We use a four-decade hindcast from a coupled biophysical ocean general circulation model, to disentangle patterns of chlorophyll anomalies driven by these two climate modes. Comparisons with remotely sensed records show that the simulation competently reproduces the chlorophyll seasonal cycle, as well as open-ocean anomalies during the 1997/1998 ENSO and IOD event. Results suggest that anomalous surface and euphotic-layer chlorophyll blooms in the eastern equatorial Indian Ocean in fall, and southern Bay of Bengal in winter, are primarily related to IOD forcing. A negative influence of IOD on chlorophyll concentrations is shown in a region around the southern tip of India in fall. IOD also depresses depth-integrated chlorophyll in the 5–10° S thermocline ridge region, yet the signal is negligible in surface chlorophyll. The only investigated region where ENSO has a greater influence on chlorophyll than does IOD, is in the Somalia upwelling region, where it causes a decrease in fall and winter chlorophyll by reducing local upwelling winds. Yet unlike most other regions examined, the combined explanatory power of IOD and ENSO in predicting depth-integrated chlorophyll anomalies is relatively low in this region, suggestive that other drivers are important there. We show that the chlorophyll impact of climate indices is frequently asymmetric, with a general tendency for larger positive than negative chlorophyll anomalies. Our results suggest that ENSO and IOD cause significant and predictable regional re-organisation of chlorophyll via their influence on near-surface oceanography. Resolving the details of these effects should improve our understanding, and eventually gain predictability, of interannual changes in Indian Ocean productivity, fisheries

  15. Impacts of ocean acidification on sediment processes in shallow waters of the Arctic Ocean

    NARCIS (Netherlands)

    Gazeau, F.; van Rijswijk, P.; Pozzato, L.; Middelburg, J.J.

    Despite the important roles of shallow-water sediments in global biogeochemical cycling, the effects of ocean acidification on sedimentary processes have received relatively little attention. As high-latitude cold waters can absorb more CO2 and usually have a lower buffering capacity than warmer

  16. Impacts of Ocean Acidification on Sediment Processes in Shallow Waters of the Arctic Ocean

    NARCIS (Netherlands)

    Gazeau, F.; van Rijswijk, P.; Pozzato, L.; Middelburg, J.J.

    2014-01-01

    Despite the important roles of shallow-water sediments in global biogeochemical cycling, the effects of ocean acidification on sedimentary processes have received relatively little attention. As high-latitude cold waters can absorb more CO2 and usually have a lower buffering capacity than warmer

  17. Impacts of ocean acidification on sediment processes in shallow waters of the Arctic Ocean

    NARCIS (Netherlands)

    Gazeau, F.; van Rijswijk, P.; Pozzato, L.; Middelburg, J.J.|info:eu-repo/dai/nl/079665373

    2014-01-01

    Despite the important roles of shallow-water sediments in global biogeochemical cycling, the effects of ocean acidification on sedimentary processes have received relatively little attention. As high-latitude cold waters can absorb more CO2 and usually have a lower buffering capacity than warmer wat

  18. Impacts of Ocean Acidification on Sediment Processes in Shallow Waters of the Arctic Ocean

    NARCIS (Netherlands)

    Gazeau, F.; van Rijswijk, P.; Pozzato, L.; Middelburg, J.J.

    2014-01-01

    Despite the important roles of shallow-water sediments in global biogeochemical cycling, the effects of ocean acidification on sedimentary processes have received relatively little attention. As high-latitude cold waters can absorb more CO2 and usually have a lower buffering capacity than warmer wat

  19. Impacts of Ocean Acidification on Sediment Processes in Shallow Waters of the Arctic Ocean

    NARCIS (Netherlands)

    Gazeau, F.; van Rijswijk, P.; Pozzato, L.; Middelburg, J.J.

    2014-01-01

    Despite the important roles of shallow-water sediments in global biogeochemical cycling, the effects of ocean acidification on sedimentary processes have received relatively little attention. As high-latitude cold waters can absorb more CO2 and usually have a lower buffering capacity than warmer wat

  20. Impact of Indian Ocean Dipole on the salinity budget in the equatorial Indian Ocean

    Science.gov (United States)

    DU, Y.; Zhang, Y.

    2013-12-01

    Based on ocean reanalysis data sets and observations, this study analyzes the variability of salinity and its associated ocean dynamics in the equatorial Indian Ocean (IO). The results show that significant interannual variability of salinity in boreal fall are mainly associated with the Indian Ocean dipole (IOD) events, especially the positive IOD (pIOD) events. During pIOD events, forced by anomalous easterly winds, westward current anomalies strengthen the westward advection in summer and weaken the eastward advection of Wyrtki Jets in fall. Analysis of salinity budget indicates that salinity anomalies are mainly dominated by advection, in which zonal component is the key. As the zonal current anomalies are symmetric off the equator, mean zonal salinity gradients dominate the asymmetric distribution of low-salinity advection. Low-salinity water advects to the west, shoals mixed layer, favoring SST increasing after the mature phase of pIOD. After the decay phase, low-salinity water advects across the equator to the southwestern IO, which associates with the off-equatorial anticyclonic circulations in the southern IO. When pIOD events concur with El Niño, the low-salinity water advection strengthens and advects northward and southward simultaneously after the decay phase, due to the strong off-equatorial influence from El Niño.

  1. Drift in ocean currents impacts intergenerational microbial exposure to temperature.

    Science.gov (United States)

    Doblin, Martina A; van Sebille, Erik

    2016-05-17

    Microbes are the foundation of marine ecosystems [Falkowski PG, Fenchel T, Delong EF (2008) Science 320(5879):1034-1039]. Until now, the analytical framework for understanding the implications of ocean warming on microbes has not considered thermal exposure during transport in dynamic seascapes, implying that our current view of change for these critical organisms may be inaccurate. Here we show that upper-ocean microbes experience along-trajectory temperature variability up to 10 °C greater than seasonal fluctuations estimated in a static frame, and that this variability depends strongly on location. These findings demonstrate that drift in ocean currents can increase the thermal exposure of microbes and suggests that microbial populations with broad thermal tolerance will survive transport to distant regions of the ocean and invade new habitats. Our findings also suggest that advection has the capacity to influence microbial community assemblies, such that regions with strong currents and large thermal fluctuations select for communities with greatest plasticity and evolvability, and communities with narrow thermal performance are found where ocean currents are weak or along-trajectory temperature variation is low. Given that fluctuating environments select for individual plasticity in microbial lineages, and that physiological plasticity of ancestors can predict the magnitude of evolutionary responses of subsequent generations to environmental change [Schaum CE, Collins S (2014) Proc Biol Soc 281(1793):20141486], our findings suggest that microbial populations in the sub-Antarctic (∼40°S), North Pacific, and North Atlantic will have the most capacity to adapt to contemporary ocean warming.

  2. Drift in ocean currents impacts intergenerational microbial exposure to temperature

    Science.gov (United States)

    Doblin, Martina A.; van Sebille, Erik

    2016-01-01

    Microbes are the foundation of marine ecosystems [Falkowski PG, Fenchel T, Delong EF (2008) Science 320(5879):1034–1039]. Until now, the analytical framework for understanding the implications of ocean warming on microbes has not considered thermal exposure during transport in dynamic seascapes, implying that our current view of change for these critical organisms may be inaccurate. Here we show that upper-ocean microbes experience along-trajectory temperature variability up to 10 °C greater than seasonal fluctuations estimated in a static frame, and that this variability depends strongly on location. These findings demonstrate that drift in ocean currents can increase the thermal exposure of microbes and suggests that microbial populations with broad thermal tolerance will survive transport to distant regions of the ocean and invade new habitats. Our findings also suggest that advection has the capacity to influence microbial community assemblies, such that regions with strong currents and large thermal fluctuations select for communities with greatest plasticity and evolvability, and communities with narrow thermal performance are found where ocean currents are weak or along-trajectory temperature variation is low. Given that fluctuating environments select for individual plasticity in microbial lineages, and that physiological plasticity of ancestors can predict the magnitude of evolutionary responses of subsequent generations to environmental change [Schaum CE, Collins S (2014) Proc Biol Soc 281(1793):20141486], our findings suggest that microbial populations in the sub-Antarctic (∼40°S), North Pacific, and North Atlantic will have the most capacity to adapt to contemporary ocean warming. PMID:27140608

  3. Intelligent Classification in Huge Heterogeneous Data Sets

    Science.gov (United States)

    2015-06-01

    INTELLIGENT CLASSIFICATION IN HUGE HETEROGENEOUS DATA SETS JUNE 2015 FINAL TECHNICAL REPORT APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED...To) JUL 2013 – APR 2015 4. TITLE AND SUBTITLE INTELLIGENT CLASSIFICATION IN HUGE HETEROGENEOUS DATA SETS 5a. CONTRACT NUMBER IN-HOUSE 5b. GRANT...signals and through data dimension reduction, and to develop and tailor algorithms for the extraction of intelligence from several huge heterogeneous

  4. Survivability and reactivity of glycine and alanine in early oceans: effects of meteorite impacts.

    Science.gov (United States)

    Umeda, Yuhei; Fukunaga, Nao; Sekine, Toshimori; Furukawa, Yoshihiro; Kakegawa, Takeshi; Kobayashi, Takamichi; Nakazawa, Hiromoto

    2016-01-01

    Prebiotic oceans might have contained abundant amino acids, and were subjected to meteorite impacts, especially during the late heavy bombardment. It is so far unknown how meteorite impacts affected amino acids in the early oceans. Impact experiments were performed under the conditions where glycine was synthesized from carbon, ammonia, and water, using aqueous solutions containing (13)C-labeled glycine and alanine. Selected amino acids and amines in samples were analyzed with liquid chromatography-mass spectrometry (LC/MS). In particular, the (13)C-labeled reaction products were analyzed to distinguish between run products and contaminants. The results revealed that both amino acids survived partially in the early ocean through meteorite impacts, that part of glycine changed into alanine, and that large amounts of methylamine and ethylamine were formed. Fast decarboxylation was confirmed to occur during such impact processes. Furthermore, the formation of n-butylamine, detected only in the samples recovered from the solutions with additional nitrogen and carbon sources of ammonia and benzene, suggests that chemical reactions to form new biomolecules can proceed through marine impacts. Methylamine and ethylamine from glycine and alanine increased considerably in the presence of hematite rather than olivine under similar impact conditions. These results also suggest that amino acids present in early oceans can contribute further to impact-induced reactions, implying that impact energy plays a potential role in the prebiotic formation of various biomolecules, although the reactions are complicated and depend upon the chemical environments as well.

  5. The impact of wind energy turbine piles on ocean dynamics

    Science.gov (United States)

    Grashorn, Sebastian; Stanev, Emil V.

    2016-04-01

    The small- and meso-scale ocean response to wind parks has not been investigated in the southern North Sea until now with the help of high-resolution numerical modelling. Obstacles such as e.g. wind turbine piles may influence the ocean current system and produce turbulent kinetic energy which could affect sediment dynamics in the surrounding area. Two setups of the unstructured-grid model SCHISM (Semi-implicit Cross-scale Hydroscience Integrated System Model) have been developed for an idealized channel including a surface piercing cylindrical obstacle representing the pile and a more realistic test case including four exemplary piles. Experiments using a constant flow around the obstacles and a rotating M2 tidal wave are carried out. The resulting current and turbulence patterns are investigated to estimate the influence of the obstacles on the surrounding ocean dynamics. We demonstrate that using an unstructured ocean model provides the opportunity to embed a high-resolution representation of a wind park turbine pile system into a coarser North Sea setup, which is needed in order to perform a seamless investigation of the resulting geophysical processes.

  6. Ecogenomics and potential biogeochemical impacts of globally abundant ocean viruses

    NARCIS (Netherlands)

    Roux, Simon; Brum, Jennifer R; Dutilh, Bas E|info:eu-repo/dai/nl/304546313; Sunagawa, Shinichi; Duhaime, Melissa B; Loy, Alexander; Poulos, Bonnie T; Solonenko, Natalie; Lara, Elena; Poulain, Julie; Pesant, Stéphane; Kandels-Lewis, Stefanie; Dimier, Céline; Picheral, Marc; Searson, Sarah; Cruaud, Corinne; Alberti, Adriana; Duarte, Carlos M; Gasol, Josep M; Vaqué, Dolors

    2016-01-01

    Ocean microbes drive biogeochemical cycling on a global scale. However, this cycling is constrained by viruses that affect community composition, metabolic activity, and evolutionary trajectories. Owing to challenges with the sampling and cultivation of viruses, genome-level viral diversity remains

  7. Global warming and ocean stratification: A potential result of large extraterrestrial impacts

    Science.gov (United States)

    Joshi, Manoj; von Glasow, Roland; Smith, Robin S.; Paxton, Charles G. M.; Maycock, Amanda C.; Lunt, Daniel J.; Loptson, Claire; Markwick, Paul

    2017-04-01

    The prevailing paradigm for the climatic effects of large asteroid or comet impacts is a reduction in sunlight and significant short-term cooling caused by atmospheric aerosol loading. Here we show, using global climate model experiments, that the large increases in stratospheric water vapor that can occur upon impact with the ocean cause radiative forcings of over +20 W m-2 in the case of 10 km sized bolides. The result of such a positive forcing is rapid climatic warming, increased upper ocean stratification, and potentially disruption of upper ocean ecosystems. Since two thirds of the world's surface is ocean, we suggest that some bolide impacts may actually warm climate overall. For impacts producing both stratospheric water vapor and aerosol loading, radiative forcing by water vapor can reduce or even cancel out aerosol-induced cooling, potentially causing 1-2 decades of increased temperatures in both the upper ocean and on the land surface. Such a response, which depends on the ratio of aerosol to water vapor radiative forcing, is distinct from many previous scenarios for the climatic effects of large bolide impacts, which mostly account for cooling from aerosol loading. Finally, we discuss how water vapor forcing from bolide impacts may have contributed to two well-known phenomena: extinction across the Cretaceous/Paleogene boundary and the deglaciation of the Neoproterozoic snowball Earth.

  8. Fukushima Daiichi–Derived Radionuclides in the Ocean: Transport, Fate, and Impacts

    Science.gov (United States)

    Buesseler, Ken; Dai, Minhan; Aoyama, Michio; Benitez-Nelson, Claudia; Charmasson, Sabine; Higley, Kathryn; Maderich, Vladimir; Masqué, Pere; Morris, Paul J.; Oughton, Deborah; Smith, John N.

    2017-01-01

    The events that followed the Tohoku earthquake and tsunami on March 11, 2011, included the loss of power and overheating at the Fukushima Daiichi nuclear power plants, which led to extensive releases of radioactive gases, volatiles, and liquids, particularly to the coastal ocean. The fate of these radionuclides depends in large part on their oceanic geochemistry, physical processes, and biological uptake. Whereas radioactivity on land can be resampled and its distribution mapped, releases to the marine environment are harder to characterize owing to variability in ocean currents and the general challenges of sampling at sea. Five years later, it is appropriate to review what happened in terms of the sources, transport, and fate of these radionuclides in the ocean. In addition to the oceanic behavior of these contaminants, this review considers the potential health effects and societal impacts.

  9. Severity of ocean acidification following the end-Cretaceous asteroid impact.

    Science.gov (United States)

    Tyrrell, Toby; Merico, Agostino; Armstrong McKay, David Ian

    2015-05-26

    Most paleo-episodes of ocean acidification (OA) were either too slow or too small to be instructive in predicting near-future impacts. The end-Cretaceous event (66 Mya) is intriguing in this regard, both because of its rapid onset and also because many pelagic calcifying species (including 100% of ammonites and more than 90% of calcareous nannoplankton and foraminifera) went extinct at this time. Here we evaluate whether extinction-level OA could feasibly have been produced by the asteroid impact. Carbon cycle box models were used to estimate OA consequences of (i) vaporization of up to 60 × 10(15) mol of sulfur from gypsum rocks at the point of impact; (ii) generation of up to 5 × 10(15) mol of NOx by the impact pressure wave and other sources; (iii) release of up to 6,500 Pg C as CO2 from vaporization of carbonate rocks, wildfires, and soil carbon decay; and (iv) ocean overturn bringing high-CO2 water to the surface. We find that the acidification produced by most processes is too weak to explain calcifier extinctions. Sulfuric acid additions could have made the surface ocean extremely undersaturated (Ωcalcite ocean very rapidly (over a few days) and if the quantity added was at the top end of literature estimates. We therefore conclude that severe ocean acidification might have been, but most likely was not, responsible for the great extinctions of planktonic calcifiers and ammonites at the end of the Cretaceous.

  10. Impact of effective ocean optical properties on the Pacific subtropical cell: a CGCM study

    Science.gov (United States)

    Yamanaka, G.; Tsujino, H.; Ishizaki, H.; Nakano, H.; Hirabara, M.

    2012-12-01

    The choice of ocean radiant scheme is important for modeling the upper ocean. According to the ocean-only simulation (Yamanaka et al., 2012), introduction of the chlorophyll-a dependent ocean radiant scheme results in the decreased mixed layer depth (MLD), the enhanced subtropical cell (STC), and the cooling of the eastern tropical Pacific sea surface temperature (SST). They also found that the enhanced STC results from the velocity profile change associated with the decreased Ekman boundary layer. However, the impact is not well understood when the air-sea feedback process is at work. This study examines the impact of the effective ocean optical properties on the Pacific mean fields, especially focusing on the STC, using a coupled general circulation model (CGCM). The CGCM we employed is the Meteorological Research Institute Earth System Model (MRI-ESM1). The atmospheric model is TL159L48, and the ocean model has a horizontal resolution of 1 x 0.5 deg. with 51 levels in vertical. Experimental design basically follows the CMIP5 protocol. Two experiments (CTL and SLR runs) are performed to investigate the impact of the effective ocean optical properties. In the CTL run, a conventional ocean radiant heating scheme (Paul and Simpson, 1977) is used, whereas a new ocean radiant heating scheme is used in the SLR run, where the satellite-derived chlorophyll-a distribution is taken into consideration based on Morel and Antoine (1994) as well as the effect of the varying solar angle (Ishizaki and Yamanaka, 2010). Each experiment is integrated during the period from 1985 to 2005. It is found that introduction of the new ocean radiant scheme (SLR run) changes the long-term mean wind pattern in the Pacific: easterly winds are strengthened in the equatorial Pacific, but weakened in the off-equatorial region. In the tropical Pacific, the enhanced equatorial upwelling cools the equatorial SST and the MLD becomes shallower. This is similar to the ocean-only simulation, but is more

  11. Impacts of Indonesian Throughflow on seasonal circulation in the equatorial Indian Ocean

    Science.gov (United States)

    Wang, Jing; Yuan, Dongliang; Zhao, Xia

    2017-03-01

    Impacts of the Indonesian Throughflow (ITF) on seasonal circulation in the equatorial eastern Indian Ocean are investigated using the ocean-only model LICOM by opening and closing ITF passages. LICOM had daily forcing from NCEP reanalysis data during 2000-2011. It can reproduce vertical profiles of mean density and buoyancy frequency of World Ocean Atlas 2013 data. The model also simulates well annual oscillation in the central Indian Ocean and semiannual oscillation in the eastern Indian Ocean of sea level anomalies (SLA) using satellite altimeter data, as well as the semiannual oscillation of surface zonal equatorial currents of Ocean Surface Current Analyses Real Time current data in the equatorial Indian Ocean. The wave decomposition method is used to analyze the propagation and reflection of equatorial long waves based on LICOM output. Wave analysis suggests that ITF blockage mainly influences waves generated from the Indian Ocean but not the Pacific Ocean, and eastern boundary reflections play an important role in semiannual oscillations of SLA and zonal current differences in the equatorial Indian Ocean associated with ITF. Reconstructed ITF-caused SLA using wave decomposition coefficient differences between closed and open ITF-passage experiments suggest both Kelvin and Rossby waves from the first baroclinic mode have comparable contributions to the semiannual oscillations of SLA difference. However, reconstructed ITF-caused surface zonal currents at the equator suggest that the first meridional-mode Rossby wave has much greater contribution than the first baroclinic mode Kelvin wave. Both reconstructed sea level and zonal currents demonstrate that the first baroclinic mode has a greater contribution than other baroclinic modes.

  12. Predicting the Response of Molluscs to the Impact of Ocean Acidification

    Science.gov (United States)

    Parker, Laura M.; Ross, Pauline M.; O’Connor, Wayne A.; Pörtner, Hans O.; Scanes, Elliot; Wright, John M.

    2013-01-01

    Elevations in atmospheric carbon dioxide (CO2) are anticipated to acidify oceans because of fundamental changes in ocean chemistry created by CO2 absorption from the atmosphere. Over the next century, these elevated concentrations of atmospheric CO2 are expected to result in a reduction of the surface ocean waters from 8.1 to 7.7 units as well as a reduction in carbonate ion (CO32−) concentration. The potential impact that this change in ocean chemistry will have on marine and estuarine organisms and ecosystems is a growing concern for scientists worldwide. While species-specific responses to ocean acidification are widespread across a number of marine taxa, molluscs are one animal phylum with many species which are particularly vulnerable across a number of life-history stages. Molluscs make up the second largest animal phylum on earth with 30,000 species and are a major producer of CaCO3. Molluscs also provide essential ecosystem services including habitat structure and food for benthic organisms (i.e., mussel and oyster beds), purification of water through filtration and are economically valuable. Even sub lethal impacts on molluscs due to climate changed oceans will have serious consequences for global protein sources and marine ecosystems. PMID:24832802

  13. Predicting the response of molluscs to the impact of ocean acidification.

    Science.gov (United States)

    Parker, Laura M; Ross, Pauline M; O'Connor, Wayne A; Pörtner, Hans O; Scanes, Elliot; Wright, John M

    2013-04-02

    Elevations in atmospheric carbon dioxide (CO2) are anticipated to acidify oceans because of fundamental changes in ocean chemistry created by CO2 absorption from the atmosphere. Over the next century, these elevated concentrations of atmospheric CO2 are expected to result in a reduction of the surface ocean waters from 8.1 to 7.7 units as well as a reduction in carbonate ion (CO32-) concentration. The potential impact that this change in ocean chemistry will have on marine and estuarine organisms and ecosystems is a growing concern for scientists worldwide. While species-specific responses to ocean acidification are widespread across a number of marine taxa, molluscs are one animal phylum with many species which are particularly vulnerable across a number of life-history stages. Molluscs make up the second largest animal phylum on earth with 30,000 species and are a major producer of CaCO3. Molluscs also provide essential ecosystem services including habitat structure and food for benthic organisms (i.e., mussel and oyster beds), purification of water through filtration and are economically valuable. Even sub lethal impacts on molluscs due to climate changed oceans will have serious consequences for global protein sources and marine ecosystems.

  14. Cyclone impact on sea ice in the central Arctic Ocean: a statistical study

    Directory of Open Access Journals (Sweden)

    A. Kriegsmann

    2013-03-01

    Full Text Available This study investigates the impact of cyclones on the Arctic Ocean sea ice for the first time in a statistical manner. We apply the coupled ice–ocean model NAOSIM which is forced by the ECMWF analyses for the period 2006–2008. Cyclone position and radius detected in the ECMWF data are used to extract fields of wind, ice drift, and concentration from the ice–ocean model. Composite fields around the cyclone centre are calculated for different cyclone intensities, the four seasons, and different regions of the Arctic Ocean. In total about 3500 cyclone events are analyzed. In general, cyclones reduce the ice concentration on the order of a few percent increasing towards the cyclone centre. This is confirmed by independent AMSR-E satellite data. The reduction increases with cyclone intensity and is most pronounced in summer and on the Siberian side of the Arctic Ocean. For the Arctic ice cover the impact of cyclones has climatologic consequences. In winter, the cyclone-induced openings refreeze so that the ice mass is increased. In summer, the openings remain open and the ice melt is accelerated via the positive albedo feedback. Strong summer storms on the Siberian side of the Arctic Ocean may have been important reasons for the recent ice extent minima in 2007 and 2012.

  15. Predicting the Response of Molluscs to the Impact of Ocean Acidification

    Directory of Open Access Journals (Sweden)

    John M. Wright

    2013-04-01

    Full Text Available Elevations in atmospheric carbon dioxide (CO2 are anticipated to acidify oceans because of fundamental changes in ocean chemistry created by CO2 absorption from the atmosphere. Over the next century, these elevated concentrations of atmospheric CO2 are expected to result in a reduction of the surface ocean waters from 8.1 to 7.7 units as well as a reduction in carbonate ion (CO32− concentration. The potential impact that this change in ocean chemistry will have on marine and estuarine organisms and ecosystems is a growing concern for scientists worldwide. While species-specific responses to ocean acidification are widespread across a number of marine taxa, molluscs are one animal phylum with many species which are particularly vulnerable across a number of life-history stages. Molluscs make up the second largest animal phylum on earth with 30,000 species and are a major producer of CaCO3. Molluscs also provide essential ecosystem services including habitat structure and food for benthic organisms (i.e., mussel and oyster beds, purification of water through filtration and are economically valuable. Even sub lethal impacts on molluscs due to climate changed oceans will have serious consequences for global protein sources and marine ecosystems.

  16. El Nino Southern Oscillation (ENSO) impact on tuna fisheries in Indian Ocean.

    Science.gov (United States)

    Kumar, Palanisamy Satheesh; Pillai, Gopalakrishna N; Manjusha, Ushadevi

    2014-01-01

    El Nino Southern Oscillation (ENSO) is an important driver of interannual variations in climate and ecosystem productivity in tropical regions. However, detailed information about this important phenomenon of the Indian Ocean is scarce. Consequently, the objective of this study is to improve understanding of the impact of warm event El Nino and cool event La Nina on annual tuna landings from the Indian Ocean from 1980 to 2010. In this study, maximum tuna landings were recorded during a weak El Nino year (1456054 t in 2006) and during a weak La Nina year (1243562 t in 2000), although the lowest tuna catch was followed during the strong El Nino year (1204119 t in 2009) and during a strong La Nina year (706546 t in 1988). Validation of predicted tuna landings and SST were showing a significant positive correlation (p Nino years; landings in Indian Ocean tend to be optimum SST 25 to 26°C in ENSO event. Our results confirm the ENSO impact on climate, tuna abundance and production in the Indian Ocean. However, among the oceanic variables SST explained the highest deviance in generalized additive models and therefore considered the best habitat predictor in the Indian Ocean followed by sea level pressure and Winds (U, V, W).

  17. Understanding ocean acidification impacts on organismal to ecological scales

    Science.gov (United States)

    Andersson, Andreas J; Kline, David I; Edmunds, Peter J; Archer, Stephen D; Bednaršek, Nina; Carpenter, Robert C; Chadsey, Meg; Goldstein, Philip; Grottoli, Andrea G.; Hurst, Thomas P; King, Andrew L; Kübler, Janet E.; Kuffner, Ilsa B.; Mackey, Katherine R M; Menge, Bruce A.; Paytan, Adina; Riebesell, Ulf; Schnetzer, Astrid; Warner, Mark E; Zimmerman, Richard C

    2015-01-01

    Ocean acidification (OA) research seeks to understand how marine ecosystems and global elemental cycles will respond to changes in seawater carbonate chemistry in combination with other environmental perturbations such as warming, eutrophication, and deoxygenation. Here, we discuss the effectiveness and limitations of current research approaches used to address this goal. A diverse combination of approaches is essential to decipher the consequences of OA to marine organisms, communities, and ecosystems. Consequently, the benefits and limitations of each approach must be considered carefully. Major research challenges involve experimentally addressing the effects of OA in the context of large natural variability in seawater carbonate system parameters and other interactive variables, integrating the results from different research approaches, and scaling results across different temporal and spatial scales.

  18. Impact of oceanic circulation changes on atmospheric δ13CO2

    Science.gov (United States)

    Menviel, L.; Mouchet, A.; Meissner, K. J.; Joos, F.; England, M. H.

    2015-12-01

    δ13CO2 measured in Antarctic ice cores provides constraints on oceanic and terrestrial carbon cycle processes linked with millennial-scale and glacial/interglacial changes in atmospheric CO2. However, the interpretation of δ13CO2 is not straightforward. Using two Earth system models of intermediate complexity we perform a set of sensitivity experiments in which the formation rates of North Atlantic Deep Water (NADW), North Pacific Deep Water (NPDW), Antarctic Bottom Water (AABW) and Antarctic Intermediate Water (AAIW) are varied. We study the impact of these circulation changes on atmospheric δ13CO2 as well as on the oceanic δ13C distribution. In general, we find that the formation rates of AABW, NADW, NPDW and AAIW are negatively correlated with changes in δ13CO2: namely strong oceanic ventilation decreases atmospheric δ13CO2. However, since large scale ocean circulation reorganizations also impact nutrient utilization and the Earth's climate the relationship between atmospheric δ13CO2 levels and ocean ventilation rate is not unequivocal. In both models atmospheric δ13CO2 is very sensitive to changes in AABW formation rates: increased AABW formation enhances the upwelling of low δ13C waters to the surface and decreases atmospheric δ13CO2. By contrast, the impact of NADW changes on atmospheric δ13CO2 is less robust and might be model dependent.

  19. Impact of aerosols from the Asian Continent on the adjoining oceanic environments

    Indian Academy of Sciences (India)

    K Parameswaran; Sandhya K Nair; K Rajeev

    2008-02-01

    Aerosol optical depth (AOD) at 630nm wavelength over the oceanic regions adjoining the Asian Continent is examined using a seven-year long data base derived from the Advanced Very High Resolution Radiometer (AVHRR) on board NOAA satellite to study the mean spatial and temporal variations as well as to understand the impact of aerosols advecting from the continent. Depending on the prevailing meteorological conditions and nature of synoptic circulation, the AOD over the oceanic region shows a systematic annual variation. This annual pattern inturn also shows an inter-annual variability because of the corresponding variations in the meteorological features over the continent as well as small-scale deviations in the nature of synoptic circulation. The annual variation over the oceanic regions also shows a pronounced spatial heterogeneity depending on the influence of continental aerosols. Making use of the wind speed dependence of sea-salt AOD at far-oceanic environments and monthly mean wind speeds at small grids of size 5° × 5°, the annual variation of sea-salt AOD at different locations is studied to understand the spatial heterogeneity of this component. The residual component obtained by subtracting this from the measured AOD is the non-oceanic component due to advection from continent. The source regions for major continental advections are delineated from the analysis of air-mass back trajectories at appropriate locations identified from the annual pattern of non-oceanic component. The long-term effect of the continental impact is examined from the mean trend of AOD over the three major oceanic regions. This study shows that the continental influence is most significant over the Arabian Sea, followed by the Bay of Bengal and is almost insignificant in most of the regions over the Southern Hemispheric Indian Ocean, except for the effect of smoke aerosols over a few locations near Indonesia and Madagascar.

  20. OSSE impact analysis of airborne ocean surveys for improving upper-ocean dynamical and thermodynamical forecasts in the Gulf of Mexico

    Science.gov (United States)

    Halliwell, George R.; Kourafalou, Vassiliki; Le Hénaff, Matthieu; Shay, Lynn K.; Atlas, Robert

    2015-01-01

    A prototype, rigorously validated ocean Observing System Simulation Experiment (OSSE) system is used to evaluate the impact of different sampling strategies for rapid-response airborne ocean profile surveys in the eastern interior Gulf of Mexico. Impacts are assessed with respect to improving ocean analyses, and forecasts initialized from those analyses, for two applications: improving oil spill forecasts and improving the ocean model response to tropical cyclone (TC) forcing. Rapid model error growth in this region requires that repeat surveys be conducted frequently in time, with separation of less than 4 days required to approach maximum error reduction in model analyses. Substantial additional error reduction in model dynamical fields is achieved by deploying deep (1000 m) AXCTDs instead of shallow (400 m) AXBTs. Shallow AXBTs constrain the ocean thermal field over the upper 400 m nearly as well as deep AXCTDs. However, in addition to constraining ocean fields over a greater depth range, AXCTDs also measure salinity profiles and more accurately constrain upper-ocean density than AXBTs, leading to a more accurate representation of upper ocean pressure and velocity fields. Sampling AXCTD profiles over a one-half degree array compared to one degree leads to substantial additional error reduction by constraining variability with horizontal scales too small to be corrected by satellite altimetry assimilation. A 2-day lag in availability of airborne profiles does not increase errors in dynamical ocean fields, but it does increase errors in upper-ocean thermal field including Tropical Cyclone Heat Potential (TCHP), demonstrating that these profiles must be rapidly made available for assimilation to improve TC forecasts. The additional error reduction in ocean analyses achieved by assimilation of airborne surveys translates into significantly improved forecasts persisting over time intervals ranging between 1 and 2 weeks for most model variables but several weeks for

  1. On the role of atmospheric forcing on upper ocean physics in the Southern Ocean and biological impacts

    Science.gov (United States)

    Carranza, Magdalena M.

    The Southern Ocean (SO) plays a key role in regulating climate by absorbing nearly half of anthropogenic carbon dioxide (CO2). Both physical and biogeochemical processes contribute to the net CO2 sink. As a result of global warming and ozone depletion, westerly winds have increased, with consequences for upper ocean physics but little is known on how primary producers are expected to respond to changes in atmospheric forcing. This thesis addresses the impact of atmospheric forcing on upper ocean dynamics and phytoplankton bloom development in the SO on synoptic storm scales, combining a broad range of observations derived from satellites, reanalysis, profiling floats and Southern elephant seals. On atmospheric synoptic timescales (2-10 days), relevant for phytoplankton growth and accumulation, wind speed has a larger impact on satellite Chl-a variability than surface heat fluxes or wind stress curl. In summer, strong winds are linked to deep mixed layers, cold sea surface temperatures and enhanced satellite chlorophyll-a (Chl-a), which suggest wind-driven entrainment plays a role in sustaining phytoplankton blooms at the surface. Subsurface bio-optical data from floats and seals reveal deep Chl-a fluorescence maxima (DFM) are ubiquitous in summer and tend to sit at the base of the mixed layer, but can occur in all seasons. The fact that wind speed and Chl-a correlations are maximal at zero lag time (from daily data) and incubation experiments indicate phytoplankton growth occurs 3-4 days after iron addition, suggests high winds in summer entrain Chl-a from a subsurface maximum. Vertical profiles also reveal Chl-a fluorescence unevenness within hydrographically defined mixed layers, suggesting the biological timescales of adaptation through the light gradient (i.e. growth and/or photoacclimation) are often faster than mixing timescales, and periods of quiescence between storms are long enough for biological gradients to form within the homogeneous layer in density

  2. Laboratory Experiment Investigating the Impact of Ocean Acidification on Calcareous Organisms

    Science.gov (United States)

    Perera, Alokya P.; Bopegedera, A. M. R. P.

    2014-01-01

    The increase in ocean acidity since preindustrial times may have deleterious consequences for marine organisms, particularly those with calcareous structures. We present a laboratory experiment to investigate this impact with general, introductory, environmental, and nonmajors chemistry students. For simplicity and homogeneity, calcite was…

  3. Laboratory Experiment Investigating the Impact of Ocean Acidification on Calcareous Organisms

    Science.gov (United States)

    Perera, Alokya P.; Bopegedera, A. M. R. P.

    2014-01-01

    The increase in ocean acidity since preindustrial times may have deleterious consequences for marine organisms, particularly those with calcareous structures. We present a laboratory experiment to investigate this impact with general, introductory, environmental, and nonmajors chemistry students. For simplicity and homogeneity, calcite was…

  4. How vulnerable is Indian coast to oil spills? Impact of MV Ocean Seraya oil spill

    Digital Repository Service at National Institute of Oceanography (India)

    Sivadas, S.; George, A.; Ingole, B.S.

    On 30 May 2006, a bulk carrier, MV Ocean Seraya ran aground along the Karwar coast spilling 650 tonnes of oil. Due to the rough SW monsoon, the spill spread to some beaches in south Goa. The aim of this communication is to study the immediate impact...

  5. Assimilation impacts on Arctic Ocean circulation, heat and freshwater budgets

    Science.gov (United States)

    Zuo, Hao; Mugford, Ruth I.; Haines, Keith; Smith, Gregory C.

    We investigate the Arctic basin circulation, freshwater content (FWC) and heat budget by using a high-resolution global coupled ice-ocean model implemented with a state-of-the-art data assimilation scheme. We demonstrate that, despite a very sparse dataset, by assimilating hydrographic data in and near the Arctic basin, the initial warm bias and drift in the control run is successfully corrected, reproducing a much more realistic vertical and horizontal structure to the cyclonic boundary current carrying the Atlantic Water (AW) along the Siberian shelves in the reanalysis run. The Beaufort Gyre structure and FWC and variability are also more accurately reproduced. Small but important changes in the strait exchange flows are found which lead to more balanced budgets in the reanalysis run. Assimilation fluxes dominate the basin budgets over the first 10 years (P1: 1987-1996) of the reanalysis for both heat and FWC, after which the drifting Arctic upper water properties have been restored to realistic values. For the later period (P2: 1997-2004), the Arctic heat budget is almost balanced without assimilation contributions, while the freshwater budget shows reduced assimilation contributions compensating largely for surface salinity damping, which was extremely strong in this run. A downward trend in freshwater export at the Canadian Straits and Fram Strait is found in period P2, associated with Beaufort Gyre recharge. A detailed comparison with observations and previous model studies at the individual Arctic straits is also included.

  6. Outcome of Hepatectomy for Huge Hepatocellular Carcinoma.

    Science.gov (United States)

    Jo, Sungho

    2011-05-01

    In spite of the recent improved results of hepatectomy for huge hepatocellular carcinomas (HCC), the prognosis of patients with huge HCCs is still poor compared to that of patients with small HCCs. This study was performed to compare the results of hepatectomy between patients with huge HCCs and those with small HCCs, to identify the prognostic factors in patients with huge HCCs, and to determine the preoperative selection criteria. We retrospectively analyzed 51 patients who underwent hepatectomy, between July 1994 and February 2009 at Dankook University Hospital. Patients with HCC≥10 cm were classified in large (L) group and others were classified in small (S) group. The clinicopathological features, operative procedures, and postoperative outcome were compared between both groups and various prognostic factors were investigated in group L. Eleven patients were classified in group L. Tumor size, vascular invasion, and tumor stage were higher in group L. Postoperative morbidity was higher in group L, but mortality was not different between the groups. Disease-free survivals were significantly lower in group L than in group S (36.4%, and 24.2% vs. 72.0%, and 44.0% for 1- and 3-year), but overall survival rates were similar in both groups (45.5%, and 15.2% in group L vs. 60.3%, and 41.3% in group S for 3- and 5-year). Presence of satellite nodules was the only prognostic factor in multivariate analysis after surgery for huge HCC. Regardless of tumor size, huge HCCs deserve consideration for surgery in patients with preserved liver function. Furthermore, the effect of surgery could be maximized with appropriate selection criteria, such as huge HCC without satellite nodules.

  7. Impacts of dynamical ocean coupling in MJO experiments using NICAM/NICOCO

    Science.gov (United States)

    Miyakawa, T.

    2016-12-01

    The cloud-system resolving atmosphereic model NICAM has been successfull in producing Madden-Julian Oscillations(MJOs), having it's prediction skill estimated to be about 4 weeks in a series of hindcast experiments for winter MJO events during 2003-2012 (Miyakawa et al. 2014). A simple mixed-layer ocean model has been applied with nudging towards a prescribed "persistent anomaly SST", which maintains the initial anomaly with a time-varying climatological seasonal cycle. This setup enables the model to interact with an ocean with reasonably realistic SST, and also run in a "forecast mode", without using any observational information after the initial date. A limitation is that under this setup, the model skill drops if the oceanic anomaly rapidly changes after the initial date in the real world. Here we run a recently developed, full 3D-ocean coupled version NICAM-COCO (NICOCO) and explore its impact on MJO simulations. Dynamical ocean models can produce oceanic waves/currents, but will also have a bias and drift away from reality. In a sub-seasonal simulation (an initial problem), it is essential to compare the merit of having better represented oceanic signals and the demerit of bias/drift. A test case simulation series featuring an MJO that triggered the abrupt termination of a major El Nino in 1998 shows that the abrupt termination occurs in all 9 simulation members, highlighting the merit of ocean coupling. However, this is a case where oceanic signals are at its extremes. We carried out an estimation of MJO prediction skill for a preliminary 1-degree mesh ocean version of NICOCO in a similar manner to Miyakawa et al. (2014). The MJO skill was degraded for simulations that was initialized at RMM phases 1 and 2 (corresponding to the Indian Ocean), while those initialized at phase 8 (Africa) was not strongly affected. The tendency of the model ocean to overestimate the Maritime Continent warm pool SST possibly delays the eastward propagation of MJO convective

  8. Impact of ocean acidification on the hypoxia tolerance of the woolly sculpin, Clinocottus analis.

    Science.gov (United States)

    Hancock, Joshua R; Place, Sean P

    2016-01-01

    As we move into the Anthropocene, organisms inhabiting marine environments will continue to face growing challenges associated with changes in ocean pH (ocean acidification), dissolved oxygen (dead zones) and temperature. These factors, in combination with naturally variable environments such as the rocky intertidal zone, may create extreme physiological challenges for organisms that are already performing near their biological limits. Although numerous studies have examined the impacts of climate-related stressors on intertidal animals, little is known about the underlying physiological mechanisms driving adaptation to ocean acidification and how this may alter organism interactions, particularly in marine vertebrates. Therefore, we have investigated the effects of decreased ocean pH on the hypoxia response of an intertidal sculpin, Clinocottus analis. We used both whole-animal and biochemistry-based analyses to examine how the energetic demands associated with acclimation to low-pH environments may impact the fish's reliance on facultative air breathing in low-oxygen environments. Our study demonstrated that acclimation to ocean acidification resulted in elevated routine metabolic rates and acid-base regulatory capacity (Na(+),K(+)-ATPase activity). These, in turn, had downstream effects that resulted in decreased hypoxia tolerance (i.e. elevated critical oxygen tension). Furthermore, we present evidence that these fish may be living near their physiological capacity when challenged by ocean acidification. This serves as a reminder that the susceptibility of teleost fish to changes in ocean pH may be underestimated, particularly when considering the multiple stressors that many experience in their natural environments.

  9. Impact of ocean acidification on the hypoxia tolerance of the woolly sculpin, Clinocottus analis

    Science.gov (United States)

    Hancock, Joshua R.; Place, Sean P.

    2016-01-01

    As we move into the Anthropocene, organisms inhabiting marine environments will continue to face growing challenges associated with changes in ocean pH (ocean acidification), dissolved oxygen (dead zones) and temperature. These factors, in combination with naturally variable environments such as the rocky intertidal zone, may create extreme physiological challenges for organisms that are already performing near their biological limits. Although numerous studies have examined the impacts of climate-related stressors on intertidal animals, little is known about the underlying physiological mechanisms driving adaptation to ocean acidification and how this may alter organism interactions, particularly in marine vertebrates. Therefore, we have investigated the effects of decreased ocean pH on the hypoxia response of an intertidal sculpin, Clinocottus analis. We used both whole-animal and biochemistry-based analyses to examine how the energetic demands associated with acclimation to low-pH environments may impact the fish's reliance on facultative air breathing in low-oxygen environments. Our study demonstrated that acclimation to ocean acidification resulted in elevated routine metabolic rates and acid–base regulatory capacity (Na+,K+-ATPase activity). These, in turn, had downstream effects that resulted in decreased hypoxia tolerance (i.e. elevated critical oxygen tension). Furthermore, we present evidence that these fish may be living near their physiological capacity when challenged by ocean acidification. This serves as a reminder that the susceptibility of teleost fish to changes in ocean pH may be underestimated, particularly when considering the multiple stressors that many experience in their natural environments. PMID:27729981

  10. Impact of El Niño Variability on Oceanic Phytoplankton

    Directory of Open Access Journals (Sweden)

    Marie-Fanny Racault

    2017-05-01

    Full Text Available Oceanic phytoplankton respond rapidly to a complex spectrum of climate-driven perturbations, confounding attempts to isolate the principal causes of observed changes. A dominant mode of variability in the Earth-climate system is that generated by the El Niño phenomenon. Marked variations are observed in the centroid of anomalous warming in the Equatorial Pacific under El Niño, associated with quite different alterations in environmental and biological properties. Here, using observational and reanalysis datasets, we differentiate the regional physical forcing mechanisms, and compile a global atlas of associated impacts on oceanic phytoplankton caused by two extreme types of El Niño. We find robust evidence that during Eastern Pacific (EP and Central Pacific (CP types of El Niño, impacts on phytoplankton can be felt everywhere, but tend to be greatest in the tropics and subtropics, encompassing up to 67% of the total affected areas, with the remaining 33% being areas located in high-latitudes. Our analysis also highlights considerable and sometimes opposing regional effects. During EP El Niño, we estimate decreases of −56 TgC/y in the tropical eastern Pacific Ocean, and −82 TgC/y in the western Indian Ocean, and increase of +13 TgC/y in eastern Indian Ocean, whereas during CP El Niño, we estimate decreases −68 TgC/y in the tropical western Pacific Ocean and −10 TgC/y in the central Atlantic Ocean. We advocate that analysis of the dominant mechanisms forcing the biophysical under El Niño variability may provide a useful guide to improve our understanding of projected changes in the marine ecosystem in a warming climate and support development of adaptation and mitigation plans.

  11. Ocean acidification and temperature increase impact mussel shell shape and thickness: problematic for protection?

    Science.gov (United States)

    Fitzer, Susan C; Vittert, Liberty; Bowman, Adrian; Kamenos, Nicholas A; Phoenix, Vernon R; Cusack, Maggie

    2015-11-01

    Ocean acidification threatens organisms that produce calcium carbonate shells by potentially generating an under-saturated carbonate environment. Resultant reduced calcification and growth, and subsequent dissolution of exoskeletons, would raise concerns over the ability of the shell to provide protection for the marine organism under ocean acidification and increased temperatures. We examined the impact of combined ocean acidification and temperature increase on shell formation of the economically important edible mussel Mytilus edulis. Shell growth and thickness along with a shell thickness index and shape analysis were determined. The ability of M. edulis to produce a functional protective shell after 9 months of experimental culture under ocean acidification and increasing temperatures (380, 550, 750, 1000 μatm pCO 2, and 750, 1000 μatm pCO 2 + 2°C) was assessed. Mussel shells grown under ocean acidification conditions displayed significant reductions in shell aragonite thickness, shell thickness index, and changes to shell shape (750, 1000 μatm pCO 2) compared to those shells grown under ambient conditions (380 μatm pCO 2). Ocean acidification resulted in rounder, flatter mussel shells with thinner aragonite layers likely to be more vulnerable to fracture under changing environments and predation. The changes in shape presented here could present a compensatory mechanism to enhance protection against predators and changing environments under ocean acidification when mussels are unable to grow thicker shells. Here, we present the first assessment of mussel shell shape to determine implications for functional protection under ocean acidification.

  12. Impacts of Indonesian Throughflow on seasonal circulation in the equatorial Indian Ocean

    Science.gov (United States)

    Wang, Jing

    2017-04-01

    Impacts of the Indonesian Throughflow (ITF) on the seasonal circulation of the equatorial eastern Indian Ocean are investigated using the ocean-only model LICOM by opening and closing ITF passages. LICOM is forced by daily forcing from NCEP reanalysis data during 2000-2011. And LICOM is capable of reproducing the vertical profiles of mean density and buoyancy frequency of WOA09 data, and also perform annual oscillation in central Indian Ocean and semiannual oscillation in the eastern Indian Ocean of sea level anomalies (SLA) from satellite altimeter data, and semiannual oscillation of surface zonal equatorial currents of OSCAR current data in the whole Indian Ocean very well. The wave decomposition method is used to analyze the propagation and reflection of equatorial long waves based on the LICOM output. Wave analysis suggests that ITF blockage mainly influence the waves generated from the equatorial Indian Ocean not the Pacific Ocean, and eastern boundary reflections play an important role in semiannual oscillation of SLA and zonal current difference associated with ITF in the equatorial Indian Ocean. Reconstructed ITF-caused SLA using wave decomposition coefficients difference between closed and open ITF passages experiment suggest both the Kelvin wave and Rossby waves from the first baroclinic mode have comparable contribution to the semiannual oscillations of SLA difference. However, reconstructed ITF-caused surface zonal current at the equator suggest the first meridional mode Rossby wave has much larger contribution than the Kelvin wave of the first baroclinic mode. Both reconstructed sea level and zonal currents demonstrate that the first baroclinic mode has larger contribution than other baroclinic modes.

  13. Connecting slow earthquakes to huge earthquakes.

    Science.gov (United States)

    Obara, Kazushige; Kato, Aitaro

    2016-07-15

    Slow earthquakes are characterized by a wide spectrum of fault slip behaviors and seismic radiation patterns that differ from those of traditional earthquakes. However, slow earthquakes and huge megathrust earthquakes can have common slip mechanisms and are located in neighboring regions of the seismogenic zone. The frequent occurrence of slow earthquakes may help to reveal the physics underlying megathrust events as useful analogs. Slow earthquakes may function as stress meters because of their high sensitivity to stress changes in the seismogenic zone. Episodic stress transfer to megathrust source faults leads to an increased probability of triggering huge earthquakes if the adjacent locked region is critically loaded. Careful and precise monitoring of slow earthquakes may provide new information on the likelihood of impending huge earthquakes.

  14. Connecting slow earthquakes to huge earthquakes

    Science.gov (United States)

    Obara, Kazushige; Kato, Aitaro

    2016-07-01

    Slow earthquakes are characterized by a wide spectrum of fault slip behaviors and seismic radiation patterns that differ from those of traditional earthquakes. However, slow earthquakes and huge megathrust earthquakes can have common slip mechanisms and are located in neighboring regions of the seismogenic zone. The frequent occurrence of slow earthquakes may help to reveal the physics underlying megathrust events as useful analogs. Slow earthquakes may function as stress meters because of their high sensitivity to stress changes in the seismogenic zone. Episodic stress transfer to megathrust source faults leads to an increased probability of triggering huge earthquakes if the adjacent locked region is critically loaded. Careful and precise monitoring of slow earthquakes may provide new information on the likelihood of impending huge earthquakes.

  15. Treatment strategies for huge central neurocytomas.

    Science.gov (United States)

    Xiong, Zhong-wei; Zhang, Jian-jian; Zhang, Ting-bao; Sun, Shou-jia; Wu, Xiao-lin; Wang, Hao; You, Chao; Wang, Yu; Zhang, Hua-qiu; Chen, Jin-cao

    2015-02-01

    Central neurocytomas (CNs), initially asymptomatic, sometimes become huge before detection. We described and analyzed the clinical, radiological, operational and outcome data of 13 cases of huge intraventricular CNs, and discussed the treatment strategies in this study. All huge CNs (n=13) in our study were located in bilateral lateral ventricle with diameter ≥5.0 cm and had a broad-based attachment to at least one side of the ventricle wall. All patients received craniotomy to remove the tumor through transcallosal or transcortical approach and CNs were of typical histologic and immunohistochemical features. Adjuvant therapies including conventional radiation therapy (RT) or gamma knife radiosurgery (GKRS) were also performed postoperatively. Transcallosal and transcortical approaches were used in 8 and 5 patients, respectively. Two patients died within one month after operation and 3 patients with gross total resection (GTR) were additionally given a decompressive craniectomy (DC) and/or ventriculoperitoneal shunt (VPS) as the salvage therapy. Six patients received GTR(+RT) and 7 patients received subtotal resection (STR)(+GKRS). Eight patients suffered serious complications such as hydrocephalus, paralysis and seizure after operation, and patients who underwent GTR showed worse functional outcome [less Karnofsky performance scale (KPS) scores] than those having STR(+GKRS) during the follow-up period. The clinical outcome of huge CNs seemed not to be favorable as that described in previous reports. Surgical resection for huge CNs should be meticulously considered to guarantee the maximum safety. Better results were achieved in STR(+GKRS) compared with GTR(+RT) for huge CNs, suggesting that STR(+GKRS) may be a better treatment choice. The recurrent or residual tumor can be treated with GKRS effectively.

  16. EM-raying the ocean or climate change impact on tidal electromagnetic signals

    Science.gov (United States)

    Saynisch, Jan; Petereit, Johannes; Irrgang, Christopher; Thomas, Maik

    2017-04-01

    We present an electrometer/magnetometer based method to detect climate induced trends in the oceans. The method utilizes ocean tides. Ocean tides generate electromagnetic signals which are strictly periodic and therefore well separable in terrestrial and spaceborne magnetometer observations. We simulate the change of the tidal electromagnetic signals under different climate scenarios. Frequency, phase, sea surface elevation and path of tidal waves proofed to be very robust under climate change. However, the tidal electromagnetic amplitudes are sensitive to the sea water conductivity of the entire water column. Conductivity itself is a function of the local sea water salinity and temperature, properties that do change considerably in space and time. We compare the impact of global warming and glacial melting on the electromagnetic signals of the major tides. We present the expected amplitude change distributions at sea level and at satellite height.

  17. Impact of CryoSat-2 for marine gravity field - globally and in the Arctic Ocean

    DEFF Research Database (Denmark)

    Andersen, Ole Baltazar; Stenseng, Lars; Knudsen, Per

    days repeat offered by CryoSat-2 provides denser coverage than older geodetic mission data set like ERS-1. Thirdly, the 92 degree inclination of CryoSat-2 is designed to map more of the Arctic Ocean than previous altimetric satellites. Finally, CryoSat-2 is able to operate in two new modes (SAR and SAR...... GDR data, NOAA LRM data, but also Level1b (LRM, SAR and SAR-in waveforms) data have been analyzed. A suite of eight different empirical retrackers have been developed and investigated for their ability to predict marine gravity in the Arctic Ocean. The impact of the various improvement offered by Cryo......Sat-2 in comparison with conventional satellite altimetry have been studied and quantified both globally but particularly for the Arctic Ocean using a large number of marine and airborne surveys providing “ground truth” marine gravity....

  18. Disciplinary reporting affects the interpretation of climate change impacts in global oceans.

    Science.gov (United States)

    Hauser, Donna D W; Tobin, Elizabeth D; Feifel, Kirsten M; Shah, Vega; Pietri, Diana M

    2016-01-01

    Climate change is affecting marine ecosystems, but different investigative approaches in physical, chemical, and biological disciplines may influence interpretations of climate-driven changes in the ocean. Here, we review the ocean change literature from 2007 to 2012 based on 461 of the most highly cited studies in physical and chemical oceanography and three biological subdisciplines. Using highly cited studies, we focus on research that has shaped recent discourse on climate-driven ocean change. Our review identified significant differences in spatial and temporal scales of investigation among disciplines. Physical/chemical studies had a median duration of 29 years (n = 150) and covered the greatest study areas (median 1.41 × 10(7) km(2) , n = 148). Few biological studies were conducted over similar spatial and temporal scales (median 8 years, n = 215; median 302 km(2) , n = 196), suggesting a more limited ability to separate climate-related responses from natural variability. We linked physical/chemical and biological disciplines by tracking studies examining biological responses to changing ocean conditions. Of the 545 biological responses recorded, a single physical or chemical stressor was usually implicated as the cause (59%), with temperature as the most common primary stressor (44%). The most frequently studied biological responses were changes in physiology (31%) and population abundance (30%). Differences in disciplinary studies, as identified in this review, can ultimately influence how researchers interpret climate-related impacts in marine systems. We identified research gaps and the need for more discourse in (1) the Indian and other Southern Hemisphere ocean basins; (2) research themes such as archaea, bacteria, viruses, mangroves, turtles, and ocean acidification; (3) physical and chemical stressors such as dissolved oxygen, salinity, and upwelling; and (4) adaptive responses of marine organisms to climate-driven ocean change. Our findings reveal

  19. Impact of ocean acidification on the early development and escape behavior of marine medaka (Oryzias melastigma).

    Science.gov (United States)

    Wang, Xiaojie; Song, Lulu; Chen, Yi; Ran, Haoyu; Song, Jiakun

    2017-09-06

    Ocean acidification is predicted to affect a wide diversity of marine organisms. However, no studies have reported the effects of ocean acidification on Indian Ocean fish. We have used the Indian Ocean medaka (Oryzias melastigma) as a model species for a marine fish that lives in coastal waters. We investigated the impact of ocean acidification on the embryonic development and the stereotyped escape behavior (mediated by the Mauthner cell) in newly hatched larvae. Newly fertilized eggs of medaka were reared in seawater at three different partial pressures of carbon dioxide (pCO2): control at 450 μatm, moderate at 1160 μatm, and high at 1783 μatm. Hatch rates, embryonic duration, and larval malformation rates were compared and were not significantly different between the treatments and the control. In the high pCO2 group, however, the yolks of larvae were significantly smaller than in the control group, and the newly hatched larvae were significantly longer than the larvae in the control. In the moderate pCO2 group, the eye distance decreased significantly. No significantly negative growth effects were observed in the larvae when exposed to pCO2 levels that are predicted as a result of ocean acidification in the next 100-200 years. Larvae reared under control conditions readily produced C-start escape behavior to mechanosensory stimuli; however, in the moderate and high pCO2 experimental groups, the probabilities of C-start were significantly lower than those of the control group. Therefore, the sensory integration needed for the C-start escape behavior appears to be vulnerable to ocean acidification. Altered behavior in marine larval fish, particularly behaviors involved in escape from predation, could have potentially negative implications to fish populations, and, further, to the marine ecosystems at the levels of CO2 projected for the future. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Radiocarbon constraints on the glacial ocean circulation and its impact on atmospheric CO2.

    Science.gov (United States)

    Skinner, L C; Primeau, F; Freeman, E; de la Fuente, M; Goodwin, P A; Gottschalk, J; Huang, E; McCave, I N; Noble, T L; Scrivner, A E

    2017-07-13

    While the ocean's large-scale overturning circulation is thought to have been significantly different under the climatic conditions of the Last Glacial Maximum (LGM), the exact nature of the glacial circulation and its implications for global carbon cycling continue to be debated. Here we use a global array of ocean-atmosphere radiocarbon disequilibrium estimates to demonstrate a ∼689±53 (14)C-yr increase in the average residence time of carbon in the deep ocean at the LGM. A predominantly southern-sourced abyssal overturning limb that was more isolated from its shallower northern counterparts is interpreted to have extended from the Southern Ocean, producing a widespread radiocarbon age maximum at mid-depths and depriving the deep ocean of a fast escape route for accumulating respired carbon. While the exact magnitude of the resulting carbon cycle impacts remains to be confirmed, the radiocarbon data suggest an increase in the efficiency of the biological carbon pump that could have accounted for as much as half of the glacial-interglacial CO2 change.

  1. Impact of remote oceanic forcing on Gulf of Alaska sea levels and mesoscale circulation

    Science.gov (United States)

    Melsom, Arne; Metzger, E. Joseph; Hurlburt, Harley E.

    2003-11-01

    We examine the relative importance of regional wind forcing and teleconnections by an oceanic pathway for impact on interannual ocean circulation variability in the Gulf of Alaska. Any additional factors that contribute to this variability, such as freshwater forcing from river runoff, are disregarded. The study is based on results from numerical simulations, sea level data from tide gauge stations, and sea surface height anomalies from satellite altimeter data. At the heart of this investigation is a comparison of ocean simulations that include and exclude interannual oceanic teleconnections of an equatorial origin. Using lagged correlations, the model results imply that 70-90% of the interannual coastal sea level variance in the Gulf of Alaska can be related to interannual sea levels at La Libertad, Equador. These values are higher than the corresponding range from sea level data, which is 25-55%. When oceanic teleconnections from the equatorial Pacific are excluded in the model, the explained variance becomes about 20% or less. During poleward propagation the coastally trapped sea level signal in the model is less attenuated than the observed signal. In the Gulf of Alaska we find well-defined sea level peaks in the aftermath of El Niño events. The interannual intensity of eddies in the Gulf of Alaska also peaks after El Niño events; however, these maxima are less clear after weak and moderate El Niño events. The interannual variations in eddy activity intensity are predominantly governed by the regional atmospheric forcing.

  2. Impacts of artificial ocean alkalinization on the carbon cycle and climate in Earth system simulations

    Science.gov (United States)

    González, Miriam Ferrer; Ilyina, Tatiana

    2016-06-01

    Using the state-of-the-art emissions-driven Max Planck Institute Earth system model, we explore the impacts of artificial ocean alkalinization (AOA) with a scenario based on the Representative Concentration Pathway (RCP) framework. Addition of 114 Pmol of alkalinity to the surface ocean stabilizes atmospheric CO2 concentration to RCP4.5 levels under RCP8.5 emissions. This scenario removes 940 GtC from the atmosphere and mitigates 1.5 K of global warming within this century. The climate adjusts to the lower CO2 concentration preventing the loss of sea ice and high sea level rise. Seawater pH and the carbonate saturation state (Ω) rise substantially above levels of the current decade. Pronounced differences in regional sensitivities to AOA are projected, with the Arctic Ocean and tropical oceans emerging as hot spots for biogeochemical changes induced by AOA. Thus, the CO2 mitigation potential of AOA comes at a price of an unprecedented ocean biogeochemistry perturbation with unknown ecological consequences.

  3. Future projections of Indian Ocean SSTs and its impact on monsoon

    Science.gov (United States)

    Thelliyil Sabeerali, Cherumadanakadan; Ravindran, Ajayamohan

    2016-04-01

    Assessing the future projections of the Indian Ocean (IO) Sea Surface Temperatures (SSTs) under the global warming scenario has a paramount societal impact considering its potential to alter the seasonal mean rainfall over the Indian subcontinent. Observations show a pronounced warming in the western tropical IO compared to other ocean basins. Here, we explore the projections of boreal summer SSTs over the IO using the Representative Concentration Pathways 8.5 (RCP8.5) scenarios of Coupled Model Intercomparison Project Phase5 (CMIP5) simulations. Consistent with observations, most of the CMIP5 models show a faster warming rate over the western tropical IO compared to other ocean basins. Model simulations indicate a shift in the mean Walker circulation with an anomalous ascending motion over the central equatorial Pacific and an anomalous descending motion over the eastern tropical IO. As a consequence of this, a negative SST skewness is evident in the eastern tropical IO which leads to the increased frequency of positive Indian Ocean Dipole (IOD) events. Mechanisms responsible for this pronounced western IO warming is studied by analyzing the changes in the mean thermocline depth and circulation features. The impact of these changes in IO SST on seasonal mean monsoon precipitation and circulation in a warming scenario and its associated mechanisms are also investigated.

  4. Using an Environmental Intelligence Framework to Evaluate the Impacts of Ocean Acidification in the Arctic

    Science.gov (United States)

    Mathis, J. T.; Baskin, M.; Cross, J.

    2016-12-01

    The highly productive coastal seas of the Arctic Ocean are located in areas that are projected to experience strong global change, including rapid transitions in temperature and ocean acidification-driven changes in pH and other chemical parameters. Many of the marine organisms that may be most intensely affected by ocean acidification (OA) and other environmental stressors contribute substantially to the commercial fisheries of the Bering Sea and traditional subsistence food supplies across the Arctic. This could represent a looming challenge in many communities as the average prevalence of household food insecurity and very low food security in Alaska are already 12 percent and 4.3 percent, respectively. Here, we evaluate the patterns of dependence on marine resources within Alaska's Arctic that could be negatively impacted by OA and current community characteristics to assess the potential risk to the fishery sector from OA. We used a risk assessment framework to analyze an earth-system global model of ocean chemistry, fisheries harvest data, and demographic information. The analysis showed that regions around Alaska vary in their vulnerability to OA, but that each one will have to deal with possible impacts. Therefore, OA merits consideration in policy planning, as it may represent another challenge to Alaskan communities, some of which are already under acute socio-economic strains. With this in mind, we will present a number of adaptation strategies for communities living throughout Alaska's Arctic that could be applicable to other Arctic regions.

