WorldWideScience

Sample records for hudson river water

  1. 2010 Hudson River Shallow Water Sediment Cores

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Hudson River Shallow Water Mapping project characterizes the bottom of the Hudson River Estuary in shallow water (<3 m). The characterization includes...

  2. Zirconium/niobium-95 determined in Hudson River water

    International Nuclear Information System (INIS)

    Linsalata, P.; Cohen, N.

    1982-01-01

    Zirconium 95 and Niobium 95 are the fission products detected in greatest abundance in Hudson River water following the atmospheric testing of a nuclear device in N.W. China in 1980. Water samples, collected continuously and on a 'grab' basis, and processed monthly, have been studied to determine 95 Zr and 95 Nb concentrations, and plotted against collection time. Total precipitation values for each month, averaged over the whole Hudson River are also plotted. Airborne concentration data were obtained from sites in Lower Manhattan and Chester, N.J. A maximum value for 95 Zr in the Hudson River was found for February 1981. Half-time removal of 95 Zr from water was also calculated. (U.K.)

  3. 77 FR 22530 - Safety Zone; Fireworks, Hudson River, Rhinecliff, NY

    Science.gov (United States)

    2012-04-16

    ...-AA00 Safety Zone; Fireworks, Hudson River, Rhinecliff, NY AGENCY: Coast Guard, DHS. ACTION: Notice of... navigable waters of the Hudson River in the vicinity of Rhinecliff, NY for a fireworks display. This... fireworks displays. This rule is intended to restrict all vessels from a portion of the Hudson River before...

  4. Seasonal air-water exchange fluxes of polychlorinated biphenyls in the Hudson River Estuary

    International Nuclear Information System (INIS)

    Yan Shu; Rodenburg, Lisa A.; Dachs, Jordi; Eisenreich, Steven J.

    2008-01-01

    Polychlorinated biphenyls (PCBs) were measured in the air and water over the Hudson River Estuary during six intensive field campaigns from December 1999 to April 2001. Over-water gas-phase ΣPCB concentrations averaged 1100 pg/m 3 and varied with temperature. Dissolved-phase ΣPCB concentrations averaged 1100 pg/L and displayed no seasonal trend. Uncertainty analysis of the results suggests that PCBs with 5 or fewer chlorines exhibited net volatilization. The direction of net air/water exchange could not be determined for PCBs with 6 or more chlorines. Instantaneous net fluxes of ΣPCBs ranged from +0.2 to +630 ng m -2 d -1 . Annual fluxes of ΣPCBs were predicted from modeled gas-phase concentrations, measured dissolved-phase concentrations, daily surface water temperatures and wind speeds. The net volatilization flux was +62 μg m -2 yr -1 , corresponding to an annual loss of +28 kg/yr of ΣPCBs from the Hudson River Estuary for the year of 2000. - Investigation of the air-water exchange of PCBs in the Hudson River Estuary suggests that PCBs with 5 or fewer chlorines undergo net volatilization

  5. 27 CFR 9.47 - Hudson River Region.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Hudson River Region. 9.47... Hudson River Region. (a) Name. The name of the viticultural area described in this section is “Hudson River Region.” (b) Approved maps. The approved maps for determining the boundaries of Hudson River...

  6. 75 FR 76943 - Regulated Navigation Area; Hudson River South of the Troy Locks, NY

    Science.gov (United States)

    2010-12-10

    ...-AA11 Regulated Navigation Area; Hudson River South of the Troy Locks, NY AGENCY: Coast Guard, DHS... Navigation Area (RNA) on the navigable waters of the Hudson River in New York, south of the Troy Locks. This... within the waters of the Hudson River south of the Troy Locks when ice is a threat to navigation. DATES...

  7. Hudson River Sub-Bottom Profile Points

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Hudson River Estuary Shallow Water Surveys. Subbottom Profile Points. Subbottom data was collected November 5 to December 15, 2009, in the estuary north from...

  8. 76 FR 8654 - Regulated Navigation Area; Hudson River South of the Troy Locks, NY

    Science.gov (United States)

    2011-02-15

    ...-AA11 Regulated Navigation Area; Hudson River South of the Troy Locks, NY AGENCY: Coast Guard, DHS... navigable waters of the Hudson River in New York, south of the Troy Locks. This action is necessary to... Hudson River south of the Troy Locks when ice is a threat to navigation. DATES: This rule is effective in...

  9. 75 FR 8486 - Regulated Navigation Area; Hudson River south of the Troy Locks, New York

    Science.gov (United States)

    2010-02-25

    ...-AA11 Regulated Navigation Area; Hudson River south of the Troy Locks, New York AGENCY: Coast Guard, DHS... area on the navigable waters of the Hudson River south of the Troy Locks. This regulated navigation... Hudson River south of the Troy locks when ice conditions are 8 inches or greater unless authorized by the...

  10. 33 CFR 207.50 - Hudson River Lock at Troy, N.Y.; navigation.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Hudson River Lock at Troy, N.Y..., DEPARTMENT OF DEFENSE NAVIGATION REGULATIONS § 207.50 Hudson River Lock at Troy, N.Y.; navigation. (a...) [Reserved] (n) Trespass on U.S. property. Trespass on U.S. property, or willful injury to the banks, masonry...

  11. Improvements in Hudson River Water Quality Create the Need for a new Approach to Monitoring and Management

    Science.gov (United States)

    O'Mullan, G. D.; Juhl, A.; Sambrotto, R.; Lipscomb, J.; Brown, T.

    2008-12-01

    The lower Hudson River is a well-flushed temperate estuary that continues to support diverse wildlife populations although its shores are home to the nation's most populated metropolitan area. Data sets from the last hundred years clearly demonstrate extreme nutrient concentrations, pathogen loading, and periods of persistent hypoxia. These data also show a clear trend of steadily improving water quality in the last thirty years. Recent increases in recreational activity, expanded shoreline parks, and waterfront redevelopment, indicate the return of the people of New York to the River, concomitant with improved water quality. While mean seasonal water quality indicators are now often acceptable for large portions of the River, there remains a lack of information about the finer scale spatial and temporal variability of water quality. A new water quality sampling program was initiated in the Fall of 2006 to address this challenge. Monthly sampling cruises collected continuous underway surface measurements of hydrographic variables in parallel with discrete sampling for nutrients and microbiology. In general, these data indicate that mid-channel locations are often within acceptable water quality standards during dry weather, but that wet weather events deliver large quantities of sewage to the River, leading to short-term deterioration in water quality. In 2006-2007, only 6 of 27 sample sites had geometric mean values for Enterococcus , a sewage-indicating microorganism, that suggest consistently poor water quality. In contrast, single-day exceedances of EPA recommended guidelines for Enterococcus were found at 21 of the 27 sites. Although the mid-channel of the River was relatively homogenous with respect to sewage indicators, large changes were observed at tributary mixing interfaces and along the shallow edges of the River where human contact is most likely. The changing use of the River, together with new information about the importance of episodic and

  12. 33 CFR 165.162 - Safety Zone: New York Super Boat Race, Hudson River, New York.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Safety Zone: New York Super Boat Race, Hudson River, New York. 165.162 Section 165.162 Navigation and Navigable Waters COAST GUARD... § 165.162 Safety Zone: New York Super Boat Race, Hudson River, New York. (a) Regulated area. The...

  13. 77 FR 41271 - Safety Zone; Newburgh to Beacon Swim, Newburgh, Hudson River, NY

    Science.gov (United States)

    2012-07-13

    ... 1625-AA00 Safety Zone; Newburgh to Beacon Swim, Newburgh, Hudson River, NY AGENCY: Coast Guard, DHS... navigable waters of the Hudson River, NY in the vicinity of Newburgh, NY for the annual Newburgh Beacon Swim... Beacon Swim is an annual recurring event that has a permanent safety zone found at 33 CFR 165.160. The...

  14. Nelson River and Hudson Bay

    Science.gov (United States)

    2002-01-01

    Rivers that empty into large bodies of water can have a significant impact on the thawing of nearshore winter ice. This true-color Moderate Resolution Imaging Spectroradiometer (MODIS) image from May 18, 2001, shows the Nelson River emptying spring runoff from the Manitoba province to the south into the southwestern corner of Canada's Hudson Bay. The warmer waters from more southern latitudes hasten melting of ice near the shore, though some still remained, perhaps because in shallow coastal waters, the ice could have been anchored to the bottom. High volumes of sediment in the runoff turned the inflow brown, and the rim of the retreating ice has taken on a dirty appearance even far to the east of the river's entrance into the Bay. The sediment would have further hastened the melting of the ice because its darker color would have absorbed more solar radiation than cleaner, whiter ice. Image courtesy Jacques Descloitres, MODIS Land Rapid Response Team at NASA GSFC

  15. Hudson River cooling tower proceeding: Interface between science and law

    International Nuclear Information System (INIS)

    Bergen, G.S.P.

    1988-01-01

    As the Hudson River power plant case proceeded, the regulatory ground shifted under the utility companies. At first, the US Environmental Protection Agency (EPA) contended that the utilities should build expensive closed-cycle cooling towers at three plants to minimize the plants' discharge of heated effluents to the river. When the formal hearing began, however, EPA claimed that cooling towers were needed to minimize the number of organisms impinged at and entrained through the plants. The Hudson River proceeding became a policy dispute over what the appropriate standard of environmental conduct should be, instead of a determination of whether a standard had been met or not. Such policy issues, which arise when legal precedent has yet to be developed for new laws like the Clean Water Act, are better addressed by a rule-making proceeding than by the adjudicatory hearing format used in the Hudson case. A rule-making proceeding would have markedly shortened the Hudson deliberations, probably without substantive change in the final settlement, and is recommended for future cases in which ambiguity in legislation or the lack of precedent has left policy matters unresolved. 2 refs

  16. 75 FR 38714 - Safety Zone; Macy's Fourth of July Fireworks Display, Hudson River, New York, NY

    Science.gov (United States)

    2010-07-06

    ... is scheduled to occur on the waters of the Hudson River. This temporary safety zone is necessary to... public notification. Although the temporary safety zone will apply to the entire width of the river... establishment of a temporary safety zone on a portion of the Hudson River during the launching of fireworks. An...

  17. Low Latitude Pelagic Foraminifera Found in the Hudson River: Are They Hurricane Deposits?

    Science.gov (United States)

    Monahan, K. M.; Abbott, D. H.; Hoenisch, B.; Breger, D.

    2011-12-01

    River sediment cores provide a record of past environmental changes through stacked layers of sediments. In core CD02-29A, recovered from the southern Hudson River, a significant number of tropical planktic foraminifer tests were found. Foraminifera were concentrated in sediment layers of low impedance, suggesting high carbonate content. Because modern planktic foraminifera are exclusively marine, their presence in Hudson sediments in the core was remarkable. We can think of only two mechanisms that could explain this observation: either living specimens are carried upriver with the daily tides, or storm surges carry large amounts of seawater and re-suspended marine sediment upriver. To test for the presence of living specimens in Hudson River water, plankton tow samples were collected during high tide at the Hudson Battery south of the sample site, and at Piermont Pier north of the sample site and no living foraminifera were found. In addition, oxygen isotope (δ18O) analyses reveal a marine composition but the large difference in δ18O between the two surface dwelling species Globigerinoides ruber (pink) and Globigerinoides sacculifer, picked from the same sediment layer, suggests re-suspension and mixing of marine sediment deposits. Because only planktic, tropical to subtropical foraminiferal assemblages were found, the Hudson River deposits differ from previously recorded storm deposits found on Long Island and in New Jersey. In particular, the foraminiferal assemblages contain up to 40% G. ruber (pink), suggesting a highly tropical signal from a location where abundances of G. ruber are very low. This data, in addition to the pulsed occurrence of tests in the sediment suggests that the introduction of planktic foraminifera into the Hudson River must be driven by rare events. We suggest that storm surges from rare high-intensity hurricanes most likely explain the presence of these tests in Hudson River sediments, possibly assisted by the Gulf Stream entraining

  18. Hudson River Sub_Bottom Profile Data - Raw SEG-Y Files (*.sgy)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Hudson River Estuary Shallow Water Surveys. Subbottom data was collected November 5 to December 15, 2009, in the estuary north from Saugerties to Troy. Data...

  19. Stock characteristics of Hudson River striped bass

    International Nuclear Information System (INIS)

    Hoff, T.B.; McLaren, J.B.; Cooper, J.C.

    1988-01-01

    Striped bass, because of their tremendous popularity both commercially and recreationally, were a principal focus of the Hudson River power plant case. Between 1976 and 1979, over 23,000 age-II and older striped bass were studied as one facet of an extensive research program on the spring population in the Hudson River. Samples were collected from the overwintering as well as the spawning portion of the striped bass population, and included immature as well as mature fish. At least 12 age-groups contributed to spawning each year. Of these 12, age-groups III, IV, and V usually were most abundant, but the percentage of the population represented by any single age-group varied as the result of fluctuations in year-class strength. Males first became sexually mature at age II and females at age IV. Fast-growing individuals within a year class tended to mature earlier. Fecundity increased with the size of fish, reaching an observed maximum of about 3 million eggs per female. Although significant annual variations in maturity and growth were detected for Hudson River striped bass, there was no evidence of a consistent change in either variable that might be associated with increasing power plant operations and a reduction in striped bass abundance. Age at maturity and age structure are the two life history components that differ the most between the Hudson River population and other striped bass populations. 36 refs., 7 tabs

  20. Dating sediment cores from Hudson River marshes

    International Nuclear Information System (INIS)

    Robideau, R.; Bopp, R.F.

    1993-01-01

    There are several methods for determining sediment accumulation rates in the Hudson River estuary. One involves the analysis of the concentration of certain radionuclides in sediment core sections. Radionuclides occur in the Hudson River as a result of: natural sources, fallout from nuclear weapons testing and low level aqueous releases from the Indian Point Nuclear Power Facility. The following radionuclides have been studied in the authors work: Cesium-137, which is derived from global fallout that started in the 1950's and has peaked in 1963. Beryllium-7, a natural radionuclide with a 53 day half-life and found associated with very recently deposited sediments. Another useful natural radionuclide is Lead-210 derived from the decay of Radon-222 in the atmosphere. Lead-210 has a half-life of 22 years and can be used to date sediments up to about 100 years old. In the Hudson River, Cobalt-60 is a marker for Indian Point Nuclear Reactor discharges. The author's research involved taking sediment core samples from four sites in the Hudson River Estuarine Research Reserve areas. These core samples were sectioned, dried, ground and analyzed for the presence of radionuclides by the method of gamma-ray spectroscopy. The strength of each current pulse is proportional to the energy level of the gamma ray absorbed. Since different radionuclides produce gamma rays of different energies, several radionuclides can be analyzed simultaneously in each of the samples. The data obtained from this research will be compared to earlier work to obtain a complete chronology of sediment deposition in these Reserve areas of the river. Core samples may then by analyzed for the presence of PCB's, heavy metals and other pollutants such as pesticides to construct a pollution history of the river

  1. Evidence of Spatially Extensive Resistance to PCBs in an Anadromous Fish of the Hudson River

    Science.gov (United States)

    Yuan, Zhanpeng; Courtenay, Simon; Chambers, R. Christopher; Wirgin, Isaac

    2006-01-01

    Populations of organisms that are chronically exposed to high levels of chemical contaminants may not suffer the same sublethal or lethal effects as naive populations, a phenomenon called resistance. Atlantic tomcod (Microgadus tomcod) from the Hudson River, New York, are exposed to high concentrations of polycyclic aromatic hydrocarbons (PAHs) and bioaccumulate polychlorinated biphenyls (PCBs), polychlorinated dibenzo-p-dioxins (PCDDs), and polychlorinated dibenzofurans (PCDFs). They have developed resistance to PCBs and PCDDs but not to PAHs. Resistance is largely heritable and manifests at early-life-stage toxic end points and in inducibility of cytochrome P4501A (CYP1A) mRNA expression. Because CYP1A induction is activated by the aryl hydrocarbon receptor (AHR) pathway, as are most toxic responses to these compounds, we sought to determine the geographic extent of resistance to CYP1A mRNA induction by PCBs in the Hudson River tomcod population. Samples of young-of-the-year tomcod were collected from seven locales in the Hudson River, extending from the Battery at river mile 1 (RM 1) to RM 90, and from the Miramichi River, New Brunswick, Canada. Laboratory-reared offspring of tomcod adults from Newark Bay, in the western portion of the Hudson River estuary, were also used in this study. Fish were partially depurated in clean water and intraperitoneally injected with 10 ppm coplanar PCB-77, 10 ppm benzo[a]pyrene (BaP), or corn oil vehicle, and levels of CYP1A mRNA were determined. CYP1A was significantly inducible by treatment with BaP in tomcod from the Miramichi River, from laboratory-spawned offspring of Newark Bay origin, and from all Hudson River sites spanning 90 miles of river. In contrast, only tomcod from the Miramichi River displayed significantly induced CYP1A mRNA expression when treated with PCB-77. Our results suggest that the population of tomcod from throughout the Hudson River estuary has developed resistance to CYP1A inducibility and probably

  2. Groundwater quality in the Upper Hudson River Basin, New York, 2012

    Science.gov (United States)

    Scott, Tia-Marie; Nystrom, Elizabeth A.

    2014-01-01

    Water samples were collected from 20 production and domestic wells in the Upper Hudson River Basin (north of the Federal Dam at Troy, New York) in New York in August 2012 to characterize groundwater quality in the basin. The samples were collected and processed using standard U.S. Geological Survey procedures and were analyzed for 148 physiochemical properties and constituents, including dissolved gases, major ions, nutrients, trace elements, pesticides, volatile organic compounds (VOCs), radionuclides, and indicator bacteria. The Upper Hudson River Basin covers 4,600 square miles in upstate New York, Vermont, and Massachusetts; the study area encompasses the 4,000 square miles that lie within New York. The basin is underlain by crystalline and sedimentary bedrock, including gneiss, shale, and slate; some sandstone and carbonate rocks are present locally. The bedrock in some areas is overlain by surficial deposits of saturated sand and gravel. Eleven of the wells sampled in the Upper Hudson River Basin are completed in sand and gravel deposits, and nine are completed in bedrock. Groundwater in the Upper Hudson River Basin was typically neutral or slightly basic; the water typically was moderately hard. Bicarbonate, chloride, calcium, and sodium were the major ions with the greatest median concentrations; the dominant nutrient was nitrate. Methane was detected in 7 samples. Strontium, iron, barium, boron, and manganese were the trace elements with the highest median concentrations. Two pesticides, an herbicide degradate and an insecticide degredate, were detected in two samples at trace levels; seven VOCs, including chloroform, four solvents, and the gasoline additive methyl tert-butyl ether (MTBE) were detected in four samples. The greatest radon-222 activity, 2,900 picocuries per liter, was measured in a sample from a bedrock well; the median radon activity was higher in samples from bedrock wells than in samples from sand and gravel wells. Coliform bacteria were

  3. The partitioning of Triclosan between aqueous and particulate bound phases in the Hudson River Estuary

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Brittan [University of Massachusetts, Department of Environment, Earth and Ocean Sciences, 100 Morrissey Blvd., Boston, MA 02125 (United States); Chen, Robert F. [University of Massachusetts, Department of Environment, Earth and Ocean Sciences, 100 Morrissey Blvd., Boston, MA 02125 (United States); Cantwell, Mark [NHEERL, Atlantic Ecology Division, US Environmental Protection Agency, 27 Tarzwell Drive, Narragansett, RI 02882 (United States); Gontz, Allen; Jun, Zhu; Olsen, Curtis R. [University of Massachusetts, Department of Environment, Earth and Ocean Sciences, 100 Morrissey Blvd., Boston, MA 02125 (United States)

    2009-07-01

    The distribution of Triclosan within the Hudson River Estuary can be explained by a balance among the overall effluent inputs from municipal sewage treatment facilities, dilution of Triclosan concentrations in the water column with freshwater and seawater inputs, removal of Triclosan from the water column by adsorption to particles, and loss to photodegradation. This study shows that an average water column concentration of 3 {+-} 2 ng/l (in the lower Hudson River Estuary) is consistent with an estimate for dilution of average wastewater concentrations with seawater and calculated rates of adsorption of Triclosan to particles. An average Triclosan sediment concentration of 26 {+-} 11 ng/g would be in equilibrium with the overlying water column if Triclosan has a particle-to-water partitioning coefficient of k{sub d} {approx} 10{sup 4}, consistent with laboratory estimates.

  4. The partitioning of Triclosan between aqueous and particulate bound phases in the Hudson River Estuary

    International Nuclear Information System (INIS)

    Wilson, Brittan; Chen, Robert F.; Cantwell, Mark; Gontz, Allen; Zhu Jun; Olsen, Curtis R.

    2009-01-01

    The distribution of Triclosan within the Hudson River Estuary can be explained by a balance among the overall effluent inputs from municipal sewage treatment facilities, dilution of Triclosan concentrations in the water column with freshwater and seawater inputs, removal of Triclosan from the water column by adsorption to particles, and loss to photodegradation. This study shows that an average water column concentration of 3 ± 2 ng/l (in the lower Hudson River Estuary) is consistent with an estimate for dilution of average wastewater concentrations with seawater and calculated rates of adsorption of Triclosan to particles. An average Triclosan sediment concentration of 26 ± 11 ng/g would be in equilibrium with the overlying water column if Triclosan has a particle-to-water partitioning coefficient of k d ∼ 10 4 , consistent with laboratory estimates.

  5. The Hudson River Plume: Exploring Human Impact on the Coastal Environment

    Science.gov (United States)

    McDonnell, Janice; Duncan, Ravit; Lichtenwalner, C. Sage; Dunbar, Laura

    2010-01-01

    The Hudson River Watershed contains a variety of geologic, topographic, climatic, and hydrologic features and a diversity of land-use patterns--making it an ideal model for studying human impact on the coastal environment. In this article, the authors present the Hudson River Plume (HRP), a problem-based online module that explores nonpoint-source…

  6. Hudson River settlement agreement: Technical rationale and cost considerations

    International Nuclear Information System (INIS)

    Barnthouse, L.W.; Boreman, J.; Englert, T.L.; Kirk, W.L.; Horn, E.G.

    1988-01-01

    In an effort to end litigation over open-cycle cooling at Hudson River power plants, out-of-court negotiations began in August 1979. On December 19, 1980, an agreement that was acceptable to all parties was reached. As an alternative to building cooling towers at the Indian Point, Bowline Point, and Roseton generating stations, the utilities agreed to a variety of technical and operational changes intended to reduce entrainment and impingement. In addition, they agreed to supplement the production of striped bass in the Hudson River estuary by means of a hatchery, to conduct a biological monitoring program, and to fund an independent research foundation for study of Hudson River environmental problems. Although the settlement costs were substantial, they were much smaller than the estimated costs of constructing and operating cooling towers. The settlement was expected to provide 15-43% of the impact reduction that might have been obtained with cooling at approximately 10% of the cost. 20 refs., 3 tabs

  7. A River Summer on the Hudson

    Science.gov (United States)

    Kenna, T. C.; Pfirman, S.; Selleck, B.; Son, L.; Land, M.; Cronin, J.

    2006-12-01

    River Summer is a month-long faculty development program extending from the continental shelf off New York City to the headwaters of the Hudson in the Adirondack Mountains. During the program, faculty from the Environmental Consortium of Hudson Valley Colleges and Universities teach each other about the Hudson environment, using innovative methods of teaching and learning, with a focus on incorporation of hands-on approaches from the perspective of multiple disciplines. Over four weeks, faculty from research universities, community colleges, liberal arts institutions, and middle and high schools work and live together, on board a research vessel or in a remote tent campsite, for several days at a time. Using the geology, hydrology, and landscape of the River as a foundation, River Summer focuses on understanding development of the Hudson within the context of its natural resources and cultural history. Participants conduct field sampling and analyses and consider issues through approaches that are common to many disciplines: scaling for problem solving; sampling and assessing bias and representation; observing and documenting; representing and depicting; interpretation and assessing relationships and causality; and evaluation. They also get a chance to experience, first-hand, the complexity and often open-ended nature of doing science. By allowing individuals, many of whom come from non-science disciplines, to experience these methods and processes in a safe learning environment, science is made more meaningful and accessible. The program's pedagogy is based on the principles of cognitive psychology and immersive field-, place- and inquiry-based learning. Field programs have been found to provide memorable, transformative experiences for undergraduate students, and our experience with River Summer 2005 and 2006 suggests they are equally effective with faculty. Evaluation shows that River Summer has a significant impact on its participants. Participants develop new

  8. Transport of fallout and reactor radionuclides in the drainage basin of the Hudson River estuary

    International Nuclear Information System (INIS)

    Simpson, H.J.; Linsalata, P.; Olsen, C.R.; Cohen, N.; Trier, R.M.

    1987-01-01

    Fallout plutonium and radiocesium derived from both weapons testing and local reactor releases are found in the water column and sediments of the Hudson River in readily measurable amounts. The history of fallout delivery and dissolved phase runoff from the drainage basin of 80 Sr, 137 Cs, and /sup 239,240/Pu have been extensively documented since the mid-1950s. Sediment and water column concentrations of 134 Cs, 137 Cs, and /sup 239,240/Pu in the Hudson have also been documented since the mid-1960's and are summarized. Since the peak fallout years, substantial portions of the fallout radionuclides in the drainage basin have become unavailable to normal weathering processes as reflected by a measured decrease in the fallout nuclide transport to the waters of the tidal Hudson. Budget calculations indicate that plutonium may be transported into the estuary from the coastal ocean, and that desorption of radiocesium from particles has allowed a substantial fraction of radiocesium to be exported from the Hudson to marine waters. 29 references, 6 figures, 8 tables

  9. 33 CFR 207.60 - Federal Dam, Hudson River, Troy, N.Y.; pool level.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Federal Dam, Hudson River, Troy, N.Y.; pool level. 207.60 Section 207.60 Navigation and Navigable Waters CORPS OF ENGINEERS..., N.Y.; pool level. (a) Whenever the elevation of the pool created by the Federal dam at Troy, N.Y...

  10. Science, law, and Hudson River power plants: A case study in environmental impact assessment

    International Nuclear Information System (INIS)

    Barnthouse, L.W.; Klauda, R.J.; Vaughan, D.S.; Kendall, R.L.

    1988-01-01

    Between 1963 and 1980, the Hudson River estuary was the focus of one of the most ambitious environmental research and assessment programs ever performed. The studies supported a series of US federal proceedings involving licenses and discharge permits for two controversial electric power generating facilities: the Cornwall pumped storage facility, and units 2 and 3 of the Indian Point nuclear generating station. Both facilities were to draw large volumes of water from a region of the Hudson used as spawning and nursery habitat by several fish species, including the striped bass. Fishermen and conservationists feared that a major fraction of the striped bass eggs and larvae in the Hudson would be entrained with the pumped water and killed. Additional fish would be killed on trash screens at the intakes. Scientists were asked to aid the utility companies and regulatory agencies in determining the biological importance of entrainment and impingement. This monograph contains both technical papers that present research results and synthesis papers that summarize and interpret the results. The intent was to: (1) summarize the scientific issues and approaches; (2) present the significant results of the Hudson River biological studies; (3) describe the role of the studies in the decision-making process; (4) evaluate the successes and failures of the studies; and (5) present recommendations for future estuarine impact assessments. Separate abstracts are processed for 22 papers for inclusion in the appropriate data bases

  11. 78 FR 31454 - Drawbridge Operation Regulation; Hudson River, Troy and Green Island, NY

    Science.gov (United States)

    2013-05-24

    ...-AA09 Drawbridge Operation Regulation; Hudson River, Troy and Green Island, NY AGENCY: Coast Guard, DHS... that governs the highway bridge (Troy Green Island) across the Hudson River, mile 152.7, between Troy... the regulations for the 112th Street Bridge, mile 155.4, between Troy and Cohoes which has been...

  12. 78 FR 56607 - Drawbridge Operation Regulation; Hudson River, Troy and Green Island, NY

    Science.gov (United States)

    2013-09-13

    ...-AA09 Drawbridge Operation Regulation; Hudson River, Troy and Green Island, NY AGENCY: Coast Guard, DHS... operation of the highway bridge across the Hudson River, mile 152.7, between Troy and Green Island, New York... Street Bridge, mile 155.4, between Troy and Cohoes which has been converted to a fixed bridge. It is...

  13. Tetrachlorodibenzo-p-dioxins and tetrachlorodibenzofurans in Atlantic coast striped bass and in selected Hudson River fish, waterfowl and sediments

    Energy Technology Data Exchange (ETDEWEB)

    O' Keefe, P; Hilker, D; Meyer, C; Aldous, K; Shane, L; Donnelly, R; Smith, R; Sloan, R; Skinner, L; Horn, E

    1884-01-01

    In striped bass samples from the lower Hudson River and its estuary 2,3,7,8-tetrachlorodibenzo-p-dioxin (2,3,7,8-TCDD) was found at concentrations from 16 to 120 pg/g (ppt). Striped bass from two other locations (Rhode Island coastal waters and Chesapeake Bay, Maryland) had <5 ppt, 2,3,7,8-TCDD. The contaminant, 2,3,7,8-tetrachlorodibenzofuran (2,3,7,8-TCDF), was found in striped bass from all three locations with concentrations varying from 6 ppt in Chesapeake Bay to 78 ppt in the Hudson River. Results from a limited number of non-migratory fish (carp and goldfish) and sediments suggest that the upper Hudson River is not a source for 2,3,7,8-TCDD/2,3,7,8-TCDF contamination of striped bass. 26 references, 3 tables.

  14. Sources, distribution, and mobility of plutonium and radiocesium in soils, sediments and water of the Hudson River Estuary and watershed

    International Nuclear Information System (INIS)

    Linsalata, P.

    1984-01-01

    Results of 239 240 Pu, 238 Pu and 137 Cs measurements are reported for soil cores sampled within the watershed, for many sediment cores and surface dredge samples taken along the length of the Hudson River Estuary and for water samples collected on a continuous basis in both fresh and estuarine reaches. Accumulations of 239 240 Pu and 137 Cs measured within sediment cores taken from discrete regions of the river-estuary were summed to arrive at total sediment inventories of 1.6 +/- 0.7 Ci and 53 +/- 20 Ci, respectively. The variability observed in the sediment accumulation of radionuclides is discussed in terms of the physical and chemical characteristics of the river-estuary. Plutonium-239,240 and 137 Cs were similary distributed in sediments and water sampled from fresh water reaches of the Hudson with activity ratios (i.e., 239 240 Pu/ 1 2number 7 Cs) ranging from 0.01 to 0.03. Distribution coefficients, which were determined both in vitro and in situ were similar for both nuclides (i.e., from 1 x 10 5 to 3 x 10 5 L.kg -1 ) in fresh water, but diverged significantly (as a result of increased 137 Cs solubility) in brackish waters that exhibited chlorinities in excess of 1-2 g Cl - .L -1 . The concentrations of 239 240 Pu and 137 Cs observed in fresh water samples were primarily functions of the suspended load. Approximately 60-70% of the annual downstream transport of 239 240 Pu and 137 Cs calculated during 1980 and 1981 (i.e., 4 +/- 0.5 mCi and 515 +/- 84 mCi, respectively) was associated with suspended particulates greater than or equal to 0.45 μm. An empirical model was developed to determine the rates of vertical migration of these nuclides in soils of the watershed

  15. Spatial patterns of pharmaceuticals and wastewater tracers in the Hudson River Estuary.

    Science.gov (United States)

    Cantwell, Mark G; Katz, David R; Sullivan, Julia C; Shapley, Daniel; Lipscomb, John; Epstein, Jennifer; Juhl, Andrew R; Knudson, Carol; O'Mullan, Gregory D

    2018-06-15

    The widespread use of pharmaceuticals by human populations results in their sustained discharge to surface waters via wastewater treatment plants (WWTPs). In this study, 16 highly prescribed pharmaceuticals were quantified along a 250 km transect of the Hudson River Estuary and New York Harbor to describe their sources and spatial patterns. Sampling was conducted over two dry weather periods in May and July 2016, at 72 sites which included mid-channel and nearshore sites, as well as locations influenced by tributaries and WWTP outfalls. The detection frequency of the study pharmaceuticals was almost identical between the May and July sampling periods at 55% and 52%, respectively. Six pharmaceuticals were measurable at 92% or more of the sites during both sampling periods, illustrating their ubiquitous presence throughout the study area. Individual pharmaceutical concentrations were highly variable spatially, ranging from non-detect to 3810 ng/L during the study. Major factors controlling concentrations were proximity and magnitude of WWTP discharges, inputs from tributaries and tidal mixing. Two compounds, sucralose and caffeine, were evaluated as tracers to identify wastewater sources and assess pharmaceutical behavior. Sucralose was useful in identifying wastewater inputs to the river and concentrations showed excellent correlations with numerous pharmaceuticals in the study. Caffeine-sucralose ratios showed potential in identifying discharges of untreated wastewater occurring during a combined sewage overflow event. Many of the study pharmaceuticals were present throughout the Hudson River Estuary as a consequence of sustained wastewater discharge. Whereas some concentrations were above published effects levels, a more complete risk assessment is needed to understand the potential for ecological impacts due to pharmaceuticals in the Hudson River Estuary. Published by Elsevier Ltd.

  16. Technical descriptions of Hudson River electricity generating stations

    International Nuclear Information System (INIS)

    Hutchison, J.B.

    1988-01-01

    Six fossil-fueled and one nuclear electricity generating plants are sited along the Hudson River estuary between kilometers 8 and 228, measured from the river mouth. Their aggregate rated capacity is 5,798 MW of electricity; operating at that capacity they would withdraw cooling water from the river at the rate of 1.5 x 10 to the 9th power cu m/d and reject heat at the rate of 155 x 10 to the 9th power kcal/d. Three of these plants, the fossil-fueled Roseton and Bowline and the nuclear Indian Point facilities; account for 75% of total rated capacity, 62% of maximum water withdrawal, and 79% of potential heat rejection. These three plants and a proposed pumped-storage facility at Cornwall, all sited between km 60 and 106, were the focus of environmental litigation. The Indian Point plant normally operates at 100% generation capacity; the other plants may experience daily operating load changes that vary from approximately 50% to 100% of total generation capacity, depending on system electrical demand or economic considerations. All plants experience periodic unscheduled outages for repairs. 6 refs., 7 figs

  17. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: Hudson River: RVRMILES (River Mile Marker Lines)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains human-use resource data for river miles along the Hudson River. Vector lines in this data set represent river mile markers. This data set...

  18. Ecological investigation of Hudson River macrozooplankton in the vicinity of a nuclear power plant

    International Nuclear Information System (INIS)

    Ginn, T.C.

    1977-01-01

    Studies were conducted on selected Hudson River macrozooplankton species to determine temporal and spatial distributions and responses to power plant operation. Distinguishing morphological and habitat characteristics were determined for the three gammarid amphipods (Gammarus daiberi, G. tigrinus, and G. fasciatus) occurring in the Hudson River. The oedicerotid amphipod Monoculodes edwardsi and the mysid Neomysis americana, in addition to the gammarid amphipods, displayed characteristic diel and seasonal abundances which affect their potential availability for power plant entrainment. The selected macrozooplankton species were utilized in temperature and chlorine bioassays in order to predict responses to cooling water entrainment. Although amphipods (Gammarus spp. and M. edwardsi) survived typical Indian Point cooling water temperatures, N. americana had high mortalities during a 30-minute, 8.3 0 C ΔT at 25 0 C ambient temperature. The bioassay results were substantiated by generally high survivals of entrained amphipods at the Indian Point plant. Neomysis americana were more heat sensitive, as indicated in bioassays, with average entrainment mortalities ranging from 30 to 60 percent during the summer. All species examined had higher immediate and latent mortalities during plant condenser chlorination. The ability of Gammarus to survive condenser passage and exposure to the Indian Point thermal discharge plume indicates that power plant operation on the lower Hudson River Estuary has no adverse impact on local gammarid amphipod populations. Entrained N. americana experience considerable mortalities; however, the impact on Atlantic Coast populations is minimized by the limited exposure of the population fringe to the Indian Point power plant

  19. Transport of fallout and reactor radionuclides in the drainage basin of the Hudson River estuary

    International Nuclear Information System (INIS)

    Simpson, H.J.; Linsalata, P.; Olsen, C.R.

    1982-01-01

    The transport and fate of Strontium 90, Cesium 137 and Plutonium 239, 240 in the Hudson River Estuary is discussed. Rates of radionuclide deposition and accumulation over time and space are calculated for the Hudson River watershed, estuary, and continental shelf offshore. 37 references, 7 figures, 15 tables

  20. Methods to assess impacts on Hudson River white perch: report for the period October 1, 1978 to September 30, 1979

    International Nuclear Information System (INIS)

    Barnthouse, L.W.; Kirk, B.L.; Kumar, K.D.; Van Winkle, W.; Vaughan, D.S.

    1980-06-01

    This report is a brief description of the work done on the NRC project entitled 'Methods to Assess Impacts on Hudson River White Perch' October 1, 1978 to September 30, 1979. Accounts of special studies of white perch entrainment at Hudson River power plants, of density-dependent growth in the Hudson River white perch population, and of data on the white perch populations of the Delaware and Chesapeake systems were performed. Complete accounts of these special studies are included in this report. During this period, a final draft topical report entitled 'Evaluation of Impingement Losses of White Perch at the Indian Point Nuclear Station and Other Hudson River Power Plants' (NUREG/CR-1100) was completed

  1. Distributions of polyhalogenated compounds in Hudson River (New York, USA) fish in relation to human uses along the river

    International Nuclear Information System (INIS)

    Skinner, Lawrence C.

    2011-01-01

    PCBs (as Aroclor concentrations) have been extensively examined in fish along the Hudson River, but other xenobiotic chemicals in fish have had limited assessment. This study determined concentrations and congener distributions of polybrominated diphenyl ethers (PBDEs), polybrominated and polychlorinated dibenzo-p-dioxins and dibenzofurans (PBDD/Fs and PCDD/Fs), and polychlorinated biphenyls (PCBs) in smallmouth bass and striped bass taken from a 385 km reach of the Hudson River. Concentrations of PBDEs and PCBs in smallmouth bass, and PCBs in striped bass, were positively related to human uses of the compounds in the basin. Generally low levels of PCDD/Fs were found. One striped bass, however, contained elevated 2,3,7,8-TCDD, indicating exposure to a known source in the adjacent Newark Bay-Passaic River basin. PBDDs were generally below detection. PBDFs were present in four of 18 smallmouth bass, but were not detected in striped bass. Dioxin-like PCBs contribute most to 2,3,7,8-TCDD toxic equivalents in 29 of 30 samples. - Highlights: → In the Hudson River, → PBDEs in smallmouth bass follow human population patterns, but do not for striped bass. → Proximity to known PCB sources govern PCB levels and patterns in fish. → PBDFs were in smallmouth bass but not striped bass. PBDDs were present in one fish. → PCDD/Fs were low in 29 of 30 fish. A 2,3,7,8-TCDD source affected one striped bass. → PCBs contribute most to 2,3,7,8-TCDD toxic equivalents in 29 of 30 samples. - Residues of polyhalogenated compounds in resident and migratory fish from the Hudson River are compared with human uses of the compounds in the river basin.

  2. Distributions of polyhalogenated compounds in Hudson River (New York, USA) fish in relation to human uses along the river

    Energy Technology Data Exchange (ETDEWEB)

    Skinner, Lawrence C., E-mail: lxskinne@gw.dec.state.ny.us [New York State Department of Environmental Conservation, 625 Broadway, Albany, NY 12233 (United States)

    2011-10-15

    PCBs (as Aroclor concentrations) have been extensively examined in fish along the Hudson River, but other xenobiotic chemicals in fish have had limited assessment. This study determined concentrations and congener distributions of polybrominated diphenyl ethers (PBDEs), polybrominated and polychlorinated dibenzo-p-dioxins and dibenzofurans (PBDD/Fs and PCDD/Fs), and polychlorinated biphenyls (PCBs) in smallmouth bass and striped bass taken from a 385 km reach of the Hudson River. Concentrations of PBDEs and PCBs in smallmouth bass, and PCBs in striped bass, were positively related to human uses of the compounds in the basin. Generally low levels of PCDD/Fs were found. One striped bass, however, contained elevated 2,3,7,8-TCDD, indicating exposure to a known source in the adjacent Newark Bay-Passaic River basin. PBDDs were generally below detection. PBDFs were present in four of 18 smallmouth bass, but were not detected in striped bass. Dioxin-like PCBs contribute most to 2,3,7,8-TCDD toxic equivalents in 29 of 30 samples. - Highlights: > In the Hudson River, > PBDEs in smallmouth bass follow human population patterns, but do not for striped bass. > Proximity to known PCB sources govern PCB levels and patterns in fish. > PBDFs were in smallmouth bass but not striped bass. PBDDs were present in one fish. > PCDD/Fs were low in 29 of 30 fish. A 2,3,7,8-TCDD source affected one striped bass. > PCBs contribute most to 2,3,7,8-TCDD toxic equivalents in 29 of 30 samples. - Residues of polyhalogenated compounds in resident and migratory fish from the Hudson River are compared with human uses of the compounds in the river basin.

  3. Selective analysis of power plant operation on the Hudson River with emphasis on the Bowline Point Generating Station. Volume 1

    International Nuclear Information System (INIS)

    Barnthouse, L.W.; Cannon, J.B.; Christensen, S.G.

    1977-07-01

    A comprehensive study of the effects of power plant operation on the Hudson River was conducted. The study included thermal, biological, and air quality effects of existing and planned electrical generating stations. This section on thermal impacts presents a comprehensive mathematical modeling and computer simulation study of the effects of heat rejection from the plants. The overall study consisted of three major parts: near-field analysis; far-field analysis; and zone-matched near-field/far-field analysis. Near-field analyses were completed for Roseton, Danskammer, and Bowline Point Generating Stations, and near-field dilution ratios range from a low of about 2 for Bowline Point and 3 for Roseton to a maximum of 6 for both plants. The far-field analysis included a critical review of existing studies and a parametric review of operating plants. The maximum thermal load case, based on hypothetical 1974 river conditions, gives the daily maximum cross-section-averaged and 2-mile-segment-averaged water temperatures as 83.80 0 F in the vicinity of the Indian Point Station and 83.25 0 F in the vicinity of the Bowline Station. This maximum case will be significantly modified if cooling towers are used at certain units. A full analysis and discussion of these cases is presented. A study of the Hudson River striped bass population is divided into the following eight subsections: distribution of striped bass eggs, larvae, and juveniles in the Hudson River; entrainment mortality factor; intake factor; impingement; effects of discharges; compensation; model estimates of percent reduction; and Hudson River striped bass stock

  4. Benthic bacterial biomass and production in the Hudson River estuary

    International Nuclear Information System (INIS)

    Austin, H.K.; Findlay, S.E.G.

    1989-01-01

    Bacterial biomass, production, and turnover were determined for two freshwater march sites and a site in the main river channel along the tidally influenced Hudson River. The incorporation of [methyl- 3 H]thymidine into DNA was used to estimate the growth rate of surface and anaerobic bacteria. Bacterial production at marsh sites was similar to, and in some cases considerably higher than, production estimates reported for other aquatic wetland and marine sediment habitats. Production averaged 1.8-2.8 mg C·m -2 · hour -1 in marsh sediments. Anaerobic bacteria in marsh sediment incorporated significant amounts of [methyl- 3 H]thymidine into DNA. Despite differences in dominant vegatation and tidal regime, bacterial biomass was similar (1 x 10 3 ± 0.08 mg C·m -2 ) in Trapa, Typha, and Nuphar aquatic macrophyte communities. Bacterial abundance and productivity were lower in sandy sediments associated with Scirpus communities along the Hudson River (0.2 x 10 3 ± 0.05 mg C·m -2 and 0.3 ± 0.23 mg C · m -2 · hour -1 , respectively)

  5. Declining metal levels at Foundry Cove (Hudson River, New York): Response to localized dredging of contaminated sediments

    International Nuclear Information System (INIS)

    Mackie, Joshua A.; Natali, Susan M.; Levinton, Jeffrey S.; Sanudo-Wilhelmy, Sergio A.

    2007-01-01

    This study examines the effectiveness of remediating a well-recognized case of heavy metal pollution at Foundry Cove (FC), Hudson River, New York. This tidal freshwater marsh was polluted with battery-factory wastes (1953-1979) and dredged in 1994-1995. Eight years after remediation, dissolved and particulate metals (Cd, Co, Cu, Pb, Ni, and Ag) were found to be lower than levels in the lower Hudson near New York City. Levels of metals (Co, Ni, Cd) on suspended particles were comparatively high. Concentrations of surface sediment Cd throughout the marsh system remain high, but have decreased both in the dredged and undredged areas: Cd was 2.4-230 mg/kg dw of sediment in 2005 vs. 109-1500 mg/kg in the same area in 1983. The rate of tidal export of Cd from FC has decreased by >300-fold, suggesting that dredging successfully stemmed a major source of Cd to the Hudson River. - Dredging of a hotspot of metal-contaminated sediment is associated with a recognizable local and river-wide decline in cadmium in the Hudson River, New York

  6. Desorption of Ba and 226Ra from river-borne sediments in the Hudson estuary

    International Nuclear Information System (INIS)

    Li, Y.-H.

    1979-01-01

    The pronounced desorption of Ba and 226 Ra from river-borne sediments in the Hudson estuary can be explained quantitatively by the drastic decrease in the distribution coefficients of both elements from a fresh to a salty water medium. The desorption in estuaries can augment, at least, the total global river fluxes of dissolved Ba and 226 Ra by one and nine times, respectively. The desorption flux of 226 Ra from estuaries accounts for 17-43% of the total 226 Ra flux from coastal sediments. Two mass balance models depicting mixing and adsorption-desorption processes in estuaries are discussed. (Auth.)

  7. Replication of Annual Cycles in Mn in Hudson River Cores: Mn Peaks During High Water Flow

    Science.gov (United States)

    Abbott, D. H.; Hutson, D.; Marrero, A. M.; Block, K. A.; Chang, C.; Cai, Y.

    2017-12-01

    Using the results from an ITRAX, XRF scanner, we previously reported apparent annual cycles in Mn in a single, high sedimentation rate Hudson River core, LWB1-8, taken off Yonkers, NY (Carlson et al., 2016). We replicated these results in three more high sedimentation rate cores and found stratigraphic markers that verify our inferences about the annual nature of the Mn cycles. The three new cores are LWB4-5 taken off Peekskill, NY, and LWB3-44 and LWB3-25, both taken in Haverstraw Bay. The cores are from water depths of 7-9 meters and all have high magnetic susceptibilities (typically > 30 cgs units) in their upper 1 to 2 meters. The high susceptibilities are primarily produced by magnetite from modern industrial combustion. One core, LWB1-8, has reconnaissance Cs dates that verify the annual nature of the cycles. More Cs dates are expected before the meeting. We developed several new methods of verifying the annual nature of our layer counts. The first is looking at the grain size distribution and age of layers with unusually high Mn peaks. Peaks in Si, Ni and Ti and peaks in percentage of coarse material typically accompany the peaks in Mn. Some are visible as yellow sandy layers. The five highest peaks in Mn in LWB1-8 have layer counted ages that correspond (within 1 year in the top meter and within 2 years in the bottom meter) to 1996, 1948, 1913, 1857 and 1790. The latter three events are the three largest historical spring freshets on the Hudson. 1996 is a year of unusually high flow rate during the spring freshet. Based on our work and previous work on Mn cycling in rivers, we infer that the peaks in Mn are produced by extreme erosional events that erode sediment and release pore water Mn into the water column. The other methods of testing our chronology involve marine storms that increase Ca and Sr and a search for fragments of the Peekskill meteorite that fell in October 1992. More information on the latter will be available by the meeting.

  8. Impact of impingement on the Hudson River white perch population

    International Nuclear Information System (INIS)

    Barnthouse, L.W.; Van Winkle, W.

    1980-01-01

    The impact of power plant impingement on the 1974 and 1975 year classes of the Hudson River white perch population is assessed using a simple model derived from Ricker's theory of fisheries dynamics. The impact of impingement is expressed in the model as the conditional mortality rate, rather than as the more commonly used exploitation rate. Since the calculated impact is sensitive to errors in the estimation of population size and total mortality, ranges of probable values of these quantities are used to compute upper and lower bounds on the fractional reduction in abundance of each year class. Best estimates of abundance and mortality are used to compute the conditional impingement mortality rate separately for each plant and month. The results are used to assess the relative impacts of white perch impingement at six Hudson River power plants and to identify the seasons during which the impact is highest

  9. Radiogenic Lead Isotopes and Time Stratigraphy in the Hudson River, New York

    International Nuclear Information System (INIS)

    Chillrud, Steven N.; Bopp, Richard F.; Ross, James M.; Chaky, Damon A.; Hemming, Sidney; Shuster, Edward L.; Simpson, H. James; Estabrooks, Frank

    2004-01-01

    Radionuclide, radiogenic lead isotope and trace metal analyses on fine-grained sediment cores collected along 160 km of the upper and tidal Hudson River were used to examine temporal trends of contaminant loadings and to develop radiogenic lead isotopes both as a stratigraphic tool and as tracers for resolving decadal particle transport fluxes. Very large inputs of Cd, Sb, Pb, and Cr are evident in the sediment record, potentially from a single manufacturing facility. The total range in radiogenic lead isotope ratios observed in well-dated cores collected about 24 km downstream of the plant is large (e.g., maximum difference in 206 Pb/ 207 Pb is 10%), characterized by four major shifts occurring in the 1950s, 1960s, 1970s and 1980s. The upper Hudson signals in Cd and radiogenic lead isotopes were still evident in sediments collected 160 km downstream in the tidal Hudson. The large magnitude and abrupt shifts in radiogenic lead isotope ratios as a function of depth provide sensitive temporal constraints that complement information derived from radionuclide analyses to significantly improve the precision of dating assignments. Application of a simple dilution model to data from paired cores suggests much larger sediment inputs in one section of the river than previously reported, suggesting particle influxes to the Hudson have been underestimated

  10. Natural radiation dose to Gammarus from Hudson river

    International Nuclear Information System (INIS)

    Paschoa, A.S.; Wrenn, M.E.; Eisenbud, M.

    1979-01-01

    The purpose of this investigation is to evaluate the natural radiation dose rate to whole body and components of the Gammarus species, a zooplankton which occurs in the Hudson River among other places, and to compare the results with the upper limits of dose rates from man-made sources. The alpha dose rates to the exoskeleton and soft tissues are about 10 times the average alpha dose rate to the whole body, assuming uniform distribution of 226 Ra. The natural alpha radiation dose rate to Gammarus represents only about 5% of the total natural dose to the organism, i.e., 492 mrad/yr. The external dose rate due to 40 K, 238 U plus daughters and 232 Th plus daughters accumulated in the sediments comprise 91% of that total natural dose rate, the remaining percentage being due to natural internal beta emitters and cosmic radiation. Man-made sources can cause an external dose rate up to 224 mrad/yr, which comprises roughly 1/3 of the total dose rate (up to 716 mrad/yr; natural plus man-made) to the Gammarus of Hudson River in front of Indian Point Nuclear Power Station. However, in terms of dose-equivalent the natural sources of radiation would contribute more than 75% of the total dose to Gammarus

  11. Impact of impingement on the Hudson River white perch population. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Barnthouse, L.W.; Van Winkle, W.; Kirk, B.L.; Vaughan, D.S.

    1982-02-01

    This report summarizes a series of analyses of the magnitude and biological significance of the impingement of white perch at the Indian Point Nuclear Generating Station and other Hudson River power plants. Included in these analyses were evaluations of: (1) two independent lines of evidence relating to the magnitude of impingement impacts on the Hudson River white perch population; (2) the additional impact caused by entrainment of white perch; (3) data relating to density-dependent growth among young-of-the-year white perch; (4) the feasibility of performing population-level analyses of impingement impacts on the white perch populations of Chesapeake Bay and the Delaware River; and (5) the feasibility of using simple food chain and food web models to evaluate community-level effects of impingement and entrainment. Estimated reductions in the abundances of the 1974 and 1975 white perch year classes, caused by impingement and entrainment, were high enough that the possibility of adverse long-term effects cannot be excluded.

  12. Three-dimensional simulation of flow, salinity, sediment, and radionuclide movements in the Hudson River estuary

    International Nuclear Information System (INIS)

    Onishi, Y.; Trent, D.S.

    1985-04-01

    The three-dimensional, finite difference model, FLESCOT simulates time-varying movements of flow, turbulent kinetic energy, salinity, water temperature, sediment, and contaminants in estuarine, coastal, and ocean waters. The model was applied to a 106-km (66-mi) reach of the Hudson River estuary in New York between Chelsea and the mouth of the river. It predicted the time-varying, three-dimensional distributions of tidal flow, salinity, three separate groups of sediments (i.e., sand, silt, and clay), and a radionuclide ( 137 Cs) in both dissolved and particulate (those sorbed by sediments) forms for over 40 days. The model also calculated riverbed elevation changes caused by sediment deposition and bed erosion, bed sediment size distribution and armoring, and distributions of the particulate 137 Cs sorbed by sand, silt, and clay in the bed

  13. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: Hudson River: REPTILES (Reptile Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for estuarine reptiles (turtles, terrapins) and amphibians (salamanders, frogs) for the Hudson River....

  14. Diatoms as Proxies for Abrupt Events in the Hudson River Estuary

    Science.gov (United States)

    Skorski, W.; Abbott, D. H.; Recasens, C.; Breger, D. L.

    2014-12-01

    The Hudson River estuary has been subject to many abrupt events throughout its history including hurricanes, droughts and pluvials. Hurricanes in particular are rare, discrete events that if fingerprinted can be used to develop better age models for Hudson River sediments. Proxies use observed physical characteristics or biological assemblages (e.g. diatom and foraminiferal assemblages) as tools to reconstruct past conditions prior to the modern instrumental record. Using a sediment core taken from the Hudson River (CDO2-29A), in New York City, drought and pluvial layers were selected based on Cs-137 dating while hurricane layers were determined from occurrences of tropical to subtropical foraminifera. Contrary to previous studies (Weaver, 1970, Weiss et al, 1978), more than sixty different diatom species have been identified using a scanning electron microscope (SEM). Cosmopolitan, hurricane and drought assemblages have begun to be identified after observing multiple layers (Table 1). Tropical foraminifera dominated by Globigerinoides ruber pink were also found in a hurricane layer that we infer was deposited during Hurricane Belle in 1976. More diatom abundance analyses and cataloged SEM pictures will provide further insight into these proxies. Table 1 Diatom Genera and Species Environment Clarification Cyclotella caspia Planktonic, marine-brackish Cosmopolitan Karayevia clevei Freshwater Cosmopolitan Melosira sp Planktonic, marine Cosmopolitan Thalassiosira sp Marine, brackish Cosmopolitan Staurosirella leptostauron Benthic, freshwater Cosmopolitan Actinoptychus senarius Planktonic or benthic, freshwater to brackish Hurricane and pluvial layers Amphora aff. sp Benthic, marine or freshwater Hurricane layers only Nitzschia sp Benthic, marine or freshwater Hurricane layers only Gomphonema sp Freshwater Hurricane layers only Surirella sp Marine-brackish Drought layer only Triceratium sp Marine Drought layer only Other Genera and species Environment Clarification

  15. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: Hudson River: INVERT (Invertebrate Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for marine and estuarine invertebrate species for the Hudson River. Vector polygons in this data set...

  16. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: Hudson River: FISH (Fish Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for marine, estuarine, anadromous, and freshwater fish species in the Hudson River. Vector polygons in this...

  17. Use of an ADCP to compute suspended-sediment discharge in the tidal Hudson River, New York

    Science.gov (United States)

    Wall, Gary R.; Nystrom, Elizabeth A.; Litten, Simon

    2006-01-01

    Acoustic Doppler current profilers (ADCPs) can provide data needed for computation of suspended-sediment discharge in complex river systems, such as tidal rivers, in which conventional methods of collecting time-series data on suspended-sediment concentration (SSC) and water discharge are not feasible. Although ADCPs are not designed to measure SSC, ADCP data can be used as a surrogate under certain environmental conditions. However, the software for such computation is limited, and considerable post-processing is needed to correct and normalize ADCP data for this use. This report documents the sampling design and computational procedure used to calibrate ADCP measures of echo intensity to SSC and water velocity to discharge in the computation of suspended-sediment discharge at the study site on the Hudson River near Poughkeepsie, New York. The methods and procedures described may prove useful to others doing similar work in different locations; however, they are specific to this study site and may have limited applicability elsewhere.

  18. Natural activity in Hudson River estuary samples and their influence on the detection limits for gamma emitting radionuclides using NaI gamma spectrometry

    International Nuclear Information System (INIS)

    Wrenn, M.E.; Jinks, S.M.; Hairr, L.M.; Paschoa, A.S.; Lentsch, J.W.

    1972-01-01

    Sources of natural radioactivity in Hudson River Estuary are described. The technique of analysis for gamma spectrometry of environmental samples is presented and its pros and cons discussed. The distribution of natural radioactivity in water, biota and sediment was reported as well as the role played by the vertical distribution of cesium-137 in sediments as an indicator of the rate of sedimentation. The effect of the presence of natural radionuclides on the detection limits of man-made nuclides in the Hudson River environment is thoroughly examined. The results obtained with a 4-in. sodium iodide well crystal housed in a low background mercury shielding compare favorably with a more sophisticated Ge(Li) system which uses anticoincidence, as far as the analysis of environmental samples is concerned. (U.S.)

  19. Cumulative impacts of hydroelectric development on the fresh water balance in Hudson Bay

    International Nuclear Information System (INIS)

    Anctil, F.; Couture, R.

    1994-01-01

    A study is presented of the impacts of hydroelectric development on the surface water layer of Hudson Bay, including James Bay and the Foxe Basin. These impacts are directly related to the modifications in the fresh water balance of Hudson Bay and originate from the management of hydroelectric complexes. The fresh water balance is determined by identifying, at different scales, the modifications caused by each complex. The main inputs are the freezing and thawing of the ice cover, runoff water, and mass exchange at the air-water interface. Three spatial scales were used to obtain the resolution required to document the cumulative effects of fresh water balance modifications on the water surface layer, one each for Hudson Bay, Hudson Strait, and the Labrador Sea. Finally, the addition of the proposed Great Whale hydroelectric complex is examined from the available information and forecasts. 18 refs,. 6 figs., 1 tab

  20. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: Hudson River: MGT (Management Area Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive human-use data for regional and state parks, historic sites, marine sanctuaries, and other managed areas for the Hudson River....

  1. 77 FR 40518 - Swim Events in the Captain of the Port New York Zone; Hudson River, East River, Upper New York...

    Science.gov (United States)

    2012-07-10

    ... 1625-AA00 Swim Events in the Captain of the Port New York Zone; Hudson River, East River, Upper New York Bay, Lower New York Bay; New York, NY ACTION: Final rule. SUMMARY: The Coast Guard is establishing seven temporary safety zones for swim events within the Captain of the Port (COTP) New York Zone. These...

  2. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: Hudson River: STAGING (Staging Site Points)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains human-use resource data for staging sites along the Hudson River. Vector points in this data set represent locations of possible staging areas...

  3. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: Hudson River: SENSITIV (Sensitive Area Points)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains human-use resource data for sensitive areas along the Hudson River. Vector points in this data set represent sensitive areas. This data set...

  4. 75 FR 39839 - Regulated Navigation Area; Hudson River and Port of NY/NJ

    Science.gov (United States)

    2010-07-13

    ... navigation area (RNA) from Port Coeymans, New York on the Hudson River to Jersey City, New Jersey on Upper... replacement span. DATES: This rule is effective from July 13, 2010 through October 31, 2010. The RNA will be... time and place announced by a later notice in the Federal Register. [[Page 39840

  5. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: Hudson River: T_MAMMAL (Terrestrial Mammal Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for small terrestrial mammals (woodrats, myotis, muskrat, mink) for the Hudson River. Vector polygons in...

  6. Environmental Sensitivity Index (ESI) Atlas: Hudson River, maps and geographic information systems data (NODC Accession 0014791)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set comprises the Environmental Sensitivity Index (ESI) data for the Hudson River from 1942 to 2005. ESI data characterize estuarine environments and...

  7. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: Hudson River: M_MAMMAL (Marine Mammal Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for marine mammals (seals) in the Hudson River. Vector polygons in this data set represent marine mammal...

  8. Historical development of entrainment models for Hudson River striped bass

    International Nuclear Information System (INIS)

    Christensen, S.W.; Englert, T.L.

    1988-01-01

    In the mid-1960s, concerns surfaced regarding entrainment and impingement of young-of-the-year (age-0) striped bass by electric power generating facilities on the Hudson River. These concerns stimulated the development of increasingly complex models to evaluate the impacts of these facilities. The earliest simplistic formulas, based on empirical data, proved inadequate because of conceptual shortcomings, incomplete development, and lack of data. By 1972, complex transport models based on biological and hydrodynamic principles had been developed and applied by scientists representing both the utilities and the government. Disagreements about the acceptability of these models spurred the development of even more complex models. The entrainment models stimulated the collection of substantial amounts of field data to define the spatial distributions and entrainment survival of early life stages. As the difficulties of accounting for the movement of early life stages from hydrodynamic principles became more evident and as more field data became available, simpler empirical modeling approaches became both practical and defensible. Both empirical and hydrodynamic modeling approaches were applied during the US Environmental Protection Agency's hearings on the Hudson River power case (1977-1980). The main lessons learned from the experience with entrainment-impingement modeling are that complex mechanistic models are not necessarily better than simpler empirical models for young fish, and that care must be taken to construct even the simple models correctly. 29 refs., 4 figs., 1 tab

  9. Salt Marsh Formation in the Lower Hudson River Estuary

    Science.gov (United States)

    Merley, Michael; Peteet, Dorothy; Hansen, James E. (Technical Monitor)

    2001-01-01

    Salt marshes are constant depositional environments and as a result contain accurate indicators of past relative sea level rise and salinity. The Hudson River marshes are at least twice as deep when compared to coastal marshes on either side of the mouth of the Hudson. The reason for this difference in sedimentation is unclear. This study uses macrofossil data as well as sediment stratigraphy in order to understand the formation and evolution of these marshes. The composition of seeds, roots, shoots and foraminifera, are used to indicate past sea levels. The four sites involved in this study are, from south to north, the Arthur Kill Marsh in Staten Island (40 36 N, 74 77W), Piermont marsh (N 4100; 73 55W) Croton Point (41 14 N; 73 50W) and Iona Island (41 18N, 73 58W). These are all tidally influenced but with increasing distances from the New York Bight, which gives a good spectrum of tidal influence. AMS-C14 dates on basal macrofossils will document the time of each marsh formation. Basal material from Arthur Kill (8 m) includes freshwater seeds such as Viola, Potomageton and Alnus along with Salix buds. Basal material from Croton Point (10 m) includes fibrous woody material, foraminifera and Zanichellia seeds and other brackish vegetational components. The basal material from Piermont (13.77 m) is lacking any identifiable macrofossils between 150 and 500 microns. The basal material from Iona Island (10 m) has vegetation such as Scirpus and Cyperus seeds, probably implying a brackish environment. The freshwater origin of the Arthur Kill marsh in Staten Island is significant because it predates either sea level rise or the western channel incision. Additional implications for this study include evidence for changes in river channel geomorphology. Reasons for the relatively deeper river marshes include possible basal clay compaction, high production due to river and marine nutrients as well as tectonic activity. This study provides the groundwork for more high

  10. 239 240Pu and 238Pu in sediments of the Hudson River estuary

    International Nuclear Information System (INIS)

    Linsalata, P.; Wrenn, M.E.; Cohen, N.; Singh, N.P.

    1980-01-01

    Plutonium-239,240 and plutonium-238 were determined in 59 Hudson River sediment dredge samples collected during 1973-77 in the vicinity of the Indian Point Nuclear Power Station. Acid leaching followed by solvent extraction, electrodeposition, and alpha-spectrometry were used to extract, purify, and quantitate plutonium isotopes present in these samples. Annual median plutonium-238/plutonium-239,240 isotopic activity ratios in surficial sediments were 0.032 (1973-74), 0.035 (1975), 0.042 (1976), and 0.040 (1977). The source of these nuclides in the estuary was identified by analysis of the sample isotopic activity ratios. On the basis of the sampling regimen and the methods used, it is concluded that no input, other than that of fallout, has contributed significantly to the plutonium burden in Hudson sediments

  11. Working with Decision Makers to Improve Energy-Water System Resiliency in the Lower Hudson River Basin

    Science.gov (United States)

    Fellows, J. D.; Schoonen, M. A.; Pullen, J.; González, J. E.; Saleh, F.; Bhatt, V.

    2017-12-01

    Nearly half of the 180 million people living in the eastern U.S. reside in coastal watershed or shoreline counties. The population density of these areas continues to increase, driving an increase in energy-water (EW) system demand and expansion of critical infrastructure. Along with population, these areas are also being stressed by environmental and technology stresses, including climate change. We have been working with decision makers in the Lower Hudson River Basin (LHRB) to develop the tools and data needed to better understand and improve the resiliency of LHRB EW systems facing these kinds of stresses. The LHRB represents: 1) a coastal environment subject to sea level rise that is among the fastest in the East; 2) one of the steepest gradients in population density in the US, with Manhattan the most densely populated coastal county in the nation; 3) a EWN infrastructure serving the largest metropolitan area in the US and the financial center of the world; 4) a history of environmental impacts, ranging from heatwaves, hurricanes to localized storms, that can be used to hindcast; and 5) a wealth of historic and real-time data, extensive monitoring facilities and existing specific sector models that can be leveraged. This presentation will focus on the lessons learned working with the LHRB decision makers.

  12. Geographic variability in amoeboid protists and other microbial groups in the water column of the lower Hudson River Estuary (New York, USA)

    Science.gov (United States)

    Juhl, Andrew R.; Anderson, O. Roger

    2014-12-01

    In comparison to other groups of planktonic microorganisms, relatively little is known about the role of amoeboid protists (amebas) in planktonic ecosystems. This study describes the first geographic survey of the abundance and biomass of amebas in an estuarine water column. Samples collected in the lower Hudson River Estuary were used to investigate relationships between ameba abundance and biomass and hydrographic variables (temperature, salinity, and turbidity), water depth (surface and near bottom), distance from mid-channel to shore, phytoplankton biomass (chlorophyll fluorescence) and the occurrence of other heterotrophic microbial groups (heterotrophic bacteria, nanoflagellates, and ciliates) in the plankton. Although salinity increased significantly towards the mouth of the estuary, there were no significant differences in the abundance or biomass of any microbial group in surface samples collected at three stations separated by 44 km along the estuary's mid-channel. Peak biomass values for all microbial groups were found at the station closest to shore, however, cross-channel trends in microbial abundance and biomass were not statistically significant. Although ameba abundance and biomass in most samples were low compared to other microbial groups, clear patterns in ameba distribution were nevertheless found. Unlike other microbial groups examined, ameba numbers and biomass greatly increased in near bottom water compared to surface samples. Ameba abundance and biomass (in surface samples) were also strongly related to increasing turbidity. The different relationships of ameba abundance and biomass with turbidity suggest a rising contribution of large amebas in microbial communities of the Hudson estuary when turbidity increases. These results, emphasizing the importance of particle concentration as attachment and feeding surfaces for amebas, will help identify the environmental conditions when amebas are most likely to contribute significantly to estuarine

  13. Plutonium, cesium and uranium series radionuclides in the Hudson River estuary and other environments. Annual technical progress report, 1 December 1980-30 November 1981

    International Nuclear Information System (INIS)

    Simpson, H.J.; Trier, R.M.

    1981-01-01

    Radionuclide activities were measured in sediment cores and suspended particle samples throughout the salinity range of the Hudson River estuary. Activities of 137 Cs, 134 Cs, 60 Co, 239 240 Pu, and 238 Pu indicate reasonably rapid accumulation rates in the sediments of marginal cove areas, and very rapid deposition in the harbor region adjacent to New York City, resulting in 239 240 Pu accumulations there more than an order of magnitude greater than the fallout delivery rate. Fallout 239 240 Pu reaching the Hudson is almost completely retained within the systems by particle deposition, while 80 to 90% of the 137 Cs derived from both reactor releases and fallout is exported to the coastal waters in solution. Depth profiles of radionuclides in Hudson sediments are not significantly altered by physical mixing processes in the sediments in areas accumulating particles at greater than 1 cm/yr. Measurements of fallout 239 2 xperimental quantities

  14. Measurement Error Affects Risk Estimates for Recruitment to the Hudson River Stock of Striped Bass

    Directory of Open Access Journals (Sweden)

    Dennis J. Dunning

    2002-01-01

    Full Text Available We examined the consequences of ignoring the distinction between measurement error and natural variability in an assessment of risk to the Hudson River stock of striped bass posed by entrainment at the Bowline Point, Indian Point, and Roseton power plants. Risk was defined as the probability that recruitment of age-1+ striped bass would decline by 80% or more, relative to the equilibrium value, at least once during the time periods examined (1, 5, 10, and 15 years. Measurement error, estimated using two abundance indices from independent beach seine surveys conducted on the Hudson River, accounted for 50% of the variability in one index and 56% of the variability in the other. If a measurement error of 50% was ignored and all of the variability in abundance was attributed to natural causes, the risk that recruitment of age-1+ striped bass would decline by 80% or more after 15 years was 0.308 at the current level of entrainment mortality (11%. However, the risk decreased almost tenfold (0.032 if a measurement error of 50% was considered. The change in risk attributable to decreasing the entrainment mortality rate from 11 to 0% was very small (0.009 and similar in magnitude to the change in risk associated with an action proposed in Amendment #5 to the Interstate Fishery Management Plan for Atlantic striped bass (0.006— an increase in the instantaneous fishing mortality rate from 0.33 to 0.4. The proposed increase in fishing mortality was not considered an adverse environmental impact, which suggests that potentially costly efforts to reduce entrainment mortality on the Hudson River stock of striped bass are not warranted.

  15. Impact of entrainment and impingement on fish populations in the Hudson River estuary. Volume I. Entrainment-impact estimates for six fish populations inhabiting the Hudson River estuary

    International Nuclear Information System (INIS)

    Boreman, J.; Barnthouse, L.W.; Vaughn, D.S.; Goodyear, C.P.; Christensen, S.W.; Kumar, K.D.; Kirk, B.L.; Van Winkle, W.

    1982-01-01

    This volume is concerned with the estimation of the direct (or annual) entrainment impact of power plants on populations of striped bass, white perch, Alosa spp. (blueback herring and alewife), American shad, Atlantic tomcod, and bay anchovy in the Hudson River estuary. Entrainment impact results from the killing of fish eggs, larvae, and young juveniles that are contained in the cooling water cycled through a power plant. An Empirical Transport Model (ETM) is presented as the means of estimating a conditional entrainment mortality rate (defined as the fraction of a year class which would be killed due to entrainment in the absence of any other source of mortality). Most of this volume is concerned with the estimation of several parameters required by the ETM: physical input parameters (e.g., power-plant withdrawal flow rates); the longitudinal distribution of ichthyoplankton in time and space; the duration of susceptibility of the vulnerable organisms; the W-factors, which express the ratios of densities of organisms in power plant intakes to densities of organisms in the river; and the entrainment mortality factors (f-factors), which express the probability that an organism will be killed if it is entrained. Once these values are obtained, the ETM is used to estimate entrainment impact for both historical and projected conditions

  16. Methods to assess impacts on Hudson River striped bass: report for the period October 1, 1977 to September 30, 1979

    International Nuclear Information System (INIS)

    Barnthouse, L.W.; Christensen, S.W.; Kirk, B.L.; Kumar, K.D.; Van Winkle, W.

