WorldWideScience

Sample records for hudson river sediment

  1. 2010 Hudson River Shallow Water Sediment Cores

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Hudson River Shallow Water Mapping project characterizes the bottom of the Hudson River Estuary in shallow water (<3 m). The characterization includes...

  2. 2010 Hudson River Shallow Water Sediment Grabs

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Hudson River Shallow Water Mapping project characterizes the bottom of the Hudson River Estuary in shallow water (<3 m). The characterization includes...

  3. Suspended sediment transport in the freshwater reach of the Hudson river estuary in eastern New York

    Science.gov (United States)

    Wall, G.R.; Nystrom, E.A.; Litten, S.

    2008-01-01

    Deposition of Hudson River sediment into New York Harbor interferes with navigation lanes and requires continuous dredging. Sediment dynamics at the Hudson estuary turbidity maximum (ETM) have received considerable study, but delivery of sediment to the ETM through the freshwater reach of the estuary has received relatively little attention and few direct measurements. An acoustic Doppler current profiler was positioned at the approximate limit of continuous freshwater to develop a 4-year time series of water velocity, discharge, suspended sediment concentration, and suspended sediment discharge. This data set was compared with suspended sediment discharge data collected during the same period at two sites just above the Hudson head-of-tide (the Federal Dam at Troy) that together represent the single largest source of sediment entering the estuary. The mean annual suspended sediment-discharge from the freshwater reach of the estuary was 737,000 metric tons. Unexpectedly, the total suspended sediment discharge at the study site in November and December slightly exceeded that observed during March and April, the months during which rain and snowmelt typically result in the largest sediment discharge to the estuary. Suspended sediment discharge at the study site exceeded that from the Federal Dam, even though the intervening reach appears to store significant amounts of sediment, suggesting that 30-40% of sediment discharge observed at the study site is derived from tributaries to the estuary between the Federal Dam and study site. A simple model of sediment entering and passing through the freshwater reach on a timescale of weeks appears reasonable during normal hydrologic conditions in adjoining watersheds; however, this simple model may dramatically overestimate sediment delivery during extreme tributary high flows, especially those at the end of, or after, the "flushing season" (October through April). Previous estimates of annual or seasonal sediment delivery

  4. Bathymetric controls on sediment transport in the Hudson River estuary: Lateral asymmetry and frontal trapping

    Science.gov (United States)

    Ralston, David K.; Geyer, W. Rockwell; Warner, John C.

    2012-01-01

    Analyses of field observations and numerical model results have identified that sediment transport in the Hudson River estuary is laterally segregated between channel and shoals, features frontal trapping at multiple locations along the estuary, and varies significantly over the spring-neap tidal cycle. Lateral gradients in depth, and therefore baroclinic pressure gradient and stratification, control the lateral distribution of sediment transport. Within the saline estuary, sediment fluxes are strongly landward in the channel and seaward on the shoals. At multiple locations, bottom salinity fronts form at bathymetric transitions in width or depth. Sediment convergences near the fronts create local maxima in suspended-sediment concentration and deposition, providing a general mechanism for creation of secondary estuarine turbidity maxima at bathymetric transitions. The lateral bathymetry also affects the spring-neap cycle of sediment suspension and deposition. In regions with broad, shallow shoals, the shoals are erosional and the channel is depositional during neap tides, with the opposite pattern during spring tides. Narrower, deeper shoals are depositional during neaps and erosional during springs. In each case, the lateral transfer is from regions of higher to lower bed stress, and depends on the elevation of the pycnocline relative to the bed. Collectively, the results indicate that lateral and along-channel gradients in bathymetry and thus stratification, bed stress, and sediment flux lead to an unsteady, heterogeneous distribution of sediment transport and trapping along the estuary rather than trapping solely at a turbidity maximum at the limit of the salinity intrusion.

  5. Declining metal levels at Foundry Cove (Hudson River, New York): Response to localized dredging of contaminated sediments

    Energy Technology Data Exchange (ETDEWEB)

    Mackie, Joshua A. [Moss Landing Marine Laboratories, Invertebrate Zoology, 8272 Moss Landing Road, CA 95039-9647 (United States)], E-mail: jmackie@mlml.calstate.edu; Natali, Susan M.; Levinton, Jeffrey S. [Stony Brook University, Department of Ecology and Evolution, Stony Brook, NY 11794-5245 (United States); Sanudo-Wilhelmy, Sergio A. [Stony Brook University, Department of Ecology and Evolution, Stony Brook, NY 11794-5245 (United States); University of Southern California, Marine and Environmental Biology, Los Angeles, CA 90089-0371 (United States)

    2007-09-15

    This study examines the effectiveness of remediating a well-recognized case of heavy metal pollution at Foundry Cove (FC), Hudson River, New York. This tidal freshwater marsh was polluted with battery-factory wastes (1953-1979) and dredged in 1994-1995. Eight years after remediation, dissolved and particulate metals (Cd, Co, Cu, Pb, Ni, and Ag) were found to be lower than levels in the lower Hudson near New York City. Levels of metals (Co, Ni, Cd) on suspended particles were comparatively high. Concentrations of surface sediment Cd throughout the marsh system remain high, but have decreased both in the dredged and undredged areas: Cd was 2.4-230 mg/kg dw of sediment in 2005 vs. 109-1500 mg/kg in the same area in 1983. The rate of tidal export of Cd from FC has decreased by >300-fold, suggesting that dredging successfully stemmed a major source of Cd to the Hudson River. - Dredging of a hotspot of metal-contaminated sediment is associated with a recognizable local and river-wide decline in cadmium in the Hudson River, New York.

  6. Nelson River and Hudson Bay

    Science.gov (United States)

    2002-01-01

    Rivers that empty into large bodies of water can have a significant impact on the thawing of nearshore winter ice. This true-color Moderate Resolution Imaging Spectroradiometer (MODIS) image from May 18, 2001, shows the Nelson River emptying spring runoff from the Manitoba province to the south into the southwestern corner of Canada's Hudson Bay. The warmer waters from more southern latitudes hasten melting of ice near the shore, though some still remained, perhaps because in shallow coastal waters, the ice could have been anchored to the bottom. High volumes of sediment in the runoff turned the inflow brown, and the rim of the retreating ice has taken on a dirty appearance even far to the east of the river's entrance into the Bay. The sediment would have further hastened the melting of the ice because its darker color would have absorbed more solar radiation than cleaner, whiter ice. Image courtesy Jacques Descloitres, MODIS Land Rapid Response Team at NASA GSFC

  7. Hudson River Sub-Bottom Profile Points

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Hudson River Estuary Shallow Water Surveys. Subbottom Profile Points. Subbottom data was collected November 5 to December 15, 2009, in the estuary north from...

  8. Evaluation of dredged material proposed for ocean disposal from Hudson River, New York

    Energy Technology Data Exchange (ETDEWEB)

    Gardiner, W.W.; Barrows, E.S.; Antrim, L.D.; Gruendell, B.D.; Word, J.Q.; Tokos, J.J.S. [Battelle/Marine Sciences Lab., Sequim, WA (United States)

    1996-09-01

    The Hudson River (Federal Project No. 41) was one of seven waterways that the U.S. Army Corps of Engineers-New York District (USACE-NYD) requested the Battelle Marine Sciences Laboratory (MSL) to sample and evaluate for dredging and disposal in March 1994. Sediment samples were collected from the Hudson River. Tests and analyses were conducted on Hudson River sediment core samples. The evaluation of proposed dredged material from the Hudson River included bulk sediment chemical analyses, chemical analyses of site water and elutriate, water-column and benthic acute toxicity tests, and bioaccumulation studies. Individual sediment core samples collected from Hudson River were analyzed for grain size, moisture content, and total organic carbon (TOC). A composite sediment sample, representing the entire area proposed for dredging, was analyzed for bulk density, specific gravity, metals, chlorinated pesticides, polychlorinated biphenyl (PCB) congeners, polynuclear aromatic hydrocarbons (PAH), and 1,4-dichlorobenzene. Site water and elutriate water, prepared from the suspended-particulate phase (SPP) of Hudson River sediment, were analyzed for metals, pesticides, and PCBS. Water-column or SPP toxicity tests were performed with three species. Benthic acute toxicity tests were performed. Bioaccumulation tests were also conducted.

  9. 76 FR 63342 - Environmental Impact Statement, Tappan Zee Hudson River Crossing Project (Rockland and...

    Science.gov (United States)

    2011-10-12

    ... Impact Statement, Tappan Zee Hudson River Crossing Project (Rockland and Westchester Counties, NY) AGENCY... Tappan Zee Hudson River crossing in Rockland and Westchester Counties, New York. The purpose of this... infrastructure of the Tappan Zee Hudson River crossing. 1. Description of the Project Area The Tappan Zee...

  10. Utility company installs first Hudson River drilled crossing

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-01

    Directionally drilling a natural gas pipe line under the Hudson River called for innovative installation techniques including an elevated pullback over a heavily traveled commuter railroad. The 3,700-ft crossing was installed for Central Hudson Gas and Electric Corp. as part of an 11-mi system to supply natural gas from the Iroquois Gas Transmission System to the utility company's Roseton Generating Station. It represents the first horizontal drilled pipe line installation of the Hudson River and the longest drilled crossing in the US Northeast. At the point of installation, the line was designed to contend with an existing glacial till geology, the river crossing, eight electric cables near the right-of-way and the high-speed Metro North Railroad on the east side of the river. Through the interconnection with Iroquois, the utility receives up to 100 MMcfd of natural gas at 750 psig. Total cost of the new system was about $13.1 million with nearly $3.2 million dedicated to the crossing. This paper describes the installation procedures used in this project.

  11. 77 FR 41048 - Safety Zone; Hudson Valley Triathlon, Ulster Landing, Hudson River, NY

    Science.gov (United States)

    2012-07-12

    ... SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA00 Safety Zone; Hudson Valley Triathlon, Ulster Landing... Landing, NY for the 16th Annual Hudson Valley Triathlon swim event. This temporary safety zone is.... Regulatory History and Information The Hudson Valley Triathlon swim is an annual recurring event that has...

  12. Hudson River Paleoclimate, Sea Level, and Human Impact: A Record From Piermont Marsh, NY

    Science.gov (United States)

    Kurdyla; Peteet, Dorothy; Liberman, Louisa; Sugar; Wong; Hansen, James E. (Technical Monitor)

    2001-01-01

    A 13.77 meter sediment core from Piermont Marsh, NY (40 00 N, 73 55W) records the local and regional vegetational and foraminiferal history of the Hudson Estuary. The sediments were sampled every 4 cm, which represents a decadal to centuryscale resolution. Basal sediment dating is in progress, and the 11-m depth represents about 4000 years. Changes in plant macrofossils and charcoal appear to indicate differences in salinIty and drought, suggesting changes in climate. Scirpus, Salicornia, and high levels of charcoal seem to indicate drier/more saline conditions, while lack of these macrofossils and increases in Chara/Nitella, aquatic leaves, and very little charcoal suggests wetter conditions. Other macrofossils include Carex, Juncus, Polygonum, Zanichellia, Ruppia. High resolution AMS dating of plant macrofossils is in progress, and will be compared with changes in Hudson River sediment cores offshore. Foraminiferal assemblages from key intervals of the core will be presented. Human impact in the upper sediments is visible from the influx of grass seeds, primarily Phragmites, and the ragweed pollen rise.

  13. 75 FR 39839 - Regulated Navigation Area; Hudson River and Port of NY/NJ

    Science.gov (United States)

    2010-07-13

    ... restrictions with the Kiewit and Weeks Marine contractors, and with Hudson River and Sandy Hook Pilots... transfer of the bridge span from shore to the barges has been scheduled on a weekday when it is expected to... Overtaking zones are established in areas identified by Weeks Marine, Hudson River and Sandy Hook Pilots as...

  14. 33 CFR 165.170 - Safety Zone: Triathlon, Ulster Landing, Hudson River, NY.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Safety Zone: Triathlon, Ulster Landing, Hudson River, NY. 165.170 Section 165.170 Navigation and Navigable Waters COAST GUARD, DEPARTMENT... § 165.170 Safety Zone: Triathlon, Ulster Landing, Hudson River, NY. (a) Regulated area. The...

  15. 77 FR 65929 - Notice of Final Federal Agency Actions on the Tappan Zee Hudson River Crossing Project in New York

    Science.gov (United States)

    2012-10-31

    ... Federal Highway Administration Notice of Final Federal Agency Actions on the Tappan Zee Hudson River.... Sec. 139(l)(1). The actions relate to the Tappan Zee Hudson River Crossing Project located in Rockland... the following highway project in the State of New York: Tappan Zee Hudson River Crossing...

  16. 78 FR 27473 - Notice of Final Federal Agency Actions on the Tappan Zee Hudson River Crossing Project in New York

    Science.gov (United States)

    2013-05-10

    ... Federal Highway Administration Notice of Final Federal Agency Actions on the Tappan Zee Hudson River... within the meaning of 23 U.S.C. 139(l)(1). The actions relate to the Tappan Zee Hudson River Crossing... FHWA published a ``Notice of Final Federal Agency Actions'' on the Tappan Zee Hudson River...

  17. Analyzing a Mid-Air Collision Over the Hudson River

    Science.gov (United States)

    Brown, Sean; Holloway, C. Michael

    2012-01-01

    On August 8, 2009, a private airplane collided with a sightseeing helicopter over the Hudson River near Hoboken, New Jersey. All three people aboard the airplane, the pilot and two passengers, and all six people aboard the helicopter, the pilot and five passengers, were killed. The National Transportation Safety Board report on the accident identified inherent limitations of the see-and-avoid concept, inadequate regulations, and errors by the pilots and an air traffic controller as causing or contributing to the accident. This paper presents the results of analyzing the accident using the Systems-Theoretic Accident Model and Processes (STAMP) approach to determining accident causation.

  18. Diatoms as Proxies for Abrupt Events in the Hudson River Estuary

    Science.gov (United States)

    Skorski, W.; Abbott, D. H.; Recasens, C.; Breger, D. L.

    2014-12-01

    The Hudson River estuary has been subject to many abrupt events throughout its history including hurricanes, droughts and pluvials. Hurricanes in particular are rare, discrete events that if fingerprinted can be used to develop better age models for Hudson River sediments. Proxies use observed physical characteristics or biological assemblages (e.g. diatom and foraminiferal assemblages) as tools to reconstruct past conditions prior to the modern instrumental record. Using a sediment core taken from the Hudson River (CDO2-29A), in New York City, drought and pluvial layers were selected based on Cs-137 dating while hurricane layers were determined from occurrences of tropical to subtropical foraminifera. Contrary to previous studies (Weaver, 1970, Weiss et al, 1978), more than sixty different diatom species have been identified using a scanning electron microscope (SEM). Cosmopolitan, hurricane and drought assemblages have begun to be identified after observing multiple layers (Table 1). Tropical foraminifera dominated by Globigerinoides ruber pink were also found in a hurricane layer that we infer was deposited during Hurricane Belle in 1976. More diatom abundance analyses and cataloged SEM pictures will provide further insight into these proxies. Table 1 Diatom Genera and Species Environment Clarification Cyclotella caspia Planktonic, marine-brackish Cosmopolitan Karayevia clevei Freshwater Cosmopolitan Melosira sp Planktonic, marine Cosmopolitan Thalassiosira sp Marine, brackish Cosmopolitan Staurosirella leptostauron Benthic, freshwater Cosmopolitan Actinoptychus senarius Planktonic or benthic, freshwater to brackish Hurricane and pluvial layers Amphora aff. sp Benthic, marine or freshwater Hurricane layers only Nitzschia sp Benthic, marine or freshwater Hurricane layers only Gomphonema sp Freshwater Hurricane layers only Surirella sp Marine-brackish Drought layer only Triceratium sp Marine Drought layer only Other Genera and species Environment Clarification

  19. Real-time Monitoring Network to Characterize Anthropogenic and Natural Events Affecting the Hudson River, NY

    Science.gov (United States)

    Islam, M. S.; Bonner, J. S.; Fuller, C.; Kirkey, W.; Ojo, T.

    2011-12-01

    transition region between fresh and saline water, captured the occurrence of strong precipitation event on the Hudson river as indicated by reduced water column salinity levels in the water column. Despite the large influx of freshwater and suspended solids originating as precipitation runoff, tidal forces dominated the net water transport and coincident suspended particle load. Such information is crucial to track the particle-driven contaminant movement in the water column. Both the FRVP and MRUP have been deployed in an active Poly-Chlorinated Biphenyls Superfund site to characterize the fundamental sediment transport mechanisms affecting remedial dredging operations. A potential application of this monitoring system is in the development of an adaptive remedial operation, where activity would be adjusted to maintain conditions within threshold limits based on real time environmental observations. Further, observational REON data can be integrated with water quality and hydrodynamic models that can be used to evaluate episodic events and their subsequent impacts to the Hudson River.

  20. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: Hudson River: INVERT (Invertebrate Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for marine and estuarine invertebrate species for the Hudson River. Vector polygons in this data set...

  1. Environmental Sensitivity Index (ESI) Atlas: Hudson River, maps and geographic information systems data (NODC Accession 0014791)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set comprises the Environmental Sensitivity Index (ESI) data for the Hudson River from 1942 to 2005. ESI data characterize estuarine environments and...

  2. Hudson River Sub_Bottom Profile Data - Raw SEG-Y Files (*.sgy)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Hudson River Estuary Shallow Water Surveys. Subbottom data was collected November 5 to December 15, 2009, in the estuary north from Saugerties to Troy. Data...

  3. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: Hudson River: MGT (Management Area Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive human-use data for regional and state parks, historic sites, marine sanctuaries, and other managed areas for the Hudson River....

  4. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: Hudson River: SENSITIV (Sensitive Area Points)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains human-use resource data for sensitive areas along the Hudson River. Vector points in this data set represent sensitive areas. This data set...

  5. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: Hudson River: FISH (Fish Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for marine, estuarine, anadromous, and freshwater fish species in the Hudson River. Vector polygons in this...

  6. Latest Holocene evolution and human disturbance of a channel segment in the Hudson River Estuary

    Science.gov (United States)

    Klingbeil, A.D.; Sommerfield, C.K.

    2005-01-01

    The latest Holocene sedimentary record of a cohesive channel and subtidal shoal in the lower Hudson River Estuary was examined to elucidate natural (sea-level rise, sediment transport) and anthropogenic (bulkheading, dredging) influences on the recent morphodynamic evolution of the system. To characterize the seafloor and shallow subbottom, ??? 100 km of high-resolution seismic reflection profiles (chirp) were collected within a 20-km reach of the estuary and correlated with sediment lithologies provided by eight vibracores recovered along seismic lines. Sediment geochronology with 137Cs and 14C was used to estimate intermediate and long-term sedimentation rates, respectively, and historical bathymetric data were analyzed to identify regional patterns of accretion and erosion, and to quantify changes in channel geometry and sediment volume. The shoal lithosome originated around 4 ka presumably with decelerating eustatic sea level rise during the latest Holocene. Long-term sedimentation rates on the shoal (2.3-2.6 mm/yr) are higher than in the channel (2 mm/yr) owing to hydrodynamic conditions that preferentially sequester suspended sediment on the western side of the estuary. As a result, the shoal accretes oblique to the principal axis of tidal transport, and more rapidly than the channel to produce an asymmetric cross-section. Shoal deposits consist of tidally bedded muds and are stratified by minor erosion surfaces that seismic profiles reveal to extend for 10s of meters to kilometers. The frequency and continuity of these surfaces suggest that the surficial shoal is catastrophically stripped on decadal-centennial time scales by elevated tidal flows; tidal erosion maintains the shoal at a uniform depth below sea level and prevents it from transitioning to an intertidal environment. Consequently, the long-term sedimentation rate approximates the rate of sea-level rise in the lower estuary (1-3 mm/yr). After the mid 1800s, the natural geometry of the lower Hudson

  7. Sea-Level Rise Impacts on Hudson River Marshes

    Science.gov (United States)

    Hooks, A.; Nitsche, F. O.

    2015-12-01

    The response of tidal marshes to increasing sea-level rise is uncertain. Tidal marshes can adapt to rising sea levels through vertical accretion and inland migration. Yet tidal marshes are vulnerable to submergence if the rate of sea-level rise exceeds the rate of accretion and if inland migration is limited by natural features or development. We studied how Piermont and Iona Island Marsh, two tidal marshes on the Hudson River, New York, would be affected by sea-level rise of 0.5m, 1m, and 1.5m by 2100. This study was based on the 2011-2012 Coastal New York LiDAR survey. Using GIS we mapped sea-level rise projections accounting for accretion rates and calculated the submerged area of the marsh. Based on the Hudson River National Estuarine Research Reserve Vegetation 2005 dataset, we studied how elevation zones based on vegetation distributions would change. To evaluate the potential for inland migration, we assessed land cover around each marsh using the National Land Cover Database 2011 Land Cover dataset and examined the slope beyond the marsh boundaries. With an accretion rate of 0.29cm/year and 0.5m of sea-level rise by 2100, Piermont Marsh would be mostly unchanged. With 1.5m of sea-level rise, 86% of Piermont Marsh would be flooded. For Iona Island Marsh with an accretion rate of 0.78cm/year, sea-level rise of 0.5m by 2100 would result in a 4% expansion while 1.5m sea-level rise would cause inundation of 17% of the marsh. The results indicate that Piermont and Iona Island Marsh may be able to survive rates of sea-level rise such as 0.5m by 2100 through vertical accretion. At rates of sea-level rise like 1.5m by 2100, vertical accretion cannot match sea-level rise, submerging parts of the marshes. High elevations and steep slopes limit Piermont and Iona Island Marsh's ability to migrate inland. Understanding the impacts of sea-level rise on Piermont and Iona Island Marsh allows for long-term planning and could motivate marsh conservation programs.

  8. 77 FR 22525 - Safety Zone; Swim Events in the Captain of the Port New York Zone; Hudson River, East River...

    Science.gov (United States)

    2012-04-16

    ...) Ederle Swim: Within the waters of the Hudson River between North Cove Marina, New York, NY and Sandy Hook... patrol vessel or may be on shore and will communicate with vessels via VHF-FM radio or loudhailer. In...

  9. A statistical forecast model for Tropical Cyclone Rainfall and flood events for the Hudson River

    Science.gov (United States)

    Cioffi, Francesco; Conticello, Federico; Hall, Thimoty; Lall, Upmanu; Orton, Philip

    2014-05-01

    Tropical Cyclones (TCs) lead to potentially severe coastal flooding through wind surge and also through rainfall-runoff processes. There is growing interest in modeling these processes simultaneously. Here, a statistical approach that can facilitate this process is presented with an application to the Hudson River Basin that is associated with the New York City metropolitan area. Three submodels are used in sequence. The first submodel is a stochastic model of the complete life cycle of North Atlantic (NA) tropical cyclones developed by Hall and Yonekura (2011). It uses archived data of TCs throughout the North Atlantic to estimate landfall rates at high geographic resolution as a function of the ENSO state and of sea surface temperature (SST). The second submodel translates the attributes of a tropical cyclone simulated by the first model to rainfall intensity at selected stations within the watershed of Hudson River. Two different approaches are used and compared: artificial neural network (ANN) and k-nearest neighbor (KNN). Finally, the third submodel transforms, once again, by using an ANN approach and KNN, the rainfall intensities, calculated for the ensemble of the stations, to the streamflows at specific points of the tributaries of the Hudson River. These streamflows are to be used as inputs in a hydrodynamic model that includes storm surge surge dynamics for the simulation of coastal flooding along the Hudson River. Calibration and validation of the model is carried out by using, selected tropical cyclone data since 1950, and hourly station rainfall and streamflow recorded for such extreme events. Four stream gauges (Troy dam, Mohawk River at Cohoes, Mohawk River diversion at Crescent Dam, Hudson River above lock one nr Waterford), a gauge from a tributary in the lower Hudson River, and over 20 rain gauges are used. The performance of the proposed model as tool for storm events is then analyzed and discussed.

  10. National Status and Trends: Bioeffects Program - Magnitude and Extent of Sediment Toxicity in the Hudson-Raritan Estuary

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A survey of the toxicity of sediments was performed by NOAA's National Status and Trends (NSandT) Program throughout the Hudson-Raritan Estuary. The objectives of...

  11. 77 FR 46613 - Safety Zone; 2012 Ironman US Championship Swim, Hudson River, Fort Lee, NJ

    Science.gov (United States)

    2012-08-06

    ...) entitled 2012 Ironman US Championship Swim, Hudson River, Fort Lee, NJ in the Federal Register (77 FR 34285...) 366-9826. SUPPLEMENTARY INFORMATION: Table of Acronyms DHS Department of Homeland Security FR Federal... SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA00 Safety Zone; 2012 Ironman US Championship Swim,...

  12. Variability of an under-ice river plume in Hudson Bay

    Science.gov (United States)

    Ingram, R. Grant; Larouche, Pierre

    1987-08-01

    Observations of the Great Whale River plume in the coastal waters of Hudson Bay, Canada, during late winter and early spring during four different years showed its area to vary as a power of the discharge. The under-ice plume area was much larger than plume area in open water for comparable discharges. Differences in plume geometry were related to elapsed time since ice formation and low-frequency variability of the coastal circulation. The strength and orientation of the coastal motion was weakly correlated with the cross-Hudson Bay atmospheric pressure gradient. The passage of low-pressure systems over Hudson Bay is thought to generate a progressive edge wave in the absence of direct wind forcing. The amplitude of the low-frequency variations in coastal circulation decreased with the increasing spatial extent of the landfast ice in the study area.

  13. Science, law, and Hudson River power plants: A case study in environmental impact assessment

    Energy Technology Data Exchange (ETDEWEB)

    Barnthouse, L.W.; Klauda, R.J.; Vaughan, D.S.; Kendall, R.L. (eds.)

    1988-01-01

    Between 1963 and 1980, the Hudson River estuary was the focus of one of the most ambitious environmental research and assessment programs ever performed. The studies supported a series of US federal proceedings involving licenses and discharge permits for two controversial electric power generating facilities: the Cornwall pumped storage facility, and units 2 and 3 of the Indian Point nuclear generating station. Both facilities were to draw large volumes of water from a region of the Hudson used as spawning and nursery habitat by several fish species, including the striped bass. Fishermen and conservationists feared that a major fraction of the striped bass eggs and larvae in the Hudson would be entrained with the pumped water and killed. Additional fish would be killed on trash screens at the intakes. Scientists were asked to aid the utility companies and regulatory agencies in determining the biological importance of entrainment and impingement. This monograph contains both technical papers that present research results and synthesis papers that summarize and interpret the results. The intent was to: (1) summarize the scientific issues and approaches; (2) present the significant results of the Hudson River biological studies; (3) describe the role of the studies in the decision-making process; (4) evaluate the successes and failures of the studies; and (5) present recommendations for future estuarine impact assessments. Separate abstracts are processed for 22 papers for inclusion in the appropriate data bases.

  14. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: Hudson River: T_MAMMAL (Terrestrial Mammal Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for small terrestrial mammals (woodrats, myotis, muskrat, mink) for the Hudson River. Vector polygons in...

  15. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: Hudson River: WETLANDS (Environmental Sensitivity Index Wetland Types - Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains vector polygons representing coastal wetland habitats for the Hudson River classified according to the Environmental Sensitivity Index (ESI)...

  16. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: Hudson River: M_MAMMAL (Marine Mammal Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for marine mammals (seals) in the Hudson River. Vector polygons in this data set represent marine mammal...

  17. Polychlorinated biphenyls, dioxins, furans, and organochlorine pesticides in spotted sandpiper eggs from the upper Hudson River basin, New York

    Science.gov (United States)

    Custer, T.W.; Custer, Christine M.; Gray, B.R.

    2010-01-01

    In 2004, spotted sandpipers (Actitis macularia) were studied on the Hudson River near Fort Edward south to New Baltimore, NY and on two river drainages that flow into the Hudson River. Concentrations of 28 organochlorine pesticides, 160 polychlorinated biphenyl (PCB) congeners, and 17 dioxin and furan (PCDD-F) congeners were quantified in eggs collected on and off the Hudson River. The pattern of organochlorine pesticides and PCDD-F congeners did not differ significantly between eggs collected on and off the Hudson River. In contrast, the pattern of PCB congeners differed significantly between the Hudson River and other rivers. Total PCBs were significantly greater in eggs from the Hudson River (geometric mean = 9.1 ??g PCBs/g wet weight) than from the other two rivers (0.6 and 0.6 ??g PCBs/g wet weight). Seven of 35 (20%) eggs exceeded 20 ??g PCBs/g wet weight, the estimated threshold for reduced hatching in tree swallows (Tachycineta bicolor) and some raptor species; the maximum concentration was 72.3 ??g PCBs/g wet weight. Models that predicted nest survival and egg success (the proportion of eggs hatching in a clutch if at least one egg hatched) as functions of contaminant levels were poorly distinguished from models that presumed no such associations. While small sample size could have contributed to the inability to distinguish among contaminant and no toxicant models, we cannot rule out the possibility that contaminant concentrations on the Hudson River were not sufficiently high to demonstrate a relationship between contaminant concentrations and reproductive success. ?? 2009 Springer Science+Business Media, LLC.

  18. Winter-time circulation and sediment transport in the Hudson Shelf Valley

    Science.gov (United States)

    Harris, C.K.; Butman, B.; Traykovski, P.

    2003-01-01

    The Hudson Shelf Valley is a bathymetric low that extends across the continental shelf offshore of New York and New Jersey. From December 1999 to April 2000 a field experiment was carried out to investigate the transport of sediment in the shelf and valley system. Near-bed tripods and water-column moorings were deployed at water depths from 38 to 75 m in the axis of the shelf valley and at about 26 m on the adjacent shelves offshore of New Jersey and Long Island, New York. These measured suspended sediment concentrations, current velocities, waves, and water column properties. This paper analyzes observations made during December 1999 and January 2000, and presents the first direct near-bed measurements of suspended sediment concentration and sediment flux from the region. Sediment transport within the Hudson Shelf Valley was coherent over tens of kilometers, and usually aligned with the axis of the shelf valley. Down-valley (off-shore) transport was associated with energetic waves, winds from the east, moderate current velocities (5-10 cm/s), and sea level setup at Sandy Hook, NJ. Up-valley (shoreward) transport occurred frequently, and was associated with winds from the west, low wave energy, high current velocities (20-40 cm/s), and sea level set-down at the coast. Within the shelf valley, net sediment flux (the product of near-bed concentration and velocity) was directed shoreward, up the axis of the valley. Current velocities and suspended sediment fluxes on the New York and New Jersey continental shelves were lower than within the shelf valley, and exhibited greater variability in alignment. Longer term meteorological data indicate that wind, setup, and wave conditions during the study period were more conducive to up-valley transport than seasonal data suggest as average. To relate the observed up-valley sediment flux to observed accumulation of contaminants within the Hudson Shelf Valley requires consideration of transport over longer timescales than those

  19. Measurement Error Affects Risk Estimates for Recruitment to the Hudson River Stock of Striped Bass

    OpenAIRE

    Dennis J. Dunning; Ross, Quentin E.; Munch, Stephan B.; Ginzburg, Lev R.

    2002-01-01

    We examined the consequences of ignoring the distinction between measurement error and natural variability in an assessment of risk to the Hudson River stock of striped bass posed by entrainment at the Bowline Point, Indian Point, and Roseton power plants. Risk was defined as the probability that recruitment of age-1+ striped bass would decline by 80% or more, relative to the equilibrium value, at least once during the time periods examined (1, 5, 10, and 15 years). Measurement error, estimat...

  20. Public support for ecosystem restoration in the Hudson River Valley, USA.

    Science.gov (United States)

    Connelly, Nancy A; Knuth, Barbara A; Kay, David L

    2002-04-01

    We applied the Theory of Planned Behavior to help understand the relationships between environmental beliefs, support for ecosystem restoration actions, and willingness to pay (WTP) for restoration and protection goals in the Hudson River estuary, New York State, USA. We conducted a mail survey with 3,000 randomly-chosen local residents of the Hudson River estuary in the fall of 1999. As hypothesized, the broad ecosystem restoration goals of the Hudson River Estuary Action Plan were more strongly supported than the corresponding specific implementation actions. We found that beliefs and past behavior were better explanatory variables than sociodemographic characteristics for explaining people's support for ecosystem restoration actions and WTP for restoration and protection goals. Because ecosystem restoration goals appear to be more generally acceptable than specific restoration actions, proponents of restoration programs should not become complacent about the need for active public outreach and involvement even if initial restoration program discussions have been low in controversy. Efforts to assess and foster support for ecosystem restoration should be targeted toward audiences identified on the basis of beliefs and past behaviors rather than on sociodemographic characteristics.

  1. Linking habitat use of Hudson River striped bass to accumulation of polychlorinated biphenyl congeners

    Energy Technology Data Exchange (ETDEWEB)

    Ashley, J.T.F.; Secor, D.H.; Zlokovitz, E.; Wales, S.Q.; Baker, J.E.

    2000-03-15

    Since 1976, the commercial striped bass fishery in the Hudson River (NY) has been closed due to total polychlorinated biphenyl (t-PCB) concentrations that exceed the US Food and Drug Administration's advisory level of 2 {micro}g/g-wet weight. Extensive monitoring of Hudson River striped bass demonstrated much more variability in t-PCB levels among individual striped bass than could be explained by their age, sex, or lipid contents. To investigate the possible role of differential habitat use among subpopulations of striped bass in controlling their PCB exposures, 70 fish collected throughout the Hudson River estuary and Long Island Sound in 1994--1995 were analyzed for PCB congeners, and their lifetime migration behaviors were estimated by otolith microchemistry. The mean salinity encountered during the fish's last growth season prior to capture was inversely correlated with the t-PCB body burden. Striped bass permanently residing in fresh and oligohaline portions of the estuary adjacent to known PCB sources had elevated t-PCB levels and congeneric patterns with higher proportions of di-, tri-, and tetrachlorobiphenyls. Conversely, fish spending the majority of their life in more saline waters of the estuary or migrating frequently throughout the salinity gradient contained lower PCB levels composed of more highly chlorinated congeners. The approach used in this study allows habitat use to be incorporated into exposure assessments for anadromous fish species such as striped bass.

  2. Distributions of polyhalogenated compounds in Hudson River (New York, USA) fish in relation to human uses along the river

    Energy Technology Data Exchange (ETDEWEB)

    Skinner, Lawrence C., E-mail: lxskinne@gw.dec.state.ny.us [New York State Department of Environmental Conservation, 625 Broadway, Albany, NY 12233 (United States)

    2011-10-15

    PCBs (as Aroclor concentrations) have been extensively examined in fish along the Hudson River, but other xenobiotic chemicals in fish have had limited assessment. This study determined concentrations and congener distributions of polybrominated diphenyl ethers (PBDEs), polybrominated and polychlorinated dibenzo-p-dioxins and dibenzofurans (PBDD/Fs and PCDD/Fs), and polychlorinated biphenyls (PCBs) in smallmouth bass and striped bass taken from a 385 km reach of the Hudson River. Concentrations of PBDEs and PCBs in smallmouth bass, and PCBs in striped bass, were positively related to human uses of the compounds in the basin. Generally low levels of PCDD/Fs were found. One striped bass, however, contained elevated 2,3,7,8-TCDD, indicating exposure to a known source in the adjacent Newark Bay-Passaic River basin. PBDDs were generally below detection. PBDFs were present in four of 18 smallmouth bass, but were not detected in striped bass. Dioxin-like PCBs contribute most to 2,3,7,8-TCDD toxic equivalents in 29 of 30 samples. - Highlights: > In the Hudson River, > PBDEs in smallmouth bass follow human population patterns, but do not for striped bass. > Proximity to known PCB sources govern PCB levels and patterns in fish. > PBDFs were in smallmouth bass but not striped bass. PBDDs were present in one fish. > PCDD/Fs were low in 29 of 30 fish. A 2,3,7,8-TCDD source affected one striped bass. > PCBs contribute most to 2,3,7,8-TCDD toxic equivalents in 29 of 30 samples. - Residues of polyhalogenated compounds in resident and migratory fish from the Hudson River are compared with human uses of the compounds in the river basin.

  3. Study on the Reutilization of River Sediment

    Institute of Scientific and Technical Information of China (English)

    LIU Gui-yun; JIANG Pei-hua; XI Dan-li

    2002-01-01

    Main components and properties of river sediment are introduced. Secondary pollution of river sediments to the water quality of the river is clarified. The methods of the reutilization of river sediment are elucidated.

  4. 27 CFR 9.47 - Hudson River Region.

    Science.gov (United States)

    2010-04-01

    ... to the New York-Pennsylvania state line in the Delaware River. (11) The boundary proceeds easterly along the Delaware River to the New York-New Jersey state line. (12) The boundary proceeds easterly... proceeds easterly along the northern side of Interstate Route 287 to the junction with N.Y. Route 15....

  5. Multiyear total and methyl mercury exports from two major sub-Arctic rivers draining into Hudson Bay, Canada.

    Science.gov (United States)

    Kirk, Jane L; St Louis, Vincent L

    2009-04-01

    From 2003 to 2007, concentrations of total mercury and methylmercury (THg and MeHg) were continuously measured in two Canadian sub-Arctic rivers (the Nelson and the Churchill) that drain into western Hudson Bay. THg and MeHg concentrations were low in the Nelson River (mean i standard deviation, 0.88 +/- 0.33 and 0.05 +/- 0.03 ng L(-1), respectively). The Churchill River, however, had high concentrations of Hg, particularly MeHg (1.96 +/- 0.8 and 0.18 +/- 0.09 ng L(-1), respectively) and hence may be an important source of MeHg to organisms feeding in the Churchill River estuary. A large portion of THg in the Nelson River was particulate-bound (39 +/- 23%), while in the Churchill River, most was in the dissolved form (78 +/- 15%) and is likely dissolved organic carbon (DC)-bound Hg originating in the surrounding wetlands. In fact, both the Nelson and Churchill Rivers had high DOC concentrations and were therefore large exporters of DOC to Hudson Bay (1480 +/- 723 and 392 +/- 309 x 10(3) t year(-1), respectively) compared to rivers to the south and east Despite high Churchill River Hg concentrations, due to large Nelson River flows, average THg and MeHg exports to Hudson Bay from the Churchill River (37 +/- 28 and 4 +/- 4 kg year(-1), respectively) were about one-third and half the Nelson River exports (113 +/- 52 and 9 +/- 4 kg year(-1)). Interestingly, combined Hg exports to Hudson Bay from Nelson and Churchill River discharge are comparable to THg inputs from Hudson Bay springtime snowmelt (177 +/-140 kg year(-1)) but are approximately 13 times greater than MeHg snowmelt inputs (1 +/- 1 kg year(-1)). Although Hg inputs from rivers and snowmelt together may account for a large portion of the THg pool in Hudson Bay, these inputs account for a lesser portion of the MeHg pool, thus highlighting the importance of water column Hg(ll) methylation as a source of MeHg to Hudson Bay marine food webs.

  6. Multi Year Total and Methyl Mercury Exports from Two Major Sub Arctic Rivers Draining into Hudson Bay, Canada

    Science.gov (United States)

    Kirk, J. L.; St. Louis, V. L.

    2009-05-01

    From 2003 to 2007, concentrations of total and methyl mercury (THg and MeHg), were continuously measured in two Canadian sub Arctic rivers (the Nelson and the Churchill) that drain into western Hudson Bay. THg and MeHg concentrations were low in the Nelson River (mean ± standard deviation; 0.88±0.33 and 0.05±0.03 ng/L, respectively). The Churchill River, however, had high concentrations of Hg, particularly MeHg (1.96±0.8 and 0.18±0.09 ng/L, respectively), and hence may be an important source of MeHg to organisms feeding in the Churchill River estuary. A large portion of THg in the Nelson River was particulate- bound (39±23%), while in the Churchill River, most was in the dissolved form (78±15%) and is likely DOC-bound Hg originating in surrounding wetlands. In fact, both the Nelson and Churchill Rivers had high DOC concentrations and were therefore large exporters of DOC to Hudson Bay (1480±723 and 392±309 x 103 tonnes/year, respectively) compared to rivers to the south and east. Despite high Churchill River Hg concentrations, due to large Nelson River flows, average THg and MeHg exports to Hudson Bay from the Churchill River (37±28 and 4±4 kg/year, respectively) were ˜ one third and half Nelson River exports (113±52 and 9±4 kg/year). Interestingly, combined Hg exports to Hudson Bay from Nelson and Churchill River discharge are comparable to THg inputs from Hudson Bay spring-time snowmelt (177±140 kg/year) but are approximately 13 times greater than MeHg snowmelt inputs (1±1 kg/year). Although Hg inputs from rivers and snowmelt together may account for a large portion of the THg pool in Hudson Bay, these inputs account for a lesser portion of the MeHg pool, thus highlighting the importance of water column Hg(II) methylation as a large source of MeHg to Hudson Bay marine foodwebs.

  7. Measurement error affects risk estimates for recruitment to the Hudson River stock of striped bass.

    Science.gov (United States)

    Dunning, Dennis J; Ross, Quentin E; Munch, Stephan B; Ginzburg, Lev R

    2002-06-07

    We examined the consequences of ignoring the distinction between measurement error and natural variability in an assessment of risk to the Hudson River stock of striped bass posed by entrainment at the Bowline Point, Indian Point, and Roseton power plants. Risk was defined as the probability that recruitment of age-1+ striped bass would decline by 80% or more, relative to the equilibrium value, at least once during the time periods examined (1, 5, 10, and 15 years). Measurement error, estimated using two abundance indices from independent beach seine surveys conducted on the Hudson River, accounted for 50% of the variability in one index and 56% of the variability in the other. If a measurement error of 50% was ignored and all of the variability in abundance was attributed to natural causes, the risk that recruitment of age-1+ striped bass would decline by 80% or more after 15 years was 0.308 at the current level of entrainment mortality (11%). However, the risk decreased almost tenfold (0.032) if a measurement error of 50% was considered. The change in risk attributable to decreasing the entrainment mortality rate from 11 to 0% was very small (0.009) and similar in magnitude to the change in risk associated with an action proposed in Amendment #5 to the Interstate Fishery Management Plan for Atlantic striped bass (0.006)--an increase in the instantaneous fishing mortality rate from 0.33 to 0.4. The proposed increase in fishing mortality was not considered an adverse environmental impact, which suggests that potentially costly efforts to reduce entrainment mortality on the Hudson River stock of striped bass are not warranted.

  8. Measurement Error Affects Risk Estimates for Recruitment to the Hudson River Stock of Striped Bass

    Directory of Open Access Journals (Sweden)

    Dennis J. Dunning

    2002-01-01

    Full Text Available We examined the consequences of ignoring the distinction between measurement error and natural variability in an assessment of risk to the Hudson River stock of striped bass posed by entrainment at the Bowline Point, Indian Point, and Roseton power plants. Risk was defined as the probability that recruitment of age-1+ striped bass would decline by 80% or more, relative to the equilibrium value, at least once during the time periods examined (1, 5, 10, and 15 years. Measurement error, estimated using two abundance indices from independent beach seine surveys conducted on the Hudson River, accounted for 50% of the variability in one index and 56% of the variability in the other. If a measurement error of 50% was ignored and all of the variability in abundance was attributed to natural causes, the risk that recruitment of age-1+ striped bass would decline by 80% or more after 15 years was 0.308 at the current level of entrainment mortality (11%. However, the risk decreased almost tenfold (0.032 if a measurement error of 50% was considered. The change in risk attributable to decreasing the entrainment mortality rate from 11 to 0% was very small (0.009 and similar in magnitude to the change in risk associated with an action proposed in Amendment #5 to the Interstate Fishery Management Plan for Atlantic striped bass (0.006— an increase in the instantaneous fishing mortality rate from 0.33 to 0.4. The proposed increase in fishing mortality was not considered an adverse environmental impact, which suggests that potentially costly efforts to reduce entrainment mortality on the Hudson River stock of striped bass are not warranted.

  9. Sea-level Rise Impacts on Hudson River Marshes and their Vegetation Zonation

    Science.gov (United States)

    Hooks, A.; Nitsche, F. O.

    2016-12-01

    Rising sea levels may cause tidal marshes to be vulnerable to submergence and affect their ability to perform ecosystem services. However, tidal marshes are dynamic ecosystems that can adapt to sea-level rise through inland migration and vertical growth. This study examines how four tidal marshes on the Hudson River (Piermont Marsh, Iona Island Marsh, Tivoli Bays, and Stockport Flats) would be affected by 0.5m, 1m, and 1.5m of sea-level rise by 2100. Using high-resolution LiDAR elevation data and vegetation data, we mapped sea-level rise projections in GIS, accounting for current accretion rates unique to each marsh. We calculated the submerged area of each marsh and analyzed how vegetation zonation in each marsh is expected to change due to rising sea levels. We found that the steep topography of the Hudson River banks limits the marshes' ability to migrate inland, emphasizing the role of elevation-building processes in adaptation. The marshes studied would experience minimal to no inundation under lower rates of sea-level rise such as 0.5m by 2100. At higher projected rates of sea-level rise (1.5m by 2100), Piermont Marsh and Tivoli Bays would experience significant inundation while Iona Island marsh and Stockport Flats would be less affected. Overall, Stockport Flats is projected to be the marsh most resilient to sea-level rise due to its higher accretion rate and its topography. Rising sea levels are also expected to change the areas of vegetation zones, with upland, high marsh, and mid marsh zones generally declining in area and with subtidal and low marsh vegetation zones generally expanding under high rates of sea-level rise. Understanding the impacts of sea-level rise on Hudson River marshes enables long-term planning to adapt to potential changes in marsh ecosystem services and could motivate and inform conservation efforts.

  10. Impact of impingement on the Hudson River white perch population. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Barnthouse, L.W.; Van Winkle, W.; Kirk, B.L.; Vaughan, D.S.

    1982-02-01

    This report summarizes a series of analyses of the magnitude and biological significance of the impingement of white perch at the Indian Point Nuclear Generating Station and other Hudson River power plants. Included in these analyses were evaluations of: (1) two independent lines of evidence relating to the magnitude of impingement impacts on the Hudson River white perch population; (2) the additional impact caused by entrainment of white perch; (3) data relating to density-dependent growth among young-of-the-year white perch; (4) the feasibility of performing population-level analyses of impingement impacts on the white perch populations of Chesapeake Bay and the Delaware River; and (5) the feasibility of using simple food chain and food web models to evaluate community-level effects of impingement and entrainment. Estimated reductions in the abundances of the 1974 and 1975 white perch year classes, caused by impingement and entrainment, were high enough that the possibility of adverse long-term effects cannot be excluded.

  11. Impact of entrainment and impingement on fish populations in the Hudson River estuary. Volume I. Entrainment-impact estimates for six fish populations inhabiting the Hudson River estuary

    Energy Technology Data Exchange (ETDEWEB)

    Boreman, J.; Barnthouse, L.W.; Vaughn, D.S.; Goodyear, C.P.; Christensen, S.W.; Kumar, K.D.; Kirk, B.L.; Van Winkle, W.

    1982-01-01

    This volume is concerned with the estimation of the direct (or annual) entrainment impact of power plants on populations of striped bass, white perch, Alosa spp. (blueback herring and alewife), American shad, Atlantic tomcod, and bay anchovy in the Hudson River estuary. Entrainment impact results from the killing of fish eggs, larvae, and young juveniles that are contained in the cooling water cycled through a power plant. An Empirical Transport Model (ETM) is presented as the means of estimating a conditional entrainment mortality rate (defined as the fraction of a year class which would be killed due to entrainment in the absence of any other source of mortality). Most of this volume is concerned with the estimation of several parameters required by the ETM: physical input parameters (e.g., power-plant withdrawal flow rates); the longitudinal distribution of ichthyoplankton in time and space; the duration of susceptibility of the vulnerable organisms; the W-factors, which express the ratios of densities of organisms in power plant intakes to densities of organisms in the river; and the entrainment mortality factors (f-factors), which express the probability that an organism will be killed if it is entrained. Once these values are obtained, the ETM is used to estimate entrainment impact for both historical and projected conditions.

  12. Low PCB concentrations observed in American eel (Anguilla rostrata) in six Hudson River tributaries

    Science.gov (United States)

    Limburg, K.E.; Machut, L.S.; Jeffers, P.; Schmidt, R.E.

    2008-01-01

    We analyzed 73 eels, collected in 2004 and 2005 above the head of tide in six Hudson River tributaries, for total PCBs, length, weight, age, and nitrogen stable isotope ratios (??15N). Mean total PCB concentration (wet weight basis) was 0.23 ppm ?? 0.08 (standard error), with a range of 0.008 to 5.4 ppm. A majority of eels (84) had concentrations below 0.25 ppm, and only seven eels (10%) had concentrations exceeding 0.5 ppm. Those eels with higher PCB concentrations were ???12 yr; there was a weak correlation of PCB concentration with ??15N and also with weight. Compared to recent (2003) data from the mainstem of the Hudson River estuary, these results indicate that tributaries are generally much less contaminated with PCBs. We hypothesize that those tributary eels with high PCB concentrations were relatively recent immigrants from the mainstem. Given concern over the possible adverse effects of PCBs on eel reproduction, these tributaries may serve as refugia. Therefore, providing improved access to upland tributaries may be critically important to this species. ?? 2008 Northeastern Naturalist.

  13. Groundwater quality in the Upper Hudson River Basin, New York, 2012

    Science.gov (United States)

    Scott, Tia-Marie; Nystrom, Elizabeth A.

    2014-01-01

    Water samples were collected from 20 production and domestic wells in the Upper Hudson River Basin (north of the Federal Dam at Troy, New York) in New York in August 2012 to characterize groundwater quality in the basin. The samples were collected and processed using standard U.S. Geological Survey procedures and were analyzed for 148 physiochemical properties and constituents, including dissolved gases, major ions, nutrients, trace elements, pesticides, volatile organic compounds (VOCs), radionuclides, and indicator bacteria. The Upper Hudson River Basin covers 4,600 square miles in upstate New York, Vermont, and Massachusetts; the study area encompasses the 4,000 square miles that lie within New York. The basin is underlain by crystalline and sedimentary bedrock, including gneiss, shale, and slate; some sandstone and carbonate rocks are present locally. The bedrock in some areas is overlain by surficial deposits of saturated sand and gravel. Eleven of the wells sampled in the Upper Hudson River Basin are completed in sand and gravel deposits, and nine are completed in bedrock. Groundwater in the Upper Hudson River Basin was typically neutral or slightly basic; the water typically was moderately hard. Bicarbonate, chloride, calcium, and sodium were the major ions with the greatest median concentrations; the dominant nutrient was nitrate. Methane was detected in 7 samples. Strontium, iron, barium, boron, and manganese were the trace elements with the highest median concentrations. Two pesticides, an herbicide degradate and an insecticide degredate, were detected in two samples at trace levels; seven VOCs, including chloroform, four solvents, and the gasoline additive methyl tert-butyl ether (MTBE) were detected in four samples. The greatest radon-222 activity, 2,900 picocuries per liter, was measured in a sample from a bedrock well; the median radon activity was higher in samples from bedrock wells than in samples from sand and gravel wells. Coliform bacteria were

  14. 77 FR 66215 - Notice of Final Federal Agency Actions on the Tappan Zee Hudson River Crossing Project in New York

    Science.gov (United States)

    2012-11-02

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF TRANSPORTATION Federal Highway Administration Notice of Final Federal Agency Actions on the Tappan Zee Hudson River Crossing Project in New York Correction In notice document 2012-26799, appearing on page 65929 in the...

  15. 78 FR 59231 - Regulated Navigation Area-Tappan Zee Bridge Construction Project, Hudson River; South Nyack and...

    Science.gov (United States)

    2013-09-26

    ... SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA11 Regulated Navigation Area--Tappan Zee Bridge... area (RNA) on the navigable waters of the Hudson River surrounding the Tappan Zee Bridge. This... situation created by the construction of the Tappan Zee Bridge. The Coast Guard has discussed this...

  16. Haw River sediment quality assessment

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This report documents an evaluation of chemical contaminants in, and toxicity of, sediments collected from impoundments created by dams on the Haw River in Alamance...

  17. Polychlorinated biphenyls (PCBs) in adult and juvenile mallards (Anas platyrhynchos) from the Hudson River, New York, USA.

    Science.gov (United States)

    Madden, Sean S; Skinner, Lawrence C

    2016-09-01

    The Hudson River, NY, USA is contaminated for over 300 km with polychlorinated biphenyls (PCBs) released from two General Electric (GE) capacitor plants. We collected adult and juvenile mallards (Anas platyrhynchos) from four different areas of the river; an area upstream of the GE plants (n = 38), two areas directly downstream of the GE plants (n = 41, n = 38), and an area more than 100 km downstream in the freshwater tidal river (n = 20). Collections occurred during July and August (2008) when ducks were flightless to ensure ducks were "resident" and exposures were local. Fat and muscle tissue were analyzed for PCBs. PCBs were detected in all samples, and mallards below the GE plant sites on the Hudson River had orders of magnitude higher concentrations of PCBs than those above the plants. Juvenile mallards from areas directly downstream of the GE plant sites tended to have higher PCB concentrations in fat than adults. The patterns of PCB congeners and homolog groups varied across the study areas, with areas directly downstream of the GE plants dominated by tetra-chloro biphenyls whereas samples from upstream and the freshwater tidal river tended towards higher chlorinated congeners. Congener patterns between male and female and juvenile and adult mallards were generally similar within study areas, with the exception of one area downstream of the GE plants where adult birds exhibited different patterns than juveniles. Evidence of PCBs from the GE plant sites was detected in the tidal Hudson River, more than 100 km downstream of the plant sites. More than 90% of the ducks collected in areas downstream of the GE plants but above the tidally influenced river exceed the USFDA tolerance level for PCBs in poultry, which should be a concern for consumers of waterfowl taken in proximity to the upper Hudson River.

  18. Groundwater quality in the Chemung River, Eastern Lake Ontario, and Lower Hudson River Basins, New York, 2013

    Science.gov (United States)

    Scott, Tia-Marie; Nystrom, Elizabeth A.; Reddy, James E.

    2015-11-10

    In a study conducted by the U.S. Geological Survey (USGS) in cooperation with the New York State Department of Environmental Conservation, water samples were collected from 4 production wells and 4 domestic wells in the Chemung River Basin, 8 production wells and 7 domestic wells in the Eastern Lake Ontario Basin, and 12 production wells and 13 domestic wells in the Lower Hudson River Basin (south of the Federal Lock and Dam at Troy) in New York. All samples were collected in June, July, and August 2013 to characterize groundwater quality in these basins. The samples were collected and processed using standard USGS procedures and were analyzed for 148 physiochemical properties and constituents, including dissolved gases, major ions, nutrients, trace elements, pesticides, volatile organic compounds, radionuclides, and indicator bacteria.

  19. 77 FR 40518 - Swim Events in the Captain of the Port New York Zone; Hudson River, East River, Upper New York...

    Science.gov (United States)

    2012-07-10

    ... Upper New York Bay, Hudson River 5.1 Brooklyn Bridge Swim Date: July 15, 2012. Rain Date: NA... Water Swim Clinics, Verrazano Bridge Swim, Rose Pitonof Swim, and Liberty to Freedom Swim. The sponsors... York Bay 2.1 Verrazano Bridge Swim Date: July 21, 2012. Rain Date: July 22, 2012. Enforcement Period...

  20. OTOLITH MICROCHEMISTRY INDICATES UNEXPECTED PATTERNS OF RESIDENCY AND ANADROMY IN BLUEBACK HERRING, ALOSA AESTIVALIS, IN THE HUDSON AND MOHAWK RIVERS.

    Directory of Open Access Journals (Sweden)

    LIMBURG K. E.

    2001-07-01

    PIXE, providing a detailed time series of data on the Sr:Ca, and thus habitat use history, of the fish. We also analyzed otoliths of Mohawk and Hudson River young-of-year (YOY. The Sr:Ca ratios of Mohawk YOY are slightly but significantly higher than those of Hudson YOY. Life history transects for 51 adults show complex patterns of Sr:Ca, indicating that many of the fish move into salt water at least for brief periods. However, many fish appear to spend extended parts of their post-YOY lives in fresh water, and at least two adults (caught in the Mohawk near Rome, NY appear never to have changed habitats at all. This is thus the first demonstration of residency in Mohawk River herring.

  1. Accumulation of polychlorinated biphenyls in american shad during their migration in the Hudson River, spring 1977.

    Science.gov (United States)

    Pastel, M; Bush, B; Kim, J S

    1980-06-01

    Fifty-two female American shad (Alosa sapidissima) were collected during the spring of 1977 at two sites on the lower Hudson River, 27 miles and 75 miles from the river mouth. The fish were extracted with hexane, and the extracts were analyzed by electron-capture gas chromatography (EC-GC) and by GC/mass spectrometry (MS), PCBs were quantitated by EC-GC, and the concentrations were compared by fish length and by site. Fish collected from the downstream site contained a mean PCB concentration of 2.0 +/- 1.0 microgram/g, wet weight; fish from the upstream site contained a mean PCB concentration of 6.1 +/- 2.6 microgram/g, wet weight. Aliquots of the hexane extracts were fractionated before analysis by GC/MS. The presence of PCBs was confirmed, and DDE and the alkane series from C22 through C26 were detected. American shad are saltwater fish that only enter fresh water to spawn. Because they do not feed in fresh water before spawning, they may be used as an indicator of water contamination.

  2. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: Hudson River: HYDRO (Hydrography Lines and Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains vector lines and polygons representing coastal hydrography used in the creation of the Environmental Sensitivity Index (ESI) for the Hudson...

  3. Ground-Water Quality in the Upper Hudson River Basin, New York, 2007

    Science.gov (United States)

    Nystrom, Elizabeth A.

    2009-01-01

    Water samples were collected from 25 production and domestic wells in the Upper Hudson River Basin (north of the Federal Dam at Troy, N.Y.) from August through November 2007 to characterize the ground-water quality. The Upper Hudson River Basin covers 4,600 square miles in upstate New York, Vermont, and Massachusetts; the study area encompasses the 4,000 square miles that lie within New York. The basin is underlain by crystalline and sedimentary bedrock, including gneiss, shale, and slate; some sandstone and carbonate rocks are present locally. The bedrock in some areas is overlain by surficial deposits of saturated sand and gravel. Of the 25 wells sampled, 13 were finished in sand and gravel deposits, and 12 were finished in bedrock. The samples were collected and processed by standard U.S. Geological Survey procedures and were analyzed for 225 physical properties and constituents, including major ions, nutrients, trace elements, radon-222, pesticides, volatile organic compounds (VOCs), and indicator bacteria. Water quality in the study area is generally good, but concentrations of some constituents exceeded current or proposed Federal or New York State drinking-water standards; these were: color (1 sample), pH (2 samples), sodium (5 samples), nitrate plus nitrite (2 samples), aluminum (3 samples), iron (1 sample), manganese (7 samples), radon-222 (11 samples), and bacteria (1 sample). Dissolved-oxygen concentrations in samples from wells finished in sand and gravel [median 5.4 milligrams per liter (mg/L)] were greater than those from wells finished in bedrock (median 0.4 mg/L). The pH of all samples was typically neutral or slightly basic (median 7.6); the median water temperature was 9.7 deg C. The ions with the highest concentrations were bicarbonate (median 123 mg/L) and calcium (median 33.9 mg/L). Ground water in the basin is generally soft to moderately hard (less than or equal to 120 mg/L as CaCO3) (median hardness 110 mg/L as CaCO3). Concentrations of

  4. Dinoflagellate cyst production in Hudson Bay, the world's largest inland sea, based on monthly sediment trap data

    Science.gov (United States)

    Heikkilä, Maija; Pospelova, Vera; Forest, Alexandre; Stern, Gary

    2014-05-01

    Phytoplankters, microscopic primary producers of oceans are capable of responding rapidly to environmental fluctuations due to their high cell replication rates. Fast phytoplankton growth maybe balanced out by equally fast consumption by herbivorous grazers. In high-latitude marine systems, seasonal fluctuations in plankton biomass are essentially linked to light regime controlled by the waxing and waning sea-ice cover. In addition, nutrient limitation in surface waters, seasonal temperature fluctuations and changes in freshwater inputs may play important roles. In cold-water seas, many planktonic organisms cope with seasonal harshness by the production of benthic dormant stages. Dinoflagellates are a diverse group of single-celled plankton, constituting major marine primary producers, as well as herbivorous grazers of the microbial loop. Many dinoflagellate species produce highly resistant, organic-walled resting cysts that are archived in sediments and have been increasingly used to reconstruct past environmental conditions, e.g., sea-surface temperature and salinity, productivity, sea-ice cover and eutrophication. Marine sediment core sequences are characterized by slow accumulation rates and high mixing rates: the top centimeter of surface sediment from an arctic shelf may correspond to several years or decades of deposition. Consequently, sedimentary archives do not give direct information on long-term changes in seasonal bloom patterns or cues of annually recurring life-cycle events. We used two particle-intercepting sediment traps moored in eastern and western Hudson Bay, respectively, to study monthly fluctuations in dinoflagellate cyst production from October 2005 to September 2006. The traps were deployed close to the seafloor and recovered during the ArcticNet annual expeditions onboard the CCGS Amundsen in 2005 and the CCGS Pierre Radisson in 2006. We document the seasonal succession of dinoflagellate cyst taxa, together with cyst species composition

  5. Sediment load reduction in Chinese rivers

    Institute of Scientific and Technical Information of China (English)

    Cheng LIU; Jueyi SUI; Zhao-Yin WANG

    2008-01-01

    In this Paper,the changes in the annual runoff and sediment transport have been assessed by using the long term observation data from 10 gauging stations on 10 large rivers across China from far north to far south.It is found that the annual sediment yield has generally had a decreasing trend in the past half century.According to the changes in annual runoff and the sediment yield per area.rivers in China can be classified into the following three groups:1)rivers with decreasing annual sediment transport and stable runoff:2)rivers with both decreasing annual sediment transport and runoff and 3)rivers with greatly reduced annual sediment transport and decreasing annual runoff.The results indicate that,in all southern rivers(to the south of the Huaihe River including the Huaihe River),there has been little change in average annual runoff but a dramatic decrease in annual sediment transport.In the northern rivers.however,both the annual sediment yield and the runoff show significant evidence of reduction.To further investigate the recent changes in annual runoff and sediment transport.the short-term observation data from these 10 gauging stations in the recent 10 years have been assessed.Results show that both the annual sediment transport and the runoff have decreased significantly in the northern rivers in the past 10 years.Using the Yellow River at the Lijin Station as an example,the average annual runoff for the last 10 years is only 1/3 of the long term average value and the average annual sediment yield of the last 10 years is only 1/4 of the long term average value.More unusually,in the Yongding River the annual sediment yield has approached zero and the runoff has decreased significantly.In addition,the impacts of human activities on the changes in both runoff and sediment transport have been discussed.

  6. DYNAMIC RESOURCES OF RIVER SEDIMENTS

    Institute of Scientific and Technical Information of China (English)

    George GERGOV; Tzviatka KARAGIOZOVA

    2005-01-01

    The currently enforced Bulgarian water legislation [the Water Act (1999),the Environmental Protection Act (2002),etc.] requires conducting special studies for accurate assessments of sand and gravel flux along the rivers,prior to the issue of the license for operation of the quarries,where they will be dredged. The activity of a quarry necessitates special investigations because of the large dimensions of the damages inflicted on the environment. Ours studies have shown that there are two types of river reaches,in which abstracion of sand and gravel is performed. The first one refers usually to the plain area river reaches. The other type is mountainous with high rate of sediment load,which consists of coarse solid matter. The "on-the-spot" study on the environmental impact of the sand and gravel dredging has revealed that in the area of the quarry the riverbed cuts into the alluvial sediments to about 6-7 m and this ditch has spread by attenuation at a distance of more than 25 km upstream. Downstream the pit the picture is replicated and at the 8th km a local scour on the riverbed,amounting to more than 1.80 - 2.00 m,has been measured near the foundation of a massive bridge in the centre of city of Plovdiv. Such assessments of dynamic resources of sand and gravel materials are expected to serve for the purposes of gradual limitation of this activity in river sections close to renewable resources. The amount of sediment load,which may be abstracted in the area of the Orizare quarry in Bulgaria on a yearly basis has been calculated as 6000 m3/a. It ensures that the resources will not be exhausted and irreversible distortion of the riverbed will be prevented. This is an environmentally safe limit.

  7. Tsunami hazard assessment in the Hudson River Estuary based on dynamic tsunami-tide simulations

    Science.gov (United States)

    Shelby, Michael; Grilli, Stéphan T.; Grilli, Annette R.

    2016-12-01

    This work is part of a tsunami inundation mapping activity carried out along the US East Coast since 2010, under the auspice of the National Tsunami Hazard Mitigation program (NTHMP). The US East Coast features two main estuaries with significant tidal forcing, which are bordered by numerous critical facilities (power plants, major harbors,...) as well as densely built low-level areas: Chesapeake Bay and the Hudson River Estuary (HRE). HRE is the object of this work, with specific focus on assessing tsunami hazard in Manhattan, the Hudson and East River areas. In the NTHMP work, inundation maps are computed as envelopes of maximum surface elevation along the coast and inland, by simulating the impact of selected probable maximum tsunamis (PMT) in the Atlantic ocean margin and basin. At present, such simulations assume a static reference level near shore equal to the local mean high water (MHW) level. Here, instead we simulate maximum inundation in the HRE resulting from dynamic interactions between the incident PMTs and a tide, which is calibrated to achieve MHW at its maximum level. To identify conditions leading to maximum tsunami inundation, each PMT is simulated for four different phases of the tide and results are compared to those obtained for a static reference level. We first separately simulate the tide and the three PMTs that were found to be most significant for the HRE. These are caused by: (1) a flank collapse of the Cumbre Vieja Volcano (CVV) in the Canary Islands (with a 80 km3 volume representing the most likely extreme scenario); (2) an M9 coseismic source in the Puerto Rico Trench (PRT); and (3) a large submarine mass failure (SMF) in the Hudson River canyon of parameters similar to the 165 km3 historical Currituck slide, which is used as a local proxy for the maximum possible SMF. Simulations are performed with the nonlinear and dispersive long wave model FUNWAVE-TVD, in a series of nested grids of increasing resolution towards the coast, by one

  8. 77 FR 41271 - Safety Zone; Newburgh to Beacon Swim, Newburgh, Hudson River, NY

    Science.gov (United States)

    2012-07-13

    ... Acronyms DHS Department of Homeland Security FR Federal Register CFR Code of Federal Regulations NPRM... SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA00 Safety Zone; Newburgh to Beacon Swim, Newburgh, Hudson... Newburgh, NY for the annual Newburgh Beacon Swim event. This temporary safety zone is necessary to...

  9. Cyclic Sediment Trading Between Channel and River Bed Sediments

    Science.gov (United States)

    Haddadchi, A.

    2015-12-01

    Much of the previous work on sediment tracing has focused on determining either the initial sources of the sediment (soils derive from a particular rock type) or the erosion processes generating the sediment. However, alluvial stores can be both a source and sink for sediment transported by streams. Here geochemical and fallout radionuclide tracing of river-bed and alluvial sediments are used to determine the role of secondary sources, sediment stores, as potential sources of sediment leaving Emu Creek catchment, southeastern Queensland, Australia. Activity concentrations of 137Cs on the river sediments are consistent with channel erosion being the dominant source at all sites sampled along the river. To characterise the deposition and remobilisation cycles in the catchment, a novel geochemical tracing approach was used. Successive pockets of alluvium were treated as discrete sink terms within geochemical mixing models and their source contributions compared with those of river bed sediments collected adjacent to each alluvial pocket. Three different size fractions were examined; silts and clays (soil/rock type sources to river bed and alluvial sediments at each sampling site was identical for all three different size fractions, but varied along the stream. Combining these findings it is concluded that proximal alluvial stores dominated the supply of sediment to the river at each location, with this being particularly evident at the catchment outlet. Identical contribution of rock type sources to both river bed and alluvial pockets together with the dominant erosion being from channel banks indicates a high degree of 'trading' between the fluvial space and the alluvial space. Hence, management works aimed at primarily reducing the supply of sediments to the outlet of Emu Creek should focus on rehabilitation of channel banks in the lower catchment.