  5. A Huge Ancient Schwannoma of the Epiglottis.

    Science.gov (United States)

    Lee, Dong Hoon; Kim, Jo Heon; Yoon, Tae Mi; Lee, Joon Kyoo; Lim, Sang Chul

    2016-03-01

    Ancient schwannoma of the epiglottis is extremely rare. The authors report the first case of a patient with a huge ancient schwannoma of the epiglottis. Clinicians should consider the possibility that ancient schwannoma may originate in the epiglottis mimicking the other more frequently observed lesions.

  6. Ocean acidification impact on copepod swimming and mating behavior: consequences for population dynamics

    Science.gov (United States)

    Seuront, L.

    2010-12-01

    There is now ample evidence that ocean acidification caused by the uptake of additional carbon dioxide from the atmosphere at the ocean surface will severely impact on marine ecosystem structure and function. To date, most research effort has focused on the impact of ocean acidification on calcifying marine organisms. These include the dissolution of calcifying plankton, reduced growth and shell thickness in gastropods and echinoderms and declining growth of reef-building corals. The effects of increasing the partial pressure in carbon dioxide and decreasing carbonate concentrations on various aspects of phytoplankton biology and ecology have received some attention. It has also recently been shown that the ability of fish larvae to discriminate between the olfactory cues of different habitat types at settlement and to detect predator olfactory cues are impaired at the level of ocean acidification predicted to occur around 2100 on a business-as-usual scenario of CO2 emissions. Average ocean pH has decreased by 0.1 units since the pre-industrial times, and it is predicted to decline another 0.3-0.4 units by 2100, which nearly corresponds to a doubling PCO2. In addition, some locations are expected to exhibit an even greater than predicted rate of decline. In this context, understanding the direct and indirect links between ocean acidification and the mortality of marine species is critical, especially for minute planktonic organisms such as copepods at the base of the ocean food chains. In this context, this work tested if ocean acidification could affect copepod swimming behavior, and subsequently affect, and ultimately disrupt, the ability of male copepods to detect and follow the pheromone plume produced by conspecific females. To ensure the generality and the ecological relevance of the present work, the species used for the experimentation are two of the most common zooplankton species found in estuarine and coastal waters of the Northern Hemisphere, the

  7. Impact-driven ocean acidification as a mechanism of the Cretaceous-Palaeogene mass extinction

    Science.gov (United States)

    Ohno, S.; Kadono, T.; Kurosawa, K.; Hamura, T.; Sakaiya, T.; Shigemori, K.; Hironaka, Y.; Sano, T.; Watari, T.; Otani, K.; Matsui, T.; Sugita, S.

    2014-12-01

    The Cretaceous-Paleogene (K-Pg) mass extinction event at 66 Ma triggered by a meteorite impact is one of the most drastic events in the history of life on the Earth. Many hypotheses have been proposed as killing mechanisms induced by the impact, including global darkness due to high concentrations of atmospheric silicate dust particles, global wildfires, greenhouse warming due to CO2 release, and global acid rain. However, the actual mechanism of extinction remains highly controversial. One of the most important clues for understanding the extinction mechanism is the marine plankton record, which indicates that plankton foraminifera, living in the near-surface ocean, suffered very severe extinction in contrast to the high survival ratio of benthic foraminifera. No proposed extinction mechanism can account for this globally observed marine extinction pattern. Here, we show that SO3-rich impact vapor was released in the K-Pg impact and resulted in the occurrence of global acid rain and sudden severe ocean acidification at the end of the Cretaceous, based on the new results of impact experiments at velocities much higher than previous works (> 10 km/s) and theoretical calculations on aerosol coagulation processes. Sudden severe ocean acidification can account for many of the features of various geologic records at the K?Pg boundary, including severe extinction of plankton foraminifera. This extinction mechanism requires impact degassing of SO3-rich vapor, which is not necessarily found at impact sites other than Chicxulub, suggesting that the degree of mass extinction was controlled greatly by target lithology.

  8. Impact of rapid sea-ice reduction in the Arctic Ocean on the rate of ocean acidification

    Directory of Open Access Journals (Sweden)

    A. Yamamoto

    2011-10-01

    Full Text Available The largest pH decline and widespread undersaturation with respect to aragonite in this century due to uptake of anthropogenic carbon dioxide in the Arctic Ocean have been projected. The reductions in pH and aragonite saturation state have been caused primarily by an increase in the concentration of atmospheric carbon dioxide. However, in a previous study, simulations with and without warming showed that these reductions in the Arctic Ocean also advances due to the melting of sea ice caused by global warming. Therefore, future projections of pH and aragonite saturation in the Arctic Ocean will be affected by how rapidly the reduction in sea ice occurs. In this study, the impact of sea-ice reduction rate on projected pH and aragonite saturation state in the Arctic surface waters was investigated. Reductions in pH and aragonite saturation were calculated from the outputs of two versions of an earth system model (ESM with different sea-ice reduction rates under similar CO2 emission scenarios. The newer model version projects that Arctic summer ice-free condition will be achieved by the year 2040, and the older version predicts ice-free condition by 2090. The Arctic surface water was projected to be undersaturated with respect to aragonite in the annual mean when atmospheric CO2 concentration reached 480 (550 ppm in year 2040 (2048 in new (old version. At an atmospheric CO2 concentration of 520 ppm, the maximum differences in pH and aragonite saturation state between the two versions were 0.08 and 0.15, respectively. The analysis showed that the decreases in pH and aragonite saturation state due to rapid sea-ice reduction were caused by increases in both CO2 uptake and freshwater input. Thus, the reductions in pH and aragonite saturation state in the Arctic surface waters are significantly affected by the difference in future projections for sea-ice reduction rate. The critical CO2 concentration

  9. The impact of ocean acidification on the functional morphology of foraminifera.

    Science.gov (United States)

    Khanna, Nikki; Godbold, Jasmin A; Austin, William E N; Paterson, David M

    2013-01-01

    Culturing experiments were performed on sediment samples from the Ythan Estuary, N. E. Scotland, to assess the impacts of ocean acidification on test surface ornamentation in the benthic foraminifer Haynesina germanica. Specimens were cultured for 36 weeks at either 380, 750 or 1000 ppm atmospheric CO2. Analysis of the test surface using SEM imaging reveals sensitivity of functionally important ornamentation associated with feeding to changing seawater CO2 levels. Specimens incubated at high CO2 levels displayed evidence of shell dissolution, a significant reduction and deformation of ornamentation. It is clear that these calcifying organisms are likely to be vulnerable to ocean acidification. A reduction in functionally important ornamentation could lead to a reduction in feeding efficiency with consequent impacts on this organism's survival and fitness.

  10. The impact of ocean acidification on the functional morphology of foraminifera.

    Directory of Open Access Journals (Sweden)

    Nikki Khanna

    Full Text Available Culturing experiments were performed on sediment samples from the Ythan Estuary, N. E. Scotland, to assess the impacts of ocean acidification on test surface ornamentation in the benthic foraminifer Haynesina germanica. Specimens were cultured for 36 weeks at either 380, 750 or 1000 ppm atmospheric CO2. Analysis of the test surface using SEM imaging reveals sensitivity of functionally important ornamentation associated with feeding to changing seawater CO2 levels. Specimens incubated at high CO2 levels displayed evidence of shell dissolution, a significant reduction and deformation of ornamentation. It is clear that these calcifying organisms are likely to be vulnerable to ocean acidification. A reduction in functionally important ornamentation could lead to a reduction in feeding efficiency with consequent impacts on this organism's survival and fitness.

  11. Impact melting of frozen oceans on the early Earth: implications for the origin of life

    Science.gov (United States)

    Bada, J. L.; Bigham, C.; Miller, S. L.

    1994-01-01

    Without sufficient greenhouse gases in the atmosphere, the early Earth would have become a permanently frozen planet because the young Sun was less luminous than it is today. Several resolutions to this faint young Sun-frozen Earth paradox have been proposed, with an atmosphere rich in CO2 being the one generally favored. However, these models assume that there were no mechanisms for melting a once frozen ocean. Here we show that bolide impacts between about 3.6 and 4.0 billion years ago could have episodically melted an ice-covered early ocean. Thaw-freeze cycles associated with bolide impacts could have been important for the initiation of abiotic reactions that gave rise to the first living organisms.

  12. Impacts of climate changes on ocean surface gravity waves over the eastern Canadian shelf

    Science.gov (United States)

    Guo, Lanli; Sheng, Jinyu

    2017-05-01

    A numerical study is conducted to investigate the impact of climate changes on ocean surface gravity waves over the eastern Canadian shelf (ECS). The "business-as-usual" climate scenario known as Representative Concentration Pathway RCP8.5 is considered in this study. Changes in the ocean surface gravity waves over the study region for the period 1979-2100 are examined based on 3 hourly ocean waves simulated by the third-generation ocean wave model known as WAVEWATCHIII. The wave model is driven by surface winds and ice conditions produced by the Canadian Regional Climate Model (CanRCM4). The whole study period is divided into the present (1979-2008), near future (2021-2050) and far future (2071-2100) periods to quantify possible future changes of ocean waves over the ECS. In comparison with the present ocean wave conditions, the time-mean significant wave heights ( H s ) are expected to increase over most of the ECS in the near future and decrease over this region in the far future period. The time-means of the annual 5% largest H s are projected to increase over the ECS in both near and far future periods due mainly to the changes in surface winds. The future changes in the time-means of the annual 5% largest H s and 10-m wind speeds are projected to be twice as strong as the changes in annual means. An analysis of inverse wave ages suggests that the occurrence of wind seas is projected to increase over the southern Labrador and central Newfoundland Shelves in the near future period, and occurrence of swells is projected to increase over other areas of the ECS in both the near and far future periods.

  13. Impacts of climate changes on ocean surface gravity waves over the eastern Canadian shelf

    Science.gov (United States)

    Guo, Lanli; Sheng, Jinyu

    2017-03-01

    A numerical study is conducted to investigate the impact of climate changes on ocean surface gravity waves over the eastern Canadian shelf (ECS). The "business-as-usual" climate scenario known as Representative Concentration Pathway RCP8.5 is considered in this study. Changes in the ocean surface gravity waves over the study region for the period 1979-2100 are examined based on 3 hourly ocean waves simulated by the third-generation ocean wave model known as WAVEWATCHIII. The wave model is driven by surface winds and ice conditions produced by the Canadian Regional Climate Model (CanRCM4). The whole study period is divided into the present (1979-2008), near future (2021-2050) and far future (2071-2100) periods to quantify possible future changes of ocean waves over the ECS. In comparison with the present ocean wave conditions, the time-mean significant wave heights (H s ) are expected to increase over most of the ECS in the near future and decrease over this region in the far future period. The time-means of the annual 5% largest H s are projected to increase over the ECS in both near and far future periods due mainly to the changes in surface winds. The future changes in the time-means of the annual 5% largest H s and 10-m wind speeds are projected to be twice as strong as the changes in annual means. An analysis of inverse wave ages suggests that the occurrence of wind seas is projected to increase over the southern Labrador and central Newfoundland Shelves in the near future period, and occurrence of swells is projected to increase over other areas of the ECS in both the near and far future periods.

  14. When can ocean acidification impacts be detected from decadal alkalinity measurements?

    Science.gov (United States)

    Carter, B. R.; Frölicher, T. L.; Dunne, J. P.; Rodgers, K. B.; Slater, R. D.; Sarmiento, J. L.

    2016-04-01

    We use a large initial condition suite of simulations (30 runs) with an Earth system model to assess the detectability of biogeochemical impacts of ocean acidification (OA) on the marine alkalinity distribution from decadally repeated hydrographic measurements such as those produced by the Global Ship-Based Hydrographic Investigations Program (GO-SHIP). Detection of these impacts is complicated by alkalinity changes from variability and long-term trends in freshwater and organic matter cycling and ocean circulation. In our ensemble simulation, variability in freshwater cycling generates large changes in alkalinity that obscure the changes of interest and prevent the attribution of observed alkalinity redistribution to OA. These complications from freshwater cycling can be mostly avoided through salinity normalization of alkalinity. With the salinity-normalized alkalinity, modeled OA impacts are broadly detectable in the surface of the subtropical gyres by 2030. Discrepancies between this finding and the finding of an earlier analysis suggest that these estimates are strongly sensitive to the patterns of calcium carbonate export simulated by the model. OA impacts are detectable later in the subpolar and equatorial regions due to slower responses of alkalinity to OA in these regions and greater seasonal equatorial alkalinity variability. OA impacts are detectable later at depth despite lower variability due to smaller rates of change and consistent measurement uncertainty.

  15. A huge presacral Tarlov cyst. Case report.

    Science.gov (United States)

    Ishii, Kazuhiko; Yuzurihara, Masahito; Asamoto, Shunji; Doi, Hiroshi; Kubota, Motoo

    2007-08-01

    Perineural cysts have become a common incidental finding during lumbosacral magnetic resonance (MR) imaging. Only some of the symptomatic cysts warrant treatment. The authors describe the successful operative treatment of a patient with, to the best of their knowledge, the largest perineural cyst reported to date. A 29-year-old woman had been suffering from long-standing constipation and low-back pain. During an obstetric investigation for infertility, the clinician discovered a huge presacral cystic mass. Computed tomography myelography showed the lesion to be a huge Tarlov cyst arising from the left S-3 nerve root and compressing the ipsilateral S-2 nerve. The cyst was successfully treated by ligation of the cyst neck together with sectioning of the S-3 nerve root. Postoperative improvement in her symptoms and MR imaging findings were noted. Identification of the nerve root involved by the cyst wall, operative indication, operative procedure, and treatment of multiple cysts are important preoperative considerations.

  16. Present and Past Impact of Glacially Sourced Dust on Iron Fertilization of the Southern Ocean

    Science.gov (United States)

    Shoenfelt, E. M.; Winckler, G.; Kaplan, M. R.; Sambrotto, R.; Bostick, B. C.

    2016-12-01

    An increase in iron-containing dust flux and a more efficient biological pump in the Southern Ocean have been associated with the CO2 drawdown and global cooling of the Last Glacial Maximum (LGM). While iron (Fe) mineralogy is known to affect Fe bioavailability through its impact on Fe solubility, there are limited studies investigating the importance of Fe mineralogy in dust fluxes to the Southern Ocean, and no previous studies investigating interactions between eukaryotic phytoplankton and particulate-phase Fe in natural dusts applicable to Southern Ocean environments. Since physically weathered bedrock becomes less soluble as it becomes weathered and oxidized, we hypothesized that glacially sourced dusts would contain more Fe(II)-rich primary minerals and would be more bioavailable than dusts from areas not impacted by glaciers. We used a series of natural dusts from Patagonia as the sole Fe source in incubation experiments with the model diatom Phaeodactylum tricornutum, and evaluated Fe bioavailability using culture growth rates, cell density, and variable fluorescence. Monod curves were also used to evaluate the efficiency of the different particulates as sources of nutrient Fe. Using these Monod curves fit to growth rates plotted against particulate Fe concentrations, we observed that 1) Fe(II)-rich primary silicates were significantly more effective as an Fe source to diatoms than Fe(III)-rich oxides, that 2) Fe(II) content itself was responsible for the difference in Fe bioavailability/efficiency of the Fe nutrient source, and that 3) surface interactions with the particulates were important. In an effort to explore the possibility that Fe mineralogy impacted Fe bioavailability in past oceans, we will present our hypotheses regarding productivity and Fe mineralogy/bioavailability through the last glacial cycle.

  17. Impact of Icebergs on Net Primary Productivity in the Southern Ocean

    Science.gov (United States)

    Wu, Shuang-Ye; Hou, Shugui

    2017-04-01

    Productivity in the Southern Ocean (SO) is iron-limited, and supply of iron dissolved from aeolian dust is believed to be the main source from outside the marine environment. However, recent studies show that icebergs could provide comparable amount of bioavailable iron to the SO as aeolian dust. In addition, small scale areal studies suggest increased concentrations of chlorophyll, krill, and seabirds surrounding icebergs. Based on previous research, this study aims to examine whether iceberg occurrence has a significant impact on marine productivity at the scale of the SO, using remote sensing data of iceberg occurrences and ocean net primary productivity (NPP) covering the period 2002-2014. The impacts of both large and small icebergs are examined in four major ecological zones of the SO: the continental shelf zone (CSZ), the seasonal ice zone (SIZ), the permanent open ocean zone (POOZ) and the polar front zone (PFZ). We found that both large and small icebergs have an observable positive impact on NPP, but their impacts vary in different zones. Small icebergs on average increase NPP in most iron deficient zones: by 21% for the SIZ, 16% for the POOZ, and 12% for the PFZ, but have relatively small effect in the CSZ where iron is supplied from melt water and sediment input from the continent. Large icebergs on average increase the NPP by about 10%. Their impacts are stronger at higher latitudes, where they are more concentrated. From 1992-2014, there is a significant increasing trend for both small and large icebergs. The increase was most rapid in the early 2000s, and has levelled off since then. As the climate continues to warm, the Antarctic Ice Sheet is expected to experience increased mass loss as a whole, which could lead to more icebergs in the region. Based on our study, this could result in higher level of NPP in the SO as a whole, providing a negative feedback for global warming.

  18. From tiny microalgae to huge biorefineries

    OpenAIRE

    Gouveia, L.

    2014-01-01

    Microalgae are an emerging research field due to their high potential as a source of several biofuels in addition to the fact that they have a high-nutritional value and contain compounds that have health benefits. They are also highly used for water stream bioremediation and carbon dioxide mitigation. Therefore, the tiny microalgae could lead to a huge source of compounds and products, giving a good example of a real biorefinery approach. This work shows and presents examples of experimental...

  19. A rare clinic entity: Huge trichobezoar

    Directory of Open Access Journals (Sweden)

    Hidayatullah Hamidi, Dr, MD

    2016-01-01

    Conclusion: Trichobezoars should be suspected in young females with long standing upper abdominal masses; as the possibility of malignancy is not very common in this age group. While USG is inconclusive, trichobezoar can be accurately diagnosed with CT. In patient with huge trichobezoar, laparotomy can be performed firstly because of big size and location of mass, and psychiatric recommendation should be made to prevent relapse of this entity.

  20. Numerical simulations of the North Gorringe Avalanche, Eastern Atlantic Ocean, and of the consequent tsunami impacting the Iberian coasts

    Science.gov (United States)

    Zaniboni, F.; Lo Iacono, C.; Tinti, S.; Gracia, E.; Pagnoni, G.; Dañobeitia, J.; Lourenco, N.; Abreu, M. P.

    2010-12-01

    Continental margins are commonly interested by mass movements caused by gravitational instability, usually triggered by sediment erosion and seismic shaking. Such events can involve considerable masses of sediments and rocks, that can reach high velocities due to the slope steepness and provoke huge tsunamis, even if their source is located in deep water and far from the coast. The continuous advances in bathymetric techniques allowed a detailed characterization of continental margin morphologies also in deep environments, thus unveiling mass failure features related to past events and improving the geohazard assessment of those areas most prone to sediment instability. An example of a huge mass failure in a seismically active area is the North Gorringe landslide. This landslide is located along the north-eastern flank of the Gorringe Bank, west of the Portuguese coasts in the Atlantic Ocean, where the convergent boundary between the European and African Plates occurs. Bathymetric data revealed the existence of a well defined headwall, 7 km large, at 2900 m sea depth, and of a depositional zone with massive rock blocks and debris avalanche material. The deposits cover a sub-horizontal area (average slope 1.5°) of almost 280 km2 at a depth of about 5100 m , for a maximum run-out of 27 km and a drop of 2200 m. The interpretation of multichannel seismic profiles and the reconstruction through bathymetric data lead us to estimate the volume of the mass failure to be around 70-80 km3. In order to assess the consequence of such event on the Iberian coasts, a scenario involving the North Gorringe landslide has been set up and explored by means of numerical simulation codes that study separately the slide dynamics and the tsunami generation and propagation. After reconstructing the initial slide geometry and position, the Lagrangian code UBO-BLOCK2, assuming the mass as partitioned into a matrix of interacting constant volume blocks, was applied to compute the time

  1. Major cellular and physiological impacts of ocean acidification on a reef building coral.

    Directory of Open Access Journals (Sweden)

    Paulina Kaniewska

    Full Text Available As atmospheric levels of CO(2 increase, reef-building corals are under greater stress from both increased sea surface temperatures and declining sea water pH. To date, most studies have focused on either coral bleaching due to warming oceans or declining calcification due to decreasing oceanic carbonate ion concentrations. Here, through the use of physiology measurements and cDNA microarrays, we show that changes in pH and ocean chemistry consistent with two scenarios put forward by the Intergovernmental Panel on Climate Change (IPCC drive major changes in gene expression, respiration, photosynthesis and symbiosis of the coral, Acropora millepora, before affects on biomineralisation are apparent at the phenotype level. Under high CO(2 conditions corals at the phenotype level lost over half their Symbiodinium populations, and had a decrease in both photosynthesis and respiration. Changes in gene expression were consistent with metabolic suppression, an increase in oxidative stress, apoptosis and symbiont loss. Other expression patterns demonstrate upregulation of membrane transporters, as well as the regulation of genes involved in membrane cytoskeletal interactions and cytoskeletal remodeling. These widespread changes in gene expression emphasize the need to expand future studies of ocean acidification to include a wider spectrum of cellular processes, many of which may occur before impacts on calcification.

  2. Major cellular and physiological impacts of ocean acidification on a reef building coral.

    Science.gov (United States)

    Kaniewska, Paulina; Campbell, Paul R; Kline, David I; Rodriguez-Lanetty, Mauricio; Miller, David J; Dove, Sophie; Hoegh-Guldberg, Ove

    2012-01-01

    As atmospheric levels of CO(2) increase, reef-building corals are under greater stress from both increased sea surface temperatures and declining sea water pH. To date, most studies have focused on either coral bleaching due to warming oceans or declining calcification due to decreasing oceanic carbonate ion concentrations. Here, through the use of physiology measurements and cDNA microarrays, we show that changes in pH and ocean chemistry consistent with two scenarios put forward by the Intergovernmental Panel on Climate Change (IPCC) drive major changes in gene expression, respiration, photosynthesis and symbiosis of the coral, Acropora millepora, before affects on biomineralisation are apparent at the phenotype level. Under high CO(2) conditions corals at the phenotype level lost over half their Symbiodinium populations, and had a decrease in both photosynthesis and respiration. Changes in gene expression were consistent with metabolic suppression, an increase in oxidative stress, apoptosis and symbiont loss. Other expression patterns demonstrate upregulation of membrane transporters, as well as the regulation of genes involved in membrane cytoskeletal interactions and cytoskeletal remodeling. These widespread changes in gene expression emphasize the need to expand future studies of ocean acidification to include a wider spectrum of cellular processes, many of which may occur before impacts on calcification.

  3. Impact of 2004 Tsunami in the Islands of Indian Ocean: Lessons Learned

    Directory of Open Access Journals (Sweden)

    Georges Ramalanjaona

    2011-01-01

    Full Text Available Tsunami of 2004, caused by a 9.0 magnitude earthquake, is the most devastating tsunami in modern times, affecting 18 countries in Southeast Asia and Southern Africa, killing more than 250,000 people in a single day, and leaving more than 1.7 million homeless. However, less reported, albeit real, is its impact in the islands of the Indian Ocean more than 1,000 miles away from its epicenter. This is the first peer-reviewed paper on the 2004 tsunami events specifically in the eleven nations bordering the Indian Ocean, as they constitute a region at risk, due to the presence of tectonic interactive plate, absence of a tsunami warning system in the Indian Ocean, and lack established communication network providing timely information to that region. Our paper has a dual objective: the first objective is to report the 2004 tsunami event in relation to the 11 nations bordering the Indian Ocean. The second one is to elaborate on lessons learned from it from national, regional, and international disaster management programs to prevent such devastating consequences of tsunami from occurring again in the future.

  4. Environmental impacts of ocean disposal of CO{sub 2}. Final report volume 1, September 1994--August 1996

    Energy Technology Data Exchange (ETDEWEB)

    Adams, E.E.; Herzog, H.J.

    1996-12-01

    One option to reduce atmospheric CO{sub 2} levels is to capture and sequester power plant CO{sub 2}. Commercial CO{sub 2} capture technology, though expensive, exists today. However, the ability to dispose of large quantities of CO{sub 2} is highly uncertain. The deep ocean is one of only a few possible CO{sub 2} disposal options and is a prime candidate because the deep ocean is vast and highly unsaturated in CO{sub 2}. Ocean disposal of CO{sub 2} will only make sense if the environmental impacts to the ocean are significantly less than the avoided impacts of atmospheric release. In this project, we examined these ocean impacts through a multi-disciplinary effort designed to summarize the current state of knowledge. In the process, we have developed a comprehensive method to assess the impacts of pH changes on passive marine organisms. This final report addresses the following six topics: CO{sub 2} loadings and scenarios, impacts of CO{sub 2} transport, near-field perturbations, far-field perturbations, environmental impacts of CO{sub 2} release, and policy and legal implications of CO{sub 2} release. While there are several important environmental impacts of ocean disposal of CO{sub 2}, the acidification around the release point may be the most important. However, the size and severity of the impacted area varies substantially with the injection scenario. We have quantified the impacts of various injection scenarios relative to each other through mortality measures. Based on available data, it appears possible to inject CO{sub 2} into the deep ocean in such a way as to yield negligible environmental impacts.

  5. From laboratory manipulations to Earth system models: scaling calcification impacts of ocean acidification

    Directory of Open Access Journals (Sweden)

    J. R. Young

    2009-11-01

    Full Text Available The observed variation in the calcification responses of coccolithophores to changes in carbonate chemistry paints a highly incoherent picture, particularly for the most commonly cultured "species", Emiliania huxleyi. The disparity between magnitude and potentially even sign of the calcification change under simulated end-of-century ocean surface chemical changes (higher pCO2, lower pH and carbonate saturation, raises challenges to quantifying future carbon cycle impacts and feedbacks because it introduces significant uncertainty in parameterizations used for global models. Here we compile the results of coccolithophore carbonate chemistry manipulation experiments and review how ocean carbon cycle models have attempted to bridge the gap from experiments to global impacts. Although we can rule out methodological differences in how carbonate chemistry is altered as introducing an experimental bias, the absence of a consistent calcification response implies that model parameterizations based on small and differing subsets of experimental observations will lead to varying estimates for the global carbon cycle impacts of ocean acidification. We highlight two pertinent observations that might help: (1 the degree of coccolith calcification varies substantially, both between species and within species across different genotypes, and (2 the calcification response across mesocosm and shipboard incubations has so-far been found to be relatively consistent. By analogy to descriptions of plankton growth rate vs. temperature, such as the "Eppley curve", which seek to encapsulate the net community response via progressive assemblage change rather than the response of any single species, we posit that progressive future ocean acidification may drive a transition in dominance from more to less heavily calcified coccolithophores. Assemblage shift may be more important to integrated community calcification response than species

  6. Nucleobase and amino acid formation through impacts of meteorites on the early ocean

    Science.gov (United States)

    Furukawa, Yoshihiro; Nakazawa, Hiromoto; Sekine, Toshimori; Kobayashi, Takamichi; Kakegawa, Takeshi

    2015-11-01

    The emergence of life's building blocks on the prebiotic Earth was the first crucial step for the origins of life. Extraterrestrial delivery of intact amino acids and nucleobases is the prevailing hypothesis for their availability on prebiotic Earth because of the difficulties associated with the production of these organics from terrestrial carbon and nitrogen sources under plausible prebiotic conditions. However, the variety and amounts of these intact organics delivered by meteorites would have been limited. Previous shock-recovery experiments have demonstrated that meteorite impact reactions could have generated organics on the prebiotic Earth. Here, we report on the simultaneous formation of nucleobases (cytosine and uracil) found in DNA and/or RNA, various proteinogenic amino acids (glycine, alanine, serine, aspartic acid, glutamic acid, valine, leucine, isoleucine, and proline), non-proteinogenic amino acids, and aliphatic amines in experiments simulating reactions induced by extraterrestrial objects impacting on the early oceans. To the best of our knowledge, this is the first report of the formation of nucleobases from inorganic materials by shock conditions. In these experiments, bicarbonate was used as the carbon source. Bicarbonate, which is a common dissolved carbon species in CO2-rich atmospheric conditions, was presumably the most abundant carbon species in the early oceans and in post-impact plumes. Thus, the present results expand the possibility that impact-induced reactions generated various building blocks for life on prebiotic Earth in large quantities through the use of terrestrial carbon reservoirs.

  7. Impacts of XBT, TAO, Altimetry and ARGO Observations on the Tropical Pacific Ocean Data Assimilation

    Institute of Scientific and Technical Information of China (English)

    YAN Changxiang; ZHU Jiang; ZHOU Guangqing

    2007-01-01

    This study aims at assessing the relative impacts of four major components of the tropical Pacific Ocean observing system on assimilation of temperature and salinity fields. Observations were collected over a period between January 2001 through June 2003 including temperature data from the expendable bathythermographs (XBT), thermistor data from the Tropical Ocean Global Atmosphere Tropical Atmosphere-Ocean (TOGA-TAO) mooring array, sea level anomalies from the Topex/Poseidon and Jason-1 altimetry (T/P-J),and temperature and salinity profiles from the Array for Real-time Geostrophic Oceanography (ARGO) floats.An efficient three-dimensional variational analysis-based method was introduced to assimilate the above data into the tropical-Pacific circulation model. To evaluate the impact of the individual component of the observing system, four observation system experiments were carried out. The experiment that assimilated all four components of the observing system was taken as the reference. The other three experiments were implemented by withholding one of the four components. Results show that the spatial distribution of the data influences its relative contribution. XBT observations produce the most distinguished effects on temperature analyses in the off-equatorial region due to the large amount of measurements and high quality.Similarly, the impact of TAO is dominant in the equatorial region due to the focus of the spatial distribution.The Topex/Poseidon-Jason-1 can be highly complementary where the XBT and TAO observations are sparse.The contribution of XBT or TAO on the assimilated salinity is made by the model dynamics because no salinity observations from them are assimilated. Therefore, T/P-J, as a main source for providing salinity data, has been shown to have greater impacts than either XBT or TAO on the salinity analysis. Although ARGO includes the subsurface observations, the relatively smaller number of observation makes it have the smallest

  8. The impact of whaling on the ocean carbon cycle: why bigger was better.

    Directory of Open Access Journals (Sweden)

    Andrew J Pershing

    Full Text Available BACKGROUND: Humans have reduced the abundance of many large marine vertebrates, including whales, large fish, and sharks, to only a small percentage of their pre-exploitation levels. Industrial fishing and whaling also tended to preferentially harvest the largest species and largest individuals within a population. We consider the consequences of removing these animals on the ocean's ability to store carbon. METHODOLOGY/PRINCIPAL FINDINGS: Because body size is critical to our arguments, our analysis focuses on populations of baleen whales. Using reconstructions of pre-whaling and modern abundances, we consider the impact of whaling on the amount of carbon stored in living whales and on the amount of carbon exported to the deep sea by sinking whale carcasses. Populations of large baleen whales now store 9.1×10(6 tons less carbon than before whaling. Some of the lost storage has been offset by increases in smaller competitors; however, due to the relative metabolic efficiency of larger organisms, a shift toward smaller animals could decrease the total community biomass by 30% or more. Because of their large size and few predators, whales and other large marine vertebrates can efficiently export carbon from the surface waters to the deep sea. We estimate that rebuilding whale populations would remove 1.6×10(5 tons of carbon each year through sinking whale carcasses. CONCLUSIONS/SIGNIFICANCE: Even though fish and whales are only a small portion of the ocean's overall biomass, fishing and whaling have altered the ocean's ability to store and sequester carbon. Although these changes are small relative to the total ocean carbon sink, rebuilding populations of fish and whales would be comparable to other carbon management schemes, including ocean iron fertilization.

  9. Ocean Warming and CO₂-Induced Acidification Impact the Lipid Content of a Marine Predatory Gastropod.

    Science.gov (United States)

    Valles-Regino, Roselyn; Tate, Rick; Kelaher, Brendan; Savins, Dale; Dowell, Ashley; Benkendorff, Kirsten

    2015-09-24

    Ocean warming and acidification are current global environmental challenges impacting aquatic organisms. A shift in conditions outside the optimal environmental range for marine species is likely to generate stress that could impact metabolic activity, with consequences for the biosynthesis of marine lipids. The aim of this study was to investigate differences in the lipid content of Dicathais orbita exposed to current and predicted future climate change scenarios. The whelks were exposed to a combination of temperature and CO₂-induced acidification treatments in controlled flowthrough seawater mesocosms for 35 days. Under current conditions, D. orbita foot tissue has an average of 6 mg lipid/g tissue, but at predicted future ocean temperatures, the total lipid content dropped significantly, to almost half. The fatty acid composition is dominated by polyunsaturated fatty acids (PUFA 52%) with an n-3:6 fatty acid ratio of almost 2, which remains unchanged under future ocean conditions. However, we detected an interactive effect of temperature and pCO₂ on the % PUFAs and n-3 and n-6 fatty acids were significantly reduced by elevated water temperature, while both the saturated and monounsaturated fatty acids were significantly reduced under increased pCO₂ acidifying conditions. The present study indicates the potential for relatively small predicted changes in ocean conditions to reduce lipid reserves and alter the fatty acid composition of a predatory marine mollusc. This has potential implications for the growth and survivorship of whelks under future conditions, but only minimal implications for human consumption of D. orbita as nutritional seafood are predicted.

  10. Ocean Warming and CO2-Induced Acidification Impact the Lipid Content of a Marine Predatory Gastropod

    Directory of Open Access Journals (Sweden)

    Roselyn Valles-Regino

    2015-09-01

    Full Text Available Ocean warming and acidification are current global environmental challenges impacting aquatic organisms. A shift in conditions outside the optimal environmental range for marine species is likely to generate stress that could impact metabolic activity, with consequences for the biosynthesis of marine lipids. The aim of this study was to investigate differences in the lipid content of Dicathais orbita exposed to current and predicted future climate change scenarios. The whelks were exposed to a combination of temperature and CO2-induced acidification treatments in controlled flowthrough seawater mesocosms for 35 days. Under current conditions, D. orbita foot tissue has an average of 6 mg lipid/g tissue, but at predicted future ocean temperatures, the total lipid content dropped significantly, to almost half. The fatty acid composition is dominated by polyunsaturated fatty acids (PUFA 52% with an n-3:6 fatty acid ratio of almost 2, which remains unchanged under future ocean conditions. However, we detected an interactive effect of temperature and pCO2 on the % PUFAs and n-3 and n-6 fatty acids were significantly reduced by elevated water temperature, while both the saturated and monounsaturated fatty acids were significantly reduced under increased pCO2 acidifying conditions. The present study indicates the potential for relatively small predicted changes in ocean conditions to reduce lipid reserves and alter the fatty acid composition of a predatory marine mollusc. This has potential implications for the growth and survivorship of whelks under future conditions, but only minimal implications for human consumption of D. orbita as nutritional seafood are predicted.

  11. Regional Oceanic Impact on Circulation and Direct Radiative Effect of Aerosol over East Asia

    Institute of Scientific and Technical Information of China (English)

    XIONG Zhe; HAN Zhi-Wei

    2011-01-01

    The Regional Integrated Environmental Model System (RIEMS 2.0) coupled with a chemistry-aerosol model and the Princeton Ocean Model (POM) is employed to simulate regional oceanic impact on atmospheric circulation and the direct radiative effect (DRE) of aerosol over East Asia. The aerosols considered in this study include both major anthropogenic aerosols (e.g., sulfate, black carbon, and organic carbon) and natural aerosols (e.g., soil dust and sea salt). The RIEMS 2.0 is driven by NCEP/NCAR reanalysis II, and the simulated period is from 1 January to 31 December 2006. The results show the following: (1) The simulated annual mean sea-level pressure by RIEMS 2.0 with POM is lower than without POM over the mainland and higher without POM over the ocean. (2) In summer, the subtropical high simulated by RIEMS 2.0 with POM is stronger and extends further westward, and the continental low is stronger than without POM in summer. (3) The aerosol optical depth (AOD) simulated by RIEMS 2.0 with POM is larger in the middle and lower reaches of the Yangtze River than without POM. (4) The direct radiative effect with POM is stronger than that without POM in the middle and lower reaches of the Yangtze River and parts of southern China. Therefore, the authors should take account of the impact of the regional ocean model on studying the direct climate effect &aerosols in long term simulation.

  12. The impact of marine aerosols on atmospheric characteristics over ocean surface in frontal zones

    Science.gov (United States)

    Pavlova, Hanna; Palamarchuk, Iuliia; Ruban, Igor; Ivanov, Sergiy

    2015-04-01

    Ocean-derived aerosols are particles produced from the ocean surface and remaining suspended in the atmosphere during a certain period of time. Aerosols act as climate forcers both directly (by scattering and absorbing solar radiation) and indirectly (by affecting cloud microphysics as cloud condensation nuclei). To evaluate the degree of marine aerosols impact on weather conditions the numerical experiments with the HARMONIE model were conducted with the model domain covering area over the North Atlantic. The results showed that marine aerosols have a significant impact on characteristics of the atmosphere (such as air temperature, specific humidity, precipitation, and vertical velocity) over the ocean surface. The most significant differences occur along the frontal zones with high gradients at all vertical levels in the atmosphere for all variables. Change in radiative fluxes leads to changes in temperature of the atmosphere. These anomalies appear as mesoscale cells of opposite signs alternating each other. It can be assumed that they are formed as a result of a chain of factors. Thus, the absorption and scattering of solar radiation in the upper troposphere during daytime, increasing of moisture content and subsequent increase in thermal inertia of the air, and enhanced greenhouse effect at nighttime are acting in different directions on formation of vertical structure and convection conditions. This leads to a strengthening/weakening of the updrafts and compensatory movements, and eventually to the changes in processes of precipitation formation. Thus, the simulation of weather conditions in frontal zones over the ocean requires considering the effect of the marine aerosols presence.

  13. The Arctic Ocean marine carbon cycle: evaluation of air-sea CO2 exchanges, ocean acidification impacts and potential feedbacks

    Directory of Open Access Journals (Sweden)

    N. R. Bates

    2009-11-01

    Full Text Available At present, although seasonal sea-ice cover mitigates atmosphere-ocean gas exchange, the Arctic Ocean takes up carbon dioxide (CO2 on the order of −66 to −199 Tg C year−1 (1012 g C, contributing 5–14% to the global balance of CO2 sinks and sources. Because of this, the Arctic Ocean has an important influence on the global carbon cycle, with the marine carbon cycle and atmosphere-ocean CO2 exchanges sensitive to Arctic Ocean and global climate change feedbacks. In the near-term, further sea-ice loss and increases in phytoplankton growth rates are expected to increase the uptake of CO2 by Arctic Ocean surface waters, although mitigated somewhat by surface warming in the Arctic. Thus, the capacity of the Arctic Ocean to uptake CO2 is expected to alter in response to environmental changes driven largely by climate. These changes are likely to continue to modify the physics, biogeochemistry, and ecology of the Arctic Ocean in ways that are not yet fully understood. In surface waters, sea-ice melt, river runoff, cooling and uptake of CO2 through air-sea gas exchange combine to decrease the calcium carbonate (CaCO3 mineral saturation states (Ω of seawater while seasonal phytoplankton primary production (PP mitigates this effect. Biological amplification of ocean acidification effects in subsurface waters, due to the remineralization of organic matter, is likely to reduce the ability of many species to produce CaCO3 shells or tests with profound implications for Arctic marine ecosystems

  14. Environmental impacts of ocean disposal of CO{sub 2}. Final report volume 2, September 1994--August 1996

    Energy Technology Data Exchange (ETDEWEB)

    Herzog, H.J.; Adams, E.E. [eds.

    1996-12-01

    One option to reduce atmospheric CO{sub 2} levels is to capture and sequester power plant CO{sub 2}. Commercial CO{sub 2} capture technology, though expensive, exists today. However, the ability to dispose of large quantities of CO{sub 2} is highly uncertain. The deep ocean is one of only a few possible CO{sub 2} disposal options (others are depleted oil and gas wells or deep, confined aquifers) and is a prime candidate because the deep ocean is vast and highly unsaturated in CO{sub 2}. Technically, the term `disposal` is really a misnomer because the atmosphere and ocean eventually equilibrate on a time scale of 1000 years regardless of where the CO{sub 2} is originally discharged. However, peak atmospheric CO{sub 2} concentrations expected to occur in the next few centuries could be significantly reduced by ocean disposal. The magnitude of this reduction will depend upon the quantity of CO{sub 2} injected in the ocean, as well as the depth and location of injection. Ocean disposal of CO{sub 2} will only make sense if the environmental impacts to the ocean are significantly less than the avoided impacts of atmospheric release. In this project, we examined these ocean impacts through a multi-disciplinary effort designed to summarize the current state of knowledge. In the process, we have developed a comprehensive method to assess the impacts of pH changes on passive marine organisms. This final report addresses the following six topics: CO{sub 2} loadings and scenarios, impacts of CO{sub 2} transport, near-field perturbations, far-field perturbations, environmental impacts of CO{sub 2} release, and policy and legal implications of CO{sub 2} release.

  15. Laparoscopic Management of Huge Cervical Myoma.

    Science.gov (United States)

    Peker, Nuri; Gündoğan, Savaş; Şendağ, Fatih

    To demonstrate the feasibility of laparoscopic management of a huge cervical myoma. Step-by-step video demonstration of the surgical procedure (Canadian Task Force classification III-C). Uterine myoma is the most common benign neoplasm of the female reproductive tract, with an estimated incidence of 25% to 30% at reproductive age [1,2]. Patients generally have no symptoms; however, those with such symptoms as severe pelvic pain, heavy uterine bleeding, or infertility may be candidates for surgery. The traditional management is surgery; however, uterine artery embolization or hormonal therapy using a gonadotropin-releasing hormone agonist or a selective estrogen receptor modulator should be preferred as the medical approach. Surgical management should be performed via laparoscopy or laparotomy; however, the use of laparoscopic myomectomy is being debated for patients with huge myomas. Difficulties in the excision, removal, and repair of myometrial defects, increased operative time, and blood loss are factors keeping physicians away from laparoscopic myomectomy [1,2]. A 40-year-old gravida 0, para 0 woman was admitted to our clinic with complaints of chronic pelvic pain, dyspareunia, and infertility. Her health history was unremarkable. Ultrasonographic examination revealed a 14 × 10-cm myoma in the cervical region. On bimanual examination, an immobile solid mass originating from the uterine cervix and filling the pouch of Douglas was palpated. The patient was informed of the findings, and laparoscopic myomectomy was recommended because of her desire to preserve her fertility. Abdominopelvic examination revealed a huge myoma filling and enlarging the cervix. Myomectomy was performed using standard technique as described elsewhere. A transverse incision was made using a harmonic scalpel. The myoma was fixed with a corkscrew manipulator and enucleated. Once bleeding was controlled, the myoma bed was filled with Spongostan to prevent possible bleeding from leakage

  16. Huge music archives on mobile devices

    DEFF Research Database (Denmark)

    Blume, H.; Bischl, B.; Botteck, M.

    2011-01-01

    The availability of huge nonvolatile storage capacities such as flash memory allows large music archives to be maintained even in mobile devices. With the increase in size, manual organization of these archives and manual search for specific music becomes very inconvenient. Automated dynamic...... and difficult to tackle on mobile platforms. Against this background, we provided an overview of algorithms for music classification as well as their computation times and other hardware-related aspects, such as power consumption on various hardware architectures. For mobile platforms such as smartphones...

  17. Recent advances in vibro-impact dynamics and collision of ocean vessels

    Science.gov (United States)

    Ibrahim, Raouf A.

    2014-11-01

    The treatment of ship impacts and collisions takes different approaches depending on the emphasis of each discipline. For example, dynamicists, physicist, and mathematicians are dealing with developing analytical models and mappings of vibro-impact systems. On the other hand, naval architects and ship designers are interested in developing design codes and structural assessments due to slamming loads, liquid sloshing impact loads in liquefied natural gas tanks and ship grounding accidents. The purpose of this review is to highlight the main differences of the two disciplines. It begins with a brief account of the theory of vibro-impact dynamics based on modeling and mapping of systems experiencing discontinuous changes in their state of motion due to collision. The main techniques used in modeling include power-law phenomenological modeling, Hertzian modeling, and non-smooth coordinate transformations originally developed by Zhuravlev and Ivanov. In view of their effectiveness, both Zhuravlev and Ivanov non-smooth coordinate transformations will be described and assessed for the case of ship roll dynamics experiencing impact with rigid barriers. These transformations have the advantage of converting the vibro-impact oscillator into an oscillator without barriers such that the corresponding equation of motion does not contain any impact term. One of the recent results dealing with the coefficient of restitution is that its value monotonically decreases with the impact velocity and not unique but random in nature. Slamming loads and grounding events of ocean waves acting on the bottom of high speed vessels will be assessed with reference to the ship structural damage. It will be noticed that naval architects and marine engineers are treating these problems using different approaches from those used by dynamicists. The problem of sloshing impact in liquefied natural gas cargo and related problems will be assessed based on the numerical and experimental results. It is

  18. Shrinking of fishes exacerbates impacts of global ocean changes on marine ecosystems

    Science.gov (United States)

    Cheung, William W. L.; Sarmiento, Jorge L.; Dunne, John; Frölicher, Thomas L.; Lam, Vicky W. Y.; Deng Palomares, M. L.; Watson, Reg; Pauly, Daniel

    2013-03-01

    Changes in temperature, oxygen content and other ocean biogeochemical properties directly affect the ecophysiology of marine water-breathing organisms. Previous studies suggest that the most prominent biological responses are changes in distribution, phenology and productivity. Both theory and empirical observations also support the hypothesis that warming and reduced oxygen will reduce body size of marine fishes. However, the extent to which such changes would exacerbate the impacts of climate and ocean changes on global marine ecosystems remains unexplored. Here, we employ a model to examine the integrated biological responses of over 600 species of marine fishes due to changes in distribution, abundance and body size. The model has an explicit representation of ecophysiology, dispersal, distribution, and population dynamics. We show that assemblage-averaged maximum body weight is expected to shrink by 14-24% globally from 2000 to 2050 under a high-emission scenario. About half of this shrinkage is due to change in distribution and abundance, the remainder to changes in physiology. The tropical and intermediate latitudinal areas will be heavily impacted, with an average reduction of more than 20%. Our results provide a new dimension to understanding the integrated impacts of climate change on marine ecosystems.

  19. The Impact of Ocean Acidification on Reproduction, Early Development and Settlement of Marine Organisms

    Directory of Open Access Journals (Sweden)

    Elizabeth A. Bailey

    2011-11-01

    Full Text Available Predicting the impact of warming and acidifying on oceans on the early development life history stages of invertebrates although difficult, is essential in order to anticipate the severity and consequences of future climate change. This review summarises the current literature and meta-analyses on the early life-history stages of invertebrates including fertilisation, larval development and the implications for dispersal and settlement of populations. Although fertilisation appears robust to near future predictions of ocean acidification, larval development is much more vulnerable and across invertebrate groups, evidence indicates that the impacts may be severe. This is especially for those many marine organisms which start to calcify in their larval and/or juvenile stages. Species-specificity and variability in responses and current gaps in the literature are highlighted, including the need for studies to investigate the total effects of climate change including the synergistic impact of temperature, and the need for long-term multigenerational experiments to determine whether vulnerable invertebrate species have the capacity to adapt to elevations in atmospheric CO2 over the next century.

  20. Molecular Diversity of Sea Spray Aerosol Particles: Impact of Ocean Biology on Particle Composition and Hygroscopicity

    Energy Technology Data Exchange (ETDEWEB)

    Cochran, Richard E.; Laskina, Olga; Trueblood, Jonathan; Estillore, Armando D.; Morris, Holly S.; Jayarathne, Thilina; Sultana, Camile M.; Lee, Christopher; Lin, Peng; Laskin, Julia; Laskin, Alexander; Dowling, Jackie; Qin, Zhen; Cappa, Christopher; Bertram, Timothy; Tivanski, Alexei V.; Stone, Elizabeth; Prather, Kimberly; Grassian, Vicki H.

    2017-05-01

    The impact of sea spray aerosol (SSA) on climate depends on the size and chemical composition of individual particles that make-up the total SSA ensemble. While the organic fraction of SSA has been characterized from a bulk perspective, there remains a lack of understanding as to the composition of individual particles within the SSA ensemble. To better understand the molecular components within SSA particles and how SSA composition changes with ocean biology, simultaneous measurements of seawater and SSA were made during a month-long mesocosm experiment performed in an ocean-atmosphere facility. Herein, we deconvolute the composition of freshly emitted SSA devoid of anthropogenic and terrestrial influences by characterizing classes of organic compounds as well as specific molecules within individual SSA particles. Analysis of SSA particles show that the diversity of molecules within the organic fraction varies between two size fractions (submicron and supermicron) with contributions from fatty acids, monosaccharides, polysaccharides and siliceous material. Significant changes in the distribution of these compounds within individual particles are observed to coincide with the rise and fall of phytoplankton and bacterial populations within the seawater. Furthermore, water uptake is impacted as shown by hygroscopicity measurements of model systems composed of representative organic compounds. Thus, the how changes in the hygroscopic growth of SSA evolves with composition can be elucidated. Overall, this study provides an important connection between biological processes that control the composition of seawater and changes in single particle composition which will enhances our ability to predict the impact of SSA on climate.

  1. The impact of parental death on child well-being: evidence from the Indian Ocean tsunami.

    Science.gov (United States)

    Cas, Ava Gail; Frankenberg, Elizabeth; Suriastini, Wayan; Thomas, Duncan

    2014-04-01

    Identifying the impact of parental death on the well-being of children is complicated because parental death is likely to be correlated with other, unobserved factors that affect child well-being. Population-representative longitudinal data collected in Aceh, Indonesia, before and after the December 2004 Indian Ocean tsunami are used to identify the impact of parental deaths on the well-being of children aged 9-17 at the time of the tsunami. Exploiting the unanticipated nature of parental death resulting from the tsunami in combination with measuring well-being of the same children before and after the tsunami, models that include child fixed effects are estimated to isolate the causal effect of parental death. Comparisons are drawn between children who lost one or both parents and children whose parents survived. Shorter-term impacts on school attendance and time allocation one year after the tsunami are examined, as well as longer-term impacts on education trajectories and marriage. Shorter- and longer-term impacts are not the same. Five years after the tsunami, there are substantial deleterious impacts of the tsunami on older boys and girls, whereas the effects on younger children are more muted.

  2. Biogeochemical and ecological impacts of boundary currents in the Indian Ocean

    Science.gov (United States)

    Hood, Raleigh R.; Beckley, Lynnath E.; Wiggert, Jerry D.

    2017-08-01

    Monsoon forcing and the unique geomorphology of the Indian Ocean basin result in complex boundary currents, which are unique in many respects. In the northern Indian Ocean, several boundary current systems reverse seasonally. For example, upwelling coincident with northward-flowing currents along the coast of Oman during the Southwest Monsoon gives rise to high productivity which also alters nutrient stoichiometry and therefore, the species composition of the resulting phytoplankton blooms. During the Northeast Monsoon most of the northern Indian Ocean boundary currents reverse and favor downwelling. Higher trophic level species have evolved behavioral responses to these seasonally changing conditions. Examples from the western Arabian Sea include vertical feeding migrations of a copepod (Calanoides carinatus) and the reproductive cycle of a large pelagic fish (Scomberomorus commerson). The impacts of these seasonal current reversals and changes in upwelling and downwelling circulations are also manifested in West Indian coastal waters, where they influence dissolved oxygen concentrations and have been implicated in massive fish kills. The winds and boundary currents reverse seasonally in the Bay of Bengal, though the associated changes in upwelling and productivity are less pronounced. Nonetheless, their effects are observed on the East Indian shelf as, for example, seasonal changes in copepod abundance and zooplankton community structure. In contrast, south of Sri Lanka seasonal reversals in the boundary currents are associated with dramatic changes in the intensity of coastal upwelling, chlorophyll concentration, and catch per unit effort of fishes. Off the coast of Java, monsoon-driven changes in the currents and upwelling strongly impact chlorophyll concentrations, seasonal vertical migrations of zooplankton, and sardine catch in Bali Strait. In the southern hemisphere the Leeuwin is a downwelling-favorable current that flows southward along western Australia

  3. Mineralogical Plasticity Acts as a Compensatory Mechanism to the Impacts of Ocean Acidification.

    Science.gov (United States)

    Leung, Jonathan Y S; Russell, Bayden D; Connell, Sean D

    2017-02-15

    Calcifying organisms are considered particularly susceptible to the future impacts of ocean acidification (OA), but recent evidence suggests that they may be able to maintain calcification and overall fitness. The underlying mechanism remains unclear but may be attributed to mineralogical plasticity, which modifies the energetic cost of calcification. To test the hypothesis that mineralogical plasticity enables the maintenance of shell growth and functionality under OA conditions, we assessed the biological performance of a gastropod (respiration rate, feeding rate, somatic growth, and shell growth of Austrocochlea constricta) and analyzed its shell mechanical and geochemical properties (shell hardness, elastic modulus, amorphous calcium carbonate, calcite to aragonite ratio, and magnesium to calcium ratio). Despite minor metabolic depression and no increase in feeding rate, shell growth was faster under OA conditions, probably due to increased precipitation of calcite and trade-offs against inner shell density. In addition, the resulting shell was functionally suitable for increasingly "corrosive" oceans, i.e., harder and less soluble shells. We conclude that mineralogical plasticity may act as a compensatory mechanism to maintain overall performance of calcifying organisms under OA conditions and could be a cornerstone of calcifying organisms to acclimate to and maintain their ecological functions in acidifying oceans.

  4. Radiocarbon constraints on the glacial ocean circulation and its impact on atmospheric CO2

    Science.gov (United States)

    Skinner, L. C.; Primeau, F.; Freeman, E.; de la Fuente, M.; Goodwin, P. A.; Gottschalk, J.; Huang, E.; McCave, I. N.; Noble, T. L.; Scrivner, A. E.

    2017-01-01

    While the ocean’s large-scale overturning circulation is thought to have been significantly different under the climatic conditions of the Last Glacial Maximum (LGM), the exact nature of the glacial circulation and its implications for global carbon cycling continue to be debated. Here we use a global array of ocean–atmosphere radiocarbon disequilibrium estimates to demonstrate a ∼689±53 14C-yr increase in the average residence time of carbon in the deep ocean at the LGM. A predominantly southern-sourced abyssal overturning limb that was more isolated from its shallower northern counterparts is interpreted to have extended from the Southern Ocean, producing a widespread radiocarbon age maximum at mid-depths and depriving the deep ocean of a fast escape route for accumulating respired carbon. While the exact magnitude of the resulting carbon cycle impacts remains to be confirmed, the radiocarbon data suggest an increase in the efficiency of the biological carbon pump that could have accounted for as much as half of the glacial–interglacial CO2 change. PMID:28703126

  5. A numerical estimation of the impact of Stokes drift on upper ocean temperature

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xiaoshuang; WANG Zhifeng; WANG Bin; WU Kejian; HAN Guijun; LI Wei

    2014-01-01

    The impact of Stokes drift on the mixed layer temperature variation was estimated by taking into account an advective heat transport term induced by the Stokes drift in the equation of mixed layer temperature and using the oceanic and wave parameters from a global ocean circulation model (HYCOM) and a wave model ( Wave Watch III). The dimensional analysis and quantitative estimation method were conducted to assess the importance of the effect induced by the Stokes drift and to analyze its spatial distribution and seasonal variation characteristics. Results show that the contribution of the Stokes drift to the mixed layer tempera-ture variation at mid-to-high latitudes is comparable with that of the mean current, and a substantial part of mixed layer temperature change is induced by taking the Stokes drift effect into account. Although the advection heat transport induced by the Stokes drift is not the leading term for the mixed layer temperature equation, it cannot be neglected and even becomes critical in some regions for the simulation of the upper-ocean temperature.

  6. Impact of ocean resolution on coupled air-sea fluxes and large-scale climate

    Science.gov (United States)

    Roberts, Malcolm J.; Hewitt, Helene T.; Hyder, Pat; Ferreira, David; Josey, Simon A.; Mizielinski, Matthew; Shelly, Ann

    2016-10-01

    Air-sea fluxes are a crucial component in the energetics of the global climate system. The largest air-sea fluxes occur in regions of high sea surface temperature variability, such as ocean boundary, frontal currents and eddies. In this paper we explore the importance of ocean model resolution to resolve air-sea flux relationships in these areas. We examine the sea surface temperature-wind stress relationship in high-pass filtered observations and two versions of the Met Office climate model with eddy-permitting and eddy-resolving ocean resolutions. Eddy-resolving resolution shows marginal improvement in the relationship over eddy-permitting resolution. However, by focussing on the North Atlantic we show that the eddy-resolving model has significant enhancement of latent heat loss over the North Atlantic Current region, a long-standing model bias. While eddy-resolving resolution does not change the air-sea flux relationship at small scale, the impact on the mean state has important implications for the reliability of future climate projections.

  7. Laparoscopic Management of Huge Myoma Nascendi.

    Science.gov (United States)

    Peker, Nuri; Gündoğan, Savas; Şendağ, Fatih

    To demonstrate the feasibility of laparoscopic management of a huge myoma nascendi. Step-by-step video demonstration of the surgical procedure (Canadian Task Force classification III-C). Uterine myoma is the most common benign neoplasm of the female reproductive tract, with an estimated incidence of 25% to 30% at reproductive age [1,2]. Patients generally have no symptoms; however, those with such symptoms as severe pelvic pain, heavy uterine bleeding, or infertility may be candidates for surgery. The traditional management is surgery; however, uterine artery embolization or hormonal therapy using a gonadotropin-releasing hormone agonist or a selective estrogen receptor modulator should be preferred as the medical approach. Surgical management should be performed via laparoscopy or laparotomy; however, the use of laparoscopic myomectomy is being debated for patients with huge myomas. Difficulties in the excision, removal, and repair of myometrial defects, increased operative time, and blood loss are factors keeping physicians away from laparoscopic myomectomy [1,2]. A 35-year-old woman was admitted to our clinic with complaints of chronic pelvic pain and heavy menstrual bleeding. Her medical history included multiple hospitalizations for blood transfusions, along with a recently measured hemoglobin level of 9.5 g/dL and a hematocrit value of 29%. She had never been married and had no children. Pelvic ultrasonography revealed a 12 × 10-cm uterine myoma located on the posterior side of the corpus uteri and protruding through to the cervical channel. This was a huge intramural submucous myoma in close proximity to the endometrial cavity and spreading through the myometrium. On vaginal examination, the myoma was found to extend into the vagina through the cervical channel. Laparoscopic myomectomy was planned because of the patient's desire for fertility preservation. Abdominopelvic exploration revealed a huge myoma filling the posterior side of the corpus uteri and

  8. The Impact of Ocean Mixed Layer on Regional NWP Model around the Korea Peninsula

    Science.gov (United States)

    Min, Jae-Sik; Jee, Joon-Bum; Park, Jeong-Gyun; Lee, Hankyung; Lee, Jung-Hoon

    2017-04-01

    Ocean mixed layer (OML) affects diurnal cycle of sea surface temperature (SST) induced by change of solar radiation absorption and heat budget in ocean surface. The diurnal SST variation can lead to convection in ocean, which can impact on localized precipitation both over coastal and inland. In this study, we investigate The OML characteristics affecting the diurnal cycle of SST for the Korea Peninsula and surrounding areas. To analyze OML characteristics, HYCOM oceanic mixed layer depth (MLD) and 10 m wind fields of ERA-interim during the period of 2008-2016 are used. In the winter season, oceanic MLD is deeply formed when the strong wind field is formed perpendicular to continental slope over deep seafloor areas. Besides, cooling SST-induced vertical mixing in OML is reinforced by cold and dry air originated from Siberia. The OML in summer is shallowly distributed about 20 m over the analyzed areas. To estimate the impact of adapting OML model in high horizontal resolution (1 km) NWP model, four sensitivity tests are performed. At this time, the prognostic scheme of skin SST is applied in NWP to simulate diurnal SST variation. The simulation results of summer case show that CNTL (off-OML) overestimates diurnal SST variation, while EXPs (on-OML) indicate similar results to observations. And, the prediction of precipitation for the performance of EXPs shows improvement compared with CNTL over coastal as well as inland. In winter, on the other hand, there is no significant difference in CNTL and EXPs. The average heat budget at sea surface in February, which is the case period, is close to zero. As a results, it is considered that radiation balance at the sea surface occurs and diurnal SST variation due to net radiation in the prognostic scheme is small. This results suggest that the application of the OML model in the summer season properly that simulates diurnal SST variation, can contribute to improving the prediction for performance of SST and precipitation

  9. Environmental Assessment for Potential Impacts of Ocean CO2 Storage on Marine Biogeochemical Cycles

    Science.gov (United States)

    Yamada, N.; Tsurushima, N.; Suzumura, M.; Shibamoto, Y.; Harada, K.