    1980-06-01

    The overall objective of this project is to develop and apply quantitative methods for assessing the effects of power plant entrainment and impingement on the Hudson River striped bass population. During the two years covered in this reporting period, our work dealt with five interrelated aspects of this assessment problem: (1) young-of-the year models, (2) mortality of entrained eggs, larvae, and juveniles, (3) projection of long-term impacts using stock recruitment models, (4) relative contribution of the Hudson River stock to the Atlantic coastal striped bass population, and (5) distribution of entrainable striped bass life stages in the immediate vicinity of power plant intakes

  17. Plutonium, cesium, uranium, and thorium series radionuclides in the Hudson River estuary and other environments. Annual technical progress report, December 1, 1982-November 30, 1983

    International Nuclear Information System (INIS)

    Simpson, H.J.; Trier, R.M.; Anderson, R.F.

    1983-01-01

    We have measured radionuclide activities in a large number of sediment cores and suspended particle samples throughout the salinity range of the Hudson River estuary. Activities of 137 Cs, 134 Cs and 60 Co determined by gamma spectrometry and 239 240 Pu and 238 Pu determined by alpha spectrometry indicate reasonably rapid accumulation rates in the sediments of marginal cove areas, and very rapid deposition in the harbor region adjacent to New York City, resulting in 239 240 Pu accumulations there more than an order of magnitude greater than the fallout delivery rate. Fallout 239 240 Pu moving downstream in the Hudson appears to be almost completely retained within the system by particle deposition, while more than 50% of the 137 Cs derived from both reactor releases and fallout has been exported from the tidal Hudson to coastal waters. Measurements of fallout 239 240 Pu in a saline lake with a high carbonate ion concentration yielded water column activities about two orders of magnitude greater than has been found for fallout plutonium in other continental waters, indicating extensive mobility in some natural water environments. Experiments using lake water suggest that carbonate ion is likely to be a critical factor in regulating plutonium solubility in some environments and that low molecular weight complexes are primarily responsible for enhanced plutonium solubility. 5 references

  18. Computer simulation model for the striped bass young-of-the-year population in the Hudson River

    International Nuclear Information System (INIS)

    Eraslan, A.H.; Van Winkle, W.; Sharp, R.D.; Christensen, S.W.; Goodyear, C.P.; Rush, R.M.; Fulkerson, W.

    1975-09-01

    This report presents a daily transient (tidal-averaged), longitudinally one-dimensional (cross-section-averaged) computer simulation model for the assessment of the entrainment and impingement impacts of power plant operations on young-of-the-year populations of the striped bass, Morone saxatilis, in the Hudson River

  19. Plutonium, cesium, uranium and thorium series radionuclides in the Hudson River estuary and other environments. Annual technical progress report, 1 December 1984-30 November 1985

    International Nuclear Information System (INIS)

    Simpson, H.J.; Trier, R.M.; Anderson, R.F.

    1985-01-01

    We have measured radionuclide activities in a large number of sediment cores and suspended particle samples throughout the salinity range of the Hudson River estuary. Activities of 137 Cs, 134 Cs and 60 Co determined by gamma spectrometry and /sup 239,240/Pu and 238 Pu determined by alpha spectrometry indicate reasonably rapid accumulation rates in the sediments of marginal cove areas, and very rapid deposition in the harbor region adjacent to New York City, resulting in /sup 239,240/Pu accumulations there more than an order of magnitude greater than the fallout delivery rate. Fallout /sup 239,240/Pu moving downstream in the Hudson appears to be almost completely retained within the system by particle deposition, while more than 50% of the 137 Cs derived from both reactor releases and fallout has been exported from the tidal Hudson to coastal waters. Some significant movement of dissolved plutonium into the estuary from the adjacent coastal waters may well be occurring. Depth profiles of radionuclides in Hudson sediments do not appear to be significantly altered by physical mixing processes in the sediment in areas accumulating particles at greater than 1 cm/y. Transport of fallout radionuclides from the drainage basin to the tidal Hudson appears to have decreased much faster than would be calculated from continuous removal from a well-mixed soil reservoir, indicating that sequestering of a substantial portion of the soil fallout burden has occurred in the watershed soils over the past two decades. Activities of 60 Co in New York harbor sediments in 1984 averaged considerably higher than in 1979 and 1981, suggesting releases of this nuclide to the Hudson comparable to the first five years of reactor operations. 12 figs., 9 tabs

  20. Using destination image to predict visitors' intention to revisit three Hudson River Valley, New York, communities

    Science.gov (United States)

    Rudy M. Schuster; Laura Sullivan; Duarte Morais; Diane Kuehn

    2009-01-01

    This analysis explores the differences in Affective and Cognitive Destination Image among three Hudson River Valley (New York) tourism communities. Multiple regressions were used with six dimensions of visitors' images to predict future intention to revisit. Two of the three regression models were significant. The only significantly contributing independent...

  1. Survival of fishes after impingement on traveling screens at Hudson River power plants

    International Nuclear Information System (INIS)

    Muessig, P.H.; Hutchison, J.B.; King, L.R.; Ligotino, R.J.; Daley, M.

    1988-01-01

    The survival of Hudson River fishes, juveniles and adults, after they had been impinged on continuously rotated traveling screens at the Bowline Point and Danskammer Point power plants was examined. Survival of principal species was similar at the two plants, and estimates of survival improved as monitoring stress was reduced. Adjusted for survival of control fish, survival over 84-108 h after fish were recovered from the screens was highest for Atlantic tomcod, striped bass, and white perch (50-90%) and lowest for bay anchovy, alewife, and blueback herring; other species showed intermediate survival. Survival of striped bass and white perch was positively correlated with water temperature in winter and with conductivity in spring and fall. Continual rotation of the screens, which shortens the average time that fish are impinged, increased survival over that associated with intermittent rotation. 24 refs., 9 figs., 4 tabs

  2. Sources of heavy metals in sediments of the Hudson River Estuary

    International Nuclear Information System (INIS)

    Williams, S.C.; Simpson, H.J.; Olsen, C.R.; Bopp, R.F.

    1978-01-01

    Sediments in the Hudson Estuary contain zinc, copper and lead from metal pollutants discharged to the harbor in the New York City area, from dispersed sources of contamination introduced upstream, and from natural weathering processes. The magnitude of the contribution from each of these three sources to particular sites can be estimated on the basis of total metal abundances, relative proportions of several metals, and other sediment properties. The pattern of recent heavy-metal contamination in Hudson sediments closely follows the distribution in sediments of 137 Cs which was derived over the past two decades from global fallout and local releases from a commercial nuclear reactor. Several simple empirical corrections related to grain size and mineralogy variations are suggested for comparing heavy-metal contamination levels of sandy continental shelf sediments with fine-grained estuarine and coastal sediments. Iron has little variation in Hudson sediments while manganese is greater in surface sediment of some low-salinity and fresh-water areas than deeper in the sediments, and generally less in the high-salinity area of rapid sediment deposition in New York harbor. Much of the pollutant Cu added to the harbor appears to be rapidly deposited in the sediments. (Auth.)

  3. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: Hudson River: ESI (Environmental Sensitivity Index Shoreline Types - Lines and Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains vector lines and polygons representing the shoreline and coastal habitats for the Hudson River, classified according to the Environmental...

  4. The Natural Palette: Hudson River Artists and the Land. Teacher's Guide. Curriculum Resource: Grades 4 through 12.

    Science.gov (United States)

    Lind, Ted; Sorin, Gretchen Sullivan; Mack, Stevie; Fiore, Jennifer, Ed.

    This interdisciplinary curriculum guide resource kit focuses on 19th-century Euro-American painters of the Hudson River School. Lessons are designed to encourage student recognition of the significant impact of North American Indians, the natural environment, and the romantic period writers and philosophers artists and their work. The guide…

  5. Influence of Aroclor 1242 Concentration on Polychlorinated Biphenyl Biotransformations in Hudson River Test Tube Microcosms

    Science.gov (United States)

    Fish, K. M.

    1996-01-01

    When 93.3 to 933 (mu)mol of Aroclor 1242 per kg was added to Hudson River sediment test tube microcosms, the rates of polychlorinated biphenyl biotransformations increased with increasing Aroclor 1242 concentration after a 4- to 8-week acclimation period. In contrast, when 37.3 (mu)mol of Aroclor 1242 per kg was added, polychlorinated biphenyl biotransformations occurred at slow constant rates. PMID:16535387

  6. Adult tree swallow survival on the polychlorinated biphenyl-contaminated Hudson River, New York, USA, between 2006 and 2010

    Science.gov (United States)

    Custer, Christine M.; Custer, Thomas W.; Hines, James E.

    2012-01-01

    The upper Hudson River basin in east central New York, USA, is highly contaminated, primarily with polychlorinated biphenyls (PCBs). Reduced adult survival has been documented in tree swallows (Tachycineta bicolor) at a similarly PCB-contaminated river system in western Massachusetts. The purpose of the present study was to assess whether adult survival of tree swallows was likewise affected in the Hudson River basin. Between 2006 and 2010, a total of 521 female tree swallows were banded, of which 148 were retrapped at least once. The authors used Program MARK and an information theoretic approach to test the hypothesis that PCB contamination reduced annual survival of female tree swallows. The model that best described the processes that generated the capture history data included covariate effects of year and female plumage coloration on survival but not PCB/river. Annual survival rates of brown-plumaged females (mostly one year old) were generally lower (mean phi = 0.39) than those of blue-plumaged females (mean phi = 0.50, one year or older). Poor early spring weather in 2007 was associated with reduced survival in both plumage-color groups compared to later years. Models with the effects of PCB exposure on survival (all ΔAICc values >5.0) received little support.

  7. Climate change and sea ice: Shipping accessibility on the marine transportation corridor through Hudson Bay and Hudson Strait (1980–2014

    Directory of Open Access Journals (Sweden)

    Jonathan Andrews

    2017-03-01

    Full Text Available Shipping traffic has been increasing in Hudson Strait and Hudson Bay and the shipping route through these waters to the Port of Churchill may soon become a federally-designated transportation corridor. A dataset on passive microwave-based sea ice concentration was used to characterize the timing of the ice on the shipping corridor to the Port between 1980 and 2014. Efforts were made to produce results in a readily accessible format for stakeholders of the shipping industry; for example, open water was defined using a sea ice concentration threshold of ≤ 15% and results are presented in terms of real dates instead of anomalies. Between 1980 and 2014, the average breakup date on the corridor was July 4, the average freeze-up date was November 25, and the average length of the open water season was 145 days. However, each of these three variables exhibited significant long-term trends and spatial variability over the 34-year time period. Regression analysis revealed significant linear trends towards earlier breakup (–0.66 days year–1, later freeze-up (+0.52 days year–1, and a longer open water season (+1.14 days year–1 along the shipping corridor between 1980 and 2014. Moreover, the section of the corridor passing through Hudson Strait displayed significantly stronger trends than the two sections in Hudson Bay (i.e., “Hudson Islands” and “Hudson Bay”. As a result, sea ice timing in the Hudson Strait section of the corridor has diverged from the timing in the Hudson Bay sections. For example, the 2010–2014 median length of the open water season was 177 days in Hudson Strait and 153 days in the Hudson Bay sections. Finally, significant linear relationships were observed amongst breakup, freeze-up, and the length of the open water season for all sections of the corridor; correlation analysis suggests that these relationships have greatest impact in Hudson Strait.

  8. Oceanographic and surface meteorological data collected from station Schodack Island hydro/weather by Hudson River Environmental Conditions Observing System (HRECOS) and assembled by Mid-Atlantic Regional Association Coastal Ocean Observing System (MARACOOS) in the Hudson River from 2008-04-25 to 2017-05-31 (NCEI Accession 0163416)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0163416 contains oceanographic and surface meteorological data collected at Schodack Island hydro/weather, a fixed station in the Hudson River. These...

  9. Plutonium, cesium and uranium series radionuclides in the Hudson River estuary and other environments. Annual technical progress report, December 1, 1979-November 30, 1980

    International Nuclear Information System (INIS)

    Simpson, H.J.; Trier, R.M.; Olsen, C.R.

    1980-01-01

    Radionuclide activities were measured in a large number of sediment cores and suspended particle samples throughout the salinity range of the Hudson River estuary. Activities of 137 Cs, 134 Cs and 60 Co determined by gamma spectrometry and 239 240 Pu and 238 Pu determined by alpha spectrometry indicate reasonably rapid accumulation rates in the sediments of marginal cove areas, and very rapid deposition in the harbor region adjacent to New York City, resulting in 239 240 Pu accumulations there more than an order of magnitude greater than the fallout delivery rate. Measurable amounts of reactor-derived 134 Cs and 60 Co are found in nearly al sediment samples containing appreciable 137 Cs between 15 km upstream of Indian Point and the downstream extent of our sampling about 70 km south of the reactor. Fallout 239 240 Pu reaching the Hudson appears to be almost completely retained within the systems by particle deposition, while 70 to 90% of the 137 Cs derived from both reactor releases and fallout has been exported to the coastal waters in solution. Activity levels of 239 240 Pu in New York harbor sediments indicate a significant source in addition to suspended particles carried down the Hudson. The most likely cause appears to be transport into the estuary of particles from offshore waters having higher specific activities of 239 240 Pu. Measurements of fallout 239 240 Pu in a saline lake with a high carbonate ion concentration yielded water column activities about two orders of magnitude greater than has been found for fallout plutonium in other continental waters, indicating extensive mobility in some natural water environments. Experiments using lake water suggest that carbonate ion may indeed be a critical factor in regulating plutonium solubility and that low molecular weight complexes are primarily responsible for enhanced plutonium solubility

  10. Oceanographic and surface meteorological data collected from station Port of Albany weather/hydro by Hudson River Environmental Conditions Observing System (HRECOS) and assembled by Mid-Atlantic Regional Association Coastal Ocean Observing System (MARACOOS) in the Hudson River from 2011-01-04 to 2017-07-31 (NCEI Accession 0163364)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0163364 contains oceanographic and surface meteorological data collected at Port of Albany weather/hydro, a fixed station in the Hudson River. These...

  11. Towards a sustainable future in Hudson Bay

    International Nuclear Information System (INIS)

    Okrainetz, G.

    1991-01-01

    To date, ca $40-50 billion has been invested in or committed to hydroelectric development on the rivers feeding Hudson Bay. In addition, billions more have been invested in land uses such as forestry and mining within the Hudson Bay drainage basin. However, there has never been a study of the possible impacts on Hudson Bay resulting from this activity. Neither has there been any federal environmental assessment on any of the economic developments that affect Hudson Bay. To fill this gap in knowledge, the Hudson Bay Program was established. The program will not conduct scientific field research but will rather scan the published literature and consult with leading experts in an effort to identify biophysical factors that are likely to be significantly affected by the cumulative influence of hydroelectric and other developments within and outside the region. An annotated bibliography on Hudson Bay has been completed and used to prepare a science overview paper, which will be circulated for comment, revised, and used as the basis for a workshop on cumulative effects in Hudson Bay. Papers will then be commissioned for a second workshop to be held in fall 1993. A unique feature of the program is its integration of traditional ecological knowledge among the Inuit and Cree communities around Hudson Bay with the scientific approach to cumulative impact assessment. One goal of the program is to help these communities bring forward their knowledge in such a way that it can be integrated into the cumulative effects assessment

  12. What we didn't learn about the Hudson River, why, and what it means for environmental assessment

    International Nuclear Information System (INIS)

    Barnthouse, L.W.; Klauda, R.J.; Vaughan, D.S.

    1988-01-01

    Many of the major objectives of utility-sponsored and agency-sponsored Hudson River research programs were not achieved. Among these were identification and quantification of regulatory mechanisms and discovery of factors controlling year-class strength in striped bass and other important fish populations. Questions about community-level and ecosystem-level effects were not seriously addressed. Because of these limitations, an unambiguous assessment of the effects of power plants on the long-term production and persistence of Hudson River fish populations was not possible. It is argued that the failure to reach a scientifically defensible bottom line was largely due to: (1) institutional constraints on the design and conduct of assessment studies; (2) the complexity and spatiotemporal variability of estuarine ecosystems; and (3) the inadequacy of existing population and ecosystem theory. It is concluded that, for the foreseeable future, estimates of short-term impacts on populations will continue to be the most useful indices of power plants effects. Long-term monitoring and basic research on ecological processes in estuaries, funded and managed independently of the regulatory process, are essential to improving future environmental impact assessments. 44 refs

  13. Widespread Micropollutant Monitoring in the Hudson River Estuary Reveals Spatiotemporal Micropollutant Clusters and Their Sources.

    Science.gov (United States)

    Carpenter, Corey M G; Helbling, Damian E

    2018-06-05

    The objective of this study was to identify sources of micropollutants in the Hudson River Estuary (HRE). We collected 127 grab samples at 17 sites along the HRE over 2 years and screened for up to 200 micropollutants. We quantified 168 of the micropollutants in at least one of the samples. Atrazine, gabapentin, metolachlor, and sucralose were measured in every sample. We used data-driven unsupervised methods to cluster the micropollutants on the basis of their spatiotemporal occurrence and normalized-concentration patterns. Three major clusters of micropollutants were identified: ubiquitous and mixed-use (core micropollutants), sourced from sewage treatment plant outfalls (STP micropollutants), and derived from diffuse upstream sources (diffuse micropollutants). Each of these clusters was further refined into subclusters that were linked to specific sources on the basis of relationships identified through geospatial analysis of watershed features. Evaluation of cumulative loadings of each subcluster revealed that the Mohawk River and Rondout Creek are major contributors of most core micropollutants and STP micropollutants and the upper HRE is a major contributor of diffuse micropollutants. These data provide the first comprehensive evaluation of micropollutants in the HRE and define distinct spatiotemporal micropollutant clusters that are linked to sources and conserved across surface water systems around the world.

  14. Plutonium, cesium and uranium series radionuclides in the Hudson River estuary and other environments. Annual technical progress report, December 1, 1979-November 30, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, H. J.; Trier, R. M.; Olsen, C. R.

    1980-01-01

    Radionuclide activities were measured in a large number of sediment cores and suspended particle samples throughout the salinity range of the Hudson River estuary. Activities of /sup 137/Cs, /sup 134/Cs and /sup 60/Co determined by gamma spectrometry and /sup 239/ /sup 240/Pu and /sup 238/Pu determined by alpha spectrometry indicate reasonably rapid accumulation rates in the sediments of marginal cove areas, and very rapid deposition in the harbor region adjacent to New York City, resulting in /sup 239/ /sup 240/Pu accumulations there more than an order of magnitude greater than the fallout delivery rate. Measurable amounts of reactor-derived /sup 134/Cs and /sup 60/Co are found in nearly al sediment samples containing appreciable /sup 137/Cs between 15 km upstream of Indian Point and the downstream extent of our sampling about 70 km south of the reactor. Fallout /sup 239/ /sup 240/Pu reaching the Hudson appears to be almost completely retained within the systems by particle deposition, while 70 to 90% of the /sup 137/Cs derived from both reactor releases and fallout has been exported to the coastal waters in solution. Activity levels of /sup 239/ /sup 240/Pu in New York harbor sediments indicate a significant source in addition to suspended particles carried down the Hudson. The most likely cause appears to be transport into the estuary of particles from offshore waters having higher specific activities of /sup 239/ /sup 240/Pu. Measurements of fallout /sup 239/ /sup 240/Pu in a saline lake with a high carbonate ion concentration yielded water column activities about two orders of magnitude greater than has been found for fallout plutonium in other continental waters, indicating extensive mobility in some natural water environments. Experiments using lake water suggest that carbonate ion may indeed be a critical factor in regulating plutonium solubility and that low molecular weight complexes are primarily responsible for enhanced plutonium solubility.

  15. Landscape controls on total and methyl mercury in the upper Hudson River basin of New York State

    Science.gov (United States)

    Burns, D. A.; Murray, K. R.; Bradley, P. M.; Brigham, M. E.; Aiken, G.; Smith, M.

    2010-12-01

    High levels of mercury (Hg) in aquatic biota have been identified in surface waters of the Adirondack region of New York, and factors such as the prevalence of wetlands, extensive forest cover, and oligotrophic waters promote Hg bioaccumulation in this region. Past research in this region has focused on improved understanding of the Hg cycle in lake ecosystems. In the study described herein, the landscape controls on total Hg and methylmercury (MeHg) concentrations in riverine ecosystems were explored through synoptic surveys of 27 sites in the upper Hudson River basin of the Adirondack region. Stream samples were collected and analyzed for total Hg, MeHg, dissolved organic carbon (DOC), and ultraviolet absorbance at 254 nm (UV254) during spring and summer of 2006-08. Landscape indices including many common land cover, hydrographic, and topographic-based measures were explored as predictors of Hg through multivariate linear regression. Multivariate models that included a wetland or riparian area-based metric, an index for open water area, and in some cases a topographic metric such as the wetness index explained 55 to 65 percent of the variation in MeHg concentrations, and 55 to 80 percent of the variation in total Hg concentrations. An open water index (OWI) was developed that incorporated both the basin area drained by ponded water and the surface area of these ponds. This index was inversely related to concentrations of total Hg and MeHg. This OWI was also inversely related to specific ultra-violet absorbance, consistent with previous studies showing that open water increases the influence of algal-derived carbon on DOC, decreasing aromaticity, which should decrease the ability of the dissolved carbon pool to bind Hg. The OWI was not significant in models for total Hg that also included UV254 as a predictive variable, but the index did remain significant in similar models for MeHg suggesting that biogeochemical factors in addition to decreasing carbon

  16. Plutonium, cesium, uranium, and thorium series radionuclides in the Hudson River estuary and other environments. Annual technical progress report, December 1, 1981-November 30, 1982

    International Nuclear Information System (INIS)

    Simpson, H.J.; Trier, R.M.; Anderson, R.F.

    1982-01-01

    Radionuclide activities were measured in a large number of sediment cores and suspended particle samples throughout the salinity range of the Hudson River estuary. Activities of 137 Cs, 134 Cs and 60 Co determined by gamma spectrometry and 239 240 Pu and 238 Pu determined by alpha spectrometry indicate reasonably rapid accumulation rates in the sediments of marginal cove areas, and very rapid deposition in the harbor region adjacent to New York City, resulting in 239 240 Pu accumulations there more than an order of magnitude greater than the fallout delivery rate. Fallout 239 240 Pu moving downstream in the Hudson appears to be almost completely retained within the system by particle deposition, while 80 to 90% of the 137 Cs derived from both reactor releases and fallout has been exported to the coastal waters in solution. Measurements of fallout 239 240 Pu in a saline lake with a high carbonate ion concentration yielded water column activities about two orders of magnitude greater than has been found for fallout plutonium in other continental waters, indicating extensive mobility in some natural water environments. Experiments using lake water suggest that carbonate ion is likely to be a critical factor in regulating plutonium solubility in some environments and that low molecular weight complexes are primarily responsible for enhanced plutonium solubility. Activities of several other nuclides of interest in radioactive waste management ( 238 U, 234 U, 232 Th, 230 Th, 228 Th, 231 Pa) were also found to be orders of magnitude greater in high carbonate waters than in other natural waters

  17. Riverine organic matter composition and fluxes to Hudson Bay

    Science.gov (United States)

    Kuzyk, Z. Z. A.; Macdonald, R. W.; Goni, M. A.; Godin, P.; Stern, G. A.

    2016-12-01

    With warming in northern regions, many changes including permafrost degradation, vegetation alteration, and wildfire incidence will impact the carbon cycle. Organic carbon (OC) carried by river runoff to northern oceans has the potential to provide integrated evidence of these impacts. Here, concentrations of dissolved (DOC) and particulate (POC) OC are used to estimate terrestrial OC transport in 17 major rivers draining varied vegetative and permafrost conditions into Hudson Bay and compositional data (lignin and 14C) to infer OC sources. Hudson Bay lies just south of the Arctic Circle in Canada and is surrounded by a large drainage basin (3.9 × 106 km2) dominated by permafrost. Analysis of POC and DOC in the 17 rivers indicates that DOC dominates the total OC load. The southern rivers dominate. The Nelson and Churchill Rivers to the southwest are particularly important suppliers of OC partly because of large drainage basins but also perhaps because of impacts by hydroelectric development, as suggested by a 14C age of DOC in the Churchill River of 2800 years. Higher DOC and POC concentrations in the southern rivers, which have substantive areas only partially covered by permafrost, compared to northern rivers draining areas with complete permafrost cover, implies that warming - and hence permafrost thawing - will lead to progressively higher DOC and POC loads for these rivers. Lignin composition in the organic matter (S/V and C/V ratios) reveals mixed sources of OC consistent with the dominant vegetation in the river basins. This vegetation is organized by latitude with southern regions below the tree line enriched by woody gymnosperm sources (boreal forest) and northern regions enriched with organic matter from non-woody angiosperms (flowering shrubs, tundra). Acid/Aldehyde composition together with Δ14C data for selected DOC samples suggest that most of the lignin has undergone oxidative degradation, particularly the DOC component. However, high Δ14C ages

  18. Plutonium and cesium radionuclides in the Hudson River estuary and other environments. Annual technical progress report, December 1, 1978-November 30, 1979

    International Nuclear Information System (INIS)

    Simpson, H.J.; Trier, R.M.

    1979-01-01

    Radionuclide activities were measured in a large number of sediment cores and suspended particle samples throughout the salinity range of the Hudson River estuary. Activities of 137 Cs, 134 Cs and 60 Co determined by gamma spectrometry and 239 240 Pu and 238 Pu determined by alpha spectrometry indicate reasonably rapid accumulation rates in the sediments of marginal cove areas, and very rapid deposition in the harbor region adjacent to New York City. General distributions of 137 Cs and 239 240 Pu are similar in surface sediments and with depth in cores, but there are deviations from the fallout ratio due to addition of reactor 137 Cs and loss of 137 Cs from the particle phases at higher salinities. Measurable amounts of reactor-derived 134 Cs and 60 Co are found in nearly all sediment samples containing appreciable 137 Cs between 15 km upstream of Indian Point and the downstream of our sampling about 70 km south of the reactor. Accumulations of 239 240 Pu in New York harbor sediments are more than an order of magnitude greater than the fallout delivery rate, probably primarily due to the accumulation of fine particles containing fallout plutonium in the harbor which have been transported from upstream areas of the Hudson. Measurements of fallout 239 240 Pu in a saline lake with a high carbonate ion concentration yielded water column activities about two orders of magnitude greater than has been found for fallout plutonium in other continental waters, indicating extensive mobility in some natural water environments. Experiments using lake water suggest that carbonate ion may indeed be a critical factor in regulatory plutonium solubility

  19. Tsunami hazard assessment in the Hudson River Estuary based on dynamic tsunami-tide simulations

    Science.gov (United States)

    Shelby, Michael; Grilli, Stéphan T.; Grilli, Annette R.

    2016-12-01

    This work is part of a tsunami inundation mapping activity carried out along the US East Coast since 2010, under the auspice of the National Tsunami Hazard Mitigation program (NTHMP). The US East Coast features two main estuaries with significant tidal forcing, which are bordered by numerous critical facilities (power plants, major harbors,...) as well as densely built low-level areas: Chesapeake Bay and the Hudson River Estuary (HRE). HRE is the object of this work, with specific focus on assessing tsunami hazard in Manhattan, the Hudson and East River areas. In the NTHMP work, inundation maps are computed as envelopes of maximum surface elevation along the coast and inland, by simulating the impact of selected probable maximum tsunamis (PMT) in the Atlantic ocean margin and basin. At present, such simulations assume a static reference level near shore equal to the local mean high water (MHW) level. Here, instead we simulate maximum inundation in the HRE resulting from dynamic interactions between the incident PMTs and a tide, which is calibrated to achieve MHW at its maximum level. To identify conditions leading to maximum tsunami inundation, each PMT is simulated for four different phases of the tide and results are compared to those obtained for a static reference level. We first separately simulate the tide and the three PMTs that were found to be most significant for the HRE. These are caused by: (1) a flank collapse of the Cumbre Vieja Volcano (CVV) in the Canary Islands (with a 80 km3 volume representing the most likely extreme scenario); (2) an M9 coseismic source in the Puerto Rico Trench (PRT); and (3) a large submarine mass failure (SMF) in the Hudson River canyon of parameters similar to the 165 km3 historical Currituck slide, which is used as a local proxy for the maximum possible SMF. Simulations are performed with the nonlinear and dispersive long wave model FUNWAVE-TVD, in a series of nested grids of increasing resolution towards the coast, by one

  20. Plutonium and cesium radionuclides in the Hudson River Estuary and other environments. Annual technical progress report, 1 December 1977--30 November 1978

    International Nuclear Information System (INIS)

    Simpson, H.J.; Trier, R.M.

    1978-01-01

    Radionuclide activities were measured in a large number of sediment cores and suspended particle samples throughout the salinity range of the Hudson River estuary. Activities of 137 Cs, 134 Cs, and 60 Co determined by gamma spectrometry and 239 , 240 Pu and 238 Pu determined by alpha spectrometry indicate reasonably rapid accumulation rates in the sediments of marginal cove areas, and very rapid deposition in the harbor region adjacent to New York City. General distributions of 137 Cs and 239 , 240 Pu are similar in surface sediments and with depth in cores, but there are deviations from the fallout ratio due to (1) addition of reactor 137 Cs and (2) loss of 137 Cs from the particle phases at higher salinities. Measurable amounts of reactor-derived 134 Cs and 60 Co are found in nearly all sediment samples containing appreciable 137 Cs between 15 Km upstream of Indian Point and 70 Km south of the reactor. Accumulations of 239 , 240 Pu in New York harbor sediments are more than an order of magnitude greater than the fallout delivery rate. Depth profiles of radionuclides and variations of activities with particle size at low salinities in the Hudson indicate the importance of organic phases, including large flocculent particles greater than 180μ, in binding plutonium, and no evidence of significant chemical migration within the sediments. Measurements of water column fallout 239 , 240 Pu in a saline lake with a high carbonate ion concentration yielded activities about two orders of magnitude greater than has been found for fallout plutonium in other continental waters, indicating extensive mobility in some natural water environments

  1. Plutonium and cesium radionuclides in the Hudson River estuary and other environments. Annual technical progress report, December 1, 1978-November 30, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, H. J.; Trier, R. M.

    1979-01-01

    Radionuclide activities were measured in a large number of sediment cores and suspended particle samples throughout the salinity range of the Hudson River estuary. Activities of /sup 137/Cs, /sup 134/Cs and /sup 60/Co determined by gamma spectrometry and /sup 239/ /sup 240/Pu and /sup 238/Pu determined by alpha spectrometry indicate reasonably rapid accumulation rates in the sediments of marginal cove areas, and very rapid deposition in the harbor region adjacent to New York City. General distributions of /sup 137/Cs and /sup 239/ /sup 240/Pu are similar in surface sediments and with depth in cores, but there are deviations from the fallout ratio due to addition of reactor /sup 137/Cs and loss of /sup 137/Cs from the particle phases at higher salinities. Measurable amounts of reactor-derived /sup 134/Cs and /sup 60/Co are found in nearly all sediment samples containing appreciable /sup 137/Cs between 15 km upstream of Indian Point and the downstream of our sampling about 70 km south of the reactor. Accumulations of /sup 239/ /sup 240/Pu in New York harbor sediments are more than an order of magnitude greater than the fallout delivery rate, probably primarily due to the accumulation of fine particles containing fallout plutonium in the harbor which have been transported from upstream areas of the Hudson. Measurements of fallout /sup 239/ /sup 240/Pu in a saline lake with a high carbonate ion concentration yielded water column activities about two orders of magnitude greater than has been found for fallout plutonium in other continental waters, indicating extensive mobility in some natural water environments. Experiments using lake water suggest that carbonate ion may indeed be a critical factor in regulatory plutonium solubility.

  2. Impact of entrainment and impingement on fish populations in the Hudson River Estuary. Volume II. Impingement impact analyses, evaluations of alternative screening devices, and critiques of utility testimony relating to density-dependent growth, the age-composition of the striped bass spawning stock, and the LMS real-time life cycle model

    International Nuclear Information System (INIS)

    Barnthouse, L.W.; Van Winkle, W.; Golumbek, J.; Cada, G.F.; Goodyear, C.P.; Christensen, S.W.; Cannon, J.B.; Lee, D.W.

    1982-04-01

    This volume includes a series of four exhibits relating to impacts of impingement on fish populations, together with a collection of critical evaluations of testimony prepared for the utilities by their consultants. The first exhibit is a quantitative evaluation of four sources of bias (collection efficiency, reimpingement, impingement on inoperative screens, and impingement survival) affecting estimates of the number of fish killed at Hudson River power plants. The two following exhibits contain, respectively, a detailed assessment of the impact of impingement on the Hudson River white perch population and estimates of conditional impingement mortality rates for seven Hudson River fish populations. The fourth exhibit is an evaluation of the engineering feasibility and potential biological effectiveness of several types of modified intake structures proposed as alternatives to cooling towers for reducing impingement impacts. The remainder of Volume II consists of critical evaluations of the utilities' empirical evidence for the existence of density-dependent growth in young-of-the-year striped bass and white perch, of their estimate of the age-composition of the striped bass spawning stock in the Hudson River, and of their use of the Lawler, Matusky, and Skelly (LMS) Real-Time Life Cycle Model to estimate the impact of entrainment and impingement on the Hudson River striped bass population

  3. Potential well yields from unconsolidated deposits in the lower Hudson and Delaware River basins, New York

    Science.gov (United States)

    Wolcott, Stephen W.

    1987-01-01

    A comprehensive groundwater protection plan, developed by the New York State Department of Environmental Conservation in 1985, identified the need to delineate significant aquifers within the state. A map of the unconsolidated aquifers in the lower Hudson and Delaware River basins was compiled from available data on the surficial geology and well yields. It delineates the significant unconsolidated aquifers and indicates the potential yield of wells that tap these aquifers. The potential well yield is categorized into three ranges: 100 gal/min. No yield range is given for till, but some large diameter or dug wells in till may yield up 10 gal/min. (Lantz-PTT)

  4. Microstructure, CTD and ADCP data collected from R/V ONRUST in Hudson River Estuary during 6 short cruises from 1994-05-19 to 2001-05-01 (NCEI Accession 0146260)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Observations of turbulent mixing, stratification and currents in the Hudson River Estuary made in 6 short cruises in 1994/1995 and 2001 were assembled. The lower...

  5. Estimates of entrainment mortality for striped bass and other fish species inhabiting the Hudson River estuary

    International Nuclear Information System (INIS)

    Boreman, J.; Goodyear, C.P.

    1988-01-01

    An empirically derived age-, time-, and space-variant equation was used to estimate entrainment mortality at power plants for seven fish species inhabiting the Hudson River estuary. Entrainment mortality is expressed as a conditional rate, which is the fractional reduction in year-class strength due to entrainment if other sources of mortality are density-independent. Estimates of the conditional entrainment mortality, based on historical and projected once-through cooling operation of five power plants, were 11-22% for striped bass, 11-17% for white perch, 5-7% for Atlantic tomcod, 14-21% for American shad, 4-11% for river herring (alewife and blueback herring combined), and 35-79% for bay anchovy. Closed-cycle cooling (natural-draft cooling towers) at three of the power plants (Indian Point, Bowline Point, and Roseton) would reduce entrainment mortality of striped bass by 50-80%, of white perch by 75-80%, of Atlantic tocod by 65-70%, of American shad by 80%, of river herring by 30-90%, and of bay anchovy by 45-80%. The life stages most vulnerable to entrainment mortality were post-yolk-sac larva and entrainable size juvenile. 18 refs., 7 tabs

  6. Ecological carryover effects associated with partial migration in white perch (Morone americana) within the Hudson River Estuary

    Science.gov (United States)

    Gallagher, Brian K.; Piccoli, Philip M.; Secor, David H.

    2018-01-01

    Partial migration in complex life cycles allows environmental conditions experienced during one life-stage to interact with genetic thresholds and produce divergent spatial behaviors in the next stage. We evaluated partial migration over the entire life cycle of white perch, (Morone americana) within the Hudson River Estuary, combining otolith microchemistry, population demographics and environmental data analysis. Ecological carryover effects were used as a framework to test how environmental variation during the larval period influenced migration behaviors and growth characteristics in subsequent life-stages. Two annual cohorts of juveniles were classified based on whether they persisted in natal habitats (freshwater resident contingent) or dispersed into non-natal habitats (brackish water migratory contingent) as juveniles. The migratory contingent tended to hatch earlier and experience cooler temperatures as larvae, while the availability of zooplankton prey during the larval period appeared to influence growth dynamics before and after metamorphosis. Juvenile migration behaviors were reversible but usually persisted into adulthood. As juveniles, the consequences of partial migration on growth appeared to be modified by river flow, as demonstrated by the influence of a large storm event on feeding conditions in one of the study years. Migratory adults grew faster and attained larger maximum sizes, but may also experience higher rates of mortality. The interplay uncovered between life-stage transitions, conditional migration behaviors and habitat productivity throughout the life cycle shapes white perch population dynamics and will likely play an important role in responses to long-term environmental change.

  7. Computer simulation model for the striped bass young-of-the-year population in the Hudson River. [Effects of entrainment and impingement at power plants on population dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Eraslan, A.H.; Van Winkle, W.; Sharp, R.D.; Christensen, S.W.; Goodyear, C.P.; Rush, R.M.; Fulkerson, W.

    1975-09-01

    This report presents a daily transient (tidal-averaged), longitudinally one-dimensional (cross-section-averaged) computer simulation model for the assessment of the entrainment and impingement impacts of power plant operations on young-of-the-year populations of the striped bass, Morone saxatilis, in the Hudson River.

  8. Simulating the Effects of Sea Level Rise on the Resilience and Migration of Tidal Wetlands along the Hudson River.

    Directory of Open Access Journals (Sweden)

    Nava M Tabak

    Full Text Available Sea Level Rise (SLR caused by climate change is impacting coastal wetlands around the globe. Due to their distinctive biophysical characteristics and unique plant communities, freshwater tidal wetlands are expected to exhibit a different response to SLR as compared with the better studied salt marshes. In this study we employed the Sea Level Affecting Marshes Model (SLAMM, which simulates regional- or local-scale changes in tidal wetland habitats in response to SLR, and adapted it for application in a freshwater-dominated tidal river system, the Hudson River Estuary. Using regionally-specific estimated ranges of SLR and accretion rates, we produced simulations for a spectrum of possible future wetland distributions and quantified the projected wetland resilience, migration or loss in the HRE through the end of the 21st century. Projections of total wetland extent and migration were more strongly determined by the rate of SLR than the rate of accretion. Surprisingly, an increase in net tidal wetland area was projected under all scenarios, with newly-formed tidal wetlands expected to comprise at least 33% of the HRE's wetland area by year 2100. Model simulations with high rates of SLR and/or low rates of accretion resulted in broad shifts in wetland composition with widespread conversion of high marsh habitat to low marsh, tidal flat or permanent inundation. Wetland expansion and resilience were not equally distributed through the estuary, with just three of 48 primary wetland areas encompassing >50% of projected new wetland by the year 2100. Our results open an avenue for improving predictive models of the response of freshwater tidal wetlands to sea level rise, and broadly inform the planning of conservation measures of this critical resource in the Hudson River Estuary.

  9. Building sustainable communities using sense of place indicators in three Hudson River Valley, NY, tourism destinations: An application of the limits of acceptable change process

    Science.gov (United States)

    Laura E. Sullivan; Rudy M. Schuster; Diane M. Kuehn; Cheryl S. Doble; Duarte. Morais

    2010-01-01

    This study explores whether measures of residents' sense of place can act as indicators in the Limits of Acceptable Change (LAC) process to facilitate tourism planning and management. Data on community attributes valued by residents and the associated values and meanings were collected through focus groups with 27 residents in three Hudson River Valley, New York,...

  10. Coastal conduit in southwestern Hudson Bay (Canada) in summer: Rapid transit of freshwater and significant loss of colored dissolved organic matter

    Science.gov (United States)

    Granskog, Mats A.; MacDonald, Robie W.; Kuzyk, Zou Zou A.; Senneville, Simon; Mundy, Christopher-John; Barber, David G.; Stern, Gary A.; Saucier, Francois

    2009-08-01

    Distributions of freshwater (sea-ice melt and runoff) were investigated along inshore-offshore sections in southwestern Hudson Bay for fall conditions. Conductivity-temperature-density profiles and bottle samples collected for salinity, oxygen isotope (δ18O), and colored dissolved organic matter (CDOM) analyses were used to discriminate between contributions of river water (RW) and sea-ice melt (SIM). Stations had a fresh summer surface mixed layer 5-25 m thick overlying a cold subsurface layer indicative of the previous winter's polar mixed layer (PML). The fraction of RW decreased strongly with distance from shore, while the opposite was true for SIM. The majority of RW was constrained in a coastal domain within 100-150 km from shore, which, because of high alongshore velocities, accounts for the majority of freshwater and volume transports. On the basis of freshwater inventories and composition, brine and RW accumulate in the PML over winter because of ice formation and downward mixing. The summer surface circulation results in an annual net export of SIM from the region. Residence times for freshwater components in the southwestern sector of the bay, based on currents derived from a 3-D ocean model for Hudson Bay, are about 1-10 months, implying rapid transit of freshwater. Despite the short residence time for RW (1-3 months), CDOM is significantly photobleached and provides an unreliable tracer for RW. Photobleaching represents an important sink for dissolved organic carbon entering from rivers and could, in part, explain why Hudson Bay is only a minor sink for atmospheric CO2 in the open water season.

  11. Surface water quality in streams and rivers: introduction, scaling, and climate change: Chapter 5

    Science.gov (United States)

    Loperfido, John

    2013-01-01

    in rivers. Concepts presented in this chapter will provide a backdrop that other chapters in this book will explore further, including water quality in the following riverine systems: the Mississippi River (see Chapter 4.9), Hudson River (see Chapter 4.6), and rivers in India (see Chapter 4.10).

  12. Engineering Condition Survey and Evaluation of Troy Lock and Dam, Hudson River, New York Report 2. Evaluation and Rehabilitation.

    Science.gov (United States)

    1981-01-01

    boats in both the spring and fall make seasonal trips from the sunny south to the more mountainous , wooded north, as well as completing many short...back- ground of Troy Lock and Dam 8. The Hudson River originates in the Adirondack Mountains in northern New York State among the highest peaks of the...0.00 0.00 0.00 ___ ___ __ ___ ___ __ __is_ B C BC 25.24 34.14 0.00 0.00 C 25.24 36.00 0. 00 0.06 &M~E ALEA D 3.45 36.00 0.00 6.10 E 3.45 17.00 0.00

  13. Polychlorinated biphenyls in adult black bass and yellow perch were not associated with their reproductive success in the upper Hudson River, New York, USA.

    Science.gov (United States)

    Maceina, Michael J; Sammons, Steven M

    2013-07-01

    Although production and use of polychlorinated biphenyls (PCBs) ceased nearly 35 yr ago, questions still remain concerning the potential chronic effects these compounds may have on wild fish, including their reproductive success. In the upper Hudson River, New York, USA, fish were exposed to PCBs primarily from 2 manufacturing plants located approximately 320 km upstream of New York City, New York, from the 1940s to 1977. The authors collected yellow perch (Perca flavescens), smallmouth bass (Micropterus dolomieu), and largemouth bass (M. salmoides) using electrofishing, measured PCBs in these adults, and estimated abundance and size of their offspring at age 1 yr (age-1 fish). Fish were collected annually from 2004 to 2009 from 1 control site upstream of the PCB discharge sites and from 2 sites downstream from where PCBs were released. These sites (pools) are separated by a series of dams, locks, and canals. Muscle tissue wet weight PCB and lipid-based PCB concentrations in adults in the 2 PCB exposure pools averaged approximately 1 to 3 µg/g and 100 to 500 µg/g, respectively. Age-1 abundances were not related to adult PCB concentrations but were inversely related to river flow. Size of age-1 fish was slightly greater at the PCB-exposure sites. Levels of PCBs in yellow perch, largemouth bass, and smallmouth bass in the upper Hudson River did not impair or reduce recruitment or reproductive success. Copyright © 2013 SETAC.

  14. On Measurements of the Tide at Churchill, Hudson Bay

    Science.gov (United States)

    Ray, Richard D.

    2016-01-01

    Since the late 1990s the semi-diurnal tide at Churchill, on the western shore of Hudson Bay, has been decreasing in amplitude, with M(sub 2) amplitudes falling from approximately 154 cm in 1998 to 146 cm in 2012 and 142 cm in 2014. There has been a corresponding small increase in phase lag. Mean low water, decreasing throughout most of the twentieth century, has levelled off. Although the tidal changes could reflect merely a malfunctioning tide gauge, the fact that there are no other measurements in the region and the possibility that the tide is revealing important environmental changes calls for serious investigation. Satellite altimeter measurements of the tide in Hudson Bay are complicated by the seasonal ice cover; at most locations less than 40% of satellite passes return valid ocean heights and even those can be impacted by errors from sea ice. Because the combined TOPEX/Poseidon, Jason-1, and Jason-2 time series is more than 23 years long, it is now possible to obtain sufficient data at crossover locations near Churchill to search for tidal changes. The satellites sense no changes in M(sub 2) that are comparable to the changes seen at the Churchill gauge. The changes appear to be localized to the harbour, or to the Churchill River, or to the gauge itself.

  15. Analysis of impingement impacts on Hudson River fish populations

    International Nuclear Information System (INIS)

    Barnthouse, L.W.; van Winkle, W.

    1988-01-01

    Impacts of impingement, expressed as reductions in year-class abundance, were calculated for six Hudson River fish populations. Estimates were made for the 1974 and 1975 year classes of white perch, striped bass, Atlantic tomcod, and American shad, and the 1974 year classes of alewife and blueback herring. The maximum estimated reductions in year-class abundance were less than 5% for all year classes except the 1974 and 1975 white perch year classes and the 1974 striped bass year class. Only for white perch were the estimates greater than 10% per year. For striped bass, the 146,000 fish from the 1974 year class that were killed by impingement could have produced 12,000-16,000 5-year-old fish or 270-300 10-year-olds. Also estimated were the reductions in mortality that could have been achieved had closed-cycle cooling systems been installed at one or more of three power plants (Bowline point, Indian Point, and Roseton) and had the screen-wash systems at Bowline Point and Indian Point been modified to improve the survival of impinged fish. Closed-cycle cooling at all three plants would have reduced impingement impacts on white perch, striped bass, and Atlantic tomcod by 75% or more; installation of closed-cycle cooling at Indian Point alone would have reduced impingement impacts on white perch and Atlantic tomcod by 50%-80%. Modified traveling screens would have been less effective than closed-cycle cooling, but still would have reduced impingement impacts on white perch by roughly 20%. 23 refs., 1 fig., 3 tabs

  16. Plutonium, radiocesium and radiocobalt in sediments of the Hudson River estuary

    International Nuclear Information System (INIS)

    Olsen, C.R.; Simpson, H.J.; Trier, R.M.; Columbia Univ., Palisades, NY

    1981-01-01

    Anthropogenic radionuclides have reached the Hudson estuary as global fallout from nuclear weapons testing and through local releases from commercial nuclear reactors. Significant activities of 238 Pu and 239 , 240 Pu (fallout-derived), 134 Cs and 60 Co (reactor-released), and 137 Cs (derived from both sources), have accumulated in the sediments throughout the estuary, with the primary zone of accumulation near the downstream end of the system in New York harbor. The estuary appears to have trapped nearly all of the 239 , 240 Pu delivered as fallout, and consequently, ocean dumping of dredged harbor sediment is currently the primary means for the net transport of these nuclides to coastal waters. In contrast, only 10-30% of the 137 Cs, 134 Cs and 60 Co delivered to the estuary have been retained on the fine particles which accumulate at a rapid rate in the harbor. (orig./HAE)

  17. A retrospective streamflow ensemble forecast for an extreme hydrologic event: a case study of Hurricane Irene and on the Hudson River basin

    Science.gov (United States)

    Saleh, Firas; Ramaswamy, Venkatsundar; Georgas, Nickitas; Blumberg, Alan F.; Pullen, Julie

    2016-07-01

    This paper investigates the uncertainties in hourly streamflow ensemble forecasts for an extreme hydrological event using a hydrological model forced with short-range ensemble weather prediction models. A state-of-the art, automated, short-term hydrologic prediction framework was implemented using GIS and a regional scale hydrological model (HEC-HMS). The hydrologic framework was applied to the Hudson River basin ( ˜ 36 000 km2) in the United States using gridded precipitation data from the National Centers for Environmental Prediction (NCEP) North American Regional Reanalysis (NARR) and was validated against streamflow observations from the United States Geologic Survey (USGS). Finally, 21 precipitation ensemble members of the latest Global Ensemble Forecast System (GEFS/R) were forced into HEC-HMS to generate a retrospective streamflow ensemble forecast for an extreme hydrological event, Hurricane Irene. The work shows that ensemble stream discharge forecasts provide improved predictions and useful information about associated uncertainties, thus improving the assessment of risks when compared with deterministic forecasts. The uncertainties in weather inputs may result in false warnings and missed river flooding events, reducing the potential to effectively mitigate flood damage. The findings demonstrate how errors in the ensemble median streamflow forecast and time of peak, as well as the ensemble spread (uncertainty) are reduced 48 h pre-event by utilizing the ensemble framework. The methodology and implications of this work benefit efforts of short-term streamflow forecasts at regional scales, notably regarding the peak timing of an extreme hydrologic event when combined with a flood threshold exceedance diagram. Although the modeling framework was implemented on the Hudson River basin, it is flexible and applicable in other parts of the world where atmospheric reanalysis products and streamflow data are available.

  18. The impact of water loading on postglacial decay times in Hudson Bay

    Science.gov (United States)

    Han, Holly Kyeore; Gomez, Natalya

    2018-05-01

    Ongoing glacial isostatic adjustment (GIA) due to surface loading (ice and water) variations during the last glacial cycle has been contributing to sea-level changes globally throughout the Holocene, especially in regions like Canada that were heavily glaciated during the Last Glacial Maximum (LGM). The spatial and temporal distribution of GIA, as manifested in relative sea-level (RSL) change, are sensitive to the ice history and the rheological structure of the solid Earth, both of which are uncertain. It has been shown that RSL curves near the center of previously glaciated regions with no ongoing surface loading follow an exponential-like form, with the postglacial decay times associated with that form having a weak sensitivity to the details of the ice loading history. Postglacial decay time estimates thus provide a powerful datum for constraining the Earth's viscous structure and improving GIA predictions. We explore spatial patterns of postglacial decay time predictions in Hudson Bay by decomposing numerically modeled RSL changes into contributions from water and ice loading effects, and computing their relative impact on the decay times. We demonstrate that ice loading can contribute a strong geographic trend on the decay time estimates if the time window used to compute decay times includes periods that are temporally close to (i.e. contemporaneous with, or soon after) periods of active loading. This variability can be avoided by choosing a suitable starting point for the decay time window. However, more surprisingly, we show that across any adopted time window, water loading effects associated with inundation into, and postglacial flux out of, Hudson Bay and James Bay will impart significant geographic variability onto decay time estimates. We emphasize this issue by considering both maps of predicted decay times across the region and site-specific estimates, and we conclude that variability in observed decay times (whether based on existing or future data

  19. Sustainable development in the Hudson Bay/James Bay bioregion

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    An overview is presented of projects planned for the James Bay/Hudson Bay region, and the expected environmental impacts of these projects. The watershed of James Bay and Hudson Bay covers well over one third of Canada, from southern Alberta to central Ontario to Baffin Island, as well as parts of north Dakota and Minnesota in the U.S.A. Hydroelectric power developments that change the timing and rate of flow of fresh water may cause changes in the nature and duration of ice cover, habitats of marine mammals, fish and migratory birds, currents into and out of Hudson Bay/James Bay, seasonal and annual loads of sediments and nutrients to marine ecosystems, and anadromous fish populations. Hydroelectric projects are proposed for the region by Quebec, Ontario and Manitoba. In January 1992, the Canadian Arctic Resources Committee (CARC), the Environmental Committee of Sanikuluaq, and the Rawson Academy of Arctic Science will launch the Hudson Bay/James Bay Bioregion Program, an independent initiative to apply an ecosystem approach to the region. Two main objectives are to provide a comprehensive assessment of the cumulative impacts of human activities on the marine and freshwater ecosystems of the Hudson Bay/James Bay bioregion, and to foster sustainable development by examining and proposing cooperative processes for decision making among governments, developers, aboriginal peoples and other stakeholders. 1 fig

  20. Biological effects of simulated discharge plume entrainment at Indian Point Nuclear Power Station, Hudson River estuary, USA

    International Nuclear Information System (INIS)

    Lanza, G.R.; Lauer, G.J.; Ginn, T.C.; Storm, P.C.; Zubarik, L.; New York Univ., N.Y.

    1975-01-01

    Laboratory and field simulations of the discharge plume entrainment of phytoplankton, zooplankton and fish were carried out at the Indian Point Nuclear Station, Hudson River estuary, USA. Phytoplankton assemblages studied on two dates produced different response patterns measured as photosynthetic activity. Chlorophyll-a levels did not change following simulated entrainment. Possible explanations for the differences are discussed. The two abundant copepods Acartia tonsa and Eurytemorta affinis appear to tolerate exposure to discharge plume ΔT without adverse effects. Copepods subjected to plume entrainment may suffer considerable mortality during periods of condenser chlorination. In general, the amphipod Gammarus spp. did not appear to suffer significant mortality during simulated entrainment. Juvenile striped bass, Morone saxatilis, were not affected by simulated plume transit before and during plant condenser chlorination; however, a simulated ''worst possible case'' plume ΔT produced statistically significant moralities. (author)

  1. Impact of dechlorination processes on the sediment-water exchange of PCDD/F in Passaic river cores

    Energy Technology Data Exchange (ETDEWEB)

    Adriaens, P.; Khijniak, A. [Civil and Environmental Engineering, Univ. of Michigan, Ann Arbor (United States); Jones, K.; Green, N. [Environmental Science, Lancaster Univ. (United Kingdom); Gruden, C. [Univ. of Toledo, OH (United States)

    2004-09-15

    The potential for natural dechlorination processes in sediments to impact the biogeochemical cycling of dioxins and furans has been proposed as a possible mechanism to explain the prevalence of lesser halogenated dioxins and furans at the air-water interface. The hypothesis was supported by multiple lines of evidence, but has not been directly demonstrated. Field evidence indicated dynamic air-water exchange of PCDD/Fs in the Raritan Bay/Hudson River Estuary, whereby lesser chlorinated (predominantly diCDD/F) were present in the particle and apparent dissolved phase. Fugacity calculations indicated that the water column served as the source of these homologue groups. Laboratory evidence from Passaic River sediment cores and microbiallymediated dechlorination demonstrated that historic dioxins can undergo extensive dechlorination reactions, culminating in the formation of mono-and diCDD homologues. Similar pathways have been observed with PCDF, resulting in the accumulation of triCDF. The current paper reports on an investigation addressing the hypothesis of whether the lesser chlorinated PCDD/F observed at the air-water interface could be the result of selective dissolution of these congeners or homologues from sediments as they are produced during microbial dechlorination.

  2. Hudson 3 essentials

    CERN Document Server

    Meinholz, Lloyd

    2013-01-01

    A practical guide, packed with illustrations, that will help you become proficient with Hudson and able to utilize it how you want.If you are a Java developer or administrator who would to like automate some of the mundane work required to build and test software and improve software quality, this is the book for you. If you are a development manager or tester, you can also benefit from learning how Hudson works by gaining some insight into test results and historical trends.

  3. Implications of power plant mortality for management of the Hudson River striped bass fishery

    International Nuclear Information System (INIS)

    Goodyear, C.P.

    1988-01-01

    The Atlantic coastal stock of striped bass apparently declined from colonial times to the early 1930s and subsequently recovered. The reasons for the decline and recovery are not known, but fishing remains a possible explanation, which would suggest population sensitivity to increased mortality. Evidence suggests that fishing mortality has been increasing in recent years and will continue to increase in the absence of management intervention. The consequence of increased fishing mortality is an increase in the marginal effect of the power plant mortality which based on the utilities' models and parameter fits, could result in important reductions in the Hudson River striped bass population. Any management actions imposed to arrest population decline or to increase yield per effort in the fishery would be required to mitigate the impact of the power plants by reducing fishing mortality. It is estimated that a 20% conditional power plant mortality is equivalent to a 14% increase in the number of average fishermen using the stock. Consequently, should any management intervention be required on behalf of the population, managers would be required to reduce fishing mortality by about 14% just to account for the power plant mortality. 26 refs., 5 figs., 4 tabs

  4. Tests of bioaccumulation models for polychlorinated biphenyl compounds: a study of young-of-the-year bluefish in the Hudson River estuary, USA.

    Science.gov (United States)

    Leblanc, Lawrence A; Buckel, Jeffrey A; Conover, David O; Brownawell, Bruce J

    2006-08-01

    A field-based study regarding uptake of polychlorinated biphenyl compounds (PCBs) by young-of-the-year (YOY) bluefish (Pomatomus saltatrix) was initiated to test a steady-state model of bioaccumulation and trophic transfer in a rapidly growing fish. Determination of prey composition as well as size-dependent growth and specific consumption rates for YOY bluefish from separate field and laboratory studies enabled the input of these species-specific parameters into the model. Furthermore, the time and duration of the exposure of YOY bluefish to dissolved PCBs from a well-characterized system (Hudson River, USA) was well known. Patterns of accumulation of individual PCB congeners differed relative to the accumulation of total PCBs, with the greatest net accumulation occurring for the higher-molecular-weight congeners. Comparison of lipid-normalized bioaccumulation factors (BAFs) with the octanol-water partition coefficients of individual PCB congeners revealed bluefish to be above the BAFs predicted by lipid-based equilibrium partitioning, suggesting that uptake from food is an important source of PCBs in YOY bluefish. Comparison of measured BAFs with values predicted by a steady-state, food-chain model showed good first-order agreement.

  5. Hudson River Unionids and Zebra Mussels: The Beginning of the End or the End of the Beginning?

    Science.gov (United States)

    Strayer, D. L.; Malcom, H. M.

    2005-05-01

    The invasion of the Hudson River estuary by zebra mussels was followed by steep declines (77 to >99.7%) in populations of all species of native bivalves between 1992 and 1999. Body condition of all unionids, and growth and recruitment of young unionids also declined significantly. Declines in population size and body condition were correlated primarily with the filtration rate of the zebra mussel population, not with fouling of native bivalves by zebra mussels. Samples taken since 2000, however, have shown that populations of all 4 common native bivalves have stabilized or even recovered, although the zebra mussel population has not declined. The mechanisms underlying this apparent reversal of fortune are not clear: recruitment and growth of young mussels have showed limited recovery, but body condition of adults has not. We found no evidence that spatial refuges contributed to this reversal of population declines. Simple statistical models project now that native bivalves may persist at population densities about an order of magnitude below their pre-invasion densities.

  6. Let's Bet on Sediments! Hudson Canyon Cruise--Grades 9-12. Focus: Sediments of Hudson Canyon.

    Science.gov (United States)

    National Oceanic and Atmospheric Administration (DOC), Rockville, MD.

    These activities are designed to teach about the sediments of Hudson Canyon. Students investigate and analyze the patterns of sedimentation in the Hudson Canyon, observe how heavier particles sink faster than finer particles, and learn that submarine landslides are avalanches of sediment in deep ocean canyons. The activity provides learning…

  7. Selective analysis of power plant operation on the Hudson River with emphasis on the Bowline Point Generating Station. Volume 2

    International Nuclear Information System (INIS)

    Barnthouse, L.W.; Cannon, J.B.; Christensen, S.G.

    1977-07-01

    Because of the location of the Bowline, Roseton, and Indian Point power generating facilities in the low-salinity zone of the Hudson estuary, operation of these plants with the present once-through cooling systems will adversely influence the fish populations that use the area for spawning and initial periods of growth and development. Recruitment rates and standing crops of several fish species may be lowered in response to the increased mortality caused by entrainment of nonscreenable eggs and larvae and by impingement of screenable young of the year. Entrainment and impingement data are particularly relevant for assessing which fish species have the greatest potential for being adversely affected by operation of Bowline, Roseton, and Indian Point with once-through cooling. These data from each of these three plants suggest that the six species that merit the greatest consideration are striped bass, white perch, tomcod, alewife, blueback herring, and bay anchovy. Two points of view are available for assessing the relative importance of the fish species in the Hudson River. From the fisheries point of view, the only two species of major importance are striped bass and shad. From the fish-community and ecosystem point of view, the dominant species, as determined by seasonal and regional standing crops (in numbers and biomass per hectare), are the six species most commonly entrained and impinged, namely, striped bass, white perch, tomcod, alewife, blueback herring, and anchovy

  8. Combined sewer overflows impact on water quality and environmental ecosystem in the Harlem River

    Science.gov (United States)

    Wang, J.

    2017-12-01

    Combined sewer overflows (CSOs) discharge untreated sewage into the Harlem River during wet weather conditions, and it elevated nutrients and pathogen levels. It is not safe for swimming, fishing or boating especially in rainstorms. The Harlem River, a 9.3 mile long natural straight, connects the Hudson and East Rivers in New York City. It had been historically used for swimming, fishing, boating. Anthropogenic impacts have degraded water quality, limiting current aquatic activity in the river. CSOs water samples were collected during rainstorms, and analyzed in the laboratories of the Chemistry and Biology Department, Bronx Community College, City University of New York. Results showed elevated bacteria/pathogen and nutrient levels. Most recent data showed an ammonia concentration of 2.6 mg/L on July 30, 2015 during a heavy afternoon thunderstorm, and an ammonia level 2.7mg/L during tropical storm Arthur on July 2, 2014. Both significantly exceeded the EPA regulation level for NYC waters of 0.23mg/L. Phosphate levels peaked at 0.197 mg/L during a heavy thunderstorm on Apr 28, 2011, which was much higher than regulated level of 0.033 mg/L. Turbidity was 319 FAU during the July 30 2015 heavy thunderstorm, and was 882 FAU during tropical storm Arthur; which was significantly higher than regulation level of 5.25 FAU. CSOs collected during a recent heavy rainstorm on Oct 28, 2015, showed fecal coliform of 1 million MPN/100ml, E.Coli. of 60,000 MPN/100ml, and enterococcus of 65,000 MPN/100ml; which exceeded regulated levels of fecal coliform-200 MPN/100ml, E.Coli.-126 MPN/100ml, enterococcus-104 MPN/100ml. It is critical to reduce CSOs, restore ecosystem and improve water quality of the Harlem River. Green wall, green roof, and wetland had been used to reduce stormwater runoff & CSOs in the Bronx River; these green infrastructures are going to be used along the Harlem River waterfront as well. The goal of this research is to make the Harlem River swimmable and fishable

  9. Nuclear reactor in deep water

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    Events during October 1980, when the Indian Point 2 nuclear reactor was flooded by almost 500 000 litres of water from the Hudson river, are traced and the jumble of human errors and equipment failures chronicled. Possible damage which could result from the reactor getting wet and from thermal shock are considered. (U.K.)

  10. Evaluation of a barrier net used to mitigate fish impingement at a Hudson River power plant intake

    International Nuclear Information System (INIS)

    Hutchison, J.B.; Matousek, J.A.

    1988-01-01

    A multifilament nylon net of 0.95-cm bar mesh was deployed as a physical barrier to fish in front of the Bowline Point power plant cooling water intake on the Hudson River from 1976 to 1985. The barrier net was deployed during the historical peak impingement months of October-May. The primary species impinged on the intake screens during this period were young-of-year and yearling white perch, striped bass, rainbow smelt, alewife, blue-back herring, and American shad, generally ranging from 5 to 10 cm in total length. When the barrier net was deployed, median impingement of all fish was 91% lower than during comparable periods before the net was installed. A mark-recapture population estimate indicated that 230,000 yearling striped bass and white perch were in the embayment outside the net in April 1982; over a 9-d study period, only 1.6% of this estimated population was impinged. Concurrent survival probability studies of fish marked and released at locations inside and outside the barrier net showed that fish released inside had 72% lower survival (P

  11. SOLAR PANELS ON HUDSON COUNTY FACILITIES

    Energy Technology Data Exchange (ETDEWEB)

    BARRY, KEVIN

    2014-06-06

    This project involved the installation of an 83 kW grid-connected photovoltaic system tied into the energy management system of Hudson County's new 60,000 square foot Emergency Operations and Command Center and staff offices. Other renewable energy features of the building include a 15 kW wind turbine, geothermal heating and cooling, natural daylighting, natural ventilation, gray water plumbing system and a green roof. The County intends to seek Silver LEED certification for the facility.

  12. Energy-Water Modeling and Impacts at Urban and Infrastructure Scales

    Science.gov (United States)

    Saleh, F.; Pullen, J. D.; Schoonen, M. A.; Gonzalez, J.; Bhatt, V.; Fellows, J. D.

    2017-12-01

    We converge multi-disciplinary, multi-sectoral modeling and data analysis tools on an urban watershed to examine the feedbacks of concentrated and connected infrastructure on the environment. Our focus area is the Lower Hudson River Basin (LHRB). The LHRB captures long-term and short- term energy/water stressors as it represents: 1) a coastal environment subject to sea level rise that is among the fastest in the East impacted by a wide array of various storms; 2) one of the steepest gradients in population density in the US, with Manhattan the most densely populated coastal county in the nation; 3) energy/water infrastructure serving the largest metropolitan area in the US; 4) a history of environmental impacts, ranging from heatwaves to hurricanes, that can be used to hindcast; and 5) a wealth of historic and real-time data, extensive monitoring facilities and existing specific sector models that can be leveraged. We detail two case studies on "water infrastructure and stressors", and "heatwaves and energy-water demands." The impact of a hypothetical failure of Oradell Dam (on the Hackensack River, a tributary of the Hudson River) coincident with a hurricane, and urban power demands under current and future heat waves are examined with high-resolution (meter to km scale) earth system models to illustrate energy water nexus issues where detailed predictions can shape response and mitigation strategies.

  13. Quantum random walks and their convergence to Evans–Hudson ...

    Indian Academy of Sciences (India)

    Quantum dynamical semigroup; Evans–Hudson flow; quantum random walk. 1. Introduction. The aim of this article is to investigate convergence of random walks on von Neumann algebra to Evans–Hudson flows. Here the random walks and Evans–Hudson flows are gene- ralizations of classical Markov chains and Markov ...

  14. Plutonium, cesium, uranium and thorium series radionuclides in the Hudson River estuary and other environments. Annual technical progress report, December 1, 1983-November 30, 1984

    International Nuclear Information System (INIS)

    Simpson, H.J.; Trier, R.M.; Anderson, R.F.

    1984-01-01

    Radionuclide activities were measured in sediment cores and suspended particle samples from the Hudson River estuary. Activities of 137 Cs, 134 Cs, and 60 Co, 239 240 Pu and 238 Pu indicate rapid accumulation in marginal cove areas, and very rapid deposition in the harbor adjacent to New York City, resulting in 239 240 Pu accumulations of more than an order of magnitude greater than the fallout delivery rate. Fallout 239 240 Pu moving downstream appears to be retained within the system by particle deposition, while more than 50% of the 137 Cs derived from both reactor releases and fallout has been exported. Significant movement of dissolved plutonium into the estuary from adjacent coastal waters may be occurring. Depth profiles of radionuclides are not significantly altered by physical mixing processes in areas accumulating particles at greater than 1 cm/yr. Transport of fallout radionuclides appears to have decreased faster than would be calculated from continuous removal from a well-mixed soil reservoir, indicating that sequestering of a substantial portion of the soil fallout burden has occurred in the watershed soils over the past two decades. Measurements of fallout 239 240 Pu in a saline lake with a high carbonate ion concentration yielded water column activities two orders of magnitude greater than that found for fallout plutonium in other continental waters, indicating extensive mobility in some natural water environments. Experiments using lake water suggest that carbonate ions are likely to be important in regulating plutonium solubility in some environments and that low molecular weight complexes are primarily responsible for enhanced plutonium solubility. 45 references, 17 figures, 14 tables

  15. Columbia River water quality monitoring

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    Waste water from Hanford activities is discharged at eight points along the Hanford reach of the Columbia River. These discharges consist of backwash water from water intake screens, cooling water, river bank springs, water storage tank overflow, and fish laboratory waste water. Each discharge point is identified in an existing National Pollutant Discharge Elimination System (NPDES) permit issued by the EPA. Effluents from each of these outfalls are routinely monitored and reported by the operating contractors as required by their NPDES permits. Measurements of several Columbia River water quality parameters were conducted routinely during 1982 both upstream and downstream of the Hanford Site to monitor any effects on the river that may be attributable to Hanford discharges and to determine compliance with the Class A designation requirements. The measurements indicated that Hanford operations had a minimal, if any, impact on the quality of the Columbia River water

  16. River water pollution condition in upper part of Brantas River and Bengawan Solo River

    Science.gov (United States)

    Roosmini, D.; Septiono, M. A.; Putri, N. E.; Shabrina, H. M.; Salami, I. R. S.; Ariesyady, H. D.

    2018-01-01

    Wastewater and solid waste from both domestic and industry have been known to give burden on river water quality. Most of river water quality problem in Indonesia has start in the upper part of river due to anthropogenic activities, due to inappropriate land use management including the poor wastewater infrastructure. Base on Upper Citarum River Water pollution problem, it is interesting to study the other main river in Java Island. Bengawan Solo River and Brantas River were chosen as the sample in this study. Parameters assessed in this study are as follows: TSS, TDS, pH, DO, and hexavalent chromium. The status of river water quality are assess using STORET method. Based on (five) parameters, STORET value showed that in Brantas River, Pagerluyung monitoring point had the worst quality relatively compared to other monitoring point in Brantas River with exceeding copper, lead and tin compared to the stream standard in East Java Provincial Regulation No. 2 in 2008. Brantas River was categorized as lightly polluted river based on monitoring period 2011-2015 in 5 monitoring points, namely Pendem, Sengguruh, Kademangan, Meritjan and Kertosono.

  17. Researcher Interview: Tom Hudson

    Science.gov (United States)

    Tom Hudson, M.D., President and Scientific Director of the Ontario Institute for Cancer Research, describes the International Cancer Genome Consortium (ICGC), which brings together cancer genomic data and research from across the world.

  18. Small-scale variability in peatland pore-water biogeochemistry, Hudson Bay Lowland, Canada.

    Science.gov (United States)

    Ulanowski, T A; Branfireun, B A

    2013-06-01

    The Hudson Bay Lowland (HBL) of northern Ontario, Manitoba and Quebec, Canada is the second largest contiguous peatland complex in the world, currently containing more than half of Canada's soil carbon. Recent concerns about the ecohydrological impacts to these large northern peatlands resulting from climate change and resource extraction have catalyzed a resurgence in scientific research into this ecologically important region. However, the sheer size, heterogeneity and elaborate landscape arrangements of this ecosystem raise important questions concerning representative sampling of environmental media for chemical or physical characterization. To begin to quantify such variability, this study assessed the small-scale spatial (1m) and short temporal (21 day) variability of surface pore-water biogeochemistry (pH, dissolved organic carbon, and major ions) in a Sphagnum spp.-dominated, ombrotrophic raised bog, and a Carex spp.-dominated intermediate fen in the HBL. In general, pore-water pH and concentrations of dissolved solutes were similar to previously reported literature values from this region. However, systematic sampling revealed consistent statistically significant differences in pore-water chemistries between the bog and fen peatland types, and large within-site spatiotemporal variability. We found that microtopography in the bog was associated with consistent differences in most biogeochemical variables. Temporal changes in dissolved solute chemistry, particularly base cations (Na(+), Ca(2+) and Mg(2+)), were statistically significant in the intermediate fen, likely a result of a dynamic connection between surficial waters and mineral-rich deep groundwater. In both the bog and fen, concentrations of SO4(2-) showed considerable spatial variability, and a significant decrease in concentrations over the study period. The observed variability in peatland pore-water biogeochemistry over such small spatial and temporal scales suggests that under-sampling in

  19. Uranium in river water

    International Nuclear Information System (INIS)

    Palmer, M.R.; Edmond, J.M.

