WorldWideScience

Sample records for hubble reveals galactic

  1. Legacy ExtraGalactic UV Survey with The Hubble Space Telescope: Stellar Cluster Catalogs and First Insights Into Cluster Formation and Evolution in NGC 628

    NARCIS (Netherlands)

    Adamo, A.; Ryon, J.E.; Messa, M.; Kim, H.; Grasha, K.; Cook, D.O.; Calzetti, D.; Lee, J.C.; Whitmore, B.C.; Elmegreen, B.G.; Ubeda, L.; Smith, L.J.; Bright, S.N.; Runnholm, A.; Andrews, J.E.; Fumagalli, M.; Gouliermis, D.A.; Kahre, L.; Nair, P.; Thilker, D.; Walterbos, R.; Wofford, A.; Aloisi, A.; Ashworth, G.; Brown, T.M.; Chandar, R.; Christian, C.; Cignoni, M.; Clayton, G.C.; Dale, D.A.; de Mink, S.E.; Dobbs, C.; Elmegreen, D.M.; Evans, A.S.; Gallagher III, J.S.; Grebel, E.K.; Herrero, A.; Hunter, D.A.; Johnson, K.E.; Kennicutt, R.C.; Krumholz, M.R.; Lennon, D.; Levay, K.; Martin, C.; Nota, A.; Östlin, G.; Pellerin, A.; Prieto, J.; Regan, M.W.; Sabbi, E.; Sacchi, E.; Schaerer, D.; Schiminovich, D.; Shabani, F.; Tosi, M.; Van Dyk, S.D.; Zackrisson, E.

    2017-01-01

    We report the large effort that is producing comprehensive high-level young star cluster (YSC) catalogs for a significant fraction of galaxies observed with the Legacy ExtraGalactic UV Survey (LEGUS) Hubble treasury program. We present the methodology developed to extract cluster positions, verify

  2. Galactic winds and the hubble sequence

    International Nuclear Information System (INIS)

    Bregman, J.N.

    1978-01-01

    The conditions for maintenance of supernova-driven galactic winds have been investigated to assess their role in the morphology of disk-bulge galaxies. A fluid mechanical model with gas and stars which includes galactic rotation has been used to investigate several classes of winds. It is found that many galaxies, once their initial gas is depleted, can maintain a wind throughout the entire galaxy, a conditon most easily satisfied by systems with a small bulge-to-disk ratio. If the ratio of supernova heating to total mass loss falls below a critical value that depends on galaxy type and mass, only a partial wind exterior to a critical surface can exist, with infall occurring at interior points. Galaxies in which only the bulge was depleted of gas may support a bulge wind that does not interact with the colder and denser gas in the disk.These results indicate that if SO galaxies are a transition class between elliptical and spiral galaxies, it is probably because early galactic winds, which may initially deplete a galaxy of gas, are more prevalent in SO than in spiral galaxies. However, if SO's form a parallel sequence with spirals, the initial gas-depletion mechanism must be independent of bulge-to-disk ratio. These results are not strongly influenced by altering the galactic mass model, including electron conduction in the flow equations, or adding massive halos

  3. GALACTIC-SCALE ABSORPTION OUTFLOW IN THE LOW-LUMINOSITY QUASAR IRAS F04250-5718: HUBBLE SPACE TELESCOPE/COSMIC ORIGINS SPECTROGRAPH OBSERVATIONS

    International Nuclear Information System (INIS)

    Edmonds, Doug; Borguet, Benoit; Arav, Nahum; Dunn, Jay P.; Penton, Steve; Kriss, Gerard A.; Korista, Kirk; Bautista, Manuel; Costantini, Elisa; Kaastra, Jelle; Steenbrugge, Katrien; Ignacio Gonzalez-Serrano, J.; Benn, Chris; Aoki, Kentaro; Behar, Ehud; Micheal Crenshaw, D.; Everett, John; Gabel, Jack; Moe, Maxwell; Scott, Jennifer

    2011-01-01

    We present absorption line analysis of the outflow in the quasar IRAS F04250-5718. Far-ultraviolet data from the Cosmic Origins Spectrograph on board the Hubble Space Telescope reveal intrinsic narrow absorption lines from high ionization ions (e.g., C IV, N V, and O VI) as well as low ionization ions (e.g., C II and Si III). We identify three kinematic components with central velocities ranging from ∼-50 to ∼-230 km s -1 . Velocity-dependent, non-black saturation is evident from the line profiles of the high ionization ions. From the non-detection of absorption from a metastable level of C II, we are able to determine that the electron number density in the main component of the outflow is ∼ -3 . Photoionization analysis yields an ionization parameter log U H ∼ -1.6 ± 0.2, which accounts for changes in the metallicity of the outflow and the shape of the incident spectrum. We also consider solutions with two ionization parameters. If the ionization structure of the outflow is due to photoionization by the active galactic nucleus, we determine that the distance to this component from the central source is ∼>3 kpc. Due to the large distance determined for the main kinematic component, we discuss the possibility that this outflow is part of a galactic wind.

  4. Hubble Space Telescope Snapshot Survey for Resolved Companions of Galactic Cepheids

    Science.gov (United States)

    Evans, Nancy Remage; Bond, Howard E.; Schaefer, Gail H.; Mason, Brian D.; Tingle, Evan; Karovska, Margarita; Pillitteri, Ignazio

    2016-05-01

    We have conducted an imaging survey with the Hubble Space Telescope Wide Field Camera 3 (WFC3) of 70 Galactic Cepheids, typically within 1 kpc, with the aim of finding resolved physical companions. The WFC3 field typically covers the 0.1 pc area where companions are expected. In this paper, we identify 39 Cepheids having candidate companions, based on their positions in color-magnitude diagrams, and having separations ⩾ 5'' from the Cepheids. We use follow-up observations of 14 of these candidates with XMM-Newton, and of one of them with ROSAT, to separate X-ray-active young stars (probable physical companions) from field stars (chance alignments). Our preliminary estimate, based on the optical and X-ray observations, is that only 3% of the Cepheids in the sample have wide companions. Our survey easily detects resolved main-sequence companions as faint as spectral type K. Thus the fact that the two most probable companions (those of FF Aql and RV Sco) are earlier than type K is not simply a function of the detection limit. We find no physical companions having separations larger than 4000 au in the X-ray survey. Two Cepheids are exceptions in that they do have young companions at significantly larger separations (δ Cep and S Nor), but both belong to a cluster or a loose association, so our working model is that they are not gravitationally bound binary members, but rather cluster/association members. All of these properties provide constraints on both star formation and subsequent dynamical evolution. The low frequency of true physical companions at separations > 5'' is confirmed by examination of the subset of the nearest Cepheids and also the density of the fields. Based on observations with the NASA/ESA Hubble Space Telescope obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555.

  5. The Black Hole Mass-Bulge Luminosity Relationship for Active Galactic Nuclei From Reverberation Mapping and Hubble Space Telescope Imaging

    DEFF Research Database (Denmark)

    Bentz, Misty C.; Peterson, Bradley M.; Pogge, Richard W.

    2009-01-01

    We investigate the relationship between black hole mass and bulge luminosity for active galactic nuclei (AGNs) with reverberation-based black hole mass measurements and bulge luminosities from two-dimensional decompositions of Hubble Space Telescope host galaxy images. We find that the slope...... of the relationship for AGNs is 0.76-0.85 with an uncertainty of ~0.1, somewhat shallower than the M BH vprop L 1.0±0.1 relationship that has been fit to nearby quiescent galaxies with dynamical black hole mass measurements. This difference is somewhat perplexing, as the AGN black hole masses include an overall...

  6. THE HUBBLE SPACE TELESCOPE UV LEGACY SURVEY OF GALACTIC GLOBULAR CLUSTERS. III. A QUINTUPLE STELLAR POPULATION IN NGC 2808

    International Nuclear Information System (INIS)

    Milone, A. P.; Marino, A. F.; Jerjen, H.; Piotto, G.; Renzini, A.; Bedin, L. R.; Anderson, J.; Bellini, A.; Cassisi, S.; Pietrinferni, A.; D’Antona, F.; Ventura, P.

    2015-01-01

    In this study we present the first results from multi-wavelength Hubble Space Telescope (HST) observations of the Galactic globular cluster (GC) NGC 2808 as an extension of the Hubble Space Telescope UV Legacy Survey of Galactic GCs (GO-13297 and previous proprietary and HST archive data). Our analysis allowed us to disclose a multiple-stellar-population phenomenon in NGC 2808 even more complex than previously thought. We have separated at least five different populations along the main sequence and the red giant branch (RGB), which we name A, B, C, D, and E (though an even finer subdivision may be suggested by the data). We identified the RGB bump in four out of the five RGBs. To explore the origin of this complex color–magnitude diagram, we have combined our multi-wavelength HST photometry with synthetic spectra, generated by assuming different chemical compositions. The comparison of observed colors with synthetic spectra suggests that the five stellar populations have different contents of light elements and helium. Specifically, if we assume that NGC 2808 is homogeneous in [Fe/H] (as suggested by spectroscopy for Populations B, C, D, E, but lacking for Population A) and that population A has a primordial helium abundance, we find that populations B, C, D, E are enhanced in helium by ΔY ∼ 0.03, 0.03, 0.08, 0.13, respectively. We obtain similar results by comparing the magnitude of the RGB bumps with models. Planned spectroscopic observations will test whether Population A also has the same metallicity, or whether its photometric differences with Population B can be ascribed to small [Fe/H] and [O/H] differences rather than to helium

  7. Hubble Images Reveal Jupiter's Auroras

    Science.gov (United States)

    1996-01-01

    These images, taken by the Hubble Space Telescope, reveal changes in Jupiter's auroral emissions and how small auroral spots just outside the emission rings are linked to the planet's volcanic moon, Io. The images represent the most sensitive and sharply-detailed views ever taken of Jovian auroras.The top panel pinpoints the effects of emissions from Io, which is about the size of Earth's moon. The black-and-white image on the left, taken in visible light, shows how Io and Jupiter are linked by an invisible electrical current of charged particles called a 'flux tube.' The particles - ejected from Io (the bright spot on Jupiter's right) by volcanic eruptions - flow along Jupiter's magnetic field lines, which thread through Io, to the planet's north and south magnetic poles. This image also shows the belts of clouds surrounding Jupiter as well as the Great Red Spot.The black-and-white image on the right, taken in ultraviolet light about 15 minutes later, shows Jupiter's auroral emissions at the north and south poles. Just outside these emissions are the auroral spots. Called 'footprints,' the spots are created when the particles in Io's 'flux tube' reach Jupiter's upper atmosphere and interact with hydrogen gas, making it fluoresce. In this image, Io is not observable because it is faint in the ultraviolet.The two ultraviolet images at the bottom of the picture show how the auroral emissions change in brightness and structure as Jupiter rotates. These false-color images also reveal how the magnetic field is offset from Jupiter's spin axis by 10 to 15 degrees. In the right image, the north auroral emission is rising over the left limb; the south auroral oval is beginning to set. The image on the left, obtained on a different date, shows a full view of the north aurora, with a strong emission inside the main auroral oval.The images were taken by the telescope's Wide Field and Planetary Camera 2 between May 1994 and September 1995.This image and other images and data

  8. Testing the isotropy of the Hubble expansion

    OpenAIRE

    Migkas, K.; Plionis, M.

    2016-01-01

    Abstract: We have used the Union2.1 SNIa compilation to search for possible Hubble expansion anisotropies, dividing the sky in 9 solid angles containing roughly the same number of SNIa, as well as in two Galactic hemispheres. We identified only one sky region, containing 82 SNIa (~15% of total sample with z > 0.02), that indeed appears to share a Hubble expansion significantly different from the rest of the sample. However, this behaviour can be attributed to the joint "erratic" behaviour of ...

  9. The Radius-Luminosity Relationship for Active Galactic Nuclei

    DEFF Research Database (Denmark)

    Bentz, Misty C.; Peterson, Bradley M.; Pogge, Richard W.

    2006-01-01

    We have obtained high resolution images of the central regions of 14 reverberation-mapped active galactic nuclei (AGN) using the Hubble Space Telescope Advanced Camera for Surveys High Resolution Camera to account for host-galaxy starlight contamination of measured AGN luminosities. We measure th...

  10. HERSCHEL OBSERVATIONS REVEAL ANOMALOUS MOLECULAR ABUNDANCES TOWARD THE GALACTIC CENTER

    Energy Technology Data Exchange (ETDEWEB)

    Sonnentrucker, P. [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Neufeld, D. A.; Indriolo, N. [Physics and Astronomy Department, Johns Hopkins University, Baltimore, MD 21218 (United States); Gerin, M.; De Luca, M. [LERMA-LRA, UMR 8112 du CNRS, Observatoire de Paris, Ecole Normale Superieure, UPMC and UCP, 24 rue Lhomond, F-75231, Paris Cedex 05 (France); Lis, D. C. [Astronomy Department, California Institute of Technology, Pasadena, CA 91125 (United States); Goicoechea, J. R., E-mail: sonnentr@stsci.edu [Centro de Astrobiologia, CSIC/INTA, E-28850, Madrid (Spain)

    2013-01-20

    We report the Herschel detections of hydrogen fluoride (HF) and para-water (p-H{sub 2}O) in gas intercepting the sight lines to two well-studied molecular clouds in the vicinity of the Sgr A complex: G-0.02-0.07 (the {sup +}50 km s{sup -1} cloud{sup )} and G-0.13-0.08 (the {sup +}20 km s{sup -1} cloud{sup )}. Toward both sight lines, HF and water absorption components are detected over a wide range of velocities covering {approx}250 km s{sup -1}. For all velocity components with V{sub LSR} > -85 km s{sup -1}, we find that the HF and water abundances are consistent with those measured toward other sight lines probing the Galactic disk gas. The velocity components with V{sub LSR} {<=} -85 km s{sup -1}, which are known to trace gas residing within {approx}200 pc of the Galactic center, however, exhibit water vapor abundances with respect to HF at least a factor three higher than those found in the Galactic disk gas. Comparison with CH data indicates that our observations are consistent with a picture where HF and a fraction of the H{sub 2}O absorption arise in diffuse molecular clouds showing Galactic disk-like abundances while the bulk of the water absorption arises in warmer (T {>=} 400 K) diffuse molecular gas for V{sub LSR} {<=} -85 km s{sup -1}. This diffuse Interstellar Medium (ISM) phase has also been recently revealed through observations of CO, HF, H{sup +}{sub 3}, and H{sub 3}O{sup +} absorption toward other sight lines probing the Galactic center inner region.

  11. THE BLACK HOLE MASS-BULGE LUMINOSITY RELATIONSHIP FOR ACTIVE GALACTIC NUCLEI FROM REVERBERATION MAPPING AND HUBBLE SPACE TELESCOPE IMAGING

    International Nuclear Information System (INIS)

    Bentz, Misty C.; Peterson, Bradley M.; Pogge, Richard W.; Vestergaard, Marianne

    2009-01-01

    We investigate the relationship between black hole mass and bulge luminosity for active galactic nuclei (AGNs) with reverberation-based black hole mass measurements and bulge luminosities from two-dimensional decompositions of Hubble Space Telescope host galaxy images. We find that the slope of the relationship for AGNs is 0.76-0.85 with an uncertainty of ∼0.1, somewhat shallower than the M BH ∝ L 1.0±0.1 relationship that has been fit to nearby quiescent galaxies with dynamical black hole mass measurements. This difference is somewhat perplexing, as the AGN black hole masses include an overall scaling factor that brings the AGN M BH -σ * relationship into agreement with that of quiescent galaxies. We discuss biases that may be inherent to the AGN and quiescent galaxy samples and could cause the apparent inconsistency in the forms of their M BH -L bulge relationships. Recent work by Graham, however, presents a similar slope of ∼0.8 for the quiescent galaxies and may bring the relationship for AGNs and quiescent galaxies into agreement.

  12. THE HUBBLE SPACE TELESCOPE UV LEGACY SURVEY OF GALACTIC GLOBULAR CLUSTERS. VII. IMPLICATIONS FROM THE NEARLY UNIVERSAL NATURE OF HORIZONTAL BRANCH DISCONTINUITIES

    Energy Technology Data Exchange (ETDEWEB)

    Brown, T. M.; Bellini, A.; Anderson, J. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Cassisi, S.; Pietrinferni, A. [INAF-Osservatorio Astronomico di Teramo, Via Mentore Maggini s.n.c., I-64100 Teramo (Italy); D’Antona, F. [INAF-Osservatorio Astronomico di Roma, Via Frascati 33, I-00040 Monteporzio Catone, Roma (Italy); Salaris, M. [Astrophysics Research Institute,Liverpool John Moores University, Liverpool Science Park, IC2 Building, 146 Brownlow Hill, Liverpool L3 5RF (United Kingdom); Milone, A. P. [Research School of Astronomy and Astrophysics, The Australian National University, Cotter Road, Weston, ACT, 2611 (Australia); Dalessandro, E. [Dipartimento di Fisica e Astronomia, Università degli Studi di Bologna, Viale Berti Pichat 6/2, I-40127 Bologna (Italy); Piotto, G.; Ortolani, S.; Nardiello, D. [Dipartimento di Fisica e Astronomia “Galileo Galilei,”Università di Padova, Vicolo dell’Osservatorio 3, I-35122 Padova (Italy); Renzini, A.; Bedin, L. R. [INAF-Osservatorio Astronomico di Padova, Vicolo dell’Osservatorio 5, I-35122 Padova (Italy); Sweigart, A. V. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Sarajedini, A. [Department of Astronomy, University of Florida, 211 Bryant Space Science Center, Gainesville, FL 32611 (United States); Aparicio, A., E-mail: tbrown@stsci.edu, E-mail: jayander@stsci, E-mail: bellini@stsci.edu, E-mail: cassisi@oa-teramo.inaf.it, E-mail: pietrinferni@oa-teramo.inaf.it, E-mail: dantona@oa-roma.inaf.it, E-mail: M.Salaris@ljmu.ac.uk, E-mail: milone@mso.anu.edu.au [Instituto de Astrofísica de Canarias. Calle Vía Láctea s/n. E38200 — La Laguna, Tenerife, Canary Islands (Spain)

    2016-05-01

    The UV-initiative Hubble Space Telescope Treasury survey of Galactic globular clusters provides a new window into the phenomena that shape the morphological features of the horizontal branch (HB). Using this large and homogeneous catalog of UV and blue photometry, we demonstrate that the HB exhibits discontinuities that are remarkably consistent in color (effective temperature). This consistency is apparent even among some of the most massive clusters hosting multiple distinct sub-populations (such as NGC 2808, ω Cen, and NGC 6715), demonstrating that these phenomena are primarily driven by atmospheric physics that is independent of the underlying population properties. However, inconsistencies arise in the metal-rich clusters NGC 6388 and NGC 6441, where the discontinuity within the blue HB (BHB) distribution shifts ∼1000–2000 K hotter. We demonstrate that this shift is likely due to a large helium enhancement in the BHB stars of these clusters, which in turn affects the surface convection and evolution of such stars. Our survey also increases the number of Galactic globular clusters known to host blue-hook stars (also known as late hot flashers) from 6 to 23 clusters. These clusters are biased toward the bright end of the globular cluster luminosity function, confirming that blue-hook stars tend to form in the most massive clusters with significant self-enrichment.

  13. The Hubble Space Telescope UV Legacy Survey of Galactic Globular Clusters - XII. The RGB bumps of multiple stellar populations

    Science.gov (United States)

    Lagioia, E. P.; Milone, A. P.; Marino, A. F.; Cassisi, S.; Aparicio, A. J.; Piotto, G.; Anderson, J.; Barbuy, B.; Bedin, L. R.; Bellini, A.; Brown, T.; D'Antona, F.; Nardiello, D.; Ortolani, S.; Pietrinferni, A.; Renzini, A.; Salaris, M.; Sarajedini, A.; van der Marel, R.; Vesperini, E.

    2018-04-01

    The Hubble Space Telescope UV Legacy Survey of Galactic Globular Clusters is providing a major breakthrough in our knowledge of globular clusters (GCs) and their stellar populations. Among the main results, we discovered that all the studied GCs host two main discrete groups consisting of first generation (1G) and second generation (2G) stars. We exploit the multiwavelength photometry from this project to investigate, for the first time, the Red Giant Branch Bump (RGBB) of the two generations in a large sample of GCs. We identified, with high statistical significance, the RGBB of 1G and 2G stars in 26 GCs and found that their magnitude separation as a function of the filter wavelength follows comparable trends. The comparison of observations to synthetic spectra reveals that the RGBB luminosity depends on the stellar chemical composition and that the 2G RGBB is consistent with stars enhanced in He and N and depleted in C and O with respect to 1G stars. For metal-poor GCs the 1G and 2G RGBB relative luminosity in optical bands mostly depends on helium content, Y. We used the RGBB observations in F606W and F814W bands to infer the relative helium abundance of 1G and 2G stars in 18 GCs, finding an average helium enhancement ΔY = 0.011 ± 0.002 of 2G stars with respect to 1G stars. This is the first determination of the average difference in helium abundance of multiple populations in a large number of clusters and provides a lower limit to the maximum internal variation of helium in GCs.

  14. Active galactic nuclei. From the central engine to the host galaxy

    International Nuclear Information System (INIS)

    Gilbert, Didier

    2008-01-01

    After some recalls on galaxies, on their classification, on the Universe expansion and on the Hubble law, this academic report addresses active galactic nuclei (AGN) by describing their anatomy (central black hole, accretion disk, jets and winds, Broad Line Region, Narrow Line Region, molecular torus and dusts, radio lobes). The author also presents the unified model. In the next part, he proposes an overview of active galaxies and active galactic nuclei by distinguishing galaxies with a strong stellar activity, radio-quiet and radio-loud active galactic nuclei. Examples are presented for each of these types. In the last part, the author draws perspectives for research in cosmology, and outlines questions which are still to be answered

  15. The Hubble Space Telescope UV Legacy Survey of Galactic globular clusters - XIV. Multiple stellar populations within M 15 and their radial distribution

    Science.gov (United States)

    Nardiello, D.; Milone, A. P.; Piotto, G.; Anderson, J.; Bedin, L. R.; Bellini, A.; Cassisi, S.; Libralato, M.; Marino, A. F.

    2018-06-01

    In the context of the Hubble Space Telescope UV Survey of Galactic globular clusters (GCs), we derived high-precision, multi-band photometry to investigate the multiple stellar populations in the massive and metal-poor GC M 15. By creating for red-giant branch (RGB) stars of the cluster a `chromosome map', which is a pseudo two-colour diagram made with appropriate combination of F275W, F336W, F438W, and F814W magnitudes, we revealed colour spreads around two of the three already known stellar populations. These spreads cannot be produced by photometric errors alone and could hide the existence of (two) additional populations. This discovery increases the complexity of the multiple-population phenomenon in M 15. Our analysis shows that M 15 exhibits a faint sub-giant branch (SGB), which is also detected in colour-magnitude diagrams (CMDs) made with optical magnitudes only. This poorly populated SGB includes about 5 per cent of the total number of SGB stars and evolves into a red RGB in the mF336W versus mF336W - mF814W CMD, suggesting that M 15 belongs to the class of Type II GCs. We measured the relative number of stars in each population at various radial distances from the cluster centre, showing that all of these populations share the same radial distribution within statistic uncertainties. These new findings are discussed in the context of the formation and evolution scenarios of the multiple populations.

  16. Evolution of hot galactic flows

    International Nuclear Information System (INIS)

    Loewenstein, M.; Mathews, W.G.

    1987-01-01

    The time-dependent equations describing galactic flows, including detailed models for the evolving source terms, are integrated over a Hubble time for two elliptical galaxies with total masses of 3.1 x 10 to the 12th and 8.3 x 10 to the 12th solar masses, 90 percent of which resides in extended, nonluminous halos. The standard supernova rate of Tammann and a rate 4 times smaller are considered for each galaxy model. The combination of the extended gravitational potential of the dark halo and the time-dependent source terms generally lead to the development of massive, quasi-hydrostatic, nearly isothermal distributions of gas at about 10 to the 7th K with cooling inflows inside their galactic cores. For the less massive galaxy with the higher supernova rate, however, a low-luminosity supersonic galactic wind develops. The effects of a lowered metal abundance, thermal conduction, and the absence of a massive halo are explored separately for one of the present models. The X-ray luminosities of the hot gas in the models with dark halos and the lower supernova rate are in good agreement with Einstein observations of early-type galaxies. 42 references

  17. Radio Telescopes Reveal Unseen Galactic Cannibalism

    Science.gov (United States)

    2008-06-01

    Radio-telescope images have revealed previously-unseen galactic cannibalism -- a triggering event that leads to feeding frenzies by gigantic black holes at the cores of galaxies. Astronomers have long suspected that the extra-bright cores of spiral galaxies called Seyfert galaxies are powered by supermassive black holes consuming material. However, they could not see how the material is started on its journey toward the black hole. Optical/Radio Comparison Visible-light (left) and radio (right) image of galaxy pair: Radio image shows gas streaming between galaxies. CREDIT: Kuo et al., NRAO/AUI/NSF Click on image for more graphics. One leading theory said that Seyfert galaxies have been disturbed by close encounters with neighboring galaxies, thus stirring up their gas and bringing more of it within the gravitational reach of the black hole. However, when astronomers looked at Seyferts with visible-light telescopes, only a small fraction showed any evidence of such an encounter. Now, new images of hydrogen gas in Seyferts made using the National Science Foundation's Very Large Array (VLA) radio telescope show the majority of them are, in fact, disturbed by ongoing encounters with neighbor galaxies. "The VLA lifted the veil on what's really happening with these galaxies," said Cheng-Yu Kuo, a graduate student at the University of Virginia. "Looking at the gas in these galaxies clearly showed that they are snacking on their neighbors. This is a dramatic contrast with their appearance in visible starlight," he added. The effect of the galactic encounters is to send gas and dust toward the black hole and produce energy as the material ultimately is consumed. Black holes, concentrations of matter so dense that not even light can escape their gravitational pull, reside at the cores of many galaxies. Depending on how rapidly the black hole is eating, the galaxy can show a wide range of energetic activity. Seyfert galaxies have the mildest version of this activity, while

  18. Ionized Absorbers as Evidence for Supernova-driven Cooling of the Lower Galactic Corona

    NARCIS (Netherlands)

    Fraternali, Filippo; Marasco, Antonino; Marinacci, Federico; Binney, James

    2013-01-01

    We show that the ultraviolet absorption features, newly discovered in Hubble Space Telescope spectra, are consistent with being formed in a layer that extends a few kpc above the disk of the Milky Way. In this interface between the disk and the Galactic corona, high-metallicity gas ejected from the

  19. THE HUBBLE SPACE TELESCOPE UV LEGACY SURVEY OF GALACTIC GLOBULAR CLUSTERS. VIII. PRELIMINARY PUBLIC CATALOG RELEASE

    Energy Technology Data Exchange (ETDEWEB)

    Soto, M.; Bellini, A.; Anderson, J.; Van der Marel, R. P.; Brown, T. M. [Space Telescope Science Institute, San Martin Drive 3700, Baltimore, MD 21218 (United States); Piotto, G.; Granata, V.; Ortolani, S.; Nardiello, D. [Dipartimento di Fisica e Astronomia Galileo Galilei, Università di Padova, Vicolo dell’Osservatorio 3, I-35122 Padova (Italy); Bedin, L. R. [INAF-Osservatorio Astronomico di Padova, Vicolo dell’Osservatorio 5, I-35122 Padova (Italy); Milone, A. P. [Research School of Astronomy and Astrophysics, The Australian National University, Cotter Road, Weston, ACT, 2611 (Australia); Cool, A. M. [Department of Physics and Astronomy, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132 (United States); King, I. R. [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195-1580 (United States); Sarajedini, A. [Department of Astronomy, University of Florida, 211 Bryant Space Science Center, Gainesville, FL 32611 (United States); Cassisi, S. [Osservatorio Astronomico di Teramo, Via Mentore Maggini s.n.c., I-64100 Teramo (Italy); Aparicio, A.; Hidalgo, S., E-mail: mario.soto@uda.cl [Instituto de Astrofísica de Canarias, E-38200 La Laguna, Tenerife, Canary Islands (Spain)

    2017-01-01

    The Hubble Space Telescope (HST) UV Legacy Survey of Galactic Globular Clusters (GO-13297) has been specifically designed to complement the existing F606W and F814W observations of the Advanced Camera for Surveys (ACS) Globular Cluster Survey (GO-10775) by observing the most accessible 47 of the previous survey’s 65 clusters in three WFC3/UVIS filters F275W, F336W, and F438W. The new survey also adds super-solar metallicity open cluster NGC 6791 to increase the metallicity diversity. The combined survey provides a homogeneous 5-band data set that can be used to pursue a broad range of scientific investigations. In particular, the chosen UV filters allow the identification of multiple stellar populations by targeting the regions of the spectrum that are sensitive to abundance variations in C, N, and O. In order to provide the community with uniform preliminary catalogs, we have devised an automated procedure that performs high-quality photometry on the new UV observations (along with similar observations of seven other programs in the archive). This procedure finds and measures the potential sources on each individual exposure using library point-spread functions and cross-correlates these observations with the original ACS-Survey catalog. The catalog of 57 clusters we publish here will be useful to identify stars in the different stellar populations, in particular for spectroscopic follow-up. Eventually, we will construct a more sophisticated catalog and artificial-star tests based on an optimal reduction of the UV survey data, but the catalogs presented here give the community the chance to make early use of this HST Treasury survey.

  20. Chemically Dissected Rotation Curves of the Galactic Bulge from Main-sequence Proper Motions

    Science.gov (United States)

    Clarkson, William I.; Calamida, Annalisa; Sahu, Kailash C.; Brown, Thomas M.; Gennaro, Mario; Avila, Roberto J.; Valenti, Jeff; Debattista, Victor P.; Rich, R. Michael; Minniti, Dante; Zoccali, Manuela; Aufdemberge, Emily R.

    2018-05-01

    We report results from an exploratory study implementing a new probe of Galactic evolution using archival Hubble Space Telescope imaging observations. Precise proper motions are combined with photometric relative metallicity and temperature indices, to produce the proper-motion rotation curves of the Galactic bulge separately for metal-poor and metal-rich main-sequence samples. This provides a “pencil-beam” complement to large-scale wide-field surveys, which to date have focused on the more traditional bright giant branch tracers. We find strong evidence that the Galactic bulge rotation curves drawn from “metal-rich” and “metal-poor” samples are indeed discrepant. The “metal-rich” sample shows greater rotation amplitude and a steeper gradient against line-of-sight distance, as well as possibly a stronger central concentration along the line of sight. This may represent a new detection of differing orbital anisotropy between metal-rich and metal-poor bulge objects. We also investigate selection effects that would be implied for the longitudinal proper-motion cut often used to isolate a “pure-bulge” sample. Extensive investigation of synthetic stellar populations suggests that instrumental and observational artifacts are unlikely to account for the observed rotation curve differences. Thus, proper-motion-based rotation curves can be used to probe chemodynamical correlations for main-sequence tracer stars, which are orders of magnitude more numerous in the Galactic bulge than the bright giant branch tracers. We discuss briefly the prospect of using this new tool to constrain detailed models of Galactic formation and evolution. Based on observations made with the NASA/ESA Hubble Space Telescope and obtained from the data archive at the Space Telescope Science Institute. STScI is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.

  1. Cosmological Hubble constant and nuclear Hubble constant

    International Nuclear Information System (INIS)

    Horbuniev, Amelia; Besliu, Calin; Jipa, Alexandru

    2005-01-01

    The evolution of the Universe after the Big Bang and the evolution of the dense and highly excited nuclear matter formed by relativistic nuclear collisions are investigated and compared. Values of the Hubble constants for cosmological and nuclear processes are obtained. For nucleus-nucleus collisions at high energies the nuclear Hubble constant is obtained in the frame of different models involving the hydrodynamic flow of the nuclear matter. Significant difference in the values of the two Hubble constant - cosmological and nuclear - is observed

  2. Difference Image Analysis of Galactic Microlensing. I. Data Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Alcock, C.; Allsman, R. A.; Alves, D.; Axelrod, T. S.; Becker, A. C.; Bennett, D. P.; Cook, K. H.; Drake, A. J.; Freeman, K. C.; Griest, K. (and others)

    1999-08-20

    This is a preliminary report on the application of Difference Image Analysis (DIA) to Galactic bulge images. The aim of this analysis is to increase the sensitivity to the detection of gravitational microlensing. We discuss how the DIA technique simplifies the process of discovering microlensing events by detecting only objects that have variable flux. We illustrate how the DIA technique is not limited to detection of so-called ''pixel lensing'' events but can also be used to improve photometry for classical microlensing events by removing the effects of blending. We will present a method whereby DIA can be used to reveal the true unblended colors, positions, and light curves of microlensing events. We discuss the need for a technique to obtain the accurate microlensing timescales from blended sources and present a possible solution to this problem using the existing Hubble Space Telescope color-magnitude diagrams of the Galactic bulge and LMC. The use of such a solution with both classical and pixel microlensing searches is discussed. We show that one of the major causes of systematic noise in DIA is differential refraction. A technique for removing this systematic by effectively registering images to a common air mass is presented. Improvements to commonly used image differencing techniques are discussed. (c) 1999 The American Astronomical Society.

  3. Legacy ExtraGalactic UV Survey with The Hubble Space Telescope: Stellar Cluster Catalogs and First Insights Into Cluster Formation and Evolution in NGC 628

    Science.gov (United States)

    Adamo, A.; Ryon, J. E.; Messa, M.; Kim, H.; Grasha, K.; Cook, D. O.; Calzetti, D.; Lee, J. C.; Whitmore, B. C.; Elmegreen, B. G.; Ubeda, L.; Smith, L. J.; Bright, S. N.; Runnholm, A.; Andrews, J. E.; Fumagalli, M.; Gouliermis, D. A.; Kahre, L.; Nair, P.; Thilker, D.; Walterbos, R.; Wofford, A.; Aloisi, A.; Ashworth, G.; Brown, T. M.; Chandar, R.; Christian, C.; Cignoni, M.; Clayton, G. C.; Dale, D. A.; de Mink, S. E.; Dobbs, C.; Elmegreen, D. M.; Evans, A. S.; Gallagher, J. S., III; Grebel, E. K.; Herrero, A.; Hunter, D. A.; Johnson, K. E.; Kennicutt, R. C.; Krumholz, M. R.; Lennon, D.; Levay, K.; Martin, C.; Nota, A.; Östlin, G.; Pellerin, A.; Prieto, J.; Regan, M. W.; Sabbi, E.; Sacchi, E.; Schaerer, D.; Schiminovich, D.; Shabani, F.; Tosi, M.; Van Dyk, S. D.; Zackrisson, E.

    2017-06-01

    We report the large effort that is producing comprehensive high-level young star cluster (YSC) catalogs for a significant fraction of galaxies observed with the Legacy ExtraGalactic UV Survey (LEGUS) Hubble treasury program. We present the methodology developed to extract cluster positions, verify their genuine nature, produce multiband photometry (from NUV to NIR), and derive their physical properties via spectral energy distribution fitting analyses. We use the nearby spiral galaxy NGC 628 as a test case for demonstrating the impact that LEGUS will have on our understanding of the formation and evolution of YSCs and compact stellar associations within their host galaxy. Our analysis of the cluster luminosity function from the UV to the NIR finds a steepening at the bright end and at all wavelengths suggesting a dearth of luminous clusters. The cluster mass function of NGC 628 is consistent with a power-law distribution of slopes ˜ -2 and a truncation of a few times 105 {M}⊙ . After their formation, YSCs and compact associations follow different evolutionary paths. YSCs survive for a longer time frame, confirming their being potentially bound systems. Associations disappear on timescales comparable to hierarchically organized star-forming regions, suggesting that they are expanding systems. We find mass-independent cluster disruption in the inner region of NGC 628, while in the outer part of the galaxy there is little or no disruption. We observe faster disruption rates for low mass (≤104 {M}⊙ ) clusters, suggesting that a mass-dependent component is necessary to fully describe the YSC disruption process in NGC 628. Based on observations obtained with the NASA/ESA Hubble Space Telescope, at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.

  4. HUBBLE VISION: A Planetarium Show About Hubble Space Telescope

    Science.gov (United States)

    Petersen, Carolyn Collins

    1995-05-01

    In 1991, a planetarium show called "Hubble: Report From Orbit" outlining the current achievements of the Hubble Space Telescope was produced by the independent planetarium production company Loch Ness Productions, for distribution to facilities around the world. The program was subsequently converted to video. In 1994, that program was updated and re-produced under the name "Hubble Vision" and offered to the planetarium community. It is periodically updated and remains a sought-after and valuable resource within the community. This paper describes the production of the program, and the role of the astronomical community in the show's production (and subsequent updates). The paper is accompanied by a video presentation of Hubble Vision.

  5. MOVING OBJECTS IN THE HUBBLE ULTRA DEEP FIELD

    Energy Technology Data Exchange (ETDEWEB)

    Kilic, Mukremin; Gianninas, Alexandros [Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, 440 W. Brooks St., Norman, OK 73019 (United States); Von Hippel, Ted, E-mail: kilic@ou.edu, E-mail: alexg@nhn.ou.edu, E-mail: ted.vonhippel@erau.edu [Embry-Riddle Aeronautical University, 600 S. Clyde Morris Blvd., Daytona Beach, FL 32114 (United States)

    2013-09-01

    We identify proper motion objects in the Hubble Ultra Deep Field (UDF) using the optical data from the original UDF program in 2004 and the near-infrared data from the 128 orbit UDF 2012 campaign. There are 12 sources brighter than I = 27 mag that display >3{sigma} significant proper motions. We do not find any proper motion objects fainter than this magnitude limit. Combining optical and near-infrared photometry, we model the spectral energy distribution of each point-source using stellar templates and state-of-the-art white dwarf models. For I {<=} 27 mag, we identify 23 stars with K0-M6 spectral types and two faint blue objects that are clearly old, thick disk white dwarfs. We measure a thick disk white dwarf space density of 0.1-1.7 Multiplication-Sign 10{sup -3} pc{sup -3} from these two objects. There are no halo white dwarfs in the UDF down to I = 27 mag. Combining the Hubble Deep Field North, South, and the UDF data, we do not see any evidence for dark matter in the form of faint halo white dwarfs, and the observed population of white dwarfs can be explained with the standard Galactic models.

  6. Evolution of heavy-element abundances in the galactic halo and disk

    International Nuclear Information System (INIS)

    Mathews, G.J.; Cowan, J.J.; Schramm, D.N.

    1988-05-01

    The constraints on the universal energy density and cosmological constant from cosmochronological ages and the Hubble age are reviewed. Observational evidence for the galactic chemical evolution of the heavy-element chronometers is described in the context of numerical models. The viability of the recently discovered Th/Nd stellar chronometer is discussed, along with the suggestion that high r-process abundances in metal-poor stars may have resulted from a primordial r-process, as may be required by some inhomogeneous cosmologies

  7. Second generation spectrograph for the Hubble Space Telescope

    Science.gov (United States)

    Woodgate, B. E.; Boggess, A.; Gull, T. R.; Heap, S. R.; Krueger, V. L.; Maran, S. P.; Melcher, R. W.; Rebar, F. J.; Vitagliano, H. D.; Green, R. F.; Wolff, S. C.; Hutchings, J. B.; Jenkins, E. B.; Linsky, J. L.; Moos, H. W.; Roesler, F.; Shine, R. A.; Timothy, J. G.; Weistrop, D. E.; Bottema, M.; Meyer, W.

    1986-01-01

    The preliminary design for the Space Telescope Imaging Spectrograph (STIS), which has been selected by NASA for definition study for future flight as a second-generation instrument on the Hubble Space Telescope (HST), is presented. STIS is a two-dimensional spectrograph that will operate from 1050 A to 11,000 A at the limiting HST resolution of 0.05 arcsec FWHM, with spectral resolutions of 100, 1200, 20,000, and 100,000 and a maximum field-of-view of 50 x 50 arcsec. Its basic operating modes include echelle model, long slit mode, slitless spectrograph mode, coronographic spectroscopy, photon time-tagging, and direct imaging. Research objectives are active galactic nuclei, the intergalactic medium, global properties of galaxies, the origin of stellar systems, stelalr spectral variability, and spectrographic mapping of solar system processes.

  8. Studying Galaxy Formation with the Hubble, Spitzer and James Webb Space Telescopes

    Science.gov (United States)

    Gardner, Jonathan P.

    2009-01-01

    The deepest optical to infrared observations of the universe include the Hubble Deep Fields, the Great Observatories Origins Deep Survey and the recent Hubble Ultra-Deep Field. Galaxies are seen in these surveys at redshifts z greater than 6, less than 1 Gyr after the Big Bang, at the end of a period when light from the galaxies has reionized Hydrogen in the inter-galactic medium. These observations, combined with theoretical understanding, indicate that the first stars and galaxies formed at z greater than 10, beyond the reach of the Hubble and Spitzer Space Telescopes. To observe the first galaxies, NASA is planning the James Webb Space Telescope (JWST), a large (6.5m), cold (less than 50K), infrared-optimized observatory to be launched early in the next decade into orbit around the second Earth-Sun Lagrange point. JWST will have four instruments: The Near-Infrared Camera, the Near-Infrared multi-object Spectrograph, and the Tunable Filter Imager will cover the wavelength range 0.6 to 5 microns, while the Mid-Infrared Instrument will do both imaging and spectroscopy from 5 to 28.5 microns. In addition to JWST's ability to study the formation and evolution of galaxies, I will also briefly review its expected contributions to studies of the formation of stars and planetary systems, and discuss recent progress in constructing the observatory.

  9. The Hubble Legacy Archive ACS grism data

    Science.gov (United States)

    Kümmel, M.; Rosati, P.; Fosbury, R.; Haase, J.; Hook, R. N.; Kuntschner, H.; Lombardi, M.; Micol, A.; Nilsson, K. K.; Stoehr, F.; Walsh, J. R.

    2011-06-01

    A public release of slitless spectra, obtained with ACS/WFC and the G800L grism, is presented. Spectra were automatically extracted in a uniform way from 153 archival fields (or "associations") distributed across the two Galactic caps, covering all observations to 2008. The ACS G800L grism provides a wavelength range of 0.55-1.00 μm, with a dispersion of 40 Å/pixel and a resolution of ~80 Å for point-like sources. The ACS G800L images and matched direct images were reduced with an automatic pipeline that handles all steps from archive retrieval, alignment and astrometric calibration, direct image combination, catalogue generation, spectral extraction and collection of metadata. The large number of extracted spectra (73,581) demanded automatic methods for quality control and an automated classification algorithm was trained on the visual inspection of several thousand spectra. The final sample of quality controlled spectra includes 47 919 datasets (65% of the total number of extracted spectra) for 32 149 unique objects, with a median iAB-band magnitude of 23.7, reaching 26.5 AB for the faintest objects. Each released dataset contains science-ready 1D and 2D spectra, as well as multi-band image cutouts of corresponding sources and a useful preview page summarising the direct and slitless data, astrometric and photometric parameters. This release is part of the continuing effort to enhance the content of the Hubble Legacy Archive (HLA) with highly processed data products which significantly facilitate the scientific exploitation of the Hubble data. In order to characterize the slitless spectra, emission-line flux and equivalent width sensitivity of the ACS data were compared with public ground-based spectra in the GOODS-South field. An example list of emission line galaxies with two or more identified lines is also included, covering the redshift range 0.2 - 4.6. Almost all redshift determinations outside of the GOODS fields are new. The scope of science projects

  10. A Butterfly in the Making: Revealing the Near-Infrared Structure of Hubble 12

    Science.gov (United States)

    Hora, Joseph L.; Latter, William B.

    1996-01-01

    We present deep narrowband near-IR images and moderate resolution spectra of the young planetary nebula Hubble 12. These data are the first to show clearly the complex structure for this important planetary nebula. Images were obtained at lambda = 2.12, 2.16, and 2.26 micron. The lambda = 2.12 Am image reveals the bipolar nature of the nebula, as well as complex structure near the central star in the equatorial region. The images show an elliptical region of emission, which may indicate a ring or a cylindrical source structure. This structure is possibly related to the mechanism that is producing the bipolar flow. The spectra show the nature of several distinct components. The central object is dominated by recombination lines of H I and He I. The core is not a significant source of molecular hydrogen emission. The east position in the equatorial region is rich in lines of ultraviolet-excited fluorescent H2. A spectrum of part of the central region shows strong [Fe II] emission, which might indicate the presence of shocks.

  11. Proper Motions of Dwarf Spheroidal Galaxies from Hubble Space Telescope Imaging. III. Measurement for Ursa Minor

    Science.gov (United States)

    Piatek, Slawomir; Pryor, Carlton; Bristow, Paul; Olszewski, Edward W.; Harris, Hugh C.; Mateo, Mario; Minniti, Dante; Tinney, Christopher G.

    2005-07-01

    This article presents a measurement of the proper motion of the Ursa Minor dwarf spheroidal galaxy determined from images taken with the Hubble Space Telescope in two distinct fields. Each field contains a quasi-stellar object that serves as the ``reference point.'' The measured proper motion for Ursa Minor, expressed in the equatorial coordinate system, is (μα,μδ)=(-50+/-17,22+/-16) mas century-1. Removing the contributions of the solar motion and the motion of the local standard of rest yields the proper motion in the Galactic rest frame: (μGrfα,μGrfδ)=(-8+/-17,38+/-16) mas century-1. The implied space velocity with respect to the Galactic center has a radial component of Vr=-75+/-44 km s-1 and a tangential component of Vt=144+/-50 km s-1. Integrating the motion of Ursa Minor in a realistic potential for the Milky Way produces orbital elements. The perigalacticon and apogalacticon are 40 (10, 76) and 89 (78, 160) kpc, respectively, where the values in the parentheses represent the 95% confidence intervals derived from Monte Carlo experiments. The eccentricity of the orbit is 0.39 (0.09, 0.79), and the orbital period is 1.5 (1.1, 2.7) Gyr. The orbit is retrograde and inclined by 124° (94°, 136°) to the Galactic plane. Ursa Minor is not a likely member of a proposed stream of galaxies on similar orbits around the Milky Way, nor is the plane of its orbit coincident with a recently proposed planar alignment of galaxies around the Milky Way. Comparing the orbits of Ursa Minor and Carina shows no reason for the different star formation histories of these two galaxies. Ursa Minor must contain dark matter to have a high probability of having survived disruption by the Galactic tidal force until the present. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555.

  12. Hubble Space Telescope Ultraviolet Light Curves Reveal Interesting Properties of CC Sculptoris and RZ Leonis

    Energy Technology Data Exchange (ETDEWEB)

    Szkody, Paula; Mukadam, Anjum S. [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States); Toloza, Odette; Gänsicke, Boris T.; Pala, Anna F. [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom); Dai, Zhibin [Yunnan Observatories, Chinese Academy of Sciences, 396 Yangfangwang, Guandu District, Kunming, 650216 (China); Waagen, Elizabeth O. [AAVSO, 48 Bay State Rd, Cambridge, MA 02138 (United States); Godon, Patrick; Sion, Edward M., E-mail: szkody@astro.washington.edu [Department of Astrophysics and Planetary Science, Villanova University, Villanova, PA 19085 (United States)

    2017-03-01

    Time-tag ultraviolet data obtained on the Hubble Space Telescope in 2013 reveal interesting variability related to the white dwarf spin in the two cataclysmic variables RZ Leo and CC Scl. RZ Leo shows a period at 220 s and its harmonic at 110 s, thus identifying it as a likely Intermediate Polar (IP). The spin signal is not visible in a short single night of ground-based data in 2016, but the shorter exposures in that data set indicate a possible partial eclipse. The much larger UV amplitude of the spin signal in the known IP CC Scl allows the spin of 389 s, previously only seen at outburst, to be visible at quiescence. Spectra created from the peaks and troughs of the spin times indicate a hotter temperature of several thousand degrees during the peak phases, with multiple components contributing to the UV light.

  13. The Radius-Luminosity Relationship for Active Galactic Nuclei: The Effect of Host-Galaxy Starlight on Luminosity Measurements. II. The Full Sample of Reverberation-Mapped AGNs

    DEFF Research Database (Denmark)

    Bentz, Misty C.; Peterson, Bradley M.; Netzer, Hagai

    2009-01-01

    We present high-resolution Hubble Space Telescope images of all 35 active galactic nuclei (AGNs) with optical reverberation-mapping results, which we have modeled to create a nucleus-free image of each AGN host galaxy. From the nucleus-free images, we determine the host-galaxy contribution to gro...

  14. Supra-galactic colour patterns in globular cluster systems

    Science.gov (United States)

    Forte, Juan C.

    2017-07-01

    An analysis of globular cluster systems associated with galaxies included in the Virgo and Fornax Hubble Space Telescope-Advanced Camera Surveys reveals distinct (g - z) colour modulation patterns. These features appear on composite samples of globular clusters and, most evidently, in galaxies with absolute magnitudes Mg in the range from -20.2 to -19.2. These colour modulations are also detectable on some samples of globular clusters in the central galaxies NGC 1399 and NGC 4486 (and confirmed on data sets obtained with different instruments and photometric systems), as well as in other bright galaxies in these clusters. After discarding field contamination, photometric errors and statistical effects, we conclude that these supra-galactic colour patterns are real and reflect some previously unknown characteristic. These features suggest that the globular cluster formation process was not entirely stochastic but included a fraction of clusters that formed in a rather synchronized fashion over large spatial scales, and in a tentative time lapse of about 1.5 Gy at redshifts z between 2 and 4. We speculate that the putative mechanism leading to that synchronism may be associated with large scale feedback effects connected with violent star-forming events and/or with supermassive black holes.

  15. Hubble 15 years of discovery

    CERN Document Server

    Lindberg Christensen, Lars; Kornmesser, M

    2006-01-01

    Hubble: 15 Years of Discovery was a key element of the European Space Agency's 15th anniversary celebration activities for the 1990 launch of the NASA/ESA Hubble Space Telescope. As an observatory in space, Hubble is one of the most successful scientific projects of all time, both in terms of scientific output and its immediate public appeal.

  16. Proper Motions of Dwarf Spheroidal Galaxies from Hubble Space Telescope Imaging. IV. Measurement for Sculptor

    Science.gov (United States)

    Piatek, Slawomir; Pryor, Carlton; Bristow, Paul; Olszewski, Edward W.; Harris, Hugh C.; Mateo, Mario; Minniti, Dante; Tinney, Christopher G.

    2006-03-01

    This article presents a measurement of the proper motion of the Sculptor dwarf spheroidal galaxy determined from images taken with the Hubble Space Telescope using the Space Telescope Imaging Spectrograph in the imaging mode. Each of two distinct fields contains a quasi-stellar object that serves as the ``reference point.'' The measured proper motion of Sculptor, expressed in the equatorial coordinate system, is (μα, μδ)=(9+/-13, 2+/-13) mas century-1. Removing the contributions from the motion of the Sun and the motion of the local standard of rest produces the proper motion in the Galactic rest frame: (μGrfα, μGrfδ)=(-23+/-13, 45+/-13) mas century-1. The implied space velocity with respect to the Galactic center has a radial component of Vr=79+/-6 km s-1 and a tangential component of Vt=198+/-50 km s-1. Integrating the motion of Sculptor in a realistic potential for the Milky Way produces orbital elements. The perigalacticon and apogalacticon are 68 (31, 83) and 122 (97, 313) kpc, respectively, where the values in the parentheses represent the 95% confidence interval derived from Monte Carlo experiments. The eccentricity of the orbit is 0.29 (0.26, 0.60), and the orbital period is 2.2 (1.5, 4.9) Gyr. Sculptor is on a polar orbit around the Milky Way: the angle of inclination is 86° (83°, 90°). Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555.

  17. On the radial distribution of white dwarfs in the Galactic globular cluster omega Cen

    Science.gov (United States)

    Calamida, A.; Corsi, C. E.; Bono, G.; Stetson, P. B.; Prada Moroni, P. G.; Degl'Innocenti, S.; Ferraro, I.; Iannicola, G.; Koester, D.; Pulone, L.; Monelli, M.; Amico, P.; Buonanno, R.; Freyhammer, L. M.; Marchetti, E.; Nonino, M.; Romaniello, M.

    We present deep and accurate photometry (F435W, F625W, F658N) of the Galactic Globular Cluster omega Cen collected with the Advanced Camera for Surveys (ACS) on board the Hubble Space Telescope (HST). We identified ≈ 6,500 white dwarf (WD) candidates and compared their radial distribution with that of Main Sequence (MS) stars. We found a mild evidence that young WDs ( 0.1 ≲ t ≲ 0.6 Gyr) are less centrally concentrated when compared to MS stars in the magnitude range 25 < F435W < 26.5.

  18. European astronomers' successes with the Hubble Space Telescope*

    Science.gov (United States)

    1997-02-01

    vary. In dense or diffuse regions, in very young or very old agglomerations, in the Milky Way Galaxy or elsewhere, the relative numbers of stars of different masses are always roughly the same. Evidently Nature mass-produces quotas of large and small stars irrespective of circumstances. This discovery will assist astronomers in making sense of very distant and early galaxies. They can assume that the stars are of the most familiar kinds. Another surprise was spotted by Rebecca Elson in Gilmore's team, in long-exposure images of the giant galaxy M87, in the nearby Virgo cluster. It possesses globular clusters of very different ages. In the Milky Way and its similar spiral neighbour, the Andromeda galaxy, globular clusters contain the oldest stars. While M87 has ancient globular clusters too, some are different in colour and much younger. The theory is that they were manufactured during collisions of the galaxies that merged into M87, making it the egg-shaped giant seen today. If so, the absence of young globular clusters in the Milky Way may mean that our Galaxy has never suffered a major collision. Accidents in the galactic traffic Brighter than a million million suns, a quasar is the most powerful lamp in the Universe. Astronomers understand it to be powered by matter falling into a massive black hole in the heart of a galaxy. Mike Disney of the University of Wales, Cardiff, leads a European team that asks why some thousands of galaxies harbour quasars, in contrast to the billions that do not. In almost every case that he and his colleagues have investigated, using Hubble's WFPC2 camera at its highest resolution, they see the quasar's home galaxy involved in a collision with another galaxy. "It's my opinion that almost any galaxy can be a quasar," Disney says, "if only its central black hole gets enough to eat. In the galactic traffic accidents that Hubble reveals, we can visualize fresh supplies of stars and gas being driven into the black hole's clutches. My

  19. An asymmetric distribution of positrons in the Galactic disk revealed by γ-rays

    International Nuclear Information System (INIS)

    Weidenspointner, G.; Skinner, G.; Jean, P.; Knoedlseder, J.; Von Ballmoos, P.; Bignami, G.; Weidenspointner, G.; Diehl, R.; Strong, A.; Weidenspointner, G.; Skinner, G.; Skinner, G.; Skinner, G.; Cordier, B.; Schanne, S.; Winkler, Ch.; Bignami, G.

    2008-01-01

    Gamma-ray line radiation at 511 keV is the signature of electron positron annihilation. Such radiation has been known for 30 years to come from the general direction of the Galactic Centre, but the origin of the positrons has remained a mystery. Stellar nucleosynthesis, accreting compact objects, and even the annihilation of exotic dark-matter particles have all been suggested. Here we report a distinct asymmetry in the 511 keV line emission coming from the inner Galactic disk (∼ 10-50 degrees from the Galactic Centre). This asymmetry resembles an asymmetry in the distribution of low mass X-ray binaries with strong emission at photon energies ≥20 keV ('hard' LMXBs), indicating that they may be the dominant origin of the positrons. Although it had long been suspected that electron-positron pair plasmas may exist in X-ray binaries, it was not evident that many of the positrons could escape to lose energy and ultimately annihilate with electrons in the interstellar medium and thus lead to the emission of a narrow 511 keV line. For these models, our result implies that up to a few times 10 41 positrons escape per second from a typical hard LMXB. Positron production at this level from hard LMXBs in the Galactic bulge would reduce (and possibly eliminate) the need for more exotic explanations, such as those involving dark matter. (authors)

  20. An asymmetric distribution of positrons in the Galactic disk revealed by {gamma}-rays

    Energy Technology Data Exchange (ETDEWEB)

    Weidenspointner, G; Skinner, G; Jean, P; Knoedlseder, J; Von Ballmoos, P; Bignami, G [UPS, CNRS, Ctr Etud Spatiale Rayonnements, Toulouse 4, (France); Weidenspointner, G; Diehl, R; Strong, A [Max Planck Inst Extraterr Phys, D-85741 Garching, (Germany); Weidenspointner, G [MPI Halbleiterlab, D-81739 Munich, (Germany); Skinner, G [NASA, CRESST, Greenbelt, MD 20771 (United States); Skinner, G [NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 (United States); Skinner, G [Univ Maryland, Dept Astron, College Pk, MD 20742 (United States); Cordier, B; Schanne, S [CEA Saclay, DSM, DAPNIA, SAp, F-91191 Gif Sur Yvette, (France); Winkler, Ch [ESA, ESTEC, SCI SA, NL-2201 AZ Noordwijk, (Netherlands); Bignami, G [IUSS, I-27100 Pavia, (Italy)

    2008-07-01

    Gamma-ray line radiation at 511 keV is the signature of electron positron annihilation. Such radiation has been known for 30 years to come from the general direction of the Galactic Centre, but the origin of the positrons has remained a mystery. Stellar nucleosynthesis, accreting compact objects, and even the annihilation of exotic dark-matter particles have all been suggested. Here we report a distinct asymmetry in the 511 keV line emission coming from the inner Galactic disk ({approx} 10-50 degrees from the Galactic Centre). This asymmetry resembles an asymmetry in the distribution of low mass X-ray binaries with strong emission at photon energies {>=}20 keV ('hard' LMXBs), indicating that they may be the dominant origin of the positrons. Although it had long been suspected that electron-positron pair plasmas may exist in X-ray binaries, it was not evident that many of the positrons could escape to lose energy and ultimately annihilate with electrons in the interstellar medium and thus lead to the emission of a narrow 511 keV line. For these models, our result implies that up to a few times 10{sup 41} positrons escape per second from a typical hard LMXB. Positron production at this level from hard LMXBs in the Galactic bulge would reduce (and possibly eliminate) the need for more exotic explanations, such as those involving dark matter. (authors)

  1. The new European Hubble archive

    Science.gov (United States)

    De Marchi, Guido; Arevalo, Maria; Merin, Bruno

    2016-01-01

    The European Hubble Archive (hereafter eHST), hosted at ESA's European Space Astronomy Centre, has been released for public use in October 2015. The eHST is now fully integrated with the other ESA science archives to ensure long-term preservation of the Hubble data, consisting of more than 1 million observations from 10 different scientific instruments. The public HST data, the Hubble Legacy Archive, and the high-level science data products are now all available to scientists through a single, carefully designed and user friendly web interface. In this talk, I will show how the the eHST can help boost archival research, including how to search on sources in the field of view thanks to precise footprints projected onto the sky, how to obtain enhanced previews of imaging data and interactive spectral plots, and how to directly link observations with already published papers. To maximise the scientific exploitation of Hubble's data, the eHST offers connectivity to virtual observatory tools, easily integrates with the recently released Hubble Source Catalog, and is fully accessible through ESA's archives multi-mission interface.

  2. BEAUTY IN THE EYE OF HUBBLE

    Science.gov (United States)

    2002-01-01

    A dying star, IC 4406, dubbed the 'Retina Nebula' is revealed in this month's Hubble Heritage image. Like many other so-called planetary nebulae, IC 4406 exhibits a high degree of symmetry; the left and right halves of the Hubble image are nearly mirror images of the other. If we could fly around IC4406 in a starship, we would see that the gas and dust form a vast donut of material streaming outward from the dying star. From Earth, we are viewing the donut from the side. This side view allows us to see the intricate tendrils of dust that have been compared to the eye's retina. In other planetary nebulae, like the Ring Nebula (NGC 6720), we view the donut from the top. The donut of material confines the intense radiation coming from the remnant of the dying star. Gas on the inside of the donut is ionized by light from the central star and glows. Light from oxygen atoms is rendered blue in this image; hydrogen is shown as green, and nitrogen as red. The range of color in the final image shows the differences in concentration of these three gases in the nebula. Unseen in the Hubble image is a larger zone of neutral gas that is not emitting visible light, but which can be seen by radio telescopes. One of the most interesting features of IC 4406 is the irregular lattice of dark lanes that criss-cross the center of the nebula. These lanes are about 160 astronomical units wide (1 astronomical unit is the distance between the Earth and Sun). They are located right at the boundary between the hot glowing gas that produces the visual light imaged here and the neutral gas seen with radio telescopes. We see the lanes in silhouette because they have a density of dust and gas that is a thousand times higher than the rest of the nebula. The dust lanes are like a rather open mesh veil that has been wrapped around the bright donut. The fate of these dense knots of material is unknown. Will they survive the nebula's expansion and become dark denizens of the space between the stars

  3. Photometric and structural properties of NGC 6544: A combined VVV-Hubble space telescope study

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, Roger E.; Mauro, Francesco; Geisler, Doug [Departamento de Astronomía, Universidad de Concepción, Casilla 160-C, Concepción (Chile); Moni Bidin, Christian [Instituto de Astronomía, Universidad Católica del Norte, Av. Angamos 0610, Antofagasta (Chile); Dotter, Aaron [Research School of Astronomy and Astrophysics, The Australian National University, Canberra ACT 2611 (Australia); Bonatto, Charles [Departamento de Astronomia, Universidade Federal de Rio Grande do Sul, Av. Bento Gonçalves 9500, Porto Alegre 91501-970, RS (Brazil)

    2014-07-01

    We combine archival Hubble Space Telescope imaging with wide-field near-infrared photometry to study the neglected metal-poor Galactic globular cluster NGC 6544. A high spatial resolution map of differential reddening over the inner portion of the cluster is constructed, revealing variations of up to half of the total reddening, and the resulting corrected color-magnitude diagrams reveal a sparse blue horizontal branch and centrally concentrated blue straggler population, verified via relative proper motions. Using the corrected photometry to investigate the cluster distance, reddening, and age via direct comparison to well-calibrated photometry of clusters with similar metallicities, we estimate (m – M){sub 0} = 11.96, E(B – V) = 0.79, and an age coeval with M13 to within the relevant uncertainties. Although our data are insufficient to place tight constraints on the reddening law toward NGC 6544, we find no strong evidence that it is non-standard at optical or near-infrared wavelengths. We also provide near-infrared fiducial sequences extending nearly 2 mag below the cluster main sequence turnoff, generated from a statistically decontaminated sample of cluster stars. Lastly, we redetermine the cluster center and construct a radial number density profile which is well fit by an atypically flat power law with a slope of about 1.7. We discuss this result, together with a flattened main sequence luminosity function and inverted mass function, in the context of mass segregation and tidal stripping via interactions with Milky Way potential.

  4. Observation of galactic gamma radiation

    International Nuclear Information System (INIS)

    Paul, J.A.

    1982-09-01

    A complete and deep survey of the galactic high-energy gamma radiation is now available, thanks to the gamma-ray telescopes on board of the SAS-2 and COS-B spacecrafts. A comparison of the COS-B gamma-ray survey with a fully sampled CO survey together with an Hsub(I) survey is used to show that a simple model, in which uniformly distributed cosmic rays interact with the interstellar gas, can account for almost all the gamma-ray emission observed in the first galactic quadrant. At medium galactic latitudes, it is shown that a relationship exists between the gamma radiation and the interstellar absorption derived from galaxy counts. Therefore gamma rays from the local galactic environment can be used as a valuable probe of the content and structure of the local interstellar medium. The large scale features of the local interstellar gas are revealed, in particular wide concentrations of nearby molecular hydrogen. On a smaller scale, the detection of numerous localized gamma-ray sources focuses the attention on some particular phases of clusters of young and massive stars where diffuse processes of gamma-ray emission may also be at work

  5. Galactic Pairs in the Early Universe

    Science.gov (United States)

    Kohler, Susanna

    2018-02-01

    In the spirit of Valentines Day, today well be exploring apparent pairs of galaxies in the distant, early universe. How can we tell whether these duos are actually paired galaxies, as opposed to disguised singles?Real Pair, or Trick of the Light?In the schematic timeline of the universe, the epoch of reionization is when the first galaxies and quasars began to form and evolve. [NASA]The statistics of merging galaxies throughout the universe reveal not only direct information about how galaxies interact, but also cosmological information about the structure of the universe. While weve observed many merging galaxy pairs at low redshift, however, its much more challenging to identify these duos in the early universe.A merging pair of galaxies at high redshift appears to us as a pair of unresolved blobs that lie close to each other in the sky. But spotting such a set of objects doesnt necessarily mean were looking at a merger! There are three possible scenarios to explain an observed apparent duo:Its a pair of galaxies in a stage of merger.Its a projection coincidence; the two galaxies arent truly near each other.Its a single galaxy being gravitationally lensed by a foreground object. This strong lensing produces the appearance of multiple galaxies.Hubble photometry of one of the three galaxy groups identified at z 8, with the galaxies in the image labeled with their corresponding approximate photometric redshifts. [Adapted from Chaikin et al. 2018]Hunting for Distant DuosIn a recent study led by Evgenii Chaikin (Peter the Great St. Petersburg Polytechnic University, Russia), a team of scientists has explored the Hubble Ultra Deep Field in search ofhigh-redshift galaxies merging during the epoch of reionization, when the first galaxies formed and evolved.Using an approach called the dropout technique, which leverages the visibility of the galaxies in different wavelength filters, Chaikin and collaborators obtain approximate redshifts for an initial sample of 7

  6. Gravitational Contraction and Fusion Plasma Burn. Universal Expansion and the Hubble Law

    International Nuclear Information System (INIS)

    Wilhelmsson, Hans

    2002-01-01

    A dynamic approach is developed for the two principle phases of (i) gravitational condensation, and (ii) burning fusion plasma evolution. Comparison is made with conceptual descriptions of star formation and of subsequent decay towards red giant stars, white dwarfs, and other condensed core objects like neutron stars and black holes. The possibility of treating the expansion of the Universe by means of a similar approach is also discussed. The concept of negative diffusion is introduced for the contraction phase of star formation. The coefficients of defining the nonlinear diffusion are determined uniquely by physical conditions and for the case of the expansion of the universe, by the observation of the Hubble law. The contraction and evolution of large scale 3-D stars and 2-D galactic systems can thus be dynamically surveyed. In particular the time-scales can be determined

  7. The Far-Field Hubble Constant

    Science.gov (United States)

    Lauer, Tod

    1995-07-01

    We request deep, near-IR (F814W) WFPC2 images of five nearby Brightest Cluster Galaxies (BCG) to calibrate the BCG Hubble diagram by the Surface Brightness Fluctuation (SBF) method. Lauer & Postman (1992) show that the BCG Hubble diagram measured out to 15,000 km s^-1 is highly linear. Calibration of the Hubble diagram zeropoint by SBF will thus yield an accurate far-field measure of H_0 based on the entire volume within 15,000 km s^-1, thus circumventing any strong biases caused by local peculiar velocity fields. This method of reaching the far field is contrasted with those using distance ratios between Virgo and Coma, or any other limited sample of clusters. HST is required as the ground-based SBF method is limited to team developed the SBF method, the first BCG Hubble diagram based on a full-sky, volume-limited BCG sample, played major roles in the calibration of WFPC and WFPC2, and are conducting observations of local galaxies that will validate the SBF zeropoint (through GTO programs). This work uses the SBF method to tie both the Cepheid and Local Group giant-branch distances generated by HST to the large scale Hubble flow, which is most accurately traced by BCGs.

  8. The Carnegie-Chicago Hubble Program. I. An Independent Approach to the Extragalactic Distance Scale Using Only Population II Distance Indicators

    Science.gov (United States)

    Beaton, Rachael L.; Freedman, Wendy L.; Madore, Barry F.; Bono, Giuseppe; Carlson, Erika K.; Clementini, Gisella; Durbin, Meredith J.; Garofalo, Alessia; Hatt, Dylan; Jang, In Sung; Kollmeier, Juna A.; Lee, Myung Gyoon; Monson, Andrew J.; Rich, Jeffrey A.; Scowcroft, Victoria; Seibert, Mark; Sturch, Laura; Yang, Soung-Chul

    2016-12-01

    We present an overview of the Carnegie-Chicago Hubble Program, an ongoing program to obtain a 3% measurement of the Hubble constant (H 0) using alternative methods to the traditional Cepheid distance scale. We aim to establish a completely independent route to H 0 using RR Lyrae variables, the tip of the red giant branch (TRGB), and Type Ia supernovae (SNe Ia). This alternative distance ladder can be applied to galaxies of any Hubble type, of any inclination, and, using old stars in low-density environments, is robust to the degenerate effects of metallicity and interstellar extinction. Given the relatively small number of SNe Ia host galaxies with independently measured distances, these properties provide a great systematic advantage in the measurement of H 0 via the distance ladder. Initially, the accuracy of our value of H 0 will be set by the five Galactic RR Lyrae calibrators with Hubble Space Telescope Fine-Guidance Sensor parallaxes. With Gaia, both the RR Lyrae zero-point and TRGB method will be independently calibrated, the former with at least an order of magnitude more calibrators and the latter directly through parallax measurement of tip red giants. As the first end-to-end “distance ladder” completely independent of both Cepheid variables and the Large Magellanic Cloud, this path to H 0 will allow for the high-precision comparison at each rung of the traditional distance ladder that is necessary to understand tensions between this and other routes to H 0. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with programs #13472 and #13691.

  9. CHANDRA X-RAY AND HUBBLE SPACE TELESCOPE IMAGING OF OPTICALLY SELECTED KILOPARSEC-SCALE BINARY ACTIVE GALACTIC NUCLEI. II. HOST GALAXY MORPHOLOGY AND AGN ACTIVITY

    International Nuclear Information System (INIS)

    Shangguan, Jinyi; Ho, Luis C.; Liu, Xin; Shen, Yue; Peng, Chien Y.; Greene, Jenny E.; Strauss, Michael A.

    2016-01-01

    Binary active galactic nuclei (AGNs) provide clues to how gas-rich mergers trigger and fuel AGNs and how supermassive black hole (SMBH) pairs evolve in a gas-rich environment. While significant effort has been invested in their identification, the detailed properties of binary AGNs and their host galaxies are still poorly constrained. In a companion paper, we examined the nature of ionizing sources in the double nuclei of four kiloparsec-scale binary AGNs with redshifts between 0.1 and 0.2. Here, we present their host galaxy morphology based on F336W ( U -band) and F105W ( Y -band) images taken by the Wide Field Camera 3 on board the Hubble Space Telescope . Our targets have double-peaked narrow emission lines and were confirmed to host binary AGNs with follow-up observations. We find that kiloparsec-scale binary AGNs occur in galaxy mergers with diverse morphological types. There are three major mergers with intermediate morphologies and a minor merger with a dominant disk component. We estimate the masses of the SMBHs from their host bulge stellar masses and obtain Eddington ratios for each AGN. Compared with a representative control sample drawn at the same redshift and stellar mass, the AGN luminosities and Eddington ratios of our binary AGNs are similar to those of single AGNs. The U − Y color maps indicate that clumpy star-forming regions could significantly affect the X-ray detection of binary AGNs, e.g., the hardness ratio. Considering the weak X-ray emission in AGNs triggered in merger systems, we suggest that samples of X-ray-selected AGNs may be biased against gas-rich mergers.

  10. The Secret Lives of Galaxies

    Science.gov (United States)

    2001-01-01

    The ground-based image in visible light locates the hub imaged with the Hubble Space Telescope. This barred galaxy feeds material into its hub, igniting star birth. The Hubble NICMOS instrument penetrates beneath the dust to reveal clusters of young stars. Footage shows ground-based, WFPC2, and NICMOS images of NGS 1365. An animation of a large spiral galaxy zooms from the edge to the galactic bulge.

  11. The population of single and binary white dwarfs of the Galactic bulge

    Science.gov (United States)

    Torres, S.; García-Berro, E.; Cojocaru, R.; Calamida, A.

    2018-05-01

    Recent Hubble Space Telescope observations have unveiled the white dwarf cooling sequence of the Galactic bulge. Although the degenerate sequence can be well fitted employing the most up-to-date theoretical cooling sequences, observations show a systematic excess of red objects that cannot be explained by the theoretical models of single carbon-oxygen white dwarfs of the appropriate masses. Here, we present a population synthesis study of the white dwarf cooling sequence of the Galactic bulge that takes into account the populations of both single white dwarfs and binary systems containing at least one white dwarf. These calculations incorporate state-of-the-art cooling sequences for white dwarfs with hydrogen-rich and hydrogen-deficient atmospheres, for both white dwarfs with carbon-oxygen and helium cores, and also take into account detailed prescriptions of the evolutionary history of binary systems. Our Monte Carlo simulator also incorporates all the known observational biases. This allows us to model with a high degree of realism the white dwarf population of the Galactic bulge. We find that the observed excess of red stars can be partially attributed to white dwarf plus main sequence binaries, and to cataclysmic variables or dwarf novae. Our best fit is obtained with a higher binary fraction and an initial mass function slope steeper than standard values, as well as with the inclusion of differential reddening and blending. Our results also show that the possible contribution of double degenerate systems or young and thick-discbulge stars is negligible.

  12. Revealing the Physics of Galactic Winds Through Massively-Parallel Hydrodynamics Simulations

    Science.gov (United States)

    Schneider, Evan Elizabeth

    This thesis documents the hydrodynamics code Cholla and a numerical study of multiphase galactic winds. Cholla is a massively-parallel, GPU-based code designed for astrophysical simulations that is freely available to the astrophysics community. A static-mesh Eulerian code, Cholla is ideally suited to carrying out massive simulations (> 20483 cells) that require very high resolution. The code incorporates state-of-the-art hydrodynamics algorithms including third-order spatial reconstruction, exact and linearized Riemann solvers, and unsplit integration algorithms that account for transverse fluxes on multidimensional grids. Operator-split radiative cooling and a dual-energy formalism for high mach number flows are also included. An extensive test suite demonstrates Cholla's superior ability to model shocks and discontinuities, while the GPU-native design makes the code extremely computationally efficient - speeds of 5-10 million cell updates per GPU-second are typical on current hardware for 3D simulations with all of the aforementioned physics. The latter half of this work comprises a comprehensive study of the mixing between a hot, supernova-driven wind and cooler clouds representative of those observed in multiphase galactic winds. Both adiabatic and radiatively-cooling clouds are investigated. The analytic theory of cloud-crushing is applied to the problem, and adiabatic turbulent clouds are found to be mixed with the hot wind on similar timescales as the classic spherical case (4-5 t cc) with an appropriate rescaling of the cloud-crushing time. Radiatively cooling clouds survive considerably longer, and the differences in evolution between turbulent and spherical clouds cannot be reconciled with a simple rescaling. The rapid incorporation of low-density material into the hot wind implies efficient mass-loading of hot phases of galactic winds. At the same time, the extreme compression of high-density cloud material leads to long-lived but slow-moving clumps

  13. Galactic structure

    International Nuclear Information System (INIS)

    1989-01-01

    The occurrence of hot, apparently normal, massive stars far from the galactic plane has been a major puzzle in an understanding of galactic structure and evolution. Such stars have been discovered and studied at the South African Astronomical Observatory (SAAO) over a number of years. During 1989 further evidence has been obtained indicating that these stars are normal, massive objects. Other studies of galactic structure conducted by the SAAO have included research on: the central bulge region of our galaxy; populations of M giants in the galaxy; a faint blue object survey; a survey of the galactic plane for distant Cepheid variables; interstellar reddening, and K-type dwarfs as tracers for the gravitational force perpendicular to the galactic plane. 1 fig

  14. Hubble peers inside a celestial geode

    Science.gov (United States)

    2004-08-01

    celestial geode hi-res Size hi-res: 148 Kb Credits: ESA/NASA, Yäel Nazé (University of Liège, Belgium) and You-Hua Chu (University of Illinois, Urbana, USA) Hubble peers inside a celestial geode In this unusual image, the NASA/ESA Hubble Space Telescope captures a rare view of the celestial equivalent of a geode - a gas cavity carved by the stellar wind and intense ultraviolet radiation from a young hot star. Real geodes are handball-sized, hollow rocks that start out as bubbles in volcanic or sedimentary rock. Only when these inconspicuous round rocks are split in half by a geologist, do we get a chance to appreciate the inside of the rock cavity that is lined with crystals. In the case of Hubble's 35 light-year diameter ‘celestial geode’ the transparency of its bubble-like cavity of interstellar gas and dust reveals the treasures of its interior. Low resolution version (JPG format) 148 Kb High resolution version (TIFF format) 1929 Kb Acknowledgment: This image was created with the help of the ESA/ESO/NASA Photoshop FITS Liberator. Real geodes are handball-sized, hollow rocks that start out as bubbles in volcanic or sedimentary rock. Only when these inconspicuous round rocks are split in half by a geologist, do we get a chance to appreciate the inside of the rock cavity that is lined with crystals. In the case of Hubble's 35 light-year diameter ‘celestial geode’ the transparency of its bubble-like cavity of interstellar gas and dust reveals the treasures of its interior. The object, called N44F, is being inflated by a torrent of fast-moving particles (what astronomers call a 'stellar wind') from an exceptionally hot star (the bright star just below the centre of the bubble) once buried inside a cold dense cloud. Compared with our Sun (which is losing mass through the so-called 'solar wind'), the central star in N44F is ejecting more than a 100 million times more mass per second and the hurricane of particles moves much faster at 7 million km per hour

  15. New Hubble Servicing Mission to upgrade instruments

    Science.gov (United States)

    2006-10-01

    The history of the NASA/ESA Hubble Space Telescope is dominated by the familiar sharp images and amazing discoveries that have had an unprecedented scientific impact on our view of the world and our understanding of the universe. Nevertheless, such important contributions to science and humankind have only been possible as result of regular upgrades and enhancements to Hubble’s instrumentation. Using the Space Shuttle for this fifth Servicing Mission underlines the important role that astronauts have played and continue to play in increasing the Space Telescope’s lifespan and scientific power. Since the loss of Columbia in 2003, the Shuttle has been successfully launched on three missions, confirming that improvements made to it have established the required high level of safety for the spacecraft and its crew. “There is never going to be an end to the science that we can do with a machine like Hubble”, says David Southwood, ESA’s Director of Science. “Hubble is our way of exploring our origins. Everyone should be proud that there is a European element to it and that we all are part of its success at some level.” This Servicing Mission will not just ensure that Hubble can function for perhaps as much as another ten years; it will also increase its capabilities significantly in key areas. This highly visible mission is expected to take place in 2008 and will feature several space walks. As part of the upgrade, two new scientific instruments will be installed: the Cosmic Origins Spectrograph and Wide Field Camera 3. Each has advanced technology sensors that will dramatically improve Hubble’s potential for discovery and enable it to observe faint light from the youngest stars and galaxies in the universe. With such an astounding increase in its science capabilities, this orbital observatory will continue to penetrate the most distant regions of outer space and reveal breathtaking phenomena. “Today, Hubble is producing more science than ever before in

  16. Constraining the evolution of the Hubble Parameter using cosmic chronometers

    Science.gov (United States)

    Dickinson, Hugh

    2017-08-01

    Substantial investment is being made in space- and ground-based missions with the goal of revealing the nature of the observed cosmic acceleration. This is one of the most important unsolved problems in cosmology today.We propose here to constrain the evolution of the Hubble parameter [H(z)] between 1.3 fundamental nature of dark energy.