    2008-12-01

    Ocean CO2 storage that actively utilizes the ocean potential to dissolve extremely large amounts of CO2 is a useful option with the intent of diminishing atmospheric CO2 concentration. CO2 storage into sub-seabed geological formations is also considered as the option which has been already put to practical reconnaissance in some projects. Direct release of CO2 in the ocean storage and potential CO2 leakage from geological formations into the bottom water can alter carbonate system as well as pH of seawater. It is essential to examine to what direction and extent chemistry change of seawater induced by CO2 can affect the marine environments. Previous studies have shown direct and acute effects by increasing CO2 concentrations on physiology of marine organisms. It is also a serious concern that chemistry change can affect the rates of chemical, biochemical and microbial processes in seawater resulting in significant influences on marine biogeochemical cycles of the bioelements including carbon, nutrients and trace metals. We, AIST, have conducted a series of basic researches to assess the potential impacts of ocean CO2 storage on marine biogeochemical processes including CaCO3 dissolution, and bacterial and enzymatic decomposition of organic matter. By laboratory experiments using a special high pressure apparatus, the improved empirical equation was obtained for CaCO3 dissolution rate in the high CO2 concentrations. Based on the experimentally obtained kinetics with a numerical simulation for a practical scenario of oceanic CO2 sequestration where 50 Mton CO2 per year is continuously injected to 1,000-2,500 m depth within 100 x 333 km area for 30 years, we could illustrate precise 3-D maps for the predicted distributions of the saturation depth of CaCO3, in situ Ω value and CaCO3 dissolution rate in the western North Pacific. The result showed no significant change in the bathypelagic CaCO3 flux due to chemistry change induced by ocean CO2 sequestration. Both

  10. Impact of oceanic circulation changes on the CO2 concentration during past interglacials

    Science.gov (United States)

    Bouttes, Nathaelle; Swingedouw, Didier; Crosta, Xavier; Fernanda Sanchez Goñi, Maria; Roche, Didier

    2016-04-01

    Interglacials before the Mid-Bruhnes Event (around 430 kyrs BP) were characterized by colder temperature in Antarctica, lower sea level and lower atmospheric CO2 compared to the more recent interglacials. Recent climate simulations have shown that the climate of the interglacials before and after the MBE can only be reproduced when taking into account changes in orbital parameters and atmospheric CO2 concentrations (Yin and Berger, 2010; Yin and Berger, 2012). Indeed, interglacial atmospheric CO2 concentrations were ~250 ppm and ~280 ppm prior and after the MBE, respectively. Yet, the cause for this change in atmospheric CO2 remains mainly unknown. climate simulations suggest that oceanic circulation was different during the interglacials due to the different climate states (Yin, 2013). The changes of oceanic circulation could have modified the carbon cycle: a more sluggish circulation would lead to greater carbon sequestration in the deep ocean and, subsequently, a decrease of atmospheric CO2. However, the impact of oceanic circulation changes on the carbon cycle during the interglacials of the last 800 kyrs has never been tested in coupled carbon-climate models. Here, we evaluate the role of ocean circulation changes on the carbon cycle during interglacials by using the intermediate complexity model iLOVECLIM (Goosse et al., 2010 ; Bouttes et al., 2015). This model includes a carbon cycle module on land and in the ocean and simulates carbon isotopes. The interglacial simulations are forced with orbital parameters, ice sheets and CO2 concentrations from data reconstructions. The model computes carbon fluxes between the reservoirs and an atmospheric CO2 that is distinct from the one used as a forcing. We will present simulations from this climate model for different interglacial periods of the last 800 000 years and use model-data comparison to analyse and evaluate the changes in the carbon cycle, including CO2. References Bouttes, N. et al. (2015), Geosci. Model

  11. Long-term ocean simulations in FESOM: evaluation and application in studying the impact of Greenland Ice Sheet melting

    Science.gov (United States)

    Wang, Xuezhu; Wang, Qiang; Sidorenko, Dmitry; Danilov, Sergey; Schröter, Jens; Jung, Thomas

    2012-12-01

    The Finite Element Sea-ice Ocean Model (FESOM) is formulated on unstructured meshes and offers geometrical flexibility which is difficult to achieve on traditional structured grids. In this work, the performance of FESOM in the North Atlantic and Arctic Ocean on large time scales is evaluated in a hindcast experiment. A water-hosing experiment is also conducted to study the model sensitivity to increased freshwater input from Greenland Ice Sheet (GrIS) melting in a 0.1-Sv discharge rate scenario. The variability of the Atlantic Meridional Overturning Circulation (AMOC) in the hindcast experiment can be explained by the variability of the thermohaline forcing over deep convection sites. The model also reproduces realistic freshwater content variability and sea ice extent in the Arctic Ocean. The anomalous freshwater in the water-hosing experiment leads to significant changes in the ocean circulation and local dynamical sea level (DSL). The most pronounced DSL rise is in the northwest North Atlantic as shown in previous studies, and also in the Arctic Ocean. The released GrIS freshwater mainly remains in the North Atlantic, Arctic Ocean and the west South Atlantic after 120 model years. The pattern of ocean freshening is similar to that of the GrIS water distribution, but changes in ocean circulation also contribute to the ocean salinity change. The changes in Arctic and sub-Arctic sea level modify exchanges between the Arctic Ocean and subpolar seas, and hence the role of the Arctic Ocean in the global climate. Not only the strength of the AMOC, but also the strength of its decadal variability is notably reduced by the anomalous freshwater input. A comparison of FESOM with results from previous studies shows that FESOM can simulate past ocean state and the impact of increased GrIS melting well.

  12. 78 FR 20623 - Environmental Impact Statement for Modernization and Repair of Piers 2 and 3, Military Ocean...

    Science.gov (United States)

    2013-04-05

    ... and 3 are used to transport military supplies in the Pacific region. There may be significant impacts... Department of the Army Environmental Impact Statement for Modernization and Repair of Piers 2 and 3, Military...-needed modernization and repairs of Piers 2 and 3, Military Ocean Terminal Concord (MOTCO) due...

  13. Impact of biomass burning on nutrient deposition to the global ocean

    Science.gov (United States)

    Kanakidou, Maria; Myriokefalitakis, Stelios; Daskalakis, Nikos; Mihalopoulos, Nikolaos; Nenes, Athanasios

    2017-04-01

    Atmospheric deposition of trace constituents, both of natural and anthropogenic origin, can act as a nutrient source into the open ocean and affect marine ecosystem functioning and subsequently the exchange of CO2 between the atmosphere and the global ocean. Dust is known as a major source of nutrients (Fe and P) into the atmosphere, but only a fraction of these nutrients is released in soluble form that can be assimilated by the ecosystems. Dust is also known to enhance N deposition by interacting with anthropogenic pollutants and neutralisation of part of the acidity of the atmosphere by crustal alkaline species. These nutrients have also primary anthropogenic sources including combustion emissions. The global atmospheric N [1], Fe [2] and P [3] cycles have been parameterized in the global 3-D chemical transport model TM4-ECPL, accounting for inorganic and organic forms of these nutrients, for all natural and anthropogenic sources of these nutrients including biomass burning, as well as for the link between the soluble forms of Fe and P atmospheric deposition and atmospheric acidity. The impact of atmospheric acidity on nutrient solubility has been parameterised based on experimental findings and the model results have been evaluated by extensive comparison with available observations. In the present study we isolate the significant impact of biomass burning emissions on these nutrients deposition by comparing global simulations that consider or neglect biomass burning emissions. The investigated impact integrates changes in the emissions of the nutrients as well as in atmospheric oxidants and acidity and thus in atmospheric processing and secondary sources of these nutrients. The results are presented and thoroughly discussed. References [1] Kanakidou M, S. Myriokefalitakis, N. Daskalakis, G. Fanourgakis, A. Nenes, A. Baker, K. Tsigaridis, N. Mihalopoulos, Past, Present and Future Atmospheric Nitrogen Deposition, Journal of the Atmospheric Sciences (JAS-D-15

  14. Light absorption and partitioning in Arctic Ocean surface waters: impact of multi year ice melting

    Directory of Open Access Journals (Sweden)

    S. Bélanger

    2013-03-01

    Full Text Available Ice melting in the Arctic Ocean exposes the surface water to more radiative energy with poorly understood effects on photo-biogeochemical processes and heat deposition in the upper ocean. In August 2009, we documented the vertical variability of light absorbing components at 37 stations located in the southeastern Beaufort Sea including both Mackenzie river-influenced waters and polar mixed layer waters. We found that melting multi-year ice released significant amount of non-algal particulates (NAP near the sea surface relative to sub-surface waters. NAP absorption coefficients at 440 nm (aNAP(440 immediately below the sea surface (0- were on average 3-fold (up to 10-fold higher compared to sub-surface values measured at 2–3 m depth. The impact of this unusual feature on the light transmission and remote sensing reflectance (Rrs was further examined using a radiative transfer model. A 10-fold particle enrichment homogeneously distributed in the first meter of the water column slightly reduced photosynthetically available and usable radiation (PAR and PUR by ~6% and ~8%, respectively, relative to a fully homogenous water column with low particles concentration. In terms of Rrs, the particle enrichment significantly flattered the spectrum by reducing the Rrs by up to 20% in the blue-green spectral region (400–550 nm. These results highlight the impact of melt water on the concentration of particles at sea surface, and the need for considering nonuniform vertical distribution of particles in such systems when interpreting remotely sensed ocean color. Spectral slope of aNAP spectra calculated in the UV domain decreased with depth suggesting that this parameter is sensitive to detritus composition and/or diagenesis state (e.g., POM photobleaching.

  15. Light absorption and partitioning in Arctic Ocean surface waters: impact of multiyear ice melting

    Directory of Open Access Journals (Sweden)

    S. Bélanger

    2013-10-01

    Full Text Available Ice melting in the Arctic Ocean exposes the surface water to more radiative energy with poorly understood effects on photo-biogeochemical processes and heat deposition in the upper ocean. In August 2009, we documented the vertical variability of light absorbing components at 37 stations located in the southeastern Beaufort Sea including both Mackenzie River-influenced waters and polar mixed layer waters. We found that melting multiyear ice released significant amount of non-algal particulates (NAP near the sea surface relative to subsurface waters. NAP absorption coefficients at 440 nm (aNAP(440 immediately below the sea surface were on average 3-fold (up to 10-fold higher compared to subsurface values measured at 2–3 m depth. The impact of this unusual feature on the light transmission and remote sensing reflectance (Rrs was further examined using a radiative transfer model. A 10-fold particle enrichment homogeneously distributed in the first meter of the water column slightly reduced photosynthetically available and usable radiation (PAR and PUR by ∼6 and ∼8%, respectively, relative to a fully homogenous water column with low particle concentration. In terms of Rrs, the particle enrichment significantly flattered the spectrum by reducing the Rrs by up to 20% in the blue-green spectral region (400–550 nm. These results highlight the impact of meltwater on the concentration of particles at sea surface, and the need for considering non-uniform vertical distribution of particles in such systems when interpreting remotely sensed ocean color. Spectral slope of aNAP spectra calculated in the UV (ultraviolet domain decreased with depth suggesting that this parameter is sensitive to detritus composition and/or diagenesis state (e.g., POM (particulate organic matter photobleaching.

  16. Inelastic scattering in ocean water and its impact on trace gas retrievals from satellite data

    Directory of Open Access Journals (Sweden)

    M. Vountas

    2003-01-01

    Full Text Available Over clear ocean waters, photons scattered within the water body contribute significantly to the upwelling flux. In addition to elastic scattering, inelastic Vibrational Raman Scattering (VRS by liquid water is also playing a role and can have a strong impact on the spectral distribution of the outgoing radiance. Under clear-sky conditions, VRS has an influence on trace gas retrievals from space-borne measurements of the backscattered radiance such as from e.g. GOME (Global Ozone Monitoring Experiment. The effect is particularly important for geo-locations with small solar zenith angles and over waters with low chlorophyll concentration. In this study, a simple ocean reflectance model (Sathyendranath and Platt, 1998 accounting for VRS has been incorporated into a radiative transfer model. The model has been validated by comparison with measurements from a swimming-pool experiment dedicated to detect the effect of scattering within water on the outgoing radiation and also with selected data sets from GOME. The comparisons show good agreement between experimental and model data and highlight the important role of VRS. To evaluate the impact of VRS on trace gas retrieval, a sensitivity study was performed on synthetic data. If VRS is neglected in the data analysis, errors of more than 30% are introduced for the slant column (SC of BrO over clear ocean scenarios. Exemplarily DOAS retrievals of BrO from real GOME measurements including and excluding a VRS compensation led to comparable results as in the sensitivity study, but with somewhat smaller differences between the two analyses. The results of this work suggest, that DOAS retrievals of atmospheric trace species from measurements of nadir viewing space-borne instruments have to take VRS scattering into account over waters with low chlorophyll concentrations, and that a simple correction term is enough to reduce the errors to an acceptable level.

  17. Community composition has greater impact on the functioning of marine phytoplankton communities than ocean acidification.

    Science.gov (United States)

    Eggers, Sarah L; Lewandowska, Aleksandra M; Barcelos E Ramos, Joana; Blanco-Ameijeiras, Sonia; Gallo, Francesca; Matthiessen, Birte

    2014-03-01

    Ecosystem functioning is simultaneously affected by changes in community composition and environmental change such as increasing atmospheric carbon dioxide (CO2 ) and subsequent ocean acidification. However, it largely remains uncertain how the effects of these factors compare to each other. Addressing this question, we experimentally tested the hypothesis that initial community composition and elevated CO2 are equally important to the regulation of phytoplankton biomass. We full-factorially exposed three compositionally different marine phytoplankton communities to two different CO2 levels and examined the effects and relative importance (ω(2) ) of the two factors and their interaction on phytoplankton biomass at bloom peak. The results showed that initial community composition had a significantly greater impact than elevated CO2 on phytoplankton biomass, which varied largely among communities. We suggest that the different initial ratios between cyanobacteria, diatoms, and dinoflagellates might be the key for the varying competitive and thus functional outcome among communities. Furthermore, the results showed that depending on initial community composition elevated CO2 selected for larger sized diatoms, which led to increased total phytoplankton biomass. This study highlights the relevance of initial community composition, which strongly drives the functional outcome, when assessing impacts of climate change on ecosystem functioning. In particular, the increase in phytoplankton biomass driven by the gain of larger sized diatoms in response to elevated CO2 potentially has strong implications for nutrient cycling and carbon export in future oceans.

  18. Emerging impact of Greenland meltwater on deepwater formation in the North Atlantic Ocean

    Science.gov (United States)

    Böning, Claus W.; Behrens, Erik; Biastoch, Arne; Getzlaff, Klaus; Bamber, Jonathan L.

    2016-07-01

    The Greenland ice sheet has experienced increasing mass loss since the 1990s. The enhanced freshwater flux due to both surface melt and outlet glacier discharge is assuming an increasingly important role in the changing freshwater budget of the subarctic Atlantic. The sustained and increasing freshwater fluxes from Greenland to the surface ocean could lead to a suppression of deep winter convection in the Labrador Sea, with potential ramifications for the strength of the Atlantic meridional overturning circulation. Here we assess the impact of the increases in the freshwater fluxes, reconstructed with full spatial resolution, using a global ocean circulation model with a grid spacing fine enough to capture the small-scale, eddying transport processes in the subpolar North Atlantic. Our simulations suggest that the invasion of meltwater from the West Greenland shelf has initiated a gradual freshening trend at the surface of the Labrador Sea. Although the freshening is still smaller than the variability associated with the episodic `great salinity anomalies', the accumulation of meltwater may become large enough to progressively dampen the deep winter convection in the coming years. We conclude that the freshwater anomaly has not yet had a significant impact on the Atlantic meridional overturning circulation.

  19. The impacts of precipitating cloud radiative effects on ocean surface evaporation, precipitation, and ocean salinity in coupled GCM simulations

    Science.gov (United States)

    Li, J.-L. F.; Wang, Yi-Hui; Lee, Tong; Waliser, Duane; Lee, Wei-Liang; Yu, Jia-Yuh; Chen, Yi-Chun; Fetzer, Eric; Hasson, Audrey

    2016-08-01

    The coupled global climate model (GCM) fidelity in representing upper ocean salinity including near sea surface bulk salinity (SSS) is evaluated in this study, with a focus on the Pacific Ocean. The systematic biases in ocean surface evaporation (E) minus precipitation (P) and SSS are found to be fairly similar in the twentieth century simulations of the Coupled Model Intercomparison Phase 3 (CMIP3) and Phase 5 (CMIP5) relative to the observations. One of the potential causes of the CMIP model biases is the missing representation of the radiative effects of precipitating hydrometeors (i.e., snow) in most CMIP models. To examine the radiative effect of cloud snow on SSS, sensitivity experiments with and without such effect are conducted by the National Center for Atmospheric Research-coupled Community Earth System Model (CESM). This study investigates the difference in SSS between sensitivity experiments and its relationship with atmospheric circulation, E - P and air-sea heat fluxes. It is found that the exclusion of the cloud snow radiative effect in CESM produces weaker Pacific trade winds, resulting in enhanced precipitation, reduced evaporation, and a reduction of the upper ocean salinity in the tropical and subtropical Pacific. The latter results in an improved comparison with climatological upper ocean bulk salinity. The introduction of cloud snow also altered the budget terms that maintain the time-mean salinity in the mixed layer.

  20. Huge Tongue Lipoma: A Case Report

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Damghani

    2015-03-01

    Full Text Available Introduction: Lipomas are among the most common tumors of the human body. However, they are uncommon in the oral cavity and are observed as slow growing, painless, and asymptomatic yellowish submucosal masses. Surgical excision is the treatment of choice and recurrence is not expected.    Case Report: The case of a 30-year-old woman with a huge lipoma on the tip of her tongue since 3 years, is presented. She had difficulty with speech and mastication because the tongue tumor was filling the oral cavity. Clinical examination revealed a yellowish lesion, measuring 8 cm in maximum diameter, protruding from the lingual surface. The tumor was surgically excised with restoration of normal tongue function and histopathological examination of the tumor confirmed that it was a lipoma.   Conclusion:  Tongue lipoma is rarely seen and can be a cause of macroglossia. Surgical excision for lipoma is indicated for symptomatic relief and exclusion of associated malignancy.

  1. Galaxies Collide to Create Hot, Huge Galaxy

    Science.gov (United States)

    2009-01-01

    This image of a pair of colliding galaxies called NGC 6240 shows them in a rare, short-lived phase of their evolution just before they merge into a single, larger galaxy. The prolonged, violent collision has drastically altered the appearance of both galaxies and created huge amounts of heat turning NGC 6240 into an 'infrared luminous' active galaxy. A rich variety of active galaxies, with different shapes, luminosities and radiation profiles exist. These galaxies may be related astronomers have suspected that they may represent an evolutionary sequence. By catching different galaxies in different stages of merging, a story emerges as one type of active galaxy changes into another. NGC 6240 provides an important 'missing link' in this process. This image was created from combined data from the infrared array camera of NASA's Spitzer Space Telescope at 3.6 and 8.0 microns (red) and visible light from NASA's Hubble Space Telescope (green and blue).

  2. A rare clinic entity: Huge trichobezoar.

    Science.gov (United States)

    Hamidi, Hidayatullah; Muhammadi, Marzia; Saberi, Bismillah; Sarwari, Mohammad Arif

    2016-01-01

    Trichobezoar is a rare clinical entity in which a ball of hair amasses within the alimentary tract. It can either be found as isolated mass in the stomach or may extend into the intestine. Trichobezoars mostly occur in young females with psychiatric disorders such as trichophagia and trichotillomania. Authors present a giant trichobezoar in an 18year old female presented with complaints of upper abdominal mass, epigastric area pain, anorexia and weight loss. The patient underwent trans-abdominal ultrasonography (USG), Computed tomography (CT), upper gastrointestinal endoscopy and subsequently laparotomy. USG was inconclusive due to non-specific findings. It revealed a thick echogenic layer with posterior dirty shadowing extending from the left sub-diaphragmatic area to the right sub hepatic region obscuring the adjacent structures. Abdominal CT images revealed a huge, well defined, multi-layered, heterogeneous, solid appearing, non-enhancing mass lesion in the gastric lumen extending from the gastric fundus to the pyloric canal. An endoscopic attempt was performed for removal of this intraluminal mass, but due to its large size, and hard nature, the endoscopic removal was unsuccessful. Finally the large trichobezoar was removed with open laparotomy. Trichobezoars should be suspected in young females with long standing upper abdominal masses; as the possibility of malignancy is not very common in this age group. While USG is inconclusive, trichobezoar can be accurately diagnosed with CT. In patient with huge trichobezoar, laparotomy can be performed firstly because of big size and location of mass, and psychiatric recommendation should be made to prevent relapse of this entity. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. On Impacts of Ocean Waves in Marginal Ice Zones and their Repercussions for Arctic Ice/Ocean Models (Invited)

    Science.gov (United States)

    Squire, V. A.

    2013-12-01

    Associated with a gradual metamorphosis of summer Arctic sea ice -- from a quasi-continuous ice sheet punctuated by pressure ridges and leads to a mélange of ice floes resembling a MIZ, is an augmented presence of sizeable ocean waves that may have propagated into the pack ice from distant storms or have arisen within the MIZ itself due to the larger fetches that are now more common [Francis et al., 2011]. If sufficiently forceful as they pass through the ice field, these waves can break up the ice floes to create a new floe size distribution (FSD), change local concentration by moving floes around, and supplement the melting that is occurring because of ice albedo feedback. In turn, the ocean waves themselves attenuate due to conservative scattering from the randomly-sized, spatially-disordered floes and cakes making up the MIZ that diffuse the waves and return energy to neighboring open water, and lose energy through several prospective dissipative processes. Consequently, the omission of ocean waves from ice/ocean models is unwise, as they can potentially alter atmosphere-ice-ocean coupling appreciably by affecting MIZ morphology so radically. In a series of 3 research projects, involving scientists from Norway, Canada, Australia and NZ, we have systematically investigated how ocean wave interactions with sea ice can be embedded in an ice/ocean model; first at high resolution in the Fram Strait and later in other MIZ around the Arctic Basin. In each case it has been possible to track how the MIZ forms and, on the basis of its FSD or an abrupt change of concentration, how wide it becomes as a result of an inbound wave field provided by a spectral model such as WAM. Initially unidirectional seas were considered [Williams et al., 2013ab] but more sophisticated 2D scattering paradigms are now being developed that allow directionally defined seas to be modeled. Based upon the recognition that a MIZ can be delineated into a number of contiguous bands of ice floes

  4. The Impact of Global Commercial Harvest on the Ocean Iron Cycle

    Science.gov (United States)

    Moreno, A. R.; Haffa, A.

    2012-12-01

    Although iron (Fe) is the fourth most abundant element in the Earth's crust, bioavailable Fe is established as a limiting factor in marine primary production. We hypothesize that removal of Fe due to the harvest of marine species is a significant loss term that is absent from current mass balance equations for oceanic Fe cycles. Total commercial catch data for 1950 to 2010 was obtained from the Food and Agriculture Organization of the United Nations (FAO), using FishStat software. The data was separated by taxa and fresh water species were excluded. High and low end values for elemental composition were obtained for each taxonomic category from the literature, and used to determine Fe per mass of total harvest over time using Matlab. The marine commercial catch is estimated to have removed 2-6x10^9 grams of Fe (0.4-1 x10^8 moles) in 1950, which constitutes the lowest values on record. There is an annual increase to 0.9-3x10^10 grams (2-5 x 10^8 moles) in 1996, and then a slight decline to 0.7-2x10^10 grams (1 - 4 x10^8 moles) in 2010. This Fe is in a bioavailable form. Much of this removal is permanent on biological time scales. The fraction that is returned to the ocean is accounted for by coastal and rivertine input terms in the oceanic Fe cycle models. To determine if this may have had a long term impact on Fe budgets, seawater data compiled by Moore and Braucher was averaged for each of the four ocean zones, and volumes were used to estimate total dissolved iron (Fe(d), that which passes a <0.4 micron filter). The total ocean Fe(d) for all zones is estimated to be in the range of 0.1-2 x10^13 grams (0.2 - 3 x10^11 moles) within the years 1978-2004. Fe in the top 3 zones (above 4000 m) is the most variable, in both time and space. The variation is due to seasonal inputs and a nutrient profile above 1000. However, the zones above 4000 m are the most relevant because this is where marine harvesting occurs. In spite of the variation, all available data above 4000 m

  5. Multistressor impacts of warming and acidification of the ocean on marine invertebrates' life histories.

    Science.gov (United States)

    Byrne, Maria; Przeslawski, Rachel

    2013-10-01

    Benthic marine invertebrates live in a multistressor world where stressor levels are, and will continue to be, exacerbated by global warming and increased atmospheric carbon dioxide. These changes are causing the oceans to warm, decrease in pH, become hypercapnic, and to become less saturated in carbonate minerals. These stressors have strong impacts on biological processes, but little is known about their combined effects on the development of marine invertebrates. Increasing temperature has a stimulatory effect on development, whereas hypercapnia can depress developmental processes. The pH, pCO2, and CaCO3 of seawater change simultaneously with temperature, challenging our ability to predict future outcomes for marine biota. The need to consider both warming and acidification is reflected in the recent increase in cross-factorial studies of the effects of these stressors on development of marine invertebrates. The outcomes and trends in these studies are synthesized here. Based on this compilation, significant additive or antagonistic effects of warming and acidification of the ocean are common (16 of 20 species studied), and synergistic negative effects also are reported. Fertilization can be robust to near-future warming and acidification, depending on the male-female mating pair. Although larvae and juveniles of some species tolerate near-future levels of warming and acidification (+2°C/pH 7.8), projected far-future conditions (ca. ≥4°C/ ≤pH 7.6) are widely deleterious, with a reduction in the size and survival of larvae. It appears that larvae that calcify are sensitive both to warming and acidification, whereas those that do not calcify are more sensitive to warming. Different sensitivities of life-history stages and species have implications for persistence and community function in a changing ocean. Some species are more resilient than others and may be potential "winners" in the climate-change stakes. As the ocean will change more gradually over

  6. Physiological impacts of elevated carbon dioxide and ocean acidification on fish.

    Science.gov (United States)

    Heuer, Rachael M; Grosell, Martin

    2014-11-01

    Most fish studied to date efficiently compensate for a hypercapnic acid-base disturbance; however, many recent studies examining the effects of ocean acidification on fish have documented impacts at CO2 levels predicted to occur before the end of this century. Notable impacts on neurosensory and behavioral endpoints, otolith growth, mitochondrial function, and metabolic rate demonstrate an unexpected sensitivity to current-day and near-future CO2 levels. Most explanations for these effects seem to center on increases in Pco2 and HCO3- that occur in the body during pH compensation for acid-base balance; however, few studies have measured these parameters at environmentally relevant CO2 levels or directly related them to reported negative endpoints. This compensatory response is well documented, but noted variation in dynamic regulation of acid-base transport pathways across species, exposure levels, and exposure duration suggests that multiple strategies may be utilized to cope with hypercapnia. Understanding this regulation and changes in ion gradients in extracellular and intracellular compartments during CO2 exposure could provide a basis for predicting sensitivity and explaining interspecies variation. Based on analysis of the existing literature, the present review presents a clear message that ocean acidification may cause significant effects on fish across multiple physiological systems, suggesting that pH compensation does not necessarily confer tolerance as downstream consequences and tradeoffs occur. It remains difficult to assess if acclimation responses during abrupt CO2 exposures will translate to fitness impacts over longer timescales. Nonetheless, identifying mechanisms and processes that may be subject to selective pressure could be one of many important components of assessing adaptive capacity.

  7. Short-term impacts of enhanced Greenland freshwater fluxes in an eddy-permitting ocean model

    Directory of Open Access Journals (Sweden)

    R. Marsh

    2010-07-01

    Full Text Available In a sensitivity experiment, an eddy-permitting ocean general circulation model is forced with realistic freshwater fluxes from the Greenland Ice Sheet, averaged for the period 1991–2000. The fluxes are obtained with a mass balance model for the ice sheet, forced with the ERA-40 reanalysis dataset. The freshwater flux is distributed around Greenland as an additional term in prescribed runoff, representing seasonal melting of the ice sheet and a fixed year-round iceberg calving flux, for 8.5 model years. By adding Greenland freshwater fluxes with realistic geographical distribution and seasonality, the experiment is designed to investigate the oceanic response to a sudden and spatially/temporally uniform amplification of ice sheet melting and discharge, rather than localized or gradual changes in freshwater flux. The impacts on regional hydrography and circulation are investigated by comparing the sensitivity experiment to a control experiment, without additional fluxes. By the end of the sensitivity experiment, the majority of additional fresh water has accumulated in Baffin Bay, and only a small fraction has reached the interior of the Labrador Sea, where winter mixed layer depth is sensitive to small changes in salinity. As a consequence, the impact on large-scale circulation is very slight. An indirect impact of strong freshening off the west coast of Greenland is a small anti-cyclonic component to the circulation around Greenland, which opposes the wind-driven cyclonic circulation and reduces net southward flow through the Canadian Archipelago by ~10%. Implications for the post-2000 acceleration of Greenland mass loss are discussed.

  8. Impact of currents and futures altimetric missions on ocean analysis and forecasting

    Science.gov (United States)

    Verrier, Simon; Le Traon, Pierre-Yves; Remy, Elisabeth

    2016-04-01

    Mercator Ocean, as a major operational oceanography center, must adapt its modeling and data assimilation systems regarding new measurements technologies. As satellite altimetry is one of the major observing systems to constrain ocean models, it is a main concern to assess the impact of the current and future altimeter constellation. The study is based on the OSSE/OSE's (Observing System Simulation Experiments/Observing System Experiments) methods. OSSEs are carried out with a global 1/4° modeling and data assimilation system similar to the operational one but using simulated dataset of observations (altimetry here) in order to assess their contribution and to test the sensitivity of results to different parameters (errors, observation density, type of observations). The SAR technology allows a lower measurement noise close to 1 cm and much better than the LRM's 3cm noise. It is important to assess and quantify its impact on operational systems with data assimilation. Simulated data sets are extracted from a global free 1/12° run and assimilated in the global 1/4° modeling and data assimilation system. Using the 1/12° simulation is justified by the fact that mesoscale variability is better represented than in a 1/4° one. OSEs are carried using the operational system where some observations have been retrieved. This technic allows to assess wich is the contribution of each altimeter data set in the whole prediction/analysing system. The main goal is to assess how the reduction of measurement noise (SAR/LRM) and number of satellites impact the analysis and forecast errors at global and regional (i.e. Gulf Stream, Agullas Current) scales.

  9. Temporal Variations of Dipole Teleconnections in the Southern Oceans and Their Climatic Impacts

    Science.gov (United States)

    Reischmann, E.; Rial, J. A.

    2015-12-01

    Dipole behavior in ocean-atmosphere variability has been subject to extensive study due to their impacts on regional climates, such as that of the Indian Ocean Dipole. This study uses the results of a combined correlation coefficient and empirical orthogonal function analysis to study sea surface temperature anomaly dipoles with inter-annual periodicity, and explore seasonal variability. Previous work has shown that this dipole behavior has remained stable for at least the last century [Reischmann et al., 2014. Previous work has also shown that polar climate dipoles display a clear transfer function on a millennial scale for the last 80,000 years [Oh et al., 2014]. This transfer function has been rigorously tested, demonstrating the usefulness of the method of spectral deconvolution for linearly related climate systems. Here we present different time scales of dipole behavior, their impacts on local climates, and discuss what methods of connection can allow them to remain sustained on a centennial or millennial scale. Multiple climate proxies are necessary to study these time scales and their impacts, from weekly satellite observations which have been extended to a centennial scale via multiple models, to annual or multi-annual lake sediment and dendrochronology records with larger sampling rates and absolute dating uncertainty. Analysis techniques such as spectral deconvolution will make use of the linear nature of these dipole connections to study the energy transfer functions and their physical implications. The longest scale results of this study may be compared to the work establishing the synchronized nature of the polar climates on the millennial scale.

  10. Decadal/interdecadal variations of the ocean temperature and its impacts on climate

    Science.gov (United States)

    Li, Chongyin; Zhou, Wen; Jia, Xiaolong; Wang, Xin

    2006-12-01

    Decadal/interdecadal climate variability is an important research focus of the CLIVAR Program and has been paid more attention. Over recent years, a lot of studies in relation to interdecadal climate variations have been also completed by Chinese scientists. This paper presents an overview of some advances in the study of decadal/interdecadal variations of the ocean temperature and its climate impacts, which includes interdecadal climate variability in China, the interdecadal modes of sea surface temperature (SST) anomalies in the North Pacific, and in particular, the impacts of interdecadal SST variations on the Asian monsoon rainfall. As summarized in this paper, some results have been achieved by using climate diagnostic studies of historical climatic datasets. Two fundamental interdecadal SST variability modes (7 10-years mode and 25 35-years mode) have been identified over the North Pacific associated with different anomalous patterns of atmospheric circulation. The southern Indian Ocean dipole (SIOD) shows a major feature of interdecadal variation, with a positive (negative) phase favoring a weakened (enhanced) Asian summer monsoon in the following summer. It is also found that the China monsoon rainfall exhibits interdecadal variations with more wet (dry) monsoon years in the Yangtze River (South China and North China) before 1976, but vice versa after 1976. The weakened relationship between the Indian summer rainfall and ENSO is a feature of interdecadal variations, suggesting an important role of the interdecadal variation of the SIOD in the climate over the south Asia and southeast Asia. In addition, evidence indicates that the climate shift in the 1960s may be related to the anomalies of the North Atlantic Oscillation (NAO) and North Pacific Oscillation (NPO). Overall, the present research has improved our understanding of the decadal/interdecadal variations of SST and their impacts on the Asian monsoon rainfall. However, the research also highlights a

  11. Summertime calcium carbonate undersaturation in shelf waters of the western Arctic Ocean – how biological processes exacerbate the impact of ocean acidification

    Directory of Open Access Journals (Sweden)

    N. R. Bates

    2013-08-01

    Full Text Available The Arctic Ocean accounts for only 4% of the global ocean area, but it contributes significantly to the global carbon cycle. Recent observations of seawater CO2-carbonate chemistry in shelf waters of the western Arctic Ocean, primarily in the Chukchi Sea, from 2009 to 2011 indicate that bottom waters are seasonally undersaturated with respect to calcium carbonate (CaCO3 minerals, particularly aragonite. Nearly 40% of sampled bottom waters on the shelf have saturation states less than one for aragonite (i.e., Ωaragonite 3-secreting organisms, while 80% of bottom waters present had Ωaragonite values less than 1.5. Our observations indicate seasonal reduction of saturation states (Ω for calcite (Ωcalcite and aragonite (Ωaragonite in the subsurface in the western Arctic by as much as 0.8 and 0.5, respectively. Such data indicate that bottom waters of the western Arctic shelves were already potentially corrosive for biogenic and sedimentary CaCO3 for several months each year. Seasonal changes in Ω are imparted by a variety of factors such as phytoplankton photosynthesis, respiration/remineralization of organic matter and air–sea gas exchange of CO2. Combined, these processes either increase or enhance in surface and subsurface waters, respectively. These seasonal physical and biological processes also act to mitigate or enhance the impact of Anthropocene ocean acidification (OA on Ω in surface and subsurface waters, respectively. Future monitoring of the western Arctic shelves is warranted to assess the present and future impact of ocean acidification and seasonal physico-biogeochemical processes on Ω values and Arctic marine ecosystems.

  12. Impact of ocean warming and ocean acidification on larval development and calcification in the sea urchin Tripneustes gratilla.

    Directory of Open Access Journals (Sweden)

    Hannah Sheppard Brennand

    Full Text Available BACKGROUND: As the oceans simultaneously warm, acidify and increase in P(CO2, prospects for marine biota are of concern. Calcifying species may find it difficult to produce their skeleton because ocean acidification decreases calcium carbonate saturation and accompanying hypercapnia suppresses metabolism. However, this may be buffered by enhanced growth and metabolism due to warming. METHODOLOGY/PRINCIPAL FINDINGS: We examined the interactive effects of near-future ocean warming and increased acidification/P(CO2 on larval development in the tropical sea urchin Tripneustes gratilla. Larvae were reared in multifactorial experiments in flow-through conditions in all combinations of three temperature and three pH/P(CO2 treatments. Experiments were placed in the setting of projected near future conditions for SE Australia, a global change hot spot. Increased acidity/P(CO2 and decreased carbonate mineral saturation significantly reduced larval growth resulting in decreased skeletal length. Increased temperature (+3 degrees C stimulated growth, producing significantly bigger larvae across all pH/P(CO2 treatments up to a thermal threshold (+6 degrees C. Increased acidity (-0.3-0.5 pH units and hypercapnia significantly reduced larval calcification. A +3 degrees C warming diminished the negative effects of acidification and hypercapnia on larval growth. CONCLUSIONS AND SIGNIFICANCE: This study of the effects of ocean warming and CO(2 driven acidification on development and calcification of marine invertebrate larvae reared in experimental conditions from the outset of development (fertilization shows the positive and negative effects of these stressors. In simultaneous exposure to stressors the dwarfing effects of acidification were dominant. Reduction in size of sea urchin larvae in a high P(CO2 ocean would likely impair their performance with negative consequent effects for benthic adult populations.

  13. Impact of Ocean-Continent Distribution over Southern Asia on the Formation of Summer Monsoon

    Institute of Scientific and Technical Information of China (English)

    JIN Qihua; HE Jinhai; CHEN Longxun; ZHU Congwen

    2006-01-01

    Using the CCM3/NCAR, a series of numerical experiments are designed to explore the effect of ocean-land interlaced distributions of Africa-Arabian Sea-India Peninsula-Bay of Bengal (BOB)-Indo-China PeninsulaSouth China Sea on the formation of the Asian summer monsoon circulation (ASMC). The results show that the thermal difference between African or Indian Subcontinent and nearby areas including the Indian Ocean,Arabian Sea, and part of BOB is the primary mechanism that maintains the Indian monsoon circulation.In the experiment getting rid of these two continents, the Indian monsoon system (IMS) members, i.e., the Somali cross-equatorial jet (40°E) and the southwesterly monsoon over the Arabian Sea and BOB, almost disappear. Moreover, the Hadley circulation weakens dominantly. It also proves that Africa has greater effect than Indian Subcontinent on the IMS.However, the existence of Indo-China Peninsula and Australia strengthens the East Asian monsoon system (EAMS). The thermal contrast between Indo-China Peninsula and SCS, Australia and western Pacific Ocean plays an important role in the formation of the tropical monsoon to the south of the EAMS. When the Indo-China Peninsula is masked in the experiment, the cross-equatorial flow (105°E and 125°E) vanishes,so does the southwesterly monsoon usually found over East Asia, and EAMS is enfeebled significantly. In addition, the impacts of these thermal contrasts on the distribution of the summer precipitation and surface temperature are investigated.

  14. The impact of multidecadal Atlantic meridional overturning circulation variations on the Southern Ocean

    Science.gov (United States)

    Zhang, Liping; Delworth, Thomas L.; Zeng, Fanrong

    2017-03-01

    The impact of multidecadal variations of the Atlantic meridional overturning circulation (AMOC) on the Southern Ocean (SO) is investigated in the current paper using a coupled ocean-atmosphere model. We find that the AMOC can influence the SO via fast atmosphere teleconnections and subsequent ocean adjustments. A stronger than normal AMOC induces an anomalous warm SST over the North Atlantic, which leads to a warming of the Northern Hemisphere troposphere extending into the tropics. This induces an increased equator-to-pole temperature gradient in the Southern Hemisphere (SH) upper troposphere and lower stratosphere due to an amplified tropical upper tropospheric warming as a result of increased latent heat release. This altered gradients leads to a poleward displacement of the SH westerly jet. The wind change over the SO then cools the SST at high latitudes by anomalous northward Ekman transports. The wind change also weakens the Antarctic bottom water (AABW) cell through changes in surface heat flux forcing. The poleward shifted westerly wind decreases the long term mean easterly winds over the Weddell Sea, thereby reducing the turbulent heat flux loss, decreasing surface density and therefore leading to a weakening of the AABW cell. The weakened AABW cell produces a temperature dipole in the SO, with a warm anomaly in the subsurface and a cold anomaly in the surface that corresponds to an increase of Antarctic sea ice. Opposite conditions occur for a weaker than normal AMOC. Our study here suggests that efforts to attribute the recent observed SO variability to various factors should take into consideration not only local process but also remote forcing from the North Atlantic.

  15. Coupled cycling of Fe and organic carbon in submarine hydrothermal systems: Impacts on Ocean Biogeochemistry?

    Science.gov (United States)

    German, Christopher; Sander, Sylvia; Legendre, Louis; Niquil, Nathalie; Working Group 135

    2014-05-01

    Submarine hydrothermal venting was first discovered in the late 1970s. For decades the potential impact that vent-fluxes could have on global ocean budgets was restricted to consideration of processes in hydrothermal plumes in which the majority of chemical species are incorporated into polymetallic sulfide and/or oxyhydroxide particles close to the ridge-crest and sink to the underlying seafloor. This restricted view of the role that hydrothermal systems might play in global-ocean budgets has been challenged, more recently, by the recognition that there might also be a significant flux of dissolved Fe from hydrothermal systems to the oceans that is facilitated through thermodynamically stable nanoparticles and organic complexation. The latest results from the recently completed US GEOTRACES program, which has traced high concentrations of dissolved Fe over long distances off-axis from the Southern East Pacific Rise near 15°S, only help to confirm the potential that such fluxes might be important at the global scale. In this paper we review field-based and modeling results, including investigations that we have carried out under the auspices of SCOR-InterRidge Working Group 135, that reveal potential relationships between organic carbon (Corg) and Fe in hydrothermal plumes and allow us to investigate the roles that hydrothermal systems may play in the global biogeochemical cycles of both Fe and Corg. Using the particularly well-studied EPR 9N hydrothermal system as our "type locality" - even though we recognize that no one site can adequately represent the diversity of all hydrothermal systems worldwide - our modeling efforts allow us to reach some significant conclusions concerning: the predicted partitioning of heat fluxes between focused and diffuse flow at ridge axes; and the recognition that while Corg fluxes associated with hydrothermal plume removal may be small on the global scale, they are likely to result in extremely pronounced fluxes, locally, to the

  16. Millennial-scale isotope records from a wide-ranging predator show evidence of recent human impact to oceanic food webs

    DEFF Research Database (Denmark)

    Wiley, A.E.; Ostrom, P.H.; Welch, A.J.

    2013-01-01

    Human exploitation of marine ecosystems is more recent in oceanic than near shore regions, yet our understanding of human impacts on oceanic food webs is comparatively poor. Few records of species that live beyond the continental shelves date back more than 60 y, and the sheer size of oceanic reg...

  17. HUBBLE SPIES HUGE CLUSTERS OF STARS FORMED

    Science.gov (United States)

    2002-01-01

    BY ANCIENT ENCOUNTER This stunningly beautiful image [right] taken with the NASA Hubble Space Telescope shows the heart of the prototypical starburst galaxy M82. The ongoing violent star formation due to an ancient encounter with its large galactic neighbor, M81, gives this galaxy its disturbed appearance. The smaller picture at upper left shows the entire galaxy. The image was taken in December 1994 by the Kitt Peak National Observatory's 0.9-meter telescope. Hubble's view is represented by the white outline in the center. In the Hubble image, taken by the Wide Field and Planetary Camera 2, the huge lanes of dust that crisscross M82's disk are another telltale sign of the flurry of star formation. Below the center and to the right, a strong galactic wind is spewing knotty filaments of hydrogen and nitrogen gas. More than 100 super star clusters -- very bright, compact groupings of about 100,000 stars -- are seen in this detailed Hubble picture as white dots sprinkled throughout M82's central region. The dark region just above the center of the picture is a huge dust cloud. A collaboration of European and American scientists used these clusters to date the ancient interaction between M82 and M81. About 600 million years ago, a region called 'M82 B' (the bright area just below and to the left of the central dust cloud) exploded with new stars. Scientists have discovered that this ancient starburst was triggered by the violent encounter with M81. M82 is a bright (eighth magnitude), nearby (12 million light-years from Earth) galaxy in the constellation Ursa Major (the Great Bear). The Hubble picture was taken Sept. 15, 1997. The natural-color composite was constructed from three Wide Field and Planetary Camera 2 exposures, which were combined in chromatic order: 4,250 seconds through a blue filter (428 nm); 2,800 seconds through a green filter (520 nm); and 2,200 seconds through a red (820 nm) filter. Credits for Hubble image: NASA, ESA, R. de Grijs (Institute of

  18. Recent Progresses in Impacts of Indo-Western Pacific Ocean on East Asian Monsoon

    Science.gov (United States)

    Li, Jianping

    2016-04-01

    Some progresses in impacts of Western Pacific Ocean (WPO) on East Asian monsoon and stratosphere climate are reviewed from the following aspects. (1) Impact of the IPOD (a cross-basin dipole pattern of SSTA variability between the Indo-Pacific warm pool (IPWP) and North Pacific Ocean) on the East Asian summer monsoon (EASM).The IPOD exhibits a considerable correlation with the EASM. In summers with a positive IPOD phase, the western Pacific subtropical high (WPSH) weakens and shrinks with WPSH ridge moving northwards, which favours an intensified EASM and a decrease in summer rainfall in the Yangtze River valley, and vice versa. (2) TheIndo-Western Pacific convection oscillation (IPCO),which is an out-of-phase fluctuation in convection anomalies between the north Indian Ocean and the western North Pacific region,is closely related to the EASM.Negative IPCO phases, which exhibit an enhanced convection over the north Indian Ocean and a suppressed convection over the western North Pacific, favor a weakened EASM and an increase of summer rainfall in the Yangtze River valley with the joint actions of the stronger than normal Ural and Okhotsk blocking highs and the subtropical western Pacific high, and vice versa.(3) Asymmetric influence of the two types of ENSO on summer rainfall in China. The two types of ENSO have asymmetric impacts on summer rainfall over the Yangtze River Valley. The relation between summer rainfall over this valley and the cold tongue (CT) El Niño is significantly positive, while the relation with the CT La Niña is not significant. The negative phase of the warm pool (WP) ENSO has a significant positive influence, whereas no significant relation with the positive phase. They indicated that this asymmetric response of the EASM is likely to be linked to the different spatial patterns of the two types of ENSO.(4) Linkage between recent winter precipitation increase in the middle-lower Yangtze River valley (MLY) since the late 1970s andwarming in the

  19. The impact on atmospheric CO2 of iron fertilization induced changes in the ocean's biological pump

    Directory of Open Access Journals (Sweden)

    J. C. McWilliams

    2007-10-01

    Full Text Available Using numerical simulations, we quantify the impact of changes in the ocean's biological pump on the air-sea balance of CO2 by fertilizing a small surface patch in the high-nutrient, low-chlorophyll region of the eastern tropical Pacific with iron. Decade-long fertilization experiments are conducted in a basin-scale, eddy-permitting coupled physical biogeochemical ecological model. In contrast to previous studies, we find that most of the dissolved inorganic carbon (DIC removed from the euphotic zone by the enhanced biological export is replaced by uptake of CO2 from the atmosphere. Atmospheric uptake efficiencies, the ratio of the perturbation in air-sea CO2 flux to the perturbation in export flux across 100 m, are 0.75 to 0.93 in our patch size-scale experiments. The atmospheric uptake efficiency is insensitive to the duration of the experiment. The primary factor controlling the atmospheric uptake efficiency is the vertical distribution of the enhanced biological production. Iron fertilization at the surface tends to induce production anomalies primarily near the surface, leading to high efficiencies. In contrast, mechanisms that induce deep production anomalies (e.g. altered light availability tend to have a low uptake efficiency, since most of the removed DIC is replaced by lateral and vertical transport and mixing. Despite high atmospheric uptake efficiencies, patch-scale iron fertilization of the ocean's biological pump tends to remove little CO2 from the atmosphere over the decadal timescale considered here.

  20. Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming

    Science.gov (United States)

    Kroeker, Kristy J; Kordas, Rebecca L; Crim, Ryan; Hendriks, Iris E; Ramajo, Laura; Singh, Gerald S; Duarte, Carlos M; Gattuso, Jean-Pierre

    2013-01-01

    Ocean acidification represents a threat to marine species worldwide, and forecasting the ecological impacts of acidification is a high priority for science, management, and policy. As research on the topic expands at an exponential rate, a comprehensive understanding of the variability in organisms' responses and corresponding levels of certainty is necessary to forecast the ecological effects. Here, we perform the most comprehensive meta-analysis to date by synthesizing the results of 228 studies examining biological responses to ocean acidification. The results reveal decreased survival, calcification, growth, development and abundance in response to acidification when the broad range of marine organisms is pooled together. However, the magnitude of these responses varies among taxonomic groups, suggesting there is some predictable trait-based variation in sensitivity, despite the investigation of approximately 100 new species in recent research. The results also reveal an enhanced sensitivity of mollusk larvae, but suggest that an enhanced sensitivity of early life history stages is not universal across all taxonomic groups. In addition, the variability in species' responses is enhanced when they are exposed to acidification in multi-species assemblages, suggesting that it is important to consider indirect effects and exercise caution when forecasting abundance patterns from single-species laboratory experiments. Furthermore, the results suggest that other factors, such as nutritional status or source population, could cause substantial variation in organisms' responses. Last, the results highlight a trend towards enhanced sensitivity to acidification when taxa are concurrently exposed to elevated seawater temperature. PMID:23505245

  1. Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming.

    Science.gov (United States)

    Kroeker, Kristy J; Kordas, Rebecca L; Crim, Ryan; Hendriks, Iris E; Ramajo, Laura; Singh, Gerald S; Duarte, Carlos M; Gattuso, Jean-Pierre

    2013-06-01

    Ocean acidification represents a threat to marine species worldwide, and forecasting the ecological impacts of acidification is a high priority for science, management, and policy. As research on the topic expands at an exponential rate, a comprehensive understanding of the variability in organisms' responses and corresponding levels of certainty is necessary to forecast the ecological effects. Here, we perform the most comprehensive meta-analysis to date by synthesizing the results of 228 studies examining biological responses to ocean acidification. The results reveal decreased survival, calcification, growth, development and abundance in response to acidification when the broad range of marine organisms is pooled together. However, the magnitude of these responses varies among taxonomic groups, suggesting there is some predictable trait-based variation in sensitivity, despite the investigation of approximately 100 new species in recent research. The results also reveal an enhanced sensitivity of mollusk larvae, but suggest that an enhanced sensitivity of early life history stages is not universal across all taxonomic groups. In addition, the variability in species' responses is enhanced when they are exposed to acidification in multi-species assemblages, suggesting that it is important to consider indirect effects and exercise caution when forecasting abundance patterns from single-species laboratory experiments. Furthermore, the results suggest that other factors, such as nutritional status or source population, could cause substantial variation in organisms' responses. Last, the results highlight a trend towards enhanced sensitivity to acidification when taxa are concurrently exposed to elevated seawater temperature.

  2. VIIRS Reflective Solar Bands Calibration Progress and Its Impact on Ocean Color Products

    Directory of Open Access Journals (Sweden)

    Junqiang Sun

    2016-02-01

    Full Text Available The radiometric calibration for the reflective solar bands (RSB of the Visible Infrared Imaging Radiometer Suite (VIIRS on board the Suomi National Polar-orbiting Partnership (SNPP platform has reached a mature stage after four years since its launch. The characterization of the vignetting effect of the attenuation screens, the bidirectional reflectance factor of the solar diffuser, the degradation performance of the solar diffuser, and the calibration coefficient of the RSB have all been made robust. Additional investigations into the time-dependent out-of-band relative spectral response and the solar diffuser degradation non-uniformity effect have led to newer insights. In particular, it has been demonstrated that the solar diffuser (SD degradation non-uniformity effect induces long-term bias in the SD-calibration result. A mitigation approach, the so-called Hybrid Method, incorporating lunar-based calibration results, successfully restores the calibration to achieve ~0.2% level accuracy. The successfully calibrated RSB data record significantly impacts the ocean color products, whose stringent requirements are especially sensitive to calibration accuracy, and helps the ocean color products to reach maturity.

  3. MODIS Aqua Optical Throughput Degradation Impact on Relative Spectral Response and Calibration on Ocean Color Products

    Science.gov (United States)

    Lee, Shihyan; Meister, Gerhard

    2017-01-01

    Since Moderate Resolution Imaging Spectroradiometer Aqua's launch in 2002, the radiometric system gains of the reflective solar bands have been degrading, indicating changes in the systems optical throughput. To estimate the optical throughput degradation, the electronic gain changes were estimated and removed from the measured system gain. The derived optical throughput degradation shows a rate that is much faster in the shorter wavelengths than the longer wavelengths. The wavelength-dependent optical throughput degradation modulated the relative spectral response (RSR) of the bands. In addition, the optical degradation is also scan angle-dependent due to large changes in response versus the scan angle over time. We estimated the modulated RSR as a function of time and scan angles and its impacts on sensor radiometric calibration for the ocean science. Our results show that the calibration bias could be up to 1.8 % for band 8 (412 nm) due to its larger out-of-band response. For the other ocean bands, the calibration biases are much smaller with magnitudes at least one order smaller.

  4. Assessing climate impacts and risks of ocean albedo modification in the Arctic

    Science.gov (United States)

    Mengis, N.; Martin, T.; Keller, D. P.; Oschlies, A.

    2016-05-01

    The ice albedo feedback is one of the key factors of accelerated temperature increase in the high northern latitudes under global warming. This study assesses climate impacts and risks of idealized Arctic Ocean albedo modification (AOAM), a proposed climate engineering method, during transient climate change simulations with varying representative concentration pathway (RCP) scenarios. We find no potential for reversing trends in all assessed Arctic climate metrics under increasing atmospheric CO2 concentrations. AOAM only yields an initial offset during the first years after implementation. Nevertheless, sea ice loss can be delayed by 25(60) years in the RCP8.5(RCP4.5) scenario and the delayed thawing of permafrost soils in the AOAM simulations prevents up to 40(32) Pg of carbon from being released by 2100. AOAM initially dampens the decline of the Atlantic Meridional Overturning and delays the onset of open ocean deep convection in the Nordic Seas under the RCP scenarios. Both these processes cause a subsurface warming signal in the AOAM simulations relative to the default RCP simulations with the potential to destabilize Arctic marine gas hydrates. Furthermore, in 2100, the RCP8.5 AOAM simulation diverts more from the 2005-2015 reference state in many climate metrics than the RCP4.5 simulation without AOAM. Considering the demonstrated risks, we conclude that concerning longer time scales, reductions in emissions remain the safest and most effective way to prevent severe changes in the Arctic.

  5. A huge glandular odontogenic cyst occurring at posterior mandible

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Gi Chung; Han, Won Jeong; Kim, Eun Kyung [Dankook University College of Medicine, Seoul (Korea, Republic of)

    2004-12-15

    The glandular odontogenic cyst is a rare lesion described in 1987. It generally occurs at anterior region of mandible in adults over the age of 40 and has a slight tendency to recur. Histopathologically, a cystic cavity lined by a nonkeratinized, stratified squamous, or cuboidal epithelium varying in thickness is found including a superficial layer with glandular or pseudoglandular structures. A 21-year-old male visited Dankook University Dental Hospital with a chief complaint of swelling of the left posterior mandible. Radiographically, a huge multilocular radiolucent lesion involving impacted 3rd molar at the posterior mandible was observed. Buccolingual cortical expansion with partial perforation of buccal cortical bone was also shown. Histopathologically, this lesion was lined by stratified squamous epithelium with glandular structures in areas of plaque-like thickening. The final diagnosis was made as a glandular odontogenic cyst.

  6. Short-term impacts of enhanced Greenland freshwater fluxes in an eddy-permitting ocean model

    Directory of Open Access Journals (Sweden)

    R. Marsh

    2009-11-01

    Full Text Available In a sensitivity experiment, an eddy-permitting ocean general circulation model is forced with freshwater fluxes from the Greenland Ice Sheet, averaged for the period 1991–2000. The fluxes are obtained with a mass balance model for the ice sheet, forced with the ERA-40 reanalysis dataset. The freshwater flux is distributed around Greenland as an additional term in prescribed runoff, representing seasonal melting of the ice sheet and a fixed year-round iceberg calving flux, for 8.5 model years. The impacts on regional hydrography and circulation are investigated by comparing the sensitivity experiment to a control experiment, without Greenland fluxes. By the end of the sensitivity experiment, the majority of additional fresh water has accumulated in Baffin Bay, and only a small fraction has reached the interior of the Labrador Sea, where winter mixed layer depth is sensitive to small changes in salinity. As a consequence, the impact on large-scale circulation is very slight. An indirect impact of strong freshening off the west coast of Greenland is a small anti-cyclonic circulation around Greenland which opposes the wind-driven cyclonic circulation and reduces net southward flow through the Canadian Archipelago by ~10%. Implications for the post-2000 acceleration of Greenland mass loss are discussed.

  7. An assessment of wind forcing impact on a spectral wave model for the Indian Ocean

    Indian Academy of Sciences (India)

    P G Remya; Raj Kumar; Sujit Basu

    2014-07-01

    The focus of the present study is the assessment of the impact of wind forcing on the spectral wave model MIKE 21 SW in the Indian Ocean region. Three different wind fields, namely the ECMWF analyzed winds, the ECMWF blended winds, and the NCEP blended winds have been used to drive the model. The wave model results have been compared with in-situ observations and satellite altimeter data. This study also evaluated the performance of the wind products during local phenomenon like sea breeze, since it has a significant impact on the wave prediction in the Indian coastal region. Hence we explored the possibility of studying the impact of diurnal variation of winds on coastal waves using different wind fields. An analysis of the model performance has also been made during high wind conditions with the inference that blended winds generate more realistic wave fields in the high wind conditions and are able to produce the growth and decay of waves more realistically.

  8. Impacts of Interannual Ocean Circulation Variability on Japanese Eel Larval Migration in the Western North Pacific Ocean.

    Science.gov (United States)

    Chang, Yu-Lin; Sheng, Jinyu; Ohashi, Kyoko; Béguer-Pon, Mélanie; Miyazawa, Yasumasa

    2015-01-01

    The Japanese eel larvae hatch near the West Mariana Ridge seamount chain and travel through the North Equatorial Current (NEC), the Kuroshio, and the Subtropical Countercurrent (STCC) region during their shoreward migration toward East Asia. The interannual variability of circulation over the subtropical and tropical regions of the western North Pacific Ocean is affected by the Philippines-Taiwan Oscillation (PTO). This study examines the effect of the PTO on the Japanese eel larval migration routes using a three-dimensional (3D) particle tracking method, including vertical and horizontal swimming behavior. The 3D circulation and hydrography used for particle tracking are from the ocean circulation reanalysis produced by the Japan Coastal Ocean Predictability Experiment 2 (JCOPE2). Our results demonstrate that bifurcation of the NEC and the strength and spatial variation of the Kuroshio affect the distribution and migration of eel larvae. During the positive phase of PTO, more virtual eels ("v-eels") can enter the Kuroshio to reach the south coast of Japan and more v-eels reach the South China Sea through the Luzon Strait; the stronger and more offshore swing of the Kuroshio in the East China Sea leads to fewer eels entering the East China Sea and the onshore movement of the Kuroshio to the south of Japan brings the eels closer to the Japanese coast. Significant differences in eel migration routes and distributions regulated by ocean circulation in different PTO phases can also affect the otolith increment. The estimated otolith increment suggests that eel age tends to be underestimated after six months of simulation due to the cooler lower layer temperature. Underestimation is more significant in the positive PTO years due to the wide distribution in higher latitudes than in the negative PTO years.

  9. Impacts of Interannual Ocean Circulation Variability on Japanese Eel Larval Migration in the Western North Pacific Ocean.

    Directory of Open Access Journals (Sweden)

    Yu-Lin Chang

    Full Text Available The Japanese eel larvae hatch near the West Mariana Ridge seamount chain and travel through the North Equatorial Current (NEC, the Kuroshio, and the Subtropical Countercurrent (STCC region during their shoreward migration toward East Asia. The interannual variability of circulation over the subtropical and tropical regions of the western North Pacific Ocean is affected by the Philippines-Taiwan Oscillation (PTO. This study examines the effect of the PTO on the Japanese eel larval migration routes using a three-dimensional (3D particle tracking method, including vertical and horizontal swimming behavior. The 3D circulation and hydrography used for particle tracking are from the ocean circulation reanalysis produced by the Japan Coastal Ocean Predictability Experiment 2 (JCOPE2. Our results demonstrate that bifurcation of the NEC and the strength and spatial variation of the Kuroshio affect the distribution and migration of eel larvae. During the positive phase of PTO, more virtual eels ("v-eels" can enter the Kuroshio to reach the south coast of Japan and more v-eels reach the South China Sea through the Luzon Strait; the stronger and more offshore swing of the Kuroshio in the East China Sea leads to fewer eels entering the East China Sea and the onshore movement of the Kuroshio to the south of Japan brings the eels closer to the Japanese coast. Significant differences in eel migration routes and distributions regulated by ocean circulation in different PTO phases can also affect the otolith increment. The estimated otolith increment suggests that eel age tends to be underestimated after six months of simulation due to the cooler lower layer temperature. Underestimation is more significant in the positive PTO years due to the wide distribution in higher latitudes than in the negative PTO years.

  10. Impacts of ontogenetically migrating copepods on downward carbon flux in the western subarctic Pacific Ocean

    Science.gov (United States)

    Kobari, Toru; Steinberg, Deborah K.; Ueda, Ai; Tsuda, Atsushi; Silver, Mary W.; Kitamura, Minoru

    2008-07-01

    To evaluate the impacts of ontogenetically (seasonally) migrating copepods on carbon transport to the mesopelagic zone, we investigated depth distribution, population structure, and feeding activity of the ontogentic copepod community in the western subarctic Pacific Ocean from day-night pairs of zooplankton samples down to 1000 m during the VERtical Transport In the Global Ocean (VERTIGO) program. Over the 31 July-16 August 2005 study period, the biomass of Neocalanus cristatus and Neocalanus plumchrus predominated in the near surface waters, while Neocalanus flemingeri was already dormant at depth. We observed a strong diel migration for Metridia pacifica, and a seasonal downward migration for Eucalanus bungii. Based on gut pigment analysis, ingestion rate of the copepod community was 214-375 mg C m -2 day -1, which was equal to 26-37% of the concurrent primary production. However, comparison of grazing estimated from gut pigments to calculated carbon demand of the copepod community indicates that phytoplankton comprised 37-59% of the ingested carbon. Thus, the copepod community appears to have also relied on detritus and microzooplankton for their nutrition, likely because primary production during this time was dominated by picophytoplankton too small to be grazed by these large copepods. Fecal pellet flux by the copepod community was estimated to account for 141-223% of the sedimentary particulate organic carbon (POC) flux at 150 m, suggesting considerable fragmentation and consumption of pellets in the upper layers. Fecal pellets alone were adequate to meet copepod carbon demand in the surface 0-150 m layer. Active carbon flux by diel migration of M. pacifica (respiration, egestion, and mortality) was 4-17 mg C m -2 day -1, equal to 6-44% of sedimentary POC flux at 150 m. Active carbon flux by N. flemingeri ontogenetic migration (i.e., respiration and mortality at depth) contributed 246 mg C m -2 year -1, equal to 9% of sedimentary POC flux at 1000 m. The

  11. Ocean acidification impacts bacteria-phytoplankton coupling at low-nutrient conditions

    Science.gov (United States)

    Hornick, Thomas; Bach, Lennart T.; Crawfurd, Katharine J.; Spilling, Kristian; Achterberg, Eric P.; Woodhouse, Jason N.; Schulz, Kai G.; Brussaard, Corina P. D.; Riebesell, Ulf; Grossart, Hans-Peter

    2017-01-01

    The oceans absorb about a quarter of the annually produced anthropogenic atmospheric carbon dioxide (CO2), resulting in a decrease in surface water pH, a process termed ocean acidification (OA). Surprisingly little is known about how OA affects the physiology of heterotrophic bacteria or the coupling of heterotrophic bacteria to phytoplankton when nutrients are limited. Previous experiments were, for the most part, undertaken during productive phases or following nutrient additions designed to stimulate algal blooms. Therefore, we performed an in situ large-volume mesocosm ( ˜ 55 m3) experiment in the Baltic Sea by simulating different fugacities of CO2 (fCO2) extending from present to future conditions. The study was conducted in July-August after the nominal spring bloom, in order to maintain low-nutrient conditions throughout the experiment. This resulted in phytoplankton communities dominated by small-sized functional groups (picophytoplankton). There was no consistent fCO2-induced effect on bacterial protein production (BPP), cell-specific BPP (csBPP) or biovolumes (BVs) of either free-living (FL) or particle-associated (PA) heterotrophic bacteria, when considered as individual components (univariate analyses). Permutational Multivariate Analysis of Variance (PERMANOVA) revealed a significant effect of the fCO2 treatment on entire assemblages of dissolved and particulate nutrients, metabolic parameters and the bacteria-phytoplankton community. However, distance-based linear modelling only identified fCO2 as a factor explaining the variability observed amongst the microbial community composition, but not for explaining variability within the metabolic parameters. This suggests that fCO2 impacts on microbial metabolic parameters occurred indirectly through varying physicochemical parameters and microbial species composition. Cluster analyses examining the co-occurrence of different functional groups of bacteria and phytoplankton further revealed a separation of

  12. The Indonesian Throughflow (ITF) and its impacts on the Indian Ocean during the global warming slowdown period

    Science.gov (United States)

    Makarim, S.; Liu, Z.; Yu, W.; Yan, X.; Sprintall, J.