  10. SEDIMENT TRANSPORT IN THE YANGTZE RIVER ESTUARY

    Institute of Scientific and Technical Information of China (English)

    SHEN Zhigang

    2001-01-01

    The hydrodynamic and the sediment transport patterns within the estuary of the Yangtze River are complex because of interaction of fluvial and the tidal forces, depending on freshwater discharge and tidal range. Based on the data measured in recent years, this paper discusses the characteristics of flow and sediment movement in the Yangtze River Estuary and their influences on the evolution of the estuary.

  11. Effects of recreational flow releases on natural resources of the Indian and Hudson Rivers in the Central Adirondack Mountains, New York, 2004-06

    Science.gov (United States)

    Baldigo, Barry P.; Mulvihill, C.I.; Ernst, A.G.; Boisvert, B.A.

    2011-01-01

    The U.S. Geological Survey (USGS), the New York State Department of Environmental Conservation (NYSDEC), and Cornell University carried out a cooperative 2-year study from the fall of 2004 through the fall of 2006 to characterize the potential effects of recreational-flow releases from Lake Abanakee on natural resources in the Indian and Hudson Rivers. Researchers gathered baseline information on hydrology, temperature, habitat, nearshore wetlands, and macroinvertebrate and fish communities and assessed the behavior and thermoregulation of stocked brown trout in study reaches from both rivers and from a control river. The effects of recreational-flow releases (releases) were assessed by comparing data from affected reaches with data from the same reaches during nonrelease days, control reaches in a nearby run-of-the-river system (the Cedar River), and one reach in the Hudson River upstream from the confluence with the Indian River. A streamgage downstream from Lake Abanakee transmitted data by satellite from November 2004 to November 2006; these data were used as the basis for developing a rating curve that was used to estimate discharges for the study period. River habitat at most study reaches was delineated by using Global Positioning System and ArcMap software on a handheld computer, and wetlands were mapped by ground-based measurements of length, width, and areal density. River temperature in the Indian and Hudson Rivers was monitored continuously at eight sites during June through September of 2005 and 2006; temperature was mapped in 2005 by remote imaging made possible through collaboration with the Rochester Institute of Technology. Fish communities at all study reaches were surveyed and characterized through quantitative, nearshore electrofishing surveys. Macroinvertebrate communities in all study reaches were sampled using the traveling-kick method and characterized using standard indices. Radio telemetry was used to track the movement and persistence of

  12. Short- and long-term monitoring of underwater sound levels in the Hudson River (New York, USA).

    Science.gov (United States)

    Martin, S Bruce; Popper, Arthur N

    2016-04-01

    There is a growing body of research on natural and man-made sounds that create aquatic soundscapes. Less is known about the soundscapes of shallow waters, such as in harbors, rivers, and lakes. Knowledge of soundscapes is needed as a baseline against which to determine the changes in noise levels resulting from human activities. To provide baseline data for the Hudson River at the site of the Tappan Zee Bridge, 12 acoustic data loggers were deployed for a 24-h period at ranges of 0-3000 m from the bridge, and four of the data loggers were re-deployed for three months of continuous recording. Results demonstrate that this region of the river is relatively quiet compared to open ocean conditions and other large river systems. Moreover, the soundscape had temporal and spatial diversity. The temporal patterns of underwater noise from the bridge change with the cadence of human activity. Bridge noise (e.g., road traffic) was only detected within 300 m; farther from the bridge, boating activity increased sound levels during the day, and especially on the weekend. Results also suggest that recording near the river bottom produced lower pseudo-noise levels than previous studies that recorded in the river water column.

  13. Oceanographic Data from Winter and Spring Circulation and Sediment Transport Studies in the Hudson Shelf Valley collected in December-April (1999/2000) and April-June 2006

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The U.S. Geological Survey (USGS) conducted field experiments to understand the transport of sediments and associated contaminants in the Hudson Shelf Valley,...

  14. Oceanographic Data from Winter and Spring Circulation and Sediment Transport Studies in the Hudson Shelf Valley collected in December-April (1999/2000) and April-June 2006

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The U.S. Geological Survey (USGS) conducted field experiments to understand the transport of sediments and associated contaminants in the Hudson Shelf Valley,...

  15. Building sustainable communities using sense of place indicators in three Hudson River Valley, NY, tourism destinations: An application of the limits of acceptable change process

    Science.gov (United States)

    Laura E. Sullivan; Rudy M. Schuster; Diane M. Kuehn; Cheryl S. Doble; Duarte. Morais

    2010-01-01

    This study explores whether measures of residents' sense of place can act as indicators in the Limits of Acceptable Change (LAC) process to facilitate tourism planning and management. Data on community attributes valued by residents and the associated values and meanings were collected through focus groups with 27 residents in three Hudson River Valley, New York,...

  16. Computer simulation model for the striped bass young-of-the-year population in the Hudson River. [Effects of entrainment and impingement at power plants on population dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Eraslan, A.H.; Van Winkle, W.; Sharp, R.D.; Christensen, S.W.; Goodyear, C.P.; Rush, R.M.; Fulkerson, W.

    1975-09-01

    This report presents a daily transient (tidal-averaged), longitudinally one-dimensional (cross-section-averaged) computer simulation model for the assessment of the entrainment and impingement impacts of power plant operations on young-of-the-year populations of the striped bass, Morone saxatilis, in the Hudson River.

  17. Groundwater quality in the Lower Hudson River Basin, New York, 2008

    Science.gov (United States)

    Nystrom, Elizabeth A.

    2010-01-01

    Water samples were collected from 32 production and domestic wells in the study area from August through November 2008 to characterize the groundwater quality. The study area, which covers 5,607 square miles, encompasses the part of the Lower Hudson River Basin that lies within New York plus the parts of the Housatonic, Hackensack, Bronx, and Saugatuck River Basins that are in New York. The study area is underlain by mainly clastic bedrock, predominantly shale, with carbonate and crystalline rock present locally. The bedrock is generally overlain by till, but surficial deposits of saturated sand and gravel are present in some areas. Of the 32 wells sampled, 16 were finished in sand and gravel deposits and 16 were finished in bedrock. The samples were collected and processed by standard U.S. Geological Survey procedures and were analyzed for 225 physiochemical properties and constituents, including major ions, nutrients, trace elements, radon-222, pesticides, and volatile organic compounds (VOCs); indicator bacteria were collected and analyzed by New York State Department of Health procedures. Water quality in the study area is generally good, but concentrations of some constituents exceeded current or proposed Federal or New York State primary or secondary drinking-water standards; the standards exceeded were color (2 samples), pH (6 samples), sodium (8 samples), fluoride (1 sample), aluminum (3 samples), arsenic (1 sample), iron (7 samples), manganese (14 samples), radon-222 (17 samples), tetrachloroethene (1 sample), and bacteria (7 samples). The pH of all samples was typically neutral or slightly basic (median 7.2); the median water temperature was 11.8 degrees C. The ions with the highest concentrations were bicarbonate [median 167 milligrams per liter (mg/L)] and calcium (median 38.2 mg/L). Groundwater in the study area ranged from very soft to very hard, but more samples were classified as very hard (181 mg/L as CaCO3 or more) than soft (60 mg/L as CaCO3 or

  18. Simulating the Effects of Sea Level Rise on the Resilience and Migration of Tidal Wetlands along the Hudson River.

    Science.gov (United States)

    Tabak, Nava M; Laba, Magdeline; Spector, Sacha

    2016-01-01

    Sea Level Rise (SLR) caused by climate change is impacting coastal wetlands around the globe. Due to their distinctive biophysical characteristics and unique plant communities, freshwater tidal wetlands are expected to exhibit a different response to SLR as compared with the better studied salt marshes. In this study we employed the Sea Level Affecting Marshes Model (SLAMM), which simulates regional- or local-scale changes in tidal wetland habitats in response to SLR, and adapted it for application in a freshwater-dominated tidal river system, the Hudson River Estuary. Using regionally-specific estimated ranges of SLR and accretion rates, we produced simulations for a spectrum of possible future wetland distributions and quantified the projected wetland resilience, migration or loss in the HRE through the end of the 21st century. Projections of total wetland extent and migration were more strongly determined by the rate of SLR than the rate of accretion. Surprisingly, an increase in net tidal wetland area was projected under all scenarios, with newly-formed tidal wetlands expected to comprise at least 33% of the HRE's wetland area by year 2100. Model simulations with high rates of SLR and/or low rates of accretion resulted in broad shifts in wetland composition with widespread conversion of high marsh habitat to low marsh, tidal flat or permanent inundation. Wetland expansion and resilience were not equally distributed through the estuary, with just three of 48 primary wetland areas encompassing >50% of projected new wetland by the year 2100. Our results open an avenue for improving predictive models of the response of freshwater tidal wetlands to sea level rise, and broadly inform the planning of conservation measures of this critical resource in the Hudson River Estuary.

  19. Simulating the Effects of Sea Level Rise on the Resilience and Migration of Tidal Wetlands along the Hudson River.

    Directory of Open Access Journals (Sweden)

    Nava M Tabak

    Full Text Available Sea Level Rise (SLR caused by climate change is impacting coastal wetlands around the globe. Due to their distinctive biophysical characteristics and unique plant communities, freshwater tidal wetlands are expected to exhibit a different response to SLR as compared with the better studied salt marshes. In this study we employed the Sea Level Affecting Marshes Model (SLAMM, which simulates regional- or local-scale changes in tidal wetland habitats in response to SLR, and adapted it for application in a freshwater-dominated tidal river system, the Hudson River Estuary. Using regionally-specific estimated ranges of SLR and accretion rates, we produced simulations for a spectrum of possible future wetland distributions and quantified the projected wetland resilience, migration or loss in the HRE through the end of the 21st century. Projections of total wetland extent and migration were more strongly determined by the rate of SLR than the rate of accretion. Surprisingly, an increase in net tidal wetland area was projected under all scenarios, with newly-formed tidal wetlands expected to comprise at least 33% of the HRE's wetland area by year 2100. Model simulations with high rates of SLR and/or low rates of accretion resulted in broad shifts in wetland composition with widespread conversion of high marsh habitat to low marsh, tidal flat or permanent inundation. Wetland expansion and resilience were not equally distributed through the estuary, with just three of 48 primary wetland areas encompassing >50% of projected new wetland by the year 2100. Our results open an avenue for improving predictive models of the response of freshwater tidal wetlands to sea level rise, and broadly inform the planning of conservation measures of this critical resource in the Hudson River Estuary.

  20. Managing Fine Sediment in Regulated Rivers

    Science.gov (United States)

    Schmidt, J. C.

    2015-12-01

    A paradigm useful in managing dams and diversions is that the combined effects of changing flow regime and sediment supply perturb regulated rivers into sediment deficit or sediment surplus. In the U.S. Southwest, large dams constructed on interregional rivers typically create sediment deficit segments >100 km long. Further downstream, sediment surplus may occur if desert tributaries deliver sufficient amounts of fine sediment, such as parts of the Rio Grande, lower Green River, and Colorado River delta. Sediment surplus also occurs on most smaller regional rivers. The protocols for managing rivers perturbed into sediment deficit have been refined for the Colorado River downstream from Glen Canyon Dam but are nonetheless challenged by externally determined water-supply agreements that require annual water deliveries that sometimes occur when there has been little tributary resupply. Virtually all of the naturally supplied sand to the depleted, 100-km long Marble Canyon comes from the Paria River. The sand delivery rate since 2012 was sufficiently large to trigger short-duration controlled floods under the High Flow Experiment (HFE) Protocol. The sand mass balance of Marble Canyon since 2012 when the HFE Protocol was adopted was positive due to the combination of relatively large sand delivery from the Paria River and average total annual flows. Large total annual flows have the potential to export large amounts of sand and create a negative sand mass balance. Despite the challenge of managing a scarce and highly variable sand supply and occasional years of large reservoir releases, the long-term (2006-2015) sand mass balance for the upstream half of Marble Canyon is indeterminant and is positive for the downstream half of Marble Canyon. The apparent success of managing sand in Grand Canyon under deficit conditions suggests that fine sediment management protocols might be developed for other regulated rivers. Implementation would require establishment of networks of

  1. A 210Pb sediment budget and granulometric record of sediment fluxes in a subarctic deltaic system: The Great Whale River, Canada

    Science.gov (United States)

    Hülse, Peter; Bentley, Samuel J.

    2012-08-01

    To elucidate how modern river discharge conditions of the Great Whale River (GWR) are represented in the marine sedimentary record, eight box and gravity cores were examined in terms of 210Pb and 137Cs radiochemistry, granulometry and physical sedimentary structures. These data were analyzed to provide insights into sedimentary processes and patterns at the study site. Sediment accumulation in the study area appears to be a relatively steady process over time-scales of 50-100 yr, allowing biological activity to overprint the primary depositional fabric. Subtle differences between 137Cs and 210Pb sediment accumulation rates (SARs) suggest an offshore shift in the locus of fine sediment deposition during the past ˜150 yr, which may be a result of ongoing climatic warming leading to decreasing sea-ice coverage and a more energetic marine environment. Under present day conditions 23% (40,000 t/yr) of the discharged sediment appear to accumulate in a 25 km2 area off the river mouth. The remaining 77% (136,000 t/yr) are either deposited further offshore, possibly along the northeastern shore as a result of Hudson Bay's counterclockwise circulation, or dispersed into the Hudson Bay system. Grain diameter frequency analyses suggest that environmental processes controlling sediment transport and deposition vary over decadal time scales. Although, we cannot define an exact cause for this pattern, these shifts may be related to variations in river discharge, wave climate, possibly due to windier conditions or less sea-ice dampening, bioturbation or a combination of all. This suggests that also longer term river discharge signals are preserved in the marine sedimentary record offshore the Great Whale River. In summary, no major change in sediment discharge over the past ˜150 yr was observed. However, the offshore shift in the locus of sediment deposition suggests, that a warming climate will lead to more energetic marine conditions, less sea-ice coverage, and an increased

  2. Sediment transport in two mediterranean regulated rivers.

    Science.gov (United States)

    Lobera, G; Batalla, R J; Vericat, D; López-Tarazón, J A; Tena, A

    2016-01-01

    Mediterranean climate is characterized by highly irregular rainfall patterns with marked differences between wet and dry seasons which lead to highly variable hydrological fluvial regimes. As a result, and in order to ensure water availability and reduce its temporal variability, a high number of large dams were built during the 20th century (more than 3500 located in Mediterranean rivers). Dams modify the flow regime but also interrupt the continuity of sediment transfer along the river network, thereby changing its functioning as an ecosystem. Within this context, the present paper aims to assess the suspended sediment loads and dynamics of two climatically contrasting Mediterranean regulated rivers (i.e. the Ésera and Siurana) during a 2-yr period. Key findings indicate that floods were responsible for 92% of the total suspended sediment load in the River Siurana, while this percentage falls to 70% for the Ésera, indicating the importance of baseflows on sediment transport in this river. This fact is related to the high sediment availability, with the Ésera acting as a non-supply-limited catchment due to the high productivity of the sources (i.e. badlands). In contrast, the Siurana can be considered a supply-limited system due to its low geomorphic activity and reduced sediment availability, with suspended sediment concentration remaining low even for high magnitude flood events. Reservoirs in both rivers reduce sediment load up to 90%, although total runoff is only reduced in the case of the River Ésera. A remarkable fact is the change of the hydrological character of the River Ésera downstream for the dam, shifting from a humid mountainous river regime to a quasi-invariable pattern, whereas the Siurana experiences the opposite effect, changing from a flashy Mediterranean river to a more constant flow regime below the dam.

  3. Delaware River and Upper Bay Sediment Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The area of coverage consists of 192 square miles of benthic habitat mapped from 2005 to 2007 in the Delaware River and Upper Delaware Bay. The bottom sediment map...

  4. Snake and Columbia Rivers Sediment Sampling Project

    Energy Technology Data Exchange (ETDEWEB)

    Pinza, M.R.; Word, J.Q; Barrows, E.S.; Mayhew, H.L.; Clark, D.R. (Battelle/Marine Sciences Lab., Sequim, WA (United States))

    1992-12-01

    The disposal of dredged material in water is defined as a discharge under Section 404 of the Clean Water Act and must be evaluated in accordance with US Environmental Protection Agency regulation 40 CFR 230. Because contaminant loads in the dredged sediment or resuspended sediment may affect water quality or contaminant loading, the US Army Corps of Engineers (USACE), Walla Walla District, has requested Battelle/Marine Sciences Laboratory to collect and chemically analyze sediment samples from areas that may be dredged near the Port Authority piers on the Snake and Columbia rivers. Sediment samples were also collected at River Mile (RM) stations along the Snake River that may undergo resuspension of sediment as a result of the drawdown. Chemical analysis included grain size, total organic carbon, total volatile solids, ammonia, phosphorus, sulfides, oil and grease, total petroleum hydrocarbons, metals, polynuclear aromatic hydrocarbons, pesticides, polychlorinated biphenyls, and 21 congeners of polychlorinated dibenzodioxins and dibenzofurans.

  5. Snake and Columbia Rivers Sediment Sampling Project

    Energy Technology Data Exchange (ETDEWEB)

    Pinza, M. R.; Word, J. Q.; Barrows, E. S.; Mayhew, H. L.; Clark, D. R. [Battelle/Marine Sciences Lab., Sequim, WA (United States)

    1992-12-01

    The disposal of dredged material in water is defined as a discharge under Section 404 of the Clean Water Act and must be evaluated in accordance with US Environmental Protection Agency regulation 40 CFR 230. Because contaminant loads in the dredged sediment or resuspended sediment may affect water quality or contaminant loading, the US Army Corps of Engineers (USACE), Walla Walla District, has requested Battelle/Marine Sciences Laboratory to collect and chemically analyze sediment samples from areas that may be dredged near the Port Authority piers on the Snake and Columbia rivers. Sediment samples were also collected at River Mile (RM) stations along the Snake River that may undergo resuspension of sediment as a result of the drawdown. Chemical analysis included grain size, total organic carbon, total volatile solids, ammonia, phosphorus, sulfides, oil and grease, total petroleum hydrocarbons, metals, polynuclear aromatic hydrocarbons, pesticides, polychlorinated biphenyls, and 21 congeners of polychlorinated dibenzodioxins and dibenzofurans.

  6. Clinch River project: Sediment contaminants in the Lower Clinch River

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Sediment samples from three mainstem and seven tributary sites in the Clinch River Basin were analyzed for 21 organochlorine compounds, 19 metals, total volatile...

  7. Microstructure, CTD and ADCP data collected from R/V ONRUST in Hudson River Estuary during 6 short cruises from 1994-05-19 to 2001-05-01 (NCEI Accession 0146260)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Observations of turbulent mixing, stratification and currents in the Hudson River Estuary made in 6 short cruises in 1994/1995 and 2001 were assembled. The lower...

  8. Oceanographic profile data collected from sound velocimeter casts aboard NAVIGATION RESPONSE TEAM 5 as part of project S-B916-NRT5-10 in the Hudson River on 2010-11-26 (NCEI Accession 0130785)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0130785 includes physical and profile data collected aboard the NAVIGATION RESPONSE TEAM 5 during project S-B916-NRT5-10 in the Hudson River near...

  9. Irregular dunes, sediment sorting, and river morphodynamics

    NARCIS (Netherlands)

    Blom, Astrid; Weerts, H.J.T.; Ritsema, I.L; van Os, A.G.

    2006-01-01

    This research project focuses on modelling the large-scale morphodynamics of low-slope rivers dominated by mixed sediment, such as the Dutch part of the Rhine River. Usually we simply neglect the effects of sorting and variability in dune dimensions on the large-scale morphodynamics. This paper

  10. Organic matter compositions of rivers draining into Hudson Bay: Present-day trends and potential as recorders of future climate change

    Science.gov (United States)

    Godin, Pamela; Macdonald, Robie W.; Kuzyk, Zou Zou A.; Goñi, Miguel A.; Stern, Gary A.

    2017-07-01

    Concentrations and compositions of particulate and dissolved organic carbon (POC and DOC, respectively) and aromatic compounds including lignin were analyzed in water samples from 17 rivers flowing into Hudson Bay, northern Canada. These rivers incorporate basins to the south with no permafrost to basins in the north with continuous permafrost, and dominant vegetation systems that include Boreal Forest, the Hudson Plains, Taiga Shield, and Tundra. Major latitudinal trends in organic carbon and lignin concentrations and compositions were evident, with both DOC and dissolved lignin concentrations dominating over their particulate counterparts and exhibiting significant correlations with total dissolved and suspended solids, respectively. The composition of lignin reaction products in terms of the syringyl, cinnamyl, and vanillyl compositions indicate mixed sources of vascular land plant-derived organic carbon, with woody gymnosperms contributions dominating in the southern river basins whereas nonwoody angiosperm sources were more important in the most northerly rivers. The composition of nonlignin aromatic compounds, which provides a tracer for nonvascular plant contributions, suggests stronger contributions from Sphagnum mosses to dissolved organic matter in rivers below the tree line, including those with large peat bogs in their basins. Acid/aldehyde ratios of the lignin products together with Δ14C data for DOC in selected rivers indicate that DOC has generally undergone greater alteration than POC. Interestingly, several northern rivers exhibited relatively old DOC according to the Δ14C data suggesting that either old DOC is being released from permafrost or old DOC survives river transport in these rivers.

  11. Selective analysis of power plant operation on the Hudson River with emphasis on the Bowline Point Generating Station. Volume 1. [Effects on striped bass population

    Energy Technology Data Exchange (ETDEWEB)

    Barnthouse, L. W.; Cannon, J. B.; Christensen, S. G.

    1977-07-01

    A comprehensive study of the effects of power plant operation on the Hudson River was conducted. The study included thermal, biological, and air quality effects of existing and planned electrical generating stations. This section on thermal impacts presents a comprehensive mathematical modeling and computer simulation study of the effects of heat rejection from the plants. The overall study consisted of three major parts: near-field analysis; far-field analysis; and zone-matched near-field/far-field analysis. Near-field analyses were completed for Roseton, Danskammer, and Bowline Point Generating Stations, and near-field dilution ratios range from a low of about 2 for Bowline Point and 3 for Roseton to a maximum of 6 for both plants. The far-field analysis included a critical review of existing studies and a parametric review of operating plants. The maximum thermal load case, based on hypothetical 1974 river conditions, gives the daily maximum cross-section-averaged and 2-mile-segment-averaged water temperatures as 83.80/sup 0/F in the vicinity of the Indian Point Station and 83.25/sup 0/F in the vicinity of the Bowline Station. This maximum case will be significantly modified if cooling towers are used at certain units. A full analysis and discussion of these cases is presented. A study of the Hudson River striped bass population is divided into the following eight subsections: distribution of striped bass eggs, larvae, and juveniles in the Hudson River; entrainment mortality factor; intake factor; impingement; effects of discharges; compensation; model estimates of percent reduction; and Hudson River striped bass stock.

  12. Erosion, sediment transportation and accumulation in rivers

    Institute of Scientific and Technical Information of China (English)

    N.I.ALEKSEEVSKIY; K.M.BERKOVICH; R.S.CHALOV

    2008-01-01

    The present paper analyses the interrelation between erosion,sediment transportation and accumulation proposed by N.I.Makkaveyev (1908-1983) and its further development in modem studies of river channel processes in Russia.Spatio-temporal linkages between erosion and accumulation are defined considering channel processes at different scales - river longitudinal profile,channel morphological patterns,alluvial bedforms (bars,dunes) and individual sediment particles.Relations between river geomorphic activity,flow transportation capacity and sediment budgets are established (sediment input and output;channel bed erosion and sediment entrainment into flow -termination of sediment transport and its deposition).Channel planforms,floodplain segments separated by the latter and alluvial channel bedforms are shown to be geomorphic expressions of sediment transport process at different spatial and temporal scales.This paper is dedicated to the 100th anniversary of N.I.Makkaveyev,Professor of the Moscow State University,author of the book "River channel and erosion in its basin" (1955).That book is regarded in Russia as the pioneering work which initiated the complex hydrological and geographical studies of channel processes and laid a basis for the theory of unified fluvial erosion-accumulation process.

  13. Modeling sediment transport in river networks

    Science.gov (United States)

    Wang, Xu-Ming; Hao, Rui; Huo, Jie; Zhang, Jin-Feng

    2008-11-01

    A dynamical model is proposed to study sediment transport in river networks. A river can be divided into segments by the injection of branch streams of higher rank. The model is based on the fact that in a real river, the sediment-carrying capability of the stream in the ith segment may be modulated by the undergone state, which may be erosion or sedimentation, of the i-1th and ith segments, and also influenced by that of the ith injecting branch of higher rank. We select a database about the upper-middle reach of the Yellow River in the lower-water season to test the model. The result shows that the data, produced by averaging the erosion or sedimentation over the preceding transient process, are in good agreement with the observed average in a month. With this model, the steady state after transience can be predicted, and it indicates a scaling law that the quantity of erosion or sedimentation exponentially depends on the number of the segments along the reach of the channel. Our investigation suggests that fluctuation of the stream flow due to random rainfall will prevent this steady state from occurring. This is owing to the phenomenon that the varying trend of the quantity of erosion or sedimentation is opposite to that of sediment-carrying capability of the stream.

  14. The influence of a river plume on the sea-ice meiofauna in south-eastern Hudson Bay

    Science.gov (United States)

    Grainger, E. H.

    1988-08-01

    Outflow from the Great Whale River produces a substantial freshwater layer (plume) beneath the winter ice cover and above water of higher salinity in south-eastern Hudson Bay. In 1983, samples of the lower-ice fauna and of zooplankton beneath the ice, were taken within, below and beyond the offshore reach of the plume. Nematodes accounted for the highest numbers (mean of 1956 1 1in the lower 3 cm of ice), and copepods, mainly Harpacticus and Halectinosoma with fewer Tisbe and Oithona, for the greatest biomass. All ice-inhabiting taxa were also found in the water below the ice, but many zooplankters occurring immediately beneath the ice did not form part of the ice fauna. No major qualitative differences were evident between the ice communities existing above the plume and offshore from it, but quantitative distinctions were readily apparent. Animals were consistently more concentrated (by 2-3 orders of magnitude) in the lower 3 cm of the ice than in the water immediately below, both over the plume and outside it. Except for the dominant rotifers in the plume, the concentration of zooplankton there was only 10% of that found in the surface water outside the plume. The river plume exerts a strong influence over the quantity of the fauna in the sea ice immediately above it. Changes in location and extent of the plume therefore may have an important effect on the food chain based in the sea ice.

  15. Large River Sediment Transport and Deposition: An Annotated Bibliography.

    Science.gov (United States)

    1998-04-01

    Keywords: Measurement, navigation, river, sediment, suspended sediment AHEARN, S. C, R. D. MARTIN , AND J. H. WLOSINSKI. 1989. Recommendations for...patterns. Keywords: Climate, discharge, Mississippi River, precipitation, river 130. KEOWN , M. P. 1977. Inventory of sediment sample collection...suspended sediment 131. KEOWN , M. P. 1986. Historic trends in the sediment flow regime of the Mississippi River. U.S. Army Corps of Engineers Waterways

  16. Kanawha River Basin Sediment Data

    Data.gov (United States)

    U.S. Environmental Protection Agency — This data set contains sediment size data collected at research sites using a Wolman Pebble Count method. This dataset is associated with the following publication:...

  17. Impact of the Clean Water Act on the levels of toxic metals in urban estuaries: The Hudson River estuary revisited

    Energy Technology Data Exchange (ETDEWEB)

    Sanudo-Wilhelmy, S.A.; Gill, G.A.

    1999-10-15

    To establish the impact of the Clean Water Act on the water quality of urban estuaries, dissolved trace metals and phosphate concentrations were determined in surface waters collected along the Hudson River estuary between 1995 and 1997 and compared with samples collected in the mid-1970s by Klinkhammer and Bender. The median concentrations along the estuary have apparently declined 36--56% for Cu, 55--89% for Cd, 53--85% for Ni, and 53--90% for Zn over a period of 23 years. These reductions appear to reflect improvements in controlling discharges from municipal and industrial wastewater treatment plants since the Clean Water Act was enacted in 1972. In contrast, levels of dissolved nutrients (PO{sub 4}) have remained relatively constant during the same period of time, suggesting that wastewater treatment plant improvements in the New York/New Jersey Metropolitan area have not been as effective at reducing nutrient levels within the estuary. While more advanced wastewater treatment could potentially reduce the levels of Ag and PO{sub 4} along the estuary, these improvements would have a more limited effect on the levels of other trace metals.

  18. Contaminant variability in a sedimentation area of the river Rhine.

    NARCIS (Netherlands)

    Winkels, H.J.

    1997-01-01

    Aquatic sediments in sedimentation zones of major rivers are in general sinks for pollutants. The sedimentation zone Ketelmeer/IJsselmeer is an important sink for contaminants of the river Rhine (i.e. river IJssel). Recent and historical pollution interact here. Redistribution of suspended solids an

  19. Nitric oxide turnover in permeable river sediment

    DEFF Research Database (Denmark)

    Schreiber, Frank; Stief, Peter; Kuypers, Marcel M M

    2014-01-01

    We measured nitric oxide (NO) microprofiles in relation to oxygen (O2) and all major dissolved N-species (ammonium, nitrate, nitrite, and nitrous oxide [N2O]) in a permeable, freshwater sediment (River Weser, Germany). NO reaches peak concentrations of 0.13 μmol L-1 in the oxic zone and is consumed...

  20. Chlorinated organic compounds in urban river sediments

    Energy Technology Data Exchange (ETDEWEB)

    Soma, Y.; Shiraishi, H.; Inaba, K. [National Inst. of Environmental Studies, Tsukuba, Ibaraki (Japan)

    1995-12-31

    Among anthropogenic chemicals, many chlorinated organic compounds have been used as insecticides and detected frequently as contaminants in urban river sediments so far. However, the number and total amount of chemicals produced commercially and used are increasing year by year, though each amount of chemicals is not so high. New types of contaminants in the environment may be detected by the use of newly developed chemicals. Chlorinated organic compounds in the urban river sediments around Tokyo and Kyoto, large cities in Japan, were surveyed and recent trends of contaminants were studied. Contaminants of the river sediments in industrial areas had a variety, but PCB (polychlorinated biphenyls) was detected in common in industrial areas. Concentration of PCB related well to the number of factories on both sides of rivers, although the use of PCB was stopped 20 years ago. In domestic areas, Triclosan (5-chloro-2-(2,4-dichlorophenoxy)-phenol) and Triclocarban (3,4,4{prime}-trichlorocarbanilide)(both are contained in soap or shampoo for fungicides), p-dichlorobenzene (insecticides for wears) and TCEP(tris-chloroethyl phosphate) were detected. EOX(extracted organic halogen) in the sediments was 5 to 10 times of chlorinated organic compounds detected by GC/MS. Major part of organic halogen was suggested to be included in chlorinated organics formed by bleaching or sterilization.

  1. Sediment Discharges from Ghanaian Rivers into the Sea | Akrasi ...

    African Journals Online (AJOL)

    Information on sediment yield of a river basin is an important requirement for water ... measurements of suspended sediment transport for 21 monitoring stations in ... predictive models for suspended sediment yields of catchments for which no ...

  2. Landscape controls on total and methyl mercury in the upper Hudson River basin of New York State

    Science.gov (United States)

    Burns, D. A.; Murray, K. R.; Bradley, P. M.; Brigham, M. E.; Aiken, G.; Smith, M.

    2010-12-01

    High levels of mercury (Hg) in aquatic biota have been identified in surface waters of the Adirondack region of New York, and factors such as the prevalence of wetlands, extensive forest cover, and oligotrophic waters promote Hg bioaccumulation in this region. Past research in this region has focused on improved understanding of the Hg cycle in lake ecosystems. In the study described herein, the landscape controls on total Hg and methylmercury (MeHg) concentrations in riverine ecosystems were explored through synoptic surveys of 27 sites in the upper Hudson River basin of the Adirondack region. Stream samples were collected and analyzed for total Hg, MeHg, dissolved organic carbon (DOC), and ultraviolet absorbance at 254 nm (UV254) during spring and summer of 2006-08. Landscape indices including many common land cover, hydrographic, and topographic-based measures were explored as predictors of Hg through multivariate linear regression. Multivariate models that included a wetland or riparian area-based metric, an index for open water area, and in some cases a topographic metric such as the wetness index explained 55 to 65 percent of the variation in MeHg concentrations, and 55 to 80 percent of the variation in total Hg concentrations. An open water index (OWI) was developed that incorporated both the basin area drained by ponded water and the surface area of these ponds. This index was inversely related to concentrations of total Hg and MeHg. This OWI was also inversely related to specific ultra-violet absorbance, consistent with previous studies showing that open water increases the influence of algal-derived carbon on DOC, decreasing aromaticity, which should decrease the ability of the dissolved carbon pool to bind Hg. The OWI was not significant in models for total Hg that also included UV254 as a predictive variable, but the index did remain significant in similar models for MeHg suggesting that biogeochemical factors in addition to decreasing carbon

  3. SEDIMENT TRANSPORT IN YALU RIVER ESTUARY

    Institute of Scientific and Technical Information of China (English)

    GAO Jian-hua; GAO Shu; CHENG Yan; DONG Li-xian; ZHANG Jing

    2003-01-01

    Tidal cycle measurements of tidal currents, salinity and water temperature, and suspended sediment conc entra-tions were measured at four stations, together with surveys along two profiles short core collection within the Yalu River estuary.Grain size analysis of the three core sediment showed that: 1) the sediment from B1 to B3 became finer, worse sorting andpositively skewed; 2) the diversification of matter origin became more and more evident from east to west; 3) the sediments overthe region were of the same origin, as indicated by their similar colors and grain sizes. The data indicated that stratiticationoccurred in the flood season, from upstream to downstream, and a salt wedge was formed. The water column was well mixed, butthe longitudinal gradient of the salinity was larger on spring tide. The results also showed that the dominating mechanisnt ofsuspended sediment transport in the Yalu River estuary was T1, T2, T3 and T5. The non-tidal steady advection transport wasrestricted by the net transport of suspended sediment induced by mass Stoked drift directed to landwards, then the net sedimenttransport rate were decreased and the turbidity maxima was also favored to forming and extending.

  4. Factors governing sediment quality (PAH) in rivers

    Science.gov (United States)

    Schwientek, Marc; Rügner, Hermann; Scherer, Ulrike; Rode, Michael; Grathwohl, Peter

    2017-04-01

    The contamination of riverine sediments and suspended matter with hydrophobic pollutants is typically associated with urban land use. It is, however, rarely related to the sediment supply of the watershed. We show for a suite of catchments in two regions of Germany with contrasting land use and geology, that the contamination of suspended particles with polycyclic aromatic hydrocarbons (PAH) may be predicted based on the ratio of inhabitants residing within the catchment and the catchment's sediment yield. The applicability of this concept is demonstrated for catchments ranging in size from 100 to >3000 km2. This implies that the loading of particles with PAH is more or less time invariant which is also indicated by long term measurements from sub catchments of the upper Neckar River in Southwest Germany. Data on sediment yields are rare and the installation of appropriate measurement stations is expensive, the establishment of data series time-consuming. Therefore, modeling of sediment yields based on the universal soil loss equation is proposed. Although this method lacks a physical basis, it is feasible at larger scales and is shown to lead to reasonable results at low costs. The importance of catchment properties in terms of sediment supply and the implications of the presented concept for water resources management are discussed. For instance, it may easily be used to estimate the vulnerability of river systems to particle-associated urban pollutants with similar input pathways as the PAH or to indicate if contaminant point sources such as sites of legacy pollution exist in a river catchment.

  5. Analysis on River Sediment Changes of the Upper Reaches of Yangtze River

    Institute of Scientific and Technical Information of China (English)

    ZHONG Xiang-hao; SHI Guo-yu; XU Quan-xi; CHEN Ze-fang; LIU Shu-zhen

    2005-01-01

    The sediment load and river sedimentation of the upper reaches of Yangtze River has been undergoing constant changes as complex landform, large mountain area and plentiful precipitation make the drainage area of Yangtze River very vulnerable to water erosion and gravity erosion. Through analyzing the hydrological and sediment load statistics recorded by major hydrological stations along Yangtze River since 1950s, and editing the accumulation graph of annual runoff volume and annual sediment load, we find out that the suspended-sediment of Yangtze river has been decreasing year by year in Wulong Hydrological Station on Wujiang River, Beibei Hydrological Station on Jialingjiang River, Lijiawan Hydrological Station on Tuojiang River and Gaochang Hydrological Station on Minjiang River, Yichang Hydrological Station, Cuntan Hydrological Station along Yangtze River mainstream share the same experience too. But the statistics obtained at Pingshan Hydrological Station on Jinshajiang River shows the sediment load there has increased. Taking ecological construction, hydraulic engineering construction and precipitation changes into consideration, the thesis analyses the causes for the sediment load decrease of Jialingjiang River, Tuojiang River, Minjiang River and Wujiang River and provides us both scientific foundation for further study of river sediment changes of the upper reaches of Yangtze River, and measures to control river sedimentation.

  6. Sediment Transport in Rivers with Overbank Flow

    Institute of Scientific and Technical Information of China (English)

    Donald; W; KNIGHT

    2005-01-01

    Some concepts related to sediment transport in rivers with overbank flow are described.Following a description of the physical processes that are involved when a river inundates its floodplains,some simple com- putational methods are presented which permit the depth-averaged velocity and boundary shear stress to be pre- dicted within a cross section of variable,but prismatic shape.The methoda account for the strong transverse shear in velocity that occurs when the stage is just above bankfull,as well as ...

  7. Dietary exposure of mink (Mustela vison) to fish from the upper Hudson River, New York, USA: effects on reproduction and offspring growth and mortality.

    Science.gov (United States)

    Bursian, Steven J; Kern, John; Remington, Richard E; Link, Jane E; Fitzgerald, Scott D

    2013-04-01

    The effects of feeding farm-raised mink (Mustela vison) diets containing polychlorinated biphenyl (PCB)-contaminated fish from the upper Hudson River (New York, USA) on adult reproductive performance and kit growth and mortality were evaluated. Diets contained 2.5 to 20% Hudson River fish, providing 0.72 to 6.1 µg ∑PCBs/g feed (4.8-38 pg toxic equivalents [TEQWHO 2005 ]/g feed). The percentage of stillborn kits per litter was significantly increased by dietary concentrations of 4.5 µg ∑PCBs/g feed (28 pg TEQWHO 2005 /g feed) and greater. All offspring exposed to dietary concentrations of 4.5 and 6.1 µg ∑PCBs/g feed (28 and 38 pg TEQWHO 2005 /g feed) died by 10 weeks of age, and all offspring exposed to 1.5 and 2.8 µg ∑PCBs/g feed (10 and 18 pg TEQWHO 2005 /g feed) died by 31 weeks of age, leaving juveniles in the control and 0.72 µg ∑PCBs/g feed (0.41- and 4.8 pg TEQWHO 2005 /g feed) groups only. The dietary concentration predicted to result in 20% kit mortality (LC20) at six weeks of age was 0.34 µg ∑PCBs/g feed (2.6 pg TEQWHO 2005 /g feed). The corresponding maternal hepatic concentration was 0.80 µg ∑PCBs/g liver, wet weight (13 pg TEQWHO 2005 /g liver, wet wt). Mink residing in the upper Hudson River would be expected to consume species of fish that contain an average of 4.0 µg ∑PCBs/g tissue. Thus, a daily diet composed of less than 10% Hudson River fish could provide a dietary concentration of ∑PCBs that resulted in 20% kit mortality in the present study.

  8. 78 FR 20559 - Safety Zones; Swim Events in the Captain of the Port New York Zone; Hudson River, East River...

    Science.gov (United States)

    2013-04-05

    ... River between North Cove Marina, New York, NY and Sandy Hook, NJ. The proposed regulation would prevent... be on shore and will communicate with vessels via VHF-FM radio or loudhailer. In addition, members of...

  9. Distribution and diversity of diatom assemblages in surficial sediments of shallow lakes in Wapusk National Park (Manitoba, Canada) region of the Hudson Bay Lowlands.

    Science.gov (United States)

    Jacques, Olivier; Bouchard, Frédéric; MacDonald, Lauren A; Hall, Roland I; Wolfe, Brent B; Pienitz, Reinhard

    2016-07-01

    The hydrology of shallow lakes (and ponds) located in the western Hudson Bay Lowlands (HBL) is sensitive to climate warming and associated permafrost thaw. However, their biological characteristics are poorly known, which hampers effective aquatic ecosystem monitoring. Located in northern Manitoba along the southwestern coast of Hudson Bay, Wapusk National Park (WNP) encompasses numerous shallow lakes representative of the subarctic zone. We analyzed the distribution and diversity of diatom (microscopic algae; class Bacillariophyceae) assemblages in surficial sediments of 33 lakes located in three different ecozones spanning a vegetation gradient, from NE to SW: the Coastal Fen (CF), the Interior Peat Plateau (IPP), and the Boreal Spruce Forest (BSF). We found significant differences (P lakes, and CF and BSF lakes, but not between IPP and BSF lakes. These results are consistent with water chemistry measurements, which indicated distinct limnological conditions for CF lakes. Diatom communities in CF lakes were generally dominated by alkaliphilous taxa typical of waters with medium to high conductivity, such as Nitzschia denticula. In contrast, several IPP and BSF lakes were dominated by acidophilous and circumneutral diatom taxa with preference for low conductivity (e.g., Tabellaria flocculosa, Eunotia mucophila, E. necompacta var. vixcompacta). This exploratory survey provides a first detailed inventory of the diatom assemblages in the WNP region needed for monitoring programs to detect changes in shallow lake ecosystems and ecozonal shifts in response to climate variations.

  10. Impact of freshwater on a subarctic coastal ecosystem under seasonal sea ice (southeastern Hudson Bay, Canada). I. Interannual variability and predicted global warming influence on river plume dynamics and sea ice

    Science.gov (United States)

    Ingram, R. G.; Wang, J.; Lin, C.; Legendre, L.; Fortier, L.

    1996-02-01

    Analysis of sea ice cover, runoff and air temperature observations in Hudson Bay shows marked interannual variability. This variability is thought to play a major role in determining overall productivity of the coastal ecosystem by changes to river plume extent, under-ice light conditions and nutrient levels during spring. Extensive field work off the Great Whale River in southeastern Hudson Bay has shown the importance of freshwater discharge, sea ice cover and meteorological forcing on the production of under-ice microalgae and the success of first feeding in fish larvae. Recent global climate model (GCM) results for a doubling of present atmospheric carbon dioxide indicate increases of both air temperature and precipitation in the Hudson Bay area. Predictions based on GCM results are used to estimate future changes to the sea ice and runoff regime. Sea ice breakup in the offshore is predicted to occur about one month earlier than presently. Estimates of the spring freshet in the Great Whale River indicate it will also advance by approximately one month. Onset of the spring freshet will occur about one month before Hudson Bay ice breakup, similar to present. A predicted reduction of about 35% in maximum sea ice thickness will lead to an increase in the ice-ocean interface irradiance and a decrease in melt water input to the Hudson Bay surface waters. These results are used in a discussion of potential effects of global climate change on northern coastal marine environments.

  11. A preliminary contaminant and toxicological survey of Illinois River sediments

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Sediments from 6 sites on the Illinois River adn its tributaries were analyzed for organic and inorganic contaminants. Relative toxicity of sediments was determined...

  12. Chemical analysis of sediments from the St. Lawrence River

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This report provides the results of a preliminary study of sediment contaminant levels in the St. Lawrence River. Sediment was sampled at 1 6 different locations...

  13. 77 FR 34285 - Safety Zone; 2012 Ironman U.S. Championship Swim, Hudson River, Fort Lee, NJ

    Science.gov (United States)

    2012-06-11

    ... the January 17, 2008, issue of the Federal Register (73 FR 3316). Public Meeting We do not plan now to... SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA00 Safety Zone; 2012 Ironman U.S. Championship Swim, Hudson... vicinity of Englewood Cliffs and Fort Lee, NJ for the 2012 Ironman U.S. Championship swim event....

  14. Alongshore sediment bypassing as a control on river mouth morphodynamics

    Science.gov (United States)

    Nienhuis, Jaap H.; Ashton, Andrew D.; Nardin, William; Fagherazzi, Sergio; Giosan, Liviu

    2016-04-01

    River mouths, shoreline locations where fluvial and coastal sediments are partitioned via erosion, trapping, and redistribution, are responsible for the ultimate sedimentary architecture of deltas and, because of their dynamic nature, also pose great management and engineering challenges. To investigate the interaction between fluvial and littoral processes at wave-dominated river mouths, we modeled their morphologic evolution using the coupled hydrodynamic and morphodynamic model Delft3D-SWAN. Model experiments replicate alongshore migration of river mouths, river mouth spit development, and eventual spit breaching, suggesting that these are emergent phenomena that can develop even under constant fluvial and wave conditions. Furthermore, we find that sediment bypassing of a river mouth develops though feedbacks between waves and river mouth morphology, resulting in either continuous bypassing pathways or episodic bar bypassing pathways. Model results demonstrate that waves refracting into the river mouth bar create a zone of low alongshore sediment transport updrift of the river mouth, which reduces sediment bypassing. Sediment bypassing, in turn, controls the river mouth migration rate and the size of the river mouth spit. As a result, an intermediate amount of river discharge maximizes river mouth migration. The fraction of alongshore sediment bypassing can be predicted from the balance between the jet and the wave momentum flux. Quantitative comparisons show a match between our modeled predictions of river mouth bypassing and migration rates observed in natural settings.

  15. Sedimentary Records of Hyperpycnal Flows and the Influence of River Damming on Sediment Dynamics of Estuaries: Examples from the Nelson, Churchill, Moisie and Sainte-Marguerite Rivers (Canada)

    Science.gov (United States)

    St-Onge, G.; Duboc, Q.; Boyer-Villemaire, U.; Lajeunesse, P.; Bernatchez, P.

    2015-12-01

    Sediment cores were sampled in the estuary of the Nelson and Churchill Rivers in western Hudson Bay, as well as in the estuary of the Moisie and Sainte-Marguerite Rivers in Gulf of St. Lawrence in order to evaluate the impact of hydroelectric dams on the sedimentary regime of these estuaries. The gravity cores at the mouth of the Nelson River recorded several cm-thick rapidly deposited layers with a reverse to normal grading sequence, indicating the occurrence of hyperpycnal flows generated by major floods during the last few centuries. These hyperpycnal flows were probably caused by ice-jam formation, which can increase both the flow and the sediment concentration following the breaching of such natural dams. Following the construction of hydroelectric dams since the 1960s, the regulation of river discharge prevented the formation of hyperpycnal flows, and hence the deposition of hyperpycnites in the upper part of the cores. In the core sampled in the estuary of the Churchill River, only one hyperpycnite was recorded. This lower frequency may be due to the enclosed estuary of the Churchill River, its weaker discharge and the more distal location of the coring site.In the Gulf of St. Lawrence, grain size measurements allowed the identification of a major flood around AD 1844±4 years in box cores from both the Sainte-Marguerite and Moisie Rivers, whereas a drastic decrease in variations in the median grain size occurred around AD ~1900 in the estuary of the Sainte-Marguerite River, highlighting the offshore impact of the SM1 dam construction in the early 1900s. Furthermore, sedimentological variations in the box cores from both estuaries have been investigated by wavelet analysis and the sharp disappearance of high frequencies around AD 1900 in the estuary of the dammed river (Sainte-Marguerite River), but not in the estuary of the natural river (Moisie River), also provides evidence of the influence of dams on the sedimentary regime of estuaries.

  16. 100 Area Columbia River sediment sampling

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, S.G. [Westinghouse Hanford Co., Richland, WA (United States)

    1993-09-08

    Forty-four sediment samples were collected from 28 locations in the Hanford Reach of the Columbia River to assess the presence of metals and man-made radionuclides in the near shore and shoreline settings of the Hanford Site. Three locations were sampled upriver of the Hanford Site plutonium production reactors. Twenty-two locations were sampled near the reactors. Three locations were sampled downstream of the reactors near the Hanford Townsite. Sediment was collected from depths of 0 to 6 in. and between 12 to 24 in. below the surface. Samples containing concentrations of metals exceeding the 95 % upper threshold limit values (DOE-RL 1993b) are considered contaminated. Contamination by arsenic, chromium, copper, lead, and zinc was found. Man-made radionuclides occur in all samples except four collected opposite the Hanford Townsite. Man-made radionuclide concentrations were generally less than 1 pCi/g.

  17. Nitric oxide turnover in permeable river sediment

    DEFF Research Database (Denmark)

    Schreiber, Frank; Stief, Peter; Kuypers, Marcel M M;

    2014-01-01

    We measured nitric oxide (NO) microprofiles in relation to oxygen (O2) and all major dissolved N-species (ammonium, nitrate, nitrite, and nitrous oxide [N2O]) in a permeable, freshwater sediment (River Weser, Germany). NO reaches peak concentrations of 0.13 μmol L-1 in the oxic zone and is consumed...... in the oxic-anoxic transition zone. Apparently, NO is produced by ammonia oxidizers under oxic conditions and consumed by denitrification under microoxic conditions. Experimental percolation of sediment cores with aerated surface water resulted in an initial rate of NO production that was 12 times higher than...... the net NO production rate in steady state. This initial NO production rate is in the same range as the net ammonia oxidation rate, indicating that NO is transiently the main product of ammonia oxidizers. Stable isotope labeling experiments with the 15N-labeled chemical NO donor S...

  18. Impact of AMD on water quality in critical watershed in the Hudson River drainage basin: Phillips Mine, Hudson Highlands, New York

    Science.gov (United States)

    Gilchrist, Sivajini; Gates, Alexander; Szabo, Zoltan; Lamothe, Paul J.

    2009-03-01

    A sulfur and trace element enriched U-Th-laced tailings pile at the abandoned Phillips Mine in Garrison, New York, releases acid mine drainage (AMD, generally pH AMD evaporation during dry periods concentrates solid phase trace metals and sulfate, forming melanterite (FeSO4·7H2O) on sulfide-rich tailings surfaces. Wet periods dissolve these concentrates/precipitates, releasing stored acidity and trace metals into the CMB. Sediments along CMB are enriched in iron hydroxides which act as sinks for metals, indicating progressive sequestration that correlates with dilution and sharp rise in pH when mine water mixes with tributaries. Seasonal variations in metal concentrations were partly attributable to dissolution of the efflorescent salts with their sorbed metals and additional metals from surging acidic seepage induced by precipitation.

  19. SMART - Sediment Mitigation Actions for the River Rother, UK

    Science.gov (United States)

    Evans, Jennine L.; Foster, Ian; Boardman, John; Holmes, Naomi

    2017-03-01

    The River Rother, West Sussex, is suffering from excess sediment which is smothering the river bed gravels. This is thought to be exacerbating issues of pollution and degradation of ecosystems. This project aims to identify the severity, extent, possible causes and potential mitigation options available to reduce these pressures on the river. Data have been collected from ten sites to investigate the amount of sediment stored in the river bed gravels and cores obtained from four small reservoirs to establish rates of sedimentation and contribute to the construction of a temporal sediment budget over the last 50-100 years. Evidence suggests that tributary streams have more stored sediment per m2 upstream of their confluence with the River Rother compared to the Rother itself. Reservoir core data indicate that sediment has accumulated more rapidly in the small reservoirs surrounded by mixed agricultural land compared to one surrounded by ancient woodland. These are preliminary results and work is continuing.

  20. River sediment supply, sedimentation and transport of the highly turbid sediment plume in Malindi Bay, Kenya

    Institute of Scientific and Technical Information of China (English)

    JOHNSON U.Kitheka

    2013-01-01

    The paper presents results of a study on the sediment supply and movement of highly turbid sediment plume within Malindi Bay in the Northern region of the Kenya coast.The current velocities,tidal elevation,salinity and suspended sediment concentrations (TSSC)were measured in stations located within the bay using Aanderaa Recording Current Meter (RCM-9),Turbidity Sensor mounted on RCM-9,Divers Gauges and Aanderaa Temperature-Salinity Meter.The study established that Malindi Bay receives a high terrigenous sediment load amounting to 5.7 × 106 ton·yr-1.The river freshwater supply into the bay is highly variable ranging from 7 to 680 m3·s-1.The high flows that are > 150 m3·s-1 occurred in May during the South East Monsoon (SEM).Relatively low peak flows occurred in November during the North East Monsoon (NEM) but these were usually <70 m3·s-1.The discharge of highly turbidity river water into the bay in April and May occurs in a period of high intensity SEM winds that generate strong north flowing current that transports the river sediment plume northward.However,during the NEM,the river supply of turbid water is relatively low occurring in a period of relatively low intensity NEM winds that result in relatively weaker south flowing current that transports the sediment plume southward.The mechanism of advection of the sediment plume north or south of the estuary is mainly thought to be due to the Ekman transport generated by the onshore monsoon winds.Limited movement of the river sediment plume southward towards Ras Vasco Da Gama during NEM has ensured that the coral reef ecosystem in the northern parts of Malindi Marine National Park has not been completely destroyed by the influx of terrigenous sediments.However,to the north there is no coral reef ecosystem.The high sediment discharge into Malindi Bay can be attributed to land use change in the Athi-Sabaki River Basin in addition to rapid population increase which has led to clearance of forests to open land

  1. Sedimentation Study on Upstream Reach of Selected Rivers in Pahang River Basin, Malaysia

    Directory of Open Access Journals (Sweden)

    Mohd Khairul Amri Kamarudin

    2017-02-01

    Full Text Available The sedimentation study on the upstream reach of Pahang River is located in the Bentong River Basin. The detail hydrographic survey for each river in the Bentong River Basin was carried out in May 2016. Nine stations were selected to represent the sediment concentration at Bentong River, Pahang, Malaysia. Bentong River Basin is one of the river catchment in Pahang River Basin, Malaysia. Before this, Bentong River deterioration in water quality, resulting from the sedimentation problems and unsustainable development management around the river basin. This study was implemented to prove the sedimentation problem, especially the formation of Total  Suspended Solid (TSS in the Bentong River. There are two important parameters were quantified in this study such as the concentration of suspended solid (mg/L and the river discharge (Q values (m³/s. The method used in this study to analysis the concentration of TSS using Gravimetric Method. The result showed the sedimentation in the Bentong River was unstable and the highest of TSS up to 367.6 mg/L that is categorized under the class V which > 300 mg/L based on the National Water Quality Standard (NWQS result showed the coefficient correlation between the observed Q and the TSS concentration in the Bentong River is significant R² = 0.919, there are strong positive relationship between TSS concentration production and the river discharge value in the Bentong River. The study found that the contributors to the high sedimentation problems resulting from the sediments generated from the unsustainable land use, which effectively trapping the bed sediments, rainfall intensity, backflow that carries out high sediments as well as sedimentation produced due to the river bank erosion.

  2. A retrospective streamflow ensemble forecast for an extreme hydrologic event: a case study of Hurricane Irene and on the Hudson River basin

    Science.gov (United States)

    Saleh, Firas; Ramaswamy, Venkatsundar; Georgas, Nickitas; Blumberg, Alan F.; Pullen, Julie

    2016-07-01

    This paper investigates the uncertainties in hourly streamflow ensemble forecasts for an extreme hydrological event using a hydrological model forced with short-range ensemble weather prediction models. A state-of-the art, automated, short-term hydrologic prediction framework was implemented using GIS and a regional scale hydrological model (HEC-HMS). The hydrologic framework was applied to the Hudson River basin ( ˜ 36 000 km2) in the United States using gridded precipitation data from the National Centers for Environmental Prediction (NCEP) North American Regional Reanalysis (NARR) and was validated against streamflow observations from the United States Geologic Survey (USGS). Finally, 21 precipitation ensemble members of the latest Global Ensemble Forecast System (GEFS/R) were forced into HEC-HMS to generate a retrospective streamflow ensemble forecast for an extreme hydrological event, Hurricane Irene. The work shows that ensemble stream discharge forecasts provide improved predictions and useful information about associated uncertainties, thus improving the assessment of risks when compared with deterministic forecasts. The uncertainties in weather inputs may result in false warnings and missed river flooding events, reducing the potential to effectively mitigate flood damage. The findings demonstrate how errors in the ensemble median streamflow forecast and time of peak, as well as the ensemble spread (uncertainty) are reduced 48 h pre-event by utilizing the ensemble framework. The methodology and implications of this work benefit efforts of short-term streamflow forecasts at regional scales, notably regarding the peak timing of an extreme hydrologic event when combined with a flood threshold exceedance diagram. Although the modeling framework was implemented on the Hudson River basin, it is flexible and applicable in other parts of the world where atmospheric reanalysis products and streamflow data are available.

  3. SEDIMENT-REMOVING CAPACITY AND RIVER MOTION DYNAMICS

    Institute of Scientific and Technical Information of China (English)

    Zhao-Yin WANG; Yongsheng WU

    2001-01-01

    Unsteady flow in fluvial rivers scours or deposits sediment, and exhibits sediment-removing capaciiy,which is defined as the capacity of the flow to remove sediment from per unit length of a river channel to other places per time. Differing from the well-defined sediment-carrying capacity, which is the feature of the mean flow and explains how much sediment load the flow can transport through the channel, the sediment-removing capacity is the feature of unsteady, non-equilibrium flow and represents the capability of the flow to change the channel shape and location. Measurement of the sediment-removing capacity was performed at 12 cross sections of the wandering lower Yellow River. Analysis demonstrates that the removing capacity depends mainly on the fluctuation intensity of the flow discharge. The power spectrum of discharge is presented with Fourier transformation and it revealed the mechanism of high measurement frequency-high sediment removing capacity. The movement of a river channel within the fluvial plain is defined as the river motion. The patterns of river motion are aggradation, degradation, widening,translation, rotation, wandering, bifurcation, and migration from one channel to another channel. The speed of the river motion is given as a function of the sediment-removing capacity.

  4. Effect of Water and Sediment Regulation on Lower Yellow River

    Institute of Scientific and Technical Information of China (English)

    XU Guobin; SI Chundi

    2009-01-01

    According to the results of the water and sediment regulations of the Yellow River in year 2002-2007, the effect of erosion and deposition on the lower reaches, the amount and distribution of erosion and deposition in the river mouth area, the adjustment of river regime, the effect of river regulation projects and changes of flowing capacity of the channel are analyzed. It is revealed that the water and sediment regulation is efficient to reduce deposition and improve the flowing capacity and the conditions of sediment transport.

  5. REGULATION OF FLOW AND SEDIMENT LOAD IN THE YELLOW RIVER

    Institute of Scientific and Technical Information of China (English)

    Wenxue LI; Jixiang LIU; Zhanwei WAN

    2007-01-01

    Small runoff, large sediment load, and incompatible relationship of flow and sediment load are very important characteristics of the Yellow River. They are also the crux of the most prominent problems of the Yellow River. To solve these problems, the regimes of flow and sediment load have to be improved by increasing water, reducing sediment load, and by using reservoirs to regulate flow and sediment load. The results of experiments for regulating the flow and sediment load in the last three years by the Xiaolangdi Reservoir have indicated that this measure is a realistic and effective way to mitigate the prominent problems in flood control of the Lower Yellow River at present and in the near future. However, the regulation system is still imperfect. It is advisable to speed up the pace of research and construction of the system for regulating flow and sediment load.

  6. Sediment characteristics and transportation dynamics of the Ganga River

    Science.gov (United States)

    Singh, Munendra; Singh, Indra Bir; Müller, German

    2007-04-01

    Understanding of river systems that have experienced various forcing mechanisms such as climate, tectonics, sea level fluctuations and their linkages is a major concern for fluvial scientists. The 2525-km-long Ganga River derives its fluvial flux from northern part of the Indian subcontinent and drops in the Ganga-Brahmaputra delta and the Bengal fan regions. This paper presents a study of the Ganga River sediments for their textural properties, grainsize characteristics, and transportation dynamics. A suite of recently deposited sediments (189 bedload samples and 27 suspended load samples) of the river and its tributaries was collected from 63 locations. Dry and wet sieve methods of grainsize analysis were performed and Folk and Ward's parameters were calculated. Transportation dynamics of the sediment load was assessed by means of channel hydrology, flow/sediment rating curves, bedform mechanics, grainsize images, and cumulative curves. Textural properties of the bedload sediments of the Ganga River tributaries originating from the Himalaya orogenic belt, the northern Indian craton and the Ganga alluvial plain regions are characterised by the predominance of fine to very fine sand, medium to fine sand, and very fine sand to clay, respectively. Downstream textural variations in the bedload and suspended load sediments of the Ganga River are, therefore, complex and are strongly influenced by lateral sediment inputs by the tributaries and channel slope. At the base of the Himalaya, a very sharp gravel-sand transition is present in which median grainsize of bedload sediments decreases from over - 0.16 Φ to 2.46 Φ within a distance of 35 km. Downstream decline in mean grainsize of bedload sediments in the upper Ganga River within the alluvial plain can be expressed by an exponential formula as: mean grainsize (in Φ) = 0.0024 × Distance (in kilometres from the Himalayan front) + 1.29. It is a result of selective transport phenomena rather than of abrasion, the

  7. Sediment management plan for river Gudbrandsdalslagen, Southern Norway

    Science.gov (United States)

    Bogen, Jim; Moquet Stenback, Agnes; Bonsnes, Truls; Xu, Mengzhen

    2016-04-01

    During recent years, several large magnitude flood events have led to an increase in the input of sediment to the Gudbrandsdalslagen river system. The increased sediment delivery have caused bank erosion, aggradation and channel changes and resulted in severe damage to infrastructure and arable land and it was decided to make a sediment management plan for this river basin. It is important to have an understanding of the processes that is contributing to the sediment delivery and knowledge about the volumes of sediments involved, to choose which measures are most efficient. The data collection techniques involved the use of repeated airborne laser scans to build digital terrain models (DTM) used to compute eroded volumes. In addition, airborne photos were also used to observe changes due to erosion and deposition of sediments. At some stations, automatic water samplers were used to collect samples 1-2 times a day for suspended sediment transport calculations. Bed load rates was determined from repeated volumetric measurements of sediment deposition in dams. At the Harpefoss water reservoir, the bed load was measured to 13000 tonnes/yr over a period of 50 yrs amounting to about 19% of the total load. The catchment area of the Gudbrandsdalslagen is 11200km2 consisting of a river system with lake Losna lying downstream. A number of steep tributaries drain the surrounding mountain areas to the main river stem supplying large amounts of sediments. The study of sediment sources from12 tributaries revealed that undercutting and erosion of slopes adjacent to the river bed is the most dominant process, but gullying and debris flows also supply much sediments. In the river Veikleai near Kvam, laser scan measurements gave a removed volume of 200 000 - 270 000 tonnes delivered from the undercutting of slopes adjacent to the river channel during the flood of 2013, whereas 80 000tonnes was delivered by debris flows. A total of 40 000 tonnes were accumulated in the river channel

  8. Magnetic properties of Surabaya river sediments, East Java, Indonesia

    Science.gov (United States)

    Mariyanto, Bijaksana, Satria

    2017-07-01

    Surabaya river is one of urban rivers in East Java Province, Indonesia that is a part of Brantas river that flows in four urban and industrial cities of Mojokerto, Gresik, Sidoarjo, and Surabaya. The urban populations and industries along the river pose serious threat to the river mainly for their anthropogenic pollutants. This study aims to characterize the magnetic properties of sediments in various locations along Surabaya river and correlate these magnetic properties to the level of pollution along the river. Samples are taken and measured through a series of magnetic measurements. The mass-specific magnetic susceptibility of sediments ranges from 259.4 to 1134.8 × 10-8 m3kg-1. The magnetic minerals are predominantly PSD to MD magnetite with the grain size range from 6 to 14 μm. The mass-specific magnetic susceptibility tends to decreases downstream as accumulation of magnetic minerals in sediments is affected not only by the amount of household and industrial wastes but also by sediment dredging, construction of embankments, and extensive erosion arround the river. Sediments located in the industrial zone on the upstream area tend to have higher mass-specific magnetic susceptibility than in the non-industrial zones on the downstream area.

  9. Napa River Sediment TMDL Implementation and Habitat Enhancement Project

    Science.gov (United States)

    Information about the SFBWQP Napa River Sediment TMDL Implementation and Habitat Enhancement Project, part of an EPA competitive grant program to improve SF Bay water quality focused on restoring impaired waters and enhancing aquatic resources.

  10. Management responses to pulses of bedload sediment in rivers

    Science.gov (United States)

    Sims, Alexander J.; Rutherfurd, Ian D.

    2017-10-01

    Rivers can experience sudden pulses of sediment, from human and natural erosion processes, that can accumulate in the bed. Abundant studies have examined the sources and dynamics of sediment pulses, and problems caused by these pulses, particularly flooding, avulsions, and habitat simplification. Much less has been written about what managers can do about sediment pulses, and that is the purpose of this review. The first option for managers is to do nothing, and this decision can be informed by many case studies and by theory on the propagation and character of sediment pulses (their diffusion, translation, and celerity). Doing nothing should be informed by the secondary effects of sediment pulses on channels including; widening, avulsions, and tributary interactions. If managers decide that something needs to be done about the sediment, they have four options: (1) reducing the sediment supply at source, (2) trapping sediment in the channel (3) accelerating sediment transport through a reach, and, (4) directly extracting sediment. The most common of these actions is undoubtedly to reduce the supply at source, but there are few examples of the consequences of this for sediment pulses. There are even fewer examples of trapping, accelerating and extracting sediment. All of these options have great potential for managing sediment pulses, however, they also have the potential to trigger incision of tributaries and of the channel behind the passing sediment wave. Overall, the literature equips managers to understand the dynamics of sediment pulses, but it does not yet equip them to confidently manage these geomorphic events.

  11. Equilibrium sediment transport in lower Yellow River during later sediment-retaining period of Xiaolangdi Reservoir

    Institute of Scientific and Technical Information of China (English)

    Shao-lei Guo; Dong-po Sun; En-hui Jiang; Peng Li

    2015-01-01

    The Xiaolangdi Reservoir has entered the later sediment-retaining period, and new sediment transport phenomena and channel re-estab-lishing behaviors are appearing. A physical model test was used to forecast the scouring and silting trends of the lower Yellow River. Based on water and sediment data from the lower Yellow River during the period from 1960 to 2012, and using a statistical method, this paper analyzed the sediment transport in sediment-laden flows with different discharges and sediment concentrations in the lower Yellow River. The results show that rational water-sediment regulation is necessary to avoid silting in the later sediment-retaining period. The combination of 3 000 m3/ssediment concentration) at the Huayuankou section is considered an optimal combination for equilibrium sediment transport in the lower Yellow River over a long period of time.

  12. Lateral convection and diffusion of sediment in straight rivers

    DEFF Research Database (Denmark)

    Christensen, Henrik Bo; Fredsøe, Jørgen

    1998-01-01

    The lateral transport of suspended sediment in a straight river cross section with a parabolic shaped bed is studied be use of a k-e and a full Reynolds stress turbulence model. Due to depth variations a lateral transport of suspended sediment is generated. This is mainly caused by the slopping bed...

  13. The Competition of Tidal Mixing and Freshwater Forcing in Shaping the Outflow from Hudson Strait

    Science.gov (United States)

    2011-04-01

    Strait outflow. Journal of Marine Systems , special issue on Hudson Bay, in press. St. Laurent, P., F. Straneo, J.F. Dumais, D.G. Barber, 2011 What...is the fate of the river waters of Hudson Bay? Journal of Marine Systems , special issue on Hudson Bay, in press. Straneo, F., D. Sutherland, D

  14. Mississippi River Sediment Availability Study: Summary of Available Data

    Science.gov (United States)

    2010-06-01

    Wallerstein . 2000. Sediment transport in the Lower Mississippi River. Final Report, Contract Number N68171-00-M-5982. London, England: U.S. Army Research...Development and Standardization Group-U.K. Thorne, C. R., O. P. Harmar, and N. Wallerstein . 2001. Morphodynamics of the Lower Mississippi River

  15. A model of the sediment transport on a river network

    Science.gov (United States)

    Wang, Xu-Ming; Hao, Rui; Zhang, Jin-Feng; Huo, Jie

    2007-03-01

    A dynamical model is proposed to mimic the sediment transport on a river network. A river can be divided into some segments. For the ith segment the schlepping sediment ability of the flow may be scouring or depositing, which is influenced by that of the (i- 1)th segment. In order to compare our model simulation results with the empirical data obtained in Yellow River, the model is equipped with an experiential relation between the flow rate and the depositing rate of the Yellow River. After this, the simulation results show an excellent agreement with the empirical conclusions obtained with the upper and middle parts of Yellow River when it is in the low-water periods (for instance, in Dec., Jan. and Feb.). This indicates that our model may successfully describe the scouring-depositing of river networks.