    1993-01-01

    The concentration of dissolved uranium has been determined in over 250 river waters from the Orinoco, Amazon, and Ganges basins. Uranium concentrations are largely determined by dissolution of limestones, although weathering of black shales represents an important additional source in some basins. In shield terrains the level of dissolved U is transport limited. Data from the Amazon indicate that floodplains do not represent a significant source of U in river waters. In addition, the authors have determined dissolved U levels in forty rivers from around the world and coupled these data with previous measurements to obtain an estimate for the global flux of dissolved U to the oceans. The average concentration of U in river waters is 1.3 nmol/kg, but this value is biased by very high levels observed in the Ganges-Brahmaputra and Yellow rivers. When these river systems are excluded from the budget, the global average falls to 0.78 nmol/kg. The global riverine U flux lies in the range of 3-6 x 10 7 mol/yr. The major uncertainty that restricts the accuracy of this estimate (and that of all other dissolved riverine fluxes) is the difficulty in obtaining representative samples from rivers which show large seasonal and annual variations in runoff and dissolved load

  20. Community-based observations on sustainable development in southern Hudson Bay

    International Nuclear Information System (INIS)

    Arragutainaq, L.; Fleming, B.

    1991-01-01

    Inuit residents of the Belcher Islands in Hudson Bay practice sustainable development over a wide region, and are heavily dependent on fish and wildlife for food. Large-scale hydroelectric developments on rivers emptying into Hudson Bay and James Bay threaten both the environment and the traditional economy and culture of those residents. The main focus of concern is the James Bay hydroelectric project, part 1 of which (La Grande) is now operational. In addition, hydroelectric projects in Manitoba and Ontario may also affect the region. The residents feel that the subdivision of each project into components, each subject to a separate environmental review and assessment, works in favor of the project proponents and does not address the issues of interest to those affected by the project. Neither does such a review process address questions related to the cumulative development of many projects over a long term. The Belcher Islands are remote from the territorial and national governments, neither of which seem to be giving the James Bay developments as much attention as seems necessary. The island community has identified its primary ecological concerns on part 2 of the James Bay project and presented them at a public hearing. These concerns include the long-term impacts of the project on the marine environment and the kinds of compensation, if any, for such impacts. 7 refs., 2 figs

  1. Behavior of 226Ra in the Mississippi River mixing zone

    Science.gov (United States)

    Moore, Daniel G.; Scott, Martha R.

    1986-12-01

    The behavior of 226Ra in the Mississippi River mixing zone is strongly nonconservative and includes desorption similar to that reported for the Hudson, Pee Dee, and Amazon rivers. However, dissolved and desorbed 226Ra concentrations in the Mississippi are 2 to 5 times greater than in the other rivers at the same salinity. Radium concentrations vary inversely with the water discharge rate. The 226Ra desorption maximum occurs at a salinity of 5.0, much lower than the 18 to 28 salinity values for the maxima of the other three rivers. High concentrations of dissolved 226Ra (up to 82 dpm per 100 L) and the low salinity values for the desorption maximum in the Mississippi River result from three major factors. Suspended sediments include a large fraction of montmorillonite, which gives the sediment a high cation exchange capacity, 0.54 meq/g. The average suspended sediment load is large, about 510 mg/L, and contains 1.9 dpm/g desorbable 226Ra. The dissolved 226Ra river water end-member (9.6 dpm per 100 L) is higher than in surface seawater. The annual contribution of 226Ra to the ocean from the Mississippi River is 3.7 × 1014 dpm/yr, based on data from three cruises. Evidence of flux of 226Ra from estuarine and shelf sediments is common in vertical profile sampling of the deltaic waters but is not reflected in calculations made with an "apparent" river water Ra value extrapolated to zero salinity.

  2. Hazard Assessment from Storm Tides and Rainfall on a Tidal River Estuary

    Science.gov (United States)

    Orton, P.; Conticello, F.; Cioffi, F.; Hall, T.; Georgas, N.; Lall, U.; Blumberg, A.

    2015-01-01

    Here, we report on methods and results for a model-based flood hazard assessment we have conducted for the Hudson River from New York City to Troy/Albany at the head of tide. Our recent work showed that neglecting freshwater flows leads to underestimation of peak water levels at up-river sites and neglecting stratification (typical with two-dimensional modeling) leads to underestimation all along the Hudson. As a result, we use a three-dimensional hydrodynamic model and merge streamflows and storm tides from tropical and extratropical cyclones (TCs, ETCs), as well as wet extratropical cyclone (WETC) floods (e.g. freshets, rain-on-snow events). We validate the modeled flood levels and quantify error with comparisons to 76 historical events. A Bayesian statistical method is developed for tropical cyclone streamflows using historical data and consisting in the evaluation of (1) the peak discharge and its pdf as a function of TC characteristics, and (2) the temporal trend of the hydrograph as a function of temporal evolution of the cyclone track, its intensity and the response characteristics of the specific basin. A k-nearest-neighbors method is employed to determine the hydrograph shape. Out of sample validation tests demonstrate the effectiveness of the method. Thus, the combined effects of storm surge and runoff produced by tropical cyclones hitting the New York area can be included in flood hazard assessment. Results for the upper Hudson (Albany) suggest a dominance of WETCs, for the lower Hudson (at New York Harbor) a case where ETCs are dominant for shorter return periods and TCs are more important for longer return periods (over 150 years), and for the middle-Hudson (Poughkeepsie) a mix of all three flood events types is important. However, a possible low-bias for TC flood levels is inferred from a lower importance in the assessment results, versus historical event top-20 lists, and this will be further evaluated as these preliminary methods and results are

  3. Impact of Yangtze river water transfer on the water quality of the Lixia river watershed, China.

    Directory of Open Access Journals (Sweden)

    Xiaoxue Ma

    Full Text Available To improve water quality and reduce the negative impacts of sudden inputs of water pollution in the Lixia River watershed, China, a series of experimental water transfers from the Yangtze River to the Lixia River were conducted from 2 December 2006 to 7 January 2007. Water samples were collected every six days at 55 monitoring sites during this period. Eight water parameters (water temperature, pH, dissolved oxygen (DO, chemical oxygen demand (COD, potassium permanganate index (CODMn, ammonia nitrogen (NH4+-N, electrical conductivity (EC, and water transparency (WT were analyzed to determine changes in nutrient concentrations during water transfers. The comprehensive pollution index (Pi and single-factor (Si evaluation methods were applied to evaluate spatio-temporal patterns of water quality during water transfers. Water quality parameters displayed different spatial and temporal distribution patterns within the watershed. Water quality was improved significantly by the water transfers, especially for sites closer to water intake points. The degree of improvement is positively related to rates of transfer inflow and drainage outflow. The effects differed for different water quality parameters at each site and at different water transfer times. There were notable decreases in NH4+-N, DO, COD, and CODMn across the entire watershed. However, positive effects on EC and pH were not observed. It is concluded that freshwater transfers from the Yangtze River can be used as an emergency measure to flush pollutants from the Lixia River watershed. Improved understanding of the effects of water transfers on water quality can help the development and implementation of effective strategies to improve water quality within this watershed.

  4. Megabenthic assemblages at the Hudson Canyon head (NW Atlantic margin): Habitat-faunal relationships

    Science.gov (United States)

    Pierdomenico, Martina; Gori, Andrea; Guida, Vincent G.; Gili, Josep-Maria

    2017-09-01

    . Such results are of particular significance in light of the recent action promoted by the Mid-Atlantic Fisheries Management Council, that restricts bottom trawling in most of the submarine canyons of the US Atlantic margin, including the Hudson Canyon, to protect cold-water corals from damage by fishing gear.

  5. Immersion in a Hudson Valley Tidal Marsh and Climate Research Community - Lamont-Doherty's Secondary School Field Research Program

    Science.gov (United States)

    Peteet, D. M.; Newton, R.; Vincent, S.; Sambrotto, R.; Bostick, B. C.; Schlosser, P.; Corbett, J. E.

    2015-12-01

    A primary advantage of place-based research is the multidisciplinary and interdisciplinary research that can be applied to a single locale, with a depth of continued study through time. Through the last decade, Lamont-Doherty's Secondary School Field Research Program (SSFRP) has promoted scientific inquiry, mostly among groups under-represented in STEM fields, in Piermont Marsh, a federally protected marsh in the Hudson estuary. At the same time, Lamont Doherty Earth Observatory (LDEO) scientists have become more involved, through mentoring by researchers, postdocs and graduate students, often paired with high school teachers. The sustained engagement of high school students in a natural environment, experiencing the Hudson River and its tidal cycles, protection of coastline, water quality improvement, native and invasive plant communities, is fundamental to their understanding of the importance of wetlands with their many ecosystem services. In addition, the Program has come to see "place" as inclusive of the Observatory itself. The students' work at Lamont expands their understanding of educational opportunities and career possibilities. Immersing students in a research atmosphere brings a level of serious inquiry and study to their lives and provides them with concrete contributions that they make to team efforts. Students select existing projects ranging from water quality to Phragmites removal, read papers weekly, take field measurements, produce lab results, and present their research at the end of six weeks. Ongoing results build from year to year in studies of fish populations, nutrients, and carbon sequestration, and the students have presented at professional scientific meetings. Through the Program students gain a sense of ownership over both their natural and the academic environments. Challenges include sustained funding of the program; segmenting the research for reproducible, robust results; fitting the projects to PIs' research goals, time

  6. Water quality of Cisadane River based on watershed segmentation

    Science.gov (United States)

    Effendi, Hefni; Ayu Permatasari, Prita; Muslimah, Sri; Mursalin

    2018-05-01

    The growth of population and industrialization combined with land development along river cause water pollution and environmental deterioration. Cisadane River is one of the river in Indonesia where urbanization, industrialization, and agricultural are extremely main sources of pollution. Cisadane River is an interesting case for investigating the effect of land use to water quality and comparing water quality in every river segment. The main objectives with this study were to examine if there is a correlation between land use and water quality in Cisadane River and there is a difference in water quality between the upstream section of Cisadane River compared with its downstream section. This study compared water quality with land use condition in each segment of river. Land use classification showed that river segment that has more undeveloped area has better water quality compared to river segment with developed area. in general, BOD and COD values have increased from upstream to downstream. However, BOD and COD values do not show a steady increase in each segment Water quality is closely related to the surrounding land use.Therefore, it can not be concluded that the water quality downstream is worse than in the upstream area.

  7. Determining the flux of methane into Hudson Canyon at the edge of methane clathrate hydrate stability

    Science.gov (United States)

    Weinsten, A.; Navarrete, L; Ruppel, Carolyn D.; Weber, T.C.; Leonte, M.; Kellermann, M.; Arrington, E.; Valentine, D.L.; Scranton, M.L; Kessler, John D.

    2016-01-01

    Methane seeps were investigated in Hudson Canyon, the largest shelf-break canyon on the northern US Atlantic Margin. The seeps investigated are located at or updip of the nominal limit of methane clathrate hydrate stability. The acoustic identification of bubble streams was used to guide water column sampling in a 32 km2 region within the canyon's thalweg. By incorporating measurements of dissolved methane concentration with methane oxidation rates and current velocity into a steady-state box model, the total emission of methane to the water column in this region was estimated to be 12 kmol methane per day (range: 6 – 24 kmol methane per day). These analyses suggest this methane is largely retained inside the canyon walls below 300 m water depth, and that it is aerobically oxidized to near completion within the larger extent of Hudson Canyon. Based on estimated methane emissions and measured oxidation rates, the oxidation of this methane to dissolved CO2 is expected to have minimal influences on seawater pH. This article is protected by copyright. All rights reserved.

  8. Experimental investigation on water quality standard of Yangtze River water source heat pump.

    Science.gov (United States)

    Qin, Zenghu; Tong, Mingwei; Kun, Lin

    2012-01-01

    Due to the surface water in the upper reaches of Yangtze River in China containing large amounts of silt and algae, high content of microorganisms and suspended solids, the water in Yangtze River cannot be used for cooling a heat pump directly. In this paper, the possibility of using Yangtze River, which goes through Chongqing, a city in southwest China, as a heat source-sink was investigated. Water temperature and quality of the Yangtze River in the Chongqing area were analyzed and the performance of water source heat pump units in different sediment concentrations, turbidity and algae material conditions were tested experimentally, and the water quality standards, in particular surface water conditions, in the Yangtze River region that adapt to energy-efficient heat pumps were also proposed. The experimental results show that the coefficient of performance heat pump falls by 3.73% to the greatest extent, and the fouling resistance of cooling water in the heat exchanger increases up to 25.6% in different water conditions. When the sediment concentration and the turbidity in the river water are no more than 100 g/m3 and 50 NTU respectively, the performance of the heat pump is better, which can be used as a suitable river water quality standard for river water source heat pumps.

  9. River water quality modelling under drought situations – the Turia River case

    Directory of Open Access Journals (Sweden)

    J. Paredes-Arquiola

    2016-10-01

    Full Text Available Drought and water shortage effects are normally exacerbated due to collateral impacts on water quality, since low streamflow affects water quality in rivers and water uses depend on it. One of the most common problems during drought conditions is maintaining a good water quality while securing the water supply to demands. This research analyses the case of the Turia River Water Resource System located in Eastern Spain. Its main water demand comes as urban demand from Valencia City, which intake is located in the final stretch of the river, where streamflow may become very low during droughts. As a result, during drought conditions concentrations of pathogens and other contaminants increase, compromising the water supply to Valencia City. In order to define possible solutions for the above-mentioned problem, we have developed an integrated model for simulating water management and water quality in the Turia River Basin to propose solutions for water quality problems under water scarcity. For this purpose, the Decision Support System Shell AQUATOOL has been used. The results demonstrate the importance of applying environmental flows as a measure of reducing pollutant's concentration depending on the evolution of a drought event and the state of the water resources system.

  10. Sediment mixing and accumulation rate effects on radionuclide depth profiles in Hudson estuary sediments

    International Nuclear Information System (INIS)

    Olsen, C.R.; Simpson, H.J.; Peng, T.; Bopp, R.F.; Trier, R.M.

    1981-01-01

    Measured anthropogenic radionuclide profiles in sediment cores from the Hudson River estuary were compared with profiles computed by using known input histories of radionuclides to the estuary and mixing coefficients which decreased exponentially with depth in the sediment. Observed 134 Cs sediment depth profiles were used in the mixing rate computation because reactor releases were the only significant source for this nuclide, whereas the inputs of 137 Cs and /sup 239.240/Pu to the estuary were complicated by runoff or erosion in upstream areas, in addition to direct fallout from precipitation. Our estimates for the rates of surface sediment mixing in the low salinity reach of the estuary range from 0.25 to 1 cm 2 /yr, or less. In some areas of the harbor adjacent to New York City, were fine-particle accumulation rates are generally >3 cm/yr, and often as high as 10 to 20 cm/yr, sediment mixing rates as high as 10 cm 2 /yr would have little effect on radionuclide peak distributions. Consequently, anthropogenic radionuclide maximum activities in subsurface sediments of the Hudson appear to be useful as time-stratigraphic reference levels, which can be correlated with periods of maximum radionuclide inputs for estimating rates and patterns of sediment accumulation

  11. In Brief: Improving Mississippi River water quality

    Science.gov (United States)

    Showstack, Randy

    2007-10-01

    If water quality in the Mississippi River and the northern Gulf of Mexico is to improve, the U.S. Environmental Protection Agency (EPA) needs to take a stronger leadership role in implementing the federal Clean Water Act, according to a 16 October report from the U.S. National Research Council. The report notes that EPA has failed to use its authority to coordinate and oversee activities along the river. In addition, river states need to be more proactive and cooperative in efforts to monitor and improve water quality, and the river should be monitored and evaluated as a single system, the report indicates. Currently, the 10 states along the river conduct separate and widely varying water quality monitoring programs. ``The limited attention being given to monitoring and managing the Mississippi's water quality does not match the river's significant economic, ecological, and cultural importance,'' said committee chair David A. Dzombak, director of the Steinbrenner Institute for Environmental Education and Research at Carnegie Mellon University, Pittsburgh, Pa. The report notes that while measures taken under the Clean Water Act have successfully reduced much point source pollution, nutrient and sediment loads from nonpoint sources continue to be significant problems. For more information, visit the Web site: http://books.nap.edu/catalog.php?record_id=12051.

  12. Shutdown of the River Water System at the Savannah River Site: Draft environmental impact statement

    International Nuclear Information System (INIS)

    1996-11-01

    This environmental impact statement (EIS) evaluates alternative approaches to and environmental impacts of shutting down the River Water System at the Savannah River Site (SRS). Five production reactors were operated at the site.to support these facilities, the River Water System was constructed to provide cooling water to pass through heat exchangers to absorb heat from the reactor core in each of the five reactor areas (C, K, L, P, and R). The DOE Savannah River Strategic Plan directs the SRS to find ways to reduce operating costs and to determine what site infrastructure it must maintain and what infrastructure is surplus. The River Water System has been identified as a potential surplus facility. Three alternatives to reduce the River Water System operating costs are evaluated in this EIS. In addition to the No-Action Alternative, which consists of continuing to operate the River Water System, this EIS examines one alternative (the Preferred Alternative) to shut down and maintain the River Water System in a standby condition until DOE determines that a standby condition is no longer necessary, and one alternative to shut down and deactivate the River Water System. The document provides background information and introduces the River Water System at the SRS; sets forth the purpose and need for DOE action; describes the alternatives DOE is considering; describes the environment at the SRS and in the surrounding area potentially affected by the alternatives addressed and provides a detailed assessment of the potential environmental impacts of the alternatives; and identifies regulatory requirements and evaluates their applicability to the alternatives considered

  13. A History of Vegetation, Sediment and Nutrient Dynamics at Tivoli North Bay, Hudson Estuary, New York

    Science.gov (United States)

    Sritrairat, Sanpisa; Peteet, Dorothy M.; Kenna, Timothy C.; Sambrotto, Ray; Kurdyla, Dorothy; Guilderson, Tom

    2012-01-01

    We conduct a stratigraphic paleoecological investigation at a Hudson River National Estuarine Research Reserve (HRNERR) site, Tivoli Bays, spanning the past 1100 years. Marsh sediment cores were analyzed for ecosystem changes using multiple proxies, including pollen, spores, macrofossils, charcoal, sediment bulk chemistry, and stable carbon and nitrogen isotopes. The results reveal climatic shifts such as the warm and dry Medieval Warm Period (MWP) followed by the cooler Little Ice Age (LIA), along with significant anthropogenic influence on the watershed ecosystem. A five-fold expansion of invasive species, including Typha angustifolia and Phragmites australis, is documented along with marked changes in sediment composition and nutrient input. During the last century, a ten-fold sedimentation rate increase due to land-use changes is observed. The large magnitude of shifts in vegetation, sedimentation, and nutrients during the last few centuries suggest that human activities have made the greatest impact to the marshes of the Hudson Estuary during the last millennium. Climate variability and ecosystem changes similar to those observed at other marshes in northeastern and mid-Atlantic estuaries, attest to the widespread regional signature recorded at Tivoli Bays.

  14. Multielement analysis of water in Yodo River

    International Nuclear Information System (INIS)

    Mamuro, Tetsuo; Mizohata, Akira; Matsunami, Tadao; Matsuda, Yatsuka

    1980-01-01

    Yodo River is a major source of water supplies in the Osaka district. Three tributaries including Katsura River flow into this river at close positions. It is known that the Katsura River is considerably polluted due to the sewage treatment in Kyoto City. Following the previous survey in September, 1970, a similar survey by neutron activation has been carried out on the pollution of the Yodo River in October, 1977, by increasing the number of sampling points. Because it is reported that the pollution of the Katsura River has been largely lowered from that in the previous survey, the purpose was to grasp the present situation of the water pollution of the Yodo River due to metal elemens and others, and further to examine in relation of material balance. The procedures used were, first, the evaporation and solidification of sample water, and then neutron activation analysis. The correlation among the concentrations of elements, the pattern of the concentrations of elements, the material balance along the Yodo River, etc. are described in this paper. (J.P.N.)

  15. [Water environmental capacity calculation model for the rivers in drinking water source conservation area].

    Science.gov (United States)

    Chen, Ding-jiang; Lü, Jun; Shen, Ye-na; Jin, Shu-quan; Shi, Yi-ming

    2008-09-01

    Based on the one-dimension model for water environmental capacity (WEC) in river, a new model for the WEC estimation in river-reservoir system was developed in drinking water source conservation area (DWSCA). In the new model, the concept was introduced that the water quality target of the rivers in DWSCA was determined by the water quality demand of reservoir for drinking water source. It implied that the WEC of the reservoir could be used as the water quality control target at the reach-end of the upstream rivers in DWSCA so that the problems for WEC estimation might be avoided that the differences of the standards for a water quality control target between in river and in reservoir, such as the criterions differences for total phosphorus (TP)/total nitrogen (TN) between in reservoir and in river according to the National Surface Water Quality Standard of China (GB 3838-2002), and the difference of designed hydrology conditions for WEC estimation between in reservoir and in river. The new model described the quantitative relationship between the WEC of drinking water source and of the river, and it factually expressed the continuity and interplay of these low water areas. As a case study, WEC for the rivers in DWSCA of Laohutan reservoir located in southeast China was estimated using the new model. Results indicated that the WEC for TN and TP was 65.05 t x a(-1) and 5.05 t x a(-1) in the rivers of the DWSCA, respectively. According to the WEC of Laohutan reservoir and current TN and TP quantity that entered into the rivers, about 33.86 t x a(-1) of current TN quantity should be reduced in the DWSCA, while there was 2.23 t x a(-1) of residual WEC of TP in the rivers. The modeling method was also widely applicable for the continuous water bodies with different water quality targets, especially for the situation of higher water quality control target in downstream water body than that in upstream.

  16. [Nutrients Input Characteristics of the Yangtze River and Wangyu River During the "Water Transfers on Lake Taihu from the Yangtze River"].

    Science.gov (United States)

    Pan, Xiao-xue; Ma, Ying-qun; Qin, Yan-wen; Zou, Hua

    2015-08-01

    Overall 20 surface water samples were collected from the Yangtze River, the Wangyu River and the Gonghu Bay (Lake Taihu) to clarify the pollution characteristics of nitrogen and phosphorus during 2 sample stages of "Water Transfers on Lake Taihu from the Yangtze River" in August and December of 2013 respectively. The results showed that the mass concentrations of NO2- -N, NO3- -N, NH4+ -N and TN in the Gonghu Bay were lower than those of the Yangtze River and Wangyu River during the 2 water transfer processes. However, there was higher level of DON content in the Gonghu Bay than that of the Yangtze River and Wangyu River. The percentages of various N species showed that NO3- -N was the major N species in the Yangtze River and Wangyu River during the 2 water transfer processes. TP contents in samples collected from the Yangtze River displayed a constant trend compared with the Wangyu River. However, the percentages of various P species were different with each other during the 2 water transfer processes. Mass concentrations of DON and TP in surface water in August were higher than those in December and the contents of NO3- -N and TDP were lower in August than those in December. In general, NO3- -N and TPP were the main N and P species in Wangyu River from the Yangtze River. NO3- -N, PO4(3-) -P and TPP were the main N and P species in Gonghu Bay from Wangyu River during the 2 water transfer processes.

  17. Evaluation of Ravi river water quality

    International Nuclear Information System (INIS)

    Ahmed, K.; Ali, W.

    2000-01-01

    Investigation from 1989 to 1998 on river Ravi pollution was carried out to study the effects of wastewater discharges on its water quality in relation to its various water use. The sources of pollution entering the river between Syphon (20 Km upstream) and Balloki Head works (75 Km downstream) includes Upper Chenab Canal (U.C.) which bring industrial effluents through Deg municipal swage from the city of Lahore. Investigation revealed that the flow in the river are highly variable with time during the year U.C. canal with a capacity of 220 m/sup 3//S at the tail and Qadiarabad (Q.B.) Link canal with a capacity of 410 m3/S are mainly responsible for higher flows during dry season. A desecrating trend has been observed in the D.O. Levels indicating increasing pollution. Over times D.O values are above 4 mg/l indicating recovery due to dilution biodegradation and aeration. An increasing trend has been observed in Biochemical Oxygen Demand (BOD), suspended solids, total dissolved solids and indicator organisms. Even with the discharges of pollutions from U.C. canal, Hudiara Nullah and city sewage, BOD at Balloki was unexpectedly low. It was investigated that because of pollution free Q.B. link canal which joins the river just before Balloki Head works makes the water diluted, which accounted for low BOD. Water of river Ravi meet the chemical water quality requirement for irrigation. However the water quality does not meet the coliform and faecal coliform criteria for most water use. (orig../A.B.)

  18. Water quality evaluation of Al-Gharraf river by two water quality indices

    Science.gov (United States)

    Ewaid, Salam Hussein

    2017-11-01

    Water quality of Al-Gharraf river, the largest branch of Tigris River south of Iraq, was evaluated by the National Sanitation Foundation Water Quality Index (NFS WQI) and the Heavy Metal Pollution Index (HPI) depending on 13 physical, chemical, and biological parameters of water quality measured monthly at ten stations on the river during 2015. The NSF-WQI range obtained for the sampling sites was 61-70 indicating a medium water quality. The HPI value was 98.6 slightly below the critical value for drinking water of 100, and the water quality in the upstream stations is better than downstream due to decrease in water and the accumulation of contaminants along the river. This study explains the significance of applying the water quality indices that show the aggregate impact of ecological factors in charge of water pollution of surface water and which permits translation of the monitoring data to assist the decision makers.

  19. Radionuclides at the Hudson Canyon disposal site

    International Nuclear Information System (INIS)

    Schell, W.R.; Nevissi, A.E.

    1983-01-01

    A sampling and analytical program was initiated in June 1978 to measure radionuclides in water, sediments, and biota collected at the deepwater (4000 m) radioactive waste disposal site at the mouth of the Hudson Canyon 350km off New York Harbor in the western Atlantic Ocean. Plutonium, americium, cesium, strontium, and uranium series isotopes were measured in selected samples; the /sup 210/Pb data were used to give sedimentation and mixing rates in the upper sediment layers. The results showed that /sup 137/Cs, /sup 239,240/Pu, and /sup 238/Pu were found at low concentrations in the skin, viscera, and stomach contents for some of the fish collected. Significant concentrations of /sup 241/Am were found in tissues of the common rattail Coryphaenoides (Macrouridae) collected at the disposal site, suggesting a local source for this radionuclide and biological accumulation. The edible muscle of this fish contained less than 2.6 x 10/sup -5/ Bq g/sup -1/ (dry wt) of /sup 239,240/Pu. Radionuclides measured in sediment-core profiles showed that mixing occurred to depths of 16 cm and that variable sedimentation or mixing rates, or both, exist at 4000 m deep. Radionuclide deposition near the canisters was not found to be significantly higher than the expected fallout levels at 4000 m deep. At the mouth of the Hudson Canyon variable sedimentation and mixing rates were found using the natural unsupported /sup 210/Pb tracer values; these variable rates were attributed to sediment transport by the currents and to bioturbation

  20. WATER POLLUTION AND RIVER ALGAE: STUDY IN ZAYANDEH ROOD RIVER – ISFAHAN

    Directory of Open Access Journals (Sweden)

    H POUR MOGHADAS

    2001-06-01

    Full Text Available Introduction: Dischange of domestic, agricultural and industrial waste water into the rivers increase chemical substances such as nitrate and phosphate. These chemical changes increase algal population. High density of algae may cause changes in color, odor and taste of water. Some of the algae such as Oscillatoria, Microcystis and Anabeana produce toxins and in high concentrations may kill fishes. While Zayandehrud river is considered as one of the main water supply sources for drinking water and valuable water resources of Isfahan Province, water quality control of this river is important. The study of algae of the river in relation with the concentration of nitrate and phosphate is the purpose of this research project. Methods: To perform this projects, seven sampling stations from "Pole Vahid" to .Pole choom. were selected. Grab methods were used for sampling of the river water. 147 water samples were collected in one year of the study.The samples were analyzed for phosphate, nitrate and genera of the algae. Nitrate and phosphate of the water samples were determined using Phenol Disulfonic Acid and Stanous chloride methods, respectively. The genera of the algae were detennined using the keys. Results and Disccusion:The result of the study showed that the frequency of the algae increased with increasing nitrate and phosphate. Overall.35 genera of algae in the area of the study were observed, which six of them were indicators of water pollution. Minimum frequency of indicators of pollution was observed in the enterance of Isfahan city and maximum frequency was observed after the discharge of municipal water from waste water treatment plant (pole Choom.

  1. Stable isotope content of South African river water

    International Nuclear Information System (INIS)

    Talma, A.S.

    1987-01-01

    Variations of the isotopic ratios 18 O/ 16 O and D/H in natural waters reflect the variety of processes to which the water was subjected within the hydrological cycle. Time series of the 18 O content of the major South African rivers over a few years have been obtained in order to characterise the main features of these variations in both time and space. Regionally the average '1 8 O content of river water reflects that of the prevailing rains within the catchment. 18 O variations with time are mainly correlated with river flow rates. Impoundments upstream and management of river flows reduce this correlation. Isotope variations along the course of a river show the effects of inflow from smaller streams and evaporation in the river or its impoundments. These observations indicate the use of isotopic methods to study the evaporation and mixing of river water and its interaction with the surrounding environment

  2. Assessing impact of urbanization on river water quality in the Pearl River Delta Economic Zone, China.

    Science.gov (United States)

    Ouyang, Tingping; Zhu, Zhaoyu; Kuang, Yaoqiu

    2006-09-01

    The Pearl River Delta Economic Zone is one of the most developed regions in China. It has been undergoing a rapid urbanization since the reformation and opening of China in 1978. This process plays a significant impact on the urban environment, particularly river water quality. The main goal of this present study is to assess the impact of urban activities especially urbanization on river water quality for the study area. Some Landsat TM images from 2000 were used to map the areas for different pollution levels of urban river sections for the study area. In addition, an improved equalized synthetic pollution index method was utilized to assess the field analytical results. The results indicate that there is a positive correlation between the rapidity of urbanization and the pollution levels of urban river water. Compared to the rural river water, urban river water was polluted more seriously. During the urban development process, urbanization and urban activities had a significant negative impact on the river water quality.

  3. Dynamic water accounting in heavily committed river basins

    Science.gov (United States)

    Tilmant, Amaury; Marques, Guilherme

    2014-05-01

    Many river basins throughout the world are increasingly under pressure as water demands keep rising due to population growth, industrialization, urbanization and rising living standards. In the past, the typical answer to meet those demands focused on the supply-side and involved the construction of hydraulic infrastructures to capture more water from surface water bodies and from aquifers. As river basins were being more and more developed, downstream water users and ecosystems have become increasingly dependant on the management actions taken by upstream users. The increased interconnectedness between water users, aquatic ecosystems and the built environment is further compounded by climate change and its impact on the water cycle. Those pressures mean that it has become increasingly important to measure and account for changes in water fluxes and their corresponding economic value as they progress throughout the river system. Such basin water accounting should provide policy makers with important information regarding the relative contribution of each water user, infrastructure and management decision to the overall economic value of the river basin. This paper presents a dynamic water accounting approach whereby the entire river basin is considered as a value chain with multiple services including production and storage. Water users and reservoirs operators are considered as economic agents who can exchange water with their hydraulic neighbors at a price corresponding to the marginal value of water. Effective water accounting is made possible by keeping track of all water fluxes and their corresponding transactions using the results of a hydro-economic model. The proposed approach is illustrated with the Eastern Nile River basin in Africa.

  4. Water quality index for assessment of water quality of river ravi at ...

    African Journals Online (AJOL)

    Water quality of River Ravi, a tributary of Indus River System was evaluated by Water Quality Index (WQI) technique. A water quality index provides a single number that expresses overall water quality at a certain location and time based on several water quality parameters. The objective of an index is to turn complex water ...

  5. Kyiv Small Rivers in Metropolis Water Objects System

    Science.gov (United States)

    Krelshteyn, P.; Dubnytska, M.

    2017-12-01

    The article answers the question, what really are the small underground rivers with artificial watercourses: water bodies or city engineering infrastructure objects? The place of such rivers in metropolis water objects system is identified. The ecological state and the degree of urbanization of small rivers, as well as the dynamics of change in these indicators are analysed on the Kiev city example with the help of water objects cadastre. It was found that the registration of small rivers in Kyiv city is not conducted, and the summary information on such water objects is absent and is not taken into account when making managerial decisions at the urban level. To solve this problem, we propose to create some water bodies accounting system (water cadastre).

  6. Water security evaluation in Yellow River basin

    Science.gov (United States)

    Jiang, Guiqin; He, Liyuan; Jing, Juan

    2018-03-01

    Water security is an important basis for making water security protection strategy, which concerns regional economic and social sustainable development. In this paper, watershed water security evaluation index system including 3 levels of 5 criterion layers (water resources security, water ecological security and water environment security, water disasters prevention and control security and social economic security) and 24 indicators were constructed. The entropy weight method was used to determine the weights of the indexes in the system. The water security index of 2000, 2005, 2010 and 2015 in Yellow River basin were calculated by linear weighting method based on the relative data. Results show that the water security conditions continue to improve in Yellow River basin but still in a basic security state. There is still a long way to enhance the water security in Yellow River basin, especially the water prevention and control security, the water ecological security and water environment security need to be promoted vigorously.

  7. Biomarker as an Indicator of River Water Quality Degradation

    Directory of Open Access Journals (Sweden)

    Dwina Roosmini

    2006-11-01

    Full Text Available Generally physical and chemical methods are use in river water quality monitoring; currently biomarker is developed as alternative biomonitoring method. The aim of this study is to look at the probability using aquatic species in monitoring river water pollutants exposure. This study was done by using Hyposarcus pardalis as biomarker to analyze river water quality in Upstream Citarum River. Hyposarcus pardalis were taken along the river at five sampling point and look at the Cu and Zn concentration. Results from this study show that there was an indication that river water quality has been degrading along the river from upstream to downstream. Zn concentration in Hyposarcus pardalis were increasing as well as Cu concentration. The increase of Zn concentration in Hyposarcus pardalis indicating that the river was polluted by Zn. Secondary data and observation at sampling location shown that textile was the dominant industry which may contribute the Zn concentration in river as they received the effluent. Cu is use in metal coating process, as well as textile industry metal industries were identified at Majalaya, Bantar Panjang, Dayeuh Kolot and Katapang in Bandung-Indonesia. As a receiving water from many activities along the river, upstream Citarum River water quality become degrading as the increasing of heavy metal Zn and Cu concentration in Hyposarcus pardalis.

  8. Klamath River Basin water-quality data

    Science.gov (United States)

    Smith, Cassandra D.; Rounds, Stewart A.; Orzol, Leonard L.; Sobieszczyk, Steven

    2018-05-29

    The Klamath River Basin stretches from the mountains and inland basins of south-central Oregon and northern California to the Pacific Ocean, spanning multiple climatic regions and encompassing a variety of ecosystems. Water quantity and water quality are important topics in the basin, because water is a critical resource for farming and municipal use, power generation, and for the support of wildlife, aquatic ecosystems, and endangered species. Upper Klamath Lake is the largest freshwater lake in Oregon (112 square miles) and is known for its seasonal algal blooms. The Klamath River has dams for hydropower and the upper basin requires irrigation water to support agriculture and grazing. Multiple species of endangered fish inhabit the rivers and lakes, and the marshes are key stops on the Pacific flyway for migrating birds. For these and other reasons, the water resources in this basin have been studied and monitored to support their management distribution.

  9. The Influence of Water Conservancy Projects on River Network Connectivity, A Case of Luanhe River Basin

    Science.gov (United States)

    Li, Z.; Li, C.

    2017-12-01

    Connectivity is one of the most important characteristics of a river, which is derived from the natural water cycle and determine the renewability of river water. The water conservancy project can change the connectivity of natural river networks, and directly threaten the health and stability of the river ecosystem. Based on the method of Dendritic Connectivity Index (DCI), the impacts from sluices and dams on the connectivity of river network are deeply discussed herein. DCI quantitatively evaluate the connectivity of river networks based on the number of water conservancy facilities, the connectivity of fish and geographical location. The results show that the number of water conservancy facilities and their location in the river basin have a great influence on the connectivity of the river network. With the increase of the number of sluices and dams, DCI is decreasing gradually, but its decreasing range is becoming smaller and smaller. The dam located in the middle of the river network cuts the upper and lower parts of the whole river network, and destroys the connectivity of the river network more seriously. Therefore, this method can be widely applied to the comparison of different alternatives during planning of river basins and then provide a reference for the site selection and design of the water conservancy project and facility concerned.

  10. Industrial pollution and the management of river water quality: a model of Kelani River, Sri Lanka.

    Science.gov (United States)

    Gunawardena, Asha; Wijeratne, E M S; White, Ben; Hailu, Atakelty; Pandit, Ram

    2017-08-19

    Water quality of the Kelani River has become a critical issue in Sri Lanka due to the high cost of maintaining drinking water standards and the market and non-market costs of deteriorating river ecosystem services. By integrating a catchment model with a river model of water quality, we developed a method to estimate the effect of pollution sources on ambient water quality. Using integrated model simulations, we estimate (1) the relative contribution from point (industrial and domestic) and non-point sources (river catchment) to river water quality and (2) pollutant transfer coefficients for zones along the lower section of the river. Transfer coefficients provide the basis for policy analyses in relation to the location of new industries and the setting of priorities for industrial pollution control. They also offer valuable information to design socially optimal economic policy to manage industrialized river catchments.

  11. Radium-226 in waters of the Amazon river

    International Nuclear Information System (INIS)

    Shirshova, M.P.; Vinogradova, A.S.; Popov, N.I.

    1987-01-01

    Analysis of the Amazon river waters for 226 Ra content is carried out. Exploration works are carried out in the framework of the soviet investigations of the Amazon river in 1983 by the Academy of Science of USSR on board a research ship ''Professor Schtokman'' with the agreement and participation of brazilian scientists. Radium determination has been carried out in reference with equilibrium radon preliminary accumulated in samples (30 y) tightly closed. The general 226 Ra concentrations observed in the Amazon waters exceed 4-6 times the values known before relating to a ''diluted'' element fraction. It happens due to the presence of the river suspended matter in the water analysed; it is a carrier of additional quantities of 226 Ra, and considerable. The mixture zone of river and ocean waters is shown to be no ''geochemical barrier'' on the way to the ocean for river radium inlike the other microelements of the river run-off

  12. Plutonium and cesium radionuclides in the Hudson River Estuary. Annual technical progress report, 1 December 1975--30 November 1976

    International Nuclear Information System (INIS)

    Simpson, H.J.; Williams, S.C.

    1976-01-01

    We have obtained a large set of cores from the Hudson Estuary covering nearly all of the ambient salinity range. A number of core sections have been analyzed for 137 Cs, 134 Cs, 60 Co and 40 K by direct gamma counting and for 239 , 240 Pu and 238 Pu by alpha-spectrometry. Rapid accumulation, up to 20 cm/year, of sediments containing 239 , 240 Pu, 137 Cs, 134 Cs and 60 Co occurs in New York Harbor. Marginal coves upstream from the harbor also serve as depositional environments. The ratio of sediment /sup 239,240/Pu to 137 Cs is higher than the fallout ratio in the seaward end of New York Harbor, despite the presence of a significant component of reactor 137 Cs in the sediments, but lower than the range of ratios observed by others for nearshore environments with low sediment deposition rates. A substantial portion of gamma emitting fission product and activation nuclides released from the Indian Point nuclear facility have accumulated in New York Harbor, more than 60 km downstream from the release area. We have not yet established whether local transuranic releases to the Hudson have occurred

  13. Particulate matter characterization of Cauca River water in Colombia

    NARCIS (Netherlands)

    Gutierrez Marin, Juan Pablo; van Halem, D.; Rietveld, L.C.

    2016-01-01

    The particulate matter composition in the Upper Cauca River section was studied, considering the importance of this river for the water supply of Cali, Colombia, and the implications that the turbidity of this water source has had for the city's water treatment. Additionally, the upstream Palo River

  14. Water quality of the river Damanganga (Gujarat)

    Digital Repository Service at National Institute of Oceanography (India)

    Zingde, M.D.; Narvekar, P.V.; Sarma, R.V.; Desai, B.N.

    Water quality (pH, suspended solids, chlorides, DO, BOD, reactive and total phosphorus, nitrates and boron) of River Damanganga which receives 0.2 mld of industrial waste into its fresh water zone through Pimparia River and 3.7 mld in its tidal zone...

  15. Hydrochemical evaluation of river water quality—a case study: Horroud River

    Science.gov (United States)

    Falah, Fatemeh; Haghizadeh, Ali

    2017-12-01

    Surface waters, especially rivers are the most important sources of water supply for drinking and agricultural purposes. Water with desirable quality is necessary for human life. Therefore, knowledge of water quality and its temporal changes is of particular importance in sustainable management of water resources. In this study, available data during 20 years from two hydrometry stations located in the way of Horroud River in Lorestan province were used and analyzed using Aq.QA software. Piper, Schoeller, Stiff, and Wilcox diagram were drawn and Mann-Kendal test was used for determining data trend. According to Wilcox diagram, water of this river in both stations is placed in c2s1 class which is good for agricultural purposes, and according to Schoeller diagram, there is no restrict for drinking purposes. Results of Man-Kendal test show increasing trend for colorine, EC, TDS while decreasing trend for potassium in Kakareza station. On the other hand in Dehnu station, positive trend was seen in calcium and colorine while negative trend for sulfate and potassium. For other variables, no specific trend was found.

  16. Babesiosis in Lower Hudson Valley, New York

    Centers for Disease Control (CDC) Podcasts

    This podcast discusses a study about an increase in babesiosis in the Lower Hudson Valley of New York state. Dr. Julie Joseph, Assistant Professor of Medicine at New York Medical College, shares details of this study.

  17. 77 FR 23120 - Special Local Regulations; Lowcountry Splash Open Water Swim, Wando River and Cooper River, Mount...

    Science.gov (United States)

    2012-04-18

    ...-AA08 Special Local Regulations; Lowcountry Splash Open Water Swim, Wando River and Cooper River, Mount... establishing special local regulations on the waters of the Wando River and Cooper River in Mount Pleasant... River and Cooper River along the shoreline of Mount Pleasant, South Carolina. The Lowcountry Splash...

  18. Selective analysis of power plant operation on the Hudson River with emphasis on the Bowline Point Generating Station. Volume 2. [Multiple impact of power plant once-through cooling systems on fish populations

    Energy Technology Data Exchange (ETDEWEB)

    Barnthouse, L. W.; Cannon, J. B.; Christensen, S. G.

    1977-07-01

    Because of the location of the Bowline, Roseton, and Indian Point power generating facilities in the low-salinity zone of the Hudson estuary, operation of these plants with the present once-through cooling systems will adversely influence the fish populations that use the area for spawning and initial periods of growth and development. Recruitment rates and standing crops of several fish species may be lowered in response to the increased mortality caused by entrainment of nonscreenable eggs and larvae and by impingement of screenable young of the year. Entrainment and impingement data are particularly relevant for assessing which fish species have the greatest potential for being adversely affected by operation of Bowline, Roseton, and Indian Point with once-through cooling. These data from each of these three plants suggest that the six species that merit the greatest consideration are striped bass, white perch, tomcod, alewife, blueback herring, and bay anchovy. Two points of view are available for assessing the relative importance of the fish species in the Hudson River. From the fisheries point of view, the only two species of major importance are striped bass and shad. From the fish-community and ecosystem point of view, the dominant species, as determined by seasonal and regional standing crops (in numbers and biomass per hectare), are the six species most commonly entrained and impinged, namely, striped bass, white perch, tomcod, alewife, blueback herring, and anchovy.

  19. Tritium in the Savannah River Estuary and adjacent marine waters

    International Nuclear Information System (INIS)

    Hayes, D.W.

    1978-01-01

    The tritium distribution in the Savannah River estuary and adjacent marine waters was measured to provide information on the dilution, mixing, and movement of Savannah River water in this region. The Savannah River marine region was chosen because the average tritium concentration in this river is 5 pCi/ml, whereas other rivers in the southeastern United States average less than 0.5 pCi/ml. The increased tritium concentration in the Savannah River is due to releases from the Savannah River Plant of the Department of Energy. Tritium measurements have proved particularly effective in estimating the flushing time of the Savannah River estuary (2.4 days) and in delineating the relative contribution to the water masses in Ossabaw and Port Royal Sounds from the River and from sea water. Ossabaw and Port Royal Sounds are located approximately 20 km south and north of the Savannah River estuary, respectively

  20. Studies of Columbia River water quality

    International Nuclear Information System (INIS)

    Onishi, Y.; Johanson, P.A.; Baca, R.G.; Hilty, E.L.

    1976-01-01

    The program to study the water quality of the Columbia River consists of two separate segments: sediment and radionuclide transport and temperature analysis. Quasi-two dimensional (longitudinal and vertical directions) mathematical simulation models were developed for determining radionuclide inventories, their variations with time, and movements of sediments and individual radionuclides in the freshwater region of the Columbia River below Priest Rapids Dam. These codes are presently being applied to the river reach between Priest Rapids and McNary Dams for the initial sensitivity analysis. In addition, true two-dimensional (longitudinal and lateral directions) models were formulated and are presently being programmed to provide more detailed information on sediment and radionuclide behavior in the river. For the temperature analysis program, river water temperature data supplied by the U. S. Geological Survey for six ERDA-sponsored temperature recording stations have been analyzed and cataloged on storage devices associated with ERDA's CDC 6600 located at Richland, Washington

  1. Geochemical and sedimentological properties of Heinrich layers H2 and H1 off the Hudson Strait ice-surging source areas: ice-rafting vs water-laid down depositional mechanisms

    Science.gov (United States)

    Nuttin, L.; Hillaire-Marcel, C.

    2012-12-01

    The ~9 m-long core HU08-029-004PC was raised from the lower Labrador Sea slope (2674 m water-depth), approximately 180 km off Hudson Strait shelf edge. It yielded a high resolution record spanning the last 35 ka. The sequence includes layers with abundant detrital carbonates produced by glacial erosion of Paleozoic rocks and released into the Labrador Sea through ice streaming processes in Hudson Strait and Ungava Bay. These layers are assigned to 'Heinrich events' 3 (at core bottom), 2 and 1. Sedimentological properties and U and Th isotope measurements are used to document depositional mechanisms and durations of these layers. Data suggest: i) intense ice-rafting deposition (IRD) due to iceberg calving at the ice-stream edge, as illustrated by the coarse fraction content of the layers, and ii) sub-glacial meltwater flushing over the Hudson Strait sill, carrying fine silt-size, carbonate-rich glacial flour to the shelf-edge. Such suspended sediment pulses led to the spreading of turbidites mostly into the deep Labrador Sea, through the NAMOC system. Others late-glacial events, such as the ~ 8.2 ka final drainage of Lake Agassiz, are also recorded in the study core, whereas the H0 layer, exclusively observed in the western Labrador Sea is missing. CAT-scan images, mineralogical data, carbonate abundance, %>106 μm fraction (mostly IRD here), U-Th isotope data and 14C ages of planktic foraminifera assemblages (Neogloboquadrina pachyderma, l.) are used to further document H2 (760 to 700 cm) and H1 (588 to 488 cm). The H-layers contain up to 60% of fine detrital carbonates (about 2/3 calcite, 1/3 dolomite). Whereas the fine calcitic material points to sediment sources (basal till/water-laid glacial sediments) in the Hudson Strait and Ungava Bay, i.e., originating from the glacial erosion of Paleozoic carbonates from the area, the dolomitic component might have several origins (from Proterozoic and Paleozoic limestones in the Hudson Bay and Strait, to northwestern

  2. Human impacts on river water quality- comparative research in the catchment areas of the Tone River and the Mur River-

    Science.gov (United States)

    Kogure, K.

    2013-12-01

    Human activities in river basin affect river water quality as water discharges into river with pollutant after we use it. By detecting pollutants source, pathway, and influential factor of human activities, it will be possible to consider proper river basin management. In this study, material flow analysis was done first and then nutrient emission modeling by MONERIS was conducted. So as to clarify land use contribution and climate condition, comparison of Japanese and European river basin area has been made. The model MONERIS (MOdelling Nutrient Emissions in RIver Systems; Behrendt et al., 2000) was applied to estimate the nutrient emissions in the Danube river basin by point sources and various diffuse pathways. Work for the Mur River Basin in Austria was already carried out by the Institute of Water Quality, Resources and Waste Management at the Vienna University of Technology. This study treats data collection, modelling for the Tone River in Japan, and comparative analysis for these two river basins. The estimation of the nutrient emissions was carried out for 11 different sub catchment areas covering the Tone River Basin for the time period 2000 to 2006. TN emissions into the Tone river basin were 51 kt/y. 67% was via ground water and dominant for all sub catchments. Urban area was also important emission pathway. Human effect is observed in urban structure and agricultural activity. Water supply and sewer system make urban water cycle with pipeline structure. Excess evapotranspiration in arable land is also influential in water cycle. As share of arable land is 37% and there provides agricultural products, it is thought that N emission from agricultural activity is main pollution source. Assumption case of 10% N surplus was simulated and the result was 99% identical to the actual. Even though N surplus reduction does not show drastic impact on N emission, it is of importance to reduce excess of fertilization and to encourage effective agricultural activity

  3. Tritium in the Savannah River estuary and adjacent marine waters

    International Nuclear Information System (INIS)

    Hayes, D.W.

    1979-01-01

    The tritium distribution in the Savannah River estuary and adjacent marine waters was measured to provide information on the dilution, mixing and movement of Savannah River water in this region. The Savannah River marine region was chosen because the average tritium concentration in this river is approximately 5 pCi/ml, whereas other rivers in the southeastern United States of America average less than 0.5 pCi/ml. The increased tritium concentration in the Savannah River is due to releases from the Savannah River Plant of the Department of Energy. Tritium measurements have proved particularly effective in estimating the flushing time of the Savannah River estuary (2.4 days) and in delineating the relative contribution to the water masses in Ossabaw and Port Royal Sounds from the river and from sea-water. Ossabaw and Port Royal Sounds are located approximately 20 km south and north of the Savannah River estuary respectively. (author)

  4. Water quality assessment of the Sinos River, Southern Brazil.

    Science.gov (United States)

    Blume, K K; Macedo, J C; Meneguzzi, A; Silva, L B; Quevedo, D M; Rodrigues, M A S

    2010-12-01

    The Sinos River basin is located Northeast of the state of Rio Grande do Sul (29º 20' to 30º 10' S and 50º 15' to 51º20'W), Southern Brazil, covering two geomorphologic provinces: the Southern plateau and central depression. It is part of the Guaíba basin and has an area of approximately 800 km², encompassing 32 municipalities. The objective of this study was to monitor water quality in the Sinos River, the largest river in this basin. Water samples were collected at four selected sites in the Sinos River, and the following parameters were analysed: pH, dissolved oxygen, biochemical oxygen demand (BOD₅), turbidity, fecal coliforms, total dissolved solids, temperature, nitrate, nitrite, phosphorous, chromium, lead, aluminum, zinc, iron, and copper. The results were analysed based on Resolution No. 357/2005 of the Brazilian National Environmental Council (CONAMA) regarding regulatory limits for residues in water. A second analysis was performed based on a water quality index (WQI) used by the Sinos River Basin Management Committee (COMITESINOS). Poor water quality in the Sinos River presents a worrying scenario for the region, since this river is the main source of water supply for the urban core. Health conditions found in the Sinos River, mainly in its lower reaches, are worrying and a strong indicator of human activities on the basin.

  5. Water quality assessment of the Sinos River, Southern Brazil

    Directory of Open Access Journals (Sweden)

    KK. Blume

    Full Text Available The Sinos River basin is located Northeast of the state of Rio Grande do Sul (29º 20' to 30º 10' S and 50º 15' to 51º20'W, Southern Brazil, covering two geomorphologic provinces: the Southern plateau and central depression. It is part of the Guaíba basin and has an area of approximately 800 km², encompassing 32 municipalities. The objective of this study was to monitor water quality in the Sinos River, the largest river in this basin. Water samples were collected at four selected sites in the Sinos River, and the following parameters were analysed: pH, dissolved oxygen, biochemical oxygen demand (BOD5, turbidity, fecal coliforms, total dissolved solids, temperature, nitrate, nitrite, phosphorous, chromium, lead, aluminum, zinc, iron, and copper. The results were analysed based on Resolution No. 357/2005 of the Brazilian National Environmental Council (CONAMA regarding regulatory limits for residues in water. A second analysis was performed based on a water quality index (WQI used by the Sinos River Basin Management Committee (COMITESINOS. Poor water quality in the Sinos River presents a worrying scenario for the region, since this river is the main source of water supply for the urban core. Health conditions found in the Sinos River, mainly in its lower reaches, are worrying and a strong indicator of human activities on the basin.

  6. Water quality index for Al-Gharraf River, southern Iraq

    Directory of Open Access Journals (Sweden)

    Salam Hussein Ewaid

    2017-06-01

    Full Text Available The Water Quality Index has been developed mathematically to evaluate the water quality of Al-Gharraf River, the main branch of the Tigris River in the south of Iraq. Water samples were collected monthly from five sampling stations during 2015–2016, and 11 parameters were analyzed: biological oxygen demand, total dissolved solids, the concentration of hydrogen ions, dissolved oxygen, turbidity, phosphates, nitrates, chlorides, as well as turbidity, total hardness, electrical conductivity and alkalinity. The index classified the river water, without including turbidity as a parameter, as good for drinking at the first station, poor at stations 2, 3, 4 and very poor at station 5. When turbidity was included, the index classified the river water as unsuitable for drinking purposes in the entire river. The study highlights the importance of applying the water quality indices which indicate the total effect of the ecological factors on surface water quality and which give a simple interpretation of the monitoring data to help local people in improving water quality.

  7. Study on measuring social cost of water pollution: concentrated on Han River water system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kwang Im; Min, Dong Gee; Chung, Hoe Seong; Lim, Hyun Jeong; Kim, Mee Sook [Korea Environment Institute, Seoul (Korea)

    1999-12-01

    Following the economic development and the progress of urbanization, the damage on water pollution has been more serious but a social cost caused by water pollution cannot be measured. Although the need of water quality preservation is emphasized, a base material for public investment on enhancing water quality preservation is not equipped yet due to the absence of economic values of water resource. Therefore it measured a cost generated by leaving pollution not treated water quality in this study. To measure the usable value of water resource or the cost of water pollution all over the country should include a national water system, but this study is limited on the mainstream of Han River water system from North Han River through Paldang to Chamsil sluice gates. Further study on Nakdong River and Keum River water systems should be done. 74 refs., 4 figs., 51 tabs.

  8. Water quality assessment of the rivers in bauxite mining area at ...

    African Journals Online (AJOL)

    Water quality assessment of the rivers in bauxite mining area at Kuantan Pahang. ... mining area. Water samples were collected at Kuantan River, Riau River, Pinang River and Pandan Rivers. ... All these rivvers were classified into class II based on INWQS and required conventional treatment for water supply purposes.

  9. Ichthyoplankton entrainment study at the SRS Savannah River water intakes for Westinghouse Savannah River Company

    International Nuclear Information System (INIS)

    Paller, M.

    1992-01-01

    Cooling water for L and K Reactors and makeup water for Par Pond is pumped from the Savannah River at the 1G, 3G, and 5G pump houses. Ichthyoplankton (drifting fish larvae and eggs) from the river are entrained into the reactor cooling systems with the river water and passed through the reactor's heat exchangers where temperatures may reach 70 degrees C during full power operation. Ichthyoplankton mortality under such conditions is assumed to be 100 percent. The number of ichthyoplankton entrained into the cooling system depends on a variety of variables, including time of year, density and distribution of ichthyoplankton in the river, discharge levels in the river, and the volume of water withdrawn by the pumps. Entrainment at the 1 G pump house, which is immediately downstream from the confluence of Upper Three Runs Creek and the Savannah River, is also influenced by discharge rates and ichthyoplankton densities in Upper Three Runs Creek. Because of the anticipated restart of several SRS reactors and the growing concern surrounding striped bass and American shad stocks in the Savannah River, the Department of Energy requested that the Environmental Sciences Section (ESS) of the Savannah River Laboratory sample ichthyoplankton at the SRS Savannah River intakes. Dams ampersand Moore, Inc., under a contract with Westinghouse Savannah River Company performed the sampling and data analysis for the ESS

  10. RIVER-RAD, Radionuclide Transport in Surface Waters

    International Nuclear Information System (INIS)

    1996-01-01

    1 - Description of program or function: RIVER-RAD assesses the potential fate of radionuclides released to rivers. The model is simplified in nature and is intended to provide guidance in determining the potential importance of the surface water pathway, relevant transport mechanisms, and key radionuclides in estimating radiological dose to man. 2 - Method of solution: A compartmental linear transfer model is used in RIVER-RAD. The river system model in the code is divided into reaches (compartments) of equal size, each with a sediment compartment below it. The movement of radionuclides is represented by a series of transfers between the reaches, and between the water and sediment compartments of each reach. Within each reach (for both the water and sediment compartments), the radionuclides are assumed to be uniformly mixed. Upward volatilization is allowed from the water compartment, and the transfer of radionuclides between the reaches is determined by the flow rate of the river. Settling and resuspension velocities determine the transfer of absorbed radionuclides between the water and sediment compartments. Radioactive decay and decay-product buildup are incorporated into all transport calculations for all radionuclide chains specified by the user. Each nuclide may have unique input and removal rates. Volatilization and radiological decay are considered as linear rate constants in the model. 3 - Restrictions on the complexity of the problem: None noted

  11. Water quality study of Sunter River in Jakarta, Indonesia

    Science.gov (United States)

    Martinus, Y.; Astono, W.; Hendrawan, D.

    2018-01-01

    Sunter River flows in the city of Jakarta with the designation of river water for agricultural purposes, and can be utilized for urban business and hydroelectric power industry. This study aims to determine the Sunter River water quality based on physical and chemical parameters. Water sampling was conducted 2 times which done in April and May with 5 sampling stations for measuring. The samples was analayzed in the laboratory according SNI methods for parameters BOD, COD, PO4 3-, NO3, Oil & Grease and Detergents. The quality status of Sunter River is determined by the Pollutant Index method. The results show that the water quality of Sunter River is influenced by organic parameter as dominant pollutant with COD concentration ranging from 48 mg/l - 182.4 mg/l and BOD concentration ranging from 14.69 mg/L - 98.91 mg/L. The Pollution Index calculation results show that the water quality status of Sunter River is moderate polluted with IP 6.47. The source of pollutants generally comes from the urban drainage channels, tributaries, and slaughtering industry. The results of this study expected to be use by the government to improve the water quality of Sunter River for better environment.

  12. Surveying drinking water quality (Balikhlou River, Ardabil Province, Iran)

    Science.gov (United States)

    Aalipour erdi, Mehdi; Gasempour niari, Hassan; Mousavi Meshkini, Seyyed Reza; Foroug, Somayeh

    2018-03-01

    Considering the importance of Balikhlou River as one of the most important water sources of Ardabil, Nir and Sarein cities, maintaining water quality of this river is the most important goals in provincial and national levels. This river includes a wide area that provides agricultural, industrial and drinking water for the residents. Thus, surveying the quality of this river is important in planning and managing of region. This study examined the quality of river through eight physicochemical parameters (SO4, No3, BOD5, TDS, turbidity, pH, EC, COD) in two high- and low-water seasons by international and national standards in 2013. For this purpose, a review along the river has been done in five stations using t test and SPSS software. Model results showed that the amount difference in TDS and EC with WHO standards, and TDS rates with Iran standards in low-water seasons, pH and EC with WHO standards in high-water seasons, is not significant in high-water season; but for pH and SO4 parameters, turbidity and NO3 in both standards and EC value with WHO standard in low-water season and pH, EC, SO4 parameters and turbidity and NO3 in high-water season have significant difference from 5 to 1%, this shows the ideal limit and lowness of parameters for different usage.

  13. River water infiltration enhances denitrification efficiency in riparian groundwater.

    Science.gov (United States)

    Trauth, Nico; Musolff, Andreas; Knöller, Kay; Kaden, Ute S; Keller, Toralf; Werban, Ulrike; Fleckenstein, Jan H

    2018-03-01

    Nitrate contamination in ground- and surface water is a persistent problem in countries with intense agriculture. The transition zone between rivers and their riparian aquifers, where river water and groundwater interact, may play an important role in mediating nitrate exports, as it can facilitate intensive denitrification, which permanently removes nitrate from the aquatic system. However, the in-situ factors controlling riparian denitrification are not fully understood, as they are often strongly linked and their effects superimpose each other. In this study, we present the evaluation of hydrochemical and isotopic data from a 2-year sampling period of river water and groundwater in the riparian zone along a 3rd order river in Central Germany. Based on bi- and multivariate statistics (Spearman's rank correlation and partial least squares regression) we can show, that highest rates for oxygen consumption and denitrification in the riparian aquifer occur where the fraction of infiltrated river water and at the same time groundwater temperature, are high. River discharge and depth to groundwater are additional explanatory variables for those reaction rates, but of minor importance. Our data and analyses suggest that at locations in the riparian aquifer, which show significant river water infiltration, heterotrophic microbial reactions in the riparian zone may be fueled by bioavailable organic carbon derived from the river water. We conclude that interactions between rivers and riparian groundwater are likely to be a key control of nitrate removal and should be considered as a measure to mitigate high nitrate exports from agricultural catchments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Concentration of tritium in precipitation and river water

    International Nuclear Information System (INIS)

    Chatani, Kunio

    1983-01-01

    The concentration of tritium in precipitation and river water has been measured sice 1973 in Aichi, Japan. The tritium in water samples was enriched by electrolysis, and measured by liquid scintillation counting. The concentration of tritium in precipitation decreased from 27 TU in 1973 to 17 TU in 1979, and showed seasonal variation. During this period, there was a rise of concentration because of Chinese nuclear detonation. The concentration of tritium in river water gradually decreased from 44 TU in 1973 to 24 TU in 1979, and the seasonal variation was not observed. Based on the observed values, the relation among precipitation, river water and ground water was analyzed. (J.P.N.)

  15. Tidal Influence on Water Quality of Kapuas Kecil River Downstream

    Science.gov (United States)

    Purnaini, Rizki; Sudarmadji; Purwono, Suryo

    2018-02-01

    The Kapuas Kecil River is strongly influenced by tidal, in the dry season the intrusion of surface water is often a problem for the WTP because it causes the change of raw water quality to be processed. The purpose of this study was to examine the effect of sea tides on water quality of the Kapuas Kecil River. The study was conducted in Kapuas River downstream along ± 30 km from the upper boundary to the estuary. Water sampling is carried out during the dry and rainy season, when the tidal conditions at 7 (seven) locations of the monitoring station. Descriptive analysis methods and regression-correlation statistics are used to determine the effect of tides on water quality in Kapuas River downstream. In general, the water quality of the Kapuas Kecil River has exceeded the criteria of first class water quality, ie water that can be used for drinking water. The status of water quality of the Kapuas Kecil River based on the pollution index calculation shows the condition of the river is "mild to medium pollutants". The result of multiple linear regression analysis got the value of coefficient of determination (adjusted R square) = 0,760, which in whole show that independent variable (tidal and distance) influence to dependent variable (value of TDS) equal to 76%.

  16. Global River Discharge and Water Temperature under Climate Change

    NARCIS (Netherlands)

    Vliet, van M.T.H.; Franssen, W.H.P.; Yearsley, J.R.; Ludwig, F.; Haddeland, I.; Lettenmaier, D.P.; Kabat, P.

    2013-01-01

    Climate change will affect hydrologic and thermal regimes of rivers, having a direct impact on freshwater ecosystems and human water use. Here we assess the impact of climate change on global river flows and river water temperatures, and identify regions that might become more critical for

  17. Water and Benefit Sharing in Transboundary River Basins

    Science.gov (United States)

    Arjoon, D.; Tilmant, A.; Herrmann, M.

    2015-12-01

    Growing water scarcity underlies the importance of cooperation for the effective management of river basins, particularly in the context of international rivers in which unidirectional externalities can lead to asymmetric relationships between riparian countries. Studies have shown that significant economic benefits can be expected through basin-wide cooperation, however, the equitable partitioning of these benefits over the basin is less well studied and tends to overlook the importance of stakeholder input in the definition of equitability. In this study, an institutional arrangement to maximize welfare and then share the scarcity cost in a river basin is proposed. A river basin authority plays the role of a bulk water market operator, efficiently allocating bulk water to the users and collecting bulk water charges which are then equitably redistributed among water users. This highly regulated market restrains the behaviour of water users to control externalities and to ensure basin-wide coordination, enhanced efficiency, and the equitable redistribution of the scarcity cost. The institutional arrangement is implemented using the Eastern Nile River basin as a case study. The importance of this arrangement is that it can be adopted for application in negotiations to cooperate in trans-boundary river basins. The benefit sharing solution proposed is more likely to be perceived as equitable because water users help define the sharing rule. As a result, the definition of the sharing rule is not in question, as it would be if existing rules, such as bankruptcy rules or cooperative game theory solutions, are applied, with their inherent definitions of fairness. Results of the case study show that the sharing rule is predictable. Water users can expect to receive between 93.5% and 95% of their uncontested benefits (benefits that they expect to receive if water was not rationed), depending on the hydrologic scenario.

  18. Comments on James D. Brown and Thom Hudson's "The Alternatives in Language Assessment."

    Science.gov (United States)

    Bruton, Anthony; Brown, James Dean; Hudson, Thom

    1999-01-01

    Anthony Bruton comments on Brown and Hudson's article "The Alternatives in Language Assessment," (v32 n4 Win 1998). Raises questions about some of their definitions and categories and suggests additional items that need to be considered by test takers. Brown and Hudson reply with clarifications of terms and definition of the scope of their paper.…

  19. Water-resources activities in New York, 1987-88

    Science.gov (United States)

    Marshall, Mary P.; Finch, Anne J.

    1988-01-01

    The U.S. Geological Survey conducted more than 35 water resources projects in New York in 1987-88. These studies, done largely through cooperative joint-funding programs with the state, County, and local agencies, encompass statewide networks of measurement stations that provide continuous records of streamflow, groundwater levels, and water quality; they also address regional and local problems as well as critical problems of national scope. Some of the questions addressed by these studies are the effect of sewers on groundwater levels and streamflow on Long Island; the occurrence and transport of PCB residues within the upper Hudson River basin; the effect of acid rain on streams in the Catskill Mountains; the frequency and magnitude of floods statewide; the role of wetlands in improving the chemical quality of landfill leachate; the direction of groundwater movement from waste disposal sites near the Niagara River; and the location and potential well yields of stratified-drift aquifers in upstate New York. (USGS)

  20. Integrated hydrological and water quality model for river management: A case study on Lena River

    Energy Technology Data Exchange (ETDEWEB)

    Fonseca, André, E-mail: andrerd@gmail.com; Botelho, Cidália; Boaventura, Rui A.R.; Vilar, Vítor J.P., E-mail: vilar@fe.up.pt

    2014-07-01

    The Hydrologic Simulation Program FORTRAN (HSPF) model was used to assess the impact of wastewater discharges on the water quality of a Lis River tributary (Lena River), a 176 km{sup 2} watershed in Leiria region, Portugal. The model parameters obtained in this study, could potentially serve as reference values for the calibration of other watersheds in the area or with similar climatic characteristics, which don't have enough data for calibration. Water quality constituents modeled in this study included temperature, fecal coliforms, dissolved oxygen, biochemical oxygen demand, total suspended solids, nitrates, orthophosphates and pH. The results were found to be close to the average observed values for all parameters studied for both calibration and validation periods with percent bias values between − 26% and 23% for calibration and − 30% and 51% for validation for all parameters, with fecal coliforms showing the highest deviation. The model revealed a poor water quality in Lena River for the entire simulation period, according to the Council Directive concerning the surface water quality intended for drinking water abstraction in the Member States (75/440/EEC). Fecal coliforms, orthophosphates and nitrates were found to be 99, 82 and 46% above the limit established in the Directive. HSPF was used to predict the impact of point and nonpoint pollution sources on the water quality of Lena River. Winter and summer scenarios were also addressed to evaluate water quality in high and low flow conditions. A maximum daily load was calculated to determine the reduction needed to comply with the Council Directive 75/440/EEC. The study showed that Lena River is fairly polluted calling for awareness at behavioral change of waste management in order to prevent the escalation of these effects with especially attention to fecal coliforms. - Highlights: • An integrated hydrological and water quality model for river management is presented. • An insight into the

  1. Water Quality Assessment of Ayeyarwady River in Myanmar

    Science.gov (United States)

    Thatoe Nwe Win, Thanda; Bogaard, Thom; van de Giesen, Nick

    2015-04-01

    Myanmar's socio-economic activities, urbanisation, industrial operations and agricultural production have increased rapidly in recent years. With the increase of socio-economic development and climate change impacts, there is an increasing threat on quantity and quality of water resources. In Myanmar, some of the drinking water coverage still comes from unimproved sources including rivers. The Ayeyarwady River is the main river in Myanmar draining most of the country's area. The use of chemical fertilizer in the agriculture, the mining activities in the catchment area, wastewater effluents from the industries and communities and other development activities generate pollutants of different nature. Therefore water quality monitoring is of utmost importance. In Myanmar, there are many government organizations linked to water quality management. Each water organization monitors water quality for their own purposes. The monitoring is haphazard, short term and based on individual interest and the available equipment. The monitoring is not properly coordinated and a quality assurance programme is not incorporated in most of the work. As a result, comprehensive data on the water quality of rivers in Myanmar is not available. To provide basic information, action is needed at all management levels. The need for comprehensive and accurate assessments of trends in water quality has been recognized. For such an assessment, reliable monitoring data are essential. The objective of our work is to set-up a multi-objective surface water quality monitoring programme. The need for a scientifically designed network to monitor the Ayeyarwady river water quality is obvious as only limited and scattered data on water quality is available. However, the set-up should also take into account the current socio-economic situation and should be flexible to adjust after first years of monitoring. Additionally, a state-of-the-art baseline river water quality sampling program is required which

  2. Evaluation Of Water Quality At River Bian In Merauke Papua

    Science.gov (United States)

    Djaja, Irba; Purwanto, P.; Sunoko, H. R.

    2018-02-01

    River Bian in Merauke Regency has been utilized by local people in Papua (the Marind) who live along the river for fulfilling their daily needs, such as shower, cloth and dish washing, and even defecation, waste disposal, including domestic waste, as well as for ceremonial activities related to the locally traditional culture. Change in land use for other necessities and domestic activities of the local people have mounted pressures on the status of the River Bian, thus decreasing the quality of the river. This study had objectives to find out and to analyze river water quality and water quality status of the River Bian, and its compliance with water quality standards for ideal use. The study determined sample point by a purposive sampling method, taking the water samples with a grab method. The analysis of the water quality was performed by standard and pollution index methods. The study revealed that the water quality of River Bian, concerning BOD, at the station 3 had exceeded quality threshold. COD parameter for all stations had exceeded the quality threshold for class III. At three stations, there was a decreasing value due to increasing PI, as found at the stations 1, 2, and 3. In other words, River Bian had been lightly contaminated.

