WorldWideScience

Sample records for hubble constant spatial

  1. Cosmological Hubble constant and nuclear Hubble constant

    International Nuclear Information System (INIS)

    Horbuniev, Amelia; Besliu, Calin; Jipa, Alexandru

    2005-01-01

    The evolution of the Universe after the Big Bang and the evolution of the dense and highly excited nuclear matter formed by relativistic nuclear collisions are investigated and compared. Values of the Hubble constants for cosmological and nuclear processes are obtained. For nucleus-nucleus collisions at high energies the nuclear Hubble constant is obtained in the frame of different models involving the hydrodynamic flow of the nuclear matter. Significant difference in the values of the two Hubble constant - cosmological and nuclear - is observed

  2. The Hubble Constant

    Directory of Open Access Journals (Sweden)

    Neal Jackson

    2015-09-01

    Full Text Available I review the current state of determinations of the Hubble constant, which gives the length scale of the Universe by relating the expansion velocity of objects to their distance. There are two broad categories of measurements. The first uses individual astrophysical objects which have some property that allows their intrinsic luminosity or size to be determined, or allows the determination of their distance by geometric means. The second category comprises the use of all-sky cosmic microwave background, or correlations between large samples of galaxies, to determine information about the geometry of the Universe and hence the Hubble constant, typically in a combination with other cosmological parameters. Many, but not all, object-based measurements give H_0 values of around 72–74 km s^–1 Mpc^–1, with typical errors of 2–3 km s^–1 Mpc^–1. This is in mild discrepancy with CMB-based measurements, in particular those from the Planck satellite, which give values of 67–68 km s^–1 Mpc^–1 and typical errors of 1–2 km s^–1 Mpc^–1. The size of the remaining systematics indicate that accuracy rather than precision is the remaining problem in a good determination of the Hubble constant. Whether a discrepancy exists, and whether new physics is needed to resolve it, depends on details of the systematics of the object-based methods, and also on the assumptions about other cosmological parameters and which datasets are combined in the case of the all-sky methods.

  3. Beyond the Hubble Constant

    Science.gov (United States)

    1995-08-01

    about the distances to galaxies and thereby about the expansion rate of the Universe. A simple way to determine the distance to a remote galaxy is by measuring its redshift, calculate its velocity from the redshift and divide this by the Hubble constant, H0. For instance, the measured redshift of the parent galaxy of SN 1995K (0.478) yields a velocity of 116,000 km/sec, somewhat more than one-third of the speed of light (300,000 km/sec). From the universal expansion rate, described by the Hubble constant (H0 = 20 km/sec per million lightyears as found by some studies), this velocity would indicate a distance to the supernova and its parent galaxy of about 5,800 million lightyears. The explosion of the supernova would thus have taken place 5,800 million years ago, i.e. about 1,000 million years before the solar system was formed. However, such a simple calculation works only for relatively ``nearby'' objects, perhaps out to some hundred million lightyears. When we look much further into space, we also look far back in time and it is not excluded that the universal expansion rate, i.e. the Hubble constant, may have been different at earlier epochs. This means that unless we know the change of the Hubble constant with time, we cannot determine reliable distances of distant galaxies from their measured redshifts and velocities. At the same time, knowledge about such change or lack of the same will provide unique information about the time elapsed since the Universe began to expand (the ``Big Bang''), that is, the age of the Universe and also its ultimate fate. The Deceleration Parameter q0 Cosmologists are therefore eager to determine not only the current expansion rate (i.e., the Hubble constant, H0) but also its possible change with time (known as the deceleration parameter, q0). Although a highly accurate value of H0 has still not become available, increasing attention is now given to the observational determination of the second parameter, cf. also the Appendix at the

  4. Chandra Independently Determines Hubble Constant

    Science.gov (United States)

    2006-08-01

    A critically important number that specifies the expansion rate of the Universe, the so-called Hubble constant, has been independently determined using NASA's Chandra X-ray Observatory. This new value matches recent measurements using other methods and extends their validity to greater distances, thus allowing astronomers to probe earlier epochs in the evolution of the Universe. "The reason this result is so significant is that we need the Hubble constant to tell us the size of the Universe, its age, and how much matter it contains," said Max Bonamente from the University of Alabama in Huntsville and NASA's Marshall Space Flight Center (MSFC) in Huntsville, Ala., lead author on the paper describing the results. "Astronomers absolutely need to trust this number because we use it for countless calculations." Illustration of Sunyaev-Zeldovich Effect Illustration of Sunyaev-Zeldovich Effect The Hubble constant is calculated by measuring the speed at which objects are moving away from us and dividing by their distance. Most of the previous attempts to determine the Hubble constant have involved using a multi-step, or distance ladder, approach in which the distance to nearby galaxies is used as the basis for determining greater distances. The most common approach has been to use a well-studied type of pulsating star known as a Cepheid variable, in conjunction with more distant supernovae to trace distances across the Universe. Scientists using this method and observations from the Hubble Space Telescope were able to measure the Hubble constant to within 10%. However, only independent checks would give them the confidence they desired, considering that much of our understanding of the Universe hangs in the balance. Chandra X-ray Image of MACS J1149.5+223 Chandra X-ray Image of MACS J1149.5+223 By combining X-ray data from Chandra with radio observations of galaxy clusters, the team determined the distances to 38 galaxy clusters ranging from 1.4 billion to 9.3 billion

  5. On the determination of the Hubble constant

    International Nuclear Information System (INIS)

    Gurzadyan, V.G.; Harutyunyan, V.V.; Kocharyan, A.A.

    1990-10-01

    The possibility of an alternative determination of the distance scale of the Universe and the Hubble constant based on the numerical analysis of the hierarchical nature of the large scale Universe (galaxies, clusters and superclusters) is proposed. The results of computer experiments performed by means of special numerical algorithms are represented. (author). 9 refs, 7 figs

  6. Dissecting the Gravitational lens B1608+656 : II. Precision Measurements of the Hubble Constant, Spatial Curvature, and the Dark Energy Equation of State

    NARCIS (Netherlands)

    Suyu, S. H.; Marshall, P. J.; Auger, M. W.; Hilbert, S.; Blandford, R. D.; Koopmans, L. V. E.; Fassnacht, C. D.; Treu, T.

    2010-01-01

    Strong gravitational lens systems with measured time delays between the multiple images provide a method for measuring the "time-delay distance" to the lens, and thus the Hubble constant. We present a Bayesian analysis of the strong gravitational lens system B1608+656, incorporating (1) new, deep

  7. Price of shifting the Hubble constant

    Science.gov (United States)

    Evslin, Jarah; Sen, Anjan A.; Ruchika

    2018-05-01

    An anisotropic measurement of the baryon acoustic oscillation (BAO) feature fixes the product of the Hubble constant and the acoustic scale H0rd. Therefore, regardless of the dark energy dynamics, to accommodate a higher value of H0 one needs a lower rd and so necessarily a modification of early time cosmology. One must either reduce the age of the Universe at the drag epoch or else the speed of sound in the primordial plasma. The first can be achieved, for example, with dark radiation or very early dark energy, automatically preserving the angular size of the acoustic scale in the cosmic microwave background (CMB) with no modifications to post-recombination dark energy. However, it is known that the simplest such modifications fall afoul of CMB constraints at higher multipoles. As an example, we combine anisotropic BAO with geometric measurements from strong lensing time delays from H0LiCOW and megamasers from the Megamaser Cosmology Project to measure rd, with and without the local distance ladder measurement of H0. We find that the best fit value of rd is indeed quite insensitive to the dark energy model and is also hardly affected by the inclusion of the local distance ladder data.

  8. Dissecting the Gravitational Lens B1608 656. II. Precision Measurements of the Hubble Constant, Spatial Curvature, and the Dark Energy Equation of State

    Energy Technology Data Exchange (ETDEWEB)

    Suyu, S.H.; /Argelander Inst. Astron.; Marshall, P.J.; /KIPAC, Menlo Park /UC, Santa Barbara; Auger, M.W.; /UC, Santa Barbara /UC, Davis; Hilbert, S.; /Argelander Inst. Astron. /Garching, Max Planck Inst.; Blandford, R.D.; /KIPAC, Menlo Park; Koopmans, L.V.E.; /Kapteyn Astron. Inst., Groningen; Fassnacht, C.D.; /UC, Davis; Treu, T.; /UC, Santa Barbara

    2009-12-11

    Strong gravitational lens systems with measured time delays between the multiple images provide a method for measuring the 'time-delay distance' to the lens, and thus the Hubble constant. We present a Bayesian analysis of the strong gravitational lens system B1608+656, incorporating (1) new, deep Hubble Space Telescope (HST) observations, (2) a new velocity dispersion measurement of 260 {+-} 15 km s{sup -1} for the primary lens galaxy, and (3) an updated study of the lens environment. Our analysis of the HST images takes into account the extended source surface brightness, and the dust extinction and optical emission by the interacting lens galaxies. When modeling the stellar dynamics of the primary lens galaxy, the lensing effect, and the environment of the lens, we explicitly include the total mass distribution profile logarithmic slope {gamma}{prime} and the external convergence {kappa}{sub ext}; we marginalize over these parameters, assigning well-motivated priors for them, and so turn the major systematic errors into statistical ones. The HST images provide one such prior, constraining the lens mass density profile logarithmic slope to be {gamma}{prime} = 2.08 {+-} 0.03; a combination of numerical simulations and photometric observations of the B1608+656 field provides an estimate of the prior for {kappa}{sub ext}: 0.10{sub -0.05}{sup +0.08}. This latter distribution dominates the final uncertainty on H{sub 0}. Fixing the cosmological parameters at {Omega}{sub m} = 0.3, {Omega}{sub {Lambda}} = 0.7, and w = -1 in order to compare with previous work on this system, we find H{sub 0} = 70.6{sub -3.1}{sup +3.1} km s{sup -1} Mpc{sup -1}. The new data provide an increase in precision of more than a factor of two, even including the marginalization over {kappa}{sub ext}. Relaxing the prior probability density function for the cosmological parameters to that derived from the WMAP 5-year data set, we find that the B1608+656 data set breaks the degeneracy

  9. The Far-Field Hubble Constant

    Science.gov (United States)

    Lauer, Tod

    1995-07-01

    We request deep, near-IR (F814W) WFPC2 images of five nearby Brightest Cluster Galaxies (BCG) to calibrate the BCG Hubble diagram by the Surface Brightness Fluctuation (SBF) method. Lauer & Postman (1992) show that the BCG Hubble diagram measured out to 15,000 km s^-1 is highly linear. Calibration of the Hubble diagram zeropoint by SBF will thus yield an accurate far-field measure of H_0 based on the entire volume within 15,000 km s^-1, thus circumventing any strong biases caused by local peculiar velocity fields. This method of reaching the far field is contrasted with those using distance ratios between Virgo and Coma, or any other limited sample of clusters. HST is required as the ground-based SBF method is limited to team developed the SBF method, the first BCG Hubble diagram based on a full-sky, volume-limited BCG sample, played major roles in the calibration of WFPC and WFPC2, and are conducting observations of local galaxies that will validate the SBF zeropoint (through GTO programs). This work uses the SBF method to tie both the Cepheid and Local Group giant-branch distances generated by HST to the large scale Hubble flow, which is most accurately traced by BCGs.

  10. The Hubble Constant from SN Refsdal

    Science.gov (United States)

    Vega-Ferrero, J.; Diego, J. M.; Miranda, V.; Bernstein, G. M.

    2018-02-01

    Hubble Space Telescope observations from 2015 December 11 detected the expected fifth counter-image of supernova (SN) Refsdal at z = 1.49. In this Letter, we compare the time-delay predictions from numerous models with the measured value derived by Kelly et al. from very early data in the light curve of the SN Refsdal and find a best value for {H}0={64}-11+9 {km} {{{s}}}-1 {{Mpc}}-1 (68% CL), in excellent agreement with predictions from cosmic microwave background and recent weak lensing data + baryon acoustic oscillations + Big Bang nucleosynthesis (from the DES Collaboration). This is the first constraint on H 0 derived from time delays between multiple-lensed SN images, and the first with a galaxy cluster lens, subject to systematic effects different from other time-delay H 0 estimates. Additional time-delay measurements from new multiply imaged SNe will allow derivation of competitive constraints on H 0.

  11. Remarks on the low value obtained for the Hubble constant

    International Nuclear Information System (INIS)

    Jaakkola, Toivo

    1975-01-01

    Some remarks are made on the basis of the data given by Sandage and Tamman, suggesting that these authors have over-estimated the distances to the most luminous galaxies and obtained a value too low for the Hubble constant [fr

  12. Type I supernovae and angular anisotropy of the Hubble constant

    International Nuclear Information System (INIS)

    Le Denmat, Gerard; Vigier, J.-P.

    1975-01-01

    The observation of type I supernovae in distant galaxies yields an homogeneous sample of sources to evaluate their true distance. An examination of their distribution in the sky provides a significant confirmation of the angular anisotropy of the Hubble constant already observed by Rubin, Rubin and Ford [fr

  13. A nuclear data approach for the Hubble constant measurements

    Directory of Open Access Journals (Sweden)

    Pritychenko Boris

    2017-01-01

    Full Text Available An extraordinary number of Hubble constant measurements challenges physicists with selection of the best numerical value. The standard U.S. Nuclear Data Program (USNDP codes and procedures have been applied to resolve this issue. The nuclear data approach has produced the most probable or recommended Hubble constant value of 67.2(69 (km/sec/Mpc. This recommended value is based on the last 20 years of experimental research and includes contributions from different types of measurements. The present result implies (14.55 ± 1.51 × 109 years as a rough estimate for the age of the Universe. The complete list of recommended results is given and possible implications are discussed.

  14. On the Luminosity Distance and the Hubble Constant

    OpenAIRE

    Yuri Heymann

    2013-01-01

    By differentiating luminosity distance with respect to time using its standard formula we find that the peculiar velocity is a time varying velocity of light. Therefore, a new definition of the luminosity distance is provided such that the peculiar velocity is equal to c. Using this definition a Hubble constant H0 = 67.3 km s−1 Mpc−1 is obtained from supernovae data.

  15. An independent determination of the local Hubble constant

    Science.gov (United States)

    Fernández Arenas, David; Terlevich, Elena; Terlevich, Roberto; Melnick, Jorge; Chávez, Ricardo; Bresolin, Fabio; Telles, Eduardo; Plionis, Manolis; Basilakos, Spyros

    2018-02-01

    The relationship between the integrated H β line luminosity and the velocity dispersion of the ionized gas of H II galaxies and giant H II regions represents an exciting standard candle that presently can be used up to redshifts z ˜ 4. Locally it is used to obtain precise measurements of the Hubble constant by combining the slope of the relation obtained from nearby (z ≤ 0.2) H II galaxies with the zero-point determined from giant H II regions belonging to an `anchor sample' of galaxies for which accurate redshift-independent distance moduli are available. We present new data for 36 giant H II regions in 13 galaxies of the anchor sample that includes the megamaser galaxy NGC 4258. Our data are the result of the first 4 yr of observation of our primary sample of 130 giant H II regions in 73 galaxies with Cepheid determined distances. Our best estimate of the Hubble parameter is 71.0 ± 2.8(random) ± 2.1(systematic) km s- 1Mpc- 1. This result is the product of an independent approach and, although at present less precise than the latest SNIa results, it is amenable to substantial improvement.

  16. The Hubble Constant to 1%: Physics beyond LambdaCDM

    Science.gov (United States)

    Riess, Adam

    2017-08-01

    By steadily advancing the precision and accuracy of the Hubble constant, we now see 3.4-sigma evidence for a deviation from the standard LambdaCDM model and thus the exciting chance of discovering new fundamental physics such as exotic dark energy, a new relativistic particle, dark matter interactions, or a small curvature, to name a few possibilities. We propose a coordinated program to accomplish three goals with one set of observations: (1) improve the precision of the best route to H_0 with HST observations of Cepheids in the hosts of 11 SNe Ia, lowering the uncertainty to 1.3% to reach the discovery threshold of 5-sigma and begin resolving the underlying source of the deviation; (2) continue testing the quality of Cepheid distances, so far the most accurate and reliable indicators in the near Universe, using the tip of the red giant branch (TRGB); and (3) use oxygen-rich Miras to confirm the present tension with the CMB and establish a future route available to JWST. We can achieve all three goals with one dataset and take the penultimate step to reach 1% precision in H_0 after Gaia. With its long-pass filter and NIR capability, we can collect these data with WFC3 many times faster than previously possible while overcoming the extinction and metallicity effects that challenged the first generation of H_0 measurements. Our results will complement the leverage available at high redshift from other cosmological tools such as BAO, the CMB, and SNe Ia, and will provide a 40% improvement on the WFIRST measurements of dark energy. Reaching this precision will be a fitting legacy for the telescope charged to resolve decades of uncertainty regarding the Hubble constant.

  17. Carnegie Hubble Program: A Mid-Infrared Calibration of the Hubble Constant

    Science.gov (United States)

    Freedman, Wendy L.; Madore, Barry F.; Scowcroft, Victoria; Burns, Chris; Monson, Andy; Persson, S. Eric; Seibert, Mark; Rigby, Jane

    2012-01-01

    Using a mid-infrared calibration of the Cepheid distance scale based on recent observations at 3.6 micrometers with the Spitzer Space Telescope, we have obtained a new, high-accuracy calibration of the Hubble constant. We have established the mid-IR zero point of the Leavitt law (the Cepheid period-luminosity relation) using time-averaged 3.6 micrometers data for 10 high-metallicity, MilkyWay Cepheids having independently measured trigonometric parallaxes. We have adopted the slope of the PL relation using time-averaged 3.6micrometers data for 80 long-period Large Magellanic Cloud (LMC) Cepheids falling in the period range 0.8 < log(P) < 1.8.We find a new reddening-corrected distance to the LMC of 18.477 +/- 0.033 (systematic) mag. We re-examine the systematic uncertainties in H(sub 0), also taking into account new data over the past decade. In combination with the new Spitzer calibration, the systematic uncertainty in H(sub 0) over that obtained by the Hubble Space Telescope Key Project has decreased by over a factor of three. Applying the Spitzer calibration to the Key Project sample, we find a value of H(sub 0) = 74.3 with a systematic uncertainty of +/-2.1 (systematic) kilometers per second Mpc(sup -1), corresponding to a 2.8% systematic uncertainty in the Hubble constant. This result, in combination with WMAP7measurements of the cosmic microwave background anisotropies and assuming a flat universe, yields a value of the equation of state for dark energy, w(sub 0) = -1.09 +/- 0.10. Alternatively, relaxing the constraints on flatness and the numbers of relativistic species, and combining our results with those of WMAP7, Type Ia supernovae and baryon acoustic oscillations yield w(sub 0) = -1.08 +/- 0.10 and a value of N(sub eff) = 4.13 +/- 0.67, mildly consistent with the existence of a fourth neutrino species.

  18. The Hubble constant estimation using 18 gravitational lensing time delays

    Science.gov (United States)

    Jaelani, Anton T.; Premadi, Premana W.

    2014-03-01

    Gravitational lens time delay method has been used to estimate the rate of cosmological expansion, called the Hubble constant, H0, independently of the standard candle method. This gravitational lensing method requires a good knowledge of the lens mass distribution, reconstructed using the lens image properties. The observed positions of the images, and the redshifts of the lens and the images serve as strong constraints to the lens equations, which are then solved as a set of simultaneous linear equations. Here we made use of a non-parametric technique to reconstruct the lens mass distribution, which is manifested in a linear equations solver named PixeLens. Input for the calculation is chosen based on prior known parameters obtained from analyzed result of the lens case observations, including time-delay, position angles of the images and the lens, and their redshifts. In this project, 18 fairly well studied lens cases are further grouped according to a number of common properties to examine how each property affects the character of the data, and therefore affects the calculation of H0. The considered lens case properties are lens morphology, number of image, completeness of time delays, and symmetry of lens mass distribution. Analysis of simulation shows that paucity of constraints on mass distribution of a lens yields wide range value of H0, which reflects the uniqueness of each lens system. Nonetheless, gravitational lens method still yields H0 within an acceptable range of value when compared to those determined by many other methods. Grouping the cases in the above manner allowed us to assess the robustness of PixeLens and thereby use it selectively. In addition, we use glafic, a parametric mass reconstruction solver, to refine the mass distribution of one lens case, as a comparison.

  19. Measurement of Hubble constant: non-Gaussian errors in HST Key Project data

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Meghendra [Dr. A.P.J. Abdul Kalam Technical University, Uttar Pradesh, Lucknow, 226021 India (India); Gupta, Shashikant; Pandey, Ashwini [Amity University Haryana, Gurgaon, Haryana, 122413 India (India); Sharma, Satendra, E-mail: meghendrasingh_db@yahoo.co.in, E-mail: shashikantgupta.astro@gmail.com, E-mail: satyamkashwini@gmail.com, E-mail: ssharma_phy@yahoo.co.uk [Yobe State University, Damaturu, Yobe State (Nigeria)

    2016-08-01

    Assuming the Central Limit Theorem, experimental uncertainties in any data set are expected to follow the Gaussian distribution with zero mean. We propose an elegant method based on Kolmogorov-Smirnov statistic to test the above; and apply it on the measurement of Hubble constant which determines the expansion rate of the Universe. The measurements were made using Hubble Space Telescope. Our analysis shows that the uncertainties in the above measurement are non-Gaussian.

  20. New solution to the problem of the tension between the high-redshift and low-redshift measurements of the Hubble constant

    Science.gov (United States)

    Bolejko, Krzysztof

    2018-01-01

    During my talk I will present results suggesting that the phenomenon of emerging spatial curvature could resolve the conflict between Planck's (high-redshift) and Riess et al. (low-redshift) measurements of the Hubble constant. The phenomenon of emerging spatial curvature is absent in the Standard Cosmological Model, which has a flat and fixed spatial curvature (small perturbations are considered in the Standard Cosmological Model but their global average vanishes, leading to spatial flatness at all times).In my talk I will show that with the nonlinear growth of cosmic structures the global average deviates from zero. As a result, the spatial curvature evolves from spatial flatness of the early universe to a negatively curved universe at the present day, with Omega_K ~ 0.1. Consequently, the present day expansion rate, as measured by the Hubble constant, is a few percent higher compared to the high-redshift constraints. This provides an explanation why there is a tension between high-redshift (Planck) and low-redshift (Riess et al.) measurements of the Hubble constant. In the presence of emerging spatial curvature these two measurements should in fact be different: high redshift measurements should be slightly lower than the Hubble constant inferred from the low-redshift data.The presentation will be based on the results described in arXiv:1707.01800 and arXiv:1708.09143 (which discuss the phenomenon of emerging spatial curvature) and on a paper that is still work in progress but is expected to be posted on arxiv by the AAS meeting (this paper uses mock low-redshift data to show that starting from the Planck's cosmological models (in the early universe) but with the emerging spatial curvature taken into account, the low-redshift Hubble constant should be 72.4 km/s/Mpc.

  1. A 2.4% DETERMINATION OF THE LOCAL VALUE OF THE HUBBLE CONSTANT

    Energy Technology Data Exchange (ETDEWEB)

    Riess, Adam G.; Scolnic, Dan; Jones, David O. [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD (United States); Macri, Lucas M.; Hoffmann, Samantha L.; Yuan, Wenlong; Brown, Peter J. [George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, Department of Physics and Astronomy, Texas A and M University, College Station, TX (United States); Casertano, Stefano [Space Telescope Science Institute, Baltimore, MD (United States); Filippenko, Alexei V.; Tucker, Brad E. [Department of Astronomy, University of California, Berkeley, CA (United States); Reid, Mark J.; Challis, Peter [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA (United States); Silverman, Jeffrey M. [Department of Astronomy, University of Texas, Austin, TX (United States); Chornock, Ryan [Astrophysical Institute, Department of Physics and Astronomy, Ohio University, Athens, OH (United States); Foley, Ryan J., E-mail: ariess@stsci.edu [Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL (United States)

    2016-07-20

    We use the Wide Field Camera 3 (WFC3) on the Hubble Space Telescope (HST) to reduce the uncertainty in the local value of the Hubble constant from 3.3% to 2.4%. The bulk of this improvement comes from new near-infrared (NIR) observations of Cepheid variables in 11 host galaxies of recent type Ia supernovae (SNe Ia), more than doubling the sample of reliable SNe Ia having a Cepheid-calibrated distance to a total of 19; these in turn leverage the magnitude-redshift relation based on ∼300 SNe Ia at z < 0.15. All 19 hosts as well as the megamaser system NGC 4258 have been observed with WFC3 in the optical and NIR, thus nullifying cross-instrument zeropoint errors in the relative distance estimates from Cepheids. Other noteworthy improvements include a 33% reduction in the systematic uncertainty in the maser distance to NGC 4258, a larger sample of Cepheids in the Large Magellanic Cloud (LMC), a more robust distance to the LMC based on late-type detached eclipsing binaries (DEBs), HST observations of Cepheids in M31, and new HST -based trigonometric parallaxes for Milky Way (MW) Cepheids. We consider four geometric distance calibrations of Cepheids: (i) megamasers in NGC 4258, (ii) 8 DEBs in the LMC, (iii) 15 MW Cepheids with parallaxes measured with HST /FGS, HST /WFC3 spatial scanning and/or Hipparcos , and (iv) 2 DEBs in M31. The Hubble constant from each is 72.25 ± 2.51, 72.04 ± 2.67, 76.18 ± 2.37, and 74.50 ± 3.27 km s{sup 1} Mpc{sup 1}, respectively. Our best estimate of H {sub 0} = 73.24 ± 1.74 km s{sup 1} Mpc{sup 1} combines the anchors NGC 4258, MW, and LMC, yielding a 2.4% determination (all quoted uncertainties include fully propagated statistical and systematic components). This value is 3.4 σ higher than 66.93 ± 0.62 km s{sup 1} Mpc{sup 1} predicted by ΛCDM with 3 neutrino flavors having a mass of 0.06 eV and the new Planck data, but the discrepancy reduces to 2.1 σ relative to the prediction of 69.3 ± 0.7 km s{sup 1} Mpc{sup 1} based on the

  2. Light dark photon and fermionic dark radiation for the Hubble constant and the structure formation

    OpenAIRE

    Ko, P.; Tang, Yong

    2018-01-01

    Motivated by the tensions in the Hubble constant $H_0$ and the structure growth $\\sigma_8$ between $Planck$ results and other low redshift measurements, we discuss some cosmological effects of a dark sector model in which dark matter (DM) interacts with fermionic dark radiation (DR) through a light gauge boson (dark photon). Such kind of models are very generic in particle physics with a dark sector with dark gauge symmetries. The effective number of neutrinos is increased by $\\delta N_{eff} ...

  3. The effect of interacting dark energy on local measurements of the Hubble constant

    International Nuclear Information System (INIS)

    Odderskov, Io; Baldi, Marco; Amendola, Luca

    2016-01-01

    In the current state of cosmology, where cosmological parameters are being measured to percent accuracy, it is essential to understand all sources of error to high precision. In this paper we present the results of a study of the local variations in the Hubble constant measured at the distance scale of the Coma Cluster, and test the validity of correcting for the peculiar velocities predicted by gravitational instability theory. The study is based on N-body simulations, and includes models featuring a coupling between dark energy and dark matter, as well as two ΛCDM simulations with different values of σ 8 . It is found that the variance in the local flows is significantly larger in the coupled models, which increases the uncertainty in the local measurements of the Hubble constant in these scenarios. By comparing the results from the different simulations, it is found that most of the effect is caused by the higher value of σ 8 in the coupled cosmologies, though this cannot account for all of the additional variance. Given the discrepancy between different estimates of the Hubble constant in the universe today, cosmological models causing a greater cosmic variance is something that we should be aware of.

  4. The effect of interacting dark energy on local measurements of the Hubble constant

    Energy Technology Data Exchange (ETDEWEB)

    Odderskov, Io [Department of Physics and Astronomy, University of Aarhus, Ny Munkegade 120, Aarhus C (Denmark); Baldi, Marco [Dipartimento di Fisica e Astronomia, Alma Mater Studiorum Università di Bologna, viale Berti Pichat 6/2, I-40127, Bologna (Italy); Amendola, Luca, E-mail: isho07@phys.au.dk, E-mail: marco.baldi5@unibo.it, E-mail: l.amendola@thphys.uni-heidelberg.de [Institut für Theoretische Physik, Ruprecht-Karls-Universität Heidelberg, Philosophenweg 16, 69120 Heidelberg (Germany)

    2016-05-01

    In the current state of cosmology, where cosmological parameters are being measured to percent accuracy, it is essential to understand all sources of error to high precision. In this paper we present the results of a study of the local variations in the Hubble constant measured at the distance scale of the Coma Cluster, and test the validity of correcting for the peculiar velocities predicted by gravitational instability theory. The study is based on N-body simulations, and includes models featuring a coupling between dark energy and dark matter, as well as two ΛCDM simulations with different values of σ{sub 8}. It is found that the variance in the local flows is significantly larger in the coupled models, which increases the uncertainty in the local measurements of the Hubble constant in these scenarios. By comparing the results from the different simulations, it is found that most of the effect is caused by the higher value of σ{sub 8} in the coupled cosmologies, though this cannot account for all of the additional variance. Given the discrepancy between different estimates of the Hubble constant in the universe today, cosmological models causing a greater cosmic variance is something that we should be aware of.

  5. Constraints on inflation revisited. An analysis including the latest local measurement of the Hubble constant

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Rui-Yun [Northeastern University, Department of Physics, College of Sciences, Shenyang (China); Zhang, Xin [Northeastern University, Department of Physics, College of Sciences, Shenyang (China); Peking University, Center for High Energy Physics, Beijing (China)

    2017-12-15

    We revisit the constraints on inflation models by using the current cosmological observations involving the latest local measurement of the Hubble constant (H{sub 0} = 73.00 ± 1.75 km s{sup -1} Mpc{sup -1}). We constrain the primordial power spectra of both scalar and tensor perturbations with the observational data including the Planck 2015 CMB full data, the BICEP2 and Keck Array CMB B-mode data, the BAO data, and the direct measurement of H{sub 0}. In order to relieve the tension between the local determination of the Hubble constant and the other astrophysical observations, we consider the additional parameter N{sub eff} in the cosmological model. We find that, for the ΛCDM+r+N{sub eff} model, the scale invariance is only excluded at the 3.3σ level, and ΔN{sub eff} > 0 is favored at the 1.6σ level. Comparing the obtained 1σ and 2σ contours of (n{sub s},r) with the theoretical predictions of selected inflation models, we find that both the convex and the concave potentials are favored at 2σ level, the natural inflation model is excluded at more than 2σ level, the Starobinsky R{sup 2} inflation model is only favored at around 2σ level, and the spontaneously broken SUSY inflation model is now the most favored model. (orig.)

  6. Parametrised Constants and Replication for Spatial Mobility

    DEFF Research Database (Denmark)

    Hüttel, Hans; Haagensen, Bjørn

    2009-01-01

    Parametrised replication and replication are common ways of expressing infinite computation in process calculi. While parametrised constants can be encoded using replication in the π-calculus, this changes in the presence of spatial mobility as found in e.g. the distributed π- calculus...... of the distributed π-calculus with parametrised constants and replication are incomparable. On the other hand, we shall see that there exists a simple encoding of recursion in mobile ambients....

  7. Cosmological Parameters and Hyper-Parameters: The Hubble Constant from Boomerang and Maxima

    Science.gov (United States)

    Lahav, Ofer

    Recently several studies have jointly analysed data from different cosmological probes with the motivation of estimating cosmological parameters. Here we generalise this procedure to allow freedom in the relative weights of various probes. This is done by including in the joint likelihood function a set of `Hyper-Parameters', which are dealt with using Bayesian considerations. The resulting algorithm, which assumes uniform priors on the log of the Hyper-Parameters, is very simple to implement. We illustrate the method by estimating the Hubble constant H0 from different sets of recent CMB experiments (including Saskatoon, Python V, MSAM1, TOCO, Boomerang and Maxima). The approach can be generalised for a combination of cosmic probes, and for other priors on the Hyper-Parameters. Reference: Lahav, Bridle, Hobson, Lasenby & Sodre, 2000, MNRAS, in press (astro-ph/9912105)

  8. Karl Schwarzschild Lecture: The Ups and Downs of the Hubble Constant (With 12 Figures)

    Science.gov (United States)

    Tammann, G. Andreas

    2006-01-01

    A brief history of the determination of the Hubble constant H_0 is given. Early attempts following Lemaitre (1927) gave much too high values due to errors of the magnitude scale, Malmquist bias and calibration problems. By 1962 most authors agreed that 75< H_0 <130. After 1975 a dichotomy arose with values near 100 and others around 55. The former came from apparent-magnitude-limited samples and were affected by Malmquist bias. New distance indicators were introduced; they were sometimes claimed to yield high values of H_0, but the most recent data lead to H_0 in the 60's, yet with remaining difficulties as to the zero-point of the respective distance indicators. SNe Ia with their large range and very small luminosity dispersion (avoiding Malmquist bias) offer a unique opportunity to determine the large-scale value of H_0. Their maximum luminosity can be well calibrated from 10 SNe Ia in local parent galaxies whose Cepheids have been observed with HST. An unforeseen difficulty - affecting all Cepheid distances - is that their P-L relation varies from galaxy to galaxy, presumably in function of metallicity. A proposed solution is summarized here. The conclusion is that H_0 = 63.2 +/- 1.3 (random) +/- 5.3 (systematic) on all scales. The expansion age becomes then (with Omega_m=0.3, Omega_Lambda=0.7) 15.1 Gyr.

  9. Bayesian `hyper-parameters' approach to joint estimation: the Hubble constant from CMB measurements

    Science.gov (United States)

    Lahav, O.; Bridle, S. L.; Hobson, M. P.; Lasenby, A. N.; Sodré, L.

    2000-07-01

    Recently several studies have jointly analysed data from different cosmological probes with the motivation of estimating cosmological parameters. Here we generalize this procedure to allow freedom in the relative weights of various probes. This is done by including in the joint χ2 function a set of `hyper-parameters', which are dealt with using Bayesian considerations. The resulting algorithm, which assumes uniform priors on the log of the hyper-parameters, is very simple: instead of minimizing \\sum \\chi_j2 (where \\chi_j2 is per data set j) we propose to minimize \\sum Nj (\\chi_j2) (where Nj is the number of data points per data set j). We illustrate the method by estimating the Hubble constant H0 from different sets of recent cosmic microwave background (CMB) experiments (including Saskatoon, Python V, MSAM1, TOCO and Boomerang). The approach can be generalized for combinations of cosmic probes, and for other priors on the hyper-parameters.

  10. H0, q0 and the local velocity field. [Hubble and deceleration constants in Big Bang expansion

    Science.gov (United States)

    Sandage, A.; Tammann, G. A.

    1982-01-01

    An attempt is made to find a systematic deviation from linearity for distances that are under the control of the Virgo cluster, and to determine the value of the mean random motion about the systematic flow, in order to improve the measurement of the Hubble and the deceleration constants. The velocity-distance relation for large and intermediate distances is studied, and type I supernovae are calibrated relatively as distance indicators and absolutely to obtain a new value for the Hubble constant. Methods of determining the deceleration constant are assessed, including determination from direct measurement, mean luminosity density, virgocentric motion, and the time scale test. The very local velocity field is investigated, and a solution is preferred with a random peculiar radial velocity of very nearby field galaxies of 90-100 km/s, and a Virgocentric motion of the local group of 220 km/s, leading to an underlying expansion rate of 55, in satisfactory agreement with the global value.