  17. Galactic radio astronomy

    CERN Document Server

    Sofue, Yoshiaki

    2017-01-01

    This book is a concise primer on galactic radio astronomy for undergraduate and graduate students, and provides wide coverage of galactic astronomy and astrophysics such as the physics of interstellar matter and the dynamics and structure of the Milky Way Galaxy and galaxies. Radio astronomy and its technological development have led to significant progress in galactic astronomy and contributed to understanding interstellar matter and galactic structures. The book begins with the fundamental physics of radio-wave radiation, i.e., black body radiation, thermal emission, synchrotron radiation, and HI and molecular line emissions. The author then gives overviews of ingredients of galactic physics, including interstellar matter such as the neutral (HI), molecular hydrogen, and ionized gases, as well as magnetic fields in galaxies. In addition, more advanced topics relevant to the Galaxy and galaxies are also contained here: star formation, supernova remnants, the Galactic Center and black holes, galactic dynamics...

  18. Transition from galactic to extra-galactic cosmic rays

    International Nuclear Information System (INIS)

    Aloisio, Roberto

    2006-01-01

    In this paper we review the main features of the observed Cosmic Rays spectrum in the energy range 10 17 eV to 10 20 eV. We present a theoretical model that explains the main observed features of the spectrum, namely the second Knee and Dip, and implies a transition from Galactic to Extra-Galactic cosmic rays at energy E ≅ 10 18 eV, with a proton dominated Extra-Galactic spectrum

  19. AN ABSENCE OF FAST RADIO BURSTS AT INTERMEDIATE GALACTIC LATITUDES

    Energy Technology Data Exchange (ETDEWEB)

    Petroff, E.; Van Straten, W.; Bailes, M.; Barr, E. D.; Coster, P.; Flynn, C.; Keane, E. F. [Centre for Astrophysics and Supercomputing, Swinburne University of Technology, P.O. Box 218, Hawthorn, VIC 3122 (Australia); Johnston, S. [CSIRO Astronomy and Space Science, Australia Telescope National Facility, P.O. Box 76, Epping, NSW 1710 (Australia); Bates, S. D.; Keith, M. J.; Kramer, M.; Stappers, B. W. [Jodrell Bank Centre for Astrophysics, University of Manchester, Alan Turing Building, Oxford Road, Manchester M13 9PL (United Kingdom); Bhat, N. D. R. [ARC Centre of Excellence for All-sky Astrophysics (CAASTRO), 44 Rosehill Street, Redfern, NSW 2016 (Australia); Burgay, M.; Possenti, A.; Tiburzi, C. [INAF—Osservatorio Astronomico di Cagliari, Via della Scienza, I-09047 Selargius (Italy); Burke-Spolaor, S. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91104 (United States); Champion, D.; Ng, C. [Max Planck Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany); Levin, L., E-mail: epetroff@astro.swin.edu.au [Department of Physics, West Virginia University, Morgantown, WV 26506 (United States); and others

    2014-07-10

    Fast radio bursts (FRBs) are an emerging class of bright, highly dispersed radio pulses. Recent work by Thornton et al. has revealed a population of FRBs in the High Time Resolution Universe (HTRU) survey at high Galactic latitudes. A variety of progenitors have been proposed, including cataclysmic events at cosmological distances, Galactic flare stars, and terrestrial radio frequency interference. Here we report on a search for FRBs at intermediate Galactic latitudes (–15° Galactic models—must be included to ease the discrepancy between the detection rates at high and low Galactic latitudes. A revised rate estimate or another strong and heretofore unknown selection effect in Galactic latitude would provide closer agreement between the surveys' detection rates. The dearth of detections at low Galactic latitude disfavors a Galactic origin for these bursts.

  20. AN ABSENCE OF FAST RADIO BURSTS AT INTERMEDIATE GALACTIC LATITUDES

    International Nuclear Information System (INIS)

    Petroff, E.; Van Straten, W.; Bailes, M.; Barr, E. D.; Coster, P.; Flynn, C.; Keane, E. F.; Johnston, S.; Bates, S. D.; Keith, M. J.; Kramer, M.; Stappers, B. W.; Bhat, N. D. R.; Burgay, M.; Possenti, A.; Tiburzi, C.; Burke-Spolaor, S.; Champion, D.; Ng, C.; Levin, L.

    2014-01-01

    Fast radio bursts (FRBs) are an emerging class of bright, highly dispersed radio pulses. Recent work by Thornton et al. has revealed a population of FRBs in the High Time Resolution Universe (HTRU) survey at high Galactic latitudes. A variety of progenitors have been proposed, including cataclysmic events at cosmological distances, Galactic flare stars, and terrestrial radio frequency interference. Here we report on a search for FRBs at intermediate Galactic latitudes (–15° Galactic models—must be included to ease the discrepancy between the detection rates at high and low Galactic latitudes. A revised rate estimate or another strong and heretofore unknown selection effect in Galactic latitude would provide closer agreement between the surveys' detection rates. The dearth of detections at low Galactic latitude disfavors a Galactic origin for these bursts

  1. VizieR Online Data Catalog: Hubble Legacy Archive ACS grism data (Kuemmel+, 2011)

    Science.gov (United States)

    Kuemmel, M.; Rosati, P.; Fosbury, R.; Haase, J.; Hook, R. N.; Kuntschner, H.; Lombardi, M.; Micol, A.; Nilsson, K. K.; Stoehr, F.; Walsh, J. R.

    2011-09-01

    A public release of slitless spectra, obtained with ACS/WFC and the G800L grism, is presented. Spectra were automatically extracted in a uniform way from 153 archival fields (or "associations") distributed across the two Galactic caps, covering all observations to 2008. The ACS G800L grism provides a wavelength range of 0.55-1.00um, with a dispersion of 40Å/pixel and a resolution of ~80Å for point-like sources. The ACS G800L images and matched direct images were reduced with an automatic pipeline that handles all steps from archive retrieval, alignment and astrometric calibration, direct image combination, catalogue generation, spectral extraction and collection of metadata. The large number of extracted spectra (73,581) demanded automatic methods for quality control and an automated classification algorithm was trained on the visual inspection of several thousand spectra. The final sample of quality controlled spectra includes 47919 datasets (65% of the total number of extracted spectra) for 32149 unique objects, with a median iAB-band magnitude of 23.7, reaching 26.5 AB for the faintest objects. Each released dataset contains science-ready 1D and 2D spectra, as well as multi-band image cutouts of corresponding sources and a useful preview page summarising the direct and slitless data, astrometric and photometric parameters. This release is part of the continuing effort to enhance the content of the Hubble Legacy Archive (HLA) with highly processed data products which significantly facilitate the scientific exploitation of the Hubble data. In order to characterize the slitless spectra, emission-line flux and equivalent width sensitivity of the ACS data were compared with public ground-based spectra in the GOODS-South field. An example list of emission line galaxies with two or more identified lines is also included, covering the redshift range 0.2-4.6. Almost all redshift determinations outside of the GOODS fields are new. The scope of science projects possible

  2. THE ACS SURVEY OF GALACTIC GLOBULAR CLUSTERS. IX. HORIZONTAL BRANCH MORPHOLOGY AND THE SECOND PARAMETER PHENOMENON

    International Nuclear Information System (INIS)

    Dotter, Aaron; Sarajedini, Ata; Anderson, Jay; Bedin, Luigi R.; Paust, Nathaniel; Reid, I. Neill; Aparicio, Antonio; MarIn-Franch, A.; Rosenberg, Alfred; Chaboyer, Brian; Majewski, Steven; Milone, Antonino; Piotto, Giampaolo; Siegel, Michael

    2010-01-01

    The horizontal branch (HB) morphology of globular clusters (GCs) is most strongly influenced by metallicity. The second parameter phenomenon, first described in the 1960s, acknowledges that metallicity alone is not enough to describe the HB morphology of all GCs. In particular, astronomers noticed that the outer Galactic halo contains GCs with redder HBs at a given metallicity than are found inside the solar circle. Thus, at least a second parameter was required to characterize HB morphology. While the term 'second parameter' has since come to be used in a broader context, its identity with respect to the original problem has not been conclusively determined. Here we analyze the median color difference between the HB and the red giant branch, hereafter denoted as Δ(V - I), measured from Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS) photometry of 60 GCs within ∼20 kpc of the Galactic center. Analysis of this homogeneous data set reveals that, after the influence of metallicity has been removed from the data, the correlation between Δ(V - I) and age is stronger than that of any other parameter considered. Expanding the sample to include HST ACS and Wide Field Planetary Camera 2 photometry of the six most distant Galactic GCs lends additional support to the correlation between Δ(V - I) and age. This result is robust with respect to the adopted metallicity scale and the method of age determination, but must bear the caveat that high-quality, detailed abundance information is not available for a significant fraction of the sample. Furthermore, when a subset of GCs with similar metallicities and ages is considered, a correlation between Δ(V - I) and central luminosity density is exposed. With respect to the existence of GCs with anomalously red HBs at a given metallicity, we conclude that age is the second parameter and central density is most likely the third. Important problems related to HB morphology in GCs, notably multi-modal distributions

  3. A Unique test for Hubble's new Solar Arrays

    Science.gov (United States)

    2000-10-01

    In mid-October, a team from the European Space Agency (ESA) and NASA will perform a difficult, never-before-done test on one of the Hubble Space Telescope's new solar array panels. Two of these panels, or arrays, will be installed by astronauts in November 2001, when the Space Shuttle Columbia visits Hubble on a routine service mission. The test will ensure that the new arrays are solid and vibration free before they are installed on orbit. The test will be conducted at ESA's European Space Research and Technology Center (ESTEC) in Noordwijk, The Netherlands. Because of the array's size, the facility's special features, and ESA's longstanding experience with Hubble's solar arrays, ESTEC is the only place in the world the test can be performed. This test is the latest chapter in a longstanding partnership between ESA and NASA on the Hubble Space Telescope. The Large Space Simulator at ESTEC, ESA's world-class test facility, features a huge vacuum chamber containing a bank of extremely bright lights that simulate the Sun's intensity - including sunrise and sunset. By exposing the solar wing to the light and temperature extremes of Hubble's orbit, engineers can verify how the new set of arrays will act in space. Hubble orbits the Earth once every 90 minutes. During each orbit, the telescope experiences 45 minutes of searing sunlight and 45 minutes of frigid darkness. This test will detect any tiny vibrations, or jitters, caused by these dramatic, repeated changes. Even a small amount of jitter can affect Hubble's sensitive instruments and interfere with observations. Hubble's first set of solar arrays experienced mild jitter and was replaced in 1993 with a much more stable pair. Since that time, advances in solar cell technology have led to the development of even more efficient arrays. In 2001, NASA will take advantage of these improvements, by fitting Hubble with a third-generation set of arrays. Though smaller, this new set generates more power than the previous

  4. Dark Energy and the Hubble Law

    Science.gov (United States)

    Chernin, A. D.; Dolgachev, V. P.; Domozhilova, L. M.

    The Big Bang predicted by Friedmann could not be empirically discovered in the 1920th, since global cosmological distances (more than 300-1000 Mpc) were not available for observations at that time. Lemaitre and Hubble studied receding motions of galaxies at local distances of less than 20-30 Mpc and found that the motions followed the (nearly) linear velocity-distance relation, known now as Hubble's law. For decades, the real nature of this phenomenon has remained a mystery, in Sandage's words. After the discovery of dark energy, it was suggested that the dynamics of local expansion flows is dominated by omnipresent dark energy, and it is the dark energy antigravity that is able to introduce the linear velocity-distance relation to the flows. It implies that Hubble's law observed at local distances was in fact the first observational manifestation of dark energy. If this is the case, the commonly accepted criteria of scientific discovery lead to the conclusion: In 1927, Lemaitre discovered dark energy and Hubble confirmed this in 1929.

  5. Galactic dynamics

    CERN Document Server

    Binney, James

    2008-01-01

    Since it was first published in 1987, Galactic Dynamics has become the most widely used advanced textbook on the structure and dynamics of galaxies and one of the most cited references in astrophysics. Now, in this extensively revised and updated edition, James Binney and Scott Tremaine describe the dramatic recent advances in this subject, making Galactic Dynamics the most authoritative introduction to galactic astrophysics available to advanced undergraduate students, graduate students, and researchers. Every part of the book has been thoroughly overhauled, and many section

  6. The Galactic magnetic fields

    International Nuclear Information System (INIS)

    Han Jinlin

    2006-01-01

    A good progress has been made on studies of Galactic magnetic fields in last 10 years. I describe what we want to know about the Galactic magnetic fields, and then review we current knowledge about magnetic fields in the Galactic disk, the Galactic halo and the field strengths. I also listed many unsolved problems on this area

  7. STRUCTURED MOLECULAR GAS REVEALS GALACTIC SPIRAL ARMS

    Energy Technology Data Exchange (ETDEWEB)

    Sawada, Tsuyoshi [Joint ALMA Office, Alonso de Cordova 3107, Vitacura, Santiago 763-0355 (Chile); Hasegawa, Tetsuo [NAOJ Chile Observatory, Joaquin Montero 3000 Oficina 702, Vitacura, Santiago 763-0409 (Chile); Koda, Jin, E-mail: sawada.tsuyoshi@nao.ac.jp [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794-3800 (United States)

    2012-11-01

    We explore the development of structures in molecular gas in the Milky Way by applying the analysis of the brightness distribution function and the brightness distribution index (BDI) in the archival data from the Boston University-Five College Radio Astronomy Observatory {sup 13}CO J = 1-0 Galactic Ring Survey. The BDI measures the fractional contribution of spatially confined bright molecular emission over faint emission extended over large areas. This relative quantity is largely independent of the amount of molecular gas and of any conventional, pre-conceived structures, such as cores, clumps, or giant molecular clouds. The structured molecular gas traced by higher BDI is located continuously along the spiral arms in the Milky Way in the longitude-velocity diagram. This clearly indicates that molecular gas changes its structure as it flows through the spiral arms. Although the high-BDI gas generally coincides with H II regions, there is also some high-BDI gas with no/little signature of ongoing star formation. These results support a possible evolutionary sequence in which unstructured, diffuse gas transforms itself into a structured state on encountering the spiral arms, followed by star formation and an eventual return to the unstructured state after the spiral arm passage.

  8. Hubble expansion in a Euclidean framework

    International Nuclear Information System (INIS)

    Alfven, H.

    1979-01-01

    There now seems to be strong evidence for a non-cosmological interpretation of the QSO redshift - in any case, so strong that it is of interest to investigate the consequences. The purpose of this paper is to construct a model of the Hubble expansion which is as far as possible from the conventional Big Bang model without coming in conflict with any well-established observational results (while introducing no new laws of physics). This leads to an essentially Euclidean metagalactic model (see Table I) with very little mass outside one-third or half of the Hubble radius. The total kinetic energy of the Hubble expansion need only to be about 5% of the rest mass energy. Present observations support backwards in time extrapolation of the Hubble expansion to a 'minimum size galaxy' Rsub(m), which may have any value in 0 26 cm. Other arguments speak in favor of a size close to the upper value, say Rsub(m) = 10 26 cm (Table II). As this size is probably about 100 times the Schwarzschild limit, an essentially Euclidean description is allowed. The kinetic energy of the Hubble expansion may derive from an intense QSO-like activity in the minimum size metagalaxy, with an energy release corresponding to the annihilation of a few solar masses per galaxy per year. Some of the conclusions based on the Big Bang hypothesis are criticized and in several cases alternative interpretations are suggested. A comparison between the Euclidean and the conventional models is given in Table III. (orig.)

  9. Molecular clouds and galactic spiral structure

    International Nuclear Information System (INIS)

    Dame, T.M.

    1984-02-01

    Galactic CO line emission at 115 GHz was surveyed in order to study the distribution of molecular clouds in the inner galaxy. Comparison of this survey with similar H1 data reveals a detailed correlation with the most intense 21 cm features. To each of the classical 21 cm H1 spiral arms of the inner galaxy there corresponds a CO molecular arm which is generally more clearly defined and of higher contrast. A simple model is devised for the galactic distribution of molecular clouds. The modeling results suggest that molecular clouds are essentially transient objects, existing for 15 to 40 million years after their formation in a spiral arm, and are largely confined to spiral features about 300 pc wide

  10. Proper Motions of Dwarf Spheroidal Galaxies from Hubble Space Telescope Imaging. V. Final Measurement for Fornax

    Science.gov (United States)

    Piatek, Slawomir; Pryor, Carlton; Bristow, Paul; Olszewski, Edward W.; Harris, Hugh C.; Mateo, Mario; Minniti, Dante; Tinney, Christopher G.

    2007-03-01

    The measured proper motion of Fornax, expressed in the equatorial coordinate system, is (μα,μδ)=(47.6+/-4.6,-36.0+/-4.1) mas century-1. This proper motion is a weighted mean of four independent measurements for three distinct fields. Each measurement uses a quasi-stellar object as a reference point. Removing the contribution of the motion of the Sun and of the local standard of rest to the measured proper motion produces a Galactic rest-frame proper motion of (μGrfα,μGrfδ)=(24.4+/-4.6,-14.3+/-4.1) mas century-1. The implied space velocity with respect to the Galactic center has a radial component of Vr=-31.8+/-1.7 km s-1 and a tangential component of Vt=196+/-29 km s-1. Integrating the motion of Fornax in a realistic potential for the Milky Way produces orbital elements. The perigalacticon and apogalacticon are 118 (66, 137) and 152 (144, 242) kpc, respectively, where the values in the parentheses represent the 95% confidence intervals derived from Monte Carlo experiments. The eccentricity of the orbit is 0.13 (0.11, 0.38), and the orbital period is 3.2 (2.5, 4.6) Gyr. The orbit is retrograde and inclined by 101° (94°, 107°) to the Galactic plane. Fornax could be a member of a proposed ``stream'' of galaxies and globular clusters; however, the membership of another proposed galaxy in the stream, Sculptor, has been previously ruled out. Fornax is in the Kroupa-Theis-Boily plane, which contains 11 of the Galactic satellite galaxies, but its orbit will take it out of that plane. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555.

  11. HST's 10th anniversary, ESA and Hubble : changing our vision

    Science.gov (United States)

    2000-04-01

    With the astronauts who took part in the most recent Servicing Mission (SM3A) in attendance, ESA is taking the opportunity to give a - first - complete overview of Europe's major contribution to the HST mission. It will also review the first ten years of operations and the outstanding results that have "changed our vision" of the cosmos. A new fully European outreach initiative - the "European Space Agency Hubble Information Centre" - will be presented and officially launched; it has been set up by ESA to provide information on Hubble from a European perspective. A public conference will take place in the afternoon to celebrate Hubble's achievements midway through its life. Ten years of outstanding performance Launched on 24 April 1990, Hubble is now midway through its operating life and it is considered one of the most successful space science missions ever. So far more than 10,000 scientific papers based on Hubble results have been published and European scientists have contributed to more than 25% of these. Not only has Hubble produced a rich harvest of scientific results, it has impressed the man in the street with its beautiful images of the sky. Thousands of headlines all over the world have given direct proof of the public's great interest in the mission - 'The deepest images ever', 'The sharpest view of the Universe', 'Measurements of the earliest galaxies' and many others, all reflecting Hubble's performance as a top-class observatory. The Servicing Missions that keep the observatory and its instruments in prime condition are one of the innovative ideas behind Hubble. Astronauts have serviced Hubble three times, and ESA astronauts have taken part in two of these missions. Claude Nicollier (CH) worked with American colleagues on the First Servicing Mission, when Hubble's initial optical problems were repaired. On the latest, Servicing Mission 3A, both Claude Nicollier and Jean-François Clervoy (F) were members of the crew. Over the next 10 years European

  12. The Hubble Constant

    Directory of Open Access Journals (Sweden)

    Neal Jackson

    2015-09-01

    Full Text Available I review the current state of determinations of the Hubble constant, which gives the length scale of the Universe by relating the expansion velocity of objects to their distance. There are two broad categories of measurements. The first uses individual astrophysical objects which have some property that allows their intrinsic luminosity or size to be determined, or allows the determination of their distance by geometric means. The second category comprises the use of all-sky cosmic microwave background, or correlations between large samples of galaxies, to determine information about the geometry of the Universe and hence the Hubble constant, typically in a combination with other cosmological parameters. Many, but not all, object-based measurements give H_0 values of around 72–74 km s^–1 Mpc^–1, with typical errors of 2–3 km s^–1 Mpc^–1. This is in mild discrepancy with CMB-based measurements, in particular those from the Planck satellite, which give values of 67–68 km s^–1 Mpc^–1 and typical errors of 1–2 km s^–1 Mpc^–1. The size of the remaining systematics indicate that accuracy rather than precision is the remaining problem in a good determination of the Hubble constant. Whether a discrepancy exists, and whether new physics is needed to resolve it, depends on details of the systematics of the object-based methods, and also on the assumptions about other cosmological parameters and which datasets are combined in the case of the all-sky methods.

  13. Evidence for accreted component in the Galactic discs

    Science.gov (United States)

    Xing, Q. F.; Zhao, G.

    2018-06-01

    We analyse the distribution of [Mg/Fe] abundance in the Galactic discs with F- and G-type dwarf stars selected from the Large Sky Area Multi-Object Fibre Spectroscopic Telescope (LAMOST) archive. The sample stars are assigned into different stellar populations by using kinematic criteria. Our analysis reveals the chemical inhomogeneities in the Galactic thick disc. A few of metal-poor stars in the thick disc exhibit relatively low [Mg/Fe] abundance in respect to the standard thick-disc sample. The orbital eccentricities and maximum Galactocentric radii of low-α metal-poor stars are apparently greater than that of high-α thick-disc stars. The orbital parameters and chemical components of low-α stars in the thick disc suggest that they may have been formed in regions with low star formation rate that were located at large distances from the Galactic centre, such as infalling dwarf spheroidal galaxies.

  14. Hubble Space Telescope Observations of Extended [O III]λ 5007 Emission in Nearby QSO2s: New Constraints on AGN Host Galaxy Interaction

    Science.gov (United States)

    Fischer, Travis C.; Kraemer, S. B.; Schmitt, H. R.; Longo Micchi, L. F.; Crenshaw, D. M.; Revalski, M.; Vestergaard, M.; Elvis, M.; Gaskell, C. M.; Hamann, F.; Ho, L. C.; Hutchings, J.; Mushotzky, R.; Netzer, H.; Storchi-Bergmann, T.; Straughn, A.; Turner, T. J.; Ward, M. J.

    2018-04-01

    We present a Hubble Space Telescope survey of extended [O III] λ5007 emission for a sample of 12 nearby (z continuing to be kinematically influenced by the central active galactic nucleus (AGN) out to an average radius of ∼1130 pc. These findings question the effectiveness of AGNs being capable of clearing material from their host bulge in the nearby universe and suggest that disruption of gas by AGN activity may prevent star formation without requiring evacuation. Additionally, we find a dichotomy in our targets when comparing [O III] radial extent and nuclear FWHM, where QSO2s with compact [O III] morphologies typically possess broader nuclear emission lines.

  15. Consistency between the luminosity function of resolved millisecond pulsars and the galactic center excess

    Energy Technology Data Exchange (ETDEWEB)

    Ploeg, Harrison; Gordon, Chris [Department of Physics and Astronomy, Rutherford Building, University of Canterbury, Private Bag 4800, Christchurch 8140 (New Zealand); Crocker, Roland [Research School of Astronomy and Astrophysics, Mount Stromlo Observatory, Cotter Road, Weston Creek (Australia); Macias, Oscar, E-mail: harrison.ploeg@pg.canterbury.ac.nz, E-mail: chris.gordon@canterbury.ac.nz, E-mail: Roland.Crocker@anu.edu.au, E-mail: oscar.macias@vt.edu [Center for Neutrino Physics, Department of Physics, Virginia Tech, 850 West Campus Drive, Blacksburg, VA 24061 (United States)

    2017-08-01

    Fermi Large Area Telescope data reveal an excess of GeV gamma rays from the direction of the Galactic Center and bulge. Several explanations have been proposed for this excess including an unresolved population of millisecond pulsars (MSPs) and self-annihilating dark matter. It has been claimed that a key discriminant for or against the MSP explanation can be extracted from the properties of the luminosity function describing this source population. Specifically, is the luminosity function of the putative MSPs in the Galactic Center consistent with that characterizing the resolved MSPs in the Galactic disk? To investigate this we have used a Bayesian Markov Chain Monte Carlo to evaluate the posterior distribution of the parameters of the MSP luminosity function describing both resolved MSPs and the Galactic Center excess. At variance with some other claims, our analysis reveals that, within current uncertainties, both data sets can be well fit with the same luminosity function.

  16. MEASUREMENT OF GALACTIC LOGARITHMIC SPIRAL ARM PITCH ANGLE USING TWO-DIMENSIONAL FAST FOURIER TRANSFORM DECOMPOSITION

    International Nuclear Information System (INIS)

    Davis, Benjamin L.; Berrier, Joel C.; Shields, Douglas W.; Kennefick, Julia; Kennefick, Daniel; Seigar, Marc S.; Lacy, Claud H. S.; Puerari, Ivânio

    2012-01-01

    A logarithmic spiral is a prominent feature appearing in a majority of observed galaxies. This feature has long been associated with the traditional Hubble classification scheme, but historical quotes of pitch angle of spiral galaxies have been almost exclusively qualitative. We have developed a methodology, utilizing two-dimensional fast Fourier transformations of images of spiral galaxies, in order to isolate and measure the pitch angles of their spiral arms. Our technique provides a quantitative way to measure this morphological feature. This will allow comparison of spiral galaxy pitch angle to other galactic parameters and test spiral arm genesis theories. In this work, we detail our image processing and analysis of spiral galaxy images and discuss the robustness of our analysis techniques.

  17. Measurement of Galactic Logarithmic Spiral Arm Pitch Angle Using Two-dimensional Fast Fourier Transform Decomposition

    Science.gov (United States)

    Davis, Benjamin L.; Berrier, Joel C.; Shields, Douglas W.; Kennefick, Julia; Kennefick, Daniel; Seigar, Marc S.; Lacy, Claud H. S.; Puerari, Ivânio

    2012-04-01

    A logarithmic spiral is a prominent feature appearing in a majority of observed galaxies. This feature has long been associated with the traditional Hubble classification scheme, but historical quotes of pitch angle of spiral galaxies have been almost exclusively qualitative. We have developed a methodology, utilizing two-dimensional fast Fourier transformations of images of spiral galaxies, in order to isolate and measure the pitch angles of their spiral arms. Our technique provides a quantitative way to measure this morphological feature. This will allow comparison of spiral galaxy pitch angle to other galactic parameters and test spiral arm genesis theories. In this work, we detail our image processing and analysis of spiral galaxy images and discuss the robustness of our analysis techniques.

  18. MEASUREMENT OF GALACTIC LOGARITHMIC SPIRAL ARM PITCH ANGLE USING TWO-DIMENSIONAL FAST FOURIER TRANSFORM DECOMPOSITION

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Benjamin L.; Berrier, Joel C.; Shields, Douglas W.; Kennefick, Julia; Kennefick, Daniel; Seigar, Marc S.; Lacy, Claud H. S. [Arkansas Center for Space and Planetary Sciences, 202 Field House, University of Arkansas, Fayetteville, AR 72701 (United States); Puerari, Ivanio [Instituto Nacional de Astrofisica, Optica y Electronica, Calle Luis Enrique Erro 1, 72840 Santa Maria Tonantzintla, Puebla (Mexico)

    2012-04-01

    A logarithmic spiral is a prominent feature appearing in a majority of observed galaxies. This feature has long been associated with the traditional Hubble classification scheme, but historical quotes of pitch angle of spiral galaxies have been almost exclusively qualitative. We have developed a methodology, utilizing two-dimensional fast Fourier transformations of images of spiral galaxies, in order to isolate and measure the pitch angles of their spiral arms. Our technique provides a quantitative way to measure this morphological feature. This will allow comparison of spiral galaxy pitch angle to other galactic parameters and test spiral arm genesis theories. In this work, we detail our image processing and analysis of spiral galaxy images and discuss the robustness of our analysis techniques.

  19. Chandra Independently Determines Hubble Constant

    Science.gov (United States)

    2006-08-01

    A critically important number that specifies the expansion rate of the Universe, the so-called Hubble constant, has been independently determined using NASA's Chandra X-ray Observatory. This new value matches recent measurements using other methods and extends their validity to greater distances, thus allowing astronomers to probe earlier epochs in the evolution of the Universe. "The reason this result is so significant is that we need the Hubble constant to tell us the size of the Universe, its age, and how much matter it contains," said Max Bonamente from the University of Alabama in Huntsville and NASA's Marshall Space Flight Center (MSFC) in Huntsville, Ala., lead author on the paper describing the results. "Astronomers absolutely need to trust this number because we use it for countless calculations." Illustration of Sunyaev-Zeldovich Effect Illustration of Sunyaev-Zeldovich Effect The Hubble constant is calculated by measuring the speed at which objects are moving away from us and dividing by their distance. Most of the previous attempts to determine the Hubble constant have involved using a multi-step, or distance ladder, approach in which the distance to nearby galaxies is used as the basis for determining greater distances. The most common approach has been to use a well-studied type of pulsating star known as a Cepheid variable, in conjunction with more distant supernovae to trace distances across the Universe. Scientists using this method and observations from the Hubble Space Telescope were able to measure the Hubble constant to within 10%. However, only independent checks would give them the confidence they desired, considering that much of our understanding of the Universe hangs in the balance. Chandra X-ray Image of MACS J1149.5+223 Chandra X-ray Image of MACS J1149.5+223 By combining X-ray data from Chandra with radio observations of galaxy clusters, the team determined the distances to 38 galaxy clusters ranging from 1.4 billion to 9.3 billion

  20. Galactic sprinklers

    International Nuclear Information System (INIS)

    Vandeusen, W.

    1984-01-01

    It is believed by many astronomers that gravitation is responsible for holding a strong whirlpool of hot, dense material together at the center of the Milky Way galaxy. However, the galactic-sprinkler model suggests that the whirlpool is not being held together, and that the stars, gas and dust within the spirals are being thrown outward. It is also suggested that much of the ejected material eventually returns to the galactic center, as do stars within our stellar neighborhood. The material is believed to be subjected to extreme changes in the gravitational time rate which may cause it to follow an inbound spiral that is basically similar to the outbound spiral. Radio studies also indicate that the galactic arms on either side of the galactic center move at different velocities and in different directions with respect to our location and that the whole group of stars in the vicinity of the solar system may be moving outward from the galactic center at a velocity of about 40 kps. Through the use of velocity data in kps, and distance data in light years, the radial component of the sun's trajectory can be estimated with respect to time by a parabola. The spiral trajectory of the sun can be calculated and plotted on polar coordinates by combining both the radial component and tangential component (230 kps)

  1. HUBBLE PINPOINTS WHITE DWARFS IN GLOBULAR CLUSTER

    Science.gov (United States)

    2002-01-01

    Peering deep inside a cluster of several hundred thousand stars, NASA's Hubble Space Telescope uncovered the oldest burned-out stars in our Milky Way Galaxy. Located in the globular cluster M4, these small, dying stars - called white dwarfs - are giving astronomers a fresh reading on one of the biggest questions in astronomy: How old is the universe? The ancient white dwarfs in M4 are about 12 to 13 billion years old. After accounting for the time it took the cluster to form after the big bang, astronomers found that the age of the white dwarfs agrees with previous estimates for the universe's age. In the top panel, a ground-based observatory snapped a panoramic view of the entire cluster, which contains several hundred thousand stars within a volume of 10 to 30 light-years across. The Kitt Peak National Observatory's 0.9-meter telescope took this picture in March 1995. The box at left indicates the region observed by the Hubble telescope. The Hubble telescope studied a small region of the cluster. A section of that region is seen in the picture at bottom left. A sampling of an even smaller region is shown at bottom right. This region is only about one light-year across. In this smaller region, Hubble pinpointed a number of faint white dwarfs. The blue circles pinpoint the dwarfs. It took nearly eight days of exposure time over a 67-day period to find these extremely faint stars. Globular clusters are among the oldest clusters of stars in the universe. The faintest and coolest white dwarfs within globular clusters can yield a globular cluster's age. Earlier Hubble observations showed that the first stars formed less than 1 billion years after the universe's birth in the big bang. So, finding the oldest stars puts astronomers within arm's reach of the universe's age. M4 is 7,000 light-years away in the constellation Scorpius. Hubble's Wide Field and Planetary Camera 2 made the observations from January through April 2001. These optical observations were combined to

  2. Hubble and the Language of Images

    Science.gov (United States)

    Levay, Z. G.

    2005-12-01

    Images released from the Hubble Space Telescope have been very highly regarded by the astronomy-attentive public for at least a decade. Due in large part to these images, Hubble has become an iconic figure, even among the general public. This iconic status is both a boon and a burden for those who produce the stream of images fl owing from this telescope. While the benefits of attention are fairly obvious, the negative aspects are less visible. One of the most persistent challenges is the need to continue to deliver images that "top" those released before. In part this can be accomplished because of Hubble's upgraded instrumentation. But it can also be a source of pressure that could, if left unchecked, erode ethical boundaries in our communication with the public. These pressures are magnified in an atmosphere of uncertainty with regard to the future of the mission.

  3. H II REGION DRIVEN GALACTIC BUBBLES AND THEIR RELATIONSHIP TO THE GALACTIC MAGNETIC FIELD

    Energy Technology Data Exchange (ETDEWEB)

    Pavel, Michael D.; Clemens, D. P., E-mail: pavelmi@bu.edu, E-mail: clemens@bu.edu [Institute for Astrophysical Research, Boston University, 725 Commonwealth Ave., Boston, MA 02215 (United States)

    2012-12-01

    The relative alignments of mid-infrared traced Galactic bubbles are compared to the orientation of the mean Galactic magnetic field in the disk. The orientations of bubbles in the northern Galactic plane were measured and are consistent with random orientations-no preferential alignment with respect to the Galactic disk was found. A subsample of H II region driven Galactic bubbles was identified, and as a single population they show random orientations. When this subsample was further divided into subthermal and suprathermal H II regions, based on hydrogen radio recombination linewidths, the subthermal H II regions showed a marginal deviation from random orientations, but the suprathermal H II regions showed significant alignment with the Galactic plane. The mean orientation of the Galactic disk magnetic field was characterized using new near-infrared starlight polarimetry and the suprathermal H II regions were found to preferentially align with the disk magnetic field. If suprathermal linewidths are associated with younger H II regions, then the evolution of young H II regions is significantly affected by the Galactic magnetic field. As H II regions age, they cease to be strongly linked to the Galactic magnetic field, as surrounding density variations come to dominate their morphological evolution. From the new observations, the ratios of magnetic-to-ram pressures in the expanding ionization fronts were estimated for younger H II regions.

  4. Hubble Legacy Archive And The Public

    Science.gov (United States)

    Harris, Jessica; Whitmore, B.; Eisenhamer, B.; Bishop, M.; Knisely, L.

    2012-01-01

    The Hubble Legacy Archive (HLA) at the Space Telescope Science Institute (STScI) hosts the Image of the Month (IOTM) Series. The HLA is a joint project of STScI, the Space Telescope European Coordinating Facility (ST-ECF), and the Canadian Astronomy Data Centre (CADC). The HLA is designed optimize science from the Hubble Space Telescope by providing online enhanced Hubble products and advanced browsing capabilities. The IOTM's are created for astronomers and the public to highlight various features within HLA, such as the "Interactive Display", "Footprint” and "Inventory” features to name a few. We have been working with the Office of Public Outreach (OPO) to create a standards based educational module for middle school to high school students of the IOTM: Rings and the Moons of Uranus. The set of Uranus activities are highlighted by a movie that displays the orbit of five of Uranus’ largest satellites. We made the movie based on eight visits of Uranus from 2000-06-16 to 2000-06-18, using the PC chip on the Wide Field Planetary Camera 2 (WFPC2) and filter F850LP (proposal ID: 8680). Students will be engaged in activities that will allow them to "discover” the rings and satellites around Uranus, calculate the orbit of the satellites, and introduces students to analyze real data from Hubble.

  5. Galactic bulge preferred over dark matter for the Galactic centre gamma-ray excess

    Science.gov (United States)

    Macias, Oscar; Gordon, Chris; Crocker, Roland M.; Coleman, Brendan; Paterson, Dylan; Horiuchi, Shunsaku; Pohl, Martin

    2018-05-01

    An anomalous gamma-ray excess emission has been found in the Fermi Large Area Telescope data1 covering the centre of the Galaxy2,3. Several theories have been proposed for this `Galactic centre excess'. They include self-annihilation of dark-matter particles4, an unresolved population of millisecond pulsars5, an unresolved population of young pulsars6, or a series of burst events7. Here, we report on an analysis that exploits hydrodynamical modelling to register the position of interstellar gas associated with diffuse Galactic gamma-ray emission. We find evidence that the Galactic centre excess gamma rays are statistically better described by the stellar over-density in the Galactic bulge and the nuclear stellar bulge, rather than a spherical excess. Given its non-spherical nature, we argue that the Galactic centre excess is not a dark-matter phenomenon but rather associated with the stellar population of the Galactic bulge and the nuclear bulge.

  6. The Hubble law and the spiral structures of galaxies from equations of motion in general relativity

    International Nuclear Information System (INIS)

    Sachs, M.

    1975-01-01

    Fully exploiting the Lie group that characterizes the underlying symmetry of general relativity theory, Einstein's tensor formalism factorizes, yielding a generalized (16-component) quaternion field formalism. The associated generalized geodesic equation, taken as the equation of motion of a star, predicts the Hubble law from one approximation for the generally covariant equations of motion, and the spiral structure of galaxies from another approximation. These results depend on the imposition of appropriate boundary conditions. The Hubble law follows when the boundary conditions derive from the oscillating model cosmology, and not from the other cosmological models. The spiral structures of the galaxies follow from the same boundary conditions, but with a different time scale than for the whole universe. The solutions that imply the spiral motion are Fresnel integrals. These predict the star's motion to be along the 'Cornu Spiral'. The part of this spiral in the first quadrant is the imploding phase of the galaxy, corresponding to a motion with continually decreasing radii, approaching the galactic center as time increases. The part of the Cornu Spiral' in the third quadrant is the exploding phase, corresponding to continually increasing radii, as the star moves out from the hub. The spatial origin in the coordinate system of this curve is the inflection point, where the explosion changes to implosion. The two- (or many-) armed spiral galaxies are explained here in terms of two (or many) distinct explosions occurring at displaced times, in the domain of the rotating, planar galaxy. (author)

  7. Hubble again views Saturn's Rings Edge-on

    Science.gov (United States)

    1995-01-01

    Saturn's magnificent ring system is seen tilted edge-on -- for the second time this year -- in this NASA Hubble Space Telescope picture taken on August 10, 1995, when the planet was 895 million miles (1,440 million kilometers) away. Hubble snapped the image as Earth sped back across Saturn's ring plane to the sunlit side of the rings. Last May 22, Earth dipped below the ring plane, giving observers a brief look at the backlit side of the rings. Ring-plane crossing events occur approximately every 15 years. Earthbound observers won't have as good a view until the year 2038. Several of Saturn's icy moons are visible as tiny starlike objects in or near the ring plane. They are from left to right, Enceladus, Tethys, Dione and Mimas. 'The Hubble data shows numerous faint satellites close to the bright rings, but it will take a couple of months to precisely identify them,' according to Steve Larson (University of Arizona). During the May ring plane crossing, Hubble detected two, and possibly four, new moons orbiting Saturn. These new observations also provide a better view of the faint E ring, 'to help determine the size of particles and whether they will pose a collision hazard to the Cassini spacecraft,' said Larson. The picture was taken with Hubble's Wide Field Planetary Camera 2 in wide field mode. This image is a composite view, where a long exposure of the faint rings has been combined with a shorter exposure of Saturn's disk to bring out more detail. When viewed edge-on, the rings are so dim they almost disappear because they are very thin -- probably less than a mile thick.The Wide Field/Planetary Camera 2 was developed by the Jet Propulsion Laboratory and managed by the Goddard Spaced Flight Center for NASA's Office of Space Science.This image and other images and data received from the Hubble Space Telescope are posted on the World Wide Web on the Space Telescope Science Institute home page at URL http://oposite.stsci.edu/pubinfo/

  8. Peering Through the Muck: Notes on the the Influence of the Galactic Interstellar Medium on Extragalactic Observations

    Science.gov (United States)

    Lockman, Felix J.

    This paper considers some effects of foreground Galactic gas on radiation received from extragalactic objects, with an emphasis on the use of the 21cm line to determine the total N(HI). In general, the opacity of the 21cm line makes it impossible to derive an accurate value of N(HI) by simply applying a formula to the observed emission, except in directions where there is very little interstellar matter. The 21cm line can be used to estimate the likelihood that there is significant molecular hydrogen in a particular direction, but carries little or no information on the amount of ionized gas, which can be a major source of foreground effects. Considerable discussion is devoted to the importance of small-scale angular structure in HI, with the conclusion that it will rarely contribute significantly to the total error compared to other factors (such as the effects of ionized gas) for extragalactic sight lines at high Galactic latitude. The direction of the Hubble/Chandra Deep Field North is used as an example of the complexities that might occur even in the absence of opacity or molecular gas.

  9. COLLIMATION AND SCATTERING OF THE ACTIVE GALACTIC NUCLEUS EMISSION IN THE SOMBRERO GALAXY

    International Nuclear Information System (INIS)

    Menezes, R. B.; Steiner, J. E.; Ricci, T. V.

    2013-01-01

    We present an analysis of a data cube of the central region of M104, the Sombrero galaxy, obtained with the GMOS-IFU of the Gemini-South telescope, and report the discovery of collimation and scattering of the active galactic nucleus (AGN) emission in the circumnuclear region of this galaxy. Analysis with PCA Tomography and spectral synthesis revealed the existence of collimation and scattering of the AGN featureless continuum and also of a broad component of the Hα emission line. The collimation and scattering of this broad Hα component was also revealed by fitting the [N II] λλ6548, 6583 and Hα emission lines as a sum of Gaussian functions. The spectral synthesis, together with a V-I image obtained with the Hubble Space Telescope, showed the existence of circumnuclear dust, which may cause the light scattering. We also identify a dusty feature that may be interpreted as a torus/disk structure. The existence of two opposite regions with featureless continuum (P.A. = –18° ± 13° and P.A. = 162° ± 13°) along a direction perpendicular to the torus/disk (P.A. = 72° ± 14°) suggests that this structure is approximately edge-on and collimates the AGN emission. The edge-on torus/disk also hides the broad-line region. The proposed scenario is compatible with the unified model and explains why only a weak broad component of the Hα emission line is visible and also why many previous studies detected no broad Hα. The technique used here proved to be an efficient method not only for detecting scattered light, but also for testing the unified model in low-luminosity AGNs.

  10. Eyes on the Universe: The Legacy of the Hubble Space Telescope and Looking to the Future with the James Webb Space Telescope

    Science.gov (United States)

    Straughn, Amber

    2011-01-01

    Over the past 20 years the Hubble Space Telescope has revolutionized our understanding of the Universe. Most recently, the complete refurbishment of Hubble in 2009 has given new life to the telescope and the new science instruments have already produced groundbreaking science results, revealing some of the most distant galaxy candidates ever discovered. Despite the remarkable advances in astrophysics that Hubble has provided, the new questions that have arisen demand a new space telescope with new technologies and capabilities. I will present the exciting new technology development and science goals of NASA's James Webb Space Telescope, which is currently being built and tested and will be launched this decade.

  11. HUBBLE provides multiple views of how to feed a black hole

    Science.gov (United States)

    1998-05-01

    Although the cause-and-effect relationships are not yet clear, the views provided by complementary images from two instruments aboard the Hubble Space Telescope are giving astronomers new insights into the powerful forces being exerted in this complex maelstrom. Researchers believe these forces may even have shifted the axis of the massive black hole from its expected orientation. The Hubble wide-field camera visible image of the merged Centaurus A galaxy, also called NGC 5128, shows in sharp clarity a dramatic dark lane of dust girdling the galaxy. Blue clusters of newborn stars are clearly resolved, and silhouettes of dust filaments are interspersed with blazing orange-glowing gas. Located only 10 million light-years away, this peculiar-looking galaxy contains the closest active galactic nucleus to Earth and has long been considered an example of an elliptical galaxy disrupted by a recent collision with a smaller companion spiral galaxy. Using the infrared vision of Hubble, astronomers have penetrated this wall of dust for the first time to see a twisted disk of hot gas swept up in the black hole's gravitational whirlpool. The suspected black hole is so dense it contains the mass of perhaps a billion stars, compacted into a small region of space not much larger than our Solar System. Resolving features as small as seven light-years across, Hubble has shown astronomers that the hot gas disk is tilted in a different direction from the black hole's axis -- like a wobbly wheel around an axle. The black hole's axis is identified by the orientation of a high-speed jet of material, glowing in X-rays and radio frequencies, blasted from the black hole at 1/100th the speed of light. This gas disk presumably fueling the black hole may have formed so recently it is not yet aligned to the black hole's spin axis, or it may simply be influenced more by the galaxy's gravitational tug than by the black hole's. "This black hole is doing its own thing. Aside from receiving fresh

  12. Galactic models

    International Nuclear Information System (INIS)

    Buchler, J.R.; Gottesman, S.T.; Hunter, J.H. Jr.

    1990-01-01

    Various papers on galactic models are presented. Individual topics addressed include: observations relating to galactic mass distributions; the structure of the Galaxy; mass distribution in spiral galaxies; rotation curves of spiral galaxies in clusters; grand design, multiple arm, and flocculent spiral galaxies; observations of barred spirals; ringed galaxies; elliptical galaxies; the modal approach to models of galaxies; self-consistent models of spiral galaxies; dynamical models of spiral galaxies; N-body models. Also discussed are: two-component models of galaxies; simulations of cloudy, gaseous galactic disks; numerical experiments on the stability of hot stellar systems; instabilities of slowly rotating galaxies; spiral structure as a recurrent instability; model gas flows in selected barred spiral galaxies; bar shapes and orbital stochasticity; three-dimensional models; polar ring galaxies; dynamical models of polar rings

  13. Version 1 of the Hubble Source Catalog

    Science.gov (United States)

    Whitmore, Bradley C.; Allam, Sahar S.; Budavári, Tamás; Casertano, Stefano; Downes, Ronald A.; Donaldson, Thomas; Fall, S. Michael; Lubow, Stephen H.; Quick, Lee; Strolger, Louis-Gregory; Wallace, Geoff; White, Richard L.

    2016-06-01

    The Hubble Source Catalog is designed to help optimize science from the Hubble Space Telescope (HST) by combining the tens of thousands of visit-based source lists in the Hubble Legacy Archive (HLA) into a single master catalog. Version 1 of the Hubble Source Catalog includes WFPC2, ACS/WFC, WFC3/UVIS, and WFC3/IR photometric data generated using SExtractor software to produce the individual source lists. The catalog includes roughly 80 million detections of 30 million objects involving 112 different detector/filter combinations, and about 160,000 HST exposures. Source lists from Data Release 8 of the HLA are matched using an algorithm developed by Budavári & Lubow. The mean photometric accuracy for the catalog as a whole is better than 0.10 mag, with relative accuracy as good as 0.02 mag in certain circumstances (e.g., bright isolated stars). The relative astrometric residuals are typically within 10 mas, with a value for the mode (I.e., most common value) of 2.3 mas. The absolute astrometric accuracy is better than 0''\\hspace{-0.5em}. 1 for most sources, but can be much larger for a fraction of fields that could not be matched to the PanSTARRS, SDSS, or 2MASS reference systems. In this paper we describe the database design with emphasis on those aspects that enable the users to fully exploit the catalog while avoiding common misunderstandings and potential pitfalls. We provide usage examples to illustrate some of the science capabilities and data quality characteristics, and briefly discuss plans for future improvements to the Hubble Source Catalog.

  14. Positron Transport and Annihilation in the Galactic Bulge

    Directory of Open Access Journals (Sweden)

    Fiona Helen Panther

    2018-03-01

    Full Text Available The annihilation of positrons in the Milky Way Galaxy has been observed for ∼50 years; however, the production sites of these positrons remains hard to identify. The observed morphology of positron annihilation gamma-rays provides information on the annihilation sites of these Galactic positrons. It is understood that the positrons responsible for the annihilation signal originate at MeV energies. The majority of sources of MeV positrons occupy the star-forming thin disk of the Milky Way. If positrons propagate far from their sources, we must develop accurate models of positron propagation through all interstellar medium (ISM phases in order to reveal the currently uncertain origin of these Galactic positrons. On the other hand, if positrons annihilate close to their sources, an alternative source of MeV positrons with a distribution that matches the annihilation morphology must be identified. In this work, I discuss the various models that have been developed to understand the origin of the 511 keV line from the direction of the Galactic bulge, and the propagation of positrons in the ISM.

  15. Heavy Ion Testing at the Galactic Cosmic Ray Energy Peak

    Science.gov (United States)

    Pellish, Jonathan A.; Xapsos, M. A.; LaBel, K. A.; Marshall, P. W.; Heidel, D. F.; Rodbell, K. P.; Hakey, M. C.; Dodd, P. E.; Shaneyfelt, M. R.; Schwank, J. R.; hide

    2009-01-01

    A 1 GeV/u Fe-56 Ion beam allows for true 90 deg. tilt irradiations of various microelectronic components and reveals relevant upset trends for an abundant element at the galactic cosmic ray (GCR) flux-energy peak.

  16. The galactic distribution of pulsars

    International Nuclear Information System (INIS)

    Lyne, A.G.

    1981-01-01

    The galactic distribution of pulsars follows the general form of many population I objects in galactocentric radius, but has a wide distribution above and below the galactic plane due to high space velocities imparted to the pulsars at birth. The evidence for this model is described and the various factors involved in estimating the total galactic population and the galactic birthrate of pulsars are discussed. The various estimates of the galactic population which cluster around 5 x 10 5 are seen to be critically dependent upon the cut-off at low luminosities and upon the value of the mean electron density within 500 pc of the Earth. Estimates of the lifetimes of pulsars are available from both the characteristic ages and proper motion measurements and both give values of about 5 million years. The implied birthrate of one in every 10 years is barely compatible with most estimates of the galactic supernova rate. (Auth.)

  17. THE PECULIAR EXTINCTION LAW OF SN 2014J MEASURED WITH THE HUBBLE SPACE TELESCOPE

    Energy Technology Data Exchange (ETDEWEB)

    Amanullah, R.; Goobar, A.; Johansson, J.; Petrushevska, T. [Oskar Klein Centre, Physics Department, Stockholm University, SE-106 91 Stockholm (Sweden); Banerjee, D. P. K.; Venkataraman, V.; Joshi, V.; Ashok, N. M. [Physical Research Laboratory, Ahmedabad 380009 (India); Cao, Y.; Kulkarni, S. R. [Cahill Center for Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Kasliwal, M. M. [Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Nugent, P. E. [Department of Astronomy, University of California Berkeley, B-20 Hearst Field, Annex # 3411, Berkeley, CA 94720-3411 (United States); Stanishev, V., E-mail: rahman@fysik.su.se [CENTRA—Centro Multidisciplinar de Astrofísica, Instituto Superior Técnico, Av. Rovisco Pais 1, 1049-001 Lisbon (Portugal)

    2014-06-20

    The wavelength dependence of the extinction of Type Ia SN 2014J in the nearby galaxy M82 has been measured using UV to near-IR photometry obtained with the Hubble Space Telescope, the Nordic Optical Telescope, and the Mount Abu Infrared Telescope. This is the first time that the reddening of an SN Ia is characterized over the full wavelength range of 0.2-2 μm. A total-to-selective extinction, R{sub V} ≥ 3.1, is ruled out with high significance. The best fit at maximum using a Galactic type extinction law yields R{sub V} = 1.4 ± 0.1. The observed reddening of SN 2014J is also compatible with a power-law extinction, A {sub λ}/A{sub V} = (λ/λ {sub V}) {sup p} as expected from multiple scattering of light, with p = –2.1 ± 0.1. After correcting for differences in reddening, SN 2014J appears to be very similar to SN 2011fe over the 14 broadband filter light curves used in our study.

  18. Hubble induced mass after inflation in spectator field models

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, Tomohiro [Stanford Institute for Theoretical Physics and Department of Physics, Stanford University, Stanford, CA 94306 (United States); Harigaya, Keisuke, E-mail: tomofuji@stanford.edu, E-mail: keisukeh@icrr.u-tokyo.ac.jp [Department of Physics, University of California, Berkeley, CA 94720 (United States)

    2016-12-01

    Spectator field models such as the curvaton scenario and the modulated reheating are attractive scenarios for the generation of the cosmic curvature perturbation, as the constraints on inflation models are relaxed. In this paper, we discuss the effect of Hubble induced masses on the dynamics of spectator fields after inflation. We pay particular attention to the Hubble induced mass by the kinetic energy of an oscillating inflaton, which is generically unsuppressed but often overlooked. In the curvaton scenario, the Hubble induced mass relaxes the constraint on the property of the inflaton and the curvaton, such as the reheating temperature and the inflation scale. We comment on the implication of our discussion for baryogenesis in the curvaton scenario. In the modulated reheating, the predictions of models e.g. the non-gaussianity can be considerably altered. Furthermore, we propose a new model of the modulated reheating utilizing the Hubble induced mass which realizes a wide range of the local non-gaussianity parameter.

  19. Ultradeep Near-Infrared ISAAC Observations of the Hubble Deep Field South: Observations, Reduction, Multicolor Catalog, and Photometric Redshifts

    Science.gov (United States)

    Labbé, Ivo; Franx, Marijn; Rudnick, Gregory; Schreiber, Natascha M. Förster; Rix, Hans-Walter; Moorwood, Alan; van Dokkum, Pieter G.; van der Werf, Paul; Röttgering, Huub; van Starkenburg, Lottie; van der Wel, Arjen; Kuijken, Konrad; Daddi, Emanuele

    2003-03-01

    We present deep near-infrared (NIR) Js-, H-, and Ks-band ISAAC imaging of the Wide Field Planetary Camera 2 (WFPC2) field of the Hubble Deep Field South (HDF-S). The 2.5‧×2.5‧ high Galactic latitude field was observed with the Very Large Telescope under the best seeing conditions, with integration times amounting to 33.6 hr in Js, 32.3 hr in H, and 35.6 hr in Ks. We reach total AB magnitudes for point sources of 26.8, 26.2, and 26.2, respectively (3 σ), which make it the deepest ground-based NIR observation to date and the deepest Ks-band data in any field. The effective seeing of the co-added images is ~0.45" in Js, ~0.48" in H, and ~0.46" in Ks. Using published WFPC2 optical data, we constructed a Ks-limited multicolor catalog containing 833 sources down to Ktots,AB2.3 (in Johnson magnitudes). Because they are extremely faint in the observed optical, they would be missed by ultraviolet-optical selection techniques, such as the U-dropout method. Based on service mode observations collected at the European Southern Observatory, Paranal, Chile (ESO Program 164.O-0612). Also based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy (AURA), Inc., under NASA contract NAS 5-26555.

  20. VERITAS Galactic Observations

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, Gareth

    2013-06-15

    We report on recent Galactic results and discoveries made by the VERITAS collaboration. The Very Energetic Radiation Imaging Telescope Array System (VERITAS) is a ground-based gamma-ray observatory, located in southern Arizona, able to detect gamma rays of energies from 100 GeV up to 30 TeV. VERITAS has been fully operational since 2007 and its current sensitivity enables the detection of a 1% Crab Nebula flux at 5 sigma in under 30 hours. The observatory is well placed to view large parts of the galactic plane including its center, resulting in a strong galactic program. Objects routinely observed include Pulsars, Pulsar Wind Nebula, X-ray binaries and sources with unidentified counterparts in other wavelengths.

  1. Hubble 2020: Outer Planet Atmospheres Legacy (OPAL) Program

    Science.gov (United States)

    Simon, Amy

    2017-08-01

    Long time base observations of the outer planets are critical in understanding the atmospheric dynamics and evolution of the gas giants. We propose yearly monitoring of each giant planet for the remainder of Hubble's lifetime to provide a lasting legacy of increasingly valuable data for time-domain studies. The Hubble Space Telescope is a unique asset to planetary science, allowing high spatial resolution data with absolute photometric knowledge. For the outer planets, gas/ice giant planets Jupiter, Saturn, Uranus and Neptune, many phenomena happen on timescales of years to decades, and the data we propose are beyond the scope of a typical GO program. Hubble is the only platform that can provide high spatial resolution global studies of cloud coloration, activity, and motion on a consistent time basis to help constrain the underlying mechanics.

  2. THE HUBBLE SPACE TELESCOPE UV LEGACY SURVEY OF GALACTIC GLOBULAR CLUSTERS: THE INTERNAL KINEMATICS OF THE MULTIPLE STELLAR POPULATIONS IN NGC 2808

    International Nuclear Information System (INIS)

    Bellini, A.; Anderson, J.; Marel, R. P. van der; Vesperini, E.; Hong, J.; Piotto, G.; Milone, A. P.; Marino, A. F.; Bedin, L. R.; Renzini, A.; Cassisi, S.; D’Antona, F.

    2015-01-01

    Numerous observational studies have revealed the ubiquitous presence of multiple stellar populations in globular clusters and cast many difficult challenges for the study of the formation and dynamical history of these stellar systems. In this Letter we present the results of a study of the kinematic properties of multiple populations in NGC 2808 based on high-precision Hubble Space Telescope proper-motion measurements. In a recent study, Milone et al. identified five distinct populations (A–E) in NGC 2808. Populations D and E coincide with the helium-enhanced populations in the middle and the blue main sequences (mMS and bMS) previously discovered by Piotto et al.; populations A–C correspond to the redder main sequence that, in Piotto et al., was associated with the primordial stellar population. Our analysis shows that, in the outermost regions probed (between about 1.5 and 2 times the cluster half-light radius), the velocity distribution of populations D and E is radially anisotropic (the deviation from an isotropic distribution is significant at the ∼3.5σ level). Stars of populations D and E have a smaller tangential velocity dispersion than those of populations A–C, while no significant differences are found in the radial velocity dispersion. We present the results of a numerical simulation showing that the observed differences between the kinematics of these stellar populations are consistent with the expected kinematic fingerprint of the diffusion toward the cluster outer regions of stellar populations initially more centrally concentrated

  3. On the metallicity gradients of the Galactic disk as revealed by LSS-GAC red clump stars

    Science.gov (United States)

    Huang, Yang; Liu, Xiao-Wei; Zhang, Hua-Wei; Yuan, Hai-Bo; Xiang, Mao-Sheng; Chen, Bing-Qiu; Ren, Juan-Juan; Sun, Ning-Chen; Wang, Chun; Zhang, Yong; Hou, Yong-Hui; Wang, Yue-Fei; Yang, Ming

    2015-08-01

    Using a sample of over 70 000 red clump (RC) stars with 5%-10% distance accuracy selected from the LAMOST Spectroscopic Survey of the Galactic Anti-center (LSS-GAC), we study the radial and vertical gradients of the Galactic disk(s) mainly in the anti-center direction, covering a significant volume of the disk in the range of projected Galactocentric radius 7 ≤ RGC ≤ 14 kpc and height from the Galactic midplane 0 ≤ |Z| ≤ 3 kpc. Our analysis shows that both the radial and vertical metallicity gradients are negative across much of the volume of the disk that is probed, and they exhibit significant spatial variations. Near the solar circle (7 ≤ RGC ≤ 115 kpc), the radial gradient has a moderately steep, negative slope of -0.08 dex kpc-1 near the midplane (|Z| plane, suggesting that the outer disk may have experienced an evolutionary path different from that of the inner disk. The vertical gradients are found to flatten largely with increasing RGC. However, the vertical gradient of the lower disk (0 ≤ |Z| ≤ 1 kpc) is found to flatten with RGC quicker than that of the upper disk (1 < |Z| ≤ 3 kpc). Our results should provide strong constraints on the theory of disk formation and evolution, as well as the underlying physical processes that shape the disk (e.g. gas flows, radial migration, and internal and external perturbations).

  4. Carnegie Hubble Program: A Mid-Infrared Calibration of the Hubble Constant

    Science.gov (United States)

    Freedman, Wendy L.; Madore, Barry F.; Scowcroft, Victoria; Burns, Chris; Monson, Andy; Persson, S. Eric; Seibert, Mark; Rigby, Jane

    2012-01-01

    Using a mid-infrared calibration of the Cepheid distance scale based on recent observations at 3.6 micrometers with the Spitzer Space Telescope, we have obtained a new, high-accuracy calibration of the Hubble constant. We have established the mid-IR zero point of the Leavitt law (the Cepheid period-luminosity relation) using time-averaged 3.6 micrometers data for 10 high-metallicity, MilkyWay Cepheids having independently measured trigonometric parallaxes. We have adopted the slope of the PL relation using time-averaged 3.6micrometers data for 80 long-period Large Magellanic Cloud (LMC) Cepheids falling in the period range 0.8 < log(P) < 1.8.We find a new reddening-corrected distance to the LMC of 18.477 +/- 0.033 (systematic) mag. We re-examine the systematic uncertainties in H(sub 0), also taking into account new data over the past decade. In combination with the new Spitzer calibration, the systematic uncertainty in H(sub 0) over that obtained by the Hubble Space Telescope Key Project has decreased by over a factor of three. Applying the Spitzer calibration to the Key Project sample, we find a value of H(sub 0) = 74.3 with a systematic uncertainty of +/-2.1 (systematic) kilometers per second Mpc(sup -1), corresponding to a 2.8% systematic uncertainty in the Hubble constant. This result, in combination with WMAP7measurements of the cosmic microwave background anisotropies and assuming a flat universe, yields a value of the equation of state for dark energy, w(sub 0) = -1.09 +/- 0.10. Alternatively, relaxing the constraints on flatness and the numbers of relativistic species, and combining our results with those of WMAP7, Type Ia supernovae and baryon acoustic oscillations yield w(sub 0) = -1.08 +/- 0.10 and a value of N(sub eff) = 4.13 +/- 0.67, mildly consistent with the existence of a fourth neutrino species.

  5. COLLIMATION AND SCATTERING OF THE ACTIVE GALACTIC NUCLEUS EMISSION IN THE SOMBRERO GALAXY

    Energy Technology Data Exchange (ETDEWEB)

    Menezes, R. B.; Steiner, J. E.; Ricci, T. V., E-mail: robertobm@astro.iag.usp.br [Instituto de Astronomia Geofisica e Ciencias Atmosfericas, Universidade de Sao Paulo, Rua do Matao 1226, Cidade Universitaria, Sao Paulo, SP CEP 05508-090 (Brazil)

    2013-03-10

    We present an analysis of a data cube of the central region of M104, the Sombrero galaxy, obtained with the GMOS-IFU of the Gemini-South telescope, and report the discovery of collimation and scattering of the active galactic nucleus (AGN) emission in the circumnuclear region of this galaxy. Analysis with PCA Tomography and spectral synthesis revealed the existence of collimation and scattering of the AGN featureless continuum and also of a broad component of the H{alpha} emission line. The collimation and scattering of this broad H{alpha} component was also revealed by fitting the [N II] {lambda}{lambda}6548, 6583 and H{alpha} emission lines as a sum of Gaussian functions. The spectral synthesis, together with a V-I image obtained with the Hubble Space Telescope, showed the existence of circumnuclear dust, which may cause the light scattering. We also identify a dusty feature that may be interpreted as a torus/disk structure. The existence of two opposite regions with featureless continuum (P.A. = -18 Degree-Sign {+-} 13 Degree-Sign and P.A. = 162 Degree-Sign {+-} 13 Degree-Sign ) along a direction perpendicular to the torus/disk (P.A. = 72 Degree-Sign {+-} 14 Degree-Sign ) suggests that this structure is approximately edge-on and collimates the AGN emission. The edge-on torus/disk also hides the broad-line region. The proposed scenario is compatible with the unified model and explains why only a weak broad component of the H{alpha} emission line is visible and also why many previous studies detected no broad H{alpha}. The technique used here proved to be an efficient method not only for detecting scattered light, but also for testing the unified model in low-luminosity AGNs.

  6. Galactic-bursts signatures in Antarctica 10Be spectra reveal cosmogenesis of climate switching

    OpenAIRE

    Omerbashich, M.

    2006-01-01

    A very strong period of 3592+-57 yrs in 10Be deposition rates from Vostok ice core raw data was detected and verified against concentration raw data at Taylor Dome and Vostok. Data show Hallstadzeit Solar cycle at 2296+-57 yrs, and indicate LaViolette period at 12500 yrs. The 99% confidence Gauss Vanicek spectral analysis was used, making data alteration avoidable thus enabling data separation that reflected cosmic ray background conditions at Galactic boundary. After the separation only the ...

  7. HUBBLE SPIES MOST DISTANT SUPERNOVA EVER SEEN

    Science.gov (United States)

    2002-01-01

    Using NASA's Hubble Space Telescope, astronomers pinpointed a blaze of light from the farthest supernova ever seen, a dying star that exploded 10 billion years ago. The detection and analysis of this supernova, called 1997ff, is greatly bolstering the case for the existence of a mysterious form of dark energy pervading the cosmos, making galaxies hurl ever faster away from each other. The supernova also offers the first glimpse of the universe slowing down soon after the Big Bang, before it began speeding up. This panel of images, taken with the Wide Field and Planetary Camera 2, shows the supernova's cosmic neighborhood; its home galaxy; and the dying star itself. Astronomers found this supernova in 1997 during a second look at the northern Hubble Deep Field [top panel], a tiny region of sky first explored by the Hubble telescope in 1995. The image shows the myriad of galaxies Hubble spied when it peered across more than 10 billion years of time and space. The white box marks the area where the supernova dwells. The photo at bottom left is a close-up view of that region. The white arrow points to the exploding star's home galaxy, a faint elliptical. Its redness is due to the billions of old stars residing there. The picture at bottom right shows the supernova itself, distinguished by the white dot in the center. Although this stellar explosion is among the brightest beacons in the universe, it could not be seen directly in the Hubble images. The stellar blast is so distant from Earth that its light is buried in the glow of its host galaxy. To find the supernova, astronomers compared two pictures of the 'deep field' taken two years apart. One image was of the original Hubble Deep Field; the other, the follow-up deep-field picture taken in 1997. Using special computer software, astronomers then measured the light from the galaxies in both images. Noting any changes in light output between the two pictures, the computer identified a blob of light in the 1997 picture

  8. Dismantling Hubble's Legacy?

    OpenAIRE

    Way, Michael J.

    2013-01-01

    Edwin Hubble is famous for a number of discoveries that are well known to amateur and professional astronomers, students and the general public. The origins of these discoveries are examined and it is demonstrated that, in each case, a great deal of supporting evidence was already in place. In some cases the discoveries had either already been made, or competing versions were not adopted for complex scientific and sociological reasons.

  9. Chemical Characterization of the Inner Galactic bulge: North-South Symmetry

    Science.gov (United States)

    Nandakumar, G.; Ryde, N.; Schultheis, M.; Thorsbro, B.; Jönsson, H.; Barklem, P. S.; Rich, R. M.; Fragkoudi, F.

    2018-05-01

    While the number of stars in the Galactic bulge with detailed chemical abundance measurements is increasing rapidly, the inner Galactic bulge (|b| detect a bimodal MDF with a metal-rich peak at ˜ +0.3 dex and a metal-poor peak at ˜ -0.5 dex, and no stars with [Fe/H] > +0.6 dex. The Galactic Center field reveals in contrast a mainly metal-rich population with a mean metallicity of +0.3 dex. We derived [Mg/Fe] and [Si/Fe] abundances which are consistent with trends from the outer bulge. We confirm for the supersolar metallicity stars the decreasing trend in [Mg/Fe] and [Si/Fe] as expected from chemical evolution models. With the caveat of a relatively small sample, we do not find significant differences in the chemical abundances between the Northern and the Southern fields, hence the evidence is consistent with symmetry in chemistry between North and South.

  10. TeV Gamma Rays From Galactic Center Pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Hooper, Dan [Fermilab; Cholis, Ilias [Johns Hopkins U.; Linden, Tim [Ohio State U., CCAPP

    2017-05-25

    Measurements of the nearby pulsars Geminga and B0656+14 by the HAWC and Milagro telescopes have revealed the presence of bright TeV-emitting halos surrounding these objects. If young and middle-aged pulsars near the Galactic Center transfer a similar fraction of their energy into TeV photons, then these sources could dominate the emission that is observed by HESS and other ground-based telescopes from the innermost ~10^2 parsecs of the Milky Way. In particular, both the spectral shape and the angular extent of this emission is consistent with TeV halos produced by a population of pulsars. The overall flux of this emission requires a birth rate of ~100-1000 neutron stars per Myr near the Galactic Center, in good agreement with recent estimates.

  11. Interstellar Matters: Neutral Hydrogen and the Galactic Magnetic Field

    Science.gov (United States)

    Verschuur, Gerrit; Schmelz, Joan T.; Asgari-Targhi asgari-Targhi, M.

    2018-01-01

    The physics of the interstellar medium was revolutionized by the observations of the Galactic Arecibo L-Band Feed Array (GALFA) HI survey done at the Arecibo Observatory. The high-resolution, high-sensitivity, high-dynamic- range images show complex, tangled, extended filaments, and reveal that the fabric of the neutral interstellar medium is deeply tied to the structure of the ambient magnetic field. This discovery prompts an obvious question – how exactly is the interstellar {\\it neutral} hydrogen being affected by the galactic magnetic field? We look into this question by examining a set of GALFA-HI data in great detail. We have chosen a long, straight filament in the southern galactic sky. This structure is both close by and isolated in velocity space. Gaussian analysis of profiles both along and across the filament reveal internal structure – braided strands that can be traced through the simplest part, but become tangled in more complex segments. These braids do not resemble in any way the old spherical HI clouds and rudimentary pressure balance models that were used to explain the pre-GALFA- HI interstellar medium. It is clear that these structures are created, constrained, and dominated by magnetic fields. Like many subfields of astronomy before it, e.g., physics of the solar coronal, extragalactic radio jets, and pulsar environment, scientists are confronted with observations that simply cannot be explained by simple hydrodynamics and are forced to consider magneto-hydrodynamics.

  12. Angular Spectra of Polarized Galactic Foregrounds

    OpenAIRE

    Cho, Jung; Lazarian, A.

    2003-01-01

    It is believed that magnetic field lines are twisted and bend by turbulent motions in the Galaxy. Therefore, both Galactic synchrotron emission and thermal emission from dust reflects statistics of Galactic turbulence. Our simple model of Galactic turbulence, motivated by results of our simulations, predicts that Galactic disk and halo exhibit different angular power spectra. We show that observed angular spectra of synchrotron emission are compatible with our model. We also show that our mod...

  13. Finding our Origins with the Hubble and James Webb Space Telescopes

    Science.gov (United States)

    Gardner, Jonathan P.

    2009-01-01

    NASA is planning a successor to the Hubble Space Telescope designed to study the origins of galaxies, stars, planets and life in the universe. In this talk, Dr. Gardner will discuss the origin and evolution of galaxies, beginning with the Big Bang and tracing what we have learned with Hubble through to the present day. He will show that results from studies with Hubble have led to plans for its successor, the James Webb Space Telescope. Webb is scheduled to launch in 2014, and is designed to find the first galaxies that formed in the distant past and to penetrate the dusty clouds of gas where stars are still forming today. He will compare Webb to Hubble, and discuss recent progress in the construction of the observatory.

  14. Is there dust in galactic haloes

    International Nuclear Information System (INIS)

    Greenberg, J.M.; Ferrini, F.; Pisa Univ.; Barsella, B.; Aiello, S.

    1987-01-01

    The ubiquitous presence of dust within the disks of spiral galaxies is well established. The authors predict that the presence of dust in these regions may be revealed in bright edge-on galaxies, especially by using the polarization of the scattered light from the symmetric lanes. The detection of scattered light above the galactic plane may be an indicator that the parent galaxy has not suffered close encounters with other galaxies at least within the timescale required to establish the dust layers. (author)

  15. Galactic-scale Feedback Observed in the 3C 298 Quasar Host Galaxy

    Science.gov (United States)

    Vayner, Andrey; Wright, Shelley A.; Murray, Norman; Armus, Lee; Larkin, James E.; Mieda, Etsuko

    2017-12-01

    We present high angular resolution multiwavelength data of the 3C 298 radio-loud quasar host galaxy (z = 1.439) taken using the W.M. Keck Observatory OSIRIS integral field spectrograph (IFS) with adaptive optics, the Atacama Large Millimeter/submillimeter Array (ALMA), the Hubble Space Telescope (HST) WFC3, and the Very Large Array (VLA). Extended emission is detected in the rest-frame optical nebular emission lines Hβ, [O III], Hα, [N II], and [S II], as well as in the molecular lines CO (J = 3‑2) and (J = 5‑4). Along the path of the relativistic jets of 3C 298, we detect conical outflows in ionized gas emission with velocities of up to 1700 {km} {{{s}}}-1 and an outflow rate of 450–1500 {M}ȯ {{yr}}-1 extended over 12 kpc. Near the spatial center of the conical outflow, CO (J = 3‑2) emission shows a molecular gas disk with a rotational velocity of ±150 {km} {{{s}}}-1 and total molecular mass ({M}{{{H}}2}) of 6.6+/- 0.36× {10}9 {M}ȯ . On the blueshifted side of the molecular disk, we observe broad extended emission that is due to a molecular outflow with a rate of 2300 {M}ȯ {{yr}}-1 and depletion timescale of 3 Myr. We detect no narrow Hα emission in the outflow regions, suggesting a limit on star formation of 0.3 {M}ȯ {{yr}}-1 {{kpc}}-2. Quasar-driven winds are evacuating the molecular gas reservoir, thereby directly impacting star formation in the host galaxy. The observed mass of the supermassive black hole is {10}9.37{--9.56} {M}ȯ , and we determine a dynamical bulge mass of {M}{bulge}=1{--}1.7× {10}10\\tfrac{R}{1.6 {kpc}} {M}ȯ . The bulge mass of 3C 298 lies 2–2.5 orders of magnitude below the expected value from the local galactic bulge—supermassive black hole mass ({M}{bulge}{--}{M}{BH}) relationship. A second galactic disk observed in nebular emission is offset from the quasar by 9 kpc, suggesting that the system is an intermediate-stage merger. These results show that galactic-scale negative feedback is occurring early in the merger

  16. MN48: a new Galactic bona fide luminous blue variable revealed by Spitzer and SALT

    Science.gov (United States)

    Kniazev, A. Y.; Gvaramadze, V. V.; Berdnikov, L. N.

    2016-07-01

    In this paper, we report the results of spectroscopic and photometric observations of the candidate evolved massive star MN48 disclosed via detection of a mid-infrared circular shell around it with the Spitzer Space Telescope. Follow-up optical spectroscopy of MN48 with the Southern African Large Telescope (SALT) carried out in 2011-2015 revealed significant changes in the spectrum of this star, which are typical of luminous blue variables (LBVs). The LBV status of MN48 was further supported by photometric monitoring which shows that in 2009-2011 this star has brightened by ≈0.9 and 1 mag in the V and Ic bands, respectively, then faded by ≈1.1 and 1.6 mag during the next four years, and apparently started to brighten again recently. The detected changes in the spectrum and brightness of MN48 make this star the 18th known Galactic bona fide LBV and increase the percentage of LBVs associated with circumstellar nebulae to more than 70 per cent. We discuss the possible birth place of MN48 and suggest that this star might have been ejected either from a putative star cluster embedded in the H II region IRAS 16455-4531 or the young massive star cluster Westerlund 1.

  17. Replacement vs. Renovation: The Reincarnation of Hubble Middle School

    Science.gov (United States)

    Ogurek, Douglas J.

    2010-01-01

    At the original Hubble Middle School, neither the views (a congested Roosevelt Road and glimpses of downtown Wheaton) nor the century-old facility that offered them was very inspiring. Built at the start of the 20th century, the 250,000-square-foot building was converted from Wheaton Central High School to Hubble Middle School in the early 1980s.…

  18. A Hubble Diagram for Quasars

    Directory of Open Access Journals (Sweden)

    Susanna Bisogni

    2018-01-01

    Full Text Available The cosmological model is at present not tested between the redshift of the farthest observed supernovae (z ~ 1.4 and that of the Cosmic Microwave Background (z ~ 1,100. Here we introduce a new method to measure the cosmological parameters: we show that quasars can be used as “standard candles” by employing the non-linear relation between their intrinsic UV and X-ray emission as an absolute distance indicator. We built a sample of ~1,900 quasars with available UV and X-ray observations, and produced a Hubble Diagram up to z ~ 5. The analysis of the quasar Hubble Diagram, when used in combination with supernovae, provides robust constraints on the matter and energy content in the cosmos. The application of this method to forthcoming, larger quasar samples, will also provide tight constraints on the dark energy equation of state and its possible evolution with time.

  19. Delivering Hubble Discoveries to the Classroom

    Science.gov (United States)

    Eisenhamer, B.; Villard, R.; Weaver, D.; Cordes, K.; Knisely, L.

    2013-04-01

    Today's classrooms are significantly influenced by current news events, delivered instantly into the classroom via the Internet. Educators are challenged daily to transform these events into student learning opportunities. In the case of space science, current news events may be the only chance for educators and students to explore the marvels of the Universe. Inspired by these circumstances, the education and news teams developed the Star Witness News science content reading series. These online news stories (also available in downloadable PDF format) mirror the content of Hubble press releases and are designed for upper elementary and middle school level readers to enjoy. Educators can use Star Witness News stories to reinforce students' reading skills while exposing students to the latest Hubble discoveries.