  3. Evaluation Of Water Quality At River Bian In Merauke Papua

    Directory of Open Access Journals (Sweden)

    Djaja Irba

    2018-01-01

    Full Text Available River Bian in Merauke Regency has been utilized by local people in Papua (the Marind who live along the river for fulfilling their daily needs, such as shower, cloth and dish washing, and even defecation, waste disposal, including domestic waste, as well as for ceremonial activities related to the locally traditional culture. Change in land use for other necessities and domestic activities of the local people have mounted pressures on the status of the River Bian, thus decreasing the quality of the river. This study had objectives to find out and to analyze river water quality and water quality status of the River Bian, and its compliance with water quality standards for ideal use. The study determined sample point by a purposive sampling method, taking the water samples with a grab method. The analysis of the water quality was performed by standard and pollution index methods. The study revealed that the water quality of River Bian, concerning BOD, at the station 3 had exceeded quality threshold. COD parameter for all stations had exceeded the quality threshold for class III. At three stations, there was a decreasing value due to increasing PI, as found at the stations 1, 2, and 3. In other words, River Bian had been lightly contaminated.

  4. Control options for river water quality improvement: a case study of ...

    African Journals Online (AJOL)

    Using a simple conceptual dynamic river water quality model, the effects of different basin-wide water quality management options on downstream water quality improvements in a semi-arid river, the Crocodile River (South Africa) were investigated. When a river is impacted by high rates of freshwater withdrawal (in its ...

  5. Transboundary water issues: The Ganga-Brahmaputra-Meghna River Basin

    International Nuclear Information System (INIS)

    Roy, Debasri; Goswami, A.B.; Bose, Balaram

    2004-01-01

    Sharing of water of transboundary rivers among riparian nations has become a cause of major concern in different parts of the globe for quite sometime. The issue in the recent decades has been transformed into a source of international tensions and disputes resulting in strained relationships between riparian nations. Conflicts over sharing of water of the international rivers, like the Tigris, Euphrates and Jordan in the Middle East, the Nile in Northern Africa, the Mekong in South-East Asia, the Ganga-Brahmaputra-Meghna in the Indian subcontinent are widely known. The present paper discusses the water sharing -issue in the Ganga- Brahmaputra-Meghna basin located in the Indian sub continent covering five sovereign countries (namely India, Nepal, China, Bhutan and Bangladesh). Rapidly growing population, expanding agricultural and industrial activities besides the impacts of climate change have resulted in stressed condition in the arena of fresh water availability in the basin. Again occurrence of arsenic in sub-surface water in the lower reaches of the basin in India and Bangladesh has also added a new dimension to the problem. All the rivers of the GBM system exhibit wide variations between peak and lean flows as major part of the basin belongs to the monsoon region, where 80%-90 % of annual rainfall is concentrated in 4-5 months of South -West monsoon in the subcontinent. Over and above, the rivers in GBM system carry huge loads of sediments along with the floodwater and receive huge quantum of different kinds of wastes contaminating the water of the rivers. Again high rate of sedimentation of the major rivers and their tributaries have been affecting not only the carrying capacity of the rivers but also drastically reduced their retention capacity. Almost every year during monsoon about 27% and nearly 60% of the GBM basin lying in India and Bangladesh respectively experience flood. The year round navigation in many rivers has also been affected. All these have

  6. Water quality and treatment of river bank filtrate

    Directory of Open Access Journals (Sweden)

    W. W. J. M. de Vet

    2010-06-01

    Full Text Available In drinking water production, river bank filtration has the advantages of dampening peak concentrations of many dissolved components, substantially removing many micropollutants and removing, virtually completely, the pathogens and suspended solids. The production aquifer is not only fed by the river bank infiltrate but also by water percolating through covering layers. In the polder areas, these top layers consist of peat and deposits from river sediments and sea intrusions.

    This paper discusses the origin and fate of macro components in river bank filtrate, based on extensive full-scale measurements in well fields and treatment systems of the Drinking Water Company Oasen in the Netherlands. First, it clarifies and illustrates redox reactions and the mixing of river bank filtrate and PW as the dominant processes determining the raw water quality for drinking water production. Next, full-scale results are elaborated on to evaluate trickling filtration as an efficient and proven one-step process to remove methane, iron, ammonium and manganese. The interaction of methane and manganese removal with nitrification in these systems is further analyzed. Methane is mostly stripped during trickling filtration and its removal hardly interferes with nitrification. Under specific conditions, microbial manganese removal may play a dominant role.

  7. Stabilization of Aley river water content by forest stands

    Directory of Open Access Journals (Sweden)

    E. G. Paramonov

    2016-06-01

    Full Text Available Aley river basin is one of the most developed territories in West Siberia. Initially, the development here was related to the development of ore mining in the Altai. Currently it is associated mainly with the agricultural orientation of economic development. The intensive involvement of basin lands into the economic turnover for the last 100 years contributed to the formation of a number of environmental problems, such as water and wind erosion, loss of soil fertility and salinization, and desertification of the territory. Besides, the decrease of Aley river water content due to natural and anthropogenic reasons was observed. A specific feature of water management in Aley river basin is a significant amount of water resources used for irrigation purposes and agricultural water supply. To ensure the economic and drinking water supply, two reservoirs and a number of ponds have been constructed and operate in the basin. Forest ecosystems of the basin are considered from the viewpoint of preservation and restoration of small rivers. The ability of forest to accumulate solid precipitation and intercept them during the snowmelt for a longer time reduces the surface drainage and promotes transfer into the subsurface flow, significantly influencing the water content of permanent watercourses, is shown. The state of protective forest plantations in Aley river basin is analyzed. Aley river tributaries are compared by area, the length of water flow, and forest coverage of the basin. It is proposed to regulate the runoff through drastic actions on the increase of forest cover in the plain and especially in the mountainous parts of the basin. Measures to increase the forest cover within water protection zones, afforestation of temporary and permanent river basins, and the protection of agricultural soil fertility are worked out.

  8. An assessment of water quality of Angaw River in Southeastern ...

    African Journals Online (AJOL)

    Physico-chemical and bacteriological water quality of the Angaw river were investigated at three different locations on the river. A range of water quality variables were measured in the river over a period of 12 months. The river was characterized by high ionic content. Relatively higher levels of ionic constituents occurred at ...

  9. The main factors of water pollution in Danube River basin

    Directory of Open Access Journals (Sweden)

    Carmen Gasparotti

    2014-05-01

    Full Text Available The paper proposed herewith aims to give an overview on the pollution along the Danube River. Water quality in Danube River basin (DRB is under a great pressure due to the diverse range of the human activities including large urban center, industrial, agriculture, transport and mining activities. The most important aspects of the water pollution are: organic, nutrient and microbial pollution, , hazardous substances, and hydro-morphological alteration. Analysis of the pressures on the Danube River showed that a large part of the Danube River is subject to multiple pressures and there are important risks for not reaching good ecological status and good chemical status of the water in the foreseeable future. In 2009, the evaluation based on the results of the Trans National Monitoring Network showed for the length of water bodies from the Danube River basin that 22% achieved good ecological status or ecological potential and 45% river water bodies achieved good chemical status. Another important issue is related to the policy of water pollution.

  10. A parsimonious dynamic model for river water quality assessment.

    Science.gov (United States)

    Mannina, Giorgio; Viviani, Gaspare

    2010-01-01

    Water quality modelling is of crucial importance for the assessment of physical, chemical, and biological changes in water bodies. Mathematical approaches to water modelling have become more prevalent over recent years. Different model types ranging from detailed physical models to simplified conceptual models are available. Actually, a possible middle ground between detailed and simplified models may be parsimonious models that represent the simplest approach that fits the application. The appropriate modelling approach depends on the research goal as well as on data available for correct model application. When there is inadequate data, it is mandatory to focus on a simple river water quality model rather than detailed ones. The study presents a parsimonious river water quality model to evaluate the propagation of pollutants in natural rivers. The model is made up of two sub-models: a quantity one and a quality one. The model employs a river schematisation that considers different stretches according to the geometric characteristics and to the gradient of the river bed. Each stretch is represented with a conceptual model of a series of linear channels and reservoirs. The channels determine the delay in the pollution wave and the reservoirs cause its dispersion. To assess the river water quality, the model employs four state variables: DO, BOD, NH(4), and NO. The model was applied to the Savena River (Italy), which is the focus of a European-financed project in which quantity and quality data were gathered. A sensitivity analysis of the model output to the model input or parameters was done based on the Generalised Likelihood Uncertainty Estimation methodology. The results demonstrate the suitability of such a model as a tool for river water quality management.

  11. Sediment transport following water transfer from Yangtze River to Taihu Basin

    Directory of Open Access Journals (Sweden)

    Zheng Gong

    2011-12-01

    Full Text Available To meet the increasing need of fresh water and to improve the water quality of Taihu Lake, water transfer from the Yangtze River was initiated in 2002. This study was performed to investigate the sediment distribution along the river course following water transfer. A rainfall-runoff model was first built to calculate the runoff of the Taihu Basin in 2003. Then, the flow patterns of river networks were simulated using a one-dimensional river network hydrodynamic model. Based on the boundary conditions of the flow in tributaries of the Wangyu River and the water level in Taihu Lake, a one-dimensional hydrodynamic and sediment transport numerical model of the Wangyu River was built to analyze the influences of the inflow rate of the water transfer and the suspended sediment concentration (SSC of inflow on the sediment transport. The results show that the water transfer inflow rate and SSC of inflow have significant effects on the sediment distribution. The higher the inflow rate or SSC of inflow is, the higher the SSC value is at certain cross-sections along the river course of water transfer. Higher inflow rate and SSC of inflow contribute to higher sediment deposition per kilometer and sediment thickness. It is also concluded that a sharp decrease of the inflow velocity at the entrance of the Wangyu River on the river course of water transfer induces intense sedimentation at the cross-section near the Changshu hydro-junction. With an increasing distance from the Changshu hydro-junction, the sediment deposition and sedimentation thickness decrease gradually along the river course.

  12. Chemical composition of the mineral waters of the Congo River

    International Nuclear Information System (INIS)

    Tshiashala, M.D.; Lumu, B.M.; Lobo, K.K.; Tshisumpa, M.; Wembo, L.S.

    2003-01-01

    Atomic absorption spectrophotometry has been applied to river Congo waters for a global monitoring of trace element contents. 15 elements Ag, Au, Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb and Zn have been determined in samples collected at 2 sites along the river Congo. Results are compared with those observed in other river waters collected in Kinshasa and elsewhere and for compliance with the international quality standards elaborated by the Who, USA and SSRU. The waters of river Congo have been found less mineralized than those of river Niger. They are of the same order of magnitude than those observed in some local rivers such as Ndjili, Lubudi, Funa, Tshangu and Tshenke.

  13. The impact of industries on surface water quality of River Ona and ...

    African Journals Online (AJOL)

    Samples of water from two rivers (River Ona and River Alaro) in Oluyole ... were higher in the industrial zones than those found in the upstream of both rivers. ... Key words: River Ona, River Alaro, industrial discharges, surface water quality.

  14. Monitoring and Assessment of Youshui River Water Quality in Youyang

    Science.gov (United States)

    Wang, Xue-qin; Wen, Juan; Chen, Ping-hua; Liu, Na-na

    2018-02-01

    By monitoring the water quality of Youshui River from January 2016 to December 2016, according to the indicator grading and the assessment standard of water quality, the formulas for 3 types water quality indexes are established. These 3 types water quality indexes, the single indicator index Ai, single moment index Ak and the comprehensive water quality index A, were used to quantitatively evaluate the quality of single indicator, the water quality and the change of water quality with time. The results show that, both total phosphorus and fecal coliform indicators exceeded the standard, while the other 16 indicators measured up to the standard. The water quality index of Youshui River is 0.93 and the grade of water quality comprehensive assessment is level 2, which indicated that the water quality of Youshui River is good, and there is room for further improvement. To this end, several protection measures for Youshui River environmental management and pollution treatment are proposed.

  15. Estimation of low-flow statistics at ungaged sites on streams in the Lower Hudson River Basin, New York, from data in geographic information systems

    Science.gov (United States)

    Randall, Allan D.; Freehafer, Douglas A.

    2017-08-02

    A variety of watershed properties available in 2015 from geographic information systems were tested in regression equations to estimate two commonly used statistical indices of the low flow of streams, namely the lowest flows averaged over 7 consecutive days that have a 1 in 10 and a 1 in 2 chance of not being exceeded in any given year (7-day, 10-year and 7-day, 2-year low flows). The equations were based on streamflow measurements in 51 watersheds in the Lower Hudson River Basin of New York during the years 1958–1978, when the number of streamflow measurement sites on unregulated streams was substantially greater than in subsequent years. These low-flow indices are chiefly a function of the area of surficial sand and gravel in the watershed; more precisely, 7-day, 10-year and 7-day, 2-year low flows both increase in proportion to the area of sand and gravel deposited by glacial meltwater, whereas 7-day, 2-year low flows also increase in proportion to the area of postglacial alluvium. Both low-flow statistics are also functions of mean annual runoff (a measure of net water input to the watershed from precipitation) and area of swamps and poorly drained soils in or adjacent to surficial sand and gravel (where groundwater recharge is unlikely and riparian water loss to evapotranspiration is substantial). Small but significant refinements in estimation accuracy resulted from the inclusion of two indices of stream geometry, channel slope and length, in the regression equations. Most of the regression analysis was undertaken with the ordinary least squares method, but four equations were replicated by using weighted least squares to provide a more realistic appraisal of the precision of low-flow estimates. The most accurate estimation equations tested in this study explain nearly 84 and 87 percent of the variation in 7-day, 10-year and 7-day, 2-year low flows, respectively, with standard errors of 0.032 and 0.050 cubic feet per second per square mile. The equations

  16. Simulating Water Resource Disputes of Transboundary River: A Case Study of the Zhanghe River Basin, China

    Science.gov (United States)

    Yuan, Liang; He, Weijun; Liao, Zaiyi; Mulugeta Degefu, Dagmawi; An, Min; Zhang, Zhaofang

    2018-01-01

    Water resource disputes within transboundary river basin has been hindering the sustainable use of water resources and efficient management of environment. The problem is characterized by a complex information feedback loop that involves socio-economic and environmental systems. This paper presents a system dynamics based model that can simulate the dynamics of water demand, water supply, water adequacy and water allocation instability within a river basin. It was used for a case study in the Zhanghe River basin of China. The base scenario has been investigated for the time period between 2000 and 2050. The result shows that the Chinese national government should change the water allocation scheme of downstream Zhanghe River established in 1989, more water need to be allocated to the downstream cities and the actual allocation should be adjusted to reflect the need associated with the socio-economic and environmental changes within the region, and system dynamics improves the understanding of concepts and system interactions by offering a comprehensive and integrated view of the physical, social, economic, environmental, and political systems.

  17. Water stress in global transboundary river basins : Significance of upstream water use on downstream stress

    NARCIS (Netherlands)

    Munia, H.; Guillaume, J. H A; Mirumachi, N.; Porkka, M.; Wada, Y.|info:eu-repo/dai/nl/341387819; Kummu, M.

    2016-01-01

    Growing population and water demand have increased pressure on water resources in various parts of the globe, including many transboundary river basins. While the impacts of upstream water use on downstream water availability have been analysed in many of these international river basins, this has

  18. Isotope Compositions Of Mekong River Flow Water In The South Of Vietnam

    International Nuclear Information System (INIS)

    Nguyen Kien Chinh; Huynh Long; Le Danh Chuan; Nguyen Van Nhien; Tran Thi Bich Lien

    2008-01-01

    As a part of the Research Contract No. VIE/12569, isotope composition of Mekong river flow water in the South of Vietnam has been monitored to provide information on water origin and residence times, surface-groundwater exchange in the monitoring area. According to the primary results obtained, a seasonal variation as well as the dependence on local precipitation and on the river water level of isotopic composition of two distributaries of Mekong river water have been observed. At the same time a slight change on season of tritium in rivers water and the difference between tritium content in local rainy water and river water has been recorded. (author)

  19. 33 CFR 223.1 - Mississippi River Water Control Management Board.

    Science.gov (United States)

    2010-07-01

    ..., responsibilities and authority of the Mississippi River Water Control Management Board. (b) Applicability. This... control management within the Mississippi River Basin. (c) Objectives. The objectives of the Board are: (1...) Composition. The Mississippi River Water Control Management Board is a continuing board consisting of the...

  20. Water quality assessment of the Shatt al-Arab River, Southern Iraq

    Directory of Open Access Journals (Sweden)

    Mohammad Salim Moyel

    2015-06-01

    Full Text Available Objective: To assess suitability of the water quality of Shatt al-Arab River for protection of aquatic life, potable water supply and irrigation uses. Methods: The Shatt al-Arab River was monitored on a monthly basis from July 2009 to June 2010. A water quality index (WQI was calculated to assess the suitability of water for protection of aquatic life, potable water supply and irrigation uses during the dry season from July to December 2009 and the wet season from January until June 2010. Results: The results of the WQI showed that the lowest water quality values were scored during the dry season for all three uses of the river. Marginal water quality values were recorded for protection of aquatic life and fair (upstream to poor (downstream water quality values were recorded for irrigation uses. Moreover, the river water was not suitable for potable water supply without elaborate treatment. Conclusions: Deterioration of the Shatt al-Arab water quality has been attributed to reduced freshwater discharges from Tigris and Euphrates Rivers, low annual precipitations and an advancing salt wedge from the Arabian Gulf. However, a combination of those factors such as low riverine discharge and advancing salt wedge with a continuous discharge of agriculture, oil industry and urban point effluent has polluted the waters and fostered the decline of the Shatt al-Arab River water quality during the study period. The study indicated that application of WQIs was a useful tool to monitor and assess the overall water quality of the Shatt al-Arab River.

  1. Water equivalent of snow survey of the Red River Basin and Heart/Cannonball River Basin, March 1978

    International Nuclear Information System (INIS)

    Feimster, E.L.

    1979-10-01

    The water equivalent of accumulated snow was estimated in the Red River and Heart/Cannonball River basins and surrounding areas in North Dakota during the period 8 to 17 March 1978. A total of 570 km were flown, covering a 274 km section of the Red River Basin watershed. These lines had been surveyed in March 1974. Twelve flight lines were flown over the North Dakota side of the Red River from a point 23 km south of the Canadian border southward to the city of Fargo, North Dakota. The eight flight lines flown over the Minnesota side of the Red River extended from 23 km south of the Canadian border southward to Breckenridge, Minnesota. Using six flight lines, a total of 120 km were flown in the Heart/Cannonball River Basin, an area southwest of the city of Bismark, North Dakota. This was the first such flight in the Heart/Cannonball River Basin area. Computed weighted average water equivalents on each flight line in the Red River Basin ranged from 4.8 cm to 12.7 cm of water, averaging 7.6 cm for all lines. In the Heart/Cannonball River Basin, the weighted water equivalent ranged from 8.9 cm to 19.1 cm of water, averaging 12.7 cm for all lines. The method used employs the measurement of the natural gamma rays both before and after snow covers the ground

  2. Habitat Mapping Cruise - Hudson Canyon (HB0904, EK60)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Objectives are to: 1) perform multibeam mapping of transitional and deepwater habitats in Hudson Canyon (off New Jersey) with the National Institute of Undersea...

  3. Arsenic occurrence in water bodies in Kharaa river basin

    Directory of Open Access Journals (Sweden)

    Azzaya T

    2018-02-01

    Full Text Available Distribution of arsenic (As and its compound and related toxicology are serious concerns nowadays. Gold mining activity is one of the anthropogenic sources of environmental contamination regarding As and other heavy metals. In Mongolia, the most productive gold mining sites are placed in the Kharaa river basin. A hundred water samples were collected from river, spring and deep wells in this river basin. Along with total As and its species-As(III and As(V, examination of concentration levels of other key parameters, 21 heavy metals with pH, total hardness, electric conductivity, anion and cations, was also carried out. In respect to the permissible limit formulated by the Mongolian National Drinking water quality standard (MNS 0900:2005, As10 µg/l, the present study showed that most of samples were found no contamination. In Kharaa river basin, an average concentration of total As in surface water was 4.04 µg/l with wide range in 0.07−30.30 µg/l whereas it was 2.24 µg/l in groundwater. As analysis in surface water in licensed area of Gatsuurt gold mining showed a mean concentration with 24.90 µg/l presenting higher value than that of value in river basin by 6 orders of magnitude and it was 2 times higher than permissible level as well. In Boroo river nearby Boroo gold mining area, As concentration in water was ranged in 6.05−6.25 µg/l. Ammonia pollution may have present at estuary of Zuunmod river in Mandal sum with above the permissible level described in national water quality standard. Geological formation of the rocks and minerals affected to change of heavy metal concentration, especially As and uranium (U at spring water nearby Gatsuurt-Boroo improved road.

  4. Quality of surface waters in the lower Columbia River Basin

    Science.gov (United States)

    Santos, John F.

    1965-01-01

    This report, made during 1959-60, provides reconnaissance data on the quality of waters in the lower Columbia River basin ; information on present and future water problems in the basin; and data that can be employed both in water-use studies and in planning future industrial, municipal, and agricultural expansion within this area. The lower Columbia River basin consists of approximately 46,000 square miles downstream from the confluence of the Snake and Columbia Rivers The region can be divided into three geographic areas. The first is the heavily forested, sparsely populated mountain regions in which quality of water in general is related to geologic and climatological factors. The second is a semiarid plateau east of the Cascade Mountains; there differences in geology and precipitation, together with more intensive use of available water for irrigation, bring about marked differences in water quality. The third is the Willamette-Puget trough area in which are concentrated most of the industry and population and in which water quality is influenced by sewage and industrial waste disposal. The majority of the streams in the lower Columbia River basin are calcium magnesium bicarbonate waters. In general, the rivers rising in the. Coast Range and on the west slope of the Cascade Range contain less than 100 parts per million of dissolved solids, and hardness of the water is less than 50 parts per million. Headwater reaches of the streams on the east slope of the Cascade Range are similar to those on the west slope; but, downstream, irrigation return flows cause the dissolved-solids content and hardness to increase. Most of the waters, however, remain calcium magnesium bicarbonate in type. The highest observed dissolved-solids concentrations and also some changes in chemical composition occur in the streams draining the more arid parts of the area. In these parts, irrigation is chiefly responsible for increasing the dissolved-solids concentration and altering the

  5. Simulation of the Regional Ground-Water-Flow System and Ground-Water/Surface-Water Interaction in the Rock River Basin, Wisconsin

    Science.gov (United States)

    Juckem, Paul F.

    2009-01-01

    A regional, two-dimensional, areal ground-water-flow model was developed to simulate the ground-water-flow system and ground-water/surface-water interaction in the Rock River Basin. The model was developed by the U.S. Geological Survey (USGS), in cooperation with the Rock River Coalition. The objectives of the regional model were to improve understanding of the ground-water-flow system and to develop a tool suitable for evaluating the effects of potential regional water-management programs. The computer code GFLOW was used because of the ease with which the model can simulate ground-water/surface-water interactions, provide a framework for simulating regional ground-water-flow systems, and be refined in a stepwise fashion to incorporate new data and simulate ground-water-flow patterns at multiple scales. The ground-water-flow model described in this report simulates the major hydrogeologic features of the modeled area, including bedrock and surficial aquifers, ground-water/surface-water interactions, and ground-water withdrawals from high-capacity wells. The steady-state model treats the ground-water-flow system as a single layer with hydraulic conductivity and base elevation zones that reflect the distribution of lithologic groups above the Precambrian bedrock and a regionally significant confining unit, the Maquoketa Formation. In the eastern part of the Basin where the shale-rich Maquoketa Formation is present, deep ground-water flow in the sandstone aquifer below the Maquoketa Formation was not simulated directly, but flow into this aquifer was incorporated into the GFLOW model from previous work in southeastern Wisconsin. Recharge was constrained primarily by stream base-flow estimates and was applied uniformly within zones guided by regional infiltration estimates for soils. The model includes average ground-water withdrawals from 1997 to 2006 for municipal wells and from 1997 to 2005 for high-capacity irrigation, industrial, and commercial wells. In addition

  6. River flow controls on tides an tide-mean water level profiles in a tidel freshwater river

    NARCIS (Netherlands)

    Sassi, M.G.; Hoitink, A.J.F.

    2013-01-01

    [1] Tidal rivers feature oscillatory and steady gradients in the water surface, controlled by interactions between river flow and tides. The river discharge attenuates the tidal motion, and tidal motion increases tidal-mean friction in the river, which may act as a barrier to the river discharge.

  7. Analyses of flow modification on water quality on Nechako River

    International Nuclear Information System (INIS)

    Mitchell, A.C.; James, C.B.; Edinger, J.E.

    1995-01-01

    Alcan Smelters and Chemicals Ltd. initiated construction of the final phase of the Kemano Completion Project in north-central British Columbia to divert additional water from the Nechako Reservoir to the existing powerhouse. The Nechako Reservoir was created by the construction of the Kenney Dam in Nechako Canyon, a natural barrier to salmon migration. The Nechako River downstream of Nechako Canyon supports important runs of sockeye and chinook salmon. This additional diversion of Nechako River flow creates the potential of high water temperatures and increased thermal stress to migrating sockeye salmon enroute to their spawning grounds in Nechako River tributaries. To achieve specific downstream water temperature objectives during sockeye salmon migration each summer, a two-level outlet facility adjacent to Kenney Dam is to be constructed to release cooling water at 10 C to the Nechako River. Results of mathematical modeling of Nechako River water temperatures show that, based on specified design criteria, a maximum Kenney Dam release of 167 m 3 /s at 10 C would be required to meet the downstream water temperature objectives

  8. Sr isotope tracing of multiple water sources in a complex river system, Noteć River, central Poland

    Energy Technology Data Exchange (ETDEWEB)

    Zieliński, Mateusz, E-mail: mateusz.zielinski@amu.edu.pl [Institute of Geoecology and Geoinformation, Adam Mickiewicz University, Dzięgielowa 27, 61-680 Poznań (Poland); Dopieralska, Jolanta, E-mail: dopieralska@amu.edu.pl [Poznań Science and Technology Park, Adam Mickiewicz University Foundation, Rubież 46, 61-612 Poznań (Poland); Belka, Zdzislaw, E-mail: zbelka@amu.edu.pl [Isotope Laboratory, Adam Mickiewicz University, Dzięgielowa 27, 61-680 Poznań (Poland); Walczak, Aleksandra, E-mail: awalczak@amu.edu.pl [Isotope Laboratory, Adam Mickiewicz University, Dzięgielowa 27, 61-680 Poznań (Poland); Siepak, Marcin, E-mail: siep@amu.edu.pl [Institute of Geology, Adam Mickiewicz University, Maków Polnych 16, 61-606 Poznań (Poland); Jakubowicz, Michal, E-mail: mjakub@amu.edu.pl [Institute of Geoecology and Geoinformation, Adam Mickiewicz University, Dzięgielowa 27, 61-680 Poznań (Poland)

    2016-04-01

    Anthropogenic impact on surface waters and other elements in the environment was investigated in the Noteć River basin in central Poland. The approach was to trace changes in the Sr isotope composition ({sup 87}Sr/{sup 86}Sr) and concentration in space and time. Systematic sampling of the river water shows a very wide range of {sup 87}Sr/{sup 86}Sr ratios, from 0.7089 to 0.7127. This strong variation, however, is restricted to the upper course of the river, whereas the water in the lower course typically shows {sup 87}Sr/{sup 86}Sr values around 0.7104–0.7105. Variations in {sup 87}Sr/{sup 86}Sr are associated with a wide range of Sr concentrations, from 0.14 to 1.32 mg/L. We find that strong variations in {sup 87}Sr/{sup 86}Sr and Sr concentrations can be accounted for by mixing of two end-members: 1) atmospheric waters charged with Sr from the near-surface weathering and wash-out of Quaternary glaciogenic deposits, and 2) waters introduced into the river from an open pit lignite mine. The first reservoir is characterized by a low Sr content and high {sup 87}Sr/{sup 86}Sr ratios, whereas mine waters display opposite characteristics. Anthropogenic pollution is also induced by extensive use of fertilizers which constitute the third source of Sr in the environment. The study has an important implication for future archeological studies in the region. It shows that the present-day Sr isotope signatures of river water, flora and fauna cannot be used unambiguously to determine the “baseline” for bioavailable {sup 87}Sr/{sup 86}Sr in the past. - Highlights: • Sr isotopes fingerprint water sources and their interactions in a complex river system. • Mine waters and fertilizers are critical anthropogenic additions in the river water. • Limited usage of environmental isotopic data in archeological studies. • Sr budget of the river is dynamic and temporary.

  9. Physico-chemical and biological studies on water from Aries River (Romania).

    Science.gov (United States)

    Butiuc-Keul, A; Momeu, L; Craciunas, C; Dobrota, C; Cuna, S; Balas, G

    2012-03-01

    Our work was focused on physico-chemical and biological characteristics of Aries River, one of the largest rivers from Romania. Water samples were collected from 11 sites along Aries River course. We have measured de (18)O and D isotopic composition of Aries River water in these locations and correlated these data with the isotopic composition of aquatic plants and with the pollution degree. Some ions from Aries River water were also analyzed: NO(3)(-), NO(2)(-), PO(4)(3-) Cu(2+), Fe(3+). Analysis of diatom communities has been performed in order to quantify the level of water pollution of Aries River. All physico-chemical analyses revealed that the most polluted site is Abrud; the source of pollution is most probably the mining enterprise from Rosia Montana. Water isotope content increases from upstream to downstream of the locations analyzed. The structure of diatom communities is strongly influenced by the different pollution sources from this area: mine waters, industrial waters, waste products, land cleaning, tourism etc. The water eutrophication increases from upstream of Campeni to downstream of Campia Turzii. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. 78 FR 20169 - Notice of Availability of an Environmental Assessment for the Proposed Hudson Yards Concrete...

    Science.gov (United States)

    2013-04-03

    ... Environmental Assessment for the Proposed Hudson Yards Concrete Casing Project in New York, New York AGENCY... of Availability of Environmental Assessment for the Hudson Yards Concrete Casing Construction... the construction of an underground concrete casing to preserve a right-of- way (ROW) (the proposed...

  11. The Bible and mission in faith perspective: J.Hudson Taylor and the early China Inland Mission

    NARCIS (Netherlands)

    Wigram, C.E.M.

    2007-01-01

    The thesis 'The Bible and Mission in Faith Perspective: J.Hudson Taylor and the Early China Inland Mission' by Christopher E.M. Wigram analysis the hermeneutical assumptions that underlay Hudson Taylor's approach to biblical interpretation, and the significance of his approach for the mission which

  12. Influence of a water regulation event on the age of Yellow River water in the Bohai

    Science.gov (United States)

    Li, Zhen; Wang, Haiyan; Guo, Xinyu; Liu, Zhe; Gao, Huiwang; Zhang, Guiling

    2017-10-01

    Abrupt changes in freshwater inputs from large rivers usually imply regime shifts in coastal water environments. The influence of a water regulation event on the age of the Yellow River water in the Bohai was modeled using constituent-oriented age and residence time theory to better understand the change in the environmental function of the hydrodynamic field owing to human activities. The water ages in Laizhou Bay, the central basin, and the Bohai strait are sensitive to water regulation. The surface ages in those areas can decrease by about 300 days, particularly in July, and the age stratification is also strengthened. A water regulation event can result in declines in the water age in early July ahead of declines in the water age under climatological conditions (without the regulation event) by about 1 and 5 months in the central basin and Laizhou Bay, respectively. The change in the coastal circulation due to the water regulation event is the primary reason for the change in the Yellow River water age. The high Yellow River flow rate can enhance the density flow and, therefore, reduce the age of the Yellow River water. The subsequent impact of a single water regulation event can last about 1.0 to 4.0 years in different subregions.

  13. Babesiosis in Lower Hudson Valley, New York

    Centers for Disease Control (CDC) Podcasts

    2011-05-12

    This podcast discusses a study about an increase in babesiosis in the Lower Hudson Valley of New York state. Dr. Julie Joseph, Assistant Professor of Medicine at New York Medical College, shares details of this study.  Created: 5/12/2011 by National Center for Emerging Zoonotic and Infectious Diseases (NCEZID).   Date Released: 5/23/2011.

  14. Critique and sensitivity analysis of the compensation function used in the LMS Hudson River striped bass models. Environmental Sciences Division publication No. 944

    International Nuclear Information System (INIS)

    Van Winkle, W.; Christensen, S.W.; Kauffman, G.

    1976-12-01

    The description and justification for the compensation function developed and used by Lawler, Matusky and Skelly Engineers (LMS) (under contract to Consolidated Edison Company of New York) in their Hudson River striped bass models are presented. A sensitivity analysis of this compensation function is reported, based on computer runs with a modified version of the LMS completely mixed (spatially homogeneous) model. Two types of sensitivity analysis were performed: a parametric study involving at least five levels for each of the three parameters in the compensation function, and a study of the form of the compensation function itself, involving comparison of the LMS function with functions having no compensation at standing crops either less than or greater than the equilibrium standing crops. For the range of parameter values used in this study, estimates of percent reduction are least sensitive to changes in YS, the equilibrium standing crop, and most sensitive to changes in KXO, the minimum mortality rate coefficient. Eliminating compensation at standing crops either less than or greater than the equilibrium standing crops results in higher estimates of percent reduction. For all values of KXO and for values of YS and KX at and above the baseline values, eliminating compensation at standing crops less than the equilibrium standing crops results in a greater increase in percent reduction than eliminating compensation at standing crops greater than the equilibrium standing crops

  15. Critique and sensitivity analysis of the compensation function used in the LMS Hudson River striped bass models. Environmental Sciences Division publication No. 944

    Energy Technology Data Exchange (ETDEWEB)

    Van Winkle, W.; Christensen, S.W.; Kauffman, G.

    1976-12-01

    The description and justification for the compensation function developed and used by Lawler, Matusky and Skelly Engineers (LMS) (under contract to Consolidated Edison Company of New York) in their Hudson River striped bass models are presented. A sensitivity analysis of this compensation function is reported, based on computer runs with a modified version of the LMS completely mixed (spatially homogeneous) model. Two types of sensitivity analysis were performed: a parametric study involving at least five levels for each of the three parameters in the compensation function, and a study of the form of the compensation function itself, involving comparison of the LMS function with functions having no compensation at standing crops either less than or greater than the equilibrium standing crops. For the range of parameter values used in this study, estimates of percent reduction are least sensitive to changes in YS, the equilibrium standing crop, and most sensitive to changes in KXO, the minimum mortality rate coefficient. Eliminating compensation at standing crops either less than or greater than the equilibrium standing crops results in higher estimates of percent reduction. For all values of KXO and for values of YS and KX at and above the baseline values, eliminating compensation at standing crops less than the equilibrium standing crops results in a greater increase in percent reduction than eliminating compensation at standing crops greater than the equilibrium standing crops.

  16. Water Stress in Global Transboundary River Basins: Significance of Upstream Water Use on Downstream Stress

    Science.gov (United States)

    Munia, H.; Guillaume, J. H. A.; Mirumachi, N.; Porkka,M.; Wada, Yoshihide; Kummu, M.

    2016-01-01

    Growing population and water demand have increased pressure on water resources in various parts of the globe, including many transboundary river basins. While the impacts of upstream water use on downstream water availability have been analyzed in many of these international river basins, this has not been systematically done at the global scale using coherent and comparable datasets. In this study, we aim to assess the change in downstream water stress due to upstream water use in the world's transboundary river basins. Water stress was first calculated considering only local water use of each sub-basin based on country-basin mesh, then compared with the situation when upstream water use was subtracted from downstream water availability. Wefound that water stress was generally already high when considering only local water use, affecting 0.95-1.44 billion people or 33%-51% of the population in transboundary river basins. After accounting for upstream water use, stress level increased by at least 1 percentage-point for 30-65 sub-basins, affecting 0.29-1.13 billion people. Altogether 288 out of 298 middle-stream and downstream sub-basin areas experienced some change in stress level. Further, we assessed whether there is a link between increased water stress due to upstream water use and the number of conflictive and cooperative events in the transboundary river basins, as captured by two prominent databases. No direct relationship was found. This supports the argument that conflicts and cooperation events originate from a combination of different drivers, among which upstream-induced water stress may play a role. Our findings contribute to better understanding of upstream-downstream dynamics in water stress to help address water allocation problems.

  17. Effects of Water Diversion from Yangtze River to Lake Taihu on the Phytoplankton Habitat of the Wangyu River Channel

    Directory of Open Access Journals (Sweden)

    Jiangyu Dai

    2018-06-01

    Full Text Available To reveal the effects of water diversion from the Yangtze River to Lake Taihu on the phytoplankton habitat of the main water transfer channel of the Wangyu River, we investigated the water’s physicochemical parameters and phytoplankton communities during the water diversion and non-diversion periods over the winters between 2014–2016, respectively. During the water diversion periods in the winter of 2014 and 2015, the nutrients and organic pollutant contents of the Wangyu River channel were significantly lower than those during the non-diversion period in 2016. Moreover, the phytoplankton diversities and relative proportions of Bacillariophyta during the diversion periods evidently increased during the water diversion periods in winter. The increase in the water turbidity content, the decrease in the contents of the permanganate index, and the total phosphorus explained only 21.4% of the variations in the phytoplankton communities between the diversion and non-diversion periods in winter, which revealed significant contributions of the allochthonous species from the Yangtze River and tributaries of the Wangyu River to phytoplankton communities in the Wangyu River. The increasing gradient in the contents of nutrients and organic pollutants from the Yangtze River to Lake Taihu indicated the potential allochthonous pollutant inputs along with the Wangyu River. Further controlling the pollutants from the tributaries of the Wangyu River is critical in order to improve the phytoplankton habitats in river channels and Lake Taihu.

  18. Hydrochemical evidence for mixing of river water and groundwater during high-flow conditions, lower Suwannee River basin, Florida, USA

    Science.gov (United States)

    Crandall, C.A.; Katz, B.G.; Hirten, J.J.

    1999-01-01

    Karstic aquifers are highly susceptible to rapid infiltration of river water, particularly during periods of high flow. Following a period of sustained rainfall in the Suwannee River basin, Florida, USA, the stage of the Suwannee River rose from 3.0 to 5.88 m above mean sea level in April 1996 and discharge peaked at 360 m3/s. During these high-flow conditions, water from the Suwannee River migrated directly into the karstic Upper Floridan aquifer, the main source of water supply for the area. Changes in the chemical composition of groundwater were quantified using naturally occurring geochemical tracers and mass-balance modeling techniques. Mixing of river water with groundwater was indicated by a decrease in the concentrations of calcium, silica, and 222Rn; and by an increase in dissolved organic carbon (DOC), tannic acid, and chloride, compared to low-flow conditions in water from a nearby monitoring well, Wingate Sink, and Little River Springs. The proportion (fraction) of river water in groundwater ranged from 0.13 to 0.65 at Wingate Sink and from 0.5 to 0.99 at well W-17258, based on binary mixing models using various tracers. The effectiveness of a natural tracer in quantifying mixing of river water and groundwater was related to differences in tracer concentration of the two end members and how conservatively the tracer reacted in the mixed water. Solutes with similar concentrations in the two end-member waters (Na, Mg, K, Cl, SO4, SiO2) were not as effective tracers for quantifying mixing of river water and groundwater as those with larger differences in end-member concentrations (Ca, tannic acid, DOC, 222Rn, HCO3). ?? Springer-Verlag.

  19. [Tritium in the Water System of the Techa River].

    Science.gov (United States)

    Chebotina, M Ja; Nikolin, O A

    2016-01-01

    The aim of the paper is to study modern tritium levels in various sources of the drinking water supply in the settlements situated in the riverside zone of the Techa. Almost everywhere the water entering water-conduit wells from deep slits (100-180 m) contains averagely 2-3 times higher tritium concentrations than the water from less deep personal wells, slits and springs. Tritium levels in the drinking water supply decrease with the distance from the dam; while in wells, springs and personal wells they are constant all along the river. The observed phenomenon can be explained by the fact that the river bed of the Techa is situated at a break zone of the earth crust, where the contaminated deep water penetrates from the reservoirs of the "Mayak" enterprise situated in the upper part of the regulated river bed. Less deep water sources (personal wells, slits and springs) receive predominantly flood, atmospheric and subsoil waters and are not connected with the reservoirs.

  20. Trend analysis of a tropical urban river water quality in Malaysia.

    Science.gov (United States)

    Othman, Faridah; M E, Alaa Eldin; Mohamed, Ibrahim

    2012-12-01

    Rivers play a significant role in providing water resources for human and ecosystem survival and health. Hence, river water quality is an important parameter that must be preserved and monitored. As the state of Selangor and the city of Kuala Lumpur, Malaysia, are undergoing tremendous development, the river is subjected to pollution from point and non-point sources. The water quality of the Klang River basin, one of the most densely populated areas within the region, is significantly degraded due to human activities as well as urbanization. Evaluation of the overall river water quality status is normally represented by a water quality index (WQI), which consists of six parameters, namely dissolved oxygen, biochemical oxygen demand, chemical oxygen demand, suspended solids, ammoniacal nitrogen and pH. The objectives of this study are to assess the water quality status for this tropical, urban river and to establish the WQI trend. Using monthly WQI data from 1997 to 2007, time series were plotted and trend analysis was performed by employing the first-order autocorrelated trend model on the moving average values for every station. The initial and final values of either the moving average or the trend model were used as the estimates of the initial and final WQI at the stations. It was found that Klang River water quality has shown some improvement between 1997 and 2007. Water quality remains good in the upper stream area, which provides vital water sources for water treatment plants in the Klang valley. Meanwhile, the water quality has also improved in other stations. Results of the current study suggest that the present policy on managing river quality in the Klang River has produced encouraging results; the policy should, however, be further improved alongside more vigorous monitoring of pollution discharge from various point sources such as industrial wastewater, municipal sewers, wet markets, sand mining and landfills, as well as non-point sources such as

  1. Water-energy-food nexus in Large Asian River Basins

    OpenAIRE

    Keskinen, Marko; Varis, Olli

    2016-01-01

    The water-energy-food nexus ("nexus") is promoted as an approach to look at the linkages between water, energy and food. The articles of Water's Special Issue "Water-Energy-Food Nexus in Large Asian River Basins" look at the applicability of the nexus approach in different regions and rivers basins in Asia. The articles provide practical examples of the various roles and importance of water-energy-food linkages, but also discuss the theoretical aspects related to the nexus. While it is eviden...

  2. Distinguishing oil and water layers in a cracked porous medium using pulsed neutron logging data based on Hudson's crack theory

    Science.gov (United States)

    Zhang, Xueang; Yang, Zhichao; Tang, Bin; Wang, Renbo; Wei, Xiong

    2018-05-01

    During geophysical surveys, water layers may interfere with the detection of oil layers. In order to distinguish between oil and water layers in porous cracked media, research on the properties of the cracks, the oil and water layers, and their relation to pulsed neutron logging characteristics is essential. Using Hudson's crack theory, we simulated oil and water layers in a cracked porous medium with different crack parameters corresponding to the well log responses. We found that, in a cracked medium with medium-angle (40°-50°) cracks, the thermal neutron count peak value is higher and more sensitive than those in low-angle and high-angle crack environments; in addition, the thermal neutron density distribution shows more minimum values than in other cases. Further, the thermal neutron count and the rate of change for the oil layer are greater than those of the water layer, and the time spectrum count peak value for the water layer in middle-high-angle (40°-70°) cracked environments is higher than that of the oil layer. The thermal neutron density distribution sensitivity is higher in the water layer with a range of small crack angles (0°-30°) than in the oil layer with the same range of angles. In comparing the thermal neutron density distribution, thermal neutron count peak, thermal neutron density distribution sensitivity, and time spectrum maximum in the oil and water layers, we find that neutrons in medium-angle (40°-50°) cracked reservoirs are more sensitive to deceleration and absorption than those in water layers; neutrons in approximately horizontal (0°-30°) cracked water layers are more sensitive to deceleration than those in reservoirs. These results can guide future work in the cracked media neutron logging field.

  3. Beyond water, beyond boundaries: spaces of water management in the Krishna river basin, South India.

    Science.gov (United States)

    Venot, Jean-Philippe; Bharati, Luna; Giordano, Mark; Molle, François

    2011-01-01

    As demand and competition for water resources increase, the river basin has become the primary unit for water management and planning. While appealing in principle, practical implementation of river basin management and allocation has often been problematic. This paper examines the case of the Krishna basin in South India. It highlights that conflicts over basin water are embedded in a broad reality of planning and development where multiple scales of decisionmaking and non-water issues are at play. While this defines the river basin as a disputed "space of dependence", the river basin has yet to acquire a social reality. It is not yet a "space of engagement" in and for which multiple actors take actions. This explains the endurance of an interstate dispute over the sharing of the Krishna waters and sets limits to what can be achieved through further basin water allocation and adjudication mechanisms – tribunals – that are too narrowly defined. There is a need to extend the domain of negotiation from that of a single river basin to multiple scales and to non-water sectors. Institutional arrangements for basin management need to internalise the political spaces of the Indian polity: the states and the panchayats. This re-scaling process is more likely to shape the river basin as a space of engagement in which partial agreements can be iteratively renegotiated, and constitute a promising alternative to the current interstate stalemate.

  4. Impact of hydrological alterations on river-groundwater exchange and water quality in a semi-arid area: Nueces River, Texas.

    Science.gov (United States)

    Murgulet, Dorina; Murgulet, Valeriu; Spalt, Nicholas; Douglas, Audrey; Hay, Richard G

    2016-12-01

    There is a lack of understanding and methods for assessing the effects of anthropogenic disruptions, (i.e. river fragmentation due to dam construction) on the extent and degree of groundwater-surface water interaction and geochemical processes affecting the quality of water in semi-arid, coastal catchments. This study applied a novel combination of electrical resistivity tomography (ERT) and elemental and isotope geochemistry in a coastal river disturbed by extended drought and periodic flooding due to the operation of multiple dams. Geochemical analyses show that the saltwater barrier causes an increase in salinity in surface water in the downstream river as a result of limited freshwater inflows, strong evaporation effects on shallow groundwater and mostly stagnant river water, and is not due to saltwater intrusion by tidal flooding. Discharge from bank storage is dominant (~84%) in the downstream fragment and its contribution could increase salinity levels within the hyporheic zone and surface water. When surface water levels go up due to upstream freshwater releases the river temporarily displaces high salinity water trapped in the hyporheic zone to the underlying aquifer. Geochemical modeling shows a higher contribution of distant and deeper groundwater (~40%) in the upstream river and lower discharge from bank storage (~13%) through the hyporheic zone. Recharge from bank storage is a source of high salt to both upstream and downstream portions of the river but its contribution is higher below the dam. Continuous ERT imaging of the river bed complements geochemistry findings and indicate that while lithologically similar, downstream of the dam, the shallow aquifer is affected by salinization while fresher water saturates the aquifer in the upstream fragment. The relative contribution of flows (i.e. surface water releases or groundwater discharge) as related to the river fragmentation control changes of streamwater chemistry and likely impact the interpretation

  5. Aerial photographic water color variations from pollution in the James River

    Science.gov (United States)

    Bressette, W. E.

    1978-01-01

    A photographic flight was made over the James River on May 17, 1977. The data show that, in general, James River water has very high sunlight reflectance. In the Bailey Bay area this reflectance is drastically reduced. Also shown is a technique for normalizing off-axis variations in radiance film exposure from camera falloff and uneven sunlight conditions to the nadir value. After data normalization, a spectral analysis is performed that identifies Bailey Creek water in James River water. The spectral results when compared with laboratory spectrometer data indicate that reflectance from James River water is dominated by suspended matter, while the substance most likely responsible for reduced reflectance in Bailey Creek water is dissolved organic carbon.

  6. The Vistula River and water management in agriculture

    Directory of Open Access Journals (Sweden)

    Janusz Szablowski

    2013-06-01

    Full Text Available This article attempts to show how much in agriculture depends on appropriate water resources. The Kujawsko-Pomorskie Voivodeship is exposed to a significant deficiency of water resources. In addition, it experiences severe droughts, repeating in the period 1951–2006 on average every two years. The Vistula River flowing across the Voivodeship creates great chances for improved management conditions. These opportunities have been discussed on the example of investments, developed concepts of surface water management, agricultural irrigation programme and the opportunity of using the water resources of a planned second reservoir on the Vistula River below Włocławek.

  7. Survey on monthly variations of water quality in the Tajan River (Sari ...

    African Journals Online (AJOL)

    user

    The aims of the study were to evaluate water quality of Tajan River in Sari in terms of chemical pollution and the impact of pollutant ... qualities of water from Tajan River were within the acceptable limits for agricultural consumptions. In addition, Tajan River water ..... Water and Return Flow Reuse. No. 535. Zazouli et al. 3991.

  8. Water Accounting Plus for Water Resources Reporting and River Basin Planning

    NARCIS (Netherlands)

    Karimi, P.

    2014-01-01

    This thesis introduces Water Accounting Plus (WA+), which is a new framework designed to provide explicit spatial information on water depletion and net withdrawal processes in complex river basins. WA+ is a simple, yet comprehensive and understandable water accounting framework that provides a

  9. Polychlorinated Biphenyls Water Pollution along the River Nile, Egypt

    Directory of Open Access Journals (Sweden)

    Ayman Mohamed Megahed

    2015-01-01

    Full Text Available Ten polychlorinated biphenyl (PCB congeners were determined in water samples collected along the River Nile using gas chromatography-electron capture detector (GC-ECD. PCB concentrations ranged from 14 to 20 μg/L, which were higher than those reported in previous studies, indicating serious PCB pollution in the River Nile. PCB congener profiles varied depending on the sampling sties. PCB-138 was the predominant congener accounting for more than 18% of total PCBs. The composition of PCB congeners in the water revealed that highly chlorinated PCB technical mixtures such as Aroclor 1254 was the main PCB production historically used in Egypt. An increasing trend in PCB levels from the upper stream to the Nile estuaries was observed. The calculated flux of PCBs indicated that 6.8 tons of PCBs is dumped into the Mediterranean Sea each year from the River Nile. The hazard quotients and carcinogenic risk caused by PCB pollution in the River Nile were above the acceptable level indicating that PCBs in the River Nile water pose adverse health effects for all age groups. Our findings revealed that PCBs possess a serious risk to the Egyptian population that depends mainly on the River Nile as a source of water. Thus, stricter legislation and regulatory controls should be applied to reduce the risk of PCBs in Egypt.

  10. Polychlorinated Biphenyls Water Pollution along the River Nile, Egypt.

    Science.gov (United States)

    Megahed, Ayman Mohamed; Dahshan, Hesham; Abd-El-Kader, Mahdy A; Abd-Elall, Amr Mohamed Mohamed; Elbana, Mariam Hassan; Nabawy, Ehab; Mahmoud, Hend A

    2015-01-01

    Ten polychlorinated biphenyl (PCB) congeners were determined in water samples collected along the River Nile using gas chromatography-electron capture detector (GC-ECD). PCB concentrations ranged from 14 to 20 μg/L, which were higher than those reported in previous studies, indicating serious PCB pollution in the River Nile. PCB congener profiles varied depending on the sampling sties. PCB-138 was the predominant congener accounting for more than 18% of total PCBs. The composition of PCB congeners in the water revealed that highly chlorinated PCB technical mixtures such as Aroclor 1254 was the main PCB production historically used in Egypt. An increasing trend in PCB levels from the upper stream to the Nile estuaries was observed. The calculated flux of PCBs indicated that 6.8 tons of PCBs is dumped into the Mediterranean Sea each year from the River Nile. The hazard quotients and carcinogenic risk caused by PCB pollution in the River Nile were above the acceptable level indicating that PCBs in the River Nile water pose adverse health effects for all age groups. Our findings revealed that PCBs possess a serious risk to the Egyptian population that depends mainly on the River Nile as a source of water. Thus, stricter legislation and regulatory controls should be applied to reduce the risk of PCBs in Egypt.

  11. Plutonium and cesium radionuclides in the Hudson River estuary. Annual technical progress report, December 1, 1976--November 30, 1977

    International Nuclear Information System (INIS)

    Simpson, H.J.; Trier, R.M.

    1977-01-01

    We have obtained a large set of sediment cores from the Hudson estuary through much of the ambient salinity range. A number of core sections and samples of suspended particles have been analyzed for 137 Cs, 134 Cs and 60 Co by direct gamma counting, and 239 Pu, 240 Pu, and 238 Pu by alpha spectrometry. The distribution of both 137 Cs and 239 Pu, 240 Pu indicates rapid accumulation in marginal cover areas, and especially in the harbor region adjacent to New York City. The distributions of both 137 Cs and 239 Pu, 240 Pu are similar in surface sediments and with depth in cores, but there are deviations from the fallout ratio due to addition of reactor 137 Cs and loss of 137 Cs from the particle phases at higher salinities. Measureable amounts of reactor-derived 134 Cs and 60 Co are found in nearly all sediment samples containing appreciable 137 Cs, between 15 km upstream of Indian Point and the downstream extent of our sampling, 70 km south of the reactor. Accumulations of 239 Pu, 240 Pu in New York harbor sediments are more than an order of magnitude greater than the fallout delivery rate. The most likely explanation is accumulation of fine particles in the harbor which have been transported from upstream areas of the Hudson. Our evidence so far indicates that Indian Point is probably not a significant source of 239 Pu, 240 Pu or 238 Pu compared with the fallout burden of these nuclides already in the sediments

  12. Sustainable River Water Quality Management in Malaysia

    Directory of Open Access Journals (Sweden)

    Abdullah Al-Mamun

    2013-04-01

    Full Text Available Ecological status of Malaysia is not as bad as many other developing nations in the world. However, despite the enforcement of the Environmental Quality Act (EQA in 1974, the water quality of Malaysian inland water (especially rivers is following deteriorating trend. The rivers are mainly polluted due to the point and non-point pollution sources. Point sources are monitored and controlled by the Department of Environment (DOE, whereas a significant amount of pollutants is contributed by untreated sullage and storm runoff. Nevertheless, it is not too late to take some bold steps for the effective control of non-point source pollution and untreated sullage discharge, which play significant roles on the status of the rivers. This paper reviews the existing procedures and guidelines related to protection of the river water quality in Malaysia.  There is a good possibility that the sewage and effluent discharge limits in the Environmental Quality Act (EQA may pose hindrance against achieving good quality water in the rivers as required by the National Water Quality Standards (NWQS. For instance, Ammoniacal Nitrogen (NH3-N is identified as one of the main pollutants to render many of the rivers polluted but it was not considered in the EQA as a monitoring parameter until the new regulations published in 2009.  Surprisingly, the new regulation for sewage and industrial effluent limits set allowable NH3-N concentration quite high (5 mg/L, which may result in low Water Quality Index (WQI values for the river water. The water environment is a dynamic system. Periodical review of the monitoring requirements, detecting emerging pollutants in sewage, effluent and runoff, and proper revision of water quality standards are necessary for the management of sustainable water resources in the country. ABSTRAK: Satus ekologi Malaysia tidak seburuk kebanyakan negara membangun lain di dunia. Walaupun Akta Kualiti Alam Sekitar (EQA dikuatkuasakan pada tahun 1974

  13. Modeling of Water Quality 'Almendares River'

    International Nuclear Information System (INIS)

    Domínguez Catasús, Judith

    2005-01-01

    The river Almendares, one of the most important water bodies of the Havana City, is very polluted. The analysis of parameters as dissolved oxygen and biochemical oxygen demand is very helpful for the studies aimed to the recovery of the river. There is a growing recognition around the word that the water quality models are very useful tools to plan sanitary strategies for the handling of the contamination. In the present work, the advective, steady- state Streeter and Phelps model was validated to simulate the effect of the multiple-point and distributed sources on the carbonaceous oxygen demand, NH4 and dissolved oxygen. For modeling purposes the section of the river located between the point where the waste water treatment station Maria del Carmen discharges to the river and the Bridge El Bosque, was divided in 11 segments. The use of the 99mTc and the Rodamine WT as tracers allowed determining the hydrodynamic parameters necessary for modeling purposes. The validated model allows to predict the effect of the sanitary strategies on the water quality of the river. The main conclusions are: 1. The model Streeter and Phelps calibrated and validated in the Almendares between the confluence of the channel 'María del Carmen' and bridge the Forest of Havana, described in more than 90% The behavior of the dissolved oxygen and BODn (in terms of ammonia), and more than 85%, the carbonaceous demand oxygen, which characterizes the process of purification. 2. Model validation Streeter and Phelps, indicates that implicit conceptual model is appropriate. This refers primarily to the considerations relating to the calculation of the kinetic constants and the DOS, the segmentation used, to the location of the discharges and the Standing been about them, to the river morphology and hydrodynamic parameters . 3. The calibration procedure Streeter and Phelps model that determines the least-squares Kr-Kd pair that best fits the OD and uses this Kr to model BOD gets four% increase in

  14. Glacial Meltwater Contirbutions to the Bow River, Alberta, Canada

    Science.gov (United States)

    Bash, E. A.; Marshall, S. J.; White, E. C.

    2009-12-01

    Assessment of glacial melt is critical for water resource management in areas which rely on glacier-fed rivers for agricultural and municipal uses. Changes in precipitation patterns coupled with current glacial retreat are altering the glacial contribution to river flow in areas such as the Andes of South America and the high ranges of Asia, as well as the Rockies of Western Canada. Alberta’s Bow River has its headwaters in the eastern slopes of the Canadian Rockies and contributes to the Nelson drainage system feeding into Hudson Bay. The Bow River basin contains several population centers, including the City of Calgary, and is heavily taxed for agricultural use. The combined effects of rapid glacial retreat in the Canadian Rockies, higher drought frequency, and increased demand are likely to heighten water stress in Southern Alberta. However, there has been little focus to date on the extent and importance of glacial meltwater in the Bow River. The Bow River contains 74.5 km2 of glacier ice, which amounts to only 0.29% of the basin. While this number is not high compared to some glacierized areas, Hopkinson and Young (1998) report that in dry years, glacier melt can provide up to 50% of late summer flows at a station in the upper reaches of the river system. We extend this work with an assessment of monthly and annual glacial contributions to the Bow River farther downstream in Calgary. Our analysis is based on mass balance, meteorological, and hydrological data that has been collected at the Haig Glacier since 2001. This data is used in conjunction with glacier coverage and hypsometric data for the remainder of the basin to estimate seasonal snow and glacial meltwater contributions to the Bow River from the glacierized fraction of the catchment. The results of this study show the percentage of total flow attributed to glacial melt to be highly variable. Glacier runoff contributes up to an order of magnitude more water to the Bow River per unit area of

  15. South Asia river-flow projections and their implications for water resources

    Science.gov (United States)

    Mathison, C.; Wiltshire, A. J.; Falloon, P.; Challinor, A. J.

    2015-12-01

    South Asia is a region with a large and rising population, a high dependence on water intense industries, such as agriculture and a highly variable climate. In recent years, fears over the changing Asian summer monsoon (ASM) and rapidly retreating glaciers together with increasing demands for water resources have caused concern over the reliability of water resources and the potential impact on intensely irrigated crops in this region. Despite these concerns, there is a lack of climate simulations with a high enough resolution to capture the complex orography, and water resource analysis is limited by a lack of observations of the water cycle for the region. In this paper we present the first 25 km resolution regional climate projections of river flow for the South Asia region. Two global climate models (GCMs), which represent the ASM reasonably well are downscaled (1960-2100) using a regional climate model (RCM). In the absence of robust observations, ERA-Interim reanalysis is also downscaled providing a constrained estimate of the water balance for the region for comparison against the GCMs (1990-2006). The RCM river flow is routed using a river-routing model to allow analysis of present-day and future river flows through comparison with available river gauge observations. We examine how useful these simulations are for understanding potential changes in water resources for the South Asia region. In general the downscaled GCMs capture the seasonality of the river flows but overestimate the maximum river flows compared to the observations probably due to a positive rainfall bias and a lack of abstraction in the model. The simulations suggest an increasing trend in annual mean river flows for some of the river gauges in this analysis, in some cases almost doubling by the end of the century. The future maximum river-flow rates still occur during the ASM period, with a magnitude in some cases, greater than the present-day natural variability. Increases in river flow

  16. Influence factors analysis of water environmental quality of main rivers in Tianjin

    Science.gov (United States)

    Li, Ran; Bao, Jingling; Zou, Di; Shi, Fang

    2018-01-01

    According to the evaluation results of the water environment quality of main rivers in Tianjin in 1986-2015, this paper analyzed the current situation of water environmental quality of main rivers in Tianjin retrospectively, established the index system and multiple factors analysis through selecting factors influencing the water environmental quality of main rivers from the economy, industry and nature aspects with the combination method of principal component analysis and linear regression. The results showed that water consumption, sewage discharge and water resources were the main factors influencing the pollution of main rivers. Therefore, optimizing the utilization of water resources, improving utilization efficiency and reducing effluent discharge are important measures to reduce the pollution of surface water environment.

  17. Physicochemical composition of water of Sirdariya River (within of Sogd region)

    International Nuclear Information System (INIS)

    Mirsaidov, U.M.; Khakimov, N.; Murtazaev, Kh.; Sufiev, A.

    2010-01-01

    Present article is devoted to physicochemical composition of water of Sirdariya River (within of Sogd region). During 12 months the physicochemical composition of above mentioned river was studied by means of water sampling from 10 points of river. The analysis was conducted and it was defined that the main contaminants of the river are the plant facilities, the deposits of radioactive ores and agricultural grounds.

  18. Potential yields of wells in unconsolidated aquifers in upstate New York--Hudson-Mohawk sheet

    Science.gov (United States)

    Bugliosi, Edward F.; Trudell, Ruth A.; Casey, George D.

    1988-01-01

    This map shows the location and potential well yields of unconsolidated aquifers in the Hudson-Mohawk region at a scale of 1:250,000. It also delineates segments of aquifers that are heavily used by community water systems and designated by the New York State Department of Environmental Conservation as ' Primary Water Supply ' aquifers, and cites published reports that give detailed information on each area. Most aquifers were deposited in low-lying areas such as valleys or plains during deglaciations of the region. Thick, permeable, well-sorted sand and gravel deposits generally yield large quantities of water, greater than 100 gal/min. Thin sand, sand and gravel deposits, or thicker gravel units that have a large content of silt and fine sand, yield moderate amounts of water, 10 to 100 gal/min. Wells dug in till and those drilled in bedrock commonly yield less than 10 gal/min. (USGS)

  19. Potential yields of wells in unconsolidated aquifers in upstate New York--lower Hudson sheet

    Science.gov (United States)

    Bugliosi, Edward F.; Trudell, Ruth A.

    1988-01-01

    This map shows the location and potential well yields from unconsolidated aquifers in the lower-Hudson region at a 1:250 ,000 scale. It also delineates segments of aquifers that are heavily used by community water systems and designated by the New York State Department of Environmental Conservation as ' Primary water supply ' aquifers and cites published reports that give detailed information on each area. Most aquifers were deposited in low-lying areas such as valleys or plains during deglaciation of the region. Thick, permeable, well-sorted sand and gravel deposits generally yield large quantities of water, more than 100 gal/min. Thin sand, sand and gravel deposits, or thicker gravel units that have a large content of silt and fine sand, yield moderate amounts of water, 10 to 100 gal/min. Wells dug in till and those drilled in bedrock commonly yield less than 10 gal/min. (USGS)

  20. Microbiological characteristics of waters in the major rivers in Kainji ...

    African Journals Online (AJOL)

    Administrator

    As a result water of the four rivers in the park is not potable during the ... drinking and domestic use. ... Water quality standards are usually expressed in term ... sence of pathogens and thus health hazard (Sandy and ... Table 2. Bacteriological examination of waters in the Rivers in Kainji Lake National Park during Wet ...

  1. Evaluation of water quality index for River Sabarmati, Gujarat, India

    Science.gov (United States)

    Shah, Kosha A.; Joshi, Geeta S.

    2017-06-01

    An attempt has been made to develop water quality index (WQI), using six water quality parameters pH, dissolved oxygen, biochemical oxygen demand, electrical conductivity, nitrate nitrogen and total coliform measured at three different stations along the Sabarmati river basin from the year 2005 to 2008. Rating scale is developed based on the tolerance limits of inland waters and health point of view. Weighted arithmetic water quality index method was used to find WQI along the stretch of the river basin. It was observed from this study that the impact of human activity and sewage disposal in the river was severe on most of the parameters. The station located in highly urban area showed the worst water quality followed by the station located in moderately urban area and lastly station located in a moderately rural area. It was observed that the main cause of deterioration in water quality was due to the high anthropogenic activities, illegal discharge of sewage and industrial effluent, lack of proper sanitation, unprotected river sites and urban runoff.

  2. Water quality in Italy: Po River and its tributaries

    International Nuclear Information System (INIS)

    Crosa, G.; Marchetti, R.

    1993-01-01

    For Italy's Po River hydrological basin, artificial reservoirs have a great importance; water reserve is about 1600 million cubic meters for the hydroelectric reservoirs and about 76 million cubic meters for irrigation. The principal factors determining the water quality of the Po River and its tributaries are examined. Organic micropollutants, metals and the microbial load are the principal parameters altering the quality of the waters; dilution is the prevailing factor reducing this contamination

  3. Links between river water acidity, land use and hydrology

    Energy Technology Data Exchange (ETDEWEB)

    Saarinen, T.; Celebi, A.; Kloeve, B. [Oulu Univ. (Finland). Water Resources and Environmental Eng. Lab.], Email: tuomas.saarinen@oulu.fi

    2013-11-01

    In western Finland, acid leaching to watercourses is mainly due to drainage of acid sulphate (As) soils. This study examined how different land-use and land-cover types affect water acidity in the northwestern coastal region of Finland, which has abundant drained AS soils and peatlands. Sampling conducted in different hydrological conditions in studied river basins revealed two different catchment types: catchments dominated by drained forested peatlands and catchments used by agriculture. Low pH and high electric conductivity (EC) were typical in rivers affected by agriculture. In rivers dominated by forested peatlands and wetlands, EC was considerably lower. During spring and autumn high runoff events, water quality was poor and showed large spatial variation. Thus it is important to ensure that in river basin status assessment, sampling is carried out in different hydrological situations and in also water from some tributaries is sampled. (orig.)

  4. Tritium in surface water of the Yenisei river Basin

    International Nuclear Information System (INIS)

    Bondareva, L.G.; Bolsunovsky, A.Ya.

    2005-01-01

    The paper reports an investigation of the tritium content in the surface waters of the Yenisei River basin near the Mining-and-Chemical Combine (MCC). In 2001-2003 the maximum tritium concentration in the Yenisei River did not exceed 4±1 Bq/L. It has been found that there are surface waters containing enhanced tritium, up to 168 Bq/L, as compared with the background values for the Yenisei River. There are two possible sources of tritium input. First, the last operating reactor of the MCC, which still uses the Yenisei water as coolant. Second, tritium may come from the deep aquifers at the Severny testing site. For the first time tritium has been found in two aquatic plant species of the Yenisei River with maximal tritium concentration 304 Bq/Kg wet weight. Concentration factors of tritium for aquatic plants are much higher than 1

  5. Land Use Impacts on Water Quality of Rivers draining from Mulanje ...

    African Journals Online (AJOL)

    Land Use Impacts on Water Quality of Rivers draining from Mulanje Mountain: A Case of Ruo River in the Southern Malawi. ... The research recommends an integrated water resources management approach where all users and relevant stakeholders should take an active role in the conservation of Ruo River catchment in ...

  6. Water Quality Assessment of the Buffalo River, Arkansas, United States

    Science.gov (United States)

    Bolin, K. L.; Ruhl, L. S.

    2017-12-01

    The Buffalo River was established as a National River by the U.S. Congress in 1972, and runs approximately 150 miles from Newton County, Arkansas to Baxter County where it joins the White River. The Buffalo National River is the one of the last free flowing rivers in the continental U.S. with a rich cultural and political history surrounding it. The geology surrounding the river can be characterized by its karst environment, which has led to the many caves, depressions, and sinkholes found along the river. Karst environments are more susceptible to groundwater pollution so drainage from septic systems is a major concern for towns along the river. There are also numerous abandoned mines in the Buffalo River watershed, especially in the Rush area, which was mined for lead and zinc. Additionally, an increase in livestock production in the area is also a concern for increased nitrate and phosphate, along with fertilizer runoff from agricultural areas. The purpose of this study was to determine the water quality changes along the Buffalo River from human and environmental influences. Samples at six different locations along the river were collected along with parameters such as pH, conductivity, salinity, and temperature during several trips in the summer of 2017. Water samples were analyzed for cations and anions by IC, trace metals by ICPMS, and Escherichia coli with agar plate colony counts. The results were used to map geochemical changes in the Buffalo River watershed, and calculate enrichment factors of constituents (like nitrate, phosphate, and trace elements) as the water flowed downstream.

  7. Controlling The Surface Water of Shatt Al Arab River by using Sluice Gates

    Directory of Open Access Journals (Sweden)

    Ahmed Naseh Ahmed Hamdan

    2016-03-01

    Full Text Available The purpose of this study is to find hydrodynamic simulations of river water by controlging gates in Shatt Al Arab river. This river is formed by the meeting of the Tigris and Euphrates rivers near the city of Qurna in the south of Iraq, and it pours into the Arabian Gulf. Hydrodynamic simulations give a proper understanding performance and optimize utilization of the gates controlging the water level. Three different sluice gates opening cases simulate the water surface level using HEC-RAS in Shatt Al Arab river. These cases where being studied within two situations of Tide (the highest high water level and the lowest low water level within the downstream of Shatt Al Arab river. The study also deals with six cases of flow rates in upstream of Shatt Al Arab river. Hec-Ras model is produced by US Army for analyzing river system. This model could simulate steady and unsteady open channel flow.

  8. Occurrence of estrogenic activities in second-grade surface water and ground water in the Yangtze River Delta, China

    International Nuclear Information System (INIS)

    Shi, Wei; Hu, Guanjiu; Chen, Sulan; Wei, Si; Cai, Xi; Chen, Bo; Feng, Jianfang; Hu, Xinxin; Wang, Xinru; Yu, Hongxia

    2013-01-01

    Second-grade surface water and ground water are considered as the commonly used cleanest water in the Yangtze River Delta, which supplies centralized drinking water and contains rare species. However, some synthetic chemicals with estrogenic disrupting activities are detectable. Estrogenic activities in the second-grade surface water and ground water were surveyed by a green monkey kidney fibroblast (CV-1) cell line based ER reporter gene assay. Qualitative and quantitative analysis were further conducted to identify the responsible compounds. Estrogen receptor (ER) agonist activities were present in 7 out of 16 surface water and all the ground water samples. Huaihe River and Yangtze River posed the highest toxicity potential. The highest equivalent (2.2 ng E 2 /L) is higher than the predicted no-effect-concentration (PNEC). Bisphenol A (BPA) contributes to greater than 50% of the total derived equivalents in surface water, and the risk potential in this region deserves more attention and further research. -- Highlights: •Estrogenic activities were present in second-grade surface water and ground water. •Most of the detected equivalents were higher than the predicted no-effect-concentration of E 2 . •ER-EQ 20–80 ranges showed that samples in Huaihe River and Yangtze River posed the highest toxicity. •Bisphenol A contributes to most of the instrumentally derived equivalents in surface water. -- Estrogenic activities were observed in second-grade surface water and ground water in Yangtze River Delta, and BPA was the responsible contaminant

  9. 2012 FEMA Topographic Lidar: Hudson-Hoosic and Deerfield Watersheds, Massachusetts

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Light Detection and Ranging (LiDAR) dataset is a survey of the Hudson-Hoosic and Deerfield project area. The entire survey area for Massachusetts is...