  11. Clarifying the Hubble constant tension with a Bayesian hierarchical model of the local distance ladder

    Science.gov (United States)

    Feeney, Stephen M.; Mortlock, Daniel J.; Dalmasso, Niccolò

    2018-05-01

    Estimates of the Hubble constant, H0, from the local distance ladder and from the cosmic microwave background (CMB) are discrepant at the ˜3σ level, indicating a potential issue with the standard Λ cold dark matter (ΛCDM) cosmology. A probabilistic (i.e. Bayesian) interpretation of this tension requires a model comparison calculation, which in turn depends strongly on the tails of the H0 likelihoods. Evaluating the tails of the local H0 likelihood requires the use of non-Gaussian distributions to faithfully represent anchor likelihoods and outliers, and simultaneous fitting of the complete distance-ladder data set to ensure correct uncertainty propagation. We have hence developed a Bayesian hierarchical model of the full distance ladder that does not rely on Gaussian distributions and allows outliers to be modelled without arbitrary data cuts. Marginalizing over the full ˜3000-parameter joint posterior distribution, we find H0 = (72.72 ± 1.67) km s-1 Mpc-1 when applied to the outlier-cleaned Riess et al. data, and (73.15 ± 1.78) km s-1 Mpc-1 with supernova outliers reintroduced (the pre-cut Cepheid data set is not available). Using our precise evaluation of the tails of the H0 likelihood, we apply Bayesian model comparison to assess the evidence for deviation from ΛCDM given the distance-ladder and CMB data. The odds against ΛCDM are at worst ˜10:1 when considering the Planck 2015 XIII data, regardless of outlier treatment, considerably less dramatic than naïvely implied by the 2.8σ discrepancy. These odds become ˜60:1 when an approximation to the more-discrepant Planck Intermediate XLVI likelihood is included.

  12. Neutrino mass from cosmology: impact of high-accuracy measurement of the Hubble constant

    Energy Technology Data Exchange (ETDEWEB)

    Sekiguchi, Toyokazu [Institute for Cosmic Ray Research, University of Tokyo, Kashiwa 277-8582 (Japan); Ichikawa, Kazuhide [Department of Micro Engineering, Kyoto University, Kyoto 606-8501 (Japan); Takahashi, Tomo [Department of Physics, Saga University, Saga 840-8502 (Japan); Greenhill, Lincoln, E-mail: sekiguti@icrr.u-tokyo.ac.jp, E-mail: kazuhide@me.kyoto-u.ac.jp, E-mail: tomot@cc.saga-u.ac.jp, E-mail: greenhill@cfa.harvard.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2010-03-01

    Non-zero neutrino mass would affect the evolution of the Universe in observable ways, and a strong constraint on the mass can be achieved using combinations of cosmological data sets. We focus on the power spectrum of cosmic microwave background (CMB) anisotropies, the Hubble constant H{sub 0}, and the length scale for baryon acoustic oscillations (BAO) to investigate the constraint on the neutrino mass, m{sub ν}. We analyze data from multiple existing CMB studies (WMAP5, ACBAR, CBI, BOOMERANG, and QUAD), recent measurement of H{sub 0} (SHOES), with about two times lower uncertainty (5 %) than previous estimates, and recent treatments of BAO from the Sloan Digital Sky Survey (SDSS). We obtained an upper limit of m{sub ν} < 0.2eV (95 % C.L.), for a flat ΛCDM model. This is a 40 % reduction in the limit derived from previous H{sub 0} estimates and one-third lower than can be achieved with extant CMB and BAO data. We also analyze the impact of smaller uncertainty on measurements of H{sub 0} as may be anticipated in the near term, in combination with CMB data from the Planck mission, and BAO data from the SDSS/BOSS program. We demonstrate the possibility of a 5σ detection for a fiducial neutrino mass of 0.1 eV or a 95 % upper limit of 0.04 eV for a fiducial of m{sub ν} = 0 eV. These constraints are about 50 % better than those achieved without external constraint. We further investigate the impact on modeling where the dark-energy equation of state is constant but not necessarily -1, or where a non-flat universe is allowed. In these cases, the next-generation accuracies of Planck, BOSS, and 1 % measurement of H{sub 0} would all be required to obtain the limit m{sub ν} < 0.05−0.06 eV (95 % C.L.) for the fiducial of m{sub ν} = 0 eV. The independence of systematics argues for pursuit of both BAO and H{sub 0} measurements.

  13. Correcting a statistical artifact in the estimation of the Hubble; constant based on Type Ia Supernovae results in a change in estimate; of 1.2%

    DEFF Research Database (Denmark)

    Petersen, JH; Holst, KK; Budtz-Jørgensen, Esben

    2010-01-01

    The Hubble constant enters big bang cosmology by quantifying the expansion rate of the universe. Existing statistical methods used to estimate Hubble’s constant only partially take into account random measurement errors. As a consequence, estimates of Hubble’s constant are statistically...

  14. Low-redshift effects of local structure on the Hubble parameter in presence of a cosmological constant

    Energy Technology Data Exchange (ETDEWEB)

    Romano, Antonio Enea [University of Crete, Department of Physics and CCTP, Heraklion (Greece); Kyoto University, Yukawa Institute for Theoretical Physics, Kyoto (Japan); Universidad de Antioquia, Instituto de Fisica, Medellin (Colombia); Vallejo, Sergio Andres [Kyoto University, Yukawa Institute for Theoretical Physics, Kyoto (Japan); Universidad de Antioquia, Instituto de Fisica, Medellin (Colombia)

    2016-04-15

    In order to estimate the effects of a local structure on the Hubble parameter we calculate the low-redshift expansion for H(z) and (δH)/(H) for an observer at the center of a spherically symmetric matter distribution in the presence of a cosmological constant. We then test the accuracy of the formulas comparing them with fully relativistic non-perturbative numerical calculations for different cases for the density profile. The low-redshift expansion we obtain gives results more precise than perturbation theory since it is based on the use of an exact solution of Einstein's field equations. For larger density contrasts the low-redshift formulas accuracy improves respect to the perturbation theory accuracy because the latter is based on the assumption of a small density contrast, while the former does not rely on such an assumption. The formulas can be used to take into account the effects on the Hubble expansion parameter due to the monopole component of the local structure. If the H(z) observations will show deviations from the ΛCDM prediction compatible with the formulas we have derived, this could be considered an independent evidence of the existence of a local inhomogeneity, and the formulas could be used to determine the characteristics of this local structure. (orig.)

  15. TOWARD A NEW GEOMETRIC DISTANCE TO THE ACTIVE GALAXY NGC 4258. III. FINAL RESULTS AND THE HUBBLE CONSTANT

    International Nuclear Information System (INIS)

    Humphreys, E. M. L.; Reid, M. J.; Moran, J. M.; Greenhill, L. J.; Argon, A. L.

    2013-01-01

    We report a new geometric maser distance estimate to the active galaxy NGC 4258. The data for the new model are maser line-of-sight (LOS) velocities and sky positions from 18 epochs of very long baseline interferometry observations, and LOS accelerations measured from a 10 yr monitoring program of the 22 GHz maser emission of NGC 4258. The new model includes both disk warping and confocal elliptical maser orbits with differential precession. The distance to NGC 4258 is 7.60 ± 0.17 ± 0.15 Mpc, a 3% uncertainty including formal fitting and systematic terms. The resulting Hubble constant, based on the use of the Cepheid variables in NGC 4258 to recalibrate the Cepheid distance scale, is H 0 = 72.0 ± 3.0 km s –1 Mpc –1

  16. Galaxy Cluster Shapes and Systematic Errors in the Hubble Constant as Determined by the Sunyaev-Zel'dovich Effect

    Science.gov (United States)

    Sulkanen, Martin E.; Joy, M. K.; Patel, S. K.

    1998-01-01

    Imaging of the Sunyaev-Zei'dovich (S-Z) effect in galaxy clusters combined with the cluster plasma x-ray diagnostics can measure the cosmic distance scale to high accuracy. However, projecting the inverse-Compton scattering and x-ray emission along the cluster line-of-sight will introduce systematic errors in the Hubble constant, H$-O$, because the true shape of the cluster is not known. This effect remains present for clusters that are otherwise chosen to avoid complications for the S-Z and x-ray analysis, such as plasma temperature variations, cluster substructure, or cluster dynamical evolution. In this paper we present a study of the systematic errors in the value of H$-0$, as determined by the x-ray and S-Z properties of a theoretical sample of triaxial isothermal 'beta-model' clusters, caused by projection effects and observer orientation relative to the model clusters' principal axes. The model clusters are not generated as ellipsoids of rotation, but have three independent 'core radii', as well as a random orientation to the plane of the sky.

  17. A determination of H-0 with the class gravitational lens B1608+656. II. Mass models and the Hubble constant from lensing

    NARCIS (Netherlands)

    Koopmans, LVE; Fassnacht, CD

    1999-01-01

    We present mass models of the four-image gravitational lens system B1608 + 656, based on information obtained through VLBA imaging, VLA monitoring, and Hubble Space Telescope (HST) WFPC2 and NICMOS imaging. We have determined a mass model for the lens galaxies that reproduces (1) all image positions

  18. Non Lyapunov stability of a constant spatially developing 2-D gas flow

    Science.gov (United States)

    Balint, Agneta M.; Balint, Stefan; Tanasie, Loredana

    2017-01-01

    Different types of stabilities (global, local) and instabilities (global absolute, local convective) of the constant spatially developing 2-D gas flow are analyzed in a particular phase space of continuously differentiable functions, endowed with the usual algebraic operations and the topology generated by the uniform convergence on the plane. For this purpose the Euler equations linearized at the constant flow are used. The Lyapunov stability analysis was presented in [1] and this paper is a continuation of [1].

  19. Gauss-Bonnet models with cosmological constant and non zero spatial curvature in D = 4

    Energy Technology Data Exchange (ETDEWEB)

    Armaleo, Juan Manuel [UBA, Departamento de Fisica, Buenos Aires (Argentina); Osorio Morales, Juliana; Santillan, Osvaldo P. [UBA CONICET, Departamento de Matematicas Luis Santalo (IMAS), Buenos Aires (Argentina)

    2018-02-15

    In the present paper the possibility of eternal universes in Gauss-Bonnet theories of gravity in four dimensions is analysed. It is shown that, for zero spatial curvature and zero cosmological constant, if the coupling is such that 0 < f{sup '}(φ) ≤ c exp((√(8))/(√(10))φ), then there are solutions that are eternal. Similar conclusions are found when a cosmological constant turned on. These conclusions are not generalized for the case when the spatial curvature is present, but we are able to find some general results about the possible nature of the singularities. The presented results correct some dubious arguments in Santillan (JCAP 7:008, 2017), although the same conclusions are reached. On the other hand, these past results are considerably generalized to a wide class of situations which were not considered in Santillan (JCAP 7:008, 2017). (orig.)

  20. New Constraints on Spatial Variations of the Fine Structure Constant from Clusters of Galaxies

    Directory of Open Access Journals (Sweden)

    Ivan De Martino

    2016-12-01

    Full Text Available We have constrained the spatial variation of the fine structure constant using multi-frequency measurements of the thermal Sunyaev-Zeldovich effect of 618 X-ray selected clusters. Although our results are not competitive with the ones from quasar absorption lines, we improved by a factor 10 and ∼2.5 previous results from Cosmic Microwave Background power spectrum and from galaxy clusters, respectively.

  1. Constraining spatial variations of the fine-structure constant in symmetron models

    Directory of Open Access Journals (Sweden)

    A.M.M. Pinho

    2017-06-01

    Full Text Available We introduce a methodology to test models with spatial variations of the fine-structure constant α, based on the calculation of the angular power spectrum of these measurements. This methodology enables comparisons of observations and theoretical models through their predictions on the statistics of the α variation. Here we apply it to the case of symmetron models. We find no indications of deviations from the standard behavior, with current data providing an upper limit to the strength of the symmetron coupling to gravity (log⁡β2<−0.9 when this is the only free parameter, and not able to constrain the model when also the symmetry breaking scale factor aSSB is free to vary.

  2. Updated constraints on spatial variations of the fine-structure constant

    Directory of Open Access Journals (Sweden)

    A.M.M. Pinho

    2016-05-01

    Full Text Available Recent work by Webb et al. has provided indications of spatial variations of the fine-structure constant, α, at a level of a few parts per million. Using a dataset of 293 archival measurements, they further show that a dipole provides a statistically good fit to the data, a result subsequently confirmed by other authors. Here we show that a more recent dataset of dedicated measurements further constrains these variations: although there are only 10 such measurements, their uncertainties are considerably smaller. We find that a dipolar variation is still a good fit to the combined dataset, but the amplitude of such a dipole must be somewhat smaller: 8.1±1.7 ppm for the full dataset, versus 9.4±2.2 ppm for the Webb et al. data alone, both at the 68.3% confidence level. Constraints on the direction on the sky of such a dipole are also significantly improved. On the other hand the data can't yet discriminate between a pure spatial dipole and one with an additional redshift dependence.

  3. The Carnegie Hubble Program

    Science.gov (United States)

    Freedman, Wendy L.; Madore, Barry F.; Scowcroft, Vicky; Mnso, Andy; Persson, S. E.; Rigby, Jane; Sturch, Laura; Stetson, Peter

    2011-01-01

    We present an overview of and preliminary results from an ongoing comprehensive program that has a goal of determining the Hubble constant to a systematic accuracy of 2%. As part of this program, we are currently obtaining 3.6 micron data using the Infrared Array Camera (IRAC) on Spitzer, and the program is designed to include JWST in the future. We demonstrate that the mid-infrared period-luminosity relation for Cepheids at 3.6 microns is the most accurate means of measuring Cepheid distances to date. At 3.6 microns, it is possible to minimize the known remaining systematic uncertainties in the Cepheid extragalactic distance scale. We discuss the advantages of 3.6 micron observations in minimizing systematic effects in the Cepheid calibration of the Hubble constant including the absolute zero point, extinction corrections, and the effects of metallicity on the colors and magnitudes of Cepheids. We are undertaking three independent tests of the sensitivity of the mid-IR Cepheid Leavitt Law to metallicity, which when combined will allow a robust constraint on the effect. Finally, we are providing a new mid-IR Tully-Fisher relation for spiral galaxies.

  4. The cosmological constant problem

    International Nuclear Information System (INIS)

    Dolgov, A.D.

    1989-05-01

    A review of the cosmological term problem is presented. Baby universe model and the compensating field model are discussed. The importance of more accurate data on the Hubble constant and the Universe age is stressed. 18 refs

  5. Constant Flux of Spatial Niche Partitioning through High-Resolution Sampling of Magnetotactic Bacteria.

    Science.gov (United States)

    He, Kuang; Gilder, Stuart A; Orsi, William D; Zhao, Xiangyu; Petersen, Nikolai

    2017-10-15

    Magnetotactic bacteria (MTB) swim along magnetic field lines in water. They are found in aquatic habitats throughout the world, yet knowledge of their spatial and temporal distribution remains limited. To help remedy this, we took MTB-bearing sediment from a natural pond, mixed the thoroughly homogenized sediment into two replicate aquaria, and then counted three dominant MTB morphotypes (coccus, spirillum, and rod-shaped MTB cells) at a high spatiotemporal sampling resolution: 36 discrete points in replicate aquaria were sampled every ∼30 days over 198 days. Population centers of the MTB coccus and MTB spirillum morphotypes moved in continual flux, yet they consistently inhabited separate locations, displaying significant anticorrelation. Rod-shaped MTB were initially concentrated toward the northern end of the aquaria, but at the end of the experiment, they were most densely populated toward the south. The finding that the total number of MTB cells increased over time during the experiment argues that population reorganization arose from relative changes in cell division and death and not from migration. The maximum net growth rates were 10, 3, and 1 doublings day -1 and average net growth rates were 0.24, 0.11, and 0.02 doublings day -1 for MTB cocci, MTB spirilla, and rod-shaped MTB, respectively; minimum growth rates for all three morphotypes were -0.03 doublings day -1 Our results suggest that MTB cocci and MTB spirilla occupy distinctly different niches: their horizontal positioning in sediment is anticorrelated and under constant flux. IMPORTANCE Little is known about the horizontal distribution of magnetotactic bacteria in sediment or how the distribution changes over time. We therefore measured three dominant magnetotactic bacterium morphotypes at 36 places in two replicate aquaria each month for 7 months. We found that the spatial positioning of population centers changed over time and that the two most abundant morphotypes (MTB cocci and MTB spirilla

  6. Neutron slowing down and transport in a medium of constant cross section. I. Spatial moments

    International Nuclear Information System (INIS)

    Cacuci, D.G.; Goldstein, H.

    1977-01-01

    Some aspects of the problem of neutron slowing down and transport have been investigated in an infinite medium consisting of a single nuclide scattering elastically and isotropically without absorption and with energy-independent cross sections. The method of singular eigenfunctions has been applied to the Boltzmann equation governing the Laplace transform (with respect to the lethargy variable) of the neutron flux. Formulas have been obtained for the lethargy dependent spatial moments of the scalar flux applicable in the limit of large lethargy. In deriving these formulas, use has been made of the well-known connection between the spatial moments of the Laplace-transformed scalar flux and the moments of the flux in the ''eigenvalue space.'' The calculations have been greatly aided by the construction of a closed general expression for these ''eigenvalue space'' moments. Extensive use has also been made of the methods of combinatorial analysis and of computer evaluation, via FORMAC, of complicated sequences of manipulations. It has been possible to obtain for materials of any atomic weight explicit corrections to the age theory formulas for the spatial moments M/sub 2n/(u), of the scalar flux, valid through terms of order of u -5 . Higher order correction terms could be obtained at the expense of additional computer time. The evaluation of the coefficients of the powers of n, as explicit functions of the nuclear mass, represent the end product of this investigation

  7. Non Lyapunov stability of the constant spatially developing 1-D gas flow in presence of solutions having strictly positive exponential growth rate

    Science.gov (United States)

    Balint, Stefan; Balint, Agneta M.

    2017-01-01

    Different types of stabilities (global, local) and instabilities (global absolute, local convective) of the constant spatially developing 1-D gas flow are analyzed in the phase space of continuously differentiable functions, endowed with the usual algebraic operations and the topology generated by the uniform convergence on the real axis. For this purpose the Euler equations linearized at the constant flow are used. The Lyapunov stability analysis was presented in [1] and this paper is a continuation of [1].

  8. Hubble 15 years of discovery

    CERN Document Server

    Lindberg Christensen, Lars; Kornmesser, M

    2006-01-01

    Hubble: 15 Years of Discovery was a key element of the European Space Agency's 15th anniversary celebration activities for the 1990 launch of the NASA/ESA Hubble Space Telescope. As an observatory in space, Hubble is one of the most successful scientific projects of all time, both in terms of scientific output and its immediate public appeal.

  9. The Hubble Tarantula Treasury Project

    Science.gov (United States)

    Sabbi, Elena; Lennon, D. J.; Anderson, J.; Van Der Marel, R. P.; Aloisi, A.; Boyer, M. L.; Cignoni, M.; De Marchi, G.; de Mink, S. E.; Evans, C. J.; Gallagher, J. S.; Gordon, K. D.; Gouliermis, D.; Grebel, E.; Koekemoer, A. M.; Larsen, S. S.; Panagia, N.; Ryon, J. E.; Smith, L. J.; Tosi, M.; Zaritsky, D. F.

    2014-01-01

    The Tarantula Nebula (a.k.a. 30 Doradus) in the Large Magellanic Cloud is one of the most famous objects in astronomy, with first astronomical references being more than 150 years old. Today the Tarantula Nebula and its ionizing cluster R136 are considered one of the few known starburst regions in the Local Group and an ideal test bed to investigate the temporal and spatial evolution of a prototypical starburst on a sub-cluster scale. The Hubble Tarantula Treasury Project (HTTP) is a panchromatic imaging survey of the stellar populations and ionized gas in the Tarantula Nebula that reaches into the sub-solar mass regime (eBook that explains how stars form and evolve using images from HTTP. The eBook utilizes emerging technology that works in conjunction with the built-in accessibility features in the Apple iPad to allow totally blind users to interactively explore complex astronomical images.

  10. Fast backprojection-based reconstruction of spectral-spatial EPR images from projections with the constant sweep of a magnetic field.

    Science.gov (United States)

    Komarov, Denis A; Hirata, Hiroshi

    2017-08-01

    In this paper, we introduce a procedure for the reconstruction of spectral-spatial EPR images using projections acquired with the constant sweep of a magnetic field. The application of a constant field-sweep and a predetermined data sampling rate simplifies the requirements for EPR imaging instrumentation and facilitates the backprojection-based reconstruction of spectral-spatial images. The proposed approach was applied to the reconstruction of a four-dimensional numerical phantom and to actual spectral-spatial EPR measurements. Image reconstruction using projections with a constant field-sweep was three times faster than the conventional approach with the application of a pseudo-angle and a scan range that depends on the applied field gradient. Spectral-spatial EPR imaging with a constant field-sweep for data acquisition only slightly reduces the signal-to-noise ratio or functional resolution of the resultant images and can be applied together with any common backprojection-based reconstruction algorithm. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Dismantling Hubble's Legacy?

    OpenAIRE

    Way, Michael J.

    2013-01-01

    Edwin Hubble is famous for a number of discoveries that are well known to amateur and professional astronomers, students and the general public. The origins of these discoveries are examined and it is demonstrated that, in each case, a great deal of supporting evidence was already in place. In some cases the discoveries had either already been made, or competing versions were not adopted for complex scientific and sociological reasons.

  12. Fine-structure constant: Is it really a constant

    International Nuclear Information System (INIS)

    Bekenstein, J.D.

    1982-01-01

    It is often claimed that the fine-structure ''constant'' α is shown to be strictly constant in time by a variety of astronomical and geophysical results. These constrain its fractional rate of change alpha-dot/α to at least some orders of magnitude below the Hubble rate H 0 . We argue that the conclusion is not as straightforward as claimed since there are good physical reasons to expect alpha-dot/α 0 . We propose to decide the issue by constructing a framework for a variability based on very general assumptions: covariance, gauge invariance, causality, and time-reversal invariance of electromagnetism, as well as the idea that the Planck-Wheeler length (10 -33 cm) is the shortest scale allowable in any theory. The framework endows α with well-defined dynamics, and entails a modification of Maxwell electrodynamics. It proves very difficult to rule it out with purely electromagnetic experiments. In a cosmological setting, the framework predicts an alpha-dot/α which can be compatible with the astronomical constraints; hence, these are too insensitive to rule out α variability. There is marginal conflict with the geophysical constraints: however, no firm decision is possible because of uncertainty about various cosmological parameters. By contrast the framework's predictions for spatial gradients of α are in fatal conflict with the results of the Eoetvoes-Dicke-Braginsky experiments. Hence these tests of the equivalence principle rule out with confidence spacetime variability of α at any level

  13. Tachyon constant-roll inflation

    Science.gov (United States)

    Mohammadi, A.; Saaidi, Kh.; Golanbari, T.

    2018-04-01

    The constant-roll inflation is studied where the inflaton is taken as a tachyon field. Based on this approach, the second slow-roll parameter is taken as a constant which leads to a differential equation for the Hubble parameter. Finding an exact solution for the Hubble parameter is difficult and leads us to a numerical solution for the Hubble parameter. On the other hand, since in this formalism the slow-roll parameter η is constant and could not be assumed to be necessarily small, the perturbation parameters should be reconsidered again which, in turn, results in new terms appearing in the amplitude of scalar perturbations and the scalar spectral index. Utilizing the numerical solution for the Hubble parameter, we estimate the perturbation parameter at the horizon exit time and compare it with observational data. The results show that, for specific values of the constant parameter η , we could have an almost scale-invariant amplitude of scalar perturbations. Finally, the attractor behavior for the solution of the model is presented, and we determine that the feature could be properly satisfied.

  14. Hubble Source Catalog

    Science.gov (United States)

    Lubow, S.; Budavári, T.

    2013-10-01

    We have created an initial catalog of objects observed by the WFPC2 and ACS instruments on the Hubble Space Telescope (HST). The catalog is based on observations taken on more than 6000 visits (telescope pointings) of ACS/WFC and more than 25000 visits of WFPC2. The catalog is obtained by cross matching by position in the sky all Hubble Legacy Archive (HLA) Source Extractor source lists for these instruments. The source lists describe properties of source detections within a visit. The calculations are performed on a SQL Server database system. First we collect overlapping images into groups, e.g., Eta Car, and determine nearby (approximately matching) pairs of sources from different images within each group. We then apply a novel algorithm for improving the cross matching of pairs of sources by adjusting the astrometry of the images. Next, we combine pairwise matches into maximal sets of possible multi-source matches. We apply a greedy Bayesian method to split the maximal matches into more reliable matches. We test the accuracy of the matches by comparing the fluxes of the matched sources. The result is a set of information that ties together multiple observations of the same object. A byproduct of the catalog is greatly improved relative astrometry for many of the HST images. We also provide information on nondetections that can be used to determine dropouts. With the catalog, for the first time, one can carry out time domain, multi-wavelength studies across a large set of HST data. The catalog is publicly available. Much more can be done to expand the catalog capabilities.

  15. THE PANCHROMATIC HUBBLE ANDROMEDA TREASURY

    International Nuclear Information System (INIS)

    Dalcanton, Julianne J.; Williams, Benjamin F.; Rosenfield, Philip; Weisz, Daniel R.; Gilbert, Karoline M.; Gogarten, Stephanie M.; Lang, Dustin; Lauer, Tod R.; Dong Hui; Kalirai, Jason S.; Boyer, Martha L.; Gordon, Karl D.; Seth, Anil C.; Dolphin, Andrew; Bell, Eric F.; Bianchi, Luciana C.; Caldwell, Nelson; Dorman, Claire E.; Guhathakurta, Puragra; Girardi, Léo

    2012-01-01

    The Panchromatic Hubble Andromeda Treasury is an ongoing Hubble Space Telescope Multi-Cycle Treasury program to image ∼1/3 of M31's star-forming disk in six filters, spanning from the ultraviolet (UV) to the near-infrared (NIR). We use the Wide Field Camera 3 (WFC3) and Advanced Camera for Surveys (ACS) to resolve the galaxy into millions of individual stars with projected radii from 0 to 20 kpc. The full survey will cover a contiguous 0.5 deg 2 area in 828 orbits. Imaging is being obtained in the F275W and F336W filters on the WFC3/UVIS camera, F475W and F814W on ACS/WFC, and F110W and F160W on WFC3/IR. The resulting wavelength coverage gives excellent constraints on stellar temperature, bolometric luminosity, and extinction for most spectral types. The data produce photometry with a signal-to-noise ratio of 4 at m F275W = 25.1, m F336W = 24.9, m F475W = 27.9, m F814W = 27.1, m F110W = 25.5, and m F160W = 24.6 for single pointings in the uncrowded outer disk; in the inner disk, however, the optical and NIR data are crowding limited, and the deepest reliable magnitudes are up to 5 mag brighter. Observations are carried out in two orbits per pointing, split between WFC3/UVIS and WFC3/IR cameras in primary mode, with ACS/WFC run in parallel. All pointings are dithered to produce Nyquist-sampled images in F475W, F814W, and F160W. We describe the observing strategy, photometry, astrometry, and data products available for the survey, along with extensive testing of photometric stability, crowding errors, spatially dependent photometric biases, and telescope pointing control. We also report on initial fits to the structure of M31's disk, derived from the density of red giant branch stars, in a way that is independent of assumed mass-to-light ratios and is robust to variations in dust extinction. These fits also show that the 10 kpc ring is not just a region of enhanced recent star formation, but is instead a dynamical structure containing a significant overdensity of

  16. HUBBLE VISION: A Planetarium Show About Hubble Space Telescope

    Science.gov (United States)

    Petersen, Carolyn Collins

    1995-05-01

    In 1991, a planetarium show called "Hubble: Report From Orbit" outlining the current achievements of the Hubble Space Telescope was produced by the independent planetarium production company Loch Ness Productions, for distribution to facilities around the world. The program was subsequently converted to video. In 1994, that program was updated and re-produced under the name "Hubble Vision" and offered to the planetarium community. It is periodically updated and remains a sought-after and valuable resource within the community. This paper describes the production of the program, and the role of the astronomical community in the show's production (and subsequent updates). The paper is accompanied by a video presentation of Hubble Vision.

  17. Hubble 2020: Outer Planet Atmospheres Legacy (OPAL) Program

    Science.gov (United States)

    Simon, Amy

    2017-08-01

    Long time base observations of the outer planets are critical in understanding the atmospheric dynamics and evolution of the gas giants. We propose yearly monitoring of each giant planet for the remainder of Hubble's lifetime to provide a lasting legacy of increasingly valuable data for time-domain studies. The Hubble Space Telescope is a unique asset to planetary science, allowing high spatial resolution data with absolute photometric knowledge. For the outer planets, gas/ice giant planets Jupiter, Saturn, Uranus and Neptune, many phenomena happen on timescales of years to decades, and the data we propose are beyond the scope of a typical GO program. Hubble is the only platform that can provide high spatial resolution global studies of cloud coloration, activity, and motion on a consistent time basis to help constrain the underlying mechanics.

  18. Solar system anomalies: Revisiting Hubble's law

    Science.gov (United States)

    Plamondon, R.

    2017-12-01

    This paper investigates the impact of a new metric recently published [R. Plamondon and C. Ouellet-Plamondon, in On Recent Developments in Theoretical and Experimental General Relativity, Astrophysics, and Relativistic Field Theories, edited by K. Rosquist, R. T. Jantzen, and R. Ruffini (World Scientific, Singapore, 2015), p. 1301] for studying the space-time geometry of a static symmetric massive object. This metric depends on a complementary error function (erfc) potential that characterizes the emergent gravitation field predicted by the model. This results in two types of deviations as compared to computations made on the basis of a Newtonian potential: a constant and a radial outcome. One key feature of the metric is that it postulates the existence of an intrinsic physical constant σ , the massive object-specific proper length that scales measurements in its surroundings. Although σ must be evaluated experimentally, we use a heuristic to estimate its value and point out some latent relationships between the Hubble constant, the secular increase in the astronomical unit, and the Pioneers delay. Indeed, highlighting the systematic errors that emerge when the effect of σ is neglected, one can link the Hubble constant H 0 to σ Sun and the secular increase V AU to σ Earth . The accuracy of the resulting numerical predictions, H 0 = 74 . 42 ( 0 . 02 ) ( km / s ) / Mpc and V AU ≅ 7.8 cm yr-1 , calls for more investigations of this new metric by specific experts. Moreover, we investigate the expected impacts of the new metric on the flyby anomalies, and we revisit the Pioneers delay. It is shown that both phenomena could be partly taken into account within the context of this unifying paradigm, with quite accurate numerical predictions. A correction for the osculating asymptotic velocity at the perigee of the order of 10 mm/s and an inward radial acceleration of 8 . 34 × 10 - 10 m / s 2 affecting the Pioneer ! space crafts could be explained by this new model.

  19. The Hubble IR cutoff in holographic ellipsoidal cosmologies

    Energy Technology Data Exchange (ETDEWEB)

    Cataldo, Mauricio [Universidad del Bio-Bio, Departamento de Fisica, Facultad de Ciencias, Concepcion (Chile); Cruz, Norman [Grupo de Cosmologia y Gravitacion-UBB, Concepcion (Chile)

    2018-01-15

    It is well known that for spatially flat FRW cosmologies, the holographic dark energy disfavors the Hubble parameter as a candidate for the IR cutoff. For overcoming this problem, we explore the use of this cutoff in holographic ellipsoidal cosmological models, and derive the general ellipsoidal metric induced by a such holographic energy density. Despite the drawbacks that this cutoff presents in homogeneous and isotropic universes, based on this general metric, we developed a suitable ellipsoidal holographic cosmological model, filled with a dark matter and a dark energy components. At late time stages, the cosmic evolution is dominated by a holographic anisotropic dark energy with barotropic equations of state. The cosmologies expand in all directions in accelerated manner. Since the ellipsoidal cosmologies given here are not asymptotically FRW, the deviation from homogeneity and isotropy of the universe on large cosmological scales remains constant during all cosmic evolution. This feature allows the studied holographic ellipsoidal cosmologies to be ruled by an equation of state ω = p/ρ, whose range belongs to quintessence or even phantom matter. (orig.)

  20. The new European Hubble archive

    Science.gov (United States)

    De Marchi, Guido; Arevalo, Maria; Merin, Bruno

    2016-01-01

    The European Hubble Archive (hereafter eHST), hosted at ESA's European Space Astronomy Centre, has been released for public use in October 2015. The eHST is now fully integrated with the other ESA science archives to ensure long-term preservation of the Hubble data, consisting of more than 1 million observations from 10 different scientific instruments. The public HST data, the Hubble Legacy Archive, and the high-level science data products are now all available to scientists through a single, carefully designed and user friendly web interface. In this talk, I will show how the the eHST can help boost archival research, including how to search on sources in the field of view thanks to precise footprints projected onto the sky, how to obtain enhanced previews of imaging data and interactive spectral plots, and how to directly link observations with already published papers. To maximise the scientific exploitation of Hubble's data, the eHST offers connectivity to virtual observatory tools, easily integrates with the recently released Hubble Source Catalog, and is fully accessible through ESA's archives multi-mission interface.

  1. Building the Hubble Space Telescope

    International Nuclear Information System (INIS)

    O'dell, C.R.

    1989-01-01

    The development of the design for the Hubble Space Telescope (HST) is discussed. The HST optical system is described and illustrated. The financial and policy issues related to the development of the HST are considered. The actual construction of the HST optical telescope is examined. Also, consideration is given to the plans for the HST launch

  2. A Hubble Diagram for Quasars

    Directory of Open Access Journals (Sweden)

    Susanna Bisogni

    2018-01-01

    Full Text Available The cosmological model is at present not tested between the redshift of the farthest observed supernovae (z ~ 1.4 and that of the Cosmic Microwave Background (z ~ 1,100. Here we introduce a new method to measure the cosmological parameters: we show that quasars can be used as “standard candles” by employing the non-linear relation between their intrinsic UV and X-ray emission as an absolute distance indicator. We built a sample of ~1,900 quasars with available UV and X-ray observations, and produced a Hubble Diagram up to z ~ 5. The analysis of the quasar Hubble Diagram, when used in combination with supernovae, provides robust constraints on the matter and energy content in the cosmos. The application of this method to forthcoming, larger quasar samples, will also provide tight constraints on the dark energy equation of state and its possible evolution with time.

  3. Astronomers celebrate a year of new Hubble results

    Science.gov (United States)

    1995-02-01

    "We are beginning to understand that because of these observations we are going to have to change the way we look at the Universe," said ESA's Dr Duccio Macchetto, Associate Director for Science Programs at the Space Telescope Science Institute (STScI), Baltimore, Maryland, USA. The European Space Agency plays a major role in the Hubble Space Telescope programme. The Agency provided one of the telescope's four major instruments, called the Faint Object Camera, and two sets of electricity-generating solar arrays. In addition, 15 ESA scientific and technical staff work at the STScI. In return for this contribution, European astronomers are entitled to 15 percent of the telescope's observing time, although currently they account for 20 percent of all observations. "This is a testimony to the quality of the European science community", said Dr Roger Bonnet, Director of Science at ESA. "We are only guaranteed 15 percent of the telescope's use, but consistently receive much more than that." Astronomers from universities, observatories and research institutes across Europe lead more than 60 investigations planned for the telescope's fifth observing cycle, which begins this summer. Many more Europeans contribute to teams led by other astronomers. Looking back to the very start of time European astronomer Dr Peter Jakobsen used ESA's Faint Object Camera to confirm that helium was present in the early Universe. Astronomers had long predicted that 90 percent of the newly born Universe consisted of hydrogen, with helium making up the remainder. Before the refurbished Hubble came along, it was easy to detect the hydrogen, but the primordial helium remained elusive. The ultraviolet capabilities of the telescope, combined with the improvement in spatial resolution following the repair, made it possible for Dr Jakobsen to obtain an image of a quasar close to the edge of the known Universe. A spectral analysis of this picture revealed the quasar's light, which took 13 billion years

  4. Nuclear constants

    International Nuclear Information System (INIS)

    Foos, J.