  16. Persistent organochlorine residues in sediments of Haihe River and Dagu Drainage River in Tianjin, China

    Institute of Scientific and Technical Information of China (English)

    DING Hui; LI Xin-gang; LIU Hun; WANG Jun; SHEN Wei-ran; SUN Yi-chao; SHAO Xiao-long

    2005-01-01

    Persistent organochlorine compounds were analyzed by means of GC-ECD in surface sediment samples from two selected rivers in Tianjin, Haihe River and Dagu Drainage River. A total of 16 surface sediment sites were selected along the both rivers. The frequency of detection of T-HCH and T-DDT in sediment samples both was up to 100%, which illustrated that the contamination of HCH and DDT was widespread in Haihe and Dagu Drainage Rivers. Results indicated that the concentrations of vadous pesticides in sediments from Haihe River were in the range of 3.30-75.96 ng/g dw for T-HCH and 1.57-211.57 ng/g dw for T-DDT. Compared with Haihe River,Dagu Drainage River was contaminated by HCHs and DDTs along the all locations and the values of T-HCH and T-DDT residues in sediments ranged from 2.30 to 124.61 ng/g dw and from 11.28 to 237.30 ng/g dw, respectively. The possible pollution sources were analyzed through monitoring results of organochlorine pesticides(OCPs) residues in sediments from the two rivers. The investigation also indicated that HCH was still used as pesticide in Tianjin partial area.

  17. Water-sediment flow models for river reaches sediment related pollution control.

    Science.gov (United States)

    Sil, Briti Sundar; Choudhury, Parthasarathi

    2012-07-01

    Hybrid water-sediment flow models for river reaches have been for predicting sediment and sediment related pollutions in water courses. The models are developed by combining sediment rating model and the Muskingum model applicable for a reach. The models incorporate sediment concentration and water discharge variables for a river reach; allow defining downstream sediment rating curve in terms of upstream water discharges. The model is useful in generating sediment concentration graph for a station having no water discharge records. The hybrid models provide forecasting forms that can be used to forecast downstream sediment concentration/water discharges 2kx time unit ahead. The forecasting models are useful for applications in real time namely, in the real time management of sediment related pollution in water courses and in issuing flood warning. Integration of sediment rating model and the Muskingum model increases model parameters and nonlinearity requiring efficient estimation technique for parameter identification. To identify parameters in the hybrid models genetic algorithm (GA) based optimization technique can be used. The new model relies on the Muskingum model, obey continuity requirement and the parameters can be used in the Muskingum model with water discharges to estimate/predict downstream water discharge values. The proposed model formulations are demonstrated for simulating and forecasting sediment concentration and water discharges in the Mississippi River Basin, USA. Model parameters are estimated using non-dominated sorting Genetic Algorithm II (NSGA-II). Model results show satisfactory model performances.

  18. Sediment regime constraints on river restoration - An example from the lower missouri river

    Science.gov (United States)

    Jacobson, R.B.; Blevins, D.W.; Bitner, C.J.

    2009-01-01

    Dammed rivers are subject to changes in their flow, water-quality, and sediment regimes. Each of these changes may contribute to diminished aquatic habitat quality and quantity. Of the three factors, an altered sediment regime is a particularly unyielding challenge on many dammed rivers. The magnitude of the challenge is illustrated on the Lower Missouri River, where the largest water storage system in North America has decreased the downriver suspended-sediment load to 0.2%-17% of predamloads. In response to the altered sediment regime, the Lower Missouri River channel has incised as much as 3.5 m just downstream of Gavins Point Dam, although the bed has been stable to slightly aggrading at other locations farther downstream. Effects of channel engineering and commercial dredging are superimposed on the broad-scale adjustments to the altered sediment regime. The altered sediment regime and geomorphic adjustments constrain restoration and management opportunities. Incision and aggradation limit some objectives of flow-regime management: In incising river segments, ecologically desirable reconnection of the floodplain requires discharges that are beyond operational limits, whereas in aggrading river segments, small spring pulses may inundate or saturate low-lying farmlands. Lack of sediment in the incising river segment downstream of Gavins Point Dam also limits sustainable restoration of sand-bar habitat for bird species listed under the Endangered Species Act. Creation of new shallow-water habitat for native fi shes involves taking sediment out of floodplain storage and reintroducing most or all of it to the river, raising concerns about increased sediment, nutrient, and contaminant loads. Calculations indicate that effects of individual restoration projects are small relative to background loads, but cumulative effects may depend on sequence and locations of projects. An understanding of current and historical sediment fl uxes, and how they vary along the river

  19. Fluvial bar dynamics in large meandering rivers with different sediment supply in the Amazon River basin

    Science.gov (United States)

    Monegaglia, Federico; Zolezzi, Guido; Tubino, Marco; Henshaw, Alex

    2017-04-01

    Sediments in the large meandering rivers of the Amazon basin are known to be supplied by sources providing highly different magnitudes of sediment input and storage, ranging from the sediment-rich Andean region to the sediment-poor Central Trough. Recent observations have highlighted how such differences in sediment supply have an important, net effect on the rates of planform activity of meandering rivers in the basin, in terms of meander migration and frequency of cutoffs. In this work we quantify and discuss the effect of sediment supply on the organization of macroscale sediment bedforms on several large meandering rivers in the Amazon basin, and we link our findings with those regarding the rates of planform activity. Our analysis is conducted through the newly developed software PyRIS, which enables us to perform extensive multitemporal analysis of river morphodynamics from multispectral remotely sensed Landsat imagery in a fully automated fashion. We show that large rivers with low sediment supply tend to develop alternate bars that consistently migrate through long reaches, characterized at the same time by limited planform development. On the contrary, high sediment supply is associated with the development of point bars that are well-attached to the evolving meander bends and that follow temporal oscillations around the bend apexes, which in turn show rapid evlution towards complex meander shapes. Finally, rivers with intermediate rates of sediment supply develop rather steady point bars associated with slowly migrating, regular meanders. We finally discuss the results of the image analysis in the light of the properties of river planform metrics (like channel curvature and width) for the examined classes of river reaches with different sediment supply rates.

  20. Progress towards Acoustic Suspended Sediment Transport Monitoring: Fraser River, BC

    Science.gov (United States)

    Attard, M. E.; Venditti, J. G.; Church, M. A.; Kostaschuk, R. A.

    2011-12-01

    Our ability to predict the timing and quantity of suspended sediment transport is limited because fine sand, silt and clay delivery are supply limited, requiring empirical modeling approaches of limited temporal stability. A solution is the development of continuous monitoring techniques capable of tracking sediment concentrations and grain-size. Here we examine sediment delivery from upstream sources to the lower Fraser River. The sediment budget of the lower Fraser River provides a long-term perspective of the net changes in the channels and in sediment delivery to Fraser Delta. The budget is based on historical sediment rating curves developed from data collected from 1965-1986 by the Water Survey of Canada. We explore the possibility of re-establishing the sediment-monitoring program using hydro-acoustics by evaluating the use of a 300 kHz side-looking acoustic Doppler current profiler (aDcp), mounted just downstream of the sand-gravel transition at Mission, for continuous measurement of suspended sediment transport. Complementary field observations include conventional bottle sampling with a P-63 sampler, vertical profiles with a downward-looking 600 kHz aDcp, and 1200 kHz aDcp discharge measurements. We have successfully completed calibration of the downward-looking aDcp with the P-63 samples; the side-looking aDcp signals remain under investigation. A comparison of several methods for obtaining total sediment flux indicates that suspended sediment concentration (SSC) closely follows discharge through the freshet and peaks in total SSC and sand SSC coincide with peak measurements of discharge. Low flows are dominated by fine sediment and grain size increases with higher flows. This research assesses several techniques for obtaining sediment flux and contributes to the understanding of sediment delivery to sand-bedded portions of the river.

  1. Ascribing soil erosion of hillslope components to river sediment yield.

    Science.gov (United States)

    Nosrati, Kazem

    2017-06-01

    In recent decades, soil erosion has increased in catchments of Iran. It is, therefore, necessary to understand soil erosion processes and sources in order to mitigate this problem. Geomorphic landforms play an important role in influencing water erosion. Therefore, ascribing hillslope components soil erosion to river sediment yield could be useful for soil and sediment management in order to decrease the off-site effects related to downstream sedimentation areas. The main objectives of this study were to apply radionuclide tracers and soil organic carbon to determine relative contributions of hillslope component sediment sources in two land use types (forest and crop field) by using a Bayesian-mixing model, as well as to estimate the uncertainty in sediment fingerprinting in a mountainous catchment of western Iran. In this analysis, (137)Cs, (40)K, (238)U, (226)Ra, (232)Th and soil organic carbon tracers were measured in 32 different sampling sites from four hillslope component sediment sources (summit, shoulder, backslope, and toeslope) in forested and crop fields along with six bed sediment samples at the downstream reach of the catchment. To quantify the sediment source proportions, the Bayesian mixing model was based on (1) primary sediment sources and (2) combined primary and secondary sediment sources. The results of both approaches indicated that erosion from crop field shoulder dominated the sources of river sediments. The estimated contribution of crop field shoulder for all river samples was 63.7% (32.4-79.8%) for primary sediment sources approach, and 67% (15.3%-81.7%) for the combined primary and secondary sources approach. The Bayesian mixing model, based on an optimum set of tracers, estimated that the highest contribution of soil erosion in crop field land use and shoulder-component landforms constituted the most important land-use factor. This technique could, therefore, be a useful tool for soil and sediment control management strategies. Copyright

  2. Sediment transport during flushing flows in the lower River Ebro

    Science.gov (United States)

    Batalla, R. J.; Vericat, D.; Palau, A.

    2009-04-01

    This study describes the sediment transport which occurred during several flushing flows between 2002 and 2008 in the impounded lower River Ebro (Northeast Spain). The experimental releases were designed and undertaken to control the excess of aquatic vegetation and enhance sediment-related processes in the river channel downstream the lowermost dams in the basin. Macrophytes cause problems to water users, especially to the hydroelectric and the nuclear power plants located in the vicinity of the river. Sediment transport results from flushing flows are compared with those observed during natural floods. Observations show distinct patterns of sediment transport owing to the particular channel conditions (i.e. exhaustion of fine sediment and removal of the surface layer). Flushing flows depict notably higher suspended sediment concentrations in relation to natural floods. Bed load rates during flushing flows are typically low and, because the flood duration is short, no incision is observed in the river bed. In spite of that, large quantities of macrophytes were removed. The combination of hydraulic and sedimentary parameters during the designed floods maximizes the ecological and management benefits of the experimental releases without significant adverse geomorphological impacts on the river channel.

  3. Wavelike movement of bedload sediment, East Fork River, Wyoming

    Science.gov (United States)

    Meade, R.H.

    1985-01-01

    Bedload is moved down the East Fork River in distinct wavelike pulses that have the form of composite dune fields The moving material consists mostly of coarse sand and fine gravel The wavelengths of the pulses are about 500-600 m, a distance that is predetermined by the pattern of stoage of bed sediment in the river during low water As the river discharge increases, the bed sediment is scoured from the storage areas, and it is moved onto and across the interventing riffles As the river discharge decreases, the bed sediment is scoured off the riffles and moved into the next storage area downstream Each successive pulse of water discharge sets into motion a wave of bedload that continues to move unitil it reaches the next storage area ?? 1985 Springer-Verlag New York Inc.

  4. On extracting sediment transport information from measurements of luminescence in river sediment

    CERN Document Server

    Gray, Harrison J; Mahan, Shannon A; McGuire, Chris; Rhodes, Edward J

    2016-01-01

    Accurately quantifying sediment transport rates in rivers remains an important goal for geomorphologists, hydraulic engineers, and environmental scientists. However, current techniques for measuring transport rates are laborious, and formulae to predict transport are notoriously inaccurate. Here, we attempt to estimate sediment transport rates using luminescence, a property of common sedimentary minerals that is used by the geoscience community for geochronology. This method is advantageous because of the ease of measurement on ubiquitous quartz and feldspar sand. We develop a model based on conservation of energy and sediment mass to explain the patterns of luminescence in river channel sediment from a first-principles perspective. We show that the model can accurately reproduce the luminescence observed in previously published field measurements from two rivers with very different sediment transport styles. The parameters from the model can then be used to estimate the time-averaged virtual velocity, charac...

  5. Delta Morphodynamics from River Sediment Input: Dam Removal, Elwha River, Washington, USA.

    Science.gov (United States)

    Warrick, J. A.; Gelfenbaum, G. R.; Stevens, A. W.; Miller, I. M.; Kaminsky, G. M.; Ritchie, A.

    2015-12-01

    Sediment supply plays an important role in river delta morphodynamics and sustainability, and it is important to evaluate how deltas respond to the restoration or enhancement of sediment supplies. Here we report on the morphodynamic responses of the Elwha River delta to large increases in river sediment loads from the removal of two large dams beginning in 2011. The dam removal project exposed ~30 million tonnes of sediment stored within the former reservoirs to natural erosion by the river, and roughly half of this reservoir sediment was eroded during the first four years of the project. Coastal surveys with GPS-based mapping systems, sonar, and aerial photography have revealed that the Elwha River mouth has expanded seaward by ~500 m with the introduction of new supplies of sediment. Approximately 3.5 million cubic meters (or ~5 million tonnes) of sediment were deposited at the river mouth delta between 2011 and 2015. This newly deposited sediment has been shaped by waves and currents into a series of dynamic bars that have greatly expanded the estuarine habitats of the delta.

  6. Microbial methylation of mercury in upper Wisconsin river sediments

    Energy Technology Data Exchange (ETDEWEB)

    Callister, S.M.; Winfrey, M.R.

    1986-01-01

    The microbial methylation of Hg was studied in water and sediments from the Upper Wisconsin River by quantifying the methylation of radioactive Hg(II) (/sup 203/Hg(NO/sub 3/)/sub 2/). Methylation activity was near detection limits in the water, highest in surface sediments (0 to 4 cm), and decreased with increasing sediment depth. Methylation had a temperature optimum of 35/sup 0/C. Organically enriched sediments exhibited higher methylation activity than less eutrophic sediments. Methylation activity in sediments was stimulated by the addition of peptone but not by glucose or starch. Oxygenation of sediments inhibited methylation activity. A summertime peak in methylation activity, observed in water, floc, and sediments, was related to factors other than temperature. More than 98% of the added /sup 203/Hg(II) was bound to sediments within 4 hr of inoculation, while more than 3% was methylated during a 10-day incubation. As much as 7% of the added /sup 203/Hg(II) was methylated in other experiments, suggesting that bound Hg is available for methylation. These data suggest that organic-rich surficial sediments in the Upper Wisconsin River have the potential to produce significant amounts of toxic methylmercury during late summer months.

  7. Tracklines of a multibeam survey of the Hudson Shelf Valley carried out in 1998 (polyline shapefile, geographic, WGS 84)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Hudson Shelf Valley is the submerged seaward extension of the ancestral Hudson River drainage system and is the largest physiographic feature on the Middle...

  8. Sediment Transport in Rivers and Coastal Waters

    Institute of Scientific and Technical Information of China (English)

    杨树清; 余建星; 王元战

    2003-01-01

    Following Bagnold′s approach, a relationship between sediment transport and energy dissipation is developed. The major assumption made in the study is that the near bed velocity plays a dominant role in the process of sediment transport. A general relationship between energy dissipation and sediment transport is first proposed. Then the equations for total sediment transport are derived by introducing the appropriate expression of energy dissipation rate under different conditions, such as open channel flows, combination of wave and current, as well as longshore sediment transport. Within the flows investigated, the derived relationships are fairly consistent with the available data over a wide range of conditions.

  9. Critique and sensitivity analysis of the compensation function used in the LMS Hudson River striped bass models. Environmental Sciences Division publication No. 944

    Energy Technology Data Exchange (ETDEWEB)

    Van Winkle, W.; Christensen, S.W.; Kauffman, G.

    1976-12-01

    The description and justification for the compensation function developed and used by Lawler, Matusky and Skelly Engineers (LMS) (under contract to Consolidated Edison Company of New York) in their Hudson River striped bass models are presented. A sensitivity analysis of this compensation function is reported, based on computer runs with a modified version of the LMS completely mixed (spatially homogeneous) model. Two types of sensitivity analysis were performed: a parametric study involving at least five levels for each of the three parameters in the compensation function, and a study of the form of the compensation function itself, involving comparison of the LMS function with functions having no compensation at standing crops either less than or greater than the equilibrium standing crops. For the range of parameter values used in this study, estimates of percent reduction are least sensitive to changes in YS, the equilibrium standing crop, and most sensitive to changes in KXO, the minimum mortality rate coefficient. Eliminating compensation at standing crops either less than or greater than the equilibrium standing crops results in higher estimates of percent reduction. For all values of KXO and for values of YS and KX at and above the baseline values, eliminating compensation at standing crops less than the equilibrium standing crops results in a greater increase in percent reduction than eliminating compensation at standing crops greater than the equilibrium standing crops.

  10. Sediment transportation and bed morphology reshaping in Yellow River Delta

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The Yellow River Delta supports the ecological function as a typical estuarine foreshore wetland. The wetland area is changing greatly every year because of sediment deposition and erosion, which influences the wetland function tremendously. Application of environmental fluid dynamics code (EFDC) to the Yellow River Delta is on the basis of the mobile bed dynamic model and wetting-drying process. Careful calibration is carried out for the numerical model which is set up for the Yellow River Delta, the sediment transport process of the model is compatible to the Yellow River situation. The simulated bed elevation by considering the sediment deposition in the Mouth is particularly focused on, the numerical results are in agreement with the measured bed morphology within 1992 2000. Simulation in this paper indicates that most of the sediment deposited just out of the Mouth which makes the mouth move forward into the sea 2.5 km per year. This paper presents good results in simulation of varying sediment deposition and provides further methods to predict the future morphology and area of the Yellow River Delta.

  11. A Hydrograph-Based Sediment Availability Assessment: Implications for Mississippi River Sediment Diversion

    Directory of Open Access Journals (Sweden)

    Timothy Rosen

    2014-03-01

    Full Text Available The Mississippi River Delta Plain has undergone substantial land loss caused by subsidence, relative sea-level rise, and loss of connectivity to the Mississippi River. Many restoration projects rely on diversions from the Mississippi River, but uncertainty exists about the timing and the amount of actually available sediment. This study examined long-term (1980–2010 suspended sediment yield as affected by different hydrologic regimes to determine actual suspended sediment availability and how this may affect diversion management. A stage hydrograph-based approach was employed to quantify total suspended sediment load (SSL of the lower Mississippi River at Tarbert Landing during three river flow conditions: Peak Flow Stage (stage = 16.8 m, discharge >32,000 m3 s−1, High Flow Stage (stage = 14.6 m, discharge = 25,000–32,000 m3 s−1, and Intermediate Flow Stage (Stage = 12.1 m, discharge = 18,000–25,000 m3 s−1. Suspended sediment concentration (SSC and SSL were maximized during High Flow and Intermediate Flow Stages, accounting for approximately 50% of the total annual sediment yield, even though duration of the stages accounted for only one-third of a year. Peak Flow Stage had the highest discharge, but significantly lower SSC (p < 0.05, indicating that diversion of the river at this stage would be less effective for sediment capture. The lower Mississippi River showed significantly higher SSC (p < 0.0001 and SSL (p < 0.0001 during the rising than the receding limb. When the flood pulse was rising, Intermediate Flow and High Flow Stages showed greater SSC and SSL than Peak Flow Stage. Together, Intermediate Flow and High Flow Stages on the rising limb annually discharged 28 megatonnes over approximately 42 days, identifying this to be the best period for sediment capture and diversion.

  12. Solid and aqueous mercury in remote river sediments (Litany River, French Guyana, South America)

    Science.gov (United States)

    Charlet, L.; Roman-Ross, G.; Spadini, L.; Rumbach, G.

    2003-05-01

    Mercury content in river sediments was investigated, in the Haut Maroni river basin (French Guyana, South America), around Antecume-Pata, a village where Wayanas Amerindians are contaminated with mercury. Solid sediment particulate total mercury content indicate a 100 to 150 ng/g Hg geochemical background level. Sediments act as an environmental archive: gold mining contaminated sediments have up to 400 ng/g total mercury. Pore waters from contaminated sediments are enriched in Fe(II) and Hg(II) by a factor 40 compared to uncontaminated sediment pore waters, due to more acute anoxie conditions. They act therefore as a major source of dissolved mercury in remote tropical aquatic ecosystems. Keywords: Mercury, sediment, DGT and DET techniques, pore water, gold mining.

  13. EVALUATION OF WATER AND SEDIMENT QUALITIES AT RIVER MOUTHS IN THE HAIHE RIVER SYSTEM

    Institute of Scientific and Technical Information of China (English)

    Cheng LIU; Zhaoyin WANG; Yun HE; Dongsheng CHENG

    2007-01-01

    Water and sediment qualities are studied by analyzing samples taking from the mouths of the Haihe, Duliujian, New Ziya and Beipai rivers in the Haihe river basin in north China in 2005 and 2001, in order to find the changes of water and sediment pollutions. The concentrations of heavy metals, arsenic, total nitrogen (TN) and total phosphorus (TP) are analyzed and results have been compared for the two times. The in-situ measurement for Dissolved Oxygen (DO) and Sediment Oxygen Demand (SOD) rates were carried at the Haihe and Duliujian river mouths in 2006. The results show that the waters of the 4 river mouths are still seriously polluted, though much improved in the case of the Haihe and Duliujian rivers. The main pollutants are TP and TN in the New Ziya and Beipai rivers and mercury (Hg) at all 4 river mouths. Compared with those in 2001, the concentrations of almost all metals and arsenic in the 4 river mouths have decreased. Water quality at Haihe and Duliujian shows an improving trend, while the water quality at Beipai is similar to that of 2001. In contrast, water at the New Ziya river mouth is more severely polluted. The sediments in the 4 river mouths are not seriously polluted by heavy metals but are polluted by nitrogen and phosphorus. Most of the pollutant contents in the sediments show little change between 2001 and 2005. The in-situ DO and SOD measurement shows that the waters at the Haihe river mouth is in the state of oxygen depletion, and SOD is important consumer of DO at the river mouths. The overall analysis shows that increasing water pollution and eutrophication in waters far from cities are ongoing causes of concern.

  14. Elements patterns of soil and river sediments as a tracer of sediment migration

    Science.gov (United States)

    Dordevic, Dragana; Pétursdóttir, Þórunn; Halldórsson, Guðmundur; Sakan, Sanja; Škrivalj, Sandra; Finger, David Christian

    2017-04-01

    Iceland is the small island on the mid Atlantic ridge, with strong natural catastrophes, such as floods, droughts, landslides, storms and volcanic eruptions that can have devastating impacts on natural and build environment. Rangárvellir area next to Mt Hekla and the glacier Tindfjallajökul has impacted by severe erosion processes but also rich of surface water that play a crucial role in sediment transport processes in the watersheds of the two rivers Eystri-Rangá and Ytri-Rangá. Their sediments consist of various materials originating from volcanoes ash and lava. Difference of contents of various chemical components in sediments and surrounding soil could be bases for identification of erosion processes and watersheds connectivity. River sediment is accumulator of chemical constituents from water in water-sediment interaction, making it as an important material for investigation their migration routes. In order to develop of methods for investigating of sediment migration using their chemical patterns the STSM of Connecteur COST Action ES1306-34336 have been approved. Samples of river sediments and surrounding soils of the Eystri-Rangá and Ytri-Rangá rivers in watersheds of Rangárvellir area as well as primarily volcanic ash from Eyafjallajökull were taken. Sequential extraction of heavy metals and trace elements from collected samples has been applied using the optimized procedure proposed by European Community Bureau of reference (BCR) in the next fractions: 1) soluble in acid - metals that are exchangeable or associated with carbonates; 2) reducible fraction - metals associated with oxides of Fe and Mn; 3) oxidizable fraction - metals associated with organic matter and sulfides and 4) residual fraction - metals strongly associated with the crystalline structure of minerals. Extracted solutions have analyzed by ICP/OES on next elements: Al, As, B, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Fe, Hg, K, Li, Mg, Mn, Na, Ni, P, Pb, S, Sb, Si, Sr, V, Zn. Distributions

  15. Heavy metals in Morocco Lagoon and river sediments

    Science.gov (United States)

    Bellucci, L. G.; El Moumni, B.; Collavini, F.; Frignani, M.; Albertazzi, S.

    2003-05-01

    Analyses of Mn, Cd, Cr, Cu, Pb, and Zn were carried out in a short core from a salt marsh of the Nador Lagoon (north-eastem Morocco) and in surficial sediment samples collected in the Martil river, which borders the industrial town of Tétouan. Three soit samples and a reservoir sediment were also collected around the town to check the effects of atmospheric delivery of contaminants. ^{137}Cs and ^{210}Pb activity-depth profiles were used to establish a chronology for the core, obtaining an apparent accumulation rate of 0.41 cm y^{-1}. The concentrations of anthropogenic metals in this marsh sediment are low and probably represent natural backgrounds. A recent decrease can be an effect of changing grain size. The Martil River sediments are slightly contaminated by Cu and Pb, whereas the soil samples present anomalous values of Cd and Zn.

  16. NUMERICAL SIMULATION OF SEDIMENT TRANSPORT IN ALLUVIAL RIVER WITH FLOODPLAINS

    Institute of Scientific and Technical Information of China (English)

    Jianchun HUANG; Blair GREIMANN; Chih Ted YANG

    2003-01-01

    This paper presents a one-dimensional numerical model for predicting sediment transport and bed evolution in natural rivers that have floodplains. The sediment transport in floodplains is generally different from that in the main channel. Even when erosion occurs in the main channel,the floodplain usually experiences deposition. To predict the erosion and deposition in the same cross section,the river is divided into three subchannels in the transversal direction: the main channel and the left and right floodplains. The non-equilibrium sediment transport equation is modified to account for the sediment exchanges between the subchannels. The numerical model has been applied to the stretch of the Rio Grande from San Acacia Diversion Dam to Elephant Butte Reservoir. Based on a comparison with field data,the bed profile and cumulative deposition are estimated satisfactorily by the numerical model.

  17. Sediment balances in the Blue Nile River Basin

    Institute of Scientific and Technical Information of China (English)

    Yasir SAALI; Alessandra CROSATO; Yasir AMOHAMED; Seifeldin HABDALLA; Nigel GWRIGHT

    2014-01-01

    Rapid population growth in the upper Blue Nile basin has led to fast land-use changes from natural forest to agricultural land. This resulted in speeding up the soil erosion process in the highlands and increasing sedimentation further downstream in reservoirs and irrigation canals. At present, several dams are planned across the Blue Nile River in Ethiopia and the Grand Ethiopian Renaissance Dam is currently under construction near the border with Sudan. This will be the largest hydroelectric power plant in Africa. The objective of this paper is to quantify the river flows and sediment loads along the Blue Nile River network. The Soil and Water Assessment Tool was used to estimate the water flows from un-gauged sub-basins. To assess model performance, the estimated sediment loads were compared to the measured ones at selected locations. For the gauged sub-basins, water flows and sediment loads were derived from the available flow and sediment data. To fill in knowledge gaps, this study included a field survey in which new data on suspended solids and flow discharge were collected along the Blue Nile and on a number of tributaries. The comparison between the results of this study and previous estimates of the sediment load of the Blue Nile River at El Deim, near the Ethiopian Sudanese border, show that the sediment budgets have the right order of magnitude, although some uncertainties remain. This gives confidence in the results of this study providing the first sediment balance of the entire Blue Nile catchment at the sub-basin scale.

  18. Impact of entrainment and impingement on fish populations in the Hudson River Estuary. Volume II. Impingement impact analyses, evaluations of alternative screening devices, and critiques of utility testimony relating to density-dependent growth, the age-composition of the striped bass spawning stock, and the LMS real-time life cycle model

    Energy Technology Data Exchange (ETDEWEB)

    Barnthouse, L. W.; Van Winkle, W.; Golumbek, J.; Cada, G. F.; Goodyear, C. P.; Christensen, S. W.; Cannon, J. B.; Lee, D. W.

    1982-04-01

    This volume includes a series of four exhibits relating to impacts of impingement on fish populations, together with a collection of critical evaluations of testimony prepared for the utilities by their consultants. The first exhibit is a quantitative evaluation of four sources of bias (collection efficiency, reimpingement, impingement on inoperative screens, and impingement survival) affecting estimates of the number of fish killed at Hudson River power plants. The two following exhibits contain, respectively, a detailed assessment of the impact of impingement on the Hudson River white perch population and estimates of conditional impingement mortality rates for seven Hudson River fish populations. The fourth exhibit is an evaluation of the engineering feasibility and potential biological effectiveness of several types of modified intake structures proposed as alternatives to cooling towers for reducing impingement impacts. The remainder of Volume II consists of critical evaluations of the utilities' empirical evidence for the existence of density-dependent growth in young-of-the-year striped bass and white perch, of their estimate of the age-composition of the striped bass spawning stock in the Hudson River, and of their use of the Lawler, Matusky, and Skelly (LMS) Real-Time Life Cycle Model to estimate the impact of entrainment and impingement on the Hudson River striped bass population.

  19. Gamma Emitters in Marine Sediments near the Columbia River.

    Science.gov (United States)

    Osterberg, C; Kulm, L D; Byrne, J V

    1963-03-08

    Samples from sediment cores collected at 26 different locations 5 to 35 miles offshore in and around Astoria Submarine Canyon were analyzed for gamma emitters. Chromium-51 and zinc-65 were the principal radio-nuclides found, although several fission products and natural potassium-40 were also present. Radioactivity fell off sharply with distance from the mouth of the Columbia River, indicating that the river serves as a common source of the artificial radionuclides.

  20. Analysis of Cu and Pb in the sediments of Kakum River, its estuary ...

    African Journals Online (AJOL)

    DR GATSING

    This paper discusses the levels of some heavy metals (Cu and Pb) in the soil sediments of the Kakum. River, its estuary and ... Keywords: River Kakum, soil sediment, Copper and Lead. ..... and active tailings pile in the State of. Mexico.

  1. Sediment pollution of the Elbe River side structures - current research

    Science.gov (United States)

    Chalupova, Dagmar; Janský, Bohumír

    2016-04-01

    The contribution brings the summarized results of a long-term research on sediment pollution of side structures of the Elbe River over the last 14 years. The investigation has been focused on old anthropogenic pollution of sediment cores taken from fluvial lakes and floodplain, as the sampling of deeper sediments outside the riverbed is not a part of systematic monitoring of sediment pollution of the Elbe. The Elbe River floodplain has been influenced by human activities since the Middle Ages, but the main anthropogenic pollution have been produced in the 20th century. The studied localities were chosen with the respect to the distance from the source of industrial pollution, the intensity of hydrological communication with the river and the surrounding landuse to determine the extend and the level of anthropogenic contamination in the Elbe River floodplain ecosystem. Apart from bathymetric measurements, observation of the hydrological regime in several fluvial lakes or water quality sampling at some localities, the research was focused above all on determination of metal concentrations (Ag, Cd, Cr, Cu, Fe, Hg, Mn, Pb, Zn) in all taken sediment cores, specific organic compounds (PCBs, DDT, HCH, HCB, PAHs etc.), total organic carbon at some localities and grain structure analyses. The data were also compared with the results of systematic sediment monitoring from the nearest riverbed sampling stations on the Elbe River. The highest concentrations of metals and specific organic compounds were determined in the sediments taken from fluvial lakes and floodplain (Zimní přístav PARAMO, Rosice fuvial Lake, Libiš pool etc.) situated in the vicinity of the main Elbe River polluters - Synthesia chemical plant and PARAMO refinery in Pardubice or Spolana chemical plant near Neratovice. However, there was also determined a significant role of the hydrological communication with the river proved with lower sediment pollution in separated localities. The realization of the

  2. The effects of Thailand's Great Flood of 2011 on river sediment discharge in the upper Chao Phraya River basin, Thailand

    Institute of Scientific and Technical Information of China (English)

    Butsawan Bidorn; Seree Chanyotha; Stephen A. Kish; Joseph F. Donoghue; Komkrit Bidorn; Ruetaitip Mama

    2015-01-01

    Severe flooding that occurred during the 2011 monsoon season in Thailand was the heaviest flooding in the past 50 yr. The rainfall over the northern part of Thailand, especially during July–August 2011, was 150% higher than average. During the flooding period, river flows of the four major Chao Phraya River tributaries (Ping, Wang, Yom, and Nan rivers) increased in the range of 1.4–5 times the average discharge. This study examined the river sediment discharge of the four major rivers in the upper Chao Phraya River basin in Thailand. The four rivers are considered the main sources of sediment supply to the Chao Phraya Estuary. River surveys of the Ping, Wang, Yom, and Nan rivers were carried out in October 2011 (during the Great Flood) and October 2012 (one year after the flood). Survey data included river cross sections, flow velocities, suspended sediment concentrations, and bed load transport in each river. Analyses of these data indicated that total sediment transport rates for the four main rivers during the flooding of 2011 were 2.3–5.6 times higher than the average sediment discharge over 60 yr. The flood of 2011 sig-nificantly affected the sediment characteristics including the proportions of suspended and bed sediment loads in each river though in different ways. The rates of sediment transport per unit discharge for the Ping and Wang rivers dramatically increased during the 2011 flood, but the flooding had minimal effects on the sediment characteristics in the Yom and Nan rivers. The amount of total sediment discharge in each river caused by the 2011 flooding varied between 0.3 and 1.6 Mt. Additionally, the bed load transport in these rivers varied between ? 0%and 26%of the suspended sediment discharge.

  3. Drought conditions and sediment transport in the Sabie River

    Directory of Open Access Journals (Sweden)

    G.L. Heritage

    1995-09-01

    Full Text Available Drought conditions in the Sabie catchment in the eastern Transvaal (now called Mpumalanga, South Africa, has had an observable effect on the sediment dynamics of the river. Sediment production within the catchment is largely unaffected by a reduction in the frequency and magnitude of rainfall events, although the rate of translocation of the weathered material from the catchment into the river channel is noticeably altered. The infrequent storm events during drought conditions generate a greater sed- iment input to the river from the catchment than a similar-magnitude event under average conditions. This sediment is also less likely to be transported through the system due to the reduced frequency of intermediate flows which act to rework in-channel sed- iment accumulations. Thus, significant accumulations of alluvial material are likely to form at specific locations, particularly where the local sediment transport capacity of the channel is low. Studies of the transport dynamics of the Sabie River, under both nor- mal and drought conditions, reveal that there are major depositional zones between Kruger Weir and Skukuza, and in the area around Lower Sabie. The 1992 drought resulted in a significant build-up of sediment in these areas, with a consequent reduc- tion in geomorphic diversity. This sediment is becoming stabilised due to the lower and less variable flows of the recent drought and associated vegetative colonisation. An increase in the magnitude and frequency of high and intermediate flows is needed to mobilise this accumulated sediment and to prevent its stabilisation by riparian vegetation.

  4. River turbidity and sediment loads during dam removal

    Science.gov (United States)

    Warrick, Jonathan A.; Duda, Jeffrey J.; Magirl, Christopher S.; Curran, Chris A.

    2012-01-01

    Dam decommissioning has become an important means for removing unsafe or obsolete dams and for restoring natural fluvial processes, including discharge regimes, sediment transport, and ecosystem connectivity [Doyle et al., 2003]. The largest dam-removal project in history began in September 2011 on the Elwha River of Washington State (Figure 1a). The project, which aims to restore the river ecosystem and increase imperiled salmon populations that once thrived there, provides a unique opportunity to better understand the implications of large-scale river restoration.

  5. On extracting sediment transport information from measurements of luminescence in river sediment

    Science.gov (United States)

    Gray, Harrison J.; Tucker, Gregory E.; Mahan, Shannon A.; McGuire, Chris; Rhodes, Edward J.

    2017-03-01

    Accurately quantifying sediment transport rates in rivers remains an important goal for geomorphologists, hydraulic engineers, and environmental scientists. However, current techniques for measuring long-time scale (102-106 years) transport rates are laborious, and formulae to predict transport are notoriously inaccurate. Here we attempt to estimate sediment transport rates by using luminescence, a property of common sedimentary minerals that is used by the geoscience community for geochronology. This method is advantageous because of the ease of measurement on ubiquitous quartz and feldspar sand. We develop a model from first principles by using conservation of energy and sediment mass to explain the downstream pattern of luminescence in river channel sediment. We show that the model can accurately reproduce the luminescence observed in previously published field measurements from two rivers with very different sediment transport styles. The model demonstrates that the downstream pattern of river sand luminescence should show exponential-like decay in the headwaters which asymptotes to a constant value with further downstream distance. The parameters from the model can then be used to estimate the time-averaged virtual velocity, characteristic transport lengthscale, storage time scale, and floodplain exchange rate of fine sand-sized sediment in a fluvial system. The sediment transport values predicted from the luminescence method show a broader range than those reported in the literature, but the results are nonetheless encouraging and suggest that luminescence demonstrates potential as a sediment transport indicator. However, caution is warranted when applying the model as the complex nature of sediment transport can sometimes invalidate underlying simplifications.

  6. On extracting sediment transport information from measurements of luminescence in river sediment

    Science.gov (United States)

    Gray, Harrison J.; Tucker, Gregory E.; Mahan, Shannon; McGuire, Chris; Rhodes, Edward J.

    2017-01-01

    Accurately quantifying sediment transport rates in rivers remains an important goal for geomorphologists, hydraulic engineers, and environmental scientists. However, current techniques for measuring long-time scale (102–106 years) transport rates are laborious, and formulae to predict transport are notoriously inaccurate. Here we attempt to estimate sediment transport rates by using luminescence, a property of common sedimentary minerals that is used by the geoscience community for geochronology. This method is advantageous because of the ease of measurement on ubiquitous quartz and feldspar sand. We develop a model from first principles by using conservation of energy and sediment mass to explain the downstream pattern of luminescence in river channel sediment. We show that the model can accurately reproduce the luminescence observed in previously published field measurements from two rivers with very different sediment transport styles. The model demonstrates that the downstream pattern of river sand luminescence should show exponential-like decay in the headwaters which asymptotes to a constant value with further downstream distance. The parameters from the model can then be used to estimate the time-averaged virtual velocity, characteristic transport lengthscale, storage time scale, and floodplain exchange rate of fine sand-sized sediment in a fluvial system. The sediment transport values predicted from the luminescence method show a broader range than those reported in the literature, but the results are nonetheless encouraging and suggest that luminescence demonstrates potential as a sediment transport indicator. However, caution is warranted when applying the model as the complex nature of sediment transport can sometimes invalidate underlying simplifications.

  7. Prediction of Suspended Sediment in Rivers Using Artificial Neural Networks: Implications for Development of Sediment Budgets

    Science.gov (United States)

    Hamshaw, S. D.; Underwood, K.; Rizzo, D.; Wemple, B. C.; Dewoolkar, M.

    2013-12-01

    Over 1,000 river miles in Vermont are either impaired or stressed by excessive sedimentation. The higher streamflows and incised river channels have resulted in increased bed and bank erosion. As the climate in Vermont is expected to feature greater and more frequent precipitation events and winter rainfall, the potential for increased sediment loading from erosion processes in the watershed and along the channel are high and a major concern for water resource managers. Typical sediment monitoring comprises periodic sampling during storm events and is often limited to gauged streams with flow data. Continuous turbidity monitoring enhances our understanding of river dynamics by offering high-resolution, temporal measurements to better quantify the total sediment loading occurring during and between storm events. Artificial neural networks, that mimic learning patterns of the human brain, have been effective at predicting flow in small, ungauged rivers using local climate data. This study advances this technology by using an ANN algorithm known as a counter-propagation neural network (CPNN) to predict discharge and suspended sediment in small streams. The first distributed network of continuous turbidity sensors (DTS-12) was deployed in Vermont in the Mad River Watershed, located in Central Vermont. The Mad River and five tributaries were selected as a test bed because seven years of periodic turbidity sampling data are available, it represents a range of watershed characteristics, and because the watershed is also being used for hydrologic model development using the Distributed-Hydrology-Soils-Vegetation Model (DHSVM). Comparison with the DHSVM simulations will allow estimation of the most-likely sources of sediment from the entire watershed and individual subwatersheds. In addition, recent field studies have commenced the quantification of erosion occurring from unpaved roads and streambanks in the same watershed. Periodic water quality sampling during storm

  8. Trends in the occurrence of human and veterinary antibiotics in the sediments of the Yellow River, Hai River and Liao River in northern China

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Lijun [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Ying Guangguo, E-mail: guang-guo.ying@gig.ac.cn [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Zhao Jianliang [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Yang Jifeng [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Chemistry and Chemical Engineering Department, Hunan University of Arts and Science, Changde 415000 (China); Wang Li; Yang Bin; Liu Shan [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China)

    2011-07-15

    The occurrence of four classes of 17 commonly used antibiotics (including fluoroquinolones, tetracycline, sulfonamides, and macrolides) was investigated in the sediments of the Yellow River, Hai River and Liao River in northern China by using rapid resolution liquid chromatography-tandem mass spectrometry. Higher concentrations were detected for most antibiotics in the sediments of the Hai River than in the sediments of the other rivers. Norfloxacin, ofloxacin, ciprofloxacin and oxytetracycline in the three rivers were most frequently detected with concentrations up to 5770, 1290, 653 and 652 ng/g, respectively. High frequencies and concentrations of the detected antibiotics were often found in the downstream of large cities and areas influenced by feedlot and fish ponds. Good fitted linear regression equations between antibiotic concentration and sediment physicochemical properties (TOC, texture and pH) were also found, indicating that sediment properties are important factors influencing the distribution of antibiotics in the sediment of rivers. - Highlights: > Presence of four classes of commonly used antibiotics in the river sediments. > Higher concentrations in the Hai River than in the Liao River and Yellow River. > Norfloxacin, ofloxacin, ciprofloxacin and oxytetracycline most frequently detected. > High antibiotic concentrations often found in the downstream of large cities. > River sediments are an important reservoir of antibiotics. - Higher concentrations of selected antibiotics were determined in the sediments of the Hai River than in the Liao River and Yellow River.

  9. Patterns of organic contaminants in eggs of an insectivorous, an omnivorous, and a piscivorous bird nesting on the Hudson River, New York, USA

    Science.gov (United States)

    Custer, Christine M.; Custer, Thomas W.; Dummer, Paul M.

    2010-01-01

    Belted kingfisher (Ceryle alcyon), spotted sandpiper (Actitus macularia), and tree swallow (Tachycineta bicolor) eggs were collected in 2004 from the upper Hudson River, New York, USA. This area is one of the most polychlorinated biphenyl (PCB)-contaminated locations in North America. Multivariate analyses indicated among species differences in the concentration and composition of PCB congeners, polychlorinated dibenzo-p-dioxin (PCDD), and dibenzofuran (PCDF, PCDD-F when combined with PCDDs) congeners, and chlorinated pesticides. Total PCB concentrations followed the typical food chain biomagnification paradigm of higher concentrations in piscivorous bird eggs and lower concentrations in eggs of species that feed at lower trophic levels. Concentrations in the insectivorous swallows (geometric mean=6.8μg/g wet wt) were approximately half the concentrations present in the piscivorous kingfisher (11.7μg/g) or omnivorous sandpiper (12.6μg/g). In contrast, PCB toxic equivalents (TEQs) were higher in swallows (1,790 pg/g wet wt) than in either kingfishers (776pg/g) or sandpipers (881pg/g). This difference can be mainly attributed to higher PCB77 concentrations in swallows relative to the other two species. Also contrary to the accepted food-chain paradigm, the sum of PCDD-F concentrations and the sum of their TEQs were higher in swallows than in either sandpipers or kingfishers. Metabolic pathway differences in the respective food chains of the three species probably accounted for the differences observed in PCB TEQ, total PCDD-F, and PCDD-F TEQ concentrations among species.

  10. The Hudson River School and the Rising of American Self- Identity%哈德逊河画派与美国自我意识的崛起

    Institute of Scientific and Technical Information of China (English)

    陈继玲

    2012-01-01

    国内学者对美国文化研究的视角主要集中在政治经济领域,鲜有从艺术活动的角度考察美国文化的意义。在某种层面上,艺术活动可以反映一个时期国家占主导地位的意识观念。从19世纪中期流行于美国的哈德逊河画派的风景画的剖析人手,可以洞察这一时期美国的主流意识观念。从中可以看出,美国在文化上的自我意识最早出现于19世纪中叶。在这个阶段,美国不仅加强了国家认同,而且意识到在文化上需要脱离欧洲的影响,形成独立的美国文化。%American culture is a hot issue in China recently. The perspectives of American culture by many scholars are limited in political and economic fields. Few of them think of it from the actions of arts. In certain levels, the actions of arts can represent the ever dominated ideas of a country. This paper begins with the landscape paintings of Hudson River School which was rather popular in the middle of 19th century in America, then scrutinizes the dominated ideas hidden in it, and concludes that the earliest self - consciousness of America appeared in the middle of 19th century. In this period, America not only developed its self - identity, but also realized the importance of independent from Europe in culture.

  11. Jokulhlaups and sediment transport in Watson River, Kangerlussuaq, West Greenland

    DEFF Research Database (Denmark)

    Mikkelsen, A. B.; Hasholt, Bent; Knudsen, N. T.

    2013-01-01

    For 3 years, during a 4-year observation period (2007-2010), jokulhlaups were observed from a lake at the northern margin of Russells Gletscher. At a gauging station located on a bedrock sill near the outlet of Watson River into Sdr Stromfjord, discharge and sediment transport was monitored during...

  12. Toxic Effects of Pollutants on Methane Production of River Sediment

    NARCIS (Netherlands)

    van Vlaardingen PLA; van Beelen P

    1992-01-01

    The effects of five compounds on the endogenous methane production of sediment samples of the river Rhine were examined. The concentrations of a toxicant that inhibited the methane production for 10% and 50% are called EC10 and EC50. Benzene, 1,2- dichloroethane, pentachlorophenol and chloroform

  13. Toxic Effects of Pollutants on Methane Production of River Sediment

    NARCIS (Netherlands)

    van Vlaardingen PLA; van Beelen P

    1992-01-01

    The effects of five compounds on the endogenous methane production of sediment samples of the river Rhine were examined. The concentrations of a toxicant that inhibited the methane production for 10% and 50% are called EC10 and EC50. Benzene, 1,2- dichloroethane, pentachlorophenol and chloroform h

  14. Sedimentation in a river dominated estuary

    CSIR Research Space (South Africa)

    Cooper, JAG

    1993-10-01

    Full Text Available The Mgeni Estuary on the wave dominated cast coast of South Africa occupies a narrow, bedrock confined, alluvial valley and is partially blocked at the coast by an elongate sandy barrier. Fluvial sediment extends to the barrier and marine depositon...

  15. Researcher Interview: Tom Hudson

    Science.gov (United States)

    Tom Hudson, M.D., President and Scientific Director of the Ontario Institute for Cancer Research, describes the International Cancer Genome Consortium (ICGC), which brings together cancer genomic data and research from across the world.

  16. Port Areas and Approach Channels Sinoimeri by Rivers Sediment Transport

    Directory of Open Access Journals (Sweden)

    Konstantin N. Makarov

    2015-12-01

    Full Text Available When designing ports, one important task is to predict sinoimeri port areas and approach channels sandy or pebbly silt. On the basis of this forecast are determined by the methods of protection from sinoimeri, as well as the frequency and volume of maintenance dredging works. Out at sea the river flow becomes turbulent inertial jet. Friction on the bottom and the interaction with sea water leads to an overall reduction of jet velocity and its spreading. An important regularity is also spreading muddy river flow on the surface of the denser seawater. This creates conditions for rapid deposition of large fractions of the sediment on the bottom. The bulk of the sediment particles larger than 5 mm is deposited on the surface of the river bar and further transported along the shore wave energy currents. Outside of the bar shall be made only fine-grained material. The particle size of sediment deposited on the bottom outside of the bar decreases sharply with depth. Thus, sinoimeri of harbors and access channels is mainly suspended river sediments. To calculate the distribution of the river flow, in the coastal zone in the presence of long chore currents developed a special method that implements the theory of turbulent planar jet in a drifting thread. The solid portion of the jet flow that enters the waters of the port or channel as a result of increasing depth and, consequently, reduce turbidity settles, causing shoaling waters. The example of calculation of sinoimeri berth 1a in the port of Tuapse by solid flow of Tuapse river.

  17. Thallium distribution in sediments from the Pearl river basin, China

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Juan [Guangzhou University, Key Laboratory of Waters Safety and Protection in the Pearl River Delta, Ministry of Education, Guangzhou (China); Forschungszentrum Dresden-Rossendorf (FZD), Institute of Radiochemistry, Research Site Leipzig, Leipzig (Germany); Wang, Jin; Chen, Yongheng [Guangzhou University, Key Laboratory of Waters Safety and Protection in the Pearl River Delta, Ministry of Education, Guangzhou (China); Qi, Jianying [Department of Environmental Science and Engineering, Guangzhou University, Guangzhou (China); Lippold, Holger [Forschungszentrum Dresden-Rossendorf (FZD), Institute of Radiochemistry, Research Site Leipzig, Leipzig (Germany); Wang, Chunlin [Guangdong Provincial Academy of Environmental Science, Guangzhou (China)

    2010-10-15

    Thallium (Tl) is a rare element of high toxicity. Sediments sampled in three representative locations near industries utilizing Tl-containing raw materials from the Pearl River Basin, China were analyzed for their total Tl contents and the Tl contents in four sequentially extracted fractions (i.e., weak acid exchangeable, reducible, oxidizable, and residual fraction). The results reveal that the total Tl contents (1.25-19.1 {mu}g/g) in the studied sediments were slightly high to quite high compared with those in the Chinese background sediments. This indicates the apparent Tl contamination of the investigated sediments. However, with respect to the chemical fractions, Tl is mainly associated with the residual fraction (>60%) of the sediments, especially of those from the mining area of Tl-bearing pyrite minerals, indicating the relatively low mobility, and low bioavailability of Tl in these sediments. This obviously contrasts with the previous findings that Tl is mainly entrapped in the first three labile fractions of the contaminated samples. Possible reasons were given for the dominating association of Tl with the residual fraction (>95%) of the mining area sediments. The significant role of certain K-containing silicates or minerals of these sediments on retaining Tl in the residual fraction, discovered by this study, provides a special field of research opportunity for the Tl-containing wastewater treatment. (Copyright copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. The influence of Musi river sedimentation to the aquatic environment

    Directory of Open Access Journals (Sweden)

    Syarifudin Achmad

    2017-01-01

    Full Text Available Musi river is the largest river in Palembang with a length of more than 750 kilometers. The sedimentation in the Musi river is commonly existed due to the high level meeting of velocity between the Musi river and the ocean in the Bangka Strait. The silting condition of Musi river is getting more severe due to the sludge growth that reach about 40 cm per month. In fact, the volume of sludge could reach 2.5 million m3. There are 13 silted points along the river shipping channel from the Boom Baru port to Bangka Strait. Four points are vulnerable due to the siltings reach up to 4 m. This research was conducted by using the approach of software models MIKE 21 Flow Models. The results obtained from this study are the greatest speed direction occurred, elevation of the outer surface and total depth of water will contribute and effect to the free area for ships to perform well and safe movement. The other side will effect of the amount of sedimentation and the aquatic environment of the swamp area.

  19. Biological Assessment of Upper Mississippi River Sediments.

    Science.gov (United States)

    1980-12-01

    clams Amblema plicata as solid phase test species; EL personnel added the amphipod Hyallela azteca .) It was agreed that water fleas Daphnia sp. would be...survival of freshwater amphipods H. azteca in all four of the UMR sediments was determined. Test containers were crystallizing dishes placed in a water...vidual H. azteca were placed in each test container and survival was determined after 10 days exposure. 14. Two acute toxicity experiments with water

  20. Sediment dynamics in the lower Mekong River: Transition from tidal river to estuary

    Science.gov (United States)

    Nowacki, Daniel J.; Ogston, Andrea S.; Nittrouer, Charles A.; Fricke, Aaron T.; Van, Pham Dang Tri

    2015-09-01

    A better understanding of flow and sediment dynamics in the lowermost portions of large-tropical rivers is essential to constraining estimates of worldwide sediment delivery to the ocean. Flow velocity, salinity, and suspended-sediment concentration were measured for 25 h at three cross sections in the tidal Song Hau distributary of the Mekong River, Vietnam. Two campaigns took place during comparatively high-seasonal and low-seasonal discharge, and estuarine conditions varied dramatically between them. The system transitioned from a tidal river with ephemeral presence of a salt wedge during high flow to a partially mixed estuary during low flow. The changing freshwater input, sediment sources, and estuarine characteristics resulted in seaward sediment export during high flow and landward import during low flow. The Dinh An channel of the Song Hau distributary exported sediment to the coast at a rate of about 1 t s-1 during high flow and imported sediment in a spatially varying manner at approximately 0.3 t s-1 during low flow. Scaling these values results in a yearly Mekong sediment discharge estimate about 65% smaller than a generally accepted estimate of 110 Mt yr-1, although the limited temporal and spatial nature of this study implies a relatively high degree of uncertainty for the new estimate. Fluvial advection of sediment was primarily responsible for the high-flow sediment export. Exchange-flow and tidal processes, including local resuspension, were principally responsible for the low-flow import. The resulting bed-sediment grain size was coarser and more variable during high flow and finer during low, and the residual flow patterns support the maintenance of mid-channel islands. This article was corrected on 7 OCT 2015. See the end of the full text for details.

  1. River sedimentation and channel bed characteristics in northern Ethiopia

    Science.gov (United States)

    Demissie, Biadgilgn; Billi, Paolo; Frankl, Amaury; Haile, Mitiku; Lanckriet, Sil; Nyssen, Jan

    2016-04-01

    Excessive sedimentation and flood hazard are common in ephemeral streams which are characterized by flashy floods. The purposes of this study was to investigate the temporal variability of bio-climatic factors in controlling sediment supply to downstream channel reaches and the effect of bridges on local hydro-geomorphic conditions in causing the excess sedimentation and flood hazard in ephemeral rivers of the Raya graben (northern Ethiopia). Normalized Difference Vegetation Index (NDVI) was analyzed for the study area using Landsat imageries of 1972, 1986, 2000, 2005, 2010, and 2012). Middle term, 1993-2011, daily rainfall data of three meteorological stations, namely, Alamata, Korem and Maychew, were considered to analyse the temporal trends and to calculate the return time intervals of rainfall intensity in 24 hours for 2, 5, 10 and 20 years using the log-normal and the Gumbel extreme events method. Streambed gradient and bed material grain size were measured in 22 river reaches (at bridges and upstream). In the study catchments, the maximum NDVI values were recorded in the time interval from 2000 to 2010, i.e. the decade during which the study bridges experienced the most severe excess sedimentation problems. The time series analysis for a few rainfall parameters do not show any evidence of rainfall pattern accountable for an increase in sediment delivery from the headwaters nor for the generation of higher floods with larger bedload transport capacities. Stream bed gradient and bed material grain size data were measured in order to investigate the effect of the marked decrease in width from the wide upstream channels to the narrow recently constructed bridges. The study found the narrowing of the channels due to the bridges as the main cause of the thick sedimentation that has been clogging the study bridges and increasing the frequency of overbank flows during the last 15 years. Key terms: sedimentation, ephemeral streams, sediment size, bridge clogging

  2. Human and environmental impacts on river sediment microbial communities.

    Directory of Open Access Journals (Sweden)

    Sean M Gibbons

    Full Text Available Sediment microbial communities are responsible for a majority of the metabolic activity in river and stream ecosystems. Understanding the dynamics in community structure and function across freshwater environments will help us to predict how these ecosystems will change in response to human land-use practices. Here we present a spatiotemporal study of sediments in the Tongue River (Montana, USA, comprising six sites along 134 km of river sampled in both spring and fall for two years. Sequencing of 16S rRNA amplicons and shotgun metagenomes revealed that these sediments are the richest (∼ 65,000 microbial 'species' identified and most novel (93% of OTUs do not match known microbial diversity ecosystems analyzed by the Earth Microbiome Project to date, and display more functional diversity than was detected in a recent review of global soil metagenomes. Community structure and functional potential have been significantly altered by anthropogenic drivers, including increased pathogenicity and antibiotic metabolism markers near towns and metabolic signatures of coal and coalbed methane extraction byproducts. The core (OTUs shared across all samples and the overall microbial community exhibited highly similar structure, and phylogeny was weakly coupled with functional potential. Together, these results suggest that microbial community structure is shaped by environmental drivers and niche filtering, though stochastic assembly processes likely play a role as well. These results indicate that sediment microbial communities are highly complex and sensitive to changes in land use practices.

  3. Polybrominated diphenyl ethers in Mississippi River suspended sediment

    Energy Technology Data Exchange (ETDEWEB)

    Raff, J.; Hites, R. [Indiana Univ., Bloomington, IN (United States)

    2004-09-15

    The Mississippi River Basin drains water from 41% of the conterminous U.S. and is a valuable resource that supplies food, transportation, and irrigation to more than 95 million people of the region. Discharge and runoff from industry, agriculture, and population centers have increased the loads of anthropogenic organic compounds in the river. There has been growing concern over the rising levels of polybrominated diphenyl ethers (PBDEs) in air, sediment, biota, and humans, but there have been no studies to measure the concentrations of these chemicals in North America's largest river system. The goal of this study was to investigate the occurrence of PBDEs (15 congeners including BDE-209) and to identify possible sources within the Mississippi River Basin. We found PBDEs to be widespread throughout the region, rivaling PCBs in their extent and magnitude of contamination. We have also calculated the total amount of PBDEs released to the Gulf of Mexico in 2002.

  4. Quantitatively distinguishing sediments from the Yangtze River and the Yellow River using δEu_N-ΣREEs plot

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Sediment samples were collected from the lower channel of the Yangtze River and the Yellow River and the contents of rare earth elements (REEs) were measured. In addition, some historical REEs data were collected from published literatures. Based on the δEuN-ΣREEs plot, a clear boundary was found be-tween the sediments from the two rivers. The boundary can be described as an orthogonal polynomial equation by ordinary linear regression with sediments from the Yangtze River located above the curve and sediments from the Yellow River located below the curve. To validate this method, the REEs con-tents of sediments collected from the estuaries of the Yangtze River and the Yellow River were meas-ured. In addition, the REEs data of sediment Core 255 from the Yangtze River and Core YA01 from the Yellow River were collected. Results show that the samples from the Yangtze River estuary and Core 255 almost are above the curve and most samples from the Yellow River estuary and Core YA01 are below the curve in the δEuN-ΣREEs plot. The plot and the regression equation can be used to distin-guish sediments from the Yangtze River and the Yellow River intuitively and quantitatively, and to trace the sediment provenance of the eastern seas of China. The difference between the sediments from two rivers in the δEuN-ΣREEs plot is caused by different mineral compositions and regional climate patterns of the source areas. The relationship between δEuN and ΣREEs is changed little during the transport from the source area to the river, and from river to the sea. Thus the original information on mineral compositions and climate of the source area was preserved.

  5. Quantitatively distinguishing sediments from the Yangtze River and the Yellow River using δEuN-ΣREEs plot

    Institute of Scientific and Technical Information of China (English)

    JIANG FuQing; ZHOU XiaoJing; LI AnChun; LI TieGang

    2009-01-01

    Sediment samples were collected from the lower channel of the Yangtze River and the Yellow River and the contents of rare earth elements (REEs) were measured. In addition, some historical REEs data were collected from published literatures. Based on the δEuN-ΣREEs plot, a clear boundary was found be-tween the sediments from the two rivers. The boundary can be described as an orthogonal polynomial equation by ordinary linear regression with sediments from the Yangtze River located above the curve and sediments from the Yellow River located below the curve. To validate this method, the REEs con-tents of sediments collected from the estuaries of the Yangtze River and the Yellow River were meas-ured. In addition, the REEs data of sediment Core 255 from the Yangtze River and Core YA01 from the Yellow River were collected. Results show that the samples from the Yangtze River estuary and Core 255 almost are above the curve and most samples from the Yellow River estuary and Core YA01 are below the curve in the δEuN-ΣREEs plot. The plot and the regression equation can be used to distin-guish sediments from the Yangtze River and the Yellow River intuitively and quantitatively, and to trace the sediment provenance of the eastern seas of China. The difference between the sediments from two rivers in the δEuN-ΣREEs plot is caused by different mineral compositions and regional climate patterns of the source areas. The relationship between δEuN and ΣREEs is changed little during the transport from the source area to the river, and from river to the sea. Thus the original information on mineral compositions and climate of the source area was preserved.

  6. Seasonal variation of sediment toxicity in the Rivers Dommel and Elbe.

    Science.gov (United States)

    Hsu, P; Matthäi, A; Heise, S; Ahlf, W

    2007-08-01

    Contaminated sediment in the river basin has become a source of pollution with increasing importance to the aquatic ecosystem downstream. To monitor the temporal changes of the sediment bound contaminants in the River Elbe and the River Dommel monthly toxicity tests were applied to layered sediment and river water samples over the course of 10 months. There is an indication that contaminated sediments upstream adversely affected sediments downstream, but this process did not cause a continuous increase of sediment toxicity. A clear decrease of toxic effects in water and upper layer sediment was observed at the River Elbe station in spring related to high water discharge and algal blooms. The less obvious variation of sediment toxicity in the River Dommel could be explained by stable hydrological conditions. Future monitoring programmes should promote a more frequent and intensive sampling regime during these particular events for ecotoxicological evaluation.

  7. Sediment supply controls equilibrium channel geometry in gravel rivers

    Science.gov (United States)

    Pfeiffer, Allison M.; Finnegan, Noah J.; Willenbring, Jane K.

    2017-03-01

    In many gravel-bedded rivers, floods that fill the channel banks create just enough shear stress to move the median-sized gravel particles on the bed surface (D50). Because this observation is common and is supported by theory, the coincidence of bankfull flow and the incipient motion of D50 has become a commonly used assumption. However, not all natural gravel channels actually conform to this simple relationship; some channels maintain bankfull stresses far in excess of the critical stress required to initiate sediment transport. We use a database of >300 gravel-bedded rivers and >600 10Be-derived erosion rates from across North America to explore the hypothesis that sediment supply drives the magnitude of bankfull shear stress relative to the critical stress required to mobilize the median bed surface grain size (τbf*/τc*). We find that τbf*/τc* is significantly higher in West Coast river reaches (2.35, n = 96) than in river reaches elsewhere on the continent (1.03, n = 245). This pattern parallels patterns in erosion rates (and hence sediment supplies). Supporting our hypothesis, we find a significant correlation between upstream erosion rate and local τbf*/τc* at sites where this comparison is possible. Our analysis reveals a decrease in bed surface armoring with increasing τbf*/τc*, suggesting channels accommodate changes in sediment supply through adjustments in bed surface grain size, as also shown through numerical modeling. Our findings demonstrate that sediment supply is encoded in the bankfull hydraulic geometry of gravel bedded channels through its control on bed surface grain size.

  8. Regional variation of sediment load of Asian rivers flowing into the ocean

    Institute of Scientific and Technical Information of China (English)

    刘曙光; 丁坚; 华棣; 杨洪林; 李从先; 杨守业

    2001-01-01

    Study of Asian major rivers discharge to the ocean reveals variations of their water discharges and sediment loads, and local characteristic of river sediment concentrations. On the basis of this, the Asian rivers can be divided into three regions: Eurasia Arctic, East Asia, Southeast and South Asia Region. The Eurasia Arctic Region is characteristic of the lowest sediment concentration and load, while the East Asia Region is of the highest sediment concentration and higher sediment load, and the Southeast and South Asia Region yields higher sediment concentration and highest sediment load.

  9. Sediment Load of Asian Rivers flowing into the Oceans and their Regional Variation

    Institute of Scientific and Technical Information of China (English)

    Liu Shuguang; Zheng Yonglai; Zhuge Zhengji; Li Congxian

    2002-01-01

    Study of the major Asian rivers discharge to the ocean reveals variations of their water discharges and sediment loads, and local characteristics of river sediment concentrations. On the basis of this, the Asian rivers fall into three regions, including Eurasia Arctic, East Asia, Southeast and South Asia Regions. The Eurasia Arctic Region is characterized by the lowest sediment concentration and load, while the East Asia Region is of the highest sediment concentration and higher sediment load, and the South-East and South Asia Region yields higher sediment concentration and highest sediment load.The sediment loads of these regions are mainly controlled by climate, geomorphology and tectonic activity. The Eurasia Arctic rivers with large basin areas and water discharge, drain low relief which consists of tundra sediment, thus causing the lowest sediment load. The East Asia rivers with small basin areas and lowest water discharges, drain extensive loess plateau, and transport most erodible loess material, which results in highest sediment concentration. The SE and South Asia rivers originating from the Tibet Plateau have large basin areas and the largest water discharges because of the Summer Monsoon and high rainfall influence, causing the highest sediment load.In Asia, tectonic motion of the Tibet Plateau plays an important role. Those large rivers originating from the Tibet Plateau transport about 50% of the world river sediment load to ocean annually, forming large estuaries and deltas, and consequently exerting a great influence on sedimentation in the coastal zone and shelves.

  10. Bathymetry of the Hudson Shelf Valley (12-m resolution Esri binary grid and 32-bit GeoTIFF, Mercator, WGS 84)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Hudson Shelf Valley is the submerged seaward extension of the ancestral Hudson River drainage system and is the largest physiographic feature on the Middle...

  11. Radiocaesium distribution in the sediment of a Fukushima river estuary

    Science.gov (United States)

    Hagiwara, Hiroki; Konishi, Hiromi; Nakanishi, Takahiro; Harada, Hisaya; Tsuruta, Tadahiko

    2016-04-01

    On fluvial discharge, paticulate fractions are the main carrier of radiocaesium from land to aquatic bodies such as rivers, lakes and the sea [1]. However, within river estuaries, where there is a drastic increase in salinity, fine particles generally flocculate (in the size order of several tens μm) before settling out and being deposited on the river bed [2]. In this study, we investigated the sediment records and the distribution of radiocaesium within the estuary of the Odaka river in January 2014, located approximately 17 km north of the Fukushima Dai-ichi Nuclear Power Plant. Based on distribution of salinity, the environment of the Odaka river is divided into three areas; the freshwater area, the estuarine marine area that was filled with saline water from surface to bottom and the brackish area between these two. Radiocaesium deposition ranged from 45 to 1070 kBq m-2 with the inventory of radiocaesium in the estuary being significantly greater in the brackish area relative to both the freshwater and estuarine marine areas. Particle size dependency of radiocaesium concentration in the sediments showed that the distribution with relatively higher concentration was expected in the brackish area. The possibility of flocculation in the brackish area will be discussed. References [1] Nagao, S., Kanamori, M., Ochiai, S., Tomihara, S., Fukushi, K., and Yamamoto, M., 2013, Biogeosciences, v. 10, no. 10, p. 6215-6223. [2] Droppo, I. G., and Ongley, E. D., 1994, Water Research, v. 28, no. 8, p. 1799-1809.