  10. Lower Charles River Bathymetry: 108 Years of Fresh Water

    Science.gov (United States)

    Yoder, M.; Sacarny, M.

    2017-12-01

    The Lower Charles River is a heavily utilized urban river that runs between Cambridge and Boston in Massachusetts. The recreational usage of the river is dependent on adequate water depths, but there have been no definitive prior studies on the sedimentation rate of the Lower Charles River. The river transitioned from tidal to a freshwater basin in 1908 due to the construction of the (old) Charles River Dam. Water surface height on the Lower Charles River is maintained within ±1 foot through controlled discharge at the new Charles River Dam. The current study area for historical comparisons is from the old Charles River Dam to the Boston University Bridge. This study conducted a bathymetric survey of the Lower Charles River, digitized three prior surveys in the study area, calculated volumes and depth distributions for each survey, and estimated sedimentation rates from fits to the volumes over time. The oldest chart digitized was produced in 1902 during dam construction deliberations. The average sedimentation rate is estimated as 5-10 mm/year, which implies 1.8-3.5 feet sedimentation since 1908. Sedimentation rates and distributions are necessary to develop comprehensive management plans for the river and there is evidence to suggest that sedimentation rates in the shallow upstream areas are higher than the inferred rates in the study area.

  11. California GAMA Special Study: Importance of River Water Recharge to Selected Groundwater Basins

    Energy Technology Data Exchange (ETDEWEB)

    Visser, Ate [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Moran, Jean E. [California State Univ. East Bay (CalState), Hayward, CA (United States); Singleton, Michael J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Esser, Bradley K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-03-21

    River recharge represents 63%, 86% and 46% of modern groundwater in the Mojave Desert, Owens Valley, and San Joaquin Valley, respectively. In pre-modern groundwater, river recharge represents a lower fraction: 36%, 46%, and 24% respectively. The importance of river water recharge in the San Joaquin valley has nearly doubled and is likely the result of a total increase of recharge of 40%, caused by river water irrigation return flows. This emphasizes the importance of recharge of river water via irrigation for renewal of groundwater resources. Mountain front recharge and local precipitation contribute to recharge of desert groundwater basins in part as the result of geological features focusing scarce precipitation promoting infiltration. River water recharges groundwater systems under lower temperatures and with larger water table fluctuations than local precipitation recharge. Surface storage is limited in time and volume, as evidenced by cold river recharge temperatures resulting from fast recharge, compared to the large capacity for subsurface storage. Groundwater banking of seasonal surface water flows therefore appears to be a natural and promising method for increasing the resilience of water supply systems. The distinct isotopic and noble gas signatures of river water recharge, compared to local precipitation recharge, reflecting the source and mechanism of recharge, are valuable constraints for numerical flow models.

  12. Comparison of 2002 Water Year and Historical Water-Quality Data, Upper Gunnison River Basin, Colorado

    Science.gov (United States)

    Spahr, N.E.

    2003-01-01

    Introduction: Population growth and changes in land-use practices have the potential to affect water quality and quantity in the upper Gunnison River basin. In 1995, the U.S. Geological Survey (USGS), in cooperation with local sponsors, City of Gunnison, Colorado River Water Conservation District, Crested Butte South Metropolitan District, Gunnison County, Mount Crested Butte Water and Sanitation District, National Park Service, Town of Crested Butte, and Upper Gunnison River Water Conservancy District, established a water-quality monitoring program in the upper Gunnison River basin to characterize current water-quality conditions and to assess the effects of increased urban development and other land-use changes on water quality. The monitoring network has evolved into two groups of stations, stations that are considered as long term and stations that are rotational. The long-term stations are monitored to assist in defining temporal changes in water quality (how conditions have changed over time). The rotational stations are monitored to assist in the spatial definition of water-quality conditions (how conditions differ throughout the basin) and to address local and short term concerns. Another group of stations (rotational group 2) will be chosen and sampled beginning in water year 2004. Annual summaries of the water-quality data from the monitoring network provide a point of reference for discussions regarding water-quality sampling in the upper Gunnison River basin. This summary includes data collected during water year 2002. The introduction provides a map of the sampling locations, definitions of terms, and a one-page summary of selected water-quality conditions at the network stations. The remainder of the summary is organized around the data collected at individual stations. Data collected during water year 2002 are compared to historical data (data collected for this network since 1995), state water-quality standards, and federal water-quality guidelines

  13. Saprobiological analysis of water of the river Krivaja

    Directory of Open Access Journals (Sweden)

    M. Cikotić

    2005-08-01

    Full Text Available During one-year research of zoobenthos macroinvertebrates of the river Krivaja 133 taxons were found with total number of 12,766 entities. Sampling was conducted using kick sampling method that corresponded to the type of running waters such as the river Krivaja. For the purpose of water quality evaluation biotic and saprobity indexes were applied in accordance with taxon of collected organisms. The measured values of saprobity index indicated mild to medium water pollution, i.e. oligo-beta mezosaprobity water. The measured values of Shannon-Weaver diversity index indicated high diversity of organisms, thus good conditions of life in water of the Krivaja and its clean water flow.Applied saprobity and biotic indexes in this research should be aguideline for a future research of our water flows in standardization of waterbio-monitoring legislation in Bosnia and Herzegovina.

  14. Potability Evaluation of Selected River Waters in Ebonyi State, Nigeria

    Directory of Open Access Journals (Sweden)

    J. I. Awu

    2015-06-01

    Full Text Available The study focused on the seasonal variation of physiochemical and microbial characteristics of three selected river water in Ebonyi State for human consumption. The three selected rivers studied were Iyioka, Idima and Ubei Rivers. Data were generated using Direct Reading Engineering method (DREM, Gravimetric method, Titrimetric method, Spectrophotometric method, Atomic Absorption Spectrophotometric method, and Total Viable count for physiochemical and microbiological analysis. The generated data was further subjected to statistical analysis using one way analysis of variance (ANOVA on difference between means of parameters and graphical method to determine the spatial variation of the water quality characteristics. The time variations of the water quality characteristics as compared with the spatial variations showed that for some variables, there was statistical difference between the means of parameters with respect to time and space at various levels of significance. These include Phosphorus (5%, Copper (1%, Iron (5%, Nickel (5%, Cadmium (1%, Salinity (1%, Bacteria (1% for time variation; and Sulphate (1%, Chemical Oxygen (5%,Nickel (1%, Arsenic (1%, Zinc (1%, Cadmium (1%, Bacteria (1% for spatial variations during dry season and Chemical Oxygen (5%, Nickel (1%, for spatial variation during rainy season. Based on the World Health Organization and Standard Organization of Nigeria guidelines for drinking water, the results of microbial analysis also indicated that the selected river waters were polluted with disease causing microorganisms, such as E.Coliform, Salmonella, Bacillus Subtilis. Therefore, the river waters are not good for drinking. The consumers of water obtained from the three rivers are likely to suffer the following: typhoid, fever, intestinal problem, diarrhea, skin rash, cholera. Necessary recommendations such as treating the water with bio-sand filter before use, amongst others, were made.

  15. Sharing water and benefits in transboundary river basins

    Science.gov (United States)

    Arjoon, Diane; Tilmant, Amaury; Herrmann, Markus

    2016-06-01

    The equitable sharing of benefits in transboundary river basins is necessary to solve disputes among riparian countries and to reach a consensus on basin-wide development and management activities. Benefit-sharing arrangements must be collaboratively developed to be perceived not only as efficient, but also as equitable in order to be considered acceptable to all riparian countries. The current literature mainly describes what is meant by the term benefit sharing in the context of transboundary river basins and discusses this from a conceptual point of view, but falls short of providing practical, institutional arrangements that ensure maximum economic welfare as well as collaboratively developed methods for encouraging the equitable sharing of benefits. In this study, we define an institutional arrangement that distributes welfare in a river basin by maximizing the economic benefits of water use and then sharing these benefits in an equitable manner using a method developed through stakeholder involvement. We describe a methodology in which (i) a hydrological model is used to allocate scarce water resources, in an economically efficient manner, to water users in a transboundary basin, (ii) water users are obliged to pay for water, and (iii) the total of these water charges is equitably redistributed as monetary compensation to users in an amount determined through the application of a sharing method developed by stakeholder input, thus based on a stakeholder vision of fairness, using an axiomatic approach. With the proposed benefit-sharing mechanism, the efficiency-equity trade-off still exists, but the extent of the imbalance is reduced because benefits are maximized and redistributed according to a key that has been collectively agreed upon by the participants. The whole system is overseen by a river basin authority. The methodology is applied to the Eastern Nile River basin as a case study. The described technique not only ensures economic efficiency, but may

  16. Water Pollution and Water Quality Assessment of Major Transboundary Rivers from Banat (Romania

    Directory of Open Access Journals (Sweden)

    Andreea-Mihaela Dunca

    2018-01-01

    Full Text Available This study focuses on water resources management and shows the need to enforce the existing international bilateral agreements and to implement the Water Framework Directive of the European Union in order to improve the water quantity and quality received by a downstream country of a common watershed, like Timiş-Bega hydrographical basin, shared by two countries (Romania and Serbia. The spatial trend of water quality index (WQI and its subindexes are important for determining the locations of major pollutant sources that contribute to water quality depletion in this basin. We compared the values of WQI obtained for 10 sections of the two most important rivers from Banat, which have a great importance for socioeconomic life in southwestern part of Romania and in northeastern part of Serbia. In order to assess the water quality, we calculated the WQI for a long period of time (2004–2014, taking into account the maximum, minimum, and the mean annual values of physical, chemical, and biological parameters (DO, pH, BOD5, temperature, total P, N-NO2−, and turbidity. This article highlights the importance of using the water quality index which has not been sufficiently explored in Romania and for transboundary rivers and which is very useful in improving rivers water quality.

  17. South Asia river flow projections and their implications for water resources

    Science.gov (United States)

    Mathison, C.; Wiltshire, A. J.; Falloon, P.; Challinor, A. J.

    2015-06-01

    South Asia is a region with a large and rising population and a high dependance on industries sensitive to water resource such as agriculture. The climate is hugely variable with the region relying on both the Asian Summer Monsoon (ASM) and glaciers for its supply of fresh water. In recent years, changes in the ASM, fears over the rapid retreat of glaciers and the increasing demand for water resources for domestic and industrial use, have caused concern over the reliability of water resources both in the present day and future for this region. The climate of South Asia means it is one of the most irrigated agricultural regions in the world, therefore pressures on water resource affecting the availability of water for irrigation could adversely affect crop yields and therefore food production. In this paper we present the first 25 km resolution regional climate projections of river flow for the South Asia region. ERA-Interim, together with two global climate models (GCMs), which represent the present day processes, particularly the monsoon, reasonably well are downscaled using a regional climate model (RCM) for the periods; 1990-2006 for ERA-Interim and 1960-2100 for the two GCMs. The RCM river flow is routed using a river-routing model to allow analysis of present day and future river flows through comparison with river gauge observations, where available. In this analysis we compare the river flow rate for 12 gauges selected to represent the largest river basins for this region; Ganges, Indus and Brahmaputra basins and characterize the changing conditions from east to west across the Himalayan arc. Observations of precipitation and runoff in this region have large or unknown uncertainties, are short in length or are outside the simulation period, hindering model development and validation designed to improve understanding of the water cycle for this region. In the absence of robust observations for South Asia, a downscaled ERA-Interim RCM simulation provides a

  18. Sectorial Water Use Trends in the Urbanizing Pearl River Delta, China

    NARCIS (Netherlands)

    Yao, M.; Werners, S.E.; Hutjes, R.W.A.; Kabat, P.; Huang, H.Q.

    2015-01-01

    Assessing and managing water use is crucial for supporting sustainable river basin management and regional development. The first consistent and comprehensive assessment of sectorial water use in the Pearl River Delta (PRD) is presented by analysing homogenized annual water use data from 2000 to

  19. Woody plant willow in function of river water protection

    Directory of Open Access Journals (Sweden)

    Babincev Ljiljana M.

    2011-01-01

    Full Text Available Coastal area surrounding the river Ibar, in the area between cities of Kosovska Mitrovica and Leposavić in the north of Kosovo and Metohija, is occupied with seven industrial waste dumps. These dumps were all part of the exploitation and flotation refinement of raw mineral materials, metallurgic refinement of concentrates, chemical industry, industrial refinement and energetic facilities of Trepča industrial complex. The existing waste dumps, both active and inactive, are of heterogenic chemical composition. Its impact on the river water is shown by the content of heavy metals found in it. Removal of lead, cadmium and zinc would be economically unrewarding, regardless of the technology used. Wooden plant that prevails in this area is white willow. This work is focused on the removal of heavy metals (Pb, Cd and Zn from the water of the river Ibar using white willow. Roots of the willow are cultivated using the method of water cultures in an individual solution of heavy metals and river water sample. The preparation of the samples for analysis was performed by burning the herbal material and dissolving ashes in the appropriate acids. The concentrations of metals were determined by the stripping analysis. In the investigated heavy metal solutions the biomass increase is 25.6% in lead solution, 27.3% in cadmium and 30.7% in zinc solution. The increase of biomass in nutritional solution, without the heavy metals, is 32.4% and in river water sample 27.5%. The coefficient of bioaccumulation in solutions with heavy metals is 1.6% in lead solution, 1.9% in cadmium and 2.2% in zinc solution. Heavy metals accumulation is 18.74 μg of lead, 20.09 μg of cadmium and 22.89 μg of zinc. The coefficient of bioaccumulation of the water samples, that contained 44.83 μg/dm3 of lead, 29.21 μg/dm3 of cadmium and 434.00 μg/dm3 of zinc, during the period of 45 days, was 30.3% for lead, 53.4% for cadmium and 3.9% for zinc. The concentrations of accumulated metals

  20. Comparison of Water Years 2004-05 and Historical Water-Quality Data, Upper Gunnison River Basin, Colorado

    Science.gov (United States)

    Spahr, Norman E.; Hartle, David M.; Diaz, Paul

    2008-01-01

    Population growth and changes in land use have the potential to affect water quality and quantity in the upper Gunnison River Basin. In 1995, the U.S. Geological Survey (USGS), in cooperation with the Bureau of Land Management, City of Gunnison, Colorado River Water Conservation District, Crested Butte South Metropolitan District, Gunnison County, Hinsdale County, Mount Crested Butte Water and Sanitation District, National Park Service, Town of Crested Butte, Upper Gunnison River Water Conservancy District, and Western State College, established a water-quality monitoring program in the upper Gunnison River Basin to characterize current water-quality conditions and to assess the effects of increased urban development and other land-use changes on water quality. The monitoring network has evolved into two groups of stations - stations that are considered long term and stations that are considered rotational. The long-term stations are monitored to assist in defining temporal changes in water quality (how conditions may change over time). The rotational stations are monitored to assist in the spatial definition of water-quality conditions (how conditions differ throughout the basin) and to address local and short-term concerns. Some stations in the rotational group were changed beginning in water year 2007. Annual summaries of the water-quality data from the monitoring network provide a point of reference for discussions regarding water-quality monitoring in the upper Gunnison River Basin. This summary includes data collected during water years 2004 and 2005. The introduction provides a map of the sampling sites, definitions of terms, and a one-page summary of selected water-quality conditions at the network stations. The remainder of the summary is organized around the data collected at individual stations. Data collected during water years 2004 and 2005 are compared to historical data, State water-quality standards, and Federal water-quality guidelines. Data were

  1. Model-Aided Altimeter-Based Water Level Forecasting System in Mekong River

    Science.gov (United States)

    Chang, C. H.; Lee, H.; Hossain, F.; Okeowo, M. A.; Basnayake, S. B.; Jayasinghe, S.; Saah, D. S.; Anderson, E.; Hwang, E.

    2017-12-01

    Mekong River, one of the massive river systems in the world, has drainage area of about 795,000 km2 covering six countries. People living in its drainage area highly rely on resources given by the river in terms of agriculture, fishery, and hydropower. Monitoring and forecasting the water level in a timely manner, is urgently needed over the Mekong River. Recently, using TOPEX/Poseidon (T/P) altimetry water level measurements in India, Biancamaria et al. [2011] has demonstrated the capability of an altimeter-based flood forecasting system in Bangladesh, with RMSE from 0.6 - 0.8 m for lead times up to 5 days on 10-day basis due to T/P's repeat period. Hossain et al. [2013] further established a daily water level forecasting system in Bangladesh using observations from Jason-2 in India and HEC-RAS hydraulic model, with RMSE from 0.5 - 1.5 m and an underestimating mean bias of 0.25 - 1.25 m. However, such daily forecasting system relies on a collection of Jason-2 virtual stations (VSs) to ensure frequent sampling and data availability. Since the Mekong River is a meridional river with few number of VSs, the direct application of this system to the Mekong River becomes challenging. To address this problem, we propose a model-aided altimeter-based forecasting system. The discharge output by Variable Infiltration Capacity hydrologic model is used to reconstruct a daily water level product at upstream Jason-2 VSs based on the discharge-to-level rating curve. The reconstructed daily water level is then used to perform regression analysis with downstream in-situ water level to build regression models, which are used to forecast a daily water level. In the middle reach of the Mekong River from Nakhon Phanom to Kratie, a 3-day lead time forecasting can reach RMSE about 0.7 - 1.3 m with correlation coefficient around 0.95. For the lower reach of the Mekong River, the water flow becomes more complicated due to the reversal flow between the Tonle Sap Lake and the Mekong River

  2. Chemical composition of black-watered rivers in the Amazons Region (Brazil)

    International Nuclear Information System (INIS)

    Horbe, Adriana M.C.; Santos, Ana G. da Silva

    2009-01-01

    Most investigations addressing Amazonian water chemistry are focused on the Solimoes, Amazonas and Negro rivers. Knowledge of the chemical composition of their smaller tributaries is restricted to some few, punctual data. The smaller rivers, that only present inputs from their catchments, are very important to understand the overall mechanisms controlling the chemistry of larger rivers of the region. With this objective the chemical composition of the principal Solimoes river black-watered tributaries in the western Brazilian Amazon during the low water period were determined. The data reveal the black water chemical composition to be highly variable and strongly influenced by the local geological environment: the Badajos basin being chemically more diluted; the Coari basin presenting higher SiO 2 contents, as well as smaller lakes having higher pH, conductivity, Ca 2+ , Mg 2+ and Sr, yet not as much as those found in the Solimoes river. The chemical composition of these waters is compatible with the low physical erosion and the region's highly leached tropical environment from which most soluble elements were quickly removed. (author)

  3. Exploring Future Water Shortage for Large River Basins under Different Water Allocation Strategies

    NARCIS (Netherlands)

    Yan, Dan; Yao, Mingtian; Ludwig, Fulco; Kabat, Pavel; Huang, He Qing; Hutjes, Ronald W.A.; Werners, Saskia E.

    2018-01-01

    Climate change and socio-economic development increase variations in water availability and water use in the Pearl River Basin (PRB), China. This can potentially result in conflicts over water resources between water users, and cause water shortage in the dry season. To assess and manage water

  4. Water use practices, water quality, and households' diarrheal encounters in communities along the Boro-Thamalakane-Boteti river system, Northern Botswana.

    Science.gov (United States)

    Tubatsi, G; Bonyongo, M C; Gondwe, M

    2015-11-18

    Some rural African communities residing along rivers use the untreated river water for domestic purposes, making them vulnerable to waterborne diseases such as diarrhea. We determined water use practices and water quality, relating them to prevalence of diarrhea in communities along the Boro-Thamalakane-Boteti river system, northern Botswana. A total of 452 households were interviewed and 196 water samples collected show during February, May, September, and December 2012 in settlements of Boro, Maun, Xobe, Samedupi, Chanoga, and Motopi. Information was sought on water use practices (collection, storage, and handling) and diarrheal experience using questionnaires. Water quality was assessed for physicochemical and microbiological parameters using portable field meters and laboratory analysis, respectively. All (100%) of the river water samples collected were fecally contaminated and unsuitable for domestic use without prior treatment. Samples had Escherichia coli (E.coli) and fecal streptococci levels reaching up to 186 and 140 CFU/100 ml, respectively. Study revealed high dependence on the fecally contaminated river water with low uptake of water treatment techniques. Up to 48% of households indicated that they experience diarrhea, with most cases occurring during the early flooding season (May). Nonetheless, there was no significant relationship between river water quality and households' diarrheal experience across studied settlements (p > 0.05). Failure to treat river water before use was a significant predictor of diarrhea (p = 0.028). Even though the river water was unsafe for domestic use, results imply further recontamination of water at household level highlighting the need for simple and affordable household water treatment techniques.

  5. Comparison of index systems for rating water quality in intermittent rivers.

    Science.gov (United States)

    Perrin, Jean-Louis; Salles, Christian; Bancon-Montigny, Chrystelle; Raïs, Naoual; Chahinian, Nanée; Dowse, Lauryan; Rodier, Claire; Tournoud, Marie-George

    2018-01-08

    Water quality indexes (WQI) are a practical way to evaluate and compare the level of chemical contamination of different water bodies and to spatially and temporally compare levels of pollution. The purpose of this study was to check if these indexes are appropriate for intermittent rivers under arid and semi-arid climates. A literature review enabled the comparison of 25 water quality indexes to discern their capability to evaluate spatial (inter and intra catchment) and temporal (high and low water flow conditions) variations in water quality in three Mediterranean intermittent rivers: the River Vène (France) and the Oued Fez and the River Sebou (Morocco). Hierarchical cluster analysis identified groups of WQI with similar behavior and brought to light the 6 most distinguishing indexes. Whatever the hydrological conditions at the two sites, both the ME-MCATUHE and NCS indexes, which were developed for Morocco and Greece, and the CCMEWQI and BCWQI indexes, which were developed for non-arid or semi-arid zones, gave appropriate water quality evaluations.

  6. VICIOUS CIRCULATION OF WATER DEFICIENCY AND WATER POLLUTION – “CANCER” OF THE RIVERS IN THE NORTH OF CHINA.

    Directory of Open Access Journals (Sweden)

    Yang Liankang

    2005-05-01

    Full Text Available The North of China belongs to the basin of the Tarim River ,the Heihe River , the Yellow River , the Huaihe River ,the Haihe River ,the Liaohe River , the Heilongjiang River and other shorter rivers and other indraft areas. The total area of all river basin is about 3,200,000 sq. km., exceeds 3/5 of area of land of 13 provinces , municipalities and autonomous regions of the North of China (5, 220,000 sq. km. .Follow the growth of the economy and the population, lacking of water in the rivers of the northern China is serious,. Since the sixties and seventies of previous century, the blanking has taken place successively in numerous rivers, brought serious influence on the development of the economic, made the society to shake. Afterwards, through certain effort, although the blanking phenomenon is alleviated for the past several years, but the water quality of manyrivers has sharply worsened and was dropped to V, bad V grade in the numerous sections, fromthe situation that the water quality in a great part sections in the main stream was still rather good for past more than 20 years ago. It has become the first killer, influencing the life of river.Therefore, we must summarize the experiences on that the rivers of the northern China, especially the most influential Yellow River, have gone from blanking to resuming flow, we also must control the pollution and proportionate the development of the society and theeconomic, with the water yield and the water quality. These affair have already become task of top priority!

  7. Anthropogenic impacts on the water quality of Aba River, southeast ...

    African Journals Online (AJOL)

    Anthropogenic impacts on the water quality of Aba River, southeast Nigeria. ... Ethiopian Journal of Environmental Studies and Management ... of Aba River, southeast Nigeria was studied in four stations from November 2014 to August 2015 to identify the major anthropogenic activities and their impact on the water quality.

  8. Assessment of water quality of Obueyinomo River, Ovia North East ...

    African Journals Online (AJOL)

    The high WQI values in all the stations studied which exceeded the benchmark of 100 showed that the water from this river is unfit for drinking purposes and should be treated before consumption by inhabitants of the area. Keywords: Physicochemical parameters, River, Water quality index, Contamination ...

  9. Water quality assessment of highly polluted rivers in a semi-arid Mediterranean zone Oued Fez and Sebou River (Morocco)

    Science.gov (United States)

    Perrin, J. L.; Raïs, N.; Chahinian, N.; Moulin, P.; Ijjaali, M.

    2014-03-01

    Oued Fez (one of the Sebou River tributaries - Morocco) allowed us to study and quantify the effect of the lack of wastewater treatment on surface water quality in semi-arid hydrological context. The analysis is based on field data collected from June 2009 to December 2011. Concentration and load patterns of nitrogen, phosphorus and chromium (used in the processing of leather) are compared in stable hydrological conditions during low flow and high flow periods in an eight-location sampling network. The Oued Fez and the Sebou River are characterised by severe pollution downstream from the city of Fez, particularly TN (mainly NH4 and Norg), TP (mainly Ppart) and TCr. The most polluted sites are those directly under the influence of domestic and industrial waste water inputs, particularly tannery effluents. Obviously, the concentrations measured at these locations are above all environmental quality standards. Pollutant loads are very heavy in the Sebou River and can contaminate the river course for kilometres. Moreover, as the water of the Sebou River is used for the irrigation of vegetables, serious problems of public health could arise. A better understanding of contaminant dynamics and self-purifying processes in these rivers will help implement actions and steps aimed at improving water quality in the Sebou River, which is the primary water supply source in Morocco and is used for agricultural and industrials purposes as well as for drinking water.

  10. Reconnaissance of the Manistee River, a cold-water river in the northwestern part of Michigan's Southern Peninsula

    Science.gov (United States)

    Hendrickson, G.E.; Doonan, C.J.

    1972-01-01

    The cold-water streams of the northern states provide unique recreational values to the American people (wilderness or semi-wilderness atmosphere, fast-water canoeing, trout fishing), but expanding recreational needs must be balanced against the growing demand of water for public and industrial supplies, irrigation, and dilution of sewage and other wastes. In order to make intelligent decisions regarding use and management of water resources for recreation and other demands, an analysis of hydrologic factors related to recreation is essential.The Manistee River is one of Michigan's well-known trout streams-a stream having numerous public access sites and campgrounds. Upstream from Cameron Bridge (see location map) the Manistee is rated as a first-class trout stream but below Cameron Bridge the river is rated only as a fair trout stream by the Michigan Department of Natural Resources. As a Michigan canoe trail it is second only to the Au Sable River in popularity. Esthetically, the Manistee is one of Michigan's most attractive rivers, its waters flowing cool and clean, and around each bend a pleasant wilderness scene. This report deals with that part of the river upstream from State Highway M-66 at Smithville. Several hard-surface roads give access to the upper river as shown on the location map. Numerous dirt roads and trails give access to the river at intermediate points. The recreational values of the Manistee depend on its characteristics of streamflow, water quality, and bed and banks. This atlas describes these characteristics and shows how they relate to recreational use.Much of the information presented here was obtained from basic records of the U.S. Geological Survey's Water Resources Division. Additional information was obtained from field reconnaissance surveys in 1968 and 1969. The study was made in cooperation with the Michigan Geological Survey, Gerald E. Eddy, Chief. Assistance was also obtained from other sections of the Michigan Department of

  11. Hydrology, Water Quality, and Surface- and Ground-Water Interactions in the Upper Hillsborough River Watershed, West-Central Florida

    Science.gov (United States)

    Trommer, J.T.; Sacks, L.A.; Kuniansky, E.L.

    2007-01-01

    A study of the Hillsborough River watershed was conducted between October 1999 through September 2003 to characterize the hydrology, water quality, and interaction between the surface and ground water in the highly karstic uppermost part of the watershed. Information such as locations of ground-water recharge and discharge, depth of the flow system interacting with the stream, and water quality in the watershed can aid in prudent water-management decisions. The upper Hillsborough River watershed covers a 220-square-mile area upstream from Hillsborough River State Park where the watershed is relatively undeveloped. The watershed contains a second order magnitude spring, many karst features, poorly drained swamps, marshes, upland flatwoods, and ridge areas. The upper Hillsborough River watershed is subdivided into two major subbasins, namely, the upper Hillsborough River subbasin, and the Blackwater Creek subbasin. The Blackwater Creek subbasin includes the Itchepackesassa Creek subbasin, which in turn includes the East Canal subbasin. The upper Hillsborough River watershed is underlain by thick sequences of carbonate rock that are covered by thin surficial deposits of unconsolidated sand and sandy clay. The clay layer is breached in many places because of the karst nature of the underlying limestone, and the highly variable degree of confinement between the Upper Floridan and surficial aquifers throughout the watershed. Potentiometric-surface maps indicate good hydraulic connection between the Upper Floridan aquifer and the Hillsborough River, and a poorer connection with Blackwater and Itchepackesassa Creeks. Similar water level elevations and fluctuations in the Upper Floridan and surficial aquifers at paired wells also indicate good hydraulic connection. Calcium was the dominant ion in ground water from all wells sampled in the watershed. Nitrate concentrations were near or below the detection limit in all except two wells that may have been affected by

  12. Water resource management model for a river basin

    OpenAIRE

    Jelisejevienė, Emilija

    2005-01-01

    The objective is to develop river basin management model that ensures integrated analysis of existing water resource problems and promotes implementation of sustainable development principles in water resources management.

  13. Historical water-quality data from the Harlem River, New York

    Science.gov (United States)

    Fisher, Shawn C.

    2016-04-22

    Data specific to the Harlem River, New York, have been summarized and are presented in this report. The data illustrate improvements in the quality of water for the past 65 years and emphasize the importance of a continuous water-quality record for establishing trends in environmental conditions. Although there is a paucity of sediment-quality data, the New York City Department of Environmental Protection (NYCDEP) Bureau of Wastewater Treatment has maintained a water-quality monitoring network in the Harlem River (and throughout the harbor of New York City) to which 61 combined sewer outfalls discharge effluent. In cooperation with the NYCDEP, the U.S. Geological Survey evaluated water-quality data collected by the NYCDEP dating back to 1945, which indicate trends in water quality and reveal improvement following the 1972 passage of the Clean Water Act. These improvements are indicated by the steady increase in median dissolved oxygen concentrations and an overall decrease in fecal indicator bacteria concentrations starting in the late 1970s. Further, the magnitude of the highest fecal indicator bacteria concentrations (that is, the 90th percentile) in samples collected from the Harlem River have decreased significantly over the past four decades. Other parameters of water quality used to gauge the health of a water body include total suspended solids and nutrient (inorganic forms of nitrogen and phosphorus) concentrations—mean concentrations for these indicators have also decreased in the past decades. The limited sediment data available for one sample in the Harlem River indicate concentrations of copper, zinc, and lead are above sediment-quality thresholds set by the New York State Department of Environmental Conservation. However, more data are needed to better understand the changes in both sediment and water quality in the Harlem River, both as the tide cycles and during precipitation events. As a partner in the Urban Waters Federal Partnership, the U

  14. Emergy Evaluation of the Natural Value of Water Resources in Chinese Rivers

    Science.gov (United States)

    Chen, Dan; Chen, Jing; Luo, Zhaohui; Lv, Zhuwu

    2009-08-01

    Emergy theory and method were used to evaluate the economy of China and the contributions of water resources in Chinese rivers to the real wealth of the Chinese economy. The water cycle and energy conversion were reviewed, and an emergy method for evaluating the natural value of water resources in a river watershed was developed. The indices for China calculated from the emergy evaluation were close to those of developing countries. Despite a small surplus in its balance of payments, China had a net emergy loss from its trade in 2002. The efficiency of Chinese natural resource use was still not high and did not match its economic growth rate. Furthermore, the Chinese economy placed a stress on its ecological environment and natural resources. Several indices of Chinese rivers from the emergy evaluation were close to those of average global river water. The main average indices of Chinese rivers were transformity (4.17 × 104 sej/J), emergy per volume (2.05 × 1011 sej/m3), and emdollar per volume (0.06 /m3). The total value of all the rivers’ water made up 13.0% of the GDP of China in 2002, and that of water consumption accounted for 2.1%. The value of the water resources in the Haihe-luanhe River (11.39 × 104 sej/J) was the highest, followed by the Yellow River (10.27 × 104 sej/J), while the rivers in Southwest China had the lowest values (2.92 × 104 sej/J).

  15. Metal concentrations of river water and sediments in West Java, Indonesia.

    Science.gov (United States)

    Yasuda, Masaomi; Yustiawati; Syawal, M Suhaemi; Sikder, Md Tajuddin; Hosokawa, Toshiyuki; Saito, Takeshi; Tanaka, Shunitz; Kurasaki, Masaaki

    2011-12-01

    To determine the water environment and pollutants in West Java, the contents of metals and general water quality of the Ciliwung River in the Jakarta area were measured. High Escherichia coli number (116-149/mL) was detected downstream in the Ciliwung River. In addition to evaluate mercury pollution caused by gold mining, mercury contents of water and sediment samples from the Cikaniki River, and from paddy samples were determined. The water was not badly polluted. However, toxic metals such as mercury were detected at levels close to the baseline environmental standard of Indonesia (0.83-1.07 μg/g of sediments in the Cikaniki River). From analyses of the paddy samples (0.08 μg/g), it is considered that there is a health risk caused by mercury.

  16. Studies on the current state of water quality in the Segamat River

    Science.gov (United States)

    Razelan, Faridah Mohd; Tahir, Wardah; E. M Yahaya, Nasehir Khan

    2018-04-01

    Nowadays, pollution has become a major concern in developed and developing countries. In a study on the current state of Segamat River water quality; on-site data collection and observation and also laboratory data analysis have been implemented. Studies showed that the downstream of the Segamat River has recorded a significant reduction in quality of water during the dry season compared to the wet season. The deterioration of water quality is caused by the activities along the river such as palm oil plantation, municipal waste and waste from settlements. It was also recorded that the point sources were dominating the pollution at Segamat River during the dry season. However, during the wet season, the water quality was impaired by the non-point sources which originated from the upstream of the river.

  17. Water resources of the Blackstone River basin, Massachusetts

    Science.gov (United States)

    Izbicki, John A.

    2000-01-01

    By 2020, demand for water in the Blackstone River Basin is expected to be 52 million gallons per day, one-third greater than the demand of 39 million gallons per day in 1980. Most of this increase is expected to be supplied by increased withdrawals of ground water from stratified-drift aquifers in the eastern and northern parts of the basin. Increased withdrawals from stratified-drift aquifers along the Blackstone River and in the western part of the basin also are expected.The eastern and northern parts of the Blackstone River Basin contain numerous small, discontinuous aquifers which, as a group, comprise the largest ground-water resource of the study area. Fifteen aquifers, ranging in areal extent from 0.57 to 4.3 square miles, were identified. These aquifers have maximum saturated thicknesses ranging from less than 10 feet to 105 feet and maximum transmissivities ranging from less than 1,000 to more than 20,000 feet squared per day. Yields of nine study aquifers were estimated by use of digital ground-water-flow models. Yields depend on the hydraulic properties of the aquifer and the amount of streamflow available for depletion by wells. If streamflow is maintained at 98-percent duration, long-term yields from the aquifers that would be expected to be equaled or exceeded 50 percent of the time range from 0.22 to 11 million gallons per day, and long-term yields equaled or exceeded 95 percent of the time range from 0.06 to 1.0 million gallons per day. If streamflow is maintained at 99.5-percent duration, long-term yields equaled or exceeded 50 percent of the time range from 0.22 to 11 million gallons per day, long-term yields equaled or exceeded 95 percent of the time range from 0.04 to 1.4 million gallons per day, and longterm yields equaled or exceeded 98 percent of the time range from 0.02 to 0.39 million gallons per day. Maintaining streamflow at 98-percent duration is a more restrictive criterion than maintaining streamflow at 99.5-percent duration. The

  18. seasonal variation in water quality of orle river basin, sw nigeria.

    African Journals Online (AJOL)

    LUCY

    The seasonal variation of water quality of Orle River and its tributatries in S.W. Nigeria was investigated forthnightly or two ... KEYWORD: water quality, river basin, wet and dry seasons; pollution. ..... Environmental Modeling and Software,.

  19. Does river restoration affect diurnal and seasonal changes to surface water quality? A study along the Thur River, Switzerland

    International Nuclear Information System (INIS)

    Chittoor Viswanathan, Vidhya; Molson, John; Schirmer, Mario

    2015-01-01

    Changes in river water quality were investigated along the lower reach of the Thur River, Switzerland, following river restoration and a summer storm event. River restoration and hydrological storm events can each cause dramatic changes to water quality by affecting various bio-geochemical processes in the river, but have to date not been well documented, especially in combination. Evaluating the success of river restoration is often restricted in large catchments due to a lack of high frequency water quality data, which are needed for process understanding. These challenges were addressed in this study by measuring water quality parameters including dissolved oxygen (DO), temperature, pH, electrical conductivity (EC), nitrate and dissolved organic carbon (DOC) with a high temporal frequency (15 min–1 h) over selected time scales. In addition, the stable isotopes of water (δD and δ 18 O-H 2 O) as well as those of nitrate (δ 15 N-NO 3 − and δ 18 O-NO 3 − ) were measured to follow changes in water quality in response to the hydrological changes in the river. To compare the spatial distribution of pre- and post-restoration water quality, the sampling stations were chosen upstream and downstream of the restored section. The diurnal and seasonal changes were monitored by conducting 24-hour campaigns in three seasons (winter, summer and autumn) in 2012 and 2013. The amplitude of the diurnal changes of the various observed parameters showed significant seasonal and spatial variability. Biological processes — mainly photosynthesis and respiration — were found to be the major drivers of these diurnal cycles. During low flow in autumn, a reduction of nitrate (attributed to assimilation by autotrophs) in the pre-dawn period and a production of DOC during the daytime (attributed to photosynthesis) were observed downstream of the restored site. Further, a summer storm event was found to override the influence of these biological processes that control the diurnal

  20. Madawaska River water management review : issues, concerns, solutions

    International Nuclear Information System (INIS)

    1999-01-01

    Public consultations were held by the Public Advisory Committee, the Ontario Ministry of Natural Resources (MNR) and Ontario Hydro (OH) Working Group and Steering Committee, in an effort to develop a water management system for the Madawaska River, that would address public interests such as public safety, maintenance of the aquatic ecosystem and hydroelectric power generation. Provision of long-term opportunities for broad public involvement in the river's management was an additional objective. The report emphasizes the importance of limiting conflicts between hydroelectric generation and recreation/tourism on the Madawaska River, which runs within the Madawaska Highlands, Algonquin Provincial Park and the Upper Ottawa Valley. The major competing uses for water management in the Madawaska River are: (1) hydroelectric generation, (2) flood control, (3) recreation and tourism, and (4) fish and aquatic ecosystems. Each of these are described in detail, with details of the responses to the issue description and recommended actions

  1. Investigation of the factors influencing radiocesium concentrations of fish inhabiting natural aquatic ecosystems

    International Nuclear Information System (INIS)

    Jinks, S.M.

    1975-01-01

    Distributions of radioactive and stable cesium were determined in water, sediment, and biota from eight different aquatic ecosystems between 1971 and 1973. The ecosystems included four lakes, fresh and brackish water regions of the Hudson River estuary, and two coastal marine sites. In the Hudson River estuary, the distribution of radiocesium between suspended and dissolved phases in water was found to be a function of salinity. Mean rates of deposition of suspended radiocesium into bottom sediment are calculated from the temporal changes in concentrations of the media, and observed depth distributions in sediment are semi-quantitatively described. Desorption by salt water is identified as the major mechanism for transport of radiocesium from bottom sediment in the lower estuary, and half-times for removal by this mechanism are estimated to be 1.5 to 2.0 years. Suspended-dissolved distributions of radiocesium in water, and depth distributions in sediment are also presented for lake and marine systems. Accumulation of radiocesium by fish is examined in relation to radiocesium distributions in water, sediment, and other biota, and to the chemical characteristics of each ecosystem. Radiocesium dissolved in water was the primary source to the fish in all ecosystems. Sediment inventories of 137 Cs constituted a secondary source which provided as much as 50 percent of the radiocesium in benthic feeding fish in the Hudson River. Dietary intake of 137 Cs is shown to be inversely related to the potassium concentration in the ambient water, and results in an inverse proportionality between the concentration factor in fish and the potassium concentrations in the different freshwater and estuarine ecosystems

  2. History of water quality parameters - a study on the Sinos River/Brazil.

    Science.gov (United States)

    Konzen, G B; Figueiredo, J A S; Quevedo, D M

    2015-05-01

    Water is increasingly becoming a valuable resource, constituting one of the central themes of environmental, economic and social discussions. The Sinos River, located in southern Brazil, is the main river from the Sinos River Basin, representing a source of drinking water supply for a highly populated region. Considering its size and importance, it becomes necessary to conduct a study to follow up the water quality of this river, which is considered by some experts as one of the most polluted rivers in Brazil. As for this study, its great importance lies in the historical analysis of indicators. In this sense, we sought to develop aspects related to the management of water resources by performing a historical analysis of the Water Quality Index (WQI) of the Sinos River, using statistical methods. With regard to the methodological procedures, it should be pointed out that this study performs a time analysis of monitoring data on parameters related to a punctual measurement that is variable in time, using statistical tools. The data used refer to analyses of the water quality of the Sinos River (WQI) from the State Environmental Protection Agency Henrique Luiz Roessler (Fundação Estadual de Proteção Ambiental Henrique Luiz Roessler, FEPAM) covering the period between 2000 and 2008, as well as to a theoretical analysis focusing on the management of water resources. The study of WQI and its parameters by statistical analysis has shown to be effective, ensuring its effectiveness as a tool for the management of water resources. The descriptive analysis of the WQI and its parameters showed that the water quality of the Sinos River is concerning low, which reaffirms that it is one of the most polluted rivers in Brazil. It should be highlighted that there was an overall difficulty in obtaining data with the appropriate periodicity, as well as a long complete series, which limited the conduction of statistical studies such as the present one.

  3. Simulation of blue and green water resources in the Wei River basin, China

    Directory of Open Access Journals (Sweden)

    Z. Xu

    2014-09-01

    Full Text Available The Wei River is the largest tributary of the Yellow River in China and it is suffering from water scarcity and water pollution. In order to quantify the amount of water resources in the study area, a hydrological modelling approach was applied by using SWAT (Soil and Water Assessment Tool, calibrated and validated with SUFI-2 (Sequential Uncertainty Fitting program based on river discharge in the Wei River basin (WRB. Sensitivity and uncertainty analyses were also performed to improve the model performance. Water resources components of blue water flow, green water flow and green water storage were estimated at the HRU (Hydrological Response Unit scales. Water resources in HRUs were also aggregated to sub-basins, river catchments, and then city/region scales for further analysis. The results showed that most parts of the WRB experienced a decrease in blue water resources between the 1960s and 2000s, with a minimum value in the 1990s. The decrease is particularly significant in the most southern part of the WRB (Guanzhong Plain, one of the most important grain production basements in China. Variations of green water flow and green water storage were relatively small on the spatial and temporal dimensions. This study provides strategic information for optimal utilization of water resources and planning of cultivating seasons in the Wei River basin.

  4. GROUNDWATER-SURFACE WATER EXCHANGE AND IMPLICATIONS FOR LARGE RIVER RESTORATION

    Science.gov (United States)

    Movement of river water into and out of high-porosity alluvial deposits can have an important influence on surface water quality and aquatic habitat. In our study of a 60-km reach of the Willamette River in Oregon, USA, we: 1) used tracers to estimate the rate of exchange betw...

  5. Reconstruction of North American drainage basins and river discharge since the Last Glacial Maximum

    Directory of Open Access Journals (Sweden)

    A. D. Wickert

    2016-11-01

    Full Text Available Over the last glacial cycle, ice sheets and the resultant glacial isostatic adjustment (GIA rearranged river systems. As these riverine threads that tied the ice sheets to the sea were stretched, severed, and restructured, they also shrank and swelled with the pulse of meltwater inputs and time-varying drainage basin areas, and sometimes delivered enough meltwater to the oceans in the right places to influence global climate. Here I present a general method to compute past river flow paths, drainage basin geometries, and river discharges, by combining models of past ice sheets, glacial isostatic adjustment, and climate. The result is a time series of synthetic paleohydrographs and drainage basin maps from the Last Glacial Maximum to present for nine major drainage basins – the Mississippi, Rio Grande, Colorado, Columbia, Mackenzie, Hudson Bay, Saint Lawrence, Hudson, and Susquehanna/Chesapeake Bay. These are based on five published reconstructions of the North American ice sheets. I compare these maps with drainage reconstructions and discharge histories based on a review of observational evidence, including river deposits and terraces, isotopic records, mineral provenance markers, glacial moraine histories, and evidence of ice stream and tunnel valley flow directions. The sharp boundaries of the reconstructed past drainage basins complement the flexurally smoothed GIA signal that is more often used to validate ice-sheet reconstructions, and provide a complementary framework to reduce nonuniqueness in model reconstructions of the North American ice-sheet complex.

  6. Environmental and ecological water requirement of river system: a case study of Haihe-Luanhe river system

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In order to reduce the environmental and ecological problems induced by water resources development and utilization, this paper proposes a concept of environmental and ecological water requirement. It is defined as the minimum water amount to be consumed by the natural water bodies to conserve its environmental and ecological functions. Based on the definition, the methods on calculating the amount of environmental and ecological water requirement are determined. In the case study on Haihe-Luanhe river system, the water requirement is divided into three parts, i.e., the basic in-stream flow, water requirement for sediment transfer and water consumption by evaporation of the lakes or everglades. The results of the calculation show that the environmental and ecological water requirement in the river system is about 124×108 m3, including 57×108 m3 for basic in-stream flow, 63×108m3 for sediment transfer and 4×l08m3 for net evaporation loss of lakes. The total amount of environmental and ecological water requirement accounts for 54% of the amount of runoff (228×108 m3). However, it should be realized that the amount of environmental and ecological water requirement must be more than that we have calculated. According to this result, we consider that the rational utilization rate of the runoff in the river systems must not be more than 40%. Since the current utilization rate of the river system, which is over 80%, has been far beyond the limitation, the problems of environment and ecology are quite serious. It is imperative to control and adjust water development and utilization to eliminate the existing problems and to avoid the potential ecological or environmental crisis.

  7. Perspectives on sustainable development in the Moose River basin

    Energy Technology Data Exchange (ETDEWEB)

    Preston, R.J.; George, P.J. [McMaster Univ., Hamilton, ON (Canada); Berkes, F. [Manitoba Univ., Winnipeg, MB (Canada)

    1995-12-31

    The environmental, economic and sociocultural determinants of sustainable development in the Cree communities of the Mushkegowuk region of the Hudson and James Bay lowlands of Ontario were analyzed. The Cree perspectives on sustainable development versus the perspective of industrial developers such as Ontario Hydro, and the contrast between the two, were outlined. In 1990, Ontario Hydro released their long term demand and supply plan report. Their proposals included new generating stations and the development of existing sites in the Moose River drainage basin. Ontario Hydro`s perspective was that they were using an otherwise under-utilized resource, and creating employment at the same time. By contrast, the Cree demanded a thorough assessment of cumulative impacts of development of the Moose River region, the impact on the Cree communities, and the cumulative effects on the much larger Hudson Bay region. They drew attention to the vulnerability of the local land-based economy, and the damage caused by past hydroelectric and other industrial development projects. The situation is a good illustration of the basic dilemma for development planning in the Moose River region, and indeed for much of the Canadian north. It is the view of these authors that the recipe for a viable development strategy for the region should involve continued reliance on transfer payments and investments in renewable resource-based industry and local services, not as a transition stage, but as a culturally, economically and ecologically sustainable arrangement in its own right. 32 refs., 1 tab., 2 figs.

  8. Environmental flows and water quality objectives for the River Murray.

    Science.gov (United States)

    Gippel, C; Jacobs, T; McLeod, T

    2002-01-01

    Over the past decade, there intense consideration of managing flows in the River Murray to provide environmental benefits. In 1990 the Murray-Darling Basin Ministerial Council adopted a water quality policy: To maintain and, where necessary, improve existing water quality in the rivers of the Murray-Darling Basin for all beneficial uses - agricultural, environmental, urban, industrial and recreational, and in 1994 a flow policy: To maintain and where necessary improve existing flow regimes in the waterways of the Murray-Darling Basin to protect and enhance the riverine environment. The Audit of Water Use followed in 1995, culminating in the decision of the Ministerial Council to implement an interim cap on new diversions for consumptive use (the "Cap") in a bid to halt declining river health. In March 1999 the Environmental Flows and Water Quality Objectives for the River Murray Project (the Project) was set up, primarily to establish be developed that aims to achieve a sustainable river environment and water quality, in accordance with community needs, and including an adaptive approach to management and operation of the River. It will lead to objectives for water quality and environmental flows that are feasible, appropriate, have the support of the scientific, management and stakeholder communities, and carry acceptable levels of risk. This paper describes four key aspects of the process being undertaken to determine the objectives, and design the flow options that will meet those objectives: establishment of an appropriate technical, advisory and administrative framework; establishing clear evidence for regulation impacts; undergoing assessment of environmental flow needs; and filling knowledge gaps. A review of the impacts of flow regulation on the health of the River Murray revealed evidence for decline, but the case for flow regulation as the main cause is circumstantial or uncertain. This is to be expected, because the decline of the River Murray results

  9. Levels of trace metals in water and sediment from Tyume River and ...

    African Journals Online (AJOL)

    Higher levels of Cd (0.038 ± 0.004 to 0.044 ± 0.003 mg/l) and Pb (0.021 ± 0.004 to 0.035 ± 0.001 mg/l) were found in the river water, which may be detrimental to the “health” of the aquatic ecosystem and the rural communities that utilise the river water for ... Key words: trace metals, water, sediment, farmland, Tyume River

  10. Ecosystem based river basin management planning in critical water catchment in Mongolia

    Science.gov (United States)

    Tugjamba, Navchaa; Sereeter, Erdenetuul; Gonchigjav, Sarantuya

    2014-05-01

    Developing the ecosystem based adaptation strategies to maintain water security in critical water catchments in Mongolia would be very significant. It will be base by reducing the vulnerability. "Ecosystem Based adaptation" is quite a new term in Mongolia and the ecosystem approach is a strategy for the integrated management of land, water and living resources that promotes conservation and sustainable use in an equitable way. To strengthen equitable economic development, food security, climate resilience and protection of the environment, the implementation of sustainable river basin management in critical water catchments is challenging in Mongolia. The Ulz river basin is considered one of the critical water catchments due to the temperature has increased by in average 1.30Ñ over the period 1976 to 2011. It is more intense than the global warming rate (0.740C/100 years) and a bit higher than the warming rate over whole Mongolia as well. From long-term observations and measurements it is clear that Ulz River has low water in a period of 1970-1980 and since the end of 1980s and middle of 1990s there were dominated years of the flood. However, under the influence of the global warming, climate changes of Mongolia and continuation of drought years with low water since the end of 1990s until today river water was sharply fallen and dried up. For the last ten years rivers are dried up and annual mean run-off is less by 3-5 times from long term mean value. The Ulz is the transboundary river basin and taking its origin from Ikh and Baga Burd springs on territory of Norovlin soum of Khentii province that flows through Khentii and Dornod provinces to the northeast, crossing the state border it flows in Baruun Tari located in Tari Lake concavity in Russia. Based on the integrative baseline study on the 'The Ulz River Basin Environmental and Socioeconomic condition', ecosystem based river basin management was planned. 'Water demand Calculator 3' (WDC) software was used to

  11. Evaluation of PCB bioaccumulation by Lumbriculus variegatus in field-collected sediments

    Science.gov (United States)

    Sediment bioaccumulation tests with Lumbriculus variegatus were performed on polychlorinated biphenyl (PCBs) contaminated sediment samples from the Hudson, Grasse, and Fox Rivers Superfund sites with concurrent measurement of PCB concentrations in sediment interstitial water. Th...

  12. EU-wide survey of polar organic persistent pollutants in European river waters

    International Nuclear Information System (INIS)

    Loos, Robert; Gawlik, Bernd Manfred; Locoro, Giovanni; Rimaviciute, Erika; Contini, Serafino; Bidoglio, Giovanni

    2009-01-01

    This study provides the first EU-wide reconnaissance of the occurrence of polar organic persistent pollutants in European river waters. More than 100 individual water samples from over 100 European rivers from 27 European Countries were analysed for 35 selected compounds, comprising pharmaceuticals, pesticides, PFOS, PFOA, benzotriazoles, hormones, and endocrine disrupters. Around 40 laboratories participated in this sampling exercise. The most frequently and at the highest concentration levels detected compounds were benzotriazole, caffeine, carbamazepine, tolyltriazole, and nonylphenoxy acetic acid (NPE 1 C). Only about 10% of the river water samples analysed could be classified as 'very clean' in terms of chemical pollution. The rivers responsible for the major aqueous emissions of PFOS and PFOA from the European Continent could be identified. For the target compounds chosen, we are proposing 'indicative warning levels' in surface waters, which are (for most compounds) close to the 90th percentile of all water samples analysed. - More than 100 river water samples from 27 European Countries were analysed for 35 selected polar organic contaminants

  13. EU-wide survey of polar organic persistent pollutants in European river waters

    Energy Technology Data Exchange (ETDEWEB)

    Loos, Robert [European Commission, Joint Research Centre, Institute for Environment and Sustainability, Via Enrico Fermi, 21020 Ispra (Italy)], E-mail: robert.loos@jrc.it; Gawlik, Bernd Manfred; Locoro, Giovanni; Rimaviciute, Erika; Contini, Serafino; Bidoglio, Giovanni [European Commission, Joint Research Centre, Institute for Environment and Sustainability, Via Enrico Fermi, 21020 Ispra (Italy)

    2009-02-15

    This study provides the first EU-wide reconnaissance of the occurrence of polar organic persistent pollutants in European river waters. More than 100 individual water samples from over 100 European rivers from 27 European Countries were analysed for 35 selected compounds, comprising pharmaceuticals, pesticides, PFOS, PFOA, benzotriazoles, hormones, and endocrine disrupters. Around 40 laboratories participated in this sampling exercise. The most frequently and at the highest concentration levels detected compounds were benzotriazole, caffeine, carbamazepine, tolyltriazole, and nonylphenoxy acetic acid (NPE{sub 1}C). Only about 10% of the river water samples analysed could be classified as 'very clean' in terms of chemical pollution. The rivers responsible for the major aqueous emissions of PFOS and PFOA from the European Continent could be identified. For the target compounds chosen, we are proposing 'indicative warning levels' in surface waters, which are (for most compounds) close to the 90th percentile of all water samples analysed. - More than 100 river water samples from 27 European Countries were analysed for 35 selected polar organic contaminants.

  14. Occurrence, molecular characterization and antibiogram of water quality indicator bacteria in river water serving a water treatment plant

    Energy Technology Data Exchange (ETDEWEB)

    Okeke, Benedict C., E-mail: bokeke@aum.edu [Department of Biology, Auburn University at Montgomery, P.O. Box 244023, Montgomery, AL 36124 (United States); Thomson, M. Sue [Department of Biology, Auburn University at Montgomery, P.O. Box 244023, Montgomery, AL 36124 (United States); Moss, Elica M. [Department of Natural Resources and Environmental Science, Alabama A and M University, AL 35762 (United States)

    2011-11-01

    Water pollution by microorganisms of fecal origin is a current world-wide public health concern. Total coliforms, fecal coliforms (Escherichia coli) and enterococci are indicators commonly used to assess the microbiological safety of water resources. In this study, influent water samples and treated water were collected seasonally from a water treatment plant and two major water wells in a Black Belt county of Alabama and evaluated for water quality indicator bacteria. Influent river water samples serving the treatment plant were positive for total coliforms, fecal coliforms (E. coli), and enterococci. The highest number of total coliform most probable number (MPN) was observed in the winter (847.5 MPN/100 mL) and the lowest number in the summer (385.6 MPN/100 mL). Similarly E. coli MPN was substantially higher in the winter (62.25 MPN/100 mL). Seasonal variation of E. coli MPN in influent river water samples was strongly correlated with color (R{sup 2} = 0.998) and turbidity (R{sup 2} = 0.992). Neither E. coli nor other coliform type bacteria were detected in effluent potable water from the treatment plant. The MPN of enterococci was the highest in the fall and the lowest in the winter. Approximately 99.7 and 51.5 enterococci MPN/100 mL were recorded in fall and winter seasons respectively. One-way ANOVA tests revealed significant differences in seasonal variation of total coliforms (P < 0.05), fecal coliforms (P < 0.01) and enterococci (P < 0.01). Treated effluent river water samples and well water samples revealed no enterococci contamination. Representative coliform bacteria selected by differential screening on Coliscan Easygel were identified by 16S ribosomal RNA gene sequence analysis. E. coli isolates were sensitive to gentamicin, trimethoprim/sulfamethazole, ciprofloxacin, vancomycin, tetracycline, ampicillin, cefixime, and nitrofurantoin. Nonetheless, isolate BO-54 displayed decreased sensitivity compared to other E. coli isolates. Antibiotic sensitivity

  15. Occurrence, molecular characterization and antibiogram of water quality indicator bacteria in river water serving a water treatment plant

    International Nuclear Information System (INIS)

    Okeke, Benedict C.; Thomson, M. Sue; Moss, Elica M.

    2011-01-01

    Water pollution by microorganisms of fecal origin is a current world-wide public health concern. Total coliforms, fecal coliforms (Escherichia coli) and enterococci are indicators commonly used to assess the microbiological safety of water resources. In this study, influent water samples and treated water were collected seasonally from a water treatment plant and two major water wells in a Black Belt county of Alabama and evaluated for water quality indicator bacteria. Influent river water samples serving the treatment plant were positive for total coliforms, fecal coliforms (E. coli), and enterococci. The highest number of total coliform most probable number (MPN) was observed in the winter (847.5 MPN/100 mL) and the lowest number in the summer (385.6 MPN/100 mL). Similarly E. coli MPN was substantially higher in the winter (62.25 MPN/100 mL). Seasonal variation of E. coli MPN in influent river water samples was strongly correlated with color (R 2 = 0.998) and turbidity (R 2 = 0.992). Neither E. coli nor other coliform type bacteria were detected in effluent potable water from the treatment plant. The MPN of enterococci was the highest in the fall and the lowest in the winter. Approximately 99.7 and 51.5 enterococci MPN/100 mL were recorded in fall and winter seasons respectively. One-way ANOVA tests revealed significant differences in seasonal variation of total coliforms (P < 0.05), fecal coliforms (P < 0.01) and enterococci (P < 0.01). Treated effluent river water samples and well water samples revealed no enterococci contamination. Representative coliform bacteria selected by differential screening on Coliscan Easygel were identified by 16S ribosomal RNA gene sequence analysis. E. coli isolates were sensitive to gentamicin, trimethoprim/sulfamethazole, ciprofloxacin, vancomycin, tetracycline, ampicillin, cefixime, and nitrofurantoin. Nonetheless, isolate BO-54 displayed decreased sensitivity compared to other E. coli isolates. Antibiotic sensitivity pattern

  16. Water Quality Evaluation of the Yellow River Basin Based on Gray Clustering Method

    Science.gov (United States)

    Fu, X. Q.; Zou, Z. H.

    2018-03-01

    Evaluating the water quality of 12 monitoring sections in the Yellow River Basin comprehensively by grey clustering method based on the water quality monitoring data from the Ministry of environmental protection of China in May 2016 and the environmental quality standard of surface water. The results can reflect the water quality of the Yellow River Basin objectively. Furthermore, the evaluation results are basically the same when compared with the fuzzy comprehensive evaluation method. The results also show that the overall water quality of the Yellow River Basin is good and coincident with the actual situation of the Yellow River basin. Overall, gray clustering method for water quality evaluation is reasonable and feasible and it is also convenient to calculate.

  17. The occurrence of Aeromonas in drinking water, tap water and the Porsuk River

    Directory of Open Access Journals (Sweden)

    Merih Kivanc

    2011-03-01

    Full Text Available The occurrence of Aeromonas spp. in the Porsuk River, public drinking water and tap water in the City of Eskisehir (Turkey was monitored. Fresh water samples were collected from several sampling sites during a period of one year. Total 102 typical colonies of Aeromonas spp. were submitted to biochemical tests for species differentiation and of 60 isolates were confirmed by biochemical tests. Further identifications of isolates were carried out first with the VITEK system (BioMe˜rieux and then selected isolates from different phenotypes (VITEK types were identified using the DuPont Qualicon RiboPrinter® system. Aeromonas spp. was detected only in the samples from the Porsuk River. According to the results obtained with the VITEK system, our isolates were 13% Aeromonas hydrophila, 37% Aeromonas caviae, 35% Pseudomonas putida, and 15% Pseudomonas acidovorans. In addition Pseudomonas sp., Pseudomonas maltophila, Aeromonas salmonicida, Aeromonas hydrophila, and Aeromonas media species were determined using the RiboPrinter® system. The samples taken from the Porsuk River were found to contain very diverse Aeromonas populations that can pose a risk for the residents of the city. On the other hand, drinking water and tap water of the City are free from Aeromonas pathogens and seem to be reliable water sources for the community.

  18. Comparison of 2006-2007 Water Years and Historical Water-Quality Data, Upper Gunnison River Basin, Colorado

    Science.gov (United States)

    Solberg, P.A.; Moore, Bryan; Smits, Dennis

    2009-01-01

    Population growth and changes in land use have the potential to affect water quality and quantity in the upper Gunnison River basin. In 1995, the U.S. Geological Survey (USGS), in cooperation with the Bureau of Land Management, City of Gunnison, Colorado River Water Conservation District, Crested Butte South Metropolitan District, Gunnison County, Hinsdale County, Mount Crested Butte Water and Sanitation District, National Park Service, Town of Crested Butte, Upper Gunnison River Water Conservancy District, and Western State College established a water-quality monitoring program in the upper Gunnison River basin to characterize current water-quality conditions and to assess the effects of increased urban development and other land-use changes on water quality. The monitoring network has evolved into two groups of stations - stations that are considered long term and stations that are considered rotational. The long-term stations are monitored to assist in defining temporal changes in water quality (how conditions may change over time). The rotational stations are monitored to assist in the spatial definition of water-quality conditions (how conditions differ throughout the basin) and to address local and short-term concerns. Some stations in the rotational group were changed beginning in water year 2007. Annual summaries of the water-quality data from the monitoring network provide a point of reference for discussions regarding water-quality monitoring in the upper Gunnison River basin. This summary includes data collected during water years 2006 and 2007. The introduction provides a map of the sampling sites, definitions of terms, and a one-page summary of selected water-quality conditions at the network stations. The remainder of the summary is organized around the data collected at individual stations. Data collected during water years 2006 and 2007 are compared to historical data, State water-quality standards, and Federal water-quality guidelines. Data were

  19. How is the River Water Quality Response to Climate Change Impacts?

    Science.gov (United States)

    Nguyen, T. T.; Willems, P.

    2015-12-01

    Water quality and its response to climate change have been become one of the most important issues of our society, which catches the attention of many scientists, environmental activists and policy makers. Climate change influences the river water quality directly and indirectly via rainfall and air temperature. For example, low flow decreases the volume of water for dilution and increases the residence time of the pollutants. By contrast, high flow leads to increases in the amount of pollutants and sediment loads from catchments to rivers. The changes in hydraulic characteristics, i.e. water depth and velocity, affect the transportation and biochemical transformation of pollutants in the river water body. The high air temperature leads to increasing water temperature, shorter growing periods of different crops and water demands from domestic households and industries, which eventually effects the level of river pollution. This study demonstrates the quantification of the variation of the water temperature and pollutant concentrations along the Molse Neet river in the North East of Belgium as a result of the changes in the catchment rainfall-runoff, air temperature and nutrient loads. Firstly, four climate change scenarios were generated based on a large ensemble of available global and regional climate models and statistical downscaling based on a quantile perturbation method. Secondly, the climatic changes to rainfall and temperature were transformed to changes in the evapotranspiration and runoff flow through the conceptual hydrological model PDM. Thirdly, the adjustment in nutrient loads from agriculture due to rainfall and growing periods of crops were calculated by means of the semi-empirical SENTWA model. Water temperature was estimated from air temperature by a stochastic model separating the temperature into long-term annual and short-term residual components. Next, hydrodynamic and water quality models of the river, implemented in InfoWorks RS, were

  20. Hydrological and Water Quality Characteristics of Rivers Feeding ...

    African Journals Online (AJOL)

    FDC analysis showed that over 80% of the time, all rivers in the study area would not meet the target community's water demand, without the dams in place. Water quality assessments show biological contamination as the major water quality problem. Significant seasonal variation in water quality is evident, with the dry ...

  1. The characteristics and evaluation of water pollution in Ganjiang Tail River

    Science.gov (United States)

    Liu, W. J.; Li, Z. B.; Zou, D. S.; Ren, C. J.; Pei, Q. B.

    2017-08-01

    The water quality in Ganjiang River has an important impact on the ecological environment of Poyang Lake, because Ganjiang River is an important water supply of Poyang Lake. In this paper, the electrical conductivity (ED), turbidity (NTU), suspended solids (SS), total phosphorus (NP), total nitrogen (NT), ammonia nitrogen (NH4-N), nitrate nitrogen (NO3-N), and chemical oxygen demand quantity (COD) have been considered as indicators of water quality while performing an assessment of water in Ganjiang River. We evaluated and analyzed comprehensively the quality of surface and underground water by using the Water Quality Identification Index Method. The sample water was retrieved every 50 days from eight monitoring points located in three sections of downstream Ganjiang River in Nanchang city; the study was conducted from September 10, 2015 to June 1, 2016. The results indicate that the pollution index of northern, central, and southern tributaries in Ganjiang River downstream are 3.807, 3.567, and 3.795, respectively; these results were obtained by performing the primary pollutants quality identification index method (PP-WQI); the pollution index for the same tributaries was found to be 3.8077, 3.5003, 3.7465, respectively when we performed comprehensive water quality identification index method (CWQI). The water pollution grades are between level 3 and level 4. The main pollutants are COD, TN, and SS; moreover, there is a linear relationship between the pollution index in groundwater and surface water. The water quality is the best in the central branch, and worst in the south; the water quality is moderate in the north. Furthermore, the water of upstream is better than that of downstream. Finally, the water quality is worst in summer but best in winter.

  2. ASSESSMENT OF RIVER WATER QUALITY USING MACRO-INVERTEBRATES AS INDICATORS: A CASE STUDY OF BHALU KHOLA TRIBUTARY, BUDHIGANDAKI RIVER, GORKHA, NEPAL

    Directory of Open Access Journals (Sweden)

    Anju Rana

    2015-08-01

    Full Text Available  Macroinvertebrates are widely considered as indicators of water quality. The present research work was conducted in Bhalu khola, a tributary of Budhigandaki River, Nepal, to identify water quality using macro invertebrates with Nepalese Biotic Score (NEPBIOS, and examine its applicability by comparing with Water Quality Index (WQI.The diversity of macro invertebrates in the studied river was high as depicted by Shannon Wiener Diversity Index. Altogether, 103 macro invertebrates were identified from 11 families and five orders. There were no dominant species, and most of the species were in clumped distribution. According to NEPBIOS index, river water was found to comply with the characteristics of WQ class I-II that means water quality of the river was good. Other indices such as Hilsenhoff and Lincoln quality index (LQI index also supported this result. Similarly, water quality index (WQI also showed similarity with NEPBIOS index, indicating water appropriate for drinking purpose. Thus, it is concluded that the macro invertebrates can be used as economic tools for determining water quality of streams and rivers as efficient water quality indicators.International Journal of Environment Volume-4, Issue-3, June-August 2015Page: 55-68

  3. Potability Evaluation of Selected River Waters in Ebonyi State, Nigeria

    African Journals Online (AJOL)

    The study focused on the seasonal variation of physiochemical and microbial characteristics of three selected river water in Ebonyi State for human consumption. The three selected rivers studied were Iyioka, Idima and Ubei Rivers. Data were generated using Direct Reading Engineering method (DREM), Gravimetric ...

  4. Comparison of 2008-2009 water years and historical water-quality data, upper Gunnison River Basin, Colorado

    Science.gov (United States)

    Solberg, Patricia A.; Moore, Bryan; Blacklock, Ty D.

    2012-01-01

    Population growth and changes in land use have the potential to affect water quality and quantity in the upper Gunnison River Basin. In 1995, the U.S. Geological Survey (USGS), in cooperation with the Bureau of Land Management, City of Gunnison, Colorado River Water Conservation District, Crested Butte South Metropolitan District, Gunnison County, Hinsdale County, Mount Crested Butte Water and Sanitation District, National Park Service, Town of Crested Butte, U.S. Forest Service, Upper Gunnison River Water Conservancy District, and Western State College, established a water-quality monitoring program in the upper Gunnison River Basin to characterize current water-quality conditions and to assess the effects of increased urban development and other land-use changes on water quality. The monitoring network has evolved into two groups of sites: (1) sites that are considered long term and (2) sites that are considered rotational. Data from the long-term sites assist in defining temporal changes in water quality (how conditions may change over time). The rotational sites assist in the spatial definition of water-quality conditions (how conditions differ throughout the basin) and address local and short-term concerns. Biannual summaries of the water-quality data from the monitoring network provide a point of reference for stakeholder discussions regarding the location and purpose of water-quality monitoring sites in the upper Gunnison River Basin. This report compares and summarizes the data collected during water years 2008 and 2009 to the historical data available at these sites. The introduction provides a map of the sampling sites, definitions of terms, and a one-page summary of selected water-quality conditions at the network sites. The remainder of the report is organized around the data collected at individual sites. Data collected during water years 2008 and 2009 are compared to historical data, State water-quality standards, and Federal water-quality guidelines

  5. 77 FR 45653 - Yakima River Basin Conservation Advisory Group; Yakima River Basin Water Enhancement Project...

    Science.gov (United States)

    2012-08-01

    ... Basin Conservation Advisory Group, Yakima River Basin Water Enhancement Project, established by the... Water Conservation Program. DATES: The meeting will be held on Tuesday, August 21, 2012, from 1 p.m. to... the implementation of the Water Conservation Program, including the applicable water conservation...

  6. Tracing the spatial propagation of river inlet water into an agricultural polder area using anthropogenic gadolinium

    Directory of Open Access Journals (Sweden)

    J. Rozemeijer

    2012-08-01

    Full Text Available Diverting river water into agricultural areas or nature reserves is a frequently applied management strategy to prevent fresh water shortage. However, the river water might have negative consequences for chemical and ecological water quality in the receiving water bodies. This study aimed to obtain a spatial image of the diverted river water propagation into a hydrologically complex polder area, the polder Quarles van Ufford in The Netherlands. We used anthropogenic gadolinium (Gd-anomaly as a tracer for river water that was diverted into the polder. A clear reduction in the river water contribution was found between very dry conditions on 5 August 2010 and very wet conditions on 22 October. Despite the large river water impact on 5 August, the diverted river water did not propagate up into the small agricultural headwater ditches. Gadolinium proved to be an effective tracer for diverted river water in a polder system. We applied our results to upgrade the interpretation of water quality monitoring data and to validate an integrated nutrient transport model.