    1999-01-01

    This paper is written in two tables. The first one describes the different particles (bosons and fermions). The second one gives the isotopes nuclear constants of the different elements, for Z = 1 to 56. (A.L.B.)

  5. Nuclear constants

    International Nuclear Information System (INIS)

    Foos, J.

    2000-01-01

    This paper is written in two tables. The first one describes the different particles (bosons and fermions). The second one gives the isotopes nuclear constants of the different elements, for Z = 56 to 68. (A.L.B.)

  6. Nuclear constants

    International Nuclear Information System (INIS)

    Foos, J.

    1998-01-01

    This paper is made of two tables. The first table describes the different particles (bosons and fermions) while the second one gives the nuclear constants of isotopes from the different elements with Z = 1 to 25. (J.S.)

  7. Nuclear constants

    International Nuclear Information System (INIS)

    Foos, J.

    1999-01-01

    This paper is written in two tables. The first one describes the different particles (bosons and fermions). The second one gives the isotopes nuclear constants of the different elements, for Z = 56 to 68. (A.L.B.)

  8. Hubble expansion in static spacetime

    International Nuclear Information System (INIS)

    Rossler, Otto E.; Froehlich, Dieter; Movassagh, Ramis; Moore, Anthony

    2007-01-01

    A recently proposed mechanism for light-path expansion in a static spacetime is based on the moving-lenses paradigm. Since the latter is valid independently of whether space expands or not, a static universe can be used to better see the implications. The moving-lenses paradigm is related to the paradigm of dynamical friction. If this is correct, a Hubble-like law is implicit. It is described quantitatively. A bent in the Hubble-like line is predictably implied. The main underlying assumption is Price's Principle (PI 3 ). If the theory is sound, the greatest remaining problem in cosmology becomes the origin of hydrogen. Since Blandford's jet production mechanism for quasars is too weak, a generalized Hawking radiation hidden in the walls of cosmic voids is invoked. A second prediction is empirical: slow pattern changes in the cosmic microwave background. A third is ultra-high redshifts for Giacconi quasars. Bruno's eternal universe in the spirit of Augustine becomes a bit less outlandish

  9. Are fundamental constants really constant

    International Nuclear Information System (INIS)

    Norman, E.B.

    1986-01-01

    Reasons for suspecting that fundamental constants might change with time are reviewed. Possible consequences of such variations are examined. The present status of experimental tests of these ideas is discussed

  10. Planetary nebulae: 20 years of Hubble inquiry

    Science.gov (United States)

    Balick, Bruce

    2012-08-01

    The Hubble Space Telescope has served the critical roles of microscope and movie camera in the past 20 years of research on planetary nebulae (``PNe''). We have glimpsed the details of the evolving structures of neutral and ionized post-AGB objects, built ingenious heuristic models that mimic these structures, and constrained most of the relevant physical processes with careful observations and interpretation. We have searched for close physical binary stars with spatial resolution ~50 AU at 1 AU, located jets emerging from the nucleus at speeds up to 2000 km s-1 and matched newly discovered molecular and X-ray emission regions to physical substructures in order to better understand how stellar winds and ionizing radiation interact to form the lovely symmetries that are observed. Ultraviolet spectra of CNO in PNe help to uncover how stars process deep inside AGB stars with unstable nuclear burning zones. HST broadband imaging has been at the forefront of uncovering surprisingly complex wind morphologies produced at the tip of the AGB, and has led to an increasing realization of the potentially vital roles of close binary stars and emerging magnetic fields in shaping stellar winds.

  11. Observational constraint on spherical inhomogeneity with CMB and local Hubble parameter

    Science.gov (United States)

    Tokutake, Masato; Ichiki, Kiyotomo; Yoo, Chul-Moon

    2018-03-01

    We derive an observational constraint on a spherical inhomogeneity of the void centered at our position from the angular power spectrum of the cosmic microwave background (CMB) and local measurements of the Hubble parameter. The late time behaviour of the void is assumed to be well described by the so-called Λ-Lemaȋtre-Tolman-Bondi (ΛLTB) solution. Then, we restrict the models to the asymptotically homogeneous models each of which is approximated by a flat Friedmann-Lemaȋtre-Robertson-Walker model. The late time ΛLTB models are parametrized by four parameters including the value of the cosmological constant and the local Hubble parameter. The other two parameters are used to parametrize the observed distance-redshift relation. Then, the ΛLTB models are constructed so that they are compatible with the given distance-redshift relation. Including conventional parameters for the CMB analysis, we characterize our models by seven parameters in total. The local Hubble measurements are reflected in the prior distribution of the local Hubble parameter. As a result of a Markov-Chains-Monte-Carlo analysis for the CMB temperature and polarization anisotropies, we found that the inhomogeneous universe models with vanishing cosmological constant are ruled out as is expected. However, a significant under-density around us is still compatible with the angular power spectrum of CMB and the local Hubble parameter.

  12. Hubble Images Reveal Jupiter's Auroras

    Science.gov (United States)

    1996-01-01

    These images, taken by the Hubble Space Telescope, reveal changes in Jupiter's auroral emissions and how small auroral spots just outside the emission rings are linked to the planet's volcanic moon, Io. The images represent the most sensitive and sharply-detailed views ever taken of Jovian auroras.The top panel pinpoints the effects of emissions from Io, which is about the size of Earth's moon. The black-and-white image on the left, taken in visible light, shows how Io and Jupiter are linked by an invisible electrical current of charged particles called a 'flux tube.' The particles - ejected from Io (the bright spot on Jupiter's right) by volcanic eruptions - flow along Jupiter's magnetic field lines, which thread through Io, to the planet's north and south magnetic poles. This image also shows the belts of clouds surrounding Jupiter as well as the Great Red Spot.The black-and-white image on the right, taken in ultraviolet light about 15 minutes later, shows Jupiter's auroral emissions at the north and south poles. Just outside these emissions are the auroral spots. Called 'footprints,' the spots are created when the particles in Io's 'flux tube' reach Jupiter's upper atmosphere and interact with hydrogen gas, making it fluoresce. In this image, Io is not observable because it is faint in the ultraviolet.The two ultraviolet images at the bottom of the picture show how the auroral emissions change in brightness and structure as Jupiter rotates. These false-color images also reveal how the magnetic field is offset from Jupiter's spin axis by 10 to 15 degrees. In the right image, the north auroral emission is rising over the left limb; the south auroral oval is beginning to set. The image on the left, obtained on a different date, shows a full view of the north aurora, with a strong emission inside the main auroral oval.The images were taken by the telescope's Wide Field and Planetary Camera 2 between May 1994 and September 1995.This image and other images and data

  13. Hubble Observes Surface of Titan

    Science.gov (United States)

    1994-01-01

    Scientists for the first time have made images of the surface of Saturn's giant, haze-shrouded moon, Titan. They mapped light and dark features over the surface of the satellite during nearly a complete 16-day rotation. One prominent bright area they discovered is a surface feature 2,500 miles across, about the size of the continent of Australia.Titan, larger than Mercury and slightly smaller than Mars, is the only body in the solar system, other than Earth, that may have oceans and rainfall on its surface, albeit oceans and rain of ethane-methane rather than water. Scientists suspect that Titan's present environment -- although colder than minus 289 degrees Fahrenheit, so cold that water ice would be as hard as granite -- might be similar to that on Earth billions of years ago, before life began pumping oxygen into the atmosphere.Peter H. Smith of the University of Arizona Lunar and Planetary Laboratory and his team took the images with the Hubble Space Telescope during 14 observing runs between Oct. 4 - 18. Smith announced the team's first results last week at the 26th annual meeting of the American Astronomical Society Division for Planetary Sciences in Bethesda, Md. Co-investigators on the team are Mark Lemmon, a doctoral candidate with the UA Lunar and Planetary Laboratory; John Caldwell of York University, Canada; Larry Sromovsky of the University of Wisconsin; and Michael Allison of the Goddard Institute for Space Studies, New York City.Titan's atmosphere, about four times as dense as Earth's atmosphere, is primarily nitrogen laced with such poisonous substances as methane and ethane. This thick, orange, hydrocarbon haze was impenetrable to cameras aboard the Pioneer and Voyager spacecraft that flew by the Saturn system in the late 1970s and early 1980s. The haze is formed as methane in the atmosphere is destroyed by sunlight. The hydrocarbons produced by this methane destruction form a smog similar to that found over large cities, but is much thicker

  14. PANCHROMATIC HUBBLE ANDROMEDA TREASURY. XII. MAPPING STELLAR METALLICITY DISTRIBUTIONS IN M31

    Energy Technology Data Exchange (ETDEWEB)

    Gregersen, Dylan; Seth, Anil C. [Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112 (United States); Williams, Benjamin F.; Dalcanton, Julianne J.; Johnson, L. C.; Lewis, Alexia R. [Department of Astronomy, Box 351580, University of Washington, Seattle, WA 98195 (United States); Lang, Dustin [McWilliams Center for Cosmology, Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213 (United States); Girardi, Leó [Osservatorio Astronomico di Padova—INAF, Vicolo dell’Osservatori 5, I-35122 Padova (Italy); Skillman, Evan D. [Minnesota Institute for Astrophysics, University of Minnesota, Minneapolis, MN 55455 (United States); Bell, Eric [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109 (United States); Dolphin, Andrew E. [Raytheon, 1151 E. Hermans Road, Tucson, AZ 85706 (United States); Fouesneau, Morgan [MPIA, Koenigstuhl 17, D-69117 Heidelberg (Germany); Guhathakurta, Puragra; Hamren, Katherine M. [UCO/Lick Observatory, University of California at Santa Cruz, 1156 High Street, Santa Cruz, CA 95064 (United States); Kalirai, Jason [Department of Physics and Astronomy, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 (United States); Monachesi, Antonela [MPA, Garching (Germany); Olsen, Knut, E-mail: dylan.gregersen@utah.edu, E-mail: aseth@astro.utah.edu [NOAO, Tucson, AZ 85719 (United States)

    2015-12-15

    We present a study of spatial variations in the metallicity of old red giant branch stars in the Andromeda galaxy. Photometric metallicity estimates are derived by interpolating isochrones for over seven million stars in the Panchromatic Hubble Andromeda Treasury (PHAT) survey. This is the first systematic study of stellar metallicities over the inner 20 kpc of Andromeda’s galactic disk. We see a clear metallicity gradient of −0.020 ± 0.004 dex kpc{sup −1} from ∼4–20 kpc assuming a constant red giant branch age. This metallicity gradient is derived after correcting for the effects of photometric bias and completeness and dust extinction, and is quite insensitive to these effects. The unknown age gradient in M31's disk creates the dominant systematic uncertainty in our derived metallicity gradient. However, spectroscopic analyses of galaxies similar to M31 show that they typically have small age gradients that make this systematic error comparable to the 1σ error on our metallicity gradient measurement. In addition to the metallicity gradient, we observe an asymmetric local enhancement in metallicity at radii of 3–6 kpc that appears to be associated with Andromeda’s elongated bar. This same region also appears to have an enhanced stellar density and velocity dispersion.

  15. Hubble and the Language of Images

    Science.gov (United States)

    Levay, Z. G.

    2005-12-01

    Images released from the Hubble Space Telescope have been very highly regarded by the astronomy-attentive public for at least a decade. Due in large part to these images, Hubble has become an iconic figure, even among the general public. This iconic status is both a boon and a burden for those who produce the stream of images fl owing from this telescope. While the benefits of attention are fairly obvious, the negative aspects are less visible. One of the most persistent challenges is the need to continue to deliver images that "top" those released before. In part this can be accomplished because of Hubble's upgraded instrumentation. But it can also be a source of pressure that could, if left unchecked, erode ethical boundaries in our communication with the public. These pressures are magnified in an atmosphere of uncertainty with regard to the future of the mission.

  16. Metrical connection in space-time, Newton's and Hubble's laws

    International Nuclear Information System (INIS)

    Maeder, A.

    1978-01-01

    The theory of gravitation in general relativity is not scale invariant. Here, we follow Dirac's proposition of a scale invariant theory of gravitation (i.e. a theory in which the equations keep their form when a transformation of scale is made). We examine some concepts of Weyl's geometry, like the metrical connection, the scale transformations and invariance, and we discuss their consequences for the equation of the geodetic motion and for its Newtonian limit. Under general conditions, we show that the only non-vanishing component of the coefficient of metrical connection may be identified with Hubble's constant. In this framework, the equivalent to the Newtonian approximation for the equation of motion contains an additional acceleration term Hdr vector /dt, which produces an expansion of gravitational systems. The velocity of this expansion is shown to increase linearly with the distance between interacting objects. The relative importance of this new expansion term to the Newtonian one varies like (2rhosub(c)/rho)sup(1/2), where rhosub(c) is the critical density of the Einsteinde Sitter model and rho is the mean density of the considered gravitational configuration. Thus, this 'generalized expansion' is important essentially for systems of mean density not too much above the critical density. Finally, our main conclusion is that in the integrable Weyl geometry, Hubble's law - like Newton's law - would appear as an intrinsic property of gravitation, being only the most visible manifestation of a general effect characterizing the gravitational interaction. (orig.) [de

  17. Testing the isotropy of the Hubble expansion

    OpenAIRE

    Migkas, K.; Plionis, M.

    2016-01-01

    Abstract: We have used the Union2.1 SNIa compilation to search for possible Hubble expansion anisotropies, dividing the sky in 9 solid angles containing roughly the same number of SNIa, as well as in two Galactic hemispheres. We identified only one sky region, containing 82 SNIa (~15% of total sample with z > 0.02), that indeed appears to share a Hubble expansion significantly different from the rest of the sample. However, this behaviour can be attributed to the joint "erratic" behaviour of ...

  18. Hubble Legacy Archive And The Public

    Science.gov (United States)

    Harris, Jessica; Whitmore, B.; Eisenhamer, B.; Bishop, M.; Knisely, L.

    2012-01-01

    The Hubble Legacy Archive (HLA) at the Space Telescope Science Institute (STScI) hosts the Image of the Month (IOTM) Series. The HLA is a joint project of STScI, the Space Telescope European Coordinating Facility (ST-ECF), and the Canadian Astronomy Data Centre (CADC). The HLA is designed optimize science from the Hubble Space Telescope by providing online enhanced Hubble products and advanced browsing capabilities. The IOTM's are created for astronomers and the public to highlight various features within HLA, such as the "Interactive Display", "Footprint” and "Inventory” features to name a few. We have been working with the Office of Public Outreach (OPO) to create a standards based educational module for middle school to high school students of the IOTM: Rings and the Moons of Uranus. The set of Uranus activities are highlighted by a movie that displays the orbit of five of Uranus’ largest satellites. We made the movie based on eight visits of Uranus from 2000-06-16 to 2000-06-18, using the PC chip on the Wide Field Planetary Camera 2 (WFPC2) and filter F850LP (proposal ID: 8680). Students will be engaged in activities that will allow them to "discover” the rings and satellites around Uranus, calculate the orbit of the satellites, and introduces students to analyze real data from Hubble.

  19. Dark Energy and the Hubble Law

    Science.gov (United States)

    Chernin, A. D.; Dolgachev, V. P.; Domozhilova, L. M.

    The Big Bang predicted by Friedmann could not be empirically discovered in the 1920th, since global cosmological distances (more than 300-1000 Mpc) were not available for observations at that time. Lemaitre and Hubble studied receding motions of galaxies at local distances of less than 20-30 Mpc and found that the motions followed the (nearly) linear velocity-distance relation, known now as Hubble's law. For decades, the real nature of this phenomenon has remained a mystery, in Sandage's words. After the discovery of dark energy, it was suggested that the dynamics of local expansion flows is dominated by omnipresent dark energy, and it is the dark energy antigravity that is able to introduce the linear velocity-distance relation to the flows. It implies that Hubble's law observed at local distances was in fact the first observational manifestation of dark energy. If this is the case, the commonly accepted criteria of scientific discovery lead to the conclusion: In 1927, Lemaitre discovered dark energy and Hubble confirmed this in 1929.

  20. HUBBLE PINPOINTS WHITE DWARFS IN GLOBULAR CLUSTER

    Science.gov (United States)

    2002-01-01

    Peering deep inside a cluster of several hundred thousand stars, NASA's Hubble Space Telescope uncovered the oldest burned-out stars in our Milky Way Galaxy. Located in the globular cluster M4, these small, dying stars - called white dwarfs - are giving astronomers a fresh reading on one of the biggest questions in astronomy: How old is the universe? The ancient white dwarfs in M4 are about 12 to 13 billion years old. After accounting for the time it took the cluster to form after the big bang, astronomers found that the age of the white dwarfs agrees with previous estimates for the universe's age. In the top panel, a ground-based observatory snapped a panoramic view of the entire cluster, which contains several hundred thousand stars within a volume of 10 to 30 light-years across. The Kitt Peak National Observatory's 0.9-meter telescope took this picture in March 1995. The box at left indicates the region observed by the Hubble telescope. The Hubble telescope studied a small region of the cluster. A section of that region is seen in the picture at bottom left. A sampling of an even smaller region is shown at bottom right. This region is only about one light-year across. In this smaller region, Hubble pinpointed a number of faint white dwarfs. The blue circles pinpoint the dwarfs. It took nearly eight days of exposure time over a 67-day period to find these extremely faint stars. Globular clusters are among the oldest clusters of stars in the universe. The faintest and coolest white dwarfs within globular clusters can yield a globular cluster's age. Earlier Hubble observations showed that the first stars formed less than 1 billion years after the universe's birth in the big bang. So, finding the oldest stars puts astronomers within arm's reach of the universe's age. M4 is 7,000 light-years away in the constellation Scorpius. Hubble's Wide Field and Planetary Camera 2 made the observations from January through April 2001. These optical observations were combined to

  1. The variance of the locally measured Hubble parameter explained with different estimators

    DEFF Research Database (Denmark)

    Odderskov, Io Sandberg Hess; Hannestad, Steen; Brandbyge, Jacob

    2017-01-01

    We study the expected variance of measurements of the Hubble constant, H0, as calculated in either linear perturbation theory or using non-linear velocity power spectra derived from N-body simulations. We compare the variance with that obtained by carrying out mock observations in the N......-body simulations, and show that the estimator typically used for the local Hubble constant in studies based on perturbation theory is different from the one used in studies based on N-body simulations. The latter gives larger weight to distant sources, which explains why studies based on N-body simulations tend...... to obtain a smaller variance than that found from studies based on the power spectrum. Although both approaches result in a variance too small to explain the discrepancy between the value of H0 from CMB measurements and the value measured in the local universe, these considerations are important in light...

  2. Version 1 of the Hubble Source Catalog

    Science.gov (United States)

    Whitmore, Bradley C.; Allam, Sahar S.; Budavári, Tamás; Casertano, Stefano; Downes, Ronald A.; Donaldson, Thomas; Fall, S. Michael; Lubow, Stephen H.; Quick, Lee; Strolger, Louis-Gregory; Wallace, Geoff; White, Richard L.

    2016-06-01

    The Hubble Source Catalog is designed to help optimize science from the Hubble Space Telescope (HST) by combining the tens of thousands of visit-based source lists in the Hubble Legacy Archive (HLA) into a single master catalog. Version 1 of the Hubble Source Catalog includes WFPC2, ACS/WFC, WFC3/UVIS, and WFC3/IR photometric data generated using SExtractor software to produce the individual source lists. The catalog includes roughly 80 million detections of 30 million objects involving 112 different detector/filter combinations, and about 160,000 HST exposures. Source lists from Data Release 8 of the HLA are matched using an algorithm developed by Budavári & Lubow. The mean photometric accuracy for the catalog as a whole is better than 0.10 mag, with relative accuracy as good as 0.02 mag in certain circumstances (e.g., bright isolated stars). The relative astrometric residuals are typically within 10 mas, with a value for the mode (I.e., most common value) of 2.3 mas. The absolute astrometric accuracy is better than 0''\\hspace{-0.5em}. 1 for most sources, but can be much larger for a fraction of fields that could not be matched to the PanSTARRS, SDSS, or 2MASS reference systems. In this paper we describe the database design with emphasis on those aspects that enable the users to fully exploit the catalog while avoiding common misunderstandings and potential pitfalls. We provide usage examples to illustrate some of the science capabilities and data quality characteristics, and briefly discuss plans for future improvements to the Hubble Source Catalog.

  3. Hubble expansion in a Euclidean framework

    International Nuclear Information System (INIS)

    Alfven, H.

    1979-01-01

    There now seems to be strong evidence for a non-cosmological interpretation of the QSO redshift - in any case, so strong that it is of interest to investigate the consequences. The purpose of this paper is to construct a model of the Hubble expansion which is as far as possible from the conventional Big Bang model without coming in conflict with any well-established observational results (while introducing no new laws of physics). This leads to an essentially Euclidean metagalactic model (see Table I) with very little mass outside one-third or half of the Hubble radius. The total kinetic energy of the Hubble expansion need only to be about 5% of the rest mass energy. Present observations support backwards in time extrapolation of the Hubble expansion to a 'minimum size galaxy' Rsub(m), which may have any value in 0 26 cm. Other arguments speak in favor of a size close to the upper value, say Rsub(m) = 10 26 cm (Table II). As this size is probably about 100 times the Schwarzschild limit, an essentially Euclidean description is allowed. The kinetic energy of the Hubble expansion may derive from an intense QSO-like activity in the minimum size metagalaxy, with an energy release corresponding to the annihilation of a few solar masses per galaxy per year. Some of the conclusions based on the Big Bang hypothesis are criticized and in several cases alternative interpretations are suggested. A comparison between the Euclidean and the conventional models is given in Table III. (orig.)

  4. European astronomers' successes with the Hubble Space Telescope*

    Science.gov (United States)

    1997-02-01

    can bend the light from more distant objects, so magnifying and intensifying their images. In one spectacular case, cluster Abell 2218 creates in Hubble's WFPC2 camera more than a hundred images of galaxies lying beyond it. Without the magnifying effect of the cluster, many of these remote objects would be too faint to study in detail. Compared with man-made optics, the gravitational lenses are complex. They produce multiple images (as many as seven or more views of the same object) and they also smear the images into arcs. Team-member Jean-Paul Kneib, who is now at Toulouse, uses the distortions as a guide to distance. The more distorted the image, the farther off a galaxy is. The galaxies imaged by Abell 2218 are 5 to 8 billion light-years away, and Kneib's estimates have been confirmed by Tim Ebbels of Cambridge using the William Herschel Telescope located on the Spanish island of La Palma. Seen as they were early in the history of the Universe, the objects seem surprisingly similar to nearer and more mature galaxies. The cosmic scale Gustav Tammann of Basel and his collaborators use the Hubble Space Telescope to measure the Hubble Constant. Both are named after Edwin Hubble who discovered, almost 70 years ago, that the galaxies are spreading apart. The Hubble Constant is the rate of expansion -- and the most important number in cosmology, because it fixes the size and the maximum age of the observable Universe. Since the launch of the space telescope in 1990, two independent teams have tried to fix the constant but their answers disagree. A high expansion rate, which makes the Universe relatively young, is preferred by Wendy Freedman's team consisting largely of American astronomers. A lower value for Hubble's Constant, implying an older Universe, comes from a mainly European team led by the American astronomer Allan Sandage. Tammann belongs to the latter, "old Universe" camp and he is philosophical about the delay in reaching a consensus. "I've been waiting

  5. Constant-roll (quasi-)linear inflation

    Science.gov (United States)

    Karam, A.; Marzola, L.; Pappas, T.; Racioppi, A.; Tamvakis, K.

    2018-05-01

    In constant-roll inflation, the scalar field that drives the accelerated expansion of the Universe is rolling down its potential at a constant rate. Within this framework, we highlight the relations between the Hubble slow-roll parameters and the potential ones, studying in detail the case of a single-field Coleman-Weinberg model characterised by a non-minimal coupling of the inflaton to gravity. With respect to the exact constant-roll predictions, we find that assuming an approximate slow-roll behaviour yields a difference of Δ r = 0.001 in the tensor-to-scalar ratio prediction. Such a discrepancy is in principle testable by future satellite missions. As for the scalar spectral index ns, we find that the existing 2-σ bound constrains the value of the non-minimal coupling to ξphi ~ 0.29–0.31 in the model under consideration.

  6. HUBBLE SPIES MOST DISTANT SUPERNOVA EVER SEEN

    Science.gov (United States)

    2002-01-01

    Using NASA's Hubble Space Telescope, astronomers pinpointed a blaze of light from the farthest supernova ever seen, a dying star that exploded 10 billion years ago. The detection and analysis of this supernova, called 1997ff, is greatly bolstering the case for the existence of a mysterious form of dark energy pervading the cosmos, making galaxies hurl ever faster away from each other. The supernova also offers the first glimpse of the universe slowing down soon after the Big Bang, before it began speeding up. This panel of images, taken with the Wide Field and Planetary Camera 2, shows the supernova's cosmic neighborhood; its home galaxy; and the dying star itself. Astronomers found this supernova in 1997 during a second look at the northern Hubble Deep Field [top panel], a tiny region of sky first explored by the Hubble telescope in 1995. The image shows the myriad of galaxies Hubble spied when it peered across more than 10 billion years of time and space. The white box marks the area where the supernova dwells. The photo at bottom left is a close-up view of that region. The white arrow points to the exploding star's home galaxy, a faint elliptical. Its redness is due to the billions of old stars residing there. The picture at bottom right shows the supernova itself, distinguished by the white dot in the center. Although this stellar explosion is among the brightest beacons in the universe, it could not be seen directly in the Hubble images. The stellar blast is so distant from Earth that its light is buried in the glow of its host galaxy. To find the supernova, astronomers compared two pictures of the 'deep field' taken two years apart. One image was of the original Hubble Deep Field; the other, the follow-up deep-field picture taken in 1997. Using special computer software, astronomers then measured the light from the galaxies in both images. Noting any changes in light output between the two pictures, the computer identified a blob of light in the 1997 picture

  7. BEAUTY IN THE EYE OF HUBBLE

    Science.gov (United States)

    2002-01-01

    A dying star, IC 4406, dubbed the 'Retina Nebula' is revealed in this month's Hubble Heritage image. Like many other so-called planetary nebulae, IC 4406 exhibits a high degree of symmetry; the left and right halves of the Hubble image are nearly mirror images of the other. If we could fly around IC4406 in a starship, we would see that the gas and dust form a vast donut of material streaming outward from the dying star. From Earth, we are viewing the donut from the side. This side view allows us to see the intricate tendrils of dust that have been compared to the eye's retina. In other planetary nebulae, like the Ring Nebula (NGC 6720), we view the donut from the top. The donut of material confines the intense radiation coming from the remnant of the dying star. Gas on the inside of the donut is ionized by light from the central star and glows. Light from oxygen atoms is rendered blue in this image; hydrogen is shown as green, and nitrogen as red. The range of color in the final image shows the differences in concentration of these three gases in the nebula. Unseen in the Hubble image is a larger zone of neutral gas that is not emitting visible light, but which can be seen by radio telescopes. One of the most interesting features of IC 4406 is the irregular lattice of dark lanes that criss-cross the center of the nebula. These lanes are about 160 astronomical units wide (1 astronomical unit is the distance between the Earth and Sun). They are located right at the boundary between the hot glowing gas that produces the visual light imaged here and the neutral gas seen with radio telescopes. We see the lanes in silhouette because they have a density of dust and gas that is a thousand times higher than the rest of the nebula. The dust lanes are like a rather open mesh veil that has been wrapped around the bright donut. The fate of these dense knots of material is unknown. Will they survive the nebula's expansion and become dark denizens of the space between the stars

  8. Delivering Hubble Discoveries to the Classroom

    Science.gov (United States)

    Eisenhamer, B.; Villard, R.; Weaver, D.; Cordes, K.; Knisely, L.

    2013-04-01

    Today's classrooms are significantly influenced by current news events, delivered instantly into the classroom via the Internet. Educators are challenged daily to transform these events into student learning opportunities. In the case of space science, current news events may be the only chance for educators and students to explore the marvels of the Universe. Inspired by these circumstances, the education and news teams developed the Star Witness News science content reading series. These online news stories (also available in downloadable PDF format) mirror the content of Hubble press releases and are designed for upper elementary and middle school level readers to enjoy. Educators can use Star Witness News stories to reinforce students' reading skills while exposing students to the latest Hubble discoveries.

  9. New Hubble Servicing Mission to upgrade instruments

    Science.gov (United States)

    2006-10-01

    The history of the NASA/ESA Hubble Space Telescope is dominated by the familiar sharp images and amazing discoveries that have had an unprecedented scientific impact on our view of the world and our understanding of the universe. Nevertheless, such important contributions to science and humankind have only been possible as result of regular upgrades and enhancements to Hubble’s instrumentation. Using the Space Shuttle for this fifth Servicing Mission underlines the important role that astronauts have played and continue to play in increasing the Space Telescope’s lifespan and scientific power. Since the loss of Columbia in 2003, the Shuttle has been successfully launched on three missions, confirming that improvements made to it have established the required high level of safety for the spacecraft and its crew. “There is never going to be an end to the science that we can do with a machine like Hubble”, says David Southwood, ESA’s Director of Science. “Hubble is our way of exploring our origins. Everyone should be proud that there is a European element to it and that we all are part of its success at some level.” This Servicing Mission will not just ensure that Hubble can function for perhaps as much as another ten years; it will also increase its capabilities significantly in key areas. This highly visible mission is expected to take place in 2008 and will feature several space walks. As part of the upgrade, two new scientific instruments will be installed: the Cosmic Origins Spectrograph and Wide Field Camera 3. Each has advanced technology sensors that will dramatically improve Hubble’s potential for discovery and enable it to observe faint light from the youngest stars and galaxies in the universe. With such an astounding increase in its science capabilities, this orbital observatory will continue to penetrate the most distant regions of outer space and reveal breathtaking phenomena. “Today, Hubble is producing more science than ever before in

  10. Testing the Interacting Dark Energy Model with Cosmic Microwave Background Anisotropy and Observational Hubble Data

    Directory of Open Access Journals (Sweden)

    Weiqiang Yang

    2017-07-01

    Full Text Available The coupling between dark energy and dark matter provides a possible approach to mitigate the coincidence problem of the cosmological standard model. In this paper, we assumed the interacting term was related to the Hubble parameter, energy density of dark energy, and equation of state of dark energy. The interaction rate between dark energy and dark matter was a constant parameter, which was, Q = 3 H ξ ( 1 + w x ρ x . Based on the Markov chain Monte Carlo method, we made a global fitting on the interacting dark energy model from Planck 2015 cosmic microwave background anisotropy and observational Hubble data. We found that the observational data sets slightly favored a small interaction rate between dark energy and dark matter; however, there was not obvious evidence of interaction at the 1 σ level.

  11. Constant physics and characteristics of fundamental constant

    International Nuclear Information System (INIS)

    Tarrach, R.

    1998-01-01

    We present some evidence which supports a surprising physical interpretation of the fundamental constants. First, we relate two of them through the renormalization group. This leaves as many fundamental constants as base units. Second, we introduce and a dimensional system of units without fundamental constants. Third, and most important, we find, while interpreting the units of the a dimensional system, that is all cases accessible to experimentation the fundamental constants indicate either discretization at small values or boundedness at large values of the corresponding physical quantity. (Author) 12 refs

  12. "HUBBLE, the astronomer, the telescope, the results"

    CERN Multimedia

    CERN. Geneva

    2011-01-01

    The fundamental discoveries made by Edwin Hubble in the first quarter of the last century will be presented. The space telescope bearing his name will be introduced, as well as the strategy put in place by NASA and the European Space Agency for its operation and its maintenance on-orbit. The personal experience of the speaker having participated in two of five servicing mission will be exposed and illustrated by pictures taken on-orbit. Finally, the main results obtained by the orbital observatory will be presented, in particular the ones related to the large scale structure of the Universe and its early history

  13. Hubble Captures Volcanic Eruption Plume From Io

    Science.gov (United States)

    1997-01-01

    The Hubble Space Telescope has snapped a picture of a 400-km-high (250-mile-high) plume of gas and dust from a volcanic eruption on Io, Jupiter's large innermost moon.Io was passing in front of Jupiter when this image was taken by the Wide Field and Planetary Camera 2 in July 1996. The plume appears as an orange patch just off the edge of Io in the eight o'clock position, against the blue background of Jupiter's clouds. Io's volcanic eruptions blasts material hundreds of kilometers into space in giant plumes of gas and dust. In this image, material must have been blown out of the volcano at more than 2,000 mph to form a plume of this size, which is the largest yet seen on Io.Until now, these plumes have only been seen by spacecraft near Jupiter, and their detection from the Earth-orbiting Hubble Space Telescope opens up new opportunities for long-term studies of these remarkable phenomena.The plume seen here is from Pele, one of Io's most powerful volcanos. Pele's eruptions have been seen before. In March 1979, the Voyager 1 spacecraft recorded a 300-km-high eruption cloud from Pele. But the volcano was inactive when the Voyager 2 spacecraft flew by Jupiter in July 1979. This Hubble observation is the first glimpse of a Pele eruption plume since the Voyager expeditions.Io's volcanic plumes are much taller than those produced by terrestrial volcanos because of a combination of factors. The moon's thin atmosphere offers no resistance to the expanding volcanic gases; its weak gravity (one-sixth that of Earth) allows material to climb higher before falling; and its biggest volcanos are more powerful than most of Earth's volcanos.This image is a contrast-enhanced composite of an ultraviolet image (2600 Angstrom wavelength), shown in blue, and a violet image (4100 Angstrom wavelength), shown in orange. The orange color probably occurs because of the absorption and/or scattering of ultraviolet light in the plume. This light from Jupiter passes through the plume and is

  14. HUBBLE CAPTURES MERGER BETWEEN QUASAR AND GALAXY

    Science.gov (United States)

    2002-01-01

    This NASA Hubble Space Telescope image shows evidence fo r a merger between a quasar and a companion galaxy. This surprising result might require theorists to rethink their explanations for the nature of quasars, the most energetic objects in the universe. The bright central object is the quasar itself, located several billion light-years away. The two wisps on the (left) of the bright central object are remnants of a bright galaxy that have been disrupted by the mutual gravitational attraction between the quasar and the companion galaxy. This provides clear evidence for a merger between the two objects. Since their discovery in 1963, quasars (quasi-stellar objects) have been enigmatic because they emit prodigious amounts of energy from a very compact source. The most widely accepted model is that a quasar is powered by a supermassive black hole in the core of a galaxy. These new observations proved a challenge for theorists as no current models predict the complex quasar interactions unveiled by Hubble. The image was taken with the Wide Field Planetary Camera-2. Credit: John Bahcall, Institute for Advanced Study, NASA.

  15. Discretization of space and time: mass-energy relation, accelerating expansion of the Universe, Hubble constant

    OpenAIRE

    Roatta , Luca

    2017-01-01

    Assuming that space and time can only have discrete values, we obtain the expression of the gravitational potential energy that at large distance coincides with the Newtonian. In very precise circumstances it coincides with the relativistic mass-energy relation: this shows that the Universe is a black hole in which all bodies are subjected to an acceleration toward the border of the Universe itself. Since the Universe is a black hole with a fixed radius, we can obtain the density of the Unive...