    2016-12-01

    The global warming slowdown indicated by a slower warming rate at the surface layer accompanied by stronger heat transport into the deeper layers has been explored in the Indian Ocean. Although the mechanisms of the global warming slowdown are still under warm debate, some clues have been recognized that decadal La Nina like-pattern induced decadal cooling in the Pacific Ocean and generated an increase of the Indonesian Throughflow (ITF) transport in 2004-2010. However, how the ITF spreading to the interior of the Indian Ocean and the impact of ITF changes on the Indian Ocean, in particular its water mass transformation and current system are still unknown. To this end, we analyzed thermohaline structure and current system at different depths in the Indian Ocean both during and just before the global warming slowdown period using the ORAS4 and ARGO dataset. Here, we found the new edge of ITF at off Sumatra presumably as northward deflection of ITF Lombok Strait, and The Monsoon Onset Monitoring and Social Ecology Impact (MOMSEI) and Java Upwelling Variation Observation (JUVO) dataset confirmed this evident. An isopycnal mixing method initially proposed by Du et al. (2013) is adopted to quantify the spreading of ITF water in the Indian Ocean, and therefore the impacts of ITF changes on the variation of the Agulhas Current, Leuween Current, Bay of Bengal Water. This study also prevailed the fresher salinity in the Indian Ocean during the slowdown warming period were not only contributed by stronger transport of the ITF, but also by freshening Arabian Sea and infiltrating Antartic Intermediate Water (AAIW).

  13. Umbilicoplasty in children with huge umbilical hernia

    Directory of Open Access Journals (Sweden)

    Akakpo-Numado Gamedzi Komlatsè

    2014-01-01

    Full Text Available Background: Huge umbilical hernias (HUH are voluminous umbilical hernia (UH that are frequent in black African children. Several surgical techniques are used in their treatment for umbilical reconstruction, but techniques using skin flaps provide better aesthetic results. In this study, we presented our technique of umbilicoplasty in HUH, and its results. Patients and Methods: It is a retrospective study on children treated for HUH, from January 2012 to December 2013. The UH was called HUH when its basis diameter (BD exceeds 3 cm. Every HUH was characterised by its height, BD and morphology. Our technique was a two lateral flaps technique; the flaps are symmetrical and drawn so as to reconstitute the different parts of the umbilicus. The results were appreciated with criteria, including the peripheral ring and the central depression of the neo-umbilicus. Results : Twelve children were concerned (7 boys and 5 girls. Their mean age was 5 years and 6 months. The mean BD was 5.6 cm (extremes 3 and 8 cm, and the mean height of the HUH was 7.45 cm (extremes 3 and 9 cm. All underwent umbilicoplasty. In early post-operative period, two children presented a transitory subcutaneous hematoma. Late complications were granulation tissue with two children, and cheloid scar with one. With a mean follow-up of 10 months, we had 10 excellent results and two fair results according to our criteria. Conclusion: Our two lateral flaps umbilicoplasty is well-adapted to HUH in children. It is simple and assures a satisfactory anatomical and cosmetic result.

  14. Hepatectomy for huge hepatocellular carcinoma: single institute's experience.

    Science.gov (United States)

    Yang, Lianyue; Xu, Jiangfeng; Ou, Dipeng; Wu, Wei; Zeng, Zhijun

    2013-09-01

    The surgical resection of huge hepatocellular carcinoma (HCC) is still controversial. This study was designed to introduce our experience of liver resection for huge HCC and evaluate the safety and outcomes of hepatectomy for huge HCC. A total of 258 hepatic resections for the patients with huge HCC were analysed retrospectively from December 2002 to December 2011. The operative outcomes were compared with 293 patients with HCC >5.0 cm but huge HCC group and HCC >5.0 cm but huge HCC group has significantly a more longer overall and disease-free survival time than nodular huge HCC (P = 0.026, P = 0.022). Univariate and multivariate analysis revealed that the types of tumour, vascular invasion, and UICC stage were independent prognostic factors for overall survival (P = 0.047, P = 0.037, P = 0.033). Hepatic resection can be performed safely for huge HCC with a low mortality and favorable survival outcomes. Solitary huge HCC has the better surgical outcomes than nodular huge HCC.

  15. Quaternary ecological responses and impacts of the Indian Ocean Summer Monsoon at Nam Co, Southern Tibetan Plateau

    NARCIS (Netherlands)

    Günther, F.; Witt, R.; Schouten, Stefan|info:eu-repo/dai/nl/137124929; Mausbacher, R.; Daut, G.; Zhu, Liping; Xu, B.; Yao, T.; Gleixner, G.

    2015-01-01

    The transition from the Last Glacial to the current Interglacial, the Holocene, represents an important period with climatic and environmental changes impacting ecosystems. In this study, we examined the interplay between the Indian Ocean Summer Monsoon (IOSM) and the Westerlies at lake Nam Co, sout

  16. Quaternary ecological responses and impacts of the Indian Ocean Summer Monsoon at Nam Co, Southern Tibetan Plateau

    NARCIS (Netherlands)

    Günther, F.; Witt, R.; Schouten, S.; Mausbacher, R.; Daut, G.; Zhu, L.; Xu, B.Q.; Yao, T.; Gleixner, G.

    2015-01-01

    The transition from the Last Glacial to the current Interglacial, the Holocene, represents an important period with climatic and environmental changes impacting ecosystems. In this study, we examined the interplay between the Indian Ocean Summer Monsoon (IOSM) and the Westerlies at lake Nam Co,

  17. Quaternary ecological responses and impacts of the Indian Ocean Summer Monsoon at Nam Co, Southern Tibetan Plateau

    NARCIS (Netherlands)

    Günther, F.; Witt, R.; Schouten, Stefan|info:eu-repo/dai/nl/137124929; Mausbacher, R.; Daut, G.; Zhu, Liping; Xu, B.; Yao, T.; Gleixner, G.

    The transition from the Last Glacial to the current Interglacial, the Holocene, represents an important period with climatic and environmental changes impacting ecosystems. In this study, we examined the interplay between the Indian Ocean Summer Monsoon (IOSM) and the Westerlies at lake Nam Co,

  18. Decadal/Interdecadal Variations of the Ocean Temperature and its Impacts on Climate

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Decadal/interdecadal climate variability is an important research focus of the CLIVAR Program and has been paid more attention. Over recent years, a lot of studies in relation to interdecadal climate variations have been also completed by Chinese scientists. This paper presents an overview of some advances in the study of decadal/interdecadal variations of the ocean temperature and its climate impacts,which includes interdecadal climate wariability in China, the interdecadal modes of sea surface temperature (SST) anomalies in the North Pacific, and in particular, the impacts of interdecadal SST variations on the Asian monsoon rainfall. As summarized in this paper, some results have been achieved by using climate diagnostic studies of historical climatic datasets. Two fundamental interdecadal SST variability modes (7-10-years mode and 25-35-years mode) have been identified over the North Pacific associated with different anomalous patterns of atmospheric circulation. The southern Indian Ocean dipole (SIOD) shows a major feature of interdecadal variation, with a positive (negative) phase favoring a weakened (enhanced) Asian summer monsoon in the following summer. It is also found that the China monsoon rainfall exhibits interdecadal variations with more wet (dry) monsoon years in the Yangtze River (South China and North China) before 1976, but vice versa after 1976. The weakened relationship between the Indian summer rainfall and ENSO is a feature of interdecadal variations, suggesting an important role of the interdecadal variation of the SIOD in the climate over the south Asia and southeast Asia. In addition, evidence indicates that the climate shift in the 1960s may be related to the anomalies of the North Atlantic Oscillation (NAO)and North Pacific Oscillation (NPO). Overall, the present research has improved our understanding of the decadal/interdecadal variations of SST and their impacts on the Asian monsoon rainfall. However, the research also highlights a

  19. Impacts of changing ocean circulation on the distribution of marine microplastic litter.

    Science.gov (United States)

    Welden, Natalie Ac; Lusher, Amy L

    2017-05-01

    Marine plastic pollution is currently a major scientific focus, with attention paid to its distribution and impacts within ecosystems. With recent estimates indicating that the mass of plastic released to the marine environment may reach 250 million metric tons by 2025, the effects of plastic on our oceans are set to increase. Distribution of microplastics, those plastics measuring less than 5 mm, are of increasing concern because they represent an increasing proportion of marine litter and are known to interact with species in a range of marine habitats. The local abundance of microplastic is dependent on a complex interaction between the scale of local plastic sources and prevailing environmental conditions; as a result, microplastic distribution is highly heterogeneous. Circulation models have been used to predict plastic distribution; however, current models do not consider future variation in circulation patterns and weather systems caused by a changing climate. In this study, we discuss the potential impacts of global climate change on the abundance and distribution of marine plastic pollution. Integr Environ Assess Manag 2017;13:483-487. © 2017 SETAC. © 2017 SETAC.

  20. Small impact of surrounding oceanic conditions on 2007-2012 Greenland Ice Sheet surface mass balance

    Science.gov (United States)

    Noël, B.; Fettweis, X.; van de Berg, W. J.; van den Broeke, M. R.; Erpicum, M.

    2014-03-01

    During recent summers (2007-2012), several surface melt records were broken over the Greenland Ice Sheet (GrIS). The extreme summer melt resulted in part from a persistent negative phase of the North-Atlantic Oscillation (NAO), favouring warmer than normal conditions over the GrIS. In addition, it has been suggested that significant anomalies in sea ice cover (SIC) and sea surface temperature (SST) may partially explain recent anomalous GrIS surface melt. To assess the impact of 2007-2012 SIC and SST anomalies on GrIS surface mass balance (SMB), a set of sensitivity experiments was carried out with the regional climate model MAR. These simulations suggest that changes in SST and SIC in the seas surrounding Greenland do not significantly impact GrIS SMB, due to the katabatic winds blocking effect. These winds are strong enough to prevent oceanic near-surface air, influenced by SIC and SST variability, from penetrating far inland. Therefore, the ice sheet SMB response is restricted to coastal regions, where katabatic winds are weaker. However, anomalies in SIC and SST could have indirectly affected the surface melt by changing the general circulation in the North Atlantic region, favouring more frequent warm air advection to the GrIS.

  1. Comparison between the Coastal Impacts of Cyclone Nargis and the Indian Ocean Tsunami

    Science.gov (United States)

    Fritz, H. M.; Blount, C.

    2009-12-01

    On 26 December 2004 a great earthquake with a moment magnitude of 9.3 occurred off the North tip of Sumatra, Indonesia. The Indian Ocean tsunami claimed 230,000 lives making it the deadliest in recorded history. Less than 4 years later tropical cyclone Nargis (Cat. 4) made landfall in Myanmar’s Ayeyarwady delta on 2 May 2008 causing the worst natural disaster in Myanmar’s recorded history. Official death toll estimates exceed 138,000 fatalities making it the 7th deadliest cyclone ever recorded worldwide. The Bay of Bengal counts seven tropical cyclones with death tolls in excess of 100,000 striking India and Bangladesh in the past 425 years, which highlights the difference in return periods between extreme cyclones and tsunamis. Damage estimates at over $10 billion made Nargis the most damaging cyclone ever recorded in the Indian Ocean. Although the two natural disasters are completely different in their generation mechanisms they both share massive coastal inundations as primary damage and death cause. While the damage patterns exhibit similarities the forcing differs. The primary tsunami impact is dominated by the runup of a few main waves washing rapidly ashore and inducing high lateral forces. On the contrary the tropical cyclone storm surge damage is the result of numerous storm waves continuously hitting the flooded structures on the elevated storm tide level. While coastal vegetation such as mangroves may be effective at reducing superimposed storm waves they are limited at reducing storm surge. Unfortunately, mangroves have been significantly cut for charcoal and land use as rice paddies in Myanmar due to rapid population growth and economic reasons, thereby increasing coastal vulnerability and land loss due to erosion (Figure 1). The period of a storm surge is typically an order of magnitude longer than the period of a tsunami resulting in significantly larger inundation distances along coastal plains and river deltas. The storm surge of cyclone Nargis

  2. Climate impacts of recent multidecadal changes in Atlantic Ocean Sea surface temperature: a multimodel comparison

    Energy Technology Data Exchange (ETDEWEB)

    Hodson, Daniel L.R.; Sutton, Rowan T. [University of Reading, Walker Institute, Department of Meteorology, P.O. Box 243, Reading (United Kingdom); Cassou, Christophe [CERFACS, Toulouse Cedex (France); Keenlyside, Noel [IFM-GEOMAR, Kiel (Germany); Okumura, Yuko [CAS, CGD-NCAR, Boulder, CO (United States); Zhou, Tianjun [Chinese Acadamey of Sciences, State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Beijing (China)

    2010-06-15

    During the twentieth century sea surface temperatures in the Atlantic Ocean exhibited prominent multidecadal variations. The source of such variations has yet to be rigorously established - but the question of their impact on climate can be investigated. Here we report on a set of multimodel experiments to examine the impact of patterns of warming in the North Atlantic, and cooling in the South Atlantic, derived from observations, that is characteristic of the positive phase of the Atlantic Multidecadal Oscillation (AMO). The experiments were carried out with six atmospheric General Circulation Models (including two versions of one model), and a major goal was to assess the extent to which key climate impacts are consistent between the different models. The major climate impacts are found over North and South America, with the strongest impacts over land found over the United States and northern parts of South America. These responses appear to be driven by a combination of an off-equatorial Gill response to diabatic heating over the Caribbean due to increased rainfall within the region and a Northward shift in the Inter Tropical Convergence Zone (ITCZ) due to the anomalous cross-equatorial SST gradient. The majority of the models show warmer US land temperatures and reduced Mean Sea Level Pressure during summer (JJA) in response to a warmer North Atlantic and a cooler South Atlantic, in line with observations. However the majority of models show no significant impact on US rainfall during summer. Over northern South America, all models show reduced rainfall in southern hemisphere winter (JJA), whilst in Summer (DJF) there is a generally an increase in rainfall. However, there is a large spread amongst the models in the magnitude of the rainfall anomalies over land. Away from the Americas, there are no consistent significant modelled responses. In particular there are no significant changes in the North Atlantic Oscillation (NAO) over the North Atlantic and Europe

  3. The impact of weather and ocean forecasting on hydrocarbon production and pollution management in the Gulf of Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Kaiser, Mark J. [Center for Energy Studies, Louisiana State University, Energy Coast and Environment Building, Nicholson Extension Drive, Baton Rouge, LA 70803 (United States)]. E-mail: mkaiser@lsu.edu; Pulsipher, Allan G. [Center for Energy Studies, Louisiana State University, Energy Coast and Environment Building, Nicholson Extension Drive, Baton Rouge, LA 70803 (United States)

    2007-02-15

    Over the past 2 years, the vulnerability of offshore production in the Gulf of Mexico (GOM) has been brought to light by extensive damage to oil and gas facilities and pipelines resulting from Hurricanes Ivan, Katrina, and Rita. The occurrences of extreme weather regularly force operators to shut-down production, cease drilling and construction activities, and evacuate personnel. Loop currents and eddies can also impact offshore operations and delay installation and drilling activities and reduce the effectiveness of oil spill response strategies. The purpose of this paper is to describe how weather and ocean forecasting impact production activities and pollution management in the GOM. Physical outcome and decision models in support of production and development activities and oil spill response management are presented, and the expected economic benefits that may result from the implementation of an integrated ocean observation network in the region are summarized. Improved ocean observation systems are expected to reduce the uncertainty of forecasting and to enhance the value of ocean/weather information throughout the Gulf region. The source of benefits and the size of activity from which improved ocean observation benefits may be derived are estimated for energy development and production activities and oil spill response management.

  4. The impact on atmospheric CO2 of iron fertilization induced changes in the ocean's biological pump

    Directory of Open Access Journals (Sweden)

    J. C. McWilliams

    2008-03-01

    Full Text Available Using numerical simulations, we quantify the impact of changes in the ocean's biological pump on the air-sea balance of CO2 by fertilizing a small surface patch in the high-nutrient, low-chlorophyll region of the eastern tropical Pacific with iron. Decade-long fertilization experiments are conducted in a basin-scale, eddy-permitting coupled physical/biogeochemical/ecological model. In contrast to previous studies, we find that most of the dissolved inorganic carbon (DIC removed from the euphotic zone by the enhanced biological export is replaced by uptake of CO2 from the atmosphere. Atmospheric uptake efficiencies, the ratio of the perturbation in air-sea CO2 flux to the perturbation in export flux across 100 m, integrated over 10 years, are 0.75 to 0.93 in our patch size-scale experiments. The atmospheric uptake efficiency is insensitive to the duration of the experiment. The primary factor controlling the atmospheric uptake efficiency is the vertical distribution of the enhanced biological production and export. Iron fertilization at the surface tends to induce production anomalies primarily near the surface, leading to high efficiencies. In contrast, mechanisms that induce deep production anomalies (e.g. altered light availability tend to have a low uptake efficiency, since most of the removed DIC is replaced by lateral and vertical transport and mixing. Despite high atmospheric uptake efficiencies, patch-scale iron fertilization of the ocean's biological pump tends to remove little CO2 from the atmosphere over the decadal timescale considered here.

  5. Transport and physico-chemical impact of trace gases and aerosols over Indian Ocean

    Science.gov (United States)

    Baray, Jean-Luc; Duflot, Valentin; Posny, Françoise; De Maziere, Martine; Courcoux, Yann; Metzger, Jean-Marc; Gabarrot, Franck; Chazette, Patrick; Bègue, Nelson; Liousse, Cathy; Cammas, Jean-Pierre

    2013-04-01

    Observations of ozone are performed with lidar and ozonesondes at Reunion Island University (21°S,55°E) since the 90s. These observations display the annual cycle of free tropospheric ozone, in relation with the seasonnality of austral biomass burning and stratosphere-troposphere exchange (Clain et al., 2010). In order to further characterize the transport and physico-chemical impact of trace gases and aerosols over Indian Ocean, we analyse : - African biomass burning emission GFED2 and GDRIBB inventories in 2009-2010. - carbon monoxide partial columns obtained with FTIR at Reunion Island in 2007. - aerosol measurements with lidar and photometer on board the Marion Dufresne vessel in Indian ocean in 2009. ozonesonde measurements at Kerguelen Island (49°S,70°E) from 2008 to 2009. These observations are analysed using FLEXPART dispersion model calculations and allow : - to establish differences in African biomass burning emission GFED2 and GDRIBB inventories. - to evidence an case of inter-hemispheric transport from south east Asia in the upper troposphere in July 2007. - to determinate the composition, expansion and origin of a biomass burning aerosol plume in september 2009 - to highlight the variations of the ozone baseline in the free troposphere at Kerguelen, in link with biomass burning in South Africa and America. Since 2012, a new altitude station is open at the Maïdo Mount and hosts remote sensing (lidar, spectrometers) and in situ measurements. The Maïdo observatory will allow to enhance southern hemispheric atmospheric observations in the framework of NDACC and AERONET. It is open to transnational access through the participation to the European project ACTRIS.

  6. Facilitymetrics for Big Ocean Science: Towards Improved Measurement of Scientific Impact

    Science.gov (United States)

    Juniper, K.; Owens, D.; Moran, K.; Pirenne, B.; Hallonsten, O.; Matthews, K.

    2016-12-01

    Cabled ocean observatories are examples of "Big Science" facilities requiring significant public investments for installation and ongoing maintenance. Large observatory networks in Canada and the United States, for example, have been established after extensive up-front planning and hundreds of millions of dollars in start-up costs. As such, they are analogous to particle accelerators and astronomical observatories, which may often be required to compete for public funding in an environment of ever-tightening national science budget allocations. Additionally, the globalization of Big Science compels these facilities to respond to increasing demands for demonstrable productivity, excellence and competitiveness. How should public expenditures on "Big Science" facilities be evaluated and justified in terms of benefits to the countries that invest in them? Published literature counts are one quantitative measure often highlighted in the annual reports of large science facilities. But, as recent research has demonstrated, publication counts can lead to distorted characterizations of scientific impact, inviting evaluators to calculate scientific outputs in terms of costs per publication—a ratio that can be simplistically misconstrued to conclude Big Science is wildly expensive. Other commonly promoted measurements of Big Science facilities include technical reliability (a.k.a. uptime), provision of training opportunities for Highly Qualified Personnel, generation of commercialization opportunities, and so forth. "Facilitymetrics" is a new empirical focus for scientometrical studies, which has been applied to the evaluation and comparison of synchrotron facilities. This paper extends that quantitative and qualitative examination to a broader inter-disciplinary comparison of Big Science facilities in the ocean science realm to established facilities in the fields of astronomy and particle physics.

  7. The Leading Mode of Indian Ocean SST and Its Impacts on Asian Summer Monsoon

    Institute of Scientific and Technical Information of China (English)

    YANG Mingzhu; DING Yihui; LI Weijing; MAO Hengqing; HUANG Changxing

    2008-01-01

    The Indian Ocean (IO) sea surface temperature (SST) was analyzed by using empirical orthogonal function (EOF), and the leading mode of Indian Ocean (LMIO) SST was extracted. The major spatial and temporal characters of LMIO were discussed, and the relationships between LMIO with Indian summer monsoon (ISM) and with China summer rainfalls (CSR) were investigated, then the impacts of LMIO on Asian summer monsoon (ASM) circulation were explored. Some notable results are obtained: The significant evolutional characters of LMIO are the consistent warming trend of almost the whole IO basin,the distinctive quasi-3- and quasi-ll-yr oscillations and remarkably interdecadal warming in 1976/1977 and1997/1998, respectively. The LMIO impaired the lower level circulation of ISM and was closely related with the climate trend of CSR. It was associated with the weakening of South Asian high, the easterly winds south of the Tibetan Plateau, and the cross-equatorial flows over 10°-20°N, 40°-110°E at the upper level; with the strengthening of Somali cross-equatorial jet but the weakening of the circulation of ISM in the sector of India, the strengthening of south wind over the middle and lower reaches of Yangtze River and South China but the weakening of southwesterly winds over North China at lower level and with the increasing of surface pressure over the Asian Continent. Changes in the moisture flux transports integrated vertically over the whole troposphere associated with LMIO are similar to those in the lower level circulation. To sum up, the significant SST increasing trend of IO basin was one of the important causes for weakening of the ASM circulation and the southwards shifting of China summer rainband.

  8. The impact of global warming on seasonality of ocean primary production

    Directory of Open Access Journals (Sweden)

    S. Henson

    2013-01-01

    Full Text Available The seasonal cycle (i.e. phenology of oceanic primary production (PP is expected to change in response to climate warming. Here, we use output from 6 global biogeochemical models to examine the response in the seasonal amplitude of PP and timing of peak PP to the IPCC AR5 warming scenario. We also investigate whether trends in PP phenology may be more rapidly detectable than trends in PP itself. The seasonal amplitude of PP decreases by an average of 1–2% per year by 2100 in most biomes, with the exception of the Arctic which sees an increase of ~1% per year. This is accompanied by an advance in the timing of peak PP by ~0.5–1 months by 2100 over much of the globe, and particularly pronounced in the Arctic. These changes are driven by an increase in seasonal amplitude of sea surface temperature (where the maxima get hotter faster than the minima and a decrease in the seasonal amplitude of the mixed layer depth and surface nitrate concentration. Our results indicate a transformation of currently strongly seasonal (bloom forming regions, typically found at high latitudes, into weakly seasonal (non-bloom regions, characteristic of contemporary subtropical conditions. On average, 36 yr of data are needed to detect a climate change-driven trend in the seasonal amplitude of PP, compared to 32 yr for mean annual PP. We conclude that analysis of phytoplankton phenology is not necessarily a shortcut to detecting climate change impacts on ocean productivity.

  9. Opposite latitudinal gradients in projected ocean acidification and bleaching impacts on coral reefs.

    Science.gov (United States)

    van Hooidonk, Ruben; Maynard, Jeffrey Allen; Manzello, Derek; Planes, Serge

    2014-01-01

    Coral reefs and the services they provide are seriously threatened by ocean acidification and climate change impacts like coral bleaching. Here, we present updated global projections for these key threats to coral reefs based on ensembles of IPCC AR5 climate models using the new Representative Concentration Pathway (RCP) experiments. For all tropical reef locations, we project absolute and percentage changes in aragonite saturation state (Ωarag) for the period between 2006 and the onset of annual severe bleaching (thermal stress >8 degree heating weeks); a point at which it is difficult to believe reefs can persist as we know them. Severe annual bleaching is projected to start 10-15 years later at high-latitude reefs than for reefs in low latitudes under RCP8.5. In these 10-15 years, Ωarag keeps declining and thus any benefits for high-latitude reefs of later onset of annual bleaching may be negated by the effects of acidification. There are no long-term refugia from the effects of both acidification and bleaching. Of all reef locations, 90% are projected to experience severe bleaching annually by 2055. Furthermore, 5% declines in calcification are projected for all reef locations by 2034 under RCP8.5, assuming a 15% decline in calcification per unit of Ωarag. Drastic emissions cuts, such as those represented by RCP6.0, result in an average year for the onset of annual severe bleaching that is ~20 years later (2062 vs. 2044). However, global emissions are tracking above the current worst-case scenario devised by the scientific community, as has happened in previous generations of emission scenarios. The projections here for conditions on coral reefs are dire, but provide the most up-to-date assessment of what the changing climate and ocean acidification mean for the persistence of coral reefs. © 2013 John Wiley & Sons Ltd.

  10. The impact of global warming on seasonality of ocean primary production

    Directory of Open Access Journals (Sweden)

    S. Henson

    2013-06-01

    Full Text Available The seasonal cycle (i.e. phenology of oceanic primary production (PP is expected to change in response to climate warming. Here, we use output from 6 global biogeochemical models to examine the response in the seasonal amplitude of PP and timing of peak PP to the IPCC AR5 warming scenario. We also investigate whether trends in PP phenology may be more rapidly detectable than trends in annual mean PP. The seasonal amplitude of PP decreases by an average of 1–2% per year by 2100 in most biomes, with the exception of the Arctic which sees an increase of ~1% per year. This is accompanied by an advance in the timing of peak PP by ~0.5–1 months by 2100 over much of the globe, and particularly pronounced in the Arctic. These changes are driven by an increase in seasonal amplitude of sea surface temperature (where the maxima get hotter faster than the minima and a decrease in the seasonal amplitude of the mixed layer depth and surface nitrate concentration. Our results indicate a transformation of currently strongly seasonal (bloom forming regions, typically found at high latitudes, into weakly seasonal (non-bloom regions, characteristic of contemporary subtropical conditions. On average, 36 yr of data are needed to detect a climate-change-driven trend in the seasonal amplitude of PP, compared to 32 yr for mean annual PP. Monthly resolution model output is found to be inadequate for resolving phenological changes. We conclude that analysis of phytoplankton seasonality is not necessarily a shortcut to detecting climate change impacts on ocean productivity.

  11. The impact of the ocean observing system on estimates of the California current circulation spanning three decades

    Science.gov (United States)

    Moore, Andrew M.; Jacox, Michael G.; Crawford, William J.; Laughlin, Bruce; Edwards, Christopher A.; Fiechter, Jérôme

    2017-08-01

    Data assimilation is now used routinely in oceanography on both regional and global scales for computing ocean circulation estimates and for making ocean forecasts. Regional ocean observing systems are also expanding rapidly, and observations from a wide array of different platforms and sensor types are now available. Evaluation of the impact of the observing system on ocean circulation estimates (and forecasts) is therefore of considerable interest to the oceanographic community. In this paper, we quantify the impact of different observing platforms on estimates of the California Current System (CCS) spanning a three decade period (1980-2010). Specifically, we focus attention on several dynamically related aspects of the circulation (coastal upwelling, the transport of the California Current and the California Undercurrent, thermocline depth and eddy kinetic energy) which in many ways describe defining characteristics of the CCS. The circulation estimates were computed using a 4-dimensional variational (4D-Var) data assimilation system, and our analyses also focus on the impact of the different elements of the control vector (i.e. the initial conditions, surface forcing, and open boundary conditions) on the circulation. While the influence of each component of the control vector varies between different metrics of the circulation, the impact of each observing system across metrics is very robust. In addition, the mean amplitude of the circulation increments (i.e. the difference between the analysis and background) remains relatively stable throughout the three decade period despite the addition of new observing platforms whose impact is redistributed according to the relative uncertainty of observations from each platform. We also consider the impact of each observing platform on CCS circulation variability associated with low-frequency climate variability. The low-frequency nature of the dominant climate modes in this region allows us to track through time the

  12. Impact of Intrathermocline eddies on seamount and oceanic island off Central Chile: Observation and modeling

    Science.gov (United States)

    Hormazabal, Samuel; Morales, Carmen; Cornejo, Marcela; Bento, Joaquim; Valencia, Luis; Auger, Pierre; Rodriguez, Angel; Correa, Marco; Anabalón, Valeria; Silva, Nelson

    2016-04-01

    In the Southeast Pacific, oceanographic processes that sustain the biological production necessary to maintain the ecosystems associated to seamounts and oceanic islands are still poorly understood. Recent studies suggest that the interaction of mesoscale and submesoescale eddies with oceanic islands and seamounts could be playing an important role in the time-space variability of primary production. In this work, research cruises, satellite data and Regional Ocean Modeling System (ROMS) results have been used to describe the main characteristics of intrathermocline eddies (ITE) and their impact on the Juan Fernández archipelago (JFA), off central Chile. The JFA is located off the coast of central Chile (33°S), and is composed of three main islands: Robinson Crusoe (RC), Alejandro Selkirk (AS) and Santa Clara (SC). Between the RC and AS are located the westernmost seamounts (JF6 and JF5) of the Juan Fernández archipelago. Satellite altimetry data (sea surface height from AVISO) were used to detect and track mesoscale eddies through eddy-tracking algorithm. Physical, chemical and biological parameters as temperature, salinity, dissolved oxygen and fluorescence were measured in the water column at JF5 and JF6, and along the coast off central Chile (30-40°S). Results from the research cruise exhibit the interaction between an ITE and the seamount JF6. Eddy-tracking results showed that the ITE observed at the JF6 was formed at the coast off central-southern Chile, traveled ~900 km seaward and after ~9 months reached the JF5 and JF6 region. Observations along the Chilean coast confirmed that the coast corresponds to the formation area of the observed ITE. In this region, ITEs are represented by subsurface lenses (~100 km diameter; 400 m thickness) of homogeneous salinity, nutrient rich and oxygen-poor equatorial subsurface water mass (ESSW) which is transported poleward by the Peru-Chile undercurrent in the coastal band and seaward by ITEs. The effect of ITEs on the

  13. The impact of fish and the commercial marine harvest on the ocean iron cycle.

    Directory of Open Access Journals (Sweden)

    Allison R Moreno

    Full Text Available Although iron is the fourth most abundant element in the Earth's crust, bioavailable iron limits marine primary production in about one third of the ocean. This lack of iron availability has implications in climate change because the removal of carbon dioxide from the atmosphere by phytoplankton requires iron. Using literature values for global fish biomass estimates, and elemental composition data we estimate that fish biota store between 0.7-7 × 10(11 g of iron. Additionally, the global fish population recycles through excretion between 0.4-1.5 × 10(12 g of iron per year, which is of a similar magnitude as major recognized sources of iron (e.g. dust, sediments, ice sheet melting. In terms of biological impact this iron could be superior to dust inputs due to the distributed deposition and to the greater solubility of fecal pellets compared to inorganic minerals. To estimate a loss term due to anthropogenic activity the total commercial catch for 1950 to 2010 was obtained from the Food and Agriculture Organization of the United Nations. Marine catch data were separated by taxa. High and low end values for elemental composition were obtained for each taxonomic category from the literature and used to calculate iron per mass of total harvest over time. The marine commercial catch is estimated to have removed 1-6 × 10(9 g of iron in 1950, the lowest values on record. There is an annual increase to 0.7-3 × 10(10 g in 1996, which declines to 0.6-2 × 10(10 g in 2010. While small compared to the total iron terms in the cycle, these could have compounding effects on distribution and concentration patterns globally over time. These storage, recycling, and export terms of biotic iron are not currently included in ocean iron mass balance calculations. These data suggest that fish and anthropogenic activity should be included in global oceanic iron cycles.

  14. Using annually-resolved bivalve records and biogeochemical models to understand and predict climate impacts in coastal oceans

    Science.gov (United States)

    Holmes, Sarah

    2017-04-01

    It is more important than ever to study the oceans and especially the shelf seas, which are disproportionately productive, sustaining over 90% of global fisheries . The economic and societal significance of these shallow oceans, as the interface through which society interacts with the marine environment, makes them highly relevant to the decisions of policy-makers and stakeholders. These decision-makers rely upon empirical data informed by consistent and extensive monitoring and assessment from experts in the field, yet long-term, spatially-extensive datasets of the marine environment do not exist or are of poor quality. Modelling the shelf seas with biogeochemical models can provide valuable data, allowing scientists to look at both past and future scenarios to estimate ecosystem response to change. In particular, the European Regional Sea Ecosystem Model or ERSEM combines not only the complex hydrographical aspects of the North West European shelf, but also vast numbers of biological and chemical parameters. Though huge efforts across the modelling community are invested into developing and ultimately increasing the reliability of models such as the ERSEM, this is typically achieved by looking at relationships with aforementioned observed datasets, restricting model accuracy and our understanding of ecosystem processes. It is for this reason that proxy data of the marine environment is so valuable. Of all marine proxies available, sclerochronology, the study of the growth bands on long-lived marine molluscs, is the only proven to provide novel, high resolution, multi-centennial, annually-resolved, absolutely-dated archives of past ocean environment, analogous to dendrochronology. For the first time, this PhD project will combine the proxy data of sclerochronology with model hindcast data from the ERSEM with the aim to better understand the North West European shelf sea environment and potentially improve predictions of future climate change in this region and

  15. Western Pacific atmospheric nutrient deposition fluxes, their impact on surface ocean productivity

    Science.gov (United States)

    Martino, M.; Hamilton, D.; Baker, A. R.; Jickells, T. D.; Bromley, T.; Nojiri, Y.; Quack, B.; Boyd, P. W.

    2014-07-01

    The atmospheric deposition of both macronutrients and micronutrients plays an important role in driving primary productivity, particularly in the low-latitude ocean. We report aerosol major ion measurements for five ship-based sampling campaigns in the western Pacific from ~25°N to 20°S and compare the results with those from Atlantic meridional transects (~50°N to 50°S) with aerosols collected and analyzed in the same laboratory, allowing full incomparability. We discuss sources of the main nutrient species (nitrogen (N), phosphorus (P), and iron (Fe)) in the aerosols and their stoichiometry. Striking north-south gradients are evident over both basins with the Northern Hemisphere more impacted by terrestrial dust sources and anthropogenic emissions and the North Atlantic apparently more impacted than the North Pacific. We estimate the atmospheric supply rates of these nutrients and the potential impact of the atmospheric deposition on the tropical western Pacific. Our results suggest that the atmospheric deposition is P deficient relative to the needs of the resident phytoplankton. These findings suggest that atmospheric supply of N, Fe, and P increases primary productivity utilizing some of the residual excess phosphorus (P*) in the surface waters to compensate for aerosol P deficiency. Regional primary productivity is further enhanced via the stimulation of nitrogen fixation fuelled by the residual atmospheric iron and P*. Our stoichiometric calculations reveal that a P* of 0.1 µmol L-1 can offset the P deficiency in atmospheric supply for many months. This study suggests that atmospheric deposition may sustain ~10% of primary production in both the western tropical Pacific.

  16. IMPACTS OF THE TROPICAL PACIFIC COUPLED PROCESS ON THE INTERANNUAL VARIABILITY IN THE INDIAN OCEAN

    Institute of Scientific and Technical Information of China (English)

    FENG Jun-qiao; BAI Xue-zhi

    2010-01-01

    The basic features of climatology and interannual variations of tropical Pacific and Indian Oceans were analyzed using a coupled general circulation model(CGCM),which was constituted with an intermediate 2.5-layer ocean model and atmosphere model ECHAM4.The CGCM well captures the spatial and temporal structure of the Pacific El Nifio-Southern Oscillation(ENSO)and the variability features in the tropical Indian Ocean.The influence of Pacific air-sea coupled process on the Indian Ocean variability was investigated carefully by conducting numerical experiments.Results show that the occurrence frequency of positive/negative Indian Ocean Dipole(IOD)event will decrease/increase with the presence/absence of the coupled process in the Pacific Ocean.Further analysis demonstrated that the air-sea coupled process in the Pacific Ocean affects the IOD variability mainly by influencing the zonal gradient ofthermocline via modulating the background sea surface wind.

  17. Fidgety movements – tiny in appearance, but huge in impact

    Directory of Open Access Journals (Sweden)

    Christa Einspieler

    2016-06-01

    Full Text Available Abstract Objectives: To describe fidgety movements (FMs, i.e., the spontaneous movement pattern that typically occurs at 3–5 months after term age, and discuss its clinical relevance. Sources: A comprehensive literature search was performed using the following databases: MEDLINE/PubMed, CINAHL, The Cochrane Library, Science Direct, PsycINFO, and EMBASE. The search strategy included the MeSH terms and search strings (‘fidgety movement*’ OR [(‘general movement*’ AND (‘three month*’ OR (‘3 month*’], as well as studies published on the General Movements Trust website (www.general-movements-trust.info. Summary of the data: Virtually all infants develop normally if FMs are present and normal, even if their brain ultrasound findings and/or clinical histories indicate a disposition to later neurological deficits. Conversely, almost all infants who never develop FMs have a high risk for neurological deficits such as cerebral palsy, and for genetic disorders with a late onset. If FMs are normal but concurrent postural patterns are not age-adequate or the overall movement character is monotonous, cognitive and/or language skills at school age will be suboptimal. Abnormal FMs are unspecific and have a low predictive power, but occur exceedingly in infants later diagnosed with autism. Conclusions: Abnormal, absent, or sporadic FMs indicate an increased risk for later neurological dysfunction, whereas normal FMs are highly predictive of normal development, especially if they co-occur with other smooth and fluent movements. Early recognition of neurological signs facilitates early intervention. It is important to re-assure parents of infants with clinical risk factors that the neurological outcome will be adequate if FMs develop normally.

  18. The impact of damming on riverine fluxes to the ocean: A case study from Eastern Iceland.

    Science.gov (United States)

    Eiriksdottir, Eydis Salome; Oelkers, Eric H; Hardardottir, Jorunn; Gislason, Sigurdur Reynir

    2017-04-15

    Anthropogenic water management has extensively altered the world's river systems through impoundments and channel diversions to meet the human's need for water, energy and transportation. To illuminate the effect of such activities on the environment, this study describes the impact of the installation of the Kárahnjúkar Dam in Eastern Iceland on the transport of riverine dissolved- and particulate material to the ocean by the Jökulsá á Dal and the Lagarfljót rivers. This dam, completed in 2007, collects water into the 2.2 km(3) Hálslón reservoir and diverts water from the glacial Jökulsá á Dal river into the partially glaciated Lagarfljót lagoon via a headrace tunnel. The impact of the damming was evaluated by sampling water from both the Jökulsá á Dal and the Lagarfljót rivers over a 15 year period spanning from 1998 to 2013. The annual flux of most dissolved elements increased substantially due to the damming. The fluxes of dissolved Zn, Al, Co, Ti and Fe increased most by damming; these fluxes increased by 46-391%. These differences can be attributed to changed saturation states of common secondary minerals in the Jökulsá á Dal due to reduced discharge, increased residence time and dissolution of suspended material, and, to a lesser degree, reduced photosynthesis due to less transparency in the Lagarfljót lagoon. The removal of particulate material and thus decreasing adsorption potential in the Jökulsá á Dal is the likely reason for the Fe flux increase. In contrast, approximately 85% of the original riverine transported mass of particulate material is trapped by the dam; that which passes tends to be relatively fine grained, increasing the average specific surface area of that which continues to flow towards the ocean. Consequently, the particulate geometric surface area flux is decreased by only 50% due to the damming. The blooming of silica diatoms during the spring consumes dissolved silica from the coastal waters until it becomes

  19. The impact of in situ Fe fertilisation on the microbial food web in the Southern Ocean

    Science.gov (United States)

    Hall, Julie A.; Safi, Karl

    picophytoplankton populations. In contrast, the nanophytoflagellates were initially controlled by the Fe concentration, with microzooplankton having an impact on the population towards the end of the experiment. The addition of Fe to a small patch of the Southern Ocean had a considerable impact on the microbial components of the food web, even though the overall importance of the microbial pathways decreased as a result of Fe addition.

  20. Cruise-based Multi-factorial Investigation of the Impact of Ocean Acidification on the Pelagic Biosphere

    Science.gov (United States)

    Young, J. R.; Tyrell, T.

    2012-12-01

    The pelagic ecosystem is a critical component of the earth's biosphere and biogeochemistry. It is also, however, a complex and in many respects poorly understood system. In consequence predicting the likely impact of ocean acidification on the pelagic realm is problematic and predicting the possible secondary biogeochemical effects of these impacts is "challenging". Nonetheless there is a major societal need to predict these impacts and outcomes. Within the UK Ocean Acidification Programme our consortium is tasked with "improving the understanding of the impact of ocean acidification on surface ocean biology, community structure, biogeochemistry and on feedbacks to the climate." To ensure complimentarity with other programmes we have adopted a cruise-based approach. Two cruises have been undertaken; Cruise D366 in summer 2011 around the north west european shelf and Cruise JR271 summer 2012 to the Arctic Ocean. A final cruise, to the Antarctic will be undertaken in January/February 2013. On each cruise we are combining extensive environmental observations, with deck-board incubation experiments. The environmental observations are being made with both continuous sampling techniques and CTD sampling. The cruise tracks have been designed to cross environmental gradients in ocean chemistry and especially in carbonate chemistry. The objective here is to produce a high quality matrix of multiple environmental parameters including fully characterised carbonate chemistry (pH, CO2, DIC and alkalinity are all measured), nutrient chemistry, trace elements, climatically active gases, and TEP, phytoplankton and zooplankton composition and biocalcification. The biocalcification studies include microfabric study of pteropods, in situ calcification rates and integrated morphometric and assemblage composition analysis of coccolithophores. The incubation experiments are being conducted using a dedicated culture facility constructed in a shipping-container lab. This allows large

  1. Ocean Acidification

    Science.gov (United States)

    Ocean and coastal acidification is an emerging issue caused by increasing amounts of carbon dioxide being absorbed by seawater. Changing seawater chemistry impacts marine life, ecosystem services, and humans. Learn what EPA is doing and what you can do.

  2. Impact of a realistic river routing in coupled ocean-atmosphere simulations of the Last Glacial Maximum climate

    Energy Technology Data Exchange (ETDEWEB)

    Alkama, Ramdane [IPSL, Laboratoire des Sciences du Climat et de l' Environnement, Gif-sur-Yvette Cedex (France); Universite Pierre et Marie Curie, Structure et fonctionnement des systemes hydriques continentaux (Sisyphe), Paris (France); Kageyama, M.; Ramstein, G.; Marti, O.; Swingedouw, D. [IPSL, Laboratoire des Sciences du Climat et de l' Environnement, Gif-sur-Yvette Cedex (France); Ribstein, P. [Universite Pierre et Marie Curie, Structure et fonctionnement des systemes hydriques continentaux (Sisyphe), Paris (France)

    2008-06-15

    The presence of large ice sheets over North America and North Europe at the Last Glacial Maximum (LGM) strongly impacted Northern hemisphere river pathways. Despite the fact that such changes may significantly alter the freshwater input to the ocean, modified surface hydrology has never been accounted for in coupled ocean-atmosphere general circulation model simulations of the LGM climate. To reconstruct the LGM river routing, we use the ICE-5G LGM topography. Because of the uncertainties in the extent of the Fennoscandian ice sheet in the Eastern part of the Kara Sea, we consider two more realistic river routing scenarios. The first scenario is characterised by the presence of an ice dammed lake south of the Fennoscandian ice sheet, and corresponds to the ICE-5G topography. This lake is fed by the Ob and Yenisei rivers. In the second scenario, both these rivers flow directly into the Arctic Ocean, which is more consistent with the latest QUEEN ice sheet margin reconstructions. We study the impact of these changes on the LGM climate as simulated by the IPSL{sub C}M4 model and focus on the overturning thermohaline circulation. A comparison with a classical LGM simulation performed using the same model and modern river basins as designed in the PMIP2 exercise leads to the following conclusions: (1) The discharge into the North Atlantic Ocean is increased by 2,000 m{sup 3}/s between 38 and 54 N in both simulations that contain LGM river routing, compared to the classical LGM experiment. (2) The ice dammed lake is shown to have a weak impact, relative to the classical simulation, both in terms of climate and ocean circulation. (3) In contrast, the North Atlantic deep convection and meridional overturning are weaker than during the classical LGM run if the Ob and Yenisei rivers flow directly into the Arctic Ocean. The total discharge into the Arctic Ocean is increased by 31,000 m{sup 3}/s, relative to the classical LGM simulation. Consequentially, northward ocean heat

  3. Deep ocean impact of a Madden-Julian oscillation observed by Argo floats.

    Science.gov (United States)

    Matthews, Adrian J; Singhruck, Patama; Heywood, Karen J

    2007-12-14

    Using the new Argo array of profiling floats that gives unprecedented space-time coverage of the upper 2000 meters of the global ocean, we present definitive evidence of a deep tropical ocean component of the Madden-Julian Oscillation (MJO). The surface wind stress anomalies associated with the MJO force eastward-propagating oceanic equatorial Kelvin waves that extend downward to 1500 meters. The amplitude of the deep ocean anomalies is up to six times the amplitude of the observed annual cycle. This deep ocean sink of energy input from the wind is potentially important for understanding phenomena such as El Niño-Southern Oscillation and for interpreting deep ocean measurements made from ships.

  4. The Impact of the Tropical Indian Ocean on South Asian High in Boreal Summer

    Institute of Scientific and Technical Information of China (English)

    HUANG Gang; QU Xia; HU Kaiming

    2011-01-01

    The tropical Indian Ocean (TIO) is warmer than normal during the summer when or after the El Nińo decays. The present study investigates the impact of TIO SST on the South Asian High (SAH) in summer.When the TIO is warmer, the SAH strengthens and its center shifts southward. It is found that the variations in the SAH cannot be accounted for by the precipitation anomaly. A possible mechanism is proposed to explain the connection between the TIO and SAH: warmer SST in the TIO changes the equivalent potential temperature (EPT) in the atmospheric boundary layer (ABL), alters the temperature profile of the moist atmosphere, warms the troposphere, which produces significant positive height anomaly over South Asia and modifies the SAH. An atmospheric general circulation model, ECHAM5, which has a reasonable prediction skill in the TIO and South Asia, was selected to test the effects of TIO SST on the SAH. The experiment with idealized heating over the TIO reproduced the response of the SAH to TIO warming. The results suggest that the TIO-induced EPT change in the ABL can account for the variations in the SAH.

  5. Impact of ocean acidification on benthic and water column ammonia oxidation

    Science.gov (United States)

    Kitidis, Vassilis; Laverock, Bonnie; McNeill, Louise C.; Beesley, Amanda; Cummings, Denise; Tait, Karen; Osborn, Mark A.; Widdicombe, Stephen

    2011-11-01

    Ammonia oxidation is a key microbial process within the marine N-cycle. Sediment and water column samples from two contrasting sites in the English Channel (mud and sand) were incubated (up to 14 weeks) in CO2-acidified seawater ranging from pH 8.0 to pH 6.1. Additional observations were made off the island of Ischia (Mediterranean Sea), a natural analogue site, where long-term thermogenic CO2 ebullition occurs (from pH 8.2 to pH 7.6). Water column ammonia oxidation rates in English Channel samples decreased under low pH with near-complete inhibition at pH 6.5. Water column Ischia samples showed a similar though not statistically significant trend. However, sediment ammonia oxidation rates at all three locations were not affected by reduced pH. These observations may be explained by buffering within sediments or low-pH adaptation of the microbial ammonia oxidizing communities. Our observations have implications for modeling the future impact of ocean acidification on marine ecosystems.

  6. Impact of ocean acidification on a key Arctic pelagic mollusc (Limacina helicina)

    Science.gov (United States)

    Comeau, S.; Gorsky, G.; Jeffree, R.; Teyssié, J.-L.; Gattuso, J.-P.

    2009-09-01

    Thecosome pteropods (shelled pelagic molluscs) can play an important role in the food web of various ecosystems and play a key role in the cycling of carbon and carbonate. Since they harbor an aragonitic shell, they could be very sensitive to ocean acidification driven by the increase of anthropogenic CO2 emissions. The impact of changes in the carbonate chemistry was investigated on Limacina helicina, a key species of Arctic ecosystems. Pteropods were kept in culture under controlled pH conditions corresponding to pCO2 levels of 350 and 760 μatm. Calcification was estimated using a fluorochrome and the radioisotope 45Ca. It exhibits a 28% decrease at the pH value expected for 2100 compared to the present pH value. This result supports the concern for the future of pteropods in a high-CO2 world, as well as of those species dependent upon them as a food resource. A decline of their populations would likely cause dramatic changes to the structure, function and services of polar ecosystems.

  7. Contrasting impacts of ocean acidification and warming on the molecular responses of CO2-resilient oysters.

    Science.gov (United States)

    Goncalves, Priscila; Thompson, Emma L; Raftos, David A

    2017-06-02

    This study characterises the molecular processes altered by both elevated CO2 and increasing temperature in oysters. Differences in resilience of marine organisms against the environmental stressors associated with climate change will have significant implications for the sustainability of coastal ecosystems worldwide. Some evidence suggests that climate change resilience can differ between populations within a species. B2 oysters represent a unique genetic resource because of their capacity to better withstand the impacts of elevated CO2 at the physiological level, compared to non-selected oysters from the same species (Saccostrea glomerata). Here, we used proteomic and transcriptomic analysis of gill tissue to evaluate whether the differential response of B2 oysters to elevated CO2 also extends to increased temperature. Substantial and distinctive effects on protein concentrations and gene expression were evident among B2 oysters responding to elevated CO2 or elevated temperature. The combination of both stressors also altered oyster gill proteomes and gene expression. However, the impacts of elevated CO2 and temperature were not additive or synergistic, and may be antagonistic. The data suggest that the simultaneous exposure of CO2-resilient oysters to near-future projected ocean pH and temperature results in complex changes in molecular processes in order to prevent stress-induced cellular damage. The differential response of B2 oysters to the combined stressors also indicates that the addition of thermal stress may impair the resilience of these oysters to decreased pH. Overall, this study reveals the intracellular mechanisms that might enable marine calcifiers to endure the emergent, adverse seawater conditions resulting from climate change.

  8. Impact of anthropogenic ocean acidification on thermal tolerance of the spider crab Hyas araneus

    Directory of Open Access Journals (Sweden)

    H. O. Pörtner

    2009-10-01

    Full Text Available Future scenarios for the oceans project combined developments of CO2 accumulation and global warming and their impact on marine ecosystems. The synergistic impact of both factors was addressed by studying the effect of elevated CO2 concentrations on thermal tolerance of the cold-eurythermal spider crab Hyas araneus from the population around Helgoland. Here ambient temperatures characterize the southernmost distribution limit of this species. Animals were exposed to present day normocapnia (380 ppm CO2, CO2 levels expected towards 2100 (710 ppm and beyond (3000 ppm. Heart rate and haemolymph PO2 (PeO2 were measured during progressive short term cooling from 10 to 0°C and during warming from 10 to 25°C. An increase of PeO2 occurred during cooling, the highest values being reached at 0°C under all three CO2 levels. Heart rate increased during warming until a critical temperature (Tc was reached. The putative Tc under normocapnia was presumably >25°C, from where it fell to 23.5°C under 710 ppm and then 21.1°C under 3000 ppm. At the same time, thermal sensitivity, as seen in the Q10 values of heart rate, rose with increasing CO2 concentration in the warmth. Our results suggest a narrowing of the thermal window of Hyas araneus under moderate increases in CO2 levels by exacerbation of the heat or cold induced oxygen and capacity limitation of thermal tolerance.

  9. Explicit representation and parametrised impacts of under ice shelf seas in the z∗ coordinate ocean model NEMO 3.6

    Science.gov (United States)

    Mathiot, Pierre; Jenkins, Adrian; Harris, Christopher; Madec, Gurvan

    2017-07-01

    Ice-shelf-ocean interactions are a major source of freshwater on the Antarctic continental shelf and have a strong impact on ocean properties, ocean circulation and sea ice. However, climate models based on the ocean-sea ice model NEMO (Nucleus for European Modelling of the Ocean) currently do not include these interactions in any detail. The capability of explicitly simulating the circulation beneath ice shelves is introduced in the non-linear free surface model NEMO. Its implementation into the NEMO framework and its assessment in an idealised and realistic circum-Antarctic configuration is described in this study. Compared with the current prescription of ice shelf melting (i.e. at the surface), inclusion of open sub-ice-shelf cavities leads to a decrease in sea ice thickness along the coast, a weakening of the ocean stratification on the shelf, a decrease in salinity of high-salinity shelf water on the Ross and Weddell sea shelves and an increase in the strength of the gyres that circulate within the over-deepened basins on the West Antarctic continental shelf. Mimicking the overturning circulation under the ice shelves by introducing a prescribed meltwater flux over the depth range of the ice shelf base, rather than at the surface, is also assessed. It yields similar improvements in the simulated ocean properties and circulation over the Antarctic continental shelf to those from the explicit ice shelf cavity representation. With the ice shelf cavities opened, the widely used three equation ice shelf melting formulation, which enables an interactive computation of melting, is tested. Comparison with observational estimates of ice shelf melting indicates realistic results for most ice shelves. However, melting rates for the Amery, Getz and George VI ice shelves are considerably overestimated.

  10. A Huge Adenomatoid Odontogenic Tumor of Maxilla

    Directory of Open Access Journals (Sweden)

    Balasundari Shreedhar

    2012-01-01

    Full Text Available The adenomatoid odontogenic tumor (AOT is a benign, nonneoplastic (hamartomatous lesion with a slow progressing growth. It occurs in both intraosseous and peripheral forms. This paper reports the case of a female aged 16 years who presented with a swelling in anterior maxilla; canine was missing, and a supernumerary tooth was present in the mid line. Radiology revealed a well-defined radiolucent area associated with impacted canine and root resorption of adjacent teeth, which was diagnosed histopathologically as AOT. The patient was treated surgically and later rehabilitated with fixed prosthesis.

  11. Observations of Recent Arctic Sea Ice Volume Loss and Its Impact on Ocean-Atmosphere Energy Exchange and Ice Production

    Science.gov (United States)

    Kurtz, N. T.; Markus, T.; Farrell, S. L.; Worthen, D. L.; Boisvert, L. N.

    2011-01-01

    Using recently developed techniques we estimate snow and sea ice thickness distributions for the Arctic basin through the combination of freeboard data from the Ice, Cloud, and land Elevation Satellite (ICESat) and a snow depth model. These data are used with meteorological data and a thermodynamic sea ice model to calculate ocean-atmosphere heat exchange and ice volume production during the 2003-2008 fall and winter seasons. The calculated heat fluxes and ice growth rates are in agreement with previous observations over multiyear ice. In this study, we calculate heat fluxes and ice growth rates for the full distribution of ice thicknesses covering the Arctic basin and determine the impact of ice thickness change on the calculated values. Thinning of the sea ice is observed which greatly increases the 2005-2007 fall period ocean-atmosphere heat fluxes compared to those observed in 2003. Although there was also a decline in sea ice thickness for the winter periods, the winter time heat flux was found to be less impacted by the observed changes in ice thickness. A large increase in the net Arctic ocean-atmosphere heat output is also observed in the fall periods due to changes in the areal coverage of sea ice. The anomalously low sea ice coverage in 2007 led to a net ocean-atmosphere heat output approximately 3 times greater than was observed in previous years and suggests that sea ice losses are now playing a role in increasing surface air temperatures in the Arctic.

  12. An impact assessment of sea ice on ocean optics observations in the marginal ice zone of the Arctic

    Institute of Scientific and Technical Information of China (English)

    LI Tao; ZHAO Jinping

    2014-01-01

    Diffuse attenuation coefficient (DAC) of sea water is an important parameter in ocean thermodynamics and biology, reflecting the absorption capability of sea water in different layers. In the Arctic Ocean, however, sea ice affects the radiance/irradiance measurements of upper ocean, which results in obvious errors in the DAC calculation. To better understand the impacts of sea ice on the ocean optics observations, a series ofin situ experiments were carried out in the summer of 2009 in the southern Beaufort Sea. Observational results show that the profiles of spectral diffuse attenuation coefficients of seawater near ice cover within upper surface of 50 m were not contaminated by the sea ice with a solar zenith angle of 55°, relative azimuth angle of 110°≤φ≤115° and horizontal distance between the sensors and ice edge of greater than 25 m. Based on geometric optics theory, the impact of ice cover could be avoided by adjusting the relative solar azimuth angle in a particular distance between the instrument and ice. Under an overcast sky, ice cover being 25 m away from sensors did not affect the profiles of spectral DACs within the upper 50 m either. Moreover, reli-able spectral DACs of seawater could be obtained with sensors completely covered by sea ice.

  13. Optimization of Dynamically Generated SQL Queries for Tiny-Huge, Huge-Tiny Problem

    Directory of Open Access Journals (Sweden)

    Arjun K Sirohi

    2013-03-01

    Full Text Available In most new commercial business software applications like Customer Relationship Management, the datais stored in the database layer which is usually a Relational Database Management System (RDBMS likeOracle, DB2 UDB or SQL Server. To access data from these databases, Structured Query Language (SQLqueries are used that are generated dynamically at run time based on defined business models and businessrules. One such business rule is visibility- the capability of the application to restrict data access based onthe role and responsibility of the user logged in to the application. This is generally achieved by appendingsecurity predicates in the form of sub-queries to the main query based on the roles and responsibility of theuser. In some cases, the outer query may be more restrictive while in other cases, the security predicatesmay be more restrictive. This often results in a dilemma for the cost-based optimizer (CBO of the backenddatabase whether to drive from the outer query or drive from the security predicate sub-queries. Thisdilemma is sometimes called the “Tiny-Huge, Huge-Tiny” problem and results in serious performancedegradation by way of increased response times on the application User Interface (UI. This paperprovides a case study of a new approach to vastly reduce this CBO dilemma by a combination of denormalizedcolumns and re-writing of the security predicates’ sub-queries at run-time, thereby levelling theouter and security sub-queries. This approach results in more stable execution plans in the database andmuch better performance of such SQLs, effectively leading to higher performance and scalability of theapplication.

  14. Impact of oceanic submesoscale coherent structures on marine top predators: new tools and challenges

    Science.gov (United States)

    Tew-Kai, E.; Sudre, J.; Gremillet, D.; Yahia, H.; Rossi, V.; Hernandez-Garcia, E.; López, C.; Marsac, F.; Weimerskirch, H.; Garçon, V.

    2011-12-01

    In recent years it appears that meso- and submesoscale features (fronts, eddies, filaments) in surface ocean flow have a crucial influence on marine ecosystems. Their dynamics partly control the foraging behaviour and the movements of marine top. One of the challenges in ecology is to define critical habitats and understand the rules of habitat selection. Recently new tools for detection of coherent structures at submesoscale open the way for new studies never investigated before in marine ecology. Through two examples we highlight novel research on the importance of submesoscale structures for the spatial distribution of marine top predators. We studied two seabird populations with contrasting characteristics: Frigatebirds in the Mozambique Channel, and Cape gannets in the Benguela upwelling off southern Africa. Frigatebirds are mainly offshore birds while Cape gannets do not venture beyond the continental shelf. For these two studies, we used products derived from remote sensing data, to describe submesoscale coherent structures (Mozambique Channel resulting from an intense mesoscale activity. By comparing seabird satellite positions with LCSs locations, we demonstrate that frigatebirds track precisely these structures in the Mozambique Channel, providing the first evidence that a top predator is able to track these FSLE ridges to locate food patches. Although many questions remain unanswered, this work remains a pioneering on this topic. Despite the interest of FSLE, they are limited to offshore areas due to altimetry products limitation on continental shelves. However, many seabirds operate in coastal areas undergoing stronger anthropogenic pressures, such as Cape gannets off South Africa. The Benguela system is characterized by an upwelling inhabited by numerous fronts and filaments that very likely have a strong impact on seabird spatial distribution, and it was not possible to implement FSLE in this area. Thus, we used a newly developed method based on the

  15. A reevaluation of the magnitude and impacts of anthropogenic atmospheric nitrogen inputs on the ocean

    Science.gov (United States)

    Jickells, T. D.; Buitenhuis, E.; Altieri, K.; Baker, A. R.; Capone, D.; Duce, R. A.; Dentener, F.; Fennel, K.; Kanakidou, M.; LaRoche, J.; Lee, K.; Liss, P.; Middelburg, J. J.; Moore, J. K.; Okin, G.; Oschlies, A.; Sarin, M.; Seitzinger, S.; Sharples, J.; Singh, A.; Suntharalingam, P.; Uematsu, M.; Zamora, L. M.

    2017-02-01

    We report a new synthesis of best estimates of the inputs of fixed nitrogen to the world ocean via atmospheric deposition and compare this to fluvial inputs and dinitrogen fixation. We evaluate the scale of human perturbation of these fluxes. Fluvial inputs dominate inputs to the continental shelf, and we estimate that about 75% of this fluvial nitrogen escapes from the shelf to the open ocean. Biological dinitrogen fixation is the main external source of nitrogen to the open ocean, i.e., beyond the continental shelf. Atmospheric deposition is the primary mechanism by which land-based nitrogen inputs, and hence human perturbations of the nitrogen cycle, reach the open ocean. We estimate that anthropogenic inputs are currently leading to an increase in overall ocean carbon sequestration of 0.4% (equivalent to an uptake of 0.15 Pg C yr-1 and less than the Duce et al. (2008) estimate). The resulting reduction in climate change forcing from this ocean CO2 uptake is offset to a small extent by an increase in ocean N2O emissions. We identify four important feedbacks in the ocean atmosphere nitrogen system that need to be better quantified to improve our understanding of the perturbation of ocean biogeochemistry by atmospheric nitrogen inputs. These feedbacks are recycling of (1) ammonia and (2) organic nitrogen from the ocean to the atmosphere and back, (3) the suppression of nitrogen fixation by increased nitrogen concentrations in surface waters from atmospheric deposition, and (4) increased loss of nitrogen from the ocean by denitrification due to increased productivity stimulated by atmospheric inputs.

  16. The impact of Southern Ocean residual upwelling on atmospheric CO2 on centennial and millennial timescales

    Science.gov (United States)

    Lauderdale, Jonathan M.; Williams, Richard G.; Munday, David R.; Marshall, David P.