  7. Seasonal water quality variations in a river affected by acid mine drainage: the Odiel River (South West Spain)

    Energy Technology Data Exchange (ETDEWEB)

    Olias, M.; Nieto, J.M.; Sarmiento, A.M.; Ceron, J.C.; Canovas, C.R

    2004-10-15

    This paper intends to analyse seasonal variations of the quality of the water of the Odiel River. This river, together with the Tinto River, drains the Iberian Pyrite Belt (IPB), a region containing an abundance of massive sulphide deposits. Because of mining activity dating back to prehistoric times, these two rivers are heavily contaminated. The Odiel and Tinto Rivers drain into a shared estuary known as the Ria of Huelva. This work studies dissolved contaminant data in water of the Odiel River collected by various organisations, between October 1980 and October 2002, close to the rivers entry into the estuary. Flow data for this location were also obtained. The most abundant metals in the water, in order of abundance, are zinc (Zn), iron (Fe), manganese (Mn) and copper (Cu). Arsenic (As), cadmium (Cd) and lead (Pb) are also present but in much lower quantities. The quality of the river water is linked to precipitation; the maximum sulphate, Fe, Zn, Mn, Cd and Pb concentrations occur during the autumn rains, which dissolve the Fe hydroxysulphates that were precipitated during the summer months. In winter, the intense rains cause an increase in the river flow, producing a dilution of the contaminants and a slight increase in the pH. During spring and summer, the sulphate and metal concentration (except Fe) recover and once again increase. The Fe concentration pattern displays a low value during summer due to increased precipitation of ferric oxyhydroxides. The arsenic concentration displays a different evolution, with maximum values in winter, and minimum in spring and summer as they are strongly adsorbed and/or coprecipitated by the ferric oxyhydroxides. Mn and sulphates are the most conservative species in the water. Relative to sulphate, Mn, Zn and Cd, copper displays greater values in winter and lower ones in summer, probably due to its coprecipitation with hydroxysulphates during the spring and summer months. Cd and Zn also appear to be affected by the same

  8. Speciation of cadmium, copper, lead and zinc in the waters of River ...

    African Journals Online (AJOL)

    The water of river Mzimbazi and its attributaries are known to contain heavy metals originating from industry and the water is used for domestic and vegetable irrigation purposes. The present study describes chemical forms of some of the heavy metals found in the water. Water samples from different locations along river ...

  9. Use of tritium to predict soluble pollutants transport in Ebro River waters (Spain).

    Science.gov (United States)

    Pujol, L; Sanchez-Cabeza, J A

    2000-05-01

    The Ebro River, in Northeast Spain, discharges into the Mediterranean Sea after flowing through several large cities and agricultural, mining and industrial areas. The Ascó nuclear power plant (NPP) is located in its lower section and comprises two pressurised water reactor units, from which low-level liquid radioactive waste is released to river waters under authority control. Tritium routinely released by the NPP was used as a radiotracer to determine the longitudinal dispersion coefficient and velocity of the river waters. Several field experiments, in co-ordination with the NPP, were carried out during 1991 and 1992. During each field experiment, the flow rate was kept constant by dams located upstream from the NPP. After each tritium release, water was sampled downstream at periodic intervals over several hours and tritium was measured with a low-background liquid scintillation counter. Velocity and dispersion coefficient were determined in river waters for several river discharges using an analytical, box-type and numerical approach to solve the one-dimensional advection-diffusion equation. The set of calibrated parameters was used to predict the displacement and dispersion of soluble pollutants in river waters. Velocity was determined as a function of river discharge and river slope, and dispersion coefficient was determined as a function of distance. Finally, sensitivity of the model predictions was studied and uncertainties of the fitted parameters were estimated.

  10. Does river restoration affect diurnal and seasonal changes to surface water quality? A study along the Thur River, Switzerland

    Energy Technology Data Exchange (ETDEWEB)

    Chittoor Viswanathan, Vidhya [Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Water Resources and Drinking Water, Überlandstrasse 133, 8600 Dübendorf (Switzerland); Université de Neuchâtel, Centre d' Hydrogéologie et de Géothermie (CHYN), Rue Emile-Argand 11, CH-2000 Neuchâtel (Switzerland); Molson, John [Université Laval, Département de Géologie et Génie Géologique, Québec City, Québec (Canada); Schirmer, Mario [Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Water Resources and Drinking Water, Überlandstrasse 133, 8600 Dübendorf (Switzerland); Université de Neuchâtel, Centre d' Hydrogéologie et de Géothermie (CHYN), Rue Emile-Argand 11, CH-2000 Neuchâtel (Switzerland)

    2015-11-01

    Changes in river water quality were investigated along the lower reach of the Thur River, Switzerland, following river restoration and a summer storm event. River restoration and hydrological storm events can each cause dramatic changes to water quality by affecting various bio-geochemical processes in the river, but have to date not been well documented, especially in combination. Evaluating the success of river restoration is often restricted in large catchments due to a lack of high frequency water quality data, which are needed for process understanding. These challenges were addressed in this study by measuring water quality parameters including dissolved oxygen (DO), temperature, pH, electrical conductivity (EC), nitrate and dissolved organic carbon (DOC) with a high temporal frequency (15 min–1 h) over selected time scales. In addition, the stable isotopes of water (δD and δ{sup 18}O-H{sub 2}O) as well as those of nitrate (δ{sup 15}N-NO{sub 3}{sup −} and δ{sup 18}O-NO{sub 3}{sup −}) were measured to follow changes in water quality in response to the hydrological changes in the river. To compare the spatial distribution of pre- and post-restoration water quality, the sampling stations were chosen upstream and downstream of the restored section. The diurnal and seasonal changes were monitored by conducting 24-hour campaigns in three seasons (winter, summer and autumn) in 2012 and 2013. The amplitude of the diurnal changes of the various observed parameters showed significant seasonal and spatial variability. Biological processes — mainly photosynthesis and respiration — were found to be the major drivers of these diurnal cycles. During low flow in autumn, a reduction of nitrate (attributed to assimilation by autotrophs) in the pre-dawn period and a production of DOC during the daytime (attributed to photosynthesis) were observed downstream of the restored site. Further, a summer storm event was found to override the influence of these biological

  11. Water consumption and allocation strategies along the river oases of Tarim River based on large-scale hydrological modelling

    Science.gov (United States)

    Yu, Yang; Disse, Markus; Yu, Ruide

    2016-04-01

    With the mainstream of 1,321km and located in an arid area in northwest China, the Tarim River is China's longest inland river. The Tarim basin on the northern edge of the Taklamakan desert is an extremely arid region. In this region, agricultural water consumption and allocation management are crucial to address the conflicts among irrigation water users from upstream to downstream. Since 2011, the German Ministry of Science and Education BMBF established the Sino-German SuMaRiO project, for the sustainable management of river oases along the Tarim River. The project aims to contribute to a sustainable land management which explicitly takes into account ecosystem functions and ecosystem services. SuMaRiO will identify realizable management strategies, considering social, economic and ecological criteria. This will have positive effects for nearly 10 million inhabitants of different ethnic groups. The modelling of water consumption and allocation strategies is a core block in the SuMaRiO cluster. A large-scale hydrological model (MIKE HYDRO Basin) was established for the purpose of sustainable agricultural water management in the main stem Tarim River. MIKE HYDRO Basin is an integrated, multipurpose, map-based decision support tool for river basin analysis, planning and management. It provides detailed simulation results concerning water resources and land use in the catchment areas of the river. Calibration data and future predictions based on large amount of data was acquired. The results of model calibration indicated a close correlation between simulated and observed values. Scenarios with the change on irrigation strategies and land use distributions were investigated. Irrigation scenarios revealed that the available irrigation water has significant and varying effects on the yields of different crops. Irrigation water saving could reach up to 40% in the water-saving irrigation scenario. Land use scenarios illustrated that an increase of farmland area in the

  12. Uranium isotopes in waters and bottom sediments of rivers and lakes in Poland

    International Nuclear Information System (INIS)

    Pietrzak-Flis, Z.; Kaminska, I.; Chrzanowski, E.

    2004-01-01

    Activity concentrations of 238 U, 234 U and 235 U were determined in waters and bottom sediments in two main rivers in Poland (the Vistula and Odra rivers) with their tributaries, in four coastal rivers and six lakes. Concentration of 238 U and 233 U were compared with the concentrations of 226 Ra determined in another study. As compared with concentrations in coastal rivers and in lakes, enhanced concentrations of the radionuclides were observed in water and bottom sediments in the upper and middle courses of Vistula river, whereas in the Odra river the enhanced concentrations were present only in the bottom sediments. The enhanced concentrations in the Vistula river result from the discharge of coal mine waters from the Upper Silesian Coal Basin, and they indicate that the discharge was continued. The enhanced concentration in Odra river observed only in bottom sediments indicate that the discharge occurred in the past. The 234 U/ 238 U ratio for the bottom sediments was close to unity, indicating that these isotopes were close to equilibrium, whereas for water the average ratio was form 1.2 for lakes to 1.5 for the Vistula river, demonstrating the lack of equilibrium. (author)

  13. Monitoring of pesticides water pollution-The Egyptian River Nile.

    Science.gov (United States)

    Dahshan, Hesham; Megahed, Ayman Mohamed; Abd-Elall, Amr Mohamed Mohamed; Abd-El-Kader, Mahdy Abdel-Goad; Nabawy, Ehab; Elbana, Mariam Hassan

    2016-01-01

    Persistent organic pollutants represent about 95 % of the industrial sector effluents in Egypt. Contamination of the River Nile water with various pesticides poses a hazardous risk to both human and environmental compartments. Therefore, a large scale monitoring study was carried on pesticides pollution in three geographical main regions along the River Nil water stream, Egypt. Organochlorine and organophosphorus pesticides were extracted by liquid-liquid extraction and analyzed by GC-ECD. Organochlorine pesticides mean concentrations along the River Nile water samples were 0.403, 1.081, 1.209, 3.22, and 1.192 μg L -1 for endrin, dieldrin, p, p'-DDD, p, p'-DDT, and p, p'-DDE, respectively. Dieldrin, p, p'-DDT, and p, p'-DDE were above the standard guidelines of the World Health Organization. Detected organophosphorus pesticides were Triazophos (2.601 μg L -1 ), Quinalphos (1.91 μg L -1 ), fenitrothion (1.222 μg L -1 ), Ethoprophos (1.076 μg L -1 ), chlorpyrifos (0.578 μg L -1 ), ethion (0.263 μg L -1 ), Fenamiphos (0.111 μg L -1 ), and pirimiphos-methyl (0.04 μg L -1 ). Toxicity characterization of organophosphorus pesticides according to water quality guidelines indicated the hazardous risk of detected chemicals to the public and to the different environmental compartments. The spatial distribution patterns of detected pesticides reflected the reverse relationship between regional temperature and organochlorine pesticides distribution. However, organophosphorus was distributed according to the local inputs of pollutant compounds. Toxicological and water quality standards data revealed the hazardous risk of detected pesticides in the Egyptian River Nile water to human and aquatic life. Thus, our monitoring data will provide viewpoints by which stricter legislation and regulatory controls can be admitted to avoid River Nile pesticide water pollution.

  14. Water Quality in the Tanana River Basin, Alaska, Water Years 2004-06

    Science.gov (United States)

    Moran, Edward H.

    2007-01-01

    OVERVIEW This report contains water-quality data collected from 84 sites in Tanana River basin during water years 2004 through 2006 (October 2003 through September 2006) as part of a cooperative study between the U.S. Geological Survey (USGS) and Alaska Department of Environmental Conservation (ADEC) Alaska Monitoring and Assessment Program (AKMAP), supported in part through the U.S. Environmental Protection Agency (USEPA) Office of Water, Cooperative Assistance Agreement X7-97078801. A broad range of chemical analyses are presented for 93 sets of samples collected at 59 tributaries to the Tanana River and at 25 locations along the mainstem. These data are to provide a means to assess baseline characteristics and establish indicators that are ecologically important, affordable, and relevant to society.

  15. Water management for development of water quality in the Ruhr River basin.

    Science.gov (United States)

    Klopp, R

    2000-01-01

    On the Ruhr, a small river running through hilly country and with a mean flow of 76 m3/s, 27 water works use the method of artificial groundwater recharge to produce 350 million m3 of drinking water annually. On the basis of a special act, the Ruhr River Association is responsible for water quality and water quantity management in the Ruhr basin. The present 94 municipal sewage treatment plants ensure that the raw water is sufficiently good to be turned into drinking water. In the Ruhr's lower reaches, where dry weather results in a 20% share of the entire water flow being treated wastewater, comparatively high concentration of substances of domestic or industrial origin are likely, including substances which municipal wastewater treatment measures cannot entirely remove. These substances include ammonium, coliform bacteria or pathogens, boron and organic trace substances. Although water treatment measures have greatly contributed to the considerable improvement of the Ruhr's water quality in the last few decades, it is desirable to continue to aim at a high standard of drinking water production technologies since the Ruhr is a surface water body influenced by anthropogenic factors. However, in the case of substances infiltrating into drinking water, legislation is required if a reduction of pollution appears to be necessary.

  16. Ensuring safe use of water in a river basin with uranium drainage

    International Nuclear Information System (INIS)

    Carvalho, F.; Oliveira, J.; Malta, M.

    2014-01-01

    A regular radioactivity monitoring programme ensures radioactivity surveillance in a river system with multiple and intensive uses of water. In the catchment of River Mondego, centre of Portugal, there is a uranium mining and milling legacy which encompasses about 12 old uranium mine sites and 3 uranium milling sites. This river basin is an important agriculture and cattle growing region with forest areas for paper pulp production. In the catchment of this river there are four dams for electricity production and two main artificial lakes which are water reservoirs to supply drinking water to more than 3 million people, and irrigation water for agriculture including maize and rice production. In the river basin, environmental remediation works were recently implemented especially at the milling tailings and at the major mine sites, which reduced radioactive drainage into the Mondego tributaries and thus into the Mondego river. Mine drainage and seepage from tailings are recuperated and treated in mine water treatment stations. Although, for example, in drainage from milling tailings at Urgeiriça, water may contain high concentrations of dissolved uranium ("2"3"8U), radium ("2"2"6Ra) and polonium ("2"1"0Po) at 35,700±1100, 1084±30, and 700±40 mBq/L, respectively, in the stream receiving discharges of treated water today radionuclide concentrations are orders of magnitude lower. The tributary streams that in the past received untreated mine discharges are today recovering and concentrations decreased to near natural levels. In the artificial lake of Aguieira dam, built on the Mondego River downstream all uranium sites, and where the main capture of water for human consumption is located, radionuclide concentrations were of 9.2±0.3 mBq/L, 17.7±1.9 mBq/L, and 5.3±0.2 mBq/L for uranium ("2"3"8U), radium ("2"2"6Ra) and polonium ("2"1"0Po), respectively. This water has been over the last years consistently in compliance with the EU drinking water quality standards

  17. Mississippi National River and Recreation Area Water Trail Plan.

    Science.gov (United States)

    2017-05-05

    The Water Trail Plan describes the current conditions of and future plans for the Mississippi National River and Recreation Area (NRRA), a 72-mile stretch of the Mississippi River running through the Twin Cities region of Minnesota. In 2012, the NRRA...

  18. Transboundary water resources management and livelihoods: interactions in the Senegal river

    Science.gov (United States)

    Bruckmann, Laurent; Beltrando, Gérard

    2016-04-01

    In Sub-Saharan Africa, 90 % of wetlands provide ecosystem services to societies, especially for agriculture and fishing. However, tropical rivers are increasingly regulated to provide hydroelectricity and irrigated agriculture. Modifications of flows create new hydrological conditions that affect floodplains ecology and peoples' livelihoods. In the Senegal river valley, large dams were built during the 1980's to secure water resources after a decade of water scarcity in the 1970's: Manantali in the upper basin with a reservoir of 12km3 and Diama close to estuary to avoid saltwater intrusion during dry season. Senegal river water resources are known under the supervision of Senegal River Basin Development Organization (OMVS), which defines water allocation between different goals (electricity, irrigation, traditional activities). This study, based on the concept of socio-hydrology, analyses socio-ecological changes following thirty years of dam management. The work enlightens adaptation mechanisms of livelihoods from people living along the river floodplain and feedback on water ressources. The study uses a mixed method approach, combining hydrological analyses, literature review and data collection from surveys on stakeholders and key informants level in the middle Senegal valley. Our results suggest that in all the Senegal river valley, socio-ecological changes are driven by new hydrological conditions. If dam management benefit for peoples with electrification and development of an irrigated agriculture, it has also emphasized the floodplain degradation. Flooded area has decline and are more irregular, causing an erosion of floodplain supporting services (traditional activities as fishing, grazing and flood-recession agriculture). These conditions reduce peoples' livelihood possibilities and irrigation is the only regular activity. As a feedback, irrigated agriculture increases withdrawals in the river and, recently, in aquifers posing a new uncertainty on water

  19. Human activities and its Responses to Glacier Melt Water Over Tarim River Basin

    Science.gov (United States)

    He, Hai; Zhou, Shenbei; Bai, Minghao

    2017-04-01

    Tarim River Basin lies in the south area of Xinjiang Uygur Autonomous Region, the north-west area of China. It is the longest inland river of China. Being far away from ocean and embraced by high mountains, Tarim River Basin is the typical arid region in the world. The intensity of human activities increased rapidly in Tarim River Basin since 1980's and water resources lacking is the major issue restricting the development of social economy. The glacier melt water plays an important role for the regional social and economic development, and it accounts for 40% of mountain-pass runoff. It is a fragile mutual-dependent relationship between local sustainable development and runoff. Under the background of global change glacier melt water process has also changed especially in the arid and semi-arid region. Due to climate change, glacier in Tarim River Basin has melted in an observed way since 1980s, together with increasing trend of annual rainfall and virgin flow in mountain basins. Correspondingly, human activity gets more frequent since 1970s, resulting into the obvious fragile mutual-dependent relationship between basin runoff and water use amount. Through an analysis of meteorological, hydrological and geographical observation data from 1985 to 2015, this thesis make a multi-factor variance analysis of population, cultivation area, industrial development and runoff in upstream and mid-stream of Tarim River under changing conditions. Furthermore, the regulation function of natural factors and water demand management factors on relationship between runoff and water using amount are discussed, including temperature, rainfall, and evaporation, water conservation technology and soil-water exploitation administrative institutions. It concludes that: first, increase in glacier runoff, rainfall amount, and virgin flow haven't notably relieved ecological issue in Tarim River Basin, and even has promoted water use behaviour in different flowing areas and noticeably reduced

  20. Water Budget Closure Based on GRACE Measurements and Reconstructed Evapotranspiration Using GLDAS and Water Use Data over the Yellow River and Changjiang River Basins

    Science.gov (United States)

    Lv, M.; Ma, Z.; Yuan, X.

    2017-12-01

    It is important to evaluate the water budget closure on the basis of the currently available data including precipitation, evapotranspiration (ET), runoff, and GRACE-derived terrestrial water storage change (TWSC) before using them to resolve water-related issues. However, it remains challenging to achieve the balance without the consideration of human water use (e.g., inter-basin water diversion and irrigation) for the estimation of other water budget terms such as the ET. In this study, the terrestrial water budget closure is tested over the Yellow River Basin (YRB) and Changjiang River Basin (CJB, Yangtze River Basin) of China. First, the actual ET is reconstructed by using the GLDAS-1 land surface models, the high quality observation-based precipitation, naturalized streamflow, and the irrigation water (hereafter, ETrecon). The ETrecon, evaluated using the mean annual water-balance equation, is of good quality with the absolute relative errors less than 1.9% over the two studied basins. The total basin discharge (Rtotal) is calculated as the residual of the water budget among the observation-based precipitation, ETrecon, and the GRACE-TWSC. The value of the Rtotal minus the observed total basin discharge is used to evaluate the budget closure, with the consideration of inter-basin water diversion. After the ET reconstruction, the mean absolute imbalance value reduced from 3.31 cm/year to 1.69 cm/year and from 15.40 cm/year to 1.96 cm/year over the YRB and CJB, respectively. The estimation-to-observation ratios of total basin discharge improved from 180.8% to 86.8% over the YRB, and from 67.0% to 101.1% over the CJB. The proposed ET reconstruction method is applicable to other human-managed river basins to provide an alternative estimation.

  1. Comparison Between Water Quality Index (WQI) and Biological Water Quality Index (BWQI) for Water Quality Assessment: Case Study of Melana River, Johor

    International Nuclear Information System (INIS)

    Nor Zaiha Arman; Mohd Ismid Mohd Said; Shamila Azman; Muhammad Hazim Mat Hussin

    2013-01-01

    A study of water quality in Melana River, Johor was carried out in three consecutive months (March - May 2012). This study aims to determine the comparative results through biological monitoring as well as conventional method (physical and chemical analysis). Assessment is carried out through collection and identification of the biological indicator which comprises of macro benthos based on Biological Water Quality Index (BWQI). Comparison was done based on two methods namely invertebrate analysis and also laboratory analysis. For invertebrate analysis, Melana River consist of three types of Family groups namely Nymphs, Larvae and Molluscs. The result for Water Quality Index (WQI) and also Biological Water Quality Index (BWQI) analysis showed that the level of Melana River is polluted and classified in Class III. This study shows that even though different methods were used, the similar results were obtained for both rivers and can be applied to any river to identify their level of cleanliness. (author)

  2. Agricultural water conservation programs in the lower Colorado River Authority

    International Nuclear Information System (INIS)

    Kabir, J.

    1993-01-01

    Rice irrigation is the largest user of water within the area served by the Lower Colorado River Authority (LCRA), accounting for approximately 75 percent of total annual surface and ground water demands. In an average year, about 30 percent of surface water supplied to rice irrigation is satisfied with water released from the storage in the Highland Lakes located at the upstream reaches of the Lower Colorado River and its tributaries. During a severe drought, the demand for stored water could be as much as 70 percent of annual rice irrigation demand. LCRA owns and operates two irrigation canal systems which together supply water to irrigate 60,000 acres of rice each year. These irrigation systems are the Lakeside and Gulf Coast Irrigation Divisions. The Lakeside system is located in Colorado and Wharton Counties and the Gulf Coast system is located in Wharton and Matagorda Counties. In the 1987 and 1989, the Lower Colorado River Authority Board of Directors authorized implementation and funding for Canal Rehabilitation Project and Irrigation Water Measurement Project respectively. These two projects are key initiatives to agricultural water conservation goals established in the LCRA Water Management Plan and Water Conservation Policy. In addition LCRA participated actively in agricultural water conservation research projects and technology transfer activities

  3. GRACE-based estimates of water discharge over the Yellow River basin

    Directory of Open Access Journals (Sweden)

    Qiong Li

    2016-05-01

    Full Text Available As critical component of hydrologic cycle, basin discharge is a key issue for understanding the hydrological and climatologic related to water and energy cycles. Combining GRACE gravity field models with ET from GLDAS models and precipitation from GPCP, discharge of the Yellow River basin are estimated from the water balance equation. While comparing the results with discharge from GLDAS model and in situ measurements, the results reveal that discharge from Mosaic and CLM GLDAS model can partially represent the river discharge and the discharge estimation from water balance equation could reflect the discharge from precipitation over the Yellow River basin.

  4. 33 CFR 151.1504 - Definitions.

    Science.gov (United States)

    2010-07-01

    ... Ballast Water Management for Control of Nonindigenous Species in the Great Lakes and Hudson River § 151... organisms and ecosystems, and that emphasize integrated pest management techniques and non-chemical measures... water and suspended matter taken on board a vessel to control or maintain, trim, draught, stability, or...

  5. Transit time measurement of Juqueri river waters

    International Nuclear Information System (INIS)

    Plata Bedmar, E.; Garcia A, E.; Albuquerque, A.M. de; Sanchez, W.

    1975-01-01

    The time of travel of the Juqueri River water through the east branch of the Pirapora Reservoir was measured using radioactive tracers (6 Ci 131 I in Kl Solution). The changes in Juqueri River flow rate were also measured during the run. The center of mass of the radioactive cloud was used for the time of travel calculations. Six measurements of the Juqueri River flow rate were perfomed in different days, using the total count method. Fifty, millicuries of 131 I were used in each run. The results of time travel obtained under non-steady conditions, and their correction for steady state are also discussed

  6. Water-quality data for the Missouri River and Missouri River alluvium near Weldon Spring, St. Charles County, Missouri, 1991--92

    International Nuclear Information System (INIS)

    Kleeschulte, M.J.

    1993-01-01

    This report contains the water-quality data collected at two cross sections across the Missouri River and from monitoring wells in the Missouri River alluvium near Defiance, Missouri. The sampling results indicate the general water composition from the Missouri River changes with different flow conditions. During low-base flow conditions, the water generally contained about equal quantities of calcium and sodium plus potassium and similar quantities of bicarbonate and sulfate. During high-base flow conditions, water from the river predominantly was a calcium bicarbonate type. During runoff conditions, the water from the river was a calcium bicarbonate type, and sulfate concentrations were larger than during high-base flow conditions but smaller than during low-base flow conditions. The total and dissolved uranium concentrations at both the upstream and downstream cross sections, as well as from the different vertical samples across the river, were similar during each sampling event. However, sodium, sulfate, nitrate, and total and dissolved uranium concentrations varied with different flow conditions. Sodium and sulfate concentrations were larger during low-base flow conditions than during high-base flow or runoff conditions, while nitrate concentrations decreased during low-base flow conditions. Both total and dissolved uranium concentrations were slightly larger during runoff events than during low-base or high-base flow conditions

  7. Examples of Savannah River water dilution between the Savannah River Plant and the Beaufort-Jasper and Port Wentworth water-treatment plants

    International Nuclear Information System (INIS)

    Hayes, D.W.

    1983-01-01

    A substantial dilution of the river water occurs between the Savannah River Plant (SRP) and the two treatment plants. This dilution results from inflow of surface and groundwater and from direct rainfall. The amount of dilution was estimated to be approximately 20% and 54% down to the Port Wentworth and Beaufort-Jasper plants, respectively

  8. Water quality index and eutrophication indices of Caiabi River, MT

    Directory of Open Access Journals (Sweden)

    Grasiane Andrietti

    2016-03-01

    Full Text Available The objective of this study was to evaluate the water quality of the Caiabi River based upon the water quality index (WQI and the trophic state index (TSI, considering seasonal and spatial variations, with the aim of determining the most appropriate monitoring design for this study site. Sampling for water quality monitoring was conducted at five points on the Caiabi River from July 2012 to June 2013. Quality parameters quantified were as follows: pH, temperature, conductivity, dissolved oxygen, total and thermotolerant coliforms, turbidity, Kjeldahl nitrogen, nitrite, nitrate, total phosphorus, biochemical oxygen demand, series of solids, and chlorophyll a. Sampling procedures and analysis followed the methods recommended by the Standard Methods for the Examination of Water and Wastewater. The WQI results showed that the quality of the Caiabi River water is good. TSI results demonstrated the low risk of eutrophication in the Caiabi River, indicating an ultra-oligotrophic lotic environment. Analysis of variance showed that 10 of the 16 monitored quality parameters presented differences of means between the dry and rainy seasons or among the monitored points or in the interaction between seasons and points. These results indicate that two annual sampling collections at two points may be sufficient to describe the water quality behavior in the basin, as long as the conditions of land use are stable.

  9. studies on solvent extraction of free hydrogen cyanide from river water

    African Journals Online (AJOL)

    A method for free and strongly complexed cyanide measurement in river water was developed. Recovery tests from solution with and without river water, using various solvent combinations and background control were investigated to obtain an accurate and precise extraction method for the measurement of hydrogen ...

  10. Tracking changes of river morphology in Ayeyarwady River in Myanmar using earth observations and surface water mapping tool

    Science.gov (United States)

    Piman, T.; Schellekens, J.; Haag, A.; Donchyts, G.; Apirumanekul, C.; Hlaing, K. T.

    2017-12-01

    River morphology changes is one of the key issues in Ayeyarwady River in Myanmar which cause impacts on navigation, riverine habitats, agriculture lands, communities and livelihoods near the bank of the river. This study is aimed to track the changes in river morphology in the middle reach of Ayeyarwady River over last 30 years from 1984-2014 to improve understanding of riverbank dynamic, erosion and deposition procress. Earth observations including LandSat-7, LandSat-8, Digital Elevation Model from SRTM Plus and, ASTER-2 GoogleMap and Open Street Map were obtained for the study. GIS and remote sensing tools were used to analyze changes in river morphology while surface water mapping tool was applied to determine how the dynamic behaviour of the surface river and effect of river morphology changes. The tool consists of two components: (1) a Google Earth Engine (GEE) javascript or python application that performs image analysis and (2) a user-friendly site/app using Google's appspot.com that exposes the application to the users. The results of this study shown that the fluvial morphology in the middle reach of Ayeyarwady River is continuously changing under the influence of high water flows in particularly from extreme flood events and land use change from mining and deforestation. It was observed that some meandering sections of the riverbank were straightened, which results in the movement of sediment downstream and created new sections of meandering riverbank. Several large islands have formed due to the stabilization by vegetation and is enforced by sedimentation while many small bars were formed and migrated dynamically due to changes in water levels and flow velocity in the wet and dry seasons. The main channel was changed to secondary channel in some sections of the river. This results a constant shift of the navigation route. We also found that some villages were facing riverbank erosion which can force villagers to relocate. The study results demonstrated

  11. Levels of trace metals in water and sediment from Tyume River and ...

    African Journals Online (AJOL)

    Levels of trace metals (Cd, Pb, Co, Zn Cu and Ni) were determined in water and sediment ... mg/l) and Pb (0.021 ± 0.004 to 0.035 ± 0.001 mg/l) were found in the river water, ... Key words: trace metals, water, sediment, farmland, Tyume River

  12. Microelement Exploration Water Flow of Rimnik River

    OpenAIRE

    , N. Bajraktari; , B. Baraj; , T. Arbneshi; , S. Jusufi

    2016-01-01

    Compared to the increasing need on qualitative water use, many water şows are subject to a rising pollution by urban and industrial untreated water discharge, and in some cases by incidental run-offs. Besides them, there is also a great impact made by disseminated agricultural pollution and air and soil rinsing after atmospheric rainfalls. The main purpose of this paper is the micro-element exploration in water and sediments, along the water şow of Rimnik River. Some of the heavy metals: Pb, ...

  13. River Basin Water Assessment and Balance in fast developing areas in Viet Nam

    Science.gov (United States)

    Le, Van Chin; Ranzi, Roberto

    2010-05-01

    Uneven precipitation in space and time together with mismanagement and lack of knowledge about quantity and quality of water resources, have caused water shortages for water supply to large cities and irrigation areas in many regions of Viet Nam in the dry season. The rainy season (from June to October) counts for 80% of the total annual rainfall, while the water volume of dry season (from November to May of the following year) accounts for 20% only. Lack of sufficient water volumes occurs in some areas where the pressure of a fast increasing population (1.3% per year on average in the last decade in Viet Nam), intensive agricultural and industrial uses is one of the major problems facing sustainable development. For those areas an accurate water assessment and balance at the riverbasin scale is needed to manage the exploitation and appropriate use of water resources and plan future development. The paper describes the preliminary phase of the pilot development of the river basin water balance for the Day River Basin in the Red River delta in Viet Nam. The Day river basin includes a 7,897 km² area in the south-western part of the Red River in Viet Nam. The total population in the Day river basin exceeds 8 millions inhabitants, including the Hanoi capital, Nam Dinh and other large towns. Agricultural land covered 390,294 ha in 2000 and this area is going to be increased by 14,000 ha in 2010 due to land reclamation and expansion toward the sea. Agricultural uses exploit about 90% of surface water resources in the Day river basin but have to compete with industrial and civil needs in the recent years. At the background of the brief characterization of the Day River Basin, we concentrate on the application of a water balance model integrated by an assessment of water quality after consumptive uses for civil, agricultural and industrial needs to assist water management in the basin. In addition, future development scenarios are taken into account, considering less

  14. Framework for Assessing Water Resource Sustainability in River Basins

    Science.gov (United States)

    Borden, J.; Goodwin, P.; Swanson, D.

    2013-12-01

    As the anthropogenic footprint increases on Earth, the wise use, maintenance, and protection of freshwater resources will be a key element in the sustainability of development. Borne from efforts to promote sustainable development of water resources is Integrated Water Resource Management (IWRM), which promotes efficiency of water resources, equity in water allocation across different social and economic groups, and environmental sustainability. Methodologies supporting IWRM implementation have largely focused on the overall process, but have had limited attention on the evaluation methods for ecologic, economic, and social conditions (the sustainability criterion). Thus, assessment frameworks are needed to support the analysis of water resources and evaluation of sustainable solutions in the IWRM process. To address this need, the River Basin Analysis Framework (RBAF) provides a structure for understanding water related issues and testing the sustainability of proposed solutions in river basins. The RBAF merges three approaches: the UN GEO 4 DPSIR approach, the Millennium Ecosystem Assessment approach, and the principles of sustainable development. Merging these approaches enables users to understand the spatiotemporal interactions between the hydrologic and ecologic systems, evaluate the impacts of disturbances (drivers, pressures) on the ecosystem goods and services (EGS) and constituents of human well-being (HWB), and identify and employ analytical methods and indicators in the assessments. The RBAF is comprised of a conceptual component (RBAF-C) and an analytical component (RBAF-A). For each disturbance type, the RBAF-C shows the potential directional change in the hydrologic cycle (peak flows, seasonality, etc.), EGS (drinking water supply, water purification, recreational opportunities, etc.), and HWB (safety, health, access to a basic materials), thus allowing users insight into potential impacts as well as providing technical guidance on the methods and

  15. THE WATER QUALITY DEGRADATION OF UPPER AWASH RIVER ...

    African Journals Online (AJOL)

    Osondu

    2013-01-11

    Jan 11, 2013 ... Benthic macroinvertebrate based assessment of water quality in the ... of the upper Awash River had low water quality status which is likely to be ..... Frydenborg, R., McCarron, E., White, J.S. and ... A framework for biological.

  16. OPTIMIZATION OF FLOCCULATION PROCESS BY MICROBIAL COAGULANT IN RIVER WATER

    Directory of Open Access Journals (Sweden)

    Fatin Nabilah Murad

    2017-12-01

    Full Text Available The existing process of coagulation and flocculation are using chemicals that known as cationic coagulant such as alum, ferric sulfate, calcium oxide, and organic polymers.  Thus, this study concentrates on optimizing of flocculation process by microbial coagulant in river water. Turbidity and suspended solids are the main constraints of river water quality in Malaysia. Hence, a study is proposed to produce microbial coagulants isolated locally for river water treatment. The chosen microbe used as the bioflocculant producer is Aspergillus niger. The parameters to optimization in the flocculation process were pH, bioflocculant dosage and effluent concentration. The research was done in the jar test process and the process parameters for maximum turbidity removal was validated. The highest flocculating activity was obtained on day seven of cultivation in the supernatant. The optimum pH and bioflocculant dosage for an optimize sedimentation process were between 4-5 and 2-3 mL for 0.3 g/L of effluent concentration respectively. The model was validated by using a river water sample from Sg. Pusu and the result showed that the model was acceptable to evaluate the bioflocculation process.

  17. Wastewater discharge impact on drinking water sources along the Yangtze River (China).

    Science.gov (United States)

    Wang, Zhuomin; Shao, Dongguo; Westerhoff, Paul

    2017-12-01

    Unplanned indirect (de facto) wastewater reuse occurs when wastewater is discharged into surface waters upstream of potable drinking water treatment plant intakes. This paper aims to predict percentages and trends of de facto reuse throughout the Yangtze River watershed in order to understand the relative contribution of wastewater discharges into the river and its tributaries towards averting water scarcity concerns. The Yangtze River is the third longest in the world and supports more than 1/15 of the world's population, yet the importance of wastewater on the river remains ill-defined. Municipal wastewater produced in the Yangtze River Basin increased by 41% between 1998 and 2014, from 2580m 3 /s to 3646m 3 /s. Under low flow conditions in the Yangtze River near Shanghai, treated wastewater contributions to river flows increased from 8% in 1998 to 14% in 2014. The highest levels of de facto reuse appeared along a major tributary (Han River) of the Yangtze River, where de facto reuse can exceed 20%. While this initial analysis of de facto reuse used water supply and wastewater data from 110 cities in the basin and 11 gauging stations with >50years of historic streamflow data, the outcome was limited by the lack of gauging stations at more locations (i.e., data had to be predicted using digital elevation mapping) and lack of precise geospatial location of drinking water intakes or wastewater discharges. This limited the predictive capability of the model relative to larger datasets available in other countries (e.g., USA). This assessment is the first analysis of de facto wastewater reuse in the Yangtze River Basin. It will help identify sections of the river at higher risk for wastewater-related pollutants due to presence of-and reliance on-wastewater discharge that could be the focus of field studies and model predictions of higher spatial and temporal resolution. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Main tributary influence on the River Vardar water quantity

    International Nuclear Information System (INIS)

    Unevska, Blaga; Stojov, Vasko; Milevski, Josif

    2004-01-01

    Hydrology in all catchments is defined like complex of geophysics and hydro-geologic parameters. Regular defining on the hydrological parameters is essential for planning, improving and developing management on every country. The main aim of this topic is to demonstrate disparity disposal on water resources in Republic of Macedonia depending on the different catchments areas. Here will be talk about different percentage of tributaries, which have influence on river Vardar. River Vardar is main recipient on water in Macedonia.(Author)

  19. Evaluation of river water genotoxicity using the piscine micronucleus test.

    Science.gov (United States)

    Ergene, Serap; Cavaş, Tolga; Celik, Ayla; Köleli, Nurcan; Aymak, Cemil

    2007-07-01

    The Berdan River, which empties into the Mediterranean Sea on the east coast of Turkey, receives discharges of industrial and municipal waste. In the present study, the in vivo piscine micronucleus (MN) test was used to evaluate the genotoxicity of water samples collected from different locations along the Berdan River. Nile tilapia (Oreochromis niloticus) were exposed in the laboratory for 2, 4, and 6 days, and micronuclei were evaluated in peripheral blood erythrocytes, gill cells, and caudal fin epithelial cells. A single dose of 5 mg/L cyclophosphamide was used as a positive control. In addition to micronuclei, nuclear abnormalities (NAs), such as binucleated cells and blebbed, notched, and lobed nuclei, were assessed in the erythrocytes, and chemical analyses were carried out to determine the amount of heavy metals in the water samples. MN and NA frequencies were significantly elevated (up to 2- to 3-fold) in fish exposed to river water samples taken downstream of potential discharges, and the elevated responses in gill and fin cells were related to the concentration of heavy metals in the water. MN frequencies (expressed as micronucleated cells/1,000 cells), in both treated and untreated fish, were greatest in gill cells (range: 0.80-3.70), and generally lower in erythrocytes (range: 0.50-2.80), and fin cells (range: 0.45-1.70). The results of this study indicate that the Berdan River is contaminated with genotoxic pollutants and that the genotoxicity is related to the discharge of wastes into the river water.

  20. Impact of oil shale mine water discharges on phytoplankton community of Purtse catchment rivers

    International Nuclear Information System (INIS)

    Raetsep, A.; Rull, E.; Liblik, V.

    2002-01-01

    The multivariate relationship between phytoplankton abundance and different factors both natural and generated by oil shale mining in the Purtse catchment rivers (Purtse, Kohtla, and Ojamaa) in Augusts 1996-2000 was studied. Impact of oil shale mine water discharges, causing the input of sulfates and chlorides into the rivers, on phytoplankton abundance in river water was characterized by significant negative linear correlation. The amount of annual precipitation influenced positively the characteristics of phytoplankton abundance in river water. The complex of linear regression formulas was derived for characterising phytoplankton abundance in the lower course of the Purtse River using meteorological, hydrological and hydrogeological as well as geochemical data of water circulation. Closing the Sompa, Tammiku and Kohtla mines in 2000-2001 decreased essentially anthropogenic stress on ecological condition of the Purtse catchment rivers. (author)

  1. HYDROCHEMICAL CONDITIONS OF THE ŁOSOSINA RIVER WATER MANAGEMENT IN THE AREA OF TYMBARK

    Directory of Open Access Journals (Sweden)

    Agnieszka Policht-Latawiec

    2015-11-01

    Full Text Available Sustainable use of waters requires not only determining the amount, but primarily the quality of the available water resources and developing a long-term programme of their protection. The analysis of the Łososina river water in the area of Tymbark city was presented in the paper. The water was tested in a view of the requirements as the natural fish habitat and its potential use for people supply in potable water. The river water samples were taken in 2014 at randomly selected dates, once a month in 5 measurement points. 21 physicochemical indices were assessed in the samples. The assessment of the Łososina river water quality was made on the basis of the results of both: on site and laboratory testing, which were compared with the Regulation of the Minister of Environment of 23 October 2014. The utility values were assessed on the basis of the Regulations of the Minister of Environment of 27 November and 04 October 2014. The analysis of the results demonstrated that the Łososina river water met the requirements of quality class I water in points 1, 2 and 3. Below Tymbark the Łososina river water was polluted, so due to high BOD5 in points 4 and 5, and phosphate concentrations in point 4, it was classified as class II, i.e. good state. Pollution coefficients computed according to Burchard and Dubaniewicz classify the Łososina river water as clean along the whole investigated stretch. Below Tymbark city (points 4 and 5 the Łososina river water cannot be used for drinking water supply because of high BOD5 and iron concentrations. In the other points it could be used for water supply following appropriate physical and chemical treatment. The water does not meet the requirements for salmonid or cyprinid fish along the whole stretch because of high nitrite concentrations, except point 3, where the Łososina river water provided a proper natural habitat for carp.

  2. River water quality assessment using environmentric techniques: case study of Jakara River Basin.

    Science.gov (United States)

    Mustapha, Adamu; Aris, Ahmad Zaharin; Juahir, Hafizan; Ramli, Mohammad Firuz; Kura, Nura Umar

    2013-08-01

    Jakara River Basin has been extensively studied to assess the overall water quality and to identify the major variables responsible for water quality variations in the basin. A total of 27 sampling points were selected in the riverine network of the Upper Jakara River Basin. Water samples were collected in triplicate and analyzed for physicochemical variables. Pearson product-moment correlation analysis was conducted to evaluate the relationship of water quality parameters and revealed a significant relationship between salinity, conductivity with dissolved solids (DS) and 5-day biochemical oxygen demand (BOD5), chemical oxygen demand (COD), and nitrogen in form of ammonia (NH4). Partial correlation analysis (r p) results showed that there is a strong relationship between salinity and turbidity (r p=0.930, p=0.001) and BOD5 and COD (r p=0.839, p=0.001) controlling for the linear effects of conductivity and NH4, respectively. Principal component analysis and or factor analysis was used to investigate the origin of each water quality parameter in the Jakara Basin and identified three major factors explaining 68.11 % of the total variance in water quality. The major variations are related to anthropogenic activities (irrigation agricultural, construction activities, clearing of land, and domestic waste disposal) and natural processes (erosion of river bank and runoff). Discriminant analysis (DA) was applied on the dataset to maximize the similarities between group relative to within-group variance of the parameters. DA provided better results with great discriminatory ability using eight variables (DO, BOD5, COD, SS, NH4, conductivity, salinity, and DS) as the most statistically significantly responsible for surface water quality variation in the area. The present study, however, makes several noteworthy contributions to the existing knowledge on the spatial variations of surface water quality and is believed to serve as a baseline data for further studies. Future

  3. Final Opportunity to Rehabilitate an Urban River as a Water Source for Mexico City

    Science.gov (United States)

    Mazari-Hiriart, Marisa; Pérez-Ortiz, Gustavo; Orta-Ledesma, María Teresa; Armas-Vargas, Felipe; Tapia, Marco A.; Solano-Ortiz, Rosa; Silva, Miguel A.; Yañez-Noguez, Isaura; López-Vidal, Yolanda; Díaz-Ávalos, Carlos

    2014-01-01

    The aim of this study was to evaluate the amount and quality of water in the Magdalena-Eslava river system and to propose alternatives for sustainable water use. The system is the last urban river in the vicinity of Mexico City that supplies surface water to the urban area. Historical flow data were analyzed (1973–2010), along with the physicochemical and bacteriological attributes, documenting the evolution of these variables over the course of five years (2008–2012) in both dry and rainy seasons. The analyses show that the flow regime has been significantly altered. The physicochemical variables show significant differences between the natural area, where the river originates, and the urban area, where the river receives untreated wastewater. Nutrient and conductivity concentrations in the river were equivalent to domestic wastewater. Fecal pollution indicators and various pathogens were present in elevated densities, demonstrating a threat to the population living near the river. Estimates of the value of the water lost as a result of mixing clean and contaminated water are presented. This urban river should be rehabilitated as a sustainability practice, and if possible, these efforts should be replicated in other areas. Because of the public health issues and in view of the population exposure where the river flows through the city, the river should be improved aesthetically and should be treated to allow its ecosystem services to recover. This river represents an iconic case for Mexico City because it connects the natural and urban areas in a socio-ecological system that can potentially provide clean water for human consumption. Contaminated water could be treated and reused for irrigation in one of the green areas of the city. Wastewater treatment plants and the operation of the existing purification plants are urgent priorities that could lead to better, more sustainable water use practices in Mexico City. PMID:25054805

  4. Final opportunity to rehabilitate an urban river as a water source for Mexico City.

    Directory of Open Access Journals (Sweden)

    Marisa Mazari-Hiriart

    Full Text Available The aim of this study was to evaluate the amount and quality of water in the Magdalena-Eslava river system and to propose alternatives for sustainable water use. The system is the last urban river in the vicinity of Mexico City that supplies surface water to the urban area. Historical flow data were analyzed (1973-2010, along with the physicochemical and bacteriological attributes, documenting the evolution of these variables over the course of five years (2008-2012 in both dry and rainy seasons. The analyses show that the flow regime has been significantly altered. The physicochemical variables show significant differences between the natural area, where the river originates, and the urban area, where the river receives untreated wastewater. Nutrient and conductivity concentrations in the river were equivalent to domestic wastewater. Fecal pollution indicators and various pathogens were present in elevated densities, demonstrating a threat to the population living near the river. Estimates of the value of the water lost as a result of mixing clean and contaminated water are presented. This urban river should be rehabilitated as a sustainability practice, and if possible, these efforts should be replicated in other areas. Because of the public health issues and in view of the population exposure where the river flows through the city, the river should be improved aesthetically and should be treated to allow its ecosystem services to recover. This river represents an iconic case for Mexico City because it connects the natural and urban areas in a socio-ecological system that can potentially provide clean water for human consumption. Contaminated water could be treated and reused for irrigation in one of the green areas of the city. Wastewater treatment plants and the operation of the existing purification plants are urgent priorities that could lead to better, more sustainable water use practices in Mexico City.

  5. Final opportunity to rehabilitate an urban river as a water source for Mexico City.

    Science.gov (United States)

    Mazari-Hiriart, Marisa; Pérez-Ortiz, Gustavo; Orta-Ledesma, María Teresa; Armas-Vargas, Felipe; Tapia, Marco A; Solano-Ortiz, Rosa; Silva, Miguel A; Yañez-Noguez, Isaura; López-Vidal, Yolanda; Díaz-Ávalos, Carlos

    2014-01-01

    The aim of this study was to evaluate the amount and quality of water in the Magdalena-Eslava river system and to propose alternatives for sustainable water use. The system is the last urban river in the vicinity of Mexico City that supplies surface water to the urban area. Historical flow data were analyzed (1973-2010), along with the physicochemical and bacteriological attributes, documenting the evolution of these variables over the course of five years (2008-2012) in both dry and rainy seasons. The analyses show that the flow regime has been significantly altered. The physicochemical variables show significant differences between the natural area, where the river originates, and the urban area, where the river receives untreated wastewater. Nutrient and conductivity concentrations in the river were equivalent to domestic wastewater. Fecal pollution indicators and various pathogens were present in elevated densities, demonstrating a threat to the population living near the river. Estimates of the value of the water lost as a result of mixing clean and contaminated water are presented. This urban river should be rehabilitated as a sustainability practice, and if possible, these efforts should be replicated in other areas. Because of the public health issues and in view of the population exposure where the river flows through the city, the river should be improved aesthetically and should be treated to allow its ecosystem services to recover. This river represents an iconic case for Mexico City because it connects the natural and urban areas in a socio-ecological system that can potentially provide clean water for human consumption. Contaminated water could be treated and reused for irrigation in one of the green areas of the city. Wastewater treatment plants and the operation of the existing purification plants are urgent priorities that could lead to better, more sustainable water use practices in Mexico City.

  6. Maintaining healthy rivers and lakes through water diversion from Yangtze River to Taihu Lake in Taihu Basin

    Directory of Open Access Journals (Sweden)

    Wu Haoyun

    2008-09-01

    Full Text Available On the basis of the Taihu water resources assessment, an analysis of the importance and rationality of the water diversion from the Yangtze River to Taihu Lake in solving the water problem and establishing a harmonious eco-environment in the Taihu Basin is performed. The water quantity and water quality conjunctive dispatching decision-making support system, which ensures flood control, water supply and eco-aimed dispatching, is built by combining the water diversion with flood control dispatching and strengthening water resources monitoring and forecasting. With the practice and effect assessment, measures such as setting the integrated basin management format, further developing water diversion and improving the hydraulic engineering projects system and water monitoring system are proposed in order to maintain healthy rivers and guarantee the development of the economy and society in the Taihu Basin.

  7. Assessment of the hydraulic connection between ground water and the Peace River, west-central Florida

    Science.gov (United States)

    Lewelling, B.R.; Tihansky, A.B.; Kindinger, J.L.

    1998-01-01

    The hydraulic connection between the Peace River and the underlying aquifers along the length of the Peace River from Bartow to Arcadia was assessed to evaluate flow exchanges between these hydrologic systems. Methods included an evaluation of hydrologic and geologic records and seismic-reflection profiles, seepage investigations, and thermal infrared imagery interpretation. Along the upper Peace River, a progressive long-term decline in streamflow has occurred since 1931 due to a lowering of the potentiometric surface of the Upper Floridan aquifer by as much as 60 feet because of intensive ground-water withdrawals for phosphate mining and agriculture. Another effect from lowering the potentiometric surface has been the cessation of flow at several springs located near and within the Peace River channel, including Kissengen Spring, that once averaged a flow of about 19 million gallons a day. The lowering of ground-water head resulted in flow reversals at locations where streamflow enters sinkholes along the streambed and floodplain. Hydrogeologic conditions along the Peace River vary from Bartow to Arcadia. Three distinctive hydrogeologic areas along the Peace River were delineated: (1) the upper Peace River near Bartow, where ground-water recharge occurs; (2) the middle Peace River near Bowling Green, where reversals of hydraulic gradients occur; and (3) the lower Peace River near Arcadia, where ground-water discharge occurs. Seismic-reflection data were used to identify geologic features that could serve as potential conduits for surface-water and ground-water exchange. Depending on the hydrologic regime, this exchange could be recharge of surface water into the aquifer system or discharge of ground water into the stream channel. Geologic features that would provide pathways for water movement were identified in the seismic record; they varied from buried irregular surfaces to large-scale subsidence flexures and vertical fractures or enlarged solution conduits

  8. Temporal water quality response in an urban river: a case study in peninsular Malaysia

    Science.gov (United States)

    VishnuRadhan, Renjith; Zainudin, Zaki; Sreekanth, G. B.; Dhiman, Ravinder; Salleh, Mohd. Noor; Vethamony, P.

    2017-05-01

    Ambient water quality is a prerequisite for the health and self-purification capacity of riverine ecosystems. To understand the general water quality situation, the time series data of selected water quality parameters were analyzed in an urban river in Peninsular Malaysia. In this regard, the stations were selected from the main stem of the river as well as from the side channel. The stations located at the main stem of the river are less polluted than that in the side channel. Water Quality Index scores indicated that the side channel station is the most polluted, breaching the Class IV water quality criteria threshold during the monitoring period, followed by stations at the river mouth and the main channel. The effect of immediate anthropogenic waste input is also evident at the side channel station. The Organic Pollution Index of side channel station is (14.99) 3 times higher than at stations at river mouth (4.11) and 6 times higher than at the main channel (2.57). The two-way ANOVA showed significant difference among different stations. Further, the factor analysis on water quality parameters yielded two significant factors. They discriminated the stations into two groups. The land-use land cover classification of the study area shows that the region near the sampling sites is dominated by urban settlements (33.23 %) and this can contribute significantly to the deterioration of ambient river water quality. The present study estimated the water quality condition and response in the river and the study can be an immediate yardstick for base lining river water quality, and a basis for future water quality modeling studies in the region.

  9. Mutagenicity of drinking water sampled from the Yangtze River and Hanshui River (Wuhan section) and correlations with water quality parameters.

    Science.gov (United States)

    Lv, Xuemin; Lu, Yi; Yang, Xiaoming; Dong, Xiaorong; Ma, Kunpeng; Xiao, Sanhua; Wang, Yazhou; Tang, Fei

    2015-03-31

    A total of 54 water samples were collected during three different hydrologic periods (level period, wet period, and dry period) from Plant A and Plant B (a source for Yangtze River and Hanshui River water, respectively), and several water parameters, such as chemical oxygen demand (COD), turbidity, and total organic carbon (TOC), were simultaneously analyzed. The mutagenicity of the water samples was evaluated using the Ames test with Salmonella typhimurium strains TA98 and TA100. According to the results, the organic compounds in the water were largely frame-shift mutagens, as positive results were found for most of the tests using TA98. All of the finished water samples exhibited stronger mutagenicity than the relative raw and distribution water samples, with water samples collected from Plant B presenting stronger mutagenic strength than those from Plant A. The finished water samples from Plant A displayed a seasonal-dependent variation. Water parameters including COD (r = 0.599, P = 0.009), TOC (r = 0.681, P = 0.02), UV254 (r = 0.711, P = 0.001), and total nitrogen (r = 0.570, P = 0.014) exhibited good correlations with mutagenicity (TA98), at 2.0 L/plate, which bolsters the argument of the importance of using mutagenicity as a new parameter to assess the quality of drinking water.

  10. Hydrological and Water Quality Characteristics of Rivers Feeding ...

    African Journals Online (AJOL)

    declining water flows, making most rivers ephemeral or intermittent resulting into water reservoirs storing ... bearing system in the district (Malawi Government, 2006). .... Methodology (BBM) is used and in this methodology, assessments are based on videographic ...... Dams and Development, A New Framework for Decision.

  11. Impact of heated waters on water quality and macroinvertebrate community in the Narew River (Poland

    Directory of Open Access Journals (Sweden)

    Krolak Elzbieta

    2017-07-01

    Full Text Available The effect of heated waters from coal-burning power stations on the water parameters and the occurrence of macroinvertebrates depends on the individual characteristics of the river to which the heated waters are discharged. The objective of the study was to assess the impact of heated water from the Ostrołęka Power Station on selected water properties and the macroinvertebrate community in the Narew River. Samples were collected in years: 2013-2016 along two river stretches: upstream and downstream of the canal. The water temperature was higher and the oxygen concentrations were lower at the downstream sites compared to the upstream sites of the canal. The values of conductivity, concentrations of nitrates, phosphates, chlorides and calcium were similar at the sampling sites. A total of 33 families of macrozoobenthos were found. The numbers of families were positively correlated with the temperature and conductivity and negatively correlated with oxygen. The heated waters were found to have no effect on the Shannon-Wiener diversity index. The inflow of heated waters increased the percentage of Gammaridae, represented by species Dikerogammarus haemobaphes (Eichwald, 1841 and decreased the percentage of Chironomidae. The presence of the thermophilous bivalve Sinanodonta woodiana (Lea, 1934 was noted downstream of the canal.

  12. Relationship between land use and water quality in Pesanggrahan River

    Science.gov (United States)

    Effendi, Hefni; Muslimah, Sri; Ayu Permatasari, Prita

    2018-05-01

    Pesanggrahan River watershed has several activities such as residential and commercial area in its catchment area. The purpose of this study was to analyse water quality related to spatial land use in Pesanggrahan River using GIS Analysis. River water quality in some locations, did not meet water quality standard of class III. From pollution load estimation it was revealed that segment 2 (Bogor City) has the highest BOD, COD, and TSS of 15,043 kg/day, 25,619 kg/day, and 18,104 kg/day respectively. On the other hand, the most developed area in Pesanggrahan Watershed is located in segment 7 (24.5%). Hence, it can be concluded that although an area has a fairly small developed area, high urban activity can cause high BOD, COD, and TSS.

  13. HUDSONAR (CW2014, EK60)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — HUDSONAR is a bioacoustic survey of the Hudson River Estuary being conducted aboard the Hudson River Sloop Clearwater by the Acoustic Laboratory for Ecology Studies...

  14. HUNDSONAR (CW2015, ES60)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — HUDSONAR is a bioacoustic survey of the Hudson River Estuary being conducted aboard the Hudson River Sloop Clearwater by the Acoustic Laboratory for Ecology Studies...

  15. HUDSONAR (CW2013, EK60)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — HUDSONAR is a bioacoustic survey of the Hudson River Estuary being conducted aboard the Hudson River Sloop Clearwater by the Acoustic Laboratory for Ecology Studies...

  16. [Major ion chemistry of surface water in the Xilin River Basin and the possible controls].

    Science.gov (United States)

    Tang, Xi-Wen; Wu, Jin-Kui

    2014-01-01

    Under the increasing pressure of water shortage and steppe degradation, information on the hydrological cycle in the steppe region in Inner Mongolia is urgently needed. Major ions are widely used to identify the hydrological processes in a river basin. Based on the analysis results of 239 river water samples collected in 13 sections along the Xilin River system during 2006 to 2008, combined with data from groundwater and precipitation samples collected in the same period and the meteorological and hydrological data in the Xilin River Basin, hydrochemical characteristics and the chemistry of major ions of the Xilin River water have been studied by means of Piper triangle plots and Gibbs diagrams. The results showed that: (1) the total dissolved solid (TDS) in river water mainly ranged between 136.7 mg x L(-1) and 376.5 mg x L(-1), and (2) it had an increasing trend along the river flow path. (3) The major cations and anions of river water were Ca2+ and HCO3-, respectively, and the chemical type of the river water varied from HCO3- -Ca2+ in the headwater area to HCO(3-)-Ca2+ Mg2+ in the lower part. (4) The variation in the concentration of major irons in surface water was not significant at the temporal scale. Usually, the concentration values of major irons were much higher in May than those in other months during the runoff season, while the values were a bit lower in 2007 than those in 2006 and 2008. Except for SO4(2-), the concentrations of other ions such as Ca2+, Na+, Mg2+, K+, Cl- and HCO3- showed a upward trend along the river flow path. Comparing major ion concentrations of the river water with those of local groundwater and precipitation, the concentration in river water was between those of precipitation and groundwater but was much closer to the concentration of groundwater. This indicated that the surface water was recharged by a mixture of precipitation and groundwater, and groundwater showed a larger impact. The Gibbs plot revealed that the chemical

  17. Assessment of surface-water quantity and quality, Eagle River watershed, Colorado, 1947-2007

    Science.gov (United States)

    Williams, Cory A.; Moore, Jennifer L.; Richards, Rodney J.

    2011-01-01

    From the early mining days to the current tourism-based economy, the Eagle River watershed (ERW) in central Colorado has undergone a sequence of land-use changes that has affected the hydrology, habitat, and water quality of the area. In 2000, the USGS, in cooperation with the Colorado River Water Conservation District, Eagle County, Eagle River Water and Sanitation District, Upper Eagle Regional Water Authority, Colorado Department of Transportation, City of Aurora, Town of Eagle, Town of Gypsum, Town of Minturn, Town of Vail, Vail Resorts, City of Colorado Springs, Colorado Springs Utilities, and Denver Water, initiated a retrospective analysis of surface-water quantity and quality in the ERW.

  18. Bioremediation potential of the Sava river water polluted by oil refinery wastewater

    International Nuclear Information System (INIS)

    Jaksic, B.; Matavulj, M.; Vukic, Lj.; Radnovic, D.

    2002-01-01

    Microbial enumeration is a screening-level tool which can be used to evaluate in-situ response of water microorganisms to petroleum hydrocarbon contamination as well as for evaluating enhanced bioremediation potential of petroleum hydrocarbon contamination. In this investigations the increase between 17- and 44-fold of number of heterotrophs in hydrocarbon contaminated the Sava River water when compared with the no contaminated river water have been recorded. The significant increase of number of facultative oligotrophs in the river Sava water downstream of wastewater discharge (between 70- and almost 100-fold higher number) direct to the conclusion that oligotrophic bacteria (adapted to the environments with low amount of easy-to-degrade nutrients, oligocarbophilic microorganisms) could be better indicator of water bioremediation potential than number of heterotrophic (THR) bacteria. Quantitative composition of heterotrophic, facultative oligotrophic, crude oil degrading, and other physiological groups of bacteria, being, as a rule, higher in samples taken downstream of the waste-water discharge, testify about high biodegradative potential of the River Sava microbial community, if the oil refinery wastewater is taken into consideration. (author)

  19. Residence times and mixing of water in river banks: implications for recharge and groundwater-surface water exchange

    Science.gov (United States)

    Unland, N. P.; Cartwright, I.; Cendón, D. I.; Chisari, R.

    2014-12-01

    Bank exchange processes within 50 m of the Tambo River, southeast Australia, have been investigated through the combined use of 3H and 14C. Groundwater residence times increase towards the Tambo River, which suggests the absence of significant bank storage. Major ion concentrations and δ2H and δ18O values of bank water also indicate that bank infiltration does not significantly impact groundwater chemistry under baseflow and post-flood conditions, suggesting that the gaining nature of the river may be driving the return of bank storage water back into the Tambo River within days of peak flood conditions. The covariance between 3H and 14C indicates the leakage and mixing between old (~17 200 years) groundwater from a semi-confined aquifer and younger groundwater (bank infiltration. Furthermore, the more saline deeper groundwater likely controls the geochemistry of water in the river bank, minimising the chemical impact that bank infiltration has in this setting. These processes, coupled with the strongly gaining nature of the Tambo River are likely to be the factors reducing the chemical impact of bank storage in this setting. This study illustrates the complex nature of river groundwater interactions and the potential downfall in assuming simple or idealised conditions when conducting hydrogeological studies.

  20. Detection and Genetic Analysis of Human Sapoviruses in River Water in Japan▿

    OpenAIRE

    Kitajima, Masaaki; Oka, Tomoichiro; Haramoto, Eiji; Katayama, Hiroyuki; Takeda, Naokazu; Katayama, Kazuhiko; Ohgaki, Shinichiro

    2010-01-01

    We investigated the prevalence of sapoviruses (SaVs) in the Tamagawa River in Japan from April 2003 to March 2004 and performed genetic analysis of the SaV genes identified in river water. A total of 60 river water samples were collected from five sites along the river, and 500 ml was concentrated using the cation-coated filter method. By use of a real-time reverse transcription (RT)-PCR assay, 12 (20%) of the 60 samples were positive for SaV. SaV sequences were obtained from 15 (25%) samples...

  1. Developing the remote sensing-based water environmental model for monitoring alpine river water environment over Plateau cold zone

    Science.gov (United States)

    You, Y.; Wang, S.; Yang, Q.; Shen, M.; Chen, G.

    2017-12-01

    Alpine river water environment on the Plateau (such as Tibetan Plateau, China) is a key indicator for water security and environmental security in China. Due to the complex terrain and various surface eco-environment, it is a very difficult to monitor the water environment over the complex land surface of the plateau. The increasing availability of remote sensing techniques with appropriate spatiotemporal resolutions, broad coverage and low costs allows for effective monitoring river water environment on the Plateau, particularly in remote and inaccessible areas where are lack of in situ observations. In this study, we propose a remote sense-based monitoring model by using multi-platform remote sensing data for monitoring alpine river environment. In this study some parameterization methodologies based on satellite remote sensing data and field observations have been proposed for monitoring the water environmental parameters (including chlorophyll-a concentration (Chl-a), water turbidity (WT) or water clarity (SD), total nitrogen (TN), total phosphorus (TP), and total organic carbon (TOC)) over the china's southwest highland rivers, such as the Brahmaputra. First, because most sensors do not collect multiple observations of a target in a single pass, data from multiple orbits or acquisition times may be used, and varying atmospheric and irradiance effects must be reconciled. So based on various types of satellite data, at first we developed the techniques of multi-sensor data correction, atmospheric correction. Second, we also built the inversion spectral database derived from long-term remote sensing data and field sampling data. Then we have studied and developed a high-precision inversion model over the southwest highland river backed by inversion spectral database through using the techniques of multi-sensor remote sensing information optimization and collaboration. Third, take the middle reaches of the Brahmaputra river as the study area, we validated the key

  2. Importance of boreal rivers in providing iron to marine waters.

    Directory of Open Access Journals (Sweden)

    Emma S Kritzberg

    Full Text Available This study reports increasing iron concentrations in rivers draining into the Baltic Sea. Given the decisive role of iron to the structure and biogeochemical function of aquatic ecosystems, this trend is likely one with far reaching consequences to the receiving system. What those consequences may be depends on the fate of the iron in estuarine mixing. We here assess the stability of riverine iron by mixing water from seven boreal rivers with artificial sea salts. The results show a gradual loss of iron from suspension with increasing salinity. However, the capacity of the different river waters to maintain iron in suspension varied greatly, i.e. between 1 and 54% of iron was in suspension at a salinity of 30. The variability was best explained by iron:organic carbon ratios in the riverine waters--the lower the ratio the more iron remained in suspension. Water with an initially low iron:organic carbon ratio could keep even higher than ambient concentrations of Fe in suspension across the salinity gradient, as shown in experiments with iron amendments. Moreover, there was a positive relationship between the molecular size of the riverine organic matter and the amount of iron in suspension. In all, the results point towards a remarkably high transport capacity of iron from boreal rivers, suggesting that increasing concentrations of iron in river mouths may result in higher concentrations of potentially bioavailable iron in the marine system.

  3. Social and ecological aspects of the water resources management of the transboundary rivers of Central Asia

    Directory of Open Access Journals (Sweden)

    P. Normatov

    2014-09-01

    Full Text Available The Zeravshan River is a transboundary river whose water is mainly used for irrigation of agricultural lands of the Republic of Uzbekistan. Sufficiently rich hydropower resources in upstream of the Zeravshan River characterize the Republic of Tajikistan. Continuous monitoring of water resources condition is necessary for planning the development of this area taking into account hydropower production and irrigation needs. Water quality of Zeravshan River is currently one of the main problems in the relationship between the Republics of Uzbekistan and Tajikistan, and it frequently triggers conflict situations between the two countries. In most cases, the problem of water quality of the Zeravshan River is related to river pollution by wastewater of the Anzob Mountain-concentrating Industrial Complex (AMCC in Tajikistan. In this paper results of research of chemical and bacteriological composition of the Zeravshan River waters are presented. The minimum impact of AMCC on quality of water of the river was experimentally established.

  4. Water quality trends in the Delaware River Basin (USA) from 1980 to 2005.

    Science.gov (United States)

    Kauffman, Gerald J; Homsey, Andrew R; Belden, Andrew C; Sanchez, Jessica Rittler

    2011-06-01

    In 1940, the tidal Delaware River was "one of the most grossly polluted areas in the United States." During the 1950s, water quality was so poor along the river at Philadelphia that zero oxygen levels prevented migration of American shad leading to near extirpation of the species. Since then, water quality in the Delaware Basin has improved with implementation of the 1961 Delaware River Basin Compact and 1970s Federal Clean Water Act Amendments. At 15 gages along the Delaware River and major tributaries between 1980 and 2005, water quality for dissolved oxygen, phosphorus, nitrogen, and sediment improved at 39%, remained constant at 51%, and degraded at 10% of the stations. Since 1980, improved water-quality stations outnumbered degraded stations by a 4 to 1 margin. Water quality remains good in the nontidal river above Trenton and, while improved, remains fair to poor for phosphorus and nitrogen in the tidal estuary near Philadelphia and in the Lehigh and Schuylkill tributaries. Water quality is good in heavily forested watersheds (>50%) and poor in highly cultivated watersheds. Water quality recovery in the Delaware Basin is coincident with implementation of environmental laws enacted in the 1960s and 1970s and is congruent with return of striped bass, shad, blue crab, and bald eagle populations.

  5. Quantifying Microplastic Pollution in the Mohawk River, Eastern New York State

    Science.gov (United States)

    Smith, J. A.; Hodge, J.; Kurtz, B. G.; Garver, J. I.

    2016-12-01

    We are investigating the extent to which microplastic particles are reaching the Mohawk River in upstate New York. Microplastics are commonly defined as plastic particles less than 5 mm in diameter, whether deliberately manufactured to be that size or resulting from the fragmentation or erosion of larger pieces of plastic. Despite recent legislative bans, many personal care products such as facial scrubs still use tiny particles of plastic as abrasives. Plastic fibers also make up part of the microplastic load potentially reaching waterways. Microplastic particles are a health hazard for aquatic organisms and an undesirable component of public water supplies. The Mohawk River is the main tributary of the Hudson River, coinciding with the Erie Canal for stretches downriver from Rome, NY, and serves as both the outfall for wastewater treatment plants and the water supply for several municipalities. In some cities along the Mohawk River (e.g., Utica, NY), combined sewer overflows (CSOs) deliver untreated sewage and stormwater directly to the river during heavy rainfall events, increasing the likelihood of microplastic pollution. We used a manta trawl deployed from a rigid inflatable boat to collect 60 samples of planktonic material along the 112-mile section of the Mohawk River and/or Erie Canal between Rome, NY, and the Crescent Dam in Cohoes, NY. Each trawl lasted for 1 mile. We used an Ekman grab sampler to collect 64 samples of channel sediment along the same section of the Mohawk River and/or Erie Canal. Sample processing for planktonic samples includes sieving and wet peroxide oxidation to remove organic material. Sample processing for sediment grab samples includes drying, sieving, density separation, and wet peroxide oxidation. Anthropogenic particles that contain dye are easiest to spot under a microscope. Laboratory analyses indicate that the majority of the planktonic samples include dyed particles in addition to colorless particles likely to be plastic

  6. Study of the water transit time in the Tiete and Pinheiros rivers

    International Nuclear Information System (INIS)

    Agudo, E.G.; Santos, J.L. dos; Merighi Junior, A.; Sanchez, W.; Albuquerque, A.M.

    1976-01-01

    A study of the water time of travel in the Tiete and Pinheiros rivers was performed using radiotracer techniques. The section studied was about 50 Km long in the metropolotinan area of Sao Paulo City. The passage of the radioactive cloud was measured in several control sections between the injection point and the Pedreira dam in the Billings reservoir where the water from those rivers is pumped. The increase of rate flow along the way of the rivers, due to afluents and sewage contributions was calculated using the total count method. The flow rate of the principal afluents and the Tiete river where simultaneously measured using radiotracer techniques. The influence of several factors, as pumping rate in the pumping stations and rain water contribution are discussed [pt

  7. Chemometric investigations on the differentiated evaluation of element trace analysis in river waters

    International Nuclear Information System (INIS)

    Einax, J.; Geiss, S.

    1994-01-01

    The combination of sequential leaching methods for a first assessment of the kind of species in river sediments with multivariate-statistical methods (like factor analysis) for identifying anthropogenic and/or geogenic loading is useful for the differentiated characterization of the pollution state of a river. Electrochemical investigations, planned on the basis of statistical design and following empirical modelling, enables quantitative conclusions on the binding forms of heavy metals in river waters. Deposition-remobilisation effects of heavy metals in the complex system river water-river sediment can be described by PLS modelling. (orig.)