  16. On the use of Type I supernovae to determine the Hubble constant

    International Nuclear Information System (INIS)

    Branch, D.

    1979-01-01

    The derivation of the value of H 0 from composite photometric and spectroscopic data on Type I supernovae is improved in two ways. The formal result and its internal rms error become H 0 = 56 +- 15 km s -1 Mpc -1 . Comparison of temperatures inferred both from B-V colours and from fitting blackbody curves to flux distributions indicates that the observed B-V colours should be corrected to allow for the presence of lines. The correction would reduce the value obtained for H 0 . Several additional possibilities of systematic error are discussed. (author)

  17. A gravitational-wave standard siren measurement of the Hubble constant

    NARCIS (Netherlands)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Afrough, M.; Agarwal, B.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allen, G.; Allocca, A.; Altin, P. A.; Amato, A.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Angelova, S. V.; Antier, S.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Atallah, D. V.; Aufmuth, P.; Aulbert, C.; AultO'Neal, K.; Austin, C.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Bae, S.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Banagiri, S.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barkett, K.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, N.; Batch, J. C.; Bawaj, M.; Bayley, J. C.; Bazzan, M.; Becsy, B.; Beer, C.; Bejger, M.; Belahcene, I.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Bero, J. J.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Biscoveanu, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bode, N.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonilla, E.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bossie, K.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, R.; Broida, J. E.; Brooks, N. F.; Brown, D. A.; Brown, D. D.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, H.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Bustillo, J. Calderon; Callister, T. A.; Calloni, E.; Camp, J. B.; Canepa, M.; Canizares, P.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Carney, M. F.; Diaz, J. Casanueva; Casentini, C.; Caudill, S.; Cavaglia, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerda-Duran, P.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chase, E.; Chassande-Mottin, E.; Chatterjee, D.; Chatziioannou, K.; Cheeseboro, B. D.; Chen, H. Y.; Chen, X.; Chen, Y.; Cheng, H. -P.; Chia, H.; Chincarini, N.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.; Chung, A. K. W.; Chung, S.; Ciani, G.; Ciolfi, R.; Cirelli, C. E.; Cirone, N.; Clara, F.; Clark, J. A.; Clearwater, P.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P. -F.; Cohen, D.; Colla, A.; Collette, C. G.; Cominsky, L. R.; Constancio, M., Jr.; Conti, L.; Cooper, S. J.; Corban, P.; Corbitt, T. R.; Cordero-Carrion, I.; Corley, K. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J. -P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Dalya, G.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dasgupta, A.; Costa, C. F. Da Silva; Datrier, L. E. H.; Dattilo, V.; Dave, I.; Davier, M.; Davis, E. J.; Daw, E. J.; Day, B.; De, S.; DeBra, D.; Degallaix, J.; De laurentis, M.; Deleglise, S.; Del Pozzo, W.; Demos, N.; Denker, T.; Dent, T.; De Pietri, R.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; De Rossi, C.; DeSalvo, R.; de Verona, O.; Devenson, J.; Dhurancihar, S.; Diaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Renzo, F.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Douglas, R.; Alvarez, M. Dovale; Downes, T. P.; Drago, M.; Dreissigacker, C.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dupej, P.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, N.; Eggenstein, H. -B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.; Estevez, D.; Etienne, Z. B.; Etzel, T.; Evans, M.; Evans, T. M.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fee, C.; Fehrmann, H.; Feicht, J.; Fejer, M. M.; Fernandez-Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Finstad, D.; Fiori, I.; Fiorucci, D.; Fishbach, M.; Fisher, R. P.; Fitz-Axen, M.; Flaminio, R.; Fletcher, M.; Fong, H.; Font, J. A.; Forsyth, P. W. F.; Forsyth, S. S.; Fournier, J. -D.; Frasca, S.; Frasconi, E.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Ganija, M. R.; Gaonkar, S. G.; Garcia-Quiros, C.; Garufi, F.; Gateley, B.; Gaudio, S.; Gaur, G.; Gayathril, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, D.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glover, L.; Goetz, E.; Goetz, R.; Gomes, S.; Goncharov, B.; Gonzalez, G.; Castro, J. M. Gonzalez; Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Gretarsson, E. M.; Groot, P.; Grote, H.; Grunewald, S.; Gruning, P.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Halim, O.; Hall, B. R.; Hall, E. D.; Hamilton, E. Z.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hannuksela, O. A.; Hanson, J.; Hardwick, I.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hester, C. -J.; Haughian, K.; Healy, J.; Heidmann, N.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hinderer, T.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Horst, C.; Hough, J.; Houston, E. A.; Howell, E. J.; Hreibi, A.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Inta, R.; Intini, G.; Isa, H. N.; Isac, J. -M.; Isi, M.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jimenez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi, C. V.; Kalogera, V.; Kamai, B.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katolik, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kawabe, K.; Kefelian, E.; Keitel, D.; Kemball, A. J.; Kennedy, R.; Kent, C.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, K.; Kim, W.; Kim, W. S.; Kim, Y. -M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kinley-Hanlon, M.; Kirchhoff, R.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Knowles, T. D.; Koch, P.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kraemer, C.; Kringel, V.; Krishnan, B.; Krolak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kumar, S.; Kuo, L.; Kutynia, A.; Kwang, S.; Lackey, B. D.; Lai, K. H.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard, N.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, H. W.; Lee, K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. S.; Linker, S. D.; Littenberg, T. B.; Liu, J.; Liu, X.; Lo, R. K. L.; Lockerbie, N. N.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.; Lovelace, G.; Lueock, H.; Lumaca, D.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macas, R.; Macfoy, S.; Machenschalk, B.; Maclnnis, M.; Macleod, D. M.; Hernandez, I. Magana; Magana-Sandoval, F.; Zertuche, L. Magana; Magee, R. M.; Majorana, E.; Maksimovic, I.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Marka, S.; Marka, Z.; Markakis, C.; Markosyan, A. S.; Markowitz, A.; Maros, E.; Marquina, A.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Mason, K.; Massera, E.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matas, A.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McCuller, L.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McNeill, L.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Mehmet, M.; Meidam, J.; Mejuto-Villa, E.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, B. B.; Miller, J.; Millhouse, M.; Milovich-Goff, M. C.; Minazzoli, O.; Minenkov, Y.; Ming, J.; Mishra, C.; Mitra, S.; Mitrofanov, V. R.; Mitselmakher, G.; Mittleman, R.; Moffa, D.; Moggi, N.; Mogushi, K.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muniz, E. A.; Muratore, M.; Murray, P. G.; Napier, K.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Neilson, J.; Nelemans, G.; Nelson, T. J. N.; Nery, M.; Neunzert, A.; Nevin, L.; Newport, J. M.; Newton, G.; Ng, K. K. Y.; Nguyen, T. T.; Nichols, D.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.; North, C.; Nuttall, L. K.; Oberling, J.; O'Dea, G. D.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Okada, M. A.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; Ormiston, R.; Ortega, L. F.; O'Shaughnessy, R.; Ossokine, S.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pace, A. E.; Page, J.; Page, M. A.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, Howard; Pan, Huang-Wei; Pang, B.; Pang, P. T. H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Parida, A.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patil, M.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pirello, M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Porter, E. K.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.; Pratten, G.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Puerrer, M.; Qi, H.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rajbhandari, B.; Rakhmanov, M.; Ramirez, K. E.; Ramos-Buades, A.; Rapagnani, P.; Raymond, V.; Razzano, M.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Ren, W.; Reyes, S. D.; Ricci, F.; Ricker, P. M.; Rieger, S.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romel, C. L.; Romie, J. H.; Rosinska, D.; Ross, M. P.; Rowan, S.; Ruediger, A.; Ruggi, P.; Rutins, G.; Ryan, K.; Sachdev, S.; Sadecki, I.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sanchez, L. E.; Sanchis-Gual, N.; Sandberg, V.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheel, M.; Schauer, J.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schoenbeck, A.; Schreiber, E.; Schuette, D.; Schulte, B. W.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Seidel, E.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Shaddock, D. A.; Shaffer, T. J.; Shah, A. A.; Shahriar, M. S.; Shaner, M. B.; Shao, L.; Shapiro, B.; Shawhan, P.; Shepard, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, L. P.; Singh, A.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, R. J. E.; Smith, R. J. E.; Somala, S.; Son, E. J.; Sonnenberg, J. N.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staats, K.; Staley, A.; Steer, D.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stevenson, S. P.; Stone, R.; Stops, D. J.; Strain, K. A.; Stratta, G.; Strigin, S. E.; Strunk, A.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Suresh, J.; Sutton, P. J.; Swinkels, B. L.; Szczepanczyk, M. J.; Tacca, M.; Tait, S. C.; Talbot, C.; Talukder, D.; Tanner, D. B.; Tapai, M.; Taracchini, A.; Tasson, J. D.; Taylor, J. A.; Taylor, R.; Tewari, S. V.; Theeg, T.; Thies, F.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tonelli, M.; Tornasi, Z.; Torres-Forne, N.; Torrie, C. I.; Toyra, D.; Travasso, F.; Traylor, G.; Trinastic, J.; Tringali, M. C.; Trozzon, L.; Tsang, K. W.; Tse, M.; Tso, R.; Tsukada, L.; Tsuna, D.; Tuyenbayev, D.; Ueno, K.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdese, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasuth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Vicere, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J. -Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walet, R.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, J. Z.; Wang, W. H.; Wang, Y. F.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L. -W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wessel, E. K.; Wessels, P.; Westerweck, J.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; Whiting, B. F.; Whittle, C.; Wilken, D.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipfl, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Wofford, J.; Wong, K. W. K.; Worden, J.; Wright, J. L.; Wu, D. S.; Wysocki, D. M.; Xiao, S.; Yamamoto, H.; Yancey, C. C.; Yang, L.; Yap, M. J.; Yazback, M.; Yu, Hang; Yu, Haocun; Yvert, M.; Zadrozny, A.; Zanolin, M.; Zelenova, T.; Zendri, J. -P; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y. -H.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, S. J.; Zhu, X. J.; Zimmerman, A. B.; Zucker, M. E.; Zweizig, J.; Foley, R. J.; Coulter, D. A.; Drout, M. R.; Kasen, D.; Kilpatrick, C. D.; Madore, B. F.; Murguia-Berthier, A.; Pan, Y. -C.; Piro, A. L.; Prochaska, J. X.; Ramirez-Ruiz, E.; Rest, A.; Rojas-Bravo, C.; Shappee, B. J.; Siebert, M. R.; Simon, J. D.; Ulloas, N.; Annis, J.; Soares-Santos, M.; Brout, D.; Scolnic, D.; Diehl, H. T.; Frieman, J.; Berger, E.; Alexander, K. D.; Allam, S.; Balbinot, E.; Blanchard, P.; Butler, R. E.; Chornock, R.; Cook, E. R.; Cowpertwaite, P.; Drlica-Wagner, A.; Drout, M. R.; Durret, F.; Eftekhari, T.; Finley, D. A.; Fong, W.; Fryer, C. L.; Garcia-Bellido, J.; Gill, M. S. S.; Gruendl, R. A.; Hanna, C.; Hartley, W.; Herner, K.; Huterer, D.; Kasen, D.; Kessler, R.; Li, T. S.; Lin, H.; Lopes, P. A. A.; Lourenco, A. C. C.; Margutti, R.; Marriner, J.; Marshall, J. L.; Matheson, T.; Medina, G. E.; Metzger, B. D.; Munoz, R. R.; Muir, J.; Nicholl, M.; Nugent, P.; Palmese, A.; Paz-Chinchon, F.; Quataert, E.; Sako, M.; Sauseda, M.; Schlegel, D. J.; Secco, L. F.; Smith, N.; Sobreira, F.; Stebbins, A.; Villar, V. A.; Vivas, A. K.; Wester, W.; Williams, P. K. G.; Yanny, B.; Zenteno, A.; Abbott, T. M. C.; Abdalla, F. B.; Bechtol, K.; Benoit-Levy, A.; Bertin, E.; Bridle, S. L.; Brooks, D.; Buckley-Geer, E.; Burke, D. L.; Rosell, A. Carnero; Kind, M. Carrasco; Carretero, J.; Castander, F. J.; Cunha, C. E.; D'Andrea, C. B.; da Costa, L. N.; Davis, C.; DePoy, D. L.; Desai, S.; Dietrich, J. P.; Estrada, J.; Fernandez, E.; Flaugher, B.; Fosalba, P.; Gaztanaga, E.; Gerdes, D. W.; Giannantonio, T.; Goldstein, D. A.; Gruen, D.; Gutierrez, G.; Hartley, W. G.; Honscheid, K.; Jain, B.; James, D. J.; Jeltema, T.; Johnson, M. W. G.; Kent, S.; Krause, E.; Kron, R.; Kuehn, K.; Kuhlmann, S.; Kuropatkin, N.; Lahav, O.; Lima, M.; Maia, M. A. G.; March, M.; Miller, C. J.; Miquel, R.; Neilsen, E.; Nord, B.; Ogando, R. L. C.; Plazas, A. N.; Romer, A. K.; Roodman, A.; Rykoff, E. S.; Sanchez, E.; Scarpine, V.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, M.; Smith', R. C.; Suchyta, E.; Tarle, G.; Thomas, D.; Thomas, R. C.; Troxel, M. A.; Tucker, D. L.; Vikram, V.; Walker, A. R.; Weller, J.; Zhang, Y.; Haislip, J. B.; Kouprinov, V. V.; Reichart, D. E.; Tartaglia, L.; Sand, D. J.; Valenti, S.; Yang, S.; Arcavi, Iair; Hosseinzadeh, Griffin; Howell, D. Andrew; McCully, Curtis; Poznanski, Dovi; Vasylyev, Sergiy; Tanvir, N. R.; Levan, N. J.; Hjorth, J.; Cano, Z.; Copperwheat, C.; de Ugarte-Postigo, A.; Evans, P. A.; Fynbo, J. P. U.; Gonzalez-Fernandez, C.; Greiner, J.; Irwin, M.; Lyman, J.; Mandel, I.; McMahon, R.; Milvang-Jensen, B.; O'Brien, P.; Osborne, J. P.; Perley, D. A.; Pian, E.; Palazzi, E.; Rol, E.; Rosetti, S.; Rosswog, S.; Rowlinson, A.; Schulze, S.; Steeghs, D. T. H.; Thone, C. C.; Ulaczyk, K.; Watson, D.; Wiersema, K.; Lipunov, V. M.; Gorbovskoy, E.; Kornilov, V. G.; Tyurina, N.; Balanutsa, P.; Vlasenko, D.; Gorbunov, I.; Podesta, R.; Levato, H.; Saffe, C.; Buckley, D. A. H.; Budnev, N. M.; Gress, O.; Yurkov, V.; Rebolo, R.; Serra-Ricart, M.

    2017-01-01

    On 17 August 2017, the Advanced LIGO1 and Virgo2 detectors observed the gravitational-wave event GW170817—a strong signal from the merger of a binary neutron-star system3. Less than two seconds after the merger, a γ-ray burst (GRB 170817A) was detected within a region of the sky consistent with the

  18. Hubble peers inside a celestial geode

    Science.gov (United States)

    2004-08-01

    celestial geode hi-res Size hi-res: 148 Kb Credits: ESA/NASA, Yäel Nazé (University of Liège, Belgium) and You-Hua Chu (University of Illinois, Urbana, USA) Hubble peers inside a celestial geode In this unusual image, the NASA/ESA Hubble Space Telescope captures a rare view of the celestial equivalent of a geode - a gas cavity carved by the stellar wind and intense ultraviolet radiation from a young hot star. Real geodes are handball-sized, hollow rocks that start out as bubbles in volcanic or sedimentary rock. Only when these inconspicuous round rocks are split in half by a geologist, do we get a chance to appreciate the inside of the rock cavity that is lined with crystals. In the case of Hubble's 35 light-year diameter ‘celestial geode’ the transparency of its bubble-like cavity of interstellar gas and dust reveals the treasures of its interior. Low resolution version (JPG format) 148 Kb High resolution version (TIFF format) 1929 Kb Acknowledgment: This image was created with the help of the ESA/ESO/NASA Photoshop FITS Liberator. Real geodes are handball-sized, hollow rocks that start out as bubbles in volcanic or sedimentary rock. Only when these inconspicuous round rocks are split in half by a geologist, do we get a chance to appreciate the inside of the rock cavity that is lined with crystals. In the case of Hubble's 35 light-year diameter ‘celestial geode’ the transparency of its bubble-like cavity of interstellar gas and dust reveals the treasures of its interior. The object, called N44F, is being inflated by a torrent of fast-moving particles (what astronomers call a 'stellar wind') from an exceptionally hot star (the bright star just below the centre of the bubble) once buried inside a cold dense cloud. Compared with our Sun (which is losing mass through the so-called 'solar wind'), the central star in N44F is ejecting more than a 100 million times more mass per second and the hurricane of particles moves much faster at 7 million km per hour

  19. Hubble evolution of fireball in relativistic nuclear collisions

    International Nuclear Information System (INIS)

    Zgura, Sorin; Besliu, Calin; Jipa, Alexandru

    2004-01-01

    The final state of Au + Au collisions at √s = 130 A GeV and 200 A GeV at RHIC has been reconstructed within the framework of the Buda-Lund hydro model, by performing a simultaneous fit to preliminary BRAHMS, PHENIX, PHOBOS and STAR data on two-particle Bose-Einstein correlations and identified single particle spectra. The Hubble constant is determined for cosmology. From this reconstructed final state and the knowledge of the equation of state of hot and dense hadronic matter (e.g. from lattice QCD calculations) one can, in principle, reconstruct the initial state of the reaction by running the (relativistic) hydrodynamical equations backwards in time and determine if this initial state had been in the QGP phase or not. Here we report on such a reconstruction within the framework of the Buda-Lund hydro model. This model fits are compared to RHIC's experiment data on identified particle spectra, two-particle Bose-Einstein or HBT correlations. (authors)

  20. HST's 10th anniversary, ESA and Hubble : changing our vision

    Science.gov (United States)

    2000-04-01

    With the astronauts who took part in the most recent Servicing Mission (SM3A) in attendance, ESA is taking the opportunity to give a - first - complete overview of Europe's major contribution to the HST mission. It will also review the first ten years of operations and the outstanding results that have "changed our vision" of the cosmos. A new fully European outreach initiative - the "European Space Agency Hubble Information Centre" - will be presented and officially launched; it has been set up by ESA to provide information on Hubble from a European perspective. A public conference will take place in the afternoon to celebrate Hubble's achievements midway through its life. Ten years of outstanding performance Launched on 24 April 1990, Hubble is now midway through its operating life and it is considered one of the most successful space science missions ever. So far more than 10,000 scientific papers based on Hubble results have been published and European scientists have contributed to more than 25% of these. Not only has Hubble produced a rich harvest of scientific results, it has impressed the man in the street with its beautiful images of the sky. Thousands of headlines all over the world have given direct proof of the public's great interest in the mission - 'The deepest images ever', 'The sharpest view of the Universe', 'Measurements of the earliest galaxies' and many others, all reflecting Hubble's performance as a top-class observatory. The Servicing Missions that keep the observatory and its instruments in prime condition are one of the innovative ideas behind Hubble. Astronauts have serviced Hubble three times, and ESA astronauts have taken part in two of these missions. Claude Nicollier (CH) worked with American colleagues on the First Servicing Mission, when Hubble's initial optical problems were repaired. On the latest, Servicing Mission 3A, both Claude Nicollier and Jean-François Clervoy (F) were members of the crew. Over the next 10 years European

  1. Hubble Space Telescope: The Telescope, the Observations & the Servicing Mission

    Science.gov (United States)

    1999-11-01

    Today the HST Archives contain more than 260 000 astronomical observations. More than 13 000 astronomical objects have been observed by hundreds of different groups of scientists. Direct proof of the scientific significance of this project is the record-breaking number of papers published : over 2400 to date. Some of HST's most memorable achievements are: * the discovery of myriads of very faint galaxies in the early Universe, * unprecedented, accurate measurements of distances to the farthest galaxies, * significant improvement in the determination of the Hubble constant and thus the age of the Universe, * confirmation of the existence of blacks holes, * a far better understanding of the birth, life and death of stars, * a very detailed look at the secrets of the process by which planets are created. Europe and HST ESA's contribution to HST represents a nominal investment of 15%. ESA provided one of the two imaging instruments - the Faint Object Camera (FOC) - and the solar panels. It also has 15 scientists and computer staff working at the Space Telescope Science Institute in Baltimore (Maryland). In Europe the astronomical community receives observational assistance from the Space Telescope European Coordinating Facility (ST-ECF) located in Garching, Munich. In return for ESA's investment, European astronomers have access to approximately 15% of the observing time. In reality the actual observing time competitively allocated to European astronomers is closer to 20%. Looking back at almost ten years of operation, the head of ST-ECF, European HST Project Scientist Piero Benvenuti states: "Hubble has been of paramount importance to European astronomy, much more than the mere 20% of observing time. It has given the opportunity for European scientists to use a top class instrument that Europe alone would not be able to build and operate. In specific areas of research they have now, mainly due to HST, achieved international leadership." One of the major reasons for

  2. Automation of Hubble Space Telescope Mission Operations

    Science.gov (United States)

    Burley, Richard; Goulet, Gregory; Slater, Mark; Huey, William; Bassford, Lynn; Dunham, Larry

    2012-01-01

    On June 13, 2011, after more than 21 years, 115 thousand orbits, and nearly 1 million exposures taken, the operation of the Hubble Space Telescope successfully transitioned from 24x7x365 staffing to 815 staffing. This required the automation of routine mission operations including telemetry and forward link acquisition, data dumping and solid-state recorder management, stored command loading, and health and safety monitoring of both the observatory and the HST Ground System. These changes were driven by budget reductions, and required ground system and onboard spacecraft enhancements across the entire operations spectrum, from planning and scheduling systems to payload flight software. Changes in personnel and staffing were required in order to adapt to the new roles and responsibilities required in the new automated operations era. This paper will provide a high level overview of the obstacles to automating nominal HST mission operations, both technical and cultural, and how those obstacles were overcome.

  3. Hubble Space Telescope via the Web

    Science.gov (United States)

    O'Dea, Christopher P.

    The Space Telescope Science Institute (STScI) makes available a wide variety of information concerning the Hubble Space Telescope (HST) via the Space Telescope Electronic Information Service (STEIS). STEIS is accessible via anonymous ftp, gopher, WAIS, and WWW. The information on STEIS includes how to propose for time on the HST, the current status of HST, reports on the scientific instruments, the observing schedule, data reduction software, calibration files, and a set of publicly available images in JPEG, GIF and TIFF format. STEIS serves both the astronomical community as well as the larger Internet community. WWW is currently the most widely used interface to STEIS. Future developments on STEIS are expected to include larger amounts of hypertext, especially HST images and educational material of interest to students, educators, and the general public, and the ability to query proposal status.

  4. Hubble Space Telescope electrical power system

    Science.gov (United States)

    Whitt, Thomas H.; Bush, John R., Jr.

    1990-01-01

    The Hubble Space Telescope (HST) electrical power system (EPS) is supplying between 2000 and 2400 W of continuous power to the electrical loads. The major components of the EPS are the 5000-W back surface field reflector solar array, the six nickel-hydrogen (NiH2) 22-cell 88-Ah batteries, and the charge current controllers, which, in conjunction with the flight computer, control battery charging. The operation of the HST EPS and the results of the HST NiH2 six-battery test are discussed, and preliminary flight data are reviewed. The HST NiH2 six-battery test is a breadboard of the HST EPS on test at Marshall Space Flight Center.

  5. The Cardassian expansion revisited: constraints from updated Hubble parameter measurements and type Ia supernova data

    Science.gov (United States)

    Magaña, Juan; Amante, Mario H.; Garcia-Aspeitia, Miguel A.; Motta, V.

    2018-05-01

    Motivated by an updated compilation of observational Hubble data (OHD) that consist of 51 points in the redshift range of 0.07 Ia supernova (SN Ia) using the compressed and full joint-light-analysis (JLA) samples (Betoule et al.). We also perform a joint analysis using the combination OHD plus compressed JLA. Our results show that the OC and MPC models are in agreement with the standard cosmology and naturally introduce a cosmological-constant-like extra term in the canonical Friedmann equation with the capability of accelerating the Universe without dark energy.

  6. FORMATION CONSTANTS AND THERMODYNAMIC ...

    African Journals Online (AJOL)

    KEY WORDS: Metal complexes, Schiff base ligand, Formation constant, DFT calculation ... best values for the formation constants of the proposed equilibrium model by .... to its positive charge distribution and the ligand deformation geometry.

  7. Ion exchange equilibrium constants

    CERN Document Server

    Marcus, Y

    2013-01-01

    Ion Exchange Equilibrium Constants focuses on the test-compilation of equilibrium constants for ion exchange reactions. The book first underscores the scope of the compilation, equilibrium constants, symbols used, and arrangement of the table. The manuscript then presents the table of equilibrium constants, including polystyrene sulfonate cation exchanger, polyacrylate cation exchanger, polymethacrylate cation exchanger, polysterene phosphate cation exchanger, and zirconium phosphate cation exchanger. The text highlights zirconium oxide anion exchanger, zeolite type 13Y cation exchanger, and

  8. HUBBLE CAPTURES THE HEART OF STAR BIRTH

    Science.gov (United States)

    2002-01-01

    NASA Hubble Space Telescope's Wide Field and Planetary Camera 2 (WFPC2) has captured a flurry of star birth near the heart of the barred spiral galaxy NGC 1808. On the left are two images, one superimposed over the other. The black-and-white picture is a ground-based view of the entire galaxy. The color inset image, taken with the Hubble telescope's Wide Field and Planetary Camera 2 (WFPC2), provides a close-up view of the galaxy's center, the hotbed of vigorous star formation. The ground-based image shows that the galaxy has an unusual, warped shape. Most spiral galaxies are flat disks, but this one has curls of dust and gas at its outer spiral arms (upper right-hand corner and lower left-hand corner). This peculiar shape is evidence that NGC 1808 may have had a close interaction with another nearby galaxy, NGC 1792, which is not in the picture Such an interaction could have hurled gas towards the nucleus of NGC 1808, triggering the exceptionally high rate of star birth seen in the WFPC2 inset image. The WFPC2 inset picture is a composite of images using colored filters that isolate red and infrared light as well as light from glowing hydrogen. The red and infrared light (seen as yellow) highlight older stars, while hydrogen (seen as blue) reveals areas of star birth. Colors were assigned to this false-color image to emphasize the vigorous star formation taking place around the galaxy's center. NGC 1808 is called a barred spiral galaxy because of the straight lines of star formation on both sides of the bright nucleus. This star formation may have been triggered by the rotation of the bar, or by matter which is streaming along the bar towards the central region (and feeding the star burst). Filaments of dust are being ejected from the core into a faint halo of stars surrounding the galaxy's disk (towards the upper left corner) by massive stars that have exploded as supernovae in the star burst region. The portion of the galaxy seen in this 'wide-field' image is

  9. A Unique test for Hubble's new Solar Arrays

    Science.gov (United States)

    2000-10-01

    In mid-October, a team from the European Space Agency (ESA) and NASA will perform a difficult, never-before-done test on one of the Hubble Space Telescope's new solar array panels. Two of these panels, or arrays, will be installed by astronauts in November 2001, when the Space Shuttle Columbia visits Hubble on a routine service mission. The test will ensure that the new arrays are solid and vibration free before they are installed on orbit. The test will be conducted at ESA's European Space Research and Technology Center (ESTEC) in Noordwijk, The Netherlands. Because of the array's size, the facility's special features, and ESA's longstanding experience with Hubble's solar arrays, ESTEC is the only place in the world the test can be performed. This test is the latest chapter in a longstanding partnership between ESA and NASA on the Hubble Space Telescope. The Large Space Simulator at ESTEC, ESA's world-class test facility, features a huge vacuum chamber containing a bank of extremely bright lights that simulate the Sun's intensity - including sunrise and sunset. By exposing the solar wing to the light and temperature extremes of Hubble's orbit, engineers can verify how the new set of arrays will act in space. Hubble orbits the Earth once every 90 minutes. During each orbit, the telescope experiences 45 minutes of searing sunlight and 45 minutes of frigid darkness. This test will detect any tiny vibrations, or jitters, caused by these dramatic, repeated changes. Even a small amount of jitter can affect Hubble's sensitive instruments and interfere with observations. Hubble's first set of solar arrays experienced mild jitter and was replaced in 1993 with a much more stable pair. Since that time, advances in solar cell technology have led to the development of even more efficient arrays. In 2001, NASA will take advantage of these improvements, by fitting Hubble with a third-generation set of arrays. Though smaller, this new set generates more power than the previous

  10. An updated Type II supernova Hubble diagram

    Science.gov (United States)

    Gall, E. E. E.; Kotak, R.; Leibundgut, B.; Taubenberger, S.; Hillebrandt, W.; Kromer, M.; Burgett, W. S.; Chambers, K.; Flewelling, H.; Huber, M. E.; Kaiser, N.; Kudritzki, R. P.; Magnier, E. A.; Metcalfe, N.; Smith, K.; Tonry, J. L.; Wainscoat, R. J.; Waters, C.

    2018-03-01

    We present photometry and spectroscopy of nine Type II-P/L supernovae (SNe) with redshifts in the 0.045 ≲ z ≲ 0.335 range, with a view to re-examining their utility as distance indicators. Specifically, we apply the expanding photosphere method (EPM) and the standardized candle method (SCM) to each target, and find that both methods yield distances that are in reasonable agreement with each other. The current record-holder for the highest-redshift spectroscopically confirmed supernova (SN) II-P is PS1-13bni (z = 0.335-0.012+0.009), and illustrates the promise of Type II SNe as cosmological tools. We updated existing EPM and SCM Hubble diagrams by adding our sample to those previously published. Within the context of Type II SN distance measuring techniques, we investigated two related questions. First, we explored the possibility of utilising spectral lines other than the traditionally used Fe IIλ5169 to infer the photospheric velocity of SN ejecta. Using local well-observed objects, we derive an epoch-dependent relation between the strong Balmer line and Fe IIλ5169 velocities that is applicable 30 to 40 days post-explosion. Motivated in part by the continuum of key observables such as rise time and decline rates exhibited from II-P to II-L SNe, we assessed the possibility of using Hubble-flow Type II-L SNe as distance indicators. These yield similar distances as the Type II-P SNe. Although these initial results are encouraging, a significantly larger sample of SNe II-L would be required to draw definitive conclusions. Tables A.1, A.3, A.5, A.7, A.9, A.11, A.13, A.15 and A.17 are also available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/611/A25

  11. The Hubble Legacy Archive ACS grism data

    Science.gov (United States)

    Kümmel, M.; Rosati, P.; Fosbury, R.; Haase, J.; Hook, R. N.; Kuntschner, H.; Lombardi, M.; Micol, A.; Nilsson, K. K.; Stoehr, F.; Walsh, J. R.

    2011-06-01

    A public release of slitless spectra, obtained with ACS/WFC and the G800L grism, is presented. Spectra were automatically extracted in a uniform way from 153 archival fields (or "associations") distributed across the two Galactic caps, covering all observations to 2008. The ACS G800L grism provides a wavelength range of 0.55-1.00 μm, with a dispersion of 40 Å/pixel and a resolution of ~80 Å for point-like sources. The ACS G800L images and matched direct images were reduced with an automatic pipeline that handles all steps from archive retrieval, alignment and astrometric calibration, direct image combination, catalogue generation, spectral extraction and collection of metadata. The large number of extracted spectra (73,581) demanded automatic methods for quality control and an automated classification algorithm was trained on the visual inspection of several thousand spectra. The final sample of quality controlled spectra includes 47 919 datasets (65% of the total number of extracted spectra) for 32 149 unique objects, with a median iAB-band magnitude of 23.7, reaching 26.5 AB for the faintest objects. Each released dataset contains science-ready 1D and 2D spectra, as well as multi-band image cutouts of corresponding sources and a useful preview page summarising the direct and slitless data, astrometric and photometric parameters. This release is part of the continuing effort to enhance the content of the Hubble Legacy Archive (HLA) with highly processed data products which significantly facilitate the scientific exploitation of the Hubble data. In order to characterize the slitless spectra, emission-line flux and equivalent width sensitivity of the ACS data were compared with public ground-based spectra in the GOODS-South field. An example list of emission line galaxies with two or more identified lines is also included, covering the redshift range 0.2 - 4.6. Almost all redshift determinations outside of the GOODS fields are new. The scope of science projects

  12. Hubble induced mass after inflation in spectator field models

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, Tomohiro [Stanford Institute for Theoretical Physics and Department of Physics, Stanford University, Stanford, CA 94306 (United States); Harigaya, Keisuke, E-mail: tomofuji@stanford.edu, E-mail: keisukeh@icrr.u-tokyo.ac.jp [Department of Physics, University of California, Berkeley, CA 94720 (United States)

    2016-12-01

    Spectator field models such as the curvaton scenario and the modulated reheating are attractive scenarios for the generation of the cosmic curvature perturbation, as the constraints on inflation models are relaxed. In this paper, we discuss the effect of Hubble induced masses on the dynamics of spectator fields after inflation. We pay particular attention to the Hubble induced mass by the kinetic energy of an oscillating inflaton, which is generically unsuppressed but often overlooked. In the curvaton scenario, the Hubble induced mass relaxes the constraint on the property of the inflaton and the curvaton, such as the reheating temperature and the inflation scale. We comment on the implication of our discussion for baryogenesis in the curvaton scenario. In the modulated reheating, the predictions of models e.g. the non-gaussianity can be considerably altered. Furthermore, we propose a new model of the modulated reheating utilizing the Hubble induced mass which realizes a wide range of the local non-gaussianity parameter.

  13. Hubble Space Telescope: Should NASA Proceed with a Servicing Mission?

    National Research Council Canada - National Science Library

    Morgan, Daniel

    2006-01-01

    The National Aeronautics and Space Administration (NASA) estimates that without a servicing mission to replace key components, the Hubble Space Telescope will cease scientific operations in 2008 instead of 2010...

  14. Hubble Space Telescope, Faint Object Camera

    Science.gov (United States)

    1981-01-01

    This drawing illustrates Hubble Space Telescope's (HST's), Faint Object Camera (FOC). The FOC reflects light down one of two optical pathways. The light enters a detector after passing through filters or through devices that can block out light from bright objects. Light from bright objects is blocked out to enable the FOC to see background images. The detector intensifies the image, then records it much like a television camera. For faint objects, images can be built up over long exposure times. The total image is translated into digital data, transmitted to Earth, and then reconstructed. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Cornecticut, developed the optical system and guidance sensors.