    2017-03-01

    The Southern Ocean plays a pivotal role in climate change by exchanging heat and carbon, and provides the primary window for the global deep ocean to communicate with the atmosphere. There has been a widespread focus on explaining atmospheric CO2 changes in terms of changes in wind forcing in the Southern Ocean. Here, we develop a dynamically-motivated metric, the residual upwelling, that measures the primary effect of Southern Ocean dynamics on atmospheric CO2 on centennial to millennial timescales by determining the communication with the deep ocean. The metric encapsulates the combined, net effect of winds and air-sea buoyancy forcing on both the upper and lower overturning cells, which have been invoked as explaining atmospheric CO2 changes for the present day and glacial-interglacial changes. The skill of the metric is assessed by employing suites of idealized ocean model experiments, including parameterized and explicitly simulated eddies, with online biogeochemistry and integrated for 10,000 years to equilibrium. Increased residual upwelling drives elevated atmospheric CO2 at a rate of typically 1-1.5 parts per million/106 m3 s-1 by enhancing the communication between the atmosphere and deep ocean. This metric can be used to interpret the long-term effect of Southern Ocean dynamics on the natural carbon cycle and atmospheric CO2, alongside other metrics, such as involving the proportion of preformed nutrients and the extent of sea ice cover.

  17. Improvements of Satellite-derived High Impact Weather Rainfall over Global Oceans and Implications for NWP models

    Science.gov (United States)

    Klepp, C.; Bakan, S.; Graßl, H.

    2003-04-01

    High impact weather precipitation fields of cyclone case studies over global ocean precipitation centers are presented using the technology of the HOAPS-II (Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite data) data base. All case studies are compared to the Global Precipitation Climatology Project (GPCP) data set and to ECMWF numerical weather prediction output. A detailed in situ rainfall validation is presented using voluntary observing ships (VOS). Results show that only the HOAPS data base recognizes the development of frequently occurring mesoscale cyclones and gales over the North Atlantic and North Pacific ocean as observed by VOS data. In case of landfall these events cause high socio-economic impact to the society. GPCP and the ECMWF model are frequently missing these mesoscale storms. For example, the gale Lothar known as the `Christmas Storm', could have been nowcasted using the HOAPS data base. HOAPS probably allows to give high impact weather warning in the near future on a near real time basis.

  18. Studying the impact of changes in the Arctic outflow by using a coupled ice-ocean model

    Science.gov (United States)

    Pasha Karami, Mehdi; Myers, Paul G.; Tremblay, Bruno; de Vernal, Anne

    2016-04-01

    The export of cold and fresh water from the Arctic Ocean into the North Atlantic Ocean happens mainly through the Fram Strait and the Canadian Arctic Archipelago (CAA). The magnitude of the Arctic outflow and its distribution between the Fram Strait and CAA has been suggested to change in the future. Such changes might affect the Arctic sea ice, and possibly alter the location and the intensity of dense water formation and, therefore, the Atlantic meridional overturning circulation (AMOC). One factor controlling the Arctic outflow is the wind forcing. Another factor is the Atlantic inflow to the Arctic, which also depends on the wind forcing and is linked to the intermediate circulation within the Arctic. There is also synergy between all the Arctic gateways. Here we explore the changes in CAA and Fram outflows accompanying the Arctic dipole mode as a plausible climatic state in future, and their corresponding impacts on the Arctic and Atlantic Oceans. For this purpose, a regional configuration of the coupled ice-ocean model, NEMO (Nucleus for European Modelling of the Ocean model) version 3.4 is used for a set of sensitivity experiments. For the surface boundary condition, composites of atmospheric variables associated with the two phases of Arctic dipole mode were calculated from the COREII data. To better understand what controls the distribution of Arctic outflow between the Fram Strait and CAA and to exclude their synergism, we launch similar experiments with a closed CAA. This will allow us to better understand the impacts caused by the modulation of the wind forcing versus changes in the gateway flows. Our results will also have implications for the paleo-studies of the Arctic.

  19. The impact of Southern Ocean residual upwelling on atmospheric CO2 on centennial and millennial timescales

    Science.gov (United States)

    Lauderdale, Jonathan M.; Williams, Richard G.; Munday, David R.; Marshall, David P.

    2016-05-01

    This study examines the variability of the power dissipation index (PDI) for different regions of the East Asia region during the period 1960-2013. The annual PDI (APDI) in the region is calculated as the sum of the PDI, defined as the cube of the maximum sustained wind speed at landfall of each tropical cyclone (TC) making landfall at that region. Upward and downward trends in APDI are found in the northern and southern parts of East Asia respectively, suggesting a possible northward shift in TC landfall locations. Interdecadal variations of the APDI can also be found in some regions. The APDI in various regions show a close relation with the PDI distribution over the western North Pacific (WNP) with three characteristic patterns. The ENSO and basin-wide mode represents the PDI patterns associated with ENSO events and the overall PDI over the WNP. The east-west dipole mode and the north-south dipole mode denote the east-west and north-south shifts of PDI respectively. Based on the steering flow (average winds within the 850-300 hPa layer) near the East Asian coast, a three-cell model for TC landfall in East Asia is proposed, which corresponds to three major modes of the atmospheric circulation in the WNP. Each of these modes shows an anomalous circulation located east of Taiwan, east of Japan and the South China Sea, respectively and each of which has a significant impact on the APDI in some regions along the coast of East Asia. A northward shift in the APDI along the East Asian coast is identified in the period 1997-2013 as a result of the change in steering flow pattern, northward shift in TC genesis location and weaker vertical wind shear over the ocean near the coastal areas.

  20. Monitoring the impacts of Ocean Acidification on coral reef bioerosion: challenges, methods, recommendations

    Science.gov (United States)

    Enochs, I.; Manzello, D.; Carlton, R.

    2013-05-01

    Coral reef habitats exist as a dynamic balance between the additive process of calcification and the destructive effects of erosion. A disruption to either the positive or negative side of the coral reef carbonate budget can push a reef system towards rapid collapse. It is well understood that Ocean Acidification (OA) may impair calcification and emerging experimental evidence suggests that it will likely increase the erosive potential of a diverse suite of bioeroding taxa. This may lead to previously unforeseen scenarios where reef framework degradation occurs at a faster pace than that predicted by more simplistic models, resulting from the multifaceted impacts of both slower coral growth and enhanced rates of habitat erosion. As such, it is of paramount importance that monitoring plans tasked with assessing reef resilience to climate change and OA incorporate methods for quantifying bioerosion. This is a complex undertaking as reef ecosystem bioerosion is the result of numerous behaviors, employed by diverse flora and fauna, operating at vastly different scales. Furthermore, these erosive processes are highly variable, dependent on seasonal fluctuations and differing between reef regions, species, individuals, and even the physical characteristics of the substrates acted upon. The strengths and weaknesses of existing bioerosion monitoring methodologies are discussed, ranging from quantification of single species erosion rates to multi-phyletic census-based approaches. Traditional techniques involving the weight change of carbonate blocks are compared alongside more modern methodologies such as micro computed tomography. Finally, recommendations are made for a comprehensive monitoring strategy, incorporating multiple methodologies in a time and cost-effective manner.

  1. Explicit representation and parametrised impacts of under ice shelf seas in the z∗ coordinate ocean model NEMO 3.6

    Directory of Open Access Journals (Sweden)

    P. Mathiot

    2017-07-01

    Full Text Available Ice-shelf–ocean interactions are a major source of freshwater on the Antarctic continental shelf and have a strong impact on ocean properties, ocean circulation and sea ice. However, climate models based on the ocean–sea ice model NEMO (Nucleus for European Modelling of the Ocean currently do not include these interactions in any detail. The capability of explicitly simulating the circulation beneath ice shelves is introduced in the non-linear free surface model NEMO. Its implementation into the NEMO framework and its assessment in an idealised and realistic circum-Antarctic configuration is described in this study. Compared with the current prescription of ice shelf melting (i.e. at the surface, inclusion of open sub-ice-shelf cavities leads to a decrease in sea ice thickness along the coast, a weakening of the ocean stratification on the shelf, a decrease in salinity of high-salinity shelf water on the Ross and Weddell sea shelves and an increase in the strength of the gyres that circulate within the over-deepened basins on the West Antarctic continental shelf. Mimicking the overturning circulation under the ice shelves by introducing a prescribed meltwater flux over the depth range of the ice shelf base, rather than at the surface, is also assessed. It yields similar improvements in the simulated ocean properties and circulation over the Antarctic continental shelf to those from the explicit ice shelf cavity representation. With the ice shelf cavities opened, the widely used three equation ice shelf melting formulation, which enables an interactive computation of melting, is tested. Comparison with observational estimates of ice shelf melting indicates realistic results for most ice shelves. However, melting rates for the Amery, Getz and George VI ice shelves are considerably overestimated.

  2. Impact of biomass burning on ocean water quality in Southeast Asia through atmospheric deposition: field observations

    Science.gov (United States)

    Sundarambal, P.; Balasubramanian, R.; Tkalich, P.; He, J.

    2010-12-01

    Atmospheric nutrients have recently gained considerable attention as a significant additional source of new nitrogen (N) and phosphorus (P) loading to the ocean. The effect of atmospheric macro nutrients on marine productivity depends on the biological availability of both inorganic and organic N and P forms. During October 2006, the regional smoke haze episodes in Southeast Asia (SEA) that resulted from uncontrolled forest and peat fires in Sumatra and Borneo blanketed large parts of the region. In this work, we determined the chemical composition of nutrients in aerosols and rainwater during hazy and non-hazy days to assess their impacts on aquatic ecosystem in SEA for the first time. We compared atmospheric dry and wet deposition of N and P species in aerosol and rainwater in Singapore between hazy and non-hazy days. Air mass back trajectories showed that large-scale forest and peat fires in Sumatra and Kalimantan were a significant source of atmospheric nutrients to aquatic environments in Singapore and SEA region on hazy days. It was observed that the average concentrations of nutrients increased approximately by a factor of 3 to 8 on hazy days when compared with non-hazy days. The estimated mean dry and wet atmospheric fluxes (mg/m2/day) of total nitrogen (TN) were 12.72 ± 2.12 and 2.49 ± 1.29 during non-hazy days and 132.86 ± 38.39 and 29.43 ± 10.75 during hazy days; the uncertainty estimates are represented as 1 standard deviation (1σ) here and throughout the text. The estimated mean dry and wet deposition fluxes (mg/m2/day) of total phosphorous (TP) were 0.82 ± 0.23 and 0.13 ± 0.03 for non-hazy days and 7.89 ± 0.80 and 1.56 ± 0.65 for hazy days. The occurrences of higher concentrations of nutrients from atmospheric deposition during smoke haze episodes may have adverse consequences on receiving aquatic ecosystems with cascading impacts on water quality.

  3. Impact of synthetic abyssal hill roughness on resolved motions in numerical global ocean tide models

    Science.gov (United States)

    Timko, Patrick G.; Arbic, Brian K.; Goff, John A.; Ansong, Joseph K.; Smith, Walter H. F.; Melet, Angélique; Wallcraft, Alan J.

    2017-04-01

    Global models of seafloor topography have incomplete and inconsistent resolution at horizontal wavelengths less than about 10-20 km, notably due to their inability to resolve abyssal hills in areas unsurveyed by ships (that is, about 90% of the global seafloor). We investigated the impact of this unresolved bottom roughness on global numerical simulations of the HYbrid Coordinate Ocean Model (HYCOM) that are forced exclusively by the M2 and K1 internal tides. Simulations were run with horizontal resolutions of 0.08° and 0.04°, 10 isopycnal layers in the vertical direction, and two versions of bathymetry: one derived from the SRTM30_PLUS global bathymetry model, and one merging SRTM30_PLUS with a synthetic fractal surface simulating the expected roughness of abyssal hills in the 2-10 km horizontal wavelength band. Power spectra of the two bathymetry versions diverge at wavenumbers of order 4*10-4 radians/m and higher (wavelengths of order 15 km and lower), with more pronounced differences evident on the 0.04° grid, as the 0.08° grid has a more limited ability to capture bathymetric details at the abyssal hill scale. Our simulations show an increase in the amount of kinetic and potential energy in higher vertical modes, especially in the 0.04° simulation, when the synthetic roughness is added. Adding abyssal hills to the 0.04° simulation increases the M2 kinetic energy for modes 3 and 4 by 12-18% and the potential energy by 5 - 15%. Adding abyssal hills to the 0.08° simulation yields a reduced, though still measurable, impact on simulated baroclinic tidal energies. Baroclinic tidal energy conversion rates increase by up to 16% in regions of high roughness, and by up to 3.4% in the global integral. The 3.4% increase in global conversion rates in the numerical simulations is less than the 10% increase computed from a linear analysis on a 0.008° grid because of the resolution limitations of the numerical simulations. The results obtained in the present study

  4. Salinity Impacts of the Indian Ocean Tsunami on Groundwater and Local Water Supply - Lessons Learned from Integrated Research and Support to Remediation

    Science.gov (United States)

    Villholth, K. G.; Vithanage, M.; Goswami, R. R.; Jeyakumar, P.; Manamperi, S.

    2008-05-01

    Huge devastation and human tragedy followed the Dec. 26, 2004 tsunami in the Indian Ocean. Sri Lanka was one of the hardest hit, with an estimated death toll of 31,000 people. Of immediate concern after the catastrophic event was the destruction of the traditional water supply system based on private shallow open wells in the rural and semi-urban areas of the coastal belt. Practically all wells within the reach of the flooding waves (up to a couple of km's inland) were inundated and filled with saltwater and contaminated with solid matter, pathogens, and other unknown chemicals, leaving the water unfit for drinking. It was estimated early on that the tsunami waves contaminated more than 50,000 wells in coastal Sri Lanka. This initial figure is highly underestimated, however, as the present research found that the total number of affected wells was more in the range of half a million. The total number of people affected by disruption in well water supply could have been in the range of 2.5 million. The present paper summarizes the outcomes and experiences gained from comprehensive research, collaboration and support work in eastern Sri Lanka related to the impact of the tsunami on groundwater, particularly with respect to salinity, and the destruction and rehabilitation of the local water supply systems. The area in focus was characterized by sandy, shallow, unconfined aquifers bounded by seawater and inland brackish lagoons and representative of the hydro-geological, climatic, demographic and land use setting on the east coast of Sri Lanka. Field monitoring investigations in shallow domestic wells showed that the salinity imprint of the tsunami on groundwater and water supply were detectable up to 1.5 years after the event. Field results also indicated that the well cleaning efforts which were quickly resorted to as part of the emergency and remediation activities were not efficient in terms of reducing salinity impacts. Rainfall was the most significant and

  5. Seaweed fails to prevent ocean acidification impact on foraminifera along a shallow-water CO2 gradient.

    Science.gov (United States)

    Pettit, Laura R; Smart, Christopher W; Hart, Malcolm B; Milazzo, Marco; Hall-Spencer, Jason M

    2015-05-01

    Ocean acidification causes biodiversity loss, alters ecosystems, and may impact food security, as shells of small organisms dissolve easily in corrosive waters. There is a suggestion that photosynthetic organisms could mitigate ocean acidification on a local scale, through seagrass protection or seaweed cultivation, as net ecosystem organic production raises the saturation state of calcium carbonate making seawater less corrosive. Here, we used a natural gradient in calcium carbonate saturation, caused by shallow-water CO2 seeps in the Mediterranean Sea, to assess whether seaweed that is resistant to acidification (Padina pavonica) could prevent adverse effects of acidification on epiphytic foraminifera. We found a reduction in the number of species of foraminifera as calcium carbonate saturation state fell and that the assemblage shifted from one dominated by calcareous species at reference sites (pH ∼8.19) to one dominated by agglutinated foraminifera at elevated levels of CO2 (pH ∼7.71). It is expected that ocean acidification will result in changes in foraminiferal assemblage composition and agglutinated forms may become more prevalent. Although Padina did not prevent adverse effects of ocean acidification, high biomass stands of seagrass or seaweed farms might be more successful in protecting epiphytic foraminifera.

  6. The Impact of the Assimilation of Aquarius Sea Surface Salinity Data in the GEOS Ocean Data Assimilation System

    Science.gov (United States)

    Vernieres, Guillaume Rene Jean; Kovach, Robin M.; Keppenne, Christian L.; Akella, Santharam; Brucker, Ludovic; Dinnat, Emmanuel Phillippe

    2014-01-01

    Ocean salinity and temperature differences drive thermohaline circulations. These properties also play a key role in the ocean-atmosphere coupling. With the availability of L-band space-borne observations, it becomes possible to provide global scale sea surface salinity (SSS) distribution. This study analyzes globally the along-track (Level 2) Aquarius SSS retrievals obtained using both passive and active L-band observations. Aquarius alongtrack retrieved SSS are assimilated into the ocean data assimilation component of Version 5 of the Goddard Earth Observing System (GEOS-5) assimilation and forecast model. We present a methodology to correct the large biases and errors apparent in Version 2.0 of the Aquarius SSS retrieval algorithm and map the observed Aquarius SSS retrieval into the ocean models bulk salinity in the topmost layer. The impact of the assimilation of the corrected SSS on the salinity analysis is evaluated by comparisons with insitu salinity observations from Argo. The results show a significant reduction of the global biases and RMS of observations-minus-forecast differences at in-situ locations. The most striking results are found in the tropics and southern latitudes. Our results highlight the complementary role and problems that arise during the assimilation of salinity information from in-situ (Argo) and space-borne surface (SSS) observations

  7. The Impact of Oceanic Heat Transport on the Atmospheric Circulation: a Thermodynamic Perspective

    CERN Document Server

    Schröder, Alexander; Lunkeit, Frank

    2014-01-01

    The present study investigates how global thermodynamic properties of the climate system are affected by the changes in the intensity of the imposed oceanic heat transport in an atmospheric general circulation model in aqua-planet configuration. Increasing the poleward oceanic heat transport results in an overall increase in the surface temperature and a decrease in the equator-to-pole surface temperature difference as a result of the ice-albedo feedback. Following the classical ansatz by Stone, the atmospheric heat transport changes in such a way that the total poleward heat transport remains almost unchanged. We also find that the efficiency of the climate machine, the intensity of the Lorenz energy cycle and the material entropy production of the system decline with increased oceanic heat transport which suggests that the climate system becomes less efficient and turns into a state of reduced entropy production, as the enhanced oceanic transport performs a stronger large-scale mixing between geophysical fl...

  8. Ocean acidification impacts on black sea bass and scup embryos, responses of finfish in laboratory experiments

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Black sea bass (Centropristis striata) and scup (Stenotomus chrysops) compose important recreational and commercial fisheries along the United States Atlantic coast....

  9. Ocean acidification and temperature increase impact mussel shell shape and thickness: problematic for protection?

    National Research Council Canada - National Science Library

    Fitzer, Susan C; Vittert, Liberty; Bowman, Adrian; Kamenos, Nicholas A; Phoenix, Vernon R; Cusack, Maggie

    2015-01-01

    ...‐saturated carbonate environment. Resultant reduced calcification and growth, and subsequent dissolution of exoskeletons, would raise concerns over the ability of the shell to provide protection for the marine organism under ocean...

  10. Impacts of interruption of the Agulhas leakage on the tropical Atlantic in coupled ocean-atmosphere simulations

    Energy Technology Data Exchange (ETDEWEB)

    Haarsma, Reindert J.; Drijfhout, Sybren; Hazeleger, Wilco; Severijns, Camiel [Royal Netherlands Meteorological Institute (KNMI), P.O. Box 201, De Bilt (Netherlands); Campos, Edmo J.D. [University of Sao Paulo (IOUSP), Oceanographic Institute, Sao Paulo (Brazil)

    2011-03-15

    In this paper we use a coupled ocean-atmosphere model to investigate the impact of the interruption of Agulhas leakage of Indian ocean water on the tropical Atlantic, a region where strong coupled ocean-atmosphere interactions occur. The effect of a shut down of leakage of Indian ocean water is isolated from the effect of a collapse of the MOC. In our experiments, the ocean model is forced with boundary conditions in the southeastern corner of the domain that correspond to no interocean exchange of Indian ocean water into the Atlantic. The southern boundary condition is taken from the Levitus data and ensures an MOC in the Atlantic. Within this configuration, instead of warm and salty Indian ocean water temperature (cold) and salinity (fresh) anomalies of southern ocean origin propagate into the South Atlantic and eventually reach the equatorial region, mainly in the thermocline. This set up mimics the closure of the ''warm water path'' in favor of the ''cold water path''. As part of the atmospheric response, there is a northward shift of the intertropical convergence zone (ITCZ). The changes in trade winds lead to reduced Ekman pumping in the equatorial region. This leads to a freshening and warming of the surface waters along the equator. Especially in the Cold Tongue region, the cold and fresh subsurface anomalies do not reach the surface due to the reduced upwelling. The anomaly signals are transported by the equatorial undercurrent and spread away from the equator within the thermocline. Part of the anomaly eventually reaches the Tropical North Atlantic, where it affects the Guinea Dome. Surprisingly, the main effect at the surface is small on the equator and relatively large at the Guinea Dome. In the atmosphere, the northward shift of the ITCZ is associated with a band of negative precipitation anomalies and higher salinities over the Tropical South Atlantic. An important implication of these results is that the

  11. Impact of glacial/interglacial sea level change on the ocean nitrogen cycle

    Science.gov (United States)

    Ren, Haojia; Sigman, Daniel M.; Martínez-García, Alfredo; Anderson, Robert F.; Chen, Min-Te; Ravelo, Ana Christina; Straub, Marietta; Wong, George T. F.; Haug, Gerald H.

    2017-08-01

    The continental shelves are the most biologically dynamic regions of the ocean, and they are extensive worldwide, especially in the western North Pacific. Their area has varied dramatically over the glacial/interglacial cycles of the last million years, but the effects of this variation on ocean biological and chemical processes remain poorly understood. Conversion of nitrate to N2 by denitrification in sediments accounts for half or more of the removal of biologically available nitrogen (“fixed N”) from the ocean. The emergence of continental shelves during ice ages and their flooding during interglacials have been hypothesized to drive changes in sedimentary denitrification. Denitrification leads to the occurrence of phosphorus-bearing, N-depleted surface waters, which encourages N2 fixation, the dominant N input to the ocean. An 860,000-y record of foraminifera shell-bound N isotopes from the South China Sea indicates that N2 fixation covaried with sea level. The N2 fixation changes are best explained as a response to changes in regional excess phosphorus supply due to sea level-driven variations in shallow sediment denitrification associated with the cyclic drowning and emergence of the continental shelves. This hypothesis is consistent with a glacial ocean that hosted globally lower rates of fixed N input and loss and a longer residence time for oceanic fixed N—a “sluggish” ocean N budget during ice ages. In addition, this work provides a clear sign of sea level-driven glacial/interglacial oscillations in biogeochemical fluxes at and near the ocean margins, with implications for coastal organisms and ecosystems.

  12. Impact of glacial/interglacial sea level change on the ocean nitrogen cycle.

    Science.gov (United States)

    Ren, Haojia; Sigman, Daniel M; Martínez-García, Alfredo; Anderson, Robert F; Chen, Min-Te; Ravelo, Ana Christina; Straub, Marietta; Wong, George T F; Haug, Gerald H

    2017-08-15

    The continental shelves are the most biologically dynamic regions of the ocean, and they are extensive worldwide, especially in the western North Pacific. Their area has varied dramatically over the glacial/interglacial cycles of the last million years, but the effects of this variation on ocean biological and chemical processes remain poorly understood. Conversion of nitrate to N2 by denitrification in sediments accounts for half or more of the removal of biologically available nitrogen ("fixed N") from the ocean. The emergence of continental shelves during ice ages and their flooding during interglacials have been hypothesized to drive changes in sedimentary denitrification. Denitrification leads to the occurrence of phosphorus-bearing, N-depleted surface waters, which encourages N2 fixation, the dominant N input to the ocean. An 860,000-y record of foraminifera shell-bound N isotopes from the South China Sea indicates that N2 fixation covaried with sea level. The N2 fixation changes are best explained as a response to changes in regional excess phosphorus supply due to sea level-driven variations in shallow sediment denitrification associated with the cyclic drowning and emergence of the continental shelves. This hypothesis is consistent with a glacial ocean that hosted globally lower rates of fixed N input and loss and a longer residence time for oceanic fixed N-a "sluggish" ocean N budget during ice ages. In addition, this work provides a clear sign of sea level-driven glacial/interglacial oscillations in biogeochemical fluxes at and near the ocean margins, with implications for coastal organisms and ecosystems.

  13. Scarless surgery for a huge liver cyst: A case report.

    Science.gov (United States)

    Kashiwagi, Hiroyuki; Kawachi, Jun; Isogai, Naoko; Ishii, Masanori; Miyake, Katsunori; Shimoyama, Rai; Fukai, Ryota; Ogino, Hidemitsu

    2017-09-01

    Symptomatic or complicated liver cysts sometimes require surgical intervention and laparoscopic fenestration is the definitive treatment for these cysts. We performed minimally invasive surgery, hybrid natural orifice transluminal endoscopic surgery (NOTES) without scarring, for a huge liver cyst. An 82-year-old female presented with a month-long history of right upper abdominal pain. We diagnosed her condition as a huge liver cyst by morphological studies. She denied any history of abdominal trauma. Her serum CEA and CA19-9 were normal and a serum echinococcus serologic test was negative. Laparoscopic fenestration, using a hybrid NOTES procedure via a transvaginal approach, was performed for a huge liver cyst because we anticipated difficulty with an umbilical approach, such as single incision laparoscopic surgery (SILS). Her post-operative course was uneventful and she was discharged from our hospital three days after surgery. Pain killers were not required during and after hospitalization. No recurrence of the liver cyst or bulging was detected by clinical examination two years later. A recent trend of laparoscopic procedure has been towards minimizing the number of incisions to achieve less invasiveness. This hybrid NOTES, with a small incision for abdominal access, along with vaginal access, enabled painless operation for a huge liver cyst. We report a huge liver cyst treated by hybrid NOTES. This approach is safe, less invasive, and may be the first choice for a huge liver cyst. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Summary of Results from Analyses of Deposits of the Deep-Ocean Impact of the Eltanin Asteroid

    Science.gov (United States)

    Kyte, Frank T.; Kuhn, Gerhard; Gersonde, Rainer

    2005-01-01

    Deposits of the late Pliocene (2.5 Ma) Eltanin impact are unique in the known geological record. The only known example of a km-sized asteroid to impact a deep-ocean (5 km) basin, is the most meterorite-rich locality known. This was discovered as an Ir anomaly in sediments from three cores collected in 1965 by the USNS Eltanin. These cores contained mm-sized shock-melted asteroid materials and unmelted meteorite fragments. Mineral chemistry of meteorite fragments, and siderophole concentrations in melt rocks, indicate that the parent asteroid was a low-metal (4\\%) mesosiderite. A geological exploration of the impact in 1995 by Polarstern expedition ANT-XIV4 was near the Freeden Seamounts (57.3S, 90.5 W), and successfully collected three cores with impact deposits. Analyses showed that sediments as old as Eocene were eroded by the impact disturbance and redeposited in three distinct units. The lowermost is a chaotic assemblage of sediment fragments up to 50 cm in size. Above this is a laminated sand-rich unit that deposited as a turbulent flow, and this is overlain by a more fine-grained deposit of silts and clays that settled from a cloud of sediment suspended in the water column. Meteoritic ejecta particles were concentrated near the base of the uppermost unit, where coarse ejecta caught up with the disturbed sediment. Here we will present results from a new suite of cores collected on Polarstern expedition ANT-XVIIU5a. In 2001, the Polarstern returned to the impact area and explored a region of 80,000 sq-km., collecting at least 16 sediment cores with meteoritic ejecta. The known strewn field extends over a region 660 by 200 km. The meteoritic ejecta is most concentrated in cores on the Freeden seamounts, and in the basins to the north, where the amount of meteoritic material deposited on the ocean floor was as much as 3 g/sq-cm. These concentrations drop off to the north and the east to levels as low as approximately 0.1 g/sq-cm. We were unable to sample the

  15. Impact of Human Activities on the Flux of Terrestrial Sediments to the Coastal Ocean Offshore Northeastern Taiwan

    Science.gov (United States)

    Chen, Tzu-Ting; Su, Chih-Chieh; Liu, Char-Shine; Huang, Chen-fen; Hsu, Ho-Han

    2016-04-01

    Land to ocean material fluxes play an important role in global biogeochemical cycles. Changes in sediment supply not only greatly influence the benthic environment of coastal estuaries but also might threaten human lives and properties. Artificial constructions, such as roads and reservoirs, could affect natural environments and change sediment discharges. Due to its high precipitation, steep slopes, small basin areas, and frequent flood events, Taiwan is characterized with rapid erosion rates and extremely high sediment yields. In northeastern Taiwan, the high mean annual precipitation lead to large amounts of sediments being delivered into the ocean through the Lanyang River. Since 1957, the road constructions along the Lanyang River greatly increased terrestrial sediment flux to the coastal ocean. However, its influence on offshore area is not yet clear. In this study, we combine geochemical and geophysical data to evaluate the modern sedimentation history and discuss the impact of human activities on the Ilan Shelf. The preliminary results of grain size and 210Pb analyses from five sediment cores taken from the upper South Guishan Channel indicate the existence of local differences on hydrodynamic conditions. In addition, we also applied similarity index which based on a quantitative analysis algorithm to the chirp sonar data on echo character classification and calculated continuous grain size variations of the seafloor surface sediments. By combining all geochemical and geophysical data, we may reconstruct the holistic picture of human impacts on offshore environment from sedimentology records.

  16. Diel vertical migration: Ecological controls and impacts on the biological pump in a one-dimensional ocean model

    Science.gov (United States)

    Bianchi, Daniele; Stock, Charles; Galbraith, Eric D.; Sarmiento, Jorge L.

    2013-04-01

    vertical migration (DVM) of zooplankton and micronekton is widespread in the ocean and forms a fundamental component of the biological pump, but is generally overlooked in global models of the Earth system. We develop a parameterization of DVM in the ocean and integrate it with a size-structured NPZD model. We assess the model's ability to recreate ecosystem and DVM patterns at three well-observed Pacific sites, ALOHA, K2, and EQPAC, and use it to estimate the impact of DVM on marine ecosystems and biogeochemical dynamics. Our model includes the following: (1) a representation of migration dynamics in response to food availability and light intensity; (2) a representation of the digestive and metabolic processes that decouple zooplankton feeding from excretion, egestion, and respiration; and (3) a light-dependent parameterization of visual predation on zooplankton. The model captures the first-order patterns in plankton biomass and productivity across the biomes, including the biomass of migrating organisms. We estimate that realistic migratory populations sustain active fluxes to the mesopelagic zone equivalent to between 15% and 40% of the particle export and contribute up to half of the total respiration within the layers affected by migration. The localized active transport has important consequences for the cycling of oxygen, nutrients, and carbon. We highlight the importance of decoupling zooplankton feeding and respiration and excretion with depth for capturing the impact of migration on the redistribution of carbon and nutrients in the upper ocean.

  17. Ocean impact on decadal Atlantic climate variability revealed by sea-level observations.

    Science.gov (United States)

    McCarthy, Gerard D; Haigh, Ivan D; Hirschi, Joël J-M; Grist, Jeremy P; Smeed, David A

    2015-05-28

    Decadal variability is a notable feature of the Atlantic Ocean and the climate of the regions it influences. Prominently, this is manifested in the Atlantic Multidecadal Oscillation (AMO) in sea surface temperatures. Positive (negative) phases of the AMO coincide with warmer (colder) North Atlantic sea surface temperatures. The AMO is linked with decadal climate fluctuations, such as Indian and Sahel rainfall, European summer precipitation, Atlantic hurricanes and variations in global temperatures. It is widely believed that ocean circulation drives the phase changes of the AMO by controlling ocean heat content. However, there are no direct observations of ocean circulation of sufficient length to support this, leading to questions about whether the AMO is controlled from another source. Here we provide observational evidence of the widely hypothesized link between ocean circulation and the AMO. We take a new approach, using sea level along the east coast of the United States to estimate ocean circulation on decadal timescales. We show that ocean circulation responds to the first mode of Atlantic atmospheric forcing, the North Atlantic Oscillation, through circulation changes between the subtropical and subpolar gyres--the intergyre region. These circulation changes affect the decadal evolution of North Atlantic heat content and, consequently, the phases of the AMO. The Atlantic overturning circulation is declining and the AMO is moving to a negative phase. This may offer a brief respite from the persistent rise of global temperatures, but in the coupled system we describe, there are compensating effects. In this case, the negative AMO is associated with a continued acceleration of sea-level rise along the northeast coast of the United States.

  18. Changes in intensity of the regional Hadley cell in Indian Ocean and its impacts on surrounding regions

    Science.gov (United States)

    Freitas, Ana Carolina Vasques; Aímola, Luis; Ambrizzi, Tércio; de Oliveira, Cristiano Prestrelo

    2016-09-01

    The impacts of changes in the intensity of the regional Hadley Cell (HC) in the Indian Ocean (HCIO) on its surrounding regions are investigated during the period 1979-2013. A strengthening of the HCIO and the Indian monsoon (IM) is found during austral winter (JJA) and spring (SON) seasons. This is associated with the sea surface temperature (SST) anomalies in the Pacific and Indian Ocean. A La Niña signal started to form in JJA over the equatorial Pacific region, and in SON, it was completely developed. Significant positive SST anomalies are seen over the western Pacific and western Indian Ocean around 10°S in JJA, associated with positive temperature anomalies in the south of China, in the north of the Maritime Continent, and in the southeastern coast of Africa. In SON, they are observed over the western Pacific and eastern Indian Ocean around the equator, associated with positive temperature anomalies observed on a great part of the Maritime Continent and southeastern Atlantic Ocean. Positive rainfall anomalies are seen mainly over the south of India, south of China, Maritime Continent, and eastern coast of Australia. In SON, the connection monsoon-ENSO-Hadley is stronger, because of a series of positive feedbacks that reinforce the initial connection. SST gradients explain much of the variability in the intensity of the HCIO and, especially, of the IM. However, other factors also seem to come into play in determining the changes of the HCIO intensity, whereas the SST changes have a dominant influence on the IM.

  19. Impact of Ocean Acidification on Fluxes of non-CO2 Climate-Active Species: Report from the GESAMP WG38 workshop

    Science.gov (United States)

    Suntharalingam, Parvadha; Gehlen, Marion; Hopkins, Frances; Duce, Robert; Jickells, Tim; Gesamp WG38 Workshop, Participants

    2017-04-01

    Most investigations of the impact of ocean acidification (OA) have focused on changes in oceanic uptake of anthropogenic CO2, the resulting shifts in carbonate chemical equilibria, and the consequences for marine calcifying organisms. Little attention has been paid to the direct impacts of OA on the ocean sources of a range of other gaseous and aerosol species that are influential in regulating radiative forcing, atmospheric oxidising capacity and atmospheric chemistry. The oceanic processes governing emissions of these species are frequently sensitive to the changes in pH and ocean pCO2 accompanying ocean acidification. Such processes include, for example, metabolic rates of microbial activity, levels of surface primary production, ecosystem composition, and photo-chemical and microbially mediated production/loss pathways for individual species. The direct and indirect influences of these factors on oceanic fluxes of non-CO2 trace-gases and aerosols, and the subsequent feedbacks to climate remain highly uncertain. To address these issues UN/GESAMP Working Group 38, The Atmospheric Input of Chemicals to the Ocean, convened a workshop on this topic at the University of East Anglia in February, 2017. The goals of this workshop are to review and synthesize the current science on the direct impacts of ocean acidification on marine emissions to the atmosphere of key species important for climate, and atmospheric chemistry; and to identify the primary needs for new research to improve process understanding and to quantify the impact of ocean acidification on these marine fluxes (i.e., provide recommendations on the specific laboratory process studies, field measurements and model analyses needed to support targeted research activities on this topic). The results, conclusions, and recommendations of this workshop will be presented.

  20. Acute physiological impacts of CO{sub 2} ocean sequestration on marine animals

    Energy Technology Data Exchange (ETDEWEB)

    Ishimatsu, A.; Hayashi, M.; Lee, K.S.; Murata, K.; Kumagai, E. [Nagasaki Univ., Nagasaki (Japan). Marine Research Inst.; Kikkawa, T. [Marine Ecology Research Inst., Chiba (Japan). Central Laboratory; Kita, J. [Research Inst. of Innovative Technology for the Earth, Kyoto (Japan)

    2005-07-01

    The biological impacts of ocean carbon dioxide (CO{sub 2}) sequestration must be carefully considered before it is implemented as a mitigation strategy. This paper presented details of a study investigating the effects of high CO{sub 2} concentrations on marine fish, lobster, and octopus. The influence of water temperature on the physiological effects of CO{sub 2} was also discussed. In the first part of the study, eggs and larvae of red seabream were exposed to both CO{sub 2} and HCI-acidified seawater at identical pH levels. Seabream in the CO{sub 2} group showed a much higher mortality rate than fish in the HCI group. Other tests showed that Japanese Flounder died after complete recovery of pH in seawater equilibrated with 5 per cent CO{sub 2}. Cardiac output was rapidly depressed in Yellowtail fish without significant changes in blood oxygen concentrations. Lower temperatures resulted in higher mortality and delayed pH recovery during hypercapnia in all fish. Western rock lobsters were the most tolerant to CO{sub 2} among all species tested. The recovery of hemolymph pH was complete at exposure to CO{sub 2} concentrations of 1 per cent. Changes in hemolymph bicarbonate concentrations indicated that acid-based regulatory mechanisms differed between fish and lobsters. Mortality rates for octopus were significant at CO{sub 2} concentrations of 1 per cent. The results of all tests showed that aquatic animals are more susceptible to increases in ambient CO{sub 2} levels than terrestrial animals. It was concluded that even slight elevations in CO{sub 2} concentration levels adversely affected physiological functioning in the tested species. It was concluded that CO{sub 2} sequestration in deeper, colder waters will have a more pronounced effect on aquatic animals due to the interactions between CO{sub 2} and lower temperatures, as well as the fact that most deep-sea fish are less tolerant to environmental perturbations. 3 refs., 1 tab., 3 figs.

  1. Ocean acidification shows negligible impacts on high-latitude bacterial community structure in coastal pelagic mesocosms

    Directory of Open Access Journals (Sweden)

    A.-S. Roy

    2012-09-01

    Full Text Available The impact of ocean acidification and carbonation on microbial community structure was assessed during a large-scale in situ costal pelagic mesocosm study, included as part of the EPOCA 2010 Arctic campaign. The mesocosm experiment included ambient conditions (fjord and nine mesocosms, with pCO2 range from ~145 to ~1420 μatm. Samples collected at nine time points (t-1, t1, t5, t7, t12, t14, t22, t26 to t28 in seven treatments (ambient fjord (~145, 2×~185, ~270, ~685, ~820, ~1050 μatm were analysed for "free-living" and "particle associated" microbial community composition using 16S rRNA amplicon sequencing. This high-throughput sequencing analysis produced ~20 000 000 16S rRNA V4 reads, which comprised 7000 OTUs. The main variables structuring these communities were, sample origin (fjord or mesocosms and the filter size fraction (free-living or particle associated. The community was significantly different between the fjord and both the control and elevated 2 mesocosms (which were not significant different after nutrients were added to the mesocosms; suggesting that the addition of nutrients is the primary driver of the change in mesocosm community structure. The relative importance of each structuring variable depended greatly on the time at which the community was sampled in relation to the phytoplankton bloom. The size fraction was the second most important factor for community structure; separating free-living from particle-associated bacteria. When free-living and particle-associated bacteria were analysed separately at different time points, the only taxon pCO2 was found to significantly affect were the Gammaproteobacteria after nutrient addition. Finally, pCO2 treatment was found to be significantly correlated (non-linear with 15 rare taxa, most of which increased in abundance with higher CO2.

  2. Impact of resolving the diurnal cycle in an ocean-atmosphere GCM. Pt. 2. A diurnally coupled CGCM

    Energy Technology Data Exchange (ETDEWEB)

    Bernie, D.J. [Met Office Hadley Centre, Exeter (United Kingdom); University of Reading, National Centre for Atmospheric Science-Climate, Department of Meteorology, Reading (United Kingdom); Numeriques, IPSL, Laboratoire d' Oceanographie et du Climat, Experimentation et Approches, Paris (France); Guilyardi, E. [University of Reading, National Centre for Atmospheric Science-Climate, Department of Meteorology, Reading (United Kingdom); Numeriques, IPSL, Laboratoire d' Oceanographie et du Climat, Experimentation et Approches, Paris (France); Madec, G. [Numeriques, IPSL, Laboratoire d' Oceanographie et du Climat, Experimentation et Approches, Paris (France); Slingo, J.M.; Woolnough, S.J.; Cole, J. [University of Reading, National Centre for Atmospheric Science-Climate, Department of Meteorology, Reading (United Kingdom)

    2008-12-15

    the dynamical response of the ocean leads to a stronger equatorial upwelling. These two processes both lead to stronger seasonal basin scale feedbacks in the coupled system, increasing the strength of the seasonal cycle of the tropical Pacific sector by around 10%. This means that the diurnal cycle in the upper ocean plays a part in the coupled feedbacks between ocean and atmosphere that maintain the basic state and the timing of the seasonal cycle of SST and trade winds in the tropical Pacific. The Madden-Julian Oscillation (MJO) is examined by use of a large scale MJO index, lag correlations and composites of events. The inclusion of the diurnal cycle leads to a reduction in overall MJO activity. Precipitation composites show that the MJO is stronger and more coherent when the diurnal cycle of coupling is resolved, with the propagation and different phases being far more distinct both locally and to larger lead times across the tropical Indo-Pacific. Part one of this study showed that that diurnal variability of SST is modulated by the MJO and therefore increases the intraseasonal SST response to the different phases of the MJO. Precipitation-based composites of SST variability confirm this increase in the coupled simulations. It is argued that including this has increased the thermodynamical coupling of the ocean and atmosphere on the timescale of the MJO (20-100 days), accounting for the improvement in the MJO strength and coherency seen in composites of precipitation and SST. These results show that the diurnal cycle of ocean-atmosphere interaction has profound impact on a range of up-scale variability in the tropical climate and as such, it is an important feature of the modelled climate system which is currently either neglected or poorly resolved in state of the art coupled models. (orig.)

  3. Antarctic icebergs melt over the Southern Ocean : Climatology and impact on sea ice

    Science.gov (United States)

    Merino, Nacho; Le Sommer, Julien; Durand, Gael; Jourdain, Nicolas C.; Madec, Gurvan; Mathiot, Pierre; Tournadre, Jean

    2016-08-01

    Recent increase in Antarctic freshwater release to the Southern Ocean is suggested to contribute to change in water masses and sea ice. However, climate models differ in their representation of the freshwater sources. Recent improvements in altimetry-based detection of small icebergs and in estimates of the mass loss of Antarctica may help better constrain the values of Antarctic freshwater releases. We propose a model-based seasonal climatology of iceberg melt over the Southern Ocean using state-of-the-art observed glaciological estimates of the Antarctic mass loss. An improved version of a Lagrangian iceberg model is coupled with a global, eddy-permitting ocean/sea ice model and compared to small icebergs observations. Iceberg melt increases sea ice cover, about 10% in annual mean sea ice volume, and decreases sea surface temperature over most of the Southern Ocean, but with distinctive regional patterns. Our results underline the importance of improving the representation of Antarctic freshwater sources. This can be achieved by forcing ocean/sea ice models with a climatological iceberg fresh-water flux.

  4. Completing the Feedback Loop: The Impact of Chlorophyll Data Assimilation on the Ocean State

    Science.gov (United States)

    Borovikov, Anna; Keppenne, Christian; Kovach, Robin

    2015-01-01

    In anticipation of the integration of a full biochemical model into the next generation GMAO coupled system, an intermediate solution has been implemented to estimate the penetration depth (1Kd_PAR) of ocean radiation based on the chlorophyll concentration. The chlorophyll is modeled as a tracer with sources-sinks coming from the assimilation of MODIS chlorophyll data. Two experiments were conducted with the coupled ocean-atmosphere model. In the first, climatological values of Kpar were used. In the second, retrieved daily chlorophyll concentrations were assimilated and Kd_PAR was derived according to Morel et al (2007). No other data was assimilated to isolate the effects of the time-evolving chlorophyll field. The daily MODIS Kd_PAR product was used to validate the skill of the penetration depth estimation and the MERRA-OCEAN re-analysis was used as a benchmark to study the sensitivity of the upper ocean heat content and vertical temperature distribution to the chlorophyll input. In the experiment with daily chlorophyll data assimilation, the penetration depth was estimated more accurately, especially in the tropics. As a result, the temperature bias of the model was reduced. A notably robust albeit small (2-5 percent) improvement was found across the equatorial Pacific ocean, which is a critical region for seasonal to inter-annual prediction.

  5. Impacts of marine instability across the East Antarctic Ice Sheet on Southern Ocean dynamics

    Science.gov (United States)

    Phipps, Steven J.; Fogwill, Christopher J.; Turney, Christian S. M.

    2016-09-01

    Recent observations and modelling studies have demonstrated the potential for rapid and substantial retreat of large sectors of the East Antarctic Ice Sheet (EAIS). This has major implications for ocean circulation and global sea level. Here we examine the effects of increasing meltwater from the Wilkes Basin, one of the major marine-based sectors of the EAIS, on Southern Ocean dynamics. Climate model simulations reveal that the meltwater flux rapidly stratifies surface waters, leading to a dramatic decrease in the rate of Antarctic Bottom Water (AABW) formation. The surface ocean cools but, critically, the Southern Ocean warms by more than 1 °C at depth. This warming is accompanied by a Southern Ocean-wide "domino effect", whereby the warming signal propagates westward with depth. Our results suggest that melting of one sector of the EAIS could result in accelerated warming across other sectors, including the Weddell Sea sector of the West Antarctic Ice Sheet. Thus, localised melting of the EAIS could potentially destabilise the wider Antarctic Ice Sheet.

  6. The impact of polar mesoscale storms on northeast Atlantic Ocean circulation

    Science.gov (United States)

    Condron, Alan; Renfrew, Ian A.

    2013-01-01

    Atmospheric processes regulate the formation of deep water in the subpolar North Atlantic Ocean and hence influence the large-scale ocean circulation. Every year thousands of mesoscale storms, termed polar lows, cross this climatically sensitive region of the ocean. These storms are often either too small or too short-lived to be captured in meteorological reanalyses or numerical models. Here we present simulations with a global, eddy-permitting ocean/sea-ice circulation model, run with and without a parameterization of polar lows. The parameterization reproduces the high wind speeds and heat fluxes observed in polar lows as well as their integrated effects, and leads to increases in the simulated depth, frequency and area of deep convection in the Nordic seas, which in turn leads to a larger northward transport of heat into the region, and southward transport of deep water through Denmark Strait. We conclude that polar lows are important for the large-scale ocean circulation and should be accounted for in short-term climate predictions. Recent studies predict a decrease in the number of polar lows over the northeast Atlantic in the twenty-first century that would imply a reduction in deep convection and a potential weakening of the Atlantic meridional overturning circulation.

  7. Quantifying the Impact of Background Atmospheric Stability on Air-Ice-Ocean Interactions the Arctic Ocean During the Fall Freeze-Up

    Science.gov (United States)

    Guest, P. S.; Persson, O. P. G.; Blomquist, B.; Fairall, C. W.

    2016-02-01

    "Background" stability refers to the effect of vertical virtual temperature variations above the surface layer on fluxes within the surface layer. This is different from the classical surface layer stability quantified by the Obhukhov length scale. In most locations, changes in the background stability do not have a significant direct impact on surface fluxes. However in polar regions, where there is usually a strong low-level temperature inversion capping the boundary layer, changes in background stability can have big impacts on surface fluxes. Therefore, in the Arctic, there is potential for a positive feedback effect between ice cover and surface wind speed (and momentum flux) due to the background stability effects. As the surface becomes more ice free, heat fluxes from the surface weaken the temperature inversion which in turn increases the surface wind speed which further increases the surface turbulent heat fluxes and removes more sea ice by melting or advection. It is not clear how important feedbacks involving the background stability are during the fall freeze up of the Arctic Ocean; that will be the focus of this study. As part of an ONR-sponsored cruise in the fall of 2015 to examine sea state and boundary layer processes in the Beaufort Sea on the R/V Sikuliaq, the authors will perform a variety of surface layer and upper level atmospheric measurements of temperature, humidity and wind vector using ship platform instruments, radiosonde weather balloons, tethered balloons, kites, and miniature quad-rotor unmanned aerial vehicles. In addition, the authors will deploy a full suite of turbulent and radiational flux measurements from the vessel. These measurements will be used to quantify the impact of changing surface conditions on atmospheric structure and vice-versa. The goal is to directly observe how the surface and atmosphere above the surface layer interact and feedback with each other through radiational and turbulent fluxes.

  8. The environmental impact of Lagrangian transport routes in the north east atlantic ocean.

    Directory of Open Access Journals (Sweden)

    Iria Sala

    2014-06-01

    After 10-year climatic simulation, four depth ranges showed different Lagrangian transport pathways, 0–10 m, 20–200 m, 300–500m, and 600–2000 m, being these routes consistent with the known ocean circulation patterns. These routes were partially confirmed by results from previous oceanic water mass distribution, biological studies on marine organisms and observations of the rafting of crude oil spilled during the Prestige oil tanker accident (in Galicia, north of Spain. This preliminary yet provocative study should help guide future observational campaigns, as well as the interpretation of open-ocean transport patterns and the distribution of marine organisms and chemical tracers in the northeast Atlantic region.

  9. How do uncertainties in NCEP R2 and CFSR surface fluxes impact tropical ocean simulations?

    Science.gov (United States)

    Wen, Caihong; Xue, Yan; Kumar, Arun; Behringer, David; Yu, Lisan

    2017-01-01

    NCEP/DOE reanalysis (R2) and Climate Forecast System Reanalysis (CFSR) surface fluxes are widely used by the research community to understand surface flux climate variability, and to drive ocean models as surface forcings. However, large discrepancies exist between these two products, including (1) stronger trade winds in CFSR than in R2 over the tropical Pacific prior 2000; (2) excessive net surface heat fluxes into ocean in CFSR than in R2 with an increase in difference after 2000. The goals of this study are to examine the sensitivity of ocean simulations to discrepancies between CFSR and R2 surface fluxes, and to assess the fidelity of the two products. A set of experiments, where an ocean model was driven by a combination of surface flux components from R2 and CFSR, were carried out. The model simulations were contrasted to identify sensitivity to different component of the surface fluxes in R2 and CFSR. The accuracy of the model simulations was validated against the tropical moorings data, altimetry SSH and SST reanalysis products. Sensitivity of ocean simulations showed that temperature bias difference in the upper 100 m is mostly sensitive to the differences in surface heat fluxes, while depth of 20 °C (D20) bias difference is mainly determined by the discrepancies in momentum fluxes. D20 simulations with CFSR winds agree with observation well in the western equatorial Pacific prior 2000, but have large negative bias similar to those with R2 winds after 2000, partly because easterly winds over the central Pacific were underestimated in both CFSR and R2. On the other hand, the observed temperature variability is well reproduced in the tropical Pacific by simulations with both R2 and CFSR fluxes. Relative to the R2 fluxes, the CFSR fluxes improve simulation of interannual variability in all three tropical oceans to a varying degree. The improvement in the tropical Atlantic is most significant and is largely attributed to differences in surface winds.

  10. The impact of Southern Ocean gateways on the Cenozoic climate evolution

    Science.gov (United States)

    von der Heydt, Anna; Viebahn, Jan; Dijkstra, Henk

    2016-04-01

    During the Cenozoic period, which covers the last 65 Million (Ma) years, Earth's climate has undergone a major long-term transition from warm "greenhouse" to colder "icehouse" conditions with extensive ice sheets in the polar regions of both hemispheres. On the very long term the gradual cooling may be seen as response to the overall slowly decreasing atmospheric CO2-concentration due to weathering processes in the Earth System, however, continental geometry has changed considerably over this period and the long-term gradual trend was interrupted, by several rapid transitions as well as periods where temperature and greenhouse gas concentrations seem to be decoupled. The Eocene-Oligocene boundary (˜34 Ma, E/O) and mid-Miocene climatic transition (˜13 Ma, MCT) reflect major phases of Antarctic ice sheet build-up and global climate cooling, while Northern Hemisphere ice sheets developed much later, most likely at the Pliocene-Pleistocene transition (˜2.7Ma). Thresholds in atmospheric CO2-concentration together with feedback mechanisms related to land ice formation are now among the favoured mechanisms of these climatic transitions, while the long-proposed ocean circulation changes caused by opening of tectonic gateways seem to play a less direct role. The opening of the Southern Ocean gateways, notably the Drake Passage and the Tasman Gateway as well as the northward movement of Australia over this long time period, however, has eventually led to the development of today's strongest ocean current, the Antarctic Circumpolar Current (ACC), playing a major role in the transport properties of the global ocean circulation. The overall state of the global ocean circulation, therefore, preconditions the climate system to dramatic events such as major ice sheet formation. Here, we present results of a state-of-the art global climate model (CESM) under various continental configurations: (i) present day geometry, (ii) present day geometry with a closed Drake Passage and

  11. Ocean Disposal Site Monitoring

    Science.gov (United States)

    EPA is responsible for managing all designated ocean disposal sites. Surveys are conducted to identify appropriate locations for ocean disposal sites and to monitor the impacts of regulated dumping at the disposal sites.

  12. Tropical CO2 seeps reveal the impact of ocean acidification on coral reef invertebrate recruitment.

    Science.gov (United States)

    Allen, Ro; Foggo, Andrew; Fabricius, Katharina; Balistreri, Annalisa; Hall-Spencer, Jason M

    2016-12-29

    Rising atmospheric CO2 concentrations are causing ocean acidification by reducing seawater pH and carbonate saturation levels. Laboratory studies have demonstrated that many larval and juvenile marine invertebrates are vulnerable to these changes in surface ocean chemistry, but challenges remain in predicting effects at community and ecosystem levels. We investigated the effect of ocean acidification on invertebrate recruitment at two coral reef CO2 seeps in Papua New Guinea. Invertebrate communities differed significantly between 'reference' (median pH7.97, 8.00), 'high CO2' (median pH7.77, 7.79), and 'extreme CO2' (median pH7.32, 7.68) conditions at each reef. There were also significant reductions in calcifying taxa, copepods and amphipods as CO2 levels increased. The observed shifts in recruitment were comparable to those previously described in the Mediterranean, revealing an ecological mechanism by which shallow coastal systems are affected by near-future levels of ocean acidification. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Ocean acidification impacts on sperm mitochondrial membrane potential bring sperm swimming behaviour near its tipping point.

    Science.gov (United States)

    Schlegel, Peter; Binet, Monique T; Havenhand, Jonathan N; Doyle, Christopher J; Williamson, Jane E

    2015-04-01

    Broadcast spawning marine invertebrates are susceptible to environmental stressors such as climate change, as their reproduction depends on the successful meeting and fertilization of gametes in the water column. Under near-future scenarios of ocean acidification, the swimming behaviour of marine invertebrate sperm is altered. We tested whether this was due to changes in sperm mitochondrial activity by investigating the effects of ocean acidification on sperm metabolism and swimming behaviour in the sea urchin Centrostephanus rodgersii. We used a fluorescent molecular probe (JC-1) and flow cytometry to visualize mitochondrial activity (measured as change in mitochondrial membrane potential, MMP). Sperm MMP was significantly reduced in ΔpH -0.3 (35% reduction) and ΔpH -0.5 (48% reduction) treatments, whereas sperm swimming behaviour was less sensitive with only slight changes (up to 11% decrease) observed overall. There was significant inter-individual variability in responses of sperm swimming behaviour and MMP to acidified seawater. We suggest it is likely that sperm exposed to these changes in pH are close to their tipping point in terms of physiological tolerance to acidity. Importantly, substantial inter-individual variation in responses of sperm swimming to ocean acidification may increase the scope for selection of resilient phenotypes, which, if heritable, could provide a basis for adaptation to future ocean acidification. © 2015. Published by The Company of Biologists Ltd.

  14. Monsoonal and ENSO impacts on particle fluxes and the biological pump in the Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Rixen, T.; Ramaswamy, V.; Gaye, B.; Herunadi, B.; Maier-Reimer, E.; Bange, H.W.; Ittekkot, V.

    mediated CO sub(2) uptake, referred to as the biological pump, is low in the Arabian Sea during the high productive upwelling period. The biological pump seems to be strongest along the freshwater-influenced continental margins in the eastern Indian Ocean...

  15. Impact of tropical cyclones on the heat budget of the south Pacific Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Jullien, S.; Menkes, C.E.; Marchesiello, P.; Jourdain, N.C.; Lengaigne, M.; Koch-Larrouy, A.; Lefevre, J.; Vincent, E.M.; Faure, V.

    between coarse-resolution and short-term studies. The authors' results show a significant thermal response of the ocean to at least 500-m depth, driven by competing mixing and upwelling mechanisms. As suggested in previous studies, vertical mixing largely...

  16. A reevaluation of the magnitude and impacts of anthropogenic atmospheric nitrogen inputs on the ocean

    NARCIS (Netherlands)

    Jickells, T.D.; Buitenhuis, E.; Altieri, K.; Baker, A.R.; Capone, D.; Duce, R.A.; Dentener, Frank; Fennel, F.; Kanakidou, M.; LaRoche, J.; Lee, K.; Liss, P.; Middelburg, Jack J.|info:eu-repo/dai/nl/079665373; Moore, J.K.; Okin, G.; Oschlies, A.; Sarin, M.; Seitzinger, S.; Sharples, J.; Singh, A.; Suntharalingam, P.; Uematsu, M.; Zamora, L.M.

    We report a new synthesis of best estimates of the inputs of fixed nitrogen to the world ocean via atmospheric deposition and compare this to fluvial inputs and dinitrogen fixation. We evaluate the scale of human perturbation of these fluxes. Fluvial inputs dominate inputs to the continental shelf,

  17. Impacts of marine instability across the East Antarctic Ice Sheet on Southern Ocean dynamics

    Science.gov (United States)

    Phipps, Steven; Fogwill, Christopher; Turney, Christian

    2017-04-01

    Recent observations and modelling studies have demonstrated the potential for rapid and substantial retreat of large sectors of the East Antarctic Ice Sheet (EAIS). This has major implications for ocean circulation and global sea level. Here we examine the effects of increasing meltwater from the Wilkes Basin, one of the major marine-based sectors of the EAIS, on Southern Ocean dynamics. Climate model simulations reveal that the meltwater flux rapidly stratifies surface waters, leading to a dramatic decrease in the rate of Antarctic Bottom Water formation. The surface ocean cools but, critically, the Southern Ocean warms by more than 1oC at depth. This warming is accompanied by a Southern Oceanwide "domino effect", whereby the warming signal propagates westward with depth. Our results suggest that melting of one sector of the EAIS could result in accelerated warming across other sectors, including the Weddell Sea sector of the West Antarctic Ice Sheet. Thus, localised melting of the EAIS could potentially destabilise the wider Antarctic Ice Sheet.

  18. Modelling the chemically aged and mixed aerosols over the eastern central Atlantic Ocean-potential impacts

    NARCIS (Netherlands)

    Astitha, M.; Kallos, G.; Spyrou, C.; O'Hirok, W.; Lelieveld, J.; Denier Gon, H.A.C. van der

    2010-01-01

    Detailed information on the chemical and physical properties of aerosols is important for assessing their role in air quality and climate. This work explores the origin and fate of continental aerosols transported over the Central Atlantic Ocean, in terms of chemical composition, number and size dis

  19. Chemically aged and mixed aerosols over the Central Atlantic Ocean - Potential impacts

    NARCIS (Netherlands)

    Astitha, M.; Kallos, G.; Spyrou, C.; O'Hirok, W.; Lelieveld, J.; Denier Gon, H.A.C. van der

    2010-01-01

    Detailed information on the chemical and physical properties of aerosols is important for assessing their role in air quality and climate. This work explores the origin and fate of continental aerosols transported over the Central Atlantic Ocean, in terms of chemical composition, number and size dis

  20. Ocean Basin Impact of Ambient Noise on Marine Mammal Detectability, Distribution, and Acoustic Communication

    Science.gov (United States)

    2015-07-06

    time series from the Comprehensive Nuclear Test Ban Treaty Organization International Monitoring System (CTBTO IMS) locations in the Indian (H08) and...developed by the Scientific Committee on Oceanic Research ( SCOR ) and the Sloan Foundation (www.iqoe-2011 .org). Sound level analysis of data from the

  1. A case of a huge gastroepiploic arterial aneurysm.

    Science.gov (United States)

    Ikeda, Hirokuni; Takeo, Masahiko; Mikami, Ryuuichi; Yamamoto, Mistuo

    2015-08-05

    An 85-year-old man complaining of vague abdominal discomfort was admitted to our hospital. A pulsatile 8 × 7-cm mass in the right upper abdomen was noticed on clinical examination. Computed tomography of the abdomen showed a huge arterial aneurysm in the right gastroepiploic artery, and the left gastroepiploic artery was meandering and expanding. An image diagnosis of gastroepiploic arterial aneurysm (GEAA) was made. Because of the huge size of the aneurysm and the predicted high risk of perforation, surgical intervention was planned. The aneurysm was identified in the greater curve and was found to adhere firmly to the transverse colon. Partial resection of the stomach, aneurysmectomy and partial resection of the transverse colon were performed. Clinically, splanchnic arterial aneurysms are rare. Among them, GEAA is especially rare. We report a rare case of a huge GEAA that was treated successfully by surgery. Published by Oxford University Press and JSCR Publishing Ltd. All rights reserved. © The Author 2015.

  2. Impacts of light shading and nutrient enrichment geo-engineering approaches on the productivity of a stratified, oligotrophic ocean ecosystem.

    Science.gov (United States)

    Hardman-Mountford, Nick J; Polimene, Luca; Hirata, Takafumi; Brewin, Robert J W; Aiken, Jim

    2013-12-06

    Geo-engineering proposals to mitigate global warming have focused either on methods of carbon dioxide removal, particularly nutrient fertilization of plant growth, or on cooling the Earth's surface by reducing incoming solar radiation (shading). Marine phytoplankton contribute half the Earth's biological carbon fixation and carbon export in the ocean is modulated by the actions of microbes and grazing communities in recycling nutrients. Both nutrients and light are essential for photosynthesis, so understanding the relative influence of both these geo-engineering approaches on ocean ecosystem production and processes is critical to the evaluation of their effectiveness. In this paper, we investigate the relationship between light and nutrient availability on productivity in a stratified, oligotrophic subtropical ocean ecosystem using a one-dimensional water column model coupled to a multi-plankton ecosystem model, with the goal of elucidating potential impacts of these geo-engineering approaches on ecosystem production. We find that solar shading approaches can redistribute productivity in the water column but do not change total production. Macronutrient enrichment is able to enhance the export of carbon, although heterotrophic recycling reduces the efficiency of carbon export substantially over time. Our results highlight the requirement for a fuller consideration of marine ecosystem interactions and feedbacks, beyond simply the stimulation of surface blooms, in the evaluation of putative geo-engineering approaches.