  20. Galactic cosmic rays and tropical ozone asymmetries

    International Nuclear Information System (INIS)

    Kilifarska, Natalya; Bakhmutov, Volodymyr; Melnyk, Galyna

    2017-01-01

    Lower stratospheric ozone O_3 is of special interest to climatic studies due to its direct influence on the tropopause temperature, and correspondingly on Earth’s radiation balance. By reason of the suppressed dissociation of molecular oxygen by solar UV radiation and the long life span of the lower stratospheric O_3 , its temporal variability is usually attributed to atmospheric circulation. Here we report about latitudinal-longitudinal differences in a centennial evolution of the tropical O_3 at 70 hPa. These asymmetries are hardly explicable within the concept of the ozone’s dynamical control alone. Analysis of ozone, energetic particles and the geomagnetic records from the last 111 years has revealed that they all evolve synchronously with time. This coherence motivates us to propose a mechanism explaining the geomagnetic and galactic cosmic ray influence on the near tropopause O_3 , allowing for an understanding of its spatial-temporal variability during the past century. Key words: galactic cosmic rays, asymmetries of tropical ozone distribution, geomagnetic filed

  1. Cataclysmic variables, Hubble-Sandage variables and eta Carinae

    International Nuclear Information System (INIS)

    Bath, G.T.

    1980-01-01

    The Hubble-Sandage variables are the most luminous stars in external galaxies. They were first investigated by Hubble and Sandage (1953) for use as distance indicators. Their main characteristics are high luminosity, blue colour indices, and irregular variability. Spectroscopically they show hydrogen and helium in emission with occasionally weaker FeII and [FeII], and no Balmer jump (Humphreys 1975, 1978). In this respect they closely resemble cataclysmic variables, particularly dwarf novae. In the quiescent state dwarf novae show broad H and HeI, together with a strong UV continuum. In contrast to the spectroscopic similarities, the luminosities could hardly differ more. Rather than being the brightest stars known, quiescent dwarf novae are as faint or fainter than the sun. It is suggested that the close correspondence between the spectral appearance of the two classes combined with the difference in luminosity is well accounted for by a model of Hubble-Sandage variables in which the same physical processes are occurring, but on a larger scale. (Auth.)

  2. Cosmic Collisions The Hubble Atlas of Merging Galaxies

    CERN Document Server

    Christensen, Lars Lindberg; Martin, Davide

    2009-01-01

    Lars Lindberg Christensen, Raquel Yumi Shida & Davide De Martin Cosmic Collisions: The Hubble Atlas of Merging Galaxies Like majestic ships in the grandest night, galaxies can slip ever closer until their mutual gravitational interaction begins to mold them into intricate figures that are finally, and irreversibly, woven together. It is an immense cosmic dance, choreographed by gravity. Cosmic Collisions contains a hundred new, many thus far unpublished, images of colliding galaxies from the NASA/ESA Hubble Space Telescope. It is believed that many present-day galaxies, including the Milky Way, were assembled from such a coalescence of smaller galaxies, occurring over billions of years. Triggered by the colossal and violent interaction between the galaxies, stars form from large clouds of gas in firework bursts, creating brilliant blue star clusters. The importance of these cosmic encounters reaches far beyond the stunning Hubble images. They may, in fact, be among the most important processes that shape ...

  3. GLOBAL GALACTIC DYNAMO DRIVEN BY COSMIC RAYS AND EXPLODING MAGNETIZED STARS

    International Nuclear Information System (INIS)

    Hanasz, Michal; Woltanski, Dominik; Kowalik, Kacper

    2009-01-01

    We report the first results of the first global galactic-scale cosmic ray (CR)-MHD simulations of CR-driven dynamo. We investigate the dynamics of magnetized interstellar medium (ISM), which is dynamically coupled with CR gas. We assume that exploding stars deposit small-scale, randomly oriented, dipolar magnetic fields into the differentially rotating ISM, together with a portion of CRs, accelerated in supernova shocks. We conduct numerical simulations with the aid of a new parallel MHD code PIERNIK. We find that the initial magnetization of galactic disks by exploding magnetized stars forms favorable conditions for the CR-driven dynamo. We demonstrate that dipolar magnetic fields supplied on small supernova remnant scales can be amplified exponentially by the CR-driven dynamo, to the present equipartition values, and transformed simultaneously to large galactic scales. The resulting magnetic field structure in an evolved galaxy appears spiral in the face-on view and reveals the so-called X-shaped structure in the edge-on view.

  4. HUBBLE SPACE TELESCOPE EMISSION-LINE GALAXIES AT z ∼ 2: THE MYSTERY OF NEON

    International Nuclear Information System (INIS)

    Zeimann, Gregory R.; Ciardullo, Robin; Gebhardt, Henry; Gronwall, Caryl; Hagen, Alex; Trump, Jonathan R.; Bridge, Joanna S.; Luo, Bin; Schneider, Donald P.

    2015-01-01

    We use near-infrared grism spectroscopy from the Hubble Space Telescope to examine the strength of [Ne III] λ3869 relative to Hβ, [O II] λ3727, and [O III] λ5007 in 236 low-mass (7.5 ≲ log (M * /M ☉ ) ≲ 10.5) star-forming galaxies in the redshift range 1.90 < z < 2.35. By stacking the data by stellar mass, we show that the [Ne III]/[O II] ratios of the z ∼ 2 universe are marginally higher than those seen in a comparable set of local Sloan Digital Sky Survey galaxies, and that [Ne III]/[O III] is enhanced by ∼0.2 dex. We consider the possible explanations for this ∼4σ result, including higher oxygen depletion out of the gas phase, denser H II regions, higher production of 22 Ne via Wolf-Rayet stars, and the existence of a larger population of X-ray obscured active galactic nuclei at z ∼ 2 compared to z ∼ 0. None of these simple scenarios, alone, are favored to explain the observed line ratios. We conclude by suggesting several avenues of future observations to further explore the mystery of enhanced [Ne III] emission

  5. Hubble expansion in static spacetime

    International Nuclear Information System (INIS)

    Rossler, Otto E.; Froehlich, Dieter; Movassagh, Ramis; Moore, Anthony

    2007-01-01

    A recently proposed mechanism for light-path expansion in a static spacetime is based on the moving-lenses paradigm. Since the latter is valid independently of whether space expands or not, a static universe can be used to better see the implications. The moving-lenses paradigm is related to the paradigm of dynamical friction. If this is correct, a Hubble-like law is implicit. It is described quantitatively. A bent in the Hubble-like line is predictably implied. The main underlying assumption is Price's Principle (PI 3 ). If the theory is sound, the greatest remaining problem in cosmology becomes the origin of hydrogen. Since Blandford's jet production mechanism for quasars is too weak, a generalized Hawking radiation hidden in the walls of cosmic voids is invoked. A second prediction is empirical: slow pattern changes in the cosmic microwave background. A third is ultra-high redshifts for Giacconi quasars. Bruno's eternal universe in the spirit of Augustine becomes a bit less outlandish

  6. The Carnegie Hubble Program

    Science.gov (United States)

    Freedman, Wendy L.; Madore, Barry F.; Scowcroft, Vicky; Mnso, Andy; Persson, S. E.; Rigby, Jane; Sturch, Laura; Stetson, Peter

    2011-01-01

    We present an overview of and preliminary results from an ongoing comprehensive program that has a goal of determining the Hubble constant to a systematic accuracy of 2%. As part of this program, we are currently obtaining 3.6 micron data using the Infrared Array Camera (IRAC) on Spitzer, and the program is designed to include JWST in the future. We demonstrate that the mid-infrared period-luminosity relation for Cepheids at 3.6 microns is the most accurate means of measuring Cepheid distances to date. At 3.6 microns, it is possible to minimize the known remaining systematic uncertainties in the Cepheid extragalactic distance scale. We discuss the advantages of 3.6 micron observations in minimizing systematic effects in the Cepheid calibration of the Hubble constant including the absolute zero point, extinction corrections, and the effects of metallicity on the colors and magnitudes of Cepheids. We are undertaking three independent tests of the sensitivity of the mid-IR Cepheid Leavitt Law to metallicity, which when combined will allow a robust constraint on the effect. Finally, we are providing a new mid-IR Tully-Fisher relation for spiral galaxies.

  7. Impact of Distance Determinations on Galactic Structure. I. Young and Intermediate-Age Tracers

    Science.gov (United States)

    Matsunaga, Noriyuki; Bono, Giuseppe; Chen, Xiaodian; de Grijs, Richard; Inno, Laura; Nishiyama, Shogo

    2018-06-01

    Here we discuss impacts of distance determinations on the Galactic disk traced by relatively young objects. The Galactic disk, ˜40 kpc in diameter, is a cross-road of studies on the methods of measuring distances, interstellar extinction, evolution of galaxies, and other subjects of interest in astronomy. A proper treatment of interstellar extinction is, for example, crucial for estimating distances to stars in the disk outside the small range of the solar neighborhood. We'll review the current status of relevant studies and discuss some new approaches to the extinction law. When the extinction law is reasonably constrained, distance indicators found in today and future surveys are telling us stellar distribution and more throughout the Galactic disk. Among several useful distance indicators, the focus of this review is Cepheids and open clusters (especially contact binaries in clusters). These tracers are particularly useful for addressing the metallicity gradient of the Galactic disk, an important feature for which comparison between observations and theoretical models can reveal the evolution of the disk.

  8. TEV GAMMA-RAY OBSERVATIONS OF THE GALACTIC CENTER RIDGE BY VERITAS

    Energy Technology Data Exchange (ETDEWEB)

    Archer, A.; Buckley, J. H.; Bugaev, V. [Department of Physics, Washington University, St. Louis, MO 63130 (United States); Benbow, W.; Cerruti, M. [Fred Lawrence Whipple Observatory, Harvard-Smithsonian Center for Astrophysics, Amado, AZ 85645 (United States); Bird, R.; Collins-Hughes, E. [School of Physics, University College Dublin, Belfield, Dublin 4 (Ireland); Buchovecky, M. [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States); Byrum, K. [Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439 (United States); Cardenzana, J. V; Eisch, J. D. [Department of Physics and Astronomy, Iowa State University, Ames, IA 50011 (United States); Chen, X. [Institute of Physics and Astronomy, University of Potsdam, D-14476 Potsdam-Golm (Germany); Ciupik, L. [Astronomy Department, Adler Planetarium and Astronomy Museum, Chicago, IL 60605 (United States); Connolly, M. P. [School of Physics, National University of Ireland Galway, University Road, Galway (Ireland); Falcone, A. [Department of Astronomy and Astrophysics, 525 Davey Lab, Pennsylvania State University, University Park, PA 16802 (United States); Feng, Q.; Finley, J. P. [Department of Physics and Astronomy, Purdue University, West Lafayette, IN 47907 (United States); Fleischhack, H. [DESY, Platanenallee 6, D-15738 Zeuthen (Germany); Flinders, A. [Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112 (United States); Fortson, L., E-mail: asmith44@umd.edu [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States); and others

    2016-04-20

    The Galactic Center ridge has been observed extensively in the past by both GeV and TeV gamma-ray instruments revealing a wealth of structure, including a diffuse component and the point sources G0.9+0.1 (a composite supernova remnant) and Sgr A* (believed to be associated with the supermassive black hole located at the center of our Galaxy). Previous very high energy (VHE) gamma-ray observations with the H.E.S.S. experiment have also detected an extended TeV gamma-ray component along the Galactic plane in the >300 GeV gamma-ray regime. Here we report on observations of the Galactic Center ridge from 2010 to 2014 by the VERITAS telescope array in the >2 TeV energy range. From these observations we (1) provide improved measurements of the differential energy spectrum for Sgr A* in the >2 TeV gamma-ray regime, (2) provide a detection in the >2 TeV gamma-ray emission from the composite SNR G0.9+0.1 and an improved determination of its multi-TeV gamma-ray energy spectrum, and (3) report on the detection of VER J1746-289, a localized enhancement of >2 TeV gamma-ray emission along the Galactic plane.

  9. Hubble Space Telescope: a Vision to 2020 and Beyond: The Hubble Source Catalog

    Science.gov (United States)

    Strolger, Louis-Gregory

    2016-01-01

    The Hubble Source Catalog (HSC) is an initiative centered on what science would be enabled by a master catalog of all the sources HST has imaged over its lifetime. The first version of this catalog was released in early 2015, and included approximately 30 million sources from archived direct imaging with WFPC2, ACS (through 2011), and WFC3 (to 2014). Version 2, scheduled for release in early 2016, will feed off the Hubble Legacy Archive DR9 release, updating the ACS sources with more detections, and more direct imaging, through to mid-2015. This talk will overview the properties and goals of the HSC in terms of its source detection, object resolution, confusion limits, and overall astrometric and photometric precision. I will also discuss the connections to other MAST activities (e.g., the Discovery Portal interface), to STScI and user products (e.g., the Spectroscopic Catalog and High-Level Science Products), and to community resources (e.g., Pan-STARRS, SDSS, and eventually GAIA). The HSC successfully amalgamates the diverse observations with HST, and despite the limitations in uniformity on the sky, will be an important reference for JWST, LSST, and other future telescopes.

  10. First detection of the white dwarf cooling sequence of the galactic bulge

    Energy Technology Data Exchange (ETDEWEB)

    Calamida, A.; Sahu, K. C.; Anderson, J.; Casertano, S.; Brown, T.; Sokol, J.; Bond, H. E.; Ferguson, H.; Livio, M.; Valenti, J. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Cassisi, S.; Buonanno, R.; Pietrinferni, A. [Osservatorio Astronomico di Teramo—INAF, Via M. Maggini, I-64100 Teramo (Italy); Salaris, M. [Astrophysics Research Institute, Liverpool John Moores University, 146 Brownlow Hill, Liverpool L3 5RF (United Kingdom); Ferraro, I. [Osservatorio Astronomico di Roma—INAF, Via Frascati 33, I-00040 Monte Porzio Catone (Italy); Clarkson, W., E-mail: calamida@stsci.edu [University of Michigan-Dearborn, 4901 Evergreen Road, Dearborn, MI 48128 (United States)

    2014-08-01

    We present Hubble Space Telescope data of the low-reddening Sagittarius window in the Galactic bulge. The Sagittarius Window Eclipsing Extrasolar Planet Search field (∼3'× 3'), together with three more Advanced Camera for Surveys and eight Wide-Field Camera 3 fields, were observed in the F606W and F814W filters, approximately every two weeks for 2 yr, with the principal aim of detecting a hidden population of isolated black holes and neutron stars through astrometric microlensing. Proper motions were measured with an accuracy of ≈0.1 mas yr{sup –1} (≈4 km s{sup –1}) at F606W ≈ 25.5 mag, and better than ≈0.5 mas yr{sup –1} (≈20 km s{sup –1}) at F606W ≈ 28 mag, in both axes. Proper-motion measurements allowed us to separate disk and bulge stars and obtain a clean bulge color-magnitude diagram. We then identified for the first time a white dwarf (WD) cooling sequence in the Galactic bulge, together with a dozen candidate extreme horizontal branch stars. The comparison between theory and observations shows that a substantial fraction of the WDs (≈30%) are systematically redder than the cooling tracks for CO-core H-rich and He-rich envelope WDs. This evidence would suggest the presence of a significant number of low-mass WDs and WD-main-sequence binaries in the bulge. This hypothesis is further supported by the finding of two dwarf novae in outburst, two short-period (P ≲ 1 day) ellipsoidal variables, and a few candidate cataclysmic variables in the same field.

  11. First detection of the white dwarf cooling sequence of the galactic bulge

    International Nuclear Information System (INIS)

    Calamida, A.; Sahu, K. C.; Anderson, J.; Casertano, S.; Brown, T.; Sokol, J.; Bond, H. E.; Ferguson, H.; Livio, M.; Valenti, J.; Cassisi, S.; Buonanno, R.; Pietrinferni, A.; Salaris, M.; Ferraro, I.; Clarkson, W.

    2014-01-01

    We present Hubble Space Telescope data of the low-reddening Sagittarius window in the Galactic bulge. The Sagittarius Window Eclipsing Extrasolar Planet Search field (∼3'× 3'), together with three more Advanced Camera for Surveys and eight Wide-Field Camera 3 fields, were observed in the F606W and F814W filters, approximately every two weeks for 2 yr, with the principal aim of detecting a hidden population of isolated black holes and neutron stars through astrometric microlensing. Proper motions were measured with an accuracy of ≈0.1 mas yr –1 (≈4 km s –1 ) at F606W ≈ 25.5 mag, and better than ≈0.5 mas yr –1 (≈20 km s –1 ) at F606W ≈ 28 mag, in both axes. Proper-motion measurements allowed us to separate disk and bulge stars and obtain a clean bulge color-magnitude diagram. We then identified for the first time a white dwarf (WD) cooling sequence in the Galactic bulge, together with a dozen candidate extreme horizontal branch stars. The comparison between theory and observations shows that a substantial fraction of the WDs (≈30%) are systematically redder than the cooling tracks for CO-core H-rich and He-rich envelope WDs. This evidence would suggest the presence of a significant number of low-mass WDs and WD-main-sequence binaries in the bulge. This hypothesis is further supported by the finding of two dwarf novae in outburst, two short-period (P ≲ 1 day) ellipsoidal variables, and a few candidate cataclysmic variables in the same field.

  12. DRAFTS: A DEEP, RAPID ARCHIVAL FLARE TRANSIENT SEARCH IN THE GALACTIC BULGE

    International Nuclear Information System (INIS)

    Osten, Rachel A.; Sahu, Kailash; Kowalski, Adam; Hawley, Suzanne L.

    2012-01-01

    We utilize the Sagittarius Window Eclipsing Extrasolar Planet Search Hubble Space Telescope/Advanced Camera for Surveys data set for a Deep Rapid Archival Flare Transient Search to constrain the flare rate toward the older stellar population in the Galactic bulge. During seven days of monitoring 229,293 stars brighter than V = 29.5, we find evidence for flaring activity in 105 stars between V = 20 and V = 28. We divided the sample into non-variable stars and variable stars whose light curves contain large-scale variability. The flare rate on variable stars is ∼700 times that of non-variable stars, with a significant correlation between the amount of underlying stellar variability and peak flare amplitude. The flare energy loss rates are generally higher than those of nearby well-studied single dMe flare stars. The distribution of proper motions is consistent with the flaring stars being at the distance and age of the Galactic bulge. If they are single dwarfs, then they span a range of ≈1.0-0.25 M ☉ . A majority of the flaring stars exhibit periodic photometric modulations with P < 3 days. If these are tidally locked magnetically active binary systems, then their fraction in the bulge is enhanced by a factor of ∼20 compared to the local value. These stars may be useful for placing constraints on the angular momentum evolution of cool close binary stars. Our results expand the type of stars studied for flares in the optical band, and suggest that future sensitive optical time-domain studies will have to contend with a larger sample of flaring stars than the M dwarf flare stars usually considered.

  13. Thick Disks in the Hubble Space Telescope Frontier Fields

    Energy Technology Data Exchange (ETDEWEB)

    Elmegreen, Bruce G. [IBM Research Division, T.J. Watson Research Center, 1101 Kitchawan Road, Yorktown Heights, NY 10598 (United States); Elmegreen, Debra Meloy; Tompkins, Brittany; Jenks, Leah G., E-mail: bge@us.ibm.com, E-mail: elmegreen@vassar.edu [Department of Physics and Astronomy, Vassar College, Poughkeepsie, NY 12604 (United States)

    2017-09-20

    Thick disk evolution is studied using edge-on galaxies in two Hubble Space Telescope Frontier Field Parallels. The galaxies were separated into 72 clumpy types and 35 spiral types with bulges. Perpendicular light profiles in F435W, F606W, and F814W ( B , V , and I ) passbands were measured at 1 pixel intervals along the major axes and fitted to sech{sup 2} functions convolved with the instrument line spread function (LSF). The LSF was determined from the average point spread function of ∼20 stars in each passband and field, convolved with a line of uniform brightness to simulate disk blurring. A spread function for a clumpy disk was also used for comparison. The resulting scale heights were found to be proportional to galactic mass, with the average height for a 10{sup 10±0.5} M {sub ⊙} galaxy at z = 2 ± 0.5 equal to 0.63 ± 0.24 kpc. This value is probably the result of a blend between thin and thick disk components that cannot be resolved. Evidence for such two-component structure is present in an inverse correlation between height and midplane surface brightness. Models suggest that the thick disk is observed best between the clumps, and there the average scale height is 1.06 ± 0.43 kpc for the same mass and redshift. A 0.63 ± 0.68 mag V − I color differential with height is also evidence for a mixture of thin and thick components.

  14. Luminous Infrared Galaxies. III. Multiple Merger, Extended Massive Star Formation, Galactic Wind, and Nuclear Inflow in NGC 3256

    Science.gov (United States)

    Lípari, S.; Díaz, R.; Taniguchi, Y.; Terlevich, R.; Dottori, H.; Carranza, G.

    2000-08-01

    We report detailed evidence for multiple merger, extended massive star formation, galactic wind, and circular/noncircular motions in the luminous infrared galaxy NGC 3256, based on observations of high-resolution imaging (Hubble Space Telescope, ESO NTT), and extensive spectroscopic data (more than 1000 spectra, collected at Estación Astrofísica de Bosque Alegre, Complejo Astronómico el Leoncito, Cerro Tololo InterAmerican Observatory, and IUE observatories). We find in a detailed morphological study (resolution ~15 pc) that the extended massive star formation process detected previously in NGC 3256 shows extended triple asymmetrical spiral arms (r~5 kpc), emanating from three different nuclei. The main optical nucleus shows a small spiral disk (r~500 pc), which is a continuation of the external one and reaches the very nucleus. The core shows blue elongated structure (50 pc×25 pc) and harbors a blue stellar cluster candidate (r~8 pc). We discuss this complex morphology in the framework of an extended massive star formation driven by a multiple merger process (models of Hernquist et al. and Taniguchi et al.). We study the kinematics of this system and present a detailed Hα velocity field for the central region (40''×40'' rmax~30''~5 kpc), with a spatial resolution of 1" and errors of +/-15 km s-1. The color and isovelocity maps show mainly (1) a kinematic center of circular motion with ``spider'' shape, located between the main optical nucleus and the close (5") mid-IR nucleus and (2) noncircular motions in the external parts. We obtained three ``sinusoidal rotation curves'' (from the Hα velocity field) around position angle (P.A.) ~55°, ~90°, and ~130°. In the main optical nucleus we found a clear ``outflow component'' associated with galactic winds plus an ``inflow radial motion.'' The outflow component was also detected in the central and external regions (rstandard models of photoionization, shocks, and starbursts). We present four detailed emission

  15. DISCOVERY OF CANDIDATE H2O DISK MASERS IN ACTIVE GALACTIC NUCLEI AND ESTIMATIONS OF CENTRIPETAL ACCELERATIONS

    International Nuclear Information System (INIS)

    Greenhill, Lincoln J.; Moran, James M.; Tilak, Avanti; Kondratko, Paul T.

    2009-01-01

    Based on spectroscopic signatures, about one-third of known H 2 O maser sources in active galactic nuclei (AGNs) are believed to arise in highly inclined accretion disks around central engines. These 'disk maser candidates' are of interest primarily because angular structure and rotation curves can be resolved with interferometers, enabling dynamical study. We identify five new disk maser candidates in studies with the Green Bank Telescope, bringing the total number published to 30. We discovered two (NGC 1320, NGC 17) in a survey of 40 inclined active galaxies (v sys -1 ). The remaining three disk maser candidates were identified in monitoring of known sources: NGC 449, NGC 2979, and NGC 3735. We also confirm a previously marginal case in UGC 4203. For the disk maser candidates reported here, inferred rotation speeds are 130-500 km s -1 . Monitoring of three more rapidly rotating candidate disks (CG 211, NGC 6264, VV 340A) has enabled measurement of likely orbital centripetal acceleration, and estimation of central masses ((2-7) x10 7 M sun ) and mean disk radii (0.2-0.4 pc). Accelerations may ultimately permit estimation of distances when combined with interferometer data. This is notable because the three AGNs are relatively distant (10,000 km s -1 sys -1 ), and fractional error in a derived Hubble constant, due to peculiar motion of the galaxies, would be small. As signposts of highly inclined geometries at galactocentric radii of ∼0.1-1 pc, disk masers also provide robust orientation references that allow analysis of (mis)alignment between AGNs and surrounding galactic stellar disks, even without extensive interferometric mapping. We find no preference among published disk maser candidates to lie in high-inclination galaxies. This provides independent support for conclusions that in late-type galaxies, central engine accretion disks and galactic plane orientations are not correlated.

  16. HUBBLE SPACE TELESCOPE SNAPSHOT SEARCH FOR PLANETARY NEBULAE IN GLOBULAR CLUSTERS OF THE LOCAL GROUP

    Energy Technology Data Exchange (ETDEWEB)

    Bond, Howard E., E-mail: heb11@psu.edu [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States)

    2015-04-15

    Single stars in ancient globular clusters (GCs) are believed incapable of producing planetary nebulae (PNs), because their post-asymptotic-giant-branch evolutionary timescales are slower than the dissipation timescales for PNs. Nevertheless, four PNs are known in Galactic GCs. Their existence likely requires more exotic evolutionary channels, including stellar mergers and common-envelope binary interactions. I carried out a snapshot imaging search with the Hubble Space Telescope (HST) for PNs in bright Local Group GCs outside the Milky Way. I used a filter covering the 5007 Å nebular emission line of [O iii], and another one in the nearby continuum, to image 66 GCs. Inclusion of archival HST frames brought the total number of extragalactic GCs imaged at 5007 Å to 75, whose total luminosity slightly exceeds that of the entire Galactic GC system. I found no convincing PNs in these clusters, aside from one PN in a young M31 cluster misclassified as a GC, and two PNs at such large angular separations from an M31 GC that membership is doubtful. In a ground-based spectroscopic survey of 274 old GCs in M31, Jacoby et al. found three candidate PNs. My HST images of one of them suggest that the [O iii] emission actually arises from ambient interstellar medium rather than a PN; for the other two candidates, there are broadband archival UV HST images that show bright, blue point sources that are probably the PNs. In a literature search, I also identified five further PN candidates lying near old GCs in M31, for which follow-up observations are necessary to confirm their membership. The rates of incidence of PNs are similar, and small but nonzero, throughout the GCs of the Local Group.

  17. DISENTANGLING AGN AND STAR FORMATION ACTIVITY AT HIGH REDSHIFT USING HUBBLE SPACE TELESCOPE GRISM SPECTROSCOPY

    Energy Technology Data Exchange (ETDEWEB)

    Bridge, Joanna S.; Zeimann, Gregory R.; Trump, Jonathan R.; Gronwall, Caryl; Ciardullo, Robin; Fox, Derek; Schneider, Donald P., E-mail: jsbridge@psu.edu [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States)

    2016-08-01

    Differentiating between active galactic nucleus (AGN) activity and star formation in z ∼ 2 galaxies is difficult because traditional methods, such as line-ratio diagnostics, change with redshift, while multi-wavelength methods (X-ray, radio, IR) are sensitive to only the brightest AGNs. We have developed a new method for spatially resolving emission lines using the Hubble Space Telescope /Wide Field Camera 3 G141 grism spectra and quantifying AGN activity through the spatial gradient of the [O iii]/H β line ratio. Through detailed simulations, we show that our novel line-ratio gradient approach identifies ∼40% more low-mass and obscured AGNs than obtained by classical methods. Based on our simulations, we developed a relationship that maps the stellar mass, star formation rate, and measured [O iii]/H β gradient to the AGN Eddington ratio. We apply our technique to previously studied stacked samples of galaxies at z ∼ 2 and find that our results are consistent with these studies. This gradient method will also be able to inform other areas of galaxy evolution science, such as inside-out quenching and metallicity gradients, and will be widely applicable to future spatially resolved James Webb Space Telescope data.

  18. DISENTANGLING AGN AND STAR FORMATION ACTIVITY AT HIGH REDSHIFT USING HUBBLE SPACE TELESCOPE GRISM SPECTROSCOPY

    International Nuclear Information System (INIS)

    Bridge, Joanna S.; Zeimann, Gregory R.; Trump, Jonathan R.; Gronwall, Caryl; Ciardullo, Robin; Fox, Derek; Schneider, Donald P.

    2016-01-01

    Differentiating between active galactic nucleus (AGN) activity and star formation in z ∼ 2 galaxies is difficult because traditional methods, such as line-ratio diagnostics, change with redshift, while multi-wavelength methods (X-ray, radio, IR) are sensitive to only the brightest AGNs. We have developed a new method for spatially resolving emission lines using the Hubble Space Telescope /Wide Field Camera 3 G141 grism spectra and quantifying AGN activity through the spatial gradient of the [O iii]/H β line ratio. Through detailed simulations, we show that our novel line-ratio gradient approach identifies ∼40% more low-mass and obscured AGNs than obtained by classical methods. Based on our simulations, we developed a relationship that maps the stellar mass, star formation rate, and measured [O iii]/H β gradient to the AGN Eddington ratio. We apply our technique to previously studied stacked samples of galaxies at z ∼ 2 and find that our results are consistent with these studies. This gradient method will also be able to inform other areas of galaxy evolution science, such as inside-out quenching and metallicity gradients, and will be widely applicable to future spatially resolved James Webb Space Telescope data.

  19. Astronomers celebrate a year of new Hubble results

    Science.gov (United States)

    1995-02-01

    "We are beginning to understand that because of these observations we are going to have to change the way we look at the Universe," said ESA's Dr Duccio Macchetto, Associate Director for Science Programs at the Space Telescope Science Institute (STScI), Baltimore, Maryland, USA. The European Space Agency plays a major role in the Hubble Space Telescope programme. The Agency provided one of the telescope's four major instruments, called the Faint Object Camera, and two sets of electricity-generating solar arrays. In addition, 15 ESA scientific and technical staff work at the STScI. In return for this contribution, European astronomers are entitled to 15 percent of the telescope's observing time, although currently they account for 20 percent of all observations. "This is a testimony to the quality of the European science community", said Dr Roger Bonnet, Director of Science at ESA. "We are only guaranteed 15 percent of the telescope's use, but consistently receive much more than that." Astronomers from universities, observatories and research institutes across Europe lead more than 60 investigations planned for the telescope's fifth observing cycle, which begins this summer. Many more Europeans contribute to teams led by other astronomers. Looking back to the very start of time European astronomer Dr Peter Jakobsen used ESA's Faint Object Camera to confirm that helium was present in the early Universe. Astronomers had long predicted that 90 percent of the newly born Universe consisted of hydrogen, with helium making up the remainder. Before the refurbished Hubble came along, it was easy to detect the hydrogen, but the primordial helium remained elusive. The ultraviolet capabilities of the telescope, combined with the improvement in spatial resolution following the repair, made it possible for Dr Jakobsen to obtain an image of a quasar close to the edge of the known Universe. A spectral analysis of this picture revealed the quasar's light, which took 13 billion years

  20. Circum-Galactic Medium in the Halo of Quasars

    Directory of Open Access Journals (Sweden)

    Riccardo Ottolina

    2017-12-01

    Full Text Available The properties of circum-galactic gas in the halo of quasar host galaxies are investigated analyzing Mg II 2800 and C IV 1540 absorption-line systems along the line of sight close to quasars. We used optical spectroscopy of closely aligned pairs of quasars (projected distance ≤ 200 kpc, but at very different redshift obtained at the VLT and Gran Telescopio Canarias to investigate the distribution of the absorbing gas for a sample of quasars at z ~1. Absorption systems of EW ≥0.3 associated with the foreground quasars are revealed up to 200 kpc from the centre of the host galaxy, showing that the structure of the absorbing gas is patchy with a covering fraction quickly decreasing beyond 100 kpc. In this contribution we use optical and near-IR images obtained at VLT to investigate the relations between the properties of the circum-galactic medium of the host galaxies and of the large scale galaxy environments of the foreground quasars.

  1. Observational constraint on spherical inhomogeneity with CMB and local Hubble parameter

    Science.gov (United States)

    Tokutake, Masato; Ichiki, Kiyotomo; Yoo, Chul-Moon

    2018-03-01

    We derive an observational constraint on a spherical inhomogeneity of the void centered at our position from the angular power spectrum of the cosmic microwave background (CMB) and local measurements of the Hubble parameter. The late time behaviour of the void is assumed to be well described by the so-called Λ-Lemaȋtre-Tolman-Bondi (ΛLTB) solution. Then, we restrict the models to the asymptotically homogeneous models each of which is approximated by a flat Friedmann-Lemaȋtre-Robertson-Walker model. The late time ΛLTB models are parametrized by four parameters including the value of the cosmological constant and the local Hubble parameter. The other two parameters are used to parametrize the observed distance-redshift relation. Then, the ΛLTB models are constructed so that they are compatible with the given distance-redshift relation. Including conventional parameters for the CMB analysis, we characterize our models by seven parameters in total. The local Hubble measurements are reflected in the prior distribution of the local Hubble parameter. As a result of a Markov-Chains-Monte-Carlo analysis for the CMB temperature and polarization anisotropies, we found that the inhomogeneous universe models with vanishing cosmological constant are ruled out as is expected. However, a significant under-density around us is still compatible with the angular power spectrum of CMB and the local Hubble parameter.

  2. THE BOLOCAM GALACTIC PLANE SURVEY. VIII. A MID-INFRARED KINEMATIC DISTANCE DISCRIMINATION METHOD

    Energy Technology Data Exchange (ETDEWEB)

    Ellsworth-Bowers, Timothy P.; Glenn, Jason; Battersby, Cara; Ginsburg, Adam; Bally, John [CASA, University of Colorado, UCB 389, University of Colorado, Boulder, CO 80309 (United States); Rosolowsky, Erik [Department of Physics and Astronomy, University of British Columbia Okanagan, 3333 University Way, Kelowna, BC V1V 1V7 (Canada); Mairs, Steven [Department of Physics and Astronomy, University of Victoria, 3800 Finnerty Road, Victoria, BC V8P 1A1 (Canada); Evans, Neal J. II [Department of Astronomy, University of Texas, 1 University Station C1400, Austin, TX 78712 (United States); Shirley, Yancy L., E-mail: timothy.ellsworthbowers@colorado.edu [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States)

    2013-06-10

    We present a new distance estimation method for dust-continuum-identified molecular cloud clumps. Recent (sub-)millimeter Galactic plane surveys have cataloged tens of thousands of these objects, plausible precursors to stellar clusters, but detailed study of their physical properties requires robust distance determinations. We derive Bayesian distance probability density functions (DPDFs) for 770 objects from the Bolocam Galactic Plane Survey in the Galactic longitude range 7. Degree-Sign 5 {<=} l {<=} 65 Degree-Sign . The DPDF formalism is based on kinematic distances, and uses any number of external data sets to place prior distance probabilities to resolve the kinematic distance ambiguity (KDA) for objects in the inner Galaxy. We present here priors related to the mid-infrared absorption of dust in dense molecular regions and the distribution of molecular gas in the Galactic disk. By assuming a numerical model of Galactic mid-infrared emission and simple radiative transfer, we match the morphology of (sub-)millimeter thermal dust emission with mid-infrared absorption to compute a prior DPDF for distance discrimination. Selecting objects first from (sub-)millimeter source catalogs avoids a bias towards the darkest infrared dark clouds (IRDCs) and extends the range of heliocentric distance probed by mid-infrared extinction and includes lower-contrast sources. We derive well-constrained KDA resolutions for 618 molecular cloud clumps, with approximately 15% placed at or beyond the tangent distance. Objects with mid-infrared contrast sufficient to be cataloged as IRDCs are generally placed at the near kinematic distance. Distance comparisons with Galactic Ring Survey KDA resolutions yield a 92% agreement. A face-on view of the Milky Way using resolved distances reveals sections of the Sagittarius and Scutum-Centaurus Arms. This KDA-resolution method for large catalogs of sources through the combination of (sub-)millimeter and mid-infrared observations of molecular

  3. Magnetic braking in galactic flows

    International Nuclear Information System (INIS)

    Sparke, L.S.

    1982-01-01

    The nuclear fireworks of active galaxies are believed to derive their power from the kinetic energy of gas falling onto a massive central objects; mass shed from evolving galactic stars is an obvious source of fuel for this process. But this ejected material shares the galactic rotation, and a centrifugal barrier will prevent it from reaching the nucleus, if its angular momentum is not removed. This paper shows that, if the large-scale galactic magnetic field has a strong enough radial component, magnetic torques can act to spin down the infalling matter. Rotation of the interstellar gas induces a toroidal magnetic field, and Maxwell stresses remove angular momentum from the flow; gas can then fall inward to the galactic center. In this way, the monster in the nucleus can be fed on gas from a galaxy's own stars. The magnetic fields in M87 and NGC 1275, giant elliptical galaxies which are accreting from an intracluster medium, appear to be strong enough to allow magnetic braking

  4. A Toy Cosmology Using a Hubble-Scale Casimir Effect

    Directory of Open Access Journals (Sweden)

    Michael E. McCulloch

    2014-02-01

    Full Text Available The visible mass of the observable universe agrees with that needed for a flat cosmos, and the reason for this is not known. It is shown that this can be explained by modelling the Hubble volume as a black hole that emits Hawking radiation inwards, disallowing wavelengths that do not fit exactly into the Hubble diameter, since partial waves would allow an inference of what lies outside the horizon. This model of “horizon wave censorship” is equivalent to a Hubble-scale Casimir effect. This incomplete toy model is presented to stimulate discussion. It predicts a minimum mass and acceleration for the observable universe which are in agreement with the observed mass and acceleration, and predicts that the observable universe gains mass as it expands and was hotter in the past. It also predicts a suppression of variation on the largest cosmic scales that agrees with the low-l cosmic microwave background anomaly seen by the Planck satellite.

  5. Building the Hubble Space Telescope

    International Nuclear Information System (INIS)

    O'dell, C.R.

    1989-01-01

    The development of the design for the Hubble Space Telescope (HST) is discussed. The HST optical system is described and illustrated. The financial and policy issues related to the development of the HST are considered. The actual construction of the HST optical telescope is examined. Also, consideration is given to the plans for the HST launch

  6. PANCHROMATIC HUBBLE ANDROMEDA TREASURY. XII. MAPPING STELLAR METALLICITY DISTRIBUTIONS IN M31

    Energy Technology Data Exchange (ETDEWEB)

    Gregersen, Dylan; Seth, Anil C. [Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112 (United States); Williams, Benjamin F.; Dalcanton, Julianne J.; Johnson, L. C.; Lewis, Alexia R. [Department of Astronomy, Box 351580, University of Washington, Seattle, WA 98195 (United States); Lang, Dustin [McWilliams Center for Cosmology, Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213 (United States); Girardi, Leó [Osservatorio Astronomico di Padova—INAF, Vicolo dell’Osservatori 5, I-35122 Padova (Italy); Skillman, Evan D. [Minnesota Institute for Astrophysics, University of Minnesota, Minneapolis, MN 55455 (United States); Bell, Eric [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109 (United States); Dolphin, Andrew E. [Raytheon, 1151 E. Hermans Road, Tucson, AZ 85706 (United States); Fouesneau, Morgan [MPIA, Koenigstuhl 17, D-69117 Heidelberg (Germany); Guhathakurta, Puragra; Hamren, Katherine M. [UCO/Lick Observatory, University of California at Santa Cruz, 1156 High Street, Santa Cruz, CA 95064 (United States); Kalirai, Jason [Department of Physics and Astronomy, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 (United States); Monachesi, Antonela [MPA, Garching (Germany); Olsen, Knut, E-mail: dylan.gregersen@utah.edu, E-mail: aseth@astro.utah.edu [NOAO, Tucson, AZ 85719 (United States)

    2015-12-15

    We present a study of spatial variations in the metallicity of old red giant branch stars in the Andromeda galaxy. Photometric metallicity estimates are derived by interpolating isochrones for over seven million stars in the Panchromatic Hubble Andromeda Treasury (PHAT) survey. This is the first systematic study of stellar metallicities over the inner 20 kpc of Andromeda’s galactic disk. We see a clear metallicity gradient of −0.020 ± 0.004 dex kpc{sup −1} from ∼4–20 kpc assuming a constant red giant branch age. This metallicity gradient is derived after correcting for the effects of photometric bias and completeness and dust extinction, and is quite insensitive to these effects. The unknown age gradient in M31's disk creates the dominant systematic uncertainty in our derived metallicity gradient. However, spectroscopic analyses of galaxies similar to M31 show that they typically have small age gradients that make this systematic error comparable to the 1σ error on our metallicity gradient measurement. In addition to the metallicity gradient, we observe an asymmetric local enhancement in metallicity at radii of 3–6 kpc that appears to be associated with Andromeda’s elongated bar. This same region also appears to have an enhanced stellar density and velocity dispersion.

  7. The COS-AGN survey: Revealing the nature of circum-galactic gas around hosts of active galactic nuclei

    Science.gov (United States)

    Berg, Trystyn A. M.; Ellison, Sara L.; Tumlinson, Jason; Oppenheimer, Benjamin D.; Horton, Ryan; Bordoloi, Rongmon; Schaye, Joop

    2018-04-01

    Active galactic nuclei (AGN) are thought to play a critical role in shaping galaxies, but their effect on the circumgalactic medium (CGM) is not well studied. We present results from the COS-AGN survey: 19 quasar sightlines that probe the CGM of 20 optically-selected AGN host galaxies with impact parameters 80 frame equivalent widths EW≥124 mÅ) whilst many of the metal ions are not detected in individual sightlines. A sightline-by-sightline comparison between COS-AGN and the control sample yields no significant difference in EW distribution. However, stacked spectra of the COS-AGN and control samples show significant (>3σ) enhancements in the EW of both Siiii And Lyα at impact parameters >164 kpc by a factor of +0.45 ± 0.05 dex and >+0.75 dex respectively. The lack of detections of both high-ionization species near the AGN and strong kinematic offsets between the absorption systemic galaxy redshifts indicates that neither the AGN's ionization nor its outflows are the origin of these differences. Instead, we suggest the observed differences could result from either AGN hosts residing in haloes with intrinsically distinct gas properties, or that their CGM has been affected by a previous event, such as a starburst, which may also have fuelled the nuclear activity.

  8. Unusual Metals in Galactic Center Stars

    Science.gov (United States)

    Hensley, Kerry

    2018-03-01

    Far from the galactic suburbs where the Sun resides, a cluster of stars in the nucleus of the Milky Way orbits a supermassive black hole. Can chemical abundance measurements help us understand the formation history of the galactic center nuclear star cluster?Studying Stellar PopulationsMetallicity distributions for stars in the inner two degrees of the Milky Way (blue) and the central parsec (orange). [Do et al. 2018]While many galaxies host nuclear star clusters, most are too distant for us to study in detail; only in the Milky Way can we resolve individual stars within one parsec of a supermassive black hole. The nucleus of our galaxy is an exotic and dangerous place, and its not yet clear how these stars came to be where they are were they siphoned off from other parts of the galaxy, or did they form in place, in an environment rocked by tidal forces?Studying the chemical abundances of stars provides a way to separate distinct stellar populations and discern when and where these stars formed. Previous studies using medium-resolution spectroscopy have revealed that many stars within the central parsec of our galaxy have very high metallicities possibly higher than any other region of the Milky Way. Can high-resolution spectroscopy tell us more about this unusual population of stars?Spectral Lines on DisplayTuan Do (University of California, Los Angeles, Galactic Center Group) and collaborators performed high-resolution spectroscopic observations of two late-type giant starslocated half a parsec from the Milky Ways supermassive black hole.Comparison of the observed spectra of the two galactic center stars (black) with synthetic spectra with low (blue) and high (orange) [Sc/Fe] values. Click to enlarge. [Do et al. 2018]In order to constrain the metallicities of these stars, Do and collaborators compared the observed spectra to a grid of synthetic spectra and used a spectral synthesis technique to determine the abundances of individual elements. They found that

  9. Tycho- Gaia Astrometric Solution Parallaxes and Proper Motions for Five Galactic Globular Clusters

    Energy Technology Data Exchange (ETDEWEB)

    Watkins, Laura L.; Van der Marel, Roeland P., E-mail: lwatkins@stsci.edu [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore MD 21218 (United States)

    2017-04-20

    We present a pilot study of Galactic globular cluster (GC) proper motion (PM) determinations using Gaia data. We search for GC stars in the Tycho- Gaia Astrometric Solution (TGAS) catalog from Gaia Data Release 1 (DR1), and identify five members of NGC 104 (47 Tucanae), one member of NGC 5272 (M3), five members of NGC 6121 (M4), seven members of NGC 6397, and two members of NGC 6656 (M22). By taking a weighted average of member stars, fully accounting for the correlations between parameters, we estimate the parallax (and, hence, distance) and PM of the GCs. This provides a homogeneous PM study of multiple GCs based on an astrometric catalog with small and well-controlled systematic errors and yields random PM errors similar to existing measurements. Detailed comparison to the available Hubble Space Telescope ( HST ) measurements generally shows excellent agreement, validating the astrometric quality of both TGAS and HST . By contrast, comparison to ground-based measurements shows that some of those must have systematic errors exceeding the random errors. Our parallax estimates have uncertainties an order of magnitude larger than previous studies, but nevertheless imply distances consistent with previous estimates. By combining our PM measurements with literature positions, distances, and radial velocities, we measure Galactocentric space motions for the clusters and find that these also agree well with previous analyses. Our analysis provides a framework for determining more accurate distances and PMs of Galactic GCs using future Gaia data releases. This will provide crucial constraints on the near end of the cosmic distance ladder and provide accurate GC orbital histories.

  10. UVUDF: Ultraviolet imaging of the Hubble ultra deep field with wide-field camera 3

    Energy Technology Data Exchange (ETDEWEB)

    Teplitz, Harry I.; Rafelski, Marc; Colbert, James W.; Hanish, Daniel J. [Infrared Processing and Analysis Center, MS 100-22, Caltech, Pasadena, CA 91125 (United States); Kurczynski, Peter; Gawiser, Eric [Department of Physics and Astronomy, Rutgers University, Piscataway, NJ 08854 (United States); Bond, Nicholas A.; Gardner, Jonathan P.; De Mello, Duilia F. [Laboratory for Observational Cosmology, Astrophysics Science Division, Code 665, Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Grogin, Norman; Koekemoer, Anton M.; Brown, Thomas M.; Coe, Dan; Ferguson, Henry C. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Atek, Hakim [Laboratoire d' Astrophysique, École Polytechnique Fédérale de Lausanne (EPFL), Observatoire, CH-1290 Sauverny (Switzerland); Finkelstein, Steven L. [Department of Astronomy, The University of Texas at Austin, Austin, TX 78712 (United States); Giavalisco, Mauro [Astronomy Department, University of Massachusetts, Amherst, MA 01003 (United States); Gronwall, Caryl [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States); Lee, Kyoung-Soo [Department of Physics, Purdue University, 525 Northwestern Avenue, West Lafayette, IN 47907 (United States); Ravindranath, Swara, E-mail: hit@ipac.caltech.edu [Inter-University Centre for Astronomy and Astrophysics, Pune (India); and others

    2013-12-01

    We present an overview of a 90 orbit Hubble Space Telescope treasury program to obtain near-ultraviolet imaging of the Hubble Ultra Deep Field using the Wide Field Camera 3 UVIS detector with the F225W, F275W, and F336W filters. This survey is designed to: (1) investigate the episode of peak star formation activity in galaxies at 1 < z < 2.5; (2) probe the evolution of massive galaxies by resolving sub-galactic units (clumps); (3) examine the escape fraction of ionizing radiation from galaxies at z ∼ 2-3; (4) greatly improve the reliability of photometric redshift estimates; and (5) measure the star formation rate efficiency of neutral atomic-dominated hydrogen gas at z ∼ 1-3. In this overview paper, we describe the survey details and data reduction challenges, including both the necessity of specialized calibrations and the effects of charge transfer inefficiency. We provide a stark demonstration of the effects of charge transfer inefficiency on resultant data products, which when uncorrected, result in uncertain photometry, elongation of morphology in the readout direction, and loss of faint sources far from the readout. We agree with the STScI recommendation that future UVIS observations that require very sensitive measurements use the instrument's capability to add background light through a 'post-flash'. Preliminary results on number counts of UV-selected galaxies and morphology of galaxies at z ∼ 1 are presented. We find that the number density of UV dropouts at redshifts 1.7, 2.1, and 2.7 is largely consistent with the number predicted by published luminosity functions. We also confirm that the image mosaics have sufficient sensitivity and resolution to support the analysis of the evolution of star-forming clumps, reaching 28-29th magnitude depth at 5σ in a 0.''2 radius aperture depending on filter and observing epoch.

  11. First results from the INTEGRAL galactic plane scans

    DEFF Research Database (Denmark)

    Winkler, C.; Gehrels, N.; Schonfelder, V.

    2003-01-01

    Scans of the Galactic plane performed at regular intervals constitute a key element of the guaranteed time observations of the INTEGRAL observing programme. These scans are done for two reasons: frequent monitoring of the Galactic plane in order to detect transient sources, and time resolved mapp...... mapping of the Galactic plane in continuum and diffuse line emission. This paper describes first results obtained from the Galactic plane scans executed so far during the early phase (Dec. 2002-May 2003) of the nominal mission.......Scans of the Galactic plane performed at regular intervals constitute a key element of the guaranteed time observations of the INTEGRAL observing programme. These scans are done for two reasons: frequent monitoring of the Galactic plane in order to detect transient sources, and time resolved...

  12. Cosmic ray acceleration by large scale galactic shocks

    International Nuclear Information System (INIS)

    Cesarsky, C.J.; Lagage, P.O.

    1987-01-01

    The mechanism of diffusive shock acceleration may account for the existence of galactic cosmic rays detailed application to stellar wind shocks and especially to supernova shocks have been developed. Existing models can usually deal with the energetics or the spectral slope, but the observed energy range of cosmic rays is not explained. Therefore it seems worthwhile to examine the effect that large scale, long-lived galactic shocks may have on galactic cosmic rays, in the frame of the diffusive shock acceleration mechanism. Large scale fast shocks can only be expected to exist in the galactic halo. We consider three situations where they may arise: expansion of a supernova shock in the halo, galactic wind, galactic infall; and discuss the possible existence of these shocks and their role in accelerating cosmic rays

  13. What drives galactic magnetism?

    Science.gov (United States)

    Chyży, K. T.; Sridhar, S. S.; Jurusik, W.

    2017-07-01

    reveals that high values of B are not restricted by the Hubble type and even dwarf (starbursting) galaxies can produce strong magnetic fields. However, weaker fields appear exclusively in later Hubble types and B as low as about 5 μG is not seen among typical spirals. Conclusions: The processes of generation of magnetic field in the dwarf and Magellanic-type galaxies are similar to those in the massive spirals and starbursts and are mainly coupled to local star-formation activity involving the small-scale dynamo mechanism. Based on observations with the 100-m telescope at Effelsberg operated by the Max-Planck-Institut für Radioastronomie (MPIfR) on behalf of the Max-Planck-Gesellschaft.

  14. Structure and content of the galaxy and galactic gamma rays

    International Nuclear Information System (INIS)

    1976-01-01

    The conference included papers on γ-ray pulsars, galactic diffuse flux and surveys, radio surveys of external galaxies, galactic distribution of pulsars, and galactic gamma emission. Galactic structure drawing on all branches of galactic astronomy is discussed. New and unpublished material is included

  15. Structure and content of the galaxy and galactic gamma rays

    Energy Technology Data Exchange (ETDEWEB)

    1976-01-01

    The conference included papers on ..gamma..-ray pulsars, galactic diffuse flux and surveys, radio surveys of external galaxies, galactic distribution of pulsars, and galactic gamma emission. Galactic structure drawing on all branches of galactic astronomy is discussed. New and unpublished material is included. (JFP)

  16. European astronaut selected for the third Hubble Space Telescope

    Science.gov (United States)

    1998-08-01

    The STS-104 crew will rendezvous with the orbiting Hubble Space Telescope, which is the size of a city bus, capture it using the Shuttle's Canadian robot arm and secure it in Columbia's payload bay. Then, working in teams of two, the four astronauts will leave the Shuttle's pressurised cabin and venture into the payload bay, performing a variety of tasks that will improve the productivity and reliability of the telescope. The four astronauts will perform a series of six "extravehicular" activities in the open space environment. Such activities are commonly called spacewalks, but this term does little justice to the considerable physical and mental efforts that astronauts need to make in doing the very demanding work involved. The Shuttle commander and pilot for this flight have not yet been appointed, but the four designated mission specialists begin training for the STS-104 mission immediately. "The ambitious nature of this mission, with its six spacewalks, made it important for the payload crew to begin training as early as possible," said David C. Leestma, NASA Director of Flight Crew Operations at the Johnson Space Center in Houston, to which Claude Nicollier is on resident assignment from ESA's European Astronaut Centre in Cologne, Germany, the home base of the European astronaut corps. The Hubble Space Telescope was launched into orbit in April 1990. It is one of the most capable optical telescopes available to astronomers today, producing images and spectral observations at the forefront of astronomy. The European Space Agency contributed a 15 share to the development of Hubble. One of the five scientific instruments on board, the Faint Object Camera, was built by a European industrial consortium made up of British Aerospace, Dornier and Matra under a contract with the European Space Agency. The solar arrays which provide Hubble with electrical power were manufactured by British Aerospace and Dornier. In its eight years of operation, the telescope has not

  17. HUBBLE'S PANORAMIC PORTRAIT OF A VAST STAR-FORMING REGION

    Science.gov (United States)

    2002-01-01

    nursery are not visible because they are still encased in their cocoons of gas and dust. Some of the nascent stars are forming in long columns of gas and dust. Previous Hubble observations revealed that the process of 'triggered' star formation often involves massive pillars of material that point toward the central cluster. Such pillars form when particularly dense clouds of gas and dust shield columns of material behind them from the blistering radiation and strong winds released by massive stars, like the stars in R136. This protected material becomes the pillars where stars can form and grow. The Hubble telescope first spied these pillars of stellar creation when it captured close-up views of the Eagle Nebula. The new image of 30 Doradus shows numerous pillars -- each about several light-years long -- oriented toward the central cluster. These pillars, which resemble tiny fingers, are similar in size to those in the Eagle Nebula. Without Hubble's resolution, they would not be visible. One pillar is visible within the oval-shaped structure to the left of the cluster. Two [one dark and one bright] are next to each other below and to the right of the cluster. One pillar is at upper right, and still another is just above the cluster. Newborn stars within most of these pillars already have been discovered in pictures taken by Hubble's infrared camera, the Near Infrared Camera and Multi-Object Spectrometer, which can penetrate the dust to detect embryonic stars. Eventually, intense radiation and stellar winds from the developing stars will blow off the tops of the pillars. The Hubble image shows that one such eruption already has occurred in 30 Doradus. A trio of young stars has just been 'born' by breaking out of its natal pillar. These new stars are just a few hundred thousand years old. In another 2 million years, the new generation of stars will be in full bloom. But the massive stars in R136 will have burned themselves out. And the nebula's central region will be a

  18. HUBBLE SPACE TELESCOPE EMISSION-LINE GALAXIES AT z ∼ 2: THE MYSTERY OF NEON

    Energy Technology Data Exchange (ETDEWEB)

    Zeimann, Gregory R.; Ciardullo, Robin; Gebhardt, Henry; Gronwall, Caryl; Hagen, Alex; Trump, Jonathan R.; Bridge, Joanna S.; Luo, Bin; Schneider, Donald P., E-mail: grzeimann@psu.edu [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States)

    2015-01-01

    We use near-infrared grism spectroscopy from the Hubble Space Telescope to examine the strength of [Ne III] λ3869 relative to Hβ, [O II] λ3727, and [O III] λ5007 in 236 low-mass (7.5 ≲ log (M {sub *}/M {sub ☉}) ≲ 10.5) star-forming galaxies in the redshift range 1.90 < z < 2.35. By stacking the data by stellar mass, we show that the [Ne III]/[O II] ratios of the z ∼ 2 universe are marginally higher than those seen in a comparable set of local Sloan Digital Sky Survey galaxies, and that [Ne III]/[O III] is enhanced by ∼0.2 dex. We consider the possible explanations for this ∼4σ result, including higher oxygen depletion out of the gas phase, denser H II regions, higher production of {sup 22}Ne via Wolf-Rayet stars, and the existence of a larger population of X-ray obscured active galactic nuclei at z ∼ 2 compared to z ∼ 0. None of these simple scenarios, alone, are favored to explain the observed line ratios. We conclude by suggesting several avenues of future observations to further explore the mystery of enhanced [Ne III] emission.

  19. Galactic structure and gamma radiation

    International Nuclear Information System (INIS)

    Casse, Michel; Cesarsky, Catherine; Paul Jacques

    1977-01-01

    A model of spiral structure of the Galaxy is outlined from radiosynchrotron and gamma observations. The most interesting observations in the galactic context, obtained by the SAS II American satellite are concerned with the distribution of the γ photoemission at energies higher than 10 8 eV, along the galactic equator. The model proposed is in quantitative agreement with the present ideas on the spiral structure of the Galaxy, the galactic magnetic field, and the confinement of cosmic rays by the magnetic field and of the magnetic field by matter. Following the American era, the European COS-B satellite opens the European phase towards an identification of the discrete gamma radiation sources [fr

  20. ATOMIC HYDROGEN IN A GALACTIC CENTER OUTFLOW

    Energy Technology Data Exchange (ETDEWEB)

    McClure-Griffiths, N. M.; Green, J. A.; Hill, A. S. [Australia Telescope National Facility, CSIRO Astronomy and Space Science, Marsfield, NSW 2122 (Australia); Lockman, F. J. [National Radio Astronomy Observatory, Green Bank, WV 24944 (United States); Dickey, J. M. [School of Physics and Mathematics, University of Tasmania, TAS 7001 (Australia); Gaensler, B. M.; Green, A. J., E-mail: naomi.mcclure-griffiths@csiro.au [Sydney Institute for Astronomy, School of Physics, The University of Sydney, NSW 2006 (Australia)

    2013-06-10

    We describe a population of small, high-velocity, atomic hydrogen clouds, loops, and filaments found above and below the disk near the Galactic center. The objects have a mean radius of 15 pc, velocity widths of {approx}14 km s{sup -1}, and are observed at |z| heights up to 700 pc. The velocity distribution of the clouds shows no signature of Galactic rotation. We propose a scenario where the clouds are associated with an outflow from a central star-forming region at the Galactic center. We discuss the clouds as entrained material traveling at {approx}200 km s{sup -1} in a Galactic wind.

  1. ATOMIC HYDROGEN IN A GALACTIC CENTER OUTFLOW

    International Nuclear Information System (INIS)

    McClure-Griffiths, N. M.; Green, J. A.; Hill, A. S.; Lockman, F. J.; Dickey, J. M.; Gaensler, B. M.; Green, A. J.

    2013-01-01

    We describe a population of small, high-velocity, atomic hydrogen clouds, loops, and filaments found above and below the disk near the Galactic center. The objects have a mean radius of 15 pc, velocity widths of ∼14 km s –1 , and are observed at |z| heights up to 700 pc. The velocity distribution of the clouds shows no signature of Galactic rotation. We propose a scenario where the clouds are associated with an outflow from a central star-forming region at the Galactic center. We discuss the clouds as entrained material traveling at ∼200 km s –1 in a Galactic wind.

  2. Hubble Source Catalog

    Science.gov (United States)

    Lubow, S.; Budavári, T.

    2013-10-01

    We have created an initial catalog of objects observed by the WFPC2 and ACS instruments on the Hubble Space Telescope (HST). The catalog is based on observations taken on more than 6000 visits (telescope pointings) of ACS/WFC and more than 25000 visits of WFPC2. The catalog is obtained by cross matching by position in the sky all Hubble Legacy Archive (HLA) Source Extractor source lists for these instruments. The source lists describe properties of source detections within a visit. The calculations are performed on a SQL Server database system. First we collect overlapping images into groups, e.g., Eta Car, and determine nearby (approximately matching) pairs of sources from different images within each group. We then apply a novel algorithm for improving the cross matching of pairs of sources by adjusting the astrometry of the images. Next, we combine pairwise matches into maximal sets of possible multi-source matches. We apply a greedy Bayesian method to split the maximal matches into more reliable matches. We test the accuracy of the matches by comparing the fluxes of the matched sources. The result is a set of information that ties together multiple observations of the same object. A byproduct of the catalog is greatly improved relative astrometry for many of the HST images. We also provide information on nondetections that can be used to determine dropouts. With the catalog, for the first time, one can carry out time domain, multi-wavelength studies across a large set of HST data. The catalog is publicly available. Much more can be done to expand the catalog capabilities.

  3. The galactic distribution of pulsars

    International Nuclear Information System (INIS)

    Lyne, A.G.

    1982-01-01

    The galactic distribution of pulsars follows the general form of many population I objects in galactocentric radius, but has a wide distribution above and below the plane due to high space velocities imparted to the pulsars at birth. Statistical studies of the properties of large numbers of pulsars and proper motion measurements demonstrate that the effective magnetic dipole moments decay on a timescale of about 8 million years. This work provides a better knowledge of pulsar evolution and ages and shows that a birthrate of one pulsar every 20 to 50 years is required to sustain the observed galactic population of 300,000. This rate is comparable with most recent estimates of the galactic supernova rate, but requires nearly all supernovae to produce active pulsars. (orig.)

  4. A guide to hubble space telescope objects their selection, location, and significance

    CERN Document Server

    Chen, James L

    2015-01-01

    From the authors of "How to Find the Apollo Landing Sites," this is a guide to connecting the view above with the history of recent scientific discoveries from the Hubble Space Telescope. Each selected HST photo is shown with a sky map and a photograph or drawing to illustrate where to find it and how it should appear from a backyard telescope. Here is the casual observer's chance to locate the deep space objects visually, and appreciate the historic Hubble photos in comparison to what is visible from a backyard telescope. HST objects of all types are addressed, from Messier objects, Caldwell objects, and NGC objects, and are arranged in terms of what can be seen during the seasons. Additionally, the reader is given an historical perspective on the work of Edwin Hubble, while locating and viewing the deep space objects that changed astronomy forever.  Countless people have seen the amazing photographs taken by the Hubble Space Telescope. But how many people can actually point out where in the sky ...

  5. Blowing in the Milky Way Wind: Neutral Hydrogen Clouds Tracing the Galactic Nuclear Outflow

    Science.gov (United States)

    Di Teodoro, Enrico M.; McClure-Griffiths, N. M.; Lockman, Felix J.; Denbo, Sara R.; Endsley, Ryan; Ford, H. Alyson; Harrington, Kevin

    2018-03-01

    We present the results of a new sensitive survey of neutral hydrogen above and below the Galactic Center with the Green Bank Telescope. The observations extend up to Galactic latitude | b| resolution of 9.‧5 and an average rms brightness temperature noise of 40 mK in a 1 {km} {{{s}}}-1 channel. The survey reveals the existence of a population of anomalous high-velocity clouds extending up to heights of about 1.5 kpc from the Galactic plane and showing no signature of Galactic rotation. These clouds have local standard of rest velocities | {V}LSR}| ≲ 360 {km} {{{s}}}-1, and assuming a Galactic Center origin, they have sizes of a few tens of parsec and neutral hydrogen masses spanning 10{--}{10}5 {M}ȯ . Accounting for selection effects, the cloud population is symmetric in longitude, latitude, and V LSR. We model the cloud kinematics in terms of an outflow expanding from the Galactic Center and find the population consistent with being material moving with radial velocity {V}{{w}}≃ 330 {km} {{{s}}}-1 distributed throughout a bicone with opening angle α > 140^\\circ . This simple model implies an outflow luminosity {L}{{w}}> 3× {10}40 erg s‑1 over the past 10 Myr, consistent with star formation feedback in the inner region of the Milky Way, with a cold gas mass-loss rate ≲ 0.1 {{M}ȯ {yr}}-1. These clouds may represent the cold gas component accelerated in the nuclear wind driven by our Galaxy, although some of the derived properties challenge current theoretical models of the entrainment process.

  6. Observations of the Hubble Deep Field with the Infrared Space Observatory .4. Association of sources with Hubble Deep Field galaxies

    DEFF Research Database (Denmark)

    Mann, R.G.; Oliver, S.J.; Serjeant, S.B.G.

    1997-01-01

    We discuss the identification of sources detected by the Infrared Space Observatory (ISO) at 6.7 and 15 mu m in the Hubble Deep Field (HDF) region. We conservatively associate ISO sources with objects in existing optical and near-infrared HDF catalogues using the likelihood ratio method, confirming...... these results (and, in one case, clarifying them) with independent visual searches, We find 15 ISO sources to be reliably associated with bright [I-814(AB) HDF, and one with an I-814(AB)=19.9 star, while a further 11 are associated with objects in the Hubble Flanking Fields (10 galaxies...... and one star), Amongst optically bright HDF galaxies, ISO tends to detect luminous, star-forming galaxies at fairly high redshift and with disturbed morphologies, in preference to nearby ellipticals....

  7. Scattered-Light Echoes from the Historical Galactic Supernovae Cassiopeia A and Tycho (SN 1572)

    Energy Technology Data Exchange (ETDEWEB)

    Rest, A; Welch, D L; Suntzeff, N B; Oaster, L; Lanning, H; Olsen, K; Smith, R C; Becker, A C; Bergmann, M; Challis, P; Clocchiatti, A; Cook, K H; Damke, G; Garg, A; Huber, M E; Matheson, T; Minniti, D; Prieto, J L; Wood-Vasey, W M

    2008-05-06

    We report the discovery of an extensive system of scattered light echo arclets associated with the recent supernovae in the local neighborhood of the Milky Way: Tycho (SN 1572) and Cassiopeia A. Existing work suggests that the Tycho SN was a thermonuclear explosion while the Cas A supernova was a core collapse explosion. Precise classifications according to modern nomenclature require spectra of the outburst light. In the case of ancient SNe, this can only be done with spectroscopy of their light echo, where the discovery of the light echoes from the outburst light is the first step. Adjacent light echo positions suggest that Cas A and Tycho may share common scattering dust structures. If so, it is possible to measure precise distances between historical Galactic supernovae. On-going surveys that alert on the development of bright scattered-light echo features have the potential to reveal detailed spectroscopic information for many recent Galactic supernovae, both directly visible and obscured by dust in the Galactic plane.

  8. Scattered-Light Echoes from the Historical Galactic Supernovae Cassiopeia A and Tycho (SN 1572)

    International Nuclear Information System (INIS)

    Rest, A.; Welch, D.L.; Suntzeff, N.B.; Oaster, L.; Lanning, H.; Olsen, K.; Smith, R.C.; Becker, A.C.; Bergmann, M.; Challis, P.; Clocchiatti, A.; Cook, K.H.; Damke, G.; Garg, A.; Huber, M.E.; Matheson, T.; Minniti, D.; Prieto, J.L.; Wood-Vasey, W.M.

    2008-01-01

    We report the discovery of an extensive system of scattered light echo arclets associated with the recent supernovae in the local neighborhood of the Milky Way: Tycho (SN 1572) and Cassiopeia A. Existing work suggests that the Tycho SN was a thermonuclear explosion while the Cas A supernova was a core collapse explosion. Precise classifications according to modern nomenclature require spectra of the outburst light. In the case of ancient SNe, this can only be done with spectroscopy of their light echo, where the discovery of the light echoes from the outburst light is the first step. Adjacent light echo positions suggest that Cas A and Tycho may share common scattering dust structures. If so, it is possible to measure precise distances between historical Galactic supernovae. On-going surveys that alert on the development of bright scattered-light echo features have the potential to reveal detailed spectroscopic information for many recent Galactic supernovae, both directly visible and obscured by dust in the Galactic plane

  9. Type Ia supernova Hubble residuals and host-galaxy properties

    International Nuclear Information System (INIS)

    Kim, A. G.; Aldering, G.; Aragon, C.; Bailey, S.; Fakhouri, H. K.; Antilogus, P.; Bongard, S.; Canto, A.; Cellier-Holzem, F.; Fleury, M.; Guy, J.; Baltay, C.; Buton, C.; Feindt, U.; Greskovic, P.; Kowalski, M.; Childress, M.; Chotard, N.; Copin, Y.; Gangler, E.

    2014-01-01

    Kim et al. introduced a new methodology for determining peak-brightness absolute magnitudes of type Ia supernovae from multi-band light curves. We examine the relation between their parameterization of light curves and Hubble residuals, based on photometry synthesized from the Nearby Supernova Factory spectrophotometric time series, with global host-galaxy properties. The K13 Hubble residual step with host mass is 0.013 ± 0.031 mag for a supernova subsample with data coverage corresponding to the K13 training; at <<1σ, the step is not significant and lower than previous measurements. Relaxing the data coverage requirement of the Hubble residual step with the host mass is 0.045 ± 0.026 mag for the larger sample; a calculation using the modes of the distributions, less sensitive to outliers, yields a step of 0.019 mag. The analysis of this article uses K13 inferred luminosities, as distinguished from previous works that use magnitude corrections as a function of SALT2 color and stretch parameters: steps at >2σ significance are found in SALT2 Hubble residuals in samples split by the values of their K13 x(1) and x(2) light-curve parameters. x(1) affects the light-curve width and color around peak (similar to the Δm 15 and stretch parameters), and x(2) affects colors, the near-UV light-curve width, and the light-curve decline 20-30 days after peak brightness. The novel light-curve analysis, increased parameter set, and magnitude corrections of K13 may be capturing features of SN Ia diversity arising from progenitor stellar evolution.

  10. Interpretation of astrophysical neutrinos observed by IceCube experiment by setting Galactic and extra-Galactic spectral components

    CERN Document Server

    Marinelli, Antonio; Grasso, Dario; Urbano, Alfredo; Valli, Mauro

    2016-01-01

    The last IceCube catalog of High Energy Starting Events (HESE) obtained with a livetime of 1347 days comprises 54 neutrino events equally-distributed between the three families with energies between 25 TeV and few PeVs. Considering the homogeneous flavors distribution (1:1:1) and the spectral features of these neutrinos the IceCube collaboration claims the astrophysical origin of these events with more than $5\\sigma$. The spatial distribution of cited events does not show a clear correlation with known astrophysical accelerators leaving opened both the Galactic and the extra-Galactic origin interpretations. Here, we compute the neutrino diffuse emission of our Galaxy on the basis of a recently proposed phenomenological model characterized by radially-dependent cosmic-ray (CR) transport properties. We show that the astrophysical spectrum measured by IceCube experiment can be well explained adding to the diffuse Galactic neutrino flux (obtained with this new model) a extra-Galactic component derived from the as...

  11. The Hubble Legacy Archive: Data Processing in the Era of AstroDrizzle

    Science.gov (United States)

    Strolger, Louis-Gregory; Hubble Legacy Archive Team, The Hubble Source Catalog Team

    2015-01-01

    The Hubble Legacy Archive (HLA) expands the utility of Hubble Space Telescope wide-field imaging data by providing high-level composite images and source lists, perusable and immediately available online. The latest HLA data release (DR8.0) marks a fundamental change in how these image combinations are produced, using DrizzlePac tools and Astrodrizzle to reduce geometric distortion and provide improved source catalogs for all publicly available data. We detail the HLA data processing and source list schemas, what products are newly updated and available for WFC3 and ACS, and how these data products are further utilized in the production of the Hubble Source Catalog. We also discuss plans for future development, including updates to WFPC2 products and field mosaics.

  12. The galactic distribution of Wolf-Rayet stars

    International Nuclear Information System (INIS)

    Hidayat, B.; Supelli, K.; Hucht, K.A. van der

    1982-01-01

    On the basis of the most recent compilation of narrow-band photometry and absolute visual magnitudes of Wolf-Rayet stars, and adopting a normal interstellar extinction law in all directions, the galactic distribution of 132 of the 159 known galactic WR stars is presented and discussed. The spiral structure is found to be more clearly pronounced than in earlier studies. Furthermore the authors find an indication of two spiral arms at r=4 and 6 kpc. There appears to be an asymmetry of the z-distribution of single stars with respect to galactic longitude. The location of the WC8.5 and WC9 stars between 4.5 and 9 kpc from the galactic center is discussed in the context of Maeder's red supergiant to WR star scenario. (Auth.)

  13. THE STELLAR INITIAL MASS FUNCTION OF ULTRA-FAINT DWARF GALAXIES: EVIDENCE FOR IMF VARIATIONS WITH GALACTIC ENVIRONMENT

    Energy Technology Data Exchange (ETDEWEB)

    Geha, Marla [Astronomy Department, Yale University, New Haven, CT 06520 (United States); Brown, Thomas M.; Tumlinson, Jason; Kalirai, Jason S.; Avila, Roberto J.; Ferguson, Henry C. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Simon, Joshua D. [Observatories of the Carnegie Institution of Washington, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Kirby, Evan N. [Department of Physics and Astronomy, University of California Irvine, 4129 Frederick Reines Hall, Irvine, CA 92697 (United States); VandenBerg, Don A. [Department of Physics and Astronomy, University of Victoria, P.O. Box 3055, Victoria, BC V8W 3P6 (Canada); Munoz, Ricardo R. [Departamento de Astronomia, Universidad de Chile, Casilla 36-D, Santiago (Chile); Guhathakurta, Puragra, E-mail: marla.geha@yale.edu, E-mail: tbrown@stsci.edu, E-mail: tumlinson@stsci.edu [UCO/Lick Observatory and Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States)

    2013-07-01

    We present constraints on the stellar initial mass function (IMF) in two ultra-faint dwarf (UFD) galaxies, Hercules and Leo IV, based on deep Hubble Space Telescope Advanced Camera for Surveys imaging. The Hercules and Leo IV galaxies are extremely low luminosity (M{sub V} = -6.2, -5.5), metal-poor (([Fe/H]) = -2.4, -2.5) systems that have old stellar populations (>11 Gyr). Because they have long relaxation times, we can directly measure the low-mass stellar IMF by counting stars below the main-sequence turnoff without correcting for dynamical evolution. Over the stellar mass range probed by our data, 0.52-0.77 M{sub Sun }, the IMF is best fit by a power-law slope of {alpha}= 1.2{sub -0.5}{sup +0.4} for Hercules and {alpha} = 1.3 {+-} 0.8 for Leo IV. For Hercules, the IMF slope is more shallow than a Salpeter ({alpha} = 2.35) IMF at the 5.8{sigma} level, and a Kroupa ({alpha} = 2.3 above 0.5 M{sub Sun }) IMF slope at 5.4{sigma} level. We simultaneously fit for the binary fraction, f{sub binary}, finding f{sub binary}= 0.47{sup +0.16}{sub -0.14} for Hercules, and 0.47{sup +0.37}{sub -0.17} for Leo IV. The UFD binary fractions are consistent with that inferred for Milky Way stars in the same mass range, despite very different metallicities. In contrast, the IMF slopes in the UFDs are shallower than other galactic environments. In the mass range 0.5-0.8 M{sub Sun }, we see a trend across the handful of galaxies with directly measured IMFs such that the power-law slopes become shallower (more bottom-light) with decreasing galactic velocity dispersion and metallicity. This trend is qualitatively consistent with results in elliptical galaxies inferred via indirect methods and is direct evidence for IMF variations with galactic environment.

  14. The Carnegie-Chicago Hubble Program. II. The Distance to IC 1613: The Tip of the Red Giant Branch and RR Lyrae Period-luminosity Relations

    Science.gov (United States)

    Hatt, Dylan; Beaton, Rachael L.; Freedman, Wendy L.; Madore, Barry F.; Jang, In-Sung; Hoyt, Taylor J.; Lee, Myung Gyoon; Monson, Andrew J.; Rich, Jeffrey A.; Scowcroft, Victoria; Seibert, Mark

    2017-08-01

    IC 1613 is an isolated dwarf galaxy within the Local Group. Low foreground and internal extinction, low metallicity, and low crowding make it an invaluable testbed for the calibration of the local distance ladder. We present new, high-fidelity distance estimates to IC 1613 via its Tip of the Red Giant Branch (TRGB) and its RR Lyrae (RRL) variables as part of the Carnegie-Chicago Hubble Program, which seeks an alternate local route to H 0 using Population II stars. We have measured a TRGB magnitude {I}{ACS}{TRGB}=20.35+/- {0.01}{stat}+/- {0.01}{sys} mag using wide-field observations obtained from the IMACS camera on the Magellan-Baade telescope. We have further constructed optical and near-infrared RRL light curves using archival BI- and new H-band observations from the ACS/WFC and WFC3/IR instruments on board the Hubble Space Telescope (HST). In advance of future Gaia data releases, we set provisional values for the TRGB luminosity via the Large Magellanic Cloud and Galactic RRL zero-points via HST parallaxes. We find corresponding true distance moduli {μ }0{TRGB}=24.30+/- {0.03}{stat}+/- {0.05}{sys} {mag} and =24.28+/- {0.04}{stat+{sys}} mag. We compare our results to a body of recent publications on IC 1613 and find no statistically significant difference between the distances derived from Population I and II stars. Based in part on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with programs #10505 and #13691. Additional observations are credited to the Observatories of the Carnegie Institution of Washington for the use of Magellan-Baade IMACS. Presented as part of a dissertation to the Department of Astronomy and Astrophysics, The University of Chicago, in partial fulfillment of the requirements for the Ph.D. degree.

  15. Galactic Winds and the Role Played by Massive Stars

    Science.gov (United States)

    Heckman, Timothy M.; Thompson, Todd A.

    Galactic winds from star-forming galaxies play at key role in the evolution of galaxies and the intergalactic medium. They transport metals out of galaxies, chemically enriching the intergalactic medium and modifying the chemical evolution of galaxies. They affect the surrounding interstellar and circumgalactic media, thereby influencing the growth of galaxies though gas accretion and star formation. In this contribution we first summarize the physical mechanisms by which the momentum and energy output from a population of massive stars and associated supernovae can drive galactic winds. We use the prototypical example of M 82 to illustrate the multiphase nature of galactic winds. We then describe how the basic properties of galactic winds are derived from the data, and summarize how the properties of galactic winds vary systematically with the properties of the galaxies that launch them. We conclude with a brief discussion of the broad implications of galactic winds.