  15. Hubble's View of Little Blue Dots

    Science.gov (United States)

    Kohler, Susanna

    2018-02-01

    The recent discovery of a new type of tiny, star-forming galaxy is the latest in a zoo of detections shedding light on our early universe. What can we learn from the unique little blue dots found in archival Hubble data?Peas, Berries, and DotsGreen pea galaxies identified by citizen scientists with Galaxy Zoo. [Richard Nowell Carolin Cardamone]As telescope capabilities improve and we develop increasingly deeper large-scale surveys of our universe, we continue to learn more about small, faraway galaxies. In recent years, increasing sensitivity first enabled the detection of green peas luminous, compact, low-mass (10 billion solar masses; compare this to the Milky Ways 1 trillion solar masses!) galaxies with high rates of star formation.Not long thereafter, we discovered galaxies that form stars similarly rapidly, but are even smaller only 330 million solar masses, spanning less than 3,000 light-years in size. These tiny powerhouses were termed blueberries for their distinctive color.Now, scientists Debra and Bruce Elmegreen (of Vassar College and IBM Research Division, respectively) report the discovery of galaxies that have even higher star formation rates and even lower masses: little blue dots.Exploring Tiny Star FactoriesThe Elmegreens discovered these unique galaxies by exploring archival Hubble data. The Hubble Frontier Fields data consist of deep images of six distant galaxy clusters and the parallel fields next to them. It was in the archival data for two Frontier Field Parallels, those for clusters Abell 2744 and MAS J0416.1-2403, that the authors noticed several galaxies that stand out as tiny, bright, blue objects that are nearly point sources.Top: a few examples of the little blue dots recently identified in two Hubble Frontier Field Parallels. Bottom: stacked images for three different groups of little blue dots. [Elmegreen Elmegreen 2017]The authors performed a search through the two Frontier Field Parallels, discovering a total of 55 little blue dots

  16. UV/Visible Telescope with Hubble Disposal

    Science.gov (United States)

    Benford, Dominic J.

    2013-01-01

    Submission Overview: Our primary objective is to convey a sense of the significant advances possible in astrophysics investigations for major Cosmic Origins COR program goals with a 2.4m telescope asset outfitted with one or more advanced UV visible instruments. Several compelling science objectives were identified based on community meetings these science objectives drove the conceptual design of instruments studied by the COR Program Office during July September 2012. This RFI submission encapsulates the results of that study, and suggests that a more detailed look into the instrument suite should be conducted to prove viability and affordability to support the demonstrated scientific value. This study was conducted in the context of a larger effort to consider the options available for a mission to dispose safely of Hubble hence, the overall architecture considered for the mission we studied for the 2.4m telescope asset included resource sharing. This mitigates combined cost and risk and provides naturally for a continued US leadership role in astrophysics with an advanced, general-purpose UV visible space telescope.

  17. Replacement vs. Renovation: The Reincarnation of Hubble Middle School

    Science.gov (United States)

    Ogurek, Douglas J.

    2010-01-01

    At the original Hubble Middle School, neither the views (a congested Roosevelt Road and glimpses of downtown Wheaton) nor the century-old facility that offered them was very inspiring. Built at the start of the 20th century, the 250,000-square-foot building was converted from Wheaton Central High School to Hubble Middle School in the early 1980s.…

  18. Dynamical 3-Space: Supernovae and the Hubble Expansion — the Older Universe without Dark Energy

    Directory of Open Access Journals (Sweden)

    Cahill R. T.

    2007-10-01

    Full Text Available We apply the new dynamics of 3-space to cosmology by deriving a Hubble expansion solution. This dynamics involves two constants; G and — the fine structure constant. This solution gives an excellent parameter-free fit to the recent supernova and gamma- ray burst redshift data without the need for “dark energy” or “dark matter”. The data and theory together imply an older age for the universe of some 14.7Gyrs. The 3-space dynamics has explained the bore hole anomaly, spiral galaxy flat rotation speeds, the masses of black holes in spherical galaxies, gravitational light bending and lensing, all without invoking “dark matter” or “dark energy”. These developments imply that a new understanding of the universe is now available.

  19. The Fine Structure Constant

    Indian Academy of Sciences (India)

    IAS Admin

    The article discusses the importance of the fine structure constant in quantum mechanics, along with the brief history of how it emerged. Al- though Sommerfelds idea of elliptical orbits has been replaced by wave mechanics, the fine struc- ture constant he introduced has remained as an important parameter in the field of ...

  20. The Speed of Light and the Hubble parameter: The Mass-Boom Effect

    International Nuclear Information System (INIS)

    Alfonso-Faus, Antonio

    2008-01-01

    We prove here that Newton's universal gravitation and momentum conservation laws together reproduce Weinberg's relation. It is shown that the Hubble parameter H must be built in this relation, or equivalently the age of the Universe t. Using a wave-to-particle interaction technique we then prove that the speed of light c decreases with cosmological time, and that c is proportional to the Hubble parameter H. We see the expansion of the Universe as a local effect due to the LAB value of the speed of light co taken as constant. We present a generalized red shift law and find a predicted acceleration for photons that agrees well with the result from Pioneer 10/11 anomalous acceleration. We finally present a cosmological model coherent with the above results that we call the Mass-Boom. It has a linear increase of mass m with time as a result of the speed of light c linear decrease with time, and the conservation of momentum mc. We obtain the baryonic mass parameter equal to the curvature parameter, Ω m Ω k , so that the model is of the type of the Einstein static, closed, finite, spherical, unlimited, with zero cosmological constant. This model is the cosmological view as seen by photons, neutrinos, tachyons etc. in contrast with the local view, the LAB reference. Neither dark matter nor dark energy is required by this model. With an initial constant speed of light during a short time we get inflation (an exponential expansion). This converts, during the inflation time, the Planck's fluctuation length of 10 -33 cm to the present size of the Universe (about 10 28 cm, constant from then on). Thereafter the Mass-Boom takes care to bring the initial values of the Universe (about 10 15 gr) to the value at the present time of about 10 55 gr

  1. Hubble Space Telescope: a Vision to 2020 and Beyond: The Hubble Source Catalog

    Science.gov (United States)

    Strolger, Louis-Gregory

    2016-01-01

    The Hubble Source Catalog (HSC) is an initiative centered on what science would be enabled by a master catalog of all the sources HST has imaged over its lifetime. The first version of this catalog was released in early 2015, and included approximately 30 million sources from archived direct imaging with WFPC2, ACS (through 2011), and WFC3 (to 2014). Version 2, scheduled for release in early 2016, will feed off the Hubble Legacy Archive DR9 release, updating the ACS sources with more detections, and more direct imaging, through to mid-2015. This talk will overview the properties and goals of the HSC in terms of its source detection, object resolution, confusion limits, and overall astrometric and photometric precision. I will also discuss the connections to other MAST activities (e.g., the Discovery Portal interface), to STScI and user products (e.g., the Spectroscopic Catalog and High-Level Science Products), and to community resources (e.g., Pan-STARRS, SDSS, and eventually GAIA). The HSC successfully amalgamates the diverse observations with HST, and despite the limitations in uniformity on the sky, will be an important reference for JWST, LSST, and other future telescopes.

  2. Hubble Space Telescope Image of Omega Nebula

    Science.gov (United States)

    2002-01-01

    This sturning image, taken by the newly installed Advanced Camera for Surveys (ACS) aboard the Hubble Space Telescope (HST), is an image of the center of the Omega Nebula. It is a hotbed of newly born stars wrapped in colorful blankets of glowing gas and cradled in an enormous cold, dark hydrogen cloud. The region of nebula shown in this photograph is about 3,500 times wider than our solar system. The nebula, also called M17 and the Swan Nebula, resides 5,500 light-years away in the constellation Sagittarius. The Swan Nebula is illuminated by ultraviolet radiation from young, massive stars, located just beyond the upper-right corner of the image. The powerful radiation from these stars evaporates and erodes the dense cloud of cold gas within which the stars formed. The blistered walls of the hollow cloud shine primarily in the blue, green, and red light emitted by excited atoms of hydrogen, nitrogen, oxygen, and sulfur. Particularly striking is the rose-like feature, seen to the right of center, which glows in the red light emitted by hydrogen and sulfur. As the infant stars evaporate the surrounding cloud, they expose dense pockets of gas that may contain developing stars. One isolated pocket is seen at the center of the brightest region of the nebula. Other dense pockets of gas have formed the remarkable feature jutting inward from the left edge of the image. The color image is constructed from four separate images taken in these filters: blue, near infrared, hydrogen alpha, and doubly ionized oxygen. Credit: NASA, H. Ford (JHU), G. Illingworth (USCS/LO), M. Clampin (STScI), G. Hartig (STScI), the ACS Science Team, and ESA.

  3. Cosmological constants and variations

    International Nuclear Information System (INIS)

    Barrow, John D

    2005-01-01

    We review properties of theories for the variation of the gravitation and fine structure 'constants'. We highlight some general features of the cosmological models that exist in these theories with reference to recent quasar data that is consistent with time-variation in the fine structure 'constant' since a redshift of 3.5. The behaviour of a simple class of varying alpha cosmologies is outlined in the light of all the observational constraints. We also discuss some of the consequences of varying 'constants' for oscillating universes and show by means of exact solutions that they appear to evolve monotonically in time even though the scale factor of the universe oscillates

  4. Testing backreaction effects with observational Hubble parameter data

    Science.gov (United States)

    Cao, Shu-Lei; Teng, Huan-Yu; Wan, Hao-Yi; Yu, Hao-Ran; Zhang, Tong-Jie

    2018-02-01

    The spatially averaged inhomogeneous Universe includes a kinematical backreaction term Q_{D} that is relate to the averaged spatial Ricci scalar _{D} in the framework of general relativity. Under the assumption that Q_{D} and _{D} obey the scaling laws of the volume scale factor a_{D}, a direct coupling between them with a scaling index n is remarkable. In order to explore the generic properties of a backreaction model for explaining the accelerated expansion of the Universe, we exploit two metrics to describe the late time Universe. Since the standard FLRW metric cannot precisely describe the late time Universe on small scales, the template metric with an evolving curvature parameter κ _{D}(t) is employed. However, we doubt the validity of the prescription for κ _{D}, which motivates us apply observational Hubble parameter data (OHD) to constrain parameters in dust cosmology. First, for FLRW metric, by getting best-fit constraints of Ω^{D_0}_m = 0.25^{+0.03}_{-0.03}, n = 0.02^{+0.69}_{-0.66}, and H_{D_0} = 70.54^{+4.24}_{-3.97} km s^{-1 Mpc^{-1}}, the evolutions of parameters are explored. Second, in template metric context, by marginalizing over H_{D_0} as a prior of uniform distribution, we obtain the best-fit values of n=-1.22^{+0.68}_{-0.41} and Ωm^{D0}=0.12^{+0.04}_{-0.02}. Moreover, we utilize three different Gaussian priors of H_{D_0}, which result in different best-fits of n, but almost the same best-fit value of Ωm^{D0}˜ 0.12. Also, the absolute constraints without marginalization of parameter are obtained: n=-1.1^{+0.58}_{-0.50} and Ωm^{D0}=0.13± 0.03. With these constraints, the evolutions of the effective deceleration parameter q^{D} indicate that the backreaction can account for the accelerated expansion of the Universe without involving extra dark energy component in the scaling solution context. Nevertheless, the results also verify that the prescription of κ _{D} is insufficient and should be improved.

  5. Testing backreaction effects with observational Hubble parameter data

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Shu-Lei; Teng, Huan-Yu [Beijing Normal University, Department of Astronomy, Beijing (China); Wan, Hao-Yi [Beijing Normal University, Department of Astronomy, Beijing (China); National Astronomical Observatories, Chinese Academy of Sciences, Beijing (China); Yu, Hao-Ran [Shanghai Jiao Tong University, Tsung-Dao Lee Institute, Shanghai (China); Zhang, Tong-Jie [Dezhou University, Dezhou (China); Beijing Normal University, Department of Astronomy, Beijing (China)

    2018-02-15

    The spatially averaged inhomogeneous Universe includes a kinematical backreaction term Q{sub D} that is relate to the averaged spatial Ricci scalar left angle R right angle {sub D} in the framework of general relativity. Under the assumption that Q{sub D} and left angle R right angle {sub D} obey the scaling laws of the volume scale factor a{sub D}, a direct coupling between them with a scaling index n is remarkable. In order to explore the generic properties of a backreaction model for explaining the accelerated expansion of the Universe, we exploit two metrics to describe the late time Universe. Since the standard FLRW metric cannot precisely describe the late time Universe on small scales, the template metric with an evolving curvature parameter κ{sub D}(t) is employed. However, we doubt the validity of the prescription for κ{sub D}, which motivates us apply observational Hubble parameter data (OHD) to constrain parameters in dust cosmology. First, for FLRW metric, by getting best-fit constraints of Ω{sup D{sub 0m}} = 0.25{sup +0.03}{sub -0.03}, n = 0.02{sup +0.69}{sub -0.66}, and H{sub D{sub 0}} = 70.544{sup +4.24}{sub -3.97} km s{sup -1} Mpc{sup -1}, the evolutions of parameters are explored. Second, in template metric context, by marginalizing over H{sub D{sub 0}} as a prior of uniform distribution, we obtain the best-fit values of n = -1.22{sup +0.68}{sub -0.41} and Ω{sub m}{sup D{sub 0}} = 0.12{sup +0.04}{sub -0.02}. Moreover, we utilize three different Gaussian priors of H{sub D{sub 0}}, which result in different best-fits of n, but almost the same best-fit value of Ω{sub m}{sup D{sub 0}} ∝ 0.12. Also, the absolute constraints without marginalization of parameter are obtained: n = -1.1{sup +0.58}{sub -0.50} and Ω{sub m}{sup D{sub 0}} = 0.13 ± 0.03. With these constraints, the evolutions of the effective deceleration parameter q{sup D} indicate that the backreaction can account for the accelerated expansion of the Universe without involving extra

  6. PACMan to Help Sort Hubble Proposals

    Science.gov (United States)

    Kohler, Susanna

    2017-04-01

    Every year, astronomers submit over a thousand proposals requesting time on the Hubble Space Telescope (HST). Currently, humans must sort through each of these proposals by hand before sending them off for review. Could this burden be shifted to computers?A Problem of VolumeAstronomer Molly Peeples gathered stats on the HST submissions sent in last week for the upcoming HST Cycle 25 (the deadline was Friday night), relative to previous years. This years proposal round broke the record, with over 1200 proposals submitted in total for Cycle 25. [Molly Peeples]Each proposal cycle for HST time attracts on the order of 1100 proposals accounting for far more HST time than is available. The proposals are therefore carefully reviewed by around 150 international members of the astronomy community during a six-month process to select those with the highest scientific merit.Ideally, each proposal will be read by reviewers that have scientific expertise relevant to the proposal topic: if a proposal requests HST time to study star formation, for instance, then the reviewers assigned to it should have research expertise in star formation.How does this matching of proposals to reviewers occur? The current method relies on self-reported categorization of the submitted proposals. This is unreliable, however; proposals are often mis-categorized by submitters due to misunderstanding or ambiguous cases.As a result, the Science Policies Group at the Space Telescope Science Institute (STScI) which oversees the review of HST proposals must go through each of the proposals by hand and re-categorize them. The proposals are then matched to reviewers with self-declared expertise in the same category.With the number of HST proposals on the rise and the expectation that the upcoming James Webb Space Telescope (JWST) will elicit even more proposals for time than Hubble scientists at STScI and NASA are now asking: could the human hours necessary for this task be spared? Could a computer program

  7. Cosmic Collisions The Hubble Atlas of Merging Galaxies

    CERN Document Server

    Christensen, Lars Lindberg; Martin, Davide

    2009-01-01

    Lars Lindberg Christensen, Raquel Yumi Shida & Davide De Martin Cosmic Collisions: The Hubble Atlas of Merging Galaxies Like majestic ships in the grandest night, galaxies can slip ever closer until their mutual gravitational interaction begins to mold them into intricate figures that are finally, and irreversibly, woven together. It is an immense cosmic dance, choreographed by gravity. Cosmic Collisions contains a hundred new, many thus far unpublished, images of colliding galaxies from the NASA/ESA Hubble Space Telescope. It is believed that many present-day galaxies, including the Milky Way, were assembled from such a coalescence of smaller galaxies, occurring over billions of years. Triggered by the colossal and violent interaction between the galaxies, stars form from large clouds of gas in firework bursts, creating brilliant blue star clusters. The importance of these cosmic encounters reaches far beyond the stunning Hubble images. They may, in fact, be among the most important processes that shape ...

  8. Reexploration of interacting holographic dark energy model. Cases of interaction term excluding the Hubble parameter

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hai-Li; Zhang, Jing-Fei; Feng, Lu [Northeastern University, Department of Physics, College of Sciences, Shenyang (China); Zhang, Xin [Northeastern University, Department of Physics, College of Sciences, Shenyang (China); Peking University, Center for High Energy Physics, Beijing (China)

    2017-12-15

    In this paper, we make a deep analysis for the five typical interacting holographic dark energy models with the interaction terms Q = 3βH{sub 0}ρ{sub de}, Q = 3βH{sub 0}ρ{sub c}, Q = 3βH{sub 0}(ρ{sub de} + ρ{sub c}), Q = 3βH{sub 0}√(ρ{sub de}ρ{sub c}), and Q = 3βH{sub 0}(ρ{sub de}ρ{sub c})/(ρ{sub de}+ρ{sub c}), respectively. We obtain observational constraints on these models by using the type Ia supernova data (the Joint Light-Curve Analysis sample), the cosmic microwave background data (Planck 2015 distance priors), the baryon acoustic oscillations data, and the direct measurement of the Hubble constant. We find that the values of χ{sub min}{sup 2} for all the five models are almost equal (around 699), indicating that the current observational data equally favor these IHDE models. In addition, a comparison with the cases of an interaction term involving the Hubble parameter H is also made. (orig.)

  9. The Turning Point for the Recent Acceleration of the Universe with a Cosmological Constant

    Directory of Open Access Journals (Sweden)

    Zhang T. X.

    2012-04-01

    Full Text Available The turning point and acceleration expansion of the universe are investigated according to the standard cosmological theory with a non-zero cosmological constant. Choosing the Hubble constant H 0 , the radius of the present universe R 0 , and the density parameter in matter Ω M , 0 as three independent parameters, we have analytically examined the other properties of the universe such as the density parameter in dark energy, the cosmologi- cal constant, the mass of the universe, the turning point redshift, the age of the present universe, and the time-dependent radius, expansion rate, velocity, and acceleration pa- rameter of the universe. It is shown that the turning point redshift is only dependent of the density parameter in matter, not explicitly on the Hubble constant and the radius of the present universe. The universe turned its expansion from past deceleration to recent acceleration at the moment when its size was about 3 / 5 of the present size if the density parameter in matter is about 0.3 (or the turning point redshift is 0.67. The expansion rate is very large in the early period and decreases with time to approach the Hubble constant at the present time. The expansion velocity exceeds the light speed in the early period. It decreases to the minimum at the turning point and then increases with time. The minimum and present expansion velocities are determined with the independent parameters. The solution of time-dependent radius shows the universe expands all the time. The universe with a larger present radius, smaller Hubble constant, and / or smaller density parameter in matter is elder. The universe with smaller density parameter in matter accelerates recently in a larger rate but less than unity.

  10. Radiographic constant exposure technique

    DEFF Research Database (Denmark)

    Domanus, Joseph Czeslaw

    1985-01-01

    The constant exposure technique has been applied to assess various industrial radiographic systems. Different X-ray films and radiographic papers of two producers were compared. Special attention was given to fast film and paper used with fluorometallic screens. Radiographic image quality...... was tested by the use of ISO wire IQI's and ASTM penetrameters used on Al and Fe test plates. Relative speed and reduction of kilovoltage obtained with the constant exposure technique were calculated. The advantages of fast radiographic systems are pointed out...

  11. On the cosmical constant

    International Nuclear Information System (INIS)

    Chandra, R.

    1977-01-01

    On the grounds of the two correspondence limits, the Newtonian limit and the special theory limit of Einstein field equations, a modification of the cosmical constant has been proposed which gives realistic results in the case of a homogeneous universe. Also, according to this modification an explanation for the negative pressure in the steady-state model of the universe has been given. (author)

  12. Cosmological constant problem

    International Nuclear Information System (INIS)

    Weinberg, S.

    1989-01-01

    Cosmological constant problem is discussed. History of the problem is briefly considered. Five different approaches to solution of the problem are described: supersymmetry, supergravity, superstring; anthropic approach; mechamism of lagrangian alignment; modification of gravitation theory and quantum cosmology. It is noted that approach, based on quantum cosmology is the most promising one

  13. The Yamabe constant

    International Nuclear Information System (INIS)

    O Murchadha, N.

    1991-01-01

    The set of riemannian three-metrics with positive Yamabe constant defines the space of independent data for the gravitational field. The boundary of this set is investigated, and it is shown that metrics close to the boundary satisfy the positive-energy theorem. (Author) 18 refs

  14. The Hubble law and the spiral structures of galaxies from equations of motion in general relativity

    International Nuclear Information System (INIS)

    Sachs, M.

    1975-01-01

    Fully exploiting the Lie group that characterizes the underlying symmetry of general relativity theory, Einstein's tensor formalism factorizes, yielding a generalized (16-component) quaternion field formalism. The associated generalized geodesic equation, taken as the equation of motion of a star, predicts the Hubble law from one approximation for the generally covariant equations of motion, and the spiral structure of galaxies from another approximation. These results depend on the imposition of appropriate boundary conditions. The Hubble law follows when the boundary conditions derive from the oscillating model cosmology, and not from the other cosmological models. The spiral structures of the galaxies follow from the same boundary conditions, but with a different time scale than for the whole universe. The solutions that imply the spiral motion are Fresnel integrals. These predict the star's motion to be along the 'Cornu Spiral'. The part of this spiral in the first quadrant is the imploding phase of the galaxy, corresponding to a motion with continually decreasing radii, approaching the galactic center as time increases. The part of the Cornu Spiral' in the third quadrant is the exploding phase, corresponding to continually increasing radii, as the star moves out from the hub. The spatial origin in the coordinate system of this curve is the inflection point, where the explosion changes to implosion. The two- (or many-) armed spiral galaxies are explained here in terms of two (or many) distinct explosions occurring at displaced times, in the domain of the rotating, planar galaxy. (author)

  15. SPECTROSCOPIC CONFIRMATION OF FAINT LYMAN BREAK GALAXIES NEAR REDSHIFT FIVE IN THE HUBBLE ULTRA DEEP FIELD

    International Nuclear Information System (INIS)

    Rhoads, James E.; Malhotra, Sangeeta; Cohen, Seth; Grogin, Norman; Hathi, Nimish; Ryan, Russell; Straughn, Amber; Windhorst, Rogier A.; Pirzkal, Norbert; Xu Chun; Koekemoer, Anton; Panagia, Nino; Dickinson, Mark; Ferreras, Ignacio; Gronwall, Caryl; Kuemmel, Martin; Walsh, Jeremy; Meurer, Gerhardt; Pasquali, Anna; Yan, H.-J.

    2009-01-01

    We present the faintest spectroscopically confirmed sample of z ∼ 5 Lyman break galaxies (LBGs) to date. The sample is based on slitless grism spectra of the Hubble Ultra Deep Field region from the Grism ACS Program for Extragalactic Science (GRAPES) and Probing Evolution and Reionization Spectroscopically (PEARS) projects, using the G800L grism on the Hubble Space Telescope Advanced Camera for Surveys. We report here confirmations of 39 galaxies, preselected as candidate LBGs using photometric selection criteria. We compare a 'traditional' V-dropout selection, based on the work of Giavalisco et al., to a more liberal one (with V - i > 0.9), and find that the traditional criteria are about 64% complete and 81% reliable. We also study the Lyα emission properties of our sample. We find that Lyα emission is detected in ∼1/4 of the sample, and that the liberal V-dropout color selection includes ∼55% of previously published line-selected Lyα sources. Finally, we examine our stacked two-dimensional spectra. We demonstrate that strong, spatially extended (∼1'') Lyα emission is not a generic property of these LBGs, but that a modest extension of the Lyα photosphere (compared to the starlight) may be present in those galaxies with prominent Lyα emission.

  16. Study on Inertia as a Gravity Induced Property of Mass, in an Infinite Hubble Expanding Universe

    Directory of Open Access Journals (Sweden)

    Jeroen van Engelshoven

    2013-01-01

    Full Text Available Mass is experienced to have two intrinsic properties: inertia (resistance to acceleration and gravity (attraction to other masses. In this paper we evaluate the gravitational effect of all masses of the universe on an accelerated mass, starting from linearized general relativity. The gravitational interaction of all masses in a finite static universe model is shown to create a finite resistance to acceleration, which is inertia. Then, we propose a generalization of the linearized theory and evaluate the Hubble expanding universe. It is shown that the gravitational impact of an infinite expanding universe creates finite inertia, according to . The Friedmann critical mass density is found to be valid. The Mach principle is made explicit. The value and sign of the gravitational constant G are found to be of no consequence on an astronomical scale.

  17. Constraining the evolution of the Hubble Parameter using cosmic chronometers

    Science.gov (United States)

    Dickinson, Hugh

    2017-08-01

    Substantial investment is being made in space- and ground-based missions with the goal of revealing the nature of the observed cosmic acceleration. This is one of the most important unsolved problems in cosmology today.We propose here to constrain the evolution of the Hubble parameter [H(z)] between 1.3 fundamental nature of dark energy.

  18. Hubble Space Telescope nickel hydrogen battery system briefing

    Science.gov (United States)

    Nawrocki, David; Saldana, David; Rao, Gopal

    1993-01-01

    The topics covered are presented in viewgraph form and include the following: the Hubble Space Telescope (HST) Mission; system constraints; battery specification; battery module; simplified block diagram; cell design summary; present status; voltage decay; system depth of discharge; pressure since launch; system capacity; eclipse time vs. trickle charge; capacity test objectives; and capacity during tests.

  19. A Guided Inquiry on Hubble Plots and the Big Bang

    Science.gov (United States)

    Forringer, Ted

    2014-01-01

    In our science for non-science majors course "21st Century Physics," we investigate modern "Hubble plots" (plots of velocity versus distance for deep space objects) in order to discuss the Big Bang, dark matter, and dark energy. There are two potential challenges that our students face when encountering these topics for the…

  20. Hubble's Law Implies Benford's Law for Distances to Galaxies ...

    Indian Academy of Sciences (India)

    in both time and space, predicts that conformity to Benford's law will improve as more data on distances to galaxies becomes available. Con- versely, with the logical derivation of this law presented here, the recent empirical observations may beviewed as independent evidence of the validity of Hubble's law. Key words.

  1. Production in constant evolution

    International Nuclear Information System (INIS)

    Lozano, T.

    2009-01-01

    The Cofrentes Nuclear Power Plant now has 25 years of operation behind it: a quarter century adding value and demonstrating the reasons why it is one of the most important energy producing facilities in the Spanish power market. Particularly noteworthy is the enterprising spirit of the plant, which has strived to continuously improve with the large number of modernization projects that it has undertaken over the past 25 years. The plant has constantly evolved thanks to the amount of investments made to improve safety and reliability and the perseverance to stay technologically up to date. Efficiency, training and teamwork have been key to the success of the plant over these 25 years of constant change and progress. (Author)

  2. Planck intermediate results. XXIV. Constraints on variation of fundamental constants

    CERN Document Server

    Ade, P A R; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A.J.; Barreiro, R.B.; Battaner, E.; Benabed, K.; Benoit-Levy, A.; Bernard, J.P.; Bersanelli, M.; Bielewicz, P.; Bond, J.R.; Borrill, J.; Bouchet, F.R.; Burigana, C.; Butler, R.C.; Calabrese, E.; Chamballu, A.; Chiang, H.C.; Christensen, P.R.; Clements, D.L.; Colombo, L.P.L.; Couchot, F.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R.D.; Davis, R.J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Diego, J.M.; Dole, H.; Dore, O.; Dupac, X.; Ensslin, T.A.; Eriksen, H.K.; Fabre, O.; Finelli, F.; Forni, O.; Frailis, M.; Franceschi, E.; Galeotta, S.; Galli, S.; Ganga, K.; Giard, M.; Gonzalez-Nuevo, J.; Gorski, K.M.; Gregorio, A.; Gruppuso, A.; Hansen, F.K.; Hanson, D.; Harrison, D.L.; Henrot-Versille, S.; Hernandez-Monteagudo, C.; Herranz, D.; Hildebrandt, S.R.; Hivon, E.; Hobson, M.; Holmes, W.A.; Hornstrup, A.; Hovest, W.; Huffenberger, K.M.; Jaffe, A.H.; Jones, W.C.; Keihanen, E.; Keskitalo, R.; Kneissl, R.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lamarre, J.M.; Lasenby, A.; Lawrence, C.R.; Leonardi, R.; Lesgourgues, J.; Liguori, M.; Lilje, P.B.; Linden-Vornle, M.; Lopez-Caniego, M.; Lubin, P.M.; Macias-Perez, J.F.; Mandolesi, N.; Maris, M.; Martin, P.G.; Martinez-Gonzalez, E.; Masi, S.; Matarrese, S.; Mazzotta, P.; Meinhold, P.R.; Melchiorri, A.; Mendes, L.; Menegoni, E.; Mennella, A.; Migliaccio, M.; Miville-Deschenes, M.A.; Moneti, A.; Montier, L.; Morgante, G.; Moss, A.; Munshi, D.; Murphy, J.A.; Naselsky, P.; Nati, F.; Natoli, P.; Norgaard-Nielsen, H.U.; Noviello, F.; Novikov, D.; Novikov, I.; Oxborrow, C.A.; Pagano, L.; Pajot, F.; Paoletti, D.; Pasian, F.; Patanchon, G.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Pratt, G.W.; Prunet, S.; Rachen, J.P.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Ristorcelli, I.; Rocha, G.; Roudier, G.; Rusholme, B.; Sandri, M.; Savini, G.; Scott, D.; Spencer, L.D.; Stolyarov, V.; Sudiwala, R.; Sutton, D.; Suur-Uski, A.S.; Sygnet, J.F.; Tauber, J.A.; Tavagnacco, D.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Uzan, J.P.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Wade, L.A.; Yvon, D.; Zacchei, A.; Zonca, A.

    2015-01-01

    Any variation of the fundamental physical constants, and more particularly of the fine structure constant, $\\alpha$, or of the mass of the electron, $m_e$, would affect the recombination history of the Universe and cause an imprint on the cosmic microwave background angular power spectra. We show that the Planck data allow one to improve the constraint on the time variation of the fine structure constant at redshift $z\\sim 10^3$ by about a factor of 5 compared to WMAP data, as well as to break the degeneracy with the Hubble constant, $H_0$. In addition to $\\alpha$, we can set a constraint on the variation of the mass of the electron, $m_{\\rm e}$, and on the simultaneous variation of the two constants. We examine in detail the degeneracies between fundamental constants and the cosmological parameters, in order to compare the limits obtained from Planck and WMAP and to determine the constraining power gained by including other cosmological probes. We conclude that independent time variations of the fine structu...

  3. Is the sun constant

    International Nuclear Information System (INIS)

    Blake, J.B.; Dearborn, D.S.P.

    1979-01-01

    Small fluctuations in the solar constant can occur on timescales much shorter than the Kelvin time. Changes in the ability of convection to transmit energy through the superadiabatic and transition regions of the convection zone cause structure adjustments which can occur on a time scale of days. The bulk of the convection zone reacts to maintain hydrostatic equilibrium (though not thermal equilibrium) and causes a luminosity change. While small radius variations will occur, most of the change will be seen in temperature

  4. Stabilized power constant alimentation

    International Nuclear Information System (INIS)

    Roussel, L.

    1968-06-01

    The study and realization of a stabilized power alimentation variable from 5 to 100 watts are described. In order to realize a constant power drift of Lithium compensated diodes, we have searched a 1 per cent precision of regulation and a response time minus than 1 sec. Recent components like Hall multiplicator and integrated amplifiers give this possibility and it is easy to use permutable circuits. (author) [fr

  5. Cosmological model-independent test of ΛCDM with two-point diagnostic by the observational Hubble parameter data

    Science.gov (United States)

    Cao, Shu-Lei; Duan, Xiao-Wei; Meng, Xiao-Lei; Zhang, Tong-Jie

    2018-04-01

    Aiming at exploring the nature of dark energy (DE), we use forty-three observational Hubble parameter data (OHD) in the redshift range 0 measurements. The binning methods turn out to be promising and considered to be robust. By applying the two-point diagnostic to the binned data, we find that although the best-fit values of Omh^2 fluctuate as the continuous redshift intervals change, on average, they are continuous with being constant within 1 σ confidence interval. Therefore, we conclude that the ΛCDM model cannot be ruled out.

  6. Universe of constant

    Science.gov (United States)

    Yongquan, Han

    2016-10-01

    The ideal gas state equation is not applicable to ordinary gas, it should be applied to the Electromagnetic ``gas'' that is applied to the radiation, the radiation should be the ultimate state of matter changes or initial state, the universe is filled with radiation. That is, the ideal gas equation of state is suitable for the Singular point and the universe. Maybe someone consider that, there is no vessel can accommodate radiation, it is because the Ordinary container is too small to accommodate, if the radius of your container is the distance that Light through an hour, would you still think it can't accommodates radiation? Modern scientific determinate that the radius of the universe now is about 1027 m, assuming that the universe is a sphere whose volume is approximately: V = 4.19 × 1081 cubic meters, the temperature radiation of the universe (cosmic microwave background radiation temperature of the universe, should be the closest the average temperature of the universe) T = 3.15k, radiation pressure P = 5 × 10-6 N / m 2, according to the law of ideal gas state equation, PV / T = constant = 6 × 1075, the value of this constant is the universe, The singular point should also equal to the constant Author: hanyongquan

  7. Connecting Fundamental Constants

    International Nuclear Information System (INIS)

    Di Mario, D.

    2008-01-01

    A model for a black hole electron is built from three basic constants only: h, c and G. The result is a description of the electron with its mass and charge. The nature of this black hole seems to fit the properties of the Planck particle and new relationships among basic constants are possible. The time dilation factor in a black hole associated with a variable gravitational field would appear to us as a charge; on the other hand the Planck time is acting as a time gap drastically limiting what we are able to measure and its dimension will appear in some quantities. This is why the Planck time is numerically very close to the gravitational/electric force ratio in an electron: its difference, disregarding a π√(2) factor, is only 0.2%. This is not a coincidence, it is always the same particle and the small difference is between a rotating and a non-rotating particle. The determination of its rotational speed yields accurate numbers for many quantities, including the fine structure constant and the electron magnetic moment

  8. The Carnegie–Chicago Hubble Program. III. The Distance to NGC 1365 via the Tip of the Red Giant Branch

    Science.gov (United States)

    Jang, In Sung; Hatt, Dylan; Beaton, Rachael L.; Lee, Myung Gyoon; Freedman, Wendy L.; Madore, Barry F.; Hoyt, Taylor J.; Monson, Andrew J.; Rich, Jeffrey A.; Scowcroft, Victoria; Seibert, Mark

    2018-01-01

    The Carnegie–Chicago Hubble Program (CCHP) seeks to anchor the distance scale of Type Ia supernovae via the Tip of the Red Giant Branch (TRGB) method. Based on deep Hubble Space Telescope ACS/WFC imaging, we present an analysis of the TRGB for the metal-poor halo of NGC 1365, a giant spiral galaxy in the Fornax cluster that was host to the Type Ia supernova SN 2012fr. We have measured the extinction-corrected TRGB magnitude of NGC 1365 to be F814W = 27.34 ± 0.03stat ± 0.04sys mag. In advance of future direct calibration by Gaia, we adopt a provisional I-band TRGB luminosity set at the Large Magellanic Cloud and find a true distance modulus μ 0 = 31.29 ± 0.04stat ± 0.06sys mag or D = 18.1 ± 0.3stat ± 0.5sys Mpc. This measurement is in excellent agreement with recent Cepheid-based distances to NGC 1365 and reveals no significant difference in the distances derived from stars of Populations I and II for this galaxy. We revisit the error budget for the CCHP path to the Hubble constant based on the analysis presented here, i.e., that for one of the most distant Type Ia supernova hosts within our Program, and find that a 2.5% measurement is feasible with the current sample of galaxies and TRGB absolute calibration. Based in part on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program #13691.