  3. Causes and Predictability of the Negative Indian Ocean Dipole and Its Impact on La Niña During 2016.

    Science.gov (United States)

    Lim, Eun-Pa; Hendon, Harry H

    2017-10-03

    In the latter half of 2016 Indonesia and Australia experienced extreme wet conditions and East Africa suffered devastating drought, which have largely been attributed to the occurrence of strong negative Indian Ocean Dipole (IOD) and weak La Niña. Here we examine the causes and predictability of the strong negative IOD and its impact on the development of La Niña in 2016. Analysis on atmosphere and ocean reanalyses and forecast sensitivity experiments using the Australian Bureau of Meteorology's dynamical seasonal forecast system reveals that this strong negative IOD, which peaked in July-September, developed primarily by the Indian Ocean surface and subsurface conditions. The long-term trend over the last 55 years in sea surface and subsurface temperatures, which is characterised by warming of the tropical Indian and western Pacific and cooling in the equatorial eastern Pacific, contributed positively to the extraordinary strength of this IOD. We further show that the strong negative IOD was a key promoter of the weak La Niña of 2016. Without the remote forcing from the IOD, this weak La Niña may have been substantially weaker because of the extraordinarily long-lasting warm surface condition over the dateline from the tail end of strong El Niño of 2015-16.

  4. Anaesthetic management in a case of huge plunging ranula.

    Science.gov (United States)

    Sheet, Jagabandhu; Mandal, Anamitra; Sengupta, Swapnadeep; Jana, Debaleena; Mukherji, Sudakshina; Swaika, Sarbari

    2014-01-01

    Plunging ranula is a rare form of mucous retention cyst arising from submandibular and sublingual salivary glands, which may occasionally become huge occupying the whole of the floor of the mouth and extending into the neck, thus, restricting the neck movement as well as disfiguring the normal airway anatomy. Without fiberoptic assistance, blind or retrograde nasal intubation remains valuable choices in this type of situation. Here, we present a case of successful management of airway by blind nasal intubation in a patient posted for excision of a huge plunging ranula.

  5. Huge Gastric Teratoma in an 8-Year Old Boy.

    Science.gov (United States)

    Sisodiya, Rajpal S; Ratan, Simmi K; Man, Parveen K

    2016-01-01

    Gastric teratoma is very rare tumor and usually presents in early infancy. An 8-year-old boy presented with a huge mass in abdomen extending from epigastrium to the pelvis. Ultrasound and CT scan of abdomen revealed a huge mass with solid and cystic components and internal calcifications. The preoperative diagnosis was a teratoma but not specifically gastric one. At operation, it was found to be gastric teratoma. The mass was excised completely with part of the stomach wall. The histopathology confirmed it to be mature gastric teratoma. The rarity of the teratoma with delayed presentation prompted us to report the case.

  6. Anaesthetic challenges in a patient presenting with huge neck teratoma

    Directory of Open Access Journals (Sweden)

    Gaurav Jain

    2013-01-01

    Full Text Available Paediatric airway management is a great challenge even for an experienced anaesthesiologist. Difficult airway in huge cervical teratoma further exaggerates the complexity. This case report is intended at describing the intubation difficulties that were confronted during the airway management of a three year old girl presenting with huge neck teratoma and respiratory distress. This patient was successfully intubated with uncuffed endotracheal tubes in second attempt under inhalational anaesthesia with halothane and spontaneous ventilation. This case exemplifies the importance of careful preoperative workup of an anticipated difficult airway in paediatric patients with neck swelling to minimize any perioperative complications.

  7. Huge pelvic mass secondary to wear debris causing ureteral obstruction.

    Science.gov (United States)

    Hananouchi, Takehito; Saito, Masanobu; Nakamura, Nobuo; Yamamoto, Tetsuya; Yonenobu, Kazuo

    2005-10-01

    We report an unusual granulomatous reaction of wear debris that produced a huge pelvic mass causing ureteral obstruction. A 72-year-old woman, who received a cemented total hip arthroplasty 30 years ago, was referred to the department of gynecology for examination of a pelvic mass. A computed tomography scan revealed a huge homogenous mass, measuring approximately 20 x 16 x 12 cm, including extensive osteolysis of the left pelvis around the acetabular component. Intravenous pyelogram revealed complete obstruction of the left ureter resulting in hydronephrosis of the left kidney. Histological examination from the biopsy specimen detected polyethylene wear debris in the mass.

  8. Anaesthetic management in a case of huge plunging ranula

    Science.gov (United States)

    Sheet, Jagabandhu; Mandal, Anamitra; Sengupta, Swapnadeep; Jana, Debaleena; Mukherji, Sudakshina; Swaika, Sarbari

    2014-01-01

    Plunging ranula is a rare form of mucous retention cyst arising from submandibular and sublingual salivary glands, which may occasionally become huge occupying the whole of the floor of the mouth and extending into the neck, thus, restricting the neck movement as well as disfiguring the normal airway anatomy. Without fiberoptic assistance, blind or retrograde nasal intubation remains valuable choices in this type of situation. Here, we present a case of successful management of airway by blind nasal intubation in a patient posted for excision of a huge plunging ranula. PMID:25886120

  9. Huge hepatocellular carcinoma greater than 10 cm in diameter worsens prognosis by causing distant recurrence after curative resection.

    Science.gov (United States)

    Wakayama, Kenji; Kamiyama, Toshiya; Yokoo, Hideki; Orimo, Tatsuya; Shimada, Shingo; Einama, Takahiro; Kamachi, Hirofumi; Taketomi, Akinobu

    2017-03-01

    This study aimed to evaluate the impact of huge (≥10 cm) hepatocellular carcinoma (HCC) to the recurrence pattern and the prognosis after hepatectomy. 574 patients who underwent hepatectomy by 17 surgeons (Open 536 and Laparoscopic 38) for HCC without major vascular invasion from 1990 to 2013 at single institute were retrospectively analyzed. Huge tumor, age, HCV, multiple tumors and microscopic portal invasion are independent risk factors for overall survival (OS), and huge tumor, ICGR15 ≥16%, multiple tumors, moderate/poor histology, microscopic portal invasion and a positive pathological margin are risk factors for relapse-free survival (RFS). The 5-year OS and RFS of patients with huge HCC (n = 53) (42.9 and 14.2%) were significantly worse than those of patients with HCC Huge tumor is an independent risk factor for initial extra-hepatic recurrence (Hazard ratio 7.86, P Huge HCC (≥10 cm) is an independent risk factor due to a high risk for initial extra-hepatic recurrence. Future systemic adjuvant therapy is needed for these patients. J. Surg. Oncol. 2017;115:324-329. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  10. Combined impact of ocean acidification and corrosive waters in a river-influenced coastal upwelling area off Central Chile

    Science.gov (United States)

    Vargas, C.; De La Hoz, M.; San Martin, V.; Contreras, P.; Navarro, J. M.; Lagos, N. A.; Lardies, M.; Manríquez, P. H.; Torres, R.

    2012-12-01

    Elevated CO2 in the atmosphere promotes a cascade of physical and chemical changes affecting all levels of biological organization, and the evidence from local to global scales has shown that such anthropogenic climate change has triggered significant responses in the Earth's biota. The increased concentration of CO2 is likely to cause a corresponding increase in ocean acidification (OA). In addition, economically valuable shellfish species predominantly inhabit coastal regions both in natural stocks and/or in managed stocks and farming areas. Many coastal ecosystems may experience seawater pCO2 levels significantly higher than expected from equilibrium with the atmosphere, which in this case are strongly linked to biological processes and/or the impact of two important processes; river plumes and coastal upwelling events, which indeed interplay in a very dynamic way on continental shelves, resulting in both source or sink of CO2 to the atmosphere. Coastal ecosystems receive persistent acid inputs as a result of freshwater discharges from river basins into the coastal domain. In this context, since shellfish resources and shellfish aquaculture activities predominantly occur in nearshore areas, it is expected that shellfish species inhabiting river-influenced benthic ecosystems will be exposed persistently to acidic conditions that are suboptimal for its development. In a wider ecological context, little is also known about the potential impacts of acid waters on the performance of larvae and juveniles of almost all the marine species inhabiting this benthic ecosystem in Eastern Southern Pacific Ocean. We present here the main results of a research study aimed to investigate the environmental conditions to which economically valuable calcifiers shellfish species are exposed in a river-influenced continental shelf off Central Chile. By using isotopic measurements in the dissolved inorganic carbon (DIC) pool (d13C-DIC) we showed the effect of the remineralization of

  11. Environmental impacts of ocean disposal of CO{sub 2}. Fifth quarterly progress report, July 1, 1995--September 30, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Tester, J.W.; Adams, E.E.

    1996-02-01

    The workshop had two major components: a review of current issues and projects regarding dissolution Of CO{sub 2} in the ocean followed by a specific proposal for a field experiment in a Norwegian fjord. Attachment I contains the agenda and participants for the meeting. Attachment II summarizes each presentation. The challenge of ocean dissolution Of CO{sub 2} involves understanding the trade-offs between costs, benefits (length Of CO{sub 2} sequestration), and environmental impacts (both from direct CO{sub 2} injection and from indirect dissolution as is occurring today). It is quite apparent that we still require a great deal more information than exists today to make rational decisions. Specifically, we need more research directed at the technology for dissolving the CO{sub 2} and at understanding the environmental impacts. While paper studies and laboratory experience are useful, we are approaching the time to move our research into the field. While attendees thought a field experiment in a Norwegian fjord would be a useful exercise, two key concerns were aired: (1) We need to better understand the goals of this experiment and how it relates to the bigger picture. To address this concern a comprehensive list of research needs should be generated. Then, a list of possible field experiments (including the Norwegian fjord) should be generated that allow us to address these questions. (2) Not enough details were presented on the Norwegian fjord experiment. For example, a key question is the scale (i.e. CO{sub 2} flow rate, duration) of the experiment. A follow-up action is to generate a more detailed experimental plan. In summary, the workshop left the following impressions. (3) More research is required to understand the role CO{sub 2} dissolution in the ocean can lay in mitigating global climate change. Field experiments will be required and the timing should be soon. (4) More work is required in developing a research plan for field experiments.

  12. Impact of Argo Observation on the Regional Ocean Reanalysis of China Coastal Waters and Adjacent Seas: A Twin-Experiment Study

    Directory of Open Access Journals (Sweden)

    Caixia Shao

    2015-01-01

    Full Text Available A regional ocean reanalysis system of China coastal waters and adjacent seas, called CORA (China ocean reanalysis, has been recently developed at the National Marine Data and Information Service (NMDIS. In this study, based on CORA, the impact of Argo profiles on the regional reanalysis is evaluated using a twin-experiment approach. It is found that, by assimilating Argo observations, the reanalysis quality is much improved: the root mean square (RMS error of temperature and salinity can be further reduced by about 10% and the RMS error of current can be further reduced by 18%, compared to the case only assimilating conventional in situ temperature and salinity observations. Consistent with the unique feature of Argo observations, the temperature is improved in all levels and the largest improvement of salinity happens in the deep ocean. Argo profile data have a significant impact on the regional ocean reanalysis through improvements of both hydrographic and dynamic fields.

  13. Subsurface radar location of the putative ocean on Ganymede: Numerical simulation of the surface terrain impact

    Science.gov (United States)

    Ilyushin, Ya. A.

    2014-03-01

    Exploration of subsurface oceans on Jupiter's icy moons is a key issue of the icy moons' geology. Radar is in fact the only sounding technique which is able to penetrate their icy mantles, which can be many kilometers thick. Surface clutter, i.e. scattering of the radio waves on the rough surface, is known to be one of the most important problems of subsurface radar probing. Adequate numerical modeling of this scattering is required on all stages of subsurface radar experiment, including design of an instrument, operational strategy planning and data interpretation. In the present paper, a computer simulation technique for numerical simulations of radar sounding of rough surfaces is formulated in general form. Subsurface radar location of the ocean beneath Ganymedian ice with chirp radar signals has been simulated.

  14. Ocean acidification impacts on nitrogen fixation in the coastal western Mediterranean Sea

    OpenAIRE

    Rees, AP; Turk-Kubo, KA; Al-Moosawi, L; Alliouane, S.; F. Gazeau; Hogan, ME; Zehr, JP

    2016-01-01

    The effects of ocean acidification on nitrogen (N2) fixation rates and on the community composition of N2-fixing microbes (diazotrophs) were examined in coastal waters of the North-Western Mediterranean Sea. Nine experimental mesocosm enclosures of ∼50 m3 each were deployed for 20 days during June-July 2012 in the Bay of Calvi, Corsica, France. Three control mesocosms were maintained under ambient conditions of carbonate chemistry. The remainder were manipulated with CO2 saturated seawater to...

  15. Impact of CO{sub 2} hydrates on ocean carbon dioxide deposition options

    Energy Technology Data Exchange (ETDEWEB)

    Lund, P.C.

    1995-04-01

    The objective of the research project described in this report was to contribute to the research on greenhouse gases and the global environment. The focus is on the concept of storing large amounts of CO{sub 2} in the ocean. The project was divided into three subtasks: (1) a comprehensive study of the thermodynamic, physical and chemical properties of the seawater/CO{sub 2}/hydrate system, (2) establishment of a micro-scale kinetic model for CO{sub 2} hydrate formation and stability, based on (1), and (3) establishment of macro-scale models for various ocean deposition options based on (2). A database of selected thermodynamic functions has been set up. A large database of oceanic data has also been made; for any given coordinates at sea a computer program provides the temperature, salinity and oxygen profiles from the sea surface to the sea floor. The kinetic model predicts the formation and pseudo-stability of a very thin hydrate film which acts as an inhibitor for diffusion of CO{sub 2} into the sea water. The model predicts that the hydrate film reduces the overall flux from a liquid CO{sub 2} source with about 90%. Thermodynamically, pure CO{sub 2} in contact with water might form hydrates at depths below about 400 m, which would indicate that hydrate formation could play a role for all ocean CO{sub 2} deposition options. However, this study shows that other mechanisms significantly reduce the role of hydrate formation. It is finally concluded that although more modelling and experimental work is required within this field of research, the hydrate film may play an important role for all options except from shallow water injection. 86 refs., 32 figs., 16 tabs.

  16. The impact of polar mesoscale storms on northeast Atlantic ocean circulation (Invited)

    Science.gov (United States)

    Condron, A.; Renfrew, I.

    2013-12-01

    Every year thousands of mesoscale (short-lived, to be captured in meteorological reanalyses or numerical climate prediction models. As a result, the magnitude of the near-surface wind speeds and heat fluxes are considerably under-represented over the world's oceans where the atmosphere influences mixing, deep convection, upwelling, and deep water mass formation. Numerical models must, however, realistically simulate these processes in order to accurately predict future changes in the strength of the Atlantic Meridional Overturning Circulation (MOC) and the climate system. Implementing a parameterization to simulate mesoscale cyclones in the atmospheric fields driving an ocean model produced air-sea fluxes in remarkable agreement with observations. Over the Nordic Seas we found that mesoscale cyclones increased the depth, frequency and area of open ocean deep convection. At Denmark Strait we found a significant increase in the southward transport of Denmark Strait Overflow Water (DSOW); the deep water mass that plays a major role in driving the Atlantic MOC. Further south there was an increase in the cyclonic rotation of the sub-polar gyres and an increase in the northward transport of heat into the region. We conclude that polar mesoscale cyclones play an important role in driving the large-scale ocean circulation and so must be simulated globally in order to make accurate short-term climate predictions. An illustration of the effectiveness of our polar mesoscale parameterization. Panels show a 6-hourly snapshot of 10-m wind speed for (left) ECMWF ERA-40, (middle) ERA-40 with a polar mesoscale cyclone parameterized (right) satellite derived wind speed. The satellite data reveal a polar mesoscale cyclone over the Norwegian Sea with a diameter of ~400 km. The standard ERA-40 reanalysis (~1 deg.) does not capture this vortex. Parameterizing the cyclone as a Rankine vortex produces a considerably more accurate wind field.

  17. Quantifying the Bering Strait Oceanic Fluxes and their Impacts on Sea-Ice and Water Properties in the Chukchi and Beaufort Seas and Western Arctic Ocean for 2013-2014

    Science.gov (United States)

    2014-09-30

    Impacts on Sea- Ice and Water Properties in the Chukchi and Beaufort Seas and Western Arctic Ocean for 2013-2014 Rebecca Woodgate Polar Science...from the Pacific, are critical to the water properties of the Chukchi Sea, act as a trigger of sea- ice melt in the Chukchi, provide a subsurface...source of heat to the Arctic in winter (with possible impacts on sea- ice ), and are a major component of freshwater input to the Arctic (Figures 1 and 2

  18. The impact of atmospheric storminess on the sensitivity of Southern Ocean circulation to wind stress changes

    Science.gov (United States)

    Munday, D. R.; Zhai, X.

    2017-07-01

    The influence of changing the mean wind stress felt by the ocean through alteration of the variability of the atmospheric wind, as opposed to the mean atmospheric wind, on Southern Ocean circulation is investigated using an idealised channel model. Strongly varying atmospheric wind is found to increase the (parameterised) near-surface viscous and diffusive mixing. Analysis of the kinetic energy budget indicates a change in the main energy dissipation mechanism. For constant wind stress, dissipation of the power input by surface wind work is always dominated by bottom kinetic energy dissipation. However, with time-varying atmospheric wind, near surface viscous dissipation of kinetic energy becomes increasingly important as mean wind stress increases. This increased vertical diffusivity leads to thicker mixed layers and higher sensitivity of the residual circulation to increasing wind stress, when compared to equivalent experiments with the same wind stress held constant in time. This may have implications for Southern Ocean circulation in different climate change scenarios should the variability of the atmospheric wind change rather than the mean atmospheric wind.

  19. Imaging of huge lingual thyroid gland with goitre

    Energy Technology Data Exchange (ETDEWEB)

    Lee, C.C.; Chen, C.Y.; Chen, F.H.; Lee, G.W.; Hsiao, H.S. [Nat. Defense Medical Centre, Taipei (Taiwan, Province of China). Dept. of Diagnostic Radiol.; Zimmermann, R.A. [Department of Radiology, The Children`s Hospital of Philadelphia, 34th St. and Civic Blvd., Philadelphia, PA 19014 (United States)

    1998-05-01

    We present the CT and MRI findings in a 75-year-old woman with a huge pathologically proven lingual thyroid which underwent goitrous degeneration. CT and MRI showed a midline, tongue-based, exophytic mass with areas of necrosis and heterogeneous contrast enhancement, as seen in large goitres in the normal thyroid gland. (orig.) With 1 fig., 7 refs.

  20. Smart Cities as Support and Legacy of Huge Sport Events

    Directory of Open Access Journals (Sweden)

    TAURION, C.

    2012-12-01

    Full Text Available In this paper we discuss the concept of a smart city and the importance of huge Sport events as an incentive to the creation of the infrastructure necessary for the development of cities that provide quality of life for all its citizens using information technology.

  1. The big, large and huge case of state-building

    DEFF Research Database (Denmark)

    Harste, Gorm

      Using communication theory as point of departure, it is not evident how to study macro phenomena. Michel Foucault limited his studies to a non-Grand Theory when studying discursive events. At the same time, Charles Tilly wrote about Big Structures, Large Processes, Huge Comparisons when trying...

  2. [Experience of surgical treatment of huge mediastinal tumors].

    Science.gov (United States)

    Li, Yuanbo; Zhang, Yi; Xu, Qingsheng; Su, Lei; Zhi, Xiuyi; Wang, Ruotian; Qian, Kun; Hu, Mu; Liu, Lei

    2014-09-23

    The diagnosis and surgical treatment of 36 huge mediastinal tumors were summarized in order to evaluate the effect and safety of the operation. Thirty-six huge mediastinal tumor patients treated in our department from June 2006 to June 2013 were retrospective analyzed, of whom clinical manifestations, diagnosis, surgical treatment and prognosis were carefully collected. Twenty-three cases were men and 13 were women. The average age was 39.2 years old. The pathology turned out to be benign in 23 cases and malignant in 13 cases. Complete resection was achieved in 34 cases while palliative resection in 2 cases with no perioperative death. Six cases had developed postoperative complications but all recovered after active treatment. Patients who had been diagnosed with benign tumors were all alive after follow-up periods of 6 months to 7 years. Nine malignat tumor patients developed recurrence or metastasis, including seven deaths. Surgery played a vital role in the diagnosis and treatment of huge mediastinal tumors. Preoperative diagnosis, accurate surgical approach and careful operation were the key to successful treatment. Benign huge mediastinal tumors had excellent prognosis with surgery.

  3. A Huge Ovarian Dermoid Cyst: Successful Laparoscopic Total Excision.

    Science.gov (United States)

    Uyanikoglu, Hacer; Dusak, Abdurrahim

    2017-08-01

    Giant ovarian cysts, ≥15 cm in diameter, are quite rare in women of reproductive age. Here, we present a case of ovarian cyst with unusual presentation treated by laparoscopic surgery. On histology, mass was found to be mature cystic teratoma. The diagnostic and management challenges posed by this huge ovarian cyst were discussed in the light of the literature.

  4. Huge mediastinal liposarcoma resected by clamshell thoracotomy: a case report.

    Science.gov (United States)

    Toda, Michihito; Izumi, Nobuhiro; Tsukioka, Takuma; Komatsu, Hiroaki; Okada, Satoshi; Hara, Kantaro; Ito, Ryuichi; Shibata, Toshihiko; Nishiyama, Noritoshi

    2017-12-01

    Liposarcoma is the single most common soft tissue sarcoma. Because mediastinal liposarcomas often grow rapidly and frequently recur locally despite adjuvant chemotherapy and radiotherapy, they require complete excision. Therefore, the feasibility of achieving complete surgical excision must be carefully considered. We here report a case of a huge mediastinal liposarcoma resected via clamshell thoracotomy. A 64-year-old man presented with dyspnea on effort. Cardiomegaly had been diagnosed 6 years previously, but had been left untreated. A computed tomography scan showed a huge (36 cm diameter) anterior mediastinal tumor expanding into the pleural cavities bilaterally. The tumor comprised mostly fatty tissue but contained two solid areas. Echo-guided needle biopsies were performed and a diagnosis of an atypical lipomatous tumor was established by pathological examination of the biopsy samples. Surgical resection was performed via a clamshell incision, enabling en bloc resection of this huge tumor. Although there was no invasion of surrounding organs, the left brachiocephalic vein was resected because it was circumferentially surrounded by tumor and could not be preserved. The tumor weighed 3500 g. Pathologic examination of the resected tumor resulted in a diagnosis of a biphasic tumor comprising dedifferentiated liposarcoma and non-adipocytic sarcoma with necrotic areas. The patient remains free of recurrent tumor 20 months postoperatively. Clamshell incision provides an excellent surgical field and can be performed safely in patients with huge mediastinal liposarcomas.

  5. Impact of Argo Observation on the Regional Ocean Reanalysis of China Coastal Waters and Adjacent Seas: A Twin-Experiment Study

    OpenAIRE

    Caixia Shao; Lili Xuan; Yingzhi Cao; Xiaojian Cui; Siyu Gao

    2015-01-01

    A regional ocean reanalysis system of China coastal waters and adjacent seas, called CORA (China ocean reanalysis), has been recently developed at the National Marine Data and Information Service (NMDIS). In this study, based on CORA, the impact of Argo profiles on the regional reanalysis is evaluated using a twin-experiment approach. It is found that, by assimilating Argo observations, the reanalysis quality is much improved: the root mean square (RMS) error of temperature and salinity can b...

  6. The G4Foam Experiment: global climate impacts of regional ocean albedo modification

    Science.gov (United States)

    Gabriel, Corey J.; Robock, Alan; Xia, Lili; Zambri, Brian; Kravitz, Ben

    2017-01-01

    Reducing insolation has been proposed as a geoengineering response to global warming. Here we present the results of climate model simulations of a unique Geoengineering Model Intercomparison Project Testbed experiment to investigate the benefits and risks of a scheme that would brighten certain oceanic regions. The National Center for Atmospheric Research CESM CAM4-Chem global climate model was modified to simulate a scheme in which the albedo of the ocean surface is increased over the subtropical ocean gyres in the Southern Hemisphere. In theory, this could be accomplished using a stable, nondispersive foam, comprised of tiny, highly reflective microbubbles. Such a foam has been developed under idealized conditions, although deployment at a large scale is presently infeasible. We conducted three ensemble members of a simulation (G4Foam) from 2020 through to 2069 in which the albedo of the ocean surface is set to 0.15 (an increase of 150 %) over the three subtropical ocean gyres in the Southern Hemisphere, against a background of the RCP6.0 (representative concentration pathway resulting in +6 W m-2 radiative forcing by 2100) scenario. After 2069, geoengineering is ceased, and the simulation is run for an additional 20 years. Global mean surface temperature in G4Foam is 0.6 K lower than RCP6.0, with statistically significant cooling relative to RCP6.0 south of 30° N. There is an increase in rainfall over land, most pronouncedly in the tropics during the June-July-August season, relative to both G4SSA (specified stratospheric aerosols) and RCP6.0. Heavily populated and highly cultivated regions throughout the tropics, including the Sahel, southern Asia, the Maritime Continent, Central America, and much of the Amazon experience a statistically significant increase in precipitation minus evaporation. The temperature response to the relatively modest global average forcing of -1.5 W m-2 is amplified through a series of positive cloud feedbacks, in which more

  7. The G4Foam Experiment: Global Climate Impacts of Regional Ocean Albedo Modification

    Energy Technology Data Exchange (ETDEWEB)

    Gabriel, Corey; Robock, Alan; Xia, Lili; Zambri, Brian; Kravitz, Benjamin S.

    2017-01-12

    Reducing insolation has been proposed as a geoengineering response to global warming. Here we present the results of climate model simulations of a unique Geoengineering Model Intercomparison Project Testbed experiment to investigate the benefits and risks of a scheme that would brighten certain oceanic regions. The National Center for Atmospheric Research CESM-CAM4-CHEM global climate model was modified to simulate a scheme in which the albedo of the ocean surface is increased over the subtropical ocean gyres in the Southern Hemisphere. In theory, this could be accomplished using a stable, nondispersive foam, comprised of tiny, highly reflective microbubbles. Such a foam has been developed under idealized conditions, although deployment at a large scale is presently infeasible. We conducted three ensemble members of a simulation (G4Foam) from 2020 through 2069 in which the albedo of the ocean surface is set to 0.15 (an increase of 150%) over the three subtropical ocean gyres in the Southern Hemisphere, against a background of the RCP6.0 (representative concentration pathway resulting in +6 W m-2 radiative forcing by 2100) scenario. After 2069, geoengineering is ceased, and the simulation is run for an additional 20 years. Global mean surface temperature in G4Foam is 0.6 K lower than RCP6.0, with statistically significant cooling relative to RCP6.0 south of 30°N. There is an increase in rainfall over land, most pronouncedly in the tropics during the June-July-August season, relative to both G4SSA (specified stratospheric aerosols) and RCP6.0. Heavily populated and highly cultivated regions throughout the tropics, including the Sahel, Southern Asia, the Maritime Continent, Central America and much of the Amazon, experience a statistically significant increase in precipitation minus evaporation. The temperature response to the relatively modest global average forcing of –1.5 W m-2 is amplified through a series of positive cloud feedbacks, in which more shortwave

  8. Modeling the Oceanic Exchanges Across the Main Arctic Gateways with Emphasis on Atlantic Water and Its Impact on Sea Ice and Climate

    Science.gov (United States)

    Maslowski, Wieslaw; Osinski, Robert; Clement Kinney, Jaclyn; Roberts, Andrew; DiMaggio, Dominic; Craig, Anthony

    2016-04-01

    Estimation of the oceanic budgets of total mass and property exchanges across the main Arctic gateways is challenging from both observational and modeling points of view. While data are insufficient to close such budgets, ocean models commonly struggle with representing transports through the narrow and shallow gates (i.e. Bering Strait and the Canadian Arctic Archipelago) as well as exchanges across Fram Strait or the Barents Sea. Uncertainties in observational constraints at those gates are part of the modeling problems. Yet, realistic model representation of oceanic fluxes, including those associated with Atlantic water, is critical to understanding, simulation and prediction of their impact on the sea ice cover and related feedbacks to the atmosphere and climate. We analyze results from several multi-decadal simulations of the Regional Arctic System Model (RASM) focusing on oceanic fluxes across the Arctic gateways. RASM is a limited-area, process-resolving, coupled atmosphere - ice - ocean - land model that includes the ocean and sea ice models, which are regionally configured versions of those used in the Community Earth System Model (CESM): the Los Alamos Community Ice Model (CICE) and Parallel Ocean Program (POP). The Weather Research and Forecasting (WRF) is used for an atmospheric model, with land surface processes and hydrology represented by the Variable Infiltration Capacity (VIC) model. RASM's pan-Arctic domain covers the entire Northern Hemisphere marine cryosphere, terrestrial drainage and, major inflow/outflow channels to/from the Arctic Ocean, with large portions of the subpolar oceans to allow optimal simulation of the oceanic pathways into and from the central Arctic. The ocean model uses 45 vertical z-coordinate levels and 1/12° or 1/48° rotated sphere meshes with an equator extending across the North Pole, resulting in ~9.3km or 2.4km resolution in the Arctic Ocean, and minimal area distortion near the boundaries. The main objective of this

  9. The impact of a seasonally ice free Arctic Ocean on the climate and surface mass balance of Svalbard

    Directory of Open Access Journals (Sweden)

    J. J. Day

    2011-07-01

    Full Text Available General circulation models (GCMs predict a rapid decrease in Arctic sea ice extent in the 21st century. The decline of September sea ice is expected to continue until the Arctic Ocean is seasonally ice free, leading to a much perturbed Arctic climate with large changes in surface energy flux. Svalbard, located on the present day sea ice edge, contains many low lying ice caps and glaciers which are extremely sensitive to changes in climate. Records of past accumulation indicate that the surface mass balance (SMB of Svalbard is also sensitive to changes in the position of the sea ice edge.

    To investigate the impact of 21st Century sea ice decline on the climate and surface mass balance of Svalbard a high resolution (25 km regional climate model (RCM was forced with a repeating cycle of sea surface temperatures (SSTs and sea ice conditions for the periods 1961–1990 and 2061–2090. By prescribing 20th Century SSTs and 21st Century sea ice for one simulation, the impact of sea ice decline is isolated. This study shows that the coupled impact of sea ice decline and SST increase results in a decrease in SMB, whereas the impact of sea ice decline alone causes an increase in SMB of similar magnitude.

  10. Terrestrial biosphere changes over the last 120 kyr and their impact on ocean δ 13C

    Directory of Open Access Journals (Sweden)

    B. A. A. Hoogakker

    2015-03-01

    Full Text Available A new global synthesis and biomization of long (>40 kyr pollen-data records is presented, and used with simulations from the HadCM3 and FAMOUS climate models to analyse the dynamics of the global terrestrial biosphere and carbon storage over the last glacial–interglacial cycle. Global modelled (BIOME4 biome distributions over time generally agree well with those inferred from pollen data. The two climate models show good agreement in global net primary productivity (NPP. NPP is strongly influenced by atmospheric carbon dioxide (CO2 concentrations through CO2 fertilization. The combined effects of modelled changes in vegetation and (via a simple model soil carbon result in a global terrestrial carbon storage at the Last Glacial Maximum that is 210–470 Pg C less than in pre-industrial time. Without the contribution from exposed glacial continental shelves the reduction would be larger, 330–960 Pg C. Other intervals of low terrestrial carbon storage include stadial intervals at 108 and 85 ka BP, and between 60 and 65 ka BP during Marine Isotope Stage 4. Terrestrial carbon storage, determined by the balance of global NPP and decomposition, influences the stable carbon isotope composition (δ13C of seawater because terrestrial organic carbon is depleted in 13C. Using a simple carbon-isotope mass balance equation we find agreement in trends between modelled ocean δ13C based on modelled land carbon storage, and palaeo-archives of ocean δ13C, confirming that terrestrial carbon storage variations may be important drivers of ocean δ13C changes.

  11. Storm-driven Mixing and Potential Impact on the Arctic Ocean

    Science.gov (United States)

    Yang, Jiayan; Comiso, Josefino; Walsh, David; Krishfield, Richard; Honjo, Susumu; Koblinsky, Chester J. (Technical Monitor)

    2001-01-01

    Observations of the ocean, atmosphere, and ice made by Ice-Ocean Environmental Buoys (IOEBs) indicate that mixing events reaching the depth of the halocline have occurred in various regions in the Arctic Ocean. Our analysis suggests that these mixing events were mechanically forced by intense storms moving across the buoy sites. In this study, we analyzed these mixing events in the context of storm developments that occurred in the Beaufort Sea and in the general area just north of Fram Strait, two areas with quite different hydrographic structures. The Beaufort Sea is strongly influenced by inflow of Pacific water through Bering Strait, while the area north of Fram Strait is directly affected by the inflow of warm and salty North Atlantic water. Our analyses of the basin-wide evolution of the surface pressure and geostrophic wind fields indicate that the characteristics of the storms could be very different. The buoy-observed mixing occurred only in the spring and winter seasons when the stratification was relatively weak. This indicates the importance of stratification, although the mixing itself was mechanically driven. We also analyze the distribution of storms, both the long-term climatology as well as the patterns for each year in the last two decades. The frequency of storms is also shown to be correlated- (but not strongly) to Arctic Oscillation indices. This study indicates that the formation of new ice that leads to brine rejection is unlikely the mechanism that results in the type of mixing that could overturn the halocline. On the other hand, synoptic-scale storms can force mixing deep enough to the halocline and thermocline layer. Despite a very stable stratification associated with the Arctic halocline, the warm subsurface thermocline water is not always insulated from the mixed layer.

  12. Modelling the chemically aged and mixed aerosols over the eastern central Atlantic Ocean – potential impacts

    Directory of Open Access Journals (Sweden)

    M. Astitha

    2010-07-01

    Full Text Available Detailed information on the chemical and physical properties of aerosols is important for assessing their role in air quality and climate. This work explores the origin and fate of continental aerosols transported over the Central Atlantic Ocean, in terms of chemical composition, number and size distribution, using chemistry-transport models, satellite data and in situ measurements. We focus on August 2005, a period with intense hurricane and tropical storm activity over the Atlantic Ocean. A mixture of anthropogenic (sulphates, nitrates, natural (desert dust, sea salt and chemically aged (sulphate and nitrate on dust aerosols is found entering the hurricane genesis region, most likely interacting with clouds in the area. Results from our modelling study suggest rather small amounts of accumulation mode desert dust, sea salt and chemically aged dust aerosols in this Atlantic Ocean region. Aerosols of smaller size (Aitken mode are more abundant in the area and in some occasions sulphates of anthropogenic origin and desert dust are of the same magnitude in terms of number concentrations. Typical aerosol number concentrations are derived for the vertical layers near shallow cloud formation regimes, indicating that the aerosol number concentration can reach several thousand particles per cubic centimetre. The vertical distribution of the aerosols shows that the desert dust particles are often transported near the top of the marine cloud layer as they enter into the region where deep convection is initiated. The anthropogenic sulphate aerosol can be transported within a thick layer and enter the cloud deck through multiple ways (from the top, the base of the cloud, and by entrainment. The sodium (sea salt related aerosol is mostly found below the cloud base. The results of this work may provide insights relevant for studies that consider aerosol influences on cloud processes and storm development in the Central Atlantic region.

  13. Chemically aged and mixed aerosols over the Central Atlantic Ocean – potential impacts

    Directory of Open Access Journals (Sweden)

    H. A. C. Denier van der Gon

    2010-02-01

    Full Text Available Detailed information on the chemical and physical properties of aerosols is important for assessing their role in air quality and climate. This work explores the origin and fate of continental aerosols transported over the Central Atlantic Ocean, in terms of chemical composition, number and size distribution, using chemistry-transport models, satellite data and in situ measurements. We focus on August 2005, a period with intense hurricane and tropical storm activity over the Atlantic Ocean. A mixture of anthropogenic (sulphates, nitrates, natural (desert dust, sea salt and chemically aged (sulphate and nitrate on dust aerosols is found entering the hurricane genesis region, most likely interacting with clouds in the area. Results from our modelling study suggest rather small amounts of accumulation mode desert dust, sea salt and chemically aged dust aerosols in this Atlantic Ocean region. Aerosols of smaller size (Aitken mode are more abundant in the area and in some occasions sulphates of anthropogenic origin and desert dust are of the same magnitude in terms of number concentrations. Typical aerosol number concentrations are derived for the vertical layers near shallow cloud formation regimes, designating that the aerosol number concentration can reach several thousand particles per cubic centimetre. The vertical distribution of the aerosols indicates that the desert dust particles are often transported near the top of the marine cloud layer as they enter into the region where deep convection is initiated. The anthropogenic sulphate aerosol can be transported within a thick layer and enter the cloud deck through multiple ways (from the top, the base of the cloud and entrainment. The sodium (sea salt related aerosol is mostly found below the cloud base. The results of this work may provide insights relevant for studies that consider aerosol influences on cloud processes and storm development in the Central Atlantic region.

  14. Chemically aged and mixed aerosols over the Central Atlantic Ocean - potential impacts

    Science.gov (United States)

    Astitha, M.; Kallos, G.; Spyrou, C.; O'Hirok, W.; Lelieveld, J.; Denier van der Gon, H. A. C.

    2010-02-01

    Detailed information on the chemical and physical properties of aerosols is important for assessing their role in air quality and climate. This work explores the origin and fate of continental aerosols transported over the Central Atlantic Ocean, in terms of chemical composition, number and size distribution, using chemistry-transport models, satellite data and in situ measurements. We focus on August 2005, a period with intense hurricane and tropical storm activity over the Atlantic Ocean. A mixture of anthropogenic (sulphates, nitrates), natural (desert dust, sea salt) and chemically aged (sulphate and nitrate on dust) aerosols is found entering the hurricane genesis region, most likely interacting with clouds in the area. Results from our modelling study suggest rather small amounts of accumulation mode desert dust, sea salt and chemically aged dust aerosols in this Atlantic Ocean region. Aerosols of smaller size (Aitken mode) are more abundant in the area and in some occasions sulphates of anthropogenic origin and desert dust are of the same magnitude in terms of number concentrations. Typical aerosol number concentrations are derived for the vertical layers near shallow cloud formation regimes, designating that the aerosol number concentration can reach several thousand particles per cubic centimetre. The vertical distribution of the aerosols indicates that the desert dust particles are often transported near the top of the marine cloud layer as they enter into the region where deep convection is initiated. The anthropogenic sulphate aerosol can be transported within a thick layer and enter the cloud deck through multiple ways (from the top, the base of the cloud and entrainment). The sodium (sea salt related) aerosol is mostly found below the cloud base. The results of this work may provide insights relevant for studies that consider aerosol influences on cloud processes and storm development in the Central Atlantic region.

  15. Modelling the chemically aged and mixed aerosols over the eastern central Atlantic Ocean - potential impacts

    Science.gov (United States)

    Astitha, M.; Kallos, G.; Spyrou, C.; O'Hirok, W.; Lelieveld, J.; Denier van der Gon, H. A. C.

    2010-07-01

    Detailed information on the chemical and physical properties of aerosols is important for assessing their role in air quality and climate. This work explores the origin and fate of continental aerosols transported over the Central Atlantic Ocean, in terms of chemical composition, number and size distribution, using chemistry-transport models, satellite data and in situ measurements. We focus on August 2005, a period with intense hurricane and tropical storm activity over the Atlantic Ocean. A mixture of anthropogenic (sulphates, nitrates), natural (desert dust, sea salt) and chemically aged (sulphate and nitrate on dust) aerosols is found entering the hurricane genesis region, most likely interacting with clouds in the area. Results from our modelling study suggest rather small amounts of accumulation mode desert dust, sea salt and chemically aged dust aerosols in this Atlantic Ocean region. Aerosols of smaller size (Aitken mode) are more abundant in the area and in some occasions sulphates of anthropogenic origin and desert dust are of the same magnitude in terms of number concentrations. Typical aerosol number concentrations are derived for the vertical layers near shallow cloud formation regimes, indicating that the aerosol number concentration can reach several thousand particles per cubic centimetre. The vertical distribution of the aerosols shows that the desert dust particles are often transported near the top of the marine cloud layer as they enter into the region where deep convection is initiated. The anthropogenic sulphate aerosol can be transported within a thick layer and enter the cloud deck through multiple ways (from the top, the base of the cloud, and by entrainment). The sodium (sea salt related) aerosol is mostly found below the cloud base. The results of this work may provide insights relevant for studies that consider aerosol influences on cloud processes and storm development in the Central Atlantic region.

  16. Impact of oceanic processes on the carbon cycle during the last termination

    Directory of Open Access Journals (Sweden)

    N. Bouttes

    2011-06-01

    Full Text Available During the last termination (from ~18 000 yr ago to ~9000 yr ago the climate significantly warmed and the ice sheets melted. Simultaneously, atmospheric CO2 increased from ~190 ppm to ~260 ppm. Although this CO2 rise plays an important role in the deglacial warming, the reasons for its evolution are difficult to explain. Only box models have been used to run transient simulations of this carbon cycle transition, but by forcing the model with data constrained scenarios of the evolution of temperature, sea level, sea ice, NADW formation, Southern Ocean vertical mixing and biological carbon pump. More complex models (including GCMs have investigated some of these mechanisms but they have only been used to try and explain LGM versus present day steady-state climates.

    In this study we use a climate-carbon coupled model of intermediate complexity to explore the role of three oceanic processes in transient simulations: the sinking of brines, stratification-dependant diffusion and iron fertilization. Carbonate compensation is accounted for in these simulations. We show that neither iron fertilization nor the sinking of brines alone can account for the evolution of CO2, and that only the combination of the sinking of brines and interactive diffusion can simultaneously simulate the increase in deep Southern Ocean δ13C. The scenario that agrees best with the data takes into account all mechanisms and favours a rapid cessation of the sinking of brines around 18 000 yr ago, when the Antarctic ice sheet extent was at its maximum. Sea ice formation was then shifted to the open ocean where the salty water is quickly mixed with fresher water, which prevents deep sinking of salty water and therefore breaks down the deep stratification and releases carbon from the abyss. Based on this scenario it is possible to simulate both the amplitude and timing of the CO2 increase during the last termination in

  17. Impact of oceanic processes on the carbon cycle during the last termination

    Directory of Open Access Journals (Sweden)

    N. Bouttes

    2012-01-01

    Full Text Available During the last termination (from ~18 000 years ago to ~9000 years ago, the climate significantly warmed and the ice sheets melted. Simultaneously, atmospheric CO2 increased from ~190 ppm to ~260 ppm. Although this CO2 rise plays an important role in the deglacial warming, the reasons for its evolution are difficult to explain. Only box models have been used to run transient simulations of this carbon cycle transition, but by forcing the model with data constrained scenarios of the evolution of temperature, sea level, sea ice, NADW formation, Southern Ocean vertical mixing and biological carbon pump. More complex models (including GCMs have investigated some of these mechanisms but they have only been used to try and explain LGM versus present day steady-state climates.

    In this study we use a coupled climate-carbon model of intermediate complexity to explore the role of three oceanic processes in transient simulations: the sinking of brines, stratification-dependent diffusion and iron fertilization. Carbonate compensation is accounted for in these simulations. We show that neither iron fertilization nor the sinking of brines alone can account for the evolution of CO2, and that only the combination of the sinking of brines and interactive diffusion can simultaneously simulate the increase in deep Southern Ocean δ13C. The scenario that agrees best with the data takes into account all mechanisms and favours a rapid cessation of the sinking of brines around 18 000 years ago, when the Antarctic ice sheet extent was at its maximum. In this scenario, we make the hypothesis that sea ice formation was then shifted to the open ocean where the salty water is quickly mixed with fresher water, which prevents deep sinking of salty water and therefore breaks down the deep stratification and releases carbon from the abyss. Based on this scenario, it is possible to simulate both the amplitude and timing of

  18. Addressing Geohazards Through Ocean Drilling

    Directory of Open Access Journals (Sweden)

    Craig Shipp

    2009-03-01

    Full Text Available Natural geohazards, such as earthquakes, volcanic eruptions, landslides, and volcanic collapse, are of immediate societal concern. In an oceanic setting (Fig. 1, all are capable of generating tsunami that threaten coastal zones at distances of many thousands of kilometers. This power and its effects were forcefully shown by the giant earthquake (Mw 9.2 and tsunami of 26 December 2004 off the coast of northern Sumatra. Smaller magnitude submarine earthquakes andlandslides occur with shorter recurrence intervals and the capability of tsunami generation, creating hazards for local coastal communities as well as for offshore industry and infrastructure. At the other end of the scale, the geologic record suggests that less common, large-volume volcanic collapses and extraterrestrial meteorite and comet impacts in ocean basins have the potential to initiate tsunami ofextraordinary power that can threaten huge sections of coastlines with growing populations. These events also disperse enormous volumes of ash, steam, and ejecta into the atmosphere, with short- and long-term consequences, including climate change. All of these processes, which have operated throughout the Earth’s history, are instrumental in shaping the Earth system today. However, they are characteristically difficult to predict, and viable risk assessmentand hazard mitigation depend on a clearer understanding of the causes, distributions, and consequences of such natural events.

  19. Modeling coral calcification accounting for the impacts of coral bleaching and ocean acidification

    Directory of Open Access Journals (Sweden)

    C. Evenhuis

    2014-01-01

    Full Text Available Coral reefs are diverse ecosystems threatened by rising CO2 levels that are driving the observed increases in sea surface temperature and ocean acidification. Here we present a new unified model that links changes in temperature and carbonate chemistry to coral health. Changes in coral health and population are able to explicitly modelled by linking the rates of growth, recovery and calcification to the rates of bleaching and temperature stress induced mortality. The model is underpinned by four key principles: the Arrhenius equation, thermal specialisation, resource allocation trade-offs, and adaption to local environments. These general relationships allow this model to be constructed from a range of experimental and observational data. The different characteristics of this model are also assessed against independent data to show that the model captures the observed response of corals. We also provide new insights into the factors that determine calcification rates and provide a framework based on well-known biological principles for understanding the observed global distribution of calcification rates. Our results suggest that, despite the implicit complexity of the coral reef environment, a simple model based on temperature, carbonate chemistry and different species can reproduce much of the observed response of corals to changes in temperature and ocean acidification.

  20. Modelling coral calcification accounting for the impacts of coral bleaching and ocean acidification

    Science.gov (United States)

    Evenhuis, C.; Lenton, A.; Cantin, N. E.; Lough, J. M.

    2015-05-01

    Coral reefs are diverse ecosystems that are threatened by rising CO2 levels through increases in sea surface temperature and ocean acidification. Here we present a new unified model that links changes in temperature and carbonate chemistry to coral health. Changes in coral health and population are explicitly modelled by linking rates of growth, recovery and calcification to rates of bleaching and temperature-stress-induced mortality. The model is underpinned by four key principles: the Arrhenius equation, thermal specialisation, correlated up- and down-regulation of traits that are consistent with resource allocation trade-offs, and adaption to local environments. These general relationships allow this model to be constructed from a range of experimental and observational data. The performance of the model is assessed against independent data to demonstrate how it can capture the observed response of corals to stress. We also provide new insights into the factors that determine calcification rates and provide a framework based on well-known biological principles to help understand the observed global distribution of calcification rates. Our results suggest that, despite the implicit complexity of the coral reef environment, a simple model based on temperature, carbonate chemistry and different species can give insights into how corals respond to changes in temperature and ocean acidification.

  1. Modeling coral calcification accounting for the impacts of coral bleaching and ocean acidification

    Science.gov (United States)

    Evenhuis, C.; Lenton, A.; Cantin, N. E.; Lough, J. M.

    2014-01-01

    Coral reefs are diverse ecosystems threatened by rising CO2 levels that are driving the observed increases in sea surface temperature and ocean acidification. Here we present a new unified model that links changes in temperature and carbonate chemistry to coral health. Changes in coral health and population are able to explicitly modelled by linking the rates of growth, recovery and calcification to the rates of bleaching and temperature stress induced mortality. The model is underpinned by four key principles: the Arrhenius equation, thermal specialisation, resource allocation trade-offs, and adaption to local environments. These general relationships allow this model to be constructed from a range of experimental and observational data. The different characteristics of this model are also assessed against independent data to show that the model captures the observed response of corals. We also provide new insights into the factors that determine calcification rates and provide a framework based on well-known biological principles for understanding the observed global distribution of calcification rates. Our results suggest that, despite the implicit complexity of the coral reef environment, a simple model based on temperature, carbonate chemistry and different species can reproduce much of the observed response of corals to changes in temperature and ocean acidification.

  2. Gulf of Mexico low-frequency ocean soundscape impacted by airguns.

    Science.gov (United States)

    Wiggins, Sean M; Hall, Jesse M; Thayre, Bruce J; Hildebrand, John A

    2016-07-01

    The ocean soundscape of the Gulf of Mexico (GOM) has not been well-studied, although it is an important habitat for marine mammals, including sperm and beaked whales, many dolphin species, and a potentially endangered baleen whale species. The GOM is also home to high levels of hydrocarbon exploration and extraction, heavily used commercial shipping ports, and significant fishery industry activity, all of which are known contributors to oceanic noise. From 2010-2013, the soundscape of three deep and two shallow water sites in the GOM were monitored over 10 - 1000 Hz. Average sound pressure spectrum levels were high, >90 dB re 1 μPa(2)/Hz at 700 Hz, were present at a shallow water site in the northeastern Gulf, removed from the zone of industrial development and bathymetrically shielded from deep water anthropogenic sound sources. During passage of a high wind event (Hurricane Isaac, 2012), sound pressure levels above 200 Hz increased with wind speed, but at low frequencies (<100 Hz) sound pressure levels decreased owing to absence of noise from airguns.

  3. Impact of uncertainties in atmospheric boundary conditions on ocean model solutions

    Science.gov (United States)

    Chaudhuri, Ayan H.; Ponte, Rui M.; Forget, Gael

    2016-04-01

    We quantify differences in ocean model simulations derived solely from atmospheric uncertainties and investigate how they relate to overall model errors as inferred from comparisons with data. For this purpose, we use a global configuration of the MITgcm to simulate 4 ocean solutions for 2000-2009 using 4 reanalysis products (JRA-25, MERRA, CFSR and ERA-Interim) as atmospheric forcing. The simulations are compared against observations and against each other for selected variables (temperature, sea-level, sea-ice, streamfunctions, meridional heat and freshwater transports). Forcing-induced differences are comparable in magnitude to model-observation misfits for most near-surface variables in the tropics and sub-tropics, but typically smaller at higher latitudes and polar regions. Forcing-derived differences are expectedly largest near the surface and mostly limited to the upper 1000 m but can also be seen as deep as 4000 m, especially in regions of deep water formation. Errors are not necessarily local in nature and can be advected to different basins. Results indicate that while forcing adjustments might suffice in optimization procedures of near-surface fields and at low-to-mid latitudes, other control parameters are likely needed elsewhere. Forcing-induced differences can be dominated by large spatial scales and specific time scales (e.g. annual), and thus appropriate error covariances in space and time need to be considered in optimization methodologies.

  4. Remote Sensing Marine Ecology: Wind-driven algal blooms in the open oceans and their ecological impacts

    Science.gov (United States)

    Tang, DanLing

    2016-07-01

    Algal bloom not only can increase the primary production but also could result in negative ecological consequence, e.g., Harmful Algal Blooms (HABs). According to the classic theory for the formation of algal blooms "critical depth" and "eutrophication", oligotrophic sea area is usually difficult to form a large area of algal blooms, and actually the traditional observation is only sporadic capture to the existence of algal blooms. Taking full advantage of multiple data of satellite remote sensing, this study: 1), introduces "Wind-driven algal blooms in open oceans: observation and mechanisms" It explained except classic coastal Ekman transport, the wind through a variety of mechanisms affecting the formation of algal blooms. Proposed a conceptual model of "Strong wind -upwelling-nutrient-phytoplankton blooms" in Western South China Sea (SCS) to assess role of wind-induced advection transport in phytoplankton bloom formation. It illustrates the nutrient resources that support long-term offshore phytoplankton blooms in the western SCS; 2), Proposal of the theory that "typhoons cause vertical mixing, induce phytoplankton blooms", and quantify their important contribution to marine primary production; Proposal a new ecological index for typhoon. Proposed remote sensing inversion models. 3), Finding of the spatial and temporaldistributions pattern of harmful algal bloom (HAB)and species variations of HAB in the South Yellow Sea and East China Sea, and in the Pearl River estuary, and their oceanic dynamic mechanisms related with monsoon; The project developed new techniques and generated new knowledge, which significantly improved understanding of the formation mechanisms of algal blooms. 1), It proposed "wind-pump" mechanism integrates theoretical system combing "ocean dynamics, development of algal blooms, and impact on primary production", which will benefit fisheries management. 2), A new interdisciplinary subject "Remote Sensing Marine Ecology"(RSME) has been

  5. The impact of a seasonally ice free Arctic Ocean on the temperature, precipitation and surface mass balance of Svalbard

    Directory of Open Access Journals (Sweden)

    J. J. Day

    2012-01-01

    Full Text Available The observed decline in summer sea ice extent since the 1970s is predicted to continue until the Arctic Ocean is seasonally ice free during the 21st Century. This will lead to a much perturbed Arctic climate with large changes in ocean surface energy flux. Svalbard, located on the present day sea ice edge, contains many low lying ice caps and glaciers and is expected to experience rapid warming over the 21st Century. The total sea level rise if all the land ice on Svalbard were to melt completely is 0.02 m.

    The purpose of this study is to quantify the impact of climate change on Svalbard's surface mass balance (SMB and to determine, in particular, what proportion of the projected changes in precipitation and SMB are a result of changes to the Arctic sea ice cover. To investigate this a regional climate model was forced with monthly mean climatologies of sea surface temperature (SST and sea ice concentration for the periods 1961–1990 and 2061–2090 under two emission scenarios. In a novel forcing experiment, 20th Century SSTs and 21st Century sea ice were used to force one simulation to investigate the role of sea ice forcing. This experiment results in a 3.5 m water equivalent increase in Svalbard's SMB compared to the present day. This is because over 50 % of the projected increase in winter precipitation over Svalbard under the A1B emissions scenario is due to an increase in lower atmosphere moisture content associated with evaporation from the ice free ocean. These results indicate that increases in precipitation due to sea ice decline may act to moderate mass loss from Svalbard's glaciers due to future Arctic warming.

  6. Use of hydrate for sequestering CO{sub 2} in the deep ocean

    Energy Technology Data Exchange (ETDEWEB)

    North, W.J.; Morgan, J.J. [California Inst. of Technology, Pasadena, CA (United States); Spencer, D.F. [Electric Power Research Inst., Palo Alto, CA (United States)] [and others

    1993-12-31

    Tremendous amounts of CO{sub 2} are accumulating annually in the atmosphere (ca 3 gigatons of carbon per year at present). Prevention or significant amelioration of this atmospheric buildup will obviously require a grand scale corrective activity. A potential solution to the problem might involve sequestering CO{sub 2} in an alternate reservoir. The ocean immediately comes to mind as a reservoir of appropriate magnitude to accommodate the huge quantities of CO{sub 2} involved. Presumably there would be a trade-off: we would achieve a semi-clean atmosphere for an as- yet-to-be-determined impact in the ocean. Minimizing any oceanic impacts would enhance attractiveness of the trade-off.

  7. Huge uterine-cervical diverticulum mimicking as a cyst

    Directory of Open Access Journals (Sweden)

    S Chufal

    2012-01-01

    Full Text Available Here we report an incidental huge uterine-cervical diverticulum from a total abdominal hysterectomy specimen in a perimenopausal woman who presented with acute abdominal pain. The diverticulum was mimicking with various cysts present in the lateral side of the female genital tract. Histopathological examination confirmed this to be a cervical diverticulum with communication to uterine cavity through two different openings. They can attain huge size if left ignored for long duration and present a diagnostic challenge to clinicians, radiologists, as well as pathologists because of its extreme rarity. Therefore, diverticula should also be included as a differential diagnosis. Its histopathological confirmation also highlights that diverticula can present as an acute abdomen, requiring early diagnosis with appropriate timely intervention. Immunohistochemistry CD 10 has also been used to differentiate it from a mesonephric cyst.

  8. Huge uterine-cervical diverticulum mimicking as a cyst.

    Science.gov (United States)

    Chufal, S; Thapliyal, Naveen; Gupta, Manoj; Pangtey, Nirmal

    2012-01-01

    Here we report an incidental huge uterine-cervical diverticulum from a total abdominal hysterectomy specimen in a perimenopausal woman who presented with acute abdominal pain. The diverticulum was mimicking with various cysts present in the lateral side of the female genital tract. Histopathological examination confirmed this to be a cervical diverticulum with communication to uterine cavity through two different openings. They can attain huge size if left ignored for long duration and present a diagnostic challenge to clinicians, radiologists, as well as pathologists because of its extreme rarity. Therefore, diverticula should also be included as a differential diagnosis. Its histopathological confirmation also highlights that diverticula can present as an acute abdomen, requiring early diagnosis with appropriate timely intervention. Immunohistochemistry CD 10 has also been used to differentiate it from a mesonephric cyst.

  9. A case of huge primary liposarcoma in the liver

    Institute of Scientific and Technical Information of China (English)

    Liang-Mou Kuo; Hong-Shiue Chou; Kun-Ming Chan; Ming-Chin Yu; Wei-Chen Lee

    2006-01-01

    Primary liver liposarcoma is a rare disease. Because of its rarity, the knowledge of the clinical course, management, and prognosis of primary liver liposarcoma are all limited for clinicians. A 61-year-old female patient who suffered from a huge primary liposarcoma in the central portion of the liver had the clinical presentations of fever, nausea, vomiting, jaundice, and body weight loss.The huge tumor was resected successfully. However,the tumor recurred repeatedly and she had repeated hepatectomies to remove the tumor. Thetumor became aggravating after repeated surgeries. Eventually, the patient had cervical spinal metastasis of liposarcoma and she survived for 26 months after liver liposarcoma was diagnosed. Although the tumor may become aggravating after repeated surgeries, repeated hepatectomies are still the best policy to achieve a long-term survival for the patients.

  10. Regional estimates of reef carbonate dynamics and productivity Using Landsat 7 ETM+, and potential impacts from ocean acidification

    Science.gov (United States)

    Moses, C.S.; Andrefouet, S.; Kranenburg, C.; Muller-Karger, F. E.

    2009-01-01

    Using imagery at 30 m spatial resolution from the most recent Landsat satellite, the Landsat 7 Enhanced Thematic Mapper Plus (ETM+), we scale up reef metabolic productivity and calcification from local habitat-scale (10 -1 to 100 km2) measurements to regional scales (103 to 104 km2). Distribution and spatial extent of the North Florida Reef Tract (NFRT) habitats come from supervised classification of the Landsat imagery within independent Landsat-derived Millennium Coral Reef Map geomorphologic classes. This system minimizes the depth range and variability of benthic habitat characteristics found in the area of supervised classification and limits misclassification. Classification of Landsat imagery into 5 biotopes (sand, dense live cover, sparse live cover, seagrass, and sparse seagrass) by geomorphologic class is >73% accurate at regional scales. Based on recently published habitat-scale in situ metabolic measurements, gross production (P = 3.01 ?? 109 kg C yr -1), excess production (E = -5.70 ?? 108 kg C yr -1), and calcification (G = -1.68 ?? 106 kg CaCO 3 yr-1) are estimated over 2711 km2 of the NFRT. Simple models suggest sensitivity of these values to ocean acidification, which will increase local dissolution of carbonate sediments. Similar approaches could be applied over large areas with poorly constrained bathymetry or water column properties and minimal metabolic sampling. This tool has potential applications for modeling and monitoring large-scale environmental impacts on reef productivity, such as the influence of ocean acidification on coral reef environments. ?? Inter-Research 2009.

  11. Impacts of Sea Surface Salinity Bias Correction on North Atlantic Ocean Circulation and Climate Variability in the Kiel Climate Model

    Science.gov (United States)

    Park, Taewook; Park, Wonsun; Latif, Mojib

    2016-04-01

    We investigated impacts of correcting North Atlantic sea surface salinity (SSS) biases on the ocean circulation of the North Atlantic and on North Atlantic sector mean climate and climate variability in the Kiel Climate Model (KCM). Bias reduction was achieved by applying a freshwater flux correction over the North Atlantic to the model. The quality of simulating the mean circulation of the North Atlantic Ocean, North Atlantic sector mean climate and decadal variability is greatly enhanced in the freshwater flux-corrected integration which, by definition, depicts relatively small North Atlantic SSS biases. In particular, a large reduction in the North Atlantic cold sea surface temperature (SST) bias is observed and a more realistic Atlantic Multidecadal Variability (AMV) simulated. Improvements relative to the non-flux corrected integration also comprise a more realistic representation of deep convection sites, sea ice, gyre circulation and Atlantic Meridional Overturning Circulation (AMOC). The results suggest that simulations of North Atlantic sector mean climate and decadal variability could strongly benefit from alleviating sea surface salinity biases in the North Atlantic, which may enhance the skill of decadal predictions in that region.

  12. Benthic disturbance and impact experiments in the Central Indian Ocean Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Sharma, R.; Nath, B.N.; Valsangkar, A.B.; Parthiban, G.; Sivakholundu, K.M.; Walker, G.A.

    As a part of the Environmental Impact Assessment studies for nodule mining, a long-term program has been initiated in the Central Indian Basin. Multidisciplinary studies on geological, biological, physical and chemical parameters were carried out...

  13. Black Hole Firewalls Require Huge Energy of Measurement

    CERN Document Server

    Hotta, Masahiro; Funo, Ken

    2013-01-01

    The unitary moving mirror model is one of the best quantum systems for checking the reasoning of the firewall paradox in quantum black holes. The reasoning of Almheiri et al. inevitably raises a firewall paradox in the model. We resolve this paradox from the viewpoint of the energy cost of quantum measurements. No firewall with a deadly, huge energy flux appears, as long as the energy for the measurement is much smaller than the ultraviolet cutoff scale.

  14. Severe microphthalmos with cyst and unusually huge dermolipoma.

    Science.gov (United States)

    Li, Weidong; Zhang, Ping; Chen, Qiwen; Ye, Xuelian; Li, Jianqun; Yan, Jianhua

    2015-03-01

    The purpose of this study was to report an unusual case of severe microphthalmos, together with an orbital cyst and huge ocular surface dermolipoma. This is a clinical report relating clinical features as well as imaging and histopathologic findings, along with surgical management of the patient. A 5-month-old Chinese male infant was referred, with 2 large masses in the left eye that were present since birth. Ocular examination results revealed a complete absence of any eye structures in the left orbit. In its place were 2 large masses between the left upper and lower palpebral fissure. One was a 3 × 3 × 2.5-cm spherical red tumor with a smooth surface. The other was a large solid spherical tumor, 4 × 4 × 5 cm, covered with normal skin located in the temporal region and attached to the red mass by a pedicle. Orbital magnetic resonance imaging examination findings confirmed that no eye structures were present in the left orbit. However, a cystic lesion was found in the left orbit, with a low signal on T1-weighted imaging and high signal on T2-weighted imaging, and another huge spherical heterogeneous mass was located "outside" the left orbit. Anterior orbitotomy by conjunctival incision was performed under general anesthesia. A spherical cystic mass of 1.5 × 1.5 × 1.6 cm, a small eye of 0.7 × 0.7 × 0.6 cm, and a huge dermolipoma were removed completely. Pathologic examination results confirmed the diagnosis of severe microphthalmos, together with orbital dermoid cyst and dermolipoma. This rare case demonstrates that severe microphthalmos with a cyst may be completely covered by conjunctiva and associated with an unusually huge dermolipoma.