  16. MODIFIED GRAVITY SPINS UP GALACTIC HALOS

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jounghun [Astronomy Program, Department of Physics and Astronomy, FPRD, Seoul National University, Seoul 151-747 (Korea, Republic of); Zhao, Gong-Bo [National Astronomy Observatories, Chinese Academy of Science, Beijing 100012 (China); Li, Baojiu [Institute of Computational Cosmology, Department of Physics, Durham University, Durham DH1 3LE (United Kingdom); Koyama, Kazuya, E-mail: jounghun@astro.snu.ac.kr [Institute of Cosmology and Gravitation, University of Portsmouth, Portsmouth, PO1 3FX (United Kingdom)

    2013-01-20

    We investigate the effect of modified gravity on the specific angular momentum of galactic halos by analyzing the halo catalogs at z = 0 from high-resolution N-body simulations for a f(R) gravity model that meets the solar-system constraint. It is shown that the galactic halos in the f(R) gravity model tend to acquire significantly higher specific angular momentum than those in the standard {Lambda}CDM model. The largest difference in the specific angular momentum distribution between these two models occurs for the case of isolated galactic halos with mass less than 10{sup 11} h {sup -1} M {sub Sun }, which are likely least shielded by the chameleon screening mechanism. As the specific angular momentum of galactic halos is rather insensitive to other cosmological parameters, it can in principle be an independent discriminator of modified gravity. We speculate a possibility of using the relative abundance of low surface brightness galaxies (LSBGs) as a test of general relativity given that the formation of the LSBGs occurs in fast spinning dark halos.

  17. The distances of the Galactic Novae

    Science.gov (United States)

    Ozdonmez, Aykut; Guver, Tolga; Cabrera-Lavers, Antonio; Ak, Tansel

    2016-07-01

    Using location of the RC stars on the CMDs obtained from the UKIDSS, VISTA and 2MASS photometry, we have derived the reddening-distance relations towards each Galactic nova for which at least one independent reddening measurement exists. We were able to determine the distances of 72 Galactic novae and set lower limits on the distances of 45 systems. The reddening curves of the systems are presented. These curves can be also used to estimate reddening or the distance of any source, whose location is close to the position of the nova in our sample. The distance measurement method in our study can be easily applicable to any source, especially for ones that concentrated along the Galactic plane.

  18. A nuclear data approach for the Hubble constant measurements

    Directory of Open Access Journals (Sweden)

    Pritychenko Boris

    2017-01-01

    Full Text Available An extraordinary number of Hubble constant measurements challenges physicists with selection of the best numerical value. The standard U.S. Nuclear Data Program (USNDP codes and procedures have been applied to resolve this issue. The nuclear data approach has produced the most probable or recommended Hubble constant value of 67.2(69 (km/sec/Mpc. This recommended value is based on the last 20 years of experimental research and includes contributions from different types of measurements. The present result implies (14.55 ± 1.51 × 109 years as a rough estimate for the age of the Universe. The complete list of recommended results is given and possible implications are discussed.

  19. The Galactic Club or Galactic Cliques? Exploring the limits of interstellar hegemony and the Zoo Hypothesis

    Science.gov (United States)

    Forgan, Duncan H.

    2017-10-01

    The Zoo solution to Fermi's Paradox proposes that extraterrestrial intelligences (ETIs) have agreed to not contact the Earth. The strength of this solution depends on the ability for ETIs to come to agreement, and establish/police treaties as part of a so-called `Galactic Club'. These activities are principally limited by the causal connectivity of a civilization to its neighbours at its inception, i.e. whether it comes to prominence being aware of other ETIs and any treaties or agreements in place. If even one civilization is not causally connected to the other members of a treaty, then they are free to operate beyond it and contact the Earth if wished, which makes the Zoo solution `soft'. We should therefore consider how likely this scenario is, as this will give us a sense of the Zoo solution's softness, or general validity. We implement a simple toy model of ETIs arising in a Galactic Habitable Zone, and calculate the properties of the groups of culturally connected civilizations established therein. We show that for most choices of civilization parameters, the number of culturally connected groups is >1, meaning that the Galaxy is composed of multiple Galactic Cliques rather than a single Galactic Club. We find in our models for a single Galactic Club to establish interstellar hegemony, the number of civilizations must be relatively large, the mean civilization lifetime must be several millions of years, and the inter-arrival time between civilizations must be a few million years or less.

  20. The Advanced Gamma-ray Imaging System (AGIS): Galactic Astrophysics

    Science.gov (United States)

    Digel, Seth William; Funk, S.; Kaaret, P. E.; Tajima, H.; AGIS Collaboration

    2010-03-01

    The Advanced Gamma-ray Imaging System (AGIS), a concept for a next-generation atmospheric Cherenkov telescope array, would provide unprecedented sensitivity and resolution in the energy range >50 GeV, allowing great advances in the understanding of the populations and physics of sources of high-energy gamma rays in the Milky Way. Extrapolation based on the known source classes and the performance parameters for AGIS indicates that a survey of the Galactic plane with AGIS will reveal hundreds of TeV sources in exquisite detail, for population studies of a variety of source classes, and detailed studies of individual sources. AGIS will be able to study propagation effects on the cosmic rays produced by Galactic sources by detecting the diffuse glow from their interactions in dense interstellar gas. AGIS will complement and extend results now being obtained in the GeV range with the Fermi mission, by providing superior angular resolution and sensitivity to variability on short time scales, and of course by probing energies that Fermi cannot reach.

  1. Galactic neutral hydrogen and the magnetic ISM foreground

    Science.gov (United States)

    Clark, S. E.

    2018-05-01

    The interstellar medium is suffused with magnetic fields, which inform the shape of structures in the diffuse gas. Recent high-dynamic range observations of Galactic neutral hydrogen, combined with novel data analysis techniques, have revealed a deep link between the morphology of neutral gas and the ambient magnetic field. At the same time, an observational revolution is underway in low-frequency radio polarimetry, driven in part by the need to characterize foregrounds to the cosmological 21-cm signal. A new generation of experiments, capable of high angular and Faraday depth resolution, are revealing complex filamentary structures in diffuse polarization. The relationship between filamentary structures observed in radio-polarimetric data and those observed in atomic hydrogen is not yet well understood. Multiwavelength observations will enable new insights into the magnetic interstellar medium across phases.

  2. Galactic Habitable Zone and Astrobiological Complexity

    Science.gov (United States)

    Vukotic, B.

    2012-12-01

    This is a short thesis description and for the sake of brevity most things are left out. For more details, those interested are further directed to the thesis related papers in this article reference list. Thesis itself is available at the University of Belgrade library "Svetozar Markovic" (Serbian version only). In this thesis we study the astrobiological history of the Galactic habitable zone through the means of numerical modeling. First group of simulations are unidimensional (time-axis) toy models examine the influence of global regulation mechanisms (gamma-ray bursts and supernovae) on temporal evolution of Galactic astrobiological complexity. It is shown that under the assumption of global regulation classical anti SETI arguments can be undermined. Second group of simulations are more complex bidimensional probabilistic cellular automata models of the Galactic thin disk. They confirm the findings of the toy models and give some insights into the spatial clustering of astrobiological complexity. As a new emerging multidisciplinary science the basic concepts of astrobiology are poorly understood and although all the simulations present here do not include some basic physics (such as Galactic kinematics and dynamics), the input parameters are somewhat arbitrary and could use a future refinement (such as the boundaries of the Galactic habitable zone). This is the cause for low weight and high uncertainty in the output results of the simulations. However, the probabilistic cellular automata has shown as a highly adaptable modeling platform that can simulate various class of astrobiological models with great ease.

  3. Galactic binaries with eLISA

    OpenAIRE

    Nelemans, G.

    2013-01-01

    I review what eLISA will see from Galactic binaries -- double stars with orbital periods less than a few hours and white dwarf (or neutron star/black hole) components. I discuss the currently known binaries that are guaranteed (or verification) sources and explain why the expected total number of eLISA Galactic binaries is several thousand, even though there are large uncertainties in our knowledge of this population, in particular that of the interacting AM CVn systems. I very briefly sketch...

  4. The panchromatic Hubble Andromeda treasury. VII. The steep mid-ultraviolet to near-infrared extinction curve in the central 200 pc of the M31 Bulge

    International Nuclear Information System (INIS)

    Dong, Hui; Lauer, Tod R.; Olsen, Knut; Saha, Abhijit; Li, Zhiyuan; Wang, Q. D.; Dalcanton, Julianne; Fouesneau, Morgan; Gordon, Karl; Bell, Eric; Bianchi, Luciana

    2014-01-01

    We measure the extinction curve in the central 200 pc of M31 at mid-ultraviolet to near-infrared wavelengths (from 1928 Å to 1.5 μm), using Swift/UVOT and Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3)/Advanced Camera for Surveys (ACS) observations in 13 bands. Taking advantage of the high angular resolution of the HST/WFC3 and ACS detectors, we develop a method to simultaneously determine the relative extinction and the fraction of obscured starlight for five dusty complexes located in the circumnuclear region. The extinction curves of these clumps (R V = 2.4-2.5) are steeper than the average Galactic one (R V = 3.1), but are similar to optical and near-infrared curves recently measured toward the Galactic bulge (R V ∼ 2.5). This similarity suggests that steep extinction curves may be common in the inner bulge of galaxies. In the ultraviolet, the extinction curves of these clumps are also unusual. We find that one dusty clump (size < 2 pc) exhibits a strong UV bump (extinction at 2175 Å), more than three standard deviation higher than that predicted by common models. Although the high stellar metallicity of the M31 bulge indicates that there are sufficient carbon and silicon to produce large dust grains, the grains may have been destroyed by supernova explosions or past activity of the central supermassive black hole, resulting in the observed steepened extinction curve.

  5. The panchromatic Hubble Andromeda treasury. VII. The steep mid-ultraviolet to near-infrared extinction curve in the central 200 pc of the M31 Bulge

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Hui; Lauer, Tod R.; Olsen, Knut; Saha, Abhijit [National Optical Astronomy Observatory, Tucson, AZ 85719 (United States); Li, Zhiyuan [School of Astronomy and Space Science, Nanjing University, Nanjing 210093 (China); Wang, Q. D. [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States); Dalcanton, Julianne; Fouesneau, Morgan [Astronomy Department, University of Washington, Seattle, WA 98195 (United States); Gordon, Karl [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Bell, Eric [Department of Astronomy, University of Michigan, Ann Arbor, MI 48109 (United States); Bianchi, Luciana, E-mail: hdong@noao.edu [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States)

    2014-04-20

    We measure the extinction curve in the central 200 pc of M31 at mid-ultraviolet to near-infrared wavelengths (from 1928 Å to 1.5 μm), using Swift/UVOT and Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3)/Advanced Camera for Surveys (ACS) observations in 13 bands. Taking advantage of the high angular resolution of the HST/WFC3 and ACS detectors, we develop a method to simultaneously determine the relative extinction and the fraction of obscured starlight for five dusty complexes located in the circumnuclear region. The extinction curves of these clumps (R{sub V} = 2.4-2.5) are steeper than the average Galactic one (R{sub V} = 3.1), but are similar to optical and near-infrared curves recently measured toward the Galactic bulge (R{sub V} ∼ 2.5). This similarity suggests that steep extinction curves may be common in the inner bulge of galaxies. In the ultraviolet, the extinction curves of these clumps are also unusual. We find that one dusty clump (size < 2 pc) exhibits a strong UV bump (extinction at 2175 Å), more than three standard deviation higher than that predicted by common models. Although the high stellar metallicity of the M31 bulge indicates that there are sufficient carbon and silicon to produce large dust grains, the grains may have been destroyed by supernova explosions or past activity of the central supermassive black hole, resulting in the observed steepened extinction curve.

  6. Measurement of Hubble constant: non-Gaussian errors in HST Key Project data

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Meghendra [Dr. A.P.J. Abdul Kalam Technical University, Uttar Pradesh, Lucknow, 226021 India (India); Gupta, Shashikant; Pandey, Ashwini [Amity University Haryana, Gurgaon, Haryana, 122413 India (India); Sharma, Satendra, E-mail: meghendrasingh_db@yahoo.co.in, E-mail: shashikantgupta.astro@gmail.com, E-mail: satyamkashwini@gmail.com, E-mail: ssharma_phy@yahoo.co.uk [Yobe State University, Damaturu, Yobe State (Nigeria)

    2016-08-01

    Assuming the Central Limit Theorem, experimental uncertainties in any data set are expected to follow the Gaussian distribution with zero mean. We propose an elegant method based on Kolmogorov-Smirnov statistic to test the above; and apply it on the measurement of Hubble constant which determines the expansion rate of the Universe. The measurements were made using Hubble Space Telescope. Our analysis shows that the uncertainties in the above measurement are non-Gaussian.

  7. Molecular diagnostics of Galactic star-formation regions

    Science.gov (United States)

    Loenen, Edo; Baan, Willem; Spaans, Marco

    2007-10-01

    We propose a sensitive spectral survey of Galactic star-formation regions. Using the broadband correlator at two different frequencies, we expect to detect the (1-0) transition of CO, CN, HNC, HCN, HCO+, and HCO and various of their isotopes lines, as well as the (12-11) and (10-9) transitions of HC3N. The purpose of these observations is to create a consistent (public) database of molecular emission from galactic star-formation regions. The data will be interpreted using extensive physical and chemical modeling of the whole ensemble of lines, in order to get an accurate description of the molecular environment of these regions. In particular, this diagnostic approach will describe the optical depths, the densities, and the radiation fields in the medium and will allow the establishment of dominant temperature gradients. These observations are part of a program to study molecular emission on all scales, going from individual Galactic star-formation regions, through resolved nearby galaxies, to unresolved extra-galactic emission.

  8. A synoptic view of galactic processes

    Science.gov (United States)

    Stecker, F. W.

    1981-01-01

    The power of using synoptic galactic surveys in many wavelength bands in order to obtain a more complete picture and a better understanding of the dynamics of the interstellar medium and to study galactic structure and evolution on a large scale is discussed. The implications of the picture presented by mm wave CO, far infrared and X ray surveys of the Galaxy are emphasized.

  9. Observation of galactic far-infrared ray

    International Nuclear Information System (INIS)

    Maihara, Toshinori; Oda, Naoki; Okuda, Haruyuki; Sugiyama, Takuya; Sakai, Kiyomi.

    1978-01-01

    Galactic far-infrared was observed to study the spatial distribution of interstellar dust. Far-infrared is emitted by interstellar dust distributing throughout the galactic plane. The observation of far-infrared is very important to study the overall structure of the galaxy, that is the structure of the galactic arm and gas distribution. The balloon experiment was conducted on May 25, 1978. The detector was a germanium bolometer cooled by liquid helium. The size of the detector is 1.6 mm in diameter. The geometrical factor was 4 x 10 3 cm 2 sr. The result showed that the longitude distribution of far-infrared at 150 μm correlated with H 166 α recombination line. This indicates that the observed far-infrared is emitted by interstellar dust heated by photons of Lyman continuum. (Yoshimori, M.)

  10. Imprint of Galactic dynamics on Earth's climate

    DEFF Research Database (Denmark)

    Svensmark, Henrik

    2006-01-01

    A connection between climate and the Solar system's motion perpendicular to the Galactic plane during the last 200 Myr years is studied. An imprint of galactic dynamics is found in a long-term record of the Earth's climate that is consistent with variations in the Solar system oscillation around...

  11. GALAXY INTERACTIONS IN COMPACT GROUPS. I. THE GALACTIC WINDS OF HCG16

    Energy Technology Data Exchange (ETDEWEB)

    Vogt, Frederic P. A.; Dopita, Michael A.; Kewley, Lisa J., E-mail: fvogt@mso.anu.edu.au [Mount Stromlo Observatory, Research School of Astronomy and Astrophysics, Australian National University, Cotter Road, Weston Creek, ACT 2611 (Australia)

    2013-05-10

    Using the WiFeS integral field spectrograph, we have undertaken a series of observations of star-forming galaxies in compact groups. In this first paper dedicated to the project, we present the analysis of the spiral galaxy NGC 838, a member of the Hickson Compact Group 16, and of its galactic wind. Our observations reveal that the wind forms an asymmetric, bipolar, rotating structure, powered by a nuclear starburst. Emission line ratio diagnostics indicate that photoionization is the dominant excitation mechanism at the base of the wind. Mixing from slow shocks (up to 20%) increases further out along the outflow axis. The asymmetry of the wind is most likely caused by one of the two lobes of the wind bubble bursting out of its H I envelope, as indicated by line ratios and radial velocity maps. The characteristics of this galactic wind suggest that it is caught early (a few Myr) in the wind evolution sequence. The wind is also quite different from the galactic wind in the partner galaxy NGC 839 which contains a symmetric, shock-excited wind. Assuming that both galaxies have similar interaction histories, the two different winds must be a consequence of the intrinsic properties of NGC 838 and NGC 839 and their starbursts.

  12. Dynamics and evolution of galactic nuclei (princeton series in astrophysics)

    CERN Document Server

    Merritt, David

    2013-01-01

    Deep within galaxies like the Milky Way, astronomers have found a fascinating legacy of Einstein's general theory of relativity: supermassive black holes. Connected to the evolution of the galaxies that contain these black holes, galactic nuclei are the sites of uniquely energetic events, including quasars, stellar tidal disruptions, and the generation of gravitational waves. This textbook is the first comprehensive introduction to dynamical processes occurring in the vicinity of supermassive black holes in their galactic environment. Filling a critical gap, it is an authoritative resource for astrophysics and physics graduate students, and researchers focusing on galactic nuclei, the astrophysics of massive black holes, galactic dynamics, and gravitational wave detection. It is an ideal text for an advanced graduate-level course on galactic nuclei and as supplementary reading in graduate-level courses on high-energy astrophysics and galactic dynamics. David Merritt summarizes the theoretical work of the las...

  13. Galactic synchrotron emission from WIMPs at radio frequencies

    International Nuclear Information System (INIS)

    Fornengo, Nicolao; Regis, Marco; Lineros, Roberto A.; Taoso, Marco

    2012-01-01

    Dark matter annihilations in the Galactic halo inject relativistic electrons and positrons which in turn generate a synchrotron radiation when interacting with the galactic magnetic field. We calculate the synchrotron flux for various dark matter annihilation channels, masses, and astrophysical assumptions in the low-frequency range and compare our results with radio surveys from 22 MHz to 1420 MHz. We find that current observations are able to constrain particle dark matter with ''thermal'' annihilation cross-sections, i.e. (σv) = 3 × 10 −26 cm 3 s −1 , and masses M DM ∼<10 GeV. We discuss the dependence of these bounds on the astrophysical assumptions, namely galactic dark matter distribution, cosmic rays propagation parameters, and structure of the galactic magnetic field. Prospects for detection in future radio surveys are outlined

  14. The Carnegie–Chicago Hubble Program. III. The Distance to NGC 1365 via the Tip of the Red Giant Branch

    Science.gov (United States)

    Jang, In Sung; Hatt, Dylan; Beaton, Rachael L.; Lee, Myung Gyoon; Freedman, Wendy L.; Madore, Barry F.; Hoyt, Taylor J.; Monson, Andrew J.; Rich, Jeffrey A.; Scowcroft, Victoria; Seibert, Mark

    2018-01-01

    The Carnegie–Chicago Hubble Program (CCHP) seeks to anchor the distance scale of Type Ia supernovae via the Tip of the Red Giant Branch (TRGB) method. Based on deep Hubble Space Telescope ACS/WFC imaging, we present an analysis of the TRGB for the metal-poor halo of NGC 1365, a giant spiral galaxy in the Fornax cluster that was host to the Type Ia supernova SN 2012fr. We have measured the extinction-corrected TRGB magnitude of NGC 1365 to be F814W = 27.34 ± 0.03stat ± 0.04sys mag. In advance of future direct calibration by Gaia, we adopt a provisional I-band TRGB luminosity set at the Large Magellanic Cloud and find a true distance modulus μ 0 = 31.29 ± 0.04stat ± 0.06sys mag or D = 18.1 ± 0.3stat ± 0.5sys Mpc. This measurement is in excellent agreement with recent Cepheid-based distances to NGC 1365 and reveals no significant difference in the distances derived from stars of Populations I and II for this galaxy. We revisit the error budget for the CCHP path to the Hubble constant based on the analysis presented here, i.e., that for one of the most distant Type Ia supernova hosts within our Program, and find that a 2.5% measurement is feasible with the current sample of galaxies and TRGB absolute calibration. Based in part on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program #13691.

  15. Planck 2013 results. XIII. Galactic CO emission

    DEFF Research Database (Denmark)

    Ade, P. A. R.; Aghanim, N.; Alves, M. I. R.

    2014-01-01

    Rotational transition lines of CO play a major role in molecular radio astronomy as a mass tracer and in particular in the study of star formation and Galactic structure. Although a wealth of data exists for the Galactic plane and some well-known molecular clouds, there is no available high sensi...

  16. Constraints on Galactic populations from the unidentified EGRET sources

    International Nuclear Information System (INIS)

    Siegal-Gaskins, Jennifer M.; Pavlidou, Vasiliki; Brown, Carolyn; Olinto, Angela V.; Fields, Brian D.

    2007-01-01

    A significant fraction of the sources in the third EGRET catalog have not yet been identified with a low-energy counterpart. We evaluate the plausibility of a Galactic population accounting for some or all of the unidentified EGRET sources by making the simple assumption that galaxies similar to the Milky Way host comparable populations of gamma-ray emitters. Rather than focusing on the properties of a specific candidate emitter, we constrain the abundance and spatial distribution of proposed Galactic populations. We find that it is highly improbable that the unidentified EGRET sources contain more than a handful of members of a Galactic halo population, but that current observations are consistent with all of these sources being Galactic objects if they reside entirely in the disk and bulge. We discuss the additional constraints and new insights into the nature of Galactic gamma-ray emitting populations that GLAST is expected to provide

  17. On the determination of the Hubble constant

    International Nuclear Information System (INIS)

    Gurzadyan, V.G.; Harutyunyan, V.V.; Kocharyan, A.A.

    1990-10-01

    The possibility of an alternative determination of the distance scale of the Universe and the Hubble constant based on the numerical analysis of the hierarchical nature of the large scale Universe (galaxies, clusters and superclusters) is proposed. The results of computer experiments performed by means of special numerical algorithms are represented. (author). 9 refs, 7 figs

  18. Possible existence of wormholes in the galactic halo region

    Energy Technology Data Exchange (ETDEWEB)

    Rahaman, Farook [Jadavpur University, Department of Mathematics, Kolkata, West Bengal (India); Kuhfittig, P.K.F. [Milwaukee School of Engineering, Department of Mathematics, Milwaukee, WI (United States); Ray, Saibal [Government College of Engineering and Ceramic Technology, Department of Physics, Kolkata, West Bengal (India); Islam, Nasarul [Danga High Madrasah, Department of Mathematics, Kolkata, West Bengal (India)

    2014-02-15

    Two observational results, the density profile from simulations performed in the ΛCDM scenario and the observed flat galactic rotation curves, are taken as input with the aim of showing that the galactic halo possesses some of the characteristics needed to support traversable wormholes. This result should be sufficient to provide an incentive for scientists to seek observational evidence for wormholes in the galactic halo region. (orig.)

  19. DISTANCE SCALE ZERO POINTS FROM GALACTIC RR LYRAE STAR PARALLAXES

    Energy Technology Data Exchange (ETDEWEB)

    Benedict, G. Fritz; McArthur, Barbara E.; Barnes, Thomas G. [McDonald Observatory, University of Texas, Austin, TX 78712 (United States); Feast, Michael W. [Centre for Astrophysics, Cosmology and Gravitation, Astronomy Department, University of Cape Town, Rondebosch 7701 (South Africa); Harrison, Thomas E. [Department of Astronomy, New Mexico State University, Las Cruces, NM 88003 (United States); Bean, Jacob L.; Kolenberg, Katrien [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Menzies, John W.; Laney, C. D. [South African Astronomical Observatory, Observatory 7935 (South Africa); Chaboyer, Brian [Department of Physics and Astronomy, Dartmouth College, Hanover, NH 03755 (United States); Fossati, Luca [Department of Physics and Astronomy, Open University, Milton Keynes MK7 6AA (United Kingdom); Nesvacil, Nicole [Institute of Astronomy, University of Vienna, A-1180 Vienna (Austria); Smith, Horace A. [Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Kochukhov, Oleg [Department of Physics and Astronomy, Uppsala University, 75120 Uppsala (Sweden); Nelan, Edmund P.; Taylor, Denise [STScI, Baltimore, MD 21218 (United States); Shulyak, D. V. [Institute of Astrophysics, Georg-August-University, Friedrich-Hund-Platz 1, D-37077 Goettingen (Germany); Freedman, Wendy L. [The Observatories, Carnegie Institution of Washington, Pasadena, CA 91101 (United States)

    2011-12-15

    We present new absolute trigonometric parallaxes and proper motions for seven Population II variable stars-five RR Lyr variables: RZ Cep, XZ Cyg, SU Dra, RR Lyr, and UV Oct; and two type 2 Cepheids: VY Pyx and {kappa} Pav. We obtained these results with astrometric data from Fine Guidance Sensors, white-light interferometers on Hubble Space Telescope. We find absolute parallaxes in milliseconds of arc: RZ Cep, 2.12 {+-} 0.16 mas; XZ Cyg, 1.67 {+-} 0.17 mas; SU Dra, 1.42 {+-} 0.16 mas; RR Lyr, 3.77 {+-} 0.13 mas; UV Oct, 1.71 {+-} 0.10 mas; VY Pyx, 6.44 {+-} 0.23 mas; and {kappa} Pav, 5.57 {+-} 0.28 mas; an average {sigma}{sub {pi}}/{pi} = 5.4%. With these parallaxes, we compute absolute magnitudes in V and K bandpasses corrected for interstellar extinction and Lutz-Kelker-Hanson bias. Using these RR Lyrae variable star absolute magnitudes, we then derive zero points for M{sub V} -[Fe/H] and M{sub K} -[Fe/H]-log P relations. The technique of reduced parallaxes corroborates these results. We employ our new results to determine distances and ages of several Galactic globular clusters and the distance of the Large Magellanic Cloud. The latter is close to that previously derived from Classical Cepheids uncorrected for any metallicity effect, indicating that any such effect is small. We also discuss the somewhat puzzling results obtained for our two type 2 Cepheids.

  20. Hubble Captures Volcanic Eruption Plume From Io

    Science.gov (United States)

    1997-01-01

    The Hubble Space Telescope has snapped a picture of a 400-km-high (250-mile-high) plume of gas and dust from a volcanic eruption on Io, Jupiter's large innermost moon.Io was passing in front of Jupiter when this image was taken by the Wide Field and Planetary Camera 2 in July 1996. The plume appears as an orange patch just off the edge of Io in the eight o'clock position, against the blue background of Jupiter's clouds. Io's volcanic eruptions blasts material hundreds of kilometers into space in giant plumes of gas and dust. In this image, material must have been blown out of the volcano at more than 2,000 mph to form a plume of this size, which is the largest yet seen on Io.Until now, these plumes have only been seen by spacecraft near Jupiter, and their detection from the Earth-orbiting Hubble Space Telescope opens up new opportunities for long-term studies of these remarkable phenomena.The plume seen here is from Pele, one of Io's most powerful volcanos. Pele's eruptions have been seen before. In March 1979, the Voyager 1 spacecraft recorded a 300-km-high eruption cloud from Pele. But the volcano was inactive when the Voyager 2 spacecraft flew by Jupiter in July 1979. This Hubble observation is the first glimpse of a Pele eruption plume since the Voyager expeditions.Io's volcanic plumes are much taller than those produced by terrestrial volcanos because of a combination of factors. The moon's thin atmosphere offers no resistance to the expanding volcanic gases; its weak gravity (one-sixth that of Earth) allows material to climb higher before falling; and its biggest volcanos are more powerful than most of Earth's volcanos.This image is a contrast-enhanced composite of an ultraviolet image (2600 Angstrom wavelength), shown in blue, and a violet image (4100 Angstrom wavelength), shown in orange. The orange color probably occurs because of the absorption and/or scattering of ultraviolet light in the plume. This light from Jupiter passes through the plume and is

  1. Galactic synchrotron emission from WIMPs at radio frequencies

    Energy Technology Data Exchange (ETDEWEB)

    Fornengo, Nicolao; Regis, Marco [Dipartimento di Fisica Teorica, Università di Torino, Istituto Nazionale di Fisica Nucleare, via P. Giuria 1, I-10125 Torino (Italy); Lineros, Roberto A.; Taoso, Marco, E-mail: fornengo@to.infn.it, E-mail: rlineros@ific.uv.es, E-mail: regis@to.infn.it, E-mail: taoso@ific.uv.es [IFIC, CSIC-Universidad de Valencia, Ed. Institutos, Apdo. Correos 22085, E-46071 Valencia (Spain)

    2012-01-01

    Dark matter annihilations in the Galactic halo inject relativistic electrons and positrons which in turn generate a synchrotron radiation when interacting with the galactic magnetic field. We calculate the synchrotron flux for various dark matter annihilation channels, masses, and astrophysical assumptions in the low-frequency range and compare our results with radio surveys from 22 MHz to 1420 MHz. We find that current observations are able to constrain particle dark matter with ''thermal'' annihilation cross-sections, i.e. (σv) = 3 × 10{sup −26} cm{sup 3} s{sup −1}, and masses M{sub DM}∼<10 GeV. We discuss the dependence of these bounds on the astrophysical assumptions, namely galactic dark matter distribution, cosmic rays propagation parameters, and structure of the galactic magnetic field. Prospects for detection in future radio surveys are outlined.

  2. Enhancing Hubble's vision service missions that expanded our view of the universe

    CERN Document Server

    Shayler, David J

    2016-01-01

    After a 20-year struggle to place a large, sophisticated optical telescope in orbit the Hubble Space Telescope was finally launched in 1990, though its primary mirror was soon found to be flawed. A dramatic mission in 1993 installed corrective optics so that the intended science program could finally begin. Those events are related in a companion to this book, The Hubble Space Telescope: From Concept to Success.   Enhancing Hubble’s Vision: Service Missions That Expanded Our View of the Universe tells the story of the four missions between 1997 and 2009 that repaired, serviced and upgraded the instruments on the telescope to maintain its state-of-the-art capabilities. It draws on first hand interviews with those closely involved in the project. The spacewalking skills and experiences gained from maintaining and upgrading Hubble had direct application to the construction of the International Space Station and help with its maintenance. These skills can be applied to future human and robotic satellite servic...

  3. Quasars and galactic evolution

    CERN Document Server

    Woltjer, L

    1978-01-01

    The evolution of quasars is discussed. It is noted that substantial clustering may be present at faint magnitudes. The relationship between quasar evolution and galactic evolution is considered. (4 refs).

  4. ANALYSIS OF WMAP 7 YEAR TEMPERATURE DATA: ASTROPHYSICS OF THE GALACTIC HAZE

    Energy Technology Data Exchange (ETDEWEB)

    Pietrobon, Davide; Gorski, Krzysztof M.; Bartlett, James; Colombo, Loris P. L.; Jewell, Jeffrey B.; Pagano, Luca; Rocha, Graca; Lawrence, Charles R. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109-8099 (United States); Banday, A. J. [Universie de Toulouse, UPS-OMP, IRAP, Toulouse (France); Dobler, Gregory [Kavli Institute for Theoretical Physics, University of California, Santa Barbara Kohn Hall, Santa Barbara, CA 93106 (United States); Hildebrandt, Sergi R. [Division of Physics, Mathematics and Astronomy, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Eriksen, Hans Kristian [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029, Blindern, N-0315 Oslo (Norway); Saha, Rajib, E-mail: davide.pietrobon@jpl.nasa.gov [Physics Department, Indian Institute of Science Education and Research Bhopal, Bhopal, MP 462023 (India)

    2012-08-10

    We perform a joint analysis of the cosmic microwave background (CMB) and Galactic emission from the WMAP 7 year temperature data. Using the Commander code, based on Gibbs sampling, we simultaneously derive the CMB and Galactic components on scales larger than 1 Degree-Sign with improved sensitivity over previous work. We conduct a detailed study of the low-frequency Galactic foreground, focusing on the 'microwave haze' emission around the Galactic center. We demonstrate improved performance in quantifying the diffuse Galactic emission when including Haslam 408 MHz data and when jointly modeling the spinning and thermal dust emission. We examine whether the hypothetical Galactic haze can be explained by a spatial variation of the synchrotron spectral index, and find that the excess of emission around the Galactic center is stable with respect to variations of the foreground model. Our results demonstrate that the new Galactic foreground component-the microwave haze-is indeed present.

  5. Construcción de un diagrama de Hubble: Una herramienta para la Enseñanza de la Astronomía

    Directory of Open Access Journals (Sweden)

    Giovanni Cardona Rodriguez

    2016-06-01

    Full Text Available Se presenta una actividad que puede apoyar el trabajo de los docentes que dirigen  clubes de Astronomía y quieren abordar el tema de evolución del Universo, ya que   se  reconstruye  la ley de Hubble  a partir de la construcción de un Diagrama de Hubble con  datos  tomados del Sloan Digital Sky Survey   (SDSS ,  del  cual se obtiene el valor del parámetro de Hubble y se infiere la expansión del Universo. Esta actividad  didáctica permite a los profesores orientar a sus estudiantes por el camino que siguió Hubble  para determinar su ley, en este sentido se exponen algunas implicaciones de aplicación de la misma en el contexto de la formación de profesores de física y de los clubes de Astronomía.  Construction of a Hubble Diagram: A tool for teaching astronomy This article presents the construction and analysis of an activity that can support the work of teachers who run Astronomy clubs and want to address the issue of evolution of the Universe. Here Hubble's law is reconstructed by reproducing a Hubble diagram with Sloan Digital Sky Survey's (SDSS data, from which the Hubble parameter value is obtained and the expansion of the Universe is inferred. This educational activity allows teachers to guide their students along the path followed by Hubble to determine his law. In this sense some implications of applying the latter are discussed in the context of teacher's training in Physics and Astronomy clubs. Construção de um diagrama de Hubble: Uma ferramenta para ensino de astronomía Se apresenta uma actividade que pode apoiar o trabalho dos professores que dirigem clubes de Astronomia e querem abordar a questão da evolução do Universo, como a lei de Hubble é reconstruída a partir da reprodução de um diagrama de Hubble com os dados tomados do Sloan digital Sky Survey (SDSS, é achado o parâmetro de Hubble e inferida a expansão do universo. Esta actividade educativa permite aos professores orientar seus alunos ao

  6. Stellar Photometric Structures of the Host Galaxies of Nearby Type 1 Active Galactic Nuclei

    Science.gov (United States)

    Kim, Minjin; Ho, Luis C.; Peng, Chien Y.; Barth, Aaron J.; Im, Myungshin

    2017-10-01

    We present detailed image analysis of rest-frame optical images of 235 low-redshift (z ≲ 0.35) Type 1 active galactic nuclei (AGNs) observed with the Hubble Space Telescope. The high-resolution images enable us to perform rigorous two-dimensional image modeling to decouple the luminous central point source from the host galaxy, which, when warranted, is further decomposed into its principal structural components (bulge, bar, and disk). In many cases, care must be taken to account for structural complexities such as spiral arms, tidal features, and overlapping or interacting companion galaxies. We employ Fourier modes to characterize the degree of asymmetry of the light distribution of the stars as a quantitative measure of morphological distortion due to interactions or mergers. We examine the dependence of the physical parameters of the host galaxies on the properties of the AGNs, namely, radio-loudness and the width of the broad emission lines. In accordance with previous studies, narrow-line (Hβ FWHM ≤ 2000 km s-1) Type 1 AGNs, in contrast to their broad-line (Hβ FWHM > 2000 km s-1) counterparts, are preferentially hosted in later-type, lower-luminosity galaxies, which have a higher incidence of pseudo-bulges, are more frequently barred, and are less morphologically disturbed. This suggests that narrow-line Type 1 AGNs experienced a more quiescent evolutionary history driven primarily by internal secular evolution instead of external dynamical perturbations. The fraction of AGN hosts showing merger signatures is larger for more luminous sources. Radio-loud AGNs generally preferentially live in earlier-type (bulge-dominated), more massive hosts, although a minority of them appear to contain a significant disk component. We do not find convincing evidence for enhanced merger signatures in the radio-loud population. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the Data Archive at the Space Telescope Science Institute

  7. The Galactic O-Star Spectroscopic Survey. I. Classification System and Bright Northern Stars in the Blue-violet at R ~ 2500

    Science.gov (United States)

    Sota, A.; Maíz Apellániz, J.; Walborn, N. R.; Alfaro, E. J.; Barbá, R. H.; Morrell, N. I.; Gamen, R. C.; Arias, J. I.

    2011-04-01

    We present the first installment of a massive spectroscopic survey of Galactic O stars, based on new, high signal-to-noise ratio, R ~ 2500 digital observations from both hemispheres selected from the Galactic O-Star Catalog of Maíz Apellániz et al. and Sota et al. The spectral classification system is rediscussed and a new atlas is presented, which supersedes previous versions. Extensive sequences of exceptional objects are given, including types Ofc, ON/OC, Onfp, Of?p, Oe, and double-lined spectroscopic binaries. The remaining normal spectra bring this first sample to 184 stars, which is close to complete to B = 8 and north of δ = -20° and includes all of the northern objects in Maíz Apellániz et al. that are still classified as O stars. The systematic and random accuracies of these classifications are substantially higher than previously attainable, because of the quality, quantity, and homogeneity of the data and analysis procedures. These results will enhance subsequent investigations in Galactic astronomy and stellar astrophysics. In the future, we will publish the rest of the survey, beginning with a second paper that will include most of the southern stars in Maíz Apellániz et al. The spectroscopic data in this article were gathered with three facilities: the 1.5 m telescope at the Observatorio de Sierra Nevada (OSN), the 3.5 m telescope at Calar Alto Observatory (CAHA), and the du Pont 2.5 m telescope at Las Campanas Observatory (LCO). Some of the supporting imaging data were obtained with the 2.2 m telescope at CAHA and the NASA/ESA Hubble Space Telescope (HST). The rest were retrieved from the DSS2 and Two Micron All Sky Survey (2MASS) surveys. The HST data were obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.

  8. The galactic contribution to IceCube's astrophysical neutrino flux

    Energy Technology Data Exchange (ETDEWEB)

    Denton, Peter B. [Niels Bohr International Academy, University of Copenhagen, The Niels Bohr Institute, Blegdamsvej 17, DK-2100, Copenhagen (Denmark); Marfatia, Danny [Department of Physics and Astronomy, University of Hawaii at Manoa, 2505 Correa Rd., Honolulu, HI 96822 (United States); Weiler, Thomas J., E-mail: peterbd1@gmail.com, E-mail: dmarf8@hawaii.edu, E-mail: tom.weiler@vanderbilt.edu [Department of Physics and Astronomy, Vanderbilt University, 2301 Vanderbilt Place, Nashville, TN 37235 (United States)

    2017-08-01

    High energy neutrinos have been detected by IceCube, but their origin remains a mystery. Determining the sources of this flux is a crucial first step towards multi-messenger studies. In this work we systematically compare two classes of sources with the data: galactic and extragalactic. We assume that the neutrino sources are distributed according to a class of Galactic models. We build a likelihood function on an event by event basis including energy, event topology, absorption, and direction information. We present the probability that each high energy event with deposited energy E {sub dep}>60 TeV in the HESE sample is Galactic, extragalactic, or background. For Galactic models considered the Galactic fraction of the astrophysical flux has a best fit value of 1.3% and is <9.5% at 90% CL. A zero Galactic flux is allowed at <1σ.

  9. Evolution of extra-galactic nebulae and the origin of metagalactic radio noise

    International Nuclear Information System (INIS)

    Bruce, C.E.R.

    1975-01-01

    It is pointed out that the discovery of the 'jet' in the radio source NGC 4486 fulfils a prediction made many years ago that such 'jets' would exist in some globular or elliptical nebulae. They are the channels of electrical discharges on a nebular scale then postulated, which will last for about 10 million years. It is emphasized that the discharge hypothesis would account for - 1. the existence of irregular nebulae; 2. the 'cataclysmic action' which Hubble regarded as required to account for the transition from nebulae of Type E to Type Sa; 3. the fact that the arms of spiral nebulae are never seen in process of formation; 4. the gathering of the matter towards the discharge channels by magnetic pinch effect; 5. the frequent occurrence of two diametrically opposed major arms; 6. the origin of radio waves throughout an extensive volume of space surrounding the 'jet' or discharge channel in NGC 4486; 7. the effect of one extra galactic nebula, NGC 3187, on another, NGC 3190; 8. the existence of diffuse patches of luminosity, 'emission nebulae', in the spiral arms of our own galaxy and in those of the 'Andromeda Nebula'. On the discharge theory about one per cent of all nebulae will be passing through the discharge phase at any one time, i.e., the number required to account for the observed intensity of metagalactic radio noise. (author)

  10. The MAVERIC Survey: A Red Straggler Binary with an Invisible Companion in the Galactic Globular Cluster M10

    Science.gov (United States)

    Shishkovsky, Laura; Strader, Jay; Chomiuk, Laura; Bahramian, Arash; Tremou, Evangelia; Li, Kwan-Lok; Salinas, Ricardo; Tudor, Vlad; Miller-Jones, James C. A.; Maccarone, Thomas J.; Heinke, Craig O.; Sivakoff, Gregory R.

    2018-03-01

    We present the discovery and characterization of a radio-bright binary in the Galactic globular cluster M10. First identified in deep radio continuum data from the Karl G. Jansky Very Large Array, M10-VLA1 has a flux density of 27 ± 4 μJy at 7.4 GHz and a flat-to-inverted radio spectrum. Chandra imaging shows an X-ray source with L X ≈ 1031 erg s‑1 matching the location of the radio source. This places M10-VLA1 within the scatter of the radio-X-ray luminosity correlation for quiescent stellar-mass black holes, and a black hole X-ray binary is a viable explanation for this system. The radio and X-ray properties of the source disfavor, but do not rule out, identification as an accreting neutron star or white dwarf system. Optical imaging from the Hubble Space Telescope and spectroscopy from the SOAR telescope show that the system has an orbital period of 3.339 days and an unusual “red straggler” component: an evolved star found redward of the M10 red giant branch. These data also show UV/optical variability and double-peaked Hα emission characteristic of an accretion disk. However, SOAR spectroscopic monitoring reveals that the velocity semi-amplitude of the red straggler is low. We conclude that M10-VLA1 is most likely either a quiescent black hole X-ray binary with a rather face-on (i orientation or an unusual flaring RS Canum Venaticorum variable-type active binary, and discuss future observations that could distinguish between these possibilities.

  11. HUBBLE CAPTURES MERGER BETWEEN QUASAR AND GALAXY

    Science.gov (United States)

    2002-01-01

    This NASA Hubble Space Telescope image shows evidence fo r a merger between a quasar and a companion galaxy. This surprising result might require theorists to rethink their explanations for the nature of quasars, the most energetic objects in the universe. The bright central object is the quasar itself, located several billion light-years away. The two wisps on the (left) of the bright central object are remnants of a bright galaxy that have been disrupted by the mutual gravitational attraction between the quasar and the companion galaxy. This provides clear evidence for a merger between the two objects. Since their discovery in 1963, quasars (quasi-stellar objects) have been enigmatic because they emit prodigious amounts of energy from a very compact source. The most widely accepted model is that a quasar is powered by a supermassive black hole in the core of a galaxy. These new observations proved a challenge for theorists as no current models predict the complex quasar interactions unveiled by Hubble. The image was taken with the Wide Field Planetary Camera-2. Credit: John Bahcall, Institute for Advanced Study, NASA.

  12. Hubble Space Telescope: Should NASA Proceed with a Servicing Mission?

    National Research Council Canada - National Science Library

    Morgan, Daniel

    2006-01-01

    The National Aeronautics and Space Administration (NASA) estimates that without a servicing mission to replace key components, the Hubble Space Telescope will cease scientific operations in 2008 instead of 2010...

  13. Planck Intermediate Results. IX. Detection of the Galactic haze with Planck

    DEFF Research Database (Denmark)

    Planck Collaboration,; Ade, P. A. R.; Aghanim, N.

    2013-01-01

    Using precise full-sky observations from Planck, and applying several methods of component separation, we identify and characterize the emission from the Galactic "haze" at microwave wavelengths. The haze is a distinct component of diffuse Galactic emission, roughly centered on the Galactic centre...

  14. THE PUPPIS CLUSTER OF GALAXIES BEHING THE GALACTIC PLANE AND THE ORIGIN OF THE LOCAL ANOMALY

    NARCIS (Netherlands)

    LAHAV, O; YAMADA, T; SCHARF, C; KRAANKORTEWEG, RC

    1993-01-01

    Recent surveys of galaxies behind the Galactic plane have revealed the Puppis cluster, centred at l approximately 240-degrees, b approximately 0-degrees and redshift cz approximately 1000-2000 km s-1. We supplement the recent 2-Jy IRAS redshift survey of Strauss et al. for absolute value of b >

  15. Formaldehyde in the Galactic Centre

    International Nuclear Information System (INIS)

    Cohen, R.J.; Few, R.W.

    1981-01-01

    Formaldehyde 6-cm absorption in the direction of the Galactic Centre has been surveyed using the Jodrell Bank MK II radio telescope (beam-width 10 x 9 arcmin). The observations sample the region - 2 0 = 0 and - 0 0 .5 = 0 .5, with a velocity range of 620 km s -1 , a velocity resolution of 2.1 km s -1 and an rms noise level of approximately 0.03 K. The data are presented as contour maps showing line temperature as a function of latitude and velocity (b-V maps) and as a function of longitude and velocity (l-V maps). Similar maps of the line-to-continuum ratio are also presented. The radial distribution of formaldehyde (H 2 CO) in the Galactic Centre region is derived using two different kinematic models which give similar results. Formaldehyde is strongly concentrated in the Galactic Centre in a layer of latitude extent approximately 0 0 .5 and longitude extent approximately 4 0 which contains one quarter of all the H 2 CO in the Galaxy. The distribution is centred on l approximately 1 0 . The individual H 2 CO features are described in detail. (author)

  16. Density wave theory and the classification of spiral galaxies

    International Nuclear Information System (INIS)

    Roberts, W.W. Jr.; Roberts, M.S.; Shu, F.H.

    1975-01-01

    Axisymmetric models of disk galaxies taken together with the density wave theory allow us to distinguish and categorize spiral galaxies by means of two fundamental galactic parameters: the total mass of the galaxy, divided by a characteristic dimension; and the degree of concentration of mass toward the galactic center. These two parameters govern the strength of the galactic shocks in the interstellar gas and the geometry of the spiral wave pattern. In turn, the shock strength and the theoretical pitch angle of the spiral arms play a major role in determining the degree of development of spiral structure in a galaxy and its Hubble type. The application of these results to 24 external galaxies demonstrates that the categorization of galaxies according to this theoretical framework correlates well with the accepted classification of these galaxies within the observed sequences of luminosity class and Hubble type

  17. A MULTIWAVELENGTH STUDY OF TADPOLE GALAXIES IN THE HUBBLE ULTRA DEEP FIELD

    International Nuclear Information System (INIS)

    Straughn, Amber N.; Eufrasio, Rafael T.; Gardner, Jonathan P.; Voyer, Elysse N.; Mello, Duilia de; Soto, Emmaris; Petty, Sara; Kassin, Susan; Ravindranath, Swara

    2015-01-01

    Multiwavelength data are essential in order to provide a complete picture of galaxy evolution and to inform studies of galaxies’ morphological properties across cosmic time. Here we present the results of a multiwavelength investigation of the morphologies of “tadpole” galaxies at intermediate redshift (0.314 < z < 3.175) in the Hubble Ultra Deep Field. These galaxies were previously selected from deep Hubble Space Telescope (HST) F775W data based on their distinct asymmetric knot-plus-tail morphologies. Here we use deep Wide Field Camera 3 near-infrared imaging in addition to the HST optical data in order to study the rest-frame UV/optical morphologies of these galaxies across the redshift range 0.3 < z < 3.2. This study reveals that the majority of these galaxies do retain their general asymmetric morphology in the rest-frame optical over this redshift range, if not the distinct “tadpole” shape. The average stellar mass of tadpole galaxies is lower than that of field galaxies, with the effect being slightly greater at higher redshift within the errors. Estimated from spectral energy distribution fits, the average age of tadpole galaxies is younger than that of field galaxies in the lower-redshift bin, and the average metallicity is lower (whereas the specific star formation rate for tadpoles is roughly the same as field galaxies across the redshift range probed here). These average effects combined support the conclusion that this subset of galaxies is in an active phase of assembly, either late-stage merging or cold gas accretion causing localized clumpy star formation

  18. A MULTIWAVELENGTH STUDY OF TADPOLE GALAXIES IN THE HUBBLE ULTRA DEEP FIELD

    Energy Technology Data Exchange (ETDEWEB)

    Straughn, Amber N.; Eufrasio, Rafael T.; Gardner, Jonathan P. [Astrophysics Science Division, Goddard Space Flight Center, Code 665, Greenbelt, MD 20771 (United States); Voyer, Elysse N. [Randstad at Google, 1129 San Antonio Road, Palo Alto, CA (United States); Mello, Duilia de; Soto, Emmaris [Department of Physics, The Catholic University of America, Washington, DC 20064 (United States); Petty, Sara [Department of Physics, Virginia Tech, Blacksburg, VA 24061 (United States); Kassin, Susan; Ravindranath, Swara [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States)

    2015-12-01

    Multiwavelength data are essential in order to provide a complete picture of galaxy evolution and to inform studies of galaxies’ morphological properties across cosmic time. Here we present the results of a multiwavelength investigation of the morphologies of “tadpole” galaxies at intermediate redshift (0.314 < z < 3.175) in the Hubble Ultra Deep Field. These galaxies were previously selected from deep Hubble Space Telescope (HST) F775W data based on their distinct asymmetric knot-plus-tail morphologies. Here we use deep Wide Field Camera 3 near-infrared imaging in addition to the HST optical data in order to study the rest-frame UV/optical morphologies of these galaxies across the redshift range 0.3 < z < 3.2. This study reveals that the majority of these galaxies do retain their general asymmetric morphology in the rest-frame optical over this redshift range, if not the distinct “tadpole” shape. The average stellar mass of tadpole galaxies is lower than that of field galaxies, with the effect being slightly greater at higher redshift within the errors. Estimated from spectral energy distribution fits, the average age of tadpole galaxies is younger than that of field galaxies in the lower-redshift bin, and the average metallicity is lower (whereas the specific star formation rate for tadpoles is roughly the same as field galaxies across the redshift range probed here). These average effects combined support the conclusion that this subset of galaxies is in an active phase of assembly, either late-stage merging or cold gas accretion causing localized clumpy star formation.

  19. The Prevalence of Tobacco, Hubble-Bubble, Alcoholic Drinks, Drugs, and Stimulants among High-School Students

    Directory of Open Access Journals (Sweden)

    Roghayeh Alaee

    2011-08-01

    Full Text Available Introduction: The purpose of the present study was to investigate the prevalence of tobacco, hubble-bubble, alcoholic drinks, and other drugs among Karaj high-school students in 2011. Methods: The research method was a descriptive-sectional study. Participants of this study were 447 girl and boy high-school students of Karaj that were selected by clustering random sampling. For data gathering, drug abuse questionnaire, and risk and protective factors inventory were administered among selected sample. Results: According to the results, 57% of students in this study said that they have had experiences with a kind of drug including tobacco, hubble-bubble, alcoholic drinks, and other drugs at least once in their lives. The study showed the prevalence for soft drugs: hubble-bubble, tobacco, and alcoholic drinks, and for hard drugs ecstasy, opium, hashish, meth, crack, and heroin respectively. Conclusion: Soft drugs including hubble-bubble, tobacco, and alcoholic drinks, are the most common among Karaj high-school students. The prevalence of hard drugs among them is rather low.

  20. The double main sequence of Omega Centauri

    Science.gov (United States)

    Bedin, L. R.; Piotto, G.; Anderson, J.; King, I. R.; Cassisi, S.; Momany, Y.

    Recent, high precision photometry of Omega Centauri, the biggest Galactic globular cluster, has been obtained with Hubble Space Telescope (HST). The color magnitude diagram reveals an unexpected bifurcation of colors in the main sequence (MS). The newly found double MS, the multiple turnoffs and subgiant branches, and other sequences discovered in the past along the red giant branch of this cluster add up to a fascinating but frustrating puzzle. Among the possible explanations for the blue main sequence an anomalous overabundance of helium is suggested. The hypothesis will be tested with a set of FLAMES@VLT data we have recently obtained (ESO DDT program), and with forthcoming ACS@HST images. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS 5-26555.

  1. Far infrared observations of the galactic center

    International Nuclear Information System (INIS)

    Gatley, I.

    1977-01-01

    Maps of a region 10' in diameter around the galactic center made simultaneously in three wavelength bands at 30 μm, 50 μm, and 100 μm with approximately 1' resolution are presented, and the distribution of far infrared luminosity and color temperature across this region is derived. The position of highest far infrared surface brightness coincides with the peak of the late-type stellar distribution and with the H II region Sgr A West. The high spatial and temperature resolution of the data is used to identify features of the far infrared maps with known sources of near infrared, radio continuum, and molecular emission. The emission mechanism and energy sources for the far infrared radiation are anslyzed qualitatively, and it is concluded that all of the observed far infrared radiation from the galactic center region can be attributed to thermal emission from dust heated both by the late-type stars and by the ultraviolet sources which ionize the H II regions. A self-consistent model for the far infrared emission from the galactic center region is presented. It is found that the visual extinction across the central 10 pc of the galaxy is only about 3 magnitudes, and that the dust density is fairly uniform in this region. An upper limit of 10 7 L/sub mass/ is set on the luminosity of any presently unidentified source of 0.1 to 1 μm radiation at the galactic center. Additional maps in the vicinity of the source Sgr B2 and observations of Sgr C bring the total number of H II regions within 1 0 of the galactic center studied by the present experiment to nine. The far infrared luminosity, color temperature and optical depth of these regions and the ratio of infrared flux to radio continuum flux lie in the range characteristic of spiral arm H II regions. The far infrared results are therefore consistent with the data that the galactic center H II regions are ionized by luminous, early type stars

  2. Relations between the galactic evolution and the stellar evolution

    International Nuclear Information System (INIS)

    Audouze, J.

    1984-01-01

    After a quick definition of the galactic evolution and a summary of the basic ingredients (namely the abundances of the chemical elements observed in different astrophysical sites), the parameters directly related to the stellar evolution which govern the galactic evolution are outlined. They are the rates of star formation, the initial mass functions and the various nucleosynthetic yields. The 'classical' models of chemical evolution of galaxies are then briefly recalled. Finally, attention is drawn to three recent contributions concerning both the galactic evolution and the stellar evolution. They are (i) some prediction of the rate of star formation for low mass stars made from the planetary nebula abundance distribution (ii) the chemical evolution of C, O and Fe and (iii) the chemical evolution of the galactic interstellar medium. (Auth.)

  3. Gamma-Rays from Galactic Compact Sources

    Science.gov (United States)

    Kaaret, Philip

    2007-04-01

    Recent discoveries have revealed many sources of TeV photons in our Mikly Way galaxy powered by compact objects, either neutron stars or black holes. These objects must be powerful particle accelerators, some with peak energies of at least 100 TeV, and may be neutrino, as well as photon, sources. Future TeV observations will enable us to address key questions concerning particle acceleration by compact objects including the fraction of energy which accreting black holes channel into relativstic jet production, whether the compact object jets are leptonic or hadronic, and the mechanism by which pulsar winds accelerate relativistic particles. We report on work done related to compact Galactic objects in preparation of a White Paper on the status and future of ground-based gamma-ray astronomy requested by the Division of Astrophysics of the American Physical Society.

  4. The Dwarf Spheroidal Companions to M31: WFPC2 Observations of Andromeda III

    OpenAIRE

    Da Costa, G. S.; Armandroff, T. E.; Caldwell, Nelson

    2002-01-01

    The Hubble Space Telescope WFPC2 camera has been used to image Andromeda III, a dwarf spheroidal companion (dSph) to M31. The resulting color-magnitude (c-m) diagrams reveal the morphology of the horizontal branch (HB) in this dwarf galaxy. We find that like Andromeda I and Andromeda II, and like most of the Galactic dSph companions, the HB morphology of And III is predominantly red, redder than that of both And I and And II despite And III having a lower mean metallicity. We interpret this r...

  5. Hubble Space Telescope nickel hydrogen battery system briefing

    Science.gov (United States)

    Nawrocki, David; Saldana, David; Rao, Gopal

    1993-01-01

    The topics covered are presented in viewgraph form and include the following: the Hubble Space Telescope (HST) Mission; system constraints; battery specification; battery module; simplified block diagram; cell design summary; present status; voltage decay; system depth of discharge; pressure since launch; system capacity; eclipse time vs. trickle charge; capacity test objectives; and capacity during tests.

  6. Muon g−2 and Galactic Centre γ-ray excess in a scalar extension of the 2HDM type-X

    Energy Technology Data Exchange (ETDEWEB)

    Hektor, Andi; Kannike, Kristjan [National Institute of Chemical Physics and Biophysics,Rävala pst. 10, Tallinn, 10143 (Estonia); Marzola, Luca [National Institute of Chemical Physics and Biophysics,Rävala pst. 10, Tallinn, 10143 (Estonia); Institute of Physics, University of Tartu,Ravila 14c, Tartu, 50411 (Estonia)

    2015-10-12

    We consider an extension of the lepto-specific 2HDM with an extra singlet S as a dark matter candidate. Taking into account theoretical and experimental constraints, we investigate the possibility to address both the γ-ray excess detected at the Galactic Centre and the discrepancy between the Standard Model prediction and experimental results of the anomalous magnetic moment of the muon. Our analyses reveal that the SS→τ{sup +}τ{sup −} and SS→bb-bar channels reproduce the Galactic Centre excess, with an emerging dark matter candidate which complies with the bounds from direct detection experiments, measurements of the Higgs boson invisible decay width and observations of the dark matter relic abundance. Addressing the anomalous magnetic moment of the muon imposes further strong constraints on the model. Remarkably, under these conditions, the SS→bb-bar channel still allows for the fitting of the Galactic Centre. We also comment on a scenario allowed by the model where the SS→τ{sup +}τ{sup −} and SS→bb-bar channels have comparable branching ratios, which possibly yield an improved fitting of the Galactic Centre excess.

  7. Molecular Gas Feeding the Circumnuclear Disk of the Galactic Center

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, Pei-Ying; Koch, Patrick M.; Ho, Paul T. P.; Tang, Ya-Wen [Academia Sinica Institute of Astronomy and Astrophysics, P.O. Box 23-141, Taipei 10617, Taiwan (China); Kim, Woong-Tae [Department of Physics and Astronomy, Seoul National University, Seoul 151-742 (Korea, Republic of); Wang, Hsiang-Hsu [Department of Physics and Institute of Theoretical Physics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong (China); Yen, Hsi-Wei [European Southern Observatory (ESO), Karl-Schwarzschild-Strasse 2, D-85748 Garching (Germany); Hwang, Chorng-Yuan, E-mail: pyhsieh@asiaa.sinica.edu.tw [Institute of Astronomy, National Central University, No.300, Jhongda Road, Jhongli City, Taoyuan County 32001, Taiwan (China)

    2017-09-20

    The interaction between a supermassive black hole (SMBH) and the surrounding material is of primary importance in modern astrophysics. The detection of the molecular 2 pc circumnuclear disk (CND) immediately around the Milky Way SMBH, SgrA*, provides a unique opportunity to study SMBH accretion at subparsec scales. Our new wide-field CS( J = 2 − 1) map toward the Galactic center (GC) reveals multiple dense molecular streamers that originated from the ambient clouds 20 pc further out, and that are connected to the central 2 pc of the CND. These dense gas streamers appear to carry gas directly toward the nuclear region and might be captured by the central potential. Our phase-plot analysis indicates that these streamers show a signature of rotation and inward radial motion with progressively higher velocities as the gas approaches the CND and finally ends up corotating with the CND. Our results might suggest a possible mechanism of gas feeding the CND from 20 pc around 2 pc in the GC. In this paper, we discuss the morphology and the kinematics of these streamers. As the nearest observable Galactic nucleus, this feeding process may have implications for understanding the processes in extragalactic nuclei.

  8. ISOLATED WOLF-RAYET STARS AND O SUPERGIANTS IN THE GALACTIC CENTER REGION IDENTIFIED VIA PASCHEN-α EXCESS

    International Nuclear Information System (INIS)

    Mauerhan, J. C.; Stolovy, S. R.; Cotera, A.; Dong, H.; Wang, Q. D.; Morris, M. R.; Lang, C.

    2010-01-01

    We report the discovery of 19 hot, evolved, massive stars near the Galactic center region (GCR). These objects were selected for spectroscopy owing to their detection as strong sources of Paschen-α (Pα) emission-line excess, following a narrowband imaging survey of the central 0. 0 65 x 0. 0 25 (l, b) around Sgr A* with the Hubble Space Telescope. Discoveries include six carbon-type (WC) and five nitrogen-type (WN) Wolf-Rayet stars, six O supergiants, and two B supergiants. Two of the O supergiants have X-ray counterparts having properties consistent with solitary O stars and colliding-wind binaries. The infrared photometry of 17 stars is consistent with the Galactic center distance, but 2 of them are located in the foreground. Several WC stars exhibit a relatively large infrared excess, which is possibly thermal emission from hot dust. Most of the stars appear scattered throughout the GCR, with no relation to the three known massive young clusters; several others lie near the Arches and Quintuplet clusters and may have originated within one of these systems. The results of this work bring the total sample of Wolf-Rayet (WR) stars in the GCR to 88. All sources of strong Pα excess have been identified in the area surveyed with HST, which implies that the sample of WN stars in this region is near completion, and is dominated by late (WNL) types. The current WC sample, although probably not complete, is almost exclusively dominated by late (WCL) types. The observed WR subtype distribution in the GCR is a reflection of the intrinsic rarity of early subtypes (WNE and WCE) in the inner Galaxy, an effect that is driven by metallicity.

  9. The galactic X-ray sources

    International Nuclear Information System (INIS)

    Gursky, H.; Schreier, E.

    1975-01-01

    The current observational evidence on galactic X-ray sources is presented both from an astrophysical and astronomical point of view. The distributional properties of the sources, where they appear in the Galaxy, and certain average characteristics are discussed. In this way, certain properties of the X-ray sources can be deduced which are not apparent in the study of single objects. The properties of individual X-ray sources are then described. The hope is that more can be learnt about neutron stars and black holes, their physical properties, their origin and evolution, and their influence on other galactic phenomena. Thus attention is paid to those elements of data which appear to have the most bearing on these questions. (Auth.)

  10. Morphology Is a Link to the Past: Examining Formative and Secular Galactic Evolution through Morphology

    Science.gov (United States)

    Galloway, Melanie A.

    Galaxy morphology is one of the primary keys to understanding a galaxy's evolutionary history. External mechanisms (environment/clustering, mergers) have a strong impact on the formative evolution of the major galactic components (disk, bulge, Hubble type), while internal instabilities created by bars, spiral arms, or other substructures drive secular evolution via the rearrangement of material within the disk. This thesis will explore several ways in which morphology impacts the dynamics and evolution of a galaxy using visual classifications from several Galaxy Zoo projects. The first half of this work will detail the motivations of using morphology to study galaxy evolution, and describe how morphology is measured, debiased, and interpreted using crowdsourced classification data via Galaxy Zoo. The second half will present scientific studies which make use of these classifications; first by focusing on the morphology of galaxies in the local Universe (z color. These results are consistent with a cosmological model in which bar-driven fueling contributes to the growth of black holes, but other dynamical mechanisms must also play a significant role. Next, the morphological dependence on wavelength is studied in Chapter 5 by comparing the optical morphological classifications from GZ2 to classifications done on infrared images in GZ:UKIDSS. Consistent morphologies were found in both sets and similar bar fractions, which confirms that for most galaxies, both old and young stellar populations follow similar spatial distributions. Last, the morphological changes in galaxy populations are computed as a function of their age using classifications from Galaxy Zoo: Hubble (Chapter 6). The evolution of the passive disc population from z = 1 to z = 0.3 was studied in a sample of 20,000 galaxies from the COSMOS field and morphologically classified by the Galaxy Zoo: Hubble project. It was found that the fraction of disc galaxies that are red, as well as the fraction of red

  11. The universe in a mirror the saga of the Hubble Space Telescope and the visionaries who built it

    CERN Document Server

    Zimmerman, Robert

    2008-01-01

    The Hubble Space Telescope has produced the most stunning images of the cosmos humanity has ever seen. It has transformed our understanding of the universe around us, revealing new information about its age and evolution, the life cycle of stars, and the very existence of black holes, among other startling discoveries. But it took an amazing amount of work and perseverance to get the first space telescope up and running. The Universe in a Mirror tells the story of this telescope and the visionaries responsible for its extraordinary accomplishments. Robert Zimmerman takes readers beh

  12. Models of mass segregation at the Galactic Centre

    International Nuclear Information System (INIS)

    Freitag, Marc; Amaro-Seoane, Pau; Kalogera, Vassiliki

    2006-01-01

    We study the process of mass segregation through 2-body relaxation in galactic nuclei with a central massive black hole (MBH). This study has bearing on a variety of astrophysical questions, from the distribution of X-ray binaries at the Galactic centre, to tidal disruptions of main- sequence and giant stars, to inspirals of compact objects into the MBH, an important category of events for the future space borne gravitational wave interferometer LISA. In relatively small galactic nuclei, typical hosts of MBHs with masses in the range 10 4 - 10 7 M o-dot , the relaxation induces the formation of a steep density cusp around the MBH and strong mass segregation. Using a spherical stellar dynamical Monte-Carlo code, we simulate the long-term relaxational evolution of galactic nucleus models with a spectrum of stellar masses. Our focus is the concentration of stellar black holes to the immediate vicinity of the MBH. Special attention is given to models developed to match the conditions in the Milky Way nucleus

  13. NASA Astrophysics E/PO: A Quarter Century of Discovery and Inspiration with the Hubble Space Telescope

    Science.gov (United States)

    Jirdeh, Hussein; Straughn, Amber; Smith, Denise Anne; Eisenhamer, Bonnie

    2015-08-01

    April 24, 2015 marked the 25th anniversary of the launch of the Hubble Space Telescope. In its quarter-century in orbit, the Hubble Space Telescope has transformed the way we understand the Universe, helped us find our place among the stars, and paved the way to incredible advancements in science and technology.In this presentation, we explain how NASA and ESA, including the Space Telescope Science Institute (STScI) and partners, is using the 25th anniversary of Hubble’s launch as a unique opportunity to communicate to students, educators, and the public the significance of the past quarter-century of discovery with the Hubble Space Telescope. We describe the various programs, resources, and experiences we are utilizing to enhancethe public understanding of Hubble’s many contributions to the scientific world. These include educator professional development opportunities, exhibits, events, traditional and social media, and resources for educators (formal k-12, informal, and higher education). We also highlight how we are capitalizing on Hubble’s cultural popularity to make the scientific connection to NASA’s next Great Observatory, the James Webb Space Telescope.This presentation highlights many of the opportunities by which students, educators, and the public are joining in the anniversary activities, both in-person and online. Find out more at hubble25th.org and follow #Hubble25 on social media.

  14. How supernovae launch galactic winds?

    Science.gov (United States)

    Fielding, Drummond; Quataert, Eliot; Martizzi, Davide; Faucher-Giguère, Claude-André

    2017-09-01

    We use idealized three-dimensional hydrodynamic simulations of global galactic discs to study the launching of galactic winds by supernovae (SNe). The simulations resolve the cooling radii of the majority of supernova remnants (SNRs) and thus self-consistently capture how SNe drive galactic winds. We find that SNe launch highly supersonic winds with properties that agree reasonably well with expectations from analytic models. The energy loading (η _E= \\dot{E}_wind/ \\dot{E}_SN) of the winds in our simulations are well converged with spatial resolution while the wind mass loading (η _M= \\dot{M}_wind/\\dot{M}_\\star) decreases with resolution at the resolutions we achieve. We present a simple analytic model based on the concept that SNRs with cooling radii greater than the local scaleheight break out of the disc and power the wind. This model successfully explains the dependence (or lack thereof) of ηE (and by extension ηM) on the gas surface density, star formation efficiency, disc radius and the clustering of SNe. The winds our simulations are weaker than expected in reality, likely due to the fact that we seed SNe preferentially at density peaks. Clustering SNe in time and space substantially increases the wind power.

  15. The chemical evolution of the Galactic Bulge seen through micro-lensing events

    Directory of Open Access Journals (Sweden)

    Lucatello S.

    2012-02-01

    Full Text Available Galactic bulges are central to understanding galaxy formation and evolution. Here we report on recent studies using micro-lensing events to obtain spectra of high resolution and moderately high signal-to-noise ratios of dwarf stars in the Galactic bulge. Normally this is not feasible for the faint turn-off stars in the Galactic bulge, but micro-lensing offers this possibility. Elemental abundance trends in the Galactic bulge as traced by dwarf stars are very similar to those seen for dwarf stars in the solar neighbourhood. We discuss the implications of the ages and metallicity distribution function derived for the micro-lensed dwarf stars in the Galactic bulge.

  16. Oscillating neutrinos from the Galactic center

    International Nuclear Information System (INIS)

    Crocker, R.M.; Volkas, R.R.; Melia, F.

    1999-11-01

    It has recently been demonstrated that the γ-ray emission spectrum of the EGRET-identified, central Galactic source 2EG J1746-2852 can be well fitted by positing that these photons are generated by the decay of π 0, s produced in p-p scattering at or near an energizing shock. Such scattering also produces charged pions which decay leptonically. The ratio of γ-rays to neutrinos generated by the central Galactic source may be accurately determined and a well-defined and potentially-measurable high energy neutrino flux at Earth is unavoidable. An opportunity, therefore, to detect neutrino oscillations over an unprecedented scale is offered by this source. In this paper we assess the prospects for such an observation with the generation of neutrino Cerenkov telescopes now in the planning stage. We determine that the next generation of detectors may find an oscillation signature in the Galactic Center (GC) signal, but that such an observation will probably not further constrain the oscillation parameter space mapped out by current atmospheric, solar, reactor and accelerator neutrino oscillation experiments

  17. HUBBLE CAPTURES THE HEART OF STAR BIRTH

    Science.gov (United States)

    2002-01-01

    NASA Hubble Space Telescope's Wide Field and Planetary Camera 2 (WFPC2) has captured a flurry of star birth near the heart of the barred spiral galaxy NGC 1808. On the left are two images, one superimposed over the other. The black-and-white picture is a ground-based view of the entire galaxy. The color inset image, taken with the Hubble telescope's Wide Field and Planetary Camera 2 (WFPC2), provides a close-up view of the galaxy's center, the hotbed of vigorous star formation. The ground-based image shows that the galaxy has an unusual, warped shape. Most spiral galaxies are flat disks, but this one has curls of dust and gas at its outer spiral arms (upper right-hand corner and lower left-hand corner). This peculiar shape is evidence that NGC 1808 may have had a close interaction with another nearby galaxy, NGC 1792, which is not in the picture Such an interaction could have hurled gas towards the nucleus of NGC 1808, triggering the exceptionally high rate of star birth seen in the WFPC2 inset image. The WFPC2 inset picture is a composite of images using colored filters that isolate red and infrared light as well as light from glowing hydrogen. The red and infrared light (seen as yellow) highlight older stars, while hydrogen (seen as blue) reveals areas of star birth. Colors were assigned to this false-color image to emphasize the vigorous star formation taking place around the galaxy's center. NGC 1808 is called a barred spiral galaxy because of the straight lines of star formation on both sides of the bright nucleus. This star formation may have been triggered by the rotation of the bar, or by matter which is streaming along the bar towards the central region (and feeding the star burst). Filaments of dust are being ejected from the core into a faint halo of stars surrounding the galaxy's disk (towards the upper left corner) by massive stars that have exploded as supernovae in the star burst region. The portion of the galaxy seen in this 'wide-field' image is

  18. Formation of Offset and Dual Active Galactic Nuclei

    Science.gov (United States)

    Barrows, Scott; Comerford, Julia M.; Greene, Jenny E.

    2018-06-01

    Galaxy mergers are effective mechanisms for triggering accretion onto supermassive black holes (SMBHs) and thereby powering active galactic nuclei (AGN). In the merger scenario, when the SMBH from only one galaxy is accreting we observe a spatially offset AGN, and when the SMBHs from both galaxies are accreting we observe a dual AGN. Understanding the merger conditions that lead to the formation of offset AGN versus dual AGN is fundamental to informing models of hierarchical SMBH growth and the physics leading to the accretion of matter onto SMBHs. However, while the role of galaxy mergers for AGN triggering has been well-studied, the efficiency with which these events trigger offset AGN versus dual AGN is currently unclear. One reason for this gap in knowledge can be attributed to the observational difficulties in distinguishing between offset and dual AGN since doing so requires high spatial resolution, especially in the small separation regime where merger-driven AGN triggering is most likely to occur. To overcome this hurdle, we have utilized the spatial resolution of the Chandra X-ray Observatory to develop a unique sample of AGN hosted by late-stage galaxy mergers. Moreover, we have recently acquired Hubble Space Telescope imaging for a subset of these systems to examine the role that their merger morphologies play in SMBH growth and the formation of offset and dual AGN. We find that offset AGN are predominately found in minor mergers, whereas dual AGN are usually hosted by major mergers and galaxies with large morphological asymmetries. Furthermore, in both offset and dual AGN, the rate of SMBH growth increases toward more major mergers and larger morphological asymmetries. These results are in agreement with numerical simulations predicting that merger morphology is a relevant parameter governing SMBH merger-driven growth, and these results are the first to observationally confirm these trends at small pair separations.

  19. Imprints to the terrestrial environment at galactic arm crossings of the solar system

    Science.gov (United States)

    Fahr, H. J.; Fichtner, H.; Scherer, K.; Stawicki, O.

    At its itinerary through our milky way galaxy the solar system moves through highly variable interstellar environments. Due to its orbital revolution around the galactic center, the solar system also crosses periodically the spiral arms of our galactic plane and thereby expe riences pronounced enviromental changes. Gas densities, magnetic fields and galactic cosmic ray intensities are substantially higher there compared to interarm conditions. Here we present theoretical calculations describing the SN-averaged galactic cosmic ray spectrum for regions inside and outside of galactic arms which then allow to predict how periodic passages of the solar system through galactic arms should be reflected by enhanced particle irradiations of the earth`s atmosphere and by correlated terrestrial Be-10 production rates.

  20. Study with the sigma data base of the galactic bulge hard x-ray and gamma-ray sources

    International Nuclear Information System (INIS)

    Vargas, Marielle

    1997-01-01

    The Sigma coded-mask telescope on board the Granat spacecraft produces sky images in the hard X-ray and soft gamma-ray energy domain (30-1300 keV) with an angular resolution of 15 arc minutes. The observations of the 18 Angstroms x 17 Angstroms region around the Galactic Center, performed with Sigma regularly during seven years, allowed the detection of a cluster of 17 sources showing activity beyond 40 ke V. This cluster is identified with the Galactic Bulge and its core coincides with the Galactic Center. Each of these sources reveals matter accretion by a collapse star in binary system. Its nature is determined by the luminosity and the spectral behavior recorded beyond 40 keV. Three accreting black holes show peculiar transient activities and comparable flare luminosities providing a criterion to evaluate distance of other specimens located elsewhere in the Galaxy. No sign of activity has been detected from the very center of the Galaxy where a supermassive black hole would be placed and would accrete the surrounding matter. (author) [fr

  1. A Hubble Space Telescope imaging study of four FeLoBAL quasar host galaxies

    Science.gov (United States)

    Lawther, D.; Vestergaard, M.; Fan, X.

    2018-04-01

    We study the host galaxies of four Iron Low-Ionization Broad Absorption-line Quasars (FeLoBALs), using Hubble Space Telescope imaging data, investigating the possibility that they represent a transition between an obscured active galactic nucleus (AGN) and an ordinary optical quasar. In this scenario, the FeLoBALs represent the early stage of merger-triggered accretion, in which case their host galaxies are expected to show signs of an ongoing or recent merger. Using PSF subtraction techniques, we decompose the images into host galaxy and AGN components at rest-frame ultraviolet and optical wavelengths. The ultraviolet is sensitive to young stars, while the optical probes stellar mass. In the ultraviolet we image at the BAL absorption trough wavelengths so as to decrease the contrast between the quasar and host galaxy emission. We securely detect an extended source for two of the four FeLoBALs in the rest-frame optical; a third host galaxy is marginally detected. In the rest-frame UV we detect no host emission; this constrains the level of unobscured star formation. Thus, the host galaxies have observed properties that are consistent with those of non-BAL quasars with the same nuclear luminosity, i.e. quiescent or moderately star-forming elliptical galaxies. However, we cannot exclude starbursting hosts that have the stellar UV emission obscured by modest amounts of dust reddening. Thus, our findings also allow the merger-induced young quasar scenario. For three objects, we identify possible close companion galaxies that may be gravitationally interacting with the quasar hosts.

  2. New Galactic Candidate Luminous Blue Variables and Wolf-Rayet Stars

    Science.gov (United States)

    Stringfellow, Guy S.; Gvaramadze, Vasilii V.; Beletsky, Yuri; Kniazev, Alexei Y.

    2012-04-01

    We have undertaken a near-infrared spectral survey of stars associated with compact mid-IR shells recently revealed by the MIPSGAL (24 μm) and GLIMPSE (8 μm) Spitzer surveys, whose morphologies are typical of circumstellar shells produced by massive evolved stars. Through spectral similarity with known Luminous Blue Variable (LBV) and Wolf-Rayet (WR) stars, a large population of candidate LBVs (cLBVs) and a smaller number of new WR stars are being discovered. This significantly increases the Galactic cLBV population and confirms that nebulae are inherent to most (if not all) objects of this class.

  3. The age of the galactic disk

    International Nuclear Information System (INIS)

    Sandage, A.

    1988-07-01

    The galactic disk is a dissipative structure and must, therefore be younger than the halo if galaxy formation generally proceeds by collapse. Just how much younger the oldest stars in the galactic disk are than the oldest halo stars remains an open question. A fast collapse (on a time scale no longer than the rotation period of the extended protogalaxy) permits an age gap of the order of approximately 10 to the 9th power years. A slow collapse, governed by the cooling rate of the partially pressure supported falling gas that formed into what is now the thick stellar disk, permits a longer age gap, claimed by some to be as long as 6 Gyr. Early methods of age dating the oldest components of the disk contain implicit assumptions concerning the details of the age-metallicity relation for stars in the solar neighborhood. The discovery that this relation for open clusters outside the solar circle is different that in the solar neighborhood (Geisler 1987), complicates the earlier arguments. The oldest stars in the galactic disk are at least as old as NGC 188. The new data by Janes on NGC 6791, shown first at this conference, suggest a disk age of at least 12.5 Gyr, as do data near the main sequence termination point of metal rich, high proper motion stars of low orbital eccentricity. Hence, a case can still be made that the oldest part of the galactic thick disk is similar in age to the halo globular clusters, if their ages are the same as 47 Tuc

  4. Conversion of gas into stars in the Galactic center

    Science.gov (United States)

    Longmore, S. N.