  9. CONFRONTING THREE-DIMENSIONAL TIME-DEPENDENT JET SIMULATIONS WITH HUBBLE SPACE TELESCOPE OBSERVATIONS

    International Nuclear Information System (INIS)

    Staff, Jan E.; Niebergal, Brian P.; Ouyed, Rachid; Pudritz, Ralph E.; Cai, Kai

    2010-01-01

    We perform state-of-the-art, three-dimensional, time-dependent simulations of magnetized disk winds, carried out to simulation scales of 60 AU, in order to confront optical Hubble Space Telescope observations of protostellar jets. We 'observe' the optical forbidden line emission produced by shocks within our simulated jets and compare these with actual observations. Our simulations reproduce the rich structure of time-varying jets, including jet rotation far from the source, an inner (up to 400 km s -1 ) and outer (less than 100 km s -1 ) component of the jet, and jet widths of up to 20 AU in agreement with observed jets. These simulations when compared with the data are able to constrain disk wind models. In particular, models featuring a disk magnetic field with a modest radial spatial variation across the disk are favored.

  10. The inconstant solar constant

    International Nuclear Information System (INIS)

    Willson, R.C.; Hudson, H.

    1984-01-01

    The Active Cavity Radiometer Irradiance Monitor (ACRIM) of the Solar Maximum Mission satellite measures the radiant power emitted by the sun in the direction of the earth and has worked flawlessly since 1980. The main motivation for ACRIM's use to measure the solar constant is the determination of the extent to which this quantity's variations affect earth weather and climate. Data from the solar minimum of 1986-1987 is eagerly anticipated, with a view to the possible presence of a solar cycle variation in addition to that caused directly by sunspots

  11. New constraints on variations of the fine structure constant from CMB anisotropies

    International Nuclear Information System (INIS)

    Menegoni, Eloisa; Melchiorri, Alessandro; Galli, Silvia; Bartlett, James G.; Martins, C. J. A. P.

    2009-01-01

    We demonstrate that recent measurements of cosmic microwave background temperature and polarization anisotropy made by the ACBAR, QUAD, and BICEP experiments substantially improve the cosmological constraints on possible variations of the fine structure constant in the early universe. This data, combined with the five year observations from the WMAP mission, yield the constraint α/α 0 =0.987±0.012 at 68% C.L. The inclusion of the new Hubble Space Telescope constraints on the Hubble constant further increases the accuracy to α/α 0 =1.001±0.007 at 68% C.L., bringing possible deviations from the current value below the 1% level and improving previous constraints by a factor of ∼3.

  12. Hubble again views Saturn's Rings Edge-on

    Science.gov (United States)

    1995-01-01

    Saturn's magnificent ring system is seen tilted edge-on -- for the second time this year -- in this NASA Hubble Space Telescope picture taken on August 10, 1995, when the planet was 895 million miles (1,440 million kilometers) away. Hubble snapped the image as Earth sped back across Saturn's ring plane to the sunlit side of the rings. Last May 22, Earth dipped below the ring plane, giving observers a brief look at the backlit side of the rings. Ring-plane crossing events occur approximately every 15 years. Earthbound observers won't have as good a view until the year 2038. Several of Saturn's icy moons are visible as tiny starlike objects in or near the ring plane. They are from left to right, Enceladus, Tethys, Dione and Mimas. 'The Hubble data shows numerous faint satellites close to the bright rings, but it will take a couple of months to precisely identify them,' according to Steve Larson (University of Arizona). During the May ring plane crossing, Hubble detected two, and possibly four, new moons orbiting Saturn. These new observations also provide a better view of the faint E ring, 'to help determine the size of particles and whether they will pose a collision hazard to the Cassini spacecraft,' said Larson. The picture was taken with Hubble's Wide Field Planetary Camera 2 in wide field mode. This image is a composite view, where a long exposure of the faint rings has been combined with a shorter exposure of Saturn's disk to bring out more detail. When viewed edge-on, the rings are so dim they almost disappear because they are very thin -- probably less than a mile thick.The Wide Field/Planetary Camera 2 was developed by the Jet Propulsion Laboratory and managed by the Goddard Spaced Flight Center for NASA's Office of Space Science.This image and other images and data received from the Hubble Space Telescope are posted on the World Wide Web on the Space Telescope Science Institute home page at URL http://oposite.stsci.edu/pubinfo/

  13. Observations of the Hubble Deep Field with the Infrared Space Observatory .1. Data reduction, maps and sky coverage

    DEFF Research Database (Denmark)

    Serjeant, S.B.G.; Eaton, N.; Oliver, S.J.

    1997-01-01

    We present deep imaging at 6.7 and 15 mu m from the CAM instrument on the Infrared Space Observatory (ISO), centred on the Hubble Deep Field (HDF). These are the deepest integrations published to date at these wavelengths in any region of sky. We discuss the observational strategy and the data...... reduction. The observed source density appears to approach the CAM confusion limit at 15 mu m, and fluctuations in the 6.7-mu m sky background may be identifiable with similar spatial fluctuations in the HDF galaxy counts. ISO appears to be detecting comparable field galaxy populations to the HDF, and our...

  14. European astronaut selected for the third Hubble Space Telescope

    Science.gov (United States)

    1998-08-01

    The STS-104 crew will rendezvous with the orbiting Hubble Space Telescope, which is the size of a city bus, capture it using the Shuttle's Canadian robot arm and secure it in Columbia's payload bay. Then, working in teams of two, the four astronauts will leave the Shuttle's pressurised cabin and venture into the payload bay, performing a variety of tasks that will improve the productivity and reliability of the telescope. The four astronauts will perform a series of six "extravehicular" activities in the open space environment. Such activities are commonly called spacewalks, but this term does little justice to the considerable physical and mental efforts that astronauts need to make in doing the very demanding work involved. The Shuttle commander and pilot for this flight have not yet been appointed, but the four designated mission specialists begin training for the STS-104 mission immediately. "The ambitious nature of this mission, with its six spacewalks, made it important for the payload crew to begin training as early as possible," said David C. Leestma, NASA Director of Flight Crew Operations at the Johnson Space Center in Houston, to which Claude Nicollier is on resident assignment from ESA's European Astronaut Centre in Cologne, Germany, the home base of the European astronaut corps. The Hubble Space Telescope was launched into orbit in April 1990. It is one of the most capable optical telescopes available to astronomers today, producing images and spectral observations at the forefront of astronomy. The European Space Agency contributed a 15 share to the development of Hubble. One of the five scientific instruments on board, the Faint Object Camera, was built by a European industrial consortium made up of British Aerospace, Dornier and Matra under a contract with the European Space Agency. The solar arrays which provide Hubble with electrical power were manufactured by British Aerospace and Dornier. In its eight years of operation, the telescope has not

  15. Nickel-hydrogen battery testing for Hubble Space Telescope

    Science.gov (United States)

    Baggett, Randy M.; Whitt, Thomas H.

    1989-01-01

    The authors identify objectives and provide data from several nickel-hydrogen battery tests designed to evaluate the possibility of launching Ni-H2 batteries on the Hubble Space Telescope (HST). Test results from a 14-cell battery, a 12-cell battery, and a 4-cell pack are presented. Results of a thermal vacuum test to verify the battery-module/bay heat rejection capacity are reported. A 6-battery system simulation breadboard is described, and test results are presented.

  16. The Hubble Space Telescope nickel-hydrogen battery design

    Science.gov (United States)

    Nawrocki, D. E.; Armantrout, J. D.; Standlee, D. J.; Baker, R. C.; Lanier, J. R.

    1990-01-01

    Details are presented of the HST (Hubble Space Telescope) battery cell, battery package, and module mechanical and electrical designs. Also included are a summary of acceptance, qualification, and vibration tests and thermal vacuum testing. Unique details of battery cell charge retention performance characteristics associated with prelaunch hold conditions are discussed. Special charge control methods to minimize thermal dissipation during pad charging operations are summarized. This module design meets all NASA fracture control requirements for manned missions.

  17. Type Ia supernova Hubble residuals and host-galaxy properties

    International Nuclear Information System (INIS)

    Kim, A. G.; Aldering, G.; Aragon, C.; Bailey, S.; Fakhouri, H. K.; Antilogus, P.; Bongard, S.; Canto, A.; Cellier-Holzem, F.; Fleury, M.; Guy, J.; Baltay, C.; Buton, C.; Feindt, U.; Greskovic, P.; Kowalski, M.; Childress, M.; Chotard, N.; Copin, Y.; Gangler, E.

    2014-01-01

    Kim et al. introduced a new methodology for determining peak-brightness absolute magnitudes of type Ia supernovae from multi-band light curves. We examine the relation between their parameterization of light curves and Hubble residuals, based on photometry synthesized from the Nearby Supernova Factory spectrophotometric time series, with global host-galaxy properties. The K13 Hubble residual step with host mass is 0.013 ± 0.031 mag for a supernova subsample with data coverage corresponding to the K13 training; at <<1σ, the step is not significant and lower than previous measurements. Relaxing the data coverage requirement of the Hubble residual step with the host mass is 0.045 ± 0.026 mag for the larger sample; a calculation using the modes of the distributions, less sensitive to outliers, yields a step of 0.019 mag. The analysis of this article uses K13 inferred luminosities, as distinguished from previous works that use magnitude corrections as a function of SALT2 color and stretch parameters: steps at >2σ significance are found in SALT2 Hubble residuals in samples split by the values of their K13 x(1) and x(2) light-curve parameters. x(1) affects the light-curve width and color around peak (similar to the Δm 15 and stretch parameters), and x(2) affects colors, the near-UV light-curve width, and the light-curve decline 20-30 days after peak brightness. The novel light-curve analysis, increased parameter set, and magnitude corrections of K13 may be capturing features of SN Ia diversity arising from progenitor stellar evolution.

  18. DISENTANGLING AGN AND STAR FORMATION ACTIVITY AT HIGH REDSHIFT USING HUBBLE SPACE TELESCOPE GRISM SPECTROSCOPY

    Energy Technology Data Exchange (ETDEWEB)

    Bridge, Joanna S.; Zeimann, Gregory R.; Trump, Jonathan R.; Gronwall, Caryl; Ciardullo, Robin; Fox, Derek; Schneider, Donald P., E-mail: jsbridge@psu.edu [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States)

    2016-08-01

    Differentiating between active galactic nucleus (AGN) activity and star formation in z ∼ 2 galaxies is difficult because traditional methods, such as line-ratio diagnostics, change with redshift, while multi-wavelength methods (X-ray, radio, IR) are sensitive to only the brightest AGNs. We have developed a new method for spatially resolving emission lines using the Hubble Space Telescope /Wide Field Camera 3 G141 grism spectra and quantifying AGN activity through the spatial gradient of the [O iii]/H β line ratio. Through detailed simulations, we show that our novel line-ratio gradient approach identifies ∼40% more low-mass and obscured AGNs than obtained by classical methods. Based on our simulations, we developed a relationship that maps the stellar mass, star formation rate, and measured [O iii]/H β gradient to the AGN Eddington ratio. We apply our technique to previously studied stacked samples of galaxies at z ∼ 2 and find that our results are consistent with these studies. This gradient method will also be able to inform other areas of galaxy evolution science, such as inside-out quenching and metallicity gradients, and will be widely applicable to future spatially resolved James Webb Space Telescope data.

  19. DISENTANGLING AGN AND STAR FORMATION ACTIVITY AT HIGH REDSHIFT USING HUBBLE SPACE TELESCOPE GRISM SPECTROSCOPY

    International Nuclear Information System (INIS)

    Bridge, Joanna S.; Zeimann, Gregory R.; Trump, Jonathan R.; Gronwall, Caryl; Ciardullo, Robin; Fox, Derek; Schneider, Donald P.

    2016-01-01

    Differentiating between active galactic nucleus (AGN) activity and star formation in z ∼ 2 galaxies is difficult because traditional methods, such as line-ratio diagnostics, change with redshift, while multi-wavelength methods (X-ray, radio, IR) are sensitive to only the brightest AGNs. We have developed a new method for spatially resolving emission lines using the Hubble Space Telescope /Wide Field Camera 3 G141 grism spectra and quantifying AGN activity through the spatial gradient of the [O iii]/H β line ratio. Through detailed simulations, we show that our novel line-ratio gradient approach identifies ∼40% more low-mass and obscured AGNs than obtained by classical methods. Based on our simulations, we developed a relationship that maps the stellar mass, star formation rate, and measured [O iii]/H β gradient to the AGN Eddington ratio. We apply our technique to previously studied stacked samples of galaxies at z ∼ 2 and find that our results are consistent with these studies. This gradient method will also be able to inform other areas of galaxy evolution science, such as inside-out quenching and metallicity gradients, and will be widely applicable to future spatially resolved James Webb Space Telescope data.

  20. First results from the Hubble OPAL Program: Jupiter in 2015

    Science.gov (United States)

    Simon, Amy A.; Wong, Michael H.; Orton, Glenn S.

    2015-11-01

    The Hubble 2020: Outer Planet Atmospheres Legacy (OPAL) program is a Director's Discretionary program designed to generate two yearly global maps for each of the outer planets to enable long term studies of atmospheric color, structure and two-dimensional wind fields. This presentation focuses on Jupiter results from the first year of the campaign. Data were acqured January 19, 2015 with the WFC3/UVIS camera and the F275W, F343N, F395N, F467M, F502N, F547M, F631N, F658N, and F889N filters. Global maps were generated and are publicly available through the High Level Science Products archive: https://archive.stsci.edu/prepds/opal/Using cross-correlation on the global maps, the zonal wind profile was measured between +/- 50 degrees latitude and is in family with Voyager and Cassini era profiles. There are some variations in mid to high latitude wind jet magnitudes, particularly at +40°and -35° planetographic latitude. The Great Red Spot continues to maintain an intense orange coloration, as it did in 2014. However, the interior shows changed structure, including a reduced core and new filamentary features. Finally, a wave not previously seen in Hubble images was also observed and is interpreted as a baroclinic instability with associated cyclone formation near 16° N latitude. A similar feature was observed faintly in Voyager 2 images, and is consistent with the Hubble feature in location and scale.

  1. Cataclysmic variables, Hubble-Sandage variables and eta Carinae

    International Nuclear Information System (INIS)

    Bath, G.T.

    1980-01-01

    The Hubble-Sandage variables are the most luminous stars in external galaxies. They were first investigated by Hubble and Sandage (1953) for use as distance indicators. Their main characteristics are high luminosity, blue colour indices, and irregular variability. Spectroscopically they show hydrogen and helium in emission with occasionally weaker FeII and [FeII], and no Balmer jump (Humphreys 1975, 1978). In this respect they closely resemble cataclysmic variables, particularly dwarf novae. In the quiescent state dwarf novae show broad H and HeI, together with a strong UV continuum. In contrast to the spectroscopic similarities, the luminosities could hardly differ more. Rather than being the brightest stars known, quiescent dwarf novae are as faint or fainter than the sun. It is suggested that the close correspondence between the spectral appearance of the two classes combined with the difference in luminosity is well accounted for by a model of Hubble-Sandage variables in which the same physical processes are occurring, but on a larger scale. (Auth.)

  2. A Toy Cosmology Using a Hubble-Scale Casimir Effect

    Directory of Open Access Journals (Sweden)

    Michael E. McCulloch

    2014-02-01

    Full Text Available The visible mass of the observable universe agrees with that needed for a flat cosmos, and the reason for this is not known. It is shown that this can be explained by modelling the Hubble volume as a black hole that emits Hawking radiation inwards, disallowing wavelengths that do not fit exactly into the Hubble diameter, since partial waves would allow an inference of what lies outside the horizon. This model of “horizon wave censorship” is equivalent to a Hubble-scale Casimir effect. This incomplete toy model is presented to stimulate discussion. It predicts a minimum mass and acceleration for the observable universe which are in agreement with the observed mass and acceleration, and predicts that the observable universe gains mass as it expands and was hotter in the past. It also predicts a suppression of variation on the largest cosmic scales that agrees with the low-l cosmic microwave background anomaly seen by the Planck satellite.

  3. Arrhenius Rate: constant volume burn

    Energy Technology Data Exchange (ETDEWEB)

    Menikoff, Ralph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-12-06

    A constant volume burn occurs for an idealized initial state in which a large volume of reactants at rest is suddenly raised to a high temperature and begins to burn. Due to the uniform spatial state, there is no fluid motion and no heat conduction. This reduces the time evolu tion to an ODE for the reaction progress variable. With an Arrhenius reaction rate, two characteristics of thermal ignition are illustrated: induction time and thermal runaway. The Frank-Kamenetskii approximation then leads to a simple expression for the adiabatic induction time. For a first order reaction, the analytic solution is derived and used to illustrate the effect of varying the activation temperature; in particular, on the induction time. In general, the ODE can be solved numerically. This is used to illustrate the effect of varying the reaction order. We note that for a first order reaction, the time evolution of the reaction progress variable has an exponential tail. In contrast, for a reaction order less than one, the reaction completes in a nite time. The reaction order also affects the induction time.

  4. Observations of the Hubble Deep Field with the Infrared Space Observatory .4. Association of sources with Hubble Deep Field galaxies

    DEFF Research Database (Denmark)

    Mann, R.G.; Oliver, S.J.; Serjeant, S.B.G.

    1997-01-01

    We discuss the identification of sources detected by the Infrared Space Observatory (ISO) at 6.7 and 15 mu m in the Hubble Deep Field (HDF) region. We conservatively associate ISO sources with objects in existing optical and near-infrared HDF catalogues using the likelihood ratio method, confirming...... these results (and, in one case, clarifying them) with independent visual searches, We find 15 ISO sources to be reliably associated with bright [I-814(AB) HDF, and one with an I-814(AB)=19.9 star, while a further 11 are associated with objects in the Hubble Flanking Fields (10 galaxies...... and one star), Amongst optically bright HDF galaxies, ISO tends to detect luminous, star-forming galaxies at fairly high redshift and with disturbed morphologies, in preference to nearby ellipticals....

  5. Hubble Space Telescope Observations of cD Galaxies and Their Globular Cluster Systems

    Science.gov (United States)

    Jordán, Andrés; Côté, Patrick; West, Michael J.; Marzke, Ronald O.; Minniti, Dante; Rejkuba, Marina

    2004-01-01

    We have used WFPC2 on the Hubble Space Telescope (HST) to obtain F450W and F814W images of four cD galaxies (NGC 541 in Abell 194, NGC 2832 in Abell 779, NGC 4839 in Abell 1656, and NGC 7768 in Abell 2666) in the range 5400 km s-1cluster (GC) systems reveals no anomalies in terms of specific frequencies, metallicity gradients, average metallicities, or the metallicity offset between the globular clusters and the host galaxy. We show that the latter offset appears roughly constant at Δ[Fe/H]~0.8 dex for early-type galaxies spanning a luminosity range of roughly 4 orders of magnitude. We combine the globular cluster metallicity distributions with an empirical technique described in a series of earlier papers to investigate the form of the protogalactic mass spectrum in these cD galaxies. We find that the observed GC metallicity distributions are consistent with those expected if cD galaxies form through the cannibalism of numerous galaxies and protogalactic fragments that formed their stars and globular clusters before capture and disruption. However, the properties of their GC systems suggest that dynamical friction is not the primary mechanism by which these galaxies are assembled. We argue that cD's instead form rapidly, via hierarchical merging, prior to cluster virialization. Based on observations with the NASA/ESA Hubble Space Telescope obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555 Based in part on observations obtained at the European Southern Observatory, for VLT program 68.D-0130(A).

  6. Potential constants and centrifugal distortion constants of octahedral hexafluoride molecules

    Energy Technology Data Exchange (ETDEWEB)

    Manivannan, G [Government Thirumagal Mill' s Coll., Gudiyattam, Tamil Nadu (India)

    1981-04-01

    The kinetic constants method outlined by Thirugnanasambandham (1964) based on Wilson's (1955) group theory has been adapted in evaluating the potential constants for SF/sub 6/, SeF/sub 6/, WF/sub 6/, IrF/sub 6/, UF/sub 6/, NpF/sub 6/, and PuF/sub 6/ using the experimentally observed vibrational frequency data. These constants are used to calculate the centrifugal distortion constants for the first time.

  7. The Carnegie-Chicago Hubble Program. I. An Independent Approach to the Extragalactic Distance Scale Using Only Population II Distance Indicators

    Science.gov (United States)

    Beaton, Rachael L.; Freedman, Wendy L.; Madore, Barry F.; Bono, Giuseppe; Carlson, Erika K.; Clementini, Gisella; Durbin, Meredith J.; Garofalo, Alessia; Hatt, Dylan; Jang, In Sung; Kollmeier, Juna A.; Lee, Myung Gyoon; Monson, Andrew J.; Rich, Jeffrey A.; Scowcroft, Victoria; Seibert, Mark; Sturch, Laura; Yang, Soung-Chul

    2016-12-01

    We present an overview of the Carnegie-Chicago Hubble Program, an ongoing program to obtain a 3% measurement of the Hubble constant (H 0) using alternative methods to the traditional Cepheid distance scale. We aim to establish a completely independent route to H 0 using RR Lyrae variables, the tip of the red giant branch (TRGB), and Type Ia supernovae (SNe Ia). This alternative distance ladder can be applied to galaxies of any Hubble type, of any inclination, and, using old stars in low-density environments, is robust to the degenerate effects of metallicity and interstellar extinction. Given the relatively small number of SNe Ia host galaxies with independently measured distances, these properties provide a great systematic advantage in the measurement of H 0 via the distance ladder. Initially, the accuracy of our value of H 0 will be set by the five Galactic RR Lyrae calibrators with Hubble Space Telescope Fine-Guidance Sensor parallaxes. With Gaia, both the RR Lyrae zero-point and TRGB method will be independently calibrated, the former with at least an order of magnitude more calibrators and the latter directly through parallax measurement of tip red giants. As the first end-to-end “distance ladder” completely independent of both Cepheid variables and the Large Magellanic Cloud, this path to H 0 will allow for the high-precision comparison at each rung of the traditional distance ladder that is necessary to understand tensions between this and other routes to H 0. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with programs #13472 and #13691.

  8. The Chrysalis Opens? Photometry from the η Carinae Hubble Space Telescope Treasury Project, 2002-2006

    Science.gov (United States)

    Martin, J. C.; Davidson, Kris; Koppelman, M. D.

    2006-12-01

    During the past decade η Car has brightened markedly, possibly indicating a change of state. Here we summarize photometry gathered by the Hubble Space Telescope (HST) as part of the HST Treasury Project on this object. Our data include Space Telescope Imaging Spectrograph (STIS) CCD acquisition images, Advanced Camera for Surveys HRC images in four filters, and synthetic photometry in flux-calibrated STIS spectra. The HST's spatial resolution allows us to examine the central star separate from the bright circumstellar ejecta. Its apparent brightness continued to increase briskly during 2002-2006, especially after the mid-2003 spectroscopic event. If this trend continues, the central star will soon become brighter than its ejecta, quite different from the state that existed only a few years ago. One precedent may be the rapid change observed in 1938-1953. We conjecture that the star's mass-loss rate has been decreasing throughout the past century. This research was conducted as part of the η Car Hubble Space Telescope Treasury project via grant GO-9973 from the Space Telescope Science Institute. HST is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. Some of the data presented in this paper were obtained from the Multimission Archive at the Space Telescope Science Institute (MAST). STScI is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. Support for MAST for non-HST data is provided by the NASA Office of Space Science via grant NAG5-7584 and by other grants and contracts.

  9. Association constants of telluronium salts

    International Nuclear Information System (INIS)

    Kovach, N.A.; Rivkin, B.B.; Sadekov, T.D.; Shvajka, O.P.

    1996-01-01

    Association constants in acetonitrile of triphenyl telluronium salts, which are dilute electrolytes, are determined through the conductometry method. Satisfactory correlation dependence of constants of interion association and threshold molar electroconductivity on the Litvinenko-Popov constants for depositing groups is identified. 6 refs

  10. Anisotropic constant-roll inflation

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Asuka; Soda, Jiro [Kobe University, Department of Physics, Kobe (Japan)

    2018-01-15

    We study constant-roll inflation in the presence of a gauge field coupled to an inflaton. By imposing the constant anisotropy condition, we find new exact anisotropic constant-roll inflationary solutions which include anisotropic power-law inflation as a special case. We also numerically show that the new anisotropic solutions are attractors in the phase space. (orig.)

  11. Quintessence and the cosmological constant

    International Nuclear Information System (INIS)

    Doran, M.; Wetterich, C.

    2003-01-01

    Quintessence -- the energy density of a slowly evolving scalar field -- may constitute a dynamical form of the homogeneous dark energy in the universe. We review the basic idea in the light of the cosmological constant problem. Cosmological observations or a time variation of fundamental 'constants' can distinguish quintessence from a cosmological constant

  12. The cosmic velocity field - local variations in the Hubble constant and the power spectrum from future sky surveys

    DEFF Research Database (Denmark)

    Odderskov, Io Sandberg Hess

    2016-01-01

    For nær ved hundrede år siden begyndte observationer at vise, at næsten alle de galakser vi kan se bevæger sig væk fra os. Dette blev tolket som evidens for at universet udvider sig, en opdagelse der støtter teorien om universets begyndelse i et såkaldt Big Bang. Universets voldsomme fødsel...

  13. Stable exponential cosmological solutions with zero variation of G and three different Hubble-like parameters in the Einstein-Gauss-Bonnet model with a Λ-term

    Energy Technology Data Exchange (ETDEWEB)

    Ernazarov, K.K. [RUDN University, Institute of Gravitation and Cosmology, Moscow (Russian Federation); Ivashchuk, V.D. [RUDN University, Institute of Gravitation and Cosmology, Moscow (Russian Federation); VNIIMS, Center for Gravitation and Fundamental Metrology, Moscow (Russian Federation)

    2017-06-15

    We consider a D-dimensional gravitational model with a Gauss-Bonnet term and the cosmological term Λ. We restrict the metrics to diagonal cosmological ones and find for certain Λ a class of solutions with exponential time dependence of three scale factors, governed by three non-coinciding Hubble-like parameters H > 0, h{sub 1} and h{sub 2}, corresponding to factor spaces of dimensions m > 2, k{sub 1} > 1 and k{sub 2} > 1, respectively, with k{sub 1} ≠ k{sub 2} and D = 1 + m + k{sub 1} + k{sub 2}. Any of these solutions describes an exponential expansion of 3d subspace with Hubble parameter H and zero variation of the effective gravitational constant G. We prove the stability of these solutions in a class of cosmological solutions with diagonal metrics. (orig.)

  14. New Target for an Old Method: Hubble Measures Globular Cluster Parallax

    Science.gov (United States)

    Hensley, Kerry

    2018-05-01

    distance to NGC 6397, one of the nearest metal-poor globular clusters and anchor for one stellar population model. Brown and coauthors used a technique called spatial scanning to greatly broaden the reach of the parallax method.Spatial scanning was initially developed as a way to increase the signal-to-noise of exoplanet transit observations, but it has also greatly improved the prospects of astrometry precisely determining the separations between astronomical objects. In spatial scanning, the telescope moves while the exposure is being taken, spreading the light out across many pixels.Unprecedented PrecisionThis technique allowed the authors to achieve a precision of 20100microarcseconds. From the observed parallax angle of just 0.418 milliarcseconds (for reference, the moons angular size is about 5 million times larger on the sky!), Brown and collaborators refined the distance to NGC 6397 to 7,795 light-years, with a measurement error of only a few percent.Using spatial scanning, Hubble can make parallax measurements of nearby globular clusters, while Gaia has the potential to reach even farther. Looking ahead, the measurement made by Brown and collaborators can be combined with the recently released Gaia data to trim the uncertainty down to just 1%. This highlights the power of space telescopes to make extremely precise measurements of astoundingly large distances informing our models and helping us measure the universe.CitationThomas Brown et al 2018ApJL856 L6. doi:10.3847/2041-8213/aab55a

  15. PANCHROMATIC HUBBLE ANDROMEDA TREASURY. XVI. STAR CLUSTER FORMATION EFFICIENCY AND THE CLUSTERED FRACTION OF YOUNG STARS

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, L. Clifton; Sandstrom, Karin [Center for Astrophysics and Space Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093 (United States); Seth, Anil C. [Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112 (United States); Dalcanton, Julianne J.; Beerman, Lori C.; Lewis, Alexia R.; Weisz, Daniel R.; Williams, Benjamin F. [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States); Fouesneau, Morgan [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Bell, Eric F. [Department of Astronomy, University of Michigan, 1085 South University Avenue, Ann Arbor, MI 48109 (United States); Dolphin, Andrew E. [Raytheon Company, 1151 East Hermans Road, Tucson, AZ 85756 (United States); Larsen, Søren S. [Department of Astrophysics, IMAPP, Radboud University Nijmegen, P.O. Box 9010, 6500 GL Nijmegen (Netherlands); Skillman, Evan D., E-mail: lcj@ucsd.edu [Minnesota Institute for Astrophysics, University of Minnesota, 116 Church Street SE, Minneapolis, MN 55455 (United States)

    2016-08-10

    We use the Panchromatic Hubble Andromeda Treasury survey data set to perform spatially resolved measurements of star cluster formation efficiency (Γ), the fraction of stellar mass formed in long-lived star clusters. We use robust star formation history and cluster parameter constraints, obtained through color–magnitude diagram analysis of resolved stellar populations, to study Andromeda’s cluster and field populations over the last ∼300 Myr. We measure Γ of 4%–8% for young, 10–100 Myr-old populations in M31. We find that cluster formation efficiency varies systematically across the M31 disk, consistent with variations in mid-plane pressure. These Γ measurements expand the range of well-studied galactic environments, providing precise constraints in an H i-dominated, low-intensity star formation environment. Spatially resolved results from M31 are broadly consistent with previous trends observed on galaxy-integrated scales, where Γ increases with increasing star formation rate surface density (Σ{sub SFR}). However, we can explain observed scatter in the relation and attain better agreement between observations and theoretical models if we account for environmental variations in gas depletion time ( τ {sub dep}) when modeling Γ, accounting for the qualitative shift in star formation behavior when transitioning from a H{sub 2}-dominated to a H i-dominated interstellar medium. We also demonstrate that Γ measurements in high Σ{sub SFR} starburst systems are well-explained by τ {sub dep}-dependent fiducial Γ models.

  16. Relaxing the cosmological constant: a proof of concept

    Energy Technology Data Exchange (ETDEWEB)

    Alberte, Lasma [SISSA,Via Bonomea 265, 34136 Trieste (Italy); INFN - Sezione di Trieste,Via Valerio 2, 34127 Trieste (Italy); Creminelli, Paolo; Khmelnitsky, Andrei [Abdus Salam International Centre for Theoretical Physics (ICTP),Strada Costiera 11, 34151, Trieste (Italy); Pirtskhalava, David [Institute of Physics, École Polytechnique Fédérale de Lausanne,CH-1015, Lausanne (Switzerland); Trincherini, Enrico [Scuola Normale Superiore,Piazza dei Cavalieri 7, 56126, Pisa (Italy); INFN - Sezione di Pisa,56200, Pisa (Italy)

    2016-12-06

    We propose a technically natural scenario whereby an initially large cosmological constant (c.c.) is relaxed down to the observed value due to the dynamics of a scalar evolving on a very shallow potential. The model crucially relies on a sector that violates the null energy condition (NEC) and gets activated only when the Hubble rate becomes sufficiently small — of the order of the present one. As a result of NEC violation, this low-energy universe evolves into inflation, followed by reheating and the standard Big Bang cosmology. The symmetries of the theory force the c.c. to be the same before and after the NEC-violating phase, so that a late-time observer sees an effective c.c. of the correct magnitude. Importantly, our model allows neither for eternal inflation nor for a set of possible values of dark energy, the latter fixed by the parameters of the theory.

  17. Electrostatic Studies for the 2008 Hubble Service Repair Mission

    Science.gov (United States)

    Buhler, C. R.; Clements, J. S.; Calle, C. I.

    2012-01-01

    High vacuum triboelectric testing of space materials was required to identify possible Electrostatic Discharge (ESD) concerns for the astronauts in space during electronics board replacement on the Hubble Space Telescope. Testing under high vacuum conditions with common materials resulted in some interesting results. Many materials were able to charge to high levels which did not dissipate quickly even when grounded. Certain materials were able to charge up in contact with grounded metals while others were not. An interesting result was that like materials did not exchange electrostatic charge under high vacuum conditions. The most surprising experimental result is the lack of brush discharges from charged insulators under high vacuum conditions.

  18. Dark energy and the quietness of the local Hubble flow

    International Nuclear Information System (INIS)

    Axenides, M.; Perivolaropoulos, L.

    2002-01-01

    The linearity and quietness of the local ( X (t 0 ) of dark energy obeying the time independent equation of state p X =wρ X . We find that dark energy can indeed cool the LHF. However the dark energy parameter values required to make the predicted velocity dispersion consistent with the observed value v rms ≅40 km/s have been ruled out by other observational tests constraining the dark energy parameters w and Ω X . Therefore despite the claims of recent qualitative studies, dark energy with time independent equation of state cannot by itself explain the quietness and linearity of the local Hubble flow

  19. Super-Hubble de Sitter fluctuations and the dynamical RG

    Energy Technology Data Exchange (ETDEWEB)

    Burgess, C.P. [Department of Physics and Astronomy, McMaster University, Hamilton, Ontario (Canada); Leblond, L.; Shandera, S. [Perimeter Institute for Theoretical Physics, Waterloo, Ontario (Canada); Holman, R., E-mail: cburgess@perimeterinstitute.ca, E-mail: lleblond@perimeterinstitute.ca, E-mail: rha@andrew.cmu.edu, E-mail: sshandera@perimeterinstitute.ca [Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 (United States)

    2010-03-01

    Perturbative corrections to correlation functions for interacting theories in de Sitter spacetime often grow secularly with time, due to the properties of fluctuations on super-Hubble scales. This growth can lead to a breakdown of perturbation theory at late times. We argue that Dynamical Renormalization Group (DRG) techniques provide a convenient framework for interpreting and resumming these secularly growing terms. In the case of a massless scalar field in de Sitter with quartic self-interaction, the resummed result is also less singular in the infrared, in precisely the manner expected if a dynamical mass is generated. We compare this improved infrared behavior with large-N expansions when applicable.

  20. Modeling a constant power load for nickel-hydrogen battery testing using SPICE

    Science.gov (United States)

    Bearden, Douglas B.; Lollar, Louis F.; Nelms, R. M.

    1990-01-01

    The effort to design and model a constant power load for the HST (Hubble Space Telescope) nickel-hydrogen battery tests is described. The constant power load was designed for three different simulations on the batteries: life cycling, reconditioning, and capacity testing. A dc-dc boost converter was designed to act as this constant power load. A boost converter design was chosen because of the low test battery voltage (4 to 6 VDC) generated and the relatively high power requirement of 60 to 70 W. The SPICE model was shown to consistently predict variations in the actual circuit as various designs were attempted. It is concluded that the confidence established in the SPICE model of the constant power load ensures its extensive utilization in future efforts to improve performance in the actual load circuit.

  1. Observational constraints on Hubble parameter in viscous generalized Chaplygin gas

    Science.gov (United States)

    Thakur, P.

    2018-04-01

    Cosmological model with viscous generalized Chaplygin gas (in short, VGCG) is considered here to determine observational constraints on its equation of state parameters (in short, EoS) from background data. These data consists of H(z)-z (OHD) data, Baryonic Acoustic Oscillations peak parameter, CMB shift parameter and SN Ia data (Union 2.1). Best-fit values of the EoS parameters including present Hubble parameter (H0) and their acceptable range at different confidence limits are determined. In this model the permitted range for the present Hubble parameter and the transition redshift (zt) at 1σ confidence limits are H0= 70.24^{+0.34}_{-0.36} and zt=0.76^{+0.07}_{-0.07} respectively. These EoS parameters are then compared with those of other models. Present age of the Universe (t0) have also been determined here. Akaike information criterion and Bayesian information criterion for the model selection have been adopted for comparison with other models. It is noted that VGCG model satisfactorily accommodates the present accelerating phase of the Universe.