  15. Huge plastic bezoar: a rare cause of gastrointestinal obstruction.

    Science.gov (United States)

    Yaka, Mbarek; Ehirchiou, Abdelkader; Alkandry, Tariq Tajdin Sifeddine; Sair, Khalid

    2015-01-01

    Bezoars are rare causes of gastrointestinal obstruction. Basically, they are of four types: trichobezoars, phytobezoars, pharmacobezoars, and lactobezoars. Some rare types of bezoars are also known. In this article a unique case of plastic bezoars is presented. We describe a girl aged 14 years who ingested large amounts of plastic material used for knitting chairs and charpoys. The conglomerate of plastic threads, entrapped food material and other debris, formed a huge mass occupying the whole stomach and extended into small bowel.

  16. A Huge Cystic Retroperitoneal Lymphangioma Presenting with Back Pain

    Science.gov (United States)

    Kubachev, Kubach; Abdullaev, Elbrus; Babyshin, Valentin; Neronov, Dmitriy; Abdullaev, Abakar

    2016-01-01

    Retroperitoneal lymphangioma is a rare location and type of benign abdominal tumors. The clinical presentation of this rare disease is nonspecific, ranging from abdominal distention to sepsis. Here we present a 73-year-old female patient with 3-month history of back pain. USG and CT revealed a huge cystic mass which was surgically excised and appeared to be lymphangioma on histopathology. PMID:27843456

  17. Huge Left Atrium Accompanied by Normally Functioning Prosthetic Valve.

    Science.gov (United States)

    Sabzi, Feridoun

    2015-01-01

    Giant left atria are defined as those measuring larger than 8 cm and are typically found in patients who have rheumatic mitral valve disease with severe regurgitation. Enlargement of the left atrium may create compression of the surrounding structures such as the esophagus, pulmonary veins, respiratory tract, lung, inferior vena cava, recurrent laryngeal nerve, and thoracic vertebrae and lead to dysphagia, respiratory dysfunction, peripheral edema, hoarse voice, or back pain. However, a huge left atrium is usually associated with rheumatic mitral valve disease but is very rare in a normally functioning prosthetic mitral valve, as was the case in our patient. A 46-year-old woman with a past medical history of mitral valve replacement and chronic atrial fibrillation was admitted to our hospital with a chief complaint of cough and shortness of breath, worsened in the last month. Physical examination showed elevated jugular venous pressure, respiratory distress, cardiac cachexia, heart failure, hepatomegaly, and severe edema in the legs. Chest radiography revealed an inconceivably huge cardiac sell-out. Transthoracic echocardiography demonstrated a huge left atrium, associated with thrombosis, and normal function of the prosthetic mitral valve. Cardiac surgery with left atrial exploration for the extraction of the huge thrombosis and De Vega annuloplasty for tricuspid regurgitation were carried out. The postoperative course was eventful due to right ventricular failure and low cardiac output syndrome; and after two days, the patient expired with multiple organ failure. Thorough literature review showed that our case was the largest left atrium (20 × 22 cm) reported thus far in adults with a normal prosthetic mitral valve function.

  18. Huge Left Atrium Accompanied by Normally Function- ing Prosthetic Valve

    Directory of Open Access Journals (Sweden)

    Feridoun Sabzi

    2015-10-01

    Full Text Available Giant left atria are defined as those measuring larger than 8 cm and are typically found in patients who have rheumatic mitral valve disease with severe regurgitation. Enlargement of the left atrium may create compression of the surrounding structures such as the esophagus, pulmonary veins, respiratory tract, lung, inferior vena cava, recurrent laryngeal nerve, and thoracic vertebrae and lead to dysphagia, respiratory dysfunction, peripheral edema, hoarse voice, or back pain. However, a huge left atrium is usually associated with rheumatic mitral valve disease but is very rare in a normally functioning prosthetic mitral valve, as was the case in our patient. A 46-year-old woman with a past medical history of mitral valve replacement and chronic atrial fibrillation was admitted to our hospital with a chief complaint of cough and shortness of breath, worsened in the last month. Physical examination showed elevated jugular venous pressure, respiratory distress, cardiac cachexia, heart failure, hepatomegaly, and severe edema in the legs. Chest radiography revealed an inconceivably huge cardiac sell-out. Transthoracic echocardiography demonstrated a huge left atrium, associated with thrombosis, and normal function of the prosthetic mitral valve. Cardiac surgery with left atrial exploration for the extraction of the huge thrombosis and De Vega annuloplasty for tricuspid regurgitation were carried out. The postoperative course was eventful due to right ventricular failure and low cardiac output syndrome; and after two days, the patient expired with multiple organ failure. Thorough literature review showed that our case was the largest left atrium (20 × 22 cm reported thus far in adults with a normal prosthetic mitral valve function.

  19. Huge Nevus Lipomatosus Cutaneous Superficialis on Back: An Unusual Presentation.

    Science.gov (United States)

    Das, Dipti; Das, Anupam; Bandyopadhyay, Debabrata; Kumar, Dhiraj

    2015-01-01

    Nevus lipomatosus cutaneous superficialis (NLCS) is a benign dermatosis, histologically characterized by the presence of mature ectopic adipocytes in the dermis. We hereby report a case of a 10-year-old boy who presented with multiple huge swellings on the scapular regions and lower back. The lesions were surmounted by small papules, along with peau-d orange appearance at places. Histology showed features consistent with NLCS. The case is being reported for the unusual clinical presentation.

  20. Huge nevus lipomatosus cutaneous superficialis on back: An unusual presentation

    Directory of Open Access Journals (Sweden)

    Dipti Das

    2015-01-01

    Full Text Available Nevus lipomatosus cutaneous superficialis (NLCS is a benign dermatosis, histologically characterized by the presence of mature ectopic adipocytes in the dermis. We hereby report a case of a 10-year-old boy who presented with multiple huge swellings on the scapular regions and lower back. The lesions were surmounted by small papules, along with peau-d orange appearance at places. Histology showed features consistent with NLCS. The case is being reported for the unusual clinical presentation.

  1. Impact of aerosols on marine cloud microphysics over the Indian Ocean using satellite data.

    Science.gov (United States)

    Rao, Sofiya; Dey, Sagnik

    2017-04-01

    Aerosol-cloud interaction is the one of the least understood and largest sources of uncertainty in quantifying climate forcing. Despite progress, the problem remains unresolved because of the buffering effect of meteorology and therefore it is suggested to separate the meteorological forcing from aerosol forcing focusing on different cloud types (Stevens and Feingold 2009). However, most of the previous studies on aerosol-cloud interaction over the Indian Ocean (including INDOEX) are limited to either one particular season or short period. We examine relationships between aerosol and cloud parameters using MODIS data sets for 15 years (2000-2015) period over Indian Ocean. We separated the meteorological forcing from aerosol forcing. In both the Arabian Sea (AS) and Bay of Bengal (BOB), the meteorological forcing is largest in the monsoon. In all the four seasons, cloud microphysical properties are more sensitive to aerosol optical depth (AOD) over the AS compared to BOB. Further analysis reveals presence of semi-direct effect in the winter season. Influence of aerosols on liquid water path (LWP) - cloud effective radius (Reff) relation is quantified. Cloud albedo (Rc) dependency on LWP and Reff is examined in view of changing aerosol load. Cloud drop growth is facilitated in presence of high moisture content. This is evident from the fact that Reff is found to broadly increase with an increase in LWP in every season over Arabian Sea as well as over Bay of Bengal. It is also noted that Reff is larger across a wide range of LWP in 'clean' condition (AOD polluted' condition (0.2 polluted' condition and (AOD > 0.4). This clearly demonstrate that in more polluted conditions, growth of cloud drops are restricted. This is the evidence of classic aerosol indirect effect. However, we notice a saturation in the decrease in Reff with an increase in AOD beyond 0.4. The results provide robust observational evidence of aerosol-cloud interaction in the Indian Ocean region that

  2. Huge Intravascular Tumor Extending to the Heart: Leiomyomatosis

    Directory of Open Access Journals (Sweden)

    Suat Doganci

    2015-01-01

    Full Text Available Intravenous leiomyomatosis (IVL is a rare neoplasm characterized by histologically benign-looking smooth muscle cell tumor mass, which is growing within the intrauterine and extrauterine venous system. In this report we aimed to present an unusual case of IVL, which is originating from iliac vein and extended throughout to right cardiac chambers. A 49-year-old female patient, who was treated with warfarin sodium due to right iliac vein thrombosis, was admitted to our department with intermittent dyspnea, palpitation, and dizziness. Physical examination was almost normal except bilateral pretibial edema. On magnetic resonance venography, there was an intravenous mass, which is originated from right internal iliac vein and extended into the inferior vena cava. Transthoracic echocardiography and transesophageal echocardiography revealed a huge mass extending from the inferior vena cava through the right atrium, with obvious venous occlusion. Thoracic, abdominal, and pelvic MR showed an intravascular mass, which is concordant with leiomyomatosis. Surgery was performed through median sternotomy. A huge mass with 25-cm length and 186-gr weight was excised through right atrial oblique incision, on beating heart with cardiopulmonary bypass. Histopathologic assessment was compatible with IVL. Exact strategy for the surgical treatment of IVL is still controversial. We used one-stage approach, with complete resection of a huge IVL extending from right atrium to right iliac vein. In such cases, high recurrence rate is a significant problem; therefore it should be kept in mind.

  3. Multimodality treatment with radiotherapy for huge hepatocellular carcinoma.

    Science.gov (United States)

    Han, Hee Ji; Kim, Mi Sun; Cha, Jihye; Choi, Jin Sub; Han, Kwang Hyub; Seong, Jinsil

    2014-01-01

    For huge hepatocellular carcinoma (HCC), therapeutic decisions have varied from local therapy to systemic therapy, with radiotherapy (RT) playing only a palliative role. In this study, we investigated whether multimodality treatment involving RT could be effective in huge HCC. This study was performed in 116 patients with HCC >10 cm. The number of patients in stage II, III and IV was 12, 54 and 50, respectively. RT was given as a combined modality in most patients. The median dose was 45 Gy, with 1.8 Gy per fraction. The median overall survival (OS) and progression-free survival (PFS) were 14.8 and 6.5 months, respectively. The median infield PFS was not reached. Infield failure, outfield intrahepatic and extrahepatic failure were observed in 8.6, 18.1, and 12.1% of patients, respectively. For OS and PFS, number of tumors, initial alpha-fetoprotein (AFP) level, treatment response, percent AFP decrement, and hepatic resection were significant prognostic factors. Tumor characteristics and treatment response were significantly different between long-term survivors and the other patients. Although huge HCC presents an aggressive clinical course, multimodality approaches involving RT can offer an opportunity for prolonged survival. © 2014 S. Karger AG, Basel.

  4. Huge Intravascular Tumor Extending to the Heart: Leiomyomatosis.

    Science.gov (United States)

    Doganci, Suat; Kaya, Erkan; Kadan, Murat; Karabacak, Kubilay; Erol, Gökhan; Demirkilic, Ufuk

    2015-01-01

    Intravenous leiomyomatosis (IVL) is a rare neoplasm characterized by histologically benign-looking smooth muscle cell tumor mass, which is growing within the intrauterine and extrauterine venous system. In this report we aimed to present an unusual case of IVL, which is originating from iliac vein and extended throughout to right cardiac chambers. A 49-year-old female patient, who was treated with warfarin sodium due to right iliac vein thrombosis, was admitted to our department with intermittent dyspnea, palpitation, and dizziness. Physical examination was almost normal except bilateral pretibial edema. On magnetic resonance venography, there was an intravenous mass, which is originated from right internal iliac vein and extended into the inferior vena cava. Transthoracic echocardiography and transesophageal echocardiography revealed a huge mass extending from the inferior vena cava through the right atrium, with obvious venous occlusion. Thoracic, abdominal, and pelvic MR showed an intravascular mass, which is concordant with leiomyomatosis. Surgery was performed through median sternotomy. A huge mass with 25-cm length and 186-gr weight was excised through right atrial oblique incision, on beating heart with cardiopulmonary bypass. Histopathologic assessment was compatible with IVL. Exact strategy for the surgical treatment of IVL is still controversial. We used one-stage approach, with complete resection of a huge IVL extending from right atrium to right iliac vein. In such cases, high recurrence rate is a significant problem; therefore it should be kept in mind.

  5. Environmental impact assessment of radioactive materials during sea transportation: Case study of plutonium released in the ocean

    Energy Technology Data Exchange (ETDEWEB)

    Niel, J.Ch.

    1996-12-31

    The objectives of the environmental impact assessments of radioactive materials are at first given. The NSPI (Nuclear Safety Protection Institut) is jointly involved in these assessments. Currently, the NSPI is studying the case of plutonium release. The summary of this study is given. Indeed, to perform this assessment, the marine environment has to be modelled on a large scale and the exposure path to be calculated. Hypothesis has been made on the release phenomena as well. The proposed model, the origin of contamination, the hypothesis for the calculation and the exposure pathway are then explained. All the sea products are supposed to be eaten within the European countries. Cumulated collective doses for European countries after 50 years should be 160 man Sv in the western part of the Channel and 4.47 man Sv in the north eastern part of the atlantic ocean. (O.M.). 2 refs.

  6. Hidden impacts of ocean acidification to live and dead coral framework.

    Science.gov (United States)

    Hennige, S J; Wicks, L C; Kamenos, N A; Perna, G; Findlay, H S; Roberts, J M

    2015-08-22

    Cold-water corals, such as Lophelia pertusa, are key habitat-forming organisms found throughout the world's oceans to 3000 m deep. The complex three-dimensional framework made by these vulnerable marine ecosystems support high biodiversity and commercially important species. Given their importance, a key question is how both the living and the dead framework will fare under projected climate change. Here, we demonstrate that over 12 months L. pertusa can physiologically acclimate to increased CO2, showing sustained net calcification. However, their new skeletal structure changes and exhibits decreased crystallographic and molecular-scale bonding organization. Although physiological acclimatization was evident, we also demonstrate that there is a negative correlation between increasing CO2 levels and breaking strength of exposed framework (approx. 20-30% weaker after 12 months), meaning the exposed bases of reefs will be less effective 'load-bearers', and will become more susceptible to bioerosion and mechanical damage by 2100.

  7. Marine gametes in a changing ocean: Impacts of climate change stressors on fecundity and the egg.

    Science.gov (United States)

    Foo, Shawna A; Byrne, Maria

    2017-02-17

    In marine invertebrates, the environmental history of the mother can influence fecundity and egg size. Acclimation of females in climate change stressors, increased temperature and low pH, results in a decrease in egg number and size in many taxa, with the exception of cephalopods, where eggs increase in size. With respect to spawned eggs, near future levels of ocean acidification can interfere with the egg's block to polyspermy and intracellular pH. Reduction of the extracellular egg jelly coat seen in low pH conditions has implications for impaired egg function and fertilization. Some fast generation species (e.g. copepods, polychaetes) have shown restoration of female reproductive output after several generations in treatments. It will be important to determine if the changes to egg number and size induced by exposure to climate change stressors are heritable.

  8. Projected impacts of climate change and ocean acidification on the global biogeography of planktonic foraminifera

    Directory of Open Access Journals (Sweden)

    T. Roy

    2014-06-01

    Full Text Available Planktonic foraminifera are a major contributor to the deep carbonate-flux and the planktonic biomass of the global ocean. Their microfossil deposits form one of the richest databases for reconstructing paleoenvironments, particularly through changes in their taxonomic and shell composition. Using an empirically-based foraminifer model that incorporates three known major physiological drivers of foraminifer biogeography – temperature, food and light – we investigate (i the global redistribution of planktonic foraminifera under anthropogenic climate change, and (ii the alteration of the carbonate chemistry of foraminifer habitat with ocean acidification. The present-day and future (2090–2100 3-D distributions of foraminifera are simulated using temperature, plankton biomass, and light from an Earth system model forced with historical and a future (IPCC A2 high CO2 emission scenario. The broadscale patterns of present day foraminifer biogeography are well reproduced. Foraminifer abundance and diversity are projected to decrease in the tropics and subpolar regions and increase in the subtropics and around the poles. In the tropics, the geographical shifts are driven by temperature, while the vertical shifts are driven by both temperature and food availability. In the high-latitudes, vertical shifts are driven by food availability, while geographical shifts are driven by both food availability and temperature. Changes in the marine carbon cycle would be expected in response to (i the large-scale rearrangements in foraminifer abundance, and (ii the reduction of the carbonate concentration in the habitat range of planktonic foraminifers: from 10–30 μmol kg−1 in the polar/subpolar regions to 30–70 μmol kg−1 in the subtropical/tropical regions. High-latitude species are most vulnerable to anthropogenic change: their abundance and available habitat decrease and up to 10% of their habitat drops below the calcite saturation horizon.

  9. Antarctic Ice Sheet variability in the Plio-Pleistocene, its impact on the Southern Ocean and teleconnections to distant latitudes

    Science.gov (United States)

    DeConto, R.; Pollard, D.; Naish, T.

    2012-12-01

    In recent years, geological records and numerical modeling have begun to paint a picture of a highly dynamic West Antarctic Ice Sheet (WAIS) through the Pliocene and during some Pleistocene interglacials. However, the primary mechanisms driving that variability remain poorly constrained, as does the impact of substantial changes in Antarctic ice volume on global climate and the evolution of the Northern Hemispheric cryosphere over the last ~3.5 million years. Here, we take an integrated data-model view of the past variability of WAIS and the potential for substantial changes in East Antarctic Ice Sheet volume over the last ~5 million years, using a newly improved ice sheet-shelf model coupled to atmospheric and ocean model components. Recent findings support 1) the notion of a dynamic WAIS over the last 5 million years, highly sensitive to modest changes in sub-ice shelf ocean temperatures but relatively insensitive to changes in surface mass balance, 2) the potential for substantial WAIS retreat as recently as Marine Isotope Stage (MIS) 7 and the last interglacial, 3) a relatively stable EAIS through the Pliocene and Pleistocene, making some estimates of past sea level (particularly in the Pliocene) difficult to justify without invoking some unknown ice sheet dynamical processes and/or exceptional climate sensitivity and polar amplification of warming. Correlations between new Antarctic and Arctic climate records spanning the last several million years imply strong interhemispheric connectivity operating on a range of timescales,from sub-millennial to orbital. Possible teleconnection mechanisms are discussed here in the context of new climate model simulations that test the potential for Antarctic ice sheet variability to impact the global system from the warm Pliocene to present.

  10. Persistence of Carbonate Platform Environments in Central Mexico during the Oceanic Anoxic Event 2: impact of the Carribean Plateau?

    Science.gov (United States)

    Bomou, Brahimsamba; Adatte, Thierry; Föllmi, Karl; Arnaud-Vanneau, Annie; Fleitmann, Dominik

    2010-05-01

    The Cenomanian-Turonian Oceanic Anoxic Event 2 is described as an interruption of normal pelagic sediment deposition by several distinct intervals of widespread oceanic anoxia (Schlanger & Jenkyns, 1976; Jenkyns, 1980; Arthur et al., 1990) characterized by black shales deposition coinciding with a positive shift in carbon isotope excursion. Some authors show a relationship between OAEs and massive volcanic events associated with the emplacement of large igneous provinces (LIPs) and sea floor spreading at mid-ocean ridges (Kuroda et al., 2007; Snow et al., 2005). High metal abundance anomalies recorded in pelagic sections (e.g. Pueblo, Colorado) coincide with the massive volcanism that built the Carribean plateau (around 93-94 Ma), associated with the onset of OAE 2 (Snow et al., 2005). Mort et al., (2007) demonstrate that the onset of the OAE 2 was triggered by a short-lived but significant increase in phosphorus burial. The bottom waters became anoxic and switched from being a P sink to a P source, sustaining the productivity in a positive feedback loop. However, the behaviour of phosphorus and trace metals at larger scale, in different paleogeography and paleodepht is still poorly known. The Axaxacualco and Baranca el Cañon sections, located at the Guerrero-Morelos carbonate platform in southern Mexico exhibit a fully correlateable d13C curves. In the distal part of the carbonate platform at Axaxacualco, the maximum d13C positive excursion coincides with oligotrophic carbonate platform environments supported by low concentrations in P and characterized by abundant and diversified benthic microfauna and rudists. The impact of OAE appears may be more significant in the proximal part of the carbonate platform at Barranca, characterized by the deposition of thick laminated microbialites indicative of mesotrophic conditions. The Morelos Carbonate platform with oligotrophic to mesotrophic conditions was persistent throughout the entire OAE2 in Central Mexico despite

  11. Deep Water Ocean Acoustics

    Science.gov (United States)

    2016-04-30

    OASIS, INC. 1 Report No. QSR-14C0172-Ocean Acoustics-043016 Quarterly Progress Report Technical and Financial Deep Water Ocean Acoustics...understanding of the impact of the ocean and seafloor environmental variability on deep- water (long-range) ocean acoustic propagation and to...improve our understanding. During the past few years, the physics effects studied have been three-dimensional propagation on global scales, deep water

  12. Health and climate impacts of ocean-going vessels in East Asia

    Science.gov (United States)

    Liu, Huan; Fu, Mingliang; Jin, Xinxin; Shang, Yi; Shindell, Drew; Faluvegi, Greg; Shindell, Cary; He, Kebin

    2016-11-01

    East Asia has the most rapidly growing shipping emissions of both CO2 and traditional air pollutants, but the least in-depth analysis. Full evaluation of all pollutants is needed to assess the impacts of shipping emissions. Here, using an advanced method based on detailed dynamic ship activity data, we show that shipping emissions in East Asia accounted for 16% of global shipping CO2 in 2013, compared to only 4-7% in 2002-2005. Increased emissions lead to large adverse health impacts, with 14,500-37,500 premature deaths per year. Global mean radiative forcing from East Asian shipping is initially negative, but would become positive after approximately eight years for constant current emissions. As a large fraction of vessels are registered elsewhere, joint efforts are necessary to reduce emissions and mitigate the climate and health impacts of shipping in the region.

  13. Health and Climate Impacts of Ocean-Going Vessels in East Asia

    Science.gov (United States)

    Liu, Huan; Fu, Mingliang; Jin, Xinxin; Shang, Yi; Shindell, Drew; Faluvegi, Greg; Shindell, Cary; He, Kebin

    2016-01-01

    East Asia has the most rapidly growing shipping emissions of both CO2 and traditional air pollutants, but the least in-depth analysis. Full evaluation of all pollutants is needed to assess the impacts of shipping emissions. Here, using an advanced method based on detailed dynamic ship activity data, we show that shipping emissions in East Asia accounted for 16% of global shipping CO2 in 2013, compared to only 4-7% in 2002-2005. Increased emissions lead to large adverse health impacts, with 14,500-37,500 premature deaths per year. Global mean radiative forcing from East Asian shipping is initially negative, but would become positive after approximately eight years for constant current emissions. As a large fraction of vessels are registered elsewhere, joint efforts are necessary to reduce emissions and mitigate the climate and health impacts of shipping in the region.

  14. Impact of representativeness errors in an ocean application for the Back-and-Forth Nudging method

    Science.gov (United States)

    Ruggiero, Giovanni; Ballabrera Poy, Joaquim; Blum, Jacques; Ourmieres, Yann; Verron, Jacques

    2013-04-01

    The goal of data assimilation (DA) is to combine, in the "best" possible way, all available sources of information of a given system to reconstruct its state. The appropriate weight given to observations and models is a function of their respective errors. In the specific case of oceanographic applications, one significant source of errors is discretization as, for instance, it truncates the portion of the spectrum being explicitly resolved. Spectral differences between the observations and the model solutions represent a challenge in data assimilation because: i) The statistical properties of the representativeness errors need to be estimated, and ii) in a nonlinear system, the realism of the resolved spectra depends on the validity of the physical parameterization of the effects of the non-resolved processes. Finding appropriate strategies to deal with these two issues remains one of the major present efforts in ocean data assimilation. In this work, we investigate the problem of assimilating data coming from an eddy resolving ocean simulation into an eddy permitting model. With such a setting, the ocean model cannot be considered as perfect because the observations contain information of a spectral band not accounted by the model, and also because it should be expected that the resolved spectral band slightly differs between the data and the model. Therefore, this experimental setting allows the presence of both errors of representativeness of observations and model errors due to unsatisfactory parameterization of diffusive/viscous processes. This study has been conducted using an idealized simulation of a subtropical double gyre circulation (SQB gyre) using the NEMO model (Madec and the NEMO team, 2008). The observations are derived from a high resolution configuration (1/12°), while the assimilative model has a coarser (1/4°) resolution. The most significant mean difference between both free solutions is the southward displacement of the convergence zone

  15. Impact of ocean acidification on antimicrobial activity in gills of the blue mussel (Mytilus edulis).

    Science.gov (United States)

    Hernroth, B; Baden, S; Tassidis, H; Hörnaeus, K; Guillemant, J; Bergström Lind, S; Bergquist, J

    2016-08-01

    Here, we aimed to investigate potential effects of ocean acidification on antimicrobial peptide (AMP) activity in the gills of Mytilus edulis, as gills are directly facing seawater and the changing pH (predicted to be reduced from ∼8.1 to ∼7.7 by 2100). The AMP activity of gill and haemocyte extracts was compared at pH 6.0, 7.7 and 8.1, with a radial diffusion assay against Escherichia coli. The activity of the gill extracts was not affected by pH, while it was significantly reduced with increasing pH in the haemocyte extracts. Gill extracts were also tested against different species of Vibrio (V. parahaemolyticus, V. tubiashii, V. splendidus, V. alginolyticus) at pH 7.7 and 8.1. The metabolic activity of the bacteria decreased by ∼65-90%, depending on species of bacteria, but was, as in the radial diffusion assay, not affected by pH. The results indicated that AMPs from gills are efficient in a broad pH-range. However, when mussels were pre-exposed for pH 7.7 for four month the gill extracts presented significantly lower inhibit of bacterial growth. A full in-depth proteome investigation of gill extracts, using LC-Orbitrap MS/MS technique, showed that among previously described AMPs from haemocytes of Mytilus, myticin A was found up-regulated in response to lipopolysaccharide, 3 h post injection. Sporadic occurrence of other immune related peptides/proteins also pointed to a rapid response (0.5-3 h p.i.). Altogether, our results indicate that the gills of blue mussels constitute an important first line defence adapted to act at the pH of seawater. The antimicrobial activity of the gills is however modulated when mussels are under the pressure of ocean acidification, which may give future advantages for invading pathogens. Copyright © 2016. Published by Elsevier Ltd.

  16. MR-based truncation and attenuation correction in integrated PET/MR hybrid imaging using HUGE with continuous table motion.

    Science.gov (United States)

    Lindemann, Maike E; Oehmigen, Mark; Blumhagen, Jan O; Gratz, Marcel; Quick, Harald H

    2017-09-01

    The objective of this study was to introduce and evaluate a method for MR-based attenuation and truncation correction in phantom and patient measurements to improve PET quantification in PET/MR hybrid imaging. The fully MR-based method HUGE (B0 Homogenization using gradient enhancement) provides field-of-view extension in MR imaging, which can be used for truncation correction and improved PET quantification in PET/MR hybrid imaging. The HUGE method in this recent implementation is combined with continuously moving table data acquisition to provide a seamless nontruncated whole-body data set of the outer patient contours to complete the established standard MR-based Dixon-VIBE data for attenuation correction. The method was systematically evaluated in NEMA standard phantom experiments to investigate the impact of HUGE truncation correction on PET quantification. The method was then applied to 24 oncologic patients in whole-body PET/MR hybrid imaging. The impact of MR-based truncation correction with HUGE on PET data was compared to the impact of the established PET-based MLAA algorithm for contour detection. In phantom and in all patient measurements, the standard Dixon-VIBE attenuation correction data show geometric distortions and signal truncations at the edges of the MR imaging field-of-view. In contrast, the Dixon-VIBE-based attenuation correction data additionally extended by applying HUGE shows significantly less distortion and truncations and due to the continuously moving table acquisition robustly provides smooth outer contours of the patient arms. In the investigated patient cases, MLAA frequently showed an overestimation of arm volume and associated artifacts limiting contour detection. When applying HUGE, an average relative increase in SUVmean in patients' lesion of 4.2% and for MLAA of 4.6% were measured, when compared to standard Dixon-VIBE only. In specific lesions maximal differences in SUVmean up to 13% for HUGE and 14% for MLAA were measured

  17. Impact of mesoscale eddies on water transport between the Pacific Ocean and the Bering Sea

    CERN Document Server

    Prants, S V; Budyansky, M V; Uleysky, M Yu

    2013-01-01

    Sea surface height anomalies observed by satellites in 1993--2012 are combined with simulation and observations by surface drifters and Argo floats to study water flow pattern in the Near Strait (NS) connected the Pacific Ocean with the Bering Sea. Daily Lagrangian latitudinal maps, computed with the AVISO surface velocity field, and calculation of the transport across the strait show that the flow through the NS is highly variable and controlled by mesoscale and submesoscale eddies in the area. On the seasonal scale, the flux through the western part of the NR is negatively correlated with the flux through its eastern part ($r=-0.93$). On the interannual time scale, a significant positive correlation ($r=0.72$) is diagnosed between the NS transport and the wind stress in winter. Increased southward component of the wind stress decreases the northward water transport through the strait. Positive wind stress curl over the strait area in winter--spring generates the cyclonic circulation and thereby enhances the...

  18. Impacts of the north and tropical Atlantic Ocean on the Antarctic Peninsula and sea ice.

    Science.gov (United States)

    Li, Xichen; Holland, David M; Gerber, Edwin P; Yoo, Changhyun

    2014-01-23

    In recent decades, Antarctica has experienced pronounced climate changes. The Antarctic Peninsula exhibited the strongest warming of any region on the planet, causing rapid changes in land ice. Additionally, in contrast to the sea-ice decline over the Arctic, Antarctic sea ice has not declined, but has instead undergone a perplexing redistribution. Antarctic climate is influenced by, among other factors, changes in radiative forcing and remote Pacific climate variability, but none explains the observed Antarctic Peninsula warming or the sea-ice redistribution in austral winter. However, in the north and tropical Atlantic Ocean, the Atlantic Multidecadal Oscillation (a leading mode of sea surface temperature variability) has been overlooked in this context. Here we show that sea surface warming related to the Atlantic Multidecadal Oscillation reduces the surface pressure in the Amundsen Sea and contributes to the observed dipole-like sea-ice redistribution between the Ross and Amundsen-Bellingshausen-Weddell seas and to the Antarctic Peninsula warming. Support for these findings comes from analysis of observational and reanalysis data, and independently from both comprehensive and idealized atmospheric model simulations. We suggest that the north and tropical Atlantic is important for projections of future climate change in Antarctica, and has the potential to affect the global thermohaline circulation and sea-level change.

  19. Japanese and Taiwanese pelagic longline fleet dynamics and the impacts of climate change in the southern Indian Ocean

    Science.gov (United States)

    Michael, P. E.; Wilcox, C.; Tuck, G. N.; Hobday, A. J.; Strutton, P. G.

    2017-06-01

    Climate change is projected to continue shifting the distribution of marine species, leading to changes in local assemblages and different interactions with human activities. With regard to fisheries, understanding the relationship between fishing fleets, target species catch per unit effort (CPUE), and the environment enhances our ability to anticipate fisher response and is an essential step towards proactive management. Here, we explore the potential impact of climate change in the southern Indian Ocean by modelling Japanese and Taiwanese pelagic longline fleet dynamics. We quantify the mean and variability of target species CPUE and the relative value and cost of fishing in different areas. Using linear mixed models, we identify fleet-specific effort allocation strategies most related to observed effort and predict the future distribution of effort and tuna catch under climate change for 2063-2068. The Japanese fleet's strategy targets high-value species and minimizes the variability in CPUE of the primary target species. Conversely, the Taiwanese strategy indicated flexible targeting of a broad range of species, fishing in areas of high and low variability in catch, and minimizing costs. The projected future mean and variability in CPUE across species suggest a slight increase in CPUE in currently high CPUE areas for most species. The corresponding effort projections suggest a slight increase in Japanese effort in the western and eastern study area, and Taiwanese effort increasing east of Madagascar. This approach provides a useful method for managers to explore the impacts of different fishing and fleet management strategies for the future.

  20. The impact of aerosol and clouds on the radiation field during the ALBATROSS 1996 field campaign in the Atlantic Ocean

    Science.gov (United States)

    Kylling, A.; Hofzumahaus, A.; Brauers, T.; Kraus, A.

    2003-04-01

    In october-november 1996 the research vessel Polarstern traversed the Atlantic Ocean from about 66.7oN to 47.2oS. Data recorded during the cruise included the global irradiance and the 2pi downwelling actinic flux. The data are presented and discussed in terms of the various climatic conditions under which the data were recorded. The actinic flux measurements in the UV-A region of the spectrum are used to derive an effective cloud optical depth. Together with the global radiation data the cloud optical depths are used to quantify the effect of clouds on the radiative forcing. During the cruise Polarstern passed through a region with Saharan dust. The radiative impact of the aerosol on the actinic flux and the global irradiance is elucidated with the aid of radiative transfer model simulations. The impact of the aerosol depends on the solar zenith angle. The actinic flux was reduced by 8-30% with the largest reduction taking place at solar zenith angles around 70o.

  1. Analyzing huge pathology images with open source software.

    Science.gov (United States)

    Deroulers, Christophe; Ameisen, David; Badoual, Mathilde; Gerin, Chloé; Granier, Alexandre; Lartaud, Marc

    2013-06-06

    Digital pathology images are increasingly used both for diagnosis and research, because slide scanners are nowadays broadly available and because the quantitative study of these images yields new insights in systems biology. However, such virtual slides build up a technical challenge since the images occupy often several gigabytes and cannot be fully opened in a computer's memory. Moreover, there is no standard format. Therefore, most common open source tools such as ImageJ fail at treating them, and the others require expensive hardware while still being prohibitively slow. We have developed several cross-platform open source software tools to overcome these limitations. The NDPITools provide a way to transform microscopy images initially in the loosely supported NDPI format into one or several standard TIFF files, and to create mosaics (division of huge images into small ones, with or without overlap) in various TIFF and JPEG formats. They can be driven through ImageJ plugins. The LargeTIFFTools achieve similar functionality for huge TIFF images which do not fit into RAM. We test the performance of these tools on several digital slides and compare them, when applicable, to standard software. A statistical study of the cells in a tissue sample from an oligodendroglioma was performed on an average laptop computer to demonstrate the efficiency of the tools. Our open source software enables dealing with huge images with standard software on average computers. They are cross-platform, independent of proprietary libraries and very modular, allowing them to be used in other open source projects. They have excellent performance in terms of execution speed and RAM requirements. They open promising perspectives both to the clinician who wants to study a single slide and to the research team or data centre who do image analysis of many slides on a computer cluster. The virtual slide(s) for this article can be found here

  2. Evaluating the Impact of the Number of Satellite Altimeters Used in an Assimilative Ocean Prediction System

    Science.gov (United States)

    2010-01-01

    indicates the scaled MB, MB95 MB 1 N N j51 (O j O)2 2 4 3 5 1/2 , (12) or the biweight version, MBbw9 5 MBbw hhO j iibw , (13) and the x axis denotes...RMSEbwunbiased hhO j iibw . (15) To investigate the impact of outliers, results from both the Gaussian statistics [Eqs. (12) and (14)] and the non- parametric

  3. A NOVEL APPROACH FOR PATTERN ANALYSIS FROM HUGE DATAWAREHOUSE

    Directory of Open Access Journals (Sweden)

    BABITA

    2014-05-01

    Full Text Available Due to the tremendous growth of data and large databases, efficient extraction of required data has become a challenging task. This paper propose a novel approach for knowledge discovery from huge unlabeled temporal databases by employing a combination of HMM and K-means technique. We propose to recursively divide the entire database into clusters having similar characteristics, this process is repeated until we get the cluster’s where no further diversification is possible. Thereafter, the clusters are labeled for knowledge extraction for various purposes.

  4. A young woman with a huge paratubal cyst

    Directory of Open Access Journals (Sweden)

    Ceren Golbasi

    2016-09-01

    Full Text Available Paratubal cysts are asymptomatic embryological remnants. These cysts are usually diagnosed during adolescence and reproductive age. In general, their sizes are small but can be complicated by rupture, torsion, or hemorrhage. Paratubal cysts are often discovered fortuitously on routine ultrasound examination. We report a 19-year-old female patient who presented with irregular menses and abdominal pain. Ultrasound examination revealed a huge cystic mass at the right adnexial area. The diagnosis was confirmed as paratubal cyst during laporotomy and, hence, cystectomy and right salpingectomy were performed. [Cukurova Med J 2016; 41(3.000: 573-576

  5. Modeling huge sound sources in a room acoustical calculation program

    DEFF Research Database (Denmark)

    Christensen, Claus Lynge

    1999-01-01

    A room acoustical model capable of modeling point sources, line sources, and surface sources is presented. Line and surface sources are modeled using a special ray-tracing algorithm detecting the radiation pattern of the surfaces of the room. Point sources are modeled using a hybrid calculation...... method combining this ray-tracing method with image source modeling. With these three source types it is possible to model huge and complex sound sources in industrial environments. Compared to a calculation with only point sources, the use of extended sound sources is shown to improve the agreement...

  6. A huge renal capsular leiomyoma mimicking retroperitoneal sarcoma

    Directory of Open Access Journals (Sweden)

    Lal Anupam

    2009-01-01

    Full Text Available A huge left renal capsular leiomyoma mimicking retroperitoneal sarcoma presented in a patient as an abdominal mass. Computed tomography displayed a large heterogeneous retro-peritoneal mass in the left side of the abdomen with inferior and medial displacement as well as loss of fat plane with the left kidney. Surgical exploration revealed a capsulated mass that was tightly adherent to the left kidney; therefore, total tumor resection with radical left nephrectomy was performed. Histopathology ultimately confirmed the benign nature of the mass. This is the largest leiomyoma reported in literature to the best of our knowledge.

  7. Huge pyometra in a postmenopausal age: a diagnostic dilemma

    Directory of Open Access Journals (Sweden)

    Pramila Yadav

    2015-10-01

    Full Text Available Pyometra in postmenopausal women is an extremely rare disease that hardly responds to the usual treatment of antibiotics therapy. Our case presented as a postmenopausal woman with a huge pyometra. Pyometra drainage was done with great difficulty after a blind biopsy. Endometrial and cervical biopsy followed by endometrial curettage was done. An intrauterine foley's catheter was kept for seven days and Histopathological report was suggestive of squamous cell carcinoma of cervix. [Int J Reprod Contracept Obstet Gynecol 2015; 4(5.000: 1549-1551

  8. Dynamics of transparent exopolymeric particles and their precursors during a mesocosm experiment: Impact of ocean acidification

    Science.gov (United States)

    Bourdin, Guillaume; Gazeau, Frédéric; Kerros, Marie-Emmanuelle; Marro, Sophie; Pedrotti, Maria Luiza

    2017-02-01

    The dissolution of anthropogenic atmospheric CO2 in seawater is suspected to exert a strong pressure on biological processes as well as on carbon and nutrient cycles. Transparent exopolymeric particles (TEP) are polysaccharide particles, formed by aggregation of polymers exuded by phytoplankton and strongly involved in organic matter sedimentation. A mesocosm experiment was performed from February to March 2013 in the coastal waters of the Northwestern Mediterranean Sea, a region characterised by low-nutrient low-chlorophyll (LNLC) levels. We aimed to determine the effect of ocean acidification on the organic carbon pool of TEP produced by a natural phytoplankton community. The experiment was conducted in nine mesocosms of 50 m3 deployed for 12 days, and subjected to seven partial pressures of CO2 (pCO2) levels: one control level in triplicate and six elevated levels between 450 and 1250 μatm. The use of different analytical methods allowed the assessment of TEP density, volume concentration and size distribution as well as both TEP and TEP precursors carbon content. TEP contributed vastly to the particulate organic carbon pool (∼62%), and were mainly produced by small-sized phytoplankton such as pico- and nanophytoplankton. TEP precursors carbon content represented three times the carbon content of particulate TEP, showing that this pool has to be considered in experiments focused on the environmental control of TEP production. There was no evidence that TEP and TEP precursors were dependent on pCO2. These parameters exhibited clear temporal dynamics, with tight links to community composition, nutrient availability and other environmental parameters.

  9. On the impact of oceanic turbulence on tropical climate variability: Upper ocean diapycnal heat flux and mixing processes in the central and eastern tropical Atlantic

    Energy Technology Data Exchange (ETDEWEB)

    Dengler, Marcus; Hummels, Rebecca [Leibniz-Institut fuer Meereswissenschaften, Kiel (Germany)

    2009-07-01

    The ocean has a major influence on tropical Atlantic climate variability. This is most noticeable in the close link between interannual variability of sea surface temperature in the upwelling regions of the tropical Atlantic and variability of rainfall in the counties surrounding the Gulf of Guinea and in northeast Brazil. A key processes controlling sea surface temperature in the upwelling regions is turbulent mixing of water masses just below the mixed layer. Here, we investigate the seasonal variability of upper-ocean mixing processes in the equatorial Atlantic Ocean from microstructure measurements acquired during 6 cruises between September 2005 and 2007. The data set revealed that the upper equatorial Atlantic Ocean is a major mixing hot spot and showed turbulent heat flux to be a dominant term in the mixed layer heat balance. There is, however, a pronounced seasonal cycle in the diapycnal heat flux with maximum values occurring during boreal summer and low values during winter. The processes leading to this variability are discussed. The results suggest that climate models need to accurately model equatorial turbulence to realistically simulate tropical climate variability.

  10. Preface to special issue (Impacts of surface ocean acidification in polar seas and globally: A field-based approach)

    Science.gov (United States)

    Tyrrell, Toby; Tarling, Geraint A.; Leakey, Raymond J. G.; Cripps, Gemma; Thorpe, Sally; Richier, Sophie; Mark Moore, C.

    2016-05-01

    Both ocean acidification and global warming are consequences of the rise in atmospheric CO2. Ocean acidification is not itself a consequence of global warming, but rather of the invasion of atmospheric CO2 into the ocean. Time-series of carbonate chemistry measurements in different locations around the world all document the continuous and ongoing increase in the amount of CO2 in the ocean, and the consequential accompanying decrease in surface ocean seawater pH at all sites over the last years (Bates et al., 2014).

  11. Impact of anthropogenic ocean acidification on thermal tolerance of the spider crab Hyas araneus

    Directory of Open Access Journals (Sweden)

    H. O. Pörtner

    2009-03-01

    Full Text Available Future scenarios project combined developments of elevated CO2 concentrations and global warming and their impact on marine ecosystems. The synergistic impact of both factors was addressed by studying the effect of CO2 accumulation on thermal tolerance of the cold-eurythermal spider crab Hyas araneus. Animals were exposed to present day normocapnia (380 ppm CO2, CO2 levels expected towards 2100 (710 ppm and beyond (3000 ppm. Heart rate and haemolymph PO2 (PeO2 were measured during progressive short term cooling from 10 to 0°C and during warming from 10 to 25°C. An increase of PeO2 occurred during cooling with highest values reached at 0°C under all three CO2 levels. Heart rate increased during warming until a critical temperature (Tc was reached. The putative Tc under normocapnia was presumably >25°C, from where it fell to 23.5°C under 710 ppm and then 21.1°C under 3000 ppm. At the same time, thermal sensitivity, as seen in the Q10 values of heart rate, rose with increasing CO2 concentration in the warmth. Our results suggest a narrowing of the thermal window of Hyas araneus under moderate increases in CO2 levels by exacerbation of the heat or cold induced oxygen and capacity limitation of thermal tolerance.

  12. Impacts of aerosol particles on the microphysical and radiative properties of stratocumulus clouds over the southeast Pacific Ocean

    Science.gov (United States)

    Twohy, C. H.; Anderson, J. R.; Toohey, D. W.; Andrejczuk, M.; Adams, A.; Lytle, M.; George, R. C.; Wood, R.; Saide, P.; Spak, S.; Zuidema, P.; Leon, D.

    2013-03-01

    The southeast Pacific Ocean is covered by the world's largest stratocumulus cloud layer, which has a strong impact on ocean temperatures and climate in the region. The effect of anthropogenic sources of aerosol particles on the stratocumulus deck was investigated during the VOCALS field experiment. Aerosol measurements below and above cloud were made with a ultra-high sensitivity aerosol spectrometer and analytical electron microscopy. In addition to more standard in-cloud measurements, droplets were collected and evaporated using a counterflow virtual impactor (CVI), and the non-volatile residual particles were analyzed. Many flights focused on the gradient in cloud properties on an E-W track along 20° S from near the Chilean coast to remote areas offshore. Mean statistics, including their significance, from eight flights and many individual legs were compiled. Consistent with a continental source of cloud condensation nuclei, below-cloud accumulation-mode aerosol and droplet number concentration generally decreased from near shore to offshore. Single particle analysis was used to reveal types and sources of the enhanced particle number that influence droplet concentration. While a variety of particle types were found throughout the region, the dominant particles near shore were partially neutralized sulfates. Modeling and chemical analysis indicated that the predominant source of these particles in the marine boundary layer along 20° S was anthropogenic pollution from central Chilean sources, with copper smelters a relatively small contribution. Cloud droplets were smaller in regions of enhanced particles near shore. However, physically thinner clouds, and not just higher droplet number concentrations from pollution, both contributed to the smaller droplets. Satellite measurements were used to show that cloud albedo was highest 500-1000 km offshore, and actually slightly lower closer to shore due to the generally thinner clouds and lower liquid water paths

  13. Climate impacts of shipping and petroleum extraction in an unlocked Arctic ocean

    Science.gov (United States)

    Samset, B. H.; Berntsen, T.; Dahlsøren, S. B.; Eide, L. I.; Eide, M. S.; Fuglestvedt, J.; Glomsrød, S.; Lindholt, L.; Myhre, G.; Nilssen, T. B.; Peters, G. P.; Ødemark, K.

    2012-04-01

    Reductions in sea ice extent are expected to open up the Arctic region to increased volumes of ship traffic and petroleum extraction activities. Both of these potentially entail changes in concentrations of short-lived climate forcers (SLCFs) such as aerosols and ozone, which may impact the future climate. The response of the Arctic to SLCF emissions is however not well constrained, as the annual cycle, solar irradiation, surface albedo and ambient temperature are special to this region. The present study investigates the effects of SLCF emissions in the Arctic in 2004, as well as in 2030 and 2050. An emission inventory is used for present day activities, while future emissions are taken from models of the global energy market and shipping fleet. Atmospheric concentrations are input to the OsloCTM2 chemical transport model, and radiative forcings (RFs) are calculated using a multi-stream radiation transport code. Climate impacts are quantified via RFs and Global Warming Potentials of the various emitted components, in addition to estimates of the first indirect aerosol effect and the snow albedo effect from black carbon (BC). For present day emissions we calculate a net negative RF from shipping, mainly driven by the indirect aerosol effect, and a net positive RF from petroleum extraction, mainly due to the BC snow albedo effect. For future emissions the general results remain similar, but the total RFs develop with changes in emission volume and composition. We discuss the sensitivity of the Arctic region to emissions in terms of normalized RFs as function of season and geographical location.

  14. Impact of tectonic and volcanism on the Neogene evolution of isolated carbonate platforms (SW Indian Ocean)

    Science.gov (United States)

    Courgeon, S.; Jorry, S. J.; Jouet, G.; Camoin, G.; BouDagher-Fadel, M. K.; Bachèlery, P.; Caline, B.; Boichard, R.; Révillon, S.; Thomas, Y.; Thereau, E.; Guérin, C.

    2017-06-01

    Understanding the impact of tectonic activity and volcanism on long-term (i.e. millions years) evolution of shallow-water carbonate platforms represents a major issue for both industrial and academic perspectives. The southern central Mozambique Channel is characterized by a 100 km-long volcanic ridge hosting two guyots (the Hall and Jaguar banks) and a modern atoll (Bassas da India) fringed by a large terrace. Dredge sampling, geophysical acquisitions and submarines videos carried out during recent oceanographic cruises revealed that submarine flat-top seamounts correspond to karstified and drowned shallow-water carbonate platforms largely covered by volcanic material and structured by a dense network of normal faults. Microfacies and well-constrained stratigraphic data indicate that these carbonate platforms developed in shallow-water tropical environments during Miocene times and were characterized by biological assemblages dominated by corals, larger benthic foraminifera, red and green algae. The drowning of these isolated carbonate platforms is revealed by the deposition of outer shelf sediments during the Early Pliocene and seems closely linked to (1) volcanic activity typified by the establishment of wide lava flow complexes, and (2) to extensional tectonic deformation associated with high-offset normal faults dividing the flat-top seamounts into distinctive structural blocks. Explosive volcanic activity also affected platform carbonates and was responsible for the formation of crater(s) and the deposition of tuff layers including carbonate fragments. Shallow-water carbonate sedimentation resumed during Late Neogene time with the colonization of topographic highs inherited from tectonic deformation and volcanic accretion. Latest carbonate developments ultimately led to the formation of the Bassas da India modern atoll. The geological history of isolated carbonate platforms from the southern Mozambique Channel represents a new case illustrating the major

  15. Errors in Seismic Hazard Assessment are Creating Huge Human Losses

    Science.gov (United States)

    Bela, J.

    2015-12-01

    The current practice of representing earthquake hazards to the public based upon their perceived likelihood or probability of occurrence is proven now by the global record of actual earthquakes to be not only erroneous and unreliable, but also too deadly! Earthquake occurrence is sporadic and therefore assumptions of earthquake frequency and return-period are both not only misleading, but also categorically false. More than 700,000 people have now lost their lives (2000-2011), wherein 11 of the World's Deadliest Earthquakes have occurred in locations where probability-based seismic hazard assessments had predicted only low seismic low hazard. Unless seismic hazard assessment and the setting of minimum earthquake design safety standards for buildings and bridges are based on a more realistic deterministic recognition of "what can happen" rather than on what mathematical models suggest is "most likely to happen" such future huge human losses can only be expected to continue! The actual earthquake events that did occur were at or near the maximum potential-size event that either already had occurred in the past; or were geologically known to be possible. Haiti's M7 earthquake, 2010 (with > 222,000 fatalities) meant the dead could not even be buried with dignity. Japan's catastrophic Tohoku earthquake, 2011; a M9 Megathrust earthquake, unleashed a tsunami that not only obliterated coastal communities along the northern Japanese coast, but also claimed > 20,000 lives. This tsunami flooded nuclear reactors at Fukushima, causing 4 explosions and 3 reactors to melt down. But while this history of huge human losses due to erroneous and misleading seismic hazard estimates, despite its wrenching pain, cannot be unlived; if faced with courage and a more realistic deterministic estimate of "what is possible", it need not be lived again. An objective testing of the results of global probability based seismic hazard maps against real occurrences has never been done by the

  16. Impacts of climatic and marine environmental variations on the spatial distribution of Ommastrephes bartramii in the Northwest Pacific Ocean

    Institute of Scientific and Technical Information of China (English)

    YU Wei; CHEN Xinjun; YI Qian; GAO Guoping; CHEN Yong

    2016-01-01

    Ommastrephes bartramii is an ecologically dependent species and has great commercial values among the Asia-Pacific countries. This squid widely inhabits the North Pacific, one of the most dynamic marine environments in the world, subjecting to multi-scale climatic events such as the Pacific Decadal Oscillation (PDO). Commercial fishery data from the Chinese squid-jigging fleets during 1995-2011 are used to evaluate the influences of climatic and oceanic environmental variations on the spatial distribution of O. bartramii. Significant interannual and seasonal variability are observed in the longitudinal and latitudinal gravity centers (LONG and LATG) of fishing ground of O. bartramii. The LATG mainly occurred in the waters with the suitable ranges of environmental variables estimated by the generalized additive model. The apparent north-south spatial shift in the annual LATG appeares to be associated with the PDO phenomenon and is closely related to the sea surface temperature (SST) and sea surface height (SSH) on the fishing ground, whereas the mixed layer depth (MLD) might contribute limited impacts to the distribution pattern of O. bartramii. The warm PDO regimes tend to yield cold SST and low SSH, resulting in a southward shift of LATG, while the cold PDO phases provid warm SST and elevated SSH, resulting in a northward shift of LATG. A regression model is developed to help understand and predict the fishing ground distributions of O. bartramii and improve the fishery management.

  17. Minor impact of ocean acidification to the composition of the active microbial community in an Arctic sediment.

    Science.gov (United States)

    Tait, Karen; Laverock, Bonnie; Shaw, Jennifer; Somerfield, Paul J; Widdicombe, Steve

    2013-12-01

    Effects of ocean acidification on the composition of the active bacterial and archaeal community within Arctic surface sediment was analysed in detail using 16S rRNA 454 pyrosequencing. Intact sediment cores were collected and exposed to one of five different pCO(2) concentrations [380 (present day), 540, 750, 1120 and 3000 μatm] and RNA extracted after a period of 14 days exposure. Measurements of diversity and multivariate similarity indicated very little difference between pCO(2) treatments. Only when the highest and lowest pCO(2) treatments were compared were significant differences evident, namely increases in the abundance of operational taxonomic units most closely related to the Halobacteria and differences to the presence/absence structure of the Planctomycetes. The relative abundance of members of the classes Planctomycetacia and Nitrospira increased with increasing pCO(2) concentration, indicating that these groups may be able to take advantage of changing pH or pCO(2) conditions. The modest response of the active microbial communities associated with these sediments may be due to the low and fluctuating pore-water pH already experienced by sediment microbes, a result of the pH buffering capacity of marine sediments, or due to currently unknown factors. Further research is required to fully understand the impact of elevated CO(2) on sediment physicochemical parameters, biogeochemistry and microbial community dynamics.

  18. Distributed and parallel approach for handle and perform huge datasets

    Science.gov (United States)

    Konopko, Joanna

    2015-12-01

    Big Data refers to the dynamic, large and disparate volumes of data comes from many different sources (tools, machines, sensors, mobile devices) uncorrelated with each others. It requires new, innovative and scalable technology to collect, host and analytically process the vast amount of data. Proper architecture of the system that perform huge data sets is needed. In this paper, the comparison of distributed and parallel system architecture is presented on the example of MapReduce (MR) Hadoop platform and parallel database platform (DBMS). This paper also analyzes the problem of performing and handling valuable information from petabytes of data. The both paradigms: MapReduce and parallel DBMS are described and compared. The hybrid architecture approach is also proposed and could be used to solve the analyzed problem of storing and processing Big Data.

  19. Anaethetic management of a neonate with huge cystic hygroma.

    Directory of Open Access Journals (Sweden)

    Bindi Palkhiwala

    2013-01-01

    Full Text Available We discuss here the case of a 7 day old neonate with huge cystic hygroma on the left side of the neck invading the major vessels of neck, facial nerve, strap muscles and sternocleidomastoid. Anasethtic implications in this case were maintaining airway patency after induction, difficult intubation, risk perioperative dislodgement of tube and judgement of proper time for extubation. Following gaseous induction and adequate mask ventilation, patient was intubated with muscle relaxant. peroperatively to avoid accidental extubation, we choose to manually hold the ET tube after fixing it. At the end of relatively uneventful surgery, we could extubate the patient in OT. patient was shifted to NICU for observation. Post operatively on 3rd day, facial palsy was observed. Ptient was discharged on 21st day.

  20. Huge Intracanal lumbar Disc Herniation: a Review of Four Cases

    Directory of Open Access Journals (Sweden)

    Farzad Omidi-Kashani

    2016-01-01

    Full Text Available Lumbar disc herniation (LDH is the most common cause of sciatica and only in about 10% of the affected patients, surgical intervention is necessary. The side of the patient (the side of most prominent clinical complaints is usually consistent with the side of imaging (the side with most prominent disc herniation on imaging scans. In this case series, we presented our experience in four cases with huge intracanal LDH that a mismatch between the patient’s side and the imaging’s side was present. In these cases, for deciding to do the operation, the physicians need to rely more on clinical findings, but for deciding the side of discectomy, imaging characteristic (imaging side may be a more important criterion.

  1. A parallel solver for huge dense linear systems

    Science.gov (United States)

    Badia, J. M.; Movilla, J. L.; Climente, J. I.; Castillo, M.; Marqués, M.; Mayo, R.; Quintana-Ortí, E. S.; Planelles, J.

    2011-11-01

    HDSS (Huge Dense Linear System Solver) is a Fortran Application Programming Interface (API) to facilitate the parallel solution of very large dense systems to scientists and engineers. The API makes use of parallelism to yield an efficient solution of the systems on a wide range of parallel platforms, from clusters of processors to massively parallel multiprocessors. It exploits out-of-core strategies to leverage the secondary memory in order to solve huge linear systems O(100.000). The API is based on the parallel linear algebra library PLAPACK, and on its Out-Of-Core (OOC) extension POOCLAPACK. Both PLAPACK and POOCLAPACK use the Message Passing Interface (MPI) as the communication layer and BLAS to perform the local matrix operations. The API provides a friendly interface to the users, hiding almost all the technical aspects related to the parallel execution of the code and the use of the secondary memory to solve the systems. In particular, the API can automatically select the best way to store and solve the systems, depending of the dimension of the system, the number of processes and the main memory of the platform. Experimental results on several parallel platforms report high performance, reaching more than 1 TFLOP with 64 cores to solve a system with more than 200 000 equations and more than 10 000 right-hand side vectors. New version program summaryProgram title: Huge Dense System Solver (HDSS) Catalogue identifier: AEHU_v1_1 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEHU_v1_1.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 87 062 No. of bytes in distributed program, including test data, etc.: 1 069 110 Distribution format: tar.gz Programming language: Fortran90, C Computer: Parallel architectures: multiprocessors, computer clusters Operating system

  2. Does China's Huge External Surplus Imply an Undervalued Renminbi?

    Institute of Scientific and Technical Information of China (English)

    Anthony J. Makin

    2007-01-01

    A pegged exchange rate regime has been pivotal to China's export-led development strategy. However, its huge trade surpluses and massive build up of international reserves have been matched by large deficits for major trading partners, creating acute policy concerns abroad, especially in the USA. This paper provides a straightforward conceptual framework for interpreting the effect of China's exchange rate policy on its own trade balance and that of trading partners in the context of discrepant economic growth rates. It shows how pegging the exchange rate when output is outstripping expenditure induces China's trade surpluses and counterpart deficits for its trading partners. An important corollary is that given its strictly regulated capital account, China's persistently large surpluses imply a significantly undervalued renminbi, which should gradually become more flexible.

  3. Organic nutrient enrichment in the oligotrophic ocean: Impacts on remineralization, carbon sequestration, and community structure

    Science.gov (United States)

    Mackey, K. R.; Paytan, A.; Post, A. F.

    2007-12-01

    In oligotrophic seas where inorganic nitrogen (N) and phosphorus (P) are below the limits of detection, organic forms of these nutrients may constitute greater than 90% of the total N and P in the euphotic zone. The combined enzymatic activity of phytoplankton and heterotrophic bacteria determines the rate of nutrient remineralization, thereby influencing phytoplankton growth rates and carbon sequestration in these regions. In this study we investigated the effects of fertilization with ammonium (NH4), nitrate (NO3), nitrite (NO2), and phosphate (PO4) as well as various forms of organic N (urea, glycine) and P (deoxyribonucleic acid, 2- aminoethyl phosphonic acid, phytic acid) on the growth and taxonomic composition of the phytoplankton community in the Gulf of Aqaba, Red Sea. The impacts of these changes on nutrient cycling and biological assimilation were also assessed. Organic N additions led to phytoplankton growth when given together with PO4, yielding 2-3 fold increases in chlorophyll a (Chl a) and cell density relative to initial levels. Moreover, our results show that addition of NH4 or NO3 led to accumulation of extra-cellular NO2, suggesting that incomplete assimilatory reduction of NO3 by phytoplankton as well as chemoautotrophic oxidation of NH4 by ammonium oxidizing microbes contributed to NO2 formation. These findings conflict with earlier studies in the Gulf that attributed NO2 formation solely to the phytoplankton community. Organic P additions also led to 2-3 fold increases in Chl a and cell density relative to initial levels when given together with NH4 and NO3. Compared to other P additions, DNA led to the rapid accumulation of extra-cellular PO4, indicating substantial nucleotidase activity in excess of the amount needed to meet phytoplankton growth requirements. These results show the importance and interconnectivity of phytoplankton and heterotrophic bacteria communities in contributing to nutrient cycling and carbon sequestration in

  4. Impact of spatial resolution of ocean models in depicting climate change patterns of the North Sea.

    Science.gov (United States)

    Narayan, Nikesh; Klein, Birgit; Mathis, Moritz; Klein, Holger; Mikolajewicz, Uwe

    2016-04-01

    The impact of enhanced spatial resolution of models in simulating large scale climate change has been of interest for the modeling community for quite some time. It has been noticed in previous studies that the pattern of Sea Surface Temperature anomalies are better captured by higher resolution models. Significant changes in simulating sea-ice loss associated with global warming was also noticed when the spatial resolution of climate models were enhanced. Spatial resolution is a particular important issue in climate change scenarios of shelf seas such as the North Sea. The North Sea is strongly influenced by its water mass exchanges with North Atlantic to the west and north and Baltic Sea to east. Furthermore, local forcing and changes in advected water masses significantly affect the thermodynamics and stratification patterns in the North Sea, making it a challenging area to study. Under the newly started RACE2 project we are looking at global simulations of Representative Concentration Pathway (RCP) scenarios 4.5 and 8.5 at lower and higher resolutions, performed using the Max Planck Institute Earth System Model (MPIESM). The model resolution is non uniform and achieves the highest resolution over the European Seas by shifting the model poles over Chicago and Central Europe. In the high resolution run, the grid reaches up to a spatial resolution of up to 4 km in part of the German Bight and close to 20 km in the Northern part of North Sea. The placement of model poles at specific locations enables the global model to obtain higher resolution at regional scales (North Sea), without the inherent complications of open boundary conditions. High and low resolution simulations will be compared to determine differences in spatial and temporal pattern of temperature anomalies, fresh water intrusion from the Baltic Sea to North Sea etc. Also taken into consideration will be the changes in simulating local sea level change and response to basin scale oscillations like NAO.

  5. The Ocean Literacy Campaign

    Science.gov (United States)

    Schoedinger, S. E.; Strang, C.

    2008-12-01

    "Ocean Literacy is an understanding of the ocean's influence on you and your influence on the ocean." This simple statement captures the spirit of a conceptual framework supporting ocean literacy (COSEE et al., 2005). The framework comprises 7 essential principles and 44 fundamental concepts an ocean literate person would know (COSEE et al., 2005). The framework is the result of an extensive grassroots effort to reach consensus on (1) a definition for ocean literacy and (2) an articulation of the most important concepts to be understood by ocean-literate citizen (Cava et al., 2005). In the process of reaching consensus on these "big ideas" about the ocean, what began as a series of workshops has emerged as a campaign "owned" by an ever-expanding community of individuals, organizations and networks involved in developing and promoting the framework. The Ocean Literacy Framework has provided a common language for scientists and educators working together and serves as key guidance for the ocean science education efforts. This presentation will focus on the impact this Ocean Literacy Campaign has had to date as well as efforts underway to provide additional tools to enable educators and educational policy makers to further integrate teaching and learning about the ocean and our coasts into formal K-12 education and informal education. COSEE, National Geographic Society, NOAA, College of Exploration (2005). Ocean Literacy: The Essential Principles of Ocean Sciences Grades K-12, a jointly published brochure, URL: http://www.coexploration.org/oceanliteracy/documents/OceanLitChart.pdf Cava, F., S. Schoedinger , C. Strang, and P. Tuddenham (2005). Science Content and Standards for Ocean Literacy: A Report on Ocean Literacy, URL: http://www.coexploration.org/oceanliteracy/documents/OLit2004-05_Final_Report.pdf.