    2014-05-01

    The star formation rate in the central 500 pc of the Milky Way is lower by a factor of > 10 than expected for the substantial amount of dense gas it contains, which challenges current star formation theories. I discuss which physical mechanisms could be causing this observation and put forward a self-consistent cycle of star formation in the Galactic center, in which the plausible star formation inhibitors are combined. Their ubiquity suggests that the perception of a lowered central SFR should be a common phenomenon in other galaxies with direct implications for galactic star formation and also potentially supermassive black hole growth. I then describe a scenario to explain the presence of super star clusters in the Galactic center environment, in which their formation is triggered by gas streams passing close to the minimum of the global Galactic gravitational potential at the location of the central supermassive black hole, Sgr A*. If this triggering mechanism can be verified, we can use the known time interval since closest approach to Sgr A* to study the physics of stellar mass assembly in an extreme environment as a function of absolute time. I outline the first results from detailed numerical simulations testing this scenario. Finally, I describe a study showing that in terms of the baryonic composition, kinematics, and densities, the gas in the Galactic center is indistinguishable from high-redshift clouds and galaxies. As such, the Galactic center clouds may be used as a template to understand the evolution (and possibly the life cycle) of high-redshift clouds and galaxies.

  5. The Globular Clusters of the Galactic Bulge: Results from Multiwavelength Follow-up Imaging

    Science.gov (United States)

    Cohen, Roger; Geisler, Doug; Mauro, Francesco; Alonso Garcia, Javier; Hempel, Maren; Sarajedini, Ata

    2018-01-01

    The Galactic globular clusters (GGCs) located towards the bulge of the Milky Way suffer from severe total and differential extinction and high field star densities. They have therefore been systematically excluded from deep, large-scale homogenous GGC surveys, and will present a challenge for Gaia. Meanwhile, existing observations of bulge GGCs have revealed tantalizing hints that they hold clues to Galactic formation and evolution not found elsewhere. Therefore, in order to better characterize these poorly studied stellar systems and place them in the context of their optically well-studied counterparts, we have undertaken imaging programs at optical and near-infrared wavelengths. We describe these programs and present a variety of results, including self-consistent measurement of bulge GGC ages and structural parameters. The limitations imposed by spatially variable extinction and extinction law are highlighted, along with the complimentary nature of forthcoming facilities, allowing us to finally complete our picture of the Milky Way GGC system.

  6. Solar journey: The significance of our galactic environment for the heliosphere and earth

    CERN Document Server

    Frisch, Priscilla C

    2006-01-01

    Humans evolved when the Sun was in the great void of the Local Bubble. The Sun entered the present environment of interstellar clouds only during the late Quaternary. Astronomical data reveal these long and short term changes in our galactic environment. Theoretical models then tell us how these changes affect interplanetary particles, planetary magnetospheres, and the Earth itself. Cosmic rays leave an isotopic signature in the paleoclimate record that helps trace the solar journey through space. "Solar Journey: The Significance of Our Galactic Environment for the Heliosphere and Earth" lays the foundation for an interdisciplinary study of the influence of interstellar material on the solar system and Earth as we travel through the Milky Way Galaxy. The solar wind bubble responds dynamically to interstellar material flowing past the Sun, regulating interstellar gas, dust, and cosmic particle fluxes in the interplanetary medium and the Earth. Cones of interstellar gas and dust focused by solar gravity, the ma...

  7. Prediction of the diffuse far-infrared flux from the galactic plane

    International Nuclear Information System (INIS)

    Fazio, G.G.; Stecker, F.W.

    1976-01-01

    A basic model and simple numerical relations useful for future far-infrared studies of the Galaxy are presented. Making use of recent CO and other galactic surveys, we then predict the diffuse far-infrared flux distribution from the galactic plane as a function of galactic longitude l for 4degree< or =l< or =90degree and the far-infrared emissivity as a function of galactocentric distance. Future measurements of the galactic far-infrared flux would yield valuable information on the physical properties and distribution of dust and molecular clouds in the Galaxy, particulary the inner region

  8. First results from the Hubble OPAL Program: Jupiter in 2015

    Science.gov (United States)

    Simon, Amy A.; Wong, Michael H.; Orton, Glenn S.

    2015-11-01

    The Hubble 2020: Outer Planet Atmospheres Legacy (OPAL) program is a Director's Discretionary program designed to generate two yearly global maps for each of the outer planets to enable long term studies of atmospheric color, structure and two-dimensional wind fields. This presentation focuses on Jupiter results from the first year of the campaign. Data were acqured January 19, 2015 with the WFC3/UVIS camera and the F275W, F343N, F395N, F467M, F502N, F547M, F631N, F658N, and F889N filters. Global maps were generated and are publicly available through the High Level Science Products archive: https://archive.stsci.edu/prepds/opal/Using cross-correlation on the global maps, the zonal wind profile was measured between +/- 50 degrees latitude and is in family with Voyager and Cassini era profiles. There are some variations in mid to high latitude wind jet magnitudes, particularly at +40°and -35° planetographic latitude. The Great Red Spot continues to maintain an intense orange coloration, as it did in 2014. However, the interior shows changed structure, including a reduced core and new filamentary features. Finally, a wave not previously seen in Hubble images was also observed and is interpreted as a baroclinic instability with associated cyclone formation near 16° N latitude. A similar feature was observed faintly in Voyager 2 images, and is consistent with the Hubble feature in location and scale.

  9. Massive stellar content of some Galactic supershells

    Science.gov (United States)

    Kaltcheva, Nadejda; Golev, Valeri

    2015-08-01

    The giant Galactic H II regions provide a unique opportunity to study the OB-star influence on the surrounding interstellar matter. In this contribution, several multi-wavelength surveys (Wisconsin H-α Mapper Northern Sky Survey, Southern H-α Sky Survey Atlas, MSX Mid-IR Galactic Plane Survey, WISE All-Sky Data Release, CO survey of the Milky Way, and the Southern Galactic Plane HI Survey) are combined with available intermediate-band uvbyβ photometry to attempt a precise spatial correlation between the OB-stars and the neutral and ionized material. Our study is focused on the H I supershell GSH 305+01-24 in Centaurus, the Car OB2 supershell, the Cygnus star-forming complex and the GSH 224-01+24 shell toward the GMN 39/Seagull nebula region. We refine the massive stellar content of these star-forming fields and study the energetics of its interaction with the shells’ material.

  10. THE INNER GALACTIC BULGE: EVIDENCE FOR A NUCLEAR BAR?

    International Nuclear Information System (INIS)

    Gerhard, Ortwin; Martinez-Valpuesta, Inma

    2012-01-01

    Recent data from the VVV survey have strengthened evidence for a structural change in the Galactic bulge inward of |l| ≤ 4°. Here we show with an N-body barred galaxy simulation that a boxy bulge formed through the bar and buckling instabilities effortlessly matches measured bulge longitude profiles for red clump stars. The same simulation snapshot was earlier used to clarify the apparent boxy bulge—long bar dichotomy, for the same orientation and scaling. The change in the slope of the model longitude profiles in the inner few degrees is caused by a transition from highly elongated to more nearly axisymmetric isodensity contours in the inner boxy bulge. This transition is confined to a few degrees from the Galactic plane; thus the change of slope is predicted to disappear at higher Galactic latitudes. We also show that the nuclear star count map derived from this simulation snapshot displays a longitudinal asymmetry similar to that observed in the Two Micron All Sky Survey (2MASS) data, but is less flattened to the Galactic plane than the 2MASS map. These results support the interpretation that the Galactic bulge originated from disk evolution and question the evidence advanced from star count data for the existence of a secondary nuclear bar in the Milky Way.

  11. Is dark matter visible by galactic gamma rays?

    Indian Academy of Sciences (India)

    The EGRET excess in the diffuse galactic gamma ray data above 1 GeV shows all features expected from dark matter WIMP annihilation: (a) It is present and has the same spectrum in all sky directions, not just in the galactic plane. (b) The intensity of the excess shows the 1/2 profile expected for a flat rotation curve outside ...

  12. Is dark matter visible by galactic gamma rays?

    Indian Academy of Sciences (India)

    Abstract. The EGRET excess in the diffuse galactic gamma ray data above 1 GeV shows all features expected from dark matter WIMP annihilation: (a) It is present and has the same spectrum in all sky directions, not just in the galactic plane. (b) The intensity of the excess shows the 1/r2 profile expected for a flat rotation ...

  13. Kinematics of galactic planetary nebulae

    International Nuclear Information System (INIS)

    Kiosa, M.I.; Khromov, G.S.

    1979-01-01

    The classical method of determining the components of the solar motion relative to the centroid of the system of planetary nebulae with known radial velocities is investigated. It is shown that this method is insensitive to random errors in the radial velocities and that low accuracy in determining the coordinates of the solar apex and motion results from the insufficient number of planetaries with measured radial velocities. The planetary nebulae are found not to satisfy well the law of differential galactic rotation with circular orbits. This is attributed to the elongation of their galactic orbits. A method for obtaining the statistical parallax of planetary nebulae is considered, and the parallax calculated from the tau components of their proper motion is shown to be the most reliable

  14. HUBBLE SPACE TELESCOPE PROPER MOTION (HSTPROMO) CATALOGS OF GALACTIC GLOBULAR CLUSTERS. I. SAMPLE SELECTION, DATA REDUCTION, AND NGC 7078 RESULTS

    Energy Technology Data Exchange (ETDEWEB)

    Bellini, A.; Anderson, J.; Van der Marel, R. P.; Watkins, L. L. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); King, I. R. [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States); Bianchini, P. [Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany); Chanamé, J. [Instituto de Astrofísica, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Macul 782-0436, Santiago (Chile); Chandar, R. [Department of Physics and Astronomy, The University of Toledo, 2801 West Bancroft Street, Toledo, OH 43606 (United States); Cool, A. M. [Department of Physics and Astronomy, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132 (United States); Ferraro, F. R.; Massari, D. [Dipartimento di Fisica e Astronomia, Università di Bologna, via Ranzani 1, I-40127 Bologna (Italy); Ford, H., E-mail: bellini@stsci.edu [Department of Physics and Astronomy, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 (United States)

    2014-12-20

    We present the first study of high-precision internal proper motions (PMs) in a large sample of globular clusters, based on Hubble Space Telescope (HST) data obtained over the past decade with the ACS/WFC, ACS/HRC, and WFC3/UVIS instruments. We determine PMs for over 1.3 million stars in the central regions of 22 clusters, with a median number of ∼60,000 stars per cluster. These PMs have the potential to significantly advance our understanding of the internal kinematics of globular clusters by extending past line-of-sight (LOS) velocity measurements to two- or three-dimensional velocities, lower stellar masses, and larger sample sizes. We describe the reduction pipeline that we developed to derive homogeneous PMs from the very heterogeneous archival data. We demonstrate the quality of the measurements through extensive Monte Carlo simulations. We also discuss the PM errors introduced by various systematic effects and the techniques that we have developed to correct or remove them to the extent possible. We provide in electronic form the catalog for NGC 7078 (M 15), which consists of 77,837 stars in the central 2.'4. We validate the catalog by comparison with existing PM measurements and LOS velocities and use it to study the dependence of the velocity dispersion on radius, stellar magnitude (or mass) along the main sequence, and direction in the plane of the sky (radial or tangential). Subsequent papers in this series will explore a range of applications in globular-cluster science and will also present the PM catalogs for the other sample clusters.

  15. THE EDGE OF THE YOUNG GALACTIC DISK

    International Nuclear Information System (INIS)

    Carraro, Giovanni; Vazquez, Ruben A.; Costa, Edgardo; Perren, Gabriel; Moitinho, Andre

    2010-01-01

    In this work, we report and discuss the detection of two distant diffuse stellar groups in the third Galactic quadrant. They are composed of young stars, with spectral types ranging from late O to late B, and lie at galactocentric distances between 15 and 20 kpc. These groups are located in the area of two cataloged open clusters (VdB-Hagen 04 and Ruprecht 30), projected toward the Vela-Puppis constellations, and within the core of the Canis Major overdensity. Their reddening and distances have been estimated by analyzing their color-color and color-magnitude diagrams, derived from deep UBV photometry. The existence of young star aggregates at such extreme distances from the Galactic center challenges the commonly accepted scenario in which the Galactic disk has a sharp cutoff at about 14 kpc from the Galactic center and indicates that it extends to much greater distances (as also supported by the recent detection of CO molecular complexes well beyond this distance). While the groups we find in the area of Ruprecht 30 are compatible with the Orion and Norma-Cygnus spiral arms, respectively, the distant group we identify in the region of VdB-Hagen 04 lies in the external regions of the Norma-Cygnus arm, at a galactocentric distance (∼20 kpc) where no young stars have been detected so far in the optical.

  16. Hubble's Law Implies Benford's Law for Distances to Galaxies ...

    Indian Academy of Sciences (India)

    in both time and space, predicts that conformity to Benford's law will improve as more data on distances to galaxies becomes available. Con- versely, with the logical derivation of this law presented here, the recent empirical observations may beviewed as independent evidence of the validity of Hubble's law. Key words.

  17. Remarks on the low value obtained for the Hubble constant

    International Nuclear Information System (INIS)

    Jaakkola, Toivo

    1975-01-01

    Some remarks are made on the basis of the data given by Sandage and Tamman, suggesting that these authors have over-estimated the distances to the most luminous galaxies and obtained a value too low for the Hubble constant [fr

  18. Galactic warps and the shape of heavy halos

    International Nuclear Information System (INIS)

    Sparke, L.S.

    1984-01-01

    The outer disks of many spiral galaxies are bent away from the plane of the inner disk; the abundance of these warps suggests that they are long-lived. Isolated galactic disks have long been thought to have no discrete modes of vertical oscillation under their own gravity, and so to be incapable of sustaining persistent warps. However, the visible disk contains only a fraction of the galactic mass; an invisible galactic halo makes up the rest. This paper presents an investigation of vertical warping modes in self-gravitating disks, in the imposed potential due to an axisymmetric unseen massive halo. If the halo matter is distributed so that the free precession rate of a test particle decreases with radius near the edge of the disk, then the disk has a discrete mode of vibration; oblate halos which become rapidly more flattened at large radii, and uniformly prolate halos, satisfy this requirement. Otherwise, the disk has no discrete modes and so cannot maintain a long-lived warp, unless the edge is sharply truncated. Computed mode shapes which resemble the observed warps can be found for halo masses consistent with those inferred from galactic rotation curves

  19. An independent determination of the local Hubble constant

    Science.gov (United States)

    Fernández Arenas, David; Terlevich, Elena; Terlevich, Roberto; Melnick, Jorge; Chávez, Ricardo; Bresolin, Fabio; Telles, Eduardo; Plionis, Manolis; Basilakos, Spyros

    2018-02-01

    The relationship between the integrated H β line luminosity and the velocity dispersion of the ionized gas of H II galaxies and giant H II regions represents an exciting standard candle that presently can be used up to redshifts z ˜ 4. Locally it is used to obtain precise measurements of the Hubble constant by combining the slope of the relation obtained from nearby (z ≤ 0.2) H II galaxies with the zero-point determined from giant H II regions belonging to an `anchor sample' of galaxies for which accurate redshift-independent distance moduli are available. We present new data for 36 giant H II regions in 13 galaxies of the anchor sample that includes the megamaser galaxy NGC 4258. Our data are the result of the first 4 yr of observation of our primary sample of 130 giant H II regions in 73 galaxies with Cepheid determined distances. Our best estimate of the Hubble parameter is 71.0 ± 2.8(random) ± 2.1(systematic) km s- 1Mpc- 1. This result is the product of an independent approach and, although at present less precise than the latest SNIa results, it is amenable to substantial improvement.

  20. PANCHROMATIC HUBBLE ANDROMEDA TREASURY. XVI. STAR CLUSTER FORMATION EFFICIENCY AND THE CLUSTERED FRACTION OF YOUNG STARS

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, L. Clifton; Sandstrom, Karin [Center for Astrophysics and Space Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093 (United States); Seth, Anil C. [Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112 (United States); Dalcanton, Julianne J.; Beerman, Lori C.; Lewis, Alexia R.; Weisz, Daniel R.; Williams, Benjamin F. [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States); Fouesneau, Morgan [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Bell, Eric F. [Department of Astronomy, University of Michigan, 1085 South University Avenue, Ann Arbor, MI 48109 (United States); Dolphin, Andrew E. [Raytheon Company, 1151 East Hermans Road, Tucson, AZ 85756 (United States); Larsen, Søren S. [Department of Astrophysics, IMAPP, Radboud University Nijmegen, P.O. Box 9010, 6500 GL Nijmegen (Netherlands); Skillman, Evan D., E-mail: lcj@ucsd.edu [Minnesota Institute for Astrophysics, University of Minnesota, 116 Church Street SE, Minneapolis, MN 55455 (United States)

    2016-08-10

    We use the Panchromatic Hubble Andromeda Treasury survey data set to perform spatially resolved measurements of star cluster formation efficiency (Γ), the fraction of stellar mass formed in long-lived star clusters. We use robust star formation history and cluster parameter constraints, obtained through color–magnitude diagram analysis of resolved stellar populations, to study Andromeda’s cluster and field populations over the last ∼300 Myr. We measure Γ of 4%–8% for young, 10–100 Myr-old populations in M31. We find that cluster formation efficiency varies systematically across the M31 disk, consistent with variations in mid-plane pressure. These Γ measurements expand the range of well-studied galactic environments, providing precise constraints in an H i-dominated, low-intensity star formation environment. Spatially resolved results from M31 are broadly consistent with previous trends observed on galaxy-integrated scales, where Γ increases with increasing star formation rate surface density (Σ{sub SFR}). However, we can explain observed scatter in the relation and attain better agreement between observations and theoretical models if we account for environmental variations in gas depletion time ( τ {sub dep}) when modeling Γ, accounting for the qualitative shift in star formation behavior when transitioning from a H{sub 2}-dominated to a H i-dominated interstellar medium. We also demonstrate that Γ measurements in high Σ{sub SFR} starburst systems are well-explained by τ {sub dep}-dependent fiducial Γ models.

  1. Large-scale gas dynamical processes affecting the origin and evolution of gaseous galactic halos

    Science.gov (United States)

    Shapiro, Paul R.

    1991-01-01

    Observations of galactic halo gas are consistent with an interpretation in terms of the galactic fountain model in which supernova heated gas in the galactic disk escapes into the halo, radiatively cools and forms clouds which fall back to the disk. The results of a new study of several large-scale gas dynamical effects which are expected to occur in such a model for the origin and evolution of galactic halo gas will be summarized, including the following: (1) nonequilibrium absorption line and emission spectrum diagnostics for radiatively cooling halo gas in our own galaxy, as well the implications of such absorption line diagnostics for the origin of quasar absorption lines in galactic halo clouds of high redshift galaxies; (2) numerical MHD simulations and analytical analysis of large-scale explosions ad superbubbles in the galactic disk and halo; (3) numerical MHD simulations of halo cloud formation by thermal instability, with and without magnetic field; and (4) the effect of the galactic fountain on the galactic dynamo.

  2. Stellar dynamics and galactic evolution

    International Nuclear Information System (INIS)

    Gilmore, G.; Kuijken, K.; Wyse, R.F.G.

    1989-01-01

    Solar neighbourhood observations have the unique capability of providing detailed study of the consequences of the early evolution of the Galaxy. Important examples of this capability include determination of the distribution of luminous and unseen mass in the Galaxy, and deduction of the rate of star formation and chemical evolution in the proto-Galaxy. We describe a new method to determine the distribution of mass in the Galactic disk. We reinvestigate determinations of the local volume mass density (the Oort limit) and show there to be serious internal inconsistencies in the available data. The most likely value for the local volume mass density, based on old stars and with kinematic models consistent with the age structure of the local disk is ∼ 0.1 solar mass pc -3 , though this value is still poorly determined. Thus, there is no significant evidence for any missing mass associated with the Galactic disk. We also reinvestigate observational data on the chemical abundances and kinematics of old stars in the Galaxy. The (Intermediate Population II) thick disk stars are most likely as old as the globular clusters, and kinematically distinct from the old disk. This favours models of thick disk origin involving a discrete disruptive event, such as the accretion of a satellite of the Galaxy early in the evolution of the Galactic disk. (author)

  3. Elusive active galactic nuclei

    Science.gov (United States)

    Maiolino, R.; Comastri, A.; Gilli, R.; Nagar, N. M.; Bianchi, S.; Böker, T.; Colbert, E.; Krabbe, A.; Marconi, A.; Matt, G.; Salvati, M.

    2003-10-01

    A fraction of active galactic nuclei do not show the classical Seyfert-type signatures in their optical spectra, i.e. they are optically `elusive'. X-ray observations are an optimal tool to identify this class of objects. We combine new Chandra observations with archival X-ray data in order to obtain a first estimate of the fraction of elusive active galactic nuclei (AGN) in local galaxies and to constrain their nature. Our results suggest that elusive AGN have a local density comparable to or even higher than optically classified Seyfert nuclei. Most elusive AGN are heavily absorbed in the X-rays, with gas column densities exceeding 1024 cm-2, suggesting that their peculiar nature is associated with obscuration. It is likely that in elusive AGN the nuclear UV source is completely embedded and the ionizing photons cannot escape, which prevents the formation of a classical narrow-line region. Elusive AGN may contribute significantly to the 30-keV bump of the X-ray background.

  4. Hubble Space Telescope Imaging of the Circumnuclear Environments of the CfA Seyfert Galaxies: Nuclear Spirals and Fueling

    Science.gov (United States)

    Pogge, Richard W.; Martini, Paul

    2002-01-01

    We present archival Hubble Space Telescope (HST) images of the nuclear regions of 43 of the 46 Seyfert galaxies found in the volume limited,spectroscopically complete CfA Redshift Survey sample. Using an improved method of image contrast enhancement, we created detailed high-quality " structure maps " that allow us to study the distributions of dust, star clusters, and emission-line gas in the circumnuclear regions (100-1000 pc scales) and in the associated host galaxy. Essentially all of these Seyfert galaxies have circumnuclear dust structures with morphologies ranging from grand-design two-armed spirals to chaotic dusty disks. In most Seyfert galaxies there is a clear physical connection between the nuclear dust spirals on hundreds of parsec scales and large-scale bars and spiral arms in the host galaxies proper. These connections are particularly striking in the interacting and barred galaxies. Such structures are predicted by numerical simulations of gas flows in barred and interacting galaxies and may be related to the fueling of active galactic nuclei by matter inflow from the host galaxy disks. We see no significant differences in the circumnuclear dust morphologies of Seyfert 1s and 2s, and very few Seyfert 2 nuclei are obscured by large-scale dust structures in the host galaxies. If Sevfert 2s are obscured Sevfert Is, then the obscuration must occur on smaller scales than those probed by HST.

  5. On the Luminosity Distance and the Hubble Constant

    OpenAIRE

    Yuri Heymann

    2013-01-01

    By differentiating luminosity distance with respect to time using its standard formula we find that the peculiar velocity is a time varying velocity of light. Therefore, a new definition of the luminosity distance is provided such that the peculiar velocity is equal to c. Using this definition a Hubble constant H0 = 67.3 km s−1 Mpc−1 is obtained from supernovae data.

  6. The galactic population of white dwarfs

    International Nuclear Information System (INIS)

    Napiwotzki, Ralf

    2009-01-01

    The contribution of white dwarfs of the different Galactic populations to the stellar content of our Galaxy is only poorly known. Some authors claim a vast population of halo white dwarfs, which would be in accordance with some investigations of the early phases of Galaxy formation claiming a top-heavy initial- mass- function. Here, I present a model of the population of white dwarfs in the Milky Way based on observations of the local white dwarf sample and a standard model of Galactic structure. This model will be used to estimate the space densities of thin disc, thick disc and halo white dwarfs and their contribution to the baryonic mass budget of the Milky Way. One result of this investigation is that white dwarfs of the halo population contribute a large fraction of the Galactic white dwarf number count, but they are not responsible for the lion's share of stellar mass in the Milky Way. Another important result is the substantial contribution of the - often neglected - population of thick disc white dwarfs. Misclassification of thick disc white dwarfs is responsible for overestimates of the halo population in previous investigations.

  7. Galactic chemical evolution: perspectives and prospects

    International Nuclear Information System (INIS)

    Trimble, V.

    1987-01-01

    The first modern, quantitative models of galactic chemical evolution appeared exactly 20 years ago in the PhD dissertation of the late Beatrice M. Tinsley. Such models represent a synthesis of the behavior of the 10 11 or more stars that form over the 10 10 year age of a galaxy like their Milky Way and are vital both for understanding how and why galaxies have the luminosities, colors, and chemical compositions they see now and for interpreting observations of distant galaxies to answer cosmological questions about the size, age, density, inhomogeneities, and geometry of the universe. Since my last status report on the subject, some issues have become much clearer (the distinctness of nucleosynthesis in Type I, low mass, supernovae, from that in Type II's that make pulsars; the importance of galaxy mergers and interactions in triggering bursts of star formation), while others have remained puzzling (the sites of the r and p processes) or newly-surfaced (the nucleosynthetic contributions of pre-galactic massive objects; the nature and roll of dark matter in galaxies). The talk will touch briefly on the past, present, and future of galactic evolution studies

  8. THE LONGEST TIMESCALE X-RAY VARIABILITY REVEALS EVIDENCE FOR ACTIVE GALACTIC NUCLEI IN THE HIGH ACCRETION STATE

    International Nuclear Information System (INIS)

    Zhang Youhong

    2011-01-01

    The All Sky Monitor (ASM) on board the Rossi X-ray Timing Explorer has continuously monitored a number of active galactic nuclei (AGNs) with similar sampling rates for 14 years, from 1996 January to 2009 December. Utilizing the archival ASM data of 27 AGNs, we calculate the normalized excess variances of the 300-day binned X-ray light curves on the longest timescale (between 300 days and 14 years) explored so far. The observed variance appears to be independent of AGN black-hole mass and bolometric luminosity. According to the scaling relation of black-hole mass (and bolometric luminosity) from galactic black hole X-ray binaries (GBHs) to AGNs, the break timescales that correspond to the break frequencies detected in the power spectral density (PSD) of our AGNs are larger than the binsize (300 days) of the ASM light curves. As a result, the singly broken power-law (soft-state) PSD predicts the variance to be independent of mass and luminosity. Nevertheless, the doubly broken power-law (hard-state) PSD predicts, with the widely accepted ratio of the two break frequencies, that the variance increases with increasing mass and decreases with increasing luminosity. Therefore, the independence of the observed variance on mass and luminosity suggests that AGNs should have soft-state PSDs. Taking into account the scaling of the break timescale with mass and luminosity synchronously, the observed variances are also more consistent with the soft-state than the hard-state PSD predictions. With the averaged variance of AGNs and the soft-state PSD assumption, we obtain a universal PSD amplitude of 0.030 ± 0.022. By analogy with the GBH PSDs in the high/soft state, the longest timescale variability supports the standpoint that AGNs are scaled-up GBHs in the high accretion state, as already implied by the direct PSD analysis.

  9. THE RADIUS-LUMINOSITY RELATIONSHIP FOR ACTIVE GALACTIC NUCLEI: THE EFFECT OF HOST-GALAXY STARLIGHT ON LUMINOSITY MEASUREMENTS. II. THE FULL SAMPLE OF REVERBERATION-MAPPED AGNs

    International Nuclear Information System (INIS)

    Bentz, Misty C.; Peterson, Bradley M.; Pogge, Richard W.; Netzer, Hagai; Vestergaard, Marianne

    2009-01-01

    We present high-resolution Hubble Space Telescope images of all 35 active galactic nuclei (AGNs) with optical reverberation-mapping results, which we have modeled to create a nucleus-free image of each AGN host galaxy. From the nucleus-free images, we determine the host-galaxy contribution to ground-based spectroscopic luminosity measurements at 5100 A. After correcting the luminosities of the AGNs for the contribution from starlight, we re-examine the Hβ R BLR -L relationship. Our best fit for the relationship gives a power-law slope of 0.52 with a range of 0.45-0.59 allowed by the uncertainties. This is consistent with our previous findings, and thus still consistent with the naive assumption that all AGNs are simply luminosity-scaled versions of each other. We discuss various consistency checks relating to the galaxy modeling and starlight contributions, as well as possible systematic errors in the current set of reverberation measurements from which we determine the form of the R BLR -L relationship.

  10. Planck 2015 results. XXVIII. The Planck Catalogue of Galactic Cold Clumps

    CERN Document Server

    Ade, P.A.R.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A.J.; Barreiro, R.B.; Bartolo, N.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bonaldi, A.; Bonavera, L.; Bond, J.R.; Borrill, J.; Bouchet, F.R.; Boulanger, F.; Bucher, M.; Burigana, C.; Butler, R.C.; Calabrese, E.; Catalano, A.; Chamballu, A.; Chiang, H.C.; Christensen, P.R.; Clements, D.L.; Colombi, S.; Colombo, L.P.L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B.P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R.D.; Davis, R.J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Désert, F.-X.; Dickinson, C.; Diego, J.M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T.A.; Eriksen, H.K.; Falgarone, E.; Fergusson, J.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A.A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Giard, M.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K.M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J.E.; Hansen, F.K.; Hanson, D.; Harrison, D.L.; Helou, G.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S.R.; Hivon, E.; Hobson, M.; Holmes, W.A.; Hornstrup, A.; Hovest, W.; Huffenberger, K.M.; Hurier, G.; Jaffe, A.H.; Jaffe, T.R.; Jones, W.C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T.S.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C.R.; Leonardi, R.; Lesgourgues, J.; Levrier, F.; Liguori, M.; Lilje, P.B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P.M.; Macías-Pérez, J.F.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Marshall, D.J.; Martin, P.G.; Martínez-González, E.; Masi, S.; Matarrese, S.; Mazzotta, P.; McGehee, P.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J.A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C.B.; Nørgaard-Nielsen, H.U.; Noviello, F.; Novikov, D.; Novikov, I.; Oxborrow, C.A.; Paci, F.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Pasian, F.; Patanchon, G.; Pearson, T.J.; Pelkonen, V.-M.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Pratt, G.W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J.P.; Reach, W.T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rubiño-Martín, J.A.; Rusholme, B.; Sandri, M.; Santos, D.; Savelainen, M.; Savini, G.; Scott, D.; Seiffert, M.D.; Shellard, E.P.S.; Spencer, L.D.; Stolyarov, V.; Sudiwala, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J.A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Wade, L.A.; Wandelt, B.D.; Wehus, I.K.; Yvon, D.; Zacchei, A.

    2016-01-01

    We present the Planck Catalogue of Galactic Cold Clumps (PGCC), an all-sky catalogue of Galactic cold clump candidates detected by Planck. This catalogue is the full version of the Early Cold Core (ECC) catalogue, which was made available in 2011 with the Early Release Compact Source Catalogue (ERCSC) and contained 915 high S/N sources. It is based on the Planck 48 months mission data that are currently being released to the astronomical community. The PGCC catalogue is an observational catalogue consisting exclusively of Galactic cold sources. The three highest Planck bands (857, 545, 353 GHz) have been combined with IRAS data at 3 THz to perform a multi-frequency detection of sources colder than their local environment. After rejection of possible extragalactic contaminants, the PGCC catalogue contains 13188 Galactic sources spread across the whole sky, i.e., from the Galactic plane to high latitudes, following the spatial distribution of the main molecular cloud complexes. The median temperature of PGCC so...

  11. Simulated Galactic methanol maser distribution to constrain Milky Way parameters

    Science.gov (United States)

    Quiroga-Nuñez, L. H.; van Langevelde, H. J.; Reid, M. J.; Green, J. A.

    2017-08-01

    Context. Using trigonometric parallaxes and proper motions of masers associated with massive young stars, the Bar and Spiral Structure Legacy (BeSSeL) survey has reported the most accurate values of the Galactic parameters so far. The determination of these parameters with high accuracy has a widespread impact on Galactic and extragalactic measurements. Aims: This research is aimed at establishing the confidence with which such parameters can be determined. This is relevant for the data published in the context of the BeSSeL survey collaboration, but also for future observations, in particular from the southern hemisphere. In addition, some astrophysical properties of the masers can be constrained, notably the luminosity function. Methods: We have simulated the population of maser-bearing young stars associated with Galactic spiral structure, generating several samples and comparing them with the observed samples used in the BeSSeL survey. Consequently, we checked the determination of Galactic parameters for observational biases introduced by the sample selection. Results: Galactic parameters obtained by the BeSSeL survey do not seem to be biased by the sample selection used. In fact, the published error estimates appear to be conservative for most of the parameters. We show that future BeSSeL data and future observations with southern arrays will improve the Galactic parameters estimates and smoothly reduce their mutual correlation. Moreover, by modeling future parallax data with larger distance values and, thus, greater relative uncertainties for a larger numbers of sources, we found that parallax-distance biasing is an important issue. Hence, using fractional parallax uncertainty in the weighting of the motion data is imperative. Finally, the luminosity function for 6.7 GHz methanol masers was determined, allowing us to estimate the number of Galactic methanol masers.

  12. The Galactic 511 keV line: analysis and interpretation of Integral observations

    International Nuclear Information System (INIS)

    Lonjou, V.

    2005-09-01

    Ever since the discovery of the 511 keV annihilation line emission from the galactic center region in the late seventies, the origin of galactic positrons has been the topic of a vivid scientific debate. It is also one of the prime scientific objectives of the imaging spectrometer SPI on board ESA's INTEGRAL observatory. In this thesis first a description of the most important SPI sub-system is given - the detector plane. Procedures for detector energy calibration and detector degradation analysis are developed. The determination of instrumental background models, a crucial aspect of data analysis, is elaborated. These background models are then applied to deriving sky maps and spectra of unprecedented quality of the Galactic positron annihilation radiation. The emission is centered on the galactic center with a spatial resolution of 8 degrees (FWHM), a second spatial component appears clearly: the galactic disc. The ray energy has been measured with unprecedented accuracy: 511.0 ± 0.03 keV for a full width at half maximum (FWHM) of 2.07 ± 0.1 keV. The total galactic flux ranges from 1.09 to 2.43 10 -3 ph.cm -2 .s -1 including uncertainties on spatial distribution. Finally, the implications of these observations for the production of positrons by various Galactic populations are discussed

  13. Molecular clouds and galactic spiral structure

    International Nuclear Information System (INIS)

    Dame, T.M.

    1983-01-01

    Galactic CO line emission at 115 GHz has been surveyed in the region 12 0 less than or equal to l less than or equal to 60 0 and -1 0 less than or equal to b less than or equal to 1 0 in order to study the distribution of molecular clouds in the inner galaxy; an inner strip 0 0 .5 wide has been sampled every beamwidth (0 0 .125), the rest every two beamwidths. Comparison of the survey with similar HI data reveals a detailed correlation with the most intense 21-cm features, implying that the CO and HI trace the same galactic features and have the same large-scale kinematics. To each of the classical 21-cm (HI) spiral arms of the inner galaxy there corresponds a CO molecular arm which is generally more clearly defined and of higher contrast. A simple model is developed in which all of the CO emission from the inner galaxy arises from spiral arms. The modeling results suggest that molecular clouds are essentially transient objects, existing for 15 to 40 million years after their formation in a spiral arm, and are largely confined to spiral features about 300 pc wide. A variety of methods are employed to estimate distances and masses for the largest clouds detected by the inner-galaxy survey and a catalogue is compiled. The catalogued clouds, the largest of which have masses of several 10 6 M/sub sunmass/ and linear dimensions in excess of 100 pc, are found to be excellent spiral-arm tracers. One of the nearest of the clouds, that associated with the supernova remnant W44, is fully mapped in both CO and 13 CO and is discussed in detail

  14. SMM detection of diffuse Galactic 511 keV annihilation radiation

    Science.gov (United States)

    Share, G. H.; Kinzer, R. L.; Kurfess, J. D.; Messina, D. C.; Purcell, W. R.

    1988-01-01

    Observations of the 511 keV annihilation line from the vicinity of the Galactic center from October to February for 1980/1981, 1981/1982, 1982/1983, 1984/1985, and 1985/1986 are presented. The measurements were made with the gamma-ray spectrometer on the SMM. The design of the instrument and some of its properties used in the analysis are described, and the methods used for accumulating, fitting, and analyzing the data are outlined. It is shown how the Galactic 511 keV line was separated from the intense and variable background observed in orbit. The SMM observations are compared with previous measurements of annihilation radiation from the Galactic center region, and the astrophysical implications are discussed. It is argued that most of the measurements made to date suggest the presence of an extended Galactic source of annihilation radiation.

  15. The ESA Hubble 15th Anniversary Campaign: A Trans-European collaboration project

    Science.gov (United States)

    Zoulias, Manolis; Christensen, Lars Lindberg; Kornmesser, Martin

    2006-08-01

    On April 24th 2005, NASA/ESA Hubble Space Telescope had been in orbit for 15 years. The anniversary was celebrated by ESA with the production of an 83 min. scientific movie and a 120 pages book, both titled ``Hubble, 15 years of discovery''. In order to cross language and distribution barriers a network of 16 translators and 22 partners from more than 10 countries was established. The DVD was distributed in approximately 700,000 copies throughout Europe. The project was amongst the largest of its kind with respect to collaboration, distribution and audience impact. It clearly demonstrated how international collaboration can produce effective cross-cultural educational and outreach products for astronomy.

  16. Diffuse γ-ray emission from galactic pulsars

    International Nuclear Information System (INIS)

    Calore, F.; Di Mauro, M.; Donato, F.

    2014-01-01

    Millisecond pulsars (MSPs) are old fast-spinning neutron stars that represent the second most abundant source population discovered by the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope (Fermi). As guaranteed γ-ray emitters, they might contribute non-negligibly to the diffuse emission measured at high latitudes by Fermi-LAT (i.e., the Isotropic Diffuse γ-Ray Background (IDGRB)), which is believed to arise from the superposition of several components of galactic and extragalactic origin. Additionally, γ-ray sources also contribute to the anisotropy of the IDGRB measured on small scales by Fermi-LAT. In this manuscript we aim to assess the contribution of the unresolved counterpart of the detected MSPs population to the IDGRB and the maximal fraction of the measured anisotropy produced by this source class. To this end, we model the MSPs' spatial distribution in the Galaxy and the γ-ray emission parameters by considering observational constraints coming from the Australia Telescope National Facility pulsar catalog and the Second Fermi-LAT Catalog of γ-ray pulsars. By simulating a large number of MSP populations through a Monte Carlo simulation, we compute the average diffuse emission and the anisotropy 1σ upper limit. We find that the emission from unresolved MSPs at 2 GeV, where the peak of the spectrum is located, is at most 0.9% of the measured IDGRB above 10° in latitude. The 1σ upper limit on the angular power for unresolved MSP sources turns out to be about a factor of 60 smaller than Fermi-LAT measurements above 30°. Our results indicate that this galactic source class represents a negligible contributor to the high-latitude γ-ray sky and confirm that most of the intensity and geometrical properties of the measured diffuse emission are imputable to other extragalactic source classes (e.g., blazars, misaligned active galactic nuclei, or star-forming galaxies). Nevertheless, because MSPs are more concentrated toward the

  17. Dynamical friction: The Hubble diagram as a cosmological test

    International Nuclear Information System (INIS)

    Gunn, J.E.; Tinsley, B.M.

    1976-01-01

    Effects on the Hubble diagram of the frictional accretion of small cluster galaxies by large ones, to which Ostriker and Tremaine have recently drawn attention, must be accurately determined if the magnitude-redshift relation is to become a viable cosmological test. We find that the process might be detectable through the concomitant change in galaxy colors, but that its effect on the dispersion of magnitudes of first-ranked cluster galaxies would be negligible even if the change in average magnitude is very important. The sign of the effect of accretion on the luminosity observed within a given aperture depends on the structures of the galaxies involved. The size of the effect not only depends sensitively on the galaxy structures, but is also amplified when the relatively recent collapse times of the clusters are taken into account. It is vital to answer the complicated observational and theoretical questions raised by these preliminary calculations, because the Hubble diagram remains the most promising approach to the deceleration parameter q 0 . Local tests of the density of the universe do not give equivalent information

  18. Ruprecht 106 - A young metal-poor Galactic globular cluster

    International Nuclear Information System (INIS)

    Buonanno, R.; Buscema, G.; Fusi Pecci, F.; Richer, H.B.; Fahlman, G.G.

    1990-01-01

    The first CCD photometric survey in the Galactic globular cluster Ruprecht 106 has been performed. The results show that Ruprecht 106 is a metal-poor cluster with (Fe/H) about -2 located at about 25 kpc from the Galactic center. A sizable, high centrally concentrated population of blue stragglers was detected. Significant differences in the positions of the turnoffs in the color-magnitude diagram are found compared to those in metal-poor clusters. The cluster appears younger than other typical metal-poor Galactic globulars by about 4-5 Gyr; if true, this object would represent the first direct proof of the existence of a significant age spread among old, very metal-poor clusters. 51 refs

  19. Periodic Variations in the Vertical Velocities of Galactic Masers

    Directory of Open Access Journals (Sweden)

    Bobylev V. V.

    2016-03-01

    Full Text Available We compiled published data on Galactic masers with VLBI-measured trigonometric parallaxes and determined the residual tangential, ∆Vcirc, and radial, ∆VR, velocities for 120 masers. We used these data to redetermine the parameters of the Galactic spiral density wave using the method of spectral analysis. The most interesting result of this study is the detection of wavelike oscillations of vertical spatial velocities (W versus distance R from the Galactic rotation axis. Spectral analysis allowed us to determine the perturbation wavelength and the amplitude of this wave, which we found to be equal to λW = 3.4 ± 0.7 kpc and fW = 4.9 ± 1.2 km s−1, respectively.

  20. Discovery of z ~ 8 Galaxies in the Hubble Ultra Deep Field from Ultra-Deep WFC3/IR Observations

    Science.gov (United States)

    Bouwens, R. J.; Illingworth, G. D.; Oesch, P. A.; Stiavelli, M.; van Dokkum, P.; Trenti, M.; Magee, D.; Labbé, I.; Franx, M.; Carollo, C. M.; Gonzalez, V.

    2010-02-01

    We utilize the newly acquired, ultra-deep WFC3/IR observations over the Hubble Ultra Deep Field (HUDF) to search for star-forming galaxies at z ~ 8-8.5, only 600 million years from recombination, using a Y 105-dropout selection. The new 4.7 arcmin2 WFC3/IR observations reach to ~28.8 AB mag (5σ) in the Y 105 J 125 H 160 bands. These remarkable data reach ~1.5 AB mag deeper than the previous data over the HUDF, and now are an excellent match to the HUDF optical ACS data. For our search criteria, we use a two-color Lyman break selection technique to identify z ~ 8-8.5Y 105-dropouts. We find five likely z ~ 8-8.5 candidates. The sources have H 160-band magnitudes of ~28.3 AB mag and very blue UV-continuum slopes, with a median estimated β of lsim-2.5 (where f λ vprop λβ). This suggests that z ~ 8 galaxies are not only essentially dust free but also may have very young ages or low metallicities. The observed number of Y 105-dropout candidates is smaller than the 20 ± 6 sources expected assuming no evolution from z ~ 6, but is consistent with the five expected extrapolating the Bouwens et al. luminosity function (LF) results to z ~ 8. These results provide evidence that the evolution in the LF seen from z ~ 7 to z ~ 3 continues to z ~ 8. The remarkable improvement in the sensitivity of WFC3/IR has enabled Hubble Space Telescope to cross a threshold, revealing star-forming galaxies at z~ 8-9. Based on observations made with the NASA/ESA Hubble Space Telescope, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with programs 11563, 9797.

  1. Recent results on galactic sources with MAGIC telescope

    International Nuclear Information System (INIS)

    De los Reyes, R.

    2009-01-01

    Located at the Canary island of La Palma, the single-dish MAGIC telescope currently has the lowest energy threshold achieved by any Cherenkov telescope, which can be as low as 25 GeV. In the last two years, the MAGIC telescope has detected a significant amount of galactic sources that emit at very high energies (up to several TeV). Here we present the most recent results that have yielded important scientific highlights in astrophysics, which include the first detection of gamma-ray emission from a pulsar, an X-ray binary system and a stellar-mass black hole. We also make a review of the latest results of the MAGIC observations on galactic sources, which will include also γ-ray unidentified sources (TeV J2032+4130), the Galactic Centre, X-ray binaries (LSI +61 303), pulsars (Crab pulsar) and SNRs (IC443).

  2. Hubble Space Telescope - Scientific, Technological and Social Contributions to the Public Discourse on Science

    Science.gov (United States)

    Wiseman, Jennifer

    2012-01-01

    The Hubble Space Telescope has unified the world with a sense of awe and wonder for 2 I years and is currently more scientifically powerful than ever. I will present highlights of discoveries made with the Hubble Space Telescope, including details of planetary weather, star formation, extra-solar planets, colliding galaxies, and a universe expanding with the acceleration of dark energy. I will also present the unique technical challenges and triumphs of this phenomenal observatory, and discuss how our discoveries in the cosmos affect our sense of human unity, significance, and wonder.

  3. Does the Galactic Bulge Have Fewer Planets?

    Science.gov (United States)

    Kohler, Susanna

    2016-12-01

    The Milky Ways dense central bulge is a very different environment than the surrounding galactic disk in which we live. Do the differences affect the ability of planets to form in the bulge?Exploring Galactic PlanetsSchematic illustrating how gravitational microlensing by an extrasolar planet works. [NASA]Planet formation is a complex process with many aspects that we dont yet understand. Do environmental properties like host star metallicity, the density of nearby stars, or the intensity of the ambient radiation field affect the ability of planets to form? To answer these questions, we will ultimately need to search for planets around stars in a large variety of different environments in our galaxy.One way to detect recently formed, distant planets is by gravitational microlensing. In this process, light from a distant source star is bent by a lens star that is briefly located between us and the source. As the Earth moves, this momentary alignment causes a blip in the sources light curve that we can detect and planets hosted by the lens star can cause an additional observable bump.Artists impression of the Milky Way galaxy. The central bulge is much denserthan the surroundingdisk. [ESO/NASA/JPL-Caltech/M. Kornmesser/R. Hurt]Relative AbundancesMost source stars reside in the galactic bulge, so microlensing events can probe planetary systems at any distance between the Earth and the galactic bulge. This means that planet detections from microlensing could potentially be used to measure the relative abundances of exoplanets in different parts of our galaxy.A team of scientists led by Matthew Penny, a Sagan postdoctoral fellow at Ohio State University, set out to do just that. The group considered a sample of 31 exoplanetary systems detected by microlensing and asked the following question: are the planet abundances in the galactic bulge and the galactic disk the same?A Paucity of PlanetsTo answer this question, Penny and collaborators derived the expected

  4. Astrophysics of gaseous nebulae and active galactic nuclei

    International Nuclear Information System (INIS)

    Osterbrock, D.E.

    1989-01-01

    A graduate-level text and reference book on gaseous nebulae and the emission regions in Seyfert galaxies, quasars, and other types of active galactic nuclei (AGN) is presented. The topics discussed include: photoionization equilibrium, thermal equilibrium, calculation of emitted spectrum, comparison of theory with observations, internal dynamics of gaseous nebulae, interstellar dust, regions in the galactic context, planetary nebulae, nova and supernova remnants, diagnostics and physics of AGN, observational results on AGN

  5. The Hubble Space Telescope: UV, Visible, and Near-Infrared Pursuits

    Science.gov (United States)

    Wiseman, Jennifer

    2010-01-01

    The Hubble Space Telescope continues to push the limits on world-class astrophysics. Cameras including the Advanced Camera for Surveys and the new panchromatic Wide Field Camera 3 which was installed nu last year's successful servicing mission S2N4,o{fer imaging from near-infrared through ultraviolet wavelengths. Spectroscopic studies of sources from black holes to exoplanet atmospheres are making great advances through the versatile use of STIS, the Space Telescope Imaging Spectrograph. The new Cosmic Origins Spectrograph, also installed last year, is the most sensitive UV spectrograph to fly io space and is uniquely suited to address particular scientific questions on galaxy halos, the intergalactic medium, and the cosmic web. With these outstanding capabilities on HST come complex needs for laboratory astrophysics support including atomic and line identification data. I will provide an overview of Hubble's current capabilities and the scientific programs and goals that particularly benefit from the studies of laboratory astrophysics.

  6. A Scientific Revolution: The Hubble and James Webb Space Telescopes

    Science.gov (United States)

    Gardner, Jonathan P.

    2010-01-01

    Astronomy is going through a scientific revolution, responding to a flood of data from the Hubble Space Telescope, other space missions, and large telescopes on the ground. In this talk, I will discuss some of the important discoveries of the last decade, from dwarf planets in the outer Solar System to the mysterious dark energy that overcomes gravity to accelerate the expansion of the Universe. The next decade will be equally bright with the newly refurbished Hubble and the promise of its successor, the James Webb Space Telescope. An infrared-optimized 6.5m space telescope, Webb is designed to find the first galaxies that formed in the early universe and to peer into the dusty gas clouds where stars and planets are born. With MEMS technology, a deployed primary mirror and a tennis-court sized sunshield, the mission presents many technical challenges. I will describe Webb's scientific goals, its design and recent progress in constructing the observatory. Webb is scheduled for launch in 2014.

  7. Distance to M33 determined from magnitude corrections to Hubble's original cepheid photometry

    International Nuclear Information System (INIS)

    Sandage, A.

    1983-01-01

    New photoelectric photometry in Selected Area 45, and transfers from a faint photoelectric sequence adjacent to the south-preceding arm in M33 have been made to the comparison stars for Hubble's Cepheids in M33. Progressive magnitude corrections are required to Hubble's M33 scales, reaching 2.8 mag at the limit of the Mount Wilson 2.5-m Hooker reflector. Hubble's Cepheid light curves have been corrected to the B photoelectric system, and new photometric parameters are given for 35 of his variables. The P-L relation agrees in zero point to within 0.2 mag of the P-L relation from independent data by Sandage and Carlson for 12 new Cepheids in an outlying region of M33. Application of an adopted absolute P-L relation, calibrated by Martin, Warren, and Feast, to these data gives an apparent blue modulus of (m-M)/sup AB//sub M33/ = 25.35, which is 0.67 mag fainter than a previously adopted value, and represents a factor of 4.2 increase of Hubble's earliest distance. Three consequences of this larger apparent distance modulus are (1) the mean absolute magnitude of the first three brightest red supergiants is M/sup max//sub left-angle-bracketV/(3)> = -8.7 rather than approx.-8.0 in M33, complicating but not destroying use of red supergiants as distance indicators, (2) the mean absolute magnitude of the two brightest blue irregular supergiant variables is M/sub left-angle-bracketB/(2)> = -9.95, which is close to the value for the brightest known supergiants in the galaxy, and (3) the absolute magnitude of M33 itself is brighter than heretofore assumed

  8. Are baryonic galactic halos possible

    International Nuclear Information System (INIS)

    Olive, K.A.; Hegyi, D.J.

    1986-01-01

    There is little doubt from the rotation curves of spiral galaxies that galactic halos must contain large amounts of dark matter. In this contribution, the authors review arguments which indicate that it is very unlikely that galactic halos contain substantial amounts of baryonic matter. While the authors would like to be able to present a single argument which would rule out baryonic matter, at the present time they are only able to present a collection of arguments each of which argues against one form of baryonic matter. These include: 1) snowballs; 2) gas; 3) low mass stars and Jupiters; 4) high mass stars; and 5) high metalicity objects such as rooks or dust. Black holes, which do not have a well defined baryon number, are also a possible candidate for halo matter. They briefly discuss black holes

  9. Making Data Mobile: The Hubble Deep Field Academy iPad app

    Science.gov (United States)

    Eisenhamer, Bonnie; Cordes, K.; Davis, S.; Eisenhamer, J.

    2013-01-01

    Many school districts are purchasing iPads for educators and students to use as learning tools in the classroom. Educators often prefer these devices to desktop and laptop computers because they offer portability and an intuitive design, while having a larger screen size when compared to smart phones. As a result, we began investigating the potential of adapting online activities for use on Apple’s iPad to enhance the dissemination and usage of these activities in instructional settings while continuing to meet educators’ needs. As a pilot effort, we are developing an iPad app for the “Hubble Deep Field Academy” - an activity that is currently available online and commonly used by middle school educators. The Hubble Deep Field Academy app features the HDF-North image while centering on the theme of how scientists use light to explore and study the universe. It also includes features such as embedded links to vocabulary, images and videos, teacher background materials, and readings about Hubble’s other deep field surveys. It is our goal is to impact students’ engagement in STEM-related activities, while enhancing educators’ usage of NASA data via new and innovative mediums. We also hope to develop and share lessons learned with the E/PO community that can be used to support similar projects. We plan to test the Hubble Deep Field Academy app during the school year to determine if this new activity format is beneficial to the education community.

  10. Hubble Space Telescope Observations of cD Galaxies and Their Globular Cluster Systems

    Science.gov (United States)

    Jordán, Andrés; Côté, Patrick; West, Michael J.; Marzke, Ronald O.; Minniti, Dante; Rejkuba, Marina

    2004-01-01

    We have used WFPC2 on the Hubble Space Telescope (HST) to obtain F450W and F814W images of four cD galaxies (NGC 541 in Abell 194, NGC 2832 in Abell 779, NGC 4839 in Abell 1656, and NGC 7768 in Abell 2666) in the range 5400 km s-1cluster (GC) systems reveals no anomalies in terms of specific frequencies, metallicity gradients, average metallicities, or the metallicity offset between the globular clusters and the host galaxy. We show that the latter offset appears roughly constant at Δ[Fe/H]~0.8 dex for early-type galaxies spanning a luminosity range of roughly 4 orders of magnitude. We combine the globular cluster metallicity distributions with an empirical technique described in a series of earlier papers to investigate the form of the protogalactic mass spectrum in these cD galaxies. We find that the observed GC metallicity distributions are consistent with those expected if cD galaxies form through the cannibalism of numerous galaxies and protogalactic fragments that formed their stars and globular clusters before capture and disruption. However, the properties of their GC systems suggest that dynamical friction is not the primary mechanism by which these galaxies are assembled. We argue that cD's instead form rapidly, via hierarchical merging, prior to cluster virialization. Based on observations with the NASA/ESA Hubble Space Telescope obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555 Based in part on observations obtained at the European Southern Observatory, for VLT program 68.D-0130(A).

  11. Quasar Host Galaxies/Neptune Rotation/Galaxy Building Blocks/Hubble Deep Field/Saturn Storm

    Science.gov (United States)

    2001-01-01

    Computerized animations simulate a quasar erupting in the core of a normal spiral galaxy, the collision of two interacting galaxies, and the evolution of the universe. Hubble Space Telescope (HST) images show six quasars' host galaxies (including spirals, ellipticals, and colliding galaxies) and six clumps of galaxies approximately 11 billion light years away. A false color time lapse movie of Neptune displays the planet's 16-hour rotation, and the evolution of a storm on Saturn is seen though a video of the planet's rotation. A zoom sequence starts with a ground-based image of the constellation Ursa major and ends with the Hubble Deep Field through progressively narrower and deeper views.

  12. Relations between age, metallicity and kinematics of F-G stars of the Galactic disk

    International Nuclear Information System (INIS)

    Shevelev, Yu.G.; Marsakov, V.A.; Suchkov, A.A.

    1989-01-01

    The data for ∼ 5500 F-G stars are used to study their kinematics, metal abindance and HR diagram in terms of uvby photometry. The age-metallicity, velocity-metallicity, and age-velocity relations are derived. An estimate for the age of the galactic disk is obtained. The following is shown: 1) At[Fe/H] -0.1, turn out to be kinematically younger than these G dwarfs. The same paradox is revealed by G and K giants

  13. Type I supernovae and angular anisotropy of the Hubble constant

    International Nuclear Information System (INIS)

    Le Denmat, Gerard; Vigier, J.-P.

    1975-01-01

    The observation of type I supernovae in distant galaxies yields an homogeneous sample of sources to evaluate their true distance. An examination of their distribution in the sky provides a significant confirmation of the angular anisotropy of the Hubble constant already observed by Rubin, Rubin and Ford [fr

  14. UVUDF: Ultraviolet Imaging of the Hubble Ultra Deep Field with Wide-Field Camera 3

    Science.gov (United States)

    Teplitz, Harry I.; Rafelski, Marc; Kurczynski, Peter; Bond, Nicholas A.; Grogin, Norman; Koekemoer, Anton M.; Atek, Hakim; Brown, Thomas M.; Coe, Dan; Colbert, James W.; Ferguson, Henry C.; Finkelstein, Steven L.; Gardner, Jonathan P.; Gawiser, Eric; Giavalisco, Mauro; Gronwall, Caryl; Hanish, Daniel J.; Lee, Kyoung-Soo; de Mello, Duilia F.; Ravindranath, Swara; Ryan, Russell E.; Siana, Brian D.; Scarlata, Claudia; Soto, Emmaris; Voyer, Elysse N.; Wolfe, Arthur M.

    2013-12-01

    We present an overview of a 90 orbit Hubble Space Telescope treasury program to obtain near-ultraviolet imaging of the Hubble Ultra Deep Field using the Wide Field Camera 3 UVIS detector with the F225W, F275W, and F336W filters. This survey is designed to: (1) investigate the episode of peak star formation activity in galaxies at 1 dropouts at redshifts 1.7, 2.1, and 2.7 is largely consistent with the number predicted by published luminosity functions. We also confirm that the image mosaics have sufficient sensitivity and resolution to support the analysis of the evolution of star-forming clumps, reaching 28-29th magnitude depth at 5σ in a 0.''2 radius aperture depending on filter and observing epoch. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are #12534.

  15. Utrecht and Galactic Radio Astronomy

    NARCIS (Netherlands)

    van Woerden, H.

    Important roles in early Dutch Galactic radio astronomy were played by several Utrecht astronomers: Van de Hulst, Minnaert and Houtgast. The poster announcing the conference contained a number of pictures referring to scientific achievements of the Astronomical Institute Utrecht. One of these

  16. Hubble's View of Little Blue Dots

    Science.gov (United States)

    Kohler, Susanna

    2018-02-01

    The recent discovery of a new type of tiny, star-forming galaxy is the latest in a zoo of detections shedding light on our early universe. What can we learn from the unique little blue dots found in archival Hubble data?Peas, Berries, and DotsGreen pea galaxies identified by citizen scientists with Galaxy Zoo. [Richard Nowell Carolin Cardamone]As telescope capabilities improve and we develop increasingly deeper large-scale surveys of our universe, we continue to learn more about small, faraway galaxies. In recent years, increasing sensitivity first enabled the detection of green peas luminous, compact, low-mass (10 billion solar masses; compare this to the Milky Ways 1 trillion solar masses!) galaxies with high rates of star formation.Not long thereafter, we discovered galaxies that form stars similarly rapidly, but are even smaller only 330 million solar masses, spanning less than 3,000 light-years in size. These tiny powerhouses were termed blueberries for their distinctive color.Now, scientists Debra and Bruce Elmegreen (of Vassar College and IBM Research Division, respectively) report the discovery of galaxies that have even higher star formation rates and even lower masses: little blue dots.Exploring Tiny Star FactoriesThe Elmegreens discovered these unique galaxies by exploring archival Hubble data. The Hubble Frontier Fields data consist of deep images of six distant galaxy clusters and the parallel fields next to them. It was in the archival data for two Frontier Field Parallels, those for clusters Abell 2744 and MAS J0416.1-2403, that the authors noticed several galaxies that stand out as tiny, bright, blue objects that are nearly point sources.Top: a few examples of the little blue dots recently identified in two Hubble Frontier Field Parallels. Bottom: stacked images for three different groups of little blue dots. [Elmegreen Elmegreen 2017]The authors performed a search through the two Frontier Field Parallels, discovering a total of 55 little blue dots

  17. Implications of the IRAS data for galactic gamma-ray astronomy and EGRET

    International Nuclear Information System (INIS)

    Stecker, F.W.

    1990-01-01

    Using the results of gamma-ray, millimeter wave and far infrared surveys of the galaxy, one can derive a logically consistent picture of the large scale distribution of galactic gas and cosmic rays, one tied to the overall processes of stellar birth and destruction on a galactic scale. Using the results of the IRAS far-infrared survey of the galaxy, the large scale radial distributions of galactic far-infrared emission were obtained independently for both the northern and southern hemisphere sides of the Galaxy. It was found that the dominant feature in these distributions to be a broad peak coincident with the 5 kpc molecular gas cloud ring. Also found was evidence of spiral arm features. Strong correlations are evident between the large scale galactic distributions of far infrared emission, gamma-ray emission and total CO emission. There is a particularly tight correlation between the distribution of warm molecular clouds and far-infrared emission on a galactic scale

  18. Dark matter from cosmic defects on galactic scales?

    International Nuclear Information System (INIS)

    Guerreiro, N.; Carvalho, J. P. M. de; Avelino, P. P.; Martins, C. J. A. P.

    2008-01-01

    We discuss the possible dynamical role of extended cosmic defects on galactic scales, specifically focusing on the possibility that they may provide the dark matter suggested by the classical problem of galactic rotation curves. We emphasize that the more standard defects (such as Goto-Nambu strings) are unsuitable for this task but show that more general models (such as transonic wiggly strings) could in principle have a better chance. In any case, we show that observational data severely restricts any such scenarios.

  19. Brown dwarfs as dark galactic halos

    International Nuclear Information System (INIS)

    Adams, F.C.; Walker, T.P.

    1990-01-01

    The possibility that the dark matter in galactic halos can consist of brown dwarf stars is considered. The radiative signature for such halos consisting solely of brown dwarfs is calculated, and the allowed range of brown dwarf masses, the initial mass function (IMF), the stellar properties, and the density distribution of the galactic halo are discussed. The prediction emission from the halo is compared with existing observations. It is found that, for any IMF of brown dwarfs below the deuterium burning limit, brown dwarf halos are consistent with observations. Brown dwarf halos cannot, however, explain the recently observed near-IR background. It is shown that future satellite missions will either detect brown dwarf halos or place tight constraints on the allowed range of the IMF. 30 refs

  20. Modeling galactic extinction

    OpenAIRE

    Cecchi-Pestellini, C.; Mulas, G.; Casu, S.; Iatì, M. A.; Saija, R.; Cacciola, A.; Borghese, F.; Denti, P.

    2011-01-01

    We present a model for interstellar extinction dust, in which we assume a bimodal distribution of extinction carriers, a dispersion of core-mantle grains, supplemented by a collection of PAHs in free molecular form. We use state-of-the-art methods to calculate the extinction due to macroscopic dust particles, and the absorption cross-sections of PAHs in four different charge states. While successfull for most of observed Galactic extinction curves, in few cases the model cannot provide reliab...

  1. A Green Bank Telescope Survey of Large Galactic H II Regions

    Science.gov (United States)

    Anderson, L. D.; Armentrout, W. P.; Luisi, Matteo; Bania, T. M.; Balser, Dana S.; Wenger, Trey V.

    2018-02-01

    As part of our ongoing H II Region Discovery Survey (HRDS), we report the Green Bank Telescope detection of 148 new angularly large Galactic H II regions in radio recombination line (RRL) emission. Our targets are located at a declination of δ > -45^\\circ , which corresponds to 266^\\circ > {\\ell }> -20^\\circ at b=0^\\circ . All sources were selected from the Wide-field Infrared Survey Explorer Catalog of Galactic H II Regions, and have infrared angular diameters ≥slant 260\\prime\\prime . The Galactic distribution of these “large” H II regions is similar to that of the previously known sample of Galactic H II regions. The large H II region RRL line width and peak line intensity distributions are skewed toward lower values, compared with that of previous HRDS surveys. We discover seven sources with extremely narrow RRLs 100 {pc}, making them some of the physically largest known H II regions in the Galaxy. This survey completes the HRDS H II region census in the Northern sky, where we have discovered 887 H II regions and more than doubled the size of the previously known census of Galactic H II regions.

  2. AN OUTER ARM IN THE SECOND GALACTIC QUADRANT: STRUCTURE

    Energy Technology Data Exchange (ETDEWEB)

    Du, Xinyu; Xu, Ye; Yang, Ji; Sun, Yan; Li, Facheng; Zhang, Shaobo; Zhou, Xin, E-mail: xydu@pmo.ac.cn, E-mail: xuye@pmo.ac.cn [Purple Mountain Observatory, Chinese Academy of Science, Nanjing 210008 (China)

    2016-05-01

    The lack of arm tracers, especially remote tracers, is one of the most difficult problems preventing us from studying the structure of the Milky Way. Fortunately, with its high-sensitivity CO survey, the Milky Way Imaging Scroll Painting (MWISP) project offers such an opportunity. Since completing about one-third of its mission, an area of l = [100, 150]°, b = [−3, 5]° has nearly been covered. The Outer arm of the Milky Way first clearly revealed its shape in the second galactic quadrant in the form of molecular gas—this is the first time that the Outer arm has been reported in such a large-scale mapping of molecular gas. Using the 115 GHz {sup 12}CO(1–0) data of MWISP at the LSR velocity ≃[−100, −60] km s{sup −1} and in the area mentioned above, we have detected 481 molecular clouds in total, and among them 332 (about 69%) are newly detected and 457 probably belong to the Outer arm. The total mass of the detected Outer arm clouds is ∼3.1 × 10{sup 6} M {sub ⊙}. Assuming that the spiral arm is a logarithmic spiral, the pitch angle is fitted as ∼13.°1. Besides combining both the CO data from MWISP and the 21 cm H i data from the Canadian Galactic Plane Survey (CGPS), the gas distribution, warp, and thickness of the Outer arm are also studied.

  3. THE GALACTIC POTENTIAL AND THE ASYMMETRIC DISTRIBUTION OF HYPERVELOCITY STARS

    International Nuclear Information System (INIS)

    Perets, Hagai B.; Alexander, Tal; Wu Xufen; Zhao Hongsheng; Famaey, Benoit; Gentile, Gianfranco

    2009-01-01

    In recent years several hypervelocity stars (HVSs) have been observed in the halo of our Galaxy. Such HVSs have possibly been ejected from the Galactic center and then propagated in the Galactic potential up to their current position. The recent survey for candidate HVSs show an asymmetry in the kinematics of candidate HVSs (position and velocity vectors), where more outgoing stars than ingoing stars (i.e., positive Galactocentric velocities versus negative ones) are observed. We show that such kinematic asymmetry, which is likely due to the finite lifetime of the stars and Galactic potential structure, could be used in a novel method to probe and constrain the Galactic potential, identify the stellar type of the stars in the survey and estimate the number of HVSs. Kinematics-independent identification of the stellar types of the stars in such surveys (e.g., spectroscopic identification) could further improve these results. We find that the observed asymmetry between ingoing and outgoing stars favors specific Galactic potential models. It also implies a lower limit of ∼54 ± 8 main-sequence HVSs in the survey sample (∼>648 ± 96 in the Galaxy), assuming that all of the MS stars in the survey originate from the GC. The other stars in the survey are likely to be hot blue horizontal branch stars born in the halo rather than stars ejected from the GC.

  4. Muon g - 2 and Galactic Centre γ-ray excess in a scalar extension of the 2HDM type-X

    Energy Technology Data Exchange (ETDEWEB)

    Hektor, Andi; Kannike, Kristjan; Marzola, Luca, E-mail: andi.hektor@cern.ch, E-mail: kristjan.kannike@cern.ch, E-mail: luca.marzola@ut.ee [National Institute of Chemical Physics and Biophysics, Rävala pst. 10, Tallinn, 10143 Estonia (Estonia)

    2015-10-01

    We consider an extension of the lepto-specific 2HDM with an extra singlet S as a dark matter candidate. Taking into account theoretical and experimental constraints, we investigate the possibility to address both the γ-ray excess detected at the Galactic Centre and the discrepancy between the Standard Model prediction and experimental results of the anomalous magnetic moment of the muon. Our analyses reveal that the SS → τ{sup +} τ{sup −} and SS → b  b-bar channels reproduce the Galactic Centre excess, with an emerging dark matter candidate which complies with the bounds from direct detection experiments, measurements of the Higgs boson invisible decay width and observations of the dark matter relic abundance. Addressing the anomalous magnetic moment of the muon imposes further strong constraints on the model. Remarkably, under these conditions, the SS → b  b-bar channel still allows for the fitting of the Galactic Centre. We also comment on a scenario allowed by the model where the SS → τ{sup +} τ{sup −} and SS → b  b-bar channels have comparable branching ratios, which possibly yield an improved fitting of the Galactic Centre excess.

  5. Simulation of the annihilation emission of galactic positrons

    International Nuclear Information System (INIS)

    Gillard, W.

    2008-01-01

    Positrons annihilate in the central region of our Galaxy. This has been known since the detection of a strong emission line centered on an energy of 511 keV in the direction of the Galactic center. This gamma-ray line is emitted during the annihilation of positrons with electrons from the interstellar medium. The spectrometer SPI, onboard the INTEGRAL observatory, performed spatial and spectral analyses of the positron annihilation emission. This thesis presents a study of the Galactic positron annihilation emission based on models of the different interactions undergone by positrons in the interstellar medium. The models are relied on our present knowledge of the properties of the interstellar medium in the Galactic bulge, where most of the positrons annihilate, and of the physics of positrons (production, propagation and annihilation processes). In order to obtain constraints on the positrons sources and physical characteristics of the annihilation medium, we compared the results of the models to measurements provided by the SPI spectrometer. (author)

  6. Accretion Disk Reverberation with Hubble Space Telescope Observations of NGC 4593: Evidence for Diffuse Continuum Lags

    Science.gov (United States)

    Cackett, Edward M.; Chiang, Chia-Ying; McHardy, Ian; Edelson, Rick; Goad, Michael R.; Horne, Keith; Korista, Kirk T.

    2018-04-01

    The Seyfert 1 galaxy NGC 4593 was monitored spectroscopically with the Hubble Space Telescope as part of a reverberation mapping campaign that also included Swift, Kepler, and ground-based photometric monitoring. During 2016 July 12–August 6, we obtained 26 spectra across a nearly continuous wavelength range of ∼1150–10000 Å. These were combined with Swift data to produce a UV/optical “lag spectrum,” which shows the interband lag relative to the Swift UVW2 band as a function of wavelength. The broad shape of the lag spectrum appears to follow the τ ∝ λ 4/3 relation seen previously in photometric interband lag measurements of other active galactic nuclei (AGNs). This shape is consistent with the standard thin disk model, but the magnitude of the lags implies a disk that is a factor of ∼3 larger than predicted, again consistent with what has been previously seen in other AGNs. In all cases these large disk sizes, which are also implied by independent gravitational microlensing of higher-mass AGNs, cannot be simply reconciled with the standard model. However, the most striking feature in this higher-resolution lag spectrum is a clear excess around the 3646 Å Balmer jump. This strongly suggests that diffuse emission from gas in the much larger broad-line region (BLR) must also contribute significantly to the interband lags. While the relative contributions of the disk and BLR cannot be uniquely determined in these initial measurements, it is clear that both will need to be considered to comprehensively model and understand AGN lag spectra.

  7. Galactic Observations of Terahertz C+ (GOT C+): [CII] Detection of Warm "Dark Gas" in the ISM

    Science.gov (United States)

    Langer, W. D.; Velusamy, T.; Pineda, J.; Goldsmith, P.; Li, D.; Yorke, H. W.

    2011-11-01

    The Herschel HIFI Key Program, Galactic Observations of Terahertz C+ (GOT C+) is a survey of [CII] 1.9 THz emission throughout the Galaxy. Comparison of the first results of this survey with HI and CO isotopomer emission reveals excess [CII] emission beyond that expected from HI and CO layers alone, and is best explained as coming from a hidden layer of H2 gas, the so-called ISM "dark gas".

  8. A Guided Inquiry on Hubble Plots and the Big Bang

    Science.gov (United States)

    Forringer, Ted

    2014-01-01

    In our science for non-science majors course "21st Century Physics," we investigate modern "Hubble plots" (plots of velocity versus distance for deep space objects) in order to discuss the Big Bang, dark matter, and dark energy. There are two potential challenges that our students face when encountering these topics for the…

  9. Extreme-Scale Alignments Of Quasar Optical Polarizations And Galactic Dust Contamination

    Science.gov (United States)

    Pelgrims, Vincent

    2017-10-01

    Almost twenty years ago the optical polarization vectors from quasars were shown to be aligned over extreme-scales. That evidence was later confirmed and enhanced thanks to additional optical data obtained with the ESO instrument FORS2 mounted on the VLT, in Chile. These observations suggest either Galactic foreground contamination of the data or, more interestingly, a cosmological origin. Using 353-GHz polarization data from the Planck satellite, I recently showed that the main features of the extreme-scale alignments of the quasar optical polarization vectors are unaffected by the Galactic thermal dust. This confirms previous studies based on optical starlight polarization and discards the scenario of Galactic contamination. In this talk, I shall briefly review the extreme-scale quasar polarization alignments, discuss the main results submitted in A&A and motivate forthcoming projects at the frontier between Galactic and extragalactic astrop hysics.

  10. Nickel-hydrogen battery testing for Hubble Space Telescope

    Science.gov (United States)

    Baggett, Randy M.; Whitt, Thomas H.

    1989-01-01

    The authors identify objectives and provide data from several nickel-hydrogen battery tests designed to evaluate the possibility of launching Ni-H2 batteries on the Hubble Space Telescope (HST). Test results from a 14-cell battery, a 12-cell battery, and a 4-cell pack are presented. Results of a thermal vacuum test to verify the battery-module/bay heat rejection capacity are reported. A 6-battery system simulation breadboard is described, and test results are presented.

  11. The Hubble Space Telescope nickel-hydrogen battery design

    Science.gov (United States)

    Nawrocki, D. E.; Armantrout, J. D.; Standlee, D. J.; Baker, R. C.; Lanier, J. R.

    1990-01-01

    Details are presented of the HST (Hubble Space Telescope) battery cell, battery package, and module mechanical and electrical designs. Also included are a summary of acceptance, qualification, and vibration tests and thermal vacuum testing. Unique details of battery cell charge retention performance characteristics associated with prelaunch hold conditions are discussed. Special charge control methods to minimize thermal dissipation during pad charging operations are summarized. This module design meets all NASA fracture control requirements for manned missions.

  12. THE EVOLUTION OF GAS CLOUDS FALLING IN THE MAGNETIZED GALACTIC HALO: HIGH-VELOCITY CLOUDS (HVCs) ORIGINATED IN THE GALACTIC FOUNTAIN

    International Nuclear Information System (INIS)

    Kwak, Kyujin; Shelton, Robin L.; Raley, Elizabeth A.

    2009-01-01

    In the Galactic fountain scenario, supernovae and/or stellar winds propel material into the Galactic halo. As the material cools, it condenses into clouds. By using FLASH three-dimensional magnetohydrodynamic simulations, we model and study the dynamical evolution of these gas clouds after they form and begin to fall toward the Galactic plane. In our simulations, we assume that the gas clouds form at a height of z = 5 kpc above the Galactic midplane, then begin to fall from rest. We investigate how the cloud's evolution, dynamics, and interaction with the interstellar medium (ISM) are affected by the initial mass of the cloud. We find that clouds with sufficiently large initial densities (n ≥ 0.1 H atoms cm -3 ) accelerate sufficiently and maintain sufficiently large column densities as to be observed and identified as high-velocity clouds (HVCs) even if the ISM is weakly magnetized (1.3 μG). However, the ISM can provide noticeable resistance to the motion of a low-density cloud (n ≤ 0.01 H atoms cm -3 ) thus making it more probable that a low-density cloud will attain the speed of an intermediate-velocity cloud rather than the speed of an HVC. We also investigate the effects of various possible magnetic field configurations. As expected, the ISM's resistance is greatest when the magnetic field is strong and perpendicular to the motion of the cloud. The trajectory of the cloud is guided by the magnetic field lines in cases where the magnetic field is oriented diagonal to the Galactic plane. The model cloud simulations show that the interactions between the cloud and the ISM can be understood via analogy to the shock tube problem which involves shock and rarefaction waves. We also discuss accelerated ambient gas, streamers of material ablated from the clouds, and the cloud's evolution from a sphere-shaped to a disk- or cigar-shaped object.

  13. The Galactic fountain as an origin for the Smith Cloud

    NARCIS (Netherlands)

    Marasco, A.; Fraternali, F.

    The recent discovery of an enriched metallicity for the Smith high-velocity H I Cloud (SC) lends support to a Galactic origin for this system. We use a dynamical model of the galactic fountain to reproduce the observed properties of the SC. In our model, fountain clouds are ejected from the region

  14. The effect of interacting dark energy on local measurements of the Hubble constant

    International Nuclear Information System (INIS)

    Odderskov, Io; Baldi, Marco; Amendola, Luca

    2016-01-01

    In the current state of cosmology, where cosmological parameters are being measured to percent accuracy, it is essential to understand all sources of error to high precision. In this paper we present the results of a study of the local variations in the Hubble constant measured at the distance scale of the Coma Cluster, and test the validity of correcting for the peculiar velocities predicted by gravitational instability theory. The study is based on N-body simulations, and includes models featuring a coupling between dark energy and dark matter, as well as two ΛCDM simulations with different values of σ 8 . It is found that the variance in the local flows is significantly larger in the coupled models, which increases the uncertainty in the local measurements of the Hubble constant in these scenarios. By comparing the results from the different simulations, it is found that most of the effect is caused by the higher value of σ 8 in the coupled cosmologies, though this cannot account for all of the additional variance. Given the discrepancy between different estimates of the Hubble constant in the universe today, cosmological models causing a greater cosmic variance is something that we should be aware of.