  2. HUBBLE'S PANORAMIC PORTRAIT OF A VAST STAR-FORMING REGION

    Science.gov (United States)

    2002-01-01

    NASA's Hubble Space Telescope has snapped a panoramic portrait of a vast, sculpted landscape of gas and dust where thousands of stars are being born. This fertile star-forming region, called the 30 Doradus Nebula, has a sparkling stellar centerpiece: the most spectacular cluster of massive stars in our cosmic neighborhood of about 25 galaxies. The mosaic picture shows that ultraviolet radiation and high-speed material unleashed by the stars in the cluster, called R136 [the large blue blob left of center], are weaving a tapestry of creation and destruction, triggering the collapse of looming gas and dust clouds and forming pillar-like structures that are incubators for nascent stars. The photo offers an unprecedented, detailed view of the entire inner region of 30 Doradus, measuring 200 light-years wide by 150 light-years high. The nebula resides in the Large Magellanic Cloud (a satellite galaxy of the Milky Way), 170,000 light-years from Earth. Nebulas like 30 Doradus are the 'signposts' of recent star birth. High-energy ultraviolet radiation from the young, hot, massive stars in R136 causes the surrounding gaseous material to glow. Previous Hubble telescope observations showed that R136 contains several dozen of the most massive stars known, each about 100 times the mass of the Sun and about 10 times as hot. These stellar behemoths all formed at the same time about 2 million years ago. The stars in R136 are producing intense 'stellar winds' (streams of material traveling at several million miles an hour), which are wreaking havoc on the gas and dust in the surrounding neighborhood. The winds are pushing the gas away from the cluster and compressing the inner regions of the surrounding gas and dust clouds [the pinkish material]. The intense pressure is triggering the collapse of parts of the clouds, producing a new generation of star formation around the central cluster. The new stellar nursery is about 30 to 50 light-years from R136. Most of the stars in the

  3. MOVING OBJECTS IN THE HUBBLE ULTRA DEEP FIELD

    Energy Technology Data Exchange (ETDEWEB)

    Kilic, Mukremin; Gianninas, Alexandros [Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, 440 W. Brooks St., Norman, OK 73019 (United States); Von Hippel, Ted, E-mail: kilic@ou.edu, E-mail: alexg@nhn.ou.edu, E-mail: ted.vonhippel@erau.edu [Embry-Riddle Aeronautical University, 600 S. Clyde Morris Blvd., Daytona Beach, FL 32114 (United States)

    2013-09-01

    We identify proper motion objects in the Hubble Ultra Deep Field (UDF) using the optical data from the original UDF program in 2004 and the near-infrared data from the 128 orbit UDF 2012 campaign. There are 12 sources brighter than I = 27 mag that display >3{sigma} significant proper motions. We do not find any proper motion objects fainter than this magnitude limit. Combining optical and near-infrared photometry, we model the spectral energy distribution of each point-source using stellar templates and state-of-the-art white dwarf models. For I {<=} 27 mag, we identify 23 stars with K0-M6 spectral types and two faint blue objects that are clearly old, thick disk white dwarfs. We measure a thick disk white dwarf space density of 0.1-1.7 Multiplication-Sign 10{sup -3} pc{sup -3} from these two objects. There are no halo white dwarfs in the UDF down to I = 27 mag. Combining the Hubble Deep Field North, South, and the UDF data, we do not see any evidence for dark matter in the form of faint halo white dwarfs, and the observed population of white dwarfs can be explained with the standard Galactic models.

  4. Astronaut Anna Fisher in NBS Training For Hubble Space Telescope

    Science.gov (United States)

    1980-01-01

    The Hubble Space Telescope (HST) is a cooperative program of the European Space Agency (ESA) and the National Aeronautical and Space Administration (NASA) to operate a long-lived space-based observatory. It was the flagship mission of NASA's Great Observatories program. The HST program began as an astronomical dream in the 1940s. During the 1970s and 1980s, the HST was finally designed and built becoming operational in the 1990s. The HST was deployed into a low-Earth orbit on April 25, 1990 from the cargo bay of the Space Shuttle Discovery (STS-31). The design of the HST took into consideration its length of service and the necessity of repairs and equipment replacement by making the body modular. In doing so, subsequent shuttle missions could recover the HST, replace faulty or obsolete parts and be re-released. Marshall Space Flight Center's (MSFC's) Neutral Buoyancy Simulator (NBS) served as the test center for shuttle astronauts training for Hubble related missions. Shown is astronaut Anna Fisher training on a mock-up of a modular section of the HST for an axial scientific instrument change out.

  5. A Scientific Revolution: The Hubble and James Webb Space Telescopes

    Science.gov (United States)

    Gardner, Jonathan P.

    2010-01-01

    Astronomy is going through a scientific revolution, responding to a flood of data from the Hubble Space Telescope, other space missions, and large telescopes on the ground. In this talk, I will discuss some of the important discoveries of the last decade, from dwarf planets in the outer Solar System to the mysterious dark energy that overcomes gravity to accelerate the expansion of the Universe. The next decade will be equally bright with the newly refurbished Hubble and the promise of its successor, the James Webb Space Telescope. An infrared-optimized 6.5m space telescope, Webb is designed to find the first galaxies that formed in the early universe and to peer into the dusty gas clouds where stars and planets are born. With MEMS technology, a deployed primary mirror and a tennis-court sized sunshield, the mission presents many technical challenges. I will describe Webb's scientific goals, its design and recent progress in constructing the observatory. Webb is scheduled for launch in 2014.

  6. Dynamical interpretation of the Hubble sequence of galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Dallaporta, N; Secco, L [Padua Univ. (Italy). Istituto di Astronomia

    1977-08-01

    Brosche (1970) has proposed a theory in which the energy loss due to collisions among gas clouds contained in a galaxy constitutes the driving mechanism for its evolution, through virial equilibrium states, which, from an initial spherical shape, makes it to contract towards an elongated form; moreover, the value of the total angular momentum, assumed as given by uniform rotation, is assumed to determine the galaxy type on the Hubble sequence and to influence strongly the contraction time from the initial spherical to the final flat configuration. The authors modify Brosche's scheme by assuming as models the rotating polytropes of Chandrasekhar and Lebovitz with variable density from centre to border. As a consequence of this change, centrifugal shedding of matter is attained at the equator of the contracting ellipsoid for a configuration with an axial ratio different from zero, so that, hereafter, a flat disk is formed surrounding the internal bulge, with a decreasing overall eccentricity; the rotation curve assumes then an aspect qualitatively similar to the one observed for spiral galaxies. The feedback of star formation which, by exhausting the material of the gas clouds, is able to stop the driving mechanism of evolution before the final flat stage is attained has also been considered at several positions according to the value of the angular momentum. Numerical calculations seem to indicate that one can obtain in this way, by varying the angular momentum and the initial number of clouds, different galaxy types (elliptical, lenticular, spiral) resembling those of the Hubble sequence.

  7. The Hubble series: convergence properties and redshift variables

    International Nuclear Information System (INIS)

    Cattoen, Celine; Visser, Matt

    2007-01-01

    In cosmography, cosmokinetics and cosmology, it is quite common to encounter physical quantities expanded as a Taylor series in the cosmological redshift z. Perhaps the most well-known exemplar of this phenomenon is the Hubble relation between distance and redshift. However, we now have considerable high-z data available; for instance, we have supernova data at least back to redshift z ∼ 1.75. This opens up the theoretical question as to whether or not the Hubble series (or more generally any series expansion based on the z-redshift) actually converges for large redshift. Based on a combination of mathematical and physical reasonings, we argue that the radius of convergence of any series expansion in z is less than or equal to 1, and that z-based expansions must break down for z > 1, corresponding to a universe less than half of its current size. Furthermore, we shall argue on theoretical grounds for the utility of an improved parametrization y = z/(1 + z). In terms of the y-redshift, we again argue that the radius of convergence of any series expansion in y is less than or equal to 1, so that y-based expansions are likely to be good all the way back to the big bang (y = 1), but that y-based expansions must break down for y < -1, now corresponding to a universe more than twice its current size

  8. Dynamical friction: The Hubble diagram as a cosmological test

    International Nuclear Information System (INIS)

    Gunn, J.E.; Tinsley, B.M.

    1976-01-01

    Effects on the Hubble diagram of the frictional accretion of small cluster galaxies by large ones, to which Ostriker and Tremaine have recently drawn attention, must be accurately determined if the magnitude-redshift relation is to become a viable cosmological test. We find that the process might be detectable through the concomitant change in galaxy colors, but that its effect on the dispersion of magnitudes of first-ranked cluster galaxies would be negligible even if the change in average magnitude is very important. The sign of the effect of accretion on the luminosity observed within a given aperture depends on the structures of the galaxies involved. The size of the effect not only depends sensitively on the galaxy structures, but is also amplified when the relatively recent collapse times of the clusters are taken into account. It is vital to answer the complicated observational and theoretical questions raised by these preliminary calculations, because the Hubble diagram remains the most promising approach to the deceleration parameter q 0 . Local tests of the density of the universe do not give equivalent information

  9. Elongational flow of polymer melts at constant strain rate, constant stress and constant force

    Science.gov (United States)

    Wagner, Manfred H.; Rolón-Garrido, Víctor H.

    2013-04-01

    Characterization of polymer melts in elongational flow is typically performed at constant elongational rate or rarely at constant tensile stress conditions. One of the disadvantages of these deformation modes is that they are hampered by the onset of "necking" instabilities according to the Considère criterion. Experiments at constant tensile force have been performed even more rarely, in spite of the fact that this deformation mode is free from necking instabilities and is of considerable industrial relevance as it is the correct analogue of steady fiber spinning. It is the objective of the present contribution to present for the first time a full experimental characterization of a long-chain branched polyethylene melt in elongational flow. Experiments were performed at constant elongation rate, constant tensile stress and constant tensile force by use of a Sentmanat Extensional Rheometer (SER) in combination with an Anton Paar MCR301 rotational rheometer. The accessible experimental window and experimental limitations are discussed. The experimental data are modelled by using the Wagner I model. Predictions of the steady-start elongational viscosity in constant strain rate and creep experiments are found to be identical, albeit only by extrapolation of the experimental data to Hencky strains of the order of 6. For constant stress experiments, a minimum in the strain rate and a corresponding maximum in the elongational viscosity is found at a Hencky strain of the order of 3, which, although larger than the steady-state value, follows roughly the general trend of the steady-state elongational viscosity. The constitutive analysis also reveals that constant tensile force experiments indicate a larger strain hardening potential than seen in constant elongation rate or constant tensile stress experiments. This may be indicative of the effect of necking under constant elongation rate or constant tensile stress conditions according to the Considère criterion.

  10. Spectrophotometric determination of association constant

    DEFF Research Database (Denmark)

    2016-01-01

    Least-squares 'Systematic Trial-and-Error Procedure' (STEP) for spectrophotometric evaluation of association constant (equilibrium constant) K and molar absorption coefficient E for a 1:1 molecular complex, A + B = C, with error analysis according to Conrow et al. (1964). An analysis of the Charge...

  11. The Carnegie Hubble Program: The Infrared Leavitt Law in IC 1613

    Science.gov (United States)

    Scowcroft, Victoria; Freedman, Wendy L.; Madore, Barry F.; Monson, Andrew J.; Persson, S. E.; Seibert, Mark; Rigby, Jane R.; Melbourne, Jason

    2013-01-01

    We have observed the dwarf galaxy IC 1613 at multiple epochs in the midinfrared using Spitzer and the in the near-infrared using the new FourStar near-IR camera on Magellan. We have constructed Cepheid period luminosity relations in the J, H, Ks, [3.6] and [4.5] bands and have used the run of their apparent distance moduli as a function of wavelength to derive the line of sight reddening and distance to IC 1613. Using a nineband fit, we find E(BV ) = 0.050.01 mag and an extinction corrected distance modulus of 0 = 24.29 0.03statistical 0.03systematic mag. By comparing our multiband and [3.6] distance moduli to results from the tip of the red giant branch and red clump distance indicators, we find that metallicity has no measurable effect on Cepheid distances at 3.6 m in the metallicity range 1.0 [Fe/H] 0.2, hence derivations of the Hubble constant at this wavelength require no correction for metallicity.

  12. Initial Hubble Diagram Results from the Nearby Supernova Factory

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, S. [Lab. Nuclear and High-Energy Physics (LPNHE), Paris (France); Aldering, G. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Antilogus, P. [Lab. Nuclear and High-Energy Physics (LPNHE), Paris (France); Aragon, C. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Baltay, C. [Yale Univ., New Haven, CT (United States); Bongard, S. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Buton, C [Inst. of Nuclear Physics of Lyon (France); Childress, M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Copin, Y. [Inst. of Nuclear Physics of Lyon (France); Gangler, E. [Inst. of Nuclear Physics of Lyon (France); Loken, S. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Nugent, P. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Pain, R. [Lab. Nuclear and High-Energy Physics (LPNHE), Paris (France); Pecontal, E. [Center of Research Astrophysics of Lyon (CRAL) (France); Pereira, R. [Lab. Nuclear and High-Energy Physics (LPNHE), Paris (France); Perlmutter, S. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Rabinowitz, D. [Yale Univ., New Haven, CT (United States); Rigaudier, G. [Center of Research Astrophysics of Lyon (CRAL) (France); Ripoche, P. [Lab. Nuclear and High-Energy Physics (LPNHE), Paris (France); Runge, K. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Scalzo, R. [Yale Univ., New Haven, CT (United States); Smadja, G. [Inst. of Nuclear Physics of Lyon (France); Tao, C. [Inst. of Nuclear Physics of Lyon (France); Thomas, R. C. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Wu, C. [Lab. Nuclear and High-Energy Physics (LPNHE), Paris (France)

    2017-07-06

    The use of Type Ia supernovae as distance indicators led to the discovery of the accelerating expansion of the universe a decade ago. Now that large second generation surveys have significantly increased the size and quality of the high-redshift sample, the cosmological constraints are limited by the currently available sample of ~50 cosmologically useful nearby supernovae. The Nearby Supernova Factory addresses this problem by discovering nearby supernovae and observing their spectrophotometric time development. Our data sample includes over 2400 spectra from spectral timeseries of 185 supernovae. This talk presents results from a portion of this sample including a Hubble diagram (relative distance vs. redshift) and a description of some analyses using this rich dataset.

  13. Hubble diagram as a probe of minicharged particles

    International Nuclear Information System (INIS)

    Ahlers, Markus

    2009-01-01

    The luminosity-redshift relation of cosmological standard candles provides information about the relative energy composition of our Universe. In particular, the observation of type Ia supernovae up to a redshift of z∼2 indicates a universe which is dominated today by dark matter and dark energy. The propagation distance of light from these sources is of the order of the Hubble radius and serves as a very sensitive probe of feeble inelastic photon interactions with background matter, radiation, or magnetic fields. In this paper we discuss the limits on minicharged particle models arising from a dimming effect in supernova surveys. We briefly speculate about a strong dimming effect as an alternative to dark energy.

  14. Second generation spectrograph for the Hubble Space Telescope

    Science.gov (United States)

    Woodgate, B. E.; Boggess, A.; Gull, T. R.; Heap, S. R.; Krueger, V. L.; Maran, S. P.; Melcher, R. W.; Rebar, F. J.; Vitagliano, H. D.; Green, R. F.; Wolff, S. C.; Hutchings, J. B.; Jenkins, E. B.; Linsky, J. L.; Moos, H. W.; Roesler, F.; Shine, R. A.; Timothy, J. G.; Weistrop, D. E.; Bottema, M.; Meyer, W.

    1986-01-01

    The preliminary design for the Space Telescope Imaging Spectrograph (STIS), which has been selected by NASA for definition study for future flight as a second-generation instrument on the Hubble Space Telescope (HST), is presented. STIS is a two-dimensional spectrograph that will operate from 1050 A to 11,000 A at the limiting HST resolution of 0.05 arcsec FWHM, with spectral resolutions of 100, 1200, 20,000, and 100,000 and a maximum field-of-view of 50 x 50 arcsec. Its basic operating modes include echelle model, long slit mode, slitless spectrograph mode, coronographic spectroscopy, photon time-tagging, and direct imaging. Research objectives are active galactic nuclei, the intergalactic medium, global properties of galaxies, the origin of stellar systems, stelalr spectral variability, and spectrographic mapping of solar system processes.

  15. Imaging performance of an isotropic negative dielectric constant slab.

    Science.gov (United States)

    Shivanand; Liu, Huikan; Webb, Kevin J

    2008-11-01

    The influence of material and thickness on the subwavelength imaging performance of a negative dielectric constant slab is studied. Resonance in the plane-wave transfer function produces a high spatial frequency ripple that could be useful in fabricating periodic structures. A cost function based on the plane-wave transfer function provides a useful metric to evaluate the planar slab lens performance, and using this, the optimal slab dielectric constant can be determined.

  16. Comparing Spatial Predictions

    KAUST Repository

    Hering, Amanda S.

    2011-11-01

    Under a general loss function, we develop a hypothesis test to determine whether a significant difference in the spatial predictions produced by two competing models exists on average across the entire spatial domain of interest. The null hypothesis is that of no difference, and a spatial loss differential is created based on the observed data, the two sets of predictions, and the loss function chosen by the researcher. The test assumes only isotropy and short-range spatial dependence of the loss differential but does allow it to be non-Gaussian, non-zero-mean, and spatially correlated. Constant and nonconstant spatial trends in the loss differential are treated in two separate cases. Monte Carlo simulations illustrate the size and power properties of this test, and an example based on daily average wind speeds in Oklahoma is used for illustration. Supplemental results are available online. © 2011 American Statistical Association and the American Society for Qualitys.

  17. Selections from 2017: Hubble Survey Explores Distant Galaxies

    Science.gov (United States)

    Kohler, Susanna

    2017-12-01

    Editors note:In these last two weeks of 2017, well be looking at a few selections that we havent yet discussed on AAS Nova from among the most-downloaded paperspublished in AAS journals this year. The usual posting schedule will resume in January.CANDELS Multi-Wavelength Catalogs: Source Identification and Photometry in the CANDELS COSMOSSurvey FieldPublished January2017Main takeaway:A publication led byHooshang Nayyeri(UC Irvine and UC Riverside) early this year details acatalog of sources built using the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey(CANDELS), a survey carried out by cameras on board the Hubble Space Telescope. The catalogliststhe properties of 38,000 distant galaxies visiblewithin the COSMOS field, a two-square-degree equatorial field explored in depthto answer cosmological questions.Why its interesting:Illustration showing the three-dimensional map of the dark matter distribution in theCOSMOS field. [Adapted from NASA/ESA/R. Massey(California Institute of Technology)]The depth and resolution of the CANDELS observations areuseful for addressingseveral major science goals, including the following:Studying the most distant objects in the universe at the epoch of reionization in the cosmic dawn.Understanding galaxy formation and evolution during the peak epoch of star formation in the cosmic high noon.Studying star formation from deep ultravioletobservations and studying cosmology from supernova observations.Why CANDELS is a major endeavor:CANDELS isthe largest multi-cycle treasury program ever approved on the Hubble Space Telescope using over 900 orbits between 2010 and 2013 withtwo cameras on board the spacecraftto study galaxy formation and evolution throughout cosmic time. The CANDELS images are all publicly available, and the new catalogrepresents an enormous source of information about distant objectsin our universe.CitationH. Nayyeri et al 2017 ApJS 228 7. doi:10.3847/1538-4365/228/1/7

  18. HUBBLE SPACE TELESCOPE OBSERVATIONS OF MAIN-BELT COMET (596) SCHEILA

    International Nuclear Information System (INIS)

    Jewitt, David; Weaver, Harold; Mutchler, Max; Larson, Stephen; Agarwal, Jessica

    2011-01-01

    We present Hubble Space Telescope Observations of (596) Scheila during its recent dust outburst. The nucleus remained point-like with absolute magnitude H V = 8.85 ± 0.02 in our data, equal to the pre-outburst value, with no secondary fragments of diameter ≥100 m (for assumed albedos 0.04). We find a coma having a peak scattering cross section ∼2.2x10 4 km 2 , corresponding to a mass in micron-sized particles of ∼4x10 7 kg. The particles are deflected by solar radiation pressure on projected spatial scales ∼2x10 4 km, in the sunward direction, and swept from the vicinity of the nucleus on timescales of weeks. The coma fades by ∼30% between observations on UT 2010 December 27 and 2011 January 4. The observed mass loss is inconsistent with an origin either by rotational instability of the nucleus or by electrostatic ejection of regolith charged by sunlight. Dust ejection could be caused by the sudden but unexplained exposure of buried ice. However, the data are most simply explained by the impact, at ∼5 km s -1 , of a previously unknown asteroid ∼35 m in diameter.

  19. Varying Constants, Gravitation and Cosmology

    Directory of Open Access Journals (Sweden)

    Jean-Philippe Uzan

    2011-03-01

    Full Text Available Fundamental constants are a cornerstone of our physical laws. Any constant varying in space and/or time would reflect the existence of an almost massless field that couples to matter. This will induce a violation of the universality of free fall. Thus, it is of utmost importance for our understanding of gravity and of the domain of validity of general relativity to test for their constancy. We detail the relations between the constants, the tests of the local position invariance and of the universality of free fall. We then review the main experimental and observational constraints that have been obtained from atomic clocks, the Oklo phenomenon, solar system observations, meteorite dating, quasar absorption spectra, stellar physics, pulsar timing, the cosmic microwave background and big bang nucleosynthesis. At each step we describe the basics of each system, its dependence with respect to the constants, the known systematic effects and the most recent constraints that have been obtained. We then describe the main theoretical frameworks in which the low-energy constants may actually be varying and we focus on the unification mechanisms and the relations between the variation of different constants. To finish, we discuss the more speculative possibility of understanding their numerical values and the apparent fine-tuning that they confront us with.

  20. 3D-HST: A Wide-field Grism Spectroscopic Survey with the Hubble Space Telescope

    Science.gov (United States)

    Brammer, Gabriel B.; van Dokkum, Pieter G.; Franx, Marijn; Fumagalli, Mattia; Patel, Shannon; Rix, Hans-Walter; Skelton, Rosalind E.; Kriek, Mariska; Nelson, Erica; Schmidt, Kasper B.; Bezanson, Rachel; da Cunha, Elisabete; Erb, Dawn K.; Fan, Xiaohui; Förster Schreiber, Natascha; Illingworth, Garth D.; Labbé, Ivo; Leja, Joel; Lundgren, Britt; Magee, Dan; Marchesini, Danilo; McCarthy, Patrick; Momcheva, Ivelina; Muzzin, Adam; Quadri, Ryan; Steidel, Charles C.; Tal, Tomer; Wake, David; Whitaker, Katherine E.; Williams, Anna

    2012-06-01

    We present 3D-HST, a near-infrared spectroscopic Treasury program with the Hubble Space Telescope for studying the physical processes that shape galaxies in the distant universe. 3D-HST provides rest-frame optical spectra for a sample of ~7000 galaxies at 1 < z < 3.5, the epoch when ~60% of all star formation took place, the number density of quasars peaked, the first galaxies stopped forming stars, and the structural regularity that we see in galaxies today must have emerged. 3D-HST will cover three quarters (625 arcmin2) of the CANDELS Treasury survey area with two orbits of primary WFC3/G141 grism coverage and two to four orbits with the ACS/G800L grism in parallel. In the IR, these exposure times yield a continuum signal-to-noise ratio of ~5 per resolution element at H 140 ~ 23.1 and a 5σ emission-line sensitivity of ~5 × 10-17 erg s-1 cm-2 for typical objects, improving by a factor of ~2 for compact sources in images with low sky background levels. The WFC3/G141 spectra provide continuous wavelength coverage from 1.1 to 1.6 μm at a spatial resolution of ~0farcs13, which, combined with their depth, makes them a unique resource for studying galaxy evolution. We present an overview of the preliminary reduction and analysis of the grism observations, including emission-line and redshift measurements from combined fits to the extracted grism spectra and photometry from ancillary multi-wavelength catalogs. The present analysis yields redshift estimates with a precision of σ(z) = 0.0034(1 + z), or σ(v) ≈ 1000 km s-1. We illustrate how the generalized nature of the survey yields near-infrared spectra of remarkable quality for many different types of objects, including a quasar at z = 4.7, quiescent galaxies at z ~ 2, and the most distant T-type brown dwarf star known. The combination of the CANDELS and 3D-HST surveys will provide the definitive imaging and spectroscopic data set for studies of the 1 < z < 3.5 universe until the launch of the James Webb Space

  1. Observational constraints on f(T) gravity from varying fundamental constants

    Energy Technology Data Exchange (ETDEWEB)

    Nunes, Rafael C.; Bonilla, Alexander [Universidade Federal de Juiz de Fora, Departamento de Fisica, Juiz de Fora, MG (Brazil); Pan, Supriya [Indian Institute of Science Education and Research, Kolkata, Department of Physical Sciences, Mohanpur, West Bengal (India); Saridakis, Emmanuel N. [Pontificia Universidad de Catolica de Valparaiso, Instituto de Fisica, Valparaiso (Chile); National Technical University of Athens, Physics Division, Athens (Greece); Baylor University, CASPER, Physics Department, Waco, TX (United States)

    2017-04-15

    We use observations related to the variation of fundamental constants, in order to impose constraints on the viable and most used f(T) gravity models. In particular, for the fine-structure constant we use direct measurements obtained by different spectrographic methods, while for the effective Newton constant we use a model-dependent reconstruction, using direct observational Hubble parameter data, in order to investigate its temporal evolution. We consider two f(T) models and we quantify their deviation from Λ CDM cosmology through a sole parameter. Our analysis reveals that this parameter can be slightly different from its Λ CDM value, however, the best-fit value is very close to the Λ CDM one. Hence, f(T) gravity is consistent with observations, nevertheless, as every modified gravity, it may exhibit only small deviations from Λ CDM cosmology, a feature that must be taken into account in any f(T) model-building. (orig.)

  2. Stabilized power constant alimentation; Alimentation regulee a puissance constante

    Energy Technology Data Exchange (ETDEWEB)

    Roussel, L [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1968-06-01

    The study and realization of a stabilized power alimentation variable from 5 to 100 watts are described. In order to realize a constant power drift of Lithium compensated diodes, we have searched a 1 per cent precision of regulation and a response time minus than 1 sec. Recent components like Hall multiplicator and integrated amplifiers give this possibility and it is easy to use permutable circuits. (author) [French] On decrit l'etude et la realisation d'une alimentation a puissance constante reglable dans une gamme de 5 a 100 watts. Prevue pour le drift a puissance constante des diodes compensees au lithium, l'etude a ete menee en vue d'obtenir une precision de regulation de 1 pour cent et un temps de reponse inferieur a la seconde. Des systemes recents tels que multiplicateurs a effet Hall et circuits integres ont permis d'atteindre ce but tout en facilitant l'emploi de modules interchangeables. (auteur)

  3. From the Rydberg constant to the fundamental constants metrology

    International Nuclear Information System (INIS)

    Nez, F.

    2005-06-01

    This document reviews the theoretical and experimental achievements of the author since the beginning of his scientific career. This document is dedicated to the spectroscopy of hydrogen, deuterium and helium atoms. The first part is divided into 6 sub-sections: 1) the principles of hydrogen spectroscopy, 2) the measurement of the 2S-nS/nD transitions, 3) other optical frequency measurements, 4) our contribution to the determination of the Rydberg constant, 5) our current experiment on the 1S-3S transition, 6) the spectroscopy of the muonic hydrogen. Our experiments have improved the accuracy of the Rydberg Constant by a factor 25 in 15 years and we have achieved the first absolute optical frequency measurement of a transition in hydrogen. The second part is dedicated to the measurement of the fine structure constant and the last part deals with helium spectroscopy and the search for optical references in the near infrared range. (A.C.)

  4. The varying cosmological constant: a new approximation to the Friedmann equations and universe model

    Science.gov (United States)

    Öztaş, Ahmet M.; Dil, Emre; Smith, Michael L.

    2018-05-01

    We investigate the time-dependent nature of the cosmological constant, Λ, of the Einstein Field Equation (EFE). Beginning with the Einstein-Hilbert action as our fundamental principle we develop a modified version of the EFE allowing the value of Λ to vary as a function of time, Λ(t), indirectly, for an expanding universe. We follow the evolving Λ presuming four-dimensional space-time and a flat universe geometry and present derivations of Λ(t) as functions of the Hubble constant, matter density, and volume changes which can be traced back to the radiation epoch. The models are more detailed descriptions of the Λ dependence on cosmological factors than previous, allowing calculations of the important parameters, Ωm and Ωr, to deep lookback times. Since we derive these without the need for extra dimensions or other special conditions our derivations are useful for model evaluation with astronomical data. This should aid resolution of several difficult problems of astronomy such as the best value for the Hubble constant at present and at recombination.

  5. Learning Read-constant Polynomials of Constant Degree modulo Composites

    DEFF Research Database (Denmark)

    Chattopadhyay, Arkadev; Gavaldá, Richard; Hansen, Kristoffer Arnsfelt

    2011-01-01

    Boolean functions that have constant degree polynomial representation over a fixed finite ring form a natural and strict subclass of the complexity class \\textACC0ACC0. They are also precisely the functions computable efficiently by programs over fixed and finite nilpotent groups. This class...... is not known to be learnable in any reasonable learning model. In this paper, we provide a deterministic polynomial time algorithm for learning Boolean functions represented by polynomials of constant degree over arbitrary finite rings from membership queries, with the additional constraint that each variable...

  6. THE 2012 HUBBLE ULTRA DEEP FIELD (UDF12): OBSERVATIONAL OVERVIEW

    Energy Technology Data Exchange (ETDEWEB)

    Koekemoer, Anton M. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Ellis, Richard S.; Schenker, Matthew A. [Department of Astrophysics, California Institute of Technology, MS 249-17, Pasadena, CA 91125 (United States); McLure, Ross J.; Dunlop, James S.; Bowler, Rebecca A. A.; Rogers, Alexander B.; Curtis-Lake, Emma; Cirasuolo, Michele; Wild, V.; Targett, T. [Institute for Astronomy, University of Edinburgh, Royal Observatory, Edinburgh EH9 3HJ (United Kingdom); Robertson, Brant E.; Schneider, Evan; Stark, Daniel P. [Department of Astronomy and Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States); Ono, Yoshiaki; Ouchi, Masami [Institute for Cosmic Ray Research, University of Tokyo, Kashiwa City, Chiba 277-8582 (Japan); Charlot, Stephane [UPMC-CNRS, UMR7095, Institut d' Astrophysique de Paris, F-75014, Paris (France); Furlanetto, Steven R. [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States)

    2013-11-01

    We present the 2012 Hubble Ultra Deep Field campaign (UDF12), a large 128 orbit Cycle 19 Hubble Space Telescope program aimed at extending previous Wide Field Camera 3 (WFC3)/IR observations of the UDF by quadrupling the exposure time in the F105W filter, imaging in an additional F140W filter, and extending the F160W exposure time by 50%, as well as adding an extremely deep parallel field with the Advanced Camera for Surveys (ACS) in the F814W filter with a total exposure time of 128 orbits. The principal scientific goal of this project is to determine whether galaxies reionized the universe; our observations are designed to provide a robust determination of the star formation density at z ∼> 8, improve measurements of the ultraviolet continuum slope at z ∼ 7-8, facilitate the construction of new samples of z ∼ 9-10 candidates, and enable the detection of sources up to z ∼ 12. For this project we committed to combining these and other WFC3/IR imaging observations of the UDF area into a single homogeneous dataset to provide the deepest near-infrared observations of the sky. In this paper we present the observational overview of the project and describe the procedures used in reducing the data as well as the final products that were produced. We present the details of several special procedures that we implemented to correct calibration issues in the data for both the WFC3/IR observations of the main UDF field and our deep 128 orbit ACS/WFC F814W parallel field image, including treatment for persistence, correction for time-variable sky backgrounds, and astrometric alignment to an accuracy of a few milliarcseconds. We release the full, combined mosaics comprising a single, unified set of mosaics of the UDF, providing the deepest near-infrared blank-field view of the universe currently achievable, reaching magnitudes as deep as AB ∼ 30 mag in the near-infrared, and yielding a legacy dataset on this field.

  7. THE 2012 HUBBLE ULTRA DEEP FIELD (UDF12): OBSERVATIONAL OVERVIEW

    International Nuclear Information System (INIS)

    Koekemoer, Anton M.; Ellis, Richard S.; Schenker, Matthew A.; McLure, Ross J.; Dunlop, James S.; Bowler, Rebecca A. A.; Rogers, Alexander B.; Curtis-Lake, Emma; Cirasuolo, Michele; Wild, V.; Targett, T.; Robertson, Brant E.; Schneider, Evan; Stark, Daniel P.; Ono, Yoshiaki; Ouchi, Masami; Charlot, Stephane; Furlanetto, Steven R.

    2013-01-01

    We present the 2012 Hubble Ultra Deep Field campaign (UDF12), a large 128 orbit Cycle 19 Hubble Space Telescope program aimed at extending previous Wide Field Camera 3 (WFC3)/IR observations of the UDF by quadrupling the exposure time in the F105W filter, imaging in an additional F140W filter, and extending the F160W exposure time by 50%, as well as adding an extremely deep parallel field with the Advanced Camera for Surveys (ACS) in the F814W filter with a total exposure time of 128 orbits. The principal scientific goal of this project is to determine whether galaxies reionized the universe; our observations are designed to provide a robust determination of the star formation density at z ∼> 8, improve measurements of the ultraviolet continuum slope at z ∼ 7-8, facilitate the construction of new samples of z ∼ 9-10 candidates, and enable the detection of sources up to z ∼ 12. For this project we committed to combining these and other WFC3/IR imaging observations of the UDF area into a single homogeneous dataset to provide the deepest near-infrared observations of the sky. In this paper we present the observational overview of the project and describe the procedures used in reducing the data as well as the final products that were produced. We present the details of several special procedures that we implemented to correct calibration issues in the data for both the WFC3/IR observations of the main UDF field and our deep 128 orbit ACS/WFC F814W parallel field image, including treatment for persistence, correction for time-variable sky backgrounds, and astrometric alignment to an accuracy of a few milliarcseconds. We release the full, combined mosaics comprising a single, unified set of mosaics of the UDF, providing the deepest near-infrared blank-field view of the universe currently achievable, reaching magnitudes as deep as AB ∼ 30 mag in the near-infrared, and yielding a legacy dataset on this field

  8. Mach's Principle to Hubble's Law and Light Relativity

    Science.gov (United States)

    Zhang, Tianxi

    2018-01-01

    Discovery of the redshift-distance relation to be linear (i.e. Hubble's law) for galaxies in the end of 1920s instigated us to widely accept expansion of the universe, originated from a big bang around 14 billion years ago. Finding of the redshift-distance relation to be weaker than linear for distant type Ia supernovae nearly two decades ago further precipitated us to largely agree with recent acceleration of the universe, driven by the mysterious dark energy. The time dilation measured for supernovae has been claimed as a direct evidence for the expansion of the universe, but scientists could not explain why quasars and gamma-ray bursts had not similar time dilations. Recently, an anomaly was found in the standard template for the width of supernova light curves to be proportional to the wavelength, which exactly removed the time dilation of supernovae and hence was strongly inconsistent with the conventional redshift mechanism. In this study, we have derived a new redshift-distance relation from Mach's principle with light relativity that describes the effect of light on spacetime as well as the influence of disturbed spacetime on the light inertia or frequency. A moving object or photon, because of its continuously keeping on displacement, disturbs the rest of the entire universe or distorts/curves the spacetime. The distorted or curved spacetime then generates an effective gravitational force to act back on the moving object or photon, so that reduces the object inertia or photon frequency. Considering the disturbance of spacetime by a photon is extremely weak, we have modelled the effective gravitational force to be Newtonian and derived the new redshift-distance relation that can not only perfectly explain the redshift-distance measurement of distant type Ia supernovae but also inherently obtain Hubble's law as an approximate at small redshift. Therefore, the result obtained from this study does neither support the acceleration of the universe nor the

  9. From the Rydberg constant to the fundamental constants metrology; De la constante de Rydberg a la metrologie des constantes fondamentales

    Energy Technology Data Exchange (ETDEWEB)

    Nez, F

    2005-06-15

    This document reviews the theoretical and experimental achievements of the author since the beginning of his scientific career. This document is dedicated to the spectroscopy of hydrogen, deuterium and helium atoms. The first part is divided into 6 sub-sections: 1) the principles of hydrogen spectroscopy, 2) the measurement of the 2S-nS/nD transitions, 3) other optical frequency measurements, 4) our contribution to the determination of the Rydberg constant, 5) our current experiment on the 1S-3S transition, 6) the spectroscopy of the muonic hydrogen. Our experiments have improved the accuracy of the Rydberg Constant by a factor 25 in 15 years and we have achieved the first absolute optical frequency measurement of a transition in hydrogen. The second part is dedicated to the measurement of the fine structure constant and the last part deals with helium spectroscopy and the search for optical references in the near infrared range. (A.C.)