  12. Sediment quality of Tamiraparani River in Kanyakumari district

    Directory of Open Access Journals (Sweden)

    Y. Ramani Bai

    2015-03-01

    Full Text Available The sediments of Tamiraparani River have been studied. The soil samples were collected once a month for five months from ten different sites starting from Moovattumughom to Thengapattanam. The physico chemical parameters like pH electrical conductivity, amount of macro nutrients and the amount of micro nutrients were analyzed. In this river heavy metals like iron and manganese show a decreasing trend toward the coast. The pH of the water is high in site J because this site is nearer to the ocean.

  13. Muskingum equation based downstream sediment flow simulation models for a river system

    Institute of Scientific and Technical Information of China (English)

    Briti Sundar Sil; Parthasarathi Choudhury

    2016-01-01

    Applications of sediment transport and water flow characteristics based sediment transport simulation models for a river system are presented in this study. An existing water–sediment model and a new sediment–water model are used to formulate the simulation models representing water and sediment movement in a river system. The sediment–water model parameters account for water flow characteristics embodying sediment transport properties of a section. The models are revised formulations of the multiple water inflows model describing water movement through a river system as given by the Muskingum principle. The models are applied to a river system in Mississippi River basin to estimate downstream sediment concentration, sediment discharge, and water discharge. River system and the river section parameters are estimated using a revised and the original multiple water inflows models by applying the genetic algorithm. The models estimate downstream sediment transport rates on the basis of upstream sediment/water flow rates to a system. Model performance is evaluated by using standard statistical criteria;downstream water discharge resulting from the original multiple water inflows model using the estimated river system parameters indicate that the revised models satisfactorily describe water movement through a river system. Results obtained in the study demonstrate the applicability of the sediment transport and water flow characteristics-based simulation models in predicting downstream sediment transport and water flow rates in a river system.

  14. Estimation of low-flow statistics at ungaged sites on streams in the Lower Hudson River Basin, New York, from data in geographic information systems

    Science.gov (United States)

    Randall, Allan D.; Freehafer, Douglas A.

    2017-08-02

    A variety of watershed properties available in 2015 from geographic information systems were tested in regression equations to estimate two commonly used statistical indices of the low flow of streams, namely the lowest flows averaged over 7 consecutive days that have a 1 in 10 and a 1 in 2 chance of not being exceeded in any given year (7-day, 10-year and 7-day, 2-year low flows). The equations were based on streamflow measurements in 51 watersheds in the Lower Hudson River Basin of New York during the years 1958–1978, when the number of streamflow measurement sites on unregulated streams was substantially greater than in subsequent years. These low-flow indices are chiefly a function of the area of surficial sand and gravel in the watershed; more precisely, 7-day, 10-year and 7-day, 2-year low flows both increase in proportion to the area of sand and gravel deposited by glacial meltwater, whereas 7-day, 2-year low flows also increase in proportion to the area of postglacial alluvium. Both low-flow statistics are also functions of mean annual runoff (a measure of net water input to the watershed from precipitation) and area of swamps and poorly drained soils in or adjacent to surficial sand and gravel (where groundwater recharge is unlikely and riparian water loss to evapotranspiration is substantial). Small but significant refinements in estimation accuracy resulted from the inclusion of two indices of stream geometry, channel slope and length, in the regression equations. Most of the regression analysis was undertaken with the ordinary least squares method, but four equations were replicated by using weighted least squares to provide a more realistic appraisal of the precision of low-flow estimates. The most accurate estimation equations tested in this study explain nearly 84 and 87 percent of the variation in 7-day, 10-year and 7-day, 2-year low flows, respectively, with standard errors of 0.032 and 0.050 cubic feet per second per square mile. The equations

  15. Adsorption of zinc on natural sediment of Tafna River (Algeria)

    Energy Technology Data Exchange (ETDEWEB)

    Dali-youcef, N. [Universite des Sciences et Technologies de Lille, Laboratoire de Chimie Analytique et Marine, UMR CNRS 8110 PBDS and FR 1818, Bat. C8 2eme etage, 59655 Villeneuve d' Ascq Cedex (France)]. E-mail: nacera.dali@caramail.com; Ouddane, B. [Universite des Sciences et Technologies de Lille, Laboratoire de Chimie Analytique et Marine, UMR CNRS 8110 PBDS and FR 1818, Bat. C8 2eme etage, 59655 Villeneuve d' Ascq Cedex (France); Derriche, Z. [Universite des Sciences et Technologies de d' Oran, Laboratoire de Physico-chimie des Materiaux, El M' Naouar, BP 1505, 31000 Oran (Algeria)

    2006-10-11

    The environmental impact of metal additions to sediment depends on its sorption ability. The paper presents a study of zinc adsorption using the experiment data on natural sediment of Tafna River in northwest of Algeria. The effect of various operating variables, namely initial concentration, mass of sediment, and contact time, have been studied. The optimum contact time needed to reach equilibrium is of the order of 30 min and is independent of initial concentration and mass of zinc ions. The extent of adsorption increases with increase of concentration, and with decrease of adsorbent mass. The content of carbonate in sediment increases the adsorption indicating the active support material towards zinc ions. A batch sorption model, which assumes the pseudo-second-order mechanism, is developed to predict the rate constant of the sorption, the equilibrium sorption capacity and the initial sorption rate with the effect of initial zinc ion concentration and sediment dose. Various thermodynamic parameters, such as {delta}G{sup o}, {delta}H{sup o} and {delta}S{sup o}, have been calculated. The thermodynamics of zinc ion/sediment system indicates spontaneous, endothermic and randomness nature of the process.

  16. Suspended sediment in a high-Arctic river

    DEFF Research Database (Denmark)

    Ladegaard-Pedersen, Pernille; Sigsgaard, Charlotte; Kroon, Aart;

    2016-01-01

    Quantifying fluxes of water, sediment and dissolved compounds through Arctic rivers is important for linking the glacial, terrestrial and marine ecosystems and to quantify the impact of a warming climate. The quantification of fluxes is not trivial. This study uses a 8-years data set (2005......-1 and 61,000±16,000ty-1. Extreme events with high discharges had a mean duration of 1day. The average suspended sediment flux during extreme events was 17,000±5000ty-1, which constitutes a year-to-year variation of 20-37% of the total annual flux. The most accurate sampling strategy was bi......-agreements and accuracies variations in the measured suspended sediment concentrations. The discharge weighted mean...

  17. Natural radioactivity in stream sediments of Oltet River, Romania

    Science.gov (United States)

    Ion, Adriana

    2017-04-01

    The concentration of naturally occurring radionuclides (U-238, Th-232 and K-40) in stream sediments of the Oltet River was measured in order to establish the primary sources of radionuclides, the transport pathways and the geochemical factors favouring their mobilisation and concentration in the existing geological context. The Oltet River has a length of 185 Km and crosses the southern central part of the country, being the right tributary of the Olt River. The range in elevation of the watercourse varies between 1963 m in the springs area (Parîng Mountains) and 200 m at the confluence with the Olt River, whereas the relief of the Oltet Basin has a varied character, manifested by the presence of diverse forms of relief, starting with major mountainous heights and ending with low-lying plains regions. In cross section from North to South, the Olteț River cuts metamorphic rocks (schist, gneisses, quartzite, marble, mica-schist's), magmatic rocks (granite and granitoid massifs - intruded by veins of microgranite, aplite, pegmatite and lamprophyre) and limestone, followed by deposits composed of clays, marls, sands and gravels, that are characterized by the presence of lignite seams. 44 stream sediment samples were collected in summer of 2016 from sampling points distributed along the river with an equidistance of about 4 - 5 km. The activity concentrations of the U-238, Th-232 and K-40 were measured by gamma ray spectrometry using HPGe detector (ORTEC) with 26% relative efficiency in multilayer shielding. The reference materials used were IAEA - RGK-1 and IAEA - 314. Analysis was performed on the <2 mm fraction of sediment sample, each sample was counted for 24,000 s. U-238 specific activity in the stream sediments varies between 6.18 and 68.76 Bq/Kg and Th-232 specific activity from 8.12 to 89.28 Bq/Kg, whereas the K-40 specific activity in sediments ranges from 99.01 to 312.16 Bq/Kg. In the upper sector of the Oltet River, concentrations of U-238, Th-232 and K-40

  18. Surficial sediment distribution and the associated net sediment transport pattern in the Pearl River Estuary, South China

    NARCIS (Netherlands)

    Zhang, W.; Zheng, J.H.; Ji, X.M.; Hoitink, A.J.F.; van der Vegt, M.

    2013-01-01

    Spatial variations in grain-size parameters contain information on sediment transport patterns. Therefore, in this study, 106 surficial sediment samples taken from the Pearl River Estuary (PRE), South China, were analyzed, to better understand the net sediment transport pattern in this region. The P

  19. Effect of suspended sediment grain size on channel sedimentation in the lower Yellow River and some implications

    Institute of Scientific and Technical Information of China (English)

    XU JiongXin; HU ChunHong; CHEN JianGuo

    2009-01-01

    Based on the data of suspended sediment transport and channel sedimentation in various grain size fractions in the period of 1962-1985,the relationship between channel sedimentation in the lower Yellow River and sediment input has been plotted with respect to each grain size fraction.Several fill-scour thresholds in sediment input have been identified from these graphs.It was found that the fill-scour threshold in sediment input decreases with the increase in fraction grain size.The correlation coefficient between channel sedimentation and sediment input becomes larger with the increasing fraction grain size,indicating that channel sedimentation depends more on coarser grain size fractions than on smaller ones.The fraction channel sedimentation induced by unit change of fraction sediment input increases with grain size.Of the input of sediment larger than 0.025 mm,43.73% was deposited on the channel,and for inputs of sediments larger than 0.05 mm and larger than 0.10 mm,76.61% and 97.68% were deposited on the channel,respectively.Thus,for reduction of each ton of sediment larger than 0.10 mm from the drainage basin,the resultant reduction in channel sedimentation in the lower Yellow River would be 1.275 times that for the sediment larger than 0.10 mm,and 2.234 times that for the sediment larger than 0.025 mm.Therefore,if the erosion and sediment control measures are enforced in the areas where >0.05 or >0.10 mm sediment is produced,then the best beneficial will be achieved in reducing sedimentation in the lower Yellow River.

  20. Effect of suspended sediment grain size on channel sedimentation in the lower Yellow River and some implications

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Based on the data of suspended sediment transport and channel sedimentation in various grain size fractions in the period of 1962―1985, the relationship between channel sedimentation in the lower Yellow River and sediment input has been plotted with respect to each grain size fraction. Several fill-scour thresholds in sediment input have been identified from these graphs. It was found that the fill-scour threshold in sediment input decreases with the increase in fraction grain size. The correlation coefficient between channel sedimentation and sediment input becomes larger with the increasing fraction grain size, indicating that channel sedimentation depends more on coarser grain size fractions than on smaller ones. The fraction channel sedimentation induced by unit change of fraction sediment input increases with grain size. Of the input of sediment larger than 0.025 mm, 43.73% was deposited on the channel, and for inputs of sediments larger than 0.05 mm and larger than 0.10 mm, 76.61% and 97.68% were deposited on the channel, respectively. Thus, for reduction of each ton of sediment larger than 0.10 mm from the drainage basin, the resultant reduction in channel sedimentation in the lower Yellow River would be 1.275 times that for the sediment larger than 0.10 mm, and 2.234 times that for the sediment larger than 0.025 mm. Therefore, if the erosion and sediment control measures are enforced in the areas where >0.05 or >0.10 mm sediment is produced, then the best beneficial will be achieved in reducing sedimentation in the lower Yellow River.

  1. Hudson 3 essentials

    CERN Document Server

    Meinholz, Lloyd

    2013-01-01

    A practical guide, packed with illustrations, that will help you become proficient with Hudson and able to utilize it how you want.If you are a Java developer or administrator who would to like automate some of the mundane work required to build and test software and improve software quality, this is the book for you. If you are a development manager or tester, you can also benefit from learning how Hudson works by gaining some insight into test results and historical trends.

  2. Sediment budget in the Ucayali River basin, an Andean tributary of the Amazon River

    Directory of Open Access Journals (Sweden)

    W. Santini

    2015-03-01

    Full Text Available Formation of mountain ranges results from complex coupling between lithospheric deformation, mechanisms linked to subduction and surface processes: weathering, erosion, and climate. Today, erosion of the eastern Andean cordillera and sub-Andean foothills supplies over 99% of the sediment load passing through the Amazon Basin. Denudation rates in the upper Ucayali basin are rapid, favoured by a marked seasonality in this region and extreme precipitation cells above sedimentary strata, uplifted during Neogene times by a still active sub-Andean tectonic thrust. Around 40% of those sediments are trapped in the Ucayali retro-foreland basin system. Recent advances in remote sensing for Amazonian large rivers now allow us to complete the ground hydrological data. In this work, we propose a first estimation of the erosion and sedimentation budget of the Ucayali River catchment, based on spatial and conventional HYBAM Observatory network.

  3. Heavy metal distribution in sediment profiles of Tuul River, Mongolia

    Science.gov (United States)

    Soyol-Erdene, T. O.; Lin, S.; Tuuguu, E.; Daichaa, D.; Ulziibat, B.; Enkh-Amgalan, T.; Hsieh, I. C.

    2016-12-01

    The distribution, enrichment, and accumulation of heavy metals in the sediments of Tuul River, Mongolia were investigated. Sediment core samples with depths of 4.0-49 cm from thirteen locations along the Tuul River were collected in the period from Sept. 2013 to Aug. 2014 and characterized for metal contents (e.g., Al, Fe, Cu, Zn, Pb, Ni, Cd, Hg and Cr), water content, and grain size. Results showed that metal average concentrations in the sample cores varied from 0.02 mg kg-1 for Hg (0.01 - 0.03 mg kg-1) to 481 mg kg-1 for Mn (277 - 623 mg kg-1). Metal concentrations at the downstream of the capital city were higher than those at other locations. All heavy metals studied, had average enrichment factors less than 3.0, but some sites had relatively higher values of enrichment factors up to 18 for Cu, 4.1 for Hg, 5.9 for Zn, and 25 for Cr, especially at middle depth ( 8-12 cm) of the cores. Importantly, severe pollution of mercury (Hg) was found at the downstream of the capital city which requires immediate remediation before this metal propagates into the food chain. Metal concentrations correlated to the physical-chemical properties of the sediments, which suggested the influence of industrial and municipal wastewaters discharged from the nearby cities. Results of this work would help to develop strategy to remediate of Tuul river sediment and to reduce the exposure of inhabitants to toxic substances.

  4. Natural attenuation of coal combustion waste in river sediments.

    Science.gov (United States)

    Markwiese, James T; Rogers, William J; Carriker, Neil E; Thal, David I; Vitale, Rock J; Gruzalski, Jacob G; Rodgers, Erin E; Babyak, Carol M; Ryti, Randall T

    2014-08-01

    The weathering of coal combustion products (CCPs) in a lotic environment was assessed following the Tennessee Valley Authority (Kingston, TN) fly ash release of 2008 into surrounding rivers. Sampled materials included stockpiled ash and sediment collected from 180 to 880 days following the release. Total recoverable concentrations of heavy metals and metalloids in sediment were measured, and percent ash was estimated visually or quantified by particle counts. Arsenic and selenium in sediment were positively correlated with percent ash. For samples collected 180 days after the release, total concentrations of trace elements downstream of the release were greater than reference levels but less than concentrations measured in stockpiled ash. Total concentrations of trace elements remained elevated in ash-laden sediment after almost 2.5 years. A sequential extraction procedure (SEP) was used to speciate selected fractions of arsenic, copper, lead, nickel, and selenium in decreasing order of bioavailability. Concentrations of trace elements in sequentially extracted fractions were one to two orders of magnitude lower than total recoverable trace elements. The bulk of sequentially extractable trace elements was associated with iron-manganese oxides, the least bioavailable fraction of those measured. By 780 days, trace element concentrations in the SEP fractions approached reference concentrations in the more bioavailable water soluble, ion exchangeable, and carbonate-bound fractions. For each trace element, the percentage composition of the bioavailable fractions relative to the total concentration was calculated. These SEP indices were summed and shown to significantly decrease over time. These results document the natural attenuation of leachable trace elements in CCPs in river sediment as a result of the loss of bioavailable trace elements over time.

  5. Sediment Transport Dynamics in River Networks: A Model for Higher-Water Seasons

    Science.gov (United States)

    Huo, Jie; Wang, Xu-Ming; Hao, Rui; Zhang, Jin-Feng

    A dynamical model is proposed to study sediment transport in river networks in higher-water seasons. The model emphasizes the difference between the sediment-carrying capability of the stream in higher-water seasons and that in lower-water seasons. The dynamics of sediment transport shows some complexities such as the complex dependence of the sediment-carrying capability on sediment concentration, the response of the channel(via erosion or sedimentation) to the changes of discharge.

  6. Selective analysis of power plant operation on the Hudson River with emphasis on the Bowline Point Generating Station. Volume 2. [Multiple impact of power plant once-through cooling systems on fish populations

    Energy Technology Data Exchange (ETDEWEB)

    Barnthouse, L. W.; Cannon, J. B.; Christensen, S. G.

    1977-07-01

    Because of the location of the Bowline, Roseton, and Indian Point power generating facilities in the low-salinity zone of the Hudson estuary, operation of these plants with the present once-through cooling systems will adversely influence the fish populations that use the area for spawning and initial periods of growth and development. Recruitment rates and standing crops of several fish species may be lowered in response to the increased mortality caused by entrainment of nonscreenable eggs and larvae and by impingement of screenable young of the year. Entrainment and impingement data are particularly relevant for assessing which fish species have the greatest potential for being adversely affected by operation of Bowline, Roseton, and Indian Point with once-through cooling. These data from each of these three plants suggest that the six species that merit the greatest consideration are striped bass, white perch, tomcod, alewife, blueback herring, and bay anchovy. Two points of view are available for assessing the relative importance of the fish species in the Hudson River. From the fisheries point of view, the only two species of major importance are striped bass and shad. From the fish-community and ecosystem point of view, the dominant species, as determined by seasonal and regional standing crops (in numbers and biomass per hectare), are the six species most commonly entrained and impinged, namely, striped bass, white perch, tomcod, alewife, blueback herring, and anchovy.

  7. Accessibility on the Hudson River

    Science.gov (United States)

    Exceptional Parent, 2010

    2010-01-01

    This article describes how Beverly and Martin Ryfa, working with an architect who specializes in accessible design, were able to build a house that is handicap accessible for their 9-year-old daughter, Danielle, who suffered an intraventricular hemorrhage when she was three days old. The article describes the features of their house that make…

  8. Influence of land use configurations on river sediment pollution.

    Science.gov (United States)

    Liu, An; Duodu, Godfred O; Goonetilleke, Ashantha; Ayoko, Godwin A

    2017-10-01

    Land use is an influential factor in river sediment pollution. However, land use type alone is found to be inadequate to explain pollutant contributions to the aquatic environment since configurations within the same land use type such as land cover and development layout could also exert an important influence. Consequently, this paper discusses a research study, which consisted of an in-depth investigation into the relationship between land use type and river sediment pollution by introducing robust parameters that represent configurations within the primary land use types. Urban water pollutants, namely, nutrients, total carbon, polycyclic aromatic hydrocarbons and metals were investigated in the study. The outcomes show that higher patch density and more diverse land use development forms contribute relatively greater pollutant loads to receiving waters and consequently leading to higher sediment pollution. The study outcomes are expected to contribute essential knowledge for creating robust management strategies to minimise waterway pollution and thereby protect the health of aquatic ecosystems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Influence of small river derived sediment on the Northeastern South China Sea sedimentation processes in the last 40 K years

    Science.gov (United States)

    Cheng, Wan-Yen; Lin, Saulwood; Lou, Jiann-Yuh; Wei, Kuo-Yen; Liu, CharShine; Chen, Shing-Li; Wang, Yun-Shuen

    2015-04-01

    Small rivers derived particles are major source of sediment to the ocean in the present time. Small rivers in Taiwan are subjected to fast tectonic activity, high precipitation rate and erosion rate. The combined annual river particle load from small rivers on the Island of Taiwan is higher than that of the Mississippi River. A large fraction of those rivers particle may finding its way into the surrounding seas and ocean, e.g. South China Sea, East China Sea, and the Philippine Sea. Furthermore, due to the nature of particle transportation off rivers from Taiwan were connected by a number of canyon systems close by the river mouth, majority of those river particles were facilitated in delivering and deposited later further into the South China Sea deep basin. The objectives of this study are to understand spatial variations in sedimentation rates and to resolve the temporal differences in sedimentation in the Northeastern South China Sea region, and to evaluate influence of small river particles to the marginal sea. A set of cores was collected in overlying water depth within 1600 - 3300 m for mutilsensor core logging of magnetic susceptibility, density, and porosity. Foraminifera (G. sacculifer, G. conglobatus, O. universa) were picked and AMS C14 analyses for age determination. Grain size, organic carbon, carbonate and biogenic silica content were measured. The results show that large sedimentation rates difference existed in the study area. Earlier studies on sedimentation rate in the region west of our study area were in range of about 10 cm/kyr while our rates are about 20-40 cm/kyr and much higher near Taiwan. Bulk sedimentation rate were higher during the transition period between LGM and Holocene and lower during Holocene. Our results demonstrated that large quantity of particles from small rivers in Taiwan are and were major source of particle and are the dominating factor in controlling sediment deposition in the northeastern South China Sea.

  10. Modeling sediment transport in the lower Yellow River and dynamic equilibrium threshold value

    Institute of Scientific and Technical Information of China (English)

    HU; Chunhong; GUO; Qingchao

    2004-01-01

    A major problem in the lower Yellow River is the insufficient incoming water and excessive sediment supply, which results in serious deposition, continuous rise of the river bed, and austere flood control situation. To understand the sediment transport regularity of the lower Yellow River and determine the relationship between sedimentation,incoming water and sediment, and zone water diversion, a mathematical model of the sediment suitable for the characteristics of the lower Yellow River has been developed.This model is first rated and verified by large quantity of observed data, and it is then used to analyze silting reduction for the lower Yellow River by Xiaolangdi Reservoir's operation,the relationship between zone water diversion and channel sedimentation, and critical equilibrium of sedimentation in the lower Yellow River. The threshold values of equilibrium of sedimentation in the lower Yellow River are estimated and they suggest that deposition in the lower Yellow River can be effectively reduced by the operation of regulating flow and sediment from Xiaolangdi Reservoir, water-soil conservation, and controlling water diversion along the lower Yellow River.

  11. Effects of Dissolved Oxygen on Nitrogen Release from Jialu River Sediment

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    [Objective] The aim was to study the effects of dissolved oxygen(DO) on nitrogen release from Jialu River sediment.[Method] Based on the present pollution of Jialu River(in Zhengzhou),the effects of dissolved oxygen on nitrogen transformation in Jialu River sediment were analyzed through simulation test of original columnar sediment.[Result] DO was the main impact factor of nitrogen transformation in Jialu River sediment,and DO with different concentrations had various effects on the transformation time and...

  12. Channel-floodplain sediment interactions along large rivers: hydrological connectivity and sediment budgets

    Science.gov (United States)

    Latrubesse, E. M.; Park, E.

    2015-12-01

    Understanding the patterns of sediment delivery processes and their budgets between channel and floodplains of large rivers is important because both hydrogeomorphic and biogeochemical alterations in floodplains take place through these interactions. The Amazon River has continuous exchange of sediment with floodplains, which may exceed over 3500 Mt/yr in both directions. However, characterizing the sediment transport and deposition patterns in floodplains and quantifying their budgets still remains a challenge. In this study, geomorphic units in floodplains are digitized and their hydrological connectivity are assessed by identifying recharge thresholds from the main channel. Historical floodplain recharge records are examined from daily water level data measured at nearby gauge stations by calculating number of days falling in between the connection and disconnection thresholds within a hydrological cycle. Historical recharge patterns of each unit is assessed using Mann-Kendall test. Intensity of hydrological connectivity is further investigated for by building power spectrum of over 15 years water extent time series data through fast Fourier transform, which the power spectral density indicates the intensity of flooding pulses from the main channel. To quantify the sediment budget stored in floodplains, PALSAR DEM acquired during the lowest water level season is used with the MODIS 8-day composite data. First, shoreline grids derived from MODIS-MNDWI is overlaid on PALSAR image to identify the water level at each floodplain lake unit (h). Total imported Sediment Fluxes (TiSF) entering each floodplain lake during a given period will be calculated as sum of (ht1-ht2) x (SSC(x,y)x1000) x 2502, where htn is the water level in floodplain lake at time tn; SSC(x, y) denotes sediment concentration at x, y coordinate; 1000 is a scale factor; and 2502 is the area of MODIS pixel (m2). Successively summing up TiSF derived from each period will retrieve the amount of total

  13. Overtopping breaching of river levees constructed with cohesive sediments

    Science.gov (United States)

    Wei, Hongyan; Yu, Minghui; Wang, Dangwei; Li, Yitian

    2016-07-01

    Experiments were conducted in a bend flume to study the overtopping breaching process and the corresponding overflow rates of river levees constructed with cohesive sediments. The river and land regions were separated by the constructed levee in the bend flume. Results showed that the levee breaching process can be subdivided into a slope erosion stage, a headcut retreat stage and a breach widening stage. Mechanisms such as flow shear erosion, impinging jet erosion, side slope erosion and cantilever collapse were discovered in the breaching process. The erosion characteristics were determined by both flow and soil properties. Finally, a depth-averaged 2-D flow model was used to simulate the levee breaching flow rates, which is well expressed by the broad-crested weir flow formula. The deduced discharge coefficient was smaller than that of common broad-crested rectangular weirs because of the shape and roughness of the breach.

  14. Impacts of the Indian Rivers Inter-link Project on Sediment Transport to River Deltas

    Science.gov (United States)

    Higgins, S.; Overeem, I.; Syvitski, J. P.

    2015-12-01

    The Indian Rivers Inter-link project is a proposal by the Indian government to link several of India's major rivers via a network of reservoirs and canals. Variations of the IRI have been discussed since 1980, but the current plan has recently received increased support from the Indian government. Construction on three canals has controversially begun. If the Inter-link project moves forward, fourteen canals will divert water from tributaries of the Ganges and Brahmaputra rivers to areas in the west, where fresh water is needed for irrigation. Additional canals would transport Himalayan sediments 500 km south to the Mahanadi delta and more than 1000 km south to the Godavari and Krishna deltas. We investigate the impacts of the proposed diversions on sediment transport to the Mahanadi/Brahmani, Godavari, and Krishna deltas in India and the Ganges-Brahmaputra Delta in Bangladesh. We map the entire river network and the proposed new nodes and connections. Changing watersheds are delineated using the Terrain Analysis Using Digital Elevation Models (TauDEM) Suite. Climate data comes from interpolation between observed precipitation stations located in China, Nepal, India, Bhutan and Bangladesh. Changes in water discharge due to the proposed canals are simulated using HydroTrend, a climate-driven hydrological water balance and transport model that incorporates drainage area, discharge, relief, temperature, basin-average lithology, and anthropogenic influences. Simulated river discharge is validated against observations from gauging stations archived by the Global Runoff Data Center (GRDC). HydroTrend is then used to investigate sediment transport changes that may result from the proposed canals. We also quantify changes in contributing areas for the outlets of nine major Indian rivers, showing that more than 50% of the land in India will contribute a portion of its runoff to a new outlet should the entire canal system be constructed.

  15. Measuring Bedload Sediment Flux in Large Rivers: New Data from the Mekong River and Its Applications in Assessing Geomorphic Change

    Science.gov (United States)

    Best, J.; Hackney, C. R.; Parsons, D. R.; Darby, S. E.; Leyland, J.; Aalto, R. E.; Nicholas, A. P.

    2014-12-01

    Many large rivers are undergoing renewed and increasing anthropogenic-induced change as water diversions, new dams and greater water demands place enhanced stresses on these river basins. Examples of rivers undergoing significant change include the Amazon, Madeira, Nile, Yangtze and Mekong, with considerable ongoing debate raging as to the long-term geomorphic and ecological effects of major anthropogenic interventions. Assessing the effects of such change in large rivers is demanding, one reason being that sediment transport is often exceedingly difficult to measure, and thus data needed to inform the debate on the impact of anthropogenic change is frequently lacking. Here, we report on one aspect of research being undertaken as part of STELAR-S2S - Sediment Transfer and Erosion on Large Alluvial Rivers - that is seeking to better understand the relationship between climate, anthropogenic impacts and sediment transport in some of the world's largest rivers. We are using the Lower Mekong River as our study site, with the Mekong delta being one of only three in the world classified by the IPCC as 'extremely vulnerable' to future changes in climate. Herein, we describe details of bedload sediment flux estimation using repeated high-resolution multibeam echo sounder (MBES) bathymetric mapping along the Lower Mekong and Tonle Sap rivers in Cambodia. We are using MBES to quantify the spatial variation in sediment transport both along and also across the river at 11 sites in the study area. Predicted increases in the extraction of sediment from the river through sand dredging are thought likely to cause a significant decrease in downstream sediment flux, and future dam construction along the Mekong main channel potentially offers another source of significant change. These field results will be set in the light of these anthropogenic drivers on sediment flux in the Mekong River and their possible future effects on bar formation and channel migration.

  16. Development of a blind reference sediment for use in upper Mississippi River and other sediment quality studies

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The Upper Mississippi River has a history of abuse and neglect by Man, resulting in the past contamination of its sediments by heavy metals and organic compounds...

  17. Human impact on erosion patterns and sediment transport in the Yangtze River

    Science.gov (United States)

    Sun, Xilin; Li, Chang'an; Kuiper, K. F.; Zhang, Zengjie; Gao, Jianhua; Wijbrans, J. R.

    2016-08-01

    Sediment load in rivers is an indicator of erosional processes in the upstream river catchments. Understanding the origin and composition of the sediment load can help to assess the influence of natural processes and human activities on erosion. Tectonic uplift, precipitation and run-off, hill slopes and vegetation can influence erosion in natural systems. Agriculture and deforestation are expected to increase the sediment yield, but dams and reservoirs can trap much of this sediment before it reaches the ocean. Here, we use major element composition and 40Ar/39Ar ages of detrital muscovites to constrain the sediment contribution of various tributaries to sedimentation in the Yangtze delta. The sediment contribution calculated from muscovite data was compared with that estimated from current sediment load data from gauging stations. Muscovite data show that the main contributor to the Yangtze delta sands is the Min River, while the current sediment load suggests that the Jinsha and Jialing rivers are the most important current contributors to delta sediments. We suggest that this difference reflects an "old" and "young" erosion pattern, respectively as medium grained muscovite could be transported much slower than suspended sediment load in the complex river-lake systems of the Yangtze River basin. These two different erosion patterns likely reflect enhanced human activity (deforestation, cultivation, and mining) that increasingly overwhelmed long-time natural factors controls on erosion since ~ 1900 cal years B.P.

  18. Legacy Sediments in U.S. River Environments: Atrazine and Aggradation to Zinc and Zoobenthos

    Science.gov (United States)

    Wohl, E.

    2014-12-01

    Legacy sediments are those that are altered by human activities. Alterations include (i) human-caused aggradation (and subsequent erosion), such as sediment accumulating upstream from relict or contemporary dams, (ii) human-caused lack of continuing deposition that results in changing moisture and nutrient levels within existing sediments, such as on floodplains that no longer receive lateral or vertical accretion deposits because of levees, bank stabilization, and other channel engineering, and (iii) human-generated contaminants such as PCBs and pesticides that adsorb to fine sediment. Existing estimates of human alterations of river systems suggest that legacy sediments are ubiquitous. Only an estimated 2% of river miles in the United States are not affected by flow regulation that alters sediment transport, for example, and less than half of major river basins around the world are minimally altered by flow regulation. Combined with extensive but poorly documented reduction in floodplain sedimentation, as well as sediment contamination by diverse synthetic compounds, excess nutrients, and heavy metals, these national and global estimates suggest that legacy sediments now likely constitute a very abundant type of fluvial sediment. Because legacy sediments can alter river form and function for decades to centuries after the cessation of the human activity that created the legacy sediments, river management and restoration must be informed by accurate knowledge of the distribution and characteristics of legacy sediments. Geomorphologists can contribute understanding of sediment dynamics, including: the magnitude, frequency, and duration of flows that mobilize sediments with adsorbed contaminants; sites where erosion and deposition are most likely to occur under specified flow and sediment supply; residence time of sediments; and the influence of surface and subsurface water fluxes on sediment stability and geochemistry.

  19. Provenance and sediment fluxes in the Irrawaddy (Ayeyarwadi) River

    Science.gov (United States)

    Garzanti, Eduardo; Wang, Jiangang; Vezzoli, Giovanni; Limonta, Mara

    2016-04-01

    .5 and 2.0 Ga (Limonta et al., 2016). Forward mixing calculations based on integrated petrographic and heavy-mineral data (Garzanti et al., 2012) indicate that 60±10% of the total sediment flux is supplied by the Chindwin River and that upper Irrawaddy sand is supplied mainly by the Nmai headwater branch but also significantly from the Mali branch and left-bank tributaries sourced in the northern Shan Plateau. CITED REFERENCES Garzanti E., Resentini A., Vezzoli G., Andò S., Malusà M., Padoan M. 2012. Forward compositional modelling of Alpine orogenic sediments. Sedimentary Geology 280:149-164. Garzanti E., Limonta M., Resentini A., Bandopadhyay P. C., Najman Y., Andò S., Vezzoli G. 2013. Sediment recycling at convergent plate margins (Indo-Burman Ranges and Andaman-Nicobar Ridge). Earth-Science Reviews 123:113-132. Limonta M., Resentini A., Carter A., Bandopadhyay P.C., Garzanti E. 2016. Provenance of Oligocene Andaman Sandstones (Andaman-Nicobar islands): Ganga-Brahmaputra or Irrawaddy derived? In: Bandyopadhyay P., Carter A. (Eds.). The Andaman-Nicobar accretionary ridge geology, tectonics and hazards, Geological Society of London Memoir, in review. Robinson R.A.J., Bird M.I., Oo N.W., Hoey T.B., Aye M.M., Higgitt D.L., Lu X.X., Swe A., Tun T., Win S. L. 2007. The Irrawaddy River sediment flux to the Indian Ocean: the original nineteenth-century data revisited. The Journal of Geology 115:629-640. Wang J.G., Wu F.Y., Tan X.C., Liu C.Z. 2014. Magmatic evolution of the Western Myanmar Arc documented by U-Pb and Hf isotopes in detrital zircon. Tectonophysics 612:97-105.

  20. Sedimentation patterns off the Zambezi River over the last 20,000 years

    NARCIS (Netherlands)

    van der Lubbe, J.L.; Tjallingii, R.; Prins, M.A.; Brummer, G.-J.A.; Jung, S.J.H.; Kroon, D.; Schneider, R.R.

    2014-01-01

    Marine sediments from continental margins provide high-resolution archives of marine and continental climate, in particular near large river mouths. The Zambezi is one of the largest rivers in East Africa, discharging large amounts of fine-grained sediments onto the western margin of the Mozambique

  1. Polycyclic aromatic hydrocarbons increase in Athabasca River Delta sediment: temporal trends and environmental correlates.

    Science.gov (United States)

    Timoney, Kevin P; Lee, Peter

    2011-05-15

    The Athabasca River in Alberta, Canada, flows north through an area undergoing extensive bitumen resource extraction and processing before discharging its water and sediments into the Athabasca Delta and Lake Athabasca. Polycyclic aromatic hydrocarbons (PAHs) have been identified as an environmental concern in the region. We analyzed environmental data collected by the Regional Aquatics Monitoring Program and government agencies to determine whether temporal trends exist in the concentration of sediment PAHs in the Athabasca River Delta. We then determined what environmental factors related to the trends in sediment PAH concentrations. Total PAH concentrations in the sediment of the Athabasca River Delta increased between 1999 and 2009 at a rate of 0.05 mg/kg/yr ± 0.02 s.e. Annual bitumen production and mined sand volume, extent of landscape disturbance, and particulate emissions were correlated with sediment PAH concentrations as were total organic carbon in sediment and discharge of the Clearwater River, a major tributary of the Athabasca River. Within four tributaries of the Athabasca River, only the Clearwater River showed a significant correlation between discharge and sediment PAH concentration at their river mouths. Carefully designed studies are required to further investigate which factors best explain variability in sediment PAH concentrations.

  2. Sedimentation patterns off the Zambezi River over the last 20,000 years

    NARCIS (Netherlands)

    van der Lubbe, J.L.; Tjallingii, R.; Prins, M.A.; Brummer, G.-J.A.; Jung, S.J.H.; Kroon, D.; Schneider, R.R.

    2014-01-01

    Marine sediments from continental margins provide high-resolution archives of marine and continental climate, in particular near large river mouths. The Zambezi is one of the largest rivers in East Africa, discharging large amounts of fine-grained sediments onto the western margin of the Mozambique

  3. Linking the historic 2011 Mississippi River flood to coastal wetland sedimentation

    Science.gov (United States)

    Falcini, Federico; Khan, Nicole S.; Macelloni, Leonardo; Horton, Benjamin P.; Lutken, Carol B.; McKee, Karen L.; Santoleri, Rosalia; Colella, Simone; Li, Chunyan; Volpe, Gianluca; D’Emidio, Marco; Salusti, Alessandro; Jerolmack, Douglas J.

    2012-01-01

    Wetlands in the Mississippi River deltaic plain are deteriorating in part because levees and control structures starve them of sediment. In Spring of 2011 a record-breaking flood brought discharge on the lower Mississippi River to dangerous levels, forcing managers to divert up to 3500 m3/s-1 of water to the Atchafalaya River Basin. Here we quantify differences between the Mississippi and Atchafalaya River inundation and sediment-plume patterns using field-calibrated satellite data, and assess the impact these outflows had on wetland sedimentation. We characterize hydrodynamics and suspended sediment patterns of the Mississippi River plume using in-situ data collected during the historic flood. We show that the focused, high-momentum jet from the leveed Mississippi delivered sediment far offshore. In contrast, the plume from the Atchafalaya was more diffuse; diverted water inundated a large area; and sediment was trapped within the coastal current. Maximum sedimentation (up to several centimetres) occurred in the Atchafalaya Basin despite the larger sediment load carried by the Mississippi. Minimum accumulation occurred along the shoreline between these river sources. Our findings provide a mechanistic link between river-mouth dynamics and wetland sedimentation patterns that is relevant for plans to restore deltaic wetlands using artificial diversions.

  4. Process-based distributed modeling approach for analysis of sediment dynamics in a river basin

    Directory of Open Access Journals (Sweden)

    M. A. Kabir

    2010-08-01

    Full Text Available Modeling of sediment dynamics for developing best management practices of reducing soil erosion and of sediment control has become essential for sustainable management of watersheds. Precise estimation of sediment dynamics is very important since soils are a major component of enormous environmental processes and sediment transport controls lake and river pollution extensively. Different hydrological processes govern sediment dynamics in a river basin, which are highly variable in spatial and temporal scales. This paper presents a process-based distributed modeling approach for analysis of sediment dynamics at river basin scale by integrating sediment processes (soil erosion, sediment transport and deposition with an existing process-based distributed hydrological model. In this modeling approach, the watershed is divided into an array of homogeneous grids to capture the catchment spatial heterogeneity. Hillslope and river sediment dynamic processes have been modeled separately and linked to each other consistently. Water flow and sediment transport at different surface grids and river nodes are modeled using one-dimensional kinematic wave approximation of Saint-Venant equations. The mechanics of sediment dynamics are integrated into the model using representative physical equations after a comprehensive review. The model has been tested on river basins in two different hydro climatic areas, the Abukuma River Basin, Japan and Latrobe River Basin, Australia. Sediment transport and deposition are modeled using Govers transport capacity equation. All spatial datasets, such as, Digital Elevation Model (DEM, land use and soil classification data, etc., have been prepared using raster "Geographic Information System (GIS" tools. The results of relevant statistical checks (Nash-Sutcliffe efficiency and R-squared value indicate that the model simulates basin hydrology and its associated sediment dynamics reasonably well. This paper presents the

  5. Process-based distributed modeling approach for analysis of sediment dynamics in a river basin

    Directory of Open Access Journals (Sweden)

    M. A. Kabir

    2011-04-01

    Full Text Available Modeling of sediment dynamics for developing best management practices of reducing soil erosion and of sediment control has become essential for sustainable management of watersheds. Precise estimation of sediment dynamics is very important since soils are a major component of enormous environmental processes and sediment transport controls lake and river pollution extensively. Different hydrological processes govern sediment dynamics in a river basin, which are highly variable in spatial and temporal scales. This paper presents a process-based distributed modeling approach for analysis of sediment dynamics at river basin scale by integrating sediment processes (soil erosion, sediment transport and deposition with an existing process-based distributed hydrological model. In this modeling approach, the watershed is divided into an array of homogeneous grids to capture the catchment spatial heterogeneity. Hillslope and river sediment dynamic processes have been modeled separately and linked to each other consistently. Water flow and sediment transport at different land grids and river nodes are modeled using one dimensional kinematic wave approximation of Saint-Venant equations. The mechanics of sediment dynamics are integrated into the model using representative physical equations after a comprehensive review. The model has been tested on river basins in two different hydro climatic areas, the Abukuma River Basin, Japan and Latrobe River Basin, Australia. Sediment transport and deposition are modeled using Govers transport capacity equation. All spatial datasets, such as, Digital Elevation Model (DEM, land use and soil classification data, etc., have been prepared using raster "Geographic Information System (GIS" tools. The results of relevant statistical checks (Nash-Sutcliffe efficiency and R–squared value indicate that the model simulates basin hydrology and its associated sediment dynamics reasonably well. This paper presents the

  6. River Incision, Sediment Storage, and Sediment Residence Times at the Western Tibetan Plateau Margin

    Science.gov (United States)

    Bloethe, J. H.; Munack, H.; Fülling, A.; Resentini, A.; Garzanti, E.; Kubik, P.; Korup, O.

    2012-12-01

    Intermediate sediment storage protects underlying bedrock from incision, buffers sediment delivery from adjacent hillslopes and provides the source for potentially catastrophic sediment release. Along the western Tibetan plateau margin, broad alluviated valleys host large valley fills. Besides sediment storage in major valleys, deeply incised bedrock gorges also have the potential to store sediment for > 104 yrs, even though they are typically portrayed as conveyor belts for incoming sediment. Here we report on cyclic aggradation and re-incision of fluvial terraces near the Tibetan plateau margin in the Ladakh and Zanskar Ranges, NW Himalaya, India. Recently reported 10Be-derived bedrock incision rates of up to 3 mm/yr suggest locally focused fast incision that contrasts with the low (~0.02 mm/yr) denudation rates of this dry high-altitude mountain desert. We combine Optically Stimulated Luminescence (OSL) and 10Be dating techniques, provenance analyses and morphometric analyses of digital elevation models (DEMs), in order to understand the Quaternary evolution of the region and to estimate sediment storage and residence times. We present the first OSL-derived dataset of fluvial fill terrace ages in the lower Zanskar gorge, a major tributary of the upper Indus River. These data are complemented by new 10Be exposure ages from fluvially polished surfaces and a 10Be depth profile of a fluvial terrace situated at the Zanskar-Indus confluence. Our data indicate at least two cycles of aggradation and re-incision. OSL ages from a terrace level 35 m above the river point to a phase of aggradation between 50 ka and 20 ka, which we attribute either to a late- or postglacial sediment pulse from the Zanskar headwaters, and/or to natural damming downstream. Preliminary results for the 10Be depth profile from the top of a terrace ~160 m above river level suggest a deposition age of > 100 ka, dating an older aggradation cycle. This higher terrace level is also present in the

  7. Episodic Emplacement of Sediment + Carbon within Large Tropical River Basins

    Science.gov (United States)

    Aalto, R.; Aufdenkampe, A.

    2012-04-01

    Application of advanced methods for imaging (sub-bottom sonar and ERGI), dating (high resolution 210-Pb and 14-C from deep cores), and biogeochemical analysis have facilitated the characterization and inter-comparison of floodplain sedimentation rates, styles, and carbon loading across disparate large river basins. Two examples explored here are the near-pristine 72,000 km2 Beni River basin in northern Bolivia and the similarly natural 36,000 km2 Strickland River basin in Papua New Guinea - that are located on either side of the Equatorial Pacific warm pool that drives the ENSO phenomenon. Our published research suggests that large, rapid-rise, cold-phase ENSO floods account for the preponderance of sediment accumulation within these two tropical systems. New results to be presented at EGU further clarify the extent of modern deposits (~100 yrs) within both systems and add a deeper perspective into how these extensive floodplains developed over the Holocene, both in response to external forcing (climate and base level) and internal system morphodynamics. The vast scale of these temporally discrete deposits (typically 100s of millions of tonnes over relatively short time periods) involved equate to high burial rates, which in turn support the high carbon loadings sequestered within the resulting sedimentary deposits. We have identified the principal source of this carbon and sedimentary material to be extensive landslides throughout the high-relief headwaters - failures that deliver huge charges of pulverized rock and soil directly into canyons (in both the Bolivian Andes and the PNG Highlands), where raging floodwaters provide efficient transport to lowland depocentres. We present recent results from our research in these basins, providing insight into the details of such enormous mass budgets that result in a signicant carbon sink within the floodplains. Processes, timing, and rates are compared between the two systems, providing insight into the nature of

  8. Distributed model of hydrological and sediment transport processes in large river basins in Southeast Asia

    Science.gov (United States)

    Zuliziana, S.; Tanuma, K.; Yoshimura, C.; Saavedra, O. C.

    2015-07-01

    Soil erosion and sediment transport have been modeled at several spatial and temporal scales, yet few models have been reported for large river basins (e.g., drainage areas > 100 000 km2). In this study, we propose a process-based distributed model for assessment of sediment transport at a large basin scale. A distributed hydrological model was coupled with a process-based distributed sediment transport model describing soil erosion and sedimentary processes at hillslope units and channels. The model was tested on two large river basins: the Chao Phraya River Basin (drainage area: 160 000 km2) and the Mekong River Basin (795 000 km2). The simulation over 10 years showed good agreement with the observed suspended sediment load in both basins. The average Nash-Sutcliffe efficiency (NSE) and average correlation coefficient (r) between the simulated and observed suspended sediment loads were 0.62 and 0.61, respectively, in the Chao Phraya River Basin except the lowland section. In the Mekong River Basin, the overall average NSE and r were 0.60 and 0.78, respectively. Sensitivity analysis indicated that suspended sediment load is sensitive to detachability by raindrop (k) in the Chao Phraya River Basin and to soil detachability over land (Kf) in the Mekong River Basin. Overall, the results suggest that the present model can be used to understand and simulate erosion and sediment transport in large river basins.

  9. Distributed model of hydrological and sediment transport processes in large river basins in Southeast Asia

    Directory of Open Access Journals (Sweden)

    S. Zuliziana

    2015-07-01

    Full Text Available Soil erosion and sediment transport have been modeled at several spatial and temporal scales, yet few models have been reported for large river basins (e.g., drainage areas > 100 000 km2. In this study, we propose a process-based distributed model for assessment of sediment transport at a large basin scale. A distributed hydrological model was coupled with a process-based distributed sediment transport model describing soil erosion and sedimentary processes at hillslope units and channels. The model was tested on two large river basins: the Chao Phraya River Basin (drainage area: 160 000 km2 and the Mekong River Basin (795 000 km2. The simulation over 10 years showed good agreement with the observed suspended sediment load in both basins. The average Nash–Sutcliffe efficiency (NSE and average correlation coefficient (r between the simulated and observed suspended sediment loads were 0.62 and 0.61, respectively, in the Chao Phraya River Basin except the lowland section. In the Mekong River Basin, the overall average NSE and r were 0.60 and 0.78, respectively. Sensitivity analysis indicated that suspended sediment load is sensitive to detachability by raindrop (k in the Chao Phraya River Basin and to soil detachability over land (Kf in the Mekong River Basin. Overall, the results suggest that the present model can be used to understand and simulate erosion and sediment transport in large river basins.

  10. Linking the historic 2011 Mississippi River flood to coastal wetland sedimentation

    Science.gov (United States)

    Falcini, Federico; Khan, Nicole S.; Macelloni, Leonardo; Horton, Benjamin P.; Lutken, Carol B.; McKee, Karen L.; Santoleri, Rosalia; Colella, Simone; Li, Chunyan; Volpe, Gianluca; D'Emidio, Marco; Salusti, Alessandro; Jerolmack, Douglas J.

    2012-11-01

    Wetlands in the Mississippi River deltaic plain are deteriorating in part because levees and control structures starve them of sediment. In spring 2011 a record-breaking flood brought discharge on the lower Mississippi River to dangerous levels, forcing managers to divert up to 3,500m3s-1 of water to the Atchafalaya River Basin. Here we use field-calibrated satellite data to quantify differences in inundation and sediment-plume patterns between the Mississippi and Atchafalaya River. We assess the impact of these extreme outflows on wetland sedimentation, and use in situ data collected during the historic flood to characterize the Mississippi plume's hydrodynamics and suspended sediment. We show that a focused, high-momentum jet emerged from the leveed Mississippi, and delivered sediment far offshore. In contrast, the plume from the Atchafalaya was more diffuse; diverted water inundated a large area, and sediment was trapped within the coastal current. The largest sedimentation, of up to several centimetres, occurred in the Atchafalaya Basin despite the larger sediment load carried by the Mississippi. Sediment accumulation was lowest along the shoreline between the two river sources. We conclude that river-mouth hydrodynamics and wetland sedimentation patterns are mechanistically linked, providing results that are relevant for plans to restore deltaic wetlands using artificial diversions.

  11. Tracking multiple sediment cascades at the river network scale identifies controls and emerging patterns of sediment connectivity

    Science.gov (United States)

    Schmitt, Rafael J. P.; Bizzi, Simone; Castelletti, Andrea

    2016-05-01

    Sediment connectivity in fluvial networks results from the transfer of sediment between multiple sources and sinks. Connectivity scales differently between all sources and sinks as a function of distance, source grain size and sediment supply, network topology and topography, and hydrologic forcing. In this paper, we address the challenge of quantifying sediment connectivity and its controls at the network scale. We expand the concept of a single, catchment-scale sediment cascade toward representing sediment transport from each source as a suite of individual cascading processes. We implement this approach in the herein presented CAtchment Sediment Connectivity And DElivery (CASCADE) modeling framework. In CASCADE, each sediment cascade establishes connectivity between a specific source and its multiple sinks. From a source perspective, the fate of sediment is controlled by its detachment and downstream transport capacity, resulting in a specific trajectory of transfer and deposition. From a sink perspective, the assemblage of incoming cascades defines provenance, sorting, and magnitude of sediment deliveries. At the network scale, this information reveals emerging patterns of connectivity and the location of bottlenecks, where disconnectivity occurs. In this paper, we apply CASCADE to quantitatively analyze the sediment connectivity of a major river system in SE Asia. The approach provides a screening model that can support analyses of large, poorly monitored river systems. We test the sensitivity of CASCADE to various parameters and identify the distribution of energy between the multiple, simultaneously active sediment cascades as key control behind network sediment connectivity. To conclude, CASCADE enables a quantitative, spatially explicit analysis of network sediment connectivity with potential applications in both river science and management.

  12. Generic 2-D River Network Modeling of Flow and Sediment Transports

    Science.gov (United States)

    Guo, W.; Wang, C.; Xiang, X.; Ma, T.

    2012-04-01

    A generic 2D river network model of flow and sediment transports is proposed for the flow and sediment simulation in the complex river network. The paper expands the three-step method adopted in the 1D river network to the 2D river network simulation. A 2D river network model is divided into several cells, including single river cell, "tree-like" river cell, "ring-like" river cell and "cross-like" river cell, which can reflect the interactive influence of flow field in the bifurcated channel and applies to generic 2D simulation. Based on equation of the 2D shallow water and unsteady non-uniform suspended sediment, the relationship between the variables (water level, discharge and sediment concentration) of each section and those of the boundaries are obtained through the full implicit matrix chase-after method. Through the conservation of water and sediment on the boundaries, the water level and sediment concentration on the nodes can be got by solving the irregular sparse matrix of conservation equation, so as to implement the coupled simulation of flow and sediment in the whole river network. The paper take the Chengtong River Reach located in the low reaches of Yangtze River as the example of "cross-like" river to verify the algorithm. The model is calibrated using the measured data. A comparison of calculated water level, discharge and sediment concentration shows that the generic model can reflex the interactive influence of flow field, with reasonable accuracy, especially in the bifurcated channel.

  13. Assessing Anthracene and Arsenic Contamination within Buffalo River Sediments

    Directory of Open Access Journals (Sweden)

    Adrian Gawedzki

    2012-01-01

    Full Text Available Anthracene and arsenic contamination concentrations at various depths in the Buffalo River were analyzed in this study. Anthracene is known to cause damage to human skin and arsenic has been linked to lung and liver cancer. The Buffalo River is labelled as an Area of Concern defined by the Great Lakes Water Quality Agreement between Canada and the United States. It has a long history of industrial activity located in its near vicinity that has contributed to its pollution. An ordinary kriging spatial interpolation technique was used to calculate estimates between sample locations for anthracene and arsenic at various depths. The results show that both anthracene and arsenic surface sediment (0–30 cm is less contaminated than all subsurface depths. There is variability of pollution within the different subsurface levels (30–60 cm, 60–90 cm, 90–120 cm, 120–150 cm and along the river course, but major clusters are identified throughout all depths for both anthracene and arsenic.

  14. Sedimentation from suspension and sediment accumulation rate in the River Vistula prodelta, Gulf of Gdańsk (Baltic Sea

    Directory of Open Access Journals (Sweden)

    Mateusz Damrat

    2013-11-01

    Full Text Available The River Vistula is one of the largest suppliers of fresh water and terrigenous matter to the Baltic Sea. The impact of this river on the Baltic coastal system and the fate of the sediment delivered to the Gulf of Gdańsk are not well understood. Spatial transport patterns, as well as the settling, deposition and accumulation of the sediments were studied at the Vistula prodelta in different seasons from January 2012 to January 2013. The concentration of suspended matter in the water column was measured with optical methods, the sedimentation rate was determined with sediment traps, and the sediment accumulation rate was estimated using 210Pb dating. Our data shows that the annual supply of sediment to the sediment-water interface exceeds the annual rate of sediment accumulation in the outer Vistula prodelta by a factor of three. Sediment trapping during rough weather showed that significant sediment redeposition was taking place, even at depths of 55 m. The dynamic sedimentary processes occurring in the Vistula prodelta mean that that more than two-thirds of the sediment mass can be remobilized and then redeposited in deeper parts of the Gdańsk Basin.

  15. Solidification/stabilization of metal polluted sediment of Krivaja river

    Directory of Open Access Journals (Sweden)

    Dalmacija Milena B.

    2012-01-01

    Full Text Available The Krivaja River is the longest natural water body (109 km that flows completely within the borders of Serbian province of Vojvodina. In the absence of national legislation, the sediment quality was assessed in accordance with the Dutch classification methodology. It was found that the river sediment is highly contaminated with copper and zinc (192 mg kg-1 and 1218 mg kg-1 respectively, and as such is an extreme risk to the environment and human health. The solidification/stabilization (S/S treatment with local clay, that has high capacity of cation exchange 70.2 meq/100 g and specific surface area of 630 m2 g-1, was employed for remediation of the contaminated sediment. The sequential extraction procedure showed that the copper and zinc have medium risk for the environment, with the percentage in the carbonate fraction of 18 and 22% respectively. The results of sequential extraction are not in full agreement with the results of pseudo-total metal concentration in the sediment, which only confirms that the total metal concentration is not sufficient to define the real danger to the environment. Based on the pseudo-total metals concentration, the sediment is of Class 4 (Dutch standards. However, judging from the results of sequential extraction, the metals show medium risk. Obviously, these results have to be taken into account in the assessment of the sediment quality, remediation procedures and sediment disposal in general. After the treatment, the proportion of these two metals in the first fraction is significantly reduced (Cu less than 2%, Zn 10% in most of samples. In order to determine the long-term behavior of S/S mixtures, leaching tests were conducted in accordance with semi-dynamic ANS diffusion test for 90 days. The results indicated that clay can effectively immobilize Cu and Zn: the cumulative leached fraction of copper in mixtures with clay was in the range from 0.001% (mixture with 80% clay to 0.15% (mixture with 10% clay, and

  16. Fate and transport modeling of cohesive sediment and sediment-bound HCB in the middle Elbe river basin

    OpenAIRE

    2013-01-01

    Chemical contamination of waterways and floodplains is a pervasive environmental problem that threatens aquatic ecosystems worldwide. The Elbe River is the third largest river in Central Europe, starting in the Czech Republic and running through Dresden and Hamburg before empting into the North Sea. Due to extensive historical contamination and redistribution of contaminated sediments throughout the basin, the Elbe River transports significant loads of contaminants downstream, particularly du...

  17. Data Evaluation Report for the Lower Rouge River Sediment Investigation

    Science.gov (United States)

    Describes a study of contaminated sediment, analyzes results, and makes recommendations for sediment remediation. Includes aerial views of study locations, photo log, data tables of sediment analysis.

  18. Sediment transport following water transfer from Yangtze River to Taihu Basin

    Directory of Open Access Journals (Sweden)

    Zheng GONG

    2011-12-01

    Full Text Available To meet the increasing need of fresh water and to improve the water quality of Taihu Lake, water transfer from the Yangtze River was initiated in 2002. This study was performed to investigate the sediment distribution along the river course following water transfer. A rainfall-runoff model was first built to calculate the runoff of the Taihu Basin in 2003. Then, the flow patterns of river networks were simulated using a one-dimensional river network hydrodynamic model. Based on the boundary conditions of the flow in tributaries of the Wangyu River and the water level in Taihu Lake, a one-dimensional hydrodynamic and sediment transport numerical model of the Wangyu River was built to analyze the influences of the inflow rate of the water transfer and the suspended sediment concentration (SSC of inflow on the sediment transport. The results show that the water transfer inflow rate and SSC of inflow have significant effects on the sediment distribution. The higher the inflow rate or SSC of inflow is, the higher the SSC value is at certain cross-sections along the river course of water transfer. Higher inflow rate and SSC of inflow contribute to higher sediment deposition per kilometer and sediment thickness. It is also concluded that a sharp decrease of the inflow velocity at the entrance of the Wangyu River on the river course of water transfer induces intense sedimentation at the cross-section near the Changshu hydro-junction. With an increasing distance from the Changshu hydro-junction, the sediment deposition and sedimentation thickness decrease gradually along the river course.

  19. Water demand for ecosystem protection in rivers with hyper-concentrated sediment-laden flow

    Institute of Scientific and Technical Information of China (English)

    LUO Huaming; LI Tianhong; NI Jinren; WANG Yudong

    2004-01-01

    Sediment transport is one of the main concerns in a river system with hyper-concentrated flows. Therefore, the water use for sediment transport must be considered in study on the water demand for river ecosystem. The conventional methods for calculating the Minimum Water Demand for River Ecosystem (MWDRE) are not appropriate for rivers with high sediment concentration. This paper studied the MWDRE in wet season, dry season and the whole year under different water-and-sediment conditions in the Lower Yellow River, which is regarded as a typical river with sediment-laden flows. The characteristics of MWDRE in the river are analyzed. Firstly,the water demand for sediment transport (WDST) is much larger than the demands for other riverine functions, the WDST accounts for the absolute majority of the MWDRE.Secondly, in wet season when the WDST is satisfied, not only most of the annual incoming sediment can be transported downstream, but also the water demands for other river functions can be satisfied automatically, so that the MWDRE in wet season is identical to the WDST. Thirdly, in dry season, when the WDST is satisfied, the water demands for other river functions can also be satisfied, but the low sediment transport efficiency results in significant waste of water resources. According to these characteristics and aiming at decreasing sediment deposition in the riverbed and improving the utilization efficiency of water resources, hydrological engineering works can be used to regulate or control flow and sediment so that the sediment incoming in dry season can be accumulated and be transported downstream intensively and thus efficiently in wet season.

  20. Changes in sediment transport in the Kuye River in the Loess Plateau in China

    Institute of Scientific and Technical Information of China (English)

    Jueyi SUI; Yun HE; Cheng LIU

    2009-01-01

    In this paper, the changes in sediment transport over 51 years from 1955 to 2006 in the Kuye River in the Loess Plateau in China are assessed. Key factors affecting sediment yield and sediment transport, such as precipitation depth, discharge, and human activities are studied. To investigate the changes in sediment yield in this watershed, a trend analysis on sediment concentration, precipitation depth, and discharge is conducted. Precipitation depths at 2 Climate Stations (CSs), as well as discharge and sediment transport at 3 Gauging Stations (GSs) are used to assess the features of sediment transport in the Kuye River. The runoff modulus (defined as the annual average discharge per unit area, L/(s'km2)) and the sediment transport modulus (defined as the annual suspended sediment transport per unit area, t/(yr km2)) are introduced in this study to assess the changes in runoff and sediment yield for this watershed. The results show that the highest average monthly discharge during the study period in the Kuye River is 66.23 m3/s in August with an average monthly sediment concentration of 88.9 kg/m3. However, the highest average monthly sediment concentration during the study period in the Kuye River is 125.34 kg/m3 and occurs in July, which has an average discharge of 42.6 m3/s that is much less than the average monthly discharge in August. It is found that both the runoff modulus and sediment transport modulus at Wenjiachuan GS on the Kuye River has a clear downward trend. During the summer season from July to August, the sediment transport modulus at Wenjiachuan GS is much higher than those at Toudaoguai and Longmen GSs on the Yellow River. The easily erodible loess in the Kuye River watershed and the sparse vegetation are responsible for the extremely high sediment yield from the Kuye River watershed. The analyses of the grain size distribution of suspended load in the Kuye River are presented. The average monthly median grain size of suspended load in the Kuye

  1. Heavy metals in surface sediments of the Jialu River, China: Their relations to environmental factors

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Jie [State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093 (China); Environmental Engineering Program, Department of Civil Engineering, Auburn University, Auburn, AL 36849 (United States); Zhao, Changpo [State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093 (China); Luo, Yupeng [Department of Mathematics and Statistics, Auburn University, Auburn, AL 36849 (United States); Liu, Chunsheng, E-mail: liuchunshengidid@126.com [College of Fisheries, Huazhong Agricultural University, Wuhan 430070 (China); Kyzas, George Z. [Laboratory of General and Inorganic Chemical Technology, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124 (Greece); Luo, Yin [State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093 (China); Zhao, Dongye [Environmental Engineering Program, Department of Civil Engineering, Auburn University, Auburn, AL 36849 (United States); An, Shuqing [State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093 (China); Zhu, Hailiang, E-mail: zhuhl@nju.edu.cn [State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093 (China)

    2014-04-01

    Highlights: • Zhengzhou City had major effect on the pollution of the Jialu River. • TN, OP, TP and COD{sub Mn} in water drove heavy metals to deposit in sediments. • B-IBI was sensitive to the adverse effect of heavy metals in sediments. - Abstract: This work investigated heavy metal pollution in surface sediments of the Jialu River, China. Sediment samples were collected at 19 sites along the river in connection with field surveys and the total concentrations were determined using atomic fluorescence spectrometer and inductively coupled plasma optical emission spectrometer. Sediment samples with higher metal concentrations were collected from the upper reach of the river, while sediments in the middle and lower reaches had relatively lower metal concentrations. Multivariate techniques including Pearson correlation, hierarchical cluster and principal components analysis were used to evaluate the metal sources. The ecological risk associated with the heavy metals in sediments was rated as moderate based on the assessments using methods of consensus-based Sediment Quality Guidelines, Potential Ecological Risk Index and Geo-accumulation Index. The relations between heavy metals and various environmental factors (i.e., chemical properties of sediments, water quality indices and aquatic organism indices) were also studied. Nitrate nitrogen, total nitrogen, and total polycyclic aromatic hydrocarbons concentrations in sediments showed a co-release behavior with heavy metals. Ammonia nitrogen, total nitrogen, orthophosphate, total phosphate and permanganate index in water were found to be related to metal sedimentation. Heavy metals in sediments posed a potential impact on the benthos community.

  2. Sorption of alkylphenols on Ebro River sediments: Comparing isotherms with field observations in river water and sediments

    Energy Technology Data Exchange (ETDEWEB)

    Navarro, Alicia [Center of Applied Geoscience, University of Tuebingen, Sigwartstrasse 10, 72076 Tuebingen (Germany); Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18-26, 08034 Barcelona (Spain)], E-mail: anoqam@iiqab.csic.es; Endo, Satoshi; Gocht, Tilman [Center of Applied Geoscience, University of Tuebingen, Sigwartstrasse 10, 72076 Tuebingen (Germany); Barth, Johannes A.C. [Center of Applied Geoscience, University of Tuebingen, Sigwartstrasse 10, 72076 Tuebingen (Germany); Lehrstuhl fuer Angewandte Geologie, GeoZentrum Nordbayern, Universitaet Erlangen-Nuernberg, Schlossgarten 5, 91054 Erlangen (Germany); Lacorte, Silvia [Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18-26, 08034 Barcelona (Spain); Barcelo, Damia [Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18-26, 08034 Barcelona (Spain); Institut Catala de Recerca de l' Aigua (ICRA), Parc Cientific i Tecnologic de la Universitat de Girona, Pic de Peguera, 15, 17003 Girona (Spain); Grathwohl, Peter [Center of Applied Geoscience, University of Tuebingen, Sigwartstrasse 10, 72076 Tuebingen (Germany)

    2009-02-15

    This study reports sorption isotherms of the endocrine disruptors nonylphenol (NP) and octylphenol (OP) in three sediment samples from the Ebro River basin (NE Spain), with organic carbon fractions (f{sub OC}) ranging from 0.0035 to 0.082 g{sub OC} g{sup -1}. All isotherms were fitted to the Freundlich model with slightly nonlinear exponents ranging from 0.80 to 0.94. The solubility of the compounds as well as the organic carbon (OC) content had the strongest influences on the sorption behavior of these compounds. Comparison of the laboratory-spiked samples with the native contamination of NP of 45 water and concurrent sediment samples resulted in reasonable matches between both data sets, even though the lowest concentrations in the field were not completely reached in laboratory tests. This good agreement indicates that sorption laboratory data can be extrapolated to environmental levels and therefore the distribution of nonylphenol between sediments and water can be predicted with a precision of one order of magnitude. Furthermore, laboratory experiments with simultaneous loading of NP and OP revealed negligible competition for sorption sites at low concentrations. - Laboratory sorption of nonylphenol compared to field concentrations showed good agreements.

  3. Contaminant variability in a sedimentation area of the river Rhine = Variabiliteit van verontreinigingen in een sedimentatiegebied van de Rijn

    NARCIS (Netherlands)

    Winkels, H.J.

    1997-01-01

    Aquatic sediments in sedimentation zones of major rivers are in general sinks for pollutants. The sedimentation zone Ketelmeer/IJsselmeer is an important sink for contaminants of the river Rhine (i.e. river IJssel). Recent and historical pollution interact here. Redistribution of suspended

  4. Sediment discharge into a subsiding Louisiana deltaic estuary through a Mississippi River diversion

    Science.gov (United States)

    Snedden, G.A.; Cable, J.E.; Swarzenski, C.; Swenson, E.

    2007-01-01

    Wetlands of the Mississippi River deltaic plain in southeast Louisiana have been hydrologically isolated from the Mississippi River by containment levees for nearly a century. The ensuing lack of fluvial sediment inputs, combined with natural submergence processes, has contributed to high coastal land loss rates. Controlled river diversions have since been constructed to reconnect the marshes of the deltaic plain with the river. This study examines the impact of a pulsed diversion management plan on sediment discharge into the Breton Sound estuary, in which duplicate 185 m3 s-1-diversions lasting two weeks each were conducted in the spring of 2002 and 2003. Sediment delivery during each pulse was highly variable (11,300-43,800 metric tons), and was greatest during rising limbs of Mississippi River flood events. Overland flow, a necessary transport mechanism for river sediments to reach the subsiding backmarsh regions, was induced only when diversion discharge exceeded 100 m3 s-1. These results indicate that timing and magnitude of diversion events are both important factors governing marsh sediment deposition in the receiving basins of river diversions. Though the diversion serves as the primary source of river sediments to the estuary, the inputs observed here were several orders of magnitude less than historical sediment discharge through crevasses and uncontrolled diversions in the region, and are insufficient to offset present rates of relative sea level rise. ?? 2006 Elsevier Ltd. All rights reserved.