  15. The effect of interacting dark energy on local measurements of the Hubble constant

    Energy Technology Data Exchange (ETDEWEB)

    Odderskov, Io [Department of Physics and Astronomy, University of Aarhus, Ny Munkegade 120, Aarhus C (Denmark); Baldi, Marco [Dipartimento di Fisica e Astronomia, Alma Mater Studiorum Università di Bologna, viale Berti Pichat 6/2, I-40127, Bologna (Italy); Amendola, Luca, E-mail: isho07@phys.au.dk, E-mail: marco.baldi5@unibo.it, E-mail: l.amendola@thphys.uni-heidelberg.de [Institut für Theoretische Physik, Ruprecht-Karls-Universität Heidelberg, Philosophenweg 16, 69120 Heidelberg (Germany)

    2016-05-01

    In the current state of cosmology, where cosmological parameters are being measured to percent accuracy, it is essential to understand all sources of error to high precision. In this paper we present the results of a study of the local variations in the Hubble constant measured at the distance scale of the Coma Cluster, and test the validity of correcting for the peculiar velocities predicted by gravitational instability theory. The study is based on N-body simulations, and includes models featuring a coupling between dark energy and dark matter, as well as two ΛCDM simulations with different values of σ{sub 8}. It is found that the variance in the local flows is significantly larger in the coupled models, which increases the uncertainty in the local measurements of the Hubble constant in these scenarios. By comparing the results from the different simulations, it is found that most of the effect is caused by the higher value of σ{sub 8} in the coupled cosmologies, though this cannot account for all of the additional variance. Given the discrepancy between different estimates of the Hubble constant in the universe today, cosmological models causing a greater cosmic variance is something that we should be aware of.

  16. Kinematics of HI near the galactic center

    International Nuclear Information System (INIS)

    Sinha, R.P.

    1979-01-01

    The results of a survey of 21-cm line emission in the Milky Way Galaxy from 338. 0 5 through 360 0 to 11 0 longitude and from -2 0 to +2 0 latitude are presented. The latitude coverage is complete over this range for a given longitude. Points are observed at an interval of 15 arcmin (0.7 beamwidth). The longitude coverage is complete between 1 = 357 0 and 1 = 3 0 . Outside this range points have been observed at intervals of 0. 0 5 in longitude. The symmetry properties of the distribution of HI in the region around the galactic center have been explored. Inside a radius of 1 kpc the HI appears to be distributed in the shape of an elongated non-circular slowly rotating disk which is inclined to the galactic equator. This disk is separate from the general galactic disk of HI. In the central disk the density of HI decreases steeply as the distance from the center increases. The density of HI in the annular space between the central disk and the general galactic disk is very low. The velocity dispersion of the HI distribution in the central elongated disk is of the order of 100 km/s. The isovelocity contours on the longitude-latitude plane of the HI associated with this elongated central disk have the characteristic shape such that the angle between the minor axis and the zero-Doppler velocity contour is different than zero. Such a phenomenon has been observed in the central regions of elliptical galaxies and has been attributed to the triaxial nature of the mass distribution

  17. A NEW PERSPECTIVE OF THE RADIO BRIGHT ZONE AT THE GALACTIC CENTER: FEEDBACK FROM NUCLEAR ACTIVITIES

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Jun-Hui [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Morris, Mark R. [Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, CA 90095 (United States); Goss, W. M., E-mail: jzhao@cfa.harvard.edu [NRAO, P.O. Box O, Socorro, NM 87801 (United States)

    2016-02-01

    New observations of Sgr A have been carried out with the Jansky VLA in the B and C arrays using the broadband (2 GHz) continuum mode at 5.5 GHz. The field of view covers the central 13′ (30 pc) region of the radio-bright zone at the Galactic center. Using the multi-scale and multi-frequency-synthesis (MS-MFS) algorithms in CASA, we have imaged Sgr A with a resolution of 1″, achieving an rms noise of 8 μJy beam{sup −1}, and a dynamic range of 100,000:1. Both previously known and newly identified radio features in this region are revealed, including numerous filamentary sources. The radio continuum image is compared with Chandra X-ray images, with a CN emission-line image obtained with the Submillimeter Array and with detailed Paschen-α images obtained with Hubble Space Telescope/NICMOS. We discuss several prominent features in the radio image. The “Sgr A west Wings” extend 2′ (5 pc) from the NW and SE tips of the Sgr A west H ii region (the “Mini-spiral”) to positions located 2.9 and 2.4 arcmin to the northwest and southeast of Sgr A*, respectively. The NW wing, along with several other prominent features, including the previously identified “NW Streamers,” form an elongated radio lobe (NW lobe), oriented nearly perpendicular to the Galactic plane. This radio lobe, with a size of 6.′3 × 3.′2 (14.4 pc × 7.3 pc), has a known X-ray counterpart. In the outer region of the NW lobe, a row of three thermally emitting rings is observed. A field containing numerous amorphous radio blobs extends for a distance of ∼2 arcmin beyond the tip of the SE wing; these newly recognized features coincide with the SE X-ray lobe. Most of the amorphous radio blobs in the NW and SE lobes have Paschen-α counterparts. We propose that they have been produced by shock interaction of ambient gas concentrations with a collimated nuclear wind or an outflow that originated from within the circumnuclear disk (CND). We also discuss the possibility that the ionized

  18. THE SNAPSHOT HUBBLE U-BAND CLUSTER SURVEY (SHUCS). I. SURVEY DESCRIPTION AND FIRST APPLICATION TO THE MIXED STAR CLUSTER POPULATION OF NGC 4041

    Energy Technology Data Exchange (ETDEWEB)

    Konstantopoulos, I. S. [Australian Astronomical Observatory, P.O. Box 915, North Ryde NSW 1670 (Australia); Smith, L. J. [Space Telescope Science Institute and European Space Agency, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Adamo, A. [Max-Planck-Institut for Astronomy, Koenigstuhl 17, D-69117 Heidelberg (Germany); Silva-Villa, E. [Departement de Physique, de Genie Physique et d' Optique, and Centre de Recherche en Astrophysique du Quebec (CRAQ), Universite Laval, Quebec (Canada); Gallagher, J. S.; Ryon, J. E. [Department of Astronomy, University of Wisconsin-Madison, 5534 Sterling, 475 North Charter Street, Madison WI 53706 (United States); Bastian, N. [Astrophysics Research Institute, Liverpool John Moores University, Egerton Wharf, Birkenhead, CH41 1LD (United Kingdom); Westmoquette, M. S. [European Southern Observatory, Karl-Schwarzschild-Strasse 2, D-85748 Garching bei Muenchen (Germany); Zackrisson, E. [Department of Astronomy, Stockholm University, Oscar Klein Centre, AlbaNova, Stockholm SE-106 91 (Sweden); Larsen, S. S. [Department of Astrophysics/IMAPP, Radboud University Nijmegen, P.O. Box 9010, 6500 GL Nijmegen (Netherlands); Weisz, D. R. [Department of Astronomy, Box 351580, University of Washington, Seattle, WA 98195 (United States); Charlton, J. C., E-mail: iraklis@aao.gov.au [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States)

    2013-05-15

    We present the Snapshot Hubble U-band Cluster Survey (SHUCS), a project aimed at characterizing the star cluster populations of 10 nearby galaxies (d < 23 Mpc, half within Almost-Equal-To 12 Mpc) through new F336W (U-band equivalent) imaging from Wide Field Camera 3, and archival BVI-equivalent data with the Hubble Space Telescope. Completing the UBVI baseline reduces the age-extinction degeneracy of optical colors, thus enabling the measurement of reliable ages and masses for the thousands of clusters covered by our survey. The sample consists chiefly of face-on spiral galaxies at low inclination, in various degrees of isolation (isolated, in group, merging), and includes two active galactic nucleus hosts. This first paper outlines the survey itself, the observational datasets, the analysis methods, and presents a proof-of-concept study of the large-scale properties and star cluster population of NGC 4041, a massive SAbc galaxy at a distance of Almost-Equal-To 23 Mpc, and part of a small grouping of six giant members. We resolve two structural components with distinct stellar populations, a morphology more akin to merging and interacting systems. We also find strong evidence of a truncated, Schechter-type mass function, and a similarly segmented luminosity function. These results indicate that binning must erase much of the substructure present in the mass and luminosity functions, and might account for the conflicting reports on the intrinsic shape of these functions in the literature. We also note a tidal feature in the outskirts of the galaxy in Galaxy Evolution Explorer UV imaging, and follow it up with a comprehensive multi-wavelength study of NGC 4041 and its parent group. We deduce a minor merger as a likely cause of its segmented structure and the observed pattern of a radially decreasing star formation rate. We propose that combining the study of star cluster populations with broadband metrics is not only advantageous, but often easily achievable thorough

  19. Positrons annihilation and the Galactic center

    International Nuclear Information System (INIS)

    Wallyn, Pierre

    1992-01-01

    The Galactic center has been observed in gamma rays, many times since more than two decades and we do not still have a full comprehensive picture of this region. It is fairly well established that the 511 keV annihilation line has two origins: a steady diffuse emission, which follows more or less the type I supernovae distribution along the Galactic plane and a variable emission coming from the positrons emitted by (at least) one compact object and annihilating in a nearby cold molecular cloud. We present here an analysis of the profiles and intensifies of the 511 keV annihilation line observed in the direction of the Galactic center. We find that a warm medium (temperature of 8000 K) can describe the annihilation of positrons from the diffuse component of the line. The high state observations of the 511 keV line can be explained if the time-variable component is coming from the annihilation of the positrons in a cold medium (temperature around 80 K). This constraint on the annihilation medium temperature supports the association with the molecular cloud G-0.86-0.08 in the direction of 1E1740.7-2942. On may 22, 1989, HEXAGONE detected a narrow 511 keV line and also a broad emission around 170 keV in the direction of the Galactic center. Two weeks before, EXITE observed in the same direction a new transient source EXS 1737.9-2952 which showed a bump around 102 keV. We propose a simple semi-quantitative model which can mimic the bumps as well as its time variations and emphasize the strong similarities between EXS1737.9-2952 and Nova Muscae. We study the behaviour of positron annihilation by charge exchange in the cold phase of the interstellar medium. We calculate formula for the slowing-down time before thermalization of positrons of a given initial energy, for different medium densities. Our scenario explains the lack of detection of the recombination lines from positronium and gives new constraints on their possible observation. (author) [fr

  20. Observational constraints on Hubble parameter in viscous generalized Chaplygin gas

    Science.gov (United States)

    Thakur, P.

    2018-04-01

    Cosmological model with viscous generalized Chaplygin gas (in short, VGCG) is considered here to determine observational constraints on its equation of state parameters (in short, EoS) from background data. These data consists of H(z)-z (OHD) data, Baryonic Acoustic Oscillations peak parameter, CMB shift parameter and SN Ia data (Union 2.1). Best-fit values of the EoS parameters including present Hubble parameter (H0) and their acceptable range at different confidence limits are determined. In this model the permitted range for the present Hubble parameter and the transition redshift (zt) at 1σ confidence limits are H0= 70.24^{+0.34}_{-0.36} and zt=0.76^{+0.07}_{-0.07} respectively. These EoS parameters are then compared with those of other models. Present age of the Universe (t0) have also been determined here. Akaike information criterion and Bayesian information criterion for the model selection have been adopted for comparison with other models. It is noted that VGCG model satisfactorily accommodates the present accelerating phase of the Universe.

  1. Spitzer Digs Up Galactic Fossil

    Science.gov (United States)

    2004-01-01

    [figure removed for brevity, see original site] Figure 1 [figure removed for brevity, see original site] Figure 2 This false-color image taken by NASA's Spitzer Space Telescope shows a globular cluster previously hidden in the dusty plane of our Milky Way galaxy. Globular clusters are compact bundles of old stars that date back to the birth of our galaxy, 13 or so billion years ago. Astronomers use these galactic 'fossils' as tools for studying the age and formation of the Milky Way. Most clusters orbit around the center of the galaxy well above its dust-enshrouded disc, or plane, while making brief, repeated passes through the plane that each last about a million years. Spitzer, with infrared eyes that can see into the dusty galactic plane, first spotted the newfound cluster during its current pass. A visible-light image (inset of Figure 1) shows only a dark patch of sky. The red streak behind the core of the cluster is a dust cloud, which may indicate the cluster's interaction with the Milky Way. Alternatively, this cloud may lie coincidentally along Spitzer's line of sight. Follow-up observations with the University of Wyoming Infrared Observatory helped set the distance of the new cluster at about 9,000 light-years from Earth - closer than most clusters - and set the mass at the equivalent of 300,000 Suns. The cluster's apparent size, as viewed from Earth, is comparable to a grain of rice held at arm's length. It is located in the constellation Aquila. Astronomers believe that this cluster may be one of the last in our galaxy to be uncovered. This image composite was taken on April 21, 2004, by Spitzer's infrared array camera. It is composed of images obtained at four wavelengths: 3.6 microns (blue), 4.5 microns (green), 5.8 microns (orange) and 8 microns (red). Galactic Fossil Found Behind Curtain of Dust In Figure 2, the image mosaic shows the same patch of sky in various wavelengths of light. While the visible-light image (left) shows a dark sky speckled

  2. The H.E.S.S. Galactic plane survey

    Science.gov (United States)

    H. E. S. S. Collaboration; Abdalla, H.; Abramowski, A.; Aharonian, F.; Benkhali, F. Ait; Angüner, E. O.; Arakawa, M.; Arrieta, M.; Aubert, P.; Backes, M.; Balzer, A.; Barnard, M.; Becherini, Y.; Tjus, J. Becker; Berge, D.; Bernhard, S.; Bernlöhr, K.; Blackwell, R.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bonnefoy, S.; Bordas, P.; Bregeon, J.; Brun, F.; Brun, P.; Bryan, M.; Büchele, M.; Bulik, T.; Capasso, M.; Carrigan, S.; Caroff, S.; Carosi, A.; Casanova, S.; Cerruti, M.; Chakraborty, N.; Chaves, R. C. G.; Chen, A.; Chevalier, J.; Colafrancesco, S.; Condon, B.; Conrad, J.; Davids, I. D.; Decock, J.; Deil, C.; Devin, J.; deWilt, P.; Dirson, L.; Djannati-Ataï, A.; Domainko, W.; Donath, A.; Drury, L. O.'C.; Dutson, K.; Dyks, J.; Edwards, T.; Egberts, K.; Eger, P.; Emery, G.; Ernenwein, J.-P.; Eschbach, S.; Farnier, C.; Fegan, S.; Fernandes, M. V.; Fiasson, A.; Fontaine, G.; Förster, A.; Funk, S.; Füßling, M.; Gabici, S.; Gallant, Y. A.; Garrigoux, T.; Gast, H.; Gaté, F.; Giavitto, G.; Giebels, B.; Glawion, D.; Glicenstein, J. F.; Gottschall, D.; Grondin, M.-H.; Hahn, J.; Haupt, M.; Hawkes, J.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hinton, J. A.; Hofmann, W.; Hoischen, C.; Holch, T. L.; Holler, M.; Horns, D.; Ivascenko, A.; Iwasaki, H.; Jacholkowska, A.; Jamrozy, M.; Jankowsky, D.; Jankowsky, F.; Jingo, M.; Jouvin, L.; Jung-Richardt, I.; Kastendieck, M. A.; Katarzyński, K.; Katsuragawa, M.; Katz, U.; Kerszberg, D.; Khangulyan, D.; Khélifi, B.; King, J.; Klepser, S.; Klochkov, D.; Kluźniak, W.; Komin, Nu.; Kosack, K.; Krakau, S.; Kraus, M.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lau, J.; Lees, J.-P.; Lefaucheur, J.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J.-P.; Leser, E.; Lohse, T.; Lorentz, M.; Liu, R.; López-Coto, R.; Lypova, I.; Marandon, V.; Malyshev, D.; Marcowith, A.; Mariaud, C.; Marx, R.; Maurin, G.; Maxted, N.; Mayer, M.; Meintjes, P. J.; Meyer, M.; Mitchell, A. M. W.; Moderski, R.; Mohamed, M.; Mohrmann, L.; Morå, K.; Moulin, E.; Murach, T.; Nakashima, S.; de Naurois, M.; Ndiyavala, H.; Niederwanger, F.; Niemiec, J.; Oakes, L.; O'Brien, P.; Odaka, H.; Ohm, S.; Ostrowski, M.; Oya, I.; Padovani, M.; Panter, M.; Parsons, R. D.; Paz Arribas, M.; Pekeur, N. W.; Pelletier, G.; Perennes, C.; Petrucci, P.-O.; Peyaud, B.; Piel, Q.; Pita, S.; Poireau, V.; Poon, H.; Prokhorov, D.; Prokoph, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Rauth, R.; Reimer, A.; Reimer, O.; Renaud, M.; de los Reyes, R.; Rieger, F.; Rinchiuso, L.; Romoli, C.; Rowell, G.; Rudak, B.; Rulten, C. B.; Safi-Harb, S.; Sahakian, V.; Saito, S.; Sanchez, D. A.; Santangelo, A.; Sasaki, M.; Schandri, M.; Schlickeiser, R.; Schüssler, F.; Schulz, A.; Schwanke, U.; Schwemmer, S.; Seglar-Arroyo, M.; Settimo, M.; Seyffert, A. S.; Shafi, N.; Shilon, I.; Shiningayamwe, K.; Simoni, R.; Sol, H.; Spanier, F.; Spir-Jacob, M.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Steppa, C.; Sushch, I.; Takahashi, T.; Tavernet, J.-P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tibaldo, L.; Tiziani, D.; Tluczykont, M.; Trichard, C.; Tsirou, M.; Tsuji, N.; Tuffs, R.; Uchiyama, Y.; van der Walt, D. J.; van Eldik, C.; van Rensburg, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Viana, A.; Vincent, P.; Vink, J.; Voisin, F.; Völk, H. J.; Vuillaume, T.; Wadiasingh, Z.; Wagner, S. J.; Wagner, P.; Wagner, R. M.; White, R.; Wierzcholska, A.; Willmann, P.; Wörnlein, A.; Wouters, D.; Yang, R.; Zaborov, D.; Zacharias, M.; Zanin, R.; Zdziarski, A. A.; Zech, A.; Zefi, F.; Ziegler, A.; Zorn, J.; Żywucka, N.

    2018-04-01

    We present the results of the most comprehensive survey of the Galactic plane in very high-energy (VHE) γ-rays, including a public release of Galactic sky maps, a catalog of VHE sources, and the discovery of 16 new sources of VHE γ-rays. The High Energy Spectroscopic System (H.E.S.S.) Galactic plane survey (HGPS) was a decade-long observation program carried out by the H.E.S.S. I array of Cherenkov telescopes in Namibia from 2004 to 2013. The observations amount to nearly 2700 h of quality-selected data, covering the Galactic plane at longitudes from ℓ = 250° to 65° and latitudes |b|≤ 3°. In addition to the unprecedented spatial coverage, the HGPS also features a relatively high angular resolution (0.08° ≈ 5 arcmin mean point spread function 68% containment radius), sensitivity (≲1.5% Crab flux for point-like sources), and energy range (0.2-100 TeV). We constructed a catalog of VHE γ-ray sources from the HGPS data set with a systematic procedure for both source detection and characterization of morphology and spectrum. We present this likelihood-based method in detail, including the introduction of a model component to account for unresolved, large-scale emission along the Galactic plane. In total, the resulting HGPS catalog contains 78 VHE sources, of which 14 are not reanalyzed here, for example, due to their complex morphology, namely shell-like sources and the Galactic center region. Where possible, we provide a firm identification of the VHE source or plausible associations with sources in other astronomical catalogs. We also studied the characteristics of the VHE sources with source parameter distributions. 16 new sources were previously unknown or unpublished, and we individually discuss their identifications or possible associations. We firmly identified 31 sources as pulsar wind nebulae (PWNe), supernova remnants (SNRs), composite SNRs, or gamma-ray binaries. Among the 47 sources not yet identified, most of them (36) have possible

  3. Neutrino fluxes from the Galactic plane and the ANTARES limit

    Directory of Open Access Journals (Sweden)

    Fusco Luigi Antonio

    2016-01-01

    Full Text Available The existence of cosmic neutrinos has been reported by the IceCube Collaboration. Though this measurement is consistent with an isotropic neutrino flux, a sub-dominant galactic component coming from extended regions such as the Galactic Plane cannot be excluded. The ANTARES detector, located in the Mediterranean Sea, is currently the largest and longest operated under-water neutrino telescope; its effective area and good exposure to the Southern Sky allow to constrain an enhanced muon neutrino emission from extended sources such as the Galactic Plane. ANTARES data from 2007 to 2013 have been analysed and upper limits on the neutrino production from the central region of our galaxy have been set.

  4. The Galactic O-Star Catalog (GOSC) and the Galactic O-Star Spectroscopic Survey (GOSSS): current status

    Science.gov (United States)

    Maíz Apellániz, J.; Alonso Moragón, A.; Ortiz de Zárate Alcarazo, L.; The Gosss Team

    2017-03-01

    We present the updates of the Galactic O-Star Catalog (GOSC) that we have undertaken in the last two years: new spectral types, more objects, additional information, and coordination with CDS. We also present updates for the Galactic O-Star Spectroscopic Survey (GOSSS). A new paper (GOSSS-III) has been published and ˜ 1000 targets have been observed since 2014. Four new setups have been added to our lineup and for two of them we have already obtained over 100 spectra: with OSIRIS at the 10.4 m GTC we are observing northern dim stars and with FRODOspec at the 2.0 m Liverpool Telescope we are observing northern bright stars. Finally, we also make available new versions of MGB, the spectral classification tool associated with the project, and of the GOSSS grid of spectroscopic standards.

  5. Hubble Space Telescope electrical power system

    Science.gov (United States)

    Whitt, Thomas H.; Bush, John R., Jr.

    1990-01-01

    The Hubble Space Telescope (HST) electrical power system (EPS) is supplying between 2000 and 2400 W of continuous power to the electrical loads. The major components of the EPS are the 5000-W back surface field reflector solar array, the six nickel-hydrogen (NiH2) 22-cell 88-Ah batteries, and the charge current controllers, which, in conjunction with the flight computer, control battery charging. The operation of the HST EPS and the results of the HST NiH2 six-battery test are discussed, and preliminary flight data are reviewed. The HST NiH2 six-battery test is a breadboard of the HST EPS on test at Marshall Space Flight Center.

  6. Galactic signatures of decaying dark matter

    International Nuclear Information System (INIS)

    Zhang, Le; Sigl, Guenter

    2009-05-01

    If dark matter decays into electrons and positrons, it can affect Galactic radio emissions and the local cosmic ray fluxes. We propose a new, more general analysis of constraints on dark matter. The constraints can be obtained for any decaying dark matter model by convolving the specific dark matter decay spectrum with a response function. We derive this response function from full-sky radio surveys at 408 MHz, 1.42 GHz and 23 GHz, as well as from the positron flux recently reported by PAMELA. We discuss the influence of astrophysical uncertainties on the response function, such as from propagation and from the profiles of the dark matter and the Galactic magnetic field. As an application, we find that some widely used dark matter decay scenarios can be ruled out under modest assumptions. (orig.)

  7. Galactic signatures of decaying dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Le; Sigl, Guenter [Hamburg Univ. (Germany). II. Inst. fuer Theoretische Physik; Redondo, Javier [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2009-05-15

    If dark matter decays into electrons and positrons, it can affect Galactic radio emissions and the local cosmic ray fluxes. We propose a new, more general analysis of constraints on dark matter. The constraints can be obtained for any decaying dark matter model by convolving the specific dark matter decay spectrum with a response function. We derive this response function from full-sky radio surveys at 408 MHz, 1.42 GHz and 23 GHz, as well as from the positron flux recently reported by PAMELA. We discuss the influence of astrophysical uncertainties on the response function, such as from propagation and from the profiles of the dark matter and the Galactic magnetic field. As an application, we find that some widely used dark matter decay scenarios can be ruled out under modest assumptions. (orig.)

  8. The ultraviolet galactic background from TD-1 satellite observations

    International Nuclear Information System (INIS)

    Morgan, D.H.; Nandy, K.; Thompson, G.I.

    1976-01-01

    The background data from the S2/68 ultraviolet telescope on the TD-I satellite have been analysed. Using statistical tests those data contaminated by noise due to charged particles in the atmosphere have been discarded, and the remainder have been arranged to form ultraviolet profiles of the Galaxy. These profiles have been constructed at 2740 and 2350 A. The zodiacal light components of the total radiation field have been separated from the galactic components to give the intensity of the zodiacal light at elongation 90 0 as function of ecliptic latitude. The spectrum of the zodiacal light in the near ultraviolet is found to be redder than that of the Sun. The intensity of the diffuse galactic light as a function of galactic latitude has been obtained by subtraction of the zodiacal light and contributions due to faint stars calculated using an axi-symmetric model of the Galaxy. On comparison with predictions of the diffuse galactic light from a radiative transfer model it is found that the ratio of the albedos at 2350 and 2740 A is relatively insensitive to the model used, and is 0.73 +- 0.1. The albedo at 2740 A is found to be 0.65 +- 0.1 when g is assumed to be 0.75. (author)

  9. Some observational aspects of compact galactic X-ray sources

    International Nuclear Information System (INIS)

    Heise, J.

    1982-01-01

    This thesis contains the following observations of compact galactic X-ray sources: i) the X-ray experiments onboard the Astronomical Netherlands Satellite ANS, ii) a rocket-borne ultra soft X-ray experiment and iii) the Objective Grating Spectrometer onboard the EINSTEIN observatory. In Chapter I the various types of compact galactic X-ray sources are reviewed and put into the perspective of earlier and following observations. In Chapter II the author presents some of the observations of high luminosity X-ray sources, made with ANS, including the detection of soft X-rays from the compact X-ray binary Hercules X-1 and the ''return to the high state'' of the black hole candidate Cygnus X-1. Chapter III deals with transient X-ray phenomena. Results on low luminosity galactic X-ray sources are collected in Chapter IV. (Auth.)

  10. Hi-GAL: The Herschel Infrared Galactic Plane Survey

    OpenAIRE

    Molinari, S.; Swinyard, B.; Bally, J.; Barlow, M.; Bernard, J.-P.; Martin, P.; Moore, T.; Noriega-Crespo, A.; Plume, R.; Testi, L.; Zavagno, A.; Abergel, A.; Ali, B.; André, P.; Baluteau, J.-P.

    2010-01-01

    Hi-GAL, the Herschel infrared Galactic Plane Survey, is an Open Time Key Project of the Herschel Space Observatory. It will make an unbiased photometric survey of the inner Galactic plane by mapping a 2° wide strip in the longitude range ∣l∣ < 60° in five wavebands between 70 μm and 500 μm. The aim of Hi-GAL is to detect the earliest phases of the formation of molecular clouds and high-mass stars and to use the optimum combination of Herschel wavelength coverage, sensitivity, mapping strategy...

  11. Searching for dual active galactic nuclei

    Indian Academy of Sciences (India)

    K. Rubinur

    2018-02-09

    Feb 9, 2018 ... Abstract. Binary or dual active galactic nuclei (DAGN) are expected from galaxy formation theories. How- ... cuss results from the multi-frequency Expanded Very .... mid-IR color using WISE observations where they have.

  12. Galactic rings revisited - I. CVRHS classifications of 3962 ringed galaxies from the Galaxy Zoo 2 Database

    Science.gov (United States)

    Buta, Ronald J.

    2017-11-01

    Rings are important and characteristic features of disc-shaped galaxies. This paper is the first in a series that re-visits galactic rings with the goals of further understanding the nature of the features and for examining their role in the secular evolution of galaxy structure. The series begins with a new sample of 3962 galaxies drawn from the Galaxy Zoo 2 citizen science data base, selected because zoo volunteers recognized a ring-shaped pattern in the morphology as seen in Sloan Digital Sky Survey colour images. The galaxies are classified within the framework of the Comprehensive de Vaucouleurs revised Hubble-Sandage system. It is found that zoo volunteers cued on the same kinds of ring-like features that were recognized in the 1995 Catalogue of Southern Ringed Galaxies. This paper presents the full catalogue of morphological classifications, comparisons with other sources of classifications and some histograms designed mainly to highlight the content of the catalogue. The advantages of the sample are its large size and the generally good quality of the images; the main disadvantage is the low physical resolution that limits the detectability of linearly small rings such as nuclear rings. The catalogue includes mainly inner and outer disc rings and lenses. Cataclysmic (`encounter-driven') rings (such as ring and polar ring galaxies) are recognized in less than 1 per cent of the sample.

  13. "HUBBLE, the astronomer, the telescope, the results"

    CERN Multimedia

    CERN. Geneva

    2011-01-01

    The fundamental discoveries made by Edwin Hubble in the first quarter of the last century will be presented. The space telescope bearing his name will be introduced, as well as the strategy put in place by NASA and the European Space Agency for its operation and its maintenance on-orbit. The personal experience of the speaker having participated in two of five servicing mission will be exposed and illustrated by pictures taken on-orbit. Finally, the main results obtained by the orbital observatory will be presented, in particular the ones related to the large scale structure of the Universe and its early history

  14. The HDUV Survey: Six Lyman Continuum Emitter Candidates at z ˜ 2 Revealed by HST UV Imaging

    Science.gov (United States)

    Naidu, R. P.; Oesch, P. A.; Reddy, N.; Holden, B.; Steidel, C. C.; Montes, M.; Atek, H.; Bouwens, R. J.; Carollo, C. M.; Cibinel, A.; Illingworth, G. D.; Labbé, I.; Magee, D.; Morselli, L.; Nelson, E. J.; van Dokkum, P. G.; Wilkins, S.

    2017-09-01

    We present six galaxies at z˜ 2 that show evidence of Lyman continuum (LyC) emission based on the newly acquired UV imaging of the Hubble Deep UV legacy survey (HDUV) conducted with the WFC3/UVIS camera on the Hubble Space Telescope (HST). At the redshift of these sources, the HDUV F275W images partially probe the ionizing continuum. By exploiting the HST multiwavelength data available in the HDUV/GOODS fields, models of the UV spectral energy distributions, and detailed Monte Carlo simulations of the intergalactic medium absorption, we estimate the absolute ionizing photon escape fractions of these galaxies to be very high—typically > 60 % (> 13 % for all sources at 90% likelihood). Our findings are in broad agreement with previous studies that found only a small fraction of galaxies with high escape fraction. These six galaxies compose the largest sample yet of LyC leaking candidates at z˜ 2 whose inferred LyC flux has been observed at HST resolution. While three of our six candidates show evidence of hosting an active galactic nucleus, two of these are heavily obscured and their LyC emission appears to originate from star-forming regions rather than the central nucleus. Extensive multiwavelength data in the GOODS fields, especially the near-IR grism spectra from the 3D-HST survey, enable us to study the candidates in detail and tentatively test some recently proposed indirect methods to probe LyC leakage. High-resolution spectroscopic follow-up of our candidates will help constrain such indirect methods, which are our only hope of studying f esc at z˜ 5-9 in the JWST era. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the data archive at the Space Telescope Science Institute. STScI is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.

  15. Conformal Gravity: Dark Matter and Dark Energy

    Directory of Open Access Journals (Sweden)

    Robert K. Nesbet

    2013-01-01

    Full Text Available This short review examines recent progress in understanding dark matter, dark energy, and galactic halos using theory that departs minimally from standard particle physics and cosmology. Strict conformal symmetry (local Weyl scaling covariance, postulated for all elementary massless fields, retains standard fermion and gauge boson theory but modifies Einstein–Hilbert general relativity and the Higgs scalar field model, with no new physical fields. Subgalactic phenomenology is retained. Without invoking dark matter, conformal gravity and a conformal Higgs model fit empirical data on galactic rotational velocities, galactic halos, and Hubble expansion including dark energy.

  16. Galactic Dark Matter and Terrestrial Periodicities

    National Research Council Canada - National Science Library

    Clube, S

    1998-01-01

    .... The Earth may thus be regarded as a probe of the disc environment; and to account for the periodicity, the Galactic disc is required to have a substantial dark matter component ( approx .15 molar mass/cu pc...

  17. Dust and molecules in extra-galactic planetary nebulae

    Science.gov (United States)

    Garcia-Hernandez, Domingo Aníbal

    2015-08-01

    Extra-galactic planetary nebulae (PNe) permit the study of dust and molecules in metallicity environments other than the Galaxy. Their known distances lower the number of free parameters in the observations vs. models comparison, providing strong constraints on the gas-phase and solid-state astrochemistry models. Observations of PNe in the Galaxy and other Local Group galaxies such as the Magellanic Clouds (MC) provide evidence that metallicity affects the production of dust as well as the formation of complex organic molecules and inorganic solid-state compounds in their circumstellar envelopes. In particular, the lower metallicity MC environments seem to be less favorable to dust production and the frequency of carbonaceous dust features and complex fullerene molecules is generally higher with decreasing metallicity. Here, I present an observational review of the dust and molecular content in extra-galactic PNe as compared to their higher metallicity Galactic counterparts. A special attention is given to the level of dust processing and the formation of complex organic molecules (e.g., polycyclic aromatic hydrocarbons, fullerenes, and graphene precursors) depending on metallicity.

  18. THE GALACTIC POPULATION OF YOUNG γ-RAY PULSARS

    International Nuclear Information System (INIS)

    Watters, Kyle P.; Romani, Roger W.

    2011-01-01

    We have simulated a Galactic population of young pulsars and compared with the Fermi LAT sample, constraining the birth properties, beaming and evolution of these spin-powered objects. Using quantitative tests of agreement with the distributions of observed spin and pulse properties, we find that short birth periods P 0 ∼ 50 ms and γ-ray beams arising in the outer magnetosphere, dominated by a single pole, are strongly preferred. The modeled relative numbers of radio-detected and radio-quiet objects agrees well with the data. Although the sample is local, extrapolation to the full Galaxy implies a γ-ray pulsar birthrate 1/(59 yr). This is shown to be in good agreement with the estimated Galactic core collapse rate and with the local density of OB star progenitors. We give predictions for the numbers of expected young pulsar detections if Fermi LAT observations continue 10 years. In contrast to the potentially significant contribution of unresolved millisecond pulsars, we find that young pulsars should contribute little to the Galactic γ-ray background.

  19. Does electromagnetic radiation accelerate galactic cosmic rays

    Science.gov (United States)

    Eichler, D.

    1977-01-01

    The 'reactor' theories of Tsytovich and collaborators (1973) of cosmic-ray acceleration by electromagnetic radiation are examined in the context of galactic cosmic rays. It is shown that any isotropic synchrotron or Compton reactors with reasonable astrophysical parameters can yield particles with a maximum relativistic factor of only about 10,000. If they are to produce particles with higher relativistic factors, the losses due to inverse Compton scattering of the electromagnetic radiation in them outweigh the acceleration, and this violates the assumptions of the theory. This is a critical restriction in the context of galactic cosmic rays, which have a power-law spectrum extending up to a relativistic factor of 1 million.

  20. Revelations in our own backyard: Chandra’s unique Galactic Center discoveries

    NARCIS (Netherlands)

    Markoff, S.

    2010-01-01

    Before the launch of Chandra, our Galactic Center supermassive black hole, Sgr A*, had never been positively identified outside the radio bands. A great deal has changed in the past decade, starting with the discovery that our own backyard harbors a very weak, yet clearly active, galactic nucleus. I

  1. A polarized fast radio burst at low Galactic latitude

    Science.gov (United States)

    Petroff, E.; Burke-Spolaor, S.; Keane, E. F.; McLaughlin, M. A.; Miller, R.; Andreoni, I.; Bailes, M.; Barr, E. D.; Bernard, S. R.; Bhandari, S.; Bhat, N. D. R.; Burgay, M.; Caleb, M.; Champion, D.; Chandra, P.; Cooke, J.; Dhillon, V. S.; Farnes, J. S.; Hardy, L. K.; Jaroenjittichai, P.; Johnston, S.; Kasliwal, M.; Kramer, M.; Littlefair, S. P.; Macquart, J. P.; Mickaliger, M.; Possenti, A.; Pritchard, T.; Ravi, V.; Rest, A.; Rowlinson, A.; Sawangwit, U.; Stappers, B.; Sullivan, M.; Tiburzi, C.; van Straten, W.; ANTARES Collaboration; Albert, A.; André, M.; Anghinolfi, M.; Anton, G.; Ardid, M.; Aubert, J.-J.; Avgitas, T.; Baret, B.; Barrios-Martí, J.; Basa, S.; Bertin, V.; Biagi, S.; Bormuth, R.; Bourret, S.; Bouwhuis, M. C.; Bruijn, R.; Brunner, J.; Busto, J.; Capone, A.; Caramete, L.; Carr, J.; Celli, S.; Chiarusi, T.; Circella, M.; Coelho, J. A. B.; Coleiro, A.; Coniglione, R.; Costantini, H.; Coyle, P.; Creusot, A.; Deschamps, A.; de Bonis, G.; Distefano, C.; di Palma, I.; Donzaud, C.; Dornic, D.; Drouhin, D.; Eberl, T.; El Bojaddaini, I.; Elsässer, D.; Enzenhöfer, A.; Felis, I.; Fusco, L. A.; Galatà, S.; Gay, P.; Geißelsöder, S.; Geyer, K.; Giordano, V.; Gleixner, A.; Glotin, H.; Grégoire, T.; Gracia-Ruiz, R.; Graf, K.; Hallmann, S.; van Haren, H.; Heijboer, A. J.; Hello, Y.; Hernández-Rey, J. J.; Hößl, J.; Hofestädt, J.; Hugon, C.; Illuminati, G.; James, C. W.; de Jong, M.; Jongen, M.; Kadler, M.; Kalekin, O.; Katz, U.; Kießling, D.; Kouchner, A.; Kreter, M.; Kreykenbohm, I.; Kulikovskiy, V.; Lachaud, C.; Lahmann, R.; Lefèvre, D.; Leonora, E.; Lotze, M.; Loucatos, S.; Marcelin, M.; Margiotta, A.; Marinelli, A.; Martínez-Mora, J. A.; Mathieu, A.; Mele, R.; Melis, K.; Michael, T.; Migliozzi, P.; Moussa, A.; Mueller, C.; Nezri, E.; Pǎvǎlaş, G. E.; Pellegrino, C.; Perrina, C.; Piattelli, P.; Popa, V.; Pradier, T.; Quinn, L.; Racca, C.; Riccobene, G.; Roensch, K.; Sánchez-Losa, A.; Saldaña, M.; Salvadori, I.; Samtleben, D. F. E.; Sanguineti, M.; Sapienza, P.; Schnabel, J.; Seitz, T.; Sieger, C.; Spurio, M.; Stolarczyk, Th.; Taiuti, M.; Tayalati, Y.; Trovato, A.; Tselengidou, M.; Turpin, D.; Tönnis, C.; Vallage, B.; Vallée, C.; van Elewyck, V.; Vivolo, D.; Vizzoca, A.; Wagner, S.; Wilms, J.; Zornoza, J. D.; Zúñiga, J.; H.E.S.S. Collaboration; Abdalla, H.; Abramowski, A.; Aharonian, F.; Ait Benkhali, F.; Akhperjanian, A. G.; Andersson, T.; Angüner, E. O.; Arrieta, M.; Aubert, P.; Backes, M.; Balzer, A.; Barnard, M.; Becherini, Y.; Tjus, J. Becker; Berge, D.; Bernhard, S.; Bernlöhr, K.; Blackwell, R.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bordas, P.; Bregeon, J.; Brun, F.; Brun, P.; Bryan, M.; Bulik, T.; Capasso, M.; Casanova, S.; Cerruti, M.; Chakraborty, N.; Chalme-Calvet, R.; Chaves, R. C. G.; Chen, A.; Chevalier, J.; Chrétien, M.; Colafrancesco, S.; Cologna, G.; Condon, B.; Conrad, J.; Cui, Y.; Davids, I. D.; Decock, J.; Degrange, B.; Deil, C.; Devin, J.; Dewilt, P.; Dirson, L.; Djannati-Ataï, A.; Domainko, W.; Donath, A.; Drury, L. O'c.; Dubus, G.; Dutson, K.; Dyks, J.; Edwards, T.; Egberts, K.; Eger, P.; Ernenwein, J.-P.; Eschbach, S.; Farnier, C.; Fegan, S.; Fernandes, M. V.; Fiasson, A.; Fontaine, G.; Förster, A.; Funk, S.; Füßling, M.; Gabici, S.; Gajdus, M.; Gallant, Y. A.; Garrigoux, T.; Giavitto, G.; Giebels, B.; Glicenstein, J. F.; Gottschall, D.; Goyal, A.; Grondin, M.-H.; Hadasch, D.; Hahn, J.; Haupt, M.; Hawkes, J.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hervet, O.; Hinton, J. A.; Hofmann, W.; Hoischen, C.; Holler, M.; Horns, D.; Ivascenko, A.; Jacholkowska, A.; Jamrozy, M.; Janiak, M.; Jankowsky, D.; Jankowsky, F.; Jingo, M.; Jogler, T.; Jouvin, L.; Jung-Richardt, I.; Kastendieck, M. A.; Katarzyński, K.; Kerszberg, D.; Khélifi, B.; Kieffer, M.; King, J.; Klepser, S.; Klochkov, D.; Kluźniak, W.; Kolitzus, D.; Komin, Nu.; Kosack, K.; Krakau, S.; Kraus, M.; Krayzel, F.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lau, J.; Lees, J.-P.; Lefaucheur, J.; Lefranc, V.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J.-P.; Leser, E.; Lohse, T.; Lorentz, M.; Liu, R.; López-Coto, R.; Lypova, I.; Marandon, V.; Marcowith, A.; Mariaud, C.; Marx, R.; Maurin, G.; Maxted, N.; Mayer, M.; Meintjes, P. J.; Meyer, M.; Mitchell, A. M. W.; Moderski, R.; Mohamed, M.; Mohrmann, L.; Morâ, K.; Moulin, E.; Murach, T.; de Naurois, M.; Niederwanger, F.; Niemiec, J.; Oakes, L.; O'Brien, P.; Odaka, H.; Öttl, S.; Ohm, S.; Ostrowski, M.; Oya, I.; Padovani, M.; Panter, M.; Parsons, R. D.; Pekeur, N. W.; Pelletier, G.; Perennes, C.; Petrucci, P.-O.; Peyaud, B.; Piel, Q.; Pita, S.; Poon, H.; Prokhorov, D.; Prokoph, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Reimer, A.; Reimer, O.; Renaud, M.; Reyes, R. De Los; Rieger, F.; Romoli, C.; Rosier-Lees, S.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Salek, D.; Sanchez, D. A.; Santangelo, A.; Sasaki, M.; Schlickeiser, R.; Schulz, A.; Schüssler, F.; Schwanke, U.; Schwemmer, S.; Settimo, M.; Seyffert, A. S.; Shafi, N.; Shilon, I.; Simoni, R.; Sol, H.; Spanier, F.; Spengler, G.; Spies, F.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stinzing, F.; Stycz, K.; Sushch, I.; Tavernet, J.-P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tibaldo, L.; Tiziani, D.; Tluczykont, M.; Trichard, C.; Tuffs, R.; Uchiyama, Y.; Walt, D. J. Van Der; van Eldik, C.; van Rensburg, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Viana, A.; Vincent, P.; Vink, J.; Voisin, F.; Völk, H. J.; Vuillaume, T.; Wadiasingh, Z.; Wagner, S. J.; Wagner, P.; Wagner, R. M.; White, R.; Wierzcholska, A.; Willmann, P.; Wörnlein, A.; Wouters, D.; Yang, R.; Zabalza, V.; Zaborov, D.; Zacharias, M.; Zanin, R.; Zdziarski, A. A.; Zech, A.; Zefi, F.; Ziegler, A.; Żywucka, N.

    2017-08-01

    We report on the discovery of a new fast radio burst (FRB), FRB 150215, with the Parkes radio telescope on 2015 February 15. The burst was detected in real time with a dispersion measure (DM) of 1105.6 ± 0.8 pc cm-3, a pulse duration of 2.8^{+1.2}_{-0.5} ms, and a measured peak flux density assuming that the burst was at beam centre of 0.7^{+0.2}_{-0.1} Jy. The FRB originated at a Galactic longitude and latitude of 24.66°, 5.28° and 25° away from the Galactic Center. The burst was found to be 43 ± 5 per cent linearly polarized with a rotation measure (RM) in the range -9 < RM < 12 rad m-2 (95 per cent confidence level), consistent with zero. The burst was followed up with 11 telescopes to search for radio, optical, X-ray, γ-ray and neutrino emission. Neither transient nor variable emission was found to be associated with the burst and no repeat pulses have been observed in 17.25 h of observing. The sightline to the burst is close to the Galactic plane and the observed physical properties of FRB 150215 demonstrate the existence of sight lines of anomalously low RM for a given electron column density. The Galactic RM foreground may approach a null value due to magnetic field reversals along the line of sight, a decreased total electron column density from the Milky Way, or some combination of these effects. A lower Galactic DM contribution might explain why this burst was detectable whereas previous searches at low latitude have had lower detection rates than those out of the plane.

  2. Two chemically similar stellar overdensities on opposite sides of the plane of the Galactic disk.

    Science.gov (United States)

    Bergemann, Maria; Sesar, Branimir; Cohen, Judith G; Serenelli, Aldo M; Sheffield, Allyson; Li, Ting S; Casagrande, Luca; Johnston, Kathryn V; Laporte, Chervin F P; Price-Whelan, Adrian M; Schönrich, Ralph; Gould, Andrew

    2018-03-15

    Our Galaxy is thought to have an active evolutionary history, dominated over the past ten billion years or so by star formation, the accretion of cold gas and, in particular, the merging of clumps of baryonic and dark matter. The stellar halo-the faint, roughly spherical component of the Galaxy-reveals rich 'fossil' evidence of these interactions, in the form of stellar streams, substructures and chemically distinct stellar components. The effects of interactions with dwarf galaxies on the content and morphology of the Galactic disk are still being explored. Recent studies have identified kinematically distinct stellar substructures and moving groups of stars in our Galaxy, which may have extragalactic origins. There is also mounting evidence that stellar overdensities (regions with greater-than-average stellar density) at the interface between the outer disk and the halo could have been caused by the interaction of a dwarf galaxy with the disk. Here we report a spectroscopic analysis of 14 stars from two stellar overdensities, each lying about five kiloparsecs above or below the Galactic plane-locations suggestive of an association with the stellar halo. We find that the chemical compositions of these two groups of stars are almost identical, both within and between these overdensities, and closely match the abundance patterns of stars in the Galactic disk. We conclude that these stars came from the disk, and that the overdensities that they are part of were created by tidal interactions of the disk with passing or merging dwarf galaxies.

  3. Accretion disks in active galactic nuclei

    International Nuclear Information System (INIS)

    Shields, G.A.

    1989-01-01

    Active galactic nuclei (AGN) have taunted astrophysicists for a quarter century. How do these objects produce huge luminosities---in some cases, far outshining our galaxy---from a region perhaps no larger than the solar system? Accretion onto supermassive black holes has been widely considered the best buy in theories of AGN. Much work has gone into accretion disk theory, searches for black holes in galactic nuclei, and observational tests. These efforts have not proved the disk model, but there is progress. Evidence for black holes in the nuclei of nearby galaxies is provided by observations of stellar velocities, and radiation from the disk's hot surface may be observed in the ultraviolet (UV) and neighboring spectral bands. In the review, the author describe some of the recent work on accretion disks in AGN, with an emphasis on points of contact between theory and observation

  4. The typecasting of active galactic nuclei: Mrk 590 no longer fits the role

    Energy Technology Data Exchange (ETDEWEB)

    Denney, K. D.; De Rosa, G.; Croxall, K.; Gupta, A.; Fausnaugh, M. M.; Grier, C. J.; Martini, P.; Mathur, S.; Peterson, B. M.; Pogge, R. W.; Shappee, B. J. [Department of Astronomy, The Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Bentz, M. C., E-mail: denney@astronomy.ohio-state.edu [Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30303 (United States)

    2014-12-01

    We present multiwavelength observations that trace more than 40 yr in the life of the active galactic nucleus (AGN) in Mrk 590, traditionally known as a classic Seyfert 1 galaxy. From spectra recently obtained from Hubble Space Telescope, Chandra, and the Large Binocular Telescope, we find that the activity in the nucleus of Mrk 590 has diminished so significantly that the continuum luminosity is a factor of 100 lower than the peak luminosity probed by our long-baseline observations. Furthermore, the broad emission lines, once prominent in the UV/optical spectrum, have all but disappeared. Since AGN type is defined by the presence of broad emission lines in the optical spectrum, our observations demonstrate that Mrk 590 has now become a 'changing-look' AGN. If classified by recent optical spectra, Mrk 590 would be a Seyfert ∼1.9–2, where the only broad emission line still visible in the optical spectrum is a weak component of Hα. As an additional consequence of this change, we have definitively detected UV narrow-line components in a Type 1 AGN, allowing an analysis of these emission-line components with high-resolution COS spectra. These observations challenge the historical paradigm that AGN type is only a consequence of the line-of-sight viewing angle toward the nucleus in the presence of a geometrically flattened, obscuring medium (i.e., the torus). Our data instead suggest that the current state of Mrk 590 is a consequence of the change in luminosity, which implies the black hole accretion rate has significantly decreased.

  5. The typecasting of active galactic nuclei: Mrk 590 no longer fits the role

    International Nuclear Information System (INIS)

    Denney, K. D.; De Rosa, G.; Croxall, K.; Gupta, A.; Fausnaugh, M. M.; Grier, C. J.; Martini, P.; Mathur, S.; Peterson, B. M.; Pogge, R. W.; Shappee, B. J.; Bentz, M. C.

    2014-01-01

    We present multiwavelength observations that trace more than 40 yr in the life of the active galactic nucleus (AGN) in Mrk 590, traditionally known as a classic Seyfert 1 galaxy. From spectra recently obtained from Hubble Space Telescope, Chandra, and the Large Binocular Telescope, we find that the activity in the nucleus of Mrk 590 has diminished so significantly that the continuum luminosity is a factor of 100 lower than the peak luminosity probed by our long-baseline observations. Furthermore, the broad emission lines, once prominent in the UV/optical spectrum, have all but disappeared. Since AGN type is defined by the presence of broad emission lines in the optical spectrum, our observations demonstrate that Mrk 590 has now become a 'changing-look' AGN. If classified by recent optical spectra, Mrk 590 would be a Seyfert ∼1.9–2, where the only broad emission line still visible in the optical spectrum is a weak component of Hα. As an additional consequence of this change, we have definitively detected UV narrow-line components in a Type 1 AGN, allowing an analysis of these emission-line components with high-resolution COS spectra. These observations challenge the historical paradigm that AGN type is only a consequence of the line-of-sight viewing angle toward the nucleus in the presence of a geometrically flattened, obscuring medium (i.e., the torus). Our data instead suggest that the current state of Mrk 590 is a consequence of the change in luminosity, which implies the black hole accretion rate has significantly decreased.

  6. Galactic Outflows, Star Formation Histories, and Timescales in Starburst Dwarf Galaxies from STARBIRDS

    Science.gov (United States)

    McQuinn, Kristen B. W.; Skillman, Evan D.; Heilman, Taryn N.; Mitchell, Noah P.; Kelley, Tyler

    2018-03-01

    Winds are predicted to be ubiquitous in low-mass, actively star-forming galaxies. Observationally, winds have been detected in relatively few local dwarf galaxies, with even fewer constraints placed on their timescales. Here, we compare galactic outflows traced by diffuse, soft X-ray emission from Chandra Space Telescope archival observations to the star formation histories derived from Hubble Space Telescope imaging of the resolved stellar populations in six starburst dwarfs. We constrain the longevity of a wind to have an upper limit of 25 Myr based on galaxies whose starburst activity has already declined, although a larger sample is needed to confirm this result. We find an average 16% efficiency for converting the mechanical energy of stellar feedback to thermal, soft X-ray emission on the 25 Myr timescale, somewhat higher than simulations predict. The outflows have likely been sustained for timescales comparable to the duration of the starbursts (i.e., 100's Myr), after taking into account the time for the development and cessation of the wind. The wind timescales imply that material is driven to larger distances in the circumgalactic medium than estimated by assuming short, 5-10 Myr starburst durations, and that less material is recycled back to the host galaxy on short timescales. In the detected outflows, the expelled hot gas shows various morphologies which are not consistent with a simple biconical outflow structure. The sample and analysis are part of a larger program, the STARBurst IRregular Dwarf Survey (STARBIRDS), aimed at understanding the lifecycle and impact of starburst activity in low-mass systems.

  7. WATCHDOG: A COMPREHENSIVE ALL-SKY DATABASE OF GALACTIC BLACK HOLE X-RAY BINARIES

    International Nuclear Information System (INIS)

    Tetarenko, B. E.; Sivakoff, G. R.; Heinke, C. O.; Gladstone, J. C.

    2016-01-01

    With the advent of more sensitive all-sky instruments, the transient universe is being probed in greater depth than ever before. Taking advantage of available resources, we have established a comprehensive database of black hole (and black hole candidate) X-ray binary (BHXB) activity between 1996 and 2015 as revealed by all-sky instruments, scanning surveys, and select narrow-field X-ray instruments on board the INTErnational Gamma-Ray Astrophysics Laboratory, Monitor of All-Sky X-ray Image, Rossi X-ray Timing Explorer, and Swift telescopes; the Whole-sky Alberta Time-resolved Comprehensive black-Hole Database Of the Galaxy or WATCHDOG. Over the past two decades, we have detected 132 transient outbursts, tracked and classified behavior occurring in 47 transient and 10 persistently accreting BHs, and performed a statistical study on a number of outburst properties across the Galactic population. We find that outbursts undergone by BHXBs that do not reach the thermally dominant accretion state make up a substantial fraction (∼40%) of the Galactic transient BHXB outburst sample over the past ∼20 years. Our findings suggest that this “hard-only” behavior, observed in transient and persistently accreting BHXBs, is neither a rare nor recent phenomenon and may be indicative of an underlying physical process, relatively common among binary BHs, involving the mass-transfer rate onto the BH remaining at a low level rather than increasing as the outburst evolves. We discuss how the larger number of these “hard-only” outbursts and detected outbursts in general have significant implications for both the luminosity function and mass-transfer history of the Galactic BHXB population

  8. The INTEGRAL Galactic bulge monitoring program: the first 1.5 years

    NARCIS (Netherlands)

    Kuulkers, E.; Shaw, S.E.; Paizis, A.; Chenevez, J.; Brandt, S.; Courvoisier, T.J.L.; Domingo, A.; Ebisawa, K.; Kretschmar, P.; Markwardt, C.B.; Mowlavi, N.; Oosterbroek, T.; Orr, A.; Rísquez, D.; Sanchez-Fernandez, C.; Wijnands, R.

    2007-01-01

    Aims.The Galactic bulge region is a rich host of variable high-energy point sources. Since 2005, February 17 we are monitoring the source activity in the Galactic bulge region regularly and frequently, i.e., about every three days, with the instruments onboard INTEGRAL. Thanks to the large field of

  9. Probing the Galactic Structure of the Milky Way with H II Regions

    Science.gov (United States)

    Red, Wesley Alexander; Wenger, Trey V.; Balser, Dana; Anderson, Loren; Bania, Thomas

    2018-01-01

    Mapping the structure of the Milky Way is challenging since we reside within the Galactic disk and distances are difficult to determine. Elemental abundances provide important constraints on theories of the formation and evolution of the Milky Way. HII regions are the brightest objects in the Galaxy at radio wavelengths and are detected across the entire Galactic disk. We use the Jansky Very Large Array (VLA) to observe the radio recombination line (RRL) and continuum emission of 120 Galactic HII regions located across the Galactic disk. In thermal equilibrium, metal abundances are expected to set the nebular electron temperature with high abundances producing low temperatures. We derive the metallicity of HII regions using an empirical relation between an HII region's radio recombination line-to-continuum ratio and nebular metallicity. Here we focus on a subset of 20 HII regions from our sample that have been well studied with the Green Bank Telescope (GBT) to test our data reduction pipeline and analysis methods. Our goal is to expand this study to the Southern skies with the Australia Telescope Compact Array and create a metallicity map of the entire Galactic disk.

  10. Acceleration of galactic cosmic rays in shock waves

    International Nuclear Information System (INIS)

    Lagage, P.O.

    1981-06-01

    The old problem of the origin of cosmic rays has triggered off fresh interest owing to the discovery of a new model which enables a lot of energy to be transferred to a small number of particles on the one hand and the discovery of the coronal environment in which this transfer occurs, on the other. In this paper, interest is taken in the galactic cosmic rays and an endeavour is made to find out if the model can reveal the existence of cosmic rays over a wide energy range. The existence of an energy break, predicted by the model, was recognized fairly early but, in the literature, it varies from 30 GeV ro 10 6 GeV according to the authors. A study has been made of the two main causes of an energy break: the sphericity of the shock and the life time of the shock wave [fr

  11. Variability search in M 31 using principal component analysis and the Hubble Source Catalogue

    Science.gov (United States)

    Moretti, M. I.; Hatzidimitriou, D.; Karampelas, A.; Sokolovsky, K. V.; Bonanos, A. Z.; Gavras, P.; Yang, M.

    2018-06-01

    Principal component analysis (PCA) is being extensively used in Astronomy but not yet exhaustively exploited for variability search. The aim of this work is to investigate the effectiveness of using the PCA as a method to search for variable stars in large photometric data sets. We apply PCA to variability indices computed for light curves of 18 152 stars in three fields in M 31 extracted from the Hubble Source Catalogue. The projection of the data into the principal components is used as a stellar variability detection and classification tool, capable of distinguishing between RR Lyrae stars, long-period variables (LPVs) and non-variables. This projection recovered more than 90 per cent of the known variables and revealed 38 previously unknown variable stars (about 30 per cent more), all LPVs except for one object of uncertain variability type. We conclude that this methodology can indeed successfully identify candidate variable stars.

  12. Active galactic nuclei

    CERN Document Server

    Blandford, RD; Woltjer, L

    1990-01-01

    Starting with this volume, the Lecture Notes of the renowned Advanced Courses of the Swiss Society for Astrophysics and Astronomy will be published annually. In each course, three extensive lectures given by leading experts in their respective fields cover different and essential aspects of the subject. The 20th course, held at Les Diablerets in April 1990, dealt with current research on active galactic nuclei; it represents the most up-to-date views on the subject, presented with particular regard for clarity. The previous courses considered a wide variety of subjects, beginning with ""Theory

  13. A possible explanation for the origin of the magnetic fields in the galactic spiral arm

    International Nuclear Information System (INIS)

    Bagge, E.

    1975-04-01

    A theory for the movement of the interstellar gas under the influence of the gravitational field in the neighbourhood of the galactic arms is developped. If this gas bears electric charges of one sign (ωsub(e) approximately 3,000 electrons/gramm) a system of electric currents is produced by the relative velocity of the galactic gas and the spiral arms for which the streamlines are concentrated a little more to the galactic plane than above and below of it. By this way a large spaced magnetic field along the galactic arms is generated with opposite directions of the magnetic field vectors on the two sides of the galactic plane. (orig.) [de

  14. The Hubble series: convergence properties and redshift variables

    International Nuclear Information System (INIS)

    Cattoen, Celine; Visser, Matt

    2007-01-01

    In cosmography, cosmokinetics and cosmology, it is quite common to encounter physical quantities expanded as a Taylor series in the cosmological redshift z. Perhaps the most well-known exemplar of this phenomenon is the Hubble relation between distance and redshift. However, we now have considerable high-z data available; for instance, we have supernova data at least back to redshift z ∼ 1.75. This opens up the theoretical question as to whether or not the Hubble series (or more generally any series expansion based on the z-redshift) actually converges for large redshift. Based on a combination of mathematical and physical reasonings, we argue that the radius of convergence of any series expansion in z is less than or equal to 1, and that z-based expansions must break down for z > 1, corresponding to a universe less than half of its current size. Furthermore, we shall argue on theoretical grounds for the utility of an improved parametrization y = z/(1 + z). In terms of the y-redshift, we again argue that the radius of convergence of any series expansion in y is less than or equal to 1, so that y-based expansions are likely to be good all the way back to the big bang (y = 1), but that y-based expansions must break down for y < -1, now corresponding to a universe more than twice its current size

  15. Central Structural Parameters of Early-Type Galaxies as Viewed with Nicmos on the Hubble Space Telescope

    Science.gov (United States)

    Ravindranath, Swara; Ho, Luis C.; Peng, Chien Y.; Filippenko, Alexei V.; Sargent, Wallace L. W.

    2001-08-01

    , which corresponds to MnucH=-12.8 to -18.4 mag. Although the detection rate of compact nuclei seems favored toward galaxies spectroscopically classified as weak active galactic nuclei, we find no significant correlation between the near-infrared nuclear luminosities and either the optical emission-line luminosities or the inferred black hole masses. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.

  16. Chemical Cartography. I. A Carbonicity Map of the Galactic Halo

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young Sun; Kim, Young Kwang [Department of Astronomy and Space Science, Chungnam National University, Daejeon 34134 (Korea, Republic of); Beers, Timothy C.; Placco, Vinicius; Yoon, Jinmi [Department of Physics and JINA Center for the Evolution of the Elements, University of Notre Dame, Notre Dame, IN 46556 (United States); Carollo, Daniela [Research School of Astronomy and Astrophysics, The Australian National University, Canberra, ACT 2611 (Australia); Masseron, Thomas [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Jung, Jaehun, E-mail: youngsun@cnu.ac.kr [Department of Astronomy, Space Science, and Geology, Chungnam National University, Daejeon 34134 (Korea, Republic of)

    2017-02-10

    We present the first map of carbonicity, [C/Fe], for the halo system of the Milky Way, based on a sample of over 100,000 main-sequence turnoff stars with available spectroscopy from the Sloan Digital Sky Survey. This map, which explores distances up to 15 kpc from the Sun, reveals clear evidence for the dual nature of the Galactic halo, based on the spatial distribution of stellar carbonicity. The metallicity distribution functions of stars in the inner- and outer-halo regions of the carbonicity map reproduce those previously argued to arise from contributions of the inner- and outer-halo populations, with peaks at [Fe/H] = −1.5 and −2.2, respectively. From consideration of the absolute carbon abundances for our sample, A (C), we also confirm that the carbon-enhanced metal-poor (CEMP) stars in the outer-halo region exhibit a higher frequency of CEMP-no stars (those with no overabundances of heavy neutron-capture elements) than of CEMP- s stars (those with strong overabundances of elements associated with the s -process), whereas the stars in the inner-halo region exhibit a higher frequency of CEMP- s stars. We argue that the contrast in the behavior of the CEMP-no and CEMP- s fractions in these regions arises from differences in the mass distributions of the mini-halos from which the stars of the inner- and outer-halo populations formed, which gives rise in turn to the observed dichotomy of the Galactic halo.

  17. Some consequences of shear on galactic dynamos with helicity fluxes

    Science.gov (United States)

    Zhou, Hongzhe; Blackman, Eric G.

    2017-08-01

    Galactic dynamo models sustained by supernova (SN) driven turbulence and differential rotation have revealed that the sustenance of large-scale fields requires a flux of small-scale magnetic helicity to be viable. Here we generalize a minimalist analytic version of such galactic dynamos to explore some heretofore unincluded contributions from shear on the total turbulent energy and turbulent correlation time, with the helicity fluxes maintained by either winds, diffusion or magnetic buoyancy. We construct an analytic framework for modelling the turbulent energy and correlation time as a function of SN rate and shear. We compare our prescription with previous approaches that include only rotation. The solutions depend separately on the rotation period and the eddy turnover time and not just on their ratio (the Rossby number). We consider models in which these two time-scales are allowed to be independent and also a case in which they are mutually dependent on radius when a radial-dependent SN rate model is invoked. For the case of a fixed rotation period (or a fixed radius), we show that the influence of shear is dramatic for low Rossby numbers, reducing the correlation time of the turbulence, which, in turn, strongly reduces the saturation value of the dynamo compared to the case when the shear is ignored. We also show that even in the absence of winds or diffusive fluxes, magnetic buoyancy may be able to sustain sufficient helicity fluxes to avoid quenching.

  18. Nature of 'unseen' galactic envelopes

    International Nuclear Information System (INIS)

    McCrea, W.H.

    1983-01-01

    In this paper, it is suggested that unseen matter in a galactic envelope or in a group of galaxies may consist of substellar bodies originating as the first permanent 'stars' in the formation of a very massive galaxy according to a model for galaxy-formation on the basis of simple big-bang cosmology. (Auth.)

  19. PIPER and Polarized Galactic Foregrounds

    Science.gov (United States)

    Chuss, David

    2009-01-01

    In addition to probing inflationary cosmology, PIPER will measure the polarized dust emission from the Galaxy. PIPER will be capable of full (I,0,U,V) measurement over four frequency bands ' These measurements will provide insight into the physics of dust grains and a probe of the Galactic magnetic field on large and intermediate scales.

  20. The variance of the locally measured Hubble parameter explained with different estimators

    DEFF Research Database (Denmark)

    Odderskov, Io Sandberg Hess; Hannestad, Steen; Brandbyge, Jacob

    2017-01-01

    We study the expected variance of measurements of the Hubble constant, H0, as calculated in either linear perturbation theory or using non-linear velocity power spectra derived from N-body simulations. We compare the variance with that obtained by carrying out mock observations in the N......-body simulations, and show that the estimator typically used for the local Hubble constant in studies based on perturbation theory is different from the one used in studies based on N-body simulations. The latter gives larger weight to distant sources, which explains why studies based on N-body simulations tend...... to obtain a smaller variance than that found from studies based on the power spectrum. Although both approaches result in a variance too small to explain the discrepancy between the value of H0 from CMB measurements and the value measured in the local universe, these considerations are important in light...

  1. The Hubble Tarantula Treasury Project

    Science.gov (United States)

    Sabbi, Elena; Lennon, D. J.; Anderson, J.; Van Der Marel, R. P.; Aloisi, A.; Boyer, M. L.; Cignoni, M.; De Marchi, G.; de Mink, S. E.; Evans, C. J.; Gallagher, J. S.; Gordon, K. D.; Gouliermis, D.; Grebel, E.; Koekemoer, A. M.; Larsen, S. S.; Panagia, N.; Ryon, J. E.; Smith, L. J.; Tosi, M.; Zaritsky, D. F.

    2014-01-01

    The Tarantula Nebula (a.k.a. 30 Doradus) in the Large Magellanic Cloud is one of the most famous objects in astronomy, with first astronomical references being more than 150 years old. Today the Tarantula Nebula and its ionizing cluster R136 are considered one of the few known starburst regions in the Local Group and an ideal test bed to investigate the temporal and spatial evolution of a prototypical starburst on a sub-cluster scale. The Hubble Tarantula Treasury Project (HTTP) is a panchromatic imaging survey of the stellar populations and ionized gas in the Tarantula Nebula that reaches into the sub-solar mass regime (eBook that explains how stars form and evolve using images from HTTP. The eBook utilizes emerging technology that works in conjunction with the built-in accessibility features in the Apple iPad to allow totally blind users to interactively explore complex astronomical images.

  2. Modelling the Galactic bar using OGLE-II red clump giant stars

    NARCIS (Netherlands)

    Rattenbury, Nicholas J.; Mao, Shude; Sumi, Takahiro; Smith, Martin C.

    2007-01-01

    Red clump giant (RCG) stars can be used as distance indicators to trace the mass distribution of the Galactic bar. We use RCG stars from 44 bulge fields from the OGLE-II microlensing collaboration data base to constrain analytic triaxial models for the Galactic bar. We find the bar major-axis is

  3. Star formation history of the Galactic bulge from deep HST imaging of low reddening windows

    Science.gov (United States)

    Bernard, Edouard J.; Schultheis, Mathias; Di Matteo, Paola; Hill, Vanessa; Haywood, Misha; Calamida, Annalisa

    2018-04-01

    Despite the huge amount of photometric and spectroscopic efforts targetting the Galactic bulge over the past few years, its age distribution remains controversial owing to both the complexity of determining the age of individual stars and the difficult observing conditions. Taking advantage of the recent release of very deep, proper-motion-cleaned colour-magnitude diagrams (CMDs) of four low reddening windows obtained with the Hubble Space Telescope (HST), we used the CMD-fitting technique to calculate the star formation history (SFH) of the bulge at -2° > b > -4° along the minor axis. We find that over 80 percent of the stars formed before 8 Gyr ago, but that a significant fraction of the super-solar metallicity stars are younger than this age. Considering only the stars that are within reach of the current generation of spectrographs (i.e. V≲ 21), we find that 10 percent of the bulge stars are younger than 5 Gyr, while this fraction rises to 20-25 percent in the metal-rich peak. The age-metallicity relation is well parametrized by a linear fit implying an enrichment rate of dZ/dt ˜ 0.005 Gyr-1. Our metallicity distribution function accurately reproduces that observed by several spectroscopic surveys of Baade's window, with the bulk of stars having metal-content in the range [Fe/H]˜-0.7 to ˜0.6, along with a sparse tail to much lower metallicities.

  4. The Metallicity Gradient of the Old Galactic Bulge Population

    Science.gov (United States)

    Sans Fuentes, Sara Alejandra; De Ridder, Joris

    Understanding the structure, formation and evolution of the Galactic Bulge requires the proper determination of spatial metallicity gradients in both the radial and vertical directions. RR Lyrae pulsators, known to be excellent distance indicators, may hold the key to determining these gradients. Jurcsik and Kovacs (A&A 312:111, 1996) has shown that RR Lyrae light curves and the phase difference of their Fourier decomposition, ϕ 31, can be used to estimate photometric metallicities. The existence of galactic bulge metallicity gradients is a currently debated topic that would help pinpoint the Galaxy's formation and evolution. A recent study of the OGLE-III Galactic Bulge RR Lyrae Population by Pietrukowicz et al. (ApJ 750:169, 2012) suggests that the spatial distribution is uniform. We investigate how small a gradient would be detectable within the current S/N levels of the present data set, given the random and systematic errors associated with the derivation of a photometric metallicity versus spatial position relationship.

  5. Astronaut Anna Fisher in NBS Training For Hubble Space Telescope

    Science.gov (United States)

    1980-01-01

    The Hubble Space Telescope (HST) is a cooperative program of the European Space Agency (ESA) and the National Aeronautical and Space Administration (NASA) to operate a long-lived space-based observatory. It was the flagship mission of NASA's Great Observatories program. The HST program began as an astronomical dream in the 1940s. During the 1970s and 1980s, the HST was finally designed and built becoming operational in the 1990s. The HST was deployed into a low-Earth orbit on April 25, 1990 from the cargo bay of the Space Shuttle Discovery (STS-31). The design of the HST took into consideration its length of service and the necessity of repairs and equipment replacement by making the body modular. In doing so, subsequent shuttle missions could recover the HST, replace faulty or obsolete parts and be re-released. Marshall Space Flight Center's (MSFC's) Neutral Buoyancy Simulator (NBS) served as the test center for shuttle astronauts training for Hubble related missions. Shown is astronaut Anna Fisher training on a mock-up of a modular section of the HST for an axial scientific instrument change out.

  6. THE CONTRIBUTION OF SPIRAL ARMS TO THE THICK DISK ALONG THE HUBBLE SEQUENCE

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Medina, L. A. [Departamento de Física, Centro de Investigación y de Estudios Avanzados del IPN, A.P. 14-740, 07000 México D.F. (Mexico); Pichardo, B.; Moreno, E. [Instituto de Astronomía, Universidad Nacional Autónoma de México, A.P. 70-264, 04510, México D.F. (Mexico); Pérez-Villegas, A., E-mail: lmedina@fis.cinvestav.mx, E-mail: barbara@astro.unam.mx, E-mail: mperez@astro.unam.mx [Centro de Radioastronomía y Astrofísica, Universidad Nacional Autónoma de México, Apartado Postal 3-72, 58090 Morelia, Michoacán (Mexico)

    2015-04-01

    The first mechanism invoked to explain the existence of the thick disk in the Milky Way Galaxy was the spiral arms. Up-to-date work summons several other possibilities that together seem to better explain this component of our Galaxy. All these processes must affect distinct types of galaxies differently, but the contribution of each one has not been straightforward to quantify. In this work, we present the first comprehensive study of the effect of the spiral arms on the formation of thick disks, looking at early- to late-type disk galaxies in an attempt to characterize and quantify this specific mechanism in galactic potentials. To this purpose, we perform test particle numerical simulations in a three-dimensional spiral galactic potential (for early- to late-types spiral galaxies). By varying the parameters of the spiral arms we found that the vertical heating of the stellar disk becomes very important in some cases and strongly depends on the galactic morphology, pitch angle, arm mass, and the arm pattern speed. The later the galaxy type, the larger is the effect on the disk heating. This study shows that the physical mechanism causing the vertical heating is different from simple resonant excitation. The spiral pattern induces chaotic behavior not linked necessarily to resonances but to direct scattering of disk stars, which leads to an increase of the velocity dispersion. We applied this study to the specific example of the Milky Way Galaxy, for which we have also added an experiment that includes the Galactic bar. From this study we deduce that the effect of spiral arms of a Milky-Way-like potential on the dynamical vertical heating of the disk is negligible, unlike later galactic potentials for disks.

  7. High-resolution spectrum of the Galactic center

    Science.gov (United States)

    Mahoney, W. A.; Ling, J. C.; Wheaton, W. A.

    1993-01-01

    Recent observations of the Galactic center region indicate the presence of a narrow gamma-ray line feature at 170 keV, and theoretical speculations suggest it may result from Compton backscattering of the 511 keV annihilation radiation. The high-resolution gamma-ray spectrometer on HEAO 3 observed the Galactic center in the fall of 1979 and in the spring of 1980. In view of the recent developments, the HEAO data were re-examined to search for this new feature and to look for possible correlations with the 511 keV line emisison. No evidence for such Compton backscattered radiation was found and the derived upper limits for emission in a line feature near 170 keV were well below previously reported fluxes, indicating possible time variability.

  8. HI Clouds Near the Galactic Center: Possible Tracers of the Nuclear Wind

    Science.gov (United States)

    Lockman, Felix J.; McClure-Griffiths, Naomi; DiTeodoro, Enrico

    2017-01-01

    We have used the Green Bank Telescope to discover more than one hundred neutral hydrogen clouds that appear to be embedded in the Fermi Bubble -- the Milky Way’s nuclear wind. With the other members of this population that were previously found with the Australia Telescope Compact Array, we now have a sample of about 200 such clouds. They are identified by their peculiar velocities. The cloud kinematics show no trace of Galactic rotation or association with the Galactic bar. Near longitude zero the clouds can have values of VLSR = +-200 km/s. No clouds have been detected with |VLSR| > 350 km/s. The clouds are concentrated toward the Galactic plane, but some are still found to |b|=10 degrees, or z > 1 kpc at the Galactic Center, where the current surveys end. These clouds are important tracers of conditions in the nuclear wind of the Milky Way.

  9. Correlation between galactic HI and the cosmic microwave background

    International Nuclear Information System (INIS)

    Land, Kate; Slosar, Anze

    2007-01-01

    We revisit the issue of a correlation between the atomic hydrogen gas in our local galaxy and the cosmic microwave background, a detection of which has been claimed in some literature. We cross correlate the 21-cm emission of galactic atomic hydrogen as traced by the Leiden/Argentine/Bonn Galactic Hi survey with the 3-year cosmic microwave background data from the Wilkinson microwave anisotropy probe. We consider a number of angular scales, masks, and Hi velocity slices and find no statistically significant correlation

  10. Galactic searches for dark matter

    International Nuclear Information System (INIS)

    Strigari, Louis E.

    2013-01-01

    For nearly a century, more mass has been measured in galaxies than is contained in the luminous stars and gas. Through continual advances in observations and theory, it has become clear that the dark matter in galaxies is not comprised of known astronomical objects or baryonic matter, and that identification of it is certain to reveal a profound connection between astrophysics, cosmology, and fundamental physics. The best explanation for dark matter is that it is in the form of a yet undiscovered particle of nature, with experiments now gaining sensitivity to the most well-motivated particle dark matter candidates. In this article, I review measurements of dark matter in the Milky Way and its satellite galaxies and the status of Galactic searches for particle dark matter using a combination of terrestrial and space-based astroparticle detectors, and large scale astronomical surveys. I review the limits on the dark matter annihilation and scattering cross sections that can be extracted from both astroparticle experiments and astronomical observations, and explore the theoretical implications of these limits. I discuss methods to measure the properties of particle dark matter using future experiments, and conclude by highlighting the exciting potential for dark matter searches during the next decade, and beyond

  11. Evolution of Supernova Remnants Near the Galactic Center

    Energy Technology Data Exchange (ETDEWEB)

    Yalinewich, A.; Piran, T.; Sari, R. [Racah Institute of Physics, the Hebrew University, 91904, Jerusalem (Israel)

    2017-03-20

    Supernovae near the Galactic center (GC) evolve differently from regular Galactic supernovae. This is mainly due to the environment into which the supernova remnants (SNRs) propagate. SNRs near the GC propagate into a wind swept environment with a velocity directed away from the GC, and a graded density profile. This causes these SNRs to be non-spherical, and to evolve faster than their Galactic counterparts. We develop an analytic theory for the evolution of explosions within a stellar wind, and verify it using a hydrodynamic code. We show that such explosions can evolve in one of three possible morphologies. Using these results we discuss the association between the two SNRs (SGR East and SGR A’s bipolar radio/X-ray lobes) and the two neutron stars (the Cannonball and SGR J1745-2900) near the GC. We show that, given the morphologies of the SNR and positions of the neutron stars, the only possible association is between SGR A’s bipolar radio/X-ray lobes and SGR J1745-2900. If a compact object was created in the explosion of SGR East, it remains undetected, and the SNR of the supernova that created the Cannonball has already disappeared.

  12. Cloud-particle galactic gas dynamics and star formation

    International Nuclear Information System (INIS)

    Roberts, W.W. Jr.

    1983-01-01

    Galactic gas dynamics, spiral structure, and star formation are discussed in the context of N-body computational studies based on a cloud-particle model of the interstellar medium. On the small scale, the interstellar medium appears to be cloud-dominated and supernova-perturbed. The cloud-particle model simulates cloud-cloud collisions, the formation of stellar associations, and supernova explosions as dominant local processes. On the large scale in response to a spiral galactic gravitational field, global density waves and galactic shocks develop with large-scale characteristics similar to those found in continuum gas dynamical studies. Both the system of gas clouds and the system of young stellar associations forming from the clouds share in the global spiral structure. However, with the attributes of neither assuming a continuum of gas (as in continuum gas dynamical studies) nor requiring a prescribed equation of state such as the isothermal condition so often employed, the cloud-particle picture retains much of the detail lost in earlier work: namely, the small-scale features and structures so important in understanding the local, turbulent state of the interstellar medium as well as the degree of raggedness often observed superposed on global spiral structure. (Auth.)