  8. Bacterial flora analysis of coliforms in sewage, river water, and ground water using MALDI-TOF mass spectrometry.

    Science.gov (United States)

    Suzuki, Yoshihiro; Niina, Kouki; Matsuwaki, Tomonori; Nukazawa, Kei; Iguchi, Atsushi

    2018-01-28

    The aim of this study was to rapidly and effectively analyze coliforms, which are the most fundamental indicators of water quality for fecal pollution, using matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). Coliform bacteria were isolated from municipal sewage, river water, and groundwater. For each sample, 100 isolates were determined by MALDI-TOF MS. In addition, these same 100 isolates were also identified via 16S rRNA gene sequence analysis. Obtained MALDI-TOF MS data were compared with the 16S rRNA sequencing analysis, and the validity of MALDI-TOF MS for classification of coliform bacteria was examined. The concordance rate of bacterial identification for the 100 isolates obtained by MALDI-TOF MS analysis and 16S rRNA gene sequence analysis for sewage, river water, and ground water were 96%, 74%, and 62% at the genus level, respectively. Among the sewage, river water, and ground water samples, the coliform bacterial flora were distinct. The dominant genus of coliforms in sewage, river water, and groundwater were Klebsiella spp., Enterobacter spp., and Serratia spp., respectively. We determined that MALDI-TOF MS is a rapid and accurate tool that can be used to identify coliforms. Therefore, without using conventional 16S rRNA sequencing, it is possible to rapidly and effectively classify coliforms in water using MALDI-TOF MS.

  9. Benthic Algae Communities in the Rivers of Different Water Quality in Lithuania

    Directory of Open Access Journals (Sweden)

    Irma Vitonytė

    2011-04-01

    Full Text Available Investigation into benthic algae communities was carried out in the Lithuanian rivers of different water quality during the period 2004–2006. The structure of benthic algae communities in the rivers of different water quality slightly differs. The community of Cladophora glomerata–Vaucheria sessilis–Fontinalis antipyretica mainly dominated in the rivers. Algae communities reiterate in unpolluted rivers (II class, according to biogenes such as Akmena, Babrungas, Bražuolė and Siesartis where Cladophora glomerata–Fontinalis antipyretica, Amblystegium riparium–Cladophora glomerata, and Fontinalis antipyretica–Cladophora glomerata communities predominate. In slightly and moderately polluted rivers, algae communities are unreiteratable. Differences in river water quality could be better determined by frequently appearing algae species in algae communities: in unpolluted rivers – Hildenbrandia rivularis, Audouinella chalybea and A. Hermanii, in slightly polluted – Vaucheria sessilis and Fontinalis antipyretica, and in moderately polluted – Stigeoclonium nanum, S. tenue, Aulacoseira islandica and Melosira varians.The variety of the structure of benthic algae communities could be determined by abiotic environmental factors such as the heterogenity of substratum, stream velocity and depth, the intensity of light and biogenes concentration.Article in Lithuanian

  10. Water quality in the Mahoning River and selected tributaries in Youngstown, Ohio

    Science.gov (United States)

    Stoeckel, Donald M.; Covert, S. Alex

    2002-01-01

    The lower reaches of the Mahoning River in Youngstown, Ohio, have been characterized by the Ohio Environmental Protection Agency (OEPA) as historically having poor water quality. Most wastewater-treatment plants (WWTPs) in the watershed did not provide secondary sewage treatment until the late 1980s. By the late 1990s, the Mahoning River still received sewer-overflow discharges from 101 locations within the city of Youngstown, Ohio. The Mahoning River in Youngstown and Mill Creek, a principal tributary to the Mahoning River in Youngstown, have not met biotic index criteria since the earliest published assessment by OEPA in 1980. Youngstown and the OEPA are working together toward the goal of meeting water-quality standards in the Mahoning River. The U.S. Geological Survey collected information to help both parties assess water quality in the area of Youngstown and to estimate bacteria and inorganic nitrogen contributions from sewer-overflow discharges to the Mahoning River. Two monitoring networks were established in the lower Mahoning River: the first to evaluate hydrology and microbiological and chemical water quality and the second to assess indices of fish and aquatic-macroinvertebrate-community health. Water samples and water-quality data were collected from May through October 1999 and 2000 to evaluate where, when, and for how long water quality was affected by sewer-overflow discharges. Water samples were collected during dry- and wet-weather flow, and biotic indices were assessed during the first year (1999). The second year of sample collection (2000) was directed toward evaluating changes in water quality during wet-weather flow, and specifically toward assessing the effect of sewer-overflow discharges on water quality in the monitoring network. Water-quality standards for Escherichia coli (E. coli) concentration and draft criteria for nitrate plus nitrite and total phosphorus were the regulations most commonly exceeded in the Mahoning River and Mill

  11. Recent tritium levels in environmental waters collected at the drainage basin of Changjiang (Yangtze River)

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Osamu; Nakagawa, Takao; Hashimoto, Tetsuo [Niigata Univ. (Japan)

    1989-11-01

    This paper reports tritium levels in environmental waters in the China in comparison with those in Japan. Environmental water samples were collected in October-November 1987 from the drainage basin of Changjiang from Sichuan through Hubei districts. Tritium levels were 0.22 Bq/l-6.73 Bq/l (an average, 3.09{plus minus}1.18 Bq/l) in 50 ground water samples; 3.40 Bq/l-3.81 Bq/l (an average, 3.71{plus minus}0.81 Bq/l) in four river samples collected from the main course of the Changjiang River; 1.74 Bq/l-5.40 Bq/l (an average, 3.14{plus minus}1.52 Bq/l) in four river samples collected from the tributary river; and 0.63 Bq/l and 1.78 Bq/l in precipitation samples. Environmental waters contained a large quantity of Ca{sup 2+} and Mg{sup 2+} ions, irrespective of river and ground water samples. In comparing tritium levels in environmental waters in the China and Japan, tritium levels were higher in the ground water influenced by a landslide in the China than Japan. Tritium levels in precipitations collected from the drainage basin of the Changjiang were similar to those in Niigata (Japan), 0.63{plus minus}0.26 Bq/l and 1.78{plus minus}0.26 Bq/l vs 0.53{plus minus}0.36 Bq/l - 2.17{plus minus}0.40 Bq/l. The concentrations of Ca{sup 2+}, Mg{sup 2+}, and HCO{sub 3}{sup -} were higher in the Changjiang River (4 water samples) than the river waters, including the Shinano River in Japan. The concentrations of Na{sup +} and Cl{sup -} were higher in the Changjiang River than the average concentrations in the Japanese rivers, but lower than the Shinano River (Japan). A small quantity of precipitations and width of the Changjiang River, as well as nuclear explosion test performed up to 1980, seem to influence higher tritium levels in the Changjiang than those in Japan. (N.K.).

  12. Assessment of human impact on water quality along Manyame River

    Directory of Open Access Journals (Sweden)

    Tirivashe P. Masere

    2012-12-01

    Full Text Available Human activities such as urbanization, agriculture, sewage treatment and industrialization are affecting water resources both quantitatively and qualitatively. The impact of these activities were studied by measuring and determining the concentration and values of eight selected water quality parameters namely nitrates, phosphates, copper, iron, biochemical oxygen demand (BOD, dissolved oxygen (DO, pH and turbidity along Manyame River, in the Manyame Catchment. Thirty five sites were sampled from the source of the river which is at Seke Dam, along Manyame River and on the tributaries (Ruwa, Nyatsime, Mukuvisi and Marimba just before they join the river. The 35 sites were categorized into 5 groups (A, B, C, D and E with group A and E being the upstream and downstream of Manyame. The analysis of results was undertaken using a simple one-way ANOVA with group as the only source of variation. Turbidity values, nitrate and phosphate concentrations were found to be higher than the Zimbabwe National Water Authority (ZINWA maximum permissible standards for surface waters. DO saturation in the downstream groups was less than 75% (ZINWA standard. Agricultural and urban runoff and sewage effluent were responsible of the high nutrient levels and turbidity, which in turn, reduced the dissolved oxygen (DO.

  13. Water-scarcity patterns : spatiotemporal interdependencies between water use and water availability in a semi-arid river basin

    NARCIS (Netherlands)

    van Oel, P.R.

    2009-01-01

    This thesis addresses the interdependencies between water use and water availability and describes a model that has been developed to improve understanding of the processes that drive changes and variations in the spatial and temporal distribution of water resources in a semi-arid river basin. These

  14. Detecting Long-term Trend of Water Quality Indices of Dong-gang River, Taiwan Using Quantile Regression

    Science.gov (United States)

    Yang, D.; Shiau, J.

    2013-12-01

    ABSTRACT BODY: Abstract Surface water quality is an essential issue in water-supply for human uses and sustaining healthy ecosystem of rivers. However, water quality of rivers is easily influenced by anthropogenic activities such as urban development and wastewater disposal. Long-term monitoring of water quality can assess whether water quality of rivers deteriorates or not. Taiwan is a population-dense area and heavily depends on surface water for domestic, industrial, and agricultural uses. Dong-gang River is one of major resources in southern Taiwan for agricultural requirements. The water-quality data of four monitoring stations of the Dong-gang River for the period of 2000-2012 are selected for trend analysis. The parameters used to characterize water quality of rivers include biochemical oxygen demand (BOD), dissolved oxygen (DO), suspended solids (SS), and ammonia nitrogen (NH3-N). These four water-quality parameters are integrated into an index called river pollution index (RPI) to indicate the pollution level of rivers. Although widely used non-parametric Mann-Kendall test and linear regression exhibit computational efficiency to identify trends of water-quality indices, limitations of such approaches include sensitive to outliers and estimations of conditional mean only. Quantile regression, capable of identifying changes over time of any percentile values, is employed in this study to detect long-term trend of water-quality indices for the Dong-gang River located in southern Taiwan. The results show that Dong-gang River 4 stations from 2000 to 2012 monthly long-term trends in water quality.To analyze s Dong-gang River long-term water quality trends and pollution characteristics. The results showed that the bridge measuring ammonia Long-dong, BOD5 measure in that station on a downward trend, DO, and SS is on the rise, River Pollution Index (RPI) on a downward trend. The results form Chau-Jhou station also ahowed simialar trends .more and more near the

  15. Applying a water quality index model to assess the water quality of the major rivers in the Kathmandu Valley, Nepal.

    Science.gov (United States)

    Regmi, Ram Krishna; Mishra, Binaya Kumar; Masago, Yoshifumi; Luo, Pingping; Toyozumi-Kojima, Asako; Jalilov, Shokhrukh-Mirzo

    2017-08-01

    Human activities during recent decades have led to increased degradation of the river water environment in South Asia. This degradation has led to concerns for the populations of the major cities of Nepal, including those of the Kathmandu Valley. The deterioration of the rivers in the valley is directly linked to the prevalence of poor sanitary conditions, as well as the presence of industries that discharge their effluents into the river. This study aims to investigate the water quality aspect for the aquatic ecosystems and recreation of the major rivers in the Kathmandu Valley using the Canadian Council of Ministers of the Environment water quality index (CCME WQI). Ten physicochemical parameters were used to determine the CCME WQI at 20 different sampling locations. Analysis of the data indicated that the water quality in rural areas ranges from excellent to good, whereas in denser settlements and core urban areas, the water quality is poor. The study results are expected to provide policy-makers with valuable information related to the use of river water by local people in the study area.

  16. Estimating the relation between groundwater and river water by measuring the concentration of Rn-222

    Energy Technology Data Exchange (ETDEWEB)

    Yoneda, Minoru; Morisawa, Shinsuke [Kyoto Univ. (Japan). Faculty of Engineering

    1997-02-01

    This study aimed to estimate the relationship between groundwater in shallow layer and river water by determining the concentrations of {sup 222}Rn and nitric nitrogen along with water temperature. The region around ca. 20 km along river A in a certain basin was chosen as a test area. The Rn concentration of groundwater was determined by Rn extracting with toluene and counting in liquid scintillation counter, whereas for river water, it was determined by activated charcoal passive collector method developed by the authors, by which the amount of Rn adsorbed on activated charcoal was estimated by Ge-solid state detector. In addition, water temperature and nitric nitrogen concentration were measured at various points in the test area. Thus, a distribution map of the three parameters was made on the basis of the data obtained in December, 1989. Since Rn concentration is generally higher in ground water than river water and the water temperature in December is higher in the former, it seems likely that the concentrations of Rn and nitric nitrogen would become higher in the area where ground water soaks into river water. Thus, the directions of ground water flow at the respective sites along river A were estimated from the data regarding the properties of ground water. (M.N.)

  17. Radar sounding of bedrock and water table at Chalk River

    International Nuclear Information System (INIS)

    Annan, A.P.; Davis, J.L.

    1979-01-01

    When a spill of radioactive waste occurs, one of the main concerns is the flow pattern of ground water in the area of the spill. Ground probing radar is a relatively new geophysical technique which can provide high resolution data on the surficial geology and water distribution. The results of some preliminary radar experiments conducted at Chalk River Nuclear Laboratories (CRNL) of the Atomic Energy of Canada Limited (AECL), Chalk River, Ontario are presented. (auth)

  18. Fine-resolution Modeling of Urban-Energy Systems' Water Footprint in River Networks

    Science.gov (United States)

    McManamay, R.; Surendran Nair, S.; Morton, A.; DeRolph, C.; Stewart, R.

    2015-12-01

    Characterizing the interplay between urbanization, energy production, and water resources is essential for ensuring sustainable population growth. In order to balance limited water supplies, competing users must account for their realized and virtual water footprint, i.e. the total direct and indirect amount of water used, respectively. Unfortunately, publicly reported US water use estimates are spatially coarse, temporally static, and completely ignore returns of water to rivers after use. These estimates are insufficient to account for the high spatial and temporal heterogeneity of water budgets in urbanizing systems. Likewise, urbanizing areas are supported by competing sources of energy production, which also have heterogeneous water footprints. Hence, a fundamental challenge of planning for sustainable urban growth and decision-making across disparate policy sectors lies in characterizing inter-dependencies among urban systems, energy producers, and water resources. A modeling framework is presented that provides a novel approach to integrate urban-energy infrastructure into a spatial accounting network that accurately measures water footprints as changes in the quantity and quality of river flows. River networks (RNs), i.e. networks of branching tributaries nested within larger rivers, provide a spatial structure to measure water budgets by modeling hydrology and accounting for use and returns from urbanizing areas and energy producers. We quantify urban-energy water footprints for Atlanta, GA and Knoxville, TN (USA) based on changes in hydrology in RNs. Although water intakes providing supply to metropolitan areas were proximate to metropolitan areas, power plants contributing to energy demand in Knoxville and Atlanta, occurred 30 and 90km outside the metropolitan boundary, respectively. Direct water footprints from urban landcover primarily comprised smaller streams whereas indirect footprints from water supply reservoirs and energy producers included

  19. Mapping Water Resources, Allocation and Consumption in the Mills River Basin

    Science.gov (United States)

    Hodes, J.; Jeuland, M. A.; Barros, A. P.

    2014-12-01

    Mountain basins and the headwaters of river basins along the foothills of major mountain ranges are undergoing rapid environmental change due to urban development, land acquisition by investors, population increase, and climate change. Classical water infrastructure in these regions is primarily designed to meet human water demand associated with agriculture, tourism, and economic development. Often overlooked and ignored is the fundamental interdependence of human water demand, ecosystem water demand, water rights and allocation, and water supply. A truly sustainable system for water resources takes into account ecosystem demand along with human infrastructure and economic demand, as well as the feedbacks that exist between them. Allocation policies need to take into account basin resilience that is the amount of stress the system can handle under varying future scenarios. Changes in stress on the system can be anthropogenic in the form of population increase, land use change, economic development, or may be natural in the form of climate change and decrease in water supply due to changes in precipitation. Mapping the water rights, supply, and demands within the basin can help determine the resiliency and sustainability of the basin. Here, we present a coupled natural human system project based in the French Broad River Basin, in the Southern Appalachians. In the first phase of the project, we are developing and implementing a coupled hydro-economics modeling framework in the Mills River Basin (MRB), a tributary of the French Broad. The Mills River Basin was selected as the core basin for implementing a sustainable system of water allocation that is adaptive and reflects the interdependence of water dependent sectors. The headwaters of the Mills River are in the foothills of the Appalachians, and are currently under substantial land use land cover (LULC) change pressure for agricultural purposes. In this regard, the MRB is representative of similar headwater

  20. Global modelling of river water quality under climate change

    Science.gov (United States)

    van Vliet, Michelle T. H.; Franssen, Wietse H. P.; Yearsley, John R.

    2017-04-01

    Climate change will pose challenges on the quality of freshwater resources for human use and ecosystems for instance by changing the dilution capacity and by affecting the rate of chemical processes in rivers. Here we assess the impacts of climate change and induced streamflow changes on a selection of water quality parameters for river basins globally. We used the Variable Infiltration Capacity (VIC) model and a newly developed global water quality module for salinity, temperature, dissolved oxygen and biochemical oxygen demand. The modelling framework was validated using observed records of streamflow, water temperature, chloride, electrical conductivity, dissolved oxygen and biochemical oxygen demand for 1981-2010. VIC and the water quality module were then forced with an ensemble of bias-corrected General Circulation Model (GCM) output for the representative concentration pathways RCP2.6 and RCP8.5 to study water quality trends and identify critical regions (hotspots) of water quality deterioration for the 21st century.

  1. Managing water and riparian habitats on the Bill Williams River with scientific benefit for other desert river systems

    Science.gov (United States)

    John Hickey,; Woodrow Fields,; Andrew Hautzinger,; Steven Sesnie,; Shafroth, Patrick B.; Dick Gilbert,

    2016-01-01

    This report details modeling to: 1) codify flow-ecology relationships for riparian species of the Bill Williams River as operational guidance for water managers, 2) test the guidance under different climate scenarios, and 3) revise the operational guidance as needed to address the effects of climate change. Model applications detailed herein include the River Analysis System  (HEC-RAS) and the Ecosystem Functions Model  (HEC-EFM), which was used to generate more than three million estimates of local seedling recruitment areas. Areas were aggregated and compared to determine which scenarios generated the most seedling area per unit volume of water. Scenarios that maximized seedling area were grouped into a family of curves that serve as guidance for water managers. This work has direct connections to water management decision-making and builds upon and adds to the rich history of science-based management for the Bill Williams River, Arizona, USA. 

  2. Fate of Arsenic during Red River Water Infiltration into Aquifers beneath Hanoi, Vietnam.

    Science.gov (United States)

    Postma, Dieke; Mai, Nguyen Thi Hoa; Lan, Vi Mai; Trang, Pham Thi Kim; Sø, Helle Ugilt; Nhan, Pham Quy; Larsen, Flemming; Viet, Pham Hung; Jakobsen, Rasmus

    2017-01-17

    Recharge of Red River water into arsenic-contaminated aquifers below Hanoi was investigated. The groundwater age at 40 m depth in the aquifer underlying the river was 1.3 ± 0.8 years, determined by tritium-helium dating. This corresponds to a vertical flow rate into the aquifer of 19 m/year. Electrical conductivity and partial pressure of CO 2 (P CO 2 ) indicate that water recharged from the river is present in both the sandy Holocene and gravelly Pleistocene aquifers and is also abstracted by the pumping station. Infiltrating river water becomes anoxic in the uppermost aquifer due to the oxidation of dissolved organic carbon. Further downward, sedimentary carbon oxidation causes the reduction of As-containing Fe-oxides. Because the release of arsenic by reduction of Fe-oxides is controlled by the reaction rate, arsenic entering the solution becomes highly diluted in the high water flux and contributes little to the groundwater arsenic concentration. Instead, the As concentration in the groundwater of up to 1 μM is due to equilibrium-controlled desorption of arsenic, adsorbed to the sediment before river water started to infiltrate due to municipal pumping. Calculations indicate that it will take several decades of river water infiltration to leach arsenic from the Holocene aquifer to below the World Health Organization limit of 10 μg/L.

  3. Fate of Arsenic during Red River Water Infiltration into Aquifers beneath Hanoi, Vietnam

    Science.gov (United States)

    2016-01-01

    Recharge of Red River water into arsenic-contaminated aquifers below Hanoi was investigated. The groundwater age at 40 m depth in the aquifer underlying the river was 1.3 ± 0.8 years, determined by tritium–helium dating. This corresponds to a vertical flow rate into the aquifer of 19 m/year. Electrical conductivity and partial pressure of CO2 (PCO2) indicate that water recharged from the river is present in both the sandy Holocene and gravelly Pleistocene aquifers and is also abstracted by the pumping station. Infiltrating river water becomes anoxic in the uppermost aquifer due to the oxidation of dissolved organic carbon. Further downward, sedimentary carbon oxidation causes the reduction of As-containing Fe-oxides. Because the release of arsenic by reduction of Fe-oxides is controlled by the reaction rate, arsenic entering the solution becomes highly diluted in the high water flux and contributes little to the groundwater arsenic concentration. Instead, the As concentration in the groundwater of up to 1 μM is due to equilibrium-controlled desorption of arsenic, adsorbed to the sediment before river water started to infiltrate due to municipal pumping. Calculations indicate that it will take several decades of river water infiltration to leach arsenic from the Holocene aquifer to below the World Health Organization limit of 10 μg/L. PMID:27958705

  4. Mutagenicity and estrogenicity of raw water and drinking water in an industrialized city in the Yangtze River Delta.

    Science.gov (United States)

    Xiao, Sanhua; Lv, Xuemin; Zeng, Yifan; Jin, Tao; Luo, Lan; Zhang, Binbin; Zhang, Gang; Wang, Yanhui; Feng, Lin; Zhu, Yuan; Tang, Fei

    2017-10-01

    Public concern was aroused by frequently reported water pollution incidents in Taihu Lake and the Yangtze River. The pollution also caught and sustained the attention of the scientific community. From 2010 to 2016, raw water and drinking water samples were continually collected at Waterworks A and B (Taihu Lake) and Waterworks C (Yangtze River). The non-volatile organic pollutants in the water samples were extracted by solid phase extraction. Ames tests and yeast estrogen screen (YES) assays were conducted to evaluate the respective mutagenic and estrogenic effects. Water samples from the Yangtze River-based Waterworks C possessed higher mutagenicity than those from Taihu Lake-based Waterworks A (P<0.001) and Waterworks B (P = 0.026). Water treatment enhanced the direct mutagenicity (P = 0.022), and weakened the estrogenicity of the raw water (P<0.001) with a median removal rate of 100%. In fact, very few of the finished samples showed estrogenic activity. Raw water samples from Waterworks A showed weaker estrogenicity than those from Waterworks B (P = 0.034) and Waterworks C (P = 0.006). In summary, mutagenic effects in drinking water and estrogenic effects in raw water merited sustained attention. The Yangtze River was more seriously polluted by mutagenic and estrogenic chemicals than Taihu Lake was. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Water pollution of Sabarmati River--a harbinger to potential disaster.

    Science.gov (United States)

    Haldar, Soumya; Mandal, Subir Kumar; Thorat, R B; Goel, Sangita; Baxi, Krushnakant D; Parmer, Navalsang P; Patel, Vipul; Basha, S; Mody, K H

    2014-04-01

    River Sabarmati is one of the biggest and major river of Gujarat that runs through two major cities of Gujarat, Gandhinagar and Ahmedabad and finally meets the Gulf of Khambhat (GoK) in the Arabian Sea. A study was conducted to evaluate the water quality of this river, as it could possibly be one of the major sources for filling up Kalpasar, the proposed man-made freshwater reservoir supposed to be the biggest one in the world. A total of nine sampling stations were established covering 163 km stretch of the river from upstream of Gandhinagar city to Vataman near Sabarmati estuary. Physicochemical (temprature, pH, salinity, chloride, total dissolved solids, turbidity, dissolved oxygen, biochemical oxygen demand, phenol, and petroleum hydrocarbons), biological (phytoplankton), and microbiological (total and selective bacterial count) analyses indicated that the river stretch from Ahmedabad-Vasana barriage to Vataman was highly polluted due to perennial waste discharges mainly from municipal drainage and industries. An implementation of sustainable management plan with proper treatment of both municipal and industrial effluents is essential to prevent further deterioration of the water quality of this river.

  6. THE IMPACT OF TBILISI USED WATER ON ECOCHEMICAL STATE OF SMALL RIVERS OF THE CITY

    Directory of Open Access Journals (Sweden)

    MARIAM TABATADZE

    2016-03-01

    Full Text Available The centralized sewerage systems and wastewater treatment facilities were constructed in Tbilisi in the middle of the previous century. Nowadays only mechanical treatment stage operates in wastewater treatment facilities of Tbilisi. Moreover, collected wastewater from the sewerage systems often drains without any treatment directly into the small rivers located in Tbilisi area. These rivers feed the main water artery of our capital – river Mtkvari and play an important role in its salt balance. As a result of study of hydro-chemical parameters of Tbilisi small rivers were identified Water Pollution Index (WPI and assessment of small rivers pollution by sewage waters was carried out. It was established that small rivers of Tbilisi belong to the IV and V classes, i.e. less polluted and polluted rivers, while according to the content of fecal matter in the river water they are ranged in the class of polluted and most polluted.

  7. Impact of river restoration on groundwater - surface water - interactions

    Science.gov (United States)

    Kurth, Anne-Marie; Schirmer, Mario

    2014-05-01

    Since the end of the 19th century, flood protection was increasingly based on the construction of impermeable dams and side walls (BWG, 2003). In spite of providing flood protection, these measures also limited the connectivity between the river and the land, restricted the area available for flooding, and hampered the natural flow dynamics of the river. Apart from the debilitating effect on riverine ecosystems due to loss of habitats, these measures also limited bank filtration, inhibited the infiltration of storm water, and affected groundwater-surface water-interactions. This in turn had a profound effect on ecosystem health, as a lack of groundwater-surface water interactions led to decreased cycling of pollutants and nutrients in the hyporheic zone and limited the moderation of the water temperature (EA, 2009). In recent decades, it has become apparent that further damages to riverine ecosystems must be prohibited, as the damages to ecology, economy and society surmount any benefits gained from exploiting them. Nowadays, the restoration of rivers is a globally accepted means to restore ecosystem functioning, protect water resources and amend flood protection (Andrea et al., 2012; Palmer et al., 2005; Wortley et al., 2013). In spite of huge efforts regarding the restoration of rivers over the last 30 years, the question of its effectiveness remains, as river restorations often reconstruct a naturally looking rather than a naturally functioning stream (EA, 2009). We therefore focussed our research on the effectiveness of river restorations, represented by the groundwater-surface water-interactions. Given a sufficiently high groundwater level, a lack of groundwater-surface water-interactions after restoration may indicate that the vertical connectivity in the stream was not fully restored. In order to investigate groundwater-surface water-interactions we determined the thermal signature on the stream bed and in +/- 40 cm depth by using Distributed Temperature

  8. Factors influencing the dissolved iron input by river water to the open ocean

    Science.gov (United States)

    Krachler, R.; Jirsa, F.; Ayromlou, S.

    2005-05-01

    The influence of natural metal chelators on the bio-available iron input to the ocean by river water was studied. Ferrous and ferric ions present as suspended colloidal particles maintaining the semblance of a dissolved load are coagulated and settled as their freshwater carrier is mixed with seawater at the continental boundary. However, we might argue that different iron-binding colloids become sequentially destabilized in meeting progressively increasing salinities. By use of a 59Fe tracer method, the partitioning of the iron load from the suspended and dissolved mobile fraction to storage in the sediments was measured with high accuracy in mixtures of natural river water with artificial sea water. The results show a characteristic sequence of sedimentation. Various colloids of different stability are removed from a water of increasing salinity, such as it is the case in the transition from a river water to the open sea. However, the iron transport capacities of the investigated river waters differed greatly. A mountainous river in the Austrian Alps would add only about 5% of its dissolved Fe load, that is about 2.0 µg L-1 Fe, to coastal waters. A small tributary draining a sphagnum peat-bog, which acts as a source of refractory low-molecular-weight fulvic acids to the river water, would add approximately 20% of its original Fe load, that is up to 480 µg L-1 Fe to the ocean's bio-available iron pool. This points to a natural mechanism of ocean iron fertilization by terrigenous fulvic-iron complexes originating from weathering processes occurring in the soils upstream.

  9. Interaction of water components in the semi-arid Huasco and Limarí river basins, North Central Chile

    Directory of Open Access Journals (Sweden)

    G. Strauch

    2009-10-01

    Full Text Available For sustainable water resource management in semi-arid regions, sound information is required about interactions between the different components of the water system: rain/snow precipitation, surface/subsurface run-off, groundwater recharge. Exemplarily, the Huasco and Limarí river basins as water stressed river catchments have been studied by isotope and hydrochemical methods for (i the origin of water, (ii water quality, (iii relations of surface and groundwater.

    Applying the complex multi-isotopic and hydrochemical methodology to the water components of the Huasco and Limarí basins, a differentiation of water components concerning subsurface flow and river water along the catchment area and by anthropogenic impacts are detected. Sulphate and nitrate concentrations indicate remarkable input from mining and agricultural activities along the river catchment.

    The 2H-18O relations of river water and groundwater of both catchments point to the behaviour of river waters originated in an arid to semi-arid environment.

    Consequently, the groundwater from several production wells in the lower parts of the catchments is related to the rivers where the wells located, however, it can be distinguished from the river water. Using the hydrological water balance and the isotope mixing model, the interaction between surface and subsurface flows and river flow is estimated.

  10. Water quality in the Tibetan Plateau: Metal contents of four selected rivers

    International Nuclear Information System (INIS)

    Huang Xiang; Sillanpaeae, Mika; Duo Bu; Gjessing, Egil T.

    2008-01-01

    The water used by 85% of the Asian population originates in Tibetan Plateau. During April and May of 2006, water samples were collected from four major Asian rivers in the Plateau (i.e. the Salween, Mekong, Yangtze River and Yarlung Tsangpo) and analyzed for Cu, Pb, Zn, Ag, Mo, Cd, Co, Cr, Ni, Li, Mn, Al, Fe, Mg and Hg. The results showed that elements such as Mg were rather high in Tibetan rivers, giving a mean electrical conductance of 36 mS/m. In a few locations, the results also showed relatively high concentrations of Al and Fe (>1 mg/L). However, the concentrations of Cu, Zn, Ag, Cd, and Cr were generally low. Contamination with Pb was identified at a few locations in the Salween and Ni at a few sites in the Yangtze River. - For the first time, total dissolved metal contents in source water of four major Asian rivers were evaluated at the same time

  11. Columbia River System Operation Review final environmental impact statement. Appendix M: Water quality

    International Nuclear Information System (INIS)

    1995-11-01

    The System Operation Review (SOR) is a study and environmental compliance process being used by the three Federal agencies to analyze future operations of the system and river use issues. The goal of the SOR is to achieve a coordinated system operation strategy for the river that better meets the needs of all river users. This technical appendix addresses only the effects of alternative system operating strategies for managing the Columbia River system. Analysis of water quality begins with an account of the planning and evaluation process, and continues with a description of existing water quality conditions in the Columbia River Basin. This is followed by an explanation how the analysis was conducted. The analysis concludes with an assessment of the effects of SOR alternatives on water quality and a comparison of alternatives

  12. Perfluorinated compounds in infiltrated river rhine water and infiltrated rainwater in coastal dunes.

    Science.gov (United States)

    Eschauzier, Christian; Haftka, Joris; Stuyfzand, Pieter J; de Voogt, Pim

    2010-10-01

    Different studies have shown that surface waters contain perfluorinated compounds (PFCs) in the low ng/L range. Surface waters are used to produce drinking water and PFCs have been shown to travel through the purification system and form a potential threat to human health. The specific physicochemical properties of PFCs cause them to be persistent and some of them to be bioaccumulative and toxic in the environment. This study investigates the evolvement of PFC concentrations in Rhine water and rainwater during dune water infiltration processes over a transect in the dune area of the western part of The Netherlands. The difference between infiltrated river water and rainwater in terms of PFC composition was investigated. Furthermore, isomer profiles were investigated. The compound perfluorobutanesulfonate (PFBS) was found at the highest concentrations of all PFCs investigated, up to 37 ng/L in infiltrated river water (71 ± 13% of ΣPFCs). This is in contrast with the predominant occurrence of perfluorooctanoic acid (PFOA) and perfluorooctanesulfonate (PFOS) reported in literature. The concentrations of PFBS found in infiltrated river Rhine water were significantly higher than those in infiltrated rainwater. For perfluorohexanesulfonate (PFHxS) the opposite was found: infiltrated rainwater contained more than infiltrated river water. The concentrations of PFOA, perfluorohexanoic acid (PFHxA), perfluoroheptanoic acid (PFHpA), PFBS, PFOS, and PFHxS in infiltrated river water showed an increasing trend with decreasing age of the water. The relative contribution of the branched PFOA and PFOS isomers to total concentrations of PFOA and PFOS showed a decreasing trend with decreasing age of the water.

  13. Groundwater-Surface Water Interactions and Downstream Transport of Water, Heat, and Solutes in a Hydropeaked River

    Science.gov (United States)

    Ferencz, S. B.; Cardenas, M. B.; Neilson, B. T.; Watson, J.

    2017-12-01

    A majority of the world's largest river systems are regulated by dams. In addition to being used for water resources management and flood prevention, many large dams are also used for hydroelectric power generation. In the United States, dams account for 7% of domestic electricity, and hydropower accounts for 16% of worldwide electricity production. To help meet electricity demand during peak usage times, hydropower utilities often increase their releases of water during high demand periods. This practice, termed hydropeaking, can cause large transient flow regimes downstream of hydroelectric dams. These transient flow increases can result in order of magnitude daily fluctuations in discharge, and the released water can have different thermal and chemical properties than ambient river water. As hydropeaking releases travel downstream, the temporary rise in stage and increase in discharge can enhance surface water-groundwater (SW-GW) exchange between the river and its alluvial aquifer. This dam-induced SW-GW exchange, combined with hydrodynamic attenuation and heat exchange processes, result in complex responses downstream. The dam-regulated Lower Colorado River downstream of Austin, TX was used as a natural laboratory to observe SW-GW interactions and downstream transport of water, heat, and solutes under hydropeaking conditions. To characterize SW-GW interactions, well transects were installed in the banks of the river to observe exchanges between the river and alluvial aquifer. The well transects were installed at three different distances from the dam (15km, 35km, and 80km). At each well transect conductivity, temperature, and pressure sensors were deployed in the monitoring wells and in the channel. Additional conductivity and temperature sensors were deployed along the study reach to provide a more detailed record of heat and solute transport during hydropeaking releases. The field data spans over two months of daily dam releases that were punctuated by two

  14. Adaptive capacity and water governance in the Keiskamma River ...

    African Journals Online (AJOL)

    South Africa, being a semi-arid country, faces water resource constraints. The projected impacts of climate change in the Keiskamma River Catchment, Eastern Cape Province, are, for example, changes in rainfall with effects on streamflow, salt water intrusion, decreasing water quality due to runoff and erosion, and droughts ...

  15. Hydrological forecast of maximal water level in Lepenica river basin and flood control measures

    Directory of Open Access Journals (Sweden)

    Milanović Ana

    2006-01-01

    Full Text Available Lepenica river basin territory has became axis of economic and urban development of Šumadija district. However, considering Lepenica River with its tributaries, and their disordered river regime, there is insufficient of water for water supply and irrigation, while on the other hand, this area is suffering big flood and torrent damages (especially Kragujevac basin. The paper presents flood problems in the river basin, maximum water level forecasts, and flood control measures carried out until now. Some of the potential solutions, aiming to achieve the effective flood control, are suggested as well.

  16. Measurement of protein-like fluorescence in river and waste water using a handheld spectrophotometer.

    Science.gov (United States)

    Baker, Andy; Ward, David; Lieten, Shakti H; Periera, Ryan; Simpson, Ellie C; Slater, Malcolm

    2004-07-01

    Protein-like fluorescence intensity in rivers increases with increasing anthropogenic DOM inputs from sewerage and farm wastes. Here, a portable luminescence spectrophotometer was used to investigate if this technology could be used to provide both field scientists with a rapid pollution monitoring tool and process control engineers with a portable waste water monitoring device, through the measurement of river and waste water tryptophan-like fluorescence from a range of rivers in NE England and from effluents from within two waste water treatment plants. The portable spectrophotometer determined that waste waters and sewerage effluents had the highest tryptophan-like fluorescence intensity, urban streams had an intermediate tryptophan-like fluorescence intensity, and the upstream river samples of good water quality the lowest tryptophan-like fluorescence intensity. Replicate samples demonstrated that fluorescence intensity is reproducible to +/- 20% for low fluorescence, 'clean' river water samples and +/- 5% for urban water and waste waters. Correlations between fluorescence measured by the portable spectrophotometer with a conventional bench machine were 0.91; (Spearman's rho, n = 143), demonstrating that the portable spectrophotometer does correlate with tryptophan-like fluorescence intensity measured using the bench spectrophotometer.

  17. Potential water-quality effects of coal-bed methane production water discharged along the upper Tongue River, Wyoming and Montana

    Science.gov (United States)

    Kinsey, Stacy M.; Nimick, David A.

    2011-01-01

    Water quality in the upper Tongue River from Monarch, Wyoming, downstream to just upstream from the Tongue River Reservoir in Montana potentially could be affected by discharge of coal-bed methane (CBM) production water (hereinafter referred to as CBM discharge). CBM discharge typically contains high concentrations of sodium and other ions that could increase dissolved-solids (salt) concentrations, specific conductance (SC), and sodium-adsorption ratio (SAR) in the river. Increased inputs of sodium and other ions have the potential to alter the river's suitability for agricultural irrigation and aquatic ecosystems. Data from two large tributaries, Goose Creek and Prairie Dog Creek, indicate that these tributaries were large contributors to the increase in SC and SAR in the Tongue River. However, water-quality data were not available for most of the smaller inflows, such as small tributaries, irrigation-return flows, and CBM discharges. Thus, effects of these inflows on the water quality of the Tongue River were not well documented. Effects of these small inflows might be subtle and difficult to determine without more extensive data collection to describe spatial patterns. Therefore, synoptic water-quality sampling trips were conducted in September 2005 and April 2006 to provide a spatially detailed profile of the downstream changes in water quality in this reach of the Tongue River. The purpose of this report is to describe these downstream changes in water quality and to estimate the potential water-quality effects of CBM discharge in the upper Tongue River. Specific conductance of the Tongue River through the study reach increased from 420 to 625 microsiemens per centimeter (.μS/cm; or 49 percent) in the downstream direction in September 2005 and from 373 to 543 .μS/cm (46 percent) in April 2006. Large increases (12 to 24 percent) were measured immediately downstream from Goose Creek and Prairie Dog Creek during both sampling trips. Increases attributed to

  18. Water pollution control in river basin by interactive fuzzy interval multiobjective programming

    Energy Technology Data Exchange (ETDEWEB)

    Chang, N.B.; Chen, H.W. [National Cheng-Kung Univ., Tainan (Taiwan, Province of China). Dept. of Environmental Engineering; Shaw, D.G.; Yang, C.H. [Academia Sinica, Taipei (Taiwan, Province of China). Inst. of Economics

    1997-12-01

    The potential conflict between protection of water quality and economic development by different uses of land within river basins is a common problem in regional planning. Many studies have applied multiobjective decision analysis under uncertainty to problems of this kind. This paper presents the interactive fuzzy interval multiobjective mixed integer programming (IFIMOMIP) model to evaluate optimal strategies of wastewater treatment levels within a river system by considering the uncertainties in decision analysis. The interactive fuzzy interval multiobjective mixed integer programming approach is illustrated in a case study for the evaluation of optimal wastewater treatment strategies for water pollution control in a river basin. In particular, it demonstrates how different types of uncertainty in a water pollution control system can be quantified and combined through the use of interval numbers and membership functions. The results indicate that such an approach is useful for handling system complexity and generating more flexible policies for water quality management in river basins.

  19. Detection and genetic analysis of human sapoviruses in river water in Japan.

    Science.gov (United States)

    Kitajima, Masaaki; Oka, Tomoichiro; Haramoto, Eiji; Katayama, Hiroyuki; Takeda, Naokazu; Katayama, Kazuhiko; Ohgaki, Shinichiro

    2010-04-01

    We investigated the prevalence of sapoviruses (SaVs) in the Tamagawa River in Japan from April 2003 to March 2004 and performed genetic analysis of the SaV genes identified in river water. A total of 60 river water samples were collected from five sites along the river, and 500 ml was concentrated using the cation-coated filter method. By use of a real-time reverse transcription (RT)-PCR assay, 12 (20%) of the 60 samples were positive for SaV. SaV sequences were obtained from 15 (25%) samples, and a total of 30 SaV strains were identified using six RT-PCR assays followed by cloning and sequence analysis. A newly developed nested RT-PCR assay utilizing a broadly reactive forward primer showed the highest detection efficiency and amplified more diverse SaV genomes in the samples. SaV sequences were frequently detected from November to March, whereas none were obtained in April, July, September, or October. No SaV sequences were detected in the upstream portion of the river, whereas the midstream portion showed high positive rates. Based on phylogenetic analysis, SaV strains identified in the river water samples were classified into nine genotypes, namely, GI/1, GI/2, GI/3, GI/5, GI/untyped, GII/1, GII/2, GII/3, and GV/1. To our knowledge, this is the first study describing seasonal and spatial distributions and genetic diversity of SaVs in river water. A combination of real-time RT-PCR assay and newly developed nested RT-PCR assay is useful for identifying and characterizing SaV strains in a water environment.

  20. Human impact on the microbiological water quality of the rivers.

    Science.gov (United States)

    Páll, Emőke; Niculae, Mihaela; Kiss, Timea; Şandru, Carmen Dana; Spînu, Marina

    2013-11-01

    Microbiological contamination is an important water-quality problem worldwide. Human impact on this category of contamination is significant and several human-related activities, and also the population explosion, have affected and are still affecting dramatically the aquatic environment. Extensive industrialization and agriculture have led to increased pollution and hydromorphological changes in many river basins. The Danube river is one of the most affected by these changes where human involvement is undeniable, and subsequently, the Danube Delta Biosphere Reserve became one of the most vulnerable ecosystems. This review is an attempt to analyse the microbiological contamination and to identify the major role human activities play in altering the water quality of the rivers.

  1. Indices of water quality and metal pollution of Nile River, Egypt

    Directory of Open Access Journals (Sweden)

    Amaal M. Abdel-Satar

    2017-03-01

    Full Text Available Nile River is the valued natural and exclusive source of fresh water in Egypt, where the drinking water supply is limited to the river. The water quality of 24 sites between Aswan and Cairo along the Nile was investigated. To evaluate the suitability of water for aquatic life and drinking purposes, the indices of water quality (WQI, heavy metal pollution (HPI and contamination (Cd were computed. The water quality variations were mainly related to inorganic nutrients and heavy metals, where, the sites affected by intensive load of urban, agricultural and industrial wastewater showed serious deterioration of water quality compared with other sites. The anthropogenic impact sites showed high HPI and Cd values and associated with high risks, where, most of the studied metals often exceeded the drinking water and aquatic life limits. The aquatic WQI indicated that the Nile water quality deteriorated and extended from poor to marginal, while drinking WQI varied from marginal to good. Accordingly, the river becoming unfit for aquatic life and the situation is getting worse by decreases in the water budget from the Nile in Egypt by building of the Grand Ethiopian Renaissance Dam, where the dilution strength of the Nile system will reduce.

  2. Water contamination from oil extraction activities in Northern Peruvian Amazonian rivers.

    Science.gov (United States)

    Yusta-García, Raúl; Orta-Martínez, Martí; Mayor, Pedro; González-Crespo, Carlos; Rosell-Melé, Antoni

    2017-06-01

    Oil extraction activities in the Northern Peruvian Amazon have generated a long-standing socio-environmental conflict between oil companies, governmental authorities and indigenous communities, partly derived from the discharge of produced waters containing high amounts of heavy metals and hydrocarbons. To assess the impact of produced waters discharges we conducted a meta-analysis of 2951 river water and 652 produced water chemical analyses from governmental institutions and oil companies reports, collected in four Amazonian river basins (Marañon, Tigre, Corrientes and Pastaza) and their tributaries. Produced water discharges had much higher concentrations of chloride, barium, cadmium and lead than are typically found in fresh waters, resulting in the widespread contamination of the natural water courses. A significant number of water samples had levels of cadmium, barium, hexavalent chromium and lead that did not meet Peruvian and international water standards. Our study shows that spillage of produced water in Peruvian Amazon rivers placed at risk indigenous population and wildlife during several decades. Furthermore, the impact of such activities in the headwaters of the Amazon extended well beyond the boundaries of oil concessions and national borders, which should be taken into consideration when evaluating large scale anthropogenic impacts in the Amazon. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Water quality evaluation system to assess the status and the suitability of the Citarum river water to different uses.

    Science.gov (United States)

    Fulazzaky, Mohamad Ali

    2010-09-01

    Water quality degradation in the Citarum river will increase from the year to year due to increasing pollutant loads when released particularly from Bandung region of the upstream areas into the river without treatment. This will be facing the problems on water quality status to use for multi-purposes in the downstream areas. The water quality evaluation system is used to evaluate the available water condition that distinguishes into two categories, i.e., the water quality index (WQI) and water quality aptitude (WQA). The assessment of water quality for the Citarum river from 10 selected stations was found that the WQI situates in the bad category generally and the WQA ranges from the suitable quality for agriculture and livestock watering uses to the unsuitable for biological potential function, drinking water production, and leisure activities and sports in the upstream areas of Saguling dam generally.

  4. Assessment of water quality of Ikpoba River, Benin City using d.c. ...

    African Journals Online (AJOL)

    ascertaining the quality of the water. The d.c. conductivity of Ikpoba River ranges from 400ms/cm - 500ms/cm. This was compared to that of a popular brand of bottled water in the city which has a d.c conductivity of 180ms/cm (Table 3). The measurements show that a lot of ions are present in the river water. The origin of such ...

  5. The assessment of khorramabad River water quality with National Sanitation Foundation Water Quality Index and Zoning by GIS

    Directory of Open Access Journals (Sweden)

    abdolrahim Yusefzadeh

    2014-03-01

    Full Text Available Background : Rivers are a fraction of flowing waters in the worlds and one of the important sources of water for different consumptions such as agricultural, drinking and industrial uses. The aim of this study was to assess water quality of the Khorramrood River in Khorramabad by NSFWQI index. Materials and Methods: In this cross-sectional study, quality parameters needed for NASWQI index calculation such as BOD5, dissolved oxygen (DO, total nitrate, fecal coliform, pH, total phosphate, temperature, turbidity and total suspended solids content were measured for six months (from July to December 2012using standard methods at six selected stations. The river zoning conducted by GIS software. Results: According to the results obtained through this study, the highest and the lowest water quality value was observed in stations 1 and 6 with NSFWQI indexes 82 water with good quality, 42 water with bad quality, respectively. With moving toward last station (from 1 to 6 station water pollution increased. Conclusion: Results of the study indicated that water quality index NSFWQI is a good index to identify the effect of polluter sources on the river water. Based on the average of the index NSFWQI, water quality in station one was good, in the second, third and fourth stations were mediocre and the fifth and sixth stations had bad quality. These results allow to make decisions about monitoring and controlling water pollution sources, as well as provide different efficient uses of it by relevant authorities.

  6. Residence times and mixing of water in river banks: implications for recharge and groundwater - surface water exchange

    Science.gov (United States)

    Unland, N. P.; Cartwright, I.; Cendón, D. I.; Chisari, R.

    2014-02-01

    The residence time of groundwater within 50 m of the Tambo River, South East Australia, has been estimated through the combined use of 3H and 14C. Groundwater residence times increase towards the Tambo River which implies a gaining river system and not increasing bank storage with proximity to the Tambo River. Major ion concentrations and δ2H and δ18O values of bank water also indicate that bank infiltration does not significantly impact groundwater chemistry under baseflow and post-flood conditions, suggesting that the gaining nature of the river may be driving the return of bank storage water back into the Tambo River within days of peak flood conditions. The covariance between 3H and 14C indicates the leakage and mixing between old (~17 200 yr) groundwater from a semi-confined aquifer and younger groundwater (bank storage, as rapid pressure propagation into the semi-confined aquifer during flooding will minimise bank infiltration. This study illustrates the complex nature of river groundwater interactions and the potential downfall in assuming simple or idealised conditions when conducting hydrogeological studies.

  7. Water quality of the Chhoti Gandak River using principal component ...

    Indian Academy of Sciences (India)

    ; therefore water samples were collected to analyse its quality along the entire length of Chhoti Gandak. River. The principal components of water quality are controlled by lithology, gentle slope gradient, poor drainage, long residence of water, ...

  8. Baseline studies of water quality of Okura River in Kogi State, Nigeria

    African Journals Online (AJOL)

    Water samples from Okura river in kogi state were analysed for some physicochemical parameters and heavy metals to ascertain the water quality. The samples were collected at six sampling points along the river. Results obtained were compared with WHO and other regulatory standard guidelines. Average nitrate and ...

  9. Mixing and photoreactivity of dissolved organic matter in the Nelson/Hayes estuarine system (Hudson Bay, Canada)

    Science.gov (United States)

    Guéguen, C.; Mokhtar, M.; Perroud, A.; McCullough, G.; Papakyriakou, T.

    2016-09-01

    This work presents the results of a 4-year study (2009-2012) investigating the mixing and photoreactivity of dissolved organic matter (DOM) in the Nelson/Hayes estuary (Hudson Bay). Dissolved organic carbon (DOC), colored DOM, and humic-like DOM decreased with increasing salinity (r2 = 0.70-0.84). Removal of DOM was noticeable at low to mid salinity range, likely due to degradation and/or adsorption to particles. DOM photobleaching rates (i.e., decrease in DOM signal resulting from exposure to solar radiation) ranged from 0.005 to 0.030 h- 1, corresponding to half-lives of 4.9-9.9 days. Dissolved organic matter from the Nelson and Hayes Rivers was more photoreactive than from the estuary where the photodegradation of terrestrial DOM decreased with increasing salinity. Coincident with the loss of CDOM absorption was an increase in spectral slope S, suggesting a decrease in DOM molecular weight. Marked differences in photoreactivity of protein- and humic-like DOM were observed with highly humidified material being the most photosensitive. Information generated by our study will provide a valuable data set for better understanding the impacts of future hydroelectric development and climate change on DOM biogeochemical dynamics in the Nelson/Hayes estuary and coastal domain. This study will constitute a reference on terrestrial DOM fate prior to building additional generating capacity on the Nelson River.

  10. Perfluoroalkyl substances (PFAS) in river and ground/drinking water of the Ganges River basin: Emissions and implications for human exposure

    International Nuclear Information System (INIS)

    Sharma, Brij Mohan; Bharat, Girija K.; Tayal, Shresth; Larssen, Thorjørn; Bečanová, Jitka; Karásková, Pavlína; Whitehead, Paul G.; Futter, Martyn N.; Butterfield, Dan; Nizzetto, Luca

    2016-01-01

    Many perfluoroalkyl substances (PFAS) are ubiquitous environmental contaminants. They have been widely used in production processes and daily-use products or may result from degradation of precursor compounds in products or the environment. India, with its developing industrialization and population moving from traditional to contemporary lifestyles, represents an interesting case study to investigate PFAS emission and exposure along steep environmental and socioeconomic gradients. This study assesses PFAS concentrations in river and groundwater (used in this region as drinking water) from several locations along the Ganges River and estimates direct emissions, specifically for PFOS and PFOA. 15 PFAS were frequently detected in the river with the highest concentrations observed for PFHxA (0.4–4.7 ng L"−"1) and PFBS (< MQL – 10.2 ng L"−"1) among PFCAs and PFSAs, respectively. Prevalence of short-chain PFAS indicates that the effects of PFOA and PFOS substitution are visible in environmental samples from India. The spatial pattern of C_5–C_7 PFCAs co-varied with that of PFOS suggesting similar emission drivers. PFDA and PFNA had much lower concentrations and covaried with PFOA especially in two hotspots downstream of Kanpur and Patna. PFOS and PFOA emissions to the river varied dramatically along the transect (0.20–190 and 0.03–150 g d"−"1, respectively). PFOS emission pattern could be explained by the number of urban residents in the subcatchment (rather than total population). Per-capita emissions were lower than in many developed countries. In groundwater, PFBA (< MQL – 9.2 ng L"−"1) and PFBS (< MQL – 4.9 ng L"−"1) had the highest concentrations among PFCAs and PFSAs, respectively. Concentrations and trends in groundwater were generally similar to those observed in surface water suggesting the aquifer was contaminated by wastewater receiving river water. Daily PFAS exposure intakes through drinking water were below safety

  11. Case study on rehabilitation of a polluted urban water body in Yangtze River Basin.

    Science.gov (United States)

    Wu, Juan; Cheng, Shuiping; Li, Zhu; Guo, Weijie; Zhong, Fei; Yin, Daqiang

    2013-10-01

    In the past three decades, the fast development of economy and urbanization has caused increasingly severe pollutions of urban water bodies in China. Consequently, eutrophication and deterioration of aquatic ecosystem, which is especially significant for aquatic vegetation, inevitably became a pervasive problem across the Yangtze River Basin. To rehabilitate the degraded urban water bodies, vegetation replanting is an important issue to improve water quality and to rehabilitate ecosystem. As a case study, a representative polluted urban river, Nanfeihe River, in Hefei City, Anhui Province, was chosen to be a rehabilitation target. In October 2009 and May 2010, 13 species of indigenous and prevalent macrophytes, including seven species emergent, one species floating leaved, and five species submersed macrophytes, were planted along the bank slopes and in the river. Through 1.5 years' replanting practice, the water quality and biodiversity of the river had been improved. The concentrations of total nitrogen (TN), total phosphorus (TP), and ammonia nitrogen (NH4 (+)-N) declined by 46.0, 39.5, and 60.4 %, respectively. The species of macrophytes increased from 14 to 60, and the biodiversity of phytoplankton rose significantly in the river (purban waters restoration in the middle-downstream area of Yangtze River Base.

  12. Indexes for water management and planning on the Paraopeba River Basin, Minas Gerais State

    Directory of Open Access Journals (Sweden)

    Bruno Marcel Barros da Silva

    2015-07-01

    Full Text Available Knowledge of the true amount of officially granted use of water and the spatial distribution of water usage in a watershed has become indispensable for the appropriate management of water resources. In this process, the use of indexes allows for the identification of possible water use conflicts. The objective of this study was to evaluate the indexes of conflict regarding water use in the management (icg and planning (icp of water resources in the Paraopeba River Basin, focusing on identifying possible water resource conflicts and on providing supportive information for the water management agency in Minas Gerais State. Besides the Digital Elevation Model (DEM for hydrological analyses to calculate the drainage area for every river segment, the official amount of granted water use and estimated river flows at watershed confluences was also needed. The results of the icg calculation demonstrated that in 22.7% of the analyzed river segments the use of water was higher than what is legally granted, and this indicates a potential conflict regarding water use. The icp analyses showed that in three river segments the use of water was higher than the long-term mean flow. The combined icg and icp analyses led us to conclude that in the water use conflict scenario the solution could be establishing an infrastructure that would allow a year-round increase in the availability of water to be granted.

  13. Klang River water quality modelling using music

    Science.gov (United States)

    Zahari, Nazirul Mubin; Zawawi, Mohd Hafiz; Muda, Zakaria Che; Sidek, Lariyah Mohd; Fauzi, Nurfazila Mohd; Othman, Mohd Edzham Fareez; Ahmad, Zulkepply

    2017-09-01

    Water is an essential resource that sustains life on earth; changes in the natural quality and distribution of water have ecological impacts that can sometimes be devastating. Recently, Malaysia is facing many environmental issues regarding water pollution. The main causes of river pollution are rapid urbanization, arising from the development of residential, commercial, industrial sites, infrastructural facilities and others. The purpose of the study was to predict the water quality of the Connaught Bridge Power Station (CBPS), Klang River. Besides that, affects to the low tide and high tide and. to forecast the pollutant concentrations of the Biochemical Oxygen Demand (BOD) and Total Suspended Solid (TSS) for existing land use of the catchment area through water quality modeling (by using the MUSIC software). Besides that, to identifying an integrated urban stormwater treatment system (Best Management Practice or BMPs) to achieve optimal performance in improving the water quality of the catchment using the MUSIC software in catchment areas having tropical climates. Result from MUSIC Model such as BOD5 at station 1 can be reduce the concentration from Class IV to become Class III. Whereas, for TSS concentration from Class III to become Class II at the station 1. The model predicted a mean TSS reduction of 0.17%, TP reduction of 0.14%, TN reduction of 0.48% and BOD5 reduction of 0.31% for Station 1 Thus, from the result after purposed BMPs the water quality is safe to use because basically water quality monitoring is important due to threat such as activities are harmful to aquatic organisms and public health.

  14. How Natural is the Dissolved Inorganic Composition of Mississippi River Water?

    Science.gov (United States)

    Peucker-Ehrenbrink, B.; Johnson, S. T.; Meaux, S. J.; Brown, K.; Blum, M. J.; Allison, M. A.; Halder, J.; Wassenaar, L. I.; Cuesta, A. M.; Norris, E. S.; Wang, R. S.

    2017-12-01

    The dissolved inorganic composition of rivers provides insights into natural interactions between the hydrologic cycle and the "critical zone" of watersheds, and anthropogenic modifications thereof. For instance, major ion compositions allow us to infer how effectively weathering processes counteract increasing atmospheric CO2 concentrations. Prerequisite to such assessments is the ability to detect and correct for anthropogenic modifications of river chemistry. An observatory campaign of the Mississippi River in New Orleans from July 2015 to October 2016 with an in-situ sensor system (LOBO-SUNA) and 161 discrete water sampling events reveals systematic changes in the dissolved ion and water stable isotope compositions, nutrient loading, and physical parameters of the Mississippi River. Monthly sampling has continued since as part of the Global Rivers Observatory. We compare this high-resolution data set to long-term data generated by the USGS at St. Francisville upstream of Baton Rouge, data from the USGS Baton Rouge gaging station and in-situ sensor system, as well as other historic data. Results reveal systematic changes in major ion composition in response to hydrologic conditions. In addition to annual and interannual changes, decadal trends in concentrations of certain major ions (Na, Mg, Ca) are consistent with anthropogenic activities in the drainage basin that are reminiscent of well-known, long-term changes in nutrient fluxes that affect the northern Gulf of Mexico. Our current working hypotheses to explain observed increases in Mg and Na concentrations, for example, are contaminations from road salt, from additives used in drinking and waste water treatment, as well as from groundwater pumping, particularly in the western part of the Mississippi River basin. Uncorrected, these changes impede our abilitiy to use the current chemical composition of Mississippi River water as a quantitative indicator of natural processes in the watershed.

  15. Demography and population status of polar bears in western Hudson Bay

    Science.gov (United States)

    Lunn, Nicholas J.; Regher, Eric V; Servanty, Sabrina; Converse, Sarah J.; Richardson, Evan S.; Stirling, Ian

    2013-01-01

    We evaluated the demography and population status of the Western Hudson Bay (WH) polar bear subpopulation for the period 1984-2011, using live-recapture data from research studies and management actions, and dead-recovery data from polar bears harvested for subsistence purposes or removed during human-bear conflicts.

  16. Modeling Flood & Drought Scenario for Water Management in Porali River Basin, Balochistan

    Directory of Open Access Journals (Sweden)

    Shoaib Ahmed

    2013-12-01

    Full Text Available Recent history shows that floods have become a frequently occurring disaster in Balochistan, especially during monsoon season. Two rivers, river Porali and river Kud overflows, inundating its banks and causing destruction to cultivated land and property. This study is an attempt to identify flood prone areas of Porali river basin for future flood scenario and propose possible reservoir locations for excess flood water storage. Computer-based models Hydrological Simulation Program-FORTRAN (HSPF and HEC-river analysis system (HEC-RAS are used as tools to simulate existing and future flood and drought scenarios. Models are calibrated and validated using data from 3 weather stations, namely Wadh, Bela, and Uthal and stream flow data from two gauging stations. The highest and the lowest 10 years of precipitation data are extracted, from historic dataset of all stations, to attain future flooding and drought scenarios, respectively. Flood inundation map is generated highlighting agricultural prone land and settlements of the watershed. Using Digital Elevation Model (DEM and volume of water calculated from the flood scenario, possible locations for reservoirs are marked that can store excess water for the use in drought years. Flow and volume of water has also been simulated for drought scenario. Analyses show that 3 × 109 m3 of water available due to immense flooding that is sufficient for the survival for one drought year, as the volume of water for latter scenario is 2.9 × 108m3.

  17. Designing a water leasing market for the Mimbres River, New Mexico.

    Energy Technology Data Exchange (ETDEWEB)

    Reno-Trujillo, Marissa Devan; Tidwell, Vincent Carroll; Broadbent, Craig; Brookshire, David; Coursey, Don; Jackson, Charles.; Polley, Adam; Stevenson, Bryan

    2013-04-01

    The objective of this study is to develop a conceptual framework for establishing water leasing markets in New Mexico using the Mimbres River as a test case. Given the past and growing stress over water in New Mexico and the Mimbres River in particular, this work will develop a mechanism for the short term, efficient, temporary transfer of water from one user to another while avoiding adverse effects on any user not directly involved in the transaction (i.e., third party effects). Toward establishing a water leasing market, five basic tasks were performed, (1) a series of stakeholder meetings were conducted to identify and address concerns and interests of basin residents, (2) several gauges were installed on irrigation ditches to aid in the monitoring and management of water resources in the basin, (3) the hydrologic/market model and decision support interface was extended to include the Middle and Lower reaches of the Mimbres River, (4) experiments were conducted to aid in design of the water leasing market, and (5) a set of rules governing a water leasing market was drafted for future adoption by basin residents and the New Mexico Office of the State Engineer.

  18. Modeling water quality in an urban river using hydrological factors--data driven approaches.

    Science.gov (United States)

    Chang, Fi-John; Tsai, Yu-Hsuan; Chen, Pin-An; Coynel, Alexandra; Vachaud, Georges

    2015-03-15

    Contrasting seasonal variations occur in river flow and water quality as a result of short duration, severe intensity storms and typhoons in Taiwan. Sudden changes in river flow caused by impending extreme events may impose serious degradation on river water quality and fateful impacts on ecosystems. Water quality is measured in a monthly/quarterly scale, and therefore an estimation of water quality in a daily scale would be of good help for timely river pollution management. This study proposes a systematic analysis scheme (SAS) to assess the spatio-temporal interrelation of water quality in an urban river and construct water quality estimation models using two static and one dynamic artificial neural networks (ANNs) coupled with the Gamma test (GT) based on water quality, hydrological and economic data. The Dahan River basin in Taiwan is the study area. Ammonia nitrogen (NH3-N) is considered as the representative parameter, a correlative indicator in judging the contamination level over the study. Key factors the most closely related to the representative parameter (NH3-N) are extracted by the Gamma test for modeling NH3-N concentration, and as a result, four hydrological factors (discharge, days w/o discharge, water temperature and rainfall) are identified as model inputs. The modeling results demonstrate that the nonlinear autoregressive with exogenous input (NARX) network furnished with recurrent connections can accurately estimate NH3-N concentration with a very high coefficient of efficiency value (0.926) and a low RMSE value (0.386 mg/l). Besides, the NARX network can suitably catch peak values that mainly occur in dry periods (September-April in the study area), which is particularly important to water pollution treatment. The proposed SAS suggests a promising approach to reliably modeling the spatio-temporal NH3-N concentration based solely on hydrological data, without using water quality sampling data. It is worth noticing that such estimation can be

  19. Factors influencing the dissolved iron input by river water to the open ocean

    Directory of Open Access Journals (Sweden)

    R. Krachler

    2005-01-01

    Full Text Available The influence of natural metal chelators on the bio-available iron input to the ocean by river water was studied. Ferrous and ferric ions present as suspended colloidal particles maintaining the semblance of a dissolved load are coagulated and settled as their freshwater carrier is mixed with seawater at the continental boundary. However, we might argue that different iron-binding colloids become sequentially destabilized in meeting progressively increasing salinities. By use of a 59Fe tracer method, the partitioning of the iron load from the suspended and dissolved mobile fraction to storage in the sediments was measured with high accuracy in mixtures of natural river water with artificial sea water. The results show a characteristic sequence of sedimentation. Various colloids of different stability are removed from a water of increasing salinity, such as it is the case in the transition from a river water to the open sea. However, the iron transport capacities of the investigated river waters differed greatly. A mountainous river in the Austrian Alps would add only about 5% of its dissolved Fe load, that is about 2.0 µg L-1 Fe, to coastal waters. A small tributary draining a sphagnum peat-bog, which acts as a source of refractory low-molecular-weight fulvic acids to the river water, would add approximately 20% of its original Fe load, that is up to 480 µg L-1 Fe to the ocean's bio-available iron pool. This points to a natural mechanism of ocean iron fertilization by terrigenous fulvic-iron complexes originating from weathering processes occurring in the soils upstream.

  20. [Pollution and Potential Ecology Risk Evaluation of Heavy Metals in River Water, Top Sediments on Bed and Soils Along Banks of Bortala River, Northwest China].

    Science.gov (United States)

    Zhang, Zhao-yong; Abuduwaili, Jilili; Jiang, Feng-qing

    2015-07-01

    This paper focuses on the sources, pollution status and potential ecology risks of heavy metals (Cr, Cu, Hg, As, Cd, Pb, and Zn) in the surface water, top sediment of river bed and soil along banks of Bortala River, which locates in the oasis region of Xinjiang, northwest China. Results showed that: (1) As a whole, contents of 7 tested heavy metals of Bortala River were low, while the maximum values of Hg, Cd, Pb, and Cr in the river water were significantly higher than those of Secondary Category of the Surface Water Quality Standards of People's Republic of China (GB 3838-2002) and Drinking Water Guideline from WHO. Analysis showed that the heavy metals contents of top sediment on river bed and soils along river banks were significantly higher than those of the river water. (Correlation analysis and enrichment factor (EF) calculation showed that in the river water, top sediment on river bed and soils along river banks, Hg, Cd, Pb, and Cr mainly originated from industrial emissions, urban and rural anthropogenic activities, transportation and agricultural production activities; While Cu, Zn, and As mainly originated from natural geological background and soil parent materials. (3) Pollution assessment showed that in three matrices, the single factor pollution index(Pi) and the integrated pollution index (Pz) of 7 heavy metals were all lower than 1, and they all belonged to safe and clean levels. (4) Potential ecology risk evaluation showed that as a whole the single factor potential ecological risk (Eir) and the integrated potential ecology risks (RI) of 7 heavy metals were relatively low, and would not cause threats to the health of water and soil environment of river basin, while the potential ecology risks of Cd, Hg, Pb, and Cr were significantly higher than those of other heavy metals.

  1. Water mass interaction in the confluence zone of the Daning River and the Yangtze River--a driving force for algal growth in the Three Gorges Reservoir.

    Science.gov (United States)

    Holbach, Andreas; Wang, Lijing; Chen, Hao; Hu, Wei; Schleicher, Nina; Zheng, Binghui; Norra, Stefan

    2013-10-01

    Increasing eutrophication and algal bloom events in the Yangtze River Three Gorges Reservoir, China, are widely discussed with regard to changed hydrodynamics and nutrient transport and distribution processes. Insights into water exchange and interaction processes between water masses related to large-scale water level fluctuations in the reservoir are crucial to understand water quality and eutrophication dynamics. Therefore, confluence zones of tributaries with the Yangtze River main stream are dedicated key interfaces. In this study, water quality data were recorded in situ and on-line in varying depths with the MINIBAT towed underwater multi-sensor system in the confluence zone of the Daning River and the Yangtze River close to Wushan City during 1 week in August 2011. Geostatistical evaluation of the water quality data was performed, and results were compared to phosphorus contents of selective water samples. The strongly rising water level throughout the measurement period caused Yangtze River water masses to flow upstream into the tributary and supply their higher nutrient and particulate loads into the tributary water body. Rapid algal growth and sedimentation occurred immediately when hydrodynamic conditions in the confluence zone became more serene again. Consequently, water from the Yangtze River main stream can play a key role in providing nutrients to the algal bloom stricken water bodies of its tributaries.

  2. Clean Water Act and biological studies at the Savannah River Plant

    International Nuclear Information System (INIS)

    Fleming, R.R.

    1985-01-01

    Federal facilities are required to comply with applicable water quality standards, effluent limitations, and permit requirements established by the EPA or agreement state pursuant to provision of the Federal Water Pollution Control Act, as amended in 1977 (P.L. 95-217). Production reactors and a large fossil-fueled powerplant at the Savannah River Plant (SRP) use either once-through water from the Savannah River or recirculating water from 2700-acre reservoir to remove waste heat. Once through cooling water is discharged directly to streams whose headwaters originate on the plant. The thermal load carried by these streams is largely dissipated by the time the streams re-enter the river. However, effluent discharge temperatures to the streams and reservoir do not meet current criteria specified by the State of South Carolina for a National Pollutant Discharge Elimination System (NPDES) permit. Less stringent effluent limitations can be approved by the State if DOE can demonstrate that current or mitigated thermal discharges will ensure the protection and propagation of a balanced biological community within the receiving waters. Following information provided in the EPA 316(a) Technical Guidance Manual, biological studies were designed and implemented that will identify and determine the significance of impacts on waters receiving thermal effluents. Sampling is being conducted along the length of each thermal stream, in the cooling water reservoir, and along a 160-mile stretch of the Savannah River and in the mouths of 33 of its tributaries. Preliminary results of the 316(a) type studies and how they are being used to achieve compliance with State water quality regulations will be discussed

  3. POLLUTION SOURCES AND WATER QUALITY STATE OF THE SUPRAŚL RIVER

    Directory of Open Access Journals (Sweden)

    Mirosław Skorbiłowicz

    2016-04-01

    Full Text Available The main purpose of the study was to evaluate water quality of the Supraśl river and identify its main pollution sources. On the river and its tributaries, 8 control points were selected, located near Krynica, Gródek, Nowosiółki, Zasady (mouth of the tributary Sokołda, Supraśl, Nowodworce, Dobrzyniewo (mouth of the tributary Biała and Dzikie. The control points were selected in such a way as to take into account the impact of major point sources of analyzed components located along the river and its main tributaries on water quality in the main stream catchment. Water samples were collected once a month during the period from May to November in 2014. In water samples the concentration of dissolved oxygen, Cl-, SO42-, N-NH4+, P-PO43- and the values of pH, BOD5 and electrolytic conductivity were indicated. Based on the obtained results, loads of the individual components in river waters were calculated as a product of concentration and Supraśl waters flow rate in a particular month. Supraśl waters, due to values of most analyzed parameters, should be classified as first quality class. The source of Cl-, SO42-, N-NH4+ in Supraśl waters were treated wastewater and other anthropogenic sources associated with the basin development. Reduced Supraśl water quality is caused by the inflow of organic substances expressed by BZT5 from natural and anthropogenic origin and concentration of PO43-, which were mainly delivered with treated wastewater.

  4. Impact of entrainment and impingement on fish populations in the Hudson River estuary. Volume III. An analysis of the validity of the utilities' stock-recruitment curve-fitting exercise and prior estimation of beta technique. Environmental Sciences Division publication No. 1792

    International Nuclear Information System (INIS)

    Christensen, S.W.; Goodyear, C.P.; Kirk, B.L.