  5. Effect of high sedimentation rates on surface sediment dynamics and mangrove growth in the Porong River, Indonesia.

    Science.gov (United States)

    Sidik, Frida; Neil, David; Lovelock, Catherine E

    2016-06-15

    Large quantities of mud from the LUSI (Lumpur Sidoarjo) volcano in northeastern Java have been channeled to the sea causing high rates of sediment delivery to the mouth of the Porong River, which has a cover of natural and planted mangroves. This study investigated how the high rates of sediment delivery affected vertical accretion, surface elevation change and the growth of Avicennia sp., the dominant mangrove species in the region. During our observations in 2010-2011 (4-5years after the initial volcanic eruption), very high rates of sedimentation in the forests at the mouth of the river gave rise to high vertical accretion of over 10cmy(-1). The high sedimentation rates not only resulted in reduced growth of Avicennia sp. mangrove trees at the two study sites at the Porong River mouth, but also gave rise to high soil surface elevation gains.

  6. Numerical Model of Turbulence, Sediment Transport, and Sediment Cover in a Large Canyon-Bound River

    Science.gov (United States)

    Alvarez, L. V.; Schmeeckle, M. W.

    2013-12-01

    The Colorado River in Grand Canyon is confined by bedrock and coarse-grained sediments. Finer grain sizes are supply limited, and sandbars primarily occur in lateral separation eddies downstream of coarse-grained tributary debris fans. These sandbars are important resources for native fish, recreational boaters, and as a source of aeolian transport preventing the erosion of archaeological resources by gully extension. Relatively accurate prediction of deposition and, especially, erosion of these sandbar beaches has proven difficult using two- and three-dimensional, time-averaged morphodynamic models. We present a parallelized, three-dimensional, turbulence-resolving model using the Detached-Eddy Simulation (DES) technique. DES is a hybrid large eddy simulation (LES) and Reynolds-averaged Navier Stokes (RANS). RANS is applied to the near-bed grid cells, where grid resolution is not sufficient to fully resolve wall turbulence. LES is applied further from the bed and banks. We utilize the Spalart-Allmaras one equation turbulence closure with a rough wall extension. The model resolves large-scale turbulence using DES and simultaneously integrates the suspended sediment advection-diffusion equation. The Smith and McLean suspended sediment boundary condition is used to calculate the upward and downward settling of sediment fluxes in the grid cells attached to the bed. The model calculates the entrainment of five grain sizes at every time step using a mixing layer model. Where the mixing layer depth becomes zero, the net entrainment is zero or negative. As such, the model is able to predict the exposure and burial of bedrock and coarse-grained surfaces by fine-grained sediments. A separate program was written to automatically construct the computational domain between the water surface and a triangulated surface of a digital elevation model of the given river reach. Model results compare favorably with ADCP measurements of flow taken on the Colorado River in Grand Canyon

  7. Sediment Transport at River Lima Estuary: Developing a Sound Methodology to Assess Sediment River Basin Input to an Erosion Prone Coast (NW Iberian Peninsula)

    Science.gov (United States)

    Pinho, J.; Costa, N.; Venâncio, S.; Martins, M.; Vieira, J.; Granja, H.

    2016-12-01

    The NW coast of Iberian Peninsula is mainly formed by rocky cliffs northern of the river Minho mouth and by narrow sandy beaches south of this river. These beaches are mainly in a sedimentary deficit status resulting from the north-south longitudinal drift driven by the dominant wave climate that acts from the NW direction. In this scenario understand and quantify river sediment inputs to the coast is crucial in order to follow a sustainable management policy to mitigate erosion impacts both in the natural and social environments. This work will present results from research conducted at rive Lima Estuary, one of the rivers flowing to the NW Iberian coast, based on both numerical modeling and field data acquisition. A hydrological model of the river basin and a detailed morphodynamic model of the estuary were implemented. Instrumentation of the estuary that is being conducted comprises traditional sensor pressures and new ones that are being designed and assembled to be installed at different measurement stations within the estuary. Modelling results for flood events showed that the river is capable of remove all the sediments that are deposited in the narrow estuarine canal located near the river mouth. Some of these sediments are immediately deposited downstream, within the interior of the harbor. Here, there is a strong possibility of silting of the river mouth and the central area of the harbor. Since the river flows during extreme events are controlled by an upstream reservoir, the capacity of the river to transport sediments to the coast was lowered during the last decades, which, moreover, requires dredging works over the years to maintain navigation depth requirements. Dredging sediments should be correctly deposited at the coast in order to properly feed the longitudinal drift, otherwise they will be out of the system, which aggravate the installed erosion tendency.

  8. Erodibility Study of Passaic River Sediments Using USACE Sedflume

    Science.gov (United States)

    2006-09-01

    Program, Dr. Todd S. Bridges, Program Manager. The report was written by Thomas D. Borrowman, Environmental Engi- neering Branch ( EEB ), Environmental...FSPD), CHL; and Larry Caviness, Field Data Collect and Analysis Branch, FSPD, CHL. Laboratory work was conducted by Richard Hudson, EEB . Cheryl M...Lloyd, EEB , assisted in the preparation of the report. This study was conducted under the direct supervision of Bruce A. Ebersole, Chief, FSPD, and

  9. Late Pleistocene river migrations in response to thrust belt advance and sediment-flux steering - The Kura River (southern Caucasus)

    Science.gov (United States)

    von Suchodoletz, Hans; Gärtner, Andreas; Hoth, Silvan; Umlauft, Josefine; Sukhishvili, Lasha; Faust, Dominik

    2016-08-01

    One reaction of rivers toward allogenic triggers is the large-scale river channel migration in the form of avulsions or progressive lateral migrations (combing) that are widespread phenomena around the world during the late Quaternary. Because they potentially cause significant human and economic losses and significantly change geomorphic processes in the affected regions, a deeper knowledge about causes and rates is essential and furthermore helps to identify the dominant drivers of regional landscape evolution during different periods. One possible cause for river channel migrations is sediment-flux steering, i.e. the shift of rivers in sedimentary basins against a tectonically driven trend caused by transverse sediment discharge. During the last 30 years, sediment-flux steering has been investigated by field and experimental studies in extensional half-grabens with generally small-sized transverse catchments and/or volcaniclastic sedimentation. This study presents geomorphologic, geochronologic, and heavy mineral analyses together with complementary tectonomorphometric and earthquake data to investigate late Quaternary channel migrations of the Kura River in the southern foreland basin of the Greater Caucasus, a region where the late Quaternary landscape evolution is rather fragmentarily understood so far. Special emphasis of this study is given to the interplay between axial river flow and transverse sediment supply leading to sediment-flux steering. Large-scale migrations of the course of the Kura River during the late Quaternary reflect the interplay between tectonic processes leading to the southwestward advance of the Kura Fold-and-Thrust-Belt and climatically-triggered sediment-flux steering caused by aggradation phases of transverse rivers with comparatively large catchment areas in the Lesser Caucasus. During generally warmer periods such as the Holocene with fluvial incision and low sediment supply from the transverse rivers, the main Kura River could

  10. Assessment of ametryn contamination in river water, river sediment, and mollusk bivalves in São Paulo state, Brazil.

    Science.gov (United States)

    Jacomini, Analu Egydio; de Camargo, Plínio Barbosa; Avelar, Wagner Eustáquio Paiva; Bonato, Pierina Sueli

    2011-04-01

    São Paulo state, Brazil, is one of the main areas of sugar cane agriculture in the world. Herbicides, in particular, ametryn, are extensively used in this extensive area, which implies that this herbicide is present in the environment and can contaminate the surface water by running off. Thereby, residues of ametryn were analyzed in samples of river water an river sediment and in freshwater bivalves obtained from the rivers Sapucaí, Pardo and Mogi-Guaçu in São Paulo State, Brazil. Samples were taken in the winter of 2003 and 2004 in two locations in each river. The specimens of freshwater bivalves collected and analyzed were Corbicula fluminea, an exotic species, and Diplodon fontaineanus, a native species. Additionally, the evaluation of the ability of bioconcentration and depuration of ametryn by the freshwater bivalve Corbicula fluminea was also performed. Ametryn concentrations in the samples were measured by liquid chromatography coupled to mass spectrometry. Residues of ametryn in water (50 ng/L) and in freshwater bivalves (2-7 ng/g) were found in the Mogi-Guaçu River in 2004, and residues in river sediments were found in all rivers in 2003 and 2004 (0.5-2 ng/g). The observation of the aquatic environment through the analysis of these matrixes, water, sediment, and bivalves, revealed the importance of the river sediment in the accumulation of the herbicide ametryn, which can contaminate the biota.

  11. Culture-independent study of bacterial communities in tropical river sediment.

    Science.gov (United States)

    Thoetkiattikul, Honglada; Mhuantong, Wuttichai; Pinyakong, Onruthai; Wisawapipat, Worachart; Yamazoe, Atsushi; Fujita, Nobuyuki; Eurwilaichitr, Lily; Champreda, Verawat

    2017-01-01

    Ubiquitous microbial communities in river sediments actively govern organic matter decomposition, nutrient recycling, and remediation of toxic compounds. In this study, prokaryotic diversity in two major rivers in central Thailand, the Chao Phraya (CP) and the Tha Chin (TC) distributary was investigated. Significant differences in sediment physicochemical properties, particularly silt content, were noted between the two rivers. Tagged 16S rRNA sequencing on a 454 platform showed that the sediment microbiomes were dominated by Gammaproteobacteria and sulfur/sulfate reducing Deltaproteobacteria, represented by orders Desulfobacteriales and Desulfluromonadales together with organic degraders Betaproteobacteria (orders Burkholderiales and Rhodocyclales) together with the co-existence of Bacteroidetes predominated by Sphingobacteriales. Enrichment of specific bacterial orders was found in the clayey CP and silt-rich TC sediments, including various genera with known metabolic capability on decomposition of organic matter and xenobiotic compounds. The data represent one of the pioneered works revealing heterogeneity of bacteria in river sediments in the tropics.

  12. Distribution and Pollution Characteristics Analysis of Heavy Metals in Surface Sediment in Bi River

    Science.gov (United States)

    Huang, Qianrui; Danek, Tomas; Cheng, Xianfeng; Dong, Tao; Qi, Wufu; Zou, Liling; Zhao, Xueqiong; Zhao, Xinliang; Xiang, Yungang

    2016-10-01

    The author analyzes distribution characteristics of heavy metals’ content in surface sediments of Bi River (Cu, Zn, As and Cd) and evaluates the potential ecological harm of heavy metal pollution in surface sediment by index method of potential ecological harm. Results show that heavy metals, such as Cu, Zn, As, Pb and Cd in surface sediments of Bi River are badly out of limitation. Especially, the heavy metals’ content in Jinding mining area is far higher than the national first class standard. The content of heavy metal is still high in the intersection of Bi River and Lancang River, which have certain influence on the Lancang River sediment and its water system. And, Pb and Cd, as the main pollutants, should be regarded as a key research subject.

  13. Sediment Transport Dynamic in a Meandering Fluvial System: Case Study of Chini River

    Science.gov (United States)

    Nazir, M. H. M.; Awang, S.; Shaaban, A. J.; Yahaya, N. K. E. M.; Jusoh, A. M.; Arumugam, M. A. R. M. A.; Ghani, A. A.

    2016-07-01

    Sedimentation in river reduces the flood carrying capacity which lead to the increasing of inundation area in the river basin. Basic sediment transport can predict the fluvial processes in natural rivers and stream through modeling approaches. However, the sediment transport dynamic in a small meandering and low-lying fluvial system is considered scarce in Malaysia. The aim of this study was to analyze the current riverbed erosion and sedimentation scenarios along the Chini River, Pekan, Pahang. The present study revealed that silt and clay has potentially been eroded several parts of the river. Sinuosity index (1.98) indicates that Chini River is very unstable and continuous erosion process in waterways has increase the riverbank instability due to the meandering factors. The riverbed erosional and depositional process in the Chini River is a sluggish process since the lake reduces the flow velocity and causes the deposited particles into the silt and clay soil at the bed of the lake. Besides, the bed layer of the lake comprised of cohesive silt and clayey composition that tend to attach the larger grain size of sediment. The present study estimated the total sediment accumulated along the Chini River is 1.72 ton. The HEC-RAS was employed in the simulations and in general the model performed well, once all parameters were set within their effective ranges.

  14. CHARACTERIZATION AND CAUSATION OF RUNOFF AND SEDIMENT VARIATION IN THE JIALINGJIANG RIVER BASIN

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The Jialingjiang River basin is one of the main sediment contributing areas in the upper reaches of the Changjiang River. Great changes have taken place in the runoffand sediment discharge in recent years.Comparing the data of 1991-2003 with the data of 1954-1990, the annual runoff of the Jialingjiang River basin decreased by 23%, and the suspended sediment transport decreased by 74% or 105 million tons. The main factors affecting the reduction include a decrease in rainfall, sediment detention of hydraulic structures, soil and water conservation activities, sedimentation and sand dredging in the river channel. Thorough investigation and analysis of the contribution of each factor to the sediment decrease at Beibei Station was determined for the first time. The following are the contributing percentages for each factor: a decrease in runoff accounted for 32.9%; soil and water conservation measures accounted for 16.4%; sediment detention of hydraulic structures accounted for 30.5%;sedimentation, river channel sand dredging, and other factors accounted for 20.2%. These findings are very important for forecasting the trend of inflow sediment discharge variation.

  15. Response of bankfull discharge of the Inner Mongolia Yellow River to flow and sediment factors

    Indian Academy of Sciences (India)

    Suzhen Hou; Ping Wang; Yan Guo; Ting Li

    2014-08-01

    Bankfull discharge is a comprehensive factor reflecting the channel-forming capability of water flow and the flood and sediment transport capacity of a river channel. It is based on the interaction of the flow, sediment, and river channel, of which flow and sediment conditions play crucial roles. Using data recorded since the 1950s, this paper analyses statistically, the characteristics and variations of bankfull discharge at two stations on the Inner Mongolian reaches of the upper Yellow River. Results indicate that flood season variations in bankfull discharge are nonlinear and are governed by flood peak discharge, mean discharge, and the mean incoming sediment coefficients. Variation in bankfull discharge is related not only to the flow and sediment conditions of the current year but also to those of previous years. The 10-year moving average of flow and sediment conditions can be representative of present and previous years. By considering flood season peak discharge and incoming sediment coefficients as independent impact factors, a formula is derived to determine bankfull discharge. The results can be used to predict the bankfull discharge of the Yellow River channel in Inner Mongolia under specific flow and sediment conditions and provide reference for the purpose of further study related to restoring and maintaining the basic functions of the river channel regarding flood discharge and sediments.

  16. Suspended sediment dynamics in a tidal channel network under peak river flow

    Science.gov (United States)

    Achete, Fernanda Minikowski; van der Wegen, Mick; Roelvink, Dano; Jaffe, Bruce

    2016-05-01

    Peak river flows transport fine sediment, nutrients, and contaminants that may deposit in the estuary. This study explores the importance of peak river flows on sediment dynamics with special emphasis on channel network configurations. The Sacramento-San Joaquin Delta, which is connected to San Francisco Bay (California, USA), motivates this study and is used as a validation case. Besides data analysis of observations, we applied a calibrated process-based model (D-Flow FM) to explore and analyze high-resolution (˜100 m, ˜1 h) dynamics. Peak river flows supply the vast majority of sediment into the system. Data analysis of six peak flows (between 2012 and 2014) shows that on average, 40 % of the input sediment in the system is trapped and that trapping efficiency depends on timing and magnitude of river flows. The model has 90 % accuracy reproducing these trapping efficiencies. Modeled deposition patterns develop as the result of peak river flows after which, during low river flow conditions, tidal currents are not able to significantly redistribute deposited sediment. Deposition is quite local and mainly takes place at a deep junction. Tidal movement is important for sediment resuspension, but river induced, tide residual currents are responsible for redistributing the sediment towards the river banks and to the bay. We applied the same forcing for four different channel configurations ranging from a full delta network to a schematization of the main river. A higher degree of network schematization leads to higher peak-sediment export downstream to the bay. However, the area of sedimentation is similar for all the configurations because it is mostly driven by geometry and bathymetry.

  17. The exceptional sediment load of fine-grained dispersal systems: Example of the Yellow River, China.

    Science.gov (United States)

    Ma, Hongbo; Nittrouer, Jeffrey A; Naito, Kensuke; Fu, Xudong; Zhang, Yuanfeng; Moodie, Andrew J; Wang, Yuanjian; Wu, Baosheng; Parker, Gary

    2017-05-01

    Sedimentary dispersal systems with fine-grained beds are common, yet the physics of sediment movement within them remains poorly constrained. We analyze sediment transport data for the best-documented, fine-grained river worldwide, the Huanghe (Yellow River) of China, where sediment flux is underpredicted by an order of magnitude according to well-accepted sediment transport relations. Our theoretical framework, bolstered by field observations, demonstrates that the Huanghe tends toward upper-stage plane bed, yielding minimal form drag, thus markedly enhancing sediment transport efficiency. We present a sediment transport formulation applicable to all river systems with silt to coarse-sand beds. This formulation demonstrates a remarkably sensitive dependence on grain size within a certain narrow range and therefore has special relevance to silt-sand fluvial systems, particularly those affected by dams.

  18. Using 239Pu as a tracer for fine sediment sources in the Daly River, Northern Australia

    Science.gov (United States)

    Lal, R.; Fifield, L. K.; Tims, S. G.; Wasson, R. J.; Howe, D.

    2015-04-01

    The Daly River drains a large (52500 km2) and mainly undisturbed catchment in the Australian wet-dry tropics. Clearing and cropping since 2002 have raised concerns about possible increased sediment input into the river and motivated this study of its fine sediment sources. Using 239Pu as a tracer it is shown that the fine sediments originate mainly from erosion by gullying and channel change. Although the results also indicate that the surface soil contribution to the river channel sediments from sheet erosion has increased to 5-22% for the Daly River and 7-28% for the Douglas River (a tributary of the Daly River) in 2009 vs. 3-6% for the Daly River and 4-9% for the Douglas River in 2005. This excess top soil likely originates from thecleared land adjacent to the Daly River since 2005. However, channel widening largely as a result of hydrologic change is still the dominant sediment source in this catchment.

  19. Using 239Pu as a tracer for fine sediment sources in the Daly River, Northern Australia

    Directory of Open Access Journals (Sweden)

    Lal R.

    2015-01-01

    Full Text Available The Daly River drains a large (52500 km2 and mainly undisturbed catchment in the Australian wet–dry tropics. Clearing and cropping since 2002 have raised concerns about possible increased sediment input into the river and motivated this study of its fine sediment sources. Using 239Pu as a tracer it is shown that the fine sediments originate mainly from erosion by gullying and channel change. Although the results also indicate that the surface soil contribution to the river channel sediments from sheet erosion has increased to 5-22% for the Daly River and 7-28% for the Douglas River (a tributary of the Daly River in 2009 vs. 3-6% for the Daly River and 4-9% for the Douglas River in 2005. This excess top soil likely originates from thecleared land adjacent to the Daly River since 2005. However, channel widening largely as a result of hydrologic change is still the dominant sediment source in this catchment.

  20. LOWER PASSAIC RIVER SEDIMENT POLLUTION STUDY USING GIS, NEW JERSEY, USA.

    Energy Technology Data Exchange (ETDEWEB)

    FENG,H.; ONWUEME,V.; JASLANEK,W.J.; STERN,E.A.; JONES,K.W.

    2005-04-01

    The Passaic River is located in the New Jersey-New York metropolitan area. This river has been heavily polluted by dioxins, PAHs, PCBs and heavy metals due to agricultural, industrial activities, and urbanization. Contaminated sediments in the Passaic River have received considerable attention because contaminants (metals, PCBs. PAHs, dioxins) in the sediments have potential to release into the aquatic system and air through diffusion and/or volatilization, causing human health hazards. Identification of high concentration areas of these Contaminants in the river-estuarine system is critical to the Passaic River environmental restoration and watershed protection. In this study, we analyzed portion of 10 years (1991-2000) data using Geographic Information Systems (GIS) as a tool to study the distributions of contaminants in the sediments. The results from this study provide important information for developing environmental management strategies for the lower Passaic River system.

  1. The sediment-starved Yellow River Delta as remotely controlled by human activities in the river basin

    Science.gov (United States)

    Wang, H.; Bi, N.

    2015-12-01

    Human presented significant disturbances on the natural processes of land-ocean interactions in context of global change. Here we illustrate how the signals of human activities in the river basin have been transferred to the coastal ocean along the hydrological pathway and remotely controlled the Yellow River Delta. Dam-orientated water and sediment regulation scheme (WSRS) has resulted in effective erosion of the lower channel and mitigation of siltation within the reservoirs. However, significant impacts have been identified on the delta morphology and coastal ecosystem ten years after the WSRS, which was unexpected at the beginning of engineering efforts. The coarser sediment derived from the channel erosion during the first phase of WSRS was directly contributed to the rapid accretion of present river mouth, whereas the delta was starved and declined due to insufficient sediment supply and regime shift of sediment transport. The fine-grained sediment exported from the Xiaolangdi Reservoir during the second phase of WSRS seemed to be a critical carrier for the nutrients and pollutants. The human-altered hydrological cycle, enhanced delivery of nutrient and pollutants and the changing estuarine environment present unpredictable impacts on both terrestrial and aquatic ecosystem in the delta region. These confirm that humans are modifying the river-coast system in ways that go well beyond climate change, and an integrated management of the river-coast continuum is crucially important for the sustainability of the river-delta system.

  2. Detrital Zircon Record of a Dammed River in Texas - Implications for Modern River Provenance Stories and Sediment Budgets

    Science.gov (United States)

    Dafov, L. N.; Stockli, D. F.; Mohrig, D. C.; Olariu, C.

    2016-12-01

    The Colorado River in Texas is a meandering river that is bisected by a chain of highland lakes and dams that were completed by 1951. Intuitively, dams trap sediment, but how does that disruption of sediment flow affect overall sediment flux and river morphology downstream of the dams? Observations from aerial photographs were combined with detrital zircon (DZ) U-Pb geochronology to quantify the anthropogenic effect of dams on sand generation. DZ U-Pb were collected from modern river channel sands, modern point bar sands, and modern delta sand sample. The U-Pb age data were evaluated in the context of bedrock U-Pb age data from the Llano Uplift Grenville basement above the dams and DZ U-Pb age data from the 30-40 km wide outcrop belt of Paleocene Wilcox Fm., dominated by Mesozoic Western US zircons, below the dams to evaluate possible entrenchment and sediment generation below the dams. While the modern river sediment collected upstream of the dams are dominated by Grenville DZ U-Pb ages, point bars below the dams show an abrupt increase of Wilcox derived zircons with only 1/3 of zircons derived from above the dams. This appears to be at least in part due to significant re-incision and erosion downstream of the dams out of the Paleocene Wilcox Formation. The lack of significant sand bars for 33 river kilometers below the dams and the progressive increase in sand bar size further downstream, combined with new DZ U-Pb data suggest that the modern river is incising into the Paleocene Wilcox below the dams and generating new sand. This is corroborated by the presence of 35 Ma DZ farther downstream, incorporated from Oligocene units. This progressive entrenchment of the river below the dams and incorporation of DZ from stratigraphic units encountered downstream illustrates the short-term response of the river geomorphology and sediment generation in light of anthropogenic perturbations of the river. These data also have interesting implications for sediment budget of

  3. Annual layers in river-bed sediment of a stagnant river-mouth area of the Kitagawa Brook, Central Japan

    Science.gov (United States)

    Kurashige, Y.; Nakano, T.; Kasubuchi, E.; Maruo, M.; Domitsu, H.

    2015-03-01

    The river mouth of Kitagawa Brook is normally stagnant because it is easily closed by sand and gravel transported by littoral currents of Biwa Lake, Japan. A new urban area exists in the basin and sewerage works were constructed in the early 1990s, so contaminated water with a bad odour had flowed into the brook before the sewerage works. To reduce the smell, the river mouth was excavated to narrow the channel in the early 1980s. Thus, river-bed sediment after this excavation only occurs at the river mouth. From the upper 24 cm of a sediment core, we found 19 strata of leaves which were supplied from deciduous trees in autumn. We also found several gravel layers which were supplied from the lake during severe storms. The combination of veins and gravel layers were reconstructed for about 20 years of sediment records with an error of two to three years.

  4. Phytoremediation of Heavy Metal Pollution in Urban Sewage River Sediment by Lolium perenne

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    [Objective] The aim was to restore heavy metal pollution of urban sewage river sediment by using Lolium perenne.[Method] Through cultivation test,the phytoremediation of heavy metal pollution in river sediment by L.perenne was analyzed from the aspects of removal effect,optimal removal time and the changes of sucrase activity,urease activity and microbe quantity.[Result] After planting L.perenne for three months,Ni content in sediment was basically stable,while the removal effect of Cr and Mn in sediment wa...

  5. Characteristics of the Flow and Sediment in the Inner Rivers Broad-shallow Shifting Reach

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Rivers are classified into two types.One is the outer river which flows into ocean and the other is the inner river which does not flow into the ocean but into desert or lake.The inner rivers are the erosive rivers that have been seldom studied so far.Based on the field survey data,the analysis on the characteristics of the flow and sediment in the inner rivers' broad-shallow shifting (IRBS) reach.The IRBS reach often bears such the properties as:high gradient bed,usually 10‰or greater;small flow dischar...

  6. Monitoring to assess progress toward meeting the Assabet River, Massachusetts, phosphorus total maximum daily load - Aquatic macrophyte biomass and sediment-phosphorus flux

    Science.gov (United States)

    Zimmerman, Marc J.; Qian, Yu; Yong Q., Tian

    2011-01-01

    In 2004, the Total Maximum Daily Load (TMDL) for Total Phosphorus in the Assabet River, Massachusetts, was approved by the U.S. Environmental Protection Agency. The goal of the TMDL was to decrease the concentrations of the nutrient phosphorus to mitigate some of the instream ecological effects of eutrophication on the river; these effects were, for the most part, direct consequences of the excessive growth of aquatic macrophytes. The primary instrument effecting lower concentrations of phosphorus was to be strict control of phosphorus releases from four major wastewatertreatment plants in Westborough, Marlborough, Hudson, and Maynard, Massachusetts. The improvements to be achieved from implementing this control were lower concentrations of total and dissolved phosphorus in the river, a 50-percent reduction in aquatic-plant biomass, a 30-percent reduction in episodes of dissolved oxygen supersaturation, no low-flow dissolved oxygen concentrations less than 5.0 milligrams per liter, and a 90-percent reduction in sediment releases of phosphorus to the overlying water. In 2007, the U.S. Geological Survey, in cooperation with the Massachusetts Department of Environmental Protection, initiated studies to evaluate conditions in the Assabet River prior to the upgrading of wastewater-treatment plants to remove more phosphorus from their effluents. The studies, completed in 2008, implemented a visual monitoring plan to evaluate the extent and biomass of the floating macrophyte Lemna minor (commonly known as lesser duckweed) in five impoundments and evaluated the potential for phosphorus flux from sediments in impounded and free-flowing reaches of the river. Hydrologically, the two study years 2007 and 2008 were quite different. In 2007, summer streamflows, although low, were higher than average, and in 2008, the flows were generally higher than in 2007. Visually, the effects of these streamflow differences on the distribution of Lemna were obvious. In 2007, large amounts of

  7. Two-dimensional sediment transport modeling for reservoir sediment management: Reventazón River, Costa Rica

    Science.gov (United States)

    Dubinski, I. M.

    2012-12-01

    Sedimentation is an ongoing concern for reservoirs that may be addressed using a variety of sediment management options. Sedimentation in reservoirs reduces reservoir storage and alters the sediment supply downstream. The objective of this study is to estimate the spatial and temporal distribution of deposited sediment in a proposed reservoir in the Reventazón River, Costa Rica over long-term operation (40 years) under different sediment management scenarios. The two-dimensional sediment transport model MIKE 21C by DHI is used to simulate sediment deposition for the base case (i.e., no sediment management) and assess the anticipated effectiveness of two sediment management strategies (i.e., full drawdown flushing and partial drawdown flushing). Incoming total sediment load is estimated using measured and estimated suspended sediment load combined with bed load estimated using the BAGS model with the Wilcock and Crowe (2003) equation. The base case simulation indicates that the anticipated storage loss in the absence of sediment management would amount to about 35% of the total and 33% of the active storage volume over a 40-year period. The predicted storage losses are significantly less when the performance of full drawdown flushing and partial drawdown flushing was simulated. In the case of full drawdown flushing the total anticipated storage loss is about 22%, while the loss in active storage is only 7%. In the case of partial drawdown flushing the predicted loss in total storage is 26%, while the anticipated loss in active storage is 8% after 40 years of operation. The simulations indicate that flushing is a viable and sustainable sediment management option for maintaining active storage in the proposed reservoir and passing through sediment.

  8. Rethinking the Mississippi River diversion for effective capture of riverine sediments

    Science.gov (United States)

    Xu, Y. Jun

    2015-03-01

    Many river deltas in the world are vibrant economic regions, serving as transportation hubs, population centres, and commercial hotspots. However, today, many of these deltaic areas face a tremendous challenge with land loss due to a number of factors, such as reduced riverine sediment supply, coastal land erosion, subsidence, and sea level rise. The development of the Mississippi River Deltaic Plain (MRDP) in southeast Louisiana, USA, over the past century is a good example. Since 1932, approximately 4877 km2 of the coastal land of MRDP has become submerged. The lower Mississippi River main channel entering the Gulf of Mexico has become an isolated waterway with both sides losing land. In contrast, large open water areas in the Mississippi River's distributary basin, the Atchafalaya River basin, have been silted up over the past century, and the river mouth has developed a prograding delta feature at its two outlets to the Gulf of Mexico. The retrospective analysis of this paper makes it clear that the main cause of the land loss in the MRDP is not the decline of riverine sediment, but the disconnection of the sediment sources from the natural flood plains. Future sediment management efforts in the MRDP should focus on restoring the natural connection of riverine sediment supplies with flood plains, rather than solely using channelized river diversion. This could be achieved through controlled overbank flooding (COF) and artificial floods in conjunction with the use of a hydrograph-based sediment availability assessment.

  9. Analysis of the Sediment Hydrograph of the alluvial deltas in the Apalachicola River, Florida

    Science.gov (United States)

    Daranpob, A.; Hagen, S.; Passeri, D.; Smar, D. E.

    2011-12-01

    Channel and alluvial characteristics in lowlands are the products of boundary conditions and driving forces. The boundary conditions normally include materials and land cover types, such as soil type and vegetation cover. General driving forces include discharge rate, sediment loadings, tides and waves. Deltas built up of river-transported sediment occur in depositional zones of the river mouth in flat terrains and slow currents. Total sediment load depends on two major abilities of the river, the river shear stress and capacity. The shear stress determines transport of a given sediment grain size, normally expressed as tractive force. The river capacity determines the total load or quantity of total sediments transported across a section of the river, generally expressed as the sediment loading rate. The shear stress and sediment loading rate are relatively easy to measure in the headwater and transfer zones where streams form a v-shape valley and the river begins to form defined banks compared to the deposition zone where rivers broaden across lower elevation landscapes creating alluvial forms such as deltas. Determinations of deposition and re-suspension of sediment in fluvial systems are complicated due to exerting tidal, wind, and wave forces. Cyclic forces of tides and waves repeatedly change the sediment transport and deposition rate spatially and temporally in alluvial fans. However, the influence decreases with water depth. Understanding the transport, deposition, and re-suspension of sediments in the fluvial zone would provide a better understanding of the morphology of landscape in lowland estuaries such as the Apalachicola Bay and its estuary systems. The Apalachicola River system is located in the Florida Panhandle. Shelf sedimentation process is not a strong influence in this region because it is protected by barrier islands from direct ocean forces of the Gulf of Mexico. This research explores the characteristic of suspended sediment loadings in

  10. Impact of dam construction on river banks evolution and sediment dynamics. A case study from the Po River (Italy).

    Science.gov (United States)

    Maselli, V.; Pellegrini, C.; Crose, L.; Del Bianco, F.; Mercorella, A.

    2014-12-01

    Rivers draining densely populated landscapes are extremely impacted by modern human engineering: armored beds, artificial levees and dams modified natural fluvial dynamics, and consequently, the evolution of alluvial plains, deltas and coastal environments. Dams, in particular, segmented the longitudinal continuity of the river and reduced (or even interrupted) the export of sediment toward the sea. Here we investigate the impact of the Isola Serafini dam on the upstream portion of the Po River (Italy) influenced by backwater, by using an integrated approach of aerial and satellite images, longitudinal cross-sections, grain size analysis, backscatter data and multibeam bathymetry. The analysis of aerial photographs, acquired every 10 yr since the dam construction in 1960, and of longitudinal cross-sections, allows understanding how the river adjusts its profile in response to the backwater and quantifying areas of net river banks erosion and deposition in meanders. The drowning of the reaches influenced by backwater reduced the progradation of point bars and promoted the deposition of fine grained sediments, as highlighted by grain size analysis on surficial sediment sampled across and along the river course. Calibrated back-scatter data with grain-size distributions of two selected meanders, under the backwater effect and beyond, show how sands are progressively replaced by fine-grained sediments in the meander belt and in the river axis, mainly reflecting the reduction of flow velocity, inferred also by river bed roughness. The understanding of river and sediment dynamics under the influence of backwater due to dam construction is useful when studying pristine systems in which natural backwater affects their evolution, as in the case of the formation of standing water bodies during the drowning of an incised valley.

  11. Suspended sediment fluxes in an Indonesian river draining a rainforested basin subject to land cover change

    Directory of Open Access Journals (Sweden)

    F. A. Buschman

    2011-07-01

    Full Text Available Forest clearing for reasons of timber production, open pit mining and the establishment of oil palm plantations generally results in excessively high sediment loads in the tropics. The increasing sediment fluxes pose a threat to coastal marine ecosystems such as coral reefs. This study presents observations of suspended sediment fluxes in the Berau river (Indonesia, which debouches into a coastal ocean that can be considered the preeminent center of coral diversity. The Berau is an example of a small river draining a mountainous, relatively pristine basin that receives abundant rainfall. Flow velocity was measured over a large part of the river width at a station under the influence of tides, using a Horizontal Acoustic Doppler Current Profiler (HADCP. Surrogate measurements of suspended sediment concentration were taken with an Optical Backscatter Sensor (OBS. Tidally averaged suspended sediment concentration increases with river discharge, implying that the tidally averaged suspended sediment flux increases non-linearly with river discharge. Averaged over the 6.5 weeks observations covered by the benchmark survey, the tidally averaged suspended sediment flux was estimated at 2 Mt y−1. Considering the wet conditions during the observation period, this figure may be considered as an upper limit of the yearly averaged flux. This flux is significantly smaller than what could have been expected from the characteristics of the catchment. The consequences of ongoing clearing of rainforest were explored using a plot scale erosion model. When rainforest, which still covered 50–60 % of the basin in 2007, is converted to production land, soil loss is expected to increase with a factor between 10 and 100. If this soil loss is transported seaward as suspended sediment, the increase in suspended sediment flux in the Berau river would impose a severe sediment stress on the global hotspot of coral reef diversity. The impact of land cover

  12. Pbsbnd Srsbnd Nd isotopic tracing of the influence of the Amazon River on the bottom sediments in the lower Tapajós River

    Science.gov (United States)

    Medeiros Filho, Lucio C.; Lafon, Jean-Michel; Souza Filho, Pedro Walfir M.

    2016-10-01

    The isotopic signatures of Pbsbnd Srsbnd Nd in recent bottom sediments were used to investigate the hydrodynamics of the lower stream of the Tapajós River and its interaction with the Amazon River. Samples from the Tapajós River have Pb isotopic ratios (19.67 Amazon River (18.84 Amazon River (ɛNd(0) ≈ -9 and 0.712 Amazon River influences the sediments in the Tapajós River, but this influence is restricted to the confluence zone. Additionally, the concentrations of major and trace elements and the mineralogy of the sediments are in agreement with the isotopic data. We conclude that the accumulation of muddy sediments in the lower stream of the Tapajós River is a result of the influence of the Amazon River, which retains this discharge from its affluent thus generating favorable conditions for depositing the finer sediments coming from the Tapajós River without any significant contribution of sediments from the Amazon River itself. The values of ɛNd(0) and TDM and of 87Sr/86Sr ratio of the Tapajós River bottom sediments indicate that the source of the sediments is essentially the erosion of the Paleoproterozoic felsic units from the Tapajós (2.03-1.88 Ga) and Juruena (1.82-1.54 Ga) geotectonic provinces.

  13. Efficiency of sediment transport by flood and its control in the Lower Yellow River

    Institute of Scientific and Technical Information of China (English)

    NI; Jinren; LIU; Xiaoyong; LI; Tianhong; ZHAO; Yean; JIN; L

    2004-01-01

    This paper presents the characteristics of sediment transport by flood in the Lower Yellow River with the reach from Huayuankou to Gaocun, which is regarded as a typical braided pattern. The Artificial Neural Network Model on Water Use for Sediment Transport (WUST) by flood was established based on the measured data from 1980 to 1998. Consequently, simulations of controlling process of sediment transport by flood were made in terms of the control theory under different scenarios. According to the situation of sediment transport by flood in the Lower Yellow River, Open-Loop control system and feedback control system were adopted in system design. In the Open-Loop control system, numerical simulations were made to reveal the relationship between average discharge of flood and the WUST with varying sediment concentrations. The results demonstrate that sediment concentration has significant influence on the controlling process of flood flow to WUST. It is practical and efficient to control WUST if sediment concentration is less than 20 kg/m3. In the feedback control system, controlling processes of sediment concentration and flood discharge for sediment transport were simulated respectively under given conditions, and it was found that sediment transport process could be controlled completely by sediment concentration and discharge at the inlet of the reach from Huayuankou to Gaocun. Using the same method, controlling processes of sediment transport by flood in other reaches in the Lower Yellow River were also simulated. For the case of sediment concentration being 20 kg/m3, the optimized controlling discharge ranges from 2390 to 2900 m3/s in the lower reach of Huayuankou.This study is also of significance to flood control and flushing sediment in the Lower Yellow River with proper operation modes of Xiaolangdi Reservoir.

  14. Large shift in source of fine sediment in the upper Mississippi River

    Science.gov (United States)

    Belmont, P.; Gran, K.B.; Schottler, S.P.; Wilcock, P.R.; Day, S.S.; Jennings, C.; Lauer, J.W.; Viparelli, E.; Willenbring, J.K.; Engstrom, D.R.; Parker, G.

    2011-01-01

    Although sediment is a natural constituent of rivers, excess loading to rivers and streams is a leading cause of impairment and biodiversity loss. Remedial actions require identification of the sources and mechanisms of sediment supply. This task is complicated by the scale and complexity of large watersheds as well as changes in climate and land use that alter the drivers of sediment supply. Previous studies in Lake Pepin, a natural lake on the Mississippi River, indicate that sediment supply to the lake has increased 10-fold over the past 150 years. Herein we combine geochemical fingerprinting and a suite of geomorphic change detection techniques with a sediment mass balance for a tributary watershed to demonstrate that, although the sediment loading remains very large, the dominant source of sediment has shifted from agricultural soil erosion to accelerated erosion of stream banks and bluffs, driven by increased river discharge. Such hydrologic amplification of natural erosion processes calls for a new approach to watershed sediment modeling that explicitly accounts for channel and floodplain dynamics that amplify or dampen landscape processes. Further, this finding illustrates a new challenge in remediating nonpoint sediment pollution and indicates that management efforts must expand from soil erosion to factors contributing to increased water runoff. ?? 2011 American Chemical Society.

  15. River capture and sediment redistribution in northern Tunisia: The doom of Utica

    Science.gov (United States)

    Booth-Rea, Guillermo; Camafort, Miquel; Pérez-Peña, J. Vicente; Melki, Fetheddine; Ranero, César; Azañón, José Miguel; Gracia, Eulalia; Ouadday, Mohamed

    2016-04-01

    Utica was a flourishing port city in northern Tunisia since the Phoenician times, 12-9th century B.C., until the 4th century A.D.. However, at present it is located 10 km from the coastline after very fast late Holocene progradation of the Mejerda River delta into the bay of Utica. This fast delta progradation occurred after Mejerda River captured Tine River increasing 140 % the river catchment area. Charcoal fragments present in the youngest Tine river terrace at the wind gap give a conventional radiocarbon age of 3240 +/- 30yr BP, indicating that the capture occurred after this date. Quaternary fluvial terraces located in the Tine River paleovalley have been folded and uplifted above a fold related to the active El Alia Tebousouk reverse fault (ETF). Continued uplift of the Tine River valley above the ETF favoured headward erosion of the Medjerda river tributaries creating a transverse drainage that captured Tine River. This capture produced an important change in sediment discharge along the northern Tunisia coast driving sediments to the Gulf of Tunis instead of feeding the Tyrrhenian Sea through the Ichkeul and Bizerte lakes. Although anthropogenic derived degradation of northern Tunisia land for agricultural purposes probably influenced the increase in sediment into the Utica bay, the main cause of rapid progradation of the Medjerda River delta during the late Holocene is related to its increase in drainage area after capturing the Tine River. This process was mostly driven by local contractive tectonics linked to the seismogenic Alia Tebousouk reverse fault.

  16. Determination of petroleum hydrocarbons in sediment samples from Bombay harbour, Dharamtar creek and Amba river estuary

    Digital Repository Service at National Institute of Oceanography (India)

    Ingole, S.A.; Dhaktode, S.S.; Kadam, A.N.

    The surface sediment samples were collected by van Veen grab sampler during premonsoon, monsoon and postmonsoon seasons from Bombay harbour, Dharamtar creek and Amba river estuary Moisture content of the samples ranges from 36 to 67.5...

  17. Characteristics of Sediments in the James River Estuary, Virginia, 1968 (NODC Accession 7001081)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This report presents data on the physical and chemical characteristics of bottom sediments in the James River estuary, Virgina. The data were generated as part of a...

  18. Perfluorooctanoic acid and perfluorooctane sulfonate in the sediment of the Roter Main river, Bayreuth, Germany

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Anna M.; Gerstmann, Silke [Environmental Chemistry and Ecotoxicology, University of Bayreuth, Universitaetsstr. 30, D-95440 Bayreuth (Germany); Frank, Hartmut [Environmental Chemistry and Ecotoxicology, University of Bayreuth, Universitaetsstr. 30, D-95440 Bayreuth (Germany)], E-mail: encetox@uni-bayreuth.de

    2008-12-15

    Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) are widely distributed in aquatic ecosystems. Their sources are known but few studies about their accumulation potential in river sediments exist. The aim of this study is to assess the concentrations of PFOA and PFOS in sediments in relation to their levels in river water receiving effluent from a waste water treatment plant (WWTP). PFOS accumulates by a factor of about 40 relative to river water, PFOA only up to threefold. In contrast to previous suggestions, in this case the enrichment on sediment is not correlated to the total organic carbon contents. - River sediments constitute a sink of perfluorinated surfactants released from the waste water treatment plant.

  19. Landform-Sediment Assemblages Units of the Upper Mississippi River Valley

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — Wisconsinan and Holocene Landform-Sediment Assemblages of the Upper Mississippi River Valley. Knowledge of the spatial distribution of natural and cultural resources...

  20. Organochlorine pesticides in fishes and sediments from the Tensas River Basin, Lousiana

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The aquatic habitats of the Tensas River Basin in northeastern Louisiana have been heavily impacted by sediment and agrichemical runoff due to intensive drainage,...

  1. Surface-sediment grain-size distributions from the Elwha River delta, Washington, July 2015

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This portion of the data release presents sediment grain-size data from samples collected on the Elwha River delta, Washington, between July and August 2015 (USGS...

  2. Surface-sediment grain-size distributions from the Elwha River delta, Washington, May 2014

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This portion of the data release presents sediment grain-size data from samples collected on the Elwha River delta, Washington, in May 2014 (USGS Field Activity...

  3. Surface-sediment grain-size distributions from the Elwha River delta, Washington, March 2013

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This portion of the data release presents sediment grain-size data from samples collected on the Elwha River delta, Washington, in March 2013 (USGS Field Activity...

  4. Surface-sediment grain-size distributions of the Elwha River delta, Washington, July 2016

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This portion of the data release presents sediment grain-size data from samples collected on the Elwha River delta, Washington, in July 2016 (USGS Field Activity...

  5. Surface-sediment grain-size distributions of the Elwha River delta, Washington, January 2015

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This portion of the data release presents sediment grain-size data from samples collected on the Elwha River delta, Washington, in January 2015 (USGS Field Activity...

  6. Surface-sediment grain-size distributions from the Elwha River delta, Washington, September 2013

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This portion of the data release presents sediment grain-size data from samples collected on the Elwha River delta, Washington, in September 2013 (USGS Field...

  7. Sediment grain size in the Elwha River estuary, Washington, from 2013 and 2014.

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This portion of the data release presents sediment grain-size data from samples collected in the Elwha River estuary, Washington, in July 2013 and June 2014 (USGS...

  8. Surface-sediment grain-size distributions from the Elwha River delta, Washington, September 2014

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This portion of the data release presents sediment grain-size data from samples collected on the Elwha River delta, Washington, in September 2014 (USGS Field...

  9. Surface-sediment grain-size distributions from the Elwha River delta, Washington, August 2012

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This portion of the data release presents sediment grain-size data from samples collected on the Elwha River delta, Washington, in August 2012 (USGS Field Activity...

  10. Estimated Thickness of Quaternary Sediment in the Wood River Valley aquifer system, South-Central Idaho

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This dataset is the estimated thickness of Quaternary sediment of the Wood River Valley aquifer system. This isopach map was constructed by subtracting the estimated...

  11. Survey for contaminants in sediments and fish at selected sites on the Illinois River and tributaries

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — A basin-wide survey of contaminants in sediments and biota at several locations on the Illinois River and selected tributaries was conducted during the 1989 field...

  12. Current trends of some organochlorinated pesticides in Yamuna River sediments around Delhi

    Digital Repository Service at National Institute of Oceanography (India)

    Sethi, P.K.; Bhattacharyya, A.K.; Sarkar, A.

    Organochlorinated pesticides viz. DDTs, HCHs, and Cyclodiene compounds have been detected in the sediment samples of Yamuna River around Delhi, India during the three seasons namely pre-monsoon, monsoon and post-monsoon. Five sampling sites were...

  13. Environmental contaminant investigation of water quality, sediment and biota of the upper Gila River Basin, Arizona

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Water, sediment, lizard, and avian samples and fish (whole body and fillet) were collected in 1990 form several locations along the Gila and San Francisco Rivers in...

  14. Stability of the total and functional microbial communities in river sediment mesocosms exposed to anthropogenic disturbances

    NARCIS (Netherlands)

    Zaan, van der B.M.; Smidt, H.; Vos, de W.M.; Rijnaarts, H.; Gerritse, J.

    2010-01-01

    River systems are exposed to anthropogenic disturbances, including chemical pollution and eutrophication. This may affect the phylogenetic diversity as well as the abundance of various functional groups within sediment-associated microbial communities. To address such potential effects, mesocosms fi

  15. Transfer of fine sediments and particulate heavy metals in large river basins

    Science.gov (United States)

    Scherer, Ulrike; Reid, Lucas; Fuchs, Stephan

    2013-04-01

    For heavy metals and other particulate contaminants erosion is an important emission pathway into surface waters. Emissions via erosion can strongly vary depending on land use, morphology, erodibility of the soils and the heavy metal content in the topsoil layer of the source areas. A high spatial resolution of input data is thus necessary to identify hotspots of heavy metal emissions via erosion in large river basins. In addition a part of the suspended solid load which is emitted to surface waters from the catchment areas can be deposited in the river system during transportation. The retention of sediments mainly takes place in lakes, reservoirs and river barrages. Former modelling studies in large river basins of Germany revealed, that the observed suspended sediment loads at monitoring stations were strongly overestimated, if retention processes in the river system were neglected. The objective of this study was therefore to test whether the consideration of sedimentation rates in lakes, reservoirs and river barrages can improve the prediction of observed suspended sediment loads in large river basins. We choose the German/Austrian part of the Danube basin until Passau (77 156 km²) for this analysis, as the alpine tributaries in the South of the Danube basin deliver high annual sediment rates (i.e. Inn and Isar) which are not fully recovered at the monitoring stations located further upstream of the Danube due to retention processes. The sediment input was quantified for all tributaries and added up along the flow path of the river system. Due to the large scale, sediment production within the catchments was calculated using the USLE for cultivated land and naturally covered areas and specific erosion rates for alpine areas without vegetation cover. Sediment delivery was estimated using an approach based on the location of the sediment source areas in the catchments and the morphology on the way to the surface waters. The location of the lakes, reservoirs and

  16. Quantification of annual sediment deposits for sustainable sand management in Aghanashini river estuary.

    Science.gov (United States)

    Ramachandra, T V; Vinay, S; Subash Chandran, M D

    2017-08-11

    Sedimentation involving the process of silt transport also carries nutrients from upstream to downstream of a river/stream. Sand being one of the important fraction of these sediments is extracted in order to cater infrastructural/housing needs in the region. This communication is based on field research in the Aghanshini river basin, west coast of India. Silt yield in the river basin and the sedimentation rate assessed using empirical techniques supplemented with field quantifications using soundings (SONAR), show the sediment yield of 1105-1367 kilo cum per year and deposition of sediment of 61 (2016) to 71 (2015) cm. Quantifications of extractions at five locations, reveal of over exploitation of sand to an extent of 30% with damages to the breeding ground of fishes, reduced productivity of bivalves, etc., which has affected dependent people's livelihood. This study provides vital insights towards sustainable sand harvesting through stringent management practices. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. High prevalence of multiple-antibiotic-resistant (MAR) Escherichia coli in river bed sediments of the Apies River, South Africa.

    Science.gov (United States)

    Abia, Akebe Luther King; Ubomba-Jaswa, Eunice; Momba, Maggy Ndombo Benteke

    2015-10-01

    This study aimed at investigating the presence of antibiotic-resistant Escherichia coli in river bed sediments of the Apies River, Gauteng, South Africa, in order to better inform health management decisions designed to protect users of the river. Overall, 180 water and sediment samples were collected at 10 sites along the Apies River from January to February 2014. E. coli was enumerated using the Colilert® 18/Quanti-Tray® 2000 (IDEXX). Isolates were purified by streaking on eosin methylene blue agar followed by the indole test. Pure E. coli isolates were tested for resistance to nine antibiotics by the Kirby-Bauer disc diffusion method. Over 98% of the isolates were resistant to at least one of the antibiotics tested. The highest resistance was observed against nitrofurantoin (sediments) and ampicillin (water). Over 80% of all resistant isolates showed multiple antibiotic resistance (resistance to ≥3 antibiotics). The abundance of E. coli in the sediments not only adds to the evidence that sediments are a reservoir for bacteria and possibly other pathogens including antibiotic-resistant bacteria but also suggests that antibiotic-resistant genes could be transferred to pathogens due to the high prevalence of multiple-antibiotic-resistant (MAR) strains of E. coli observed in the sediment. Using untreated water from the Apies River following resuspension for drinking and other household purposes could pose serious health risks for users. Our results suggest that river bed sediments could serve as reservoirs for MAR bacteria including pathogens under different climatic conditions and their analysis could provide information of public health concerns.

  18. Regional Sediment Budget of the Columbia River Littoral Cell, USA

    Science.gov (United States)

    Buijsman, Maarten C.; Sherwood, C.R.; Gibbs, A.E.; Gelfenbaum, G.; Kaminsky, G.M.; Ruggiero, P.; Franklin, J.

    2002-01-01

    1913 at the Columbia River entrance. The inlets and inner deltas eroded and the outer deltas moved offshore and accreted. The adjacent coasts experienced accretion over alongshore distances of tens of kilometers. North of the Grays Harbor entrance along North Beach and north of the Columbia River entrance along Long Beach the shoreface and the beach-dune complex mainly prograded, whereas south of the Grays Harbor entrance along Grayland Plains and south of the Columbia River entrance along Clatsop Plains the beach-dune complex above -10 m NAVD88 prograded and the shoreface between approximately -30 m and -10 m NAVD88 eroded. In the decades following jetty construction, the rates of erosion and accretion at the entrances decreased and the centers of deposition along the adjacent coasts moved away from the entrances. The rates of change have decreased, suggesting the systems are approaching dynamic equilibrium. Exceptions to this behaviour are the accretion of the beach-dune complex of Long Beach, the erosion of Cape Shoalwater, and the northward migration of the Willapa Bay ebb-tidal delta during all intervals. The net shoreline advance of Long Beach increases from 0.28 m/yr in pre-jetty conditions to 3.78 m/yr during Interval 4. The erosion of Cape Shoalwater and the northward migration of the Willapa Bay ebb-tidal delta are related to the northern migration of the Willapa Bay North Channel. Volume changes at the Grays Harbor, Willapa Bay, and Columbia River entrances and the Columbia River estuary are balanced against losses and gains due to littoral transport and sand supply from the Columbia River. Based on these sediment balances, we infer the following pathways: sand that eroded from the inlets and inner deltas at the Grays Harbor and Columbia River entrances moved offshore and northward to accrete the outer deltas and the beaches to the north; sand from the south flank of the Grays Harbor delta and shelf along Grayland Plains moved onshore to accrete th

  19. Towards a complete contemporary sediment budget of a major Himalayan river: Kali Gandaki, Nepal

    Science.gov (United States)

    Struck, Martin; Andermann, Christoff; Bista, Raj; Korup, Oliver

    2013-04-01

    The tectonic evolution of mountain ranges is always accompanied by enhanced denudation. In the Himalayas these denudation rates are among the highest in the world, where high topography and prominent relief ensure supply of sediment to the drainage network mainly by mass wasting processes. These processes take place almost exclusively during the summer monsoon season, but remain poorly quantified in terms of resulting sediment flux. Here we study short-term variations in contemporary sediment flux of the Kali Gandaki River, one of the large rivers traversing the Himalayas from the Tibetan Plateau in the north to the Ganges foreland in the south. We analysed seven years of continuous daily suspended sediment and river discharge measurements at a hydropower facility in the lesser part of the Mahambra range. This new dataset is unique for the whole Himalayan range in terms of temporal resolution. We used these data to derive a preliminary sediment budget for the Kali Gandaki River for the years 2006-2012, based on continuous river discharge, suspended sediment load, bed material and dissolved load measurements. First results show that the Kali Gandaki River has transported 1.5-2.7 x 107 m3 of sediment per year. This equals around 4.0-7.0 x 107t/yr, out of which 25-45% is transported as bed-load. Inferred rates of upstream erosion range between 2-3.5 mm/yr, in good agreement with complementary estimates integrating much longer timespans for example derived by low temperature thermochronometry. Our results include one of the first calculations of bed-load transport for a large Himalayan river. Such temporally highly resolved constraints on contemporary sediment transport and erosion in the Himalayan Range not only provide field-based benchmark data for erosion studies across multiple timescales, but also yield valuable data for optimizing hydropower schemes, and the planning of flood control measures in major Himalayan rivers.

  20. The role of mega dams in reducing sediment fluxes: A case study of large Asian rivers

    Science.gov (United States)

    Gupta, Harish; Kao, Shuh-Ji; Dai, Minhan

    2012-09-01

    SummaryIn order to sustain the ever growing population and to meet water and energy requirements of the rapidly growing economies, most of the large rivers draining through East, Southern and Southeast (ESSE) Asian region have been regulated all along their courses, over the past few decades. For instance, ESSE Asian countries (China, Taiwan, Vietnam, Myanmar, Thailand, India, Pakistan and Bangladesh) host about 250 mega dams and several tens of thousands of large and small reservoirs. The present study provides a revised estimate on annual suspended sediment fluxes of the large rivers draining through ESSE region, including the latest data of the Indian peninsula rivers. In the last 50 years, the combined annual sediment flux of the large Chinese rivers has been reduced from 1800 million tons (Mt) to about 370 Mt. We estimate that at present the Indian peninsular rivers collectively transport about 83 Mt of sediment annually. The Ganga-Brahmaputra and the Indus, contribute 850 and 13 Mt of sediments, respectively to the oceans. Our revised estimates suggest that at present the large rivers of ESSE region, collectively delivering ∼2150 Mt of sediment annually to the oceans. We show that at decadal scale, decline in sediment fluxes of the large Asian rivers are proportional to the number of mega dams present in the respective catchments. We also demonstrate that storage of sediment-laden water of major flood events (major-event), led to huge sediment trapping behind mega dams. Thus, ongoing and planned dam constructions activities across ESSE Asia may further reduce the annual sediment fluxes.

  1. Trapping and episodic flushing of suspended sediment from a tidal river

    Science.gov (United States)

    Pritchard, Mark; Green, Malcolm

    2017-07-01

    Recent studies suggest that tidal forcing can be as important as gravitational circulation in maintaining an estuarine turbidity maximum (ETM). It is further postulated that a long-term mass balance between the import and export of sediment in an estuary may require episodic large river discharges or 'freshets' to flush sediment out of the ETM towards the open sea. In this study, we use a 2-month data set from a mooring in a tidal river that drains into a large drowned-river-valley estuary (Kaipara Harbour, New Zealand) to investigate interactions between tidal-current asymmetry and gravitational circulation. During baseflow river discharge and on spring tides, suspended-sediment transport was directed up-channel (landwards), driven by tidal pumping due to tidal-current asymmetry. During neap tides, the suspended-sediment flux was approximately zero. The data suggest that the bed was not locally erodible and that bed sediments at the site were being supplied by an ETM. The ETM only migrated far enough down channel to be observed at the mooring site during spring tides when the tidal excursion was longer. Suspended sediments were effectively trapped and recycled within the ETM. During and after two freshets, high river discharge displaced saline water from the tidal river, water-column stratification strengthened and the surface and bed current speeds increased. As a result, the advective component of the down-channel directed suspended-sediment flux increased. This provided a transport pathway for sediment out of the otherwise tidally pumped, flood-dominant system. We conclude that largest export of sediments out of the tidal river would potentially occur when a large freshet coincides with an apogean spring tide.

  2. Biological and chemical characterization of metal bioavailability in sediments from Lake Roosevelt, Columbia River, Washington, USA

    Science.gov (United States)

    Besser, J.M.; Brumbaugh, W.G.; Ivey, C.D.; Ingersoll, C.G.; Moran, P.W.

    2008-01-01

    We studied the bioavailability and toxicity of copper, zinc, arsenic, cadmium, and lead in sediments from Lake Roosevelt (LR), a reservoir on the Columbia River in Washington, USA that receives inputs of metals from an upstream smelter facility. We characterized chronic sediment toxicity, metal bioaccumulation, and metal concentrations in sediment and pore water from eight study sites: one site upstream in the Columbia River, six sites in the reservoir, and a reference site in an uncontaminated tributary. Total recoverable metal concentrations in LR sediments generally decreased from upstream to downstream in the study area, but sediments from two sites in the reservoir had metal concentrations much lower than adjacent reservoir sites and similar to the reference site, apparently due to erosion of uncontaminated bank soils. Concentrations of acid-volatile sulfide in LR sediments were too low to provide strong controls on metal bioavailability, and selective sediment extractions indicated that metals in most LR sediments were primarily associated with iron and manganese oxides. Oligochaetes (Lumbriculus variegatus) accumulated greatest concentrations of copper from the river sediment, and greatest concentrations of arsenic, cadmium, and lead from reservoir sediments. Chronic toxic effects on amphipods (Hyalella azteca; reduced survival) and midge larvae (Chironomus dilutus; reduced growth) in whole-sediment exposures were generally consistent with predictions of metal toxicity based on empirical and equilibrium partitioning-based sediment quality guidelines. Elevated metal concentrations in pore waters of some LR sediments suggested that metals released from iron and manganese oxides under anoxic conditions contributed to metal bioaccumulation and toxicity. Results of both chemical and biological assays indicate that metals in sediments from both riverine and reservoir habitats of Lake Roosevelt are available to benthic invertebrates. These findings will be used as

  3. Toxicity of Athabasca River and oil sands sediments to larval fish

    Energy Technology Data Exchange (ETDEWEB)

    Parrott, J.; Turcotte, D.; Headley, J.; Hewitt, M. [Environment Canada, Ottawa, ON (Canada)

    2010-07-01

    This presentation reported on a study that evaluated oil sands tailings pond sediments and sediments from the Athabasca River for embryo-larval toxicity in fathead minnows and walleye. Following 20 days of exposure to 5 sediments from the Athabasca River at concentrations up to 25 g/L, there were no observed effects in fathead minnow eggs and larvae. However, at concentrations as low as 0.2 to 1 g wet wt/L, two of three tailings pond sediments were toxic to fathead minnows. Larvae growth was reduced in all three tailings pond sediments. Nine of 18 polycyclic aromatic hydrocarbons (PAHs) measured in tailing pond sediments were found to be above the Freshwater Sediment Quality Guidelines set by the Canadian Council of Ministers of the Environment (CCME), with phenanthrene being the highest. The values for total dry weight PAHs and total naphthenic acids in tailings pond sediment and river sediment were discussed. The cause for the observed toxicity in fathead minnow larvae could not be determined based on the preliminary study results. As part of the ongoing study, walleye eggs and larvae are being exposed to the sediments to compare their relative sensitivity and to determine possible causative compounds.

  4. Monitoring Fine Sediment; Grande Ronde and John Day Rivers, 2000 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Rhodes, Jonathan J.; Greene, M. Jonas; Purser, Michael D. (Columbia River Inter-Tribal Fish Commission, Portland, OR)

    2001-01-01

    Fine sediment in spawning substrate has a major effect on salmon survival from egg to smolt. Basin-wide restoration plans have established targets for fine sediment levels in spawning habitat. The project was initiated to monitor surface fine sediment levels and overwinter intrusion of fine sediment in spring chinook salmon spawning habitat in the North Fork John Day (NFJDR) and Grande Ronde Rivers, for five years. The project is also investigating the potential relationship between surface fine levels and overwinter sedimentation. It will provide data to assess trends in substrate conditions in monitored reaches and whether trends are consistent with efforts to improve salmon habitat conditions. The data on the magnitude of overwinter sedimentation will also be used to estimate salmon survival from egg to emergence. In Sept. 1998, 1999, and Aug. 2000, sites for monitoring overwinter sedimentation were established in salmon spawning habitat in the upper Grande Ronde River, Catherine Creek (a Grande Ronde tributary), the North Fork John Day River (NFJDR), and Granite Creek (a NFJDR tributary). Surface fine sediment levels were measured in these reaches via the grid method and visually estimated to test the relative accuracy of these two methods. In 1999 and 2000, surface fine sediment was also estimated via pebble counts at selected reaches to allow comparison of results among the methods. Overwintering substrate samples were collected in April 1999 and April-May 2000 to estimate the amount of overwinter sedimentation in clean gravels in spawning habitat. Monitoring methods and locations are described.

  5. Changing trends of rainfall and sediment fluxes in the Kinta River catchment, Malaysia

    Science.gov (United States)

    Ismail, W. R.; Hashim, M.

    2015-03-01

    The Kinta River, draining an area of 2566 km2, originates in the Korbu Mountain in Perak, Malaysia, and flows through heterogeneous, mixed land uses ranging from extensive forests to mining, rubber and oil palm plantations, and urban development. A land use change analysis of the Kinta River catchment was carried out together with assessment of the long-term trend in rainfall and sediment fluxes. The Mann-Kendall test was used to examine and assess the long-term trends in rainfall and its relationship with the sediment discharge trend. The land use analysis shows that forests, water bodies and mining land declined whilst built and agricultural land use increased significantly. This has influenced the sediment flux of the catchment. However, most of the rainfall stations and river gauging stations are experiencing an increasing trends, except at Kinta river at Tg. Rambutan. Sediment flux shows a net erosion for the period from 1961 to 1969. The total annual sediment discharge in the Kinta River catchment was low with an average rate of 1,757 t/km2/year. From 1970 to 1985, the annual sediment yield rose to an average rate of 4062 t/km2/year. Afterwards, from 1986 to 1993, the total annual sediment discharge decreased to an average rate of 1,306 t/km2/year and increased back during the period 1994 to 2000 to 2109 t/km2/year. From 2001 to 2006 the average sediment flux rate declined to 865 t/km2/year. The decline was almost 80% from the 1970s. High sediment flux in the early 1970s is partly associated with reduced tin mining activities in the area. This decreasing trend in sediment delivery leaving the Kinta River catchment is expected to continue dropping in the future.

  6. Assessments of potential spatial-temporal variations in phosphorus distribution and fractionation in river bed sediments

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jingyu [Department of Environmental Geographic and Geological Sciences, Lehman College of the City University of New York, New York (United States); Graduate Center, Ph.D. Program in Earth and Environmental Sciences, City University of New York, New York (United States); Pant, Hari K. [Department of Environmental Geographic and Geological Sciences, Lehman College of the City University of New York, New York (United States)

    2011-02-15

    Sediment characteristics influence the distribution and bioavailability of phosphorus (P) in river sediments. In this study, we analyzed different P fractions in the sediments of the Bronx River, New York City, NY, using sequential extraction. The results showed that the average P pool rank order was HCl-P > NaOH-P > NaHCO{sub 3}-P > residue-P, and their relative proportions were 3.7: 2.0: 1.4: 1 in sediments collected in 2006, while HCl-P > NaOH-P > residue-P > NaHCO{sub 3}-P, with their relative proportions of 27.8:6.2:2.7:1 in the sediments obtained in 2007. The strong correlation between microbial P and organic P (OP), along with the changes in microbial P over time indicate that most of the OP in the river bed sediments is potentially bioavailable. The sediment transport, deposition, assimilation, the exchange of P between sediments and water columns, the land use changes, raw sewer discharge, gas spill, construction, fertilizer application, etc., as well as the hydro-climatic changes could result in the spatial and temporal variations in P bioavailability in the river bed sediments. The estimations of P pools and their bioavailability in river bed sediments could help determine the spatial and temporal variations in P transport and impacts of land use on water quality, in turn, help regulate P in the river's watershed. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Biodegradation of polycyclic aromatic hydrocarbons in sediments from the Daliao River watershed, China

    Institute of Scientific and Technical Information of China (English)

    QUAN Xiangchun; TANG Qian; HE Mengchang; YANG Zhifeng; LIN Chunye; GUO Wei

    2009-01-01

    The Daliao River, as an important water system in Northeast China, was reported to be heavily polluted by polycyclic aromatic hydrocarbons (PAHs). Aerobic biodegradations of four selected PAHs (naphthalene, phenanthrene, fluorene and anthracene) alone or in their mixture in fiver sediments from the Daliao River water systems were studied in microcosm systems. Effects of additional carbon source, inorganic nitrogen and phosphorus, temperature variation on PAHs degradation were also investigated. Results showed that the degradation of phenanthrene in water alone system was faster than that in water-sediment combined system. Degradation of phenanthrene in sediment was enhanced by adding yeast extract and ammonium, but retarded by adding sodium acetate and not significantly influenced by adding phosphate. Although PAHs could also be biodegraded in sediment under low temperature (5℃), much lower degradation rate was observed. Sediments from the three main streams of the Daliao River water system (the Hun River, the Taizi River and the Daliao River) demonstrated different degradation capacities and patterns to four PAHs. Average removal rates (15 or 19 d) of naphthalene, phenanthrene, fluorene and anthracene by sediment were in the range of 0.062-0.087, 0.005-0.066, 0.008-one. In multiple PAHs systems, the interactions between PAHs influenced each PAH biodegradation.