  13. Beyond the Hubble Constant

    Science.gov (United States)

    1995-08-01

    about the distances to galaxies and thereby about the expansion rate of the Universe. A simple way to determine the distance to a remote galaxy is by measuring its redshift, calculate its velocity from the redshift and divide this by the Hubble constant, H0. For instance, the measured redshift of the parent galaxy of SN 1995K (0.478) yields a velocity of 116,000 km/sec, somewhat more than one-third of the speed of light (300,000 km/sec). From the universal expansion rate, described by the Hubble constant (H0 = 20 km/sec per million lightyears as found by some studies), this velocity would indicate a distance to the supernova and its parent galaxy of about 5,800 million lightyears. The explosion of the supernova would thus have taken place 5,800 million years ago, i.e. about 1,000 million years before the solar system was formed. However, such a simple calculation works only for relatively ``nearby'' objects, perhaps out to some hundred million lightyears. When we look much further into space, we also look far back in time and it is not excluded that the universal expansion rate, i.e. the Hubble constant, may have been different at earlier epochs. This means that unless we know the change of the Hubble constant with time, we cannot determine reliable distances of distant galaxies from their measured redshifts and velocities. At the same time, knowledge about such change or lack of the same will provide unique information about the time elapsed since the Universe began to expand (the ``Big Bang''), that is, the age of the Universe and also its ultimate fate. The Deceleration Parameter q0 Cosmologists are therefore eager to determine not only the current expansion rate (i.e., the Hubble constant, H0) but also its possible change with time (known as the deceleration parameter, q0). Although a highly accurate value of H0 has still not become available, increasing attention is now given to the observational determination of the second parameter, cf. also the Appendix at the

  14. Solar system anomalies: Revisiting Hubble's law

    Science.gov (United States)

    Plamondon, R.

    2017-12-01

    This paper investigates the impact of a new metric recently published [R. Plamondon and C. Ouellet-Plamondon, in On Recent Developments in Theoretical and Experimental General Relativity, Astrophysics, and Relativistic Field Theories, edited by K. Rosquist, R. T. Jantzen, and R. Ruffini (World Scientific, Singapore, 2015), p. 1301] for studying the space-time geometry of a static symmetric massive object. This metric depends on a complementary error function (erfc) potential that characterizes the emergent gravitation field predicted by the model. This results in two types of deviations as compared to computations made on the basis of a Newtonian potential: a constant and a radial outcome. One key feature of the metric is that it postulates the existence of an intrinsic physical constant σ , the massive object-specific proper length that scales measurements in its surroundings. Although σ must be evaluated experimentally, we use a heuristic to estimate its value and point out some latent relationships between the Hubble constant, the secular increase in the astronomical unit, and the Pioneers delay. Indeed, highlighting the systematic errors that emerge when the effect of σ is neglected, one can link the Hubble constant H 0 to σ Sun and the secular increase V AU to σ Earth . The accuracy of the resulting numerical predictions, H 0 = 74 . 42 ( 0 . 02 ) ( km / s ) / Mpc and V AU ≅ 7.8 cm yr-1 , calls for more investigations of this new metric by specific experts. Moreover, we investigate the expected impacts of the new metric on the flyby anomalies, and we revisit the Pioneers delay. It is shown that both phenomena could be partly taken into account within the context of this unifying paradigm, with quite accurate numerical predictions. A correction for the osculating asymptotic velocity at the perigee of the order of 10 mm/s and an inward radial acceleration of 8 . 34 × 10 - 10 m / s 2 affecting the Pioneer ! space crafts could be explained by this new model.

  15. Radio pulsars and transients in the Galactic center

    International Nuclear Information System (INIS)

    Lazio, Joseph; Deneva, J S; Bower, Geoffrey C; Cordes, J M; Hyman, Scott D; Backer, D C; Bhat, R; Chatterjee, S; Demorest, P; Ransom, S M; Vlemmings, W

    2006-01-01

    Radio pulsars and transients provide powerful probes of the star formation history, interstellar medium, and gravitational potential of the Galactic center. Historical radio observations of the Galactic center have not emphasized the time domain aspect of observing this region. We summarize a series of recent searches for and observations of radio transients and pulsars that make use of two advances in technology. The first is the formation of large fields of view (∼> 1 0 ) at relatively longer wavelengths (λ > 1 m), and the second is the construction of receivers and instruments capable of collecting data on microsecond time scales at relatively short wavelengths (∼ 3 cm)

  16. Galactic supernova remnants: radio evolution and population characteristics

    International Nuclear Information System (INIS)

    Caswell, J.L.; Lerche, I.

    1979-01-01

    Shell SNRs show a systematic gradient of radio surface brightness normal to the galactic plane, and a measured scale height for this effect has been obtained. The progenitor distribution and birth rate are significantly modified when allowance is made for the effect. The galactic height dependence of radio surface brightness satisfactorily accounts for the otherwise anomalous high-latitude SNR AD1006. It also provides a crucial clue to the origin of the radio emission, suggesting that the interstellar magnetic field is dominant over internally generated fields in shell SNRs. The same conclusion is reached from a consideration of the cumulative number count of shell SNRs

  17. Gauging the Galactic thick disk with RR Lyrae stars

    Directory of Open Access Journals (Sweden)

    Cruz G.

    2012-02-01

    Full Text Available In this contribution we present results from the QUEST RR Lyrae Survey of the thick disk. The survey spans ~480 sq. deg. at low latitude |b| < 30°, with multi-epoch VRI observations, obtained with the QUEST-I camera at the 1m Jürgen Stock Schmidt telescope located at the National Astronomical Observatory of Venezuela. This constitutes the first deep RR Lyrae survey of the Galactic thick disk conducted at low galactic latitudes, covering simultaneously a large range in radial (8Galactic Plane. The spatial coverage of the survey together with the multi-band multi-epoch photometry allowed for the derivation of the thick disk structural parameters from in situ RR Lyrae stars having accurate distances (errors <7% and individual reddenings derived from each star’s color curve at minimum light. Moreover, the use of RR Lyrae stars as tracers ensures negligible contamination from the Galactic thin disk. We find a thick disk mean scale height hZ = 0.94 ± 0.11kpc and scale length hR = 3.2 ± 0.4kpc, derived from the vertical and radial mean density profiles of RR Lyrae stars. We also find evidence of thick disk flaring and results that may suggest the thick disk radial density profile shows signs of antitruncation. We discuss our findings in the context of recent thick disk formation models.

  18. Constraining the Distribution of L and T Dwarfs in the Galaxy

    Science.gov (United States)

    Ryan, R. E., Jr.; Hathi, N. P.; Cohen, S. H.; Windhorst, R. A.

    2005-10-01

    We estimate the thin-disk scale height of the Galactic population of L and T dwarfs based on star counts from 15 deep parallel fields from the Hubble Space Telescope. From these observations, we have identified 28 candidate L and T dwarfs based on their i'-z' color and morphology. By comparing these star counts with a simple Galactic model, we estimate the scale height to be 350+/-50 pc, which is consistent with the increase in vertical scale with decreasing stellar mass and is independent of reddening, color-magnitude limits, and other Galactic parameters. With this refined measure, we predict that less than 109 Msolar of the Milky Way can be in the form of L and T dwarfs and confirm that high-latitude, z~=6 galaxy surveys that use the i'-band dropout technique are 97%-100% free of L and T dwarf interlopers. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the Data Archive at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.

  19. Interstellar scattering, the North Polar Spur, and a possible new class of compact galactic radio sources

    International Nuclear Information System (INIS)

    Rickard, J.J.; Cronyn, W.M.

    1979-01-01

    A reanalysis of the Cambridge interplanetary scintillation (IPS) catalog of angular sizes of radio sources reveals that there is no statistically significant evidence for increased interstellar angular broadening in the galactic plane, in conflict with previous studies. There is a significant contribution to the decrease in the ratios of scintillators/nonscintillators and strong/weak scintillators near the plane from galactic supernova remnants which were included in previous studies of source counts. Using the catalog angular sizes, we show there is no lack of small sources of any size in the plane. However, we do find a 500 deg 2 region near the North Polar Spur (NPS) radio feature, a suspected supernova remnant, where there seems to be a true deficit of small sources. This deficit may be caused by enhanced broadening associated with the NPS. Our conclusion about the apparent absence of angular broadening in the plane conflicts with estimates of broadening based upon the geometrical relationship between time delay and angular size applied to pulsar coherence bandwidths and pulse decay times. To explain this discrepancy, we suggest two alternatives: (1) Large angular broadening of extragalactic sources in the plane may indeed exist so that sources exhibiting IPS (i.e., of small angular diameter) must be galactic in nature. Properties of this possible new class of sources--called scintars--are discussed, and 42 scintar candidates are identified. (2) There is little angular broadening of extragalactic sources, and the pulsar data are being misinterpreted

  20. An Einstein survey of the 1 keV soft X-ray background in the Galactic plane

    Science.gov (United States)

    Stanford, John M.; Caillault, Jean-Pierre

    1994-01-01

    We have analyzed 56 Einstein Observatory Imaging Proportional Counter (IPC) observations within +/- 3 deg of the Galactic plane in order to determine the low-latitude soft X-ray background flux in the 0.56-1.73 keV band. Any detected X-ray point source which fell within our regions of study was removed from the image, enabling us to present maps of the background flux as a function of Galactic latitude along 18 meridians. These maps reveal considerable structure to the background in the Galactic plane on an angular scale of approximately 1 deg. Our results are compared with those of an earlier study of the 1 keV X-ray background along l = 25 deg by Kahn & Caillault. The double-peaked structure they found is not discernible in our results, possibly because of the presence of solar backscattered flux in their data. A model which takes into account contributions to the background by extragalactic and stellar sources, the distribution of both atomic and molecular absorbing material with the Galaxy, the energy dependence of the cross section for absorption of X-rays, and the energy dependence of the detector has been constructed and fitted to these new data to derive constraints on the scale height, temperature, and volume emissivity of the unaccounted-for X-ray-emitting material. The results of this model along l = 25 deg are roughly similar to those of the model of Kahn & Caillault along the same meridian.

  1. Abundances in the Galactic bulge

    Energy Technology Data Exchange (ETDEWEB)

    Barbuy, B; Alves-Brito, A [Universidade de Sao Paulo, IAG, Rua do Matao 1226, Sao Paulo 05508-900 (Brazil); Ortolani, S; Zoccali, M [Dipartimento di Astronomia, Universita di Padova, Vicolo dell' Osservatorio 2, I-35122 Padova (Italy); Hill, V; Gomez, A [Observatoire de Paris-Meudon, 92195 Meudon Cedex (France); Melendez, J [Centro de AstrofIsica da Universidade de Porto, Rua das Estrelas, 4150-762 Porto (Portugal); Asplund, M [Max Planck Institute for Astrophysics, Postfach 1317, 85741 Garching (Germany); Bica, E [Departamento de Astronomia, Universidade Federal do Rio Grande do Sul, CP 15051, Porto Alegre 91501-970 (Brazil); Renzini, A [Osservatorio Astronomico di Padova, Vicolo dell' Osservatorio 5, I-35122 Padova (Italy); Minniti, D [Department of Astronomy and Astrophysics, Universidad Catolica de Chile, Casilla 306, Santiago 22 (Chile)], E-mail: barbuy@astro.iag.usp.br

    2008-12-15

    The metallicity distribution and abundance ratios of the Galactic bulge are reviewed. Issues raised by recent work of different groups, in particular the high metallicity end, the overabundance of {alpha}-elements in the bulge relative to the thick disc and the measurement of giants versus dwarfs, are discussed. Abundances in the old moderately metal-poor bulge globular clusters are described.

  2. Prospects for Galactic TeV Neutrino Astronomy

    Energy Technology Data Exchange (ETDEWEB)

    Kistler, Matthew D [Department of Physics, Ohio State University, Columbus, Ohio 43210 (United States)

    2007-03-15

    In just the last few years, the catalog of known Galactic TeV gamma-ray sources has grown dramatically, due to the abilities of current air Cerenkov telescopes to measure both the spectrum and morphology of the TeV emission. While these properties can be very well measured, they are not necessarily sufficient to determine whether the gamma rays are produced by leptonic or hadronic processes. However, if the gamma-ray emission is hadronic, there must be an accompanying flux of neutrinos, which can be determined from the observed gamma-ray spectrum. The upcoming km3 neutrino telescopes will allow for a direct test of the gamma-ray production mechanism and the possibility of examining the highest possible energies, with important consequences for our understanding of Galactic cosmic-ray production.

  3. Prospects for Galactic TeV Neutrino Astronomy

    International Nuclear Information System (INIS)

    Kistler, Matthew D

    2007-01-01

    In just the last few years, the catalog of known Galactic TeV gamma-ray sources has grown dramatically, due to the abilities of current air Cerenkov telescopes to measure both the spectrum and morphology of the TeV emission. While these properties can be very well measured, they are not necessarily sufficient to determine whether the gamma rays are produced by leptonic or hadronic processes. However, if the gamma-ray emission is hadronic, there must be an accompanying flux of neutrinos, which can be determined from the observed gamma-ray spectrum. The upcoming km3 neutrino telescopes will allow for a direct test of the gamma-ray production mechanism and the possibility of examining the highest possible energies, with important consequences for our understanding of Galactic cosmic-ray production

  4. Stability of BEC galactic dark matter halos

    Energy Technology Data Exchange (ETDEWEB)

    Guzmán, F.S.; Lora-Clavijo, F.D.; González-Avilés, J.J.; Rivera-Paleo, F.J., E-mail: guzman@ifm.umich.mx, E-mail: fadulora@ifm.umich.mx, E-mail: javiles@ifm.umich.mx, E-mail: friverap@ifm.umich.mx [Instituto de Física y Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio C-3, Cd. Universitaria, 58040 Morelia, Michoacán (Mexico)

    2013-09-01

    In this paper we show that spherically symmetric BEC dark matter halos, with the sin r/r density profile, that accurately fit galactic rotation curves and represent a potential solution to the cusp-core problem are unstable. We do this by introducing back the density profiles into the fully time-dependent Gross-Pitaevskii-Poisson system of equations. Using numerical methods to track the evolution of the system, we found that these galactic halos lose mass at an approximate rate of half of its mass in a time scale of dozens of Myr. We consider this time scale is enough as to consider these halos are unstable and unlikely to be formed. We provide some arguments to show that this behavior is general and discuss some other drawbacks of the model that restrict its viability.

  5. Two chemically similar stellar overdensities on opposite sides of the plane of the Galactic disk

    Science.gov (United States)

    Bergemann, Maria; Sesar, Branimir; Cohen, Judith G.; Serenelli, Aldo M.; Sheffield, Allyson; Li, Ting S.; Casagrande, Luca; Johnston, Kathryn V.; Laporte, Chervin F. P.; Price-Whelan, Adrian M.; Schönrich, Ralph; Gould, Andrew

    2018-03-01

    Our Galaxy is thought to have an active evolutionary history, dominated over the past ten billion years or so by star formation, the accretion of cold gas and, in particular, the merging of clumps of baryonic and dark matter. The stellar halo—the faint, roughly spherical component of the Galaxy—reveals rich ‘fossil’ evidence of these interactions, in the form of stellar streams, substructures and chemically distinct stellar components. The effects of interactions with dwarf galaxies on the content and morphology of the Galactic disk are still being explored. Recent studies have identified kinematically distinct stellar substructures and moving groups of stars in our Galaxy, which may have extragalactic origins. There is also mounting evidence that stellar overdensities (regions with greater-than-average stellar density) at the interface between the outer disk and the halo could have been caused by the interaction of a dwarf galaxy with the disk. Here we report a spectroscopic analysis of 14 stars from two stellar overdensities, each lying about five kiloparsecs above or below the Galactic plane—locations suggestive of an association with the stellar halo. We find that the chemical compositions of these two groups of stars are almost identical, both within and between these overdensities, and closely match the abundance patterns of stars in the Galactic disk. We conclude that these stars came from the disk, and that the overdensities that they are part of were created by tidal interactions of the disk with passing or merging dwarf galaxies.

  6. THE BOLOCAM GALACTIC PLANE SURVEY. II. CATALOG OF THE IMAGE DATA

    International Nuclear Information System (INIS)

    Rosolowsky, Erik; Dunham, Miranda K.; Evans, Neal J.; Harvey, Paul; Ginsburg, Adam; Bally, John; Battersby, Cara; Glenn, Jason; Stringfellow, Guy S.; Bradley, E. Todd; Aguirre, James; Cyganowski, Claudia; Dowell, Darren; Drosback, Meredith; Walawender, Josh; Williams, Jonathan P.

    2010-01-01

    We present a catalog of 8358 sources extracted from images produced by the Bolocam Galactic Plane Survey (BGPS). The BGPS is a survey of the millimeter dust continuum emission from the northern Galactic plane. The catalog sources are extracted using a custom algorithm, Bolocat, which was designed specifically to identify and characterize objects in the large-area maps generated from the Bolocam instrument. The catalog products are designed to facilitate follow-up observations of these relatively unstudied objects. The catalog is 98% complete from 0.4 Jy to 60 Jy over all object sizes for which the survey is sensitive ( -2.4±0.1 and that the mean Galactic latitude for sources is significantly below the midplane: (b) = (-0. 0 095 ± 0. 0 001).

  7. Dynamical interpretation of the Hubble sequence of galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Dallaporta, N; Secco, L [Padua Univ. (Italy). Istituto di Astronomia

    1977-08-01

    Brosche (1970) has proposed a theory in which the energy loss due to collisions among gas clouds contained in a galaxy constitutes the driving mechanism for its evolution, through virial equilibrium states, which, from an initial spherical shape, makes it to contract towards an elongated form; moreover, the value of the total angular momentum, assumed as given by uniform rotation, is assumed to determine the galaxy type on the Hubble sequence and to influence strongly the contraction time from the initial spherical to the final flat configuration. The authors modify Brosche's scheme by assuming as models the rotating polytropes of Chandrasekhar and Lebovitz with variable density from centre to border. As a consequence of this change, centrifugal shedding of matter is attained at the equator of the contracting ellipsoid for a configuration with an axial ratio different from zero, so that, hereafter, a flat disk is formed surrounding the internal bulge, with a decreasing overall eccentricity; the rotation curve assumes then an aspect qualitatively similar to the one observed for spiral galaxies. The feedback of star formation which, by exhausting the material of the gas clouds, is able to stop the driving mechanism of evolution before the final flat stage is attained has also been considered at several positions according to the value of the angular momentum. Numerical calculations seem to indicate that one can obtain in this way, by varying the angular momentum and the initial number of clouds, different galaxy types (elliptical, lenticular, spiral) resembling those of the Hubble sequence.

  8. VERY METAL-POOR STARS IN THE OUTER GALACTIC BULGE FOUND BY THE APOGEE SURVEY

    International Nuclear Information System (INIS)

    García Pérez, Ana E.; Majewski, Steven R.; Hearty, Fred R.; Cunha, Katia; Shetrone, Matthew; Johnson, Jennifer A.; Zasowski, Gail; Smith, Verne V.; Beers, Timothy C.; Schiavon, Ricardo P.; Holtzman, Jon; Nidever, David; Allende Prieto, Carlos; Bizyaev, Dmitry; Ebelke, Garrett; Malanushenko, Elena; Malanushenko, Viktor; Eisenstein, Daniel J.; Frinchaboy, Peter M.; Girardi, Léo

    2013-01-01

    Despite its importance for understanding the nature of early stellar generations and for constraining Galactic bulge formation models, at present little is known about the metal-poor stellar content of the central Milky Way. This is a consequence of the great distances involved and intervening dust obscuration, which challenge optical studies. However, the Apache Point Observatory Galactic Evolution Experiment (APOGEE), a wide-area, multifiber, high-resolution spectroscopic survey within Sloan Digital Sky Survey III, is exploring the chemistry of all Galactic stellar populations at infrared wavelengths, with particular emphasis on the disk and the bulge. An automated spectral analysis of data on 2403 giant stars in 12 fields in the bulge obtained during APOGEE commissioning yielded five stars with low metallicity ([Fe/H] ≤ –1.7), including two that are very metal-poor [Fe/H] ∼ –2.1 by bulge standards. Luminosity-based distance estimates place the 5 stars within the outer bulge, where 1246 of the other analyzed stars may reside. A manual reanalysis of the spectra verifies the low metallicities, and finds these stars to be enhanced in the α-elements O, Mg, and Si without significant α-pattern differences with other local halo or metal-weak thick-disk stars of similar metallicity, or even with other more metal-rich bulge stars. While neither the kinematics nor chemistry of these stars can yet definitively determine which, if any, are truly bulge members, rather than denizens of other populations co-located with the bulge, the newly identified stars reveal that the chemistry of metal-poor stars in the central Galaxy resembles that of metal-weak thick-disk stars at similar metallicity.

  9. VERY METAL-POOR STARS IN THE OUTER GALACTIC BULGE FOUND BY THE APOGEE SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Perez, Ana E.; Majewski, Steven R.; Hearty, Fred R. [Department of Astronomy, University of Virginia, Charlottesville, VA 22904-4325 (United States); Cunha, Katia [Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States); Shetrone, Matthew [McDonald Observatory, University of Texas at Austin, Fort Davis, TX 79734 (United States); Johnson, Jennifer A.; Zasowski, Gail [Department of Astronomy, The Ohio State University, Columbus, OH 43210 (United States); Smith, Verne V.; Beers, Timothy C. [National Optical Astronomy Observatories, Tucson, AZ 85719 (United States); Schiavon, Ricardo P. [Gemini Observatory, 670 N. A' Ohoku Place, Hilo, HI 96720 (United States); Holtzman, Jon [Department of Astronomy, MSC 4500, New Mexico State University, P.O. Box 30001, Las Cruces, NM 88003 (United States); Nidever, David [Department of Astronomy, University of Michigan, Ann Arbor, MI 48109 (United States); Allende Prieto, Carlos [Departamento de Astrofisica, Universidad de La Laguna, E-38206 La Laguna, Tenerife (Spain); Bizyaev, Dmitry; Ebelke, Garrett; Malanushenko, Elena; Malanushenko, Viktor [Apache Point Observatory, P.O. Box 59, Sunspot, NM 88349-0059 (United States); Eisenstein, Daniel J. [Harvard Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Frinchaboy, Peter M. [Department of Physics and Astronomy, Texas Christian University, 2800 South University Drive, Fort Worth, TX 76129 (United States); Girardi, Leo [Laboratorio Interinstitucional de e-Astronomia - LIneA, Rua Gal. Jose Cristino 77, Rio de Janeiro, RJ - 20921-400 (Brazil); and others

    2013-04-10

    Despite its importance for understanding the nature of early stellar generations and for constraining Galactic bulge formation models, at present little is known about the metal-poor stellar content of the central Milky Way. This is a consequence of the great distances involved and intervening dust obscuration, which challenge optical studies. However, the Apache Point Observatory Galactic Evolution Experiment (APOGEE), a wide-area, multifiber, high-resolution spectroscopic survey within Sloan Digital Sky Survey III, is exploring the chemistry of all Galactic stellar populations at infrared wavelengths, with particular emphasis on the disk and the bulge. An automated spectral analysis of data on 2403 giant stars in 12 fields in the bulge obtained during APOGEE commissioning yielded five stars with low metallicity ([Fe/H] {<=} -1.7), including two that are very metal-poor [Fe/H] {approx} -2.1 by bulge standards. Luminosity-based distance estimates place the 5 stars within the outer bulge, where 1246 of the other analyzed stars may reside. A manual reanalysis of the spectra verifies the low metallicities, and finds these stars to be enhanced in the {alpha}-elements O, Mg, and Si without significant {alpha}-pattern differences with other local halo or metal-weak thick-disk stars of similar metallicity, or even with other more metal-rich bulge stars. While neither the kinematics nor chemistry of these stars can yet definitively determine which, if any, are truly bulge members, rather than denizens of other populations co-located with the bulge, the newly identified stars reveal that the chemistry of metal-poor stars in the central Galaxy resembles that of metal-weak thick-disk stars at similar metallicity.

  10. Determining the nature of faint X-ray sources from the ASCA Galactic center survey

    Science.gov (United States)

    Lutovinov, A. A.; Revnivtsev, M. G.; Karasev, D. I.; Shimansky, V. V.; Burenin, R. A.; Bikmaev, I. F.; Vorob'ev, V. S.; Tsygankov, S. S.; Pavlinsky, M. N.

    2015-05-01

    We present the results of the the identification of six objects from the ASCA Galactic center and Galactic plane surveys: AX J173548-3207, AX J173628-3141, AX J1739.5-2910, AX J1740.4-2856, AX J1740.5-2937, and AX J1743.9-2846. Chandra, XMM-Newton, and XRT/Swift X-ray data have been used to improve the positions of the optical counterparts to these sources. Thereafter, we have carried out a series of spectroscopic observations of the established optical counterparts at the RTT-150 telescope. Analysis of X-ray and optical spectra as well as photometric measurements in a wide wavelength range based on optical and infrared catalogs has allowed the nature of the program sources to be determined. Two X-ray objects have been detected in the error circle of AX J173628-3141: one is a coronally active G star and the other may be a symbiotic star, a red giant with an accreting white dwarf. Three sources (AX J1739.5-2910, AX J1740.5-2937, AX J1743.9-2846) have turned out to be active G-K stars, presumably RS CVn objects, one (AX J1740.4-2856) is an M dwarf, and another one (AX J173548-3207) most likely a low-mass X-ray binary in its low state. The distances and corresponding luminosities of the sources in the soft X-ray band (0.5-10 keV) have been estimated; analysis of deep INTEGRAL Galactic center observations has not revealed a statistically significant flux at energies >20 keV from any of them.

  11. Constraining dark energy with Hubble parameter measurements: an analysis including future redshift-drift observations

    International Nuclear Information System (INIS)

    Guo, Rui-Yun; Zhang, Xin

    2016-01-01

    The nature of dark energy affects the Hubble expansion rate (namely, the expansion history) H(z) by an integral over w(z). However, the usual observables are the luminosity distances or the angular diameter distances, which measure the distance.redshift relation. Actually, the property of dark energy affects the distances (and the growth factor) by a further integration over functions of H(z). Thus, the direct measurements of the Hubble parameter H(z) at different redshifts are of great importance for constraining the properties of dark energy. In this paper, we show how the typical dark energy models, for example, the ΛCDM, wCDM, CPL, and holographic dark energy models, can be constrained by the current direct measurements of H(z) (31 data used in total in this paper, covering the redshift range of z @ element of [0.07, 2.34]). In fact, the future redshift-drift observations (also referred to as the Sandage-Loeb test) can also directly measure H(z) at higher redshifts, covering the range of z @ element of [2, 5]. We thus discuss what role the redshift-drift observations can play in constraining dark energy with the Hubble parameter measurements. We show that the constraints on dark energy can be improved greatly with the H(z) data from only a 10-year observation of redshift drift. (orig.)

  12. Measuring metallicities with Hubble space telescope/wide-field camera 3 photometry

    Energy Technology Data Exchange (ETDEWEB)

    Ross, Teresa L.; Holtzman, Jon A. [Department of Astronomy, New Mexico State University, P.O. Box 30001, MSC 4500, Las Cruces, NM 88003-8001 (United States); Anthony-Twarog, Barbara J.; Twarog, Bruce [Department of Physics and Astronomy, University of Kansas, Lawrence, KS 66045-7582 (United States); Bond, Howard E. [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States); Saha, Abhijit [National Optical Astronomy Observatory, P.O. Box 26732, Tucson, AZ 85726 (United States); Walker, Alistair, E-mail: rosst@nmsu.edu, E-mail: holtz@nmsu.edu, E-mail: bjat@ku.edu, E-mail: btwarog@ku.edu, E-mail: heb11@psu.edu, E-mail: awalker@ctio.noao.edu [Cerro Tololo Inter-American Observatory (CTIO), National Optical Astronomy Observatory, Casilla 603, La Serena (Chile)

    2014-01-01

    We quantified and calibrated the metallicity and temperature sensitivities of colors derived from nine Wide-Field Camera 3 filters on board the Hubble Space Telescope using Dartmouth isochrones and Kurucz atmosphere models. The theoretical isochrone colors were tested and calibrated against observations of five well studied galactic clusters, M92, NGC 6752, NGC 104, NGC 5927, and NGC 6791, all of which have spectroscopically determined metallicities spanning –2.30 < [Fe/H] <+0.4. We found empirical corrections to the Dartmouth isochrone grid for each of the following color-magnitude diagrams (CMDs): (F555W-F814W, F814W), (F336W-F555W, F814W), (F390M-F555W, F814W), and (F390W-F555W, F814W). Using empirical corrections, we tested the accuracy and spread of the photometric metallicities assigned from CMDs and color-color diagrams (which are necessary to break the age-metallicity degeneracy). Testing three color-color diagrams [(F336W-F555W),(F390M-F555W),(F390W-F555W), versus (F555W-F814W)], we found the colors (F390M-F555W) and (F390W-F555W) to be the best suited to measure photometric metallicities. The color (F390W-F555W) requires much less integration time, but generally produces wider metallicity distributions and, at very low metallicity, the metallicity distribution function (MDF) from (F390W-F555W) is ∼60% wider than that from (F390M-F555W). Using the calibrated isochrones, we recovered the overall cluster metallicity to within ∼0.1 dex in [Fe/H] when using CMDs (i.e., when the distance, reddening, and ages are approximately known). The measured MDF from color-color diagrams shows that this method measures metallicities of stellar clusters of unknown age and metallicity with an accuracy of ∼0.2-0.5 dex using F336W-F555W, ∼0.15-0.25 dex using F390M-F555W, and ∼0.2-0.4 dex with F390W-F555W, with the larger uncertainty pertaining to the lowest metallicity range.

  13. GALACTIC AND EXTRAGALACTIC SUPERNOVA REMNANTS AS SITES OF PARTICLE ACCELERATION

    Directory of Open Access Journals (Sweden)

    Manami Sasaki

    2013-12-01

    Full Text Available Supernova remnants, owing to their strong shock waves, are likely sources of Galactic cosmic rays. Studies of supernova remnants in X-rays and gamma rays provide us with new insights into the acceleration of particles to high energies. This paper reviews the basic physics of supernova remnant shocks and associated particle acceleration and radiation processes. In addition, the study of supernova remnant populations in nearby galaxies and the implications for Galactic cosmic ray distribution are discussed.

  14. Dynamical or static radio halo - Is there a galactic wind

    International Nuclear Information System (INIS)

    Lerche, I.; Schlickeiser, R.

    1981-01-01

    The effect of a galactic wind on a radio halo can be best observed at frequencies smaller than about 1 GHz. At higher frequencies static halo models predict the same features as dynamical halo models. External galaxies, which exhibit a break by 0.5 in their high frequency nonthermal integral flux spectrum, are the best candidates for studying the influence of galactic winds on the formation of relativistic electron haloes around these systems. Several such cases are presented

  15. Asteroseismology of the Transiting Exoplanet Host HD 17156 with Hubble Space Telescope Fine Guidance Sensor

    DEFF Research Database (Denmark)

    Gilliland, Ronald L.; McCullough, Peter R.; Nelan, Edmund P.

    2011-01-01

    light curve. Using the density constraint from asteroseismology, and stellar evolution modeling results in M * = 1.285 ± 0.026 M sun, R * = 1.507 ± 0.012 R sun, and a stellar age of 3.2 ± 0.3 Gyr. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science......Observations conducted with the Fine Guidance Sensor on the Hubble Space Telescope (HST) providing high cadence and precision time-series photometry were obtained over 10 consecutive days in 2008 December on the host star of the transiting exoplanet HD 17156b. During this time, 1.0 × 1012 photons...... Institute, which is operated by AURA, Inc., under NASA contract NAS 5-26555....

  16. COBE diffuse infrared background experiment observations of the galactic bulge

    Science.gov (United States)

    Weiland, J. L.; Arendt, R. G.; Berriman, G. B.; Dwek, E.; Freudenreich, H. T.; Hauser, M. G.; Kelsall, T.; Lisse, C. M.; Mitra, M.; Moseley, S. H.

    1994-01-01

    Low angular resolution maps of the Galactic bulge at 1.25, 2.2, 3.5, and 4.9 micrometers obtained by the Diffuse Infrared Background Experiment (DIRBE) onboard NASA's Cosmic Background Explorer (COBE) are presented. After correction for extinction and subtraction of an empirical model for the Galactic disk, the surface brightness distribution of the bulge resembles a flattened ellipse with a minor-to-major axis ratio of approximately 0.6. The bulge minor axis scale height is found to be 2.1 deg +/- 0.2 deg for all four near-infrared wavelengths. Asymmetries in the longitudinal distribution of bulge brightness contours are qualitatively consistent with those expected for a triaxial bar with its near end in the first Galactic quadrant (0 deg less than l less than 90 deg). There is no evidence for an out-of-plane tilt of such a bar.

  17. Widespread rotationally hot hydronium ion in the galactic interstellar medium

    International Nuclear Information System (INIS)

    Lis, D. C.; Phillips, T. G.; Schilke, P.; Comito, C.; Higgins, R.

    2014-01-01

    We present new Herschel observations of the (6,6) and (9,9) inversion transitions of the hydronium ion toward Sagittarius B2(N) and W31C. Sensitive observations toward Sagittarius B2(N) show that the high, ∼500 K, rotational temperatures characterizing the population of the highly excited metastable H 3 O + rotational levels are present over a wide range of velocities corresponding to the Sagittarius B2 envelope, as well as the foreground gas clouds between the Sun and the source. Observations of the same lines toward W31C, a line of sight that does not intersect the Central Molecular Zone but instead traces quiescent gas in the Galactic disk, also imply a high rotational temperature of ∼380 K, well in excess of the kinetic temperature of the diffuse Galactic interstellar medium. While it is plausible that some fraction of the molecular gas may be heated to such high temperatures in the active environment of the Galactic center, characterized by high X-ray and cosmic-ray fluxes, shocks, and high degree of turbulence, this is unlikely in the largely quiescent environment of the Galactic disk clouds. We suggest instead that the highly excited states of the hydronium ion are populated mainly by exoergic chemical formation processes and the temperature describing the rotational level population does not represent the physical temperature of the medium. The same arguments may be applicable to other symmetric top rotors, such as ammonia. This offers a simple explanation of the long-standing puzzle of the presence of a pervasive, hot molecular gas component in the central region of the Milky Way. Moreover, our observations suggest that this is a universal process not limited to the active environments associated with galactic nuclei.

  18. Kinematic structures in galactic disc simulations

    NARCIS (Netherlands)

    Roca-F� brega, S.; Romero-Gómez, M.; Figueras, F.; Antoja Castelltort, Teresa; Valenzuela, O.; Henney, W.J.; Torres-Peimbert, S.

    2011-01-01

    N-body and test particle simulations have been used to characterize the stellar streams in the galactic discs of Milky Way type galaxies. Tools such as the second and third order moments of the velocity ellipsoid and clustering methods -EM-WEKA and FoF- allow characterizing these kinematic

  19. THE DISTANCE TO THE MASSIVE GALACTIC CLUSTER WESTERLUND 2 FROM A SPECTROSCOPIC AND HST PHOTOMETRIC STUDY

    International Nuclear Information System (INIS)

    Vargas Álvarez, Carlos A.; Kobulnicky, Henry A.; Bradley, David R.; Kannappan, Sheila J.; Norris, Mark A.; Cool, Richard J.; Miller, Brendan P.

    2013-01-01

    We present a spectroscopic and photometric determination of the distance to the young Galactic open cluster Westerlund 2 using WFPC2 imaging from the Hubble Space Telescope (HST) and ground-based optical spectroscopy. HST imaging in the F336W, F439W, F555W, and F814W filters resolved many sources previously undetected in ground-based observations and yielded photometry for 1136 stars. We identified 15 new O-type stars, along with two probable binary systems, including MSP 188 (O3 + O5.5). We fit reddened spectral energy distributions based on the Padova isochrones to the photometric data to determine individual reddening parameters R V and A V for O-type stars in Wd2. We find average values (R V ) = 3.77 ± 0.09 and (A V ) = 6.51 ± 0.38 mag, which result in a smaller distance than most other spectroscopic and photometric studies. After a statistical distance correction accounting for close unresolved binaries (factor of 1.08), our spectroscopic and photometric data on 29 O-type stars yield that Westerlund 2 has a distance (d) = 4.16 ± 0.07 (random) +0.26 (systematic) kpc. The cluster's age remains poorly constrained, with an upper limit of 3 Myr. Finally, we report evidence of a faint mid-IR polycyclic aromatic hydrocarbon ring surrounding the well-known binary candidate MSP 18, which appears to lie at the center of a secondary stellar grouping within Westerlund 2.

  20. THE DISTANCE TO THE MASSIVE GALACTIC CLUSTER WESTERLUND 2 FROM A SPECTROSCOPIC AND HST PHOTOMETRIC STUDY

    Energy Technology Data Exchange (ETDEWEB)

    Vargas Alvarez, Carlos A.; Kobulnicky, Henry A. [Department of Physics and Astronomy, University of Wyoming, Dept. 3905, Laramie, WY 82071 (United States); Bradley, David R.; Kannappan, Sheila J.; Norris, Mark A. [Department of Physics and Astronomy, University of North Carolina, Chapel Hill, CB 3255, Phillips Hall, Chapel Hill, NC 27599-3255 (United States); Cool, Richard J. [Observatories of the Carnegie Institution of Washington, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Miller, Brendan P., E-mail: cvargasa@uwyo.edu, E-mail: chipk@uwyo.edu, E-mail: davidbradley512@gmail.com, E-mail: sheila@physics.unc.edu, E-mail: manorris@physics.unc.edu, E-mail: rcool@obs.carnegiescience.edu, E-mail: mbrendan@umich.edu [Department of Astronomy, University of Michigan, 745 Dennison Building, 500 Church St., Ann Arbor, MI 48109 (United States)

    2013-05-15

    We present a spectroscopic and photometric determination of the distance to the young Galactic open cluster Westerlund 2 using WFPC2 imaging from the Hubble Space Telescope (HST) and ground-based optical spectroscopy. HST imaging in the F336W, F439W, F555W, and F814W filters resolved many sources previously undetected in ground-based observations and yielded photometry for 1136 stars. We identified 15 new O-type stars, along with two probable binary systems, including MSP 188 (O3 + O5.5). We fit reddened spectral energy distributions based on the Padova isochrones to the photometric data to determine individual reddening parameters R{sub V} and A{sub V} for O-type stars in Wd2. We find average values (R{sub V} ) = 3.77 {+-} 0.09 and (A{sub V} ) = 6.51 {+-} 0.38 mag, which result in a smaller distance than most other spectroscopic and photometric studies. After a statistical distance correction accounting for close unresolved binaries (factor of 1.08), our spectroscopic and photometric data on 29 O-type stars yield that Westerlund 2 has a distance (d) = 4.16 {+-} 0.07 (random) +0.26 (systematic) kpc. The cluster's age remains poorly constrained, with an upper limit of 3 Myr. Finally, we report evidence of a faint mid-IR polycyclic aromatic hydrocarbon ring surrounding the well-known binary candidate MSP 18, which appears to lie at the center of a secondary stellar grouping within Westerlund 2.

  1. Exact axially symmetric galactic dynamos

    Science.gov (United States)

    Henriksen, R. N.; Woodfinden, A.; Irwin, J. A.

    2018-05-01

    We give a selection of exact dynamos in axial symmetry on a galactic scale. These include some steady examples, at least one of which is wholly analytic in terms of simple functions and has been discussed elsewhere. Most solutions are found in terms of special functions, such as associated Lagrange or hypergeometric functions. They may be considered exact in the sense that they are known to any desired accuracy in principle. The new aspect developed here is to present scale-invariant solutions with zero resistivity that are self-similar in time. The time dependence is either a power law or an exponential factor, but since the geometry of the solution is self-similar in time we do not need to fix a time to study it. Several examples are discussed. Our results demonstrate (without the need to invoke any other mechanisms) X-shaped magnetic fields and (axially symmetric) magnetic spiral arms (both of which are well observed and documented) and predict reversing rotation measures in galaxy haloes (now observed in the CHANG-ES sample) as well as the fact that planar magnetic spirals are lifted into the galactic halo.

  2. THE GALACTIC O-STAR SPECTROSCOPIC SURVEY (GOSSS). II. BRIGHT SOUTHERN STARS

    International Nuclear Information System (INIS)

    Sota, A.; Apellániz, J. Maíz; Alfaro, E. J.; Morrell, N. I.; Barbá, R. H.; Arias, J. I.; Walborn, N. R.; Gamen, R. C.

    2014-01-01

    We present the second installment of GOSSS, a massive spectroscopic survey of Galactic O stars, based on new homogeneous, high signal-to-noise ratio, R ∼ 2500 digital observations from both hemispheres selected from the Galactic O-Star Catalog (GOSC). In this paper we include bright stars and other objects drawn mostly from the first version of GOSC, all of them south of δ = –20°, for a total number of 258 O stars. We also revise the northern sample of Paper I to provide the full list of spectroscopically classified Galactic O stars complete to B = 8, bringing the total number of published GOSSS stars to 448. Extensive sequences of exceptional objects are given, including the early Of/WN, O Iafpe, Ofc, ON/OC, Onfp, Of?p, and Oe types, as well as double/triple-lined spectroscopic binaries. The new spectral subtype O9.2 is also discussed. The magnitude and spatial distributions of the observed sample are analyzed. We also present new results from OWN, a multi-epoch high-resolution spectroscopic survey coordinated with GOSSS that is assembling the largest sample of Galactic spectroscopic massive binaries ever attained. The OWN data combined with additional information on spectroscopic and visual binaries from the literature indicate that only a very small fraction (if any) of the stars with masses above 15-20 M ☉ are born as single systems. In the future we will publish the rest of the GOSSS survey, which is expected to include over 1000 Galactic O stars

  3. THE CHEMICAL EVOLUTION OF THE MONOCEROS RING/GALACTIC ANTICENTER STELLAR STRUCTURE

    International Nuclear Information System (INIS)

    Chou Meiyin; Majewski, Steven R.; Patterson, Richard J.; Cunha, Katia; Smith, Verne V.; MartInez-Delgado, David

    2010-01-01

    The origin of the Galactic Anticenter Stellar Structure (GASS) or 'Monoceros Ring' - a low-latitude overdensity at the edge of the Galactic disk spanning at least the second and third Galactic quadrants-remains controversial. Models for the origin of GASS generally fall into scenarios where either it is a part (e.g., warp) of the Galactic disk or it represents tidal debris from the disruption of a Milky Way (MW) satellite galaxy. To further constrain models for the origin of GASS, we derive chemical abundance patterns from high-resolution spectra for 21 M giants spatially and kinematically identified with it. The abundances of the (mostly) α-element, titanium, and s-process elements, yttrium and lanthanum, for these GASS stars are found to be lower at the same [Fe/H] than those for MW stars, but similar to those of stars in the Sagittarius stream, other dwarf spheroidal galaxies, and the Large Magellanic Cloud. This demonstrates that GASS stars have a chemical enrichment history typical of dwarf galaxies-and unlike those of typical MW stars (at least MW stars near the Sun). Nevertheless, these abundance results cannot definitively rule out the possibility that GASS was dynamically created out of a previously formed, outer MW disk because ΛCDM-based structure formation models show that galactic disks grow outward by accretion of dwarf galaxies. On the other hand, the chemical patterns seen in GASS stars do provide striking verification that accretion of dwarf galaxies has indeed happened at the edge of the MW disk.

  4. Role of Turbulent Damping in Cosmic Ray Galactic Winds

    Science.gov (United States)

    Holguin, Francisco; Ruszkowski, Mateusz; Lazarian, Alex; Yang, H. Y. Karen

    2018-06-01

    Large-scale galactic winds driven by stellar feedback are one phenomenon that influences the dynamical and chemical evolution of a galaxy, pushing and redistributing material throughout the interstellar medium (ISM) and galactic halo. A detailed understanding of the exact physical mechanisms responsible for these winds is lacking. Non-thermal feedback from galactic cosmic rays (CR), high-energy charged particles accelerated in supernovae and young stars, can impact the efficiency in accelerating the wind. In the self-confinement model, CR stream along magnetic field lines at the Alfven speed due to scattering off self-excited Aflv{é}n waves. However, magneto-hydrodynamic (MHD) turbulence stirred up by stellar feedback dissipates these confining waves, allowing CR to be super Aflvenic. Previous simulations relying on a simplified model of transport have shown that super-Alfv{é}nic streaming of CRs can launch a stronger wind. We perform three-dimensional MHD simulations of a section of a galactic disk, including CR streaming dependent on the local environment, using a realistic model of turbulent dissipation of Alfven waves presented in Lazarian (2016). In this implementation, the CR streaming speed can be super Alfv{é}nic depending on local conditions. We compare results for Alfv{é}nic and locally determined streaming, and find that gas/CR distributions and instantaneous mass loading factor of the wind are different depending on the level of turbulence.Lazarian, A. “Damping of Alfven waves by turbulence and its consequences: from cosmic-ray streaming to launching winds.” ApJ. Vol. 833, Num. 2. (2016).

  5. CHEERS Results from NGC 3393. II. Investigating the Extended Narrow-line Region Using Deep Chandra Observations and Hubble Space Telescope Narrow-line Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Maksym, W. Peter; Fabbiano, Giuseppina; Elvis, Martin; Karovska, Margarita; Paggi, Alessandro; Raymond, John [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Wang, Junfeng [Department of Astronomy, Physics Building, Xiamen University Xiamen, Fujian, 361005 (China); Storchi-Bergmann, Thaisa, E-mail: walter.maksym@cfa.harvard.edu [Departamento de Astronomia, Universidade Federal do Rio Grande do Sul, IF, CP 15051, 91501-970 Porto Alegre, RS (Brazil)

    2017-07-20

    The CHandra Extended Emission Line Region Survey (CHEERS) is an X-ray study of nearby active galactic nuclei (AGNs) designed to take full advantage of Chandra 's unique angular resolution by spatially resolving feedback signatures and effects. In the second paper of a series on CHEERS target NGC 3393, we examine deep high-resolution Chandra images and compare them with Hubble Space Telescope narrow-line images of [O iii], [S ii], and H α , as well as previously unpublished mid-ultraviolet (MUV) images. The X-rays provide unprecedented evidence that the S-shaped arms that envelope the nuclear radio outflows extend only ≲0.″2 (≲50 pc) across. The high-resolution multiwavelength data suggest that the extended narrow-line region is a complex multiphase structure in the circumnuclear interstellar medium (ISM). Its ionization structure is highly stratified with respect to outflow-driven bubbles in the bicone and varies dramatically on scales of ∼10 pc. Multiple findings show likely contributions from shocks to the feedback in regions where radio outflows from the AGN most directly influence the ISM. These findings include H α evidence for gas compression and extended MUV emission and are in agreement with existing STIS kinematics. Extended filamentary structure in the X-rays and optical suggests the presence of an undetected plasma component, whose existence could be tested with deeper radio observations.

  6. CHEERS Results from NGC 3393. II. Investigating the Extended Narrow-line Region Using Deep Chandra Observations and Hubble Space Telescope Narrow-line Imaging

    Science.gov (United States)

    Maksym, W. Peter; Fabbiano, Giuseppina; Elvis, Martin; Karovska, Margarita; Paggi, Alessandro; Raymond, John; Wang, Junfeng; Storchi-Bergmann, Thaisa

    2017-07-01

    The CHandra Extended Emission Line Region Survey (CHEERS) is an X-ray study of nearby active galactic nuclei (AGNs) designed to take full advantage of Chandra's unique angular resolution by spatially resolving feedback signatures and effects. In the second paper of a series on CHEERS target NGC 3393, we examine deep high-resolution Chandra images and compare them with Hubble Space Telescope narrow-line images of [O III], [S II], and Hα, as well as previously unpublished mid-ultraviolet (MUV) images. The X-rays provide unprecedented evidence that the S-shaped arms that envelope the nuclear radio outflows extend only ≲0.″2 (≲50 pc) across. The high-resolution multiwavelength data suggest that the extended narrow-line region is a complex multiphase structure in the circumnuclear interstellar medium (ISM). Its ionization structure is highly stratified with respect to outflow-driven bubbles in the bicone and varies dramatically on scales of ˜10 pc. Multiple findings show likely contributions from shocks to the feedback in regions where radio outflows from the AGN most directly influence the ISM. These findings include Hα evidence for gas compression and extended MUV emission and are in agreement with existing STIS kinematics. Extended filamentary structure in the X-rays and optical suggests the presence of an undetected plasma component, whose existence could be tested with deeper radio observations.

  7. CHEERS Results from NGC 3393. II. Investigating the Extended Narrow-line Region Using Deep Chandra Observations and Hubble Space Telescope Narrow-line Imaging

    International Nuclear Information System (INIS)

    Maksym, W. Peter; Fabbiano, Giuseppina; Elvis, Martin; Karovska, Margarita; Paggi, Alessandro; Raymond, John; Wang, Junfeng; Storchi-Bergmann, Thaisa

    2017-01-01

    The CHandra Extended Emission Line Region Survey (CHEERS) is an X-ray study of nearby active galactic nuclei (AGNs) designed to take full advantage of Chandra 's unique angular resolution by spatially resolving feedback signatures and effects. In the second paper of a series on CHEERS target NGC 3393, we examine deep high-resolution Chandra images and compare them with Hubble Space Telescope narrow-line images of [O iii], [S ii], and H α , as well as previously unpublished mid-ultraviolet (MUV) images. The X-rays provide unprecedented evidence that the S-shaped arms that envelope the nuclear radio outflows extend only ≲0.″2 (≲50 pc) across. The high-resolution multiwavelength data suggest that the extended narrow-line region is a complex multiphase structure in the circumnuclear interstellar medium (ISM). Its ionization structure is highly stratified with respect to outflow-driven bubbles in the bicone and varies dramatically on scales of ∼10 pc. Multiple findings show likely contributions from shocks to the feedback in regions where radio outflows from the AGN most directly influence the ISM. These findings include H α evidence for gas compression and extended MUV emission and are in agreement with existing STIS kinematics. Extended filamentary structure in the X-rays and optical suggests the presence of an undetected plasma component, whose existence could be tested with deeper radio observations.

  8. THE PANCHROMATIC HUBBLE ANDROMEDA TREASURY

    International Nuclear Information System (INIS)

    Dalcanton, Julianne J.; Williams, Benjamin F.; Rosenfield, Philip; Weisz, Daniel R.; Gilbert, Karoline M.; Gogarten, Stephanie M.; Lang, Dustin; Lauer, Tod R.; Dong Hui; Kalirai, Jason S.; Boyer, Martha L.; Gordon, Karl D.; Seth, Anil C.; Dolphin, Andrew; Bell, Eric F.; Bianchi, Luciana C.; Caldwell, Nelson; Dorman, Claire E.; Guhathakurta, Puragra; Girardi, Léo

    2012-01-01

    The Panchromatic Hubble Andromeda Treasury is an ongoing Hubble Space Telescope Multi-Cycle Treasury program to image ∼1/3 of M31's star-forming disk in six filters, spanning from the ultraviolet (UV) to the near-infrared (NIR). We use the Wide Field Camera 3 (WFC3) and Advanced Camera for Surveys (ACS) to resolve the galaxy into millions of individual stars with projected radii from 0 to 20 kpc. The full survey will cover a contiguous 0.5 deg 2 area in 828 orbits. Imaging is being obtained in the F275W and F336W filters on the WFC3/UVIS camera, F475W and F814W on ACS/WFC, and F110W and F160W on WFC3/IR. The resulting wavelength coverage gives excellent constraints on stellar temperature, bolometric luminosity, and extinction for most spectral types. The data produce photometry with a signal-to-noise ratio of 4 at m F275W = 25.1, m F336W = 24.9, m F475W = 27.9, m F814W = 27.1, m F110W = 25.5, and m F160W = 24.6 for single pointings in the uncrowded outer disk; in the inner disk, however, the optical and NIR data are crowding limited, and the deepest reliable magnitudes are up to 5 mag brighter. Observations are carried out in two orbits per pointing, split between WFC3/UVIS and WFC3/IR cameras in primary mode, with ACS/WFC run in parallel. All pointings are dithered to produce Nyquist-sampled images in F475W, F814W, and F160W. We describe the observing strategy, photometry, astrometry, and data products available for the survey, along with extensive testing of photometric stability, crowding errors, spatially dependent photometric biases, and telescope pointing control. We also report on initial fits to the structure of M31's disk, derived from the density of red giant branch stars, in a way that is independent of assumed mass-to-light ratios and is robust to variations in dust extinction. These fits also show that the 10 kpc ring is not just a region of enhanced recent star formation, but is instead a dynamical structure containing a significant overdensity of

  9. GOT C+: Galactic Plane Survey of the 1.9 THz [CII] Line

    Science.gov (United States)

    Langer, William

    2012-01-01

    The ionized carbon [CII] 1.9 THz fine structure line is a major gas coolant in the interstellar medium (ISM) and controls the thermal conditions in diffuse gas clouds and Photodissociation Regions (PDRs). The [CII] line is also an important tracer of the atomic gas and atomic to molecular transition in diffuse clouds throughout the Galaxy. I will review some of the results from the recently completed Galactic Observations of Terahertz C+ (GOT C+) survey. This Herschel Open Time Key Project is a sparse, but uniform volume sample survey of [CII] line emission throughout the Galactic disk using the HIFI heterodyne receiver. HIFI observations, with their high spectral resolution, isolate and locate individual clouds in the Galaxy and provide excitation information on the gas. I will present [CII] position-velocity maps that reveal the distribution and motion of the clouds in the inner Galaxy and discuss results on the physical properties of the gas using spectral observations of [CII] and ancillary HI and 12CO, 13CO, and C18O J=1-0 data. The [CII] emission is also a useful tracer of the "Dark H2 Gas", and I will discuss its distribution in a sample of interstellar clouds. This research was conducted at the Jet Propulsion Laboratory, California Institute of Technology under contract with the National Aeronautics and Space Administration.

  10. CONSTRAINING DUST AND COLOR VARIATIONS OF HIGH-z SNe USING NICMOS ON THE HUBBLE SPACE TELESCOPE

    International Nuclear Information System (INIS)

    Nobili, S.; Amanullah, R.; Goobar, A.

    2009-01-01

    We present data from the Supernova Cosmology Project for five high redshift Type Ia supernovae (SNe Ia) that were obtained using the NICMOS infrared camera on the Hubble Space Telescope. We add two SNe from this sample to a rest-frame I-band Hubble diagram, doubling the number of high redshift supernovae on this diagram. This I-band Hubble diagram is consistent with a flat universe (Ω M , Ω Λ ) = (0.29, 0.71). A homogeneous distribution of large grain dust in the intergalactic medium (replenishing dust) is incompatible with the data and is excluded at the 5σ confidence level, if the SN host galaxy reddening is corrected assuming R V = 1.75. We use both optical and infrared observations to compare photometric properties of distant SNe Ia with those of nearby objects. We find generally good agreement with the expected color evolution for all SNe except the highest redshift SN in our sample (SN 1997ek at z = 0.863) which shows a peculiar color behavior. We also present spectra obtained from ground-based telescopes for type identification and determination of redshift.

  11. Einstein Observations of Galactic supernova remnants

    Science.gov (United States)

    Seward, Frederick D.

    1990-01-01

    This paper summarizes the observations of Galactic supernova remnants with the imaging detectors of the Einstein Observatory. X-ray surface brightness contours of 47 remnants are shown together with gray-scale pictures. Count rates for these remnants have been derived and are listed for the HRI, IPC, and MPC detectors.

  12. On the physical origin of galactic conformity

    Science.gov (United States)

    Hearin, Andrew P.; Behroozi, Peter S.; van den Bosch, Frank C.

    2016-09-01

    Correlations between the star formation rates (SFRs) of nearby galaxies (so-called galactic conformity) have been observed for projected separations up to 4 Mpc, an effect not predicted by current semi-analytic models. We investigate correlations between the mass accretion rates (dMvir/dt) of nearby haloes as a potential physical origin for this effect. We find that pairs of host haloes `know about' each others' assembly histories even when their present-day separation is greater than thirty times the virial radius of either halo. These distances are far too large for direct interaction between the haloes to explain the correlation in their dMvir/dt. Instead, halo pairs at these distances reside in the same large-scale tidal environment, which regulates dMvir/dt for both haloes. Larger haloes are less affected by external forces, which naturally gives rise to a mass dependence of the halo conformity signal. SDSS measurements of galactic conformity exhibit a qualitatively similar dependence on stellar mass, including how the signal varies with distance. Based on the expectation that halo accretion and galaxy SFR are correlated, we predict the scale-, mass- and redshift-dependence of large-scale galactic conformity, finding that the signal should drop to undetectable levels by z ≳ 1. These predictions are testable with current surveys to z ˜ 1; confirmation would establish a strong correlation between dark matter halo accretion rate and central galaxy SFR.

  13. Active galactic nucleus outflows in galaxy discs

    Science.gov (United States)

    Hartwig, Tilman; Volonteri, Marta; Dashyan, Gohar

    2018-05-01

    Galactic outflows, driven by active galactic nuclei (AGNs), play a crucial role in galaxy formation and in the self-regulated growth of supermassive black holes (BHs). AGN feedback couples to and affects gas, rather than stars, and in many, if not most, gas-rich galaxies cold gas is rotationally supported and settles in a disc. We present a 2D analytical model for AGN-driven outflows in a gaseous disc and demonstrate the main improvements, compared to existing 1D solutions. We find significant differences for the outflow dynamics and wind efficiency. The outflow is energy-driven due to inefficient cooling up to a certain AGN luminosity (˜1043 erg s-1 in our fiducial model), above which the outflow remains momentum-driven in the disc up to galactic scales. We reproduce results of 3D simulations that gas is preferentially ejected perpendicular to the disc and find that the fraction of ejected interstellar medium is lower than in 1D models. The recovery time of gas in the disc, defined as the free-fall time from the radius to which the AGN pushes the ISM at most, is remarkably short, of the order 1 Myr. This indicates that AGN-driven winds cannot suppress BH growth for long. Without the inclusion of supernova feedback, we find a scaling of the BH mass with the halo velocity dispersion of MBH ∝ σ4.8.

  14. The population of planetary nebulae near the Galactic Centre: chemical abundances

    Science.gov (United States)

    Mollá, M.; Cavichia, O.; Costa, R. D. D.; Maciel, W. J.

    2017-10-01

    In this work, we report physical parameters and abundances derived for a sample of 15 high extinction planetary nebulae located in the inner 2° of the Galactic bulge, based on low dispersion spectroscopy secured at the SOAR telescope using the Goodman spectrograph. The new data allow us to extend our database including older, weaker objects that are at the faint end of the planetary nebulae luminosity function. The data provide chemical compositions for PNe located in this region of the bulge to explore the chemical enrichment history of the central region of the Galactic bulge. The results show that the abundances of our sample are skewed to higher metallicities than previous data in the outer regions of the bulge. This can indicate a faster chemical enrichment taking place at the Galactic centre.

  15. Population studies - evidence for accretion of the galactic halo

    International Nuclear Information System (INIS)

    Norris, J.E.; Ryan, S.G.

    1989-01-01

    While there are comparatively few prograde-orbit dwarf stars in advance of the sun's motion of the type of which 510, selected kinematically, are presented, it is noted that there are significant numbers of objects on retrograde orbits that move with a speed greater than the sun's, relative to a nonrotating system, in the opposite direction about the Galactic center. It is suggested that this asymmetry is explainable in terms of the Searle and Zinn (1978) and Rodgers and Paltoglou (1984) models of halo formation by accretion; in these, fragments experience dynamical friction from an already-formed Galactic disk. 21 references

  16. Hubble Space Telescope via the Web

    Science.gov (United States)

    O'Dea, Christopher P.

    The Space Telescope Science Institute (STScI) makes available a wide variety of information concerning the Hubble Space Telescope (HST) via the Space Telescope Electronic Information Service (STEIS). STEIS is accessible via anonymous ftp, gopher, WAIS, and WWW. The information on STEIS includes how to propose for time on the HST, the current status of HST, reports on the scientific instruments, the observing schedule, data reduction software, calibration files, and a set of publicly available images in JPEG, GIF and TIFF format. STEIS serves both the astronomical community as well as the larger Internet community. WWW is currently the most widely used interface to STEIS. Future developments on STEIS are expected to include larger amounts of hypertext, especially HST images and educational material of interest to students, educators, and the general public, and the ability to query proposal status.

  17. Finding evolved stars in the inner Galactic disk with Gaia

    Science.gov (United States)

    Quiroga-Nuñez, L. H.; van Langevelde, H. J.; Pihlström, Y. M.; Sjouwerman, L. O.; Brown, A. G. A.

    2018-04-01

    The Bulge Asymmetries and Dynamical Evolution (BAaDE) survey will provide positions and line-of-sight velocities of ~20, 000 evolved, maser bearing stars in the Galactic plane. Although this Galactic region is affected by optical extinction, BAaDE targets may have Gaia cross-matches, eventually providing additional stellar information. In an initial attempt to cross-match BAaDE targets with Gaia, we have found more than 5,000 candidates. Of these, we may expect half to show SiO emission, which will allow us to obtain velocity information. The cross-match is being refined to avoid false positives using different criteria based on distance analysis, flux variability, and color assessment in the mid- and near-IR. Once the cross-matches can be confirmed, we will have a unique sample to characterize the stellar population of evolved stars in the Galactic bulge, which can be considered fossils of the Milky Way formation.

  18. Ordinary Dark Matter versus Mysterious Dark Matter in Galactic Rotation

    Science.gov (United States)

    Gallo, C. F.; Feng, James

    2008-04-01

    To theoretically describe the measured rotational velocity curves of spiral galaxies, there are two different approaches and conclusions. (1) ORDINARY DARK MATTER. We assume Newtonian gravity/dynamics and successfully find (via computer) mass distributions in bulge/disk configurations that duplicate the measured rotational velocities. There is ordinary dark matter within the galactic disk towards the cooler periphery which has lower emissivity/opacity. There are no mysteries in this scenario based on verified physics. (2) MYSTERIOUS DARK MATTER. Others INaccurately assume the galactic mass distributions follow the measured light distributions, and then the measured rotational velocity curves are NOT duplicated. To alleviate this discrepancy, speculations are invoked re ``Massive Peripheral Spherical Halos of Mysterious Dark Matter.'' But NO matter has been detected in this UNtenable Halo configuration. Many UNverified ``Mysteries'' are invoked as necessary and convenient. CONCLUSION. The first approach utilizing Newtonian gravity/dynamics and searching for the ordinary mass distributions within the galactic disk simulates reality and agrees with data.

  19. New constraints on all flavor Galactic diffuse neutrino emission with the ANTARES telescope

    NARCIS (Netherlands)

    Albert, A.; André, M.; Anghinolfi, M.; Anton, G.; Ardid, M.; Aubert, J.-J.; Avgitas, T.; Baret, B.; Barrios-Martí, J.; Basa, S.; Belhorma, B.; Bertin, V.; Biagi, S.; Bormuth, R.; Bourret, S.; Bouwhuis, M.C.; Bruijn, R.; Brunner, J.; Busto, J.; Capone, A.; Caramete, L.; Carr, J.; Celli, S.; Cherkaoui El Moursli, R.; Chiarusi, T.; Circella, M.; Coelho, J.A.B.; Coleiro, A.; Coniglione, R.; Costantini, H.; Coyle, P.; Creusot, A.; Díaz, A.F.; Deschamps, A.; De Bonis, G.; Distefano, C.; Di Palma, I.; Domi, A.; Donzaud, C.; Dornic, D.; Drouhin, D.; Eberl, T.; El Bojaddaini, I.; El Khayati, N.; Elsässer, D.; Enzenhöfer, A.; Ettahiri, A.; Fassi, F.; Felis, I.; Fusco, L.A.; Galatà, S.; Gay, P.; Giordano, V.; Glotin, H.; Grégoire, T.; Gracia-Ruiz, R.; Graf, K.; Hallmann, S.; van Haren, H.; Heijboer, A.J.; Hello, Y.; Hernández-Rey, J.J.; Hößl, J.; Hofestädt, J.; Hugon, C.; Illuminati, G.; James, C.W.; de Jong, M.; Jongen, M.; Kadler, M.; Kalekin, O.; Katz, U.; Kießling, D.; Kouchner, A.; Kreter, M.; Kreykenbohm, I.; Kulikovskiy, V.; Lachaud, C.; Lahmann, R.; Lefèvre, D.; Leonora, E.; Lotze, M.; Loucatos, S.; Marcelin, M.; Margiotta, A.; Marinelli, A.; Martínez-Mora, J.A.; Mele, R.; Melis, K.; Michael, T.; Migliozzi, P.; Moussa, A.; Navas, S.; Nezri, E.; Organokov, M.; Pavalas, G.E.; Pellegrino, C.; Perrina, C.; Piattelli, P.; Popa, V.; Pradier, T.; Quinn, L.; Racca, C.; Riccobene, G.; Sánchez-Losa, A.; Saldaña, M.; Salvadori, I.; Samtleben, D.F.E.; Sanguineti, M.; Sapienza, P.; Schüssler, F.; Sieger, C.; Spurio, M.; Stolarczyk, T.; Taiuti, M.; Tayalati, Y.; Trovato, A.; Turpin, D.; Tönnis, C.; Vallage, B.; Van Elewyck, V.; Versari, F.; Vivolo, D.; Vizzoca, A.; Wilms, J.; Zornoza, J.D.; Zúñiga, J.; Gaggero, D.; Grasso, D.

    2017-01-01

    The flux of very high-energy neutrinos produced in our Galaxy by the interaction of accelerated cosmic rays with the interstellar medium is not yet determined. The characterization of this flux will shed light on Galactic accelerator features, gas distribution morphology and Galactic cosmic ray

  20. Metrical connection in space-time, Newton's and Hubble's laws

    International Nuclear Information System (INIS)

    Maeder, A.

    1978-01-01

    The theory of gravitation in general relativity is not scale invariant. Here, we follow Dirac's proposition of a scale invariant theory of gravitation (i.e. a theory in which the equations keep their form when a transformation of scale is made). We examine some concepts of Weyl's geometry, like the metrical connection, the scale transformations and invariance, and we discuss their consequences for the equation of the geodetic motion and for its Newtonian limit. Under general conditions, we show that the only non-vanishing component of the coefficient of metrical connection may be identified with Hubble's constant. In this framework, the equivalent to the Newtonian approximation for the equation of motion contains an additional acceleration term Hdr vector /dt, which produces an expansion of gravitational systems. The velocity of this expansion is shown to increase linearly with the distance between interacting objects. The relative importance of this new expansion term to the Newtonian one varies like (2rhosub(c)/rho)sup(1/2), where rhosub(c) is the critical density of the Einsteinde Sitter model and rho is the mean density of the considered gravitational configuration. Thus, this 'generalized expansion' is important essentially for systems of mean density not too much above the critical density. Finally, our main conclusion is that in the integrable Weyl geometry, Hubble's law - like Newton's law - would appear as an intrinsic property of gravitation, being only the most visible manifestation of a general effect characterizing the gravitational interaction. (orig.) [de

  1. Quasars, Seyfert galaxies and active galactic nuclei

    International Nuclear Information System (INIS)

    Osterbrock, D.E.

    1987-01-01

    This chapter is devoted to the spectroscopic methods for analyzing the observed plasma in the nuclei of quasars, Seyfert galazies, and active galactic nuclei. Both the narrow-line region and the broad-line region are discussed. Physical models are presented

  2. X-ray bursters and the X-ray sources of the galactic bulge

    International Nuclear Information System (INIS)

    Lewin, W.H.G.; Joss, P.C.; Massachusetts Inst. of Tech., Cambridge; Massachusetts Inst. of Tech., Cambridge

    1981-01-01

    In this article we shall discuss the observed X-ray, optical, infrared and radio properties of the galactic bulge sources, with an emphasis on those that produce type I X-ray bursts. There is persuasive evidence that these burst sources and many other galactic bulge sources are neutron stars in low-mass, close-binary stellar systems. (orig./WL)

  3. Evidence for TeV Gamma-Ray Emission from a Region of the Galactic Plane

    International Nuclear Information System (INIS)

    Atkins, R.; Gonzalez, M.M.; McEnery, J.E.; Wilson, M.E.; Benbow, W.; Coyne, D.G.; Dorfan, D.E.; Kelley, L.A.; Morales, M.F.; Parkinson, P.M. Saz; Williams, D.A.; Berley, D.; Blaufuss, E.; DeYoung, T.; Goodman, J.A.; Hays, E.; Lansdell, C.P.; Noyes, D.; Smith, A.J.; Sullivan, G.W.

    2005-01-01

    Gamma-ray emission from a narrow band at the galactic equator has previously been detected up to 30 GeV. We report evidence for a TeV gamma-ray signal from a region of the galactic plane by Milagro, a large-field-of-view water Cherenkov detector for extensive air showers. An excess with a significance of 4.5 standard deviations has been observed from the region of galactic longitude l (set-membership sign) (40 deg.,100 deg.) and latitude vertical bar b vertical bar γ (>3.5 TeV)=(6.4±1.4±2.1)x10 -11 cm -2 s -1 sr -1 . This flux is consistent with an extrapolation of the EGRET spectrum between 1 and 30 GeV in this galactic region

  4. THE MAGELLANIC STREAM: BREAK-UP AND ACCRETION ONTO THE HOT GALACTIC CORONA

    Energy Technology Data Exchange (ETDEWEB)

    Tepper-García, Thor; Bland-Hawthorn, Joss [Sydney Institute for Astronomy, School of Physics, University of Sydney, NSW 2006 (Australia); Sutherland, Ralph S. [Mount Stromlo Observatory, Australia National University, Woden, ACT 2611 (Australia)

    2015-11-10

    The Magellanic H i Stream (≈2 × 10{sup 9} M{sub ⊙} [d/55 kpc]{sup 2}) encircling the Galaxy at a distance d is arguably the most important tracer of what happens to gas accreting onto a disk galaxy. Recent observations reveal that the Stream’s mass is in fact dominated (3:1) by its ionized component. Here we revisit the origin of the mysterious Hα recombination emission observed along much of its length that is overly bright (∼150–200 mR) for the known Galactic ultraviolet (UV) background (≈20–40 mR [d/55 kpc]{sup −2}). In an earlier model, we proposed that a slow shock cascade was operating along the Stream due to its interaction with the extended Galactic hot corona. We find that for a smooth coronal density profile, this model can explain the bright Hα emission if the coronal density satisfies 2 × 10{sup −4} < (n/cm{sup −3}) < 4 × 10{sup −4} at d = 55 kpc. But in view of updated parameters for the Galactic halo and mounting evidence that most of the Stream must lie far beyond the Magellanic Clouds (d > 55 kpc), we revisit the shock cascade model in detail. At lower densities, the H i gas is broken down by the shock cascade but mostly mixes with the hot corona without significant recombination. At higher densities, the hot coronal mass (including the other baryonic components) exceeds the baryon budget of the Galaxy. If the Hα emission arises from the shock cascade, the upper limit on the smooth coronal density constrains the Stream’s mean distance to ≲75 kpc. If, as some models indicate, the Stream is even further out, either the shock cascade is operating in a regime where the corona is substantially mass-loaded with recent gas debris, or an entirely different ionization mechanism is responsible.

  5. The Galactic fountain as an origin for the Smith Cloud

    OpenAIRE

    Marasco, A.; Fraternali, F.

    2017-01-01

    The recent discovery of an enriched metallicity for the Smith high-velocity H I Cloud (SC) lends support to a Galactic origin for this system. We use a dynamical model of the galactic fountain to reproduce the observed properties of the SC. In our model, fountain clouds are ejected from the region of the disc spiral arms and move through the halo interacting with a pre-existing hot corona. We find that a simple model where cold gas outflows vertically from the Perseus spiral arm reproduces th...

  6. Circumvention of Parker's bound on galactic magnetic monopoles

    International Nuclear Information System (INIS)

    Dicus, D.A.; Teplitz, V.L.; Maryland Univ., College Park

    1983-01-01

    There is a possibility that a magnetic monopole has been observed. The monopole density implied by the observation appears to violate bounds on the density of such particles derived from the total mass density of the Universe and from the existence of galactic magnetic fields. It is shown that the observation is not inconsistent with these bounds if the monopoles and antimonopoles are bound into positronium like states with principal quantum n high enough so that the Earth's magnetic field will break them apart, but small enough so that the weaker galactic magnetic field will not. A range of values for n are determined and show that lifetimes for such bound states are longer than the current age of the Universe. (author)

  7. CANDELS : THE COSMIC ASSEMBLY NEAR-INFRARED DEEP EXTRAGALACTIC LEGACY SURVEY

    NARCIS (Netherlands)

    Grogin, Norman A.; Kocevski, Dale D.; Faber, S. M.; Ferguson, Henry C.; Koekemoer, Anton M.; Riess, Adam G.; Acquaviva, Viviana; Alexander, David M.; Almaini, Omar; Ashby, Matthew L. N.; Barden, Marco; Bell, Eric F.; Bournaud, Frederic; Brown, Thomas M.; Caputi, Karina I.; Casertano, Stefano; Cassata, Paolo; Castellano, Marco; Challis, Peter; Chary, Ranga-Ram; Cheung, Edmond; Cirasuolo, Michele; Conselice, Christopher J.; Cooray, Asantha Roshan; Croton, Darren J.; Daddi, Emanuele; Dahlen, Tomas; Dave, Romeel; de Mello, Duilia F.; Dekel, Avishai; Dickinson, Mark; Dolch, Timothy; Donley, Jennifer L.; Dunlop, James S.; Dutton, Aaron A.; Elbaz, David; Fazio, Giovanni G.; Filippenko, Alexei V.; Finkelstein, Steven L.; Fontana, Adriano; Gardner, Jonathan P.; Garnavich, Peter M.; Gawiser, Eric; Giavalisco, Mauro; Grazian, Andrea; Guo, Yicheng; Hathi, Nimish P.; Haeussler, Boris; Hopkins, Philip F.; Huang, Jia-Sheng; Huang, Kuang-Han; Jha, Saurabh W.; Kartaltepe, Jeyhan S.; Kirshner, Robert P.; Koo, David C.; Lai, Kamson; Lee, Kyoung-Soo; Li, Weidong; Lotz, Jennifer M.; Lucas, Ray A.; Madau, Piero; McCarthy, Patrick J.; McGrath, Elizabeth J.; McIntosh, Daniel H.; McLure, Ross J.; Mobasher, Bahram; Moustakas, Leonidas A.; Mozena, Mark; Nandra, Kirpal; Newman, Jeffrey A.; Niemi, Sami-Matias; Noeske, Kai G.; Papovich, Casey J.; Pentericci, Laura; Pope, Alexandra; Primack, Joel R.; Rajan, Abhijith; Ravindranath, Swara; Reddy, Naveen A.; Renzini, Alvio; Rix, Hans-Walter; Robaina, Aday R.; Rodney, Steven A.; Rosario, David J.; Rosati, Piero; Salimbeni, Sara; Scarlata, Claudia; Siana, Brian; Simard, Luc; Smidt, Joseph; Somerville, Rachel S.; Spinrad, Hyron; Straughn, Amber N.; Strolger, Louis-Gregory; Telford, Olivia; Teplitz, Harry I.; Trump, Jonathan R.; van der Wel, Arjen; Villforth, Carolin; Wechsler, Risa H.; Weiner, Benjamin J.; Wiklind, Tommy; Wild, Vivienne; Wilson, Grant; Wuyts, Stijn; Yan, Hao-Jing; Yun, Min S.

    2011-01-01

    The Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) is designed to document the first third of galactic evolution, over the approximate redshift (z) range 8-1.5. It will image >250,000 distant galaxies using three separate cameras on the Hubble Space Telescope, from the

  8. Wolf-Rayet stars and galactic structure

    International Nuclear Information System (INIS)

    Stenholm, B.

    1975-01-01

    A 15 0 wide strip along the galactic equator between longitudes 250 0 and 360 0 has been searched for Wolf-Rayet stars. Six new WR stars and four new planetary nebulae have been found. Seven stars earlier listed as WR stars have been rejected as such. The new WR stars in the 'Luminous Stars in the Southern Milky Way' are discussed. A sample of 154 WR stars has been treated statistically. For the distribution in longitude, comparisons are made with OB stars and classical cepheids. The differences in distribution are thought to be an age effect. An effort to explain the empty interval towards the anticentre is made. The distribution in latitude is compared with young clusters and long-period cepheids. The physical plane formed by these objects is tilted about one degree to the galactic plane and the tilt is upwards in the Cygnus direction. This result is also received by a least squares solution of the objects when given in rectangular coordinates. The WR star sample is regarded as fairly complete up to a distance of 5 kpc. (orig.) [de

  9. Solar modulation of galactic cosmic rays: techniques and applications

    International Nuclear Information System (INIS)

    Perko, J.S.

    1984-01-01

    This thesis covers four topics in the theory of interplanetary cosmic-ray propagation: the first part involves the time-dependent, spherically-symmetric, solar modulation of galactic cosmic rays. A numerical technique was introduced for the solution of this problem. A model for the solar cycle variation in cosmic-ray intensity illustrated this method using enhanced particle scattering regions. The second section contains an attempt to explain recent observations which show that cosmic-ray electrons are returning to higher intensities, characteristic of solar minimum, faster than cosmic-ray protons of about the same energy, the reverse of the previous eleven-year cycle. The third section involves the solar modulation of galactic antiprotons. Using a steady-state, spherically-symmetric, numerical modulation code, a solution that reasonably fits the observed 1980 galactic proton spectrum at 1 AU implied that the modulation used for the data interpretation has been significantly underestimated. The final section contains a spherically-symmetric steady-state calculation of the effects of a strong termination shock in the heliosphere. In the end, high-energy particles cooling down in the upstream solar wind overwhelmed any accelerated low-energy particles

  10. The role of self-interacting right-handed neutrinos in galactic structure

    CERN Document Server

    Argüelles, C.R.; Rueda, J.A.; Ruffini, R.

    2016-01-01

    We show that warm dark matter keV fermions (`inos') can be responsible for both core and halo galactic structure, in agreement with current astrophysical/cosmological constraints. We identify the inos with sterile right-handed neutrinos. The possible mass range of up to a few tens of keV, obtained independently from the galactic structure and dark matter astroparticle physics, points towards an important role of the right-handed neutrinos in the cosmic structure.