    1982-03-01

    This report addresses the validity of the utilities' use of the Ricker stock-recruitment model to extrapolate the combined entrainment-impingement losses of young fish to reductions in the equilibrium population size of adult fish. In our testimony, a methodology was developed and applied to address a single fundamental question: if the Ricker model really did apply to the Hudson River striped bass population, could the utilities' estimates, based on curve-fitting, of the parameter alpha (which controls the impact) be considered reliable. In addition, an analysis is included of the efficacy of an alternative means of estimating alpha, termed the technique of prior estimation of beta (used by the utilities in a report prepared for regulatory hearings on the Cornwall Pumped Storage Project). This validation methodology should also be useful in evaluating inferences drawn in the literature from fits of stock-recruitment models to data obtained from other fish stocks

  5. Methods for Quantifying Shallow-Water Habitat Availability in the Missouri River

    Energy Technology Data Exchange (ETDEWEB)

    Hanrahan, Timothy P.; Larson, Kyle B.

    2012-04-09

    As part of regulatory requirements for shallow-water habitat (SWH) restoration, the U.S. Army Corps of Engineers (USACE) completes periodic estimates of the quantity of SWH available throughout the lower 752 mi of the Missouri River. To date, these estimates have been made by various methods that consider only the water depth criterion for SWH. The USACE has completed estimates of SWH availability based on both depth and velocity criteria at four river bends (hereafter called reference bends), encompassing approximately 8 river miles within the lower 752 mi of the Missouri River. These estimates were made from the results of hydraulic modeling of water depth and velocity throughout each bend. Hydraulic modeling of additional river bends is not expected to be completed for deriving estimates of available SWH. Instead, future estimates of SWH will be based on the water depth criterion. The objective of this project, conducted by the Pacific Northwest National Laboratory for the USACE Omaha District, was to develop geographic information system methods for estimating the quantity of available SWH based on water depth only. Knowing that only a limited amount of water depth and channel geometry data would be available for all the remaining bends within the lower 752 mi of the Missouri River, the intent was to determine what information, if any, from the four reference bends could be used to develop methods for estimating SWH at the remaining bends. Specifically, we examined the relationship between cross-section channel morphology and relative differences between SWH estimates based on combined depth and velocity criteria and the depth-only criterion to determine if a correction factor could be applied to estimates of SWH based on the depth-only criterion. In developing these methods, we also explored the applicability of two commonly used geographic information system interpolation methods (TIN and ANUDEM) for estimating SWH using four different elevation data

  6. Hydrogeology and ground-water/surface water interactions in the Des Moines River valley, southwestern Minnesota, 1997-2001

    Science.gov (United States)

    Cowdery, Timothy K.

    2005-01-01

    Increased water demand in and around Windom led the U.S. Geological Survey, in cooperation with the Minnesota Department of Natural Resources, local water suppliers, and Cottonwood County, to study the hydrology of aquifers in the Des Moines River Valley near Windom. The study area is the watershed of a 30-kilometer (19-mile) reach of the Des Moines River upstream from Windom.

  7. The derivation of water quality criteria of copper in Biliu River

    Science.gov (United States)

    Zheng, Hongbo; Jia, Xinru

    2018-03-01

    Excessive copper in water can be detrimental to the health of human and aquatic life. China has promulgated Environmental Quality Standards for Surface Water to control water pollution, but uniform standard values may cause under-protection or over-protection. Therefore, the basic research work on water quality criteria of water source or reservoir is urgently needed. This study deduces the acute and chronic Water Quality Criteria (WQC) of copper in Biliu River by Species Sensitivity Distribution method (SSD). The result shows that BiDoseResp is the most suitable model and the acute and chronic water quality benchmark of copper are 10.72 µg•L-1 and 5.86 µg•L-1. This study provides basis for the construction of water quality standard of Liaoning and the environmental management of Biliu River.

  8. Delaware River water quality Bristol to Marcus Hook, Pennsylvania, August 1949 to December 1963

    Science.gov (United States)

    Keighton, Walter B.

    1965-01-01

    During the 14-year period from August 1949 to July 1963, the U.S. Geological Survey, in cooperation with the city of Philadelphia, collected samples of river water once each month in the 43-mile reach of the Delaware River from Bristol to Marcus Hook, Pa., and daily at Trenton, 10 miles upstream from Bristol. This part of the Delaware is an estuary into which salt water is brought by tides; fresh water flows into the estuary at Trenton, NJ, and farther downstream from the Schuylkill River and other tributaries of the Delaware. In March, April, and May, when fresh-water flow is high, the average concentration of dissolved solids in the water at Bristol was 76 ppm (parts per million), and at Marcus Hook 112 PPM In August and September, streamflow is lower, and the average concentration of dissolved solids increased to 117 PPM at Bristol and 804 PPM at Marcus Hook. Major salinity invasions of the Delaware River occurred in 1949, 1953, 1954, 1957, and 1963. In each of these years the fresh-water flow into the tidal river at Trenton was low during the period from July to October. The greatest dissolved-solids concentrations in these monthly samples were 160 PPM at Bristol and 4,000 PPM at Marcus Hook. At times the dissolved-oxygen concentration of the river water has become dangerously low, especially in that reach of the river between Wharton Street and League Island. At the Benjamin Franklin Bridge, one-third of the samples of river water were less than 30 percent saturated with oxygen; however, no trend, either for better or for worse, was apparent during the 14-year period. It is useful now to summarize these monthly analyses for the period 1949-63 even though a much more detailed description of water quality in this reach of the estuary will soon become available through the use of recording instrumental conditions. This compendium of water-quality data is useful as an explicit statement of water quality during the 14-year study period and is valuable for directing

  9. Characteristics of GHG flux from water-air interface along a reclaimed water intake area of the Chaobai River in Shunyi, Beijing

    Science.gov (United States)

    He, Baonan; He, Jiangtao; Wang, Jian; Li, Jie; Wang, Fei

    2018-01-01

    To understand greenhouse gas (GHG) flux in reclaimed water intake area impact on urban climate, 'static chamber' method was used to investigate the spatio-diurnal variations and the influence factors of GHG fluxes at water-air interface from Jian River to Chaobai River. Results showed that the average fluxes of CO2 from the Jian River and the Chaobai River were 73.46 mg(m2·h)-1 and -64.75 mg(m2·h)-1, respectively. CO2 was emitted the most in the Jian River, but it was absorbed from the atmosphere in the Chaobai River. Unary linear regression analyses demonstrated that Chlorophyll a (Chl a) and pH variation controlled the carbon source and sink from the Jian River to the Chaobai River. The diurnal variation of CO2 fluxes was higher at night than in the daytime in the Jian River, and it was the inverse in the Chaobai River, which highly correlated with dissociative CO2 and HCO3- transformation to CO32-. The average fluxes of CH4 from the Jian River and Chaobai River were 0.973 mg(m2·h)-1 and 5.556 mg(m2·h)-1, respectively, which increased along the water flow direction. Unary and multiple linear regression analyses demonstrated that Chl a and total organic carbon (TOC) controlled the increase of CH4 along the flow direction. The diurnal variation of CH4 fluxes was slightly higher in the daytime than at night due to the effect of water temperature.

  10. 75 FR 24799 - Safety Zone; Tri-City Water Follies Hydroplane Races Practice Sessions, Columbia River, Kennewick...

    Science.gov (United States)

    2010-05-06

    ...-AA00 Safety Zone; Tri-City Water Follies Hydroplane Races Practice Sessions, Columbia River, Kennewick...-City Water Follies Association hosts annual hydroplane races on the Columbia River in Kennewick... Safety Zone; Tri-City Water Follies Hydroplane Races Practice Sessions, Columbia River, Kennewick, WA (a...

  11. Microcystin-LR in surface water of Ponjavica river

    Directory of Open Access Journals (Sweden)

    Natić Dejan

    2012-01-01

    Full Text Available Background/Aim. Cyanobacterial toxins befall a group of various compounds according to chemical structure and health effects on people and animals. The most significant in this large group of compounds are microcystins. Their presence in water used for human consumption causes serious health problems, liver beeing the target organ. Microcystins are spread all over the world. Waterblooms of cyanobacterias and their cyanotoxins are also common in the majority of surface waters in Serbia. The aim of this study was to propose HPLC method for determination of mikrocystin-LR, to validate the method and to use it for determination of microcystin-LR in the surface water of the river Ponjavica. The Ponjavica is very eutrophic water and has ideal conditions for the cyanobacterial growth. Methods. Sample of water form the Ponjavica river were collected during the summer 2008. Coupled columns (HLB, Sep-Pak, were used for sample preparation and HPLC/PDA method was used for quantification of microcystin- LR. Results. Parameters of validation show that the proposed method is simple, fast, sensitive (0.1 mg/L and selective with the yield of 89%-92%. The measuring uncertainty of

  12. Ground-water availability from surficial aquifers in the Red River of the North Basin, Minnesota

    Science.gov (United States)

    Reppe, Thomas H.C.

    2005-01-01

    Population growth and commercial and industrial development in the Red River of the North Basin in Minnesota, North Dakota, and South Dakota have prompted the Bureau of Reclamation, U.S. Department of the Interior, to evaluate sources of water to sustain this growth. Nine surficial-glacial (surficial) aquifers (Buffalo, Middle River, Two Rivers, Beach Ridges, Pelican River, Otter Tail, Wadena, Pineland Sands, and Bemidji-Bagley) within the Minnesota part of the basin were identified and evaluated for their ground-water resources. Information was compiled and summarized from published studies to evaluate the availability of ground water. Published information reviewed for each of the aquifers included location and extent, physical characteristics, hydraulic properties, ground-water and surface-water interactions, estimates of water budgets (sources of recharge and discharge) and aquifer storage, theoretical well yields and actual ground-water pumping data, recent (2003) ground-water use data, and baseline ground-water-quality data.

  13. Water Quality Assessment and Determining the Carrying Capacity of Pollution Load Batang Kuranji River

    Science.gov (United States)

    Dewata, I.; Adri, Z.

    2018-04-01

    This study aims to determine the water quality and carrying capacity of pollution load Batang Kuranji River in the headwaters, middle, and downstream. This research is descriptive quantitative parameters of pH, BOD, COD, TSS, and DOES Depictions of river water quality refer to RegulationNo.82/2001, while determination of carrying capacity of pollution load river refers to the Kep Men LHNo.10/2003.The result is Kuranji Batang River water quality upstream region included in either category who meet the quality standard first class ofPP82/2001. TSS concentrations at head waters of 21 mg/L, BOD1,6 mg/L, COD7,99mg/L and DO 7,845 mg/L. While the carrying capacity of pollution load river in upstream region included in both categories namely BOD of 4,4 kg/sec, COD 273,60 kg/sec, TSS906,00kg/sec, and DO parameters of 49.20 kg/sec. Middle region (point 2, 3, and 4) water quality Batang Kuranji River has exceeded the quality standard of 82/2001 for class II and class III. Meanwhile, carrying capacity of pollution load river in area included in ugly category. The calculation is done with application Qual2Kw show that carrying capacity of pollution load river of BOD -857.3 kg/sec, COD -777.40 kg/sec, TSS +9511.5 kg/sec, and DO +69.30 kg/sec.

  14. A large community outbreak of gastroenteritis associated with consumption of drinking water contaminated by river water, Belgium, 2010.

    Science.gov (United States)

    Braeye, T; DE Schrijver, K; Wollants, E; van Ranst, M; Verhaegen, J

    2015-03-01

    SUMMARY On 6 December 2010 a fire in Hemiksem, Belgium, was extinguished by the fire brigade with both river water and tap water. Local physicians were asked to report all cases of gastroenteritis. We conducted a retrospective cohort study among 1000 randomly selected households. We performed a statistical and geospatial analysis. Human stool samples, tap water and river water were tested for pathogens. Of the 1185 persons living in the 528 responding households, 222 (18·7%) reported symptoms of gastroenteritis during the time period 6-13 December. Drinking tap water was significantly associated with an increased risk for gastroenteritis (relative risk 3·67, 95% confidence interval 2·86-4·70) as was place of residence. Campylobacter sp. (2/56), norovirus GI and GII (11/56), rotavirus (1/56) and Giardia lamblia (3/56) were detected in stool samples. Tap water samples tested positive for faecal indicator bacteria and protozoa. The results support the hypothesis that a point-source contamination of the tap water with river water was the cause of the multi-pathogen waterborne outbreak.

  15. Mobility and natural attenuation of metals and arsenic in acidic waters of the drainage system of Timok River from Bor copper mines (Serbia) to Danube River.

    Science.gov (United States)

    Đorđievski, Stefan; Ishiyama, Daizo; Ogawa, Yasumasa; Stevanović, Zoran

    2018-06-22

    Bor, Krivelj, and Bela Rivers belong to the watershed of Timok River, which is a tributary of transboundary Danube River. These rivers receive metal-rich acidic wastewater from metallurgical facilities and acid mine drainage (AMD) from mine wastes around Bor copper mines. The aim of this study was to determine the mobility and natural attenuation of metals and arsenic in rivers from Bor copper mines to Danube River during the year 2015. The results showed that metallurgical facilities had the largest impact on Bor River by discharging about 400 t of Cu per year through highly acidic wastewater (pH = 2.6). The highest measured concentrations of Cu in river water and sediments were 40 mg L -1 and 1.6%, respectively. Dissolution of calcite from limestone bedrock and a high concentration of bicarbonate ions in natural river water (about 250 mg L -1 ) enhanced the neutralization of acidic river water and subsequent chemical precipitation of metals and arsenic. Decreases in the concentrations of Al, Fe, Cu, As, and Pb in river water were mainly due to precipitation on the river bed. On the other hand, dilution played an important role in the decreases in concentrations of Mn, Ni, Zn, and Cd. Chemically precipitated materials and flotation tailings containing Fe-rich minerals (fayalite, magnetite, and pyrite) were transported toward Danube River during the periods of high discharge. This study showed that processes of natural attenuation in catchments with limestone bedrock play an important role in reducing concentrations of metals and arsenic in AMD-bearing river water.

  16. Long-term integrated river basin planning and management of water quantity and water quality in mining impacted catchments

    Science.gov (United States)

    Pohle, Ina; Zimmermann, Kai; Claus, Thomas; Koch, Hagen; Gädeke, Anne; Uhlmann, Wilfried; Kaltofen, Michael; Müller, Fabian; Redetzky, Michael; Schramm, Martina; Schoenheinz, Dagmar; Grünewald, Uwe

    2015-04-01

    During the last decades, socioeconomic change in the catchment of the Spree River, a tributary of the Elbe, has been to a large extent associated with lignite mining activities and the rapid decrease of these activities in the 1990s. There are multiple interconnections between lignite mining and water management both in terms of water quantity and quality. During the active mining period a large-scale groundwater depression cone has been formed while river discharges have been artificially increased. Now, the decommissioned opencast mines are being transformed into Europe's largest man-made lake district. However, acid mine drainage causes low pH in post mining lakes and high concentrations of iron and sulphate in post mining lakes and the river system. Next to potential changes in mining activities, also the potential impacts of climate change (increasing temperature and decreasing precipitation) on water resources of the region are of major interest. The fundamental question is to what extent problems in terms of water quantity and water quality are exacerbated and whether they can be mitigated by adaptation measures. In consequence, long term water resource planning in the region has to formulate adaptation measures to climate change and socioeconomic change in terms of mining activities which consider both, water quantity and water quality aspects. To assess potential impacts of climate and socioeconomic change on water quantity and water quality of the Spree River catchment up to the Spremberg reservoir in the scenario period up to 2052, we used a model chain which consists of (i) the regional climate model STAR (scenarios with a further increase in temperature of 0 and 2 K), (ii) mining scenarios (mining discharges, cooling water consumption of thermal power plants), (iii) the ecohydrological model SWIM (natural water balance), (iv) the long term water management model WBalMo (managed discharges, withdrawal of water users, reservoir operation) and (v) the

  17. Study of pollution effect on water quality of Grogol River, DKI Jakarta

    Science.gov (United States)

    Amira, S.; Astono, W.; Hendrawan, D.

    2018-01-01

    A study has been conducted to identify the incoming pollutants and assess the water quality in Grogol River, DKI Jakarta, Indonesia, which has a length of 13.35 km and consists of two segments. The water quality assessment is determined by pollution index method, referring to Minister of Environment Decree No. 15/2013 on The Guidelines of Water Quality Status. The samples were taken both in rainy and dry seasons at 7 sampling points. Based on the analyses of 10 key parameters and the calculation of pollution index value, it can be concluded that Grogol River is low polluted in rainy season and moderate polluted in dry season. The information obtained from this research can be used for decision making to improve the water quality of Grogol River.

  18. Water surface temperature profiles for the Rhine River derived from Landsat ETM+ data

    Science.gov (United States)

    Fricke, Katharina; Baschek, Björn

    2013-10-01

    Water temperature influences physical and chemical parameters of rivers and streams and is an important parameter for water quality. It is a crucial factor for the existence and the growth of animal and plant species in the river ecosystem. The aim of the research project "Remote sensing of water surface temperature" at the Federal Institute of Hydrology (BfG), Germany, is to supplement point measurements of water temperature with remote sensing methodology. The research area investigated here is the Upper and Middle Rhine River, where continuous measurements of water temperature are already available for several water quality monitoring stations. Satellite imagery is used to complement these point measurements and to generate longitudinal temperature profiles for a better systematic understanding of the changes in river temperature along its course. Several products for sea surface temperature derived from radiances in the thermal infrared are available, but for water temperature from rivers less research has been carried out. Problems arise from the characteristics of the river valley and morphology and the proximity to the riverbank. Depending on the river width, a certain spatial resolution of the satellite images is necessary to allow for an accurate identification of the river surface and the calculation of water temperature. The bands from the Landsat ETM+ sensor in the thermal infrared region offer a possibility to extract the river surface temperatures (RST) of a sufficiently wide river such as the Rhine. Additionally, problems such as cloud cover, shadowing effects, georeferencing errors, different emissivity of water and land, scattering of thermal radiation, adjacency and mixed pixel effects had to be accounted for and their effects on the radiance temperatures will be discussed. For this purpose, several temperature data sets derived from radiance and in situ measurements were com- pared. The observed radiance temperatures are strongly influenced by

  19. Nitrogen and Organics Removal during Riverbank Filtration along a Reclaimed Water Restored River in Beijing, China

    Directory of Open Access Journals (Sweden)

    Weiyan Pan

    2018-04-01

    Full Text Available Reclaimed water has been widely used to restore rivers and lakes in water scarce areas as well as in Beijing municipality, China. However, refilling the rivers with reclaimed water may result in groundwater pollution. A three-year field monitoring program was conducted to assess the effect of a riverbank filtration (RBF system on the removal of nitrogen and organics from the Qingyang River of Beijing, which is replenished with reclaimed water. Water samples from the river, sediment, and groundwater were collected for NO3-N, NH4-N, and chemical oxygen demand (COD was measured. The results indicate that about 85% of NO3-N was removed from the riverbed sediments. Approximate 92% of NH4-N was removed during the infiltration of water from river to aquifer. On average, 54% of COD was removed by RBF. The attenuation of NO3-N through RBF to the groundwater varied among seasons and was strongly related to water temperature. On the other hand, no obvious temporal variability was identified in the removal of COD. These results suggest that the RBF system is an effective barrier against NO3-N, NH4-N and COD in the Qingyang River, as well as those rivers with similar geological and climatic conditions refilled with reclaimed water.

  20. Heavy Metal Analysis of Cauvery River Water Around Krs Dam, Karnataka, India

    Directory of Open Access Journals (Sweden)

    J. Mahadev

    2010-07-01

    Full Text Available Water quality is an index of health and is one of the areas of major concern to environmentalists, since Industrialization, urbanization and modern agriculture practices have a direct impact on the water resources. Hence, the study of the reservoirs and river water quality monitoring is most essential aspect of sustainable development and river conservation. The Upstream and KRS reservoir both are the important sources of potable water supply for the Mysore city. The study area were selected the Upstream and KRS reservoir of Mysore District of Karnataka, India. In this paper an attempt has been made to evaluate water quality parameter and heavy metal of upstream and KRS Dam during 2008. Ecological parameters like Dissolved Oxygen, Chemical Oxygen Demand, Biochemical Oxygen Demand and Chemical parameters like Total Hardness, Total Alkalinity, Chloride, Nitrate, Phosphate and physical parameters like Temperature, pH, Turbidity and heavy metals were analyzed and the results were compared with standard permissible limits, WHO and they were studied to ascertain the drinking water quality. Results revealed that in three rivers of upstream (Hemavathi, Cauvery and Laxmanatheertha carried high loads of Arsenic, Iron, Nickel in Upstream. In other word, Arsenic is a dominant risk to more than the maximum permissible standard of water quality and is a risk factor in this river

  1. System methodology application to make water resources management plan for unstudied rivers

    Science.gov (United States)

    Dvinskikh, S. A.; Larchenko, O. V.

    2018-01-01

    Current public monitoring network is not able to involve in and to control water chemical composition of a rivers basin, and there is no coasts monitoring of water objects. As a result, the complete comprehension of rivers use and pollution is impossible. Due to this fact, a new conception of water resources management has been worked out. The conception is based on new approaches to define parameters that characterise usage potentialities and range.

  2. Situation analysis of water quality in the Umtata River catchment ...

    African Journals Online (AJOL)

    The Umtata River was characterised by using standard physico-chemical and microbiological methods to assess the present water quality in the river. The results indicated high turbidity, gross microbiological and cadmium pollution. Turbidity values ranged from 0.28 NTU to 1 899 NTU highlighting the known problem of ...

  3. The water quality of the river Svratka and its tributaries

    Directory of Open Access Journals (Sweden)

    Jan Grmela

    2013-01-01

    Full Text Available Water quality in river depends on water quality of its tributaries. During the year 2011 nine selected sites downstream under the Vír dam (from 108 to 79 river km were monitored. For observation were chosen tributaries Besének, Loučka, Nedvědička, Chlebský creek, Hodonínka, Vrtěžířský creek and Tresný creek. At the same time samples from the places above and under the whole monitored section of the river were taken. Basic physicochemical parameters were monitored monthly during the vegetation period. Flow velocity and discharge were assessed three times. Based on the water quality evaluation of, the river Svratka and its tributaries Hodonínka, Vrtěžířský creek and Tresný creek belong to the second quality class, tributaries Besének, Loučka, Nedvědička and Chlebský belong to the third quality class. In the monitored section the retention of phosphorus in annual amount about 2.2 tons were occurance. Annual volume of phosphorus at the end of observed section (upstream the Tišnov town was nearly 17.5 tons. Annual total balance of nitrogen at the end of monitored section was 700 tons per year and 6000 tons of carbon per year. The major source of these nutrients is the river Loučka.

  4. Relation between ground water and surface water in the Hillsborough River basin, west-central Florida

    Science.gov (United States)

    Wolansky, R.M.; Thompson, T.H.

    1987-01-01

    The relation between groundwater and surface water in the Hillsborough River basin was defined through the use of: seismic-reflection profiling along selected reaches of the Hillsborough River, and evaluation of streamflow, rainfall, groundwater levels, water quality, and geologic data. Major municipal well fields in the basin are Morris Bridge and Cypress Creek where an averages of 15.3 and 30.0 million gal/day (mgd), respectively, were pumped in 1980. Mean annual rainfall for the study area is 53.7 inches. Average rainfall for 1980, determined from eight rainfall stations, was 49.7 inches. Evapotranspiration, corrected for the 5% of the basin that is standing water, was 35.7 in/year. The principal geohydrologic units in the basin are the surficial aquifer, the intermediate aquifer and confining beds, the Upper Floridan aquifer, the middle confining unit, and the Lower Floridan aquifer. Total pumpage of groundwater in 1980 was 98.18 mgd. The surficial aquifer and the intermediate aquifer are not used for major groundwater supply in the basin. Continuous marine seismic-reflection data collected along selected reaches of the Hillsborough River were interpreted to define the riverbed profile, the thickness of surficial deposits, and the top of persistent limestone. Major areas of groundwater discharge near the Hillsborough River and its tributaries are the wetlands adjacent to the river between the Zephyrhills gaging stations and Fletcher Avenue and the wetlands adjacent to Cypress Creek. An estimated 20 mgd seeps upward from the Upper Floridan aquifer within those wetland areas. The runoff/sq mi is greater at the Zephyrhills station than at Morris Bridge. However, results of groundwater flow models and potentiometric-surface maps indicate that groundwater is flowing upward along the Hillsborough River between the Zephyrhills gage and the Morris Bridge gage. This upward leakage is lost to evapotranspiration. An aquifer test conducted in 1978 at the Morris Bridge well

  5. Hydrologic parameters and land use reflection on water quality at Mun river, Thailand

    International Nuclear Information System (INIS)

    Akter, A.; Babel, M.S.

    2005-01-01

    The 'River Basin' is the land area surrounding one river from its headwaters to its mouth whereas the area drained by a river and its tributaries. So that the land use changes and excessive application of nutrients (Nitrogen and Phosphorus) in predominant agricultural river basins may have a great influence on water quality. Here the study area Mun River Basin is approximately of 69,701 km/sup 2/ and in 1994, out of the total basin area 'about 80 percent was covered by agricultural purposes. Also one of the driest parts of Thailand as well as one of the industrialized provinces in Thailand, Nakhon Ratchasima is situated at the upstream of the river. Accordingly the downstream part Ubon Ratchathani seems totally agricultural based area. To get the water quality changing trends due to land use, there are around forty water quality parameters has considered for the last ten years along with the basins hydrological parameters. For this study based on the fifteen years rainfall data, the whole year divided into two seasons namely wet season (May to October) and dry season (November to April). The result shows: (1) most of the physicochemical parameters are high in wet season; (2) heavy metals moreover appear higher at wet season and (3) although the presences of pesticides are very nominal, the higher values are detected at wet season. The conclusion draws for the water quality by having wet season water sampling and then the testing of water samples for selected seven parameters whereas the water samples are collected at a duration of one-week to three-week from April to October 2004. And this short duration analysis shows that the mean value of the nutrient shows not only higher at wet season (May to October) than April's data also exceed the existing Thailand's surface water quality standard. (author)

  6. Managing water quality under drought conditions in the Llobregat River Basin.

    Science.gov (United States)

    Momblanch, Andrea; Paredes-Arquiola, Javier; Munné, Antoni; Manzano, Andreu; Arnau, Javier; Andreu, Joaquín

    2015-01-15

    The primary effects of droughts on river basins include both depleted quantity and quality of the available water resources, which can render water resources useless for human needs and simultaneously damage the environment. Isolated water quality analyses limit the action measures that can be proposed. Thus, an integrated evaluation of water management and quality is warranted. In this study, a methodology consisting of two coordinated models is used to combine aspects of water resource allocation and water quality assessment. Water management addresses water allocation issues by considering the storage, transport and consumption elements. Moreover, the water quality model generates time series of concentrations for several pollutants according to the water quality of the runoff and the demand discharges. These two modules are part of the AQUATOOL decision support system shell for water resource management. This tool facilitates the analysis of the effects of water management and quality alternatives and scenarios on the relevant variables in a river basin. This paper illustrates the development of an integrated model for the Llobregat River Basin. The analysis examines the drought from 2004 to 2008, which is an example of a period when the water system was quantitative and qualitatively stressed. The performed simulations encompass a wide variety of water management and water quality measures; the results provide data for making informed decisions. Moreover, the results demonstrated the importance of combining these measures depending on the evolution of a drought event and the state of the water resources system. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Water resources in the Big Lost River Basin, south-central Idaho

    Science.gov (United States)

    Crosthwaite, E.G.; Thomas, C.A.; Dyer, K.L.

    1970-01-01

    The Big Lost River basin occupies about 1,400 square miles in south-central Idaho and drains to the Snake River Plain. The economy in the area is based on irrigation agriculture and stockraising. The basin is underlain by a diverse-assemblage of rocks which range, in age from Precambrian to Holocene. The assemblage is divided into five groups on the basis of their hydrologic characteristics. Carbonate rocks, noncarbonate rocks, cemented alluvial deposits, unconsolidated alluvial deposits, and basalt. The principal aquifer is unconsolidated alluvial fill that is several thousand feet thick in the main valley. The carbonate rocks are the major bedrock aquifer. They absorb a significant amount of precipitation and, in places, are very permeable as evidenced by large springs discharging from or near exposures of carbonate rocks. Only the alluvium, carbonate rock and locally the basalt yield significant amounts of water. A total of about 67,000 acres is irrigated with water diverted from the Big Lost River. The annual flow of the river is highly variable and water-supply deficiencies are common. About 1 out of every 2 years is considered a drought year. In the period 1955-68, about 175 irrigation wells were drilled to provide a supplemental water supply to land irrigated from the canal system and to irrigate an additional 8,500 acres of new land. Average. annual precipitation ranged from 8 inches on the valley floor to about 50 inches at some higher elevations during the base period 1944-68. The estimated water yield of the Big Lost River basin averaged 650 cfs (cubic feet per second) for the base period. Of this amount, 150 cfs was transpired by crops, 75 cfs left the basin as streamflow, and 425 cfs left as ground-water flow. A map of precipitation and estimated values of evapotranspiration were used to construct a water-yield map. A distinctive feature of the Big Lost River basin, is the large interchange of water from surface streams into the ground and from the

  8. Restore Harlem River's Water Quality to Swimmable/Fishable

    Science.gov (United States)

    Wang, J.

    2014-12-01

    Combined sewer overflows (CSOs) discharged untreated sewage into the Harlem River during rainstorms, elevated nutrient and bacteria levels. The river is not safe for swimming, fishing or boating during wet weather conditions. We had collected water samples from CSOs discharge point, analyzed ammonia (NH3-N), phosphate (PO43-), fecal coliform, E.Coli., enteroccus, and polychlorinated biphenyl's (PCBs). On tropical storm Arthur, we had collected CSOs: DO reduced during heavy thunderstorm dropped down from 4 to 2.9 mg/L (49 to 35%); fecal coliform was 5 million MPN/100ml, E.Coli. was 1000-2000 MPN/100ml, enterococcus was 2000-2500 MPN/100ml, turbidity was 882 FAU, ammonia was 2.725 mg/L. Nutrient and bacteria exceeded EPA regulated levels significantly (ammonia: 0.23mg/L; fecal coliform: 200 MPN/100ml, E.Coli.: 126 MPN/100ml, enterococcus: 104 MPN/100ml; turbidity: 0.25-5.25 FAU, DO: 4mg/L). Water sampling of CSOs during heavy rainstorm on 4/30/14 showed turbidity reached 112 FAU, ammonia was 0.839 mg/L, fecal coliform: 5 million MPN/100ml, E.Coli.: 500 MPN/100ml and enterococcus: 10,000 MPN/100ml. CSO collection on June 5, 2014 during morning rainstorm showed ammonia was 2.273 mg/L, turbidity was 37 FAU. New York State Department of Health (NYS DOH) suggested women under 50 & children under 15 do not eat fish such as blue crab meat, carb or lobster tomalley, channel catfish, gizzard shad, white catfish, Atlantic needlefish, bluefish, carp, goldfish, rainbow smelt, striped bass, white perch because chemical concerns (PCBs, cadmium, dioxin). Fish caught in the Harlem River was banned from commercial. Swimming in the river was not safe due to high pathogen levels. CSOs reduction, such as green roof, green wall, and wetland could help reduce stormwater runoff and CSOs. Water quality improvement and ecology restoration will help achieve the goal of swimmable and fishable in the Harlem River.

  9. Impact of Water Scarcity on the Fenhe River Basin and Mitigation Strategies

    Directory of Open Access Journals (Sweden)

    Weiwei Shao

    2017-01-01

    Full Text Available This study produced a drought map for the Fenhe River basin covering the period from 150 BC to 2012 using regional historical drought records. Based on meteorological and hydrological features, the characteristics and causes of water scarcity in the Fenhe River basin were examined, along with their impact on the national economy and ecological environment. The effects of water scarcity in the basin on the national economy were determined from agricultural, industrial, and domestic perspectives. The impact on aquatic ecosystems was ascertained through an evolution trend analysis of surface water systems, including rivers, wetlands, and slope ecosystems, and subterranean water systems, including groundwater and karst springs. As a result of these analyses, strategies are presented for coping with water scarcity in this basin, including engineering countermeasures, such as the construction of a water network in Shanxi, and the non-engineering approach of groundwater resource preservation. These comprehensive coping strategies are proposed with the aim of assisting the prevention and control of water scarcity in the arid and semi-arid areas of China.

  10. Studying groundwater and surface water interactions using airborne remote sensing in Heihe River basin, northwest China

    Science.gov (United States)

    Liu, C.; Liu, J.; Hu, Y.; Zheng, C.

    2015-05-01

    Managing surface water and groundwater as a unified system is important for water resource exploitation and aquatic ecosystem conservation. The unified approach to water management needs accurate characterization of surface water and groundwater interactions. Temperature is a natural tracer for identifying surface water and groundwater interactions, and the use of remote sensing techniques facilitates basin-scale temperature measurement. This study focuses on the Heihe River basin, the second largest inland river basin in the arid and semi-arid northwest of China where surface water and groundwater undergoes dynamic exchanges. The spatially continuous river-surface temperature of the midstream section of the Heihe River was obtained by using an airborne pushbroom hyperspectral thermal sensor system. By using the hot spot analysis toolkit in the ArcGIS software, abnormally cold water zones were identified as indicators of the spatial pattern of groundwater discharge to the river.

  11. Studying groundwater and surface water interactions using airborne remote sensing in Heihe River basin, northwest China

    Directory of Open Access Journals (Sweden)

    C. Liu

    2015-05-01

    Full Text Available Managing surface water and groundwater as a unified system is important for water resource exploitation and aquatic ecosystem conservation. The unified approach to water management needs accurate characterization of surface water and groundwater interactions. Temperature is a natural tracer for identifying surface water and groundwater interactions, and the use of remote sensing techniques facilitates basin-scale temperature measurement. This study focuses on the Heihe River basin, the second largest inland river basin in the arid and semi-arid northwest of China where surface water and groundwater undergoes dynamic exchanges. The spatially continuous river-surface temperature of the midstream section of the Heihe River was obtained by using an airborne pushbroom hyperspectral thermal sensor system. By using the hot spot analysis toolkit in the ArcGIS software, abnormally cold water zones were identified as indicators of the spatial pattern of groundwater discharge to the river.

  12. Climate Change Impacts on Water Availability and Use in the Limpopo River Basin

    Directory of Open Access Journals (Sweden)

    Tingju Zhu

    2012-01-01

    Full Text Available This paper analyzes the effects of climate change on water availability and use in the Limpopo River Basin of Southern Africa, using a linked modeling system consisting of a semi-distributed global hydrological model and the Water Simulation Module (WSM of the International Model for Policy Analysis of Agricultural Commodities and Trade (IMPACT. Although the WSM simulates all major water use sectors, the focus of this study is to evaluate the implications of climate change on irrigation water supply in the catchments of the Limpopo River Basin within the four riparian countries: Botswana, Mozambique, South Africa, and Zimbabwe. The analysis found that water resources of the Limpopo River Basin are already stressed under today’s climate conditions. Projected water infrastructure and management interventions are expected to improve the situation by 2050 if current climate conditions continue into the future. However, under the climate change scenarios studied here, water supply availability is expected to worsen considerably by 2050. Assessing hydrological impacts of climate change is crucial given that expansion of irrigated areas has been postulated as a key adaptation strategy for Sub-Saharan Africa. Such expansion will need to take into account future changes in water availability in African river basins.

  13. Comparison between agricultural and urban ground-water quality in the Mobile River Basin

    Science.gov (United States)

    Robinson, James L.

    2003-01-01

    The Black Warrior River aquifer is a major source of public water supply in the Mobile River Basin. The aquifer outcrop trends northwest - southeast across Mississippi and Alabama. A relatively thin shallow aquifer overlies and recharges the Black Warrior River aquifer in the flood plains and terraces of the Alabama, Coosa, Black Warrior, and Tallapoosa Rivers. Ground water in the shallow aquifer and the Black Warrior River aquifer is susceptible to contamination due to the effects of land use. Ground-water quality in the shallow aquifer and the shallow subcrop of the Black Warrior River aquifer, underlying an agricultural and an urban area, is described and compared. The agricultural and urban areas are located in central Alabama in Autauga, Elmore, Lowndes, Macon, Montgomery, and Tuscaloosa Counties. Row cropping in the Mobile River Basin is concentrated within the flood plains of major rivers and their tributaries, and has been practiced in some of the fields for nearly 100 years. Major crops are cotton, corn, and beans. Crop rotation and no-till planting are practiced, and a variety of crops are grown on about one-third of the farms. Row cropping is interspersed with pasture and forested areas. In 1997, the average farm size in the agricultural area ranged from 196 to 524 acres. The urban area is located in eastern Montgomery, Alabama, where residential and commercial development overlies the shallow aquifer and subcrop of the Black Warrior River aquifer. Development of the urban area began about 1965 and continued in some areas through 1995. The average home is built on a 1/8 - to 1/4 - acre lot. Ground-water samples were collected from 29 wells in the agricultural area, 30 wells in the urban area, and a reference well located in a predominately forested area. The median depth to the screens of the agricultural and urban wells was 22.5 and 29 feet, respectively. Ground-water samples were analyzed for physical properties, major ions, nutrients, and pesticides

  14. Water quality monitoring of Jialing-River in Chongqing using advanced ion chromatographic system.

    Science.gov (United States)

    Tanaka, Kazuhiko; Shi, Chao-Hong; Nakagoshi, Nobukazu

    2012-04-01

    The water quality monitoring operation to evaluate the water quality of polluted river is an extremely important task for the river-watershed management/control based on the environmental policy. In this study, the novel, simple and convenient water quality monitoring of Jialing-River in Chongqing, China was carried out using an advanced ion chromatography (IC) consisting of ion-exclusion/cation-exchange chromatography (IEC/CEC) with conductivity detection for determining simultaneously the common anions such as SO4(2-), Cl(-), and NO3(-) and the cations such as Na+, NH4+, K+, Mg2+, and Ca2+, the ion-exclusion chromatography (IEC) with visible detection for determining simultaneously the nutrient components such as phosphate and silicate ions, and the IEC with the enhanced conductivity detection using a post column of K+-form cation-exchange resin for determining HCO3(-)-alkalinity as an inorganic-carbon source for biomass synthesis in biological reaction process under the aerobic conditions. According to the ionic balance theory between the total equivalent concentrations of anions and cations, the water quality evaluation of the Jialing-River waters taking at different sampling sites in Chongqing metropolitan area was carried out using the advanced IC system. As a result, the effectiveness of this novel water quality monitoring methodology using the IC system was demonstrated on the several practical applications to a typical biological sewage treatment plant on Jialing-River of Chongqing.

  15. Water Quality Trends in the Entiat River Subbasin: 2007-2008

    Science.gov (United States)

    Andy Bookter; Richard D. Woodsmith; Frank H. McCormick; Karl M. Polivka

    2009-01-01

    Production of high-quality water is a vitally important ecosystem service in the largely semiarid interior Columbia River basin (ICRB). Communities, tribal governments, and various agencies are concerned about maintenance of this water supply for domestic, agricultural, industrial, recreational, and ecosystem uses. Water quantity and...

  16. River Water Pollution Status and Water Policy Scenario in Ethiopia: Raising Awareness for Better Implementation in Developing Countries

    Science.gov (United States)

    Awoke, Aymere; Beyene, Abebe; Kloos, Helmut; Goethals, Peter L. M.; Triest, Ludwig

    2016-10-01

    Despite the increasing levels of pollution in many tropical African countries, not much is known about the strength and weaknesses of policy and institutional frameworks to tackle pollution and ecological status of rivers and their impacts on the biota. We investigated the ecological status of four large river basins using physicochemical water quality parameters and bioindicators by collecting samples from forest, agriculture, and urban landscapes of the Nile, Omo-Gibe, Tekeze, and Awash River basins in Ethiopia. We also assessed the water policy scenario to evaluate its appropriateness to prevent and control pollution. To investigate the level of understanding and implementation of regulatory frameworks and policies related to water resources, we reviewed the policy documents and conducted in-depth interviews of the stakeholders. Physicochemical and biological data revealed that there is significant water quality deterioration at the impacted sites (agriculture, coffee processing, and urban landscapes) compared to reference sites (forested landscapes) in all four basins. The analysis of legal, policy, and institutional framework showed a lack of cooperation between stakeholders, lack of knowledge of the policy documents, absence of enforcement strategies, unavailability of appropriate working guidelines, and disconnected institutional setup at the grass root level to implement the set strategies as the major problems. In conclusion, river water pollution is a growing challenge and needs urgent action to implement intersectoral collaboration for water resource management that will eventually lead toward integrated watershed management. Revision of policy and increasing the awareness and participation of implementers are vital to improve ecological quality of rivers.

  17. River Water Pollution Status and Water Policy Scenario in Ethiopia: Raising Awareness for Better Implementation in Developing Countries.

    Science.gov (United States)

    Awoke, Aymere; Beyene, Abebe; Kloos, Helmut; Goethals, Peter L M; Triest, Ludwig

    2016-10-01

    Despite the increasing levels of pollution in many tropical African countries, not much is known about the strength and weaknesses of policy and institutional frameworks to tackle pollution and ecological status of rivers and their impacts on the biota. We investigated the ecological status of four large river basins using physicochemical water quality parameters and bioindicators by collecting samples from forest, agriculture, and urban landscapes of the Nile, Omo-Gibe, Tekeze, and Awash River basins in Ethiopia. We also assessed the water policy scenario to evaluate its appropriateness to prevent and control pollution. To investigate the level of understanding and implementation of regulatory frameworks and policies related to water resources, we reviewed the policy documents and conducted in-depth interviews of the stakeholders. Physicochemical and biological data revealed that there is significant water quality deterioration at the impacted sites (agriculture, coffee processing, and urban landscapes) compared to reference sites (forested landscapes) in all four basins. The analysis of legal, policy, and institutional framework showed a lack of cooperation between stakeholders, lack of knowledge of the policy documents, absence of enforcement strategies, unavailability of appropriate working guidelines, and disconnected institutional setup at the grass root level to implement the set strategies as the major problems. In conclusion, river water pollution is a growing challenge and needs urgent action to implement intersectoral collaboration for water resource management that will eventually lead toward integrated watershed management. Revision of policy and increasing the awareness and participation of implementers are vital to improve ecological quality of rivers.

  18. Application of water quality models to rivers in Johor

    Science.gov (United States)

    Chii, Puah Lih; Rahman, Haliza Abd.

    2017-08-01

    River pollution is one the most common hazard in many countries in the world, which includes Malaysia. Many rivers have been polluted because of the rapid growth in industrialization to support the country's growing population and economy. Domestic and industrial sewage, agricultural wastes have polluted the rivers and will affect the water quality. Based on the Malaysia Environment Quality Report 2007, the Department of Environment (DOE) has described that one of the major pollutants is Biochemical Oxygen Demand (BOD). Data from DOE in 2004, based on BOD, 18 river basins were classified polluted, 37 river basins were slightly polluted and 65 river basins were in clean condition. In this paper, two models are fitted the data of rivers in Johor state namely Streeter-Phelps model and nonlinear regression (NLR) model. The BOD concentration data for the two rivers in Johor state from year 1981 to year 1990 is analyzed. To estimate the parameters for the Streeter-Phelps model and NLR model, this study focuses on the weighted least squares and Gauss-Newton method respectively. Based on the value of Mean Square Error, NLR model is a better model compared to Streeter-Phelps model.

  19. Hydrogeologic controls on ground-water and contaminant discharge to the Columbia River near the Hanford Townsite

    International Nuclear Information System (INIS)

    Luttrell, S.P.; Newcomer, D.R.; Teel, S.S.; Vermeul, V.R.

    1992-11-01

    The purpose of this study is to quantify ground-water and contaminant discharge to the Columbia River in the Hanford Townsite vicinity. The primary objectives of the work are to: describe the hydrogeologic setting and controls on ground-water movement and contaminant discharge to the Columbia River; understand the river/aquifer relationship and its effects on contaminant discharge to the Columbia River; quantify the ground-water and contaminant mass discharge to the Columbia River; and provide data that may be useful for a three-dimensional model of ground-water flow and contaminant transport in the Hanford Townsite study area. The majority of ground-water contamination occurs within the unconfined aquifer; therefore, ground-water and contaminant discharge from the unconfined aquifer is the emphasis of this study. The period of study is primarily from June 1990 through March 1992

  20. Evaluation of Management of Water Releases for Painted Rocks Rexervoir, Bitterroot River, Montana, 1985 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Lere, Mark E. (Montana Department of Fish, Wildlife and Parks, Missoula, MT)

    1985-12-01

    The Bitterroot River, located in western Montana, is an important and heavily used resource, providing water for agriculture and a source for diversified forms of recreation. Water shortages in the river, however, have been a persistent problem for both irrigators and recreational users. Five major diversions and numerous smaller canals remove substantial quantities of water from the river during the irrigation season. Historically, the river has been severely dewatered between the towns of Hamilton and Stevensville as a result of these withdrawals. Demands for irrigation water from the Bitterroot River have often conflicted with the instream flow needs for trout. Withdrawals of water can decrease suitable depths, velocities, substrates and cover utilized by trout (Stalnaker and Arnette 1976, Wesche 1976). Losses in habitat associated with dewatering have been shown to diminish the carrying capacities for trout populations (Nelson 1980). Additionally, dewatering of the Bitterroot River has forced irrigators to dike or channelize the streambed to obtain needed flows. These alterations reduce aquatic habitat and degrade channel stability. Odell (personal communication) found a substantial reduction in the total biomass of aquatic insects within a section of the Bitterroot River that had been bulldozed for irrigation purposes. The Montana Department of Fish, Wildlife and Parks (MDFWP) has submitted a proposal to the Northwest Power Planning Council for the purchase of 10,000 acre-feet (AF) of stored water in Painted Rocks Reservoir to augment low summer flows in the Bitterroot River. This supplemental water potentially would enhance the fishery in the river and reduce degradation of the channel due to diversion activities. The present study was undertaken to: (1) develop an implementable water management plan for supplemental releases from Painted Rocks Reservoir which would provide optimum benefits to the river: (2) gather fisheries and habitat information to

  1. Water quantity and quality optimization modeling of dams operation based on SWAT in Wenyu River Catchment, China.

    Science.gov (United States)

    Zhang, Yongyong; Xia, Jun; Chen, Junfeng; Zhang, Minghua

    2011-02-01

    Water quantity and quality joint operation is a new mode in the present dams' operation research. It has become a hot topic in governmental efforts toward integrated basin improvement. This paper coupled a water quantity and quality joint operation model (QCmode) and genetic algorithm with Soil and Water Assessment Tool (SWAT). Together, these tools were used to explore a reasonable operation of dams and floodgates at the basin scale. Wenyu River Catchment, a key area in Beijing, was selected as the case study. Results showed that the coupled water quantity and quality model of Wenyu River Catchment more realistically simulates the process of water quantity and quality control by dams and floodgates. This integrated model provides the foundation for research of water quantity and quality optimization on dam operation in Wenyu River Catchment. The results of this modeling also suggest that current water quality of Wenyu River will improve following the implementation of the optimized operation of the main dams and floodgates. By pollution control and water quantity and quality joint operation of dams and floodgates, water quality of Wenyu river will change significantly, and the available water resources will increase by 134%, 32%, 17%, and 82% at the downstream sites of Sha River Reservoir, Lutong Floodgate, Xinpu Floodgate, and Weigou Floodgate, respectively. The water quantity and quality joint operation of dams will play an active role in improving water quality and water use efficiency in Wenyu River Basin. The research will provide the technical support for water pollution control and ecological restoration in Wenyu River Catchment and could be applied to other basins with large number of dams. Its application to the Wenyu River Catchment has a great significance for the sustainable economic development of Beijing City.

  2. The hydrochemistry of glacial Ebba River (Petunia Bay, Central Spitsbergen): Groundwater influence on surface water chemistry

    Science.gov (United States)

    Dragon, Krzysztof; Marciniak, Marek; Szpikowski, Józef; Szpikowska, Grażyna; Wawrzyniak, Tomasz

    2015-10-01

    The article presents the investigation of surface water chemistry changes of the glacial Ebba River (Central Spitsbergen) during three melting seasons of 2008, 2009 and 2010. The twice daily water chemistry analyses allow recognition of the surface water chemistry differentiation. The surface water chemistry changes are related to the river discharge and changes in the influence of different water balance components during each melting season. One of the most important process that influence river water component concentration increase is groundwater inflow from active layer occurring on the valley area. The significance of this process is the most important at the end of the melting season when temperatures below 0 °C occur on glaciers (resulting in a slowdown of melting of ice and snow and a smaller recharge of the river by the water from the glaciers) while the flow of groundwater is still active, causing a relatively higher contribution of groundwater to the total river discharge. The findings presented in this paper show that groundwater contribution to the total polar river water balance is more important than previously thought and its recognition allow a better understanding of the hydrological processes occurring in a polar environment.

  3. [Effect of water conservancy schistosomiasis control projects combined with molluscicide to control Oncomelania hupensis snails in rivers connecting with Yangtze River in Pukou District, Nanjing City].

    Science.gov (United States)

    Qiang, Zhou; Li-Xin, Wan; De-Rong, Hang; Qi-Hui, You; Jun, You; Yu-Lin, Zhang; Zhao-Feng, Zhu; Yi-Xin, Huang

    2017-12-07

    To evaluate the effect of the water conservancy schistosomiasis control projects combined with molluscicide to control Oncomelania hupensis snails in the rivers connecting with the Yangtze River. The water conservancy schistosomiasis control projects of Zhujiashan River, Qili River and Gaowang River were chosen as the study objects in Pukou District, Nanjing City. The data review method and field investigation were used to evaluate the effect of the water conservancy schistosomiasis control projects combined with molluscicide to control O. hupensis snails. After the projects of the water level control and concrete slope protection and mollusciciding were implemented, the snails in the project river sections were completely eliminated. The snail diffusion did not happen in the inland irrigation area too. In the outside of the river beach, though the snails still existed, the snail densities plunged below 1.0 snail per 1.0 m 2 . The comprehensive measures of the combination of water level control, concrete slope protection and mollusciciding can effectively control and eliminate the snails, and prevent the snails from spreading.

  4. St. Louis River water quality assessment 2012, 2013

    Data.gov (United States)

    U.S. Environmental Protection Agency — St. Louis River Area of Concern surface water nutrient (TP, TN, NOx-N, NH4-N), dissolved oxygen, and particulate (TSS, chlorophyll a) concentration data from 2012...

  5. Trace metal pollution in Umtata River | Fatoki | Water SA

    African Journals Online (AJOL)

    Dissolved trace metals, i.e Fe, Mn, Al, Cu, Zn, Pb and Cd were determined in the Umtata River. High levels of Al, Cd, Pb, Zn and. Cu were observed, which may affect the “health” of the aquatic ecosystem. The high levels of Al, Cd and Pb may also affect the health of the rural community that uses the river water directly for ...

  6. Streamflow, water quality, and contaminant loads in the lower Charles River Watershed, Massachusetts, 1999-2000

    Science.gov (United States)

    Breault, Robert F.; Sorenson, Jason R.; Weiskel, Peter K.

    2002-01-01

    Streamflow data and dry-weather and stormwater water-quality samples were collected from the main stem of the Charles River upstream of the lower Charles River (or the Basin) and from four partially culverted urban streams that drain tributary subbasins in the lower Charles River Watershed. Samples were collected between June 1999 and September 2000 and analyzed for a number of potential contaminants including nitrate (plus nitrite), ammonia, total Kjeldahl nitrogen, phosphorus, cadmium, chromium, copper, lead, and zinc; and water-quality properties including specific conductance, turbidity, biochemical oxygen demand, fecal coliform bacteria, Entero-coccus bacteria, total dissolved solids, and total suspended sediment. These data were used to identify the major pathways and to determine the magnitudes of contaminants loads that contribute to the poor water quality of the lower Charles River. Water-quality and streamflow data, for one small urban stream and two storm drains that drain subbasins with uniform (greater than 73 percent) land use (including single-family residential, multifamily residential, and commercial), also were collected. These data were used to elucidate relations among streamflow, water quality, and subbasin characteristics. Streamflow in the lower Charles River Watershed can be characterized as being unsettled and flashy. These characteristics result from the impervious character of the land and the complex infrastructure of pipes, pumps, diversionary canals, and detention ponds throughout the watershed. The water quality of the lower Charles River can be considered good?meeting water-quality standards and guidelines?during dry weather. After rainstorms, however, the water quality of the river becomes impaired, as in other urban areas. The poor quality of stormwater and its large quantity, delivered over short periods (hours and days), together with illicit sanitary cross connections, and combined sewer overflows, results in large contaminant

  7. Assessment of water quality of the Tisa River (Vojvodina, North Serbia for ten year period using Serbian water quality index (SWQI

    Directory of Open Access Journals (Sweden)

    Leščešen Igor

    2014-01-01

    Full Text Available The WQI method is most frequently used in expert and scientific research and basically it provides a mechanism for cumulative representation, numeric expression and defining a certain level of water quality. This paper aims to assess water quality of the Tisa River in Vojvodina (North Serbia for the 2003 - 2012 period. Serbian Water Quality Index (SWQI was used for assessment of the river water quality. WQI is expressed as a single value ranging from 0 to 100 (best quality derived from numerous physical, chemical, biological and microbiological parameters. The results of SWQI for the Tisa River were mainly rated as good. Also, in this study it is noticed a clear decrease in water quality during warmer period of the year. Also, this study shows that water quality along the Tisa River decreases slightly but steadily down- stream, from Martonoš to Titel station and all along the length of the river provides values that according to SWQI descriptive quality indicator has been defined as good (72-83. The main problem of SWQI used in this paper is that it does not involve parameters of heavy metals concentration.

  8. Water-quality assessment of the lower Illinois River Basin; environmental setting

    Science.gov (United States)

    Warner, Kelly L.

    1998-01-01

    The lower Illinois River Basin (LIRB) encompasses 18,000 square miles of central and western Illinois. Historical and recent information from Federal, State, and local agencies describing the physiography, population, land use, soils, climate, geology, streamflow, habitat, ground water, water use, and aquatic biology is summarized to describe the environmental setting of the LIRB. The LIRB is in the Till Plains Section of the Central Lowland physiographic province. The basin is characterized by flat topography, which is dissected by the Illinois River. The drainage pattern of the LIRB has been shaped by many bedrock and glacial geologic processes. Erosion prior to and during Pleistocene time created wide and deep bedrock valleys. The thickest deposits and most major aquifers are in buried bedrock valleys. The Wisconsinan glaciation, which bisects the northern half of the LIRB, affects the distribution and characteristics of glacial deposits in the basin. Agriculture is the largest land use and forested land is the second largest land use in the LIRB. The major urban areas are near Peoria, Springfield, Decatur, and Bloomington-Normal. Soil type and distribution affect the amount of soil erosion, which results in sedimentation of lakes and reservoirs in the basin. Rates of soil erosion of up to 2 percent per year of farmland soil have been measured. Many of the 300 reservoirs, lakes, and wetlands are disappearing because of sedimentation resulting from agriculture activities, levee building, and urbanization. Sedimentation and the destruction of habitat appreciably affect the ecosystem. The Illinois River is a large river-floodplain ecosystem where biological productivity is enhanced by annual flood pulses that advance and retreat over the flood plain and temporarily expand backwater and flood-plain lakes. Ground-water discharge to streams affects the flow and water quality of the streams. The water budget of several subbasins show variability in ground-water

  9. Water resources in Central Asia - status quo and future conflicts in transboundary river catchments - the example of the Zarafshan River (Tajikistan-Uzbekistan)

    Science.gov (United States)

    Groll, Michael; Opp, Christian; Kulmatov, Rashid; Normatov, Inom; Stulina, Galina; Shermatov, Nurmakhmad

    2014-05-01

    Water is the most valuable resource in Central Asia and due to its uneven distribution and usage among the countries of the region it is also the main source of tension between upstream and downstream water users. Due to the rapidly shrinking glaciers in the Pamir, Tien-Shan and Alai mountains, the available water resources will, by 2030, be 30% lower than today while the water demand of the growing economies will increase by 30%. This will further aggravate the pressure on the water resources and increase the water deficit caused by an unsustainable water use and political agendas. These challenges can only be overcome by an integrated water resource management for the important transboundary river catchments. The basis for such an IWRM approach however needs to be a solid data base about the status quo of the water resources. To that end the research presented here provides a detailed overview of the transboundary Zarafshan River (Tajikistan-Uzbekistan), the lifeline for more than 6 mln people. The Zarafshan River is well suited for this as it is not only one of the most important rivers in Central Asia but because the public availability of hydrological and ecological data is very limited, Furthermore the catchment is characterized by the same imbalances in the Water-Energy-Food-Nexus as most river systems in that region, which makes the Zarafshan a perfect model river for Central Asia as a whole. The findings presented here are based on field measurements, existing data from the national hydrometeorological services and an extensive literature analysis and cover the status quo of the meteorological and hydrological characteristics of the Zarafshan as well as the most important water quality parameters (pH, conductivity, nitrate, phosphate, arsenic, chromate, copper, zinc, fluoride, petroleum products, phenols and the aquatic invertebrate fauna). The hydrology of the Zarafshan is characterized by a high natural discharge dynamic in the mountainous upper parts of

  10. Study of a conceptual nuclear energy center at Green River, Utah: water allocation issues

    International Nuclear Information System (INIS)

    Harper, N.J.

    1982-04-01

    According to preliminary studies, operation of a nine-reactor Nuclear Energy Center near Green River, Utah would require the acquisition of 126,630 acre-feet per year. Groundwater aquifers are a potential source of supply but do not present a viable option at this time due to insufficient data on aquifer characteristics. Surface supplies are available from the nearby Green and San Rafael Rivers, tributaries of the Colorado River, but are subject to important constraints. Because of these constraints, the demand for a dependable water supply for a Nuclear Energy Center could best be met by the acquisition of vested water rights from senior appropriators in either the Green or San Rafael Rivers. The Utah Water Code provides a set of procedures to accomplish such a transfer of water rights

  11. Simulated and observed 2010 flood-water elevations in selected river reaches in the Moshassuck and Woonasquatucket River Basins, Rhode Island

    Science.gov (United States)

    Zarriello, Phillip J.; Straub, David E.; Westenbroek, Stephen M.

    2014-01-01

    Heavy persistent rains from late February through March 2010 caused severe flooding and set, or nearly set, peaks of record for streamflows and water levels at many long-term U.S. Geological Survey streamgages in Rhode Island. In response to this flood, hydraulic models were updated for selected reaches covering about 33 river miles in Moshassuck and Woonasquatucket River Basins from the most recent approved Federal Emergency Management Agency flood insurance study (FIS) to simulate water-surface elevations (WSEs) from specified flows and boundary conditions. Reaches modeled include the main stem of the Moshassuck River and its main tributary, the West River, and three tributaries to the West River—Upper Canada Brook, Lincoln Downs Brook, and East Branch West River; and the main stem of the Woonasquatucket River. All the hydraulic models were updated to Hydrologic Engineering Center-River Analysis System (HEC-RAS) version 4.1.0 and incorporate new field-survey data at structures, high-resolution land-surface elevation data, and flood flows from a related study. The models were used to simulate steady-state WSEs at the 1- and 2-percent annual exceedance probability (AEP) flows, which is the estimated AEP of the 2010 flood in the Moshassuck River Basin and the Woonasquatucket River, respectively. The simulated WSEs were compared to the high-water mark (HWM) elevation data obtained in these basins in a related study following the March–April 2010 flood, which included 18 HWMs along the Moshassuck River and 45 HWMs along the Woonasquatucket River. Differences between the 2010 HWMs and the simulated 2- and 1-percent AEP WSEs from the FISs and the updated models developed in this study varied along the reach. Most differences could be attributed to the magnitude of the 2- and 1-percent AEP flows used in the FIS and updated model flows. Overall, the updated model and the FIS WSEs were not appreciably different when compared to the observed 2010 HWMs along the

  12. A review of current and possible future human-water dynamics in Myanmar's river basins

    Science.gov (United States)

    Taft, Linda; Evers, Mariele

    2016-12-01

    Rivers provide a large number of ecosystem services and riparian people depend directly and indirectly on water availability and quality and quantity of the river waters. The country's economy and the people's well-being and income, particularly in agriculturally dominated countries, are strongly determined by the availability of sufficient water. This is particularly true for the country of Myanmar in South-east Asia, where more than 65 % of the population live in rural areas, working in the agricultural sector. Only a few studies exist on river basins in Myanmar at all and detailed knowledge providing the basis for human-water research is very limited. A deeper understanding of human-water system dynamics in the country is required because Myanmar's society, economy, ecosystems and water resources are facing major challenges due to political and economic reforms and massive and rapid investments from neighbouring countries. However, not only policy and economy modify the need for water. Climate variability and change are other essential drivers within human-water systems. Myanmar's climate is influenced by the Indian Monsoon circulation which is subject to interannual and also regional variability. Particularly the central dry zone and the Ayeyarwady delta are prone to extreme events such as serious drought periods and extreme floods. On the one hand, the farmers depend on the natural fertiliser brought by regular river inundations and high groundwater levels for irrigation; on the other hand, they suffer from these water-related extreme events. It is expected that theses climatic extreme events will likely increase in frequency and magnitude in the future as a result of global climate change. Different national and international interests in the abundant water resources may provide opportunities and risks at the same time for Myanmar. Several dam projects along the main courses of the rivers are currently in the planning phase. Dams will most likely modify the

  13. A Water Resources Planning Tool for the Jordan River Basin

    Directory of Open Access Journals (Sweden)

    Christopher Bonzi

    2011-06-01

    Full Text Available The Jordan River basin is subject to extreme and increasing water scarcity. Management of transboundary water resources in the basin is closely intertwined with political conflicts in the region. We have jointly developed with stakeholders and experts from the riparian countries, a new dynamic consensus database and—supported by hydro-climatological model simulations and participatory scenario exercises in the GLOWA (Global Change and the Hydrological Cycle Jordan River project—a basin-wide Water Evaluation and Planning (WEAP tool, which will allow testing of various unilateral and multilateral adaptation options under climate and socio-economic change. We present its validation and initial (climate and socio-economic scenario analyses with this budget and allocation tool, and invite further adaptation and application of the tool for specific Integrated Water Resources Management (IWRM problems.

  14. Surface-Water and Groundwater Interactions along the Withlacoochee River, West-Central Florida

    Science.gov (United States)

    Trommer, J.T.; Yobbi, D.K.; McBride, W.S.

    2009-01-01

    A study of the Withlacoochee River watershed in west-central Florida was conducted from October 2003 to March 2007 to gain a better understanding of the hydrology and surface-water and groundwater interactions along the river. The Withlacoochee River originates in the Green Swamp area in north-central Polk County and flows northerly through seven counties, emptying into the Gulf of Mexico. This study includes only the part of the watershed located between the headwaters in the Green Swamp and the U.S. Geological Survey gaging station near Holder, Florida. The Withlacoochee River within the study area is about 108 miles long and drains about 1,820 square miles. The Withlacoochee River watershed is underlain by thick sequences of carbonate rock that are covered by thin surficial deposits of unconsolidated sand and sandy clay. The clay layer is breached in many places because of the karst nature of the underlying limestone, and the degree of confinement between the Upper Florida aquifer and the surficial aquifer is highly variable throughout the watershed. The potential for movement of water from the surface or shallow deposits to deeper deposits, or from deeper deposits to the shallow deposits, exists throughout the Withlacoochee River watershed. Water levels were higher in deeper Upper Floridan aquifer wells than in shallow Upper Floridan aquifer wells or surficial aquifer wells at 11 of 19 paired or nested well sites, indicating potential for discharge to the surface-water system. Water levels were higher in shallow Upper Floridan aquifer or surficial aquifer wells than in deeper Upper Floridan aquifer wells at five other sites, indicating potential for recharge to the deeper Upper Floridan aquifer. Water levels in the surficial aquifer and Upper Floridan aquifer wells at the remaining three sites were virtually the same, indicating little or no confinement at the sites. Potentiometric-surface maps of the Upper Floridan aquifer indicate the pattern of groundwater

  15. Water reuse in river basins with multiple users: A literature review

    Science.gov (United States)

    Simons, G. W. H. (Gijs); Bastiaanssen, W. G. M. (Wim); Immerzeel, W. W. (Walter)

    2015-03-01

    Unraveling the interaction between water users in a river basin is essential for sound water resources management, particularly in a context of increasing water scarcity and the need to save water. While most attention from managers and decision makers goes to allocation and withdrawals of surface water resources, reuse of non-consumed water gets only marginal attention despite the potentially significant volumes. As a consequence, claims of water saving are often grossly exaggerated. It is the purpose of this paper to explore the processes associated with water reuse in a river basin among users of varying nature and review existing methods for directly or indirectly describing non-consumed water, recoverable flow and/or water reuse. First a conceptual representation of processes surrounding water withdrawals and associated definitions is discussed, followed by a section on connectivity between individual withdrawals and the complex dynamics arising from dependencies and tradeoffs within a river basin. The current state-of-the-art in categorizing basin hydrological flows is summarized and its applicability to a water system where reuse occurs is explored. The core of the paper focuses on a selection and demonstration of existing indicators developed for assessing water reuse and its impacts. It is concluded that although several methods for analyses of water reuse and recoverable flows have been developed, a number of essential aspects of water reuse are left out of existing indicators. Moreover, a proven methodology for obtaining crucial quantitative information on recoverable flows is currently lacking. Future studies should aim at spatiotemporal tracking of the recoverable portion of water withdrawals and showing the dependency of multiple water users on such flows to water policy makers.

  16. Shift in the microbial community composition of surface water and sediment along an urban river.

    Science.gov (United States)

    Wang, Lan; Zhang, Jing; Li, Huilin; Yang, Hong; Peng, Chao; Peng, Zhengsong; Lu, Lu

    2018-06-15

    Urban rivers represent a unique ecosystem in which pollution occurs regularly, leading to significantly altered of chemical and biological characteristics of the surface water and sediments. However, the impact of urbanization on the diversity and structure of the river microbial community has not been well documented. As a major tributary of the Yangtze River, the Jialing River flows through many cities. Here, a comprehensive analysis of the spatial microbial distribution in the surface water and sediments in the Nanchong section of Jialing River and its two urban branches was conducted using 16S rRNA gene-based Illumina MiSeq sequencing. The results revealed distinct differences in surface water bacterial composition along the river with a differential distribution of Proteobacteria, Cyanobacteria, Actinobacteria, Bacteroidetes and Acidobacteria (P urban water. PICRUSt metabolic inference analysis revealed a growing number of genes associated with xenobiotic metabolism and nitrogen metabolism in the urban water, indicating that urban discharges might act as the dominant selective force to alter the microbial communities. Redundancy analysis suggested that the microbial community structure was influenced by several environmental factors. TP (P urban river. These results highlight that river microbial communities exhibit spatial variation in urban areas due to the joint influence of chemical variables associated with sewage discharging and construction of hydropower stations. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Explore the impacts of river flow and quality on biodiversity for water resources management by AI techniques

    Science.gov (United States)

    Chang, Fi-John; Tsai Tsai, Wen-Ping; Chang, Li-Chiu

    2016-04-01

    Water resources development is very challenging in Taiwan due to her diverse geographic environment and climatic conditions. To pursue sustainable water resources development, rationality and integrity is essential for water resources planning. River water quality and flow regimes are closely related to each other and affect river ecosystems simultaneously. This study aims to explore the complex impacts of water quality and flow regimes on fish community in order to comprehend the situations of the eco-hydrological system in the Danshui River of northern Taiwan. To make an effective and comprehensive strategy for sustainable water resources management, this study first models fish diversity through implementing a hybrid artificial neural network (ANN) based on long-term observational heterogeneity data of water quality, stream flow and fish species in the river. Then we use stream flow to estimate the loss of dissolved oxygen based on back-propagation neural networks (BPNNs). Finally, the non-dominated sorting genetic algorithm II (NSGA-II) is established for river flow management over the Shihmen Reservoir which is the main reservoir in this study area. In addition to satisfying the water demands of human beings and ecosystems, we also consider water quality for river flow management. The ecosystem requirement takes the form of maximizing fish diversity, which can be estimated by the hybrid ANN. The human requirement is to provide a higher satisfaction degree of water supply while the water quality requirement is to reduce the loss of dissolved oxygen in the river among flow stations. The results demonstrate that the proposed methodology can offer diversified alternative strategies for reservoir operation and improve reservoir operation strategies for producing downstream flows that could better meet both human and ecosystem needs as well as maintain river water quality. Keywords: Artificial intelligence (AI), Artificial neural networks (ANNs), Non

  18. An Investigation Into The Water Quality Of Buriganga - A River Running Through Dhaka

    Directory of Open Access Journals (Sweden)

    Shaikh Sayed Ahammed

    2015-08-01

    Full Text Available Buriganga river is used for bathing drinking irrigation and industrial purposes and is considered to be the lifeline of Dhaka city. The water quality of Buriganga has become a matter of concern due to serious levels of pollution. The objective of the study was to determine the water quality of the selected section of Buriganga river which passes through Dhaka city. The water quality parameters were sampled during different seasons summer winter and autumn and in 10 different sampling points along the river along the banks of the Buriganga River. The water quality parameters studied for this study were dissolved oxygen DO biochemical oxygen demand BOD chemical oxygen demand COD pH turbidity conductivity total dissolved solids TDS nitrate and phosphate. The results showed that DO BOD COD TDS turbidity nitrate and phosphate are at an alarming level and a discussion on the possible sources of the pollution are presented.

  19. Eco-hydrological Responses to Soil and Water Conservation in the Jinghe River Basin

    Science.gov (United States)

    Peng, H.; Jia, Y.; Qiu, Y.

    2011-12-01

    The Jinghe River Basin is one of the most serious soil erosion areas in the Loess Plateau. Many measures of soil and water conservation were applied in the basin. Terrestrial ecosystem model BIOME-BGC and distributed hydrological model WEP-L were used to build eco-hydrological model and verified by field observation and literature values. The model was applied in the Jinghe River Basin to analyze eco-hydrological responses under the scenarios of vegetation type change due to soil and water conservation polices. Four scenarios were set under the measures of conversion of cropland to forest, forestation on bare land, forestation on slope wasteland and planting grass on bare land. Analysis results show that the soil and water conservation has significant effects on runoff and the carbon cycle in the Jinghe River Basin: the average annual runoff would decrease and the average annual NPP and carbon storage would increase. Key words: soil and water conservation; conversion of cropland to forest; eco-hydrology response; the Jinghe River Basin

  20. Effect of a reservoir in the water quality of the Reconquista River, Buenos Aires, Argentina.

    Science.gov (United States)

    Rigacci, Laura N; Giorgi, Adonis D N; Vilches, Carolina S; Ossana, Natalia Alejandra; Salibián, Alfredo

    2013-11-01

    The lower portion of the Reconquista River is highly polluted. However, little is known about the state of the high and middle basins. The aims of this work were to assess the water quality on the high and middle Reconquista River basins and to determinate if the presence of a reservoir in the river has a positive effect on the water quality. We conducted a seasonal study between August 2009 and November 2010 at the mouth of La Choza, Durazno, and La Horqueta streams at the Roggero reservoir--which receives the water from the former streams--at the origin of the Reconquista River and 17 km downstream from the reservoir. We measured 25 physical and chemical parameters, including six heavy metal concentrations, and performed a multivariate statistical analysis to summarize the information and allow the interpretation of the whole data set. We found that the Durazno and La Horqueta streams had better water quality than La Choza, and the presence of the reservoir contributed to the improvement of the water quality, allowing oxygenation of the water body and processing of organic matter and ammonia. The water quality of the Reconquista River at its origin is good and similar to the reservoir, but a few kilometers downstream, the water quality declines as a consequence of the presence of industries and human settlements. Therefore, the Roggero reservoir produces a significant improvement of water quality of the river, but the discharge of contaminants downstream quickly reverses this effect.