  8. Screening of endocrine disruption activity in sediments from the Uruguay River.

    Science.gov (United States)

    Rivas-Rivera, Noelia; Eguren, Gabriela; Carrasco-Letelier, Leonidas; Munkittrick, Kelly R

    2014-08-01

    Sediment constitutes an important sink of endocrine disruptor compounds; however, the potential of sediments to act as a source of endocrine disruptors should be more extensively investigated. The main objective of this study was to determine whether exposure of immature common carp to Uruguay River sediments undergo physiological and endocrine alterations. The lower Uruguay River watershed supports intensive agricultural and forest production, receives municipal sewage discharge and industrial effluent, and a new large pulp mill was constructed in 2006. A 30-day semi-static assay was performed using sediments from four sites along the Uruguay River and compared with an unexposed group in dechlorinated water as a negative control. We focused on two upstream and two downstream sites of a new elemental chlorine free pulp mill. The results showed that plasma vitellogenin levels increased in fish along the river and significant differences were found between the exposed and unexposed groups. Condition factor and gonadosomatic index were not different; however, a significant difference in hepatosomatic index was observed in fish exposed to sediment from an industrial site. A significant reduction in primary spermatocyte accumulation was observed in the exposed group compared with that in the control group, and some individuals exposed to sediments from industrial sites presented with testis-ova. Our results suggest that Uruguay River sediments act as an important source of estrogenic compounds that could be responsible for the alterations observed. Future studies are needed to identify the causal agents and determine exposure routes.

  9. Sustainably Managing Sediment in Regulated Rivers: Recent Developments

    Science.gov (United States)

    Kondolf, G. M.; Gao, Y.; Annandale, G. W.; Morris, G. L.; Sumi, T.

    2014-12-01

    Inspired by the current drought and concerns about maintaining water storage capacity, California State Senate this year passed SB1259, directing the Department of Water Resources to assess the state's reservoirs for sedimentation problems. The need to actively manage sediment in reservoirs is increasingly recognized, as valuable reservoir storage capacity is lost and downstream reaches suffer from sediment starvation, manifesting problems such as channel incision, accelerated erosion of deltas, and loss of gravels important for habitat. With increased dam construction globally, these impacts will be widespread. Despite the opportunities to pass sediment through or around reservoirs (to preserve reservoir capacity and to minimize downstream impacts), these sustainable approaches to managing sediment are not applied in many situations where they would be effective. From a workshop involving international and Chinese experts and review of recent literature, collective global experience in managing reservoir sediments and mitigating downstream sediment starvation suggest that sediment management can be classified as catchment management (to reduce sediment inflow), sediment removal, and sediment routing through or around the reservoir. Sediment routing has the virtues of maintaining sediment flows to downstream reaches, as well as preserving reservoir capacity. Where geometry is favorable, sediment can often be bypassed around the reservoir (avoiding reservoir sedimentation and supplying sediment to downstream reaches) or sluiced through large-capacity outlets after flowing rapidly through the reservoir to avoid sedimentation. In narrow reservoirs with steep longitudinal gradients, sediments accumulated in the reservoir can often be re-suspended and flushed through when the reservoir is drawn down. Turbidity currents can often be 'vented' through the dam, with the advantage that the reservoir need not be drawn down to pass sediment. In planning dams, the expert group

  10. Geomorphic analysis of the river response to sedimentation downstream of Mount Rainier, Washington

    Science.gov (United States)

    Czuba, Jonathan A.; Magirl, Christopher S.; Czuba, Christiana R.; Curran, Christopher A.; Johnson, Kenneth H.; Olsen, Theresa D.; Kimball, Halley K.; Gish, Casey C.

    2012-01-01

    A study of the geomorphology of rivers draining Mount Rainier, Washington, was completed to identify sources of sediment to the river network; to identify important processes in the sediment delivery system; to assess current sediment loads in rivers draining Mount Rainier; to evaluate if there were trends in streamflow or sediment load since the early 20th century; and to assess how rates of sedimentation might continue into the future using published climate-change scenarios. Rivers draining Mount Rainier carry heavy sediment loads sourced primarily from the volcano that cause acute aggradation in deposition reaches as far away as the Puget Lowland. Calculated yields ranged from 2,000 tonnes per square kilometer per year [(tonnes/km2)/yr] on the upper Nisqually River to 350 (tonnes/km2)/yr on the lower Puyallup River, notably larger than sediment yields of 50–200 (tonnes/km2)/yr typical for other Cascade Range rivers. These rivers can be assumed to be in a general state of sediment surplus. As a result, future aggradation rates will be largely influenced by the underlying hydrology carrying sediment downstream. The active-channel width of rivers directly draining Mount Rainier in 2009, used as a proxy for sediment released from Mount Rainier, changed little between 1965 and 1994 reflecting a climatic period that was relatively quiet hydrogeomorphically. From 1994 to 2009, a marked increase in geomorphic disturbance caused the active channels in many river reaches to widen. Comparing active-channel widths of glacier-draining rivers in 2009 to the distance of glacier retreat between 1913 and 1994 showed no correlation, suggesting that geomorphic disturbance in river reaches directly downstream of glaciers is not strongly governed by the degree of glacial retreat. In contrast, there was a correlation between active-channel width and the percentage of superglacier debris mantling the glacier, as measured in 1971. A conceptual model of sediment delivery processes

  11. Sediment discharge of the Yellow River, China:past, present and future-A synthesis

    Institute of Scientific and Technical Information of China (English)

    REN Meie

    2015-01-01

    The Yellow River cut through Sanmenxia Gorge and discharged into the sea via the North China Plain in 150 ka BP;since then, around 86 000 × 108 t sediment has been transported passing Sanmenxia Gorge. Based on land use and land cover changes in Loess Plateau and other available evidence, an estimate of the Yellow River sediment budget is presented here:about 72%of the sedimentary material was trapped in the North China Plain and the remainder (i.e., 26%) escaped to the sea. At the present stage,<0.2×108 t/a suspended sediment of the Yellow River enter the northern Yellow Sea. The transport pattern is determined mainly by the shelf current system. Annually 0.2×108–0.3×108 t of suspended particles are carried to the East China Sea;the materials are derived mainly from coastal and subaqueous delta erosion associated with the abandoned Yellow River on the Jiangsu coast. Since 1972, the lower Yellow River started to have a situation of continuous no-flow. During 1996–2000, the annual water flow and sediment discharge are only 19%, as compared with normal years (i.e., average for 1950–1979). In response to global warming and increase of water diversion from the Yellow River for industrial and urban use, the sediment flux of the Yellow River to the sea will most likely remain small in the next two to three decades.

  12. Sedimentation in the Three Gorges Dam and the future trend of Changjiang (Yangtze River sediment flux to the sea

    Directory of Open Access Journals (Sweden)

    Guogang Li

    2009-11-01

    Full Text Available The Three Gorges Dam (TGD on the upper Changjiang (Yangtze River, China, disrupts the continuity of Changjiang sediment delivery to downstream and coastal areas. In this study, which was based on 54 years of annual water and sediment data from the mainstream and major tributaries of Changjiang, sediment deposition induced by the TGD in 2003–2008 was quantified. Furthermore, we determined the theoretical trapping efficiency of the cascade reservoir upstream of the TGD. Its impact on Changjiang sediment flux in the coming decades is discussed. Results show that about 172 million tons (Mt of sediment was trapped annually by the TGD in 2003–2008, with an averaged trapping efficiency of 75%. Most of the total sediment deposition, as induced by the TGD (88%, accumulated within the region between the TGD site and Cuntan. However, significant siltation (12% of the total sediment deposition also occurred upstream of Cuntan as a consequence of the upstream extended backwater region of the TGD. Additionally, the Changjiang sediment flux entered a third downward step in 2001, prior to operation of the TGD. This mainly resulted from sediment reduction in the Jinshajiang tributary since the late 1990s. As the cascade reservoir is put into full operation, it could potentially trap 91% of the Jinshajiang sediment discharge and, therefore, the Jinshajiang sediment discharge would most likely further decrease to 14 Mt/yr in the coming decades. Consequently, the Changjiang sediment flux to the sea is expected to continuously decrease to below 90 Mt/yr in the near future, or only 18% of the amount observed in the 1950s. In the presence of low sediment discharge, profound impacts on the morphology of estuary, delta and coastal waters are expected.

  13. Regional distribution of mercury in sediments of the main rivers of French Guiana (Amazonian basin).

    Science.gov (United States)

    Laperche, Valérie; Hellal, Jennifer; Maury-Brachet, Régine; Joseph, Bernard; Laporte, Pierre; Breeze, Dominique; Blanchard, François

    2014-01-01

    Use of mercury (Hg) for gold-mining in French Guiana (up until 2006) as well as the presence of naturally high background levels in soils, has led to locally high concentrations in soils and sediments. The present study maps the levels of Hg concentrations in river sediments from five main rivers of French Guiana (Approuague River, Comté River, Mana River, Maroni River and Oyapock River) and their tributaries, covering more than 5 450 km of river with 1 211 sampling points. The maximum geological background Hg concentration, estimated from 241 non-gold-mined streams across French Guiana was 150 ng g(-1). Significant differences were measured between the five main rivers as well as between all gold-mining and pristine areas, giving representative data of the Hg increase due to past gold-mining activities. These results give a unique large scale vision of Hg contamination in river sediments of French Guiana and provide fundamental data on Hg distribution in pristine and gold-mined areas.

  14. From agricultural intensification to conservation: Sediment transport in the Raccoon River, Iowa, 1916-2009

    Science.gov (United States)

    Jones, C.S.; Schilling, K.E.

    2011-01-01

    Fluvial sediment is a ubiquitous pollutant that negatively aff ects surface water quality and municipal water supply treatment. As part of its routine water supply monitoring, the Des Moines Water Works (DMWW) has been measuring turbidity daily in the Raccoon River since 1916. For this study, we calibrated daily turbidity readings to modern total suspended solid (TSS) concentrations to develop an estimation of daily sediment concentrations in the river from 1916 to 2009. Our objectives were to evaluate longterm TSS patterns and trends, and relate these to changes in climate, land use, and agricultural practices that occurred during the 93-yr monitoring period. Results showed that while TSS concentrations and estimated sediment loads varied greatly from year to year, TSS concentrations were much greater in the early 20th century despite drier conditions and less discharge, and declined throughout the century. Against a backdrop of increasing discharge in the Raccoon River and widespread agricultural adaptations by farmers, sediment loads increased and peaked in the early 1970s, and then have slowly declined or remained steady throughout the 1980s to present. With annual sediment load concentrated during extreme events in the spring and early summer, continued sediment reductions in the Raccoon River watershed should be focused on conservation practices to reduce rainfall impacts and sediment mobilization. Overall, results from this study suggest that eff orts to reduce sediment load from the watershed appear to be working. ?? 2011 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America.

  15. Suspended sediment load in the tidal zone of an Indonesian river

    NARCIS (Netherlands)

    Buschman, F.A.; Hoitink, A.J.F.; Jong, de F.M.; Hoekstra, P.; Hidayat, H.; Sassi, M.G.

    2012-01-01

    Forest clearing for reasons of timber production, open pit mining and the establishment of oil palm plantations generally results in excessively high sediment loads in tropical rivers. The increasing sediment loads pose a threat to coastal marine ecosystems, such as coral reefs. This study presents

  16. Suspended sediment load in the tidal zone of an Indonesian River

    NARCIS (Netherlands)

    Buschman, F.A.; Hoitink, A.J.F.; Jong, S.M. de; Hoekstra, P.; Hidayat, H.; Sassi, M. G.

    2012-01-01

    Forest clearing for reasons of timber production, open pit mining and the establishment of oil palm plantations generally results in excessively high sediment loads in tropical rivers. The increasing sediment loads pose a threat to coastal marine ecosystems, such as coral reefs. This study presents

  17. From agricultural intensification to conservation: sediment transport in the Raccoon River, Iowa, 1916-2009.

    Science.gov (United States)

    Jones, Christopher S; Schilling, Keith E

    2011-01-01

    Fluvial sediment is a ubiquitous pollutant that negatively affects surface water quality and municipal water supply treatment. As part of its routine water supply monitoring, the Des Moines Water Works (DMWW) has been measuring turbidity daily in the Raccoon River since 1916. For this study, we calibrated daily turbidity readings to modern total suspended solid (TSS) concentrations to develop an estimation of daily sediment concentrations in the river from 1916 to 2009. Our objectives were to evaluate long-term TSS patterns and trends, and relate these to changes in climate, land use, and agricultural practices that occurred during the 93-yr monitoring period. Results showed that while TSS concentrations and estimated sediment loads varied greatly from year to year, TSS concentrations were much greater in the early 20th century despite drier conditions and less discharge, and declined throughout the century. Against a backdrop of increasing discharge in the Raccoon River and widespread agricultural adaptations by farmers, sediment loads increased and peaked in the early 1970s, and then have slowly declined or remained steady throughout the 1980s to present. With annual sediment load concentrated during extreme events in the spring and early summer, continued sediment reductions in the Raccoon River watershed should be focused on conservation practices to reduce rainfall impacts and sediment mobilization. Overall, results from this study suggest that efforts to reduce sediment load from the watershed appear to be working.

  18. Monitoring suspended sediment transport in an ice-affected river using acoustic Doppler current profilers

    Science.gov (United States)

    Moore, S. A.; Ghareh Aghaji Zare, S.; Rennie, C. D.; Ahmari, H.; Seidou, O.

    2013-12-01

    Quantifying sediment budgets and understanding the processes which control fluvial sediment transport is paramount to monitoring river geomorphology and ecological habitat. In regions that are subject to freezing there is the added complexity of ice. River ice processes impact flow distribution, water stage and sediment transport. Ice processes typically have the largest impact on sediment transport and channel morphodynamics when ice jams occur during ice cover formation and breakup. Ice jams may restrict flow and cause local acceleration when released. Additionally, ice can mechanically scour river bed and banks. Under-ice sediment transport measurements are lacking due to obvious safety and logistical reasons, in addition to a lack of adequate measurement techniques. Since some rivers can be covered in ice during six months of the year, the lack of data in winter months leads to large uncertainty in annual sediment load calculations. To address this problem, acoustic profilers are being used to monitor flow velocity, suspended sediment and ice processes in the Lower Nelson River, Manitoba, Canada. Acoustic profilers are ideal for under-ice sediment flux measurements since they can be operated autonomously and continuously, they do not disturb the flow in the zone of measurement and acoustic backscatter can be related to sediment size and concentration. In March 2012 two upward-facing profilers (1200 kHz acoustic Doppler current profiler, 546 KHz acoustic backscatter profiler) were installed through a hole in the ice on the Nelson River, 50 km downstream of the Limestone Generating Station. Data were recorded for four months, including both stable cover and breakup periods. This paper presents suspended sediment fluxes calculated from the acoustic measurements. Velocity data were used to infer the vertical distribution of sediment sizes and concentrations; this information was then used in the interpretation of the backscattered intensity data. It was found that

  19. Hyalella azteca Responses to Coldwater River Backwater Sediments in Mississippi, USA

    Science.gov (United States)

    Sediment from three Coldwater River, Mississippi backwaters was examined using 28 d Hyalella azteca bioassays and chemical analyses for 33 pesticides, 7 metals and 7 PCBs. Hydrologic connectivity between the main river channel and backwater varied widely among the three sites. Mortality occurred i...

  20. Computational modeling of 137Cs contaminant transfer associated with sediment transport in Abukuma River.

    Science.gov (United States)

    Iwasaki, T; Nabi, M; Shimizu, Y; Kimura, I

    2015-01-01

    A numerical model capable of simulating the transfer of (137)Cs in rivers associated with transport of fine sediment is presented. The accident at Fukushima Dai-ichi Nuclear Power Plant (FDNPP) released radionuclides into the atmosphere, and after fallout several radionuclides in them, such as radiocesium ((134)Cs, (137)Cs) and radioiodine ((131)I) were adsorbed on surface soil particles around FDNPP and transported by surface water. To understand the transport and deposition of the radioactive contaminant along with surface soil particles and its flux to the ocean, we modeled the transport of the (137)Cs contaminant by computing the water flow and the associated washload and suspended load transport. We have developed a two-dimensional model to simulate the plane flow structure, sediment transport and associated (137)Cs contaminant transport in rivers by combining a shallow water flow model and an advection-diffusion equation for the transport of sediment. The proposed model has been applied to the lower reach of Abukuma River, which is the main river in the highly contaminated area around FDNPP. The numerical results indicate that most (137)Cs supplied from the upstream river reach with washload would directly reach to Pacific Ocean. In contrast, washload-oriented (137)Cs supplied from the upstream river basin has a limited role in the radioactive contamination in the river. The results also suggest that the proposed framework of computational model can be a potential tool for understanding the sediment-oriented (137)Cs behavior in rivers.

  1. Wetland Management Reduces Sediment and Nutrient Loading to the Upper Mississippi River

    Science.gov (United States)

    Restored riparian wetlands in the Upper Mississippi River basin have the potential to remove sediment and nutrients from tributaries before they flow into the Mississippi River. For 3 yr we calculated retention efficiencies of a marsh complex, which consisted of a restored marsh...

  2. Sources of organic matter in Changjiang (Yangtze River) bed sediments : Preliminary insights from organic geochemical proxies

    NARCIS (Netherlands)

    Li, Zhongqiao; Peterse, Francien; Wu, Ying; Bao, Hongyan; Eglinton, Timothy I.; Zhang, Jing

    2015-01-01

    Insight into the content and composition of organic carbon (OC) in river systems contributes to our understanding of the global carbon cycle. The Changjiang (Yangtze River) plays a significant role in global carbon and hydrological cycles, as it is an important supplier of sediment, nutrients and OC

  3. Water and Sediment Heavy Metal Pollution in Ereniku River of Kosovo

    OpenAIRE

    FATON MALOKU; AMELINA AHMETI; ALBERT KOPALI; ADRIAN DOKO; JAMARBER MALLTEZI; FERDI BRAHUSHI; SULEJMAN SULÇE

    2015-01-01

    Soil, water and sediment samples were collected in 13 sampling stations along Erenik River, in the western part of Kosovo in order to assess heavy metal pollution. The concentration of hevy metals as Cd, Hg, Pb, Cr, Cu and Zn were determinated in water, soil and sediment samples. The concentration of heavy metals in water samples was measured using the flame atomic absorption spectrophotometer (AAS), while for sediment and soil samples was used inductively coupled plasma mass spec...

  4. Under-ice movement of cohesive sediments before river-ice breakup

    Science.gov (United States)

    Milburn, D.; Prowse, T. D.

    2002-03-01

    A significant body of research exists on river hydraulics and sediment transport during open-water conditions, and to a lesser extent during the period of ice-cover. Most of the ice-related studies, however, are based on controlled laboratory experiments or field studies conducted under stable ice-cover conditions. They have largely ignored the most dynamic periods, such as breakup, when hydraulic conditions are most rapidly changing and energy levels are maximized. Moreover, the entire pre-breakup to ice-clearance period is virtually devoid of even standard hydrometric measurements of suspended sediment, largely because of safety and logistic problems. Some recent work has pointed to the formation of a sediment plume comprising fine-grained sediments that develops before the main breakup fracturing of the ice cover. This plume has been noted as being particularly ecologically significant because it can contain the winter-long deposition of contaminants that preferentially attach to fine-grained material. Unfortunately, however, because measurements of the critical parameters affecting sediment transport during these periods are rarely taken, much uncertainty remains about the hydraulic forces that resuspend and transport sediments under an ice cover, and particularly for cohesive fine-grained sediments. This paper describes a field experiment designed to broaden our understanding of sediment transport during this critical pre-breakup period. Detailed measurements of river stage, ice elevations, flow velocity profiles and suspended sediment were taken over a 17-day period just before the 1998 river-ice breakup at Hay River, Northwest Territories, Canada. Results indicated that just before breakup, the shear stress, which governs the beginning of sediment motion, increases dramatically and drives the development of the under-ice sediment plume of very fine-grained, cohesive sediments. The shear stress in this case became critical at a mean under-ice velocity of 0·4

  5. Sediment Source-to-Sink Processes in the Indus River since the Last Glacial Maximum

    Science.gov (United States)

    Clift, P. D.; Giosan, L.

    2012-04-01

    The Indus River drains the western Himalaya and Karakoram and feeds sediment to the second largest submarine sediment body on Earth. Erosion in the catchment is controlled by rock uplift rates but also by climatic variability that has caused erosional patterns to migrate as the SW monsoon first strengthened then weakened during the Holocene. The tributaries of the Indus have incised the flood plain extending >500 km from the mountain front since 10 ka recycling older deposits. This erosion accounts for about 20% of the total flux to the ocean. Much greater volumes were released from river terraces in the mountains, especially along the major river valleys and from the region within 100 km of the Nanga Parbat syntaxis. Very little new bedrock erosion is required to account for the sediment flux. About half the sediment load has been deposited onshore either in the delta or under the southern flood plains where the river sits on a major accretionary ridge. The remainder of the sediment is in the upper canyon and shelf clinoforms because no sediment has reached the deep sea since at least 7 ka. Comparison of different provenance proxies shows that zircon grains travel slowly through the river, taking 5-10 k.y. longer to travel to the river mouth than clays or micas, whose transport times are within the uncertainties for the dating methods. This slower bed load transport introduces a lag time between a change in erosion patterns and the appearance of the sediment at the river mouth. A further lag of at least 7 ka is assumed for sediments in the Indus Canyon and >11 ka for the upper fan.

  6. Suspended sediment load in the tidal zone of an Indonesian river

    Directory of Open Access Journals (Sweden)

    F. A. Buschman

    2012-11-01

    Full Text Available Forest clearing for reasons of timber production, open pit mining and the establishment of oil palm plantations generally results in excessively high sediment loads in tropical rivers. The increasing sediment loads pose a threat to coastal marine ecosystems, such as coral reefs. This study presents observations of suspended sediment loads in the Berau River (Kalimantan, Indonesia, which debouches into a coastal ocean that is a preeminent center of coral diversity. The Berau River is relatively small and drains a mountainous, still relatively pristine basin that receives abundant rainfall. In the tidal zone of the Berau River, flow velocity was measured over a large part of the river width using a horizontal acoustic Doppler current profiler (HADCP. Surrogate measurements of suspended sediment concentration were taken with an optical backscatter sensor (OBS. Averaged over the 6.5 weeks covered by the benchmark survey period, the suspended sediment load was estimated at 2 Mt yr−1. Based on rainfall-runoff modeling though, the river discharge peak during the survey was supposed to be moderate and the yearly averaged suspended sediment load is most likely somewhat higher than 2 Mt yr−1. The consequences of ongoing clearing of rainforest were explored using a plot-scale erosion model. When rainforest, which still covered 50–60% of the basin in 2007, is converted to production land, soil loss is expected to increase with a factor between 10 and 100. If this soil loss is transported seaward as suspended sediment, the increase in suspended sediment load in the Berau River would impose a severe stress on this global hotspot of coral reef diversity.

  7. [Water-Sediment Partition of Polycyclic Aromatic Hydrocarbons in Karst Underground River].

    Science.gov (United States)

    Lan, Jia-cheng; Sun, Yu-chuan; Xiao, Shi-zhen

    2015-11-01

    Based on polycyclic aromatic hydrocarbons (PAHs) field data of dissolved phase and sediment phase, partition coefficient K(p) in sediment-water interface from Laolongdong underground river was obtained. The concentration of PAHs in water and sediment and partition coefficient K(p) in sediment-water interface were studied. The results showed PAHs concentrations were 81.5-8 089 ng x L(-1) with a mean value (1 439 ± 2 248) ng x L(-1) in water and 58.2-1 051 ng x g(-1) with an average (367.9 ± 342.6) ng x g(-1) in sediment. The dominant PAHs were 2-3 rings PAHs in water and sediment. However, high rings PAHs obviously enriched in the sediment. Partition coefficients varied from 55.74 to 46 067 L x kg(-1) in sediment-water interface, increasing with the rise of PAH compounds. All the organic carbon partition in sediment-water interface were higher than predicate values based on typical model of equilibrium distribution indicated that PAHs were strongly adsorbed in sediment. The linear free-energy relationship coefficient between K(oc) value and octanol-water partition coefficient K(ow) was 0.75, but the slope was lower than 1, indicating that sediment in Laolongdong underground river had weakly lipophilic characteristics and adsorption ability for PAHs.

  8. Water and sediment temperatures at mussel beds in the upper Mississippi River basin

    Science.gov (United States)

    Newton, Teresa J.; Sauer, Jennifer; Karns, Byron

    2013-01-01

    Native freshwater mussels are in global decline and urgently need protection and conservation. Declines in the abundance and diversity of North American mussels have been attributed to human activities that cause pollution, waterquality degradation, and habitat destruction. Recent studies suggest that effects of climate change may also endanger native mussel assemblages, as many mussel species are living close to their upper thermal tolerances. Adult and juvenile mussels spend a large fraction of their lives burrowed into sediments of rivers and lakes. Our objective was to measure surface water and sediment temperatures at known mussel beds in the Upper Mississippi (UMR) and St. Croix (SCR) rivers to estimate the potential for sediments to serve as thermal refugia. Across four mussel beds in the UMR and SCR, surface waters were generally warmer than sediments in summer, and were cooler than sediments in winter. This suggests that sediments may act as a thermal buffer for mussels in these large rivers. Although the magnitude of this effect was usually <3.0°C, sediments were up to 7.5°C cooler at one site in May, suggesting site-specific variation in the ability of sediments to act as thermal buffers. Sediment temperatures in the UMR exceeded those shown to cause mortality in laboratory studies. These data suggest that elevated water temperatures resulting from global warming, thermal discharges, water extraction, and/or droughts have the potential to adversely affect native mussel assemblages.

  9. Microtox Toxicity Assay for the Sediment Quality Assessment of Ganga River

    Directory of Open Access Journals (Sweden)

    K. R. Beg

    2008-01-01

    Full Text Available The objective of this study was to determine the sediment quality assessment of Ganga River at Kanpur city where effluents from tannery industries are discharged. Sediment samples from control, upstream and downstream area were collected and analyzed for bacterial toxicity bioassay along with a reference sediment (LGC6137. The control samples collected from the point of origin of Ganga River at Deoparyag were found non toxic to the bacteria and served as negative controls for the test method. The EC50 of upstream sediment sample were >10,000 mg L-1 sediment (>1% and categorized as non toxic according to toxicity classification. The down stream sediment samples were very toxic to the bacteria and average EC50 value was 4,266 mg L-1 (0.43 % that falls in very toxic category. The downstream sediment and reference sediment were toxic but the later was 10-fold more toxic. It is indicated in our study that the Microtox SPT assay can differentiate between toxic and non-toxic samples over a wide range of toxicity. The present study demonstrated the efficiency of the Microtox SPT assay in the sediment quality assessment and confirms the existing pollution in Ganga River contributed by tannery industries.

  10. Suspended-sediment concentrations, bedload, particle sizes, surrogate measurements, and annual sediment loads for selected sites in the lower Minnesota River Basin, water years 2011 through 2016

    Science.gov (United States)

    Groten, Joel T.; Ellison, Christopher A.; Hendrickson, Jon S.

    2016-12-20

    Accurate measurements of fluvial sediment are important for assessing stream ecological health, calculating flood levels, computing sediment budgets, and managing and protecting water resources. Sediment-enriched rivers in Minnesota are a concern among Federal, State, and local governments because turbidity and sediment-laden waters are the leading impairments and affect more than 6,000 miles of rivers in Minnesota. The suspended sediment in the lower Minnesota River is deleterious, contributing about 75 to 90 percent of the suspended sediment being deposited into Lake Pepin. The Saint Paul District of the U.S. Army Corps of Engineers and the Lower Minnesota River Watershed District collaborate to maintain a navigation channel on the lower 14.7 miles of the Minnesota River through scheduled dredging operations. The Minnesota Pollution Control Agency has adopted a sediment-reduction strategy to reduce sediment in the Minnesota River by 90 percent by 2040.The U.S. Geological Survey, in cooperation with the U.S. Army Corps of Engineers, the Minnesota Pollution Control Agency, and the Lower Minnesota River Watershed District, collected suspended-sediment, bedload, and particle-size samples at five sites in the lower Minnesota River Basin during water years 2011 through 2014 and surrogate measurements of acoustic backscatter at one of these sites on the lower Minnesota River during water years 2012 through 2016 to quantify sediment loads and improve understanding of sediment-transport relations. Annual sediment loads were computed for calendar years 2011 through 2014.Data collected from water years 2011 through 2014 indicated that two tributaries, Le Sueur River and High Island Creek, had the highest sediment yield and concentrations of suspended sediment. These tributaries also had greater stream gradients than the sites on the Minnesota River. Suspended fines were greater than suspended sand at all sites in the study area. The range of median particle sizes matched

  11. Use of surrogate technologies to estimate suspended sediment in the Clearwater River, Idaho, and Snake River, Washington, 2008-10

    Science.gov (United States)

    Wood, Molly S.; Teasdale, Gregg N.

    2013-01-01

    Elevated levels of fluvial sediment can reduce the biological productivity of aquatic systems, impair freshwater quality, decrease reservoir storage capacity, and decrease the capacity of hydraulic structures. The need to measure fluvial sediment has led to the development of sediment surrogate technologies, particularly in locations where streamflow alone is not a good estimator of sediment load because of regulated flow, load hysteresis, episodic sediment sources, and non-equilibrium sediment transport. An effective surrogate technology is low maintenance and sturdy over a range of hydrologic conditions, and measured variables can be modeled to estimate suspended-sediment concentration (SSC), load, and duration of elevated levels on a real-time basis. Among the most promising techniques is the measurement of acoustic backscatter strength using acoustic Doppler velocity meters (ADVMs) deployed in rivers. The U.S. Geological Survey, in cooperation with the U.S. Army Corps of Engineers, Walla Walla District, evaluated the use of acoustic backscatter, turbidity, laser diffraction, and streamflow as surrogates for estimating real-time SSC and loads in the Clearwater and Snake Rivers, which adjoin in Lewiston, Idaho, and flow into Lower Granite Reservoir. The study was conducted from May 2008 to September 2010 and is part of the U.S. Army Corps of Engineers Lower Snake River Programmatic Sediment Management Plan to identify and manage sediment sources in basins draining into lower Snake River reservoirs. Commercially available acoustic instruments have shown great promise in sediment surrogate studies because they require little maintenance and measure profiles of the surrogate parameter across a sampling volume rather than at a single point. The strength of acoustic backscatter theoretically increases as more particles are suspended in the water to reflect the acoustic pulse emitted by the ADVM. ADVMs of different frequencies (0.5, 1.5, and 3 Megahertz) were tested to

  12. Impacts of reforestation upon sediment load and water outflow in the Lower Yazoo River Watershed, Mississippi

    Science.gov (United States)

    Ying Ouyang; Theodor D. Leininger; Matt Moran

    2013-01-01

    Among the world’s largest coastal and river basins, the Lower Mississippi River Alluvial Valley (LMRAV)is one of the most disturbed by human activities. This study ascertained the impacts of reforestation on water outflow attenuation (i.e., water flow out of the watershed outlet) and sediment load reduction in the Lower Yazoo River Watershed (LYRW) within the LMRAV...

  13. River-plume sedimentation and 210Pb/7Be seabed delivery on the Mississippi River delta front

    Science.gov (United States)

    Keller, Gregory; Bentley, Samuel J.; Georgiou, Ioannis Y.; Maloney, Jillian; Miner, Michael D.; Xu, Kehui

    2017-06-01

    To constrain the timing and processes of sediment delivery and submarine mass-wasting events spanning the last few decades on the Mississippi River delta front, multi-cores and gravity cores (0.5 and undulatory profiles with overall declining activity versus depth. Undulations are not associated with grain size variations, and are interpreted to represent variations in oceanic 210Pb scavenging by river-plume sediments. The 210Pb profile of one gravity core from a mudflow gully displays uniform basal excess activity over a zone of low and uniform bulk density, interpreted to be a mass-failure event that occurred 9-18 years before core collection. Spatial trends in sediment deposition (from 7Be) and accumulation (from 210Pb) indicate that proximity to the river mouth has stronger influence than local facies (mudflow gully, depositional lobe, prodelta) over the timeframe and seabed depth represented by the cores (<40 years, <3 m length). This may be explained by rapid proximal sediment deposition from river plumes coupled with infrequent tropical cyclone activity near the delta in the last 7 years (2006-2013), and by the location of most sediment failure surfaces (from mass flows indicated by parallel geophysical studies) deeper than the core-sampling depths of the present study.

  14. Legacy sediment storage in New England river valleys: anthropogenic processes in a postglacial landscape

    Science.gov (United States)

    Snyder, N. P.; Johnson, K. M.; Waltner, M.; Hopkins, A. J.; Dow, S.; Ames, E.; Merritts, D. J.; Walter, R. C.; Rahnis, M. A.

    2016-12-01

    Walter and Merritts (2008, and subsequent papers) show that legacy sediment associated with deposition in millponds is a common feature in river valleys of the Mid-Atlantic Piedmont region, with 1-5 m of fine sand and silt overlying Holocene soil and Pleistocene periglacial deposits. For this project, we seek to test the hypothesis that these field relationships are seen in New England, a formerly glaciated region with similar history and intensity of forest clearing and milldam construction during the 17-19th centuries. We study three watersheds, using field observations of bank stratigraphy, radiocarbon dating, and mapping of terraces and floodplains using lidar digital elevation models and other GIS datasets. The 68 km2 South River watershed in western Massachusetts exhibits the most extensive evidence for legacy sediment storage. We visited 17 historic dam sites in the watershed and found field evidence for fine sand and silt legacy sediment storage at 14, up to 2.2 m thick. In the 558 km2 Sheepscot River watershed in coastal Maine, we visited 12 historic dam sites, and found likely legacy sediment at six, up to 2.3 m thick. In the 171 km2 upper Charles River watershed in eastern Massachusetts, we investigated 14 dam sites, and found legacy sediment at two, up to 1.8 m thick. Stratigraphically, we identified the base of legacy sediment from a change in grain size to gravel at most sites, or to Pleistocene marine clay at some Sheepscot River sites. In the Sheepscot River, we observed cut timbers underlying historic sediment at several locations, likely associated with sawmill activities. Only at the Charles River were we able to radiocarbon date the underlying gravel (1281-1391 calibrated CE). At no site did we find a buried Holocene soil, in contrast to the field relations commonly observed in the Mid-Atlantic region. This may indicate that the New England sites have eroded to the pre-historic river bed, not floodplain surfaces. We attribute the variation in

  15. An Integrated Sediment Budget for the Le Sueur River in Southern Minnesota

    Science.gov (United States)

    Day, S. S.; Belmont, P.; Perg, L.; Johnson, A.; Gran, K.; Jennings, C.; Wilcock, P.

    2007-12-01

    The Le Sueur River is the primary sediment contributor to the Minnesota River, which is impaired by sediment under the Clean Water Act. The necessary first step toward developing a watershed management plan is identifying sediment sources and sinks throughout the basin. The focus of this study is to quantify the contribution of sediment from different sources in order to understand the broader problems affecting the larger Minnesota Basin. The lower Le Sueur River is actively incising in response to late Pleistocene baselevel fall on the Minnesota River, a result of the catastrophic draining of glacial Lake Agassiz. Potential sediment sources along the Le Sueur include high bluffs composed of highly consolidated Pre-Illinoisian, Illinoisian and Wisconsinin till and alluvial sediment, growing ravines and gullies, sediment exchange between the active channel and floodplains, as well as upland agricultural fields, which account for over 90% of the land surface. We applied side-scanning LiDAR to quantify the amount of sediment being eroded from the high bluffs and banks. To understand meander migration rates as well as ravine and gully retreat rates, and to supplement the understanding of bluff retreat rates, we have used aerial LiDAR along with comparative analysis of historic aerial orthophotos. The aerial LiDAR will also be used to calculate the volume of sediment being stored in the floodplains and terraces along the river, which will be used to create a floodplain exchange model. Preliminary results indicate that bluff retreat rates could be as high as 0.4 meters per year and meander bend migration rates up to 3 meters per year in isolated reaches of the watershed. Data collected from each potential source will be combined to create an overall sediment routing model for the watershed.

  16. Spatial Patterns of Suspended Sediment Yield in the Upper Indus River Basin, Northern Pakistan

    Science.gov (United States)

    Ali, K.; de Boer, D. H.; Martz, L. W.

    2004-05-01

    The Indus River is one of the world`s largest rivers in term of water discharge and sediment loads, and the backbone of Pakistan`s economy for agriculture and hydropower. Much of its flow originates in the mountains of the Himalayas, Karakoram and Hindu Kush. The suspended sediment load, which constitutes the main portion of the total load in mountain rivers, creates major water resources management problems such as siltation of reservoirs, damage to turbines, and a reduction in water quality. An understanding of the spatial pattern of suspended sediment yield in the upper Indus River basin is, therefore, essential for effective water resources development in northern Pakistan. Discharge and suspended sediment concentration records are available for 17 active and discontinued hydrological stations (with drainage areas ranging from 600 to 166,000 km2) operated by the Pakistan Water and Power Development Authority. The objective of this study is to delineate the spatial pattern of suspended sediment yield in the basin by analyzing the available hydrological database. Sediment yields have been calculated by constructing sediment rating curves. Physiographic characteristics, hydrologic regimes and climatic patterns of the basin have also been investigated. The results show that the upper Indus River basin can be subdivided into three regions based on suspended sediments yield. This division reflects the contrasting hydrological regimes of the basin. Region 1 comprises the high elevation, glacierized areas of the Karakoram Mountains in the northernmost part of the basin. This region extends downstream to Partab Bridge on the Indus River, and excludes areas around Nanga Parbat, which acts as a barrier to the monsoon. The sediments are mainly derived from the Shyok, Shigar, Hunza and Gilgit sub-basins during the period of increasing summer runoff in June. This runoff is caused by the melt of glaciers and permanent snow pack, and peaks in July and August, when almost the

  17. Long-term natural remediation process in textile dye-polluted river sediment driven by bacterial community changes.

    Science.gov (United States)

    Ito, Tsukasa; Adachi, Yusuke; Yamanashi, Yu; Shimada, Yosuke

    2016-09-01

    The textile and dyeing industries are major sources of environmental water pollution all over the world. The textile wastewater effluents discharged into rivers often appear dark red-purple in color due to azo dyes, which can be transformed into carcinogenic aromatic amines. The chemicals used in dyeing are not readily degraded in nature and thus precipitate in river sediment. However, little is known about how dyeing chemicals affect river sediment and river water or how long they persist because they are difficult to monitor. To assess undetectable dyes and byproducts in river sediments, we evaluated the potential of river sediment bacteria to degrade dyes and aromatic amines. We describe the natural remediation of river sediment long-contaminated by textile dyeing effluent. After cessation of wastewater discharge, the dye-degradation potential decreased, and the aromatic amine-degradation potential increased initially and then declined over time. The changes in degradation potential were consistent with changes in the sediment bacterial community. The transition occurred on the order of years. Our data strongly suggest that dyes remained in the river sediment and that aromatic amines were produced even in transparent- and no longer colored-river water, but these chemicals were degraded by the changing sediment bacteria. Time-course monitoring of the degradation activities of key bacteria thus enables assessment of the fate of dye pollutants in river sediments.

  18. Simulating the Erosion and Sedimentation of Karun Alluvial River in the Region of Ahvaz (Southwest Of Iran

    Directory of Open Access Journals (Sweden)

    Farhang Azarang

    2015-07-01

    Full Text Available Since the rivers are the main basic and accessible resource of water for miscellaneous uses, the erosion and Sedimentation condition of rivers are of a great deal of importance. Karun River, the greatest river of Iran, has a considerable interest because of strategic and environmental conditions regarding its water projects planning, agriculture, water supply of cities, and industrial units. The morphological changes due to erosion processes, sedimentation, and Sediment transport affects the hydraulic structures like Intake port, irrigation systems, and pump stations. Thus, the present research deals with the simulation of erosion and sedimentation processes and also considering cross section geometric changes, prediction of river thalweg, and total sediment load of Karun River using HEC-RAS model. The simulation periods of this research is 10 years from 2001-2011. The results show that the Karun River has had sedimentation in its most cross sections while the erosion has been rarely observed. Additionally, the Englund–Hansen and Ackers–White sediment transport functions propose better results about the river changes. According to the HEC-RAS results and the measured data, river training of dredging is necessary at the studied site especially at the Ahvaz urban areas. Also, at the river parts which are under erosion the stabilization procedures for the banks and walls, is suggested. The result of this work can be an appropriate pattern about the situations of Karun and effects of erosion, sediment transport, and sedimentation processes.

  19. Petrology and Bulk Chemistry of Modern Bed Load Sediments From Rivers Draining the Eastern Tibetan Plateau

    Science.gov (United States)

    Borges, J. B.

    2003-12-01

    We studied river bed load petrology and bulk sediment chemistry of the headwaters of the Changjiang, Huang He and Red rivers in China and Vietnam. These rivers drain the eastern and southeastern parts of the Tibetan Plateau which includes part of the Indian-Eurasian suture zone. The eastern Tibetan Plateau is dominated by marine sedimentary rocks with a few scattered intrusive igneous outcrops, while the suture zone is characterized by a mixture of high-grade metamorphic, ultramafic, granitic, volcanic arc and marine sedimentary rocks. The arithmetic average for Qt: Ft: Rft along the suture zone varies from 56:2:42 along the Red River Fault (RRF) zone to 38:6:56 in the interior of the continent, while sands from rivers draining the plateau average 32:8:60. The sands analyzed in this study are relatively immature compared to most data available from most rivers in the tropics. The average Chemical Index of Alteration (CIA) for samples from the RRF suture zone (0.62) is similar to that of rivers draining other tropical regions like the Niger, Chao Phraya, Mekong, Ganges, Amazon and Brahmaputra. The CIA values from the RRF zone are also significantly different from the rest of the suture zone (0.36) and the plateau area (0.38). The difference can be attributed to the combined effect of relief and precipitation. The RRF lies in the Red River drainage and receives ˜1820 mm of precipitation annually, while the plateau area averages ˜620 mm annually. In the case of the Red River drainage, the relief combined with higher humidity can increase physical weathering and reduce the residence time of sediment in the river drainage, therefore, continuously replacing the sediment transported out of the drainage by freshly weathered immature materials. In the plateau area, lower precipitation and runoff may limit sediment transport and chemical weathering leading to sediment immaturity.

  20. Channel Planform Dynamics Monitoring and Channel Stability Assessment in Two Sediment-Rich Rivers in Taiwan

    Directory of Open Access Journals (Sweden)

    Cheng-Wei Kuo

    2017-01-01

    Full Text Available Recurrent flood events induced by typhoons are powerful agents to modify channel morphology in Taiwan’s rivers. Frequent channel migrations reflect highly sensitive valley floors and increase the risk to infrastructure and residents along rivers. Therefore, monitoring channel planforms is essential for analyzing channel stability as well as improving river management. This study analyzed annual channel changes along two sediment-rich rivers, the Zhuoshui River and the Gaoping River, from 2008 to 2015 based on satellite images of FORMOSAT-2. Channel areas were digitized from mid-catchment to river mouth (~90 km. Channel stability for reaches was assessed through analyzing the changes of river indices including braid index, active channel width, and channel activity. In general, the valley width plays a key role in braided degree, active channel width, and channel activity. These indices increase as the valley width expands whereas the braid index decreases slightly close to the river mouth due to the change of river types. This downstream pattern in the Zhuoshui River was interrupted by hydraulic construction which resulted in limited changes downstream from the weir, due to the lack of water and sediment supply. A 200-year flood, Typhoon Morakot in 2009, induced significant changes in the two rivers. The highly active landscape in Taiwan results in very sensitive channels compared to other regions. An integrated Sensitivity Index was proposed for identifying unstable reaches, which could be a useful reference for river authorities when making priorities in river regulation strategy. This study shows that satellite image monitoring coupled with river indices analysis could be an effective tool to evaluate spatial and temporal changes in channel stability in highly dynamic river systems.

  1. The distribution and variation of elements in sediments off the Huanghe (Yellow) River mouth

    Institute of Scientific and Technical Information of China (English)

    QIAO Shuqing; SHI Xuefa; GAO Jingjing; LIU Yanguang; YANG Gang; ZHU Aimei; WANG Kunshan

    2013-01-01

    Surface sediment samples collected off the Huanghe (Yellow) River mouth during the period 2007-2009 were analyzed for major and trace element concentrations.Concentrations of 16 elements were measured using X-ray fluorescence spectrometry.Results demonstrate that sediment grain size is the dominant factor controlling the spatial variations of elemental concentrations.Correlation and cluster analyses allowed classification of the study area into four geochemical regions:Regions Ⅰ and Ⅲ are characterized by high concentrations of Al2O3,Fe2O3,MgO,Na2O,K2O,Cr,Cu,Mn,Ni,Pb,V,and Zn,and contain fine-grained sediments with mean grain size (Mz)<22 μm; and; Regions Ⅱ and Ⅳ contain mostly coarse-grained sediments,and are characterized by high concentrations of SiO2,Na2O,and Zr.The sediment entering the sea from the Huanghe River and its tributaries is enriched in Ca.Thus,the Ca/Al ratio was used as an indicator of the proportion of sediments in the study area that originated from the Huanghe River.Ca/Al ratios decrease from Regions Ⅰ and Ⅱ (located in the nearshore zone of the Huanghe River delta)to Regions Ⅲ and Ⅳ (distributed in the offshore zone of the northern Huanghe River delta,southern and southeastern Laizhou Bay area).

  2. Detecting impact of land use change on river flow, sediment and nutrient through distributed hydrological simulation

    Science.gov (United States)

    Lihua, T.; Yang, D.

    2009-12-01

    Change in land use has significant impact on river flow, sediment and nutrient losses of the watershed. This paper presents a process-based hydrological model, GBNP (Geomorphology-Based Non-point source Pollution model), coupling erosion, sediment and nutrient processes into the distributed hydrological model GBHM (Geomorphology-Based Hydrological Model). The proposed model is able to take into account the physical processes of non-point source pollution with rainfall-runoff, soil erosion, sediment transportation, pollutant flushing off from soil and transportation in river. Moreover the calculation unit division is based on geomorphological features of the watershed. Because of the distributed depiction of landscape condition and physically-based description of all processes, the model can be used to detect the hydrological responses of runoff, erosion and non-point source pollution under changing condition. After calibration and validation, the GBNP model is applied to the Chaobai River basin in northern China to detect the impact of land use change on runoff, sediment and pollutant loads. The results showed that the land use change reduced the river flow, sediment and nutrient losses from 1980 to 2005, moreover the land use change has different impacts on river flow, sediment and nutrient loads.

  3. ASSESSMENT OF OVERBANK SEDIMENTATION RATES AND ASSOCIATED POLLUTANT TRANSPORT WITHIN THE SEVERNYA DVINA RIVER BASIN

    Directory of Open Access Journals (Sweden)

    Vladimir Belyaev

    2011-01-01

    Full Text Available It is now widely recognized that significant proportion of pollutants in rivers is transported with suspended sediments. This paper presents a combination of reconstruction of recent floodplain sedimentation rates based on detailed description of sediment sections and 137Cs stratigraphy with geochemical analysis of overbank deposits at selected sites on rivers of the Severnaya Dvina River basin. Overbank sedimentation rates for sections sampled on floodplains of the Severnaya Dvina and Vychegda Rivers are characterized by noticeable decrease from ≈1.5–4.0 cm/year between 1954 and 1963 to <1.0 cm/year at present. It can be explained by the natural evolution of the floodplain segments sampled. In contrast, highest modern floodplain aggradation rates (≈1.8 cm/year observed for the relatively small Toshnya River are definitely associated with human impact—locally intensive agriculture. Evaluation of geochemical properties of overbank sediments has shown that general levels of the sediment contamination by heavy metals are low.

  4. Assessing sediments from Upper Mississippi River navigational pools using a benthic invertebrate community evaluation and the sediment quality triad approach

    Science.gov (United States)

    Canfield, T.J.; Brunson, E.L.; Dwyer, F.J.; Ingersoll, C.G.; Kemble, N.E.

    1998-01-01

    Benthic invertebrate samples were collected from 23 pools in the Upper Mississippi River (UMR) and from one station in the Saint Croix River (SCR) as part of a study to assess the effects of the extensive flooding of 1993 on sediment contamination in the UMR system. Sediment contaminants of concern included both organic and inorganic compounds. Oligochaetes and chironomids constituted over 80% of the total abundance in samples from 14 of 23 pools in the UMR and SCR samples. Fingernail clams comprised a large portion of the community in three of 23 UMR pools and exceeded abundances of 1,000/m2 in five of 23 pools. Total abundance ranged from 250/m2 in samples from pool 1 to 22,389/m2 in samples from pool 19. Abundance values are comparable with levels previously reported in the literature for the UMR. Overall frequency of chironomid mouthpart deformities was 3% (range 0-13%), which is comparable to reported incidence of deformities in uncontaminated sediments previously evaluated. Sediment contamination was generally low in the UMR pools and the SCR site. Correlations between benthic measures and sediment chemistry and other abiotic parameters exhibited few significant or strong correlations. The sediment quality triad (Triad) approach was used to evaluate data from laboratory toxicity tests, sediment chemistry, and benthic community analyses; it showed that 88% of the samples were not scored as impacted based on sediment toxicity, chemistry, and benthic measures. Benthic invertebrate distributions and community structure within the UMR in the samples evaluated in the present study were most likely controlled by factors independent of contaminant concentrations in the sediments.

  5. Impacts of Soil-Water Conservation in Jialing River on Sedimentation of the Three Gorges Reservoir

    Institute of Scientific and Technical Information of China (English)

    LEI Xiaozhang; CAO Shuyou; JIANG Xiaohua

    2006-01-01

    The Jialing River is one of the main tributaries of the Yangtze River. The average annual runoff accounts for 16% and the sediment load 26% of the total at Yichang therefore it's one of the main contributors of sediment to the Three Gorges Reservoir. Ever since 1989, our country has implemented "Yangtze River soil and water conservation" project, Till the end of 1996, altogether 25.8 % of erosion area in Jialing River has been improved after large scale conservation has taken effect. The analysis and comparison between records taken before and after the implementation of soil and water conservation on runoff and sediment yield indicated that the sediment load soil erosion in Jialing river basin has been taken under control to some extent. Amount of annual runoff in main conservations have generally dropped by exponential function. Obvious result has been achieved in Jialing River, efficiency of sand reduction is about 10%-25%. Therefore, sediment to Three Gorges Reservoir is decreased accordingly, and it will be beneficial to take advantage of reservoir's synthetic benefit.

  6. Embryotoxicity and genotoxicity evaluation of sediments from Yangtze River estuary using zebrafish (Danio rerio) embryos.

    Science.gov (United States)

    Li, Qian; Chen, Ling; Liu, Li; Wu, Lingling

    2016-03-01

    Sediments function both as a sink and a source of pollutants in aquatic ecosystems and may impose serious effects on benthic organisms and human health. As one of the largest estuaries in the world, the Yangtze River estuary suffers from abundant wastewater from the coastal cities. In this study, the zebrafish (Danio rerio) embryos were employed in the fish embryo test and a comet assay to evaluate the embryotoxicity and genotoxicity of the sediments from the Yangtze River estuary, respectively. Results showed that the sediments from the Yangtze River estuary significantly increased mortality, induced development abnormalities, and reduced hatching rate and heart rate of zebrafish embryos after 96 h of exposure. Significant genotoxicity was observed in the samples relative to the controls. Relatively low-level embryotoxicity and genotoxicity of sediments were found in the Yangtze River compared with other river systems. Toxic responses were also discussed in relation to the analyzed organic contaminants in sediments. More attention should be paid to non-priority pollutant monitoring in the Yangtze River estuary.

  7. ASSESSMENT OF HEAVY METALS CONTENTS IN BOTTOM SEDIMENTS OF BUG RIVER

    Directory of Open Access Journals (Sweden)

    Elżbieta Skorbiłowicz

    2014-07-01

    Full Text Available The development of industry, agriculture, and transport contributes to an increased environmental pollution by heavy metals. The aim of the study was preliminary assessment of the contents of selected metals (lead, cobalt, copper, chromium, cadmium and nickel in the sediments of Bug river. The study comprised part of the river flowing through Poland. It was found that the Bug river sediments are not contaminated in respect to the content of tested metals. Based on the analysis of the study results, these metals can be lined up in the following order: Cr > Pb > Cu > Ni > Co > Cd. Statistical analysis showed that copper and chromium occur in Bug river sediments in forms bindings with organic matter in majority of cases. The granulometric analysis of sediments from Bug river revealed the largest percentage of two fractions: 1.0–0.2 mm with average of 47.7 ± 19.77% and 0.2–0.1 mm with average of 20.6 ± 7.7%. These are the dominant fractions with the accumulation of metals in river sediments, which has been confirmed by statistical analysis.

  8. The fluvial sediment budget of a dammed river (upper Muga, southern Pyrenees)

    Science.gov (United States)

    Piqué, G.; Batalla, R. J.; López, R.; Sabater, S.

    2017-09-01

    Many rivers in the Mediterranean region are regulated for urban and agricultural purposes. Reservoir presence and operation results in flow alteration and sediment discontinuity, altering the longitudinal structure of the fluvial system. This study presents a 3-year sediment budget of a highly dammed Mediterranean river (the Muga, southern Pyrenees), which has experienced flow regulation since the 1969 owing to a 61-hm3 reservoir. Flow discharge and suspended sediment concentration were monitored immediately upstream and downstream from the reservoir, whereas bedload transport was estimated by means of bedload formulae and estimated from regional data. Results show how the dam modifies river flow, reducing the magnitude of floods and shortening its duration. At the same time, duration of low flows increases. The downstream flow regime follows reservoir releases that are mostly driven by the irrigation needs in the lowlands. Likewise, suspended sediment and bedload transport are shown to be notably affected by the dam. Sediment transport upstream was mainly associated with floods and was therefore concentrated in short periods of time (i.e., > 90% of the sediment load occurred in distributed between suspension and bedload (i.e., 10,278 and 12,796 t respectively), whereas suspension dominated sediment transport downstream. More than 95% of the sediments transported from the upstream basins were trapped in the reservoir, a fact that explains the sediment deficit and the river bed armouring observed downstream. Overall, the dam disrupted the natural water and sediment fluxes, generating a highly modified environment downstream. Below the dam, the whole ecosystem shifted to stable conditions owing to the reduction of water and sediment loads.

  9. Assessing modern rates of river sediment discharge to the ocean using satellite gravimetry

    Science.gov (United States)

    Mouyen, Maxime; Longuevergne, Laurent; Steer, Philippe; Crave, Alain; Lemoine, Jean-Michel; Save, Himanshu; Robin, Cécile

    2017-04-01

    Worldwide rivers annually export about 19 Gigatons of sediments to the ocean that mostly accumulate in the coastal zones and on the continental shelves. This sediment discharge testifies of the intensity of continental erosion and records changes in climate, tectonics and human activity. However, natural and instrumental uncertainties inherent to the in-situ measurements of sediment discharge prevent from conclusive estimates to better understand these linkages. Here we develop a new method, using the Gravity Recovery and Climate Experiment (GRACE) satellite data, to infer mass-integrative estimates of sediment discharge of large rivers to the ocean. GRACE satellite provides global gravity time series that have proven useful for quantifying mass transport, including continental water redistribution at the Earth surface (ice sheets and glaciers melting, groundwater storage variations) but has been seldom used for monitoring sediment mass transfers so far. Here we pair the analysis of regularized GRACE solutions at high spatial resolution corrected from all known contributions (hydrology, ocean, atmosphere) to a particle tracking model that predicts the location of the sediment sinks for 13 rivers with the highest sediments loads in the world. We find that the resulting GRACE-derived sediment discharges off the mouth of the Amazon, Ganges-Brahmaputra, Changjiang (Yangtze), Indus, Magdalena, Godavari and Mekong rivers are consistent with in-situ measurements. Our results suggest that the lack of time continuity and of global coverage in terrestrial sediment discharge measurements could be reduced by using GRACE, which provides global and continuous data since 2002. GRACE solutions are regularly improved and new satellite gravity missions are being prepared hence making our approach even more relevant in a near future. The accumulation of sediments over time will keep increasing the signal to noise ratio of the gravity time series, which will improve the precision of

  10. Evolution of radioactive dose rates in fresh sediment deposits along coastal rivers draining Fukushima contamination plume.

    Science.gov (United States)

    Evrard, Olivier; Chartin, Caroline; Onda, Yuichi; Patin, Jeremy; Lepage, Hugo; Lefèvre, Irène; Ayrault, Sophie; Ottlé, Catherine; Bonté, Philippe

    2013-10-29

    Measurement of radioactive dose rates in fine sediment that has recently deposited on channel bed-sand provides a solution to address the lack of continuous river monitoring in Fukushima Prefecture after Fukushima Dai-ichi nuclear power plant (FDNPP) accident. We show that coastal rivers of Eastern Fukushima Prefecture were rapidly supplied with sediment contaminated by radionuclides originating from inland mountain ranges, and that this contaminated material was partly exported by typhoons to the coastal plains as soon as by November 2011. This export was amplified during snowmelt and typhoons in 2012. In 2013, contamination levels measured in sediment found in the upper parts of the catchments were almost systematically lower than the ones measured in nearby soils, whereas their contamination was higher in the coastal plains. We thereby suggest that storage of contaminated sediment in reservoirs and in coastal sections of the river channels now represents the most crucial issue.

  11. Suspended sediment load below open-cast mines for ungauged river basin

    Science.gov (United States)

    Kuksina, L.

    2011-12-01

    Placer mines are located in river valleys along river benches or river ancient channels. Frequently the existing mining sites are characterized by low contribution of the environmental technologies. Therefore open-pit mining alters stream hydrology and sediment processes and enhances sediment transport. The most serious environmental consequences of the sediment yield increase occur in the rivers populated by salmon fish community because salmon species prefer clean water with low turbidity. For instance, placer mining located in Kamchatka peninsula (Far East of Russia) which is regarded to be the last global gene pool of wild salmon Oncorhynchus threatens rivers ecosystems significantly. Impact assessment is limited by the hydrological observations scarcity. Gauging network is rare and in many cases whole basins up to 200 km length miss any hydrological data. The main purpose of the work is elaboration of methods for sediment yield estimation in rivers under mining impact and implementation of corresponding calculations. Subjects of the study are rivers of the Vivenka river basin where open-cast platinum mine is situated. It's one of the largest platinum mines in Russian Federation and in the world. This mine is the most well-studied in Kamchatka (research covers a period from 2003 to 2011). Empirical - analytical model of suspended sediment yield estimation was elaborated for rivers draining mine's territories. Sediment delivery at the open-cast mine happens due to the following sediment processes: - erosion in the channel diversions; - soil erosion on the exposed hillsides; - effluent from settling ponds; - mine waste water inflow; - accident mine waste water escape into rivers. Sediment washout caused by erosion was estimated by repeated measurements of the channel profiles in 2003, 2006 and 2008. Estimation of horizontal deformation rates was carried out on the basis of erosion dependence on water discharge rates, slopes and composition of sediments. Soil

  12. Impact of rapid urbanisation and industrialisation on river sediment metal contamination.

    Science.gov (United States)

    Hayzoun, H; Garnier, C; Durrieu, G; Lenoble, V; Bancon-Montigny, C; Ouammou, A; Mounier, S

    2014-05-01

    This study aimed at evidencing contaminant inputs from a rapidly growing population and the accompanying anthropogenic activities to river sediments. The Fez metropolitan area and its impacts on the Sebou's sediments (the main Moroccan river) were chosen as a case study. The Fez agglomeration is surrounded by the river Fez, receiving the wastewaters of this developing city and then flowing into the Sebou. The sediment cores from the Fez and Sebou Rivers were extracted and analysed for major elements, butyltins and toxic metals. Normalised enrichment factors and geoaccumulation index were calculated. Toxicity risk was assessed by two sets of sediment quality guideline (SQG) indices. A moderate level of contamination by butyltins was observed, with monobutyltin being the dominant species across all sites and depths. The lowest level of metal pollution was identified in the Sebou's sediments in upstream of Fez city, whilst the Fez' sediments were heavily polluted and exhibited bottom-up accumulation trends, which is a clear signature of recent inputs from the untreated wastewaters of Fez city. Consequently, the sediments of Fez and Sebou at the downstream of the confluence were found to be potentially toxic, according to the SQG levels. This finding is concerned with aquatic organisms, as well as to the riverside population, which is certainly exposed to these pollutants through the daily use of water. This study suggests that although Morocco has adopted environmental regulations aiming at restricting pollutant discharges into the natural ecosystems, such regulations are neither well respected by the main polluters nor efficiently enforced by the authorities.

  13. Linking River Management-Induced Perturbations of Hydrologic and Sediment Regimes to Geomorphic Processes Along a Highly-Dynamic Gravel-Bed River: Snake River, WY.

    Science.gov (United States)

    Leonard, C.; Legleiter, C. J.

    2015-12-01

    Encroachment of human development onto river floodplains creates a need to stabilize rivers and provide flood protection. Structural interventions, such as levees, often perturb hydrologic and sediment regimes and thus can initiate morphological responses. An understanding of how human activities affect river morphodynamics and trigger channel change is needed to anticipate future river responses and facilitate effective restoration. This study examines approximately 66 km of the Snake River, WY, USA, and links sediment transport processes to channel form and behavior by developing a morphological sediment budget that spans both a natural, unconfined reach and a reach confined by artificial levees. Sediment transport rates are inferred from the morphological sediment budget and a bed mobility study is used to estimate entrainment thresholds that allow us to link the hydrological regime during the sediment budget period to the observed channel changes. Results indicate that lateral constriction by levees triggers a positive feedback mechanism by incising the bed, focusing flow energy, thus increasing transport capacity, and leading to armoring of the bed. In other systems, armoring promotes widening of the channel but in this case levees prevent widening and the channel instead migrates across the braidplain rapidly, producing further erosion of bars and vegetated islands that is expressed as negative net volumetric changes and increased sediment transport rates. Furthermore, decreased slopes and reduced discharges due to dam regulation in the upstream unconfined reach cause gravel sheets to stall on bars and in other areas of storage, creating a spatial discontinuity in sediment conveyance downstream, and thus contributing to the sediment deficit within the leveed reach.

  14. Background Radioactivity in River and Reservoir Sediments near Los Alamos, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    S.G.McLin; D.W. Lyons

    2002-05-05

    As part of its continuing Environmental Surveillance Program, regional river and lake-bottom sediments have been collected annually by Los Alamos National Laboratory (the Laboratory) since 1974 and 1979, respectively. These background samples are collected from three drainage basins at ten different river stations and five reservoirs located throughout northern New Mexico and southern Colorado. Radiochemical analyses for these sediments include tritium, strontium-90, cesium-137, total uranium, plutonium-238, plutonium-239,-240, americium-241, gross alpha, gross beta, and gross gamma radioactivity. Detection-limit radioactivity originates as worldwide fallout from aboveground nuclear weapons testing and satellite reentry into Earth's atmosphere. Spatial and temporal variations in individual analyte levels originate from atmospheric point-source introductions and natural rate differences in airborne deposition and soil erosion. Background radioactivity values on sediments reflect this variability, and grouped river and reservoir sediment samples show a range of statistical distributions that appear to be analyte dependent. Traditionally, both river and reservoir analyte data were blended together to establish background levels. In this report, however, we group background sediment data according to two criteria. These include sediment source (either river or reservoir sediments) and station location relative to the Laboratory (either upstream or downstream). These grouped data are statistically evaluated through 1997, and background radioactivity values are established for individual analytes in upstream river and reservoir sediments. This information may be used to establish the existence and areal extent of trace-level environmental contamination resulting from historical Laboratory research activities since the early 1940s.

  15. Generalized sediment budgets of the Lower Missouri River, 1968–2014

    Science.gov (United States)

    Heimann, David C.

    2016-09-13

    Sediment budgets of the Lower Missouri River were developed in a study led by the U.S. Geological Survey in cooperation with the U.S. Army Corps of Engineers. The scope of the study included the development of a long-term (post-impoundment, 1968–2014) average annual sediment budget and selected annual, monthly, and daily sediment budgets for a reach and period that adequate data were available. Included in the analyses were 31 main-stem and tributary stations of the Lower Missouri River and two Mississippi River stations—the Mississippi River below Grafton, Illinois, and the Mississippi River at St. Louis, Missouri.Long-term average annual suspended-sediment loads of Missouri River main-stem stations ranged from 0.33 million tons at the Missouri River at Yankton, South Dakota, station to 71.2 million tons at Missouri River at Hermann, Mo., station. Gaged tributary gains accounted for 9–36 percent of the local reach budgets and cumulative gaged tributary contributions accounted for 84 percent of the long-term average suspended-sediment load of the Missouri River at Hermann, Mo., station. Although the sediment budgets for seven defined main-stem reaches generally were incomplete—missing bedload, reach storage, and ungaged tributary contributions—the budget residuals (net result of sediment inputs and outputs) for six of the seven reaches ranged from -7.0 to 1.7 million tons, or from -9.2 to 4.0 percent of the reach output suspended-sediment load, and were within the 10 percent reported measurement error of annual suspended-sediment loads for large rivers. The remaining reach, downstream from Gavin’s Point Dam, extended from Yankton, S. Dak., to Sioux City, Iowa, and had a budget residual of -9.8 million tons, which was -88 percent of the suspended-sediment load at Sioux City.The Lower Missouri River reach from Omaha, Nebraska, to Nebraska City, Nebr., had periods of concurrent sediment data for each primary budget component with which to analyze and

  16. Reduced sediment transport in the Yellow River due to anthropogenic changes

    Science.gov (United States)

    Wang, Shuai; Fu, Bojie; Piao, Shilong; Lü, Yihe; Ciais, Philippe; Feng, Xiaoming; Wang, Yafeng

    2016-01-01

    The erosion, transport and redeposition of sediments shape the Earth’s surface, and affect the structure and function of ecosystems and society. The Yellow River was once the world’s largest carrier of fluvial sediment, but its sediment load has decreased by approximately 90% over the past 60 years. The decline in sediment load is due to changes in water discharge and sediment concentration, which are both influenced by regional climate change and human activities. Here we use an attribution approach to analyse 60 years of runoff and sediment load observations from the traverse of the Yellow River over China’s Loess Plateau -- the source of nearly 90% of its sediment load. We find that landscape engineering, terracing and the construction of check dams and reservoirs were the primary factors driving reduction in sediment load from the 1970s to 1990s, but large-scale vegetation restoration projects have also reduced soil erosion from the 1990s onwards. We suggest that, as the ability of existing dams and reservoirs to trap sediments declines in the future, erosion rates on the Loess Plateau will increasingly control the Yellow River’s sediment load.

  17. Source apportionment of trace metals in river sediments: A comparison of three methods.

    Science.gov (United States)

    Chen, Haiyang; Teng, Yanguo; Li, Jiao; Wu, Jin; Wang, Jinsheng

    2016-04-01

    Increasing trace metal pollution in river sediment poses a significant threat to watershed ecosystem health. Identifying potential sources of sediment metals and apportioning their contributions are of key importance for proposing prevention and control strategies of river pollution. In this study, three advanced multivariate receptor models, factor analysis with nonnegative constraints (FA-NNC), positive matrix factorization (PMF), and multivariate curve resolution weighted-alternating least-squares (MCR-WALS), were comparatively employed for source apportionment of trace metals in river sediments and applied to the Le'an River, a main tributary of Poyang Lake which is the largest freshwater lake in China. The pollution assessment with contamination factor and geoaccumulation index suggested that the river sediments in Le'an River were contaminated severely by trace metals due to human activities. With the three apportionment tools, similar source profiles of trace metals in sediments were extracted. Especially, the MCR-WALS and PMF models produced essentially the same results. Comparatively speaking, the weighted schemes might give better solutions than the unweighted FA-NNC because the uncertainty information of environmental data was considered by PMF and MCR-WALS. Anthropogenic sources were apportioned as the most important pollution sources influencing the sediment metals in Le'an River with contributions of about 90%. Among them, copper tailings occupied the largest contribution (38.4-42.2%), followed by mining wastewater (29.0-33.5%), and agricultural activities (18.2-18.7%). To protect the ecosystem of Le'an River and Poyang Lake, special attention should be paid to the discharges of mining wastewater and the leachates of copper tailing ponds in that region. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Iron and nutrient content of wind-erodible sediment in the ephemeral river valleys of Namibia

    Science.gov (United States)

    Dansie, A. P.; Wiggs, G. F. S.; Thomas, D. S. G.