  6. Millennial-scale isotope records from a wide-ranging predator show evidence of recent human impact to oceanic food webs.

    Science.gov (United States)

    Wiley, Anne E; Ostrom, Peggy H; Welch, Andreanna J; Fleischer, Robert C; Gandhi, Hasand; Southon, John R; Stafford, Thomas W; Penniman, Jay F; Hu, Darcy; Duvall, Fern P; James, Helen F

    2013-05-28

    Human exploitation of marine ecosystems is more recent in oceanic than near shore regions, yet our understanding of human impacts on oceanic food webs is comparatively poor. Few records of species that live beyond the continental shelves date back more than 60 y, and the sheer size of oceanic regions makes their food webs difficult to study, even in modern times. Here, we use stable carbon and nitrogen isotopes to study the foraging history of a generalist, oceanic predator, the Hawaiian petrel (Pterodroma sandwichensis), which ranges broadly in the Pacific from the equator to near the Aleutian Islands. Our isotope records from modern and ancient, radiocarbon-dated bones provide evidence of over 3,000 y of dietary stasis followed by a decline of ca. 1.8‰ in δ(15)N over the past 100 y. Fishery-induced trophic decline is the most likely explanation for this sudden shift, which occurs in genetically distinct populations with disparate foraging locations. Our isotope records also show that coincident with the apparent decline in trophic level, foraging segregation among petrel populations decreased markedly. Because variation in the diet of generalist predators can reflect changing availability of their prey, a foraging shift in wide-ranging Hawaiian petrel populations suggests a relatively rapid change in the composition of oceanic food webs in the Northeast Pacific. Understanding and mitigating widespread shifts in prey availability may be a critical step in the conservation of endangered marine predators such as the Hawaiian petrel.

  7. Impacts of Interactive Stratospheric Chemistry on Antarctic and Southern Ocean Climate Change in the Goddard Earth Observing System Version 5 (GEOS-5)

    Science.gov (United States)

    Li, Feng; Vikhliaev, Yury V.; Newman, Paul A.; Pawson, Steven; Perlwitz, Judith; Waugh, Darryn W.; Douglass, Anne R.

    2016-01-01

    Stratospheric ozone depletion plays a major role in driving climate change in the Southern Hemisphere. To date, many climate models prescribe the stratospheric ozone layer's evolution using monthly and zonally averaged ozone fields. However, the prescribed ozone underestimates Antarctic ozone depletion and lacks zonal asymmetries. In this study we investigate the impact of using interactive stratospheric chemistry instead of prescribed ozone on climate change simulations of the Antarctic and Southern Ocean. Two sets of 1960-2010 ensemble transient simulations are conducted with the coupled ocean version of the Goddard Earth Observing System Model, version 5: one with interactive stratospheric chemistry and the other with prescribed ozone derived from the same interactive simulations. The model's climatology is evaluated using observations and reanalysis. Comparison of the 1979-2010 climate trends between these two simulations reveals that interactive chemistry has important effects on climate change not only in the Antarctic stratosphere, troposphere, and surface, but also in the Southern Ocean and Antarctic sea ice. Interactive chemistry causes stronger Antarctic lower stratosphere cooling and circumpolar westerly acceleration during November-December-January. It enhances stratosphere-troposphere coupling and leads to significantly larger tropospheric and surface westerly changes. The significantly stronger surface wind stress trends cause larger increases of the Southern Ocean Meridional Overturning Circulation, leading to year-round stronger ocean warming near the surface and enhanced Antarctic sea ice decrease.

  8. Projected range contractions of European protected oceanic montane plant communities: focus on climate change impacts is essential for their future conservation.

    Directory of Open Access Journals (Sweden)

    Rory L Hodd

    Full Text Available Global climate is rapidly changing and while many studies have investigated the potential impacts of this on the distribution of montane plant species and communities, few have focused on those with oceanic montane affinities. In Europe, highly sensitive bryophyte species reach their optimum occurrence, highest diversity and abundance in the north-west hyperoceanic regions, while a number of montane vascular plant species occur here at the edge of their range. This study evaluates the potential impact of climate change on the distribution of these species and assesses the implications for EU Habitats Directive-protected oceanic montane plant communities. We applied an ensemble of species distribution modelling techniques, using atlas data of 30 vascular plant and bryophyte species, to calculate range changes under projected future climate change. The future effectiveness of the protected area network to conserve these species was evaluated using gap analysis. We found that the majority of these montane species are projected to lose suitable climate space, primarily at lower altitudes, or that areas of suitable climate will principally shift northwards. In particular, rare oceanic montane bryophytes have poor dispersal capacity and are likely to be especially vulnerable to contractions in their current climate space. Significantly different projected range change responses were found between 1 oceanic montane bryophytes and vascular plants; 2 species belonging to different montane plant communities; 3 species categorised according to different biomes and eastern limit classifications. The inclusion of topographical variables in addition to climate, significantly improved the statistical and spatial performance of models. The current protected area network is projected to become less effective, especially for specialised arctic-montane species, posing a challenge to conserving oceanic montane plant communities. Conservation management plans need

  9. The impacts of pharmaceutical drugs under ocean acidification: New data on single and combined long-term effects of carbamazepine on Scrobicularia plana.

    Science.gov (United States)

    Freitas, Rosa; Almeida, Ângela; Calisto, Vânia; Velez, Cátia; Moreira, Anthony; Schneider, Rudolf J; Esteves, Valdemar I; Wrona, Frederick J; Figueira, Etelvina; Soares, Amadeu M V M

    2016-01-15

    Ocean acidification and increasing discharges of pharmaceutical contaminants into aquatic systems are among key and/or emerging drivers of environmental change affecting marine ecosystems. A growing body of evidence demonstrates that ocean acidification can have direct and indirect impacts on marine organisms although combined effects with other stressors, namely with pharmaceuticals, have received very little attention to date. The present study aimed to evaluate the impacts of the pharmaceutical drug Carbamazepine and pH 7.1, acting alone and in combination, on the clam Scrobicularia plana. For this, a long-term exposure (28 days)was conducted and a set of oxidative stress markers was investigated. The results obtained showed that S. plana was able to develop mechanisms to prevent oxidative damage when under low pH for a long period, presenting higher survival when exposed to this stressor compared to CBZ or the combination of CBZ with pH 7.1. Furthermore, the toxicity of CBZ on S. plana was synergistically increased under ocean acidification conditions (CBZ + pH 7.1): specimens survival was reduced and oxidative stress was enhanced when compared to single exposures. These findings add to the growing body of evidence that ocean acidification will act to increase the toxicity of CBZ to marine organisms,which has clear implications for coastal benthic ecosystems suffering chronic pollution from pharmaceutical drugs.

  10. Impacts of aerosol particles on the microphysical and radiative properties of stratocumulus clouds over the Southeast Pacific ocean

    Directory of Open Access Journals (Sweden)

    C. H. Twohy

    2012-08-01

    Full Text Available The Southeast Pacific Ocean is covered by the world's largest stratocumulus cloud layer, which has a strong impact on ocean temperatures and climate in the region. The effect of anthropogenic sources of aerosol particles such as power plants, urban pollution and smelters on the stratocumulus deck was investigated during the VOCALS field experiment. Aerosol measurements below and above cloud were made with a ultra-high sensitivity aerosol spectrometer and analytical electron microscopy. In addition to more standard in-cloud measurements, droplets were collected and evaporated using a counterflow virtual impactor (CVI, and the non-volatile residual particles were analyzed.

    Many flights focused on the gradient in cloud properties on an E-W track along 20° S from near the Chilean coast to remote areas offshore. Mean statistics from seven flights and many individual legs were compiled. Consistent with a continental source of cloud condensation nuclei, below-cloud accumulation-mode aerosol and droplet number concentration generally decreased from near shore to offshore. Single particle analysis was used to reveal types and sources of the enhanced particle number. While a variety of particle types were found throughout the region, the dominant particles near shore were partially neutralized sulfates. Modeling and chemical analysis indicated that the predominant source of these particles in the marine boundary layer along 20° S was anthropogenic pollution from central Chilean sources, with copper smelters a relatively small contribution.

    Cloud droplets were more numerous and smaller near shore, and there was less drizzle. Higher droplet number concentration and physically thinner clouds both contributed to the smaller droplets near shore. Satellite measurements were used to show that cloud albedo was highest 500–1000 km offshore, and actually lower closer to shore due to the generally thinner clouds and lower liquid water paths

  11. Using Eyewitness Reports to Reconstruct the Coastal Impact of the 2004 Indian Ocean Tsunami in Khao Lak, Thailand

    Science.gov (United States)

    Skelton, A.; Mård Karlsson, J.; Sandén, M.; Ioualalen, M.; Kaewbanjak, N.; Pophet, N.; Asavanant, J.; von Matern, A.

    2009-12-01

    The 26 December 2004 Indian Ocean tsunami caused enormous loss of life and major structural damage in over 12 countries bordering the Indian Ocean. Khao Lak, SW Thailand was the second most severely affected region. Here we present reconstructions of the coastal impact of the tsunami in the Khao Lak area. These are based on (1) eyewitness reports, and (2) eyewitness reports supported by video footage of the tsunami, photos of the tsunami and the damage it caused, field measurements and satellite imagery. Based on eyewitness reports, we estimated that the sea began retreating at 10:00 and that the tsunami arrived at 10:30. Based on video footage of the tsunami, we estimated an offshore wave direction of 083 ± 3° and based on the paths by which eyewitnesses were carried by the tsunami, we estimated an onshore wave direction of 088 ± 6°. Based on video footage, we estimated that the velocity of the wave front as it approached the Khao Lak area was 33 ± 4 km/h. We estimated maximum wave heights relative to ground level of 7.5 ± 0.8 m based on eyewitness reports and 4.9 ± 0.6 m (equating to 8.0 ± 0.6 masl) based on field measurements of damage caused by the tsunami. Finally, we estimated that the maximum inundation in the southern part of the Khao Lak area, which is confined by a steeply sloping hinterland, was several hundred meters, whereas maximum inundation in the northern part of the area, which has more gently sloping topography, was up to 1.5 km. This is confirmed by eyewitness reports and satellite imagery. Comparison between reconstructions based on (1) eyewitness reports and (2) eyewitness reports supported by video footage of the tsunami, photos of the tsunami and the damage it caused, field measurements and satellite imagery, suggests that eyewitness reports are an extremely valuable and accurate source of quantitative information following a catastrophic event such as a tsunami. Finally, similarity between our reconstructions and a region

  12. Global model simulations of the impact of ocean-going ships on aerosols, clouds, and the radiation budget

    Directory of Open Access Journals (Sweden)

    A. Lauer

    2007-10-01

    Full Text Available International shipping contributes significantly to the fuel consumption of all transport related activities. Specific emissions of pollutants such as sulfur dioxide (SO2 per kg of fuel emitted are higher than for road transport or aviation. Besides gaseous pollutants, ships also emit various types of particulate matter. The aerosol impacts the Earth's radiation budget directly by scattering and absorbing the solar and thermal radiation and indirectly by changing cloud properties. Here we use ECHAM5/MESSy1-MADE, a global climate model with detailed aerosol and cloud microphysics to study the climate impacts of international shipping. The simulations show that emissions from ships significantly increase the cloud droplet number concentration of low marine water clouds by up to 5% to 30% depending on the ship emission inventory and the geographic region. Whereas the cloud liquid water content remains nearly unchanged in these simulations, effective radii of cloud droplets decrease, leading to cloud optical thickness increase of up to 5–10%. The sensitivity of the results is estimated by using three different emission inventories for present-day conditions. The sensitivity analysis reveals that shipping contributes to 2.3% to 3.6% of the total sulfate burden and 0.4% to 1.4% to the total black carbon burden in the year 2000 on the global mean. In addition to changes in aerosol chemical composition, shipping increases the aerosol number concentration, e.g. up to 25% in the size range of the accumulation mode (typically >0.1 μm over the Atlantic. The total aerosol optical thickness over the Indian Ocean, the Gulf of Mexico and the Northeastern Pacific increases by up to 8–10% depending on the emission inventory. Changes in aerosol optical thickness caused by shipping induced modification of aerosol particle number concentration and chemical composition lead to a change in the shortwave radiation budget at the top of the

  13. Impacts of SST Warming in tropical Indian Ocean on CMIP5 model-projected summer rainfall changes over Central Asia

    Science.gov (United States)

    Zhao, Yong; Zhang, Huqiang

    2016-05-01

    Based on the historical and RCP8.5 experiments from 25 Coupled Model Intercomparison Project phase 5 (CMIP5) models, the impacts of sea surface temperature (SST) warming in the tropical Indian Ocean (IO) on the projected change in summer rainfall over Central Asia (CA) are investigated. The analysis is designed to answer three questions: (1) Can CMIP5 models reproduce the observed influence of the IO sea surface temperatures (SSTs) on the CA rainfall variations and the associated dynamical processes? (2) How well do the models agree on their projected rainfall changes over CA under warmed climate? (3) How much of the uncertainty in such rainfall projections is due to different impacts of IO SSTs in these models? The historical experiments show that in most models summer rainfall over CA are positively correlated to the SSTs in the IO. Furthermore, for models with higher rainfall-SSTs correlations, the dynamical processes accountable for such impacts are much closer to what have been revealed in observational data: warmer SSTs tend to favor the development of anti-cyclonic circulation patterns at low troposphere over north and northwest of the Arabian Sea and the Bay of Bengal. These anomalous circulation patterns correspond to significantly enhanced southerly flow which carries warm and moisture air mass from the IO region up to the northeast. At the same time, there is a cyclonic flow over the central and eastern part of the CA which further brings the tropical moisture into the CA and provides essential moist conditions for its rainfall generation. In the second half of twenty-first century, although all the 25 models simulate warmed SSTs, significant uncertainty exists in their projected rainfall changes over CA: half of them suggest summer rainfall increases, but the other half project rainfall decreases. However, when we select seven models out of the 25 based on their skills in capturing the dynamical processes as observed, then the model projected changes

  14. Impacts of ocean acidification on respiratory gas exchange and acid-base balance in a marine teleost, Opsanus beta.

    Science.gov (United States)

    Esbaugh, Andrew J; Heuer, Rachael; Grosell, Martin

    2012-10-01

    The oceanic carbonate system is changing rapidly due to rising atmospheric CO(2), with current levels expected to rise to between 750 and 1,000 μatm by 2100, and over 1,900 μatm by year 2300. The effects of elevated CO(2) on marine calcifying organisms have been extensively studied; however, effects of imminent CO(2) levels on teleost acid-base and respiratory physiology have yet to be examined. Examination of these physiological processes, using a paired experimental design, showed that 24 h exposure to 1,000 and 1,900 μatm CO(2) resulted in a characteristic compensated respiratory acidosis response in the gulf toadfish (Opsanus beta). Time course experiments showed the onset of acidosis occurred after 15 min of exposure to 1,900 and 1,000 μatm CO(2), with full compensation by 2 and 4 h, respectively. 1,900-μatm exposure also resulted in significantly increased intracellular white muscle pH after 24 h. No effect of 1,900 μatm was observed on branchial acid flux; however, exposure to hypercapnia and HCO(3)(-) free seawater compromised compensation. This suggests branchial HCO(3)(-) uptake rather than acid extrusion is part of the compensatory response to low-level hypercapnia. Exposure to 1,900 μatm resulted in downregulation in branchial carbonic anhydrase and slc4a2 expression, as well as decreased Na(+)/K(+) ATPase activity after 24 h of exposure. Infusion of bovine carbonic anhydrase had no effect on blood acid-base status during 1,900 μatm exposures, but eliminated the respiratory impacts of 1,000 μatm CO(2). The results of the current study clearly show that predicted near-future CO(2) levels impact respiratory gas transport and acid-base balance. While the full physiological impacts of increased blood HCO(3)(-) are not known, it seems likely that chronically elevated blood HCO(3)(-) levels could compromise several physiological systems and furthermore may explain recent reports of increased otolith growth during exposure to elevated CO(2).

  15. 77 FR 2513 - Draft Environmental Impact Statement for Effects of Oil and Gas Activities in the Arctic Ocean

    Science.gov (United States)

    2012-01-18

    ... Effects of Oil and Gas Activities in the Arctic Ocean AGENCY: National Marine Fisheries Service (NMFS... the Effects of Oil and Gas Activities in the Arctic Ocean.'' Based on several written requests.../pr/permits/eis/arctic.htm . FOR FURTHER INFORMATION CONTACT: Candace Nachman, Jolie Harrison,...

  16. Impact of prolonged La Niña events on the Indian Ocean with a special emphasis on southwest Tropical Indian Ocean SST

    Science.gov (United States)

    Singh, P.; Chowdary, J. S.; Gnanaseelan, C.

    2013-01-01

    This study examines the mechanisms governing the teleconnections associated with the long-lived La Niña variability in the tropical Indian Ocean (TIO) sea surface temperature (SST) anomalies using observational and reanalysis products. Two long-lived La Niña events (1973 to 1976 and 1998 to 2001) are observed in the recent years, one falling before and the other after the mid 1970's climatic shift. The winter (boreal) and spring (November to April) TIO SST is highly influenced by long-lived La Niña forcing. Climatic shift in mid 1970s contributes to the changes in TIO SST pattern during these two long-lived La Niña events. Surface heat flux variations due to long-lived La Niña contribute to the SST changes except in the southwest TIO. The upwelling favorable local surface wind stress curl and upwelling Rossby waves originating from the east are the dominant mechanisms responsible for the La Niña related winter time SST cooling over the southwest TIO. Long-lived La Niña induced surface wind anomalies enhance the fall Wyrtki Jet in the equatorial Indian Ocean resulting large scale anomalous heat transport. Local SST cooling reduces convection and contributes to the low rainfall over southwest TIO and the northern parts of Madagascar Island.

  17. ORCA12, a global ocean-ice model at 1/12° : successes, shortcomings and their impact on ocean forecasting

    Science.gov (United States)

    Treguier, Anne Marie; Barnier, Bernard; Albert, Aurélie; Deshayes, Julie; leSommer, Julien; Lique, Camille; Molines, Jean-Marc; Penduff, Thierry; Talandier, Claude

    2017-04-01

    Mercator-Ocean currently uses ORCA12, a global 1/12° model based on the NEMO modelling platform, which is a the core of CMEMS. The ORCA12 model has also been used by the DRAKKAR group to perform multi-decadal simulations forced by the atmosphere, without data assimilation. In these forced ocean-ice experiments, the benefit of the 1/12° resolution appears clearly, for the representation of fronts and mesoscale eddies. However, the pathways of energetic currents are not yet robust at 1/12°: the North Atlantic current is an exemple, as is the Agulhas retroflexion. The time-mean currents in ORCA12 are found to be sensitive to parameterizations, numerical schemes, and atmospheric forcing. These sensitivities are not unexpected, considering the highly nonlinear dynamics of eddy-induced mean recirculations and flow-topography interactions. We attempt to quantify the influence of biases in the position of energetic currents on the error growth during a forecast.

  18. Projected Impact of Climate Change on the Water and Salt Budgets of the Arctic Ocean by a Global Climate Model

    Science.gov (United States)

    Miller, James R.; Russell, Gary L.

    1996-01-01

    The annual flux of freshwater into the Arctic Ocean by the atmosphere and rivers is balanced by the export of sea ice and oceanic freshwater. Two 150-year simulations of a global climate model are used to examine how this balance might change if atmospheric greenhouse gases (GHGs) increase. Relative to the control, the last 50-year period of the GHG experiment indicates that the total inflow of water from the atmosphere and rivers increases by 10% primarily due to an increase in river discharge, the annual sea-ice export decreases by about half, the oceanic liquid water export increases, salinity decreases, sea-ice cover decreases, and the total mass and sea-surface height of the Arctic Ocean increase. The closed, compact, and multi-phased nature of the hydrologic cycle in the Arctic Ocean makes it an ideal test of water budgets that could be included in model intercomparisons.

  19. Global model simulations of the impact of ocean-going ships on aerosols, clouds, and the radiation budget

    Directory of Open Access Journals (Sweden)

    A. Lauer

    2007-07-01

    Full Text Available International shipping contributes significantly to the fuel consumption of all transport related activities. Specific emissions of pollutants such as sulfur dioxide (SO2 per kg of fuel emitted are higher than for road transport or aviation. Besides gaseous pollutants, ships also emit various types of particulate matter. The aerosol impacts the Earth's radiation budget directly by scattering and absorbing incoming solar radiation and indirectly by changing cloud properties. Here we use ECHAM5/MESSy1-MADE, a global climate model with detailed aerosol and cloud microphysics, to show that emissions from ships significantly increase the cloud droplet number concentration of low maritime water clouds. Whereas the cloud liquid water content remains nearly unchanged in these simulations, effective radii of cloud droplets decrease, leading to cloud optical thickness increase up to 5–10%. The sensitivity of the results is estimated by using three different emission inventories for present day conditions. The sensitivity analysis reveals that shipping contributes with 2.3% to 3.6% to the total sulfate burden and 0.4% to 1.4% to the total black carbon burden in the year 2000. In addition to changes in aerosol chemical composition, shipping increases the aerosol number concentration, e.g. up to 25% in the size range of the accumulation mode (typically >0.1 μm over the Atlantic. The total aerosol optical thickness over the Indian Ocean, the Gulf of Mexico and the Northeastern Pacific increases up to 8–10% depending on the emission inventory. Changes in aerosol optical thickness caused by the shipping induced modification of aerosol particle number concentration and chemical composition lead to a change of the net top of the atmosphere (ToA clear sky radiation of about −0.013 W/m2 to −0.036 W/m2 on global annual average. The estimated all-sky direct aerosol effect calculated from these changes ranges between −0

  20. The South China Sea throughflow: linkage with local monsoon system and impact on upper thermal structure of the ocean

    Institute of Scientific and Technical Information of China (English)

    LIU Qinyan; WANG Dongxiao; XIE Qiang

    2012-01-01

    The tendency of South China Sea throughflow (SCSTF) variation associated with the local monsoon system,and its impact on upper-layer thermal structure,are studied using the Simple Ocean Data Assimilation (SODA) dataset,combined with Ishii reanalysis data.Luzon Strait Transport (LST) is measured and used as an index for studying the SCSTF variation.Results show that LST had an increasing tendency over the last 50 years,mainly in summer and fall.The increasing tendency was 0.017 1 Sv/a in summer and 0.027 4 Sv/a in fall,as estimated by SODA,and 0.018 0 Sv/a in summer and 0.018 9 Sv/a in fall,as estimated by "Island Rule" theory.LST increased by 0.53 Sv in JJA (June-July-August) and 0.98 Sv in SON (September-October-November) after climate shift,as inferred by SODA data.The average LST anomaly in JJA and SON is strongly related to the local monsoon system,especially to variability of the meridional wind stress anomaly after application of a 3-year running mean,with correlation coefficients 0.57 and 0.51,respectively.In addition to the basin-scale wind forcing,the local northeasterly wind stress anomaly in the SCS can push Pacific water entering the SCS more readily in JJA and SON after climate shift,and an SCSTF-associated cooling effect may favor subsurface cooling more frequently after climate shift.

  1. Late Intervention-Related Complication - A Huge Subepicardial Hematoma.

    Science.gov (United States)

    Ko, Po-Yen; Chang, Chih-Ping; Yang, Chen-Chia; Lin, Jen-Jyh

    2013-05-01

    A 75-year-old man had a history of triple vessel coronary artery disease. In August 2009, he had undergone successful percutaneous coronary intervention to the left circumflex coronary artery (LCX) for management of an in-stent restenosis (ISR) lesion. However, in September 2010, he began experiencing recurrent episodes of exertional chest pain. Chest radiography showed the left cardiac border bulging upwards. Transthoracic echocardiography and chest computed tomography revealed a huge oval mass of about 10.4 cm × 7.9 cm × 8.6 cm, which showed calcification and was obliterating the LCX. Subsequent coronary angiography revealed significant instent restenosis, with extravasation of a small amount of contrast material at the stent location, suggesting that the coronary artery had ruptured. We implanted a polytetrafluoroethylene-covered stent to seal the coronary perforation and to release the occlusion. The patient was symptom-free and had an uneventful outcome until the 1-year follow up. Coronary artery perforation; Covered stent; Hematoma.

  2. A huge posteromedial mediastinal cyst complicated with vertebral dislodgment

    Directory of Open Access Journals (Sweden)

    Manoussaridis Jordan T

    2006-08-01

    Full Text Available Abstract Background Mediastinal cysts compromise almost 20% of all mediastinal masses with bronchogenic subtype accounting for 60% of all cystic lesions. Although compression of adjoining soft tissues is usual, spinal complications and neurological symptoms are outmost rare and tend to characterize almost exclusively the neuroenteric cysts. Case presentation A young patient with intermittent, dull pain in his back and free medical history presented in the orthopaedic department of our hospital. There, the initial clinical and radiologic evaluation revealed a mediastinal mass and the patient was referred to the thoracic surgery department for further exploration. The following computed tomography (CT and magnetic resonance imaging (MRI shown a huge mediastinal cyst compressing the T4-T6 vertebral bodies. The neurological symptoms of the patient were attributed to this specific pathology due to the complete agreement between the location of the cyst and the nervous rule area of the compressed thoracic vertebrae. Despite our strongly suggestions for surgery the patient denied any treatment. Conclusion In controversy with the common faith that the spine plays the role of the natural barrier to the further expansion of cystic lesions, our case clearly indicates that, exceptionally, mediastinal cysts may cause severe vertebral complications. Therefore, early excision should be considered especially in young patients or where close follow up is uncertain.

  3. A probabilistic algorithm for interactive huge genome comparison.

    Science.gov (United States)

    Courtois, P R; Moncany, M L

    1995-12-01

    We designed a new probabilistic algorithm, named PAGEC (probabilistic algorithm for genome comparison), which allowed a highly interactive study of long genomic strings. The comparison between two nucleic acid sequences is based on the creation of multiple index tables, which drastically reduces processing time for huge genomes, e.g. 13 min for a 4 Mb/4 Mb comparison. PAGEC lowered the need for memory when compared with other types of algorithm and took into account the low resolution of the final representation (paper or computer screen). Considering that standard printers permit a 300 d.p.i. resolution, the loss of computed information due to the probabilistic conception of the algorithm was not usually noticeable in the present study, mainly due to increased genomic sizes. Refinement was possible through an interactive zooming system, which enabled the visualization of the lexical base sequences of a considered part of both of the studied genomes. Biological examples of computation based on yeast and animal nucleic acid sequences presented in this paper reveal the flexibility of the PAGEC program, which is a valuable tool for genetic studies as it offers a solution to an important problem that will become even more important as time passes.

  4. Investigating the Impact of Past and Future CO2 Emissions on the Distribution of Radiocarbon in the Ocean

    Science.gov (United States)

    Khatiwala, S.; Payne, S.; Graven, H. D.; Heimbach, P.

    2015-12-01

    The ocean is a significant sink for carbon dioxide from fossil fuel burning, absorbing roughly a third of human CO2 emitted over the industrial period. This has implications not only for climate but also for the chemical and isotopic composition of the ocean. Human activities have increased the ocean radiocarbon content through nuclear bomb tests in the 1950s-60s, which released a large amount of radiocarbon (14C) into the atmosphere, but fossil fuel emissions are decreasing the radiocarbon content through the release of 14C-depleted CO2. Here, we use the ECCO-v4 ocean state estimate to examine the changing nature of the air-sea flux of radiocarbon and its spatial distribution in the ocean in response to past and future CO2 emissions, the latter taken from the the Representative Concentration Pathway (RCP) database used in IPCC simulations. In line with previous studies we find that the large air-sea gradient of 14C induced by nuclear bomb testing led to rapid accumulation of radiocarbon in the surface ocean. Surface fluxes of 14C have considerably weakened over the past several decades and in some areas 14C is being returned to the atmosphere. As fossil fuel emissions continue to reduce the atmospheric 14C/C ratio (∆14C), in most RCP scenarios the total ocean 14C inventory starts decreasing by 2030. With strong emissions, the Δ14C of surface waters is driven to increasingly negative values and in RCP 8.5 by 2100 much of the surface ocean has apparent radiocarbon ages in excess of 2000 years, with subtropical gyres more depleted in 14C than the Southern Ocean. Surface waters become significantly more negative in Δ14C than underlying waters. As a result, turning conventional tracer oceanography on its head, recently ventilated waters are characterized by more negative Δ14C values. Similar patterns can be expected for CFCs in the ocean as atmospheric concentrations decrease over the next several decades. Our results have a number of implications, notably for

  5. [The interface of public healthcare with the health of the oceans: proliferation of disease, socio-economic impacts and beneficial relationships].

    Science.gov (United States)

    de Moura, Jailson Fulgencio; Cardozo, Marcelo; Belo, Mariana Soares da Silva Peixoto; Hacon, Sandra; Siciliano, Salvatore

    2011-08-01

    Over the past decades, human activities have had a heavy impact on the marine environment, causing alterations in ecological processes. The relationship between the health of the oceans, human activities and public healthcare is already generally accepted, though the mechanisms involved are still under scientific scrutiny. These relationships include a focus on climate change, toxic algal blooms, microbial and chemical contamination in marine waters and bioinvasion by exotic species. Moreover, there is the beneficial effect of the oceans on human health and wellbeing, such as natural products for the human diet, the development of biomedicine, or simply the satisfaction derived from human recreation, sports and other interactions of humans with oceans. The importance of appreciating the link between public healthcare and the health of the oceans is especially important due to the growing number of people living in coastal areas, mainly in tropical and subtropical regions. The backcloth to this is risk-related human activities that pose a danger to marine environmental health and the increase in the vulnerability of humans and biodiversity and socio-environmental iniquity.

  6. Impact of atmospheric and oceanic conditions on the frequency and genesis location of tropical cyclones over the western North Pacific in 2004 and 2010

    Science.gov (United States)

    Song, Pan; Zhu, Jiang; Zhong, Zhong; Qi, Linlin; Wang, Xiaodan

    2016-05-01

    This study examines the impact of atmospheric and oceanic conditions during May-August of 2004 and 2010 on the frequency and genesis location of tropical cyclones over the western North Pacific. Using the WRF model, four numerical experiments were carried out based on different atmospheric conditions and SST forcing. The numerical experiments indicated that changes in atmospheric and oceanic conditions greatly affect tropical cyclone activity, and the roles of atmospheric conditions are slightly greater than oceanic conditions. Specifically, the total number of tropical cyclones was found to be mostly affected by atmospheric conditions, while the distribution of tropical cyclone genesis locations was mainly related to oceanic conditions, especially the distribution of SST. In 2010, a warmer SST occurred west of 140°E, with a colder SST east of 140°E. On the one hand, the easterly flow was enhanced through the effect of the increase in the zonal SST gradient. The strengthened easterly flow led to an anomalous boundary layer divergence over the region to the east of 140°E, which suppressed the formation of tropical cyclones over this region. On the other hand, the colder SST over the region to the east of 140°E led to a colder low-level air temperature, which resulted in decreased CAPE and static instability energy. The decrease in thermodynamic energy restricted the generation of tropical cyclones over the same region.

  7. How will ocean acidification affect Baltic sea ecosystems? an assessment of plausible impacts on key functional groups.

    Science.gov (United States)

    Havenhand, Jonathan N

    2012-09-01

    Increasing partial pressure of atmospheric CO₂ is causing ocean pH to fall-a process known as 'ocean acidification'. Scenario modeling suggests that ocean acidification in the Baltic Sea may cause a ≤ 3 times increase in acidity (reduction of 0.2-0.4 pH units) by the year 2100. The responses of most Baltic Sea organisms to ocean acidification are poorly understood. Available data suggest that most species and ecologically important groups in the Baltic Sea food web (phytoplankton, zooplankton, macrozoobenthos, cod and sprat) will be robust to the expected changes in pH. These conclusions come from (mostly) single-species and single-factor studies. Determining the emergent effects of ocean acidification on the ecosystem from such studies is problematic, yet very few studies have used multiple stressors and/or multiple trophic levels. There is an urgent need for more data from Baltic Sea populations, particularly from environmentally diverse regions and from controlled mesocosm experiments. In the absence of such information it is difficult to envision the likely effects of future ocean acidification on Baltic Sea species and ecosystems.

  8. MRI Verification of a Case of Huge Infantile Rhabdomyoma

    Science.gov (United States)

    Ramadani, Naser; Kreshnike, Kreshnike Dedushi; Muçaj, Sefedin; Kabashi, Serbeze; Hoxhaj, Astrit; Jerliu, Naim; Bejiçi, Ramush

    2016-01-01

    Introduction: Cardiac rhabdomyoma is type of benign myocardial tumor that is the most common fetal cardiac tumor. Cardiac rhabdomyomas are usually detected before birth or during the first year of life. They account for over 60% of all primary cardiac tumors. Case report: A 6 month old child with coughing and obstruction in breathing, was hospitalized in the Pediatric Clinic in UCCK, Pristine. The difficulty of breathing was heard and the pathological noise of the heart was noticed from the pediatrician. In the echo of the heart at the posterior and apico-lateral part of the left ventricle a tumoral mass was presented with the dimensions of 56 × 54 mm that forwarded the contractions of the left ventricle, the mass involved also the left ventricle wall and was not vascularized. The right ventricle was deformed and with the shifting of the SIV on the right the contractility was preserved. Aorta, the left arch and AP were normal with laminar circulation. The pericard was presented free. Radiography of thoracic organs was made; it resulted on cardiomegaly and significant bronchovascular drawing. It was completed with an MRI and it resulted on: Cardiomegaly due to large tumoral mass lesion (60×34 mm) involving lateral wall of left ventricle. It was isointense to the muscle on T1W images, markedly hyperintense on T2W images. There were a few septa or bant like hypointensities within lesion. On postcontrast study it showed avid enhancement. The left ventricle volume was decreased. Mild pericardial effusion was also noted. Surgical intervention was performed and it resulted on the histopathological aspect as a huge infantile rhadbomyoma. Conclusion: In most cases no treatment is required and these lesions regress spontaneously. Patients with left ventricular outflow tract obstruction or refractory arrhythmias respond well to surgical excision. Rhabdomyomas are frequently diagnosed by means of fetal echocardiography during the prenatal period. PMID:27147810

  9. Single-Path Sigma from a Huge Dataset in Taiwan

    Science.gov (United States)

    Sung, Chih-Hsuan; Lee, Chyi-Tyi

    2014-05-01

    Ground-motion variability, which was used in the probabilistic seismic hazard analysis (PSHA) in computing annual exceedence probability, is composed of random variability (aleatory uncertainty) and model uncertainty (epistemic uncertainty). Finding random variability of ground motions has become an important issue in PSHA, and only the random variability can be used in deriving the annual exceedence probability of ground-motion. Epistemic uncertainty will be put in the logic tree to estimate the total uncertainty of ground-motion. In the present study, we used about 18,859 records from 158 shallow earthquakes (Mw > 3.0, focal depth ≤ 35 km, each station has at least 20 records) form the Taiwan Strong-Motion Instrumentation Program (TSMIP) network to analyse the random variability of ground-motion. First, a new ground-motion attenuation model was established by using this huge data set. Second, the residuals from the median attenuation were analysed by direct observation on inter-event variability and site-specific variability. Finally, the single-path variability was found by a moving-window method on either single-earthquake residuals or single-station residuals. A variogram method was also used to find minimum variability for intra-event residuals and inter-event residuals, respectively. Results reveal that 90% of the single-path sigma σSP are ranging from 0.219 to 0.254 (ln unit) and are 58% to 64% smaller than the total sigma (σT =0.601). The single-site sigma (σSS) are also 39%-43% smaller. If we use only random variability (single-path sigma) in PSHA, then the resultant hazard level would be 28% and 25% lower than the traditional one (using total sigma) in 475-year and in 2475-year return period, respectively, in Taipei.

  10. Development of a Kelp-type Structure Module in a Coastal Ocean Model to Assess the Hydrodynamic Impact of Seawater Uranium Extraction Technology

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Taiping; Khangaonkar, Tarang; Long, Wen; Gill, Gary A.

    2014-02-07

    In recent years, with the rapid growth of global energy demand, the interest in extracting uranium from seawater for nuclear energy has been renewed. While extracting seawater uranium is not yet commercially viable, it serves as a “backstop” to the conventional uranium resources and provides an essentially unlimited supply of uranium resource. With recent advances in seawater uranium extraction technology, extracting uranium from seawater could be economically feasible when the extraction devices are deployed at a large scale (e.g., several hundred km2). There is concern however that the large scale deployment of adsorbent farms could result in potential impacts to the hydrodynamic flow field in an oceanic setting. In this study, a kelp-type structure module was incorporated into a coastal ocean model to simulate the blockage effect of uranium extraction devices on the flow field. The module was quantitatively validated against laboratory flume experiments for both velocity and turbulence profiles. The model-data comparison showed an overall good agreement and validated the approach of applying the model to assess the potential hydrodynamic impact of uranium extraction devices or other underwater structures in coastal oceans.

  11. Environmental Impact of a Submarine Cable: Case Study of the Acoustic Thermometry of Ocean Climate (ATOC)/ Pioneer Seamount Cable

    Science.gov (United States)

    Kogan, I.; Paull, C. K.; Kuhnz, L.; von Thun, S.; Burton, E.; Greene, H. G.; Barry, J. P.

    2003-12-01

    To better understand the potential impacts of the presence of cables on the seabed, a topic of interest for which little data is published or publicly available, a study of the environmental impacts of the ATOC/Pioneer Seamount cable was conducted. The 95 km long, submarine, coaxial cable extends between Pioneer Seamount and the Pillar Point Air Force Station in Half Moon Bay, California. Approximately two thirds of the cable lies within the Monterey Bay National Marine Sanctuary. The cable is permitted to NOAA- Oceanic and Atmospheric Research for transmitting data from a hydrophone array on Pioneer Seamount to shore. The cable was installed unburied on the seafloor in 1995. The cable path crosses the continental shelf, descends to a maximum depth of 1,933 m, and climbs back upslope to 998 m depth near the crest of Pioneer Seamount. A total of 42 hours of video and 152 push cores were collected in 10 stations along cable and control transects using the ROVs Ventana and Tiburon equipped with cable-tracking tools. The condition of the cable, its effect on the seafloor, and distribution of benthic megafauna and infauna were determined. Video data indicated the nature of interaction between the cable and the seafloor. Rocky nearshore areas, where wave energies are greatest, showed the clearest evidence of impact. Here, evidence of abrasion included frayed and unraveling portions of the cable's armor and vertical grooves in the rock apparently cut by the cable. The greatest incision and armor damage occurred on ledges between spans in irregular rock outcrop areas. Unlike the nearshore rocky region, neither the rocks nor the cable appeared damaged along outcrops on Pioneer Seamount. Multiple loops of slack cable added during a 1997 cable repair operation were found lying flat on the seafloor. Several sharp kinks in the cable were seen at 240 m water depths in an area subjected to intense trawling activity. Most of the cable has become buried with time in sediment

  12. A rare East Indian Ocean autumn season tropical cut-off low: impacts and a high-resolution modelling study

    Science.gov (United States)

    Buckley, B. W.; Leslie, L. M.; Sullivan, W.; Leplastrier, M.; Qi, L.

    2007-04-01

    There are two aims of this study. The first is to provide a synoptic description of the lifecycle and impacts of a seasonally rare but intense cut-off low of tropical origin that developed off the northwest coast of Australia, during the Southern Hemisphere autumn months of late April/early May, 2005. The second, and more important, part of this study is an assessment of the capacity of a state-of-the-science numerical model, assimilating all available satellite-derived observational data, to predict the track, intensity, duration, and severe weather that occurred during the life cycle of the cut-off low. The system was unusual in that its initial development occurred over tropical waters and was associated with a strong and highly involuted subtropical jetstream, generating a cloud band that produced record 24 h rainfall totals in northwest Western Australia for this time of the year. The cut-off low then underwent further deepening which produced more unseasonable heavy rainfall. Confirmed tornado reports occurred over the populous southwest corner of Western Australia. The synoptic discussion focuses initially on the intensification phase of the system, next on the period of heavy rainfall and gale to storm force winds that were generated by the cut-off during its most intense phase, and finally on the severe thunderstorm outbreak over southwest Western Australia. The study reveals a possible additional reason for the intensification of the tropical low, namely, the presence of positive SST anomalies of up to 3 °C over which the storm track passed early in its life. The modelling study used a high-resolution version (10 km horizontal grid spacing) of a coupled atmosphere-ocean model developed at the University of Oklahoma. The 96 hour forecast covered the period 00 UTC April 28 to 00 UTC May 2, 2005. The initial and boundary conditions were obtained from the archived analyses and forecasts from the Australian Bureau of Meteorology. The numerical forecasts

  13. The Impact of Ocean Data Assimilation on Seasonal-to-Interannual Forecasts: A Case Study of the 2006 El Nino Event

    Science.gov (United States)

    Yang, Shu-Chih; Rienecker, Michele; Keppenne, Christian

    2010-01-01

    This study investigates the impact of four different ocean analyses on coupled forecasts of the 2006 El Nino event. Forecasts initialized in June 2006 using ocean analyses from an assimilation that uses flow-dependent background error covariances are compared with those using static error covariances that are not flow dependent. The flow-dependent error covariances reflect the error structures related to the background ENSO instability and are generated by the coupled breeding method. The ocean analyses used in this study result from the assimilation of temperature and salinity, with the salinity data available from Argo floats. Of the analyses, the one using information from the coupled bred vectors (BV) replicates the observed equatorial long wave propagation best and exhibits more warming features leading to the 2006 El Nino event. The forecasts initialized from the BV-based analysis agree best with the observations in terms of the growth of the warm anomaly through two warming phases. This better performance is related to the impact of the salinity analysis on the state evolution in the equatorial thermocline. The early warming is traced back to salinity differences in the upper ocean of the equatorial central Pacific, while the second warming, corresponding to the mature phase, is associated with the effect of the salinity assimilation on the depth of the thermocline in the western equatorial Pacific. The series of forecast experiments conducted here show that the structure of the salinity in the initial conditions is important to the forecasts of the extension of the warm pool and the evolution of the 2006 El Ni o event.

  14. Modeling the onset of photosynthesis after the Chicxulub asteroid impact

    CERN Document Server

    Perez, Noel; Martin, Osmel; Rojas, Reinaldo

    2012-01-01

    We do a preliminary modelling of the photosynthetic rates of phytoplankton at the very beginning of the Paleogene, just after the impact of the Chicxulub asteroid, which decisively contributed to the last known mass extinction of the Phanerozoic eon. We assume the worst possible scenario from the photobiological point of view: an already clear atmosphere with no ozone, as the timescale for soot and dust settling (years) is smaller than that of the full ozone regeneration (decades). Even in these conditions we show that most phytoplankton species would have had reasonable potential for photosynthesis in all the three main optical ocean water types. This modelling could help explain why the recovery of phytoplankton was relatively rapid after the huge environmental stress of that asteroid impact. In a more general scope, it also reminds us of the great resilience of the unicellular biosphere against huge environmental perturbations.

  15. Pulmonary hypertension with a huge thrombosis in main stem of pulmonary artery

    Institute of Scientific and Technical Information of China (English)

    杨萍; 曾红; 孟繁波; 赵林阳

    2001-01-01

    @@A huge thrombosis in the main stem of the pulmonary artery (PA) with pulmonary hypertension has rarely been reported. We present two cases diagnosed and treated in our hospital. One suffered from polyarteritis with a huge thrombus in PA revealed at autopsy. The second case had congenital heart disease of the patent artery duct; and the huge thrombus was found on echocardiogram and extirpated in surgery.

  16. Huge ascending aortic aneurysm with an intraluminal thrombus in an embolic event-free patient.

    Science.gov (United States)

    Parato, Vito Maurizio; Prifti, Edvin; Pezzuoli, Franco; Labanti, Benedetto; Baboci, Arben

    2015-03-01

    We present a case of an 87-year-old male patient with a huge ascending aortic aneurysm, filled by a huge thrombus most probably due to previous dissection. This finding was detected by two-dimensional transthoracic echocardiography and contrast-enhanced computed tomography (CT) angiography scan. The patient refused surgical treatment and was medically treated. Despite the huge and mobile intraluminal thrombus, the patient remained embolic event-free up to 6 years later, and this makes the case unique.

  17. Efficacy of hepatic resection for huge (≥ 10 cm) hepatocellular carcinoma: good prognosis associated with the uninodular subtype.

    Science.gov (United States)

    Zhu, Shao-Liang; Chen, Jie; Li, Hang; Li, Le-Qun; Zhong, Jian-Hong

    2015-01-01

    The value of hepatic resection (HR) for huge hepatocellular carcinomas (HCC) (≥ 10 cm in diameter) remains controversial. The aim of this study is to evaluate the efficacy of hepatic resection (HR) for patients with huge HCC. A total of 739 patients with huge HCC (≥ 10 cm in diameter) (huge HCC group, n = 244) or small HCC (huge HCC were identified based on Cox regression analyses. The hospital mortality of these two groups were similar (P = 0.252). The 5-year OS of huge HCC group and small HCC group were 30.3% and 51.9%, respectively (P huge HCC had a significant higher 5-year OS (50.6%) than mutinodular huge HCC (26.9%) (P = 0.016). Multivariate analysis revealed that uninodular huge HCC and absence of PVTT independently predicted better OS for huge HCC patients. HR is a safe and effective approach for the treatment of huge HCC, especially for the uninodular subtype.

  18. Extent and impact of Cretaceous magmatism on the formation and evolution of Jurassic oceanic crust in the western Pacific

    Science.gov (United States)

    Feng, H.; Lizarralde, D.; Tominaga, M.; Hart, L.; Tivey, M.; Swift, S. A.

    2015-12-01

    Multi-channel seismic (MCS) images and wide-angle sonobuoy data acquired during a 2011 cruise on the R/V Thomas G. Thompson (TN272) show widespread emplacement of igneous sills and broadly thickened oceanic Layer 2 through hundreds of kilometers of oceanic crust in one of the oldest ocean basins in the western Pacific, a region known as the Jurassic Quiet Zone (JQZ). Oceanic crust from the JQZ has grown through at least two main magmatic phases: It was formed by mid-ocean ridge processes in the Jurassic (at ~170 Ma), and then it was added to by a substantial Cretaceous magmatic event (at ~75-125 Ma). The scale of Cretaceous magmatism is exemplified by massive seafloor features such as the Ontong Java Plateau, Mid-Pacific Mountains, Marshall-Gilbert Islands, Marcus-Wake Seamount Chain, and numerous guyots, seamounts, and volcaniclastic flows observed throughout the region. We use seismic data to image heavily intruded and modified oceanic crust along an 800-km-long transect through the JQZ in order to examine how processes of secondary crustal growth - including magmatic emplacement, transport, and distribution - are expressed in the structure of modified oceanic crust. We also model gravity anomalies to constrain crustal thickness and depth to the Moho. Our observations suggest that western Pacific crust was modified via the following modes of emplacement: (a) extrusive seafloor flows that may or may not have grown into seamounts, (b) seamounts formed through intrusive diking that pushed older sediments aside during their formation, and (c) igneous sills that intruded sediments at varying depths. Emplacement modes (a) and (b) tend to imply a focused, pipe-like mechanism for melt transport through the lithosphere. Such a mechanism does not explain the observed broadly distributed intrusive emplacement of mode (c) however, which may entail successive sill emplacement between igneous basement and sediments thickening oceanic Layer 2 along ~400 km of our seismic line

  19. Interactions between the microbial network and the organic matter in the Southern Ocean: impacts on the biological carbon pump

    OpenAIRE

    Dumont, Isabelle

    2009-01-01

    The Southern Ocean (ca. 20% of the world ocean surface) is a key place for the regulation of Earth climate thanks to its capacity to absorb atmospheric carbon dioxide (CO2) by physico-chemical and biological mechanisms. The biological carbon pump is a major pathway of absorption of CO2 through which the CO2 incorporated into autotrophic microorganisms in surface waters is transferred to deep waters. This process is influenced by the extent of the primary production and by the intensity of the...

  20. Impact of Temperature Anomalies Associated with El Niño-Southern Oscillation and Indian Ocean Dipole Events on Wine Grape Maturity in Australia

    Science.gov (United States)

    Jarvis, C.; Barlow, E.; Darbyshire, R.; Eckard, R.; Goodwin, I.

    2016-12-01

    Annual grapevine growth and development are intimately linked with growing season weather conditions. Shifts in circulation patterns resulting from atmospheric teleconnections to changes in sea surface temperature (SST) anomalies associated with El Niño-Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD) events can alter seasonal weather across Australia. Both ENSO and IOD events tend to peak in austral spring, when vine and berry development is especially critical and susceptible to damage. To investigate the impacts of ENSO and IOD events on the Australian wine grape growing sector, historical gridded climate data and annual vineyard grape maturity data from a variety of wine growing regions was collected and analysed. The greatest impacts on grape maturity were found when La Niña and IOD positive events occurred in tandem. During these events, significantly dry and hot conditions persist throughout the wine grape growing season, suggesting that the IOD overrides the ENSO signal. These conditions lead to a rapid, compressed growing season, which can cause logistical complications during harvest and impact grape and wine quality. Warming of equatorial SSTs in the Indian Ocean are likely to enhance the amplitude of IOD positive events, which has serious implications for wine grape production in Australia, highlighting the importance of this research.

  1. Impact of the configuration of stretching and ocean-atmosphere coupling on tropical cyclone activity in the variable-resolution GCM ARPEGE

    Energy Technology Data Exchange (ETDEWEB)

    Daloz, Anne Sophie; Chauvin, Fabrice [CNRM-GAME, Groupe de Modelisation Grande Echelle et Climat, Toulouse Cedex 1 (France); Roux, Frank [Universite de Toulouse, Laboratoire d' Aerologie, Centre National de la Recherche Scientifique, Toulouse (France)

    2012-11-15

    This study starts by investigating the impact of the configuration of the variable-resolution atmospheric grid on tropical cyclone (TC) activity. The French atmospheric general circulation model ARPEGE, the grid of which is rotated and stretched over the North Atlantic basin, was used with prescribed sea surface temperatures. The study clearly shows that changing the position of the stretching pole strongly modifies the representation of TC activity over the North Atlantic basin. A pole in the centre of the North Atlantic basin provides the best representation of the TC activity for this region. In a second part, the variable-resolution climate model ARPEGE is coupled with the European oceanic global climate model NEMO in order to study the impact of ocean-atmosphere coupling on TC activity over the North Atlantic basin. Two pre-industrial runs, a coupled simulation and a simulation forced by the sea surface temperatures from the coupled one, are compared. The results show that the coupled simulation is more active in the Caribbean Sea and the Gulf of Mexico while the forced simulation is more active over eastern Florida and the eastern Atlantic. The difference in the distribution of TC activity is certainly linked with the location of TC genesis. In the forced simulation, tropical cyclogenesis is closer to the west African coast than in the coupled simulation. Moreover, the difference in TC activity over the eastern Atlantic seems to be related to two different mechanisms: the difference in African easterly wave activity over the west of Africa and the cooling produced, in the coupled simulation, by African easterly waves over the eastern Atlantic. Finally, the last part studies the impact of changing the frequency of ocean-atmosphere coupling on Atlantic TC activity. Increasing the frequency of coupling decreases the density of TC activity over the North Atlantic basin. However, it does not modify the spatial distribution of the TC activity. TC rainfalls are

  2. Moderate ocean warming mitigates, but more extreme warming exacerbates the impacts of zinc from engineered nanoparticles on a marine larva.

    Science.gov (United States)

    Mos, Benjamin; Kaposi, Katrina L; Rose, Andrew L; Kelaher, Brendan; Dworjanyn, Symon A

    2017-09-01

    There is growing concern about the combined effects of multiple human-induced stressors on biodiversity. In particular, there are substantial knowledge gaps about the combined effects of existing stressors (e.g. pollution) and predicted environmental stress from climate change (e.g. ocean warming). We investigated the impacts of ocean warming and engineered nanoparticles (nano-zinc oxide, nZnO) on larvae of a cosmopolitan tropical sea urchin, Tripneustes gratilla. Larval T. gratilla were exposed to all combinations of three temperatures, 25, 27 and 29 °C (current SST and near-future predicted warming of +2 and + 4 °C) and six concentrations of nZnO (0, 0.001, 0.01, 0.1, 1 and 10 mg nZnO·L(-1)). These stressors had strong interactive effects on fertilization, gastrulation and normal development of 5 day old larvae. High concentrations of nZnO had a negative effect, but this impact was less pronounced for sea urchins reared at their preferred temperature of 27 °C compared to 25 or 29 °C. Larval growth was also impacted by combined stress of elevated temperature and nZnO. Subsequent measurement of the dissolution and aggregation of nZnO particles and the direct effect of Zn(2+) ions on larvae, suggest the negative effects of nZnO on larval development and growth were most likely due to Zn(2+) ions. Our results demonstrate that marine larvae may be more resilient to stressors at optimal temperatures and highlight the potential for ocean warming to exacerbate the effects of pollution on marine larvae. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Efficient visualization of unsteady and huge scalar and vector fields

    Science.gov (United States)

    Vetter, Michael; Olbrich, Stephan

    2016-04-01

    The simulation of climate data tends to produce very large data sets, which hardly can be processed in classical post-processing visualization applications. Within the most traditional post-processing scenarios the visualization pipeline consisting of the processes data generation, visualization mapping and rendering is distributed into two parts over the network or separated via file transfer: the data generation on a supercomputer on the one hand and the other tasks on a special visualization system on the other hand. That way either temporary data sets with huge volume have to be transferred over the network, which leads to bandwidth bottlenecks and volume limitations. As an alternative all simulation and visualization processes are integrated in a monolithic application, where just 2D pixel data is stored, which reduces the user's possibilities for 3D interaction with visualization to frame skipping. Within the Climate Visualization Lab - as part of the Cluster of Excellence "Integrated Climate System Analysis and Prediction" (CliSAP at the University of Hamburg, in cooperation with the German Climate Computing Center (DKRZ) - we plan to integrate a different approach, which has been proven to be successful in former meteorology applications, e.g. PALM (Parallel Large Eddy Simulation Model). Our software framework DSVR is based on the separation of the process chain between the mapping and the rendering processes. We have developed a parallelized visualization library based on MPI and evaluated on various supercomputers. DSVR can be used to integrate the visualization into a parallel simulation model to support in-situ processing, resulting in a sequence of time-based geometric 3D objects which can be interactively rendered in a separate 3D viewer application. To meet the actual requirements (a) to visualize existing data sets, (b) to support more than rectilinear grids, and (c) to integrate in-situ processing in the ICON model, all based on our DSVR framework

  4. The combined impact of CO2-dependent parameterisations of Redfield and Rain ratios on ocean carbonate saturation

    Directory of Open Access Journals (Sweden)

    M. H. England

    2011-06-01

    Full Text Available Future changes to the organic carbon and carbonate pumps are likely to affect ocean ecosystem dynamics and the biogeochemical climate. Here, biological dependencies on the Rain and Redfield ratios on pCO2 are implemented in a coupled Biogeochemistry-Ocean Model, the CSIRO-Mk3L, to establish extreme-case carbonate saturation vulnerability to model parameterisation at year 2500 using IPCC Representative Concentration Pathway 8.5. Surface carbonate saturation is relatively insensitive to the combined effects of variable Rain and Redfield ratios (an anomaly of less than 10 % of the corresponding change in the control configuration by year 2500, but the global zonally-averaged ocean interior anomaly due to these feedbacks is up to 130 % by 2500. A non-linear interaction between organic and carbonate pumps is found in export production, where higher rates of photosynthesis enhance calcification by raising surface alkalinity. This non-linear effect has a negligible influence on surface carbonate saturation but does significantly influence ocean interior carbonate saturation fields (an anomaly of up to 45 % in 2500. The strongest linear and non-linear sensitivity to combined feedbacks occurs in low-latitude remineralisation zones below regions of enhanced biological production, where dissolved inorganic carbon rapidly accumulates.

  5. Impact of tidal mixing with different scales of bottom roughness on the general circulation in the ocean model MPIOM

    Science.gov (United States)

    Exarchou, E.; Von Storch, J.-S.; Jungclaus, J.

    2012-04-01

    We implement a tidal mixing scheme that parameterizes diapycnal diffusivity depending on the location of energy dissipation over rough topography in the ocean general circulation model MPIOM. The tidal mixing scheme requires a bottom roughness map that can be calculated depending on the scales of topographic features one wants to focus on. Here, we examine the sensitivity of the modeled circulations to different spatial scales of the modeled bottom roughness. We compare three simulations that include the tidal mixing scheme using bottom roughness calculated at three different spatial scales, ranging from 15 to 200 km. We find that with decreasing spatial scales at which roughness is calculated, the roughness values increase in the deep ocean and decrease in coastal or shallow regions. The diffusivities produced by the three experiments, therefore, have not only different spatial structures but different vertical structures as well, with stronger bottom diffusivities for smaller scales of roughness. The lower limb of the Atlantic overturning and the bottom water transport in the Pacific Ocean are stronger for stronger bottom diffusivities, suggesting a 1/2 power law scaling between overturning strength and diffusivity. Such a relation does not hold for the upper limb of the Atlantic. All tidal simulations significantly increase the Indo-Pacific bottom water transport, improving the model solution in the Indo-Pacific Ocean.

  6. Impact of CO2-driven ocean acidification on invertebrates early life-history – What we know, what we need to know and what we can do

    Directory of Open Access Journals (Sweden)

    M. C. Thorndyke

    2009-03-01

    Full Text Available As a consequence of increasing atmospheric CO2, the world's oceans are becoming more acidic and the rate of change is increasingly fast. This ocean acidification is expected to have significant physiological, ecological and evolutionary consequences at many organizational levels of marine biodiversity. Alarmingly little is known about the long term impact of predicted pH changes (a decrease of −0.3/−0.4 units for the end of this century on marine invertebrates in general and their early developmental stages in particular, which are believed to be the more sensitive to environmental disturbances, are essential as unit of selection, recruitment and population maintenance. Ocean acidification (OA research is in its infancy and although the field is moving forward rapidly, good data are still scarce. Available data reveal contradictory results and apparent paradoxes. In this article, we will review available information both from published sources and work in progress, drawing a general picture of what is currently known, with an emphasis on early life-history larval stages. We will also discuss what we need to know in a field with very limited time resources to obtain data and where there is a high expectation that the scientific community should rapidly be able to provide clear answers that help politicians and the public to take action. We will also provide some suggestions about what can be done to protect and rescue future ecosystems.

  7. Spatial and temporal Teleconnections of Sea Surface Temperature and Ocean Indices to regional Climate Variations across Thailand - a Pathway to understanding the Impact of Climate Change on Water Resources

    Science.gov (United States)

    Bejranonda, Werapol; Koch, Manfred

    2010-05-01

    Thailand has a long coastline with the Pacific Ocean, as part of the Gulf of Thailand, as well as with the Indian Ocean, as part of the Andaman Sea. Because of this peculiar location, Thailand's local climate and, in particular, its water resources are strongly influenced by the mix of tropical wet, tropical dry and tropical monsoon seasons. Because of the large seasonal and interannual variations and irregularities of these, mainly ocean-driven weather patterns, particularly in recent times, large-scale water storage in huge river-fed reservoirs has a long tradition in Thailand, providing water for urban, industrial and agricultural use during long dry seasonal periods. These reservoirs which are located all over Thailand gather water primarily from monsoon-driven rainfall during the wet season which, usually, lasts from May to October. During the dry season, November to April, when the monsoon winds move northward, the air masses are drier in central and northern Thailand, with rain falling here only a few days in a month. Southern Thailand, on the other hand, which is constituted mostly by the isthmus between the two oceans, stays even hot and humid during that time period. Because of this tropical climate pattern, the surface water resources in most of Thailand strongly hinge on the monsoon movements which, in turn, depend themselves upon the thermal states of the Pacific and Indian Oceans. Therefore, the understanding of the recent strong seasonal and interannual climate variations with their detrimental effects on the availability of hydrological water resources in most parts of Thailand, must include the analysis of changes of various sea-state indices in the adjacent oceans and of their possible teleconnections with regional climate indices across this country. With the modern coupled atmospheric-ocean models being able to predict the variations of many ocean indices over a period of several months, namely, those driven by El Nino- Southern Oscillations

  8. Fibrous dysplasia of the rib presenting as a huge chest wall tumor: report of a case.

    Science.gov (United States)

    Chang, B S; Lee, S C; Harn, H J

    1994-07-01

    Fibrous dysplasia of the rib is not uncommon, but is rarely demonstrated as a huge chest wall mass with severe clinical symptoms. A 59-year-old patient, presenting with a huge, rapidly expanding chest wall tumor compressing the lung, liver and heart accompanied by chest pain and dyspnea, is reported. The tumor was success-fully excised by local radical resection.

  9. Huge van Bordeeus : een ridder van Karel de Grote op avontuur in het Oosten

    NARCIS (Netherlands)

    Lens, Maria Johanna

    2004-01-01

    'Huge van Bordeeus' is de dissertatie van Maria Lens. Hierin doet zij verslag van haar onderzoek naar de Middelnederlandse overlevering van een Franse tekst, 'Huon de Bordeaux', over de ridder Huge van Bordeeus. Deze veertiende-eeuwse ridder, leenman van Karel de Grote, moet de baard en vier tanden

  10. Impact of open-ocean convection on particle fluxes and sediment dynamics in the deep margin of the Gulf of Lions

    Directory of Open Access Journals (Sweden)

    M. Stabholz

    2013-02-01

    Full Text Available The deep outer margin of the Gulf of Lions and the adjacent basin, in the western Mediterranean Sea, are regularly impacted by open-ocean convection, a major hydrodynamic event responsible for the ventilation of the deep water in the western Mediterranean Basin. However, the impact of open-ocean convection on the flux and transport of particulate matter remains poorly understood. The variability of water mass properties (i.e., temperature and salinity, currents, and particle fluxes were monitored between September 2007 and April 2009 at five instrumented mooring lines deployed between 2050 and 2350-m depth in the deepest continental margin and adjacent basin. Four of the lines followed a NW–SE transect, while the fifth one was located on a sediment wave field to the west. The results of the main, central line SC2350 ("LION" located at 42°02.5′ N, 4°41′ E, at 2350-m depth, show that open-ocean convection reached mid-water depth (≈ 1000-m depth during winter 2007–2008, and reached the seabed (≈ 2350-m depth during winter 2008–2009. Horizontal currents were unusually strong with speeds up to 39 cm s−1 during winter 2008–2009. The measurements at all 5 different locations indicate that mid-depth and near-bottom currents and particle fluxes gave relatively consistent values of similar magnitude across the study area except during winter 2008–2009, when near-bottom fluxes abruptly increased by one to two orders of magnitude. Particulate organic carbon contents, which generally vary between 3 and 5%, were abnormally low (≤ 1% during winter 2008–2009 and approached those observed in surface sediments (≈ 0.6%. Turbidity profiles made in the region