  11. Hubble Space Telescope: The Telescope, the Observations & the Servicing Mission

    Science.gov (United States)

    1999-11-01

    Today the HST Archives contain more than 260 000 astronomical observations. More than 13 000 astronomical objects have been observed by hundreds of different groups of scientists. Direct proof of the scientific significance of this project is the record-breaking number of papers published : over 2400 to date. Some of HST's most memorable achievements are: * the discovery of myriads of very faint galaxies in the early Universe, * unprecedented, accurate measurements of distances to the farthest galaxies, * significant improvement in the determination of the Hubble constant and thus the age of the Universe, * confirmation of the existence of blacks holes, * a far better understanding of the birth, life and death of stars, * a very detailed look at the secrets of the process by which planets are created. Europe and HST ESA's contribution to HST represents a nominal investment of 15%. ESA provided one of the two imaging instruments - the Faint Object Camera (FOC) - and the solar panels. It also has 15 scientists and computer staff working at the Space Telescope Science Institute in Baltimore (Maryland). In Europe the astronomical community receives observational assistance from the Space Telescope European Coordinating Facility (ST-ECF) located in Garching, Munich. In return for ESA's investment, European astronomers have access to approximately 15% of the observing time. In reality the actual observing time competitively allocated to European astronomers is closer to 20%. Looking back at almost ten years of operation, the head of ST-ECF, European HST Project Scientist Piero Benvenuti states: "Hubble has been of paramount importance to European astronomy, much more than the mere 20% of observing time. It has given the opportunity for European scientists to use a top class instrument that Europe alone would not be able to build and operate. In specific areas of research they have now, mainly due to HST, achieved international leadership." One of the major reasons for

  12. X-Ray Processing of ChaMPlane Fields: Methods and Initial Results for Selected Anti-Galactic Center Fields

    Science.gov (United States)

    Hong, JaeSub; van den Berg, Maureen; Schlegel, Eric M.; Grindlay, Jonathan E.; Koenig, Xavier; Laycock, Silas; Zhao, Ping

    2005-12-01

    We describe the X-ray analysis procedure of the ongoing Chandra Multiwavelength Plane (ChaMPlane) Survey and report the initial results from the analysis of 15 selected anti-Galactic center observations (90degusing custom-developed analysis tools appropriate for Galactic sources but also of general use: optimum photometry in crowded fields using advanced techniques for overlapping sources, rigorous astrometry and 95% error circles for combining X-ray images or matching to optical/IR images, and application of quantile analysis for spectral analysis of faint sources. We apply these techniques to 15 anti-Galactic center observations (of 14 distinct fields), in which we have detected 921 X-ray point sources. We present logN-logS distributions and quantile analysis to show that in the hard band (2-8 keV) active galactic nuclei dominate the sources. Complete analysis of all ChaMPlane anti-Galactic center fields will be given in a subsequent paper, followed by papers on sources in the Galactic center and bulge regions.

  13. Bulgeless galaxies at intermediate redshift: Sample selection, color properties, and the existence of powerful active galactic nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Bizzocchi, Luca; Leonardo, Elvira; Grossi, Marco; Afonso, José; Fernandes, Cristina; Retrê, João [Centro de Astronomia e Astrofísica da Universidade de Lisboa, Observatório Astronómico de Lisboa, Tapada da Ajuda, 1349-018 Lisbon (Portugal); Filho, Mercedes E.; Lobo, Catarina [Centro de Astrofísica da Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal); Griffith, Roger L. [Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125 (United States); Anton, Sonia [Centro de Investigação em Ciências Geo-Espaciais, Faculdade de Ciências da Universidade do Porto, Porto (Portugal); Bell, Eric F. [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109 (United States); Brinchmann, Jarle [Leiden Observatory, Leiden University, P.O. Box 9513, NL-2300 RA Leiden (Netherlands); Henriques, Bruno [Max-Planck-Institut für Astrophysik, Karl Schwarzschild Straße 1, D-85748 Garching bei München (Germany); Messias, Hugo [Departamento de astronomía, Av. Esteban Iturra 6to piso, Facultad de Ciencias Físicas y Matemáticas, Universidad de Concepción (Chile)

    2014-02-10

    We present a catalog of bulgeless galaxies, which includes 19,225 objects selected in four of the deepest, largest multi-wavelength data sets available—COSMOS, AEGIS, GEMS, and GOODS—at intermediate redshift (0.4 ≤ z ≤ 1.0). The morphological classification was provided by the Advanced Camera for Surveys General Catalog (ACS-GC), which used publicly available data obtained with the ACS instrument on the Hubble Space Telescope. Rest-frame photometric quantities were derived using kcorrect. We analyze the properties of the sample and the evolution of pure-disk systems with redshift. Very massive [log (M {sub *}/M {sub ☉}) > 10.5] bulgeless galaxies contribute to ∼30% of the total galaxy population number density at z ≥ 0.7, but their number density drops substantially with decreasing redshift. We show that only a negligible fraction of pure disks appear to be quiescent systems, and red sequence bulgeless galaxies show indications of dust-obscured star formation. X-ray catalogs were used to search for X-ray emission within our sample. After visual inspection and detailed parametric morphological fitting we identify 30 active galactic nuclei (AGNs) that reside in galaxies without a classical bulge. The finding of such peculiar objects at intermediate redshift shows that while AGN growth in merger-free systems is a rare event (0.2% AGN hosts in this sample of bulgeless galaxies), it can indeed happen relatively early in the history of the universe.

  14. Chemical evolution coefficients for the study of galactic evolution

    International Nuclear Information System (INIS)

    Mallik, D.C.V.

    1980-01-01

    A new evaluation of chemical evolution coefficients has been made using recent stellar evolution and nucleosynthesis data. The role of the low and intermediate mass stars in galactic nuclosynthesis has been emphasized. A significant amount of 4 He, 12 C and neutron-rich species is found to be contributed by these stars. Comparison with observed abundances suggests a primary origin of 14 N. The simple model of galactic evolution with the new coefficients has been used to derive the ratio of helium to heavy element enrichment in the Galaxy. The new stellar evolution data do not explain the large value of this ratio that has been determined observationally. (orig.)

  15. Chemical evolution coefficients for the study of galactic evolution

    Energy Technology Data Exchange (ETDEWEB)

    Mallik, D C.V. [Indian Inst. of Astrophysics, Bangalore

    1980-05-01

    A new evaluation of chemical evolution coefficients has been made using recent stellar evolution and nucleosynthesis data. The role of the low and intermediate mass stars in galactic nucleosynthesis has been emphasized. A significant amount of /sup 4/He, /sup 12/C and neutron-rich species is found to be contributed by these stars. Comparison with observed abundances suggests a primary origin of /sup 14/N. The simple model of galactic evolution with the new coefficients has been used to derive the ratio of helium to heavy element enrichment in the Galaxy. The new stellar evolution data do not explain the large value of this ratio that has been determined observationally.

  16. Monitoring the Galactic - Search for Hard X-Ray Transients

    Science.gov (United States)

    Marshall, Francis

    Hard X-ray transients with fluxs from ~1 to ~30 mCrab are a common feature of the galactic plane with apparent concentrations in specific regions of the plane. Concentrations in the Scutum and Carina fields probably indicate an enhancement of Be X-ray binaries along the tangent direction of two spiral arms. The frequency of outbursts suggest that at any one time 1 or 2 transients are active in the Scutum field alone. We propose weekly scans of the galactic plane to understand this population of sources. The scans will also monitor about 50 already known sources with better spectral information than available with the ASM.

  17. Newly discovered IRAS QSO close to the Galactic plane

    International Nuclear Information System (INIS)

    Strauss, M.A.; Kirhakos, S.D.; Yahil, A.

    1988-01-01

    CCD observations of the IRAS QSO candidate I09149-6206 performed at CTIO during December 1987 are reported, including 564-806-nm spectroscopy obtained with the 1.5-m telescope and direct UVBRI imaging obtained with the 0.91-m telescope. The data are presented in tables and graphs and characterized in detail. It is found that the source is surrounded by a faint fuzz with low surface brightness and strong forbidden O III lines. Parameters determined include redshift z = 0.0571, Galactic latitude -9.2 deg, V magnitude 13.55, Galactic reddening E(B-V) = about 0.23, and absolute V magnitude about -24.87. 33 references

  18. A polarized fast radio burst at low Galactic latitude

    OpenAIRE

    Petroff, E.; Kasliwal, M.; Ravi, V.

    2017-01-01

    We report on the discovery of a new fast radio burst (FRB), FRB 150215, with the Parkes radio telescope on 2015 February 15. The burst was detected in real time with a dispersion measure (DM) of 1105.6 ± 0.8 pc cm^(−3), a pulse duration of 2.8 ^(+1.2)_(−0.5)ms, and a measured peak flux density assuming that the burst was at beam centre of 0.7 ^(+0.2)_(−0.1) Jy. The FRB originated at a Galactic longitude and latitude of 24.66°, 5.28° and 25° away from the Galactic Center. The burst was found t...

  19. The G-dwarf problem and the closed-box models of Galactic evolution

    International Nuclear Information System (INIS)

    Francois, P.; Vangioni-Flam, E.; Audouze, J.

    1990-01-01

    The paucity of very iron-poor stars in the Galactic disk with respect to the predictions of the simple model of Galactic chemical evolution (the notorious G-dwarf problem) is one of the most fundamental constraints of Galactic evolutionary models. This paper tests recently proposed models, with bimodal and varying star formation rates, against the G-dwarf metallicity distribution, the gas/total mass ratio in the solar vicinity, the age-metallicity relation, and the abundances of deuterium, O-16, Mg-24, Si-28, and Fe-56 at the birth of the sun. It is shown that none of these models agree entirely with the data, but that it is possible to find a combination of the two models leading to reasonable results. 35 refs

  20. A radio search for planetary nebulae near the galactic center

    International Nuclear Information System (INIS)

    Isaacman, R.B.

    1980-01-01

    Because of galactic center is a hostile environment, and because planetaries are weak radio emitters, it is not clear a priori that one expects to detect any planetary nebulae at all in the nuclear region of the Galaxy. Therefore the expected lifetime and flux density distribution of galactic center nebulae is considered. The principal observational results from the Westerbork data, and the results of some pilot observations with the Very Large Array, which were intended to distinguish planetaries from other radio sources on an individual basis are given. (Auth.)

  1. Interpretation of the galactic radio-continuum and gamma-ray emission

    International Nuclear Information System (INIS)

    Beuermann, K.P.

    1974-01-01

    An analysis is performed of the nonthermal radio-continuum and gamma-ray emission of the galactic disc, using a spiral-arm model of the Galaxy. The results for the 408 MHz brightness temperature and the >100 MeV gamma-ray line intensity as a function of galactic longitude at bsup(II)=0 deg are presented. The observational implications, as well as the uncertainties in the calculations, are briefly discussed. An estimate of the possible range of the inverse Compton contribution to the observed gamma-ray flux is made

  2. SPITZER PARALLAX OF OGLE-2015-BLG-0966: A COLD NEPTUNE IN THE GALACTIC DISK

    Energy Technology Data Exchange (ETDEWEB)

    Street, R. A.; Bachelet, E. [LCOGT, 6740 Cortona Drive, Suite 102, Goleta, CA 93117 (United States); Udalski, A. [Warsaw University Observatory, Al. Ujazdowskie 4, 00-478 Warszawa (Poland); Novati, S. Calchi [NASA Exoplanet Science Institute, MS 100-22, California Institute of Technology, Pasadena, CA 91125 (United States); Hundertmark, M. P. G.; Jørgensen, U. G. [Niels Bohr Institute and Centre for Star and Planet Formation, University of Copenhagen, Øster Voldgade 5, DK-1350—Copenhagen K (Denmark); Zhu, W.; Gould, A. [Department of Astronomy, Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Yee, J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Tsapras, Y. [Astronomisches Rechen-Institut, Zentrum für Astronomie der Universität Heidelberg (ZAH), D-69120 Heidelberg (Germany); Bennett, D. P. [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Dominik, M. [SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews KY16 9SS (United Kingdom); Andersen, M. I. [Niels Bohr Institute and Dark Cosmology Centre, University of Copenhagen, Juliane Mariesvej 30, DK-2100—Copenhagen Ø (Denmark); Bozza, V. [Dipartimento di Fisica “E.R. Caianiello,” Università di Salerno, Via Giovanni Paolo II 132, I-84084, Fisciano (Italy); Bramich, D. M. [Qatar Environment and Energy Research Institute, Qatar Foundation, P.O. Box 5825, Doha (Qatar); Collaboration: RoboNet Project and MiNDSTEp Consortium; OGLE Project; Spitzer Team; MOA Collaboration; KMTNet Modeling Team; and others

    2016-03-10

    We report the detection of a cold Neptune m{sub planet} = 21 ± 2 M{sub ⊕} orbiting a 0.38 M{sub ⊙} M dwarf lying 2.5–3.3 kpc toward the Galactic center as part of a campaign combining ground-based and Spitzer observations to measure the Galactic distribution of planets. This is the first time that the complex real-time protocols described by Yee et al., which aim to maximize planet sensitivity while maintaining sample integrity, have been carried out in practice. Multiple survey and follow up teams successfully combined their efforts within the framework of these protocols to detect this planet. This is the second planet in the Spitzer Galactic distribution sample. Both are in the near to mid-disk and are clearly not in the Galactic bulge.

  3. Numerical experiments on galactic halo formation

    International Nuclear Information System (INIS)

    Quinn, P.J.; Salmon, J.K.; Zurek, W.H.

    1986-01-01

    We have used a hybrid N-body-FFT approach to solving Poisson's equation in a cosmological setting. Using this method, we have explored the connection between the form of the initial Gaussian density perturbations that by today have grown into galaxies and the internal properties of the individual galactic halos that are formed. 19 refs., 4 figs

  4. Investigation of some galactic and extragalactic gravitational phenomena

    Directory of Open Access Journals (Sweden)

    Jovanović P.

    2012-01-01

    Full Text Available Here we present a short overview of the most important results of our investigations of the following galactic and extragalactic gravitational phenomena: supermassive black holes in centers of galaxies and quasars, supermassive black hole binaries, gravitational lenses and dark matter. For the purpose of these investigations, we developed a model of a relativistic accretion disk around a supermassive black hole, based on the ray-tracing method in the Kerr metric, a model of a bright spot in an accretion disk and three different models of gravitational microlenses. All these models enabled us to study physics, spacetime geometry and effects of strong gravity in the vicinity of supermassive black holes, variability of some active galaxies and quasars, different effects in the lensed quasars with multiple images, as well as the dark matter fraction in the Universe. We also found an observational evidence for the first spectroscopically resolved sub-parsec orbit of a supermassive black hole binary system in the core of active galaxy NGC 4151. Besides, we studied applications of one potential alternative to dark matter in the form of a modified theory of gravity on Galactic scales, to explain the recently observed orbital precession of some S-stars, which are orbiting around a massive black hole at the Galactic center. [Projekat Ministarstva nauke Republike Srbije, br. 176003: Gravitation and the Large Scale Structure of the Universe

  5. Galactic Cosmic-ray Transport in the Global Heliosphere: A Four-Dimensional Stochastic Model

    Science.gov (United States)

    Florinski, V.

    2009-04-01

    We study galactic cosmic-ray transport in the outer heliosphere and heliosheath using a newly developed transport model based on stochastic integration of the phase-space trajectories of Parker's equation. The model employs backward integration of the diffusion-convection transport equation using Ito calculus and is four-dimensional in space+momentum. We apply the model to the problem of galactic proton transport in the heliosphere during a negative solar minimum. Model results are compared with the Voyager measurements of galactic proton radial gradients and spectra in the heliosheath. We show that the heliosheath is not as efficient in diverting cosmic rays during solar minima as predicted by earlier two-dimensional models.

  6. Detecting pulsars in the Galactic Centre

    Science.gov (United States)

    Rajwade, K. M.; Lorimer, D. R.; Anderson, L. D.

    2017-10-01

    Although high-sensitivity surveys have revealed a number of highly dispersed pulsars in the inner Galaxy, none have so far been found in the Galactic Centre (GC) region, which we define to be within a projected distance of 1 pc from Sgr A*. This null result is surprising given that several independent lines of evidence predict a sizable population of neutron stars in the region. Here, we present a detailed analysis of both the canonical and millisecond pulsar populations in the GC and consider free-free absorption and multipath scattering to be the two main sources of flux density mitigation. We demonstrate that the sensitivity limits of previous surveys are not sufficient to detect GC pulsar population, and investigate the optimum observing frequency for future surveys. Depending on the degree of scattering and free-free absorption in the GC, current surveys constrain the size of the potentially observable population (I.e. those beaming towards us) to be up to 52 canonical pulsars and 10 000 millisecond pulsars. We find that the optimum frequency for future surveys is in the range of 9-13 GHz. We also predict that future deeper surveys with the Square Kilometre array will probe a significant portion of the existing radio pulsar population in the GC.

  7. Multimolecular studies of Galactic star-forming regions

    NARCIS (Netherlands)

    Baan, W. A.; Loenen, A. F.; Spaans, M.

    2014-01-01

    Molecular emission-line observations of isolated Galactic star-forming regions are used to model the physical properties of the molecular interstellar medium in these systems. Observed line ratios are compared with the results predicted by models that incorporate gas-phase chemistry and the heating

  8. Comparison of the distribution of galactic γ-radiation and radio synchrotron radiation

    International Nuclear Information System (INIS)

    Haslam, C.G.T.; Stoffel, H.; Kearsey, S.; Osborne, J.L.; Phillipps, S.

    1981-01-01

    The new all-sky survey of continuum radio emission at 408 MHz of Haslam et al. (1981) is used to compare the distribution of radio emission in a band along the galactic equator for b 0 , but a longer tail than a Gaussian, for the combined data from 70 MeV-5 GeV. This has been used to convolve the 408 MHz data, and to produce a contour map and the cuts and averages corresponding to those given by Mayer-Hasselwander. The average intensities along the galactic plane for b 0 are given. The latitude profiles show that in three dimensions the gamma-ray and synchrotron emissivities are not proportional. However, in the Galactic plane the two emissivities can be in approximately constant ratio although there seems to be more structure in the gamma-ray emission. This implies that the square of the galactic magnetic field, B 2 is proportional to gas density under the right conditions. If the emission were dominated by discrete sources their number density would have to follow closely the product of cosmic ray density and B 2 . (U.K.)

  9. A 1420 MHz Catalog of Compact Sources in the Northern Galactic Plane

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, A. R. [Inter-University Institute for Data Intensive Astronomy, and Department of Astronomy, University of Cape Town Department of Physics, University of the Western Cape (South Africa); Leahy, D. A.; Sunstrum, C. [Department of Physics and Astronomy, University of Calgary (Canada); Tian, W. W. [National Astronomical Observatories, Chinese Academy of Sciences, Beijing Shi (China); Kothes, R.; Landecker, T. L.; Ransom, R. R; Higgs, L. A. [Dominion Radio Astrophysical Observatory, Herzberg Programs in Astronomy and Astrophysics National Research Council of Canada (Canada)

    2017-03-01

    We present a catalog of compact sources of radio emission at 1420 MHz in the northern Galactic plane from the Canadian Galactic Plane Survey. The catalog contains 72,758 compact sources with an angular size less than 3′ within the Galactic longitude range 52° <  ℓ  < 192° down to a 5 σ detection level of ∼1.2 mJy. Linear polarization properties are included for 12,368 sources with signals greater than 4 σ{sub QU} in the Canadian Galactic Plane Survey (CGPS) Stokes Q and U images at the position of the total intensity peak. We compare CGPS flux densities with cataloged flux densities in the Northern VLA Sky Survey catalog for 10,897 isolated unresolved sources with CGPS flux density greater than 4 mJy to search for sources that show variable flux density on timescales of several years. We identify 146 candidate variables that exhibit high fractional variations between the two surveys. In addition, we identify 13 candidate transient sources that have CGPS flux density above 10 mJy but are not detected in the Northern VLA Sky Survey.

  10. MOCCA-SURVEY Database I: Galactic Globular Clusters Harbouring a Black Hole Subsystem

    Science.gov (United States)

    Askar, Abbas; Sedda, Manuel Arca; Giersz, Mirek

    2018-05-01

    There have been increasing theoretical speculations and observational indications that certain globular clusters (GCs) could contain a sizeable population of stellar mass black holes (BHs). In this paper, we shortlist at least 29 Galactic GCs that could be hosting a subsystem of BHs (BHS). In a companion paper, we analysed results from a wide array of GC models (simulated with the MOCCA code for cluster simulations) that retained few tens to several hundreds of BHs at 12 Gyr and showed that the properties of the BHS in those GCs correlate with the GC's observable properties. Building on those results, we use available observational properties of 140 Galactic GCs to identify 29 GCs that could potentially be harbouring up to a few hundreds of BHs. Utilizing observational properties and theoretical scaling relations, we estimate the density, size and mass of the BHS in these GCs. We also calculate the total number of BHs and the fraction of BHs contained in a binary system for our shortlisted Galactic GCs. Additionally, we mention other Galactic GCs that could also contain significant number of single BHs or BHs in binary systems.

  11. New Discoveries in the Galactic Neighborhood through Advances in Laboratory Astrophysics

    OpenAIRE

    WGLA, AAS; Brickhouse, Nancy; Cowan, John; Drake, Paul; Federman, Steven; Ferland, Gary; Frank, Adam; Herbst, Eric; Olive, Keith; Salama, Farid; Savin, Daniel Wolf; Ziurys, Lucy

    2009-01-01

    As the Galactic Neighborhood (GAN) panel is fully aware, the next decade will see major advances in our understanding of this area of research. To quote from their charge, these advances will occur in studies of the galactic neighborhood, including the structure and properties of the Milky Way and nearby galaxies, and their stellar populations and evolution, as well as interstellar media and star clusters. Central to the progress in these areas are the corresponding advances in laboratory ast...

  12. Galactic Winds Driven by Supernovae and Radiation Pressure: Theory and Simulations

    Science.gov (United States)

    Zhang, Dong; Davis, Shane

    2018-01-01

    Galactic winds are ubiquitous in most rapidly star-forming galaxies. They are crucial to the process of galaxy formation and evolution, regulating star formation, shaping the stellar mass function and the mass-metallicity relation, and enriching the intergalactic medium with metals. Although important, the physics of galactic winds is still unclear. Winds may be driven by many mechanisms including overlapping supernovae explosions, radiation pressure of starlight on dust grains, and cosmic rays. However, the growing observations of multiphase structure in galactic winds in a large number of galaxies have not been well explained by any models. In this talk I will focus on the models of supernova- and radiation-pressure-driven winds. Using the state-of-the-art numerical simulations, I will assess the relative merits of these driving mechanisms for accelerating cold and warm clouds to observed velocities, and momentum flux boost during wind propagation.

  13. A Discovery of a Compact High Velocity Cloud-Galactic Supershell System

    Science.gov (United States)

    Park, Geumsook; Koo, Bon-Chul; Kang, Ji-hyun; Gibson, Steven J.; Peek, Joshua Eli Goldston; Douglas, Kevin A.; Korpela, Eric J.; Heiles, Carl E.

    2017-01-01

    High velocity clouds (HVCs) are neutral hydrogen (HI) gas clouds having very different radial velocities from those of the Galactic disk material. While some large HVC complexes are known to be gas streams tidally stripped from satellite galaxies of the Milky Way, there are relatively isolated and small angular-sized HVCs, so called “compact HVCs (CHVCs)”, the origin of which remains controversial. There are about 300 known CHVCs in the Milky Way, and many of them show a head-tail structure, implying a ram pressure interaction with the diffuse Galactic halo gas. It is, however, not clear whether CHVCs are completely dissipated in the Galactic halo to feed the multi-phase circumgalactic medium or they can survive their trip through the halo and collide with the Galactic disk. The colliding CHVCs may leave a gigantic trail in the disk, and it had been suggested that some of HI supershells that require ≧ 3 x 1052 erg may be produced by the collision of such HVCs.Here we report the detection of a kiloparsec (kpc)-size supershell in the outskirts of the Milky Way with the compact HVC 040+01-282 (hereafter, CHVC040) at its geometrical center using the “Inner-Galaxy Arecibo L-band Feed Array” HI 21 cm survey data. The morphological and physical properties of both objects suggest that CHVC040, which is either a fragment of a nearby disrupted galaxy or a cloud that originated from an intergalactic accreting flow, collided with the disk ˜5 Myr ago to form the supershell. Our results show that some compact HVCs can survive their trip through the Galactic halo and inject energy and momentum into the Milky Way disk.

  14. Sagittarius A* as an origin of the Galactic PeV cosmic rays?

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, Yutaka [Department of Earth and Space Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043 (Japan); Murase, Kohta; Kimura, Shigeo S., E-mail: fujita@vega.ess.sci.osaka-u.ac.jp, E-mail: murase@psu.edu, E-mail: szk323@psu.edu [Center for Particle and Gravitational Astrophysics, Department of Physics, Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States)

    2017-04-01

    Supernova remnants (SNRs) have commonly been considered as a source of the observed PeV cosmic rays (CRs) or a Galactic PeV particle accelerator ('Pevatron'). In this work, we study Sagittarius A* (Sgr A*), which is the low-luminosity active galactic nucleus of the Milky Way Galaxy, as another possible canditate of the Pevatron, because it sometimes became very active in the past. We assume that a large number of PeV CRs were injected by Sgr A* at the outburst about 10{sup 7} yr ago when the Fermi bubbles were created. We constrain the diffusion coefficient for the CRs in the Galactic halo on the condition that the CRs have arrived on the Earth by now, while a fairly large fraction of them have escaped from the halo. Based on a diffusion-halo model, we solve a diffusion equation for the CRs and compare the results with the CR spectrum on the Earth. The observed small anisotropy of the arrival directions of CRs may be explained if the diffusion coefficient in the Galactic disk is smaller than that in the halo. Our model predicts that a boron-to-carbon ratio should be energy-independent around the knee, where the CRs from Sgr A* become dominant. It is unlikely that the spectrum of the CRs accelerated at the outburst is represented by a power-law similar to the one for those responsible for the gamma-ray emission from the central molecular zone (CMZ) around the Galactic center.

  15. Hubble Diagram Test of Expanding and Static Cosmological Models: The Case for a Slowly Expanding Flat Universe

    Directory of Open Access Journals (Sweden)

    Laszlo A. Marosi

    2013-01-01

    Full Text Available We present a new redshift (RS versus photon travel time ( test including 171 supernovae RS data points. We extended the Hubble diagram to a range of z = 0,0141–8.1 in the hope that at high RSs, the fitting of the calculated RS/ diagrams to the observed RS data would, as predicted by different cosmological models, set constraints on alternative cosmological models. The Lambda cold dark matter (ΛCDM, the static universe model, and the case for a slowly expanding flat universe (SEU are considered. We show that on the basis of the Hubble diagram test, the static and the slowly expanding models are favored.

  16. An updated Type II supernova Hubble diagram

    Science.gov (United States)

    Gall, E. E. E.; Kotak, R.; Leibundgut, B.; Taubenberger, S.; Hillebrandt, W.; Kromer, M.; Burgett, W. S.; Chambers, K.; Flewelling, H.; Huber, M. E.; Kaiser, N.; Kudritzki, R. P.; Magnier, E. A.; Metcalfe, N.; Smith, K.; Tonry, J. L.; Wainscoat, R. J.; Waters, C.

    2018-03-01

    We present photometry and spectroscopy of nine Type II-P/L supernovae (SNe) with redshifts in the 0.045 ≲ z ≲ 0.335 range, with a view to re-examining their utility as distance indicators. Specifically, we apply the expanding photosphere method (EPM) and the standardized candle method (SCM) to each target, and find that both methods yield distances that are in reasonable agreement with each other. The current record-holder for the highest-redshift spectroscopically confirmed supernova (SN) II-P is PS1-13bni (z = 0.335-0.012+0.009), and illustrates the promise of Type II SNe as cosmological tools. We updated existing EPM and SCM Hubble diagrams by adding our sample to those previously published. Within the context of Type II SN distance measuring techniques, we investigated two related questions. First, we explored the possibility of utilising spectral lines other than the traditionally used Fe IIλ5169 to infer the photospheric velocity of SN ejecta. Using local well-observed objects, we derive an epoch-dependent relation between the strong Balmer line and Fe IIλ5169 velocities that is applicable 30 to 40 days post-explosion. Motivated in part by the continuum of key observables such as rise time and decline rates exhibited from II-P to II-L SNe, we assessed the possibility of using Hubble-flow Type II-L SNe as distance indicators. These yield similar distances as the Type II-P SNe. Although these initial results are encouraging, a significantly larger sample of SNe II-L would be required to draw definitive conclusions. Tables A.1, A.3, A.5, A.7, A.9, A.11, A.13, A.15 and A.17 are also available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/611/A25

  17. Observing the Next Galactic Supernova with the NOvA Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Vasel, Justin A. [Indiana U.; Sheshukov, Andrey [Dubna, JINR; Habig, Alec [Minnesota U., Duluth

    2017-10-02

    The next galactic core-collapse supernova will deliver a wealth of neutrinos which for the first time we are well-situated to measure. These explosions produce neutrinos with energies between 10 and 100 MeV over a period of tens of seconds. Galactic supernovae are relatively rare events, occurring with a frequency of just a few per century. It is therefore essential that all neutrino detectors capable of detecting these neutrinos are ready to trigger on this signal when it occurs. This poster describes a data-driven trigger which is designed to detect the neutrino signal from a galactic core-collapse supernova with the NOvA detectors. The trigger analyzes 5ms blocks of detector activity and applies background rejection algorithms to detect the signal time structure over the background. This background reduction is an essential part of the process, as the NOvA detectors are designed to detect neutrinos from Fermilab's NuMI beam which have an average energy of 2GeV--well above the average energy of supernova neutrinos.

  18. Detecting dark matter with imploding pulsars in the galactic center.

    Science.gov (United States)

    Bramante, Joseph; Linden, Tim

    2014-11-07

    The paucity of old millisecond pulsars observed at the galactic center of the Milky Way could be the result of dark matter accumulating in and destroying neutron stars. In regions of high dark matter density, dark matter clumped in a pulsar can exceed the Schwarzschild limit and collapse into a natal black hole which destroys the pulsar. We examine what dark matter models are consistent with this hypothesis and find regions of parameter space where dark matter accumulation can significantly degrade the neutron star population within the galactic center while remaining consistent with observations of old millisecond pulsars in globular clusters and near the solar position. We identify what dark matter couplings and masses might cause a young pulsar at the galactic center to unexpectedly extinguish. Finally, we find that pulsar collapse age scales inversely with the dark matter density and linearly with the dark matter velocity dispersion. This implies that maximum pulsar age is spatially dependent on position within the dark matter halo of the Milky Way. In turn, this pulsar age spatial dependence will be dark matter model dependent.

  19. The Great Attractor: At the Limits of Hubble's Law of the Expanding Universe.

    Science.gov (United States)

    Murdin, Paul

    1991-01-01

    Presents the origin and mathematics of Hubble's Law of the expanding universe. Discusses limitations to this law and the related concepts of standard candles, elliptical galaxies, and streaming motions, which are conspicuous deviations from the law. The third of three models proposed as explanations for streaming motions is designated: The Great…

  20. Direct evidence for a massive galactic halo

    International Nuclear Information System (INIS)

    Hawkins, M.R.S.

    1983-01-01

    The discovery of a very distant galactic RR Lyrae star, R15 is reported. Spectroscopic observations of the object show that it has a high negative radial velocity, implying a lower limit to the mass of the galaxy of 1.4 x 10 12 Msun. (author)

  1. The ties that bind? Galactic magnetic fields and ram pressure stripping

    Energy Technology Data Exchange (ETDEWEB)

    Tonnesen, Stephanie; Stone, James, E-mail: stonnes@astro.princeton.edu, E-mail: jstone@astro.princeton.edu [Department of Astrophysics, Princeton University, Peyton Hall, Princeton, NJ 08544 (United States)

    2014-11-10

    One process affecting gas-rich cluster galaxies is ram pressure stripping (RPS), i.e., the removal of galactic gas through direct interaction with the intracluster medium (ICM). Galactic magnetic fields may have an important impact on the stripping rate and tail structure. We run the first magnetohydrodynamic (MHD) simulations of RPS that include a galactic magnetic field, using 159 pc resolution throughout our entire domain in order to resolve mixing throughout the tail. We find very little difference in the total amount of gas removed from the unmagnetized and magnetized galaxies, although a magnetic field with a radial component will initially accelerate stripped gas more quickly. In general, we find that magnetic fields in the disk lead to slower velocities in the stripped gas near the disk and faster velocities farther from the disk. We also find that magnetic fields in the galactic gas lead to larger unmixed structures in the tail. Finally, we discuss whether ram pressure stripped tails can magnetize the ICM. We find that the total magnetic energy density grows as the tail lengthens, likely through turbulence. There are μG-strength fields in the tail in all of our MHD runs, which survive to at least 100 kpc from the disk (the edge of our simulated region), indicating that the area-filling factor of magnetized tails in a cluster could be large.

  2. The Ties that Bind? Galactic Magnetic Fields and Ram Pressure Stripping

    Science.gov (United States)

    Tonnesen, Stephanie; Stone, James

    2014-11-01

    One process affecting gas-rich cluster galaxies is ram pressure stripping (RPS), i.e., the removal of galactic gas through direct interaction with the intracluster medium (ICM). Galactic magnetic fields may have an important impact on the stripping rate and tail structure. We run the first magnetohydrodynamic (MHD) simulations of RPS that include a galactic magnetic field, using 159 pc resolution throughout our entire domain in order to resolve mixing throughout the tail. We find very little difference in the total amount of gas removed from the unmagnetized and magnetized galaxies, although a magnetic field with a radial component will initially accelerate stripped gas more quickly. In general, we find that magnetic fields in the disk lead to slower velocities in the stripped gas near the disk and faster velocities farther from the disk. We also find that magnetic fields in the galactic gas lead to larger unmixed structures in the tail. Finally, we discuss whether ram pressure stripped tails can magnetize the ICM. We find that the total magnetic energy density grows as the tail lengthens, likely through turbulence. There are μG-strength fields in the tail in all of our MHD runs, which survive to at least 100 kpc from the disk (the edge of our simulated region), indicating that the area-filling factor of magnetized tails in a cluster could be large.

  3. The HST-pNFL program: Mapping the Fluorescent Emission of Galactic Outflows

    Science.gov (United States)

    Heckman, Timothy

    2017-08-01

    Galactic outflows associated with star formation are believed to play a crucial role in the evolution of galaxies and the IGM. Most of our knowledge about outflows has come from down-the-barrel UV absorption spectroscopy of star-forming galaxies. However, absorption-line data alone provide only indirect information about the radial structure of the gas flows, which introduces large systematic uncertainties in some of the most important quantities, such as the outflow rate, the mass loading factor, and the momentum, metal, and energy fluxes. Recent spectroscopic observations of star-forming galaxies with large (projected physical) apertures have revealed non-resonant (fluorescent) emission in the UV, e.g., FeII* and SiII*, that can be naturally produced by spatially extended emission from the same outflowing material traced in absorption. Encouraged by the most recent observations of FeII* emission by the SDSS-IV/eBOSS survey (Zhu et al. 2015), we propose a pilot program to use narrow-band filter UVIS F280N images to map the extended FeII* 2626 and 2613 fluorescent emission in a carefully-chosen sample of 4 starburst galaxies at z=0.065, and COS G130M to obtain down-the- barrel spectra for SiII absorption and SiII* emission. This HST pilot program can provide unique information about the spatial structure of galactic outflows and can potentially lead to a revolution in our understanding of outflow physics and its impact on galaxies and the IGM.

  4. Gala: A Python package for galactic dynamics

    Science.gov (United States)

    Price-Whelan, Adrian M.

    2017-10-01

    Gala is an Astropy-affiliated Python package for galactic dynamics. Python enables wrapping low-level languages (e.g., C) for speed without losing flexibility or ease-of-use in the user-interface. The API for Gala was designed to provide a class-based and user-friendly interface to fast (C or Cython-optimized) implementations of common operations such as gravitational potential and force evaluation, orbit integration, dynamical transformations, and chaos indicators for nonlinear dynamics. Gala also relies heavily on and interfaces well with the implementations of physical units and astronomical coordinate systems in the Astropy package (astropy.units and astropy.coordinates). Gala was designed to be used by both astronomical researchers and by students in courses on gravitational dynamics or astronomy. It has already been used in a number of scientific publications and has also been used in graduate courses on Galactic dynamics to, e.g., provide interactive visualizations of textbook material.

  5. Are dSph galaxies Galactic building blocks?

    Directory of Open Access Journals (Sweden)

    Gilmore G.

    2012-02-01

    Full Text Available Dwarf spheroidal galaxies (dSph are frequently assumed to represent surviving examples of a vast now destroyed population of small systems in which many of the stars now forming the Milky Way were formed. Ongoing accretion and considerable sub-structure in the outer Galactic halo is direct evidence that there is some role for stars formed in small galaxies in populating the (outer galaxy. The evidence from stellar populations is however contradictory to this. dSph stellar populations are unlike any stars found in significant numbers in the Milky Way. The dSph are indeed small galaxies, formed over long times with low rates of star formation. Most of the stars in the Milky Way halo however seem to have formed quickly, at higher star formation rate, in gas mixed efficiently on kpc scales. The overwhelming majority of Milky Way stars, those in the Galactic thick disk and thin disk, seem to have nothing at all to do with dwarf galaxy origins.

  6. New solution to the problem of the tension between the high-redshift and low-redshift measurements of the Hubble constant

    Science.gov (United States)

    Bolejko, Krzysztof

    2018-01-01

    During my talk I will present results suggesting that the phenomenon of emerging spatial curvature could resolve the conflict between Planck's (high-redshift) and Riess et al. (low-redshift) measurements of the Hubble constant. The phenomenon of emerging spatial curvature is absent in the Standard Cosmological Model, which has a flat and fixed spatial curvature (small perturbations are considered in the Standard Cosmological Model but their global average vanishes, leading to spatial flatness at all times).In my talk I will show that with the nonlinear growth of cosmic structures the global average deviates from zero. As a result, the spatial curvature evolves from spatial flatness of the early universe to a negatively curved universe at the present day, with Omega_K ~ 0.1. Consequently, the present day expansion rate, as measured by the Hubble constant, is a few percent higher compared to the high-redshift constraints. This provides an explanation why there is a tension between high-redshift (Planck) and low-redshift (Riess et al.) measurements of the Hubble constant. In the presence of emerging spatial curvature these two measurements should in fact be different: high redshift measurements should be slightly lower than the Hubble constant inferred from the low-redshift data.The presentation will be based on the results described in arXiv:1707.01800 and arXiv:1708.09143 (which discuss the phenomenon of emerging spatial curvature) and on a paper that is still work in progress but is expected to be posted on arxiv by the AAS meeting (this paper uses mock low-redshift data to show that starting from the Planck's cosmological models (in the early universe) but with the emerging spatial curvature taken into account, the low-redshift Hubble constant should be 72.4 km/s/Mpc.

  7. Selections from 2017: Hubble Survey Explores Distant Galaxies

    Science.gov (United States)

    Kohler, Susanna

    2017-12-01

    Editors note:In these last two weeks of 2017, well be looking at a few selections that we havent yet discussed on AAS Nova from among the most-downloaded paperspublished in AAS journals this year. The usual posting schedule will resume in January.CANDELS Multi-Wavelength Catalogs: Source Identification and Photometry in the CANDELS COSMOSSurvey FieldPublished January2017Main takeaway:A publication led byHooshang Nayyeri(UC Irvine and UC Riverside) early this year details acatalog of sources built using the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey(CANDELS), a survey carried out by cameras on board the Hubble Space Telescope. The catalogliststhe properties of 38,000 distant galaxies visiblewithin the COSMOS field, a two-square-degree equatorial field explored in depthto answer cosmological questions.Why its interesting:Illustration showing the three-dimensional map of the dark matter distribution in theCOSMOS field. [Adapted from NASA/ESA/R. Massey(California Institute of Technology)]The depth and resolution of the CANDELS observations areuseful for addressingseveral major science goals, including the following:Studying the most distant objects in the universe at the epoch of reionization in the cosmic dawn.Understanding galaxy formation and evolution during the peak epoch of star formation in the cosmic high noon.Studying star formation from deep ultravioletobservations and studying cosmology from supernova observations.Why CANDELS is a major endeavor:CANDELS isthe largest multi-cycle treasury program ever approved on the Hubble Space Telescope using over 900 orbits between 2010 and 2013 withtwo cameras on board the spacecraftto study galaxy formation and evolution throughout cosmic time. The CANDELS images are all publicly available, and the new catalogrepresents an enormous source of information about distant objectsin our universe.CitationH. Nayyeri et al 2017 ApJS 228 7. doi:10.3847/1538-4365/228/1/7

  8. Examining Sites of Recent Star Formation in the Galactic Center: A Closer Look at the Arched Filaments and H HII Regions

    Science.gov (United States)

    Hankins, Matthew; Herter, Terry; Lau, Ryan; Morris, Mark; Mills, Elisabeth

    2018-01-01

    In this dissertation presentation, we analyze mid-infrared imaging of the Arched Filaments and H HII regions in the Galactic center taken with the Faint Object Infrared Camera for the SOFIA Telescope (FORCAST). Examining these regions are of great interest because they provide insights on star formation in the Galactic center and the interactions massive stars have with the ISM. The Arched Filaments are a collection of molecular cloud ridges which are ionized by the nearby Arches star cluster, and give the appearance of large (~25 pc) arch-like structures. The H HII regions are a collection of HII regions just to the west of the Arches cluster (~5-15 pc). The origin of the stars powering the H HII regions is uncertain, as they may have formed in a nearby molecular cloud or could be ejected members of the Arches cluster. FORCAST observations of these regions were used to study the morphology and heating structure of the HII regions, as well as constrain their luminosities.Color-temperature maps of the Arched Filaments created with the FORCAST data reveals fairly uniform dust temperatures (~70-100 K) across the length filaments. The temperature uniformity of the clouds can be explained if they are heated by the Arches cluster but are located at a larger distance from the cluster than they appear. The density of the Arched Filaments clouds was estimated from the FORCAST data and was found to be below the threshold for tidal shearing, indicating that that the clouds will be destroyed by the strong tidal field near the Galactic center. To the west of the Arched Filaments, there is an interesting collection of HII regions, referred to as the H HII regions. These regions are likely heated by massive O/B type stars, and the morphology of the dust emission associated with these objects indicate a mixture of potential in situ formation mechanisms and interlopers. Interestingly, FORCAST imaging of the H HII regions also reveal several compact sources, which may be young

  9. Possible circumvention of Parker's bound on galactic magnetic monopoles

    International Nuclear Information System (INIS)

    Dicus, D.A.; Teplitz, V.L.

    1983-04-01

    There is a possibility that a magnetic monople has observed. The monopole density implied by the observation appears to violate bounds on the density of such particles derived from the total mass density of the universe and from the existence of galactic magnetic fields. We show that the observation is not inconsistent with these bounds if the monopoles and antimonopoles are bound into positronium - like states with principal quantum n high enough so that the earth's magnetic field will break them apart, but small enough so that the weaker galactic mangetic field will not. We determine a range of values for n and show that lifetimes for such bound states are longer than the current age of the universe

  10. Limits for an inverse bremsstrahlung origin of the diffuse Galactic soft gamma-ray emission

    DEFF Research Database (Denmark)

    Pohl, M.

    1998-01-01

    origin of the soft Galactic gamma-ray continuum through inverse bremsstrahlung. A flux of low-energy cosmic rays strong enough to produce the observed spectrum of gamma-rays implies substantial gamma-ray emission at a few MeV through nuclear de-excitation. It is shown that the existing limits on excess 3......-7 MeV emission from the Galactic plane, in concert with the constraints from pi(0)-decay gamma-ray emission at higher energies, are in serious conflict with an inverse bremsstrahlung origin of the Galactic soft gamma-ray emission for any physically plausible low-energy cosmic ray spectrum. While...

  11. Study and modeling of the most energetic Active Galactic Nuclei with the Fermi satellite

    International Nuclear Information System (INIS)

    Sanchez, D.

    2010-06-01

    The Fermi satellite was launched in June 2008. The onboard LAT detector is dedicated to the study of galactic and extra-galactic gamma sources with an energy comprised between 200 MeV and 300 GeV. 1451 sources have been detected in less than 11 months. This document is divided into 6 chapters: 1) gamma astronomy, 2) the Fermi satellite, 3) the active galactic nuclei (NAG), 4) the observation of several blazars (PKS-2155-304 and PG-1553+113) and its simulation, 5) the observation of PKS-2155-304 with both RXTE and Fermi, and 6) conclusion

  12. Galactic Structures from Gravitational Radii

    Directory of Open Access Journals (Sweden)

    Salvatore Capozziello

    2018-02-01

    Full Text Available We demonstrate that the existence of a Noether symmetry in f ( R theories of gravity gives rise to an additional gravitational radius, besides the standard Schwarzschild one, determining the dynamics at galactic scales. By this feature, it is possible to explain the baryonic Tully-Fisher relation and the rotation curve of gas-rich galaxies without the dark matter hypothesis. Furthermore, under the same standard, the Fundamental Plane of elliptical galaxies can be addressed.

  13. FINGERPRINTS OF GALACTIC LOOP I ON THE COSMIC MICROWAVE BACKGROUND

    International Nuclear Information System (INIS)

    Liu, Hao; Mertsch, Philipp; Sarkar, Subir

    2014-01-01

    We investigate possible imprints of galactic foreground structures such as the ''radio loops'' in the derived maps of the cosmic microwave background. Surprisingly, there is evidence for these not only at radio frequencies through their synchrotron radiation, but also at microwave frequencies where emission by dust dominates. This suggests the mechanism is magnetic dipole radiation from dust grains enriched by metallic iron or ferrimagnetic molecules. This new foreground we have identified is present at high galactic latitudes, and potentially dominates over the expected B-mode polarization signal due to primordial gravitational waves from inflation

  14. Detection of extended galactic sources with an underwater neutrino telescope

    International Nuclear Information System (INIS)

    Leisos, A.; Tsirigotis, A. G.; Tzamarias, S. E.; Lenis, D.

    2014-01-01

    In this study we investigate the discovery capability of a Very Large Volume Neutrino Telescope to Galactic extended sources. We focus on the brightest HESS gamma rays sources which are considered also as very high energy neutrino emitters. We use the unbinned method taking into account both the spatial and the energy distribution of high energy neutrinos and we investigate parts of the Galactic plane where nearby potential neutrino emitters form neutrino source clusters. Neutrino source clusters as well as isolated neutrino sources are combined to estimate the observation period for 5 sigma discovery of neutrino signals from these objects

  15. Star formation and gas inflows in the OH Megamaser galaxy IRAS03056+2034

    Science.gov (United States)

    Hekatelyne, C.; Riffel, Rogemar A.; Sales, Dinalva; Robinson, Andrew; Storchi-Bergmann, Thaisa; Kharb, Preeti; Gallimore, Jack; Baum, Stefi; O'Dea, Christopher

    2018-06-01

    We have obtained observations of the OH Megamaser galaxy IRAS03056+0234 using Gemini Multi-Object Spectrograph (GMOS) Integral Field Unit (IFU), Very Large Array (VLA) and Hubble Space Telescope (HST). The HST data reveals spiral arms containing knots of emission associated to star forming regions. The GMOS-IFU data cover the spectral range of 4500 to 7500 Å at a velocity resolution of 90 km s-1 and spatial resolution of 506 pc. The emission-line flux distributions reveal a ring of star forming regions with radius of 786 pc centred at the nucleus of the galaxy, with an ionized gas mass of 1.2× 108M⊙, an ionizing photon luminosity of log Q[H+]=53.8 and a star formation rate of 4.9 M⊙ yr-1. The emission-line ratios and radio emission suggest that the gas at the nuclear region is excited by both starburst activity and an active galactic nucleus. The gas velocity fields are partially reproduced by rotation in the galactic plane, but show, in addition, excess redshifts to the east of the nucleus, consistent with gas inflows towards the nucleus, with velocity of ˜45 km s-1 and a mass inflow rate of ˜7.7 × 10-3 M⊙ yr-1.

  16. The Hubble Constant from SN Refsdal

    Science.gov (United States)

    Vega-Ferrero, J.; Diego, J. M.; Miranda, V.; Bernstein, G. M.

    2018-02-01

    Hubble Space Telescope observations from 2015 December 11 detected the expected fifth counter-image of supernova (SN) Refsdal at z = 1.49. In this Letter, we compare the time-delay predictions from numerous models with the measured value derived by Kelly et al. from very early data in the light curve of the SN Refsdal and find a best value for {H}0={64}-11+9 {km} {{{s}}}-1 {{Mpc}}-1 (68% CL), in excellent agreement with predictions from cosmic microwave background and recent weak lensing data + baryon acoustic oscillations + Big Bang nucleosynthesis (from the DES Collaboration). This is the first constraint on H 0 derived from time delays between multiple-lensed SN images, and the first with a galaxy cluster lens, subject to systematic effects different from other time-delay H 0 estimates. Additional time-delay measurements from new multiply imaged SNe will allow derivation of competitive constraints on H 0.

  17. Hubble diagram as a probe of minicharged particles

    International Nuclear Information System (INIS)

    Ahlers, Markus

    2009-01-01

    The luminosity-redshift relation of cosmological standard candles provides information about the relative energy composition of our Universe. In particular, the observation of type Ia supernovae up to a redshift of z∼2 indicates a universe which is dominated today by dark matter and dark energy. The propagation distance of light from these sources is of the order of the Hubble radius and serves as a very sensitive probe of feeble inelastic photon interactions with background matter, radiation, or magnetic fields. In this paper we discuss the limits on minicharged particle models arising from a dimming effect in supernova surveys. We briefly speculate about a strong dimming effect as an alternative to dark energy.

  18. A spectroscopic and photometric study of MSP companions in Galactic Globular Clusters

    OpenAIRE

    Cocozza, Gabriele

    2008-01-01

    This Thesis is devoted to the study of the optical companions of Millisecond Pulsars in Galactic Globular Clusters (GCs) as a part of a large project started at the Department of Astronomy of the Bologna University, in collaboration with other institutions (Astronomical Observatory of Cagliari and Bologna, University of Virginia), specifically dedicated to the study of the environmental effects on passive stellar evolution in galactic GCs. Globular Clusters are very efficien...

  19. INVESTIGATING THE CORE MORPHOLOGY-SEYFERT CLASS RELATIONSHIP WITH HUBBLE SPACE TELESCOPE ARCHIVAL IMAGES OF LOCAL SEYFERT GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Rutkowski, M. J.; Hegel, P. R.; Kim, Hwihyun; Windhorst, R. A. [School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287-1404 (United States); Tamura, Kazuyuki [Naruto University of Education, Nakashima, Takashima, Naruto-cho, Naruto-shi 772-8502 (Japan)

    2013-07-01

    The unified model of active galactic nuclei (AGNs) has provided a successful explanation for the observed diversity of AGNs in the local universe. However, recent analysis of multi-wavelength spectral and image data suggests that the unified model is only a partial theory of AGNs, and may need to be augmented to remain consistent with all observations. Recent studies using high spatial resolution ground- and space-based observations of local AGNs show that Seyfert class and the ''core'' (r {approx}< 1 kpc) host-galaxy morphology are correlated. Currently, this relationship has only been established qualitatively, by visual inspection of the core morphologies of low-redshift (z < 0.035) Seyfert host galaxies. We re-establish this empirical relationship in Hubble Space Telescope optical imaging by visual inspection of a catalog of 85 local (D < 63 Mpc) Seyfert galaxies. We also attempt to re-establish the core morphology-Seyfert class relationship using an automated, non-parametric technique that combines both existing classification parameter methods (the adapted CAS and G-M {sub 20}) and a new method which implements the Source Extractor software for feature detection in unsharp-mask images. This new method is designed explicitly to detect dust features in the images. We use our automated approach to classify the morphology of the AGN cores and determine that Sy2 galaxies visually appear, on average, to have more dust features than Sy1. With the exception of this ''dustiness'' however, we do not measure a strong correlation between the dust morphology and the Seyfert class of the host galaxy using quantitative techniques. We discuss the implications of these results in the context of the unified model.

  20. Possible galactic origin of. gamma. -ray bursts

    Energy Technology Data Exchange (ETDEWEB)

    Manchanda, R K; Ramsden, D [Southampton Univ. (UK). Dept. of Physics

    1977-03-31

    It is stated that extragalactic models for the origin of non-solar ..gamma..-ray bursts include supernova bursts in remote galaxies, and the collapse of the cores of active stars, whilst galactic models are based on flare stars, thermonuclear explosions in neutron stars and the sudden accretion of cometary gas on to neutron stars. The acceptability of any of these models may be tested by the observed size spectrum of the ..gamma..-ray bursts. The extragalactic models predict a power law spectrum with number index -1.5, whilst for the galactic models the number index will be -1. Experimental data on ..gamma..-ray bursts is, however, still meagre, and so far only 44 confirmed events have been recorded by satellite-borne instruments. The number spectrum of the observed ..gamma..-ray bursts indicates that the observed distribution for events with an energy < 10/sup -4/ erg/cm/sup 2/ is flat; this makes the choice of any model completely arbitrary. An analysis of the observed ..gamma..-ray events is here presented that suggests very interesting possibilities for their origin. There appears to be a preferred mean energy for ..gamma..-ray bursts; some 90% of the recorded events show a mean energy between 5 x 10/sup -5/ and 5 x 10/sup -4/ erg/cm/sup 2/, contrary to the predicted characteristics of the number spectrum of various models. A remarkable similarity is found between the distribution of ..gamma..-ray bursts and that of supernova remnants, suggesting a genetic relationship between the two and the galactic origin of the ..gamma..-ray bursts, and the burst source could be identified with completely run down neutron stars, formed during supernova explosions.

  1. Millisecond Pulsars and the Galactic Center Excess

    Science.gov (United States)

    Gonthier, Peter L.; Koh, Yew-Meng; Kust Harding, Alice; Ferrara, Elizabeth C.

    2017-08-01

    Various groups including the Fermi team have confirmed the spectrum of the gamma- ray excess in the Galactic Center (GCE). While some authors interpret the GCE as evidence for the annihilation of dark matter (DM), others have pointed out that the GCE spectrum is nearly identical to the average spectrum of Fermi millisecond pul- sars (MSP). Assuming the Galactic Center (GC) is populated by a yet unobserved source of MSPs that has similar properties to that of MSPs in the Galactic Disk (GD), we present results of a population synthesis of MSPs from the GC. We establish parameters of various models implemented in the simulation code by matching characteristics of 54 detected Fermi MSPs in the first point source catalog and 92 detected radio MSPs in a select group of thirteen radio surveys and targeting a birth rate of 45 MSPs per mega-year. As a check of our simulation, we find excellent agreement with the estimated numbers of MSPs in eight globular clusters. In order to reproduce the gamma-ray spectrum of the GCE, we need to populate the GC with 10,000 MSPs having a Navarro-Frenk-White distribution suggested by the halo density of DM. It may be possible for Fermi to detect some of these MSPs in the near future; the simulation also predicts that many GC MSPs have radio fluxes S1400above 10 �μJy observable by future pointed radio observations. We express our gratitude for the generous support of the National Science Foundation (RUI: AST-1009731), Fermi Guest Investigator Program and the NASA Astrophysics Theory and Fundamental Program (NNX09AQ71G).

  2. THE LOW-LUMINOSITY END OF THE RADIUS-LUMINOSITY RELATIONSHIP FOR ACTIVE GALACTIC NUCLEI

    International Nuclear Information System (INIS)

    Bentz, Misty C.; Denney, Kelly D.; Vestergaard, Marianne; Grier, Catherine J.; Peterson, Bradley M.; De Rosa, Gisella; Pogge, Richard W.; Barth, Aaron J.; Bennert, Vardha N.; Canalizo, Gabriela; Filippenko, Alexei V.; Li Weidong; Gates, Elinor L.; Greene, Jenny E.; Malkan, Matthew A.; Stern, Daniel; Treu, Tommaso; Woo, Jong-Hak

    2013-01-01

    We present an updated and revised analysis of the relationship between the Hβ broad-line region (BLR) radius and the luminosity of the active galactic nucleus (AGN). Specifically, we have carried out two-dimensional surface brightness decompositions of the host galaxies of nine new AGNs imaged with the Hubble Space Telescope Wide Field Camera 3. The surface brightness decompositions allow us to create ''AGN-free'' images of the galaxies, from which we measure the starlight contribution to the optical luminosity measured through the ground-based spectroscopic aperture. We also incorporate 20 new reverberation-mapping measurements of the Hβ time lag, which is assumed to yield the average Hβ BLR radius. The final sample includes 41 AGNs covering four orders of magnitude in luminosity. The additions and updates incorporated here primarily affect the low-luminosity end of the R BLR -L relationship. The best fit to the relationship using a Bayesian analysis finds a slope of α= 0.533 +0.035 -0.033 , consistent with previous work and with simple photoionization arguments. Only two AGNs appear to be outliers from the relationship, but both of them have monitoring light curves that raise doubt regarding the accuracy of their reported time lags. The scatter around the relationship is found to be 0.19 ± 0.02 dex, but would be decreased to 0.13 dex by the removal of these two suspect measurements. A large fraction of the remaining scatter in the relationship is likely due to the inaccurate distances to the AGN host galaxies. Our results help support the possibility that the R BLR -L relationship could potentially be used to turn the BLRs of AGNs into standardizable candles. This would allow the cosmological expansion of the universe to be probed by a separate population of objects, and over a larger range of redshifts.

  3. HUBBLE'S ULTRAVIOLET VIEWS OF NEARBY GALAXIES YIELD CLUES TO EARLY UNIVERSE

    Science.gov (United States)

    2002-01-01

    Astronomers are using these three NASA Hubble Space Telescope images to help tackle the question of why distant galaxies have such odd shapes, appearing markedly different from the typical elliptical and spiral galaxies seen in the nearby universe. Do faraway galaxies look weird because they are truly weird? Or, are they actually normal galaxies that look like oddballs, because astronomers are getting an incomplete picture of them, seeing only the brightest pieces? Light from these galaxies travels great distances (billions of light-years) to reach Earth. During its journey, the light is 'stretched' due to the expansion of space. As a result, the light is no longer visible, but has been shifted to the infrared where present instruments are less sensitive. About the only light astronomers can see comes from regions where hot, young stars reside. These stars emit mostly ultraviolet light. But this light is stretched, appearing as visible light by the time it reaches Earth. Studying these distant galaxies is like trying to put together a puzzle with some of the pieces missing. What, then, do distant galaxies really look like? Astronomers studied 37 nearby galaxies to find out. By viewing these galaxies in ultraviolet light, astronomers can compare their shapes with those of their distant relatives. These three Hubble telescope pictures, taken with the Wide Field and Planetary Camera 2, represent a sampling from that survey. Astronomers observed the galaxies in ultraviolet and visible light to study all the stars that make up these 'cities of stars.' The results of their survey support the idea that astronomers are detecting the 'tip of the iceberg' of very distant galaxies. Based on these Hubble ultraviolet images, not all the faraway galaxies necessarily possess intrinsically odd shapes. The results are being presented today at the 197th meeting of the American Astronomical Society in San Diego, CA. The central region of the 'star-burst' spiral galaxy at far left

  4. Hubble 3D: A Science and Hollywood Collaboration Made (Nearly) in Heaven

    Science.gov (United States)

    Showstack, Randy

    2010-04-01

    Just 2 days after the 2010 Academy Awards® ceremony in early March bestowed Oscars® for motion picture achievements, NASA deputy administrator Lori Garver touted a new film about the Hubble Space Telescope, Hubble 3D, for best drama, special effects, screenplay, actors and actress, and director and producer. The 43-minute IMAX and Warner Brothers Pictures production, which opened in theaters on 19 March, is an example of the ability of Hollywood and the science community to partner in providing a dynamic educational and entertaining product, according to a number of people associated with the film. Sharing the red carpet at the Smithsonian National Air and Space Museum in Washington, D. C., with astronauts and others to mark the world premiere, Garver said the film shows the drama of the astronauts’ efforts to repair the telescope while traveling 17,000 miles per hour and performing grueling space walks (see Figure 1). “We have literally opened our eyes on the universe through this telescope,” she said. “This is a taxpayer-funded agency, and we are giving back to the public the very story that they paid for.”

  5. Planck intermediate results: XLIV. Structure of the Galactic magnetic field from dust polarization maps of the southern Galactic cap

    DEFF Research Database (Denmark)

    Aghanim, N.; Alves, M. I R; Arzoumanian, D.

    2016-01-01

    Using data from the Planck satellite, we study the statistical properties of interstellar dust polarization at high Galactic latitudes around the south pole (b < −60°). Our aim is to advance the understanding of the magnetized interstellar medium (ISM), and to provide a modelling framework of the...

  6. Testing the Bose-Einstein Condensate dark matter model at galactic cluster scale

    International Nuclear Information System (INIS)

    Harko, Tiberiu; Liang, Pengxiang; Liang, Shi-Dong; Mocanu, Gabriela

    2015-01-01

    The possibility that dark matter may be in the form of a Bose-Einstein Condensate (BEC) has been extensively explored at galactic scale. In particular, good fits for the galactic rotations curves have been obtained, and upper limits for the dark matter particle mass and scattering length have been estimated. In the present paper we extend the investigation of the properties of the BEC dark matter to the galactic cluster scale, involving dark matter dominated astrophysical systems formed of thousands of galaxies each. By considering that one of the major components of a galactic cluster, the intra-cluster hot gas, is described by King's β-model, and that both intra-cluster gas and dark matter are in hydrostatic equilibrium, bound by the same total mass profile, we derive the mass and density profiles of the BEC dark matter. In our analysis we consider several theoretical models, corresponding to isothermal hot gas and zero temperature BEC dark matter, non-isothermal gas and zero temperature dark matter, and isothermal gas and finite temperature BEC, respectively. The properties of the finite temperature BEC dark matter cluster are investigated in detail numerically. We compare our theoretical results with the observational data of 106 galactic clusters. Using a least-squares fitting, as well as the observational results for the dark matter self-interaction cross section, we obtain some upper bounds for the mass and scattering length of the dark matter particle. Our results suggest that the mass of the dark matter particle is of the order of μ eV, while the scattering length has values in the range of 10 −7 fm

  7. Testing the Interacting Dark Energy Model with Cosmic Microwave Background Anisotropy and Observational Hubble Data

    Directory of Open Access Journals (Sweden)

    Weiqiang Yang

    2017-07-01

    Full Text Available The coupling between dark energy and dark matter provides a possible approach to mitigate the coincidence problem of the cosmological standard model. In this paper, we assumed the interacting term was related to the Hubble parameter, energy density of dark energy, and equation of state of dark energy. The interaction rate between dark energy and dark matter was a constant parameter, which was, Q = 3 H ξ ( 1 + w x ρ x . Based on the Markov chain Monte Carlo method, we made a global fitting on the interacting dark energy model from Planck 2015 cosmic microwave background anisotropy and observational Hubble data. We found that the observational data sets slightly favored a small interaction rate between dark energy and dark matter; however, there was not obvious evidence of interaction at the 1 σ level.

  8. Galactically inertial space probes for the direct measurement of the metric expansion of the universe

    International Nuclear Information System (INIS)

    Cagnani, Ivan

    2011-01-01

    Astrometric data from the future GAIA and OBSS missions will allow a more precise calculation of the local galactic circular speed, and better measurements of galactic movements relative to the CMB will be obtained by post-WMAP missions (ie Planck). Contemporary development of high specific impulse electric propulsion systems (ie VASIMIR) will enable the development of space probes able to properly compensate the galactic circular speed as well as the resulting attraction to the centre of our galaxy. The probes would appear immobile to an ideal observer fixed at the centre of the galaxy, in contrast of every other galactic object, which would appear moving according to their local galactic circular speed and their proper motions. Arranging at least three of these galactically static probes in an extended formation and measuring reciprocal distances of the probes over time with large angle laser ranges could allow a direct measurement of the metric expansion of the universe. Free-drifting laser-ranged targets released by the spacecrafts could also be used to measure and compensate solar system's induced local perturbations. For further reducing local effects and increase the accuracy of the results, the distance between the probes should be maximized and the location of the probes should be as far as possible from the Sun and any massive object (ie Jupiter, Saturn). Gravitational waves could also induce random errors but data from GW observatories like the planned LISA could be used to correct them.

  9. PREFACE: Galactic Center Workshop 2006

    Science.gov (United States)

    Schödel, Rainer; Bower, Geoffrey C.; Muno, Michael P.; Nayakshin, Sergei; Ott, Thomas

    2006-12-01

    We are pleased to present the proceedings from the Galactic Center Workshop 2006—From the Center of the Milky Way to Nearby Low-Luminosity Galactic Nuclei. The conference took place in the Physikzentrum, Bad Honnef, Germany, on 18 to 22 April 2006. It is the third workshop of this kind, following the Galactic Center Workshops held 1998 in Tucson, Arizona, and 2002 in Kona, Hawaii. The center of the Milky Way is the only galactic nucleus of a fairly common spiral galaxy that can be observed in great detail. With a distance of roughly 8 kpc, the resolution that can currently be achieved is of the order 40 mpc/8000 AU in the X-ray domain, 2 mpc/400 AU in the near-infrared, and 0.01 mpc/1 AU with VLBI in the millimeter domain. This is two to three orders of magnitude better than for any comparable nearby galaxy, making thus the center of the Milky Way thetemplate object for the general physical interpretation of the phenomena that can be observed in galactic nuclei. We recommend the summary article News from the year 2006 Galactic Centre workshopby Mark Morris and Sergei Nayakshin—who also gave the summary talk of the conference—to the reader in order to obtain a first, concise overview of the results presented at the workshop and some of the currently most exciting—and debated—developments in recent GC research. While the workshops held in 1998 and 2002 were dedicated solely to the center of the Milky Way, the field of view was widened in Bad Honnef to include nearby low-luminosity nuclei. This new feature followed the realization that not only the GC serves as a template for understanding extragalactic nuclei, but that the latter can also provide the context and broader statistical base for understanding the center of our Milky Way. This concerns especially the accretion and emission processes related to the Sagittarius A*, the manifestation of the super massive black hole in the GC, but also the surprising observation of great numbers of massive, young

  10. Using photometrically selected metal-poor stars to study dwarf galaxies and the Galactic stellar halo

    Science.gov (United States)

    Youakim, Kris; Starkenburg, Else; Martin, Nicolas; Pristine Team

    2018-06-01

    The Pristine survey is a narrow-band photometric survey designed to efficiently search for extremely metal-poor (EMP) stars. In the first three years of the survey, it has demonstrated great efficiency at finding EMP stars, and also great promise for increasing the current, small sample of the most metal-poor stars. The present sky coverage is ~2500 square degrees in the Northern Galactic Halo, including several individual fields targeting dwarf galaxies. By efficiently identifying member stars in the outskirts of known faint dwarf galaxies, the dynamical histories and chemical abundance patterns of these systems can be understood in greater detail. Additionally, with reliable photometric metallicities over a large sky coverage it is possible to perform a large scale clustering analysis in the Milky Way halo, and investigate the characteristic scale of substructure at different metallicities. This can reveal important details about the process of building up the halo through dwarf galaxy accretion, and offer insight into the connection between dwarf galaxies and the Milky Way halo. In this talk I will outline our results on the search for the most pristine stars, with a focus on how we are using this information to advance our understanding of dwarf galaxies and their contribution to the formation of the Galactic stellar halo.

  11. Galactic Bulge Giants: Probing Stellar and Galactic Evolution. 1. Catalogue of Spitzer IRAC and MIPS Sources (PREPRINT)

    Science.gov (United States)

    Uttenthaler, Stefan; Stute, Matthias; Sahai, Raghvendra; Blommaert, Joris A.; Schultheis, Mathias; Kraemer, Kathleen E.; Groenewegen, Martin A.; Price, Stephan D.

    2010-01-01

    Aims. We aim at measuring mass-loss rates and the luminosities of a statistically large sample of Galactic bulge stars at several galactocentric radii. The sensitivity of previous infrared surveys of the bulge has been rather limited, thus fundamental questions for late stellar evolution, such as the stage at which substantial mass-loss begins on the red giant branch and its dependence on fundamental stellar properties, remain unanswered. We aim at providing evidence and answers to these questions. Methods. To this end, we observed seven 15 15 arcmin2 fields in the nuclear bulge and its vicinity with unprecedented sensitivity using the IRAC and MIPS imaging instruments on-board the Spitzer Space Telescope. In each of the fields, tens of thousands of point sources were detected. Results. In the first paper based on this data set, we present the observations, data reduction, the final catalogue of sources, and a detailed comparison to previous mid-IR surveys of the Galactic bulge, as well as to theoretical isochrones. We find in general good agreement with other surveys and the isochrones, supporting the high quality of our catalogue.

  12. ORIGIN OF CHEMICAL AND DYNAMICAL PROPERTIES OF THE GALACTIC THICK DISK

    International Nuclear Information System (INIS)

    Bekki, Kenji; Tsujimoto, Takuji

    2011-01-01

    We adopt a scenario in which the Galactic thick disk was formed by minor merging between the first generation of the Galactic thin disk (FGTD) and a dwarf galaxy about ∼9 Gyr ago and thereby investigate chemical and dynamical properties of the Galactic thick disk. In this scenario, the dynamical properties of the thick disk have long been influenced both by the mass growth of the second generation of the Galactic thin disk (i.e., the present thin disk) and by its non-axisymmetric structures. On the other hand, the early star formation history and chemical evolution of the thin disk was influenced by the remaining gas of the thick disk. Based on N-body simulations and chemical evolution models, we investigate the radial metallicity gradient, structural and kinematical properties, and detailed chemical abundance patterns of the thick disk. Our numerical simulations show that the ancient minor merger event can significantly flatten the original radial metallicity gradient of the FGTD, in particular, in the outer part, and also can be responsible for migration of inner metal-rich stars into the outer part (R > 10 kpc). The simulations show that the central region of the thick disk can develop a bar due to dynamical effects of a separate bar in the thin disk. Whether or not rotational velocities (V φ ) can correlate with metallicities ([Fe/H]) for the simulated thick disks depends on the initial metallicity gradients of the FGTDs. The simulated orbital eccentricity distributions in the thick disk for models with higher mass ratios (∼0.2) and lower orbital eccentricities (∼0.5) of minor mergers are in good agreement with the corresponding observations. The simulated V φ -|z| relation of the thick disk in models with low orbital inclination angles of mergers are also in good agreement with the latest observational results. The vertical metallicity gradient of the simulated thick disk is rather flat or very weakly negative in the solar neighborhood. Our Galactic

  13. Galactic and extragalactic hydrogen in the X-ray spectra of Gamma Ray Bursts

    Science.gov (United States)

    Rácz, I. I.; Bagoly, Z.; Tóth, L. V.; Balázs, L. G.; Horváth, I.; Pintér, S.

    2017-07-01

    Two types of emission can be observed from gamma-ray bursts (GRBs): the prompt emission from the central engine which can be observed in gamma or X-ray (as a low energy tail) and the afterglow from the environment in X-ray and at shorter frequencies. We examined the Swift XRT spectra with the XSPEC software. The correct estimation of the galactic interstellar medium is very important because we observe the host emission together with the galactic hydrogen absorption. We found that the estimated intrinsic hydrogen column density and the X-ray flux depend heavily on the redshift and the galactic foreground hydrogen. We also found that the initial parameters of the iteration and the cosmological parameters did not have much effect on the fitting result.

  14. Apoastron shift constraints on dark matter distribution at the Galactic Center

    International Nuclear Information System (INIS)

    Zakharov, A. F.; Nucita, A. A.; De Paolis, F.; Ingrosso, G.

    2007-01-01

    The existence of dark matter (DM) at scales of a few parsecs down to ≅10 -5 pc around the centers of galaxies and, in particular, in the Galactic Center region has been considered in the literature. Under the assumption that such a DM clump, principally constituted by nonbaryonic matter (like weakly interacting massive particles) does exist at the center of our galaxy, the study of the γ-ray emission from the Galactic Center region allows us to constrain both the mass and the size of this DM sphere. Further constraints on the DM distribution parameters may be derived by observations of bright infrared stars around the Galactic Center. Hall and Gondolo [J. Hall and P. Gondolo, Phys. Rev. D 74, 063511 (2006)] used estimates of the enclosed mass obtained in various ways and tabulated by Ghez et al. [A. M. Ghez et al., Astron. Nachr. 324, 527 (2003); A. M. Ghez et al., Astrophys. J. 620, 744 (2005)]. Moreover, if a DM cusp does exist around the Galactic Center it could modify the trajectories of stars moving around it in a sensible way depending on the DM mass distribution. Here, we discuss the constraints that can be obtained with the orbit analysis of stars (as S2 and S16) moving inside the DM concentration with the present and next generations of large telescopes. In particular, consideration of the S2 star apoastron shift may allow improving limits on the DM mass and size

  15. Resolving the structure of the Galactic foreground using Herschel measurements and the Kriging technique

    Science.gov (United States)

    Pinter, S.; Bagoly, Z.; Balázs, L. G.; Horvath, I.; Racz, I. I.; Zahorecz, S.; Tóth, L. V.

    2018-05-01

    Investigating the distant extragalactic Universe requires a subtraction of the Galactic foreground. One of the major difficulties deriving the fine structure of the galactic foreground is the embedded foreground and background point sources appearing in the given fields. It is especially so in the infrared. We report our study subtracting point sources from Herschel images with Kriging, an interpolation method where the interpolated values are modelled by a Gaussian process governed by prior covariances. Using the Kriging method on Herschel multi-wavelength observations the structure of the Galactic foreground can be studied with much higher resolution than previously, leading to a better foreground subtraction at the end.

  16. Searching for fossil fragments of the Galactic bulge formation process

    Science.gov (United States)

    Ferraro, Francesco

    2017-08-01

    We have discovered that the stellar system Terzan5 (Ter5) in the Galactic bulge harbors stellar populations with very different IRON content (delta[Fe/H] 1 dex, Ferraro+09, Nature 462, 483) and AGES (12 Gyr and 4.5 Gyr for the sub-solar and super-solar metallicity populations, respectively, Ferraro+16, ApJ,828,75). This evidence demonstrates that Ter5 is not a globular cluster, and identifies it as (1) a site in the Galactic bulge where recent star formation occurred, and (2) the remnant of a massive system able to retain the iron-enriched gas ejected by violent supernova explosions. The striking chemical similarity between Ter5 and the bulge opens the fascinating possibility that we discovered the fossil remnant of a pristine massive structure that could have contributed to the Galactic bulge assembly.Prompted by this finding, here we propose to secure deep HST optical observations for the bulge stellar system Liller1, that shows a similar complexity as Ter5, with evidence of two stellar populations with different iron content. The immediate goal is to properly explore the main sequence turnoff region of the system for unveiling possible splits due to stellar populations of different ages. As demonstrated by our experience with Ter5, the requested HST observations, in combination with the K-band diffraction limited images that we already secured with GeMS-Gemini, are essential to achieve this goal.The project will allow us to establish if other fossil remnants of the bulge formation epoch do exist, thus probing that the merging of pre-evolved massive structures has been an important channel for the formation of the Galactic bulge.

  17. Observational evidence of dust evolution in galactic extinction curves

    Energy Technology Data Exchange (ETDEWEB)

    Cecchi-Pestellini, Cesare [INAF-Osservatorio Astronomico di Palermo, P.zza Parlamento 1, I-90134 Palermo (Italy); Casu, Silvia; Mulas, Giacomo [INAF-Osservatorio Astronomico di Cagliari, Via della Scienza, I-09047 Selargius (Italy); Zonca, Alberto, E-mail: cecchi-pestellini@astropa.unipa.it, E-mail: silvia@oa-cagliari.inaf.it, E-mail: gmulas@oa-cagliari.inaf.it, E-mail: azonca@oa-cagliari.inaf.it [Dipartimento di Fisica, Università di Cagliari, Strada Prov.le Monserrato-Sestu Km 0.700, I-09042 Monserrato (Italy)

    2014-04-10

    Although structural and optical properties of hydrogenated amorphous carbons are known to respond to varying physical conditions, most conventional extinction models are basically curve fits with modest predictive power. We compare an evolutionary model of the physical properties of carbonaceous grain mantles with their determination by homogeneously fitting observationally derived Galactic extinction curves with the same physically well-defined dust model. We find that a large sample of observed Galactic extinction curves are compatible with the evolutionary scenario underlying such a model, requiring physical conditions fully consistent with standard density, temperature, radiation field intensity, and average age of diffuse interstellar clouds. Hence, through the study of interstellar extinction we may, in principle, understand the evolutionary history of the diffuse interstellar clouds.

  18. Dark matter distribution and annihilation at the Galactic center

    International Nuclear Information System (INIS)

    Dokuchaev, V I; Eroshenko, Yu N

    2016-01-01

    We describe a promising method for measuring the total dark matter mass near a supermassive black hole at the Galactic center based on observations of nonrelativistic precession of the orbits of fast S0 stars. An analytical expression for the precession angle has been obtained under the assumption of a power-law profile of the dark matter density. The awaited weighing of the dark matter at the Galactic center provides the strong constraints on the annihilation signal from the neuralino dark matter particle candidate. The mass of the dark matter necessary for the explanation of the observed excess of gamma-radiation owing to the annihilation of the dark matter particles has been calculated with allowance for the Sommerfeld effect. (paper)

  19. Discovery of a new Galactic bona fide luminous blue variable with Spitzer★

    Science.gov (United States)

    Gvaramadze, V. V.; Kniazev, A. Y.; Berdnikov, L. N.; Langer, N.; Grebel, E. K.; Bestenlehner, J. M.

    2014-11-01

    We report the discovery of a circular mid-infrared shell around the emission-line star Wray 16-137 using archival data of the Spitzer Space Telescope. Follow-up optical spectroscopy of Wray 16-137 with the Southern African Large Telescope revealed a rich emission spectrum typical of the classical luminous blue variables (LBVs) like P Cygni. Subsequent spectroscopic and photometric observations showed drastic changes in the spectrum and brightness during the last three years, meaning that Wray 16-137 currently undergoes an S Dor-like outburst. Namely, we found that the star has brightened by ≈1 mag in the V and Ic bands, while its spectrum became dominated by Fe II lines. Taken together, our observations unambiguously show that Wray 16-137 is a new member of the family of Galactic bona fide LBVs.

  20. Discovery of Hubble's Law as a Series of Type III Errors

    Science.gov (United States)

    Belenkiy, Ari

    2015-01-01

    Recently much attention has been paid to the history of the discovery of Hubble's law--the linear relation between the rate of recession of the remote galaxies and distance to them from Earth. Though historians of cosmology now mention several names associated with this law instead of just one, the motivation of each actor of that remarkable…