    2017-08-01

    Research concerning the global distribution of aeolian dust sources has principally focussed on salt/clay pan and desiccated lacustrine emission areas. In southern Africa such sources are identified as Etosha Pan in northern Namibia and Makgadikgadi Pans in northern Botswana. Dust emitting from ephemeral river valleys, however, has been largely overlooked. Rivers are known nutrient transport pathways and the flooding regimes of ephemeral river valleys frequently replenish stores of fine sediment which, on drying, can become susceptible to aeolian erosion. Such airborne sediment may be nutrient rich and thus be significant for the fertilisation of marine waters once deposited. This study investigates the dust source sediments from three ephemeral river valleys in Namibia in terms of their particle size distribution and their concentrations of bioavailable N, P and Fe. We compare the nutrient content of these sediments from the ephemeral river valleys to those collected from Etosha and Makgadikgadi Pans and consider their relative ocean fertilising potential. Our results show that the ephemeral river valleys contain fine grained sediment similar in physical character to Etosha and Makgadikgadi Pans yet they have up to 43 times greater concentrations of bioavailable iron and enriched N and P macronutrients that are each important for ocean fertilisation. The known dust-emitting river valleys of Namibia may therefore be contributing a greater fertilisation role in the adjacent marine system than previously considered, and not-yet investigated. Given this finding a re-assessment of the potential role of ephemeral river valleys in providing nutrient-rich sediment into the aeolian and marine systems in other dryland areas is necessary.

  19. Residual fluxes and suspended sediment transport in the lower reaches of Muvattupuzha River, southwest coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Revichandran, C.; Balachandran, K.K.; Xavier, J.K.; Rejendran, N.C.

    Spatial and seasonal variation of different physical processes governing the transport of salt and sediment of the Muvattupuzha River, in Kerala, India are discussed. Salt and suspended sediment due to tidal pumping was directed upstream, salt...

  20. Bioavailability of sediment-associated mercury to Hexagenia mayflies in a contaminated flood plain river

    Energy Technology Data Exchange (ETDEWEB)

    Naimo, T.J.; Wiener, J.G.; Cope, W.G. [U.S. Geological Survey, La Crosse, WI (United States). Biological Resources Division; Bloom, N.S. [Frontier Geosciences, Seattle, WA (United States)

    2000-05-01

    The bioavailability of mercury in sediments from the Sudbury River in Massachusetts was studied, as it related to the mayfly nymphs. The nymphs were exposed to contaminated and reference sediments (treatments) from reservoirs, flowing reaches, palustrine wetlands, and a riverine lake in four 21-day bioaccumulation tests. The mean final concentrations of methyl mercury (MeHg) in test water were greatest in treatments with contaminated wetland sediments. In the case of mayflies, the final mean concentrations of MeHg were highest in treatments with contaminated wetland sediments, intermediate in treatments with contaminated sediments from reservoirs, flowing reaches, and a riverine lake, and lowest in treatments with reference sediments. It was concluded that even though contaminated reservoirs had the most contaminated sediments, the potential entry of MeHg into the benthic food chain was greater in contaminated palustrine wetlands. 2 tabs., 5 figs., 42 refs.

  1. (210)Pb and compositional data of sediments from Rondonian lakes, Madeira River basin, Brazil.

    Science.gov (United States)

    Bonotto, Daniel Marcos; Vergotti, Marcelo

    2015-05-01

    Gold exploration has been intensive in Brazilian Amazon over the last 40 years, where the use of mercury as an amalgam has caused abnormal Hg concentrations in water bodies. Special attention has been directed to Madeira River due to fact it is a major tributary of Amazon River and that since 1986, gold exploration has been officially permitted along a 350km sector of the river. The (21)(0)Pb method has been used to date sediments taken from nine lakes situated in Madeira River basin, Rondônia State, and to verify where anthropogenic Hg might exist due to gold exploitation in Madeira River. Activity profiles of excess (21)(0)Pb determined in the sediment cores provided a means to evaluate the sedimentation rates using a Constant Flux: Constant Sedimentation (CF:CS) and Constant Rate of Supply (CRS) of unsupported/excess (21)(0)Pb models. A significant relationship was found between the CF:CS sedimentation rates and the mean values of the CRS sedimentation rates (Pearson correlation coefficient r=0.59). Chemical data were also determined in the sediments for identifying possible relationships with Hg occurring in the area. Significant values were found in statistical correlation tests realized among the Hg, major oxides and Total Organic Carbon (TOC) content in the sediments. The TOC increased in the sediment cores accompanied by a loss on ignition (LOI) increment, whereas silica decreased following a specific surface area raising associated to the TOC increase. The CRS model always provided ages within the permitted range of the (21)(0)Pb-method in the studied lakes, whereas the CF:CS model predicted two values above 140 years. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Modeling Typhoon‐Induced Alterations on River Sediment Transport and Turbidity Based on Dynamic Landslide Inventories: Gaoping River Basin, Taiwan

    Directory of Open Access Journals (Sweden)

    Chih‐Hua Chang

    2015-12-01

    Full Text Available This study examines the impacts of storm‐triggered landslides on downstream sediment and turbidity responses in the Gaoping River Basin, Taiwan using the Soil and Water Assessment Tool (SWAT. Attention is given to analyzing the increased and altered baseline of suspended sediment load and turbidity after the disturbances caused by the rainfall and landslides associated with Typhoon Morakot in 2009. SWAT parameters were calibrated by the observed hydrometric data from 1999 to 2003 using the log‐scale root‐mean‐square error (log‐RMSE and Nash‐Sutcliffe Model Efficiency. Both parameter sets were applied for the simulation of suspended sediment yield and turbidity with annual updated landslide inventories for the period 2004–2012. The landslide updating mirrors the physical land‐cover changes and has slightly improved the model performance, yet landslides alone cannot explain the difference between Morakot‐induced and SWAT‐simulated sediment discharge. The set of parameters calibrated by log‐RMSE can better approximate the increased baseline and typhoon induced alterations. The results show alterations in sediment erosion and transport: (1 drastically increased the turbidity baseline and occurrence of high‐turbidity; (2 altered coefficient and exponent values of the sediment rating curve; and (3 altered relationship between rainfall and induced turbidity during major rainfall events. The research in this study provides an improved modeling approach to typhoon‐induced alterations on river sediment loads and turbidity.

  3. Sediment delivery by ungaged tributaries of the Colorado River in Grand Canyon, Arizona

    Science.gov (United States)

    Webb, Robert H.; Griffiths, Peter G.; Melis, Theodre S.; Hartley, Daniel R.

    2000-01-01

    Sediment input to the Colorado River in Grand Canyon, Arizona, is a valuable resource required to sustain both terrestrial and aquatic ecosystems. A total of 768 ungaged tributaries deliver sediment to the river between Glen Canyon Dam and the Grand Wash Cliffs (river miles -15 to 276). The 32 tributaries between the dam and Lee's Ferry produce only streamflow floods, whereas 736 tributaries in Grand Canyon produce streamflow floods and debris flows. We used three techniques to estimate annual streamflow sediment yield from ungaged tributaries to the Colorado River. For the Glen Canyon and Marble Canyon reaches (river miles -15 to 61.5), respectively, these techniques indicate that 0.065.106 and 0.610.106 Mg/yr (0.68.106 Mg/yr of total sediment) enters the river. This amount is 20 percent of the sediment yield of the Paria River, the only gaged tributary in this reach and a major sediment contributor to the Colorado River. The amount of sand delivered ranges from 0.10.106 to 0.51.106 Mg/yr, depending on the sand content of streamflow sediment. Sand delivered in Glen Canyon is notably coarser (D50 = 0.24 mm) than sand in other reaches (D50 = 0.15 mm). A relation is given for possible variation of this sediment delivery with climate. Debris flows transport poorly-sorted sediment onto debris fans in the Colorado River. In the pre-dam era, debris fans were completely reworked during Colorado River floods, liberating all fine-grained sediment to the river; in the post-dam river on average only 25 percent of debris-fan volume is reworked, leading to storage of sand in the matrix of debris fans. We develop a sediment-yield model for debris flows that uses a logistic-regression model of debris-flow frequency in Grand Canyon, a regression model of debris-flow volumes, particle- size distributions of intact debris-flow deposits, and debris-fan reworking. On average, debris flows deliver between 0.14.106 and 0.30.106 Mg/yr of sediment to debris fans throughout Grand Canyon

  4. Distribution and ecotoxicological significance of polycyclic aromatic hydrocarbons in sediments from Iko River estuary mangrove ecosystem.

    Science.gov (United States)

    Essien, Joseph P; Eduok, Samuel I; Eduok, Stephen I; Olajire, Abass Abiola

    2011-05-01

    The distribution of polycyclic aromatic hydrocarbons (PAHs) in epipelic and benthic sediments from Iko River estuary mangrove ecosystem has been investigated. Total PAHs ranged from 6.10 to 35.27 mg/kg dry weight. Quantitative difference between the total PAHs in epipelic and benthic sediments showed that the benthic sediment known for higher capability to serve as sink for chemical pollutants accumulated less PAHs. This implies that PAHs in the epipelic sediment may plausibly be from industrial sources via runoff and/or of biogenic origin. A strong pyrolytic source fingerprint has been detected with slight influence of petrogenic sources. Total organic carbon normalized PAHs (sum of 16 PAHs, 59.7 to 372.4 mg/kg OC) were under (except for ES3 and BS3) the threshold effects concentrations (TEC, 290 mg/kg OC). Total PAHs in Iko River estuary sediments were in the range between ERL and ERM.

  5. A MATHEMATICAL MODEL FOR UNSTEADY SEDIMENT TRANSPORT IN THE LOWER YELLOW RIVER

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hongwu; HUANG Yuandong; ZHAO Lianjun

    2001-01-01

    A one-dimensional mathematical model for unsteady sediment transport in the Lower Yellow River is developed. A coefficient of sediment distribution is defined to represent the ratio of the bottom to the average concentration under the equilibrium conditions. The coefficient is not constant and is evaluated by using an empirical expression obtained by integrating the sediment concentration along water depth.The concentration distributions and the mean diameter distributions of suspended sediment in the transversal direction are also estimated in this model. A four-point (Preismann type) finite difference scheme and TDMA are employed in the numerical method. Three typical floods occurd in 1977,1982 and 1996, respectively, in the Lower Yellow River from Tiexie to Shunkou with a length of 393.67km are numerically simulated with the model. The computed results, such as the water stage, discharge,and sediment concentration agree well with the measured data.

  6. Spatial and temporal variability in sedimentation rates associated with cutoff channel infill deposits: Ain River, France

    Science.gov (United States)

    Piegay, H.; Hupp, C.R.; Citterio, A.; Dufour, S.; Moulin, B.; Walling, D.E.

    2008-01-01

    Floodplain development is associated with lateral accretion along stable channel geometry. Along shifting rivers, the floodplain sedimentation is more complex because of changes in channel position but also cutoff channel presence, which exhibit specific overflow patterns. In this contribution, the spatial and temporal variability of sedimentation rates in cutoff channel infill deposits is related to channel changes of a shifting gravel bed river (Ain River, France). The sedimentation rates estimated from dendrogeomorphic analysis are compared between and within 14 cutoff channel infills. Detailed analyses along a single channel infill are performed to assess changes in the sedimentation rates through time by analyzing activity profiles of the fallout radionuclides 137Cs and unsupported 210Pb. Sedimentation rates are also compared within the channel infills with rates in other plots located in the adjacent floodplain. Sedimentation rates range between 0.65 and 2.4 cm a -1 over a period of 10 to 40 years. The data provide additional information on the role of distance from the bank, overbank flow frequency, and channel geometry in controlling the sedimentation rate. Channel infills, lower than adjacent floodplains, exhibit higher sedimentation rates and convey overbank sediment farther away within the floodplain. Additionally, channel degradation, aggradation, and bank erosion, which reduce or increase the distance between the main channel and the cutoff channel aquatic zone, affect local overbank flow magnitude and frequency and therefore sedimentation rates, thereby creating a complex mosaic of sedimentation zones within the floodplain and along the cutoff channel infills. Last, the dendrogeomorphic and 137Cs approaches are cross validated for estimating the sedimentation rate within a channel infill. Copyright 2008 by the American Geophysical Union.

  7. Investigation of Sediment Pathways and Concealed Sedimentological Features in Hidden River Cave, Kentucky

    Science.gov (United States)

    Feist, S.; Maclachlan, J. C.; Reinhardt, E. G.; McNeill-Jewer, C.; Eyles, C.

    2016-12-01

    Hidden River Cave is part of a cave system hydrogeologically related to Mammoth Cave in Kentucky and is a multi-level active cave system with 25km of mapped passages. Upper levels experience flow during flood events and lower levels have continuously flowing water. Improper industrial and domestic waste disposal and poor understanding of local hydrogeology lead to contamination of Hidden River Cave in the early 1940s. Previously used for hydroelectric power generation and as a source of potable water the cave was closed to the public for almost 50 years. A new sewage treatment plant and remediation efforts since 1989 have improved the cave system's health. This project focuses on sedimentological studies in the Hidden River Cave system. Water and sediment transport in the cave are being investigated using sediment cores, surface sediment samples and water level data. An Itrax core scanner is used to analyze sediment cores for elemental concentrations, magnetic susceptibility, radiography, and high resolution photography. Horizons of metal concentrations in the core allow correlation of sedimentation events in the cave system. Thecamoebian (testate amoebae) microfossils identified in surface samples allow for further constraint of sediment sources, sedimentation rates, and paleoclimatic analysis. Dive recorders monitor water levels, providing data to further understand the movement of sediment through the cave system. A general time constraint on the sediment's age is based on the presence of microplastic in the surface samples and sediment cores, and data from radiocarbon and lead-210 dating. The integration of various sedimentological data allows for better understanding of sedimentation processes and their record of paleoenvironmental change in the cave system. Sediment studies and methodologies from this project can be applied to other karst systems, and have important applications for communities living on karst landscapes and their water management policies.

  8. Simulating the recovery of suspended sediment transport and river-bed stability in response to dam removal on the Elwha River, Washington

    Science.gov (United States)

    Konrad, C.P.

    2009-01-01

    U.S. Department of the Interior is planning to remove two high dams (30 and 60 m) from the Elwha River, which will allow the river to erode sediment deposits in the reservoirs, and ultimately restore the river ecosystem. Fluvial sediment transport and deposition paradoxically represent ecological disturbance and restoration. A one-dimensional, movable boundary sediment-transport model was applied at a daily time step to simulate changes in river-bed elevations and particle-size distributions and concentrations of suspended sediment. The simulations included a three-year dam removal period and a four-year recovery period. Simulated concentrations of suspended sediment recover rapidly during the recovery period. Simulated bed elevation and particle-size distributions are stable for much of the river during the recovery period, but high flows periodically disturb the river bed, causing changes in river-bed elevation and particle-size distribution, especially during autumn, when summer/autumn chinook salmon are incubating in redds. Although the river bed will become increasingly stable after dam removal, episodic high flows will interrupt recovery trends. Productivity and diversity of the ecosystem may be lower because of excess sediment immediately after dam removal but should increase during recovery above current levels as the river. Monitoring of the recovery of the Elwha River ecosystem can target ecologically significant physical parameters indicating the transition from a sediment transport-limited state to a supply-limited state.

  9. Characterization of a Flood Event through a Sediment Analysis: The Tescio River Case Study

    Directory of Open Access Journals (Sweden)

    Silvia Di Francesco

    2016-07-01

    Full Text Available This paper presents the hydrological analysis and grain size characteristics of fluvial sediments in a river basin and their combination to characterize a flood event. The overall objective of the research is the development of a practical methodology based on experimental surveys to reconstruct the hydraulic history of ungauged river reaches on the basis of the modifications detected on the riverbed during the dry season. The grain size analysis of fluvial deposits usually requires great technical and economical efforts and traditional sieving based on physical sampling is not appropriate to adequately represent the spatial distribution of sediments in a wide area of a riverbed with a reasonable number of samples. The use of photographic sampling techniques, on the other hand, allows for the quick and effective determination of the grain size distribution, through the use of a digital camera and specific graphical algorithms in large river stretches. A photographic sampling is employed to characterize the riverbed in a 3 km ungauged reach of the Tescio River, a tributary of the Chiascio River, located in central Italy, representative of many rivers in the same geographical area. To this end, the particle size distribution is reconstructed through the analysis of digital pictures of the sediments taken on the riverbed in dry conditions. The sampling has been performed after a flood event of known duration, which allows for the identification of the removal of the armor in one section along the river reach under investigation. The volume and composition of the eroded sediments made it possible to calculate the average flow rate associated with the flood event which caused the erosion, by means of the sediment transport laws and the hydrological analysis of the river basin. A hydraulic analysis of the river stretch under investigation was employed to verify the validity of the proposed procedure.

  10. Groundwater control on the suspended sediment load in the Na Borges River, Mallorca, Spain

    Science.gov (United States)

    Estrany, Joan; Garcia, Celso; Batalla, Ramon J.

    2009-05-01

    Groundwater dominance has important effects on the hydrological and geomorphological characteristics of river systems. Low suspended sediment concentrations and high water clarity are expected because significant inputs of sediment-free spring water dilute the suspended sediment generated by storms. However, in many Mediterranean rivers, groundwater dominance is characterised by seasonal alternations of influent and effluent discharge involving significant variability on the sediment transport regimes. Such areas are often subject to soil and water conservation practices over the centuries that have reduced the sediment contribution from agricultural fields and favour subsurface flow to rivers. Moreover, urbanisation during the twentieth century has changed the catchment hydrology and altered basic river processes due to its 'flashy' regime. In this context, we monitored suspended sediment fluxes during a two-year period in the Na Borges River, a lowland agricultural catchment (319 km 2) on the island of Mallorca (Balearic Islands). The suspended sediment concentration (SSC) was lower when the base flow index (i.e., relative proportion of baseflow compared to stormflow, BFI) was higher. Therefore, strong seasonal contrasts explain the high SSC coefficient of variation, which is clearly related to dilution effects associated with different groundwater and surface water seasonal interactions. A lack of correlation in the Q-SSC rating curves shows that factors other than discharge control sediment transport. As a result, at the event scale, multiple regressions illustrate that groundwater and surface water interactions are involved in the sedimentary response of flood events. In the winter, the stability of baseflow driven by groundwater contributions and agricultural and urban spills causes hydraulic variables (i.e., maximum discharge) to exert the most important control on events, whereas in the summer, it is necessary to accumulate important volumes of rainfall

  11. The future of the reservoirs in the Siret River Basin considering the sediment transport of rivers (ROMANIA

    Directory of Open Access Journals (Sweden)

    Petru OLARIU

    2015-02-01

    Full Text Available The Siret River Basin is characterized by an important use of hydro potential, resulted in the number of reservoirs constructed and operational. The cascade power stage of the reservoirs on Bistrita and Siret rivers indicate the anthropic interventions with different purposes (hydro energy, water supply, irrigation etc. in the Siret River Basin. In terms of the capacity in the Siret River Basin there is a dominance of the small capacity reservoirs, which is given by the less than 20 mil m³ volumes. Only two lakes have capacities over 200 mil m³: Izvoru Muntelui on Bistrita River and Siriu on Buzau River. Based on the monitoring of the alluvial flow at the hydrometric stations, from the Siret River Basin, there have been analysed the sediment yield formation and the solid transit dimensions in order to obtain typical values for the geographical areas of this territory. The silting of these reservoirs was monitored by successive topobatimetric measurements performed by the Bureau of Prognosis, Hydrology and Hydrogeology and a compartment within Hidroelectrica S.A. Piatra Neamt Subsidiary. The quantities of the deposited sediments are very impressive. The annual rates range betwee3 000 – 2 000 000 t/year, depending on the size of the hydrographical basin, the capacity of the reservoirs, the liquid flow and many other factors which may influence the upstream transport of sediments. These rates of sedimentation lead to a high degree of silting in the reservoirs. Many of them are silted over 50% of the initial capacity and the others even more. The effects of the silting have an important impact when analysing the effective exploitation of the reservoirs. 

  12. Urban river restoration: implications on channel sedimentation patterns and associated ecosystem and human health

    Science.gov (United States)

    Gibbs, H.; Gurnell, A.; Heppell, K.; Spencer, K.

    2012-04-01

    Urban river restoration, which alters the physical and hydraulic conditions of rivers, creates rivers favourable to increased sedimentation through greater sediment availability and heterogeneous flow patterns. Sediments, particularly finer-grained, store contaminants including metals which can have detrimental impacts upon aquatic ecosystems and potentially human health. This research therefore looks at the effect of urban river restoration practices upon sedimentation patterns, the associated changes in sediment metal storage and the potential impact upon river function and use in terms of the aquatic ecosystem and human health. Research was undertaken at four sites on urban rivers in London. The spatial extent of different bed sediment types (unvegetated gravel, sand, finer and sediment around in-channel vegetation) in adjacent restored and unrestored stretches was mapped in July 2010. Additionally, sediments were sampled through the year and analysed for a range of metals and sediment characteristics. Two sites (Chinbrook Meadows and Sutcliffe Park) showed a clear difference in bed sediment type channel cover between the restored and unrestored stretches. The majority of the concrete-lined unrestored stretch at Chinbrook Meadows had no sediment deposition, whereas the restored stretch had over half of the channel occupied by finer sediment either on the open channel bed or accumulated around in-channel vegetation. At Sutcliffe Park, the dominant bed sediment type in the restored stretch was finer sediment on the open bed and accumulated around in-channel vegetation, whereas in the unrestored stretch the dominant bed sediment type was gravel. At both sites there were significant differences in metal concentrations and sediment characteristics between bed sediment types. Metal concentrations, organic matter and % <63µm were generally higher in the finer sediment whether on the open bed or around in-channel vegetation. Total loadings of all metals were greater in

  13. Distribution of trace metals and Pb isotopes in bottom sediments of the Murucupi River, North Brazil

    Institute of Scientific and Technical Information of China (English)

    Diomar Cavalcante Oliveira; Jean Michel Lafon; Marcelo de Oliveira Lima

    2016-01-01

    The Murucupi River belongs to the hydrographic network of the Pará River estuary, at the southern portion of the Amazon River mouth, which consists of a fluvial-marine transitional zone under strong impact of both tidal and fluvial currents. The geochemical results obtained for bottom sediments from the Murucupi River, the Arrozal Channel, and the Pará River indicate a natural variation of Pb, Cr, Cu, Zn, and Ni content among these water ways with no significant anthropogenic influence. According to the threshold effects level (TEL), the contents of trace metals do not offer risk to the local biota. By contrast, the differences in the Pb isotopic composition of sediments in the Murucupi River, the Arrozal Channel, and the Pará River are significant. These isotopic signatures indicate an anthropogenic contribution of Pb in the Murucupi River originating from the domestic effluents of urban centers; industrial waste represented by red mud is not included. These results demonstrate that the Pb isotopic signature is a prospective indicator for future contamination of bottom sediments by trace metals and is useful for identifying contaminants among the possible anthropogenic sources.

  14. [Efficiency of Sediment Amendment with Zirconium-Modified Kaolin Clay to Control Phosphorus Release from Sediments in Heavily Polluted Rivers].

    Science.gov (United States)

    Wang, Hong; Lin, Jian-wei; Zhan, Yan-hui; Zhang, Zhe; Wang, Di-ru

    2015-10-01

    A zirconium-modified kaolin- clay (ZrMK) was prepared and used as a sediment amendment to control the release of phosphorus (P) from sediments in heavily polluted rivers under low dissolved oxygen (DO) condition. Results showed that the ZrMK exhibited excellent adsorption performance of phosphate in water. The phosphate adsorption capacity of the ZrMK increased with the increasing of loading amount of zirconium in the ZrMK. The phosphate adsorption capacity of the ZrMK increased with the increase of the precipitated pH value from 8 to 10, remained basically unchangeable with the increase of the precipitated pH value from 10 to 11, but decreased with the increase of the precipitated pH value from 11 to 12. The phosphate equilibrium adsorption data of the ZrMK can be better described by the Langmuir isotherm model than the Freundlich isotherm model when the ZrMK was prepared with the precipitated pH value 10. Sequential extraction of P from the phosphate-adsorbed ZrMK showed that most of phosphate-P bound by the ZrMK (about 84% of total P) existed in the form of the metal oxide P (NaOH-P) and residual P (Res-P), which was unlikely to be released under hypoxia and common pH (5-9) conditions. The fluxes of phosphate-P and total P (TP) from sediments into the overlying water column were greatly reduced with the adding of ZrMK to sediments under low dissolved oxygen conditions. The ZrMK-amended sediments exhibited much higher phosphate adsorption capacity than the original sediments, and the former had much lower phosphate adsorption/desorption equilibrium concentration (EPC,) than the latter. Our findings suggest that the ZrMK can be used as an efficient sediment amendment for controlling P release from sediments in heavily polluted rivers under low dissolved oxygen conditions.

  15. Dating of Pliocene Colorado River sediments: Implications for cosmogenic burial dating and the evolution of the lower Colorado River

    Science.gov (United States)

    Howard, Keith A.; Matmon, Ari; Stock, Greg M.; Granger, Darryl E.

    2017-01-01

    We applied cosmogenic 26Al/10Be burial dating to sedimentary deposits of the ancestral Colorado River. We compared cosmogenic burial ages of sediments to the age of an independently well-dated overlying basalt flow at one site, and also applied cosmogenic burial dating to sediments with less precise independent age constraints. All dated gravels yielded old ages that suggest several episodes of sediment burial over the past ∼5.3 m.y. Comparison of burial ages to the overlying 4.4 Ma basalt yielded good agreement and suggests that under the most favorable conditions, cosmogenic burial dating can extend back 4–5 m.y. In contrast, results from other sites with more broadly independent age constraints highlight the complexities inherent in burial dating; these complexities arise from unknown and complicated burial histories, insufficient shielding, postburial production of cosmogenic isotopes by muons, and unknown initial 26Al/10Be ratios. Nevertheless, and in spite of the large range of burial ages and large uncertainties, we identify samples that provide reasonable burial age constraints on the depositional history of sediment along the lower ancestral Colorado River. These samples suggest possible sediment deposition and burial at ca. 5.3, 4.7, and 3.6 Ma.Our calculated basinwide erosion rate for sediment transported by the modern Colorado River (∼187 mm k.y.−1) is higher than the modern erosion rates inferred from the historic sediment load (80–100 mm k.y.−1). In contrast, basinwide paleo-erosion rates calculated from Pliocene sediments are all under 40 mm k.y.−1 The comparatively lower denudation rates calculated for the Pliocene sediment samples are surprising given that the sampled time intervals include significant Pliocene aggradation and may include much incision of the Grand Canyon and its tributaries. This conflict may arise from extensive storage of sediment along the route of the Colorado River, slower paleobedrock erosion, or the

  16. Dating of Pliocene Colorado River sediments: implications for cosmogenic burial dating and the evolution of the lower Colorado River

    Science.gov (United States)

    Matmon, Ari; Stock, Greg M.; Granger, Darryl E.; Howard, Keith A.

    2011-01-01

    We applied cosmogenic 26Al/10Be burial dating to sedimentary deposits of the ancestral Colorado River. We compared cosmogenic burial ages of sediments to the age of an independently well-dated overlying basalt flow at one site, and also applied cosmogenic burial dating to sediments with less precise independent age constraints. All dated gravels yielded old ages that suggest several episodes of sediment burial over the past ∼5.3 m.y. Comparison of burial ages to the overlying 4.4 Ma basalt yielded good agreement and suggests that under the most favorable conditions, cosmogenic burial dating can extend back 4–5 m.y. In contrast, results from other sites with more broadly independent age constraints highlight the complexities inherent in burial dating; these complexities arise from unknown and complicated burial histories, insufficient shielding, postburial production of cosmogenic isotopes by muons, and unknown initial 26Al/10Be ratios. Nevertheless, and in spite of the large range of burial ages and large uncertainties, we identify samples that provide reasonable burial age constraints on the depositional history of sediment along the lower ancestral Colorado River. These samples suggest possible sediment deposition and burial at ca. 5.3, 4.7, and 3.6 Ma. Our calculated basinwide erosion rate for sediment transported by the modern Colorado River (∼187 mm k.y.−1) is higher than the modern erosion rates inferred from the historic sediment load (80–100 mm k.y.−1). In contrast, basinwide paleo-erosion rates calculated from Pliocene sediments are all under 40 mm k.y.−1 The comparatively lower denudation rates calculated for the Pliocene sediment samples are surprising given that the sampled time intervals include significant Pliocene aggradation and may include much incision of the Grand Canyon and its tributaries. This conflict may arise from extensive storage of sediment along the route of the Colorado River, slower paleobedrock erosion, or the inclusion

  17. Large-scale dam removal on the Elwha River, Washington, USA: Fluvial sediment load

    Science.gov (United States)

    Magirl, Christopher S.; Hilldale, Robert C.; Curran, Christopher A.; Duda, Jeffrey J.; Straub, Timothy D.; Domanski, Marian; Foreman, James R.

    2015-10-01

    The Elwha River restoration project, in Washington State, includes the largest dam-removal project in United States history to date. Starting September 2011, two nearly century-old dams that collectively contained 21 ± 3 million m3 of sediment were removed over the course of three years with a top-down deconstruction strategy designed to meter the release of a portion of the dam-trapped sediment. Gauging with sediment-surrogate technologies during the first two years downstream from the project measured 8,200,000 ± 3,400,000 tonnes of transported sediment, with 1,100,000 and 7,100,000 t moving in years 1 and 2, respectively, representing 3 and 20 times the Elwha River annual sediment load of 340,000 ± 80,000 t/y. During the study period, the discharge in the Elwha River was greater than normal (107% in year 1 and 108% in year 2); however, the magnitudes of the peak-flow events during the study period were relatively benign with the largest discharge of 292 m3/s (73% of the 2-year annual peak-flow event) early in the project when both extant reservoirs still retained sediment. Despite the muted peak flows, sediment transport was large, with measured suspended-sediment concentrations during the study period ranging from 44 to 16,300 mg/L and gauged bedload transport as large as 24,700 t/d. Five distinct sediment-release periods were identified when sediment loads were notably increased (when lateral erosion in the former reservoirs was active) or reduced (when reservoir retention or seasonal low flows and cessation of lateral erosion reduced sediment transport). Total suspended-sediment load was 930,000 t in year 1 and 5,400,000 t in year 2. Of the total 6,300,000 ± 3,200,000 t of suspended-sediment load, 3,400,000 t consisted of silt and clay and 2,900,000 t was sand. Gauged bedload on the lower Elwha River in year 2 of the project was 450,000 ± 360,000 t. Bedload was not quantified in year 1, but qualitative observations using bedload-surrogate instruments

  18. Shallow stratigraphy of the Skagit River Delta, Washington, derived from sediment cores

    Science.gov (United States)

    Grossman, Eric E.; George, Douglas A.; Lam, Angela

    2011-01-01

    Sedimentologic analyses of 21 sediment cores, ranging from 0.4 to 9.6 m in length, reveal that the shallow geologic framework of the Skagit River Delta, western Washington, United States, has changed significantly since 1850. The cores collected from elevations of 3.94 to -2.41 m (relative to mean lower low water) along four cross-shore transects between the emergent marsh and delta front show relatively similar environmental changes across an area spanning ~75 km2. Offshore of the present North Fork Skagit River and South Fork Skagit River mouths where river discharge is focused by diked channels through the delta, the entire 5–7-km-wide tidal flats are covered with 1–2 m of cross-bedded medium-to-coarse sands. The bottoms of cores, collected in these areas are composed of mud. A sharp transition from mud to a cross-bedded sand unit indicates that the tidal flats changed abruptly from a calm environment to an energetic one. This is in stark contrast to the Martha's Bay tidal flats north of the Skagit Bay jetty that was completed in the 1940s to protect the newly constructed Swinomish Channel from flooding and sedimentation. North of the jetty, mud ranging from 1 to 2 m thick drapes a previously silt- and sand-rich tidal flat. The silty sand is a sediment facies that would be expected there where North Fork Skagit River sedimentation occurred prior to jetty emplacement. This report describes the compositional and textural properties of the sediment cores by using geophysical, photographic, x-radiography, and standard sediment grain-size and carbon-analytical methods. The findings help to characterize benthic habitat structure and sediment transport processes and the environmental changes that have occurred across the nearshore of the Skagit River Delta. The findings will be useful for quantifying changes to nearshore marine resources, including impacts resulting from diking, river-delta channelization, shoreline development, and natural variations in fluvial-sediment

  19. The significance of sediment contamination in the Elbe River floodplain (Czech Republic)

    Science.gov (United States)

    Chalupová, Dagmar; Janský, Bohumír; Langhammer, Jakub; Šobr, Miroslav; Jiři, Medek; Král, Stanislav; Jiřinec, Petr; Kaiglova, Jana; Černý, Michal; Žáček, Miroslav; Leontovyčova, Drahomíra; Halířová, Jarmila

    2015-04-01

    The abstract brings the information about the research that was focused on anthropogenic pollution of river and lake sediments in the middle course of the Elbe River (Czech Republic). The main aim was to identify and to evaluate the significance of old polluted sediments in the river and its side structures (old meanders, cut lakes, oxbow lakes) between Hradec Králové and Mělník (confluence with the Moldau River) and to assess the risk coming from the remobilization of the contaminated matter. The Elbe River floodplain has been highly inhabited since the Middle Ages, and, especially in the 20th century, major industrial plants were founded here. Since that time, the anthropogenic load of the river and it`s floodplain has grown. Although the contaminants bound to the sediment particles are usually stable, the main risk is coming from the fact that under changes in hydrological regime and water quality (floods, changes in pH, redox-potential, presence of complex substances etc.), the pollution can be released and remobilized again. The most endangered areas are: the surroundings of Pardubice (chemical factory Synthesia, Inc.; refinery PARAMO), and Neratovice (chemical factory Spolana, Inc.). The chemical factories situated close to these towns represented the most problematic polluters of the Elbe River especially during 2nd half of 20th century. In the research, the main attention was aimed at subaquatic sediments of selected cut lakes situated in the vicinity of the above mentioned sources of pollution. To describe the outreach of contamination, several further fluvial lakes were taken into account too. Sediment sampling was carried out from boats on lakes and with the help of drilling rig in the floodplain. Gained sediment cores were divided into several parts which were analysed separately. Chemical analyses included substances identified by ICPER (International Commission for the Protection of the Elbe River) as well as chemicals considered as significant in

  20. Temporal variability in the suspended sediment load and streamflow of the Doce River

    Science.gov (United States)

    Oliveira, Kyssyanne Samihra Santos; Quaresma, Valéria da Silva

    2017-10-01

    Long-term records of streamflow and suspended sediment load provide a better understanding of the evolution of a river mouth, and its adjacent waters and a support for mitigation programs associated with extreme events and engineering projects. The aim of this study is to investigate the temporal variability in the suspended sediment load and streamflow of the Doce River to the Atlantic Ocean, between 1990 and 2013. Streamflow and suspended sediment load were analyzed at the daily, seasonal, and interannual scales. The results showed that at the daily scale, Doce River flood events are due to high intensity and short duration rainfalls, which means that there is a flashy response to rainfall. At the monthly and season scales, approximately 94% of the suspended sediment supply occurs during the wet season. Extreme hydrological events are important for the interannual scale for Doce River sediment supply to the Atlantic Ocean. The results suggest that a summation of anthropogenic interferences (deforestation, urbanization and soil degradation) led to an increase of extreme hydrological events. The findings of this study shows the importance of understanding the typical behavior of the Doce River, allowing the detection of extreme hydrological conditions, its causes and possible environmental and social consequences.

  1. Rare Earth Elements and Geochemical Partitioning of Zn and Pb in Sediments of an Urban River

    Directory of Open Access Journals (Sweden)

    Shaila Sharmin

    2010-01-01

    Full Text Available Problem statement: Urban river sediment pollution due to Zn and Pb is a serious problem in all over the world. The source and level of Zn and Pb pollution in sediments of Nomi River of Ota Ward, one of the most industrialized areas in Tokyo, Japan is still lacking. Approach: The present study focused on Rare Earth Elements (REEs and geochemical partitioning of Zn and Pb in sediments of 19 sampling sites of Nomi River in order to examine the mobility pattern. The amounts of Zn and Pb in the liquid extract of 5 (five geochemical phases were measured by using Inductively Coupled Plasma Mass Spectrometry (ICP-MS and the concentrations of REEs in sediments were determined by using X-ray Fluorescence Spectroscopy (XRF. Results: Speciation data indicate dominant labile fraction of Zn, which is related to the presence of several anthropogenic influence of the investigated area. Enrichment Factor (EFc and Index of geoaccumulation (Igeo value were compatible with the result, which confirm pollution status of Zn. Environmental risk of Zn and Pb were also evaluated using the Risk Assessment Code (RAC and sequential extraction results and found Zn poses high to very high risk (34-59, whereas Pb poses low to medium environmental risk (0-19. Conclusion: The mean values of REEs and other minor elements were lower or very close to average shale and Japanese river sediment value but Sr, Sn, Zr and Sb contents were little bit higher than average Japanese river sediment values. Anthropogenic activities, prevalent in the study area play a key role in the accumulation of Zn and Pb in aquatic system. Early warning on the sediment pollution to respective authorities help in preserving the aquatic system from further degradation of the river.

  2. Polybrominated diphenyl ethers in fish and sediment from river polluted by electronic waste

    Energy Technology Data Exchange (ETDEWEB)

    Luo Qian [Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong (China); Croucher Institute for Environmental Sciences and Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong (China); Cai Zongwei [Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong (China)]. E-mail: zwcai@hkbu.edu.hk; Wong Minghung [Croucher Institute for Environmental Sciences and Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong (China)]. E-mail: mhwong@hkbu.edu.hk

    2007-09-20

    The present study investigated contamination of polybrominated diphenyl ethers (PBDEs) in sediment and fish samples collected from rivers in Guiyu, China where electronic waste (e-waste) is recycled and disposed. PBDE congeners with mono-to hepta-brominated and deca-brominated substitutions were detected using {sup 13}C{sub 12} isotope dilution GC/MS/MS and GC/MS methods, respectively. The total PBDE concentrations ranged from 4434 to 16088 ng/g (dry weight) in Nanyang River bank sediment, from 55 to 445 ng/g in Nanyang River bottom sediment and 51.3 to 365 ng/g in Lianjiang River bottom sediment in Guiyu compared with those from 16.1 to 21.4 ng/g in wastewater discharged from a vehicle repairing workshop in Lo Uk Tsuen in Hong Kong. No PBDE congeners were detected in bottom sediment and fish from Mai Po Marshes in Hong Kong. The mean concentrations of total PBDEs in mixed muscles of tilapia (Oreochromis spp) from Lianjiang River were 115 ng/g wet weight (ww) and from wastewater in Hong Kong were 4.1 ng/g ww. Highest mean PBDE concentration was obtained in liver (2687 ng/g ww), followed by abdomen muscle (1088 ng/g ww) of bighead carp (Aristichthys nobilis) collected from Nanyang River. A significant correlation of concentration of each PBDE congener between sediment and muscle from Guiyu was observed. The present results of total PBDEs in sediment and fish were 10 and 1000 times higher than other studies. Open burning and dumping of e-waste are the major causes of PBDE contamination.

  3. Generalized sediment budgets of the Lower Missouri River, 1968–2014

    Science.gov (United States)

    Heimann, David C.

    2016-09-13

    Sediment budgets of the Lower Missouri River were developed in a study led by the U.S. Geological Survey in cooperation with the U.S. Army Corps of Engineers. The scope of the study included the development of a long-term (post-impoundment, 1968–2014) average annual sediment budget and selected annual, monthly, and daily sediment budgets for a reach and period that adequate data were available. Included in the analyses were 31 main-stem and tributary stations of the Lower Missouri River and two Mississippi River stations—the Mississippi River below Grafton, Illinois, and the Mississippi River at St. Louis, Missouri.Long-term average annual suspended-sediment loads of Missouri River main-stem stations ranged from 0.33 million tons at the Missouri River at Yankton, South Dakota, station to 71.2 million tons at Missouri River at Hermann, Mo., station. Gaged tributary gains accounted for 9–36 percent of the local reach budgets and cumulative gaged tributary contributions accounted for 84 percent of the long-term average suspended-sediment load of the Missouri River at Hermann, Mo., station. Although the sediment budgets for seven defined main-stem reaches generally were incomplete—missing bedload, reach storage, and ungaged tributary contributions—the budget residuals (net result of sediment inputs and outputs) for six of the seven reaches ranged from -7.0 to 1.7 million tons, or from -9.2 to 4.0 percent of the reach output suspended-sediment load, and were within the 10 percent reported measurement error of annual suspended-sediment loads for large rivers. The remaining reach, downstream from Gavin’s Point Dam, extended from Yankton, S. Dak., to Sioux City, Iowa, and had a budget residual of -9.8 million tons, which was -88 percent of the suspended-sediment load at Sioux City.The Lower Missouri River reach from Omaha, Nebraska, to Nebraska City, Nebr., had periods of concurrent sediment data for each primary budget component with which to analyze and

  4. CHARACTERISTICS OF SEDIMENT TRANSPORT ALONG A RIVER REACH WITH A RESERVOIR

    Institute of Scientific and Technical Information of China (English)

    Jueyi SUI; Peter JACKSON; Cheng LIU; Daxian FANG; Jun WANG

    2005-01-01

    Based on long-term measurements at three gauging stations, Toudaoguai, Fugu and Hequ, and one meteorological station, this article discusses the features of discharge (Q) and sediment concentration (CS) of a river reach of the Yellow River with a reservoir located in the Loess Plateau. The impacts of the local sub-watershed between Toudaoguai and Fugu gauging stations on sediment budget to the Yellow River have been analyzed. In addition, the deposition processes in the Tianqiao Reservoir have been investigated. Results show over 80% of the precipitation that falls in the local sub-watershed is unable to contribute to the Yellow River runoff process. It is found that the annual maximum sediment concentration is usually less than 30 kg/m3 during flood seasons at Toudaoguai Gauging Station, but the sediment concentration varies dramatically at Fugu Gauging Station. About 35% of the sediment eroded in the sub-watersheds between Toudaoguai and Fugu gauging stations was produced from the Huangfuchuan sub-watershed which has a drainage area accounting only for 10% of the drainage area between Toudaoguai and Fugu gauging stations. The Tianqiao Reservoir generally has deposition during the summer flood season, and scouring during the non-flood season. On average, over 85% of deposited sediment in the reservoir occurs in the 12 km long lower reservoir reach. The volume of annual deposition in the reservoir mainly depends on the volume of water from the local region between Hequ and Fugu gauging stations.

  5. Sterol ratios as a tool for sewage pollution assessment of river sediments in Serbia.

    Science.gov (United States)

    Matić Bujagić, Ivana; Grujić, Svetlana; Jauković, Zorica; Laušević, Mila

    2016-06-01

    In this work, source pollution tracing of the sediments of the Danube River and its tributaries in Serbia was performed using sterol ratios. Improved liquid chromatography-tandem mass spectrometry method, which enabled complete chromatographic separation of four analytes with identical fragmentation reactions (epicoprostanol, coprostanol, epicholestanol and cholestanol), was applied for the determination of steroid compounds (hormones, human/animal and plant sterols). A widespread occurrence of sterols was identified in all analyzed samples, whereas the only detected hormones were mestranol and 17α-estradiol. A human-sourced sewage marker coprostanol was detected at the highest concentration (up to 1939 ng g(-1)). The ratios between the key sterol biomarkers, as well as the percentage of coprostanol relative to the total sterol amount, were applied with the aim of selecting the most reliable for distinction between human-sourced pollution and the sterols originated from the natural sources in river sediments. The coprostanol/(cholesterol + cholestanol) and coprostanol/epicoprostanol ratios do not distinguish between human and natural sources of sterols in the river sediments in Serbia. The most reliable sterol ratios for the sewage pollution assessment of river sediments in the studied area were found to be coprostanol/(coprostanol + cholestanol), coprostanol/cholesterol and epicoprostanol/coprostanol. For the majority of sediments, human-derived pollution was determined. Two sediment samples were identified as influenced by a combination of human and natural biogenic sources. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Sediment load calculations from point measurements in sand-bed rivers

    Institute of Scientific and Technical Information of China (English)

    Seema C SHAH-FAIRBANK; Pierre Y JULIEN

    2015-01-01

    Point velocity and suspended sediment concentration measurements are used to calculate the total sediment discharge in sand-bed rivers. Calculations with the Series Expansion of the Modified Einstein Point Procedure (SEMEPP) depend on grain diameterds and settling velocityω, flow depthh, shear velocityu*, and sampling depthhp. This procedure extends the applicability of the Modified Einstein Procedure (MEP) by using point sediment concentration and velocity measurements. This procedure is tested using the laboratory data from Coleman, and field measurements from the Enoree, Middle Rio Grande and Mississippi Rivers. Based on 801 point measurements over 124 verticals at flow depths ranging from 0.17 m to 33.5 m and sediment concentrations less than 0.1 kg L-1, the accuracy of the calculations depends onu*/ω andhp/ds. Point measurement techniques like SEMEPP are well-suited whenu*/ω > 5 where at least 60% of the total sediment load is measured when 90% of the flow depth is sampled. The determination of sediment discharge from point measurements is most accurate in deep rivers whenhp/ds > 10,000, andu*/ω > 10. Point measurements are not well-suited for shallow rivers and laboratory flumes whereh< 0.5 m and whenu*/ω < 2.

  7. Trends in the sediment yield of the Sacramento River, California, 1957 - 2001

    Directory of Open Access Journals (Sweden)

    David H. Schoellhamer

    2004-05-01

    Full Text Available Human activities within a watershed, such as agriculture, urbanization, and dam building, may affect the sediment yield from the watershed. Because the equilibrium geomorphic form of an estuary is dependent in part on the sediment supply from the watershed, anthropogenic activities within the watershed have the potential to affect estuary geomorphology. The Sacramento River drains the northern half of California’s Central Valley and is the primary source of sediment to San Francisco Bay. In this paper, it is shown that the delivery of suspended-sediment from the Sacramento River to San Francisco Bay has decreased by about one-half during the period 1957 to 2001. Many factors may be contributing to the trend in sediment yield, including the depletion of erodible sediment from hydraulic mining in the late 1800s, trapping of sediment in reservoirs, riverbank protection, altered land-uses (such as agriculture, grazing, urbanization, and logging, and levees. This finding has implications for planned tidal wetland restoration activities around San Francisco Bay, where an adequate sediment supply will be needed to build subsided areas to elevations typical of tidal wetlands as well as to keep pace with projected sea-level rise. In a broader context, the study underscores the need to address anthropogenic impacts on watershed sediment yield when considering actions such as restoration within downstream depositional areas.

  8. Use of the aquatic plant Elodea canadensis to assess toxicity and genotoxicity of Yenisei River sediments.

    Science.gov (United States)

    Zotina, Tatiana A; Trofimova, Elena A; Medvedeva, Marina Yu; Dementyev, Dmitry V; Bolsunovsky, Alexander Ya

    2015-10-01

    The toxicity, cytotoxicity, and genotoxicity of bulk sediments from the Yenisei River (Siberia, Russia) were estimated in laboratory bioassays based on several endpoints in the aquatic plant Elodea canadensis. The bottom sediment samples were collected in the Yenisei River upstream and downstream of the sources of chemical and radioactive contamination. The testing revealed different sensitivities of Elodea endpoints to the quality of the bottom sediment: weight of shoots Elodea) was the highest in sediments with chemical pollution, whereas the highest inhibition of toxicity endpoints (shoot and root length) occurred in sediments with the highest level of radioactive pollution. The extreme response of Elodea endpoints to the quality of certain sediment samples may be regarded as related to the possible presence of unknown toxicants. The results show that E. canadensis can be used as an indicator species in laboratory contact testing of bottom sediment. The responses of shoot and root length growth endpoints of Elodea can be recommended as basic sensitivity indicators of bottom sediment toxicity. Analysis of cells carrying abnormal chromosomes in the apical root meristem of Elodea can be performed optionally in the same test to assess the genotoxicity of sediments.

  9. Sediment pollution and its effect on fish through food chain in the Yangtze River

    Institute of Scientific and Technical Information of China (English)

    Yujun YI; Zhaoyin WANG; Kang ZHANG; Guoan YU; Xuehua DUAN

    2008-01-01

    Suspended sediment adsorbs pollutants from flowing water in rivers and deposits onto the bed.However,the pollutants accumulated in the river bed sediment may affect the bio-community through food chain for a long period of time.To study the problem the concentration of heavy metals (Cr,Cd,Hg,Cu,Fe,Zn,Pb and As) in water,sediment,and fish/invertebrate were investigated in the middle and lower reaches of the Yangtze River during 2006-2007.The concentrations of heavy metals were 100-10,000 times higher in the sediment than in the water.Benthic invertebrates had relatively high concentrations of heavy metals in their tissues due to their proximity to contaminated sediments.Benthic invertivore fish had moderately high concentrations of heavy metals whereas phytoplanktivore fish,such as the silver carp,accumulated the lowest concentration of heavy metals.The concentrations of Cu,Zn,and Fe were higher than Hg,Pb,Cd,Cr,and As in the tissue samples.The concentration of heavy metals was lower in the river sediments than in the lake sediments.Conversely,the concentration of heavy metals was higher in river water than in lake water.While a pollution event into a water body is often transitory,the effects of the pollutants may be long-lived due to their tendency to be absorbed in the sediments and then released into the food chain.The heavy metals were concentrated in the following order:bottom material > demersal fish and benthic fauna >middle-lower layer fish > upper-middle layer fish > water.

  10. Source identification of fine-grained suspended sediment in the Kharaa River basin, northern Mongolia

    Energy Technology Data Exchange (ETDEWEB)

    Theuring, Philipp [Department of Aquatic Ecosystem Analysis and Management — ASAM, Helmholtz Centre for Environmental Research — UFZ, Brückstrasse 3a, D-39114 Magdeburg (Germany); Collins, Adrian L. [Sustainable Soils and Grassland Systems Department, Rothamsted Research, North Wyke, Okehampton, Devon EX20 2SB (United Kingdom); Rode, Michael [Department of Aquatic Ecosystem Analysis and Management — ASAM, Helmholtz Centre for Environmental Research — UFZ, Brückstrasse 3a, D-39114 Magdeburg (Germany)

    2015-09-01

    Fine sediment inputs into river systems can be a major source of nutrients and heavy metals and have a strong impact on water quality and ecosystem functions of rivers and lakes, including those in semiarid regions. However, little is known to date about the spatial distribution of sediment sources in most large scale river basins in Central Asia. Accordingly, a sediment source fingerprinting technique was used to assess the spatial sources of fine-grained (< 10 μm) sediment in the 15 000 km{sup 2} Kharaa River basin in northern Mongolia. Variation in geochemical composition (e.g. in Ti, Sn, Mo, Mn, As, Sr, B, U, Ca and Sb) was used for sediment source discrimination with geochemical composite fingerprints based on Genetic Algorithm (GA)-driven Discriminant Function Analysis, the Kruskal–Wallis H-test and Principal Component Analysis. All composite fingerprints yielded a satisfactory GOF (> 0.97) and were subsequently used for numerical mass balance modelling with uncertainty analysis. The contributions of the individual sub-catchment spatial sediment sources varied from 6.4% (the headwater sub-catchment of Sugnugur Gol) to 36.2% (the Kharaa II sub-catchment in the middle reaches of the study basin), generally showing higher contributions from the sub-catchments in the middle, rather than the upstream, portions of the study area. The importance of river bank erosion is shown to increase from upstream to midstream tributaries. The source tracing procedure provides results in reasonable accordance with previous findings in the study region and demonstrates the applicability and associated uncertainties of the approach for fine-grained sediment source investigation in large scale semi-arid catchments. - Highlights: • Applied statistical approach for selecting composite fingerprints in Mongolia. • Geochemical fingerprinting for the definition of source areas in semiarid catchment. • Test of applicability of sediment sourcing in large scale semi-arid catchments

  11. Global sediment production from in-situ cosmogenic nuclides in large river basins

    Science.gov (United States)

    Haedke, H.; Wittmann, H.; von Blanckenburg, F.; Gaillardet, J.

    2016-12-01

    The worlds 30 largest rivers represent half of the total runoff to the ocean and thus integrate the fluxes of Earth surface weathering and erosion over a large portion of global tectonic, geomorphic, and climatic zones. In-situ produced cosmogenic nuclides (10Be, 26Al) in detrital quartz sand can be used to constrain the mean millennial-scale denudation of these large basins. Yet cosmogenic nuclides have mostly been applied to small and intermediate size basins of significant relief. One reason is that in these settings, lowland sediment storage and burial are short compared to the half life of the nuclide (e.g. 1.4 Myr for 10Be). However, if sediment storage is long compared to the half-life, paired nuclides (e.g. 26Al/10Be), through their differential decay, allow to assess the duration of sediment transfer and burial ages from source to sink[1]. Here we present a new dataset of cosmogenic nuclides from 60 large rivers that integrate over 30% of Earth's terrestrial surface. 26Al/10Be ratios of around 6 to 7.5 for most rivers reveal burial durations shorter than the nuclides' decay time scales, indicating high source-sink connectivity. In slowly-eroding basins such as the tectonically quiescent Australian Murray-Darling or the central African Okavango and Congo rivers, 26Al/10Be ratios of millennial-scale sediment fluxes to global source areas provides an estimate of the global sediment flux. The comparison with estimates of modern sediment fluxes from river load gauging offers to deciphering the controls of sediment generation versus sediment transport across large basins. [1] Wittmann and von Blanckenburg (2016), Earth Science Reviews, 159,118-141.

  12. Pollution by metals and toxicity assessment using Caenorhabditis elegans in sediments from the Magdalena River, Colombia.

    Science.gov (United States)

    Tejeda-Benitez, Lesly; Flegal, Russell; Odigie, Kingsley; Olivero-Verbel, Jesus

    2016-05-01

    The Magdalena River is the most important river in Colombia, supplying over 70% of the population of fish and drinking water, and it also is the main river transportation way of the country. It receives effluents from multiple sources along its course such as contaminant agricultural and industrial discharges. To evaluate the toxicity profile of Magdalena River sediments through endpoints such as survival, locomotion, and growth, wild type strains of Caenorhabditis elegans were exposed to aqueous extracts of the sediments. To identify changes in gene expression, GFP transgenic strains were used as reporter genes. Physiological and biochemical data were correlated with metal concentration in the sediments, identifying patterns of toxicity along the course of the river. Levels of some metals such as Cd, Cu, and Ni were above TEC and PEC limits. Effects in survival, growth, and locomotion were observed in most of the samples, and changes in gene expression were evident in the genes mtl-2, sod-4, and gst-1 using fluorescence expression. Cadmium and lead were the metals which were primarily associated with sediment toxicity, and the sampling sites with the highest increased expression of stress response genes were Barrancabermeja and Girardot. However, the diverse nature of toxic profiles observed in C. elegans in the study area showed the pervasiveness of different types of discharges throughout the river system.

  13. Remote Sensing Analysis of Temperature and Suspended Sediment Concentration in Ayeyarwady River in Myanmar

    Science.gov (United States)

    Thanda Ko, Nyein; Rutten, Martine

    2017-04-01

    Detailed spatial coverage of water quality parameters are crucial to better manage rivers. However, collection of water quality parameters is both time consuming and costly for large rivers. This study demonstrates that Operational Land Image (OLI) Sensor on board of Landsat 8 can be successfully applied for the detection of spatial patterns of water temperature as well as suspended sediment concentration (SSC) using the Ayeyarwady river, Myanmar as a case study. Water temperature estimation was obtained from the brightness thermal Band 10 by using the Split-Window algorithm. The study finds that there is a close agreement between the remote sensing temperature and in-situ temperature with relative error in the range from 4.5% to 8.2%. The sediment load of Ayeyarwady river is ranked as the third-largest sediment load among the world's rivers but there is very little known about this important parameter, due to a lack of adequate gauge data. The single band reflectance of Landsat image (Band 5) seems a good indicator for the estimation of SSC with relative error in the range of less than 10% but the developed empirical formula by the power relation with the only seven ground reference points is uncertain to apply for the entire river basin. It is to note that an important constraint for the sediment analysis is the availability of spatial and temporal ground reference data. Future studies should also focus on the improvement of ground reference data points to become more reliable, because most of the river in Asia, especially in Myanmar, don't have readily available continuous ground sediment data points due to lack of measurement gauge stations through the river.

  14. Suspended-sediment and fresh-water discharges in the Ob and Yenisey rivers, 1960-1988

    Science.gov (United States)

    Meade, R.H.; Bobrovitskaya, N.N.; Babkin, V.I.

    2000-01-01

    Of the world's great rivers, the Ob and Yenisey rank among the largest suppliers of fresh water and among the smallest suppliers of suspended sediment to the coastal ocean. Sediment in the middle reaches of the rivers is mobilized from bordering terraces and exchanged between channels and flood plains. Sediment in the lower reaches of these great rivers is deposited and stored (permanently, on a millennial time scale) in flood plains. Sediment discharges, already small under natural conditions, are diminished further by large manmade reservoirs that trap significant proportions of the moving solids. The long winter freeze and sudden spring breakup impose a peakedness in seasonal water runoff and sediment discharge that contrasts markedly with that in rivers of the tropics and more temperate climates. Very little sediment from the Ob and Yenisey rivers is being transported to the open waters of the Arctic Ocean under present conditions.

  15. Mathematical simulation of sediment and radionuclide transport in estuaries

    Energy Technology Data Exchange (ETDEWEB)

    Onishi, Y.; Trent, D.S.

    1982-11-01

    The finite element model LFESCOT (Flow, Energy, Salinity, Sediment and Contaminant Transport Model) was synthesized under this study to simulate radionuclide transport in estuaries to obtain accurate radionuclide distributions which are affected by these factors: time variance, three-dimensional flow, temperature, salinity, and sediments. Because sediment transport and radionuclide adsorption/desorption depend strongly on sizes or types of sediments, FLESCOT simulates sediment and a sediment-sorbed radionuclide for the total of three sediment-size fractions (or sediment types) of both cohesive and noncohesive sediments. It also calculates changes of estuarine bed conditions, including bed elevation changes due to sediment erosion/deposition, and three-dimensional distributions of three bed sediment sizes and sediment-sorbed radionuclides within the bed. Although the model was synthesized for radionuclide transport, it is general enough to also handle other contaminants such as heavy metals, pesticides, or toxic chemicals. The model was checked for its capability for flow, water surface elevation change, salinity, sediment and radionuclide transport under various simple conditions first, confirming the general validity of the model's computational schemes. These tests also revealed that FLESCOT can use large aspect ratios of computational cells, which are necessary in handling long estuarine study areas. After these simple tests, FLESCOT was applied to the Hudson River estuary between Chelsea and the mouth of the river to examine how well the model can predict radionuclide transport through simulating tidally influenced three-dimensional flow, salinity, sediment and radionuclide movements with their interactions.

  16. Hurricane Katrina sediment slowed elevation loss in subsiding brackish marshes of the Mississippi River delta

    Science.gov (United States)

    McKee, K.L.; Cherry, J.A.

    2009-01-01

    Although hurricanes can damage or destroy coastal wetlands, they may play a beneficial role in reinvigorating marshes by delivering sediments that raise soil elevations and stimulate organic matter production. Hurricane Katrina altered elevation dynamics of two subsiding brackish marshes in the Mississippi River deltaic plain by adding 3 to 8 cm of sediment to the soil surface in August 2005. Soil elevations at both sites subsequently declined due to continued subsidence, but net elevation gain was still positive at both Pearl River (+1.7 cm) and Big Branch (+0.7 cm) marshes two years after the hurricane. At Big Branch where storm sediments had higher organic matter and water contents, post-storm elevation loss was more rapid due to initial compaction of the storm layer in combination with root-zone collapse. In contrast, elevation loss was slower at Pearl River where the storm deposit (high sand content) did not compact and the root zone did not collapse. Vegetation at both sites fully recovered within one year, and accumulation of root matter at Big Branch increased 10-fold from 2005 to 2006, suggesting that the hurricane stimulated belowground productivity. Results of this study imply that hurricane sediment may benefit subsiding marshes by slowing elevation loss. However, long-term effects of hurricane sediment on elevation dynamics will depend not only on the amount of sediment deposited, but on sediment texture and resistance to compaction as well as on changes in organic matter accumulation in the years following the hurricane.

  17. Sedimentation problems and management strategies of Sanmenxia Reservoir, Yellow River, China

    Science.gov (United States)

    Wang, Guangqian; Wu, Baosheng; Wang, Zhao-Yin

    2005-09-01

    Reservoir sedimentation management is of critical importance for the sustainable development of surface water resources. Sanmenxia Dam, located on the middle reach of the Yellow River, in China, is notorious for its severe sedimentation problems. Because of the alarming rate of loss of reservoir storage capacity and the unacceptable negative impact induced by the rapid upstream extension of sediment deposited in the river's backwater region, the dam has been reconstructed to provide high sediment releasing capacity, and the dam operation has been changed in order to achieve a balance between sediment inflow and outflow. As a result, the dam is still providing the basin with flood control, irrigation, and hydropower generation, even though some benefits are lower than the original design. Complex sedimentation processes in response to the dam reconstruction and changes of dam operation are discussed in this paper. The engineering experiences and management practices of Sanmenxia Dam are valuable assets to the sustainable use of reservoirs built on sediment-laden rivers.

  18. Distribution and pollution, toxicity and risk assessment of heavy metals in sediments from urban and rural rivers of the Pearl River delta in southern China.

    Science.gov (United States)

    Xiao, Rong; Bai, Junhong; Huang, Laibin; Zhang, Honggang; Cui, Baoshan; Liu, Xinhui

    2013-12-01

    Sediments were collected from the upper, middle and lower reaches of both urban and rural rivers in a typical urbanization zone of the Pearl River delta. Six heavy metals (Cd, Cr, Cu, Ni, Pb and Zn) were analyzed in all sediment samples, and their spatial distribution, pollution levels, toxicity and ecological risk levels were evaluated to compare the characteristics of heavy metal pollution between the two rivers. Our results indicated that the total contents of the six metals in all samples exceeded the soil background value in Guangdong province. Based on the soil quality thresholds of the China SEPA, Cd levels at all sites exceeded class III criteria, and other metals exhibited pollution levels exceeding class II or III criteria at both river sites. According to the sediment quality guidelines of the US EPA, all samples were moderately to heavily polluted by Cr, Cu, Ni, Pb and Zn. Compared to rural river sites, urban river sites exhibited heavier pollution. Almost all sediment samples from both rivers exhibited moderate to serious toxicity to the environment, with higher contributions from Cr and Ni. A "hot area" of heavy metal pollution being observed in the upper and middle reaches of the urban river area, whereas a "hot spot" was identified at a specific site in the middle reach of the rural river. Contrary metal distribution patterns were also observed along typical sediment profiles from urban and rural rivers. However, the potential ecological risk indices of rural river sediments in this study were equal to those of urban river sediments, implying that the ecological health issues of the rivers in the undeveloped rural area should also be addressed. Sediment organic matter and grain size might be important factors influencing the distribution profiles of these heavy metals.

  19. Water quality in a rural river environment: distribution of metals among water and sediment compartments

    Science.gov (United States)

    Reis, A.; Parker, A.; Alencoao, A.

    2009-04-01

    Sediments have a significant influence on water quality, owing to their role both as a sink and a potential source of pollutants. In fluvial environments from mountainous catchments, the dynamics of sediment particles and particle-bound contaminants are still poorly understood. As stated by Symader et al. (2007), bottom sediments of small rivers in mountainous areas behave like a transport system of its own and show high temporal variation in their chemical composition. The transport of significant sedimentary loads, as suspended matter, in short periods of time, mainly in winter, poses some issues concerning monitoring and modelling approaches of the transport and fate of micro-pollutants at the catchment scale. On one hand, high stream-flow velocity peaks make it difficult or impossible to maintain suspended sediment samplers fixed in the river channel. On the other hand, the cycle of deposition and re-suspension of finer material, throughout the hydrological year, leads to temporal changes of sediment properties. Our contribution reports some results of an investigation on the water quality in a mountainous rural meso-scale catchment, located in the NE of Portugal. The study integrates the examination of metal contents in the sediments and the water body. The river-bottom sediments and water were simply collected in a planned sampling network, in two different periods of the hydrological year (high and low flow). The finer and most recently deposited sediment was preferentially sampled, and the Bierl R.; Kurtenbach, A.; Krein, A. (2007). Transport Indicators. In: Sediment Dynamics and Pollutant Mobility in Rivers (eds Westrich, B. & Forstner, U.), pp. 269-304, Springer.

  20. Morphologic and Ecologic Analysis of a Proposed Network of Mississippi River Sediment Diversions

    Science.gov (United States)

    Meselhe, E. A.; Baustian, M.; Sadid, K. M.; Xing, F.; Costanza, K.; Allison, M. A.; Jarrell, E.; Richards, C. P.; Pahl, J.

    2016-02-01

    Deltaic processes are governed by factors that include the characteristics of inflowing sediment (e.g., temporal variability of the load and size class distribution), receiving basin geometry and hydrodynamic condition (e.g., water depth, tidal range, circulation pattern, and wind field), substrate character (e.g., sediment type and soil strength), and ecological processes (e.g., vegetation dynamics). These factors influence the deltaic growth pattern as well as the size and timing of channel bifurcations. This topic is of importance to deltas experiencing land loss today due to factors such as subsidence and sea level rise. The Mississippi River Delta is an example where sediment diversions are being considered in conjunction with other restoration actions to minimize loss of wetlands. Historically, the Mississippi River has played provided sediments, nutrients, and fresh water to support Louisiana's coastal wetland system. Field observations coupled with numerical modeling at various temporal and spatial scales, has provided insights toward a system-scale approach to design, evaluate and operate sediment diversions. These research activities investigate the uncertainties associated with morphological and ecological processes both on the river and receiving basin sides and identify parameters influencing the magnitude and rate of building new land and sustaining existing wetland areas. Specifically, this presentation discusses the impact of extracting sediment and water from rivers and the ability to convey (and retain) sediment to the receiving basins. In addition to delivering sediment to receiving basins, some proposed sediment diversions will discharge high volumes of nutrient-rich fresh water into existing wetlands and bays. A goal of the analysis presented here is to improve our understanding of morphological responses of the receiving basins and the ecological effects of discharging freshwater and nutrients at this scale.

  1. Comparison of pollution indices for the assessment of heavy metal in Brisbane River sediment.

    Science.gov (United States)

    Duodu, Godfred Odame; Goonetilleke, Ashantha; Ayoko, Godwin A

    2016-12-01

    Estuarine environment is complex and receives different contaminants from numerous sources that are persistent, bioaccumulative and toxic. The distribution, source, contamination and ecological risk status of heavy metals in sediment of Brisbane River, Australia were investigated. Sediment samples were analysed for major and minor elements using LA-ICP-MS. Principal component analysis and cluster analysis identified three main sources of metals in the samples: marine sand intrusion, mixed lithogenic and sand intrusion as well as transport related. To overcome inherent deficiencies in using a single index, a range of sediment quality indices, including contamination factor, enrichment factor, index of geo-accumulation, modified degree of contamination, pollution index and modified pollution index were utilised to ascertain the sediment quality. Generally, the sediment is deemed to be "slightly" to "heavily" polluted. A further comparison with the Australian Sediment Quality Guidelines indicated that Ag, Cr, Cu, Ni, Pb and Zn had the potential to rarely cause biological effects while Hg could frequently cause biological effects. Application of potential ecological risk index (RI) revealed that the sediment poses moderate to considerable ecological risk. However, RI could not account for the complex sediment behaviour because it uses a simple contamination factor. Consequently, a modified ecological risk index (MRI) employing enrichment factor is proposed. This provides a more reliable understanding of whole sediment behaviour and classified the ecological risk of the sediment as moderate to very high. The results demonstrate the need for further investigation into heavy metal speciation and bioavailability in the sediment to ascertain the degree of toxicity.

  2. Metals in water and surface sediments from Henan reaches of the Yellow River,China

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The concentrations of Cd,Cr,Cu,Ni,Pb and Zn were determined in the water and surface sediments from the Henan reaches of the Yellow River.Twenty-three sampling sites along the Yellow River and its tributaries were selected.Generally,metal concentrations were found to decrease in sequences of Zn>Cu>Pb>Cr>Ni>Cd in water and Zn>Cr>Pb>Ni>Cu>Cd in sediments.High levels of metal concentration were determined at a few stations of the river and its tributaries,such as Yiluo River,Si River and Qin River.The pollution of the Yellow River by Cd,Cr,Cu,Ni,Pb and Zn can be regarded as much higher compared to the background values,US EPA criteria(1999) and China water quality criteria(2002) .For sediments,metal lev-els except Pb did not significantly exceed the average shale levels and backgrounds in several countries including China.Data analysis manifests that positive correlations were found between Cu,Ni and Zn in water,and Pb,Ni,Zn and Cr in sediments. The Pearson correlation coefficient analysis and Cluster analysis were provided to assess the possible contamination sources. The results indicate a general appearance of serious pollution along the banks of the Yellow River.The wastewaters discharged by the mine plants,smelter plants,power plants,battery plants,tannery plants,etc.,and sewage inputs from the cities along the river banks may be the sources of metals.

  3. Observational and numerical particle tracking to examine sediment dynamics in a Mississippi River delta diversion

    Science.gov (United States)

    Allison, Mead A.; Yuill, Brendan T.; Meselhe, Ehab A.; Marsh, Jonathan K.; Kolker, Alexander S.; Ameen, Alexander D.

    2017-07-01

    River diversions may serve as useful restoration tools along coastal deltas experiencing land loss due to high rates of relative sea-level rise and the disruption of natural sediment supply. Diversions mitigate land loss by serving as new sediment sources for land building areas in basins proximal to river channels. However, because of the paucity of active diversions, little is known about how diversion receiving-basins evacuate or retain the sediment required to build new land. This study uses observational and numerical particle tracking to investigate the behavior of riverine sand and silt as it enters and passes through the West Bay diversion receiving-basin located on the lowermost Mississippi River delta, USA. Fluorescent sediment tracer was deployed and tracked within the bed sediment over a five-month period to identify locations of sediment deposition in the receiving-basin and nearby river channel. A computational fluid dynamics model with a Lagrangian sediment transport module was employed to predict selective pathways for riverine flow and sand and silt particles through the receiving-basin. Observations of the fluorescent tracer provides snapshots of the integrated sediment response to the full range of drivers in the natural system; the numerical model results offer a continuous map of sediment advection vectors through the receiving basin in response to river-generated currents. Together, these methods provide insight into local and basin-wide values of sediment retention as influenced by grain size, transport time, and basin morphology. Results show that after two weeks of low Mississippi River discharge, basin silt retention was approximately 60% but was reduced to 4% at the conclusion of the study. Riverine sand retention was approximately near 100% at two weeks and 40% over the study period. Modeled sediment storage was predicted to be greatest at the margins of the primary basin transport pathway; this matched the observed dynamics of the silt

  4. Summary of Radiological Monitoring of Columbia and Snake River Sediment, 1988 Through 2004

    Energy Technology Data Exchange (ETDEWEB)

    Patton, Gregory W.; Dirkes, Roger L.

    2007-10-01

    From 1988 through 2004, samples of upper-layer sediments from the Columbia River and Snake River were collected under the Hanford Site Surface Environmental Surveillance Project to document concentrations and trends of radionuclides. Low concentrations of potassium-40, cesium-137, uranium isotopes, and plutonium isotopes were detected consistently in sediment samples over the entire sampling period. The concentrations of most radionuclides were similar to values measured upstream of the Hanford Site behind Priest Rapids Dam. For all locations, the concentrations of radionuclides in sediment samples from the Columbia and Snake rivers were below concentrations that would result in a 1-mrem effective dose equivalent to a hypothetical exposed individual using a shoreline exposure scenario (i.e., 500 hr/yr of external dose). The DOE limit for public exposure is 100 mrem/yr.

  5. Assessing sedimentation rates at Usumacinta and Grijalva river basin (Southern Mexico) using OSL and suspended sediment load analysis: A study from the Maya Classic Period

    Science.gov (United States)

    Munoz-Salinas, E.; Castillo, M.; Sanderson, D.; Kinnaird, T.; Cruz-Zaragoza, E.

    2013-12-01

    Studying sedimentation rates on floodplains is key to understanding environmental changes occurred through time in river basins. The Usumacinta and Grijalva rivers flow most of their travel through the southern part of Mexico, forming a large river basin, crossing the states of Chiapas and Tabasco. The Usumacinta-Grijalva River Basin is within the 10 major rivers of North America, having a basin area of ~112 550 km2. We use the OSL technique for dating two sediment profiles and for obtaining luminescence signals in several sediment profiles located in the streambanks of the main trunk of the Usumacinta and Grijalva rivers. We also use mean annual values of suspended sediment load spanning ~50 years to calculate the sedimentation rates. Our OSL dating results start from the 4th Century, when the Maya Civilization was at its peak during the Classic Period. Sedimentation rates show a notable increase at the end of the 19th Century. The increase of the sedimentation rates seems to be related to changes in land uses in the Sierra Madre de Chiapas and Altos de Chiapas, based on deforestation and land clearing for developing new agrarian and pastoral activities. We conclude that the major environmental change in the basin of the Usumacinta and Grijalva Rivers since the Maya Classic Period was generated since the last Century as a result of an intense anthropogenic disturbance of mountain rain forest in Chiapas.

  6. Particle size distribution of main-channel-bed sediments along the upper Mississippi River, USA

    Science.gov (United States)

    Remo, Jonathan W. F.; Heine, Reuben A.; Ickes, Brian S.

    2016-07-01

    In this study, we compared pre-lock-and-dam (ca. 1925) with a modern longitudinal survey of main-channel-bed sediments along a 740-km segment of the upper Mississippi River (UMR) between Davenport, IA, and Cairo, IL. This comparison was undertaken to gain a better understanding of how bed sediments are distributed longitudinally and to assess change since the completion of the UMR lock and dam navigation system and Missouri River dams (i.e., mid-twentieth century). The comparison of the historic and modern longitudinal bed sediment surveys showed similar bed sediment sizes and distributions along the study segment with the majority (> 90%) of bed sediment samples having a median diameter (D50) of fine to coarse sand. The fine tail (≤ D10) of the sediment size distributions was very fine to medium sand, and the coarse tail (≥ D90) of sediment-size distribution was coarse sand to gravel. Coarsest sediments in both surveys were found within or immediately downstream of bedrock-floored reaches. Statistical analysis revealed that the particle-size distributions between the survey samples were statistically identical, suggesting no overall difference in main-channel-bed sediment-size distribution between 1925 and present. This was a surprising result given the magnitude of river engineering undertaken along the study segment over the past ~ 90 years. The absence of substantial differences in main-channel-bed-sediment size suggests that flow competencies within the highly engineered navigation channel today are similar to conditions within the less-engineered historic channel.

  7. Particle size distribution of main-channel-bed sediments along the upper Mississippi River, USA

    Science.gov (United States)

    Remo, Jonathan; Heine, Ruben A.; Ickes, Brian

    2016-01-01

    In this study, we compared pre-lock-and-dam (ca. 1925) with a modern longitudinal survey of main-channel-bed sediments along a 740-km segment of the upper Mississippi River (UMR) between Davenport, IA, and Cairo, IL. This comparison was undertaken to gain a better understanding of how bed sediments are distributed longitudinally and to assess change since the completion of the UMR lock and dam navigation system and Missouri River dams (i.e., mid-twentieth century). The comparison of the historic and modern longitudinal bed sediment surveys showed similar bed sediment sizes and distributions along the study segment with the majority (> 90%) of bed sediment samples having a median diameter (D50) of fine to coarse sand. The fine tail (≤ D10) of the sediment size distributions was very fine to medium sand, and the coarse tail (≥ D90) of sediment-size distribution was coarse sand to gravel. Coarsest sediments in both surveys were found within or immediately downstream of bedrock-floored reaches. Statistical analysis revealed that the particle-size distributions between the survey samples were statistically identical, suggesting no overall difference in main-channel-bed sediment-size distribution between 1925 and present. This was a surprising result given the magnitude of river engineering undertaken along the study segment over the past ~ 90 years. The absence of substantial differences in main-channel-bed-sediment size suggests that flow competencies within the highly engineered navigation channel today are similar to conditions within the less-engineered historic channel.

  8. Climatic and geologic controls on suspended sediment flux in the Sutlej River Valley, western Himalaya

    Directory of Open Access Journals (Sweden)

    H. Wulf

    2012-07-01

    Full Text Available The sediment flux through Himalayan rivers directly impacts water quality and is important for sustaining agriculture as well as maintaining drinking-water and hydropower generation. Despite the recent increase in demand for these resources, little is known about the triggers and sources of extreme sediment flux events, which lower water quality and account for extensive hydropower reservoir filling and turbine abrasion. Here, we present a comprehensive analysis of the spatiotemporal trends in suspended sediment flux based on daily data during the past decade (2001–2009 from four sites along the Sutlej River and from four of its main tributaries. In conjunction with satellite data depicting rainfall and snow cover, air temperature and earthquake records, and field observations, we infer climatic and geologic controls of peak suspended sediment concentration (SSC events. Our study identifies three key findings: First, peak SSC events (≥ 99th SSC percentile coincide frequently (57–80% with heavy rainstorms and account for about 30% of the suspended sediment flux in the semi-arid to arid interior of the orogen. Second, we observe an increase of suspended sediment flux from the Tibetan Plateau to the Himalayan Front at mean annual timescales. This sediment-flux gradient suggests that averaged, modern erosion in the western Himalaya is most pronounced at frontal regions, which are characterized by high monsoonal rainfall and thick soil cover. Third, in seven of eight catchments, we find an anticlockwise hysteresis loop of annual sediment flux variations with respect to river discharge, which appears to be related to enhanced glacial sediment evacuation during late summer. Our analysis emphasizes the importance of unconsolidated sediments in the high-elevation sector that can easily be mobilized by hydrometeorological events and higher glacial-meltwater contributions. In future climate change scenarios, including continuous glacial retreat and

  9. Evaluating the efficiency of sediment metal pollution indices in interpreting the pollution of Haraz River sediments, southern Caspian Sea basin.

    Science.gov (United States)

    Nasrabadi, Touraj; Bidhendi, Gholamreza Nabi; Karbassi, Abdolreza; Mehrdadi, Nasser

    2010-12-01

    The Haraz River is one of the most significant rivers in the southern Caspian Sea basin. Towards the estuary, the river receives discharges of industrial, agricultural, and urban wastes. In the present investigation, bulk concentrations of Cu, Zn, As, Cd, Pb, Fe, Ni, Cr, Co, and Sr in Haraz River (Iran) bed sediments were measured from several sample locations. In addition, association of studied metals with various sedimentary phases was assessed to determine the proportions of metals in different forms. The intensity of sediment contamination was evaluated using an enrichment factor (EF), geo-accumulation index (I(geo)), and a newly developed pollution index (I(poll)). Both EF and I(geo) formulae compare present concentrations of metals to their background levels in crust and shale, respectively. In a specific area with its own geological background like Haraz River water basin where naturally high concentrations of metals may be found, such a comparison may lead to biased conclusions regarding levels of anthropogenic contamination. Accordingly, chemical partitioning results are substituted for the mean crust and shale levels in the new index (I(poll)). The Pearson correlation coefficient between the anthropogenic portion of metallic pollution in Haraz river-bed sediments with I(poll) showed much more value in comparison with those of geochemical accumulation index and enrichment factor. The order of metals introduced by anthropogenic activities are as follows: Sr > Pb > Co > Cd > Zn > Cu > Ni > As > Cr > Fe. The results showed relatively higher concentrations of Cd, As, Sr, and Pb in comparison with those of shale. However, based on the chemical partitioning of metals, it is found that Sr, Pb, Co, and Cd are the most mobile metals. In spite of the high As concentrations in sediments, it is not likely that this element is a major hazard for the aquatic environment since it is found mainly in the residual fraction. Also, Fe, Cr, and Ni are present in the greatest

  10. Do predator-prey relationships on the river bed affect fine sediment ingress?

    Science.gov (United States)

    Mathers, Kate; Rice, Stephen; Wood, Paul

    2016-04-01

    Ecosystem engineers are organisms that alter their physical environment and thereby influence the flow of resources through ecosystems. In rivers, several ecosystem engineers are also important geomorphological agents that modify fluvial sediment dynamics. By altering channel morphology and bed material characteristics, such modifications can affect the availability of habitats for other organisms, with implications for ecosystem health and wider community composition. In this way geomorphological and ecological systems are intimately interconnected. This paper focuses on one element of this intricate abiotic-biotic coupling: the interaction between fine sediment ingress into the river bed and the predator-prey relationships of aquatic organisms living on and in the river bed. Signal crayfish (Pacifastacus leniusculus) have been shown to modify fine sediment fluxes in rivers, but their effect on fine sediment ingress into riverbeds remains unclear. Many macroinvertebrate taxa have adapted avoidance strategies to avoid predation by crayfish, with one example being the freshwater shrimp (Gammarus pulex) which relies on open interstitial spaces within subsurface sediments as a refuge from crayfish predation. Fine sedimentation that fills gravelly frameworks may preclude access to those spaces, therefore leaving freshwater shrimp susceptible to predation. Ex-situ experiments were conducted which sought to examine: i) if freshwater shrimps and signal crayfish, alone and in combination, influenced fine sediment infiltration rates; and ii) whether modifications to substratum composition, specifically the introduction of fine sediment, modified predator-prey interactions. The results demonstrate that crayfish are significant geomorphic agents and that fine sediment ingress rates were significantly enhanced in their presence compared to control conditions or the presence of only freshwater shrimps. The combination of both organisms (i.e. allowing the interaction between

  11. Sediment Characteristics and Transport in the Kootenai River White Sturgeon Critical Habitat near Bonners Ferry, Idaho

    Science.gov (United States)

    Fosness, Ryan L.; Williams, Marshall L.

    2009-01-01

    Recovery efforts for the endangered Kootenai River population of white sturgeon require an understanding of the characteristics and transport of suspended and bedload sediment in the critical habitat reach of the river. In 2007 and 2008, the U.S. Geological Survey in cooperation with the Kootenai Tribe of Idaho, conducted suspended- and bedload-sediment sampling in the federally designated critical habitat of the endangered Kootenai River white sturgeon population. Three sediment-sampling sites were selected that represent the hydraulic differences in the critical habitat. Suspended- and bedload-sediment samples along with acoustic Doppler current profiles were collected at these sites during specific river discharges. Samples were analyzed to determine suspended- and bedload-sediment characteristics and transport rates. Sediment transport data were analyzed to provide total loading estimates for suspended and bedload sediment in the critical habitat reach. Total suspended-sediment discharge primarily occurred as fine material that moved through the system in suspension. Total suspended-sediment discharge ranged from about 300 metric tons per day to more than 23,000 metric tons per day. Total suspended sediment remained nearly equal throughout the critical habitat, with the exception of a few cases where mass wasting of the banks may have caused sporadic spikes in total suspended sediment. Bedload-sediment discharge averaged 0-3 percent of the total loading. These bedload discharges ranged from 0 to 271 tons per day. The bedload discharge in the upper part of the critical habitat primarily consisted of fine to coarse gravel. A decrease in river competence in addition to an armored channel may be the cause of this limited bedload discharge. The bedload discharge in the middle part of the white sturgeon critical habitat varied greatly, depending on the extent of the backwater from Kootenay Lake. A large quantity of fine-to-coarse gravel is present in the braided

  12. Modeling of soil erosion and sediment transport in the East River Basin in southern China.

    Science.gov (United States)

    Wu, Yiping; Chen, Ji

    2012-12-15

    Soil erosion is a major global environmental problem that has caused many issues involving land degradation, sedimentation of waterways, ecological degradation, and nonpoint source pollution. Therefore, it is significant to understand the processes of soil erosion and sediment transport along rivers, and this can help identify the erosion prone areas and find potential measures to alleviate the environmental effects. In this study, we investigated soil erosion and identified the most seriously eroded areas in the East River Basin in southern China using a physically-based model, Soil and Water Assessment Tool (SWAT). We also introduced a classical sediment transport method (Zhang) into SWAT and compared it with the built-in Bagnold method in simulating sediment transport process along the river. The derived spatial soil erosion map and land use based erosion levels can explicitly illustrate the identification and prioritization of the critical soil erosion areas in this basin. Our results also indicate that erosion is quite sensitive to soil properties and slope. Comparison of Bagnold and Zhang methods shows that the latter can give an overall better performance especially in tracking the peak and low sediment concentrations along the river. We also found that the East River is mainly characterized by sediment deposition in most of the segments and at most times of a year. Overall, the results presented in this paper can provide decision support for watershed managers about where the best management practices (conservation measures) can be implemented effectively and at low cost. The methods we used in this study can also be of interest in sediment modeling for other basins worldwide.

  13. Modeling of soil erosion and sediment transport in the East River Basin in southern China

    Science.gov (United States)

    Wu, Yping; Chen, Ji

    2012-01-01

    Soil erosion is a major global environmental problem that has caused many issues involving land degradation, sedimentation of waterways, ecological degradation, and nonpoint source pollution. Therefore, it is significant to understand the processes of soil erosion and sediment transport along rivers, and this can help identify the erosion prone areas and find potential measures to alleviate the environmental effects. In this study, we investigated soil erosion and identified the most seriously eroded areas in the East River Basin in southern China using a physically-based model, Soil and Water Assessment Tool (SWAT). We also introduced a classical sediment transport method (Zhang) into SWAT and compared it with the built-in Bagnold method in simulating sediment transport process along the river. The derived spatial soil erosion map and land use based erosion levels can explicitly illustrate the identification and prioritization of the critical soil erosion areas in this basin. Our results also indicate that erosion is quite sensitive to soil properties and slope. Comparison of Bagnold and Zhang methods shows that the latter can give an overall better performance especially in tracking the peak and low sediment concentrations along the river. We also found that the East River is mainly characterized by sediment deposition in most of the segments and at most times of a year. Overall, the results presented in this paper can provide decision support for watershed managers about where the best management practices (conservation measures) can be implemented effectively and at low cost. The methods we used in this study can also be of interest in sediment modeling for other basins worldwide.

  14. Toxicity of Anacostia River, Washington, DC, USA, sediment fed to mute swans (Cygnus olor)

    Science.gov (United States)

    Beyer, W.N.; Day, D.; Melancon, M.J.; Sileo, L.

    2000-01-01

    Sediment ingestion is sometimes the principal route by which waterfowl are exposed to environmental contaminants, and at severely contaminated sites waterfowl have been killed by ingesting sediment. Mute swans (Cygnus olor) were fed a diet for six weeks with a high but environmentally realistic concentration (24%) of sediment from the moderately polluted Anacostia River in the District of Columbia, to estimate the sediment?s toxicity. Control swans were fed the same diet without the sediment. Five organochlorine compounds were detected in the treated diets but none of 22 organochlorine compounds included in the analyses were detected in livers of the treated swans. The concentrations of 24 polynuclear aromatic hydrocarbons measured in the treated diet were as high as 0.80 mg/kg and they were thought to have been responsible for the observed induction of hepatic microsomal monooxygenase activity in livers. A concentration of 85 mg/kg of lead in the diet was enough to decrease red blood cell ALAD activity but was not high enough to cause more serious effects of lead poisoning. The dietary concentrations of Al, Fe, V, and Ba were high compared to the concentrations of these elements known to be toxic in laboratory feeding studies, but these elements did not accumulate in the livers of the treated swans and probably were not readily available in the sediment. Although ingestion of the Anacostia River sediment caused subtle toxicological effects in swans, we concluded from pathological examinations and weight data that the treated swans remained basically healthy.

  15. Conceptual model of sedimentation in the Sacramento-San Joaquin River Delta

    Science.gov (United States)

    Schoellhamer, David H.; Wright, Scott A.; Drexler, Judith Z.

    2012-01-01

    Sedimentation in the Sacramento–San Joaquin River Delta builds the Delta landscape, creates benthic and pelagic habitat, and transports sediment-associated contaminants. Here we present a conceptual model of sedimentation that includes submodels for river supply from the watershed to the Delta, regional transport within the Delta and seaward exchange, and local sedimentation in open water and marsh habitats. The model demonstrates feedback loops that affect the Delta ecosystem. Submerged and emergent marsh vegetation act as ecosystem engineers that can create a positive feedback loop by decreasing suspended sediment, increasing water column light, which in turn enables more vegetation. Sea-level rise in open water is partially countered by a negative feedback loop that increases deposition if there is a net decrease in hydrodynamic energy. Manipulation of regional sediment transport is probably the most feasible method to control suspended sediment and thus turbidity. The conceptual model is used to identify information gaps that need to be filled to develop an accurate sediment transport model.

  16. Influence of Wastewater Discharge on the Metabolic Potential of the Microbial Community in River Sediments

    KAUST Repository

    Li, Dong

    2015-09-24

    To reveal the variation of microbial community functions during water filtration process in river sediments, which has been utilized widely in natural water treatment systems, this study investigates the influence of municipal wastewater discharge to streams on the phylotype and metabolic potential of the microbiome in upstream and particularly various depths of downstream river sediments. Cluster analyses based on both microbial phylogenetic and functional data collectively revealed that shallow upstream sediments grouped with those from deeper subsurface downstream regions. These sediment samples were distinct from those found in shallow downstream sediments. Functional genes associated with carbohydrate, xenobiotic, and certain amino acid metabolisms were overrepresented in upstream and deep downstream samples. In contrast, the more immediate contact with wastewater discharge in shallow downstream samples resulted in an increase in the relative abundance of genes associated with nitrogen, sulfur, purine and pyrimidine metabolisms, as well as restriction–modification systems. More diverse bacterial phyla were associated with upstream and deep downstream sediments, mainly including Actinobacteria, Planctomycetes, and Firmicutes. In contrast, in shallow downstream sediments, genera affiliated with Betaproteobacteria and Gammaproteobacteria were enriched with putative functions that included ammonia and sulfur oxidation, polyphosphate accumulation, and methylotrophic bacteria. Collectively, these results highlight the enhanced capabilities of microbial communities residing in deeper stream sediments for the transformation of water contaminants and thus provide a foundation for better design of natural water treatment systems to further improve the removal of contaminants. © 2015, Springer Science+Business Media New York.

  17. Influence of Wastewater Discharge on the Metabolic Potential of the Microbial Community in River Sediments.

    Science.gov (United States)

    Li, Dong; Sharp, Jonathan O; Drewes, Jörg E

    2016-01-01

    To reveal the variation of microbial community functions during water filtration process in river sediments, which has been utilized widely in natural water treatment systems, this study investigates the influence of municipal wastewater discharge to streams on the phylotype and metabolic potential of the microbiome in upstream and particularly various depths of downstream river sediments. Cluster analyses based on both microbial phylogenetic and functional data collectively revealed that shallow upstream sediments grouped with those from deeper subsurface downstream regions. These sediment samples were distinct from those found in shallow downstream sediments. Functional genes associated with carbohydrate, xenobiotic, and certain amino acid metabolisms were overrepresented in upstream and deep downstream samples. In contrast, the more immediate contact with wastewater discharge in shallow downstream samples resulted in an increase in the relative abundance of genes associated with nitrogen, sulfur, purine and pyrimidine metabolisms, as well as restriction-modification systems. More diverse bacterial phyla were associated with upstream and deep downstream sediments, mainly including Actinobacteria, Planctomycetes, and Firmicutes. In contrast, in shallow downstream sediments, genera affiliated with Betaproteobacteria and Gammaproteobacteria were enriched with putative functions that included ammonia and sulfur oxidation, polyphosphate accumulation, and methylotrophic bacteria. Collectively, these results highlight the enhanced capabilities of microbial communities residing in deeper stream sediments for the transformation of water contaminants and thus provide a foundation for better design of natural water treatment systems to further improve the removal of contaminants.

  18. Remobilization of polychlorinated biphenyls from sediment and its consequences for their transport in river waters.

    Science.gov (United States)

    Gdaniec-Pietryka, Monika; Mechlińska, Agata; Wolska, Lidia; Gałuszka, Agnieszka; Namieśnik, Jacek

    2013-05-01

    A laboratory experiment was performed to examine the remobilization of indicator polychlorinated biphenyls (iPCBs) from sediments and its results were applied to the real-world data for explaining the transport of PCBs in river. Seven PCB concentrations were determined in three series of model water-sediment systems (3 g of river sediment, three different volumes of distilled water (0.5, 0.25, and 0.15 ml), and 5 mg of biocide) after 11 days of incubation. Solid-phase extraction was used for separation of analytes from the aqueous phase and solvent extraction for isolation of analytes from the sediments, respectively. The extracts were analyzed for individual iPCB congeners using gas chromatography-mass spectrometry method. For each series of the experiment, the concentrations of PCBs in aqueous phase were similar. The average sediment/water partition coefficient value was 10(4) l/kg. The solubility of individual PCB congeners in water did not influence the desorption of PCBs from the sediment. Although the dominant form of PCBs in a water-sediment system occurs as suspended and colloidal fractions, these compounds are transported mostly in a dissolved form. Suspended and colloidal matter is a major sink for PCBs in low-energy aquatic environments. In contrast, the dissolved PCBs are readily transported in running waters. The mobilization of PCBs from sediments to aqueous phase, with respect to their solubility in water, seems to be limited, thus reducing the risk of secondary pollution.

  19. Concentrations and annual fluxes of sediment-associated chemical constituents from conterminous US coastal rivers using bed sediment data

    Science.gov (United States)

    Horowitz, Arthur J.; Stephens, Verlin C.; Elrick, Kent A.; Smith, James J.

    2012-01-01

    Coastal rivers represent a significant pathway for the delivery of natural and anthropogenic sediment-associated chemical constituents to the Atlantic, Pacific and Gulf of Mexico coasts of the conterminous USA. This study entails an accounting segment using published average annual suspended sediment fluxes with published sediment-associated chemical constituent concentrations for (1) baseline, (2) land-use distributions, (3) population density, and (4) worldwide means to estimate concentrations/annual fluxes for trace/major elements and total phosphorus, total organic and inorganic carbon, total nitrogen, and sulphur, for 131 coastal river basins. In addition, it entails a sampling and subsequent chemical analysis segment that provides a level of ‘ground truth’ for the calculated values, as well as generating baselines for sediment-associated concentrations/fluxes against which future changes can be evaluated. Currently, between 260 and 270 Mt of suspended sediment are discharged annually from the conterminous USA; about 69% is discharged from Gulf rivers (n = 36), about 24% from Pacific rivers (n = 42), and about 7% from Atlantic rivers (n = 54). Elevated sediment-associated chemical concentrations relative to baseline levels occur in the reverse order of sediment discharges:Atlantic rivers (49%)>Pacific rivers (40%)>Gulf rivers (23%). Elevated trace element concentrations (e.g. Cu, Hg, Pb, Zn) frequently occur in association with present/former industrial areas and/or urban centres, particularly along the northeast Atlantic coast. Elevated carbon and nutrient concentrations occur along both the Atlantic and Gulf coasts but are dominated by rivers in the urban northeast and by southeastern and Gulf coast (Florida) ‘blackwater’ streams. Elevated Ca, Mg, K, and Na distributions tend to reflect local petrology, whereas elevated Ti, S, Fe, and Al concentrations are ubiquitous, possibly because they have substantial natural as well as anthropogenic sources

  20. THREE DIMENSIONAL NUMERICAL MODELLING OF FLOW AND SEDIMENT TRANSPORT IN RIVERS

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The 3D numerical model, ECOMSED (open source code), was used to simulate flow and sediment transport in rivers. The model has a long history of successful applications to oceanic, coastal and estuarine waters. Improvements in the advection scheme, treatment of river roughness parameterization and shear stress partitioning were necessary to reproduce realistic and comparable results in a river application. To account for the dynamics of the mobile bed boundary, a model for the bed load transport was included in the code. The model reproduced observed secondary currents,bed shear stress distribution and erosion-deposition patterns on a curved channel. The model also successfully predicted the general flow patterns and sediment transport characteristics ora l-km long reach of the River Klar(a)lven, located in the north of the county of V(a)rmland, Sweden.

  1. Metal concentrations of river water and sediments in West Java, Indonesia.

    Science.gov (United States)

    Yasuda, Masaomi; Yustiawati; Syawal, M Suhaemi; Sikder, Md Tajuddin; Hosokawa, Toshiyuki; Saito, Takeshi; Tanaka, Shunitz; Kurasaki, Masaaki

    2011-12-01

    To determine the water environment and pollutants in West Java, the contents of metals and general water quality of the Ciliwung River in the Jakarta area were measured. High Escherichia coli number (116-149/mL) was detected downstream in the Ciliwung River. In addition to evaluate mercury pollution caused by gold mining, mercury contents of water and sediment samples from the Cikaniki River, and from paddy samples were determined. The water was not badly polluted. However, toxic metals such as mercury were detected at levels close to the baseline environmental standard of Indonesia (0.83-1.07 μg/g of sediments in the Cikaniki River). From analyses of the paddy samples (0.08 μg/g), it is considered that there is a health risk caused by mercury.

  2. First-Year Downstream Sediment Budget Following the Marmot Dam Removal from the Sandy River, Oregon

    Science.gov (United States)

    Podolak, C. J.; Wilcock, P. R.; Pittman, A.

    2008-12-01

    The October 2007 removal of the Marmot Dam, from the Sandy River, OR, provides an opportunity to assess the impact of increased sediment flux on a river channel. The Sandy River drains the west flank of Mt Hood and typically carries a large load of sand and gravel. The 14-meter-tall dam impounded over 750,000 m3 of sediment, only a small amount of which was removed during the decommissioning. Using a one- dimensional modeling approach, it was assessed that the river could transport the accumulated sediment without large adverse impacts downstream of the dam (Cui et al, 2008 - abstract submitted). In order to observe the actual changes to the river due to the dam removal and to test the modeled predictions, a significant monitoring effort has be in place on the Sandy River including bedload and suspended load measurements, discharge measurements, high-fidelity topographic surveys, repeat photography, multiple airborne LIDAR flights, long profile surveys, as well as mapping and characterizing the grain sizes throughout several reaches downstream of the dam. A key step in the quest to describe and predict the spatial distribution of the sediment throughout the downstream reach is to first account for all the sediment (both stored in the reservoir and supplied from upstream). Here, we examine the transport and deposition downstream of the dam through a 2-fraction sediment budget approach using the former dam as the upstream limit of the reach and choosing a the mouth of a bedrock gorge 7 km below the dam site as the downstream limit. Suspended sediment and bedload measurements taken by the USGS just below the dam site (Major et al, 2008 - abstract submitted) are combined with suspended sediment and bedload measurements collected just below the mouth of the gorge and the annual hydrograph to define the sediment fluxes into and out of the reach. Repeat surveys in the reach below the dam (Wallick et al, 2008 - abstract submitted) provide the measure of change in storage

  3. Measurement of Specific Surface Area of Ceramisite Made from River Sediment

    Institute of Scientific and Technical Information of China (English)

    LIU Gui-yun; XI Dan-li

    2002-01-01

    Principle and method of measuring Specific Surface Area (SSA) of ceramisite made from dredged river sediment,sewage sludge and adherent materials are discussed.Brunauer-Fmmett- Teller Procedure tests SSA of the ceramisite. Influences of sewage sludge content,adherent content and sintering point on the SSA of ceramisite made of river sediment are also analyzed.Results show that with the right sewage sludge content,adherent content and sintering point, the ceramisite can have the highest SSA value and be widely used.

  4. COMPARISON OF THREE MODELS TO PREDICT ANNUAL SEDIMENT YIELD IN CARONI RIVER BASIN, VENEZUELA

    OpenAIRE

    Edilberto Guevara-Pérez; Adriana M. Márquez

    2007-01-01

    Caroní River Basin is located in the south-eastern part of Venezuela; with an area of 92.000 km2, 40% of which belongs to the main affluent, the Paragua River. Caroní basin is the source of 66% of energy of the country. About 85% of the hydro electrical energy is generated in Guri reservoir located in the lower part of the watershed. To take provisions to avoid the reservoir silting it is very important the study of sediment yield of the basin. In this paper result of three empirical sediment...

  5. COMPARISON OF THREE MODELS TO PREDICT ANNUAL SEDIMENT YIELD IN CARONI RIVER BASIN, VENEZUELA

    OpenAIRE

    Edilberto Guevara-Pérez; Adriana M. Márquez

    2007-01-01

    Caroní River Basin is located in the south-eastern part of Venezuela; with an area of 92.000 km², 40% of which belongs to the main affluent, the Paragua River. Caroní basin is the source of 66% of energy of the country. About 85% of the hydro electrical energy is generated in Guri reservoir located in the lower part of the watershed. To take provisions to avoid the reservoir silting it is very important the study of sediment yield of the basin. In this paper result of three empirical sediment...

  6. [THE CONTENT OF MERCURY IN SEDIMENTS AND THE CLAMS UNIO PICTORUM FROM THE URAL RIVER].

    Science.gov (United States)

    Solovykh, G N; Osinkina, V V; Vereshchagin, N N; Belomestnova, V G; Vodyanitskaya, O V; Kamaukhova, I V

    2015-01-01

    There was investigated the mercury total content in bottom sediments and some bodies of clams from the area of the middle reach of the Ural river near the Orenburg city. In bottom sediments there was revealed an excess of the ecological standard for mercury. There was noted the uneven distribution of toxicant in bodies of clams: the maximal contents was detected in hepatopancreas, minimal--in "foot", that apparently is determined by the unequal metabolitic activity of these tissues. The highest concentration of mercury in the tissues of clams was noted at the station "Ural river above the camp" Dubki".

  7. Hyalella azteca (Saussure) responses to Coldwater River backwater sediments in Mississippi, USA.

    Science.gov (United States)

    Knight, Scott S; Lizotte, Richard E; Shields, F Douglas

    2009-10-01

    Sediment from three Coldwater River, Mississippi backwaters was examined using 28 day Hyalella azteca bioassays and chemical analyses for 33 pesticides, seven metals and seven PCB mixtures. Hydrologic connectivity between the main river channel and backwater varied widely among the three sites. Mortality occurred in the most highly connected backwater while growth impairment occurred in the other two. Precopulatory guarding behavior was not as sensitive as growth. Fourteen contaminants (seven metals, seven pesticides) were detected in sediments. Survival was associated with the organochlorine insecticide heptachlor.

  8. Control factors and scale analysis of annual river water, sediments and carbon transport in China

    Science.gov (United States)

    Song, Chunlin; Wang, Genxu; Sun, Xiangyang; Chang, Ruiying; Mao, Tianxu

    2016-05-01

    Under the context of dramatic human disturbances on river system, the processes that control the transport of water, sediment, and carbon from river basins to coastal seas are not completely understood. Here we performed a quantitative synthesis for 121 sites across China to find control factors of annual river exports (Rc: runoff coefficient; TSSC: total suspended sediment concentration; TSSL: total suspended sediment loads; TOCL: total organic carbon loads) at different spatial scales. The results indicated that human activities such as dam construction and vegetation restoration might have a greater influence than climate on the transport of river sediment and carbon, although climate was a major driver of Rc. Multiple spatial scale analyses indicated that Rc increased from the small to medium scale by 20% and then decreased at the sizable scale by 20%. TSSC decreased from the small to sizeable scale but increase from the sizeable to large scales; however, TSSL significantly decreased from small (768 g·m‑2·a‑1) to medium spatial scale basins (258 g·m‑2·a‑1), and TOCL decreased from the medium to large scale. Our results will improve the understanding of water, sediment and carbon transport processes and contribute better water and land resources management strategies from different spatial scales.

  9. Source identification of fine-grained suspended sediment in the Kharaa River basin, northern Mongolia.

    Science.gov (United States)

    Theuring, Philipp; Collins, Adrian L; Rode, Michael

    2015-09-01

    Fine sediment inputs into river systems can be a major source of nutrients and heavy metals and have a strong impact on water quality and ecosystem functions of rivers and lakes, including those in semiarid regions. However, little is known to date about the spatial distribution of sediment sources in most large scale river basins in Central Asia. Accordingly, a sediment source fingerprinting technique was used to assess the spatial sources of fine-grained (0.97) and were subsequently used for numerical mass balance modelling with uncertainty analysis. The contributions of the individual sub-catchment spatial sediment sources varied from 6.4% (the headwater sub-catchment of Sugnugur Gol) to 36.2% (the Kharaa II sub-catchment in the middle reaches of the study basin), generally showing higher contributions from the sub-catchments in the middle, rather than the upstream, portions of the study area. The importance of river bank erosion is shown to increase from upstream to midstream tributaries. The source tracing procedure provides results in reasonable accordance with previous findings in the study region and demonstrates the applicability and associated uncertainties of the approach for fine-grained sediment source investigation in large scale semi-arid catchments. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Physical and Chemical Properties of Sediments in Huainan Segment of Huaihe River

    Institute of Scientific and Technical Information of China (English)

    CHENG Yong-hong; XU Jun; WANG Juan; TIAN Dong; CHEN Jun; GAO Zhi-kang

    2005-01-01

    The chemical and physical properties of nitrogen and phosphorus as well as their concentrations in the overlying water, pore-water and sediments in Huainan segment of the Huaihe river were analyzed. The chemical forms of phosphorus in sediments were differentiated by a sequential fraction method. The results revealed that the NH4+-N content in pore-water of 6 surface sediments is obviously higher than that in overlying water, indicating that there is a dynamic tendency of releasing NH4+-N from sediment into overlying water. Chemical compound of nitrogen differs among segments of the river, while phosphorus has no such difference. Calcium bound phosphate (Ca-P) and iron bound phosphate (Fe-P) accounts for 60 % of the total phosphorus, and occluded-P (O-P) accounts for less than 20 %. Our findings indicate that 1) industrial waste water and domestic sewage have contributed to the excessive nutrient salts in Huaihe river, 2) decreased water flow during low water periods, and the interaction between sediments and overlying water disturbed by transport ships accelerate nutrient salt releasing into overlying water, which results in eutrophication of the river.

  11. Renewed soil erosion and remobilisation of radioactive sediment in Fukushima coastal rivers after the 2013 typhoons

    OpenAIRE

    Evrard, Olivier; Chartin, Caroline; Onda, Yuichi; Lepage, Hugo; Cerdan, Olivier; Lefèvre, Irène; Ayrault, Sophie

    2014-01-01

    Summer typhoons and spring snowmelt led to the riverine spread of continental Fukushima fallout to the coastal plains of Northeastern Japan and the Pacific Ocean. Four fieldwork campaigns based on measurement of radioactive dose rates in fine riverine sediment that has recently deposited on channel bed-sand were conducted between November 2011 and May 2013 to document the spread of fallout by rivers. After a progressive decrease in the fresh riverine sediment doses rates between 2011 and earl...

  12. STUDY ON QUANTITATIVE SPECIATION, BY BCR METHOD, OF ZINC CONTENT FROM RIVER SEDIMENTS

    Directory of Open Access Journals (Sweden)

    Georgiana Vasile

    2008-06-01

    Full Text Available The present work presents the results obtained during investigation of the zinc content of the water and river sediments in an area polluted by mining activities, to provide information on the mobility and availability of this element. Sediment and water samples have been collected from significant sites in a former mining area in which with some sterile pits, which represent a major environmental hazard.

  13. Regime Shift Identification of Runoff and Sediment Loads in the Yellow River Basin, China

    OpenAIRE

    Fei Wang; Guangju Zhao; Xingmin Mu; Peng Gao; Wenyi Sun

    2014-01-01

    Runoff and sediment loads have exhibited significant changes over the past six decades in the Yellow River Basin, China. The current study evaluates the changing trends and regime shifts in runoff and sediment loads at both the annual and monthly time scales. The associated spatial and temporal variations are analyzed by a sequential t-test analysis of the regime shifts (STARS) approach and the “breaks for additive seasonal and trend” (BFAST) model using hydrological data at eight stations f...

  14. Microbiological research on the enzymologic potential of Arieş river (Romania sediments

    Directory of Open Access Journals (Sweden)

    Andreea Bodoczi-Florea

    2010-12-01

    Full Text Available Ten sediment samples from Arieș river were collected and these samples have beenanalyzed qualitatively enzymologically. In the sediment samples, the following enzymatic activitieshave been qualitatively determined: four oligase activities: maltase, saccharase, lactase and cellobiaseand three polyase activities: amylase, dextranase and inulinase. The studied activities weredetermined in each samples and displayed variations in the intensities of the processes depending onthe sampling place. Generally, the highest intensity of qualitative enzimatic activities were registeredin case of the oligases.

  15. Spacial and temporal dynamic of fine sediment input in a small Swiss River in the foothills of the Alps

    Science.gov (United States)

    Schindler, Yael; Michel, Christian; Alewell, Christine

    2010-05-01

    Fine sediments are an often overlooked threat to our rivers and can determine stream quality to a large extent. Sediments in rivers cause increases in turbidity and sedimentation and can ultimately lead to clogging of the river bed. In general fine sediment loads in rivers are increasing throughout the world in catchments that are impacted both directly and indirectly by human activities. For European and alpine countries increased erosion has been reported over the last decades. Potential causes of increased erosion and sediment loads to rivers include global climate change with increased temperatures, altered precipitation patterns, changes in snow cover, seasonal snow melting and consequently discharge regimes. These may have led to increased river runoff, especially in winter and in spring, and altered seasonal and regional patterns of sediment input and clogging of river beds. A further cause of increased erosion and sediment loads in rivers are changes in land use and management, for example, changes in pasture management in uplands and changes in agricultural practices in lowlands. Several methods have been developed to determine the amount of fine sediments in rivers: Turbidity measurements, suspended sediment sampler, bedload sampler and several types of sediment baskets to measure the deposition of fine sediment. But never have they been compared to each other. We adopted multiple established methods to a smaller scale to measure the sediment input in a small, typical Swiss river (Enziwigger, Canton of Luzern) with a strongly modified morphology. These methods were used to study the temporal and spatial dynamics of fine sediments in three locations representing a high, medium and low fine-sediment load. Turbidity was measured continuously at all sites with optical backscatter sensor as well as 18 suspended sediment samplers, which were emptied weekly. The bedload was investigated with 18 bedload samplers and the fine sediment deposition was determined

  16. Total, chemical, and biological oxygen consumption of the sediments in the Ziya River watershed, China.

    Science.gov (United States)

    Rong, Nan; Shan, Baoqing

    2016-07-01

    Sediment oxygen demand (SOD) is a critical dissolved oxygen (DO) sink in many rivers. Understanding the relative contributions of the biological and chemical components of SOD would improve our knowledge of the potential environmental harm SOD could cause and allow appropriate management systems to be developed. A various inhibitors addition technique was conducted to measure the total, chemical, and biological SOD of sediment samples from 13 sites in the Ziya River watershed, a severely polluted and anoxic river system in the north of China. The results showed that the major component of SOD was chemical SOD due to iron predominate. The ferrous SOD accounted for 21.6-78.9 % of the total SOD and 33.26-96.79 % of the chemical SOD. Biological SOD represented 41.13 % of the overall SOD averagely. Sulfide SOD accounted for 1.78-45.71 % of the total SOD and it was the secondary predominate of the chemical SOD. Manganous SOD accounted for 1.2-16.6 % of the total SOD and it was insignificant at many sites. Only four kinds of benthos were collected in the Ziya River watershed, resulting from the low DO concentration in the sediment surface due to SOD. This study would be helpful for understanding and preventing the potential sediment oxygen depletion during river restoration.

  17. USING ARTIFICIAL NEURAL NETWORKS (ANNs FOR SEDIMENT LOAD FORECASTING OF TALKHEROOD RIVER MOUTH

    Directory of Open Access Journals (Sweden)

    Vahid Nourani

    2009-06-01

    Full Text Available Without a doubt the carried sediment load by a river is the most important factor in creating and formation of the related Delta in the river mouth. Therefore, accurate forecasting of the river sediment load can play a significant role for study on the river Delta. However considering the complexity and non-linearity of the phenomenon, the classic experimental or physical-based approaches usually could not handle the problem so well. In this paper, Artificial Neural Network (ANN as a non-linear black box interpolator tool is used for modeling suspended sediment load which discharges to the Talkherood river mouth, located in northern west Iran. For this purpose, observed time series of water discharge at current and previous time steps are used as the model input neurons and the model output neuron will be the forecasted sediment load at the current time step. In this way, various schemes of the ANN approach are examined in order to achieve the best network as well as the best architecture of the model. The obtained results are also compared with the results of two other classic methods (i.e., linear regression and rating curve methods in order to approve the efficiency and ability of the proposed method.

  18. USING ARTIFICIAL NEURAL NETWORKS (ANNs FOR SEDIMENT LOAD FORECASTING OF TALKHEROOD RIVER MOUTH

    Directory of Open Access Journals (Sweden)

    Vahid Nourani

    2009-01-01

    Full Text Available Without a doubt the carried sediment load by a river is the most important factor in creating and formation of the related Delta in the river mouth. Therefore, accurate forecasting of the river sediment load can play a significant role for study on the river Delta. However considering the complexity and non-linearity of the phenomenon, the classic experimental or physical-based approaches usually could not handle the problem so well. In this paper, Artificial Neural Network (ANN as a non-linear black box interpolator tool is used for modeling suspended sediment load which discharges to the Talkherood river mouth, located in northern west Iran. For this purpose, observed time series of water discharge at current and previous time steps are used as the model input neurons and the model output neuron will be the forecasted sediment load at the current time step. In this way, various schemes of the ANN approach are examined in order to achieve the best network as well as the best architecture of the model. The obtained results are also compared with the results of two other classic methods (i.e., linear regression and rating curve methods in order to approve the efficiency and ability of the proposed method.

  19. Lithospheric Architecture Beneath Hudson Bay

    Science.gov (United States)

    Porritt, R. W.; Miller, M. S.; Darbyshire, F. A.

    2015-12-01

    Hudson Bay overlies some of the thickest Precambrian lithosphere on Earth, whose internal structures contain important clues to the earliest workings of plate formation. The terminal collision, the Trans-Hudson Orogen, brought together the Western Churchill craton to the northwest and the Superior craton to the southeast. These two Archean cratons along with the Paleo-Proterozoic Trans-Hudson internides, form the core of the North American craton. We use S to P converted wave imaging and absolute shear velocity information from a joint inversion of P to S receiver functions, new ambient noise derived phase velocities, and teleseismic phase velocities to investigate this region and determine both the thickness of the lithosphere and the presence of internal discontinuities. The lithosphere under central Hudson Bay approaches 􏰂350 km thick but is thinner (􏰂200-250 km) around the periphery of the Bay. Furthermore, the amplitude of the lithosphere-asthenosphere boundary (LAB) conversion from the S receiver functions is unusually large for a craton, suggesting a large thermal contrast across the LAB, which we interpret as direct evidence of the thermal insulation effect of continents on the asthenosphere. Within the lithosphere, midlithospheric discontinuities, significantly shallower than the base of the lithosphere, are often imaged, suggesting the mechanisms that form these layers are common. Lacking time-history information, we infer that these discontinuities reflect reactivation of formation structures during deformation of the craton.

  20. Field Summary Report for Remedial Investigation of Hanford Site Releases to the Columbia River, Hanford Site, Washington, Collection of Surface Water, River Sediments, and Island Soils

    Energy Technology Data Exchange (ETDEWEB)

    L. C. Hulstrom

    2009-09-28

    This report has been prepared in support of the remedial investigation of Hanford Site Releases to the Columbia River and describes the 2008/2009 data collection efforts. This report documents field activities associated with collection of sediment, river water, and soil in and adjacent to the Columbia River near the Hanford Site and in nearby tributaries.

  1. Sedimentation rates in Atibaia River basin, Sao Paulo State, Brazil, using {sup 210}Pb as geochronometer

    Energy Technology Data Exchange (ETDEWEB)

    Sabaris, T.P.P. [Departamento de Petrologia e Metalogenia, Universidade Estadual Paulista (UNESP), Av. 24-A, No. 1515, C.P. 178, CEP 13506-900, Rio Claro, Sao Paulo (Brazil); Bonotto, D.M., E-mail: danielbonotto@yahoo.com.b [Departamento de Petrologia e Metalogenia, Universidade Estadual Paulista (UNESP), Av. 24-A, No. 1515, C.P. 178, CEP 13506-900, Rio Claro, Sao Paulo (Brazil)

    2011-01-15

    The constant initial concentration (CIC) of unsupported/excess {sup 210}Pb model was successfully used to assess {sup 210}Pb data of nine sediment cores from Atibaia River basin, Sao Paulo State, Brazil. The {sup 210}Pb-based apparent sediment mass accumulation rates ranged from 47.7 to 782.4 mg/cm{sup 2} yr, whereas the average linear sedimentation rates between 0.16 and 1.32 cm/yr, which are compatible with the calculated sediment mass fluxes, i.e. a higher sediment mass accumulation rate yielded a higher linear sedimentation rate. The higher long-term based accumulation rate tended to be found in topographically softer regions. This occurs because the sediments are preferentially transported in topographically steeper regions instead of being deposited. Anthropic activities like deforestation possibly interfered with the natural/normal sedimentation processes, which increased in accordance with modifications on the channel drainage. The radionuclide geochronology as described in this paper allows determination of sedimentation rates that are compatible with values estimated elsewhere. The adoption of an appropriate factor generated from previous laboratory experiments resulted in a successful correction for the {sup 222}Rn-loss from the sediments, bringing the estimate of the parent-supported (in-situ produced) {sup 210}Pb to reliable values required by the CIC model.

  2. Phosphorus forms and bioavailability of lake sediments in the middle and lower reaches of Yangtze River

    Institute of Scientific and Technical Information of China (English)

    ZHU; Guangwei; QIN; Boqiang; ZHANG; Lu

    2006-01-01

    Forms of phosphorus in sediments from 25 lakes in the middle and lower reaches of Yangtze River were analyzed by the sequential extraction procedure. Contents and spatial distrubution of algal available phosphorus (AAP) in sediments of Lake Taihu, the third largest freshwater lake of China, were also studied. Relationships between phosphorus forms in sediment and macrophytes coverage in sample sites, as well as phosphorus forms in sediments and chlorophyal contents in lake water were discussed. Exchangeable form of phosphorus (Ex-P) in surface sediments was significantly positive correlative to total phosphorus (TP), dissolved total phosphorus (DTP) and soluble reactive phosphorus (SRP) contents in the lake water. Bioavailable phosphorus (Bio-P) contents in sediments from macrophytes dominant sites were significantly lower than that in no macrophyte sites. In Lake Taihu, Ex-P content in top 3 cm sediment was highest.However, content of ferric fraction phosphorus (Fe-P) was highest in 4-10 cm. Bioavalilble phosphorus (Bio-P) contents in surface sediments positively correlated to Chlorophyll a contents in water of Lake Taihu with significant difference. Therefore, contents of Bio-P and AAP could be acted as the indicators of risks of internal release of phosphorus in the shallow lakes. It was estimated that there were 268.6 ton AAP in top 1 cm sediments in Lake Taihu. Sediment suspension caused by strong wind-induced wave disturbance could carry plenty of AAP into water in large shallow lakes like Lake Taihu.

  3. TRANSFERABLE PHOSPHORUS IN SEDIMENTS OF THE HUANGHE RIVER ESTUARY'S ADJACENT WATERS

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Based on a new idea for research on cycling of marine biogenic elements, this study showed that only the leachable form phosphorus in natural grain sizes marine sediments constitutes the transferable phosphorous in the sediments. The transferable phosphorus content in the natural grain sizes surface sediments in the Huanghe River estuary adjacent waters ranges from 58.5-69.8 μg/g, accounting for only 9.1%-11.0% of the total phosphorus content, whereas the leachable form (“transferable") phosphorus content in the sediment after it was totally ground into powder was found to be 454.8-529.2 μg/g, accounting for 73.4%-89.1% of the total phosphorus. Analysis of the correlation between the biomass of benthos and the leachable form (“transferable") phosphorus showed that most of the leachable form (“transferable") phosphorus in the totally ground sediment did not participate in the marine biogeochemical cycling. Furthermore, a synchronous survey on benthos showed that the biomass of meio-and macro-benthos exhibited good positive correlation with the leachable form of phosphorus in the natural grain sizes sediment, but poorer correlation with the leachable form (“transferable") phosphorus in the totally ground sediment, indicating that transferable phosphorus in marine sediment is the leachable form of phosphorus in the natural grain sizes sediments, and is not the previously known leachable form (“transferable") phosphorus obtained from the totally ground sediment.

  4. Sediment transport in an active erodible channel bend of Brahmaputra river

    Indian Academy of Sciences (India)

    Tapas Karmaker; Y Ramprasad; Subashisa Dutta

    2010-12-01

    Spatial variation of sediment transport in an alluvial sand-bed river bend needs to be understood with its influencing factors such as bank erosion, secondary current formation, land spur and bed-material characteristics. In this study, detailed hydrographic surveys with Acoustic Doppler Current Profiler (ADCP) were conducted at an active erodible river bend to measure suspended load, velocity, bathymetric profile and characteristics of the bed material. Study indicates the presence of multi-thread flow in the channel bend. Local variation of sediment transport is primarily controlled by active bank erosion, land spur and sand bar formation. Vertical distribution of suspended sediment concentration follows a power function with normalized depth. Average bed-material concentration at the reach level is computed from observed sediment profiles, and is compared against various sediment transport functions. Results show that the sediment transport function suggested by Yang gives better predictions for this reach. Transverse bed slopes at critical survey transects were computed from the bathymetric data and evaluated with analytical approaches. Out of three analytical approaches used, Odgaard’s approach estimates the bed slopes fairly close to the observed one. These two functions are suitable in the Brahmaputra river for further morphological studies.

  5. [Factors affecting the DAPI fluorescence direct count in the tidal river sediment].

    Science.gov (United States)

    Chen, Chen; Huang, Shan; Wu, Qun-he; Li, Rui-yi; Zhang, Ren-duo

    2010-08-01

    The factors affecting the DAPI (4', 6-diamidino-2-phenylidole) fluorescence direct count in the tidal river sediment were examined. Sediment samples were collected from the Guangzhou section of the Pearl River. Besides sediment texture and organic matter, an improved staining procedure and the involved parameters were analyzed. Results showed that the procedure with the sediment with 2000 fold dilution and ultrasonic water bath for 10 min, and with a final DAPI concentration of 10 microg x mL(-1) and staining time for more than 30 min produced the optimum results of DAPI direct count in the sediment. The total bacterial number was correlated to the proportion of the non-nucleoid-containing cells to the total bacterial number (r = 0.587, p = 0.004). The organic matter content also correlated to the ration. The clay content had a strong correlation with the organic matter, through which the clay content also affected the ratio. A multiple regression analysis between the ration versus the organic matter, the total bacterial number, and the clay content showed that the regression equation fit the measure values satisfactorily (r = 0.694). These results indicated that the above factors needed to be considered in the applications of the DAPI fluorescence direct counting method to the tidal river sediment.

  6. Runoff and Sediment Response to Cascade Hydropower Exploitation in the Middle and Lower Han River, China

    Directory of Open Access Journals (Sweden)

    Junhong Zhang

    2017-01-01

    Full Text Available With the rapid development of hydropower exploitation in China, changes in runoff and sediment transport have become a significant issue that cannot be neglected. In this study, the Han River was selected as a study case, where the runoff variation and changes in sediment load at the Baihe, Huangjiagang, Huangzhuang, and Xiantao stations were analyzed in different time periods. The results indicate that impact of cascade hydropower exploitation on runoff and sediment transport is significantly different even during the same time periods. After reservoir regulation, the decreasing of sediment load is faster than that of runoff. Strong positive correlation between runoff and sediment load exists during different time periods, while reservoir operation leads to different turning points at the Baihe, Huangjiagang, Huangzhuang, and Xiantao stations in the middle and lower Han River. As a key driving factor, runoff variation contributed to sediment transport with different impact index CR. The impact index CR before and after the first change point at the Baihe, Huangjiagang, Huangzhuang, and Xiantao stations is 43.35%, −3.68%, 11.17%, and 30.12%, respectively. This study helps us understand and evaluate the hydrological changes under cascade hydropower exploitation in the middle and lower Han River.

  7. Managing bedload sediment in regulated rivers: Examples from California, U.S.A.

    Science.gov (United States)

    Kondolf, G. Mathias

    The continuity of bedload transport has been profoundly altered in many rivers by construction of reservoirs and mining of sand and gravel for construction aggregate from the active channel. These impacts are especially well illustrated in California because of the extent of reservoir construction and strong demand for aggregate. As a result, many river channels have become starved of bedload sediment and have incised. Salmonid spawning gravel has been lost, and bridges and other structures have been undermined. State policies regulating reservoir sedimentation and sediment sluicing from reservoirs are often contradictory and are not based on an understanding of the role of bedload sediment in maintaining the river system. Regulation of gravel mining from active channels has been ineffective at preventing resource degradation, despite numerous permit requirements from various federal, state, and local agencies. The principal burden for regulating gravel mining falls on local governments, which lack resources or technical expertise to analyze geomorphic effects of gravel mining. Despite their common occurrence and inter-related nature throughout California, the problems resulting from disruption of natural bedload transport have thus far been treated on a site-specific basis only, without explicit recognition of links among processes and impacts. Environmentally sound management of bedload sediment resources requires basin-level and regional analysis of bedload sediment sources and transport rates, recognition of hydrologic alterations caused by reservoirs, and identification of suitable aggregate sources (including quarries and recycled concrete rubble). Gravel mining should generally be prohibited from channels downstream of reservoirs.

  8. Contribution of coexisting sulfate and iron reducing bacteria to methylmercury production in freshwater river sediments.

    Science.gov (United States)

    Yu, Ri-Qing; Flanders, J R; Mack, E Erin; Turner, Ralph; Mirza, M Bilal; Barkay, Tamar

    2012-03-06

    We investigated microbial methylmercury (CH(3)Hg) production in sediments from the South River (SR), VA, an ecosystem contaminated with industrial mercury (Hg). Potential Hg methylation rates in samples collected at nine sites were low in late spring and significantly higher in late summer. Demethylation of (14)CH(3)Hg was dominated by (14)CH(4) production in spring, but switched to producing mostly (14)CO(2) in the summer. Fine-grained sediments originating from the erosion of river banks had the highest CH(3)Hg concentrations and were potential hot spots for both methylation and demethylation activities. Sequencing of 16S rRNA genes of cDNA recovered from sediment RNA extracts indicated that at least three groups of sulfate-reducing bacteria (SRB) and one group of iron-reducing bacteria (IRB), potential Hg methylators, were active in SR sediments. SRB were confirmed as a methylating guild by amendment experiments showing significant sulfate stimulation and molybdate inhibition of methylation in SR sediments. The addition of low levels of amorphous iron(III) oxyhydroxide significantly stimulated methylation rates, suggesting a role for IRB in CH(3)Hg synthesis. Overall, our studies suggest that coexisting SRB and IRB populations in river sediments contribute to Hg methylation, possibly by temporally and spatially separated processes.

  9. Sediment trapping analysis of flood control reservoirs in Upstream Ciliwung River using SWAT Model

    Science.gov (United States)

    Rofiq Ginanjar, Mirwan; Putra, Santosa Sandy

    2017-06-01

    The plans of Sukamahi dam and Ciawi dam construction for Jakarta flood risk reduction purpose had been proposed as feasible solutions to be implemented. However, the risk of the dam outlets clogging, caused by the sediment, is important to be anticipated. The prediction of the max sediment concentration in the reservoir is crucial for the dam operation planning. It is important to avoid the flood outlet tunnel clogging. This paper present a hydrologic sediment budget model of The Upstream Ciliwung River Basin, with flood control dam existence scenarios. The model was constructed within SWAT (Soil and Water Assessment Tools) plugin and run inside the QGIS framework. The free hydrological data from CFSR, soil data from FAO, and topographical data from CGIAR-CSI were implemented as the model input. The model resulted the sediment concentration dynamics of the Sukamahi and Ciawi reservoirs, on some suspended sediment parameter ranges. The sediment trapping efficiency was also computed by different possible dam capacity alternatives. The research findings will give a scientific decision making base for the river authority, in term of flood control dam planning, especially in The Upstream Ciliwung River Basin.

  10. Major, trace and REE geochemistry of recent sediments from lower Catumbela River (Angola)

    Science.gov (United States)

    Vinha, Manuela; Silva, M. G.; Cabral Pinto, Marina M. S.; Carvalho, Paula Cristina S.

    2016-03-01

    The mineralogy, texture, major, trace and rare earth elements, from recent sediment samples collected in the lower Catumbela River, were analysed in this study to characterize and discuss the factors controlling its geochemistry and provide data that can be used as tracers of Catumbela River inputs to the Angolan continental shelf. The sediments are mainly sands and silty-sands, but sandy-silt also occurs and the mineralogy is composed of quartz, feldspar, phyllosilicates, magnetite, ilmenite and also carbonates when the river crosses limestones and marls in the downstream sector. The hydraulic sorting originates magnetite-ilmenite and REE-enriched minerals placers. The mineralogy of the sediments is controlled by the source rocks and the degree of chemical weathering is lower than erosion. The texture is mainly controlled by location. There is enrichment in all the analysed trace elements in the fine grained, clay minerals and Fe-oxy-hydroxides rich sediments, compared to the coarse grained and quartz plus feldspar rich ones. The coarse grained sediments (without the placers) are impoverished in ΣREE when compared with UCC and NASC compositions, while the fine grained sediments have ΣREE contents similar to UCC and NASC. The placers have ΣREE contents up to 959.59 mg/kg. The source composition is the dominant factor controlling the REE geochemistry of the analysed sediments as there is no difference in the (La/Yb)N, (La/Sm)N and (Gd/Yb)N ratios in coarse and fine grained sediments. The sorting of magnetite, ilmenite, zircon, throrite, thorianite, rutile and titanite explain the HREE/LREE enriched patterns of the coarse grained sediments.

  11. Suspended sediment delivery to Puget Sound from the lower Nisqually River, western Washington, July 2010–November 2011

    Science.gov (United States)

    Curran, Christopher A.; Grossman, Eric E.; Magirl, Christopher S.; Foreman, James R.

    2016-05-26

    On average, the Nisqually River delivers about 100,000 metric tons per year (t/yr) of suspended sediment to Puget Sound, western Washington, a small proportion of the estimated 1,200,000 metric tons (t) of sediment reported to flow in the upper Nisqually River that drains the glaciated, recurrently active Mount Rainier stratovolcano. Most of the upper Nisqually River sediment load is trapped in Alder Lake, a reservoir completed in 1945. For water year 2011 (October 1, 2010‒September 30, 2011), daily sediment and continuous turbidity data were used to determine that 106,000 t of suspended sediment were delivered to Puget Sound, and 36 percent of this load occurred in 2 days during a typical winter storm. Of the total suspended-sediment load delivered to Puget Sound in the water year 2011, 47 percent was sand (particle size >0.063 millimeters), and the remainder (53 percent) was silt and clay. A sediment-transport curve developed from suspended-sediment samples collected from July 2010 to November 2011 agreed closely with a curve derived in 1973 using similar data-collection methods, indicating that similar sediment-transport conditions exist. The median annual suspended-sediment load of 73,000 t (water years 1980–2014) is substantially less than the average load, and the correlation (Pearson’s r = 0.80, p = 8.1E-9, n=35) between annual maximum 2-day sediment loads and normalized peak discharges for the period indicates the importance of wet years and associated peak discharges of the lower Nisqually River for sediment delivery to Puget Sound. The magnitude of peak discharges in the lower Nisqually River generally is suppressed by flow regulation, and relative to other free-flowing, glacier-influenced rivers entering Puget Sound, the Nisqually River delivers proportionally less sediment because of upstream sediment trapping from dams.

  12. TEMPORAL AND SPATIAL DYNAMICS OF DIFFERENT PARTICLE SIZE OF SUSPENDED SEDIMENT IN THE LIU RIVER CATCHMENTS,CHINA

    Institute of Scientific and Technical Information of China (English)

    Haoming FAN; Qiangguo CAI; Chengjiu GUO; Tieliang WANG

    2006-01-01

    This paper presents information on the particle size characteristics of suspended sediment transported by the Liu River, which has the most serious erosion and sedimentation problems in the northeast of China. The median (d50) particle size for the individual stations on the Liu River ranged from 0.0343 to 0.0588 mm. Particles <0.01 mm ranged from 15.4 to 33.3% and >0.05 mm of ranged from 24.3 to 53.7%. Spatial and temporal variations were noticeable in the particle size composition of suspended sediment within the study basins. At different locations the sediment particles size varies as a result of differences in catchment characteristics. The preferential deposition of the coarser size fractions has resulted in downstream fining of the suspended sediment load. In the flood season the suspended sediment particle size was finer than that in low flow season. The relations among water discharge, suspended sediment concentration, and sediment particle size are complicated. At small water discharge or suspended sediment concentration, with the increase of water discharge or sediment concentration the particle size of suspended sediment decreases to a minimum. However, when the water discharge or sediment concentration exceed certain threshold values (turning points) the particle size increases or remains constant with the increase of water discharge or sediment concentration. The tuning points are different in different rivers. Thus, their relations are double-valued. The negative relation between suspended sediment particle size and flow discharge reflects the importance of supply conditions and the positive relation reflects that the flow and hydraulics take a greater role in sediment transportation. On the whole, variation of the sediment particle size is subject to many factors such as the hydraulic conditions, the type and extent of erosion, human activities, vegetation coverage, hydraulic projects, and sediment supply. The findings reported in this paper

  13. Modeling flow, sediment transport and morphodynamics in rivers

    Science.gov (United States)

    Nelson, Jonathan M.; McDonald, Richard R.; Shimizu, Yasuyuki; Kimura, Ichiro; Nabi, Mohamed; Asahi, Kazutake

    2016-01-01

    Predicting the response of natural or man-made channels to imposed supplies of water and sediment is one of the difficult practical problems commonly addressed by fluvial geomorphologists. This problem typically arises in three situations. In the first situation, geomorphologists are attempting to understand why a channel or class of channels has a certain general form; in a sense, this is the central goal of fluvial geomorphology. In the second situation, geomorphologists are trying to understand and explain how and why a specific channel will evolve or has evolved in response to altered or unusual sediment and water supplies to that channel. For example, this would include explaining the short-term response of a channel to an unusually large flood or predicting the response of a channel to long-term changes in flow or sediment supply due to various human activities such as damming or diversions. Finally, geomorphologists may be called upon to design or assess the design of proposed man-made channels that must carry a certain range of flows and sediment loads in a stable or at least quasi-stable manner. In each of these three situations, the problem is really the same: geomorphologists must understand and predict the interaction of the flow field in the channel, the sediment movement in the channel and the geometry of the channel bed and banks. In general, the flow field, the movement of sediment making up the bed and the morphology of the bed are intricately linked; the flow moves the sediment, the bed is altered by erosion and deposition of sediment and the shape of the bed is critically important for predicting the flow. This complex linkage is precisely what makes understanding channel form and process such a difficult and interesting challenge.

  14. REE systematics in modern bottom sediments of the Caspian Sea and river deltas worldwide: Experience of comparison

    Science.gov (United States)

    Maslov, A. V.; Kozina, N. V.; Shevchenko, V. P.; Klyuvitkin, A. A.; Sapozhnikov, Ph. V.; Zavialov, P. O.

    2017-07-01

    The results of comparison of a number of main parameters of the chondrite-normalized REE distribution spectra in modern bottom, mainly pelitic, sediments of various sedimentary subsystems of the Caspian Sea and marginal filters of the Volga and Ural rivers with those characteristic of the pelitic fraction of modern bottom sediments of different river deltas worldwide are discussed. According to the features of the REE distribution spectra, as well as the ɛNd(0) values, it has been established that most samples of the Caspian bottom sediments are similar to those of large rivers and rivers, draining watersheds composed of s