  10. Systematics of constant roll inflation

    Science.gov (United States)

    Anguelova, Lilia; Suranyi, Peter; Wijewardhana, L. C. R.

    2018-02-01

    We study constant roll inflation systematically. This is a regime, in which the slow roll approximation can be violated. It has long been thought that this approximation is necessary for agreement with observations. However, recently it was understood that there can be inflationary models with a constant, and not necessarily small, rate of roll that are both stable and compatible with the observational constraint ns ≈ 1. We investigate systematically the condition for such a constant-roll regime. In the process, we find a whole new class of inflationary models, in addition to the known solutions. We show that the new models are stable under scalar perturbations. Finally, we find a part of their parameter space, in which they produce a nearly scale-invariant scalar power spectrum, as needed for observational viability.

  11. Computing magnetic anisotropy constants of single molecule magnets

    Indian Academy of Sciences (India)

    We present here a theoretical approach to compute the molecular magnetic anisotropy parameters, and for single molecule magnets in any given spin eigenstate of exchange spin Hamiltonian. We first describe a hybrid constant -valence bond (VB) technique of solving spin Hamiltonians employing full spatial ...

  12. Strain fluctuations and elastic constants

    Energy Technology Data Exchange (ETDEWEB)

    Parrinello, M.; Rahman, A.

    1982-03-01

    It is shown that the elastic strain fluctuations are a direct measure of elastic compliances in a general anisotropic medium; depending on the ensemble in which the fluctuation is measured either the isothermal or the adiabatic compliances are obtained. These fluctuations can now be calculated in a constant enthalpy and pressure, and hence, constant entropy, ensemble due to recent develpments in the molecular dynamics techniques. A calculation for a Ni single crystal under uniform uniaxial 100 tensile or compressive load is presented as an illustration of the relationships derived between various strain fluctuations and the elastic modulii. The Born stability criteria and the behavior of strain fluctuations are shown to be related.

  13. Finding our Origins with the Hubble and James Webb Space Telescopes

    Science.gov (United States)

    Gardner, Jonathan P.

    2009-01-01

    NASA is planning a successor to the Hubble Space Telescope designed to study the origins of galaxies, stars, planets and life in the universe. In this talk, Dr. Gardner will discuss the origin and evolution of galaxies, beginning with the Big Bang and tracing what we have learned with Hubble through to the present day. He will show that results from studies with Hubble have led to plans for its successor, the James Webb Space Telescope. Webb is scheduled to launch in 2014, and is designed to find the first galaxies that formed in the distant past and to penetrate the dusty clouds of gas where stars are still forming today. He will compare Webb to Hubble, and discuss recent progress in the construction of the observatory.

  14. Hubble Servicing Challenges Drive Innovation of Shuttle Rendezvous Techniques

    Science.gov (United States)

    Goodman, John L.; Walker, Stephen R.

    2009-01-01

    Hubble Space Telescope (HST) servicing, performed by Space Shuttle crews, has contributed to what is arguably one of the most successful astronomy missions ever flown. Both nominal and contingency proximity operations techniques were developed to enable successful servicing, while lowering the risk of damage to HST systems, and improve crew safety. Influencing the development of these techniques were the challenges presented by plume impingement and HST performance anomalies. The design of both the HST and the Space Shuttle was completed before the potential of HST contamination and structural damage by shuttle RCS jet plume impingement was fully understood. Relative navigation during proximity operations has been challenging, as HST was not equipped with relative navigation aids. Since HST reached orbit in 1990, proximity operations design for servicing missions has evolved as insight into plume contamination and dynamic pressure has improved and new relative navigation tools have become available. Servicing missions have provided NASA with opportunities to gain insight into servicing mission design and development of nominal and contingency procedures. The HST servicing experiences and lessons learned are applicable to other programs that perform on-orbit servicing and rendezvous, both human and robotic.

  15. The Hubble Space Telescope from concept to success

    CERN Document Server

    Shayler, David J

    2016-01-01

    The highly successful Hubble Space Telescope was meant to change our view and understanding of the universe. Within weeks of its launch in 1990, however, the space community was shocked to find out that the primary mirror of the telescope was flawed. It was only the skills of scientists and engineers on the ground and the daring talents of astronauts sent to service the telescope in December 1993 that saved the mission. For over two decades NASA had developed the capabilities to service a payload in orbit. This involved numerous studies and the creation of a ground-based infrastructure to support the challenging missions. Unique tools and EVA hardware supported the skills developed in crew training that then enabled astronauts to complete a demanding series of spacewalks. Drawing upon first hand interviews with those closely involved in the project over thirty years ago this story explains the development of the servicing mission concept and the hurdles that had to be overcome to not only launch the telescope...

  16. Spike: Artificial intelligence scheduling for Hubble space telescope

    Science.gov (United States)

    Johnston, Mark; Miller, Glenn; Sponsler, Jeff; Vick, Shon; Jackson, Robert

    1990-01-01

    Efficient utilization of spacecraft resources is essential, but the accompanying scheduling problems are often computationally intractable and are difficult to approximate because of the presence of numerous interacting constraints. Artificial intelligence techniques were applied to the scheduling of the NASA/ESA Hubble Space Telescope (HST). This presents a particularly challenging problem since a yearlong observing program can contain some tens of thousands of exposures which are subject to a large number of scientific, operational, spacecraft, and environmental constraints. New techniques were developed for machine reasoning about scheduling constraints and goals, especially in cases where uncertainty is an important scheduling consideration and where resolving conflicts among conflicting preferences is essential. These technique were utilized in a set of workstation based scheduling tools (Spike) for HST. Graphical displays of activities, constraints, and schedules are an important feature of the system. High level scheduling strategies using both rule based and neural network approaches were developed. While the specific constraints implemented are those most relevant to HST, the framework developed is far more general and could easily handle other kinds of scheduling problems. The concept and implementation of the Spike system are described along with some experiments in adapting Spike to other spacecraft scheduling domains.

  17. Constraining the evolution of the Hubble Parameter using cosmic chronometer

    Science.gov (United States)

    Scarlata, Claudia; Dickinson, Hugh

    2018-01-01

    The Lambda-CDM model of Big Bang cosmology relies heavily on the assumption that two components - dark energy and dark matter - encompass 95% of the energy density of the Universe. Despite the dominant influence of these components, their nature is still entirely unknown.We present the initial results from a project that aims to provide new insights regarding the Dark Energy component. We do this by deriving independent constraints on the time-evolution of the Hubble parameter (H_0) using the “cosmic chronometer” method.By analyzing the HST NIR spectra from a large archival sample of passively evolving galaxies in distinct redshift bins between 1.3 and 2 we measure the typical stellar population ages (A) for the galaxies in each bin. The differential evolution of stellar population age with redshift (dA/dz) can be used to infer the corresponding evolution of H_0 which will provide important constraints on the nature of Dark Energy and its equation of state.

  18. HUBBLE SPACE TELESCOPE PHOTOMETRY OF GLOBULAR CLUSTERS IN M81

    International Nuclear Information System (INIS)

    Nantais, Julie B.; Huchra, John P.; Zezas, Andreas; Gazeas, Kosmas; Strader, Jay

    2011-01-01

    We perform aperture photometry and profile fitting on 419 globular cluster (GC) candidates with m V ≤ 23 mag identified in Hubble Space Telescope/Advanced Camera for Surveys BVI imaging, and estimate the effective radii of the clusters. We identify 85 previously known spectroscopically confirmed clusters, and newly identify 136 objects as good cluster candidates within the 3σ color and size ranges defined by the spectroscopically confirmed clusters, yielding a total of 221 probable GCs. The luminosity function peak for the 221 probable GCs with estimated total dereddening applied is V ∼ (20.26 ± 0.13) mag, corresponding to a distance of ∼3.7 ± 0.3 Mpc. The blue and red GC candidates, and the metal-rich and metal-poor spectroscopically confirmed clusters, respectively, are similar in half-light radius. Red confirmed clusters are about 6% larger in median half-light radius than blue confirmed clusters, and red and blue good GC candidates are nearly identical in half-light radius. The total population of confirmed and 'good' candidates shows an increase in half-light radius as a function of galactocentric distance.

  19. Universal relation between spectroscopic constants

    Indian Academy of Sciences (India)

    (3) The author has used eq. (6) of his paper to calculate De. This relation leads to a large deviation from the correct value depending upon the extent to which experimental values are known. Guided by this fact, in our work, we used experimentally observed De values to derive the relation between spectroscopic constants.

  20. Stabilized power constant alimentation; Alimentation regulee a puissance constante

    Energy Technology Data Exchange (ETDEWEB)

    Roussel, L. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1968-06-01

    The study and realization of a stabilized power alimentation variable from 5 to 100 watts are described. In order to realize a constant power drift of Lithium compensated diodes, we have searched a 1 per cent precision of regulation and a response time minus than 1 sec. Recent components like Hall multiplicator and integrated amplifiers give this possibility and it is easy to use permutable circuits. (author) [French] On decrit l'etude et la realisation d'une alimentation a puissance constante reglable dans une gamme de 5 a 100 watts. Prevue pour le drift a puissance constante des diodes compensees au lithium, l'etude a ete menee en vue d'obtenir une precision de regulation de 1 pour cent et un temps de reponse inferieur a la seconde. Des systemes recents tels que multiplicateurs a effet Hall et circuits integres ont permis d'atteindre ce but tout en facilitant l'emploi de modules interchangeables. (auteur)

  1. Dynamics of the cosmological and Newton’s constant

    International Nuclear Information System (INIS)

    Smolin, Lee

    2016-01-01

    A modification of general relativity is presented in which Newton’s constant, G, and the cosmological constant, Λ, become a conjugate pair of dynamical variables. These are functions of a global time, hence the theory is presented in the framework of shape dynamics, which trades many-fingered time for a local scale invariance and an overall reparametrization of the global time. As a result, due to the fact that these global dynamical variables are canonically conjugate, the field equations are consistent. The theory predicts a relationship with no free parameters between the rates of change of Newton’s constant and the cosmological constant, in terms of the spatial average of the matter Lagrangian density. (paper)

  2. Evolution of the solar constant

    International Nuclear Information System (INIS)

    Newman, M.J.

    1978-01-01

    The ultimate source of the energy utilized by life on Earth is the Sun, and the behavior of the Sun determines to a large extent the conditions under which life originated and continues to thrive. What can be said about the history of the Sun. Has the solar constant, the rate at which energy is received by the Earth from the Sun per unit area per unit time, been constant at its present level since Archean times. Three mechanisms by which it has been suggested that the solar energy output can vary with time are discussed, characterized by long (approx. 10 9 years), intermediate (approx. 10 8 years), and short (approx. years to decades) time scales

  3. Calculation of magnetic hyperfine constants

    International Nuclear Information System (INIS)

    Bufaical, R.F.; Maffeo, B.; Brandi, H.S.

    1975-01-01

    The magnetic hyperfine constants of the V sub(K) center in CaF 2 , SrF 2 and BaF 2 have been calculated assuming a phenomenological model, based on the F 2 - 'central molucule', to describe the wavefunction of the defect. Calculations have shown that introduction of a small degree of covalence, between this central molecule and neighboring ions, is necessary to improve the electronic structure description of the defect. It was also shown that the results for the hyperfine constants are strongly dependent on the relaxations of the ions neighboring the central molecule; these relaxations have been determined by fitting the experimental data. The present results are compared with other previous calculations where similar and different theoretical methods have been used

  4. On the gravitational constant change

    International Nuclear Information System (INIS)

    Milyukov, V.K.

    1986-01-01

    The nowadays viewpoint on the problem of G gravitational constant invariability is presented in brief. The methods and results of checking of the G dependence on the nature of substance (checking of the equivalence principle), G dependepce on distance (checking of Newton gravity law) and time (cosmological experiments) are presented. It is pointed out that all performed experiments don't give any reasons to have doubts in G constancy in space and time and G independence on the nature of the substance

  5. Photodissociation constant of NO2

    International Nuclear Information System (INIS)

    Nootebos, M.A.; Bange, P.

    1992-01-01

    The velocity of the dissociation of NO 2 into ozone and NO mainly depends on the ultraviolet sunlight quantity, and with that the cloudiness. A correct value for this reaction constant is important for the accurate modelling of O 3 - and NO 2 -concentrations in plumes of electric power plants, in particular in the case of determination of the amount of photochemical summer smog. An advanced signal processing method (deconvolution, correlation) was applied on the measurements. The measurements were carried out from aeroplanes

  6. Thick Disks in the Hubble Space Telescope Frontier Fields

    Energy Technology Data Exchange (ETDEWEB)

    Elmegreen, Bruce G. [IBM Research Division, T.J. Watson Research Center, 1101 Kitchawan Road, Yorktown Heights, NY 10598 (United States); Elmegreen, Debra Meloy; Tompkins, Brittany; Jenks, Leah G., E-mail: bge@us.ibm.com, E-mail: elmegreen@vassar.edu [Department of Physics and Astronomy, Vassar College, Poughkeepsie, NY 12604 (United States)

    2017-09-20

    Thick disk evolution is studied using edge-on galaxies in two Hubble Space Telescope Frontier Field Parallels. The galaxies were separated into 72 clumpy types and 35 spiral types with bulges. Perpendicular light profiles in F435W, F606W, and F814W ( B , V , and I ) passbands were measured at 1 pixel intervals along the major axes and fitted to sech{sup 2} functions convolved with the instrument line spread function (LSF). The LSF was determined from the average point spread function of ∼20 stars in each passband and field, convolved with a line of uniform brightness to simulate disk blurring. A spread function for a clumpy disk was also used for comparison. The resulting scale heights were found to be proportional to galactic mass, with the average height for a 10{sup 10±0.5} M {sub ⊙} galaxy at z = 2 ± 0.5 equal to 0.63 ± 0.24 kpc. This value is probably the result of a blend between thin and thick disk components that cannot be resolved. Evidence for such two-component structure is present in an inverse correlation between height and midplane surface brightness. Models suggest that the thick disk is observed best between the clumps, and there the average scale height is 1.06 ± 0.43 kpc for the same mass and redshift. A 0.63 ± 0.68 mag V − I color differential with height is also evidence for a mixture of thin and thick components.

  7. HUBBLE SPACE TELESCOPE ASTROMETRY OF THE PROCYON SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Bond, Howard E. [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States); Gilliland, Ronald L.; Kozhurina-Platais, Vera; Nelan, Edmund P. [Space Telescope Science Institute, 3700 San Martin Dr., Baltimore, MD 21218 (United States); Schaefer, Gail H. [The CHARA Array of Georgia State University, Mount Wilson Observatory, Mount Wilson, CA 91023 (United States); Demarque, Pierre; Girard, Terrence M. [Department of Astronomy, Yale University, Box 208101, New Haven, CT 06520 (United States); Holberg, Jay B. [Lunar and Planetary Laboratory, University of Arizona, 1541 E. University Blvd., Tucson, AZ 85721 (United States); Gudehus, Donald [Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30303 (United States); Mason, Brian D. [U.S. Naval Observatory, 3450 Massachusetts Ave., Washington, DC 20392 (United States); Burleigh, Matthew R.; Barstow, Martin A., E-mail: heb11@psu.edu [Department of Physics and Astronomy, University of Leicester, Leicester LE1 7RH (United Kingdom)

    2015-11-10

    The nearby star Procyon is a visual binary containing the F5 IV-V subgiant Procyon A, orbited in a 40.84-year period by the faint DQZ white dwarf (WD) Procyon B. Using images obtained over two decades with the Hubble Space Telescope, and historical measurements back to the 19th century, we have determined precise orbital elements. Combined with measurements of the parallax and the motion of the A component, these elements yield dynamical masses of 1.478 ± 0.012 M{sub ⊙} and 0.592 ± 0.006 M{sub ⊙} for A and B, respectively. The mass of Procyon A agrees well with theoretical predictions based on asteroseismology and its temperature and luminosity. Use of a standard core-overshoot model agrees best for a surprisingly high amount of core overshoot. Under these modeling assumptions, Procyon A’s age is ∼2.7 Gyr. Procyon B’s location in the H-R diagram is in excellent agreement with theoretical cooling tracks for WDs of its dynamical mass. Its position in the mass–radius plane is also consistent with theory, assuming a carbon–oxygen core and a helium-dominated atmosphere. Its progenitor’s mass was 1.9–2.2 M{sub ⊙}, depending on its amount of core overshoot. Several astrophysical puzzles remain. In the progenitor system, the stars at periastron were separated by only ∼5 AU, which might have led to tidal interactions and even mass transfer; yet there is no direct evidence that these have occurred. Moreover the orbital eccentricity has remained high (∼0.40). The mass of Procyon B is somewhat lower than anticipated from the initial-to-final-mass relation seen in open clusters. The presence of heavy elements in its atmosphere requires ongoing accretion, but the place of origin is uncertain.

  8. Hubble Space Telescope EVA Power Ratchet Tool redesign

    Science.gov (United States)

    Richards, Paul W.; Park, Chan; Brown, Lee

    The Power Ratchet Tool (PRT) is a self contained, power-driven, 3/8 inch drive ratchet wrench which will be used by astronauts during Extravehicular Activities (EVA). This battery-powered tool is controlled by a dedicated electonic controller. The PRT was flown during the Hubble Space Telescope (HST) Deployment Mission STS-31 to deploy the solar arrays if the automatic mechanisms failed. The PRT is currently intended for use during the first HST Servicing Mission STS-61 as a general purpose power tool. The PRT consists of three major components; the wrench, the controller, and the battery module. Fourteen discrete combinations of torque, turns, and speed may be programmed into the controller before the EVA. The crewmember selects the desired parameter profile by a switch mounted on the controller. The tool may also be used in the manual mode as a non-powered ratchet wrench. The power is provided by a silver-zinc battery module, which fits into the controller and is replaceable during an EVA. The original PRT did not meet the design specification of torque output and hours of operation. To increase efficiency and reliability the PRT underwent a redesign effort. The majority of this effort focused on the wrench. The original PRT drive train consisted of a low torque, high speed brushless DC motor, a face gear set, and a planocentric gear assembly. The total gear reduction was 300:1. The new PRT wrench consists of a low speed, high torque brushless DC motor, two planetary gear sets and a bevel gear set. The total gear reduction is now 75:1. A spline clutch has also been added to disengage the drive train in the manual mode. The design changes to the controller will consist of only those modifications necessary to accomodate the redesigned wrench.

  9. Hubble Space Telescope Astrometry of the Procyon System

    Science.gov (United States)

    Bond, Howard E.; Gilliland, Ronald L.; Schaefer, Gail H.; Demarque, Pierre; Girard, Terrence M.; Holberg, Jay B.; Gudehus, Donald; Mason, Brian D.; Kozhurina-Platais, Vera; Burleigh, Matthew R.

    2015-01-01

    The nearby star Procyon is a visual binary containing the F5 IV-V subgiant Procyon A, orbited in a 40.84-year period by the faint DQZ white dwarf (WD) Procyon B. Using images obtained over two decades with the Hubble Space Telescope, and historical measurements back to the 19th century, we have determined precise orbital elements. Combined with measurements of the parallax and the motion of the A component, these elements yield dynamical masses of 1.478 plus or minus 0.012M and 0.592 plus or minus 0.006M for A and B, respectively. The mass of Procyon A agrees well with theoretical predictions based on asteroseismology and its temperature and luminosity. Use of a standard core-overshoot model agrees best for a surprisingly high amount of core overshoot. Under these modeling assumptions, Procyon A's age is approximately 2.7 Gyr. Procyon B's location in the H-R diagram is in excellent agreement with theoretical cooling tracks for WDs of its dynamical mass. Its position in the mass-radius plane is also consistent with theory, assuming a carbon-oxygen core and a helium-dominated atmosphere. Its progenitor's mass was 1.9-2.2M, depending on its amount of core overshoot. Several astrophysical puzzles remain. In the progenitor system, the stars at periastron were separated by only approximately AU, which might have led to tidal interactions and even mass transfer; yet there is no direct evidence that these have occurred. Moreover the orbital eccentricity has remained high (approximately 0.40). The mass of Procyon B is somewhat lower than anticipated from the initial-to-final-mass relation seen in open clusters. The presence of heavy elements in its atmosphere requires ongoing accretion, but the place of origin is uncertain.

  10. Distance determinations to shield galaxies from Hubble space telescope imaging

    Energy Technology Data Exchange (ETDEWEB)

    McQuinn, Kristen B. W.; Skillman, Evan D. [Minnesota Institute for Astrophysics, School of Physics and Astronomy, University of Minnesota, 116 Church Street, S.E., Minneapolis, MN 55455 (United States); Cannon, John M.; Cave, Ian [Department of Physics and Astronomy, Macalester College, 1600 Grand Avenue, Saint Paul, MN 55105 (United States); Dolphin, Andrew E. [Raytheon Company, 1151 E. Hermans Road, Tucson, AZ 85756 (United States); Salzer, John J. [Department of Astronomy, Indiana University, 727 East 3rd Street, Bloomington, IN 47405 (United States); Haynes, Martha P.; Adams, Elizabeth; Giovanelli, Riccardo [Center for Radiophysics and Space Research, Space Sciences Building, Cornell University, Ithaca, NY 14853 (United States); Elson, Ed C. [Astrophysics, Cosmology and Gravity Centre (ACGC), Department of Astronomy, University of Cape Town, Private Bag X3, Rondebosch 7701 (South Africa); Ott, Juërgen [National Radio Astronomy Observatory, P.O. Box O, 1003 Lopezville Road, Socorro, NM 87801 (United States); Saintonge, Amélie, E-mail: kmcquinn@astro.umn.edu [Max-Planck-Institute for Astrophysics, D-85741 Garching (Germany)

    2014-04-10

    The Survey of H I in Extremely Low-mass Dwarf (SHIELD) galaxies is an ongoing multi-wavelength program to characterize the gas, star formation, and evolution in gas-rich, very low-mass galaxies. The galaxies were selected from the first ∼10% of the H I Arecibo Legacy Fast ALFA (ALFALFA) survey based on their inferred low H I mass and low baryonic mass, and all systems have recent star formation. Thus, the SHIELD sample probes the faint end of the galaxy luminosity function for star-forming galaxies. Here, we measure the distances to the 12 SHIELD galaxies to be between 5 and 12 Mpc by applying the tip of the red giant method to the resolved stellar populations imaged by the Hubble Space Telescope. Based on these distances, the H I masses in the sample range from 4 × 10{sup 6} to 6 × 10{sup 7} M {sub ☉}, with a median H I mass of 1 × 10{sup 7} M {sub ☉}. The tip of the red giant branch distances are up to 73% farther than flow-model estimates in the ALFALFA catalog. Because of the relatively large uncertainties of flow-model distances, we are biased toward selecting galaxies from the ALFALFA catalog where the flow model underestimates the true distances. The measured distances allow for an assessment of the native environments around the sample members. Five of the galaxies are part of the NGC 672 and NGC 784 groups, which together constitute a single structure. One galaxy is part of a larger linear ensemble of nine systems that stretches 1.6 Mpc from end to end. Three galaxies reside in regions with 1-9 neighbors, and four galaxies are truly isolated with no known system identified within a radius of 1 Mpc.

  11. Hubble Space Telescope Image, Supernova Remnant Cassiopeia A

    Science.gov (United States)

    2000-01-01

    The colorful streamers that float across the sky in this photo taken by NASA's Hubble Space Telescope (HST) were created by the universe's biggest firecracker, the titanic supernova explosion of a massive star. The light from the exploding star reached Earth 320 years ago, nearly a century before the United States celebrated its birth with a bang. The dead star's shredded remains are called Cassiopeia A, or 'Cas A' for short. Cas A is the youngest known supernova remnant in our Milky Way Galaxy and resides 10,000 light-years away in the constellation Cassiopeia, so the star actually blew up 10,000 years before the light reached Earth in the late 1600s. This HST image of Cas A shows for the first time that the debris is arranged into thousands of small, cooling knots of gas. This material eventually will be recycled into building new generations of stars and planets. Our own Sun and planets are constructed from the debris of supernovae that exploded billions of years ago. This photo shows the upper rim of the super nova remnant's expanding shell. Near the top of the image are dozens of tiny clumps of matter. Each small clump, originally just a small fragment of the star, is tens of times larger than the diameter of our solar system. The colors highlight parts of the debris where chemical elements are glowing. The dark blue fragments, for example, are richest in oxygen; the red material is rich in sulfur. The images were taken with the Wide Field and Planetary Camera 2 in January 2000 and January 2002. Image Credit: NASA and HST team (Stoics/AURA). Acknowledgment: R. Fesen (Darmouth) and J. Morse ( Univ. of Colorado).

  12. Determination and characterization of the Hubble Space Telescope pointing stability

    Science.gov (United States)

    Bradley, A. J.; Connor, C. T.; del Toro, Y.; Andersen, G. C.; Bely, Pierre Y.; Decker, J.; Franz, O. G.; Wasserman, L. H.; van Altena, William F.

    The Hubble Space Telescope (HST) was designed to maintian a pointing stability (jitter) of 0.007 arc seconds rms throughout every observing period, which can last from a few seconds to several orbits. On-orbit measurements indicate that the hardware excitation induced by the reaction wheels. gyros, high gain antennae, science instrument mechanisms and tape recorders are well within specifications. Unexpectedly, the solar arrays because the dominant source of jitter. Every passage through an orbital terminator produces vibrations which emanate from the solar arrays due to thermal effects, which affect the relative positional stability. Broadband frequencies centered about 0.11 and 0.65 Hz were detected in the frequency content of the vehicle jitter. On-board modifications to the control law have attenuated the disturbance torques and reduced the vehicle jitter close to specification. Replacement of the solar arrays in December, 1993, should eliminate the torque distubances. Astrometric science observations are extremely susceptible to corruption from vehicle jitter. The removal of vehicle jitter from astrometric Transfer function scans of binary stars is explained in detail. A binary star separation of 16 milli-seconds of arc has been achieved, a separation resolution of 10 to 12 milli-seconds of arc appears feasible, with a binary star magnitude of 9 m(sub V). The achievement of this resolution is in part due to vehicle jitter removal. Comparison of vehicle jitter measurements from the position path of the vehicle control law, or from the guiding Fine Guidance Sensors (FGS), are shown to be equivalent to approximately 0.001 arc second.

  13. HUBBLE AND KECK TELESCOPE OBSERVATIONS OF ACTIVE ASTEROID 288P/300163 (2006 VW139)

    International Nuclear Information System (INIS)

    Agarwal, Jessica; Jewitt, David; Weaver, Harold; Mutchler, Max; Larson, Stephen

    2016-01-01

    We present Hubble Space Telescope (HST) and Keck 10 m telescope observations of active asteroid 288P/300163 (2006 VW139) taken to examine ejected dust. The nucleus is a C-type object with absolute magnitude H V = 17.0 ± 0.1 and estimated diameter ∼2.6 km (for assumed visual geometric albedo p V = 0.04). Variations in the brightness of the nucleus at the 10%–15% level are significant in both 2011 December and 2012 October but we possess too few data to distinguish variations caused by activity from those caused by rotation. The dust scattering cross-section in 2011 December is ∼40 km 2 , corresponding to a dust mass ∼9 × 10 6 kg (88 μm mean particle radius assumed). The FWHM of the debris sheet varies from ∼100 km near the nucleus to ∼1000 km 30″ (40,000 km) east of it. Dust dynamical models indicate ejection speeds between 0.06 and 0.3 m s −1 , particle sizes between 10 and 300 μm and an inverse square-root relation between particle size and velocity. Overall, the data are most simply explained by prolonged, low velocity ejection of dust, starting in or before 2011 July and continuing until at least 2011 October. These properties are consistent with the sublimation of near-surface ice aided by centrifugal forces. The high spatial resolution of our HST images (52 km pixel −1 ) reveals details that remained hidden in previous ground-based observations, such as the extraordinarily small vertical extent of the dust sheet, ejection speeds well below the nucleus escape speed, and the possibility of a binary nucleus

  14. HUBBLE AND KECK TELESCOPE OBSERVATIONS OF ACTIVE ASTEROID 288P/300163 (2006 VW139)

    Energy Technology Data Exchange (ETDEWEB)

    Agarwal, Jessica [Max Planck Institute for Solar System Research, Justus-von-Liebig-Weg 3, D-37077 Göttingen (Germany); Jewitt, David [Department Earth, Planetary and Space Sciences, UCLA, 595 Charles Young Drive East, Box 951567 Los Angeles, CA 90095-1567 (United States); Weaver, Harold [The Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, MD 20723 (United States); Mutchler, Max [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Larson, Stephen, E-mail: agarwal@mps.mpg.de [Lunar and Planetary Laboratory, University of Arizona, 1629 E. University Blvd. Tucson AZ 85721-0092 (United States)

    2016-01-15

    We present Hubble Space Telescope (HST) and Keck 10 m telescope observations of active asteroid 288P/300163 (2006 VW139) taken to examine ejected dust. The nucleus is a C-type object with absolute magnitude H{sub V} = 17.0 ± 0.1 and estimated diameter ∼2.6 km (for assumed visual geometric albedo p{sub V} = 0.04). Variations in the brightness of the nucleus at the 10%–15% level are significant in both 2011 December and 2012 October but we possess too few data to distinguish variations caused by activity from those caused by rotation. The dust scattering cross-section in 2011 December is ∼40 km{sup 2}, corresponding to a dust mass ∼9 × 10{sup 6} kg (88 μm mean particle radius assumed). The FWHM of the debris sheet varies from ∼100 km near the nucleus to ∼1000 km 30″ (40,000 km) east of it. Dust dynamical models indicate ejection speeds between 0.06 and 0.3 m s{sup −1}, particle sizes between 10 and 300 μm and an inverse square-root relation between particle size and velocity. Overall, the data are most simply explained by prolonged, low velocity ejection of dust, starting in or before 2011 July and continuing until at least 2011 October. These properties are consistent with the sublimation of near-surface ice aided by centrifugal forces. The high spatial resolution of our HST images (52 km pixel{sup −1}) reveals details that remained hidden in previous ground-based observations, such as the extraordinarily small vertical extent of the dust sheet, ejection speeds well below the nucleus escape speed, and the possibility of a binary nucleus.

  15. HUBBLE SPACE TELESCOPE NICMOS POLARIZATION OBSERVATIONS OF THREE EDGE-ON MASSIVE YOUNG STELLAR OBJECTS

    International Nuclear Information System (INIS)

    Simpson, Janet P.; Colgan, Sean W. J.; Erickson, Edwin F.; Burton, Michael G.; Cotera, Angela S.; Hines, Dean C.; Whitney, Barbara A.

    2009-01-01

    Massive young stellar objects (YSOs), like low-mass YSOs, appear to be surrounded by optically thick envelopes and/or disks and have regions, often bipolar, that are seen in polarized scattered light at near-infrared wavelengths. We are using the 0.''2 spatial resolution of the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) on Hubble Space Telescope to examine the structure of the disks and outflow regions of massive YSOs in star-forming regions within a few kpc of the Sun. Here we report on 2 μm polarimetry of NGC 6334 V and S255 IRS1. NGC 6334 V consists of a double-lobed bright reflection nebula seen against a dark region, probably an optically thick molecular cloud. Our polarization measurements show that the illuminating star lies ∼2'' south of the line connecting the two lobes; we do not detect this star at 2 μm, but there are a small radio source and a mid-infrared source at this location. S255 IRS1 consists of two YSOs (NIRS1 and NIRS3) with overlapping scattered light lobes and luminosities corresponding to early B stars. Included in IRS1 is a cluster of stars from whose polarization we determine the local magnetic field direction. Neither of the YSOs has its scattered light lobes aligned with this magnetic field. The line connecting the scattered light lobes of NIRS1 is twisted symmetrically around the star; the best explanation is that the star is part of a close binary and the outflow axis of NIRS1 is precessing as a result of non-coplanar disk and orbit. The star NIRS3 is also offset from the line connecting its two scattered light lobes. We suggest that all three YSOs show evidence of episodic ejection of material as they accrete from dense, optically thick envelopes.

  16. Photometric and structural properties of NGC 6544: A combined VVV-Hubble space telescope study

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, Roger E.; Mauro, Francesco; Geisler, Doug [Departamento de Astronomía, Universidad de Concepción, Casilla 160-C, Concepción (Chile); Moni Bidin, Christian [Instituto de Astronomía, Universidad Católica del Norte, Av. Angamos 0610, Antofagasta (Chile); Dotter, Aaron [Research School of Astronomy and Astrophysics, The Australian National University, Canberra ACT 2611 (Australia); Bonatto, Charles [Departamento de Astronomia, Universidade Federal de Rio Grande do Sul, Av. Bento Gonçalves 9500, Porto Alegre 91501-970, RS (Brazil)

    2014-07-01

    We combine archival Hubble Space Telescope imaging with wide-field near-infrared photometry to study the neglected metal-poor Galactic globular cluster NGC 6544. A high spatial resolution map of differential reddening over the inner portion of the cluster is constructed, revealing variations of up to half of the total reddening, and the resulting corrected color-magnitude diagrams reveal a sparse blue horizontal branch and centrally concentrated blue straggler population, verified via relative proper motions. Using the corrected photometry to investigate the cluster distance, reddening, and age via direct comparison to well-calibrated photometry of clusters with similar metallicities, we estimate (m – M){sub 0} = 11.96, E(B – V) = 0.79, and an age coeval with M13 to within the relevant uncertainties. Although our data are insufficient to place tight constraints on the reddening law toward NGC 6544, we find no strong evidence that it is non-standard at optical or near-infrared wavelengths. We also provide near-infrared fiducial sequences extending nearly 2 mag below the cluster main sequence turnoff, generated from a statistically decontaminated sample of cluster stars. Lastly, we redetermine the cluster center and construct a radial number density profile which is well fit by an atypically flat power law with a slope of about 1.7. We discuss this result, together with a flattened main sequence luminosity function and inverted mass function, in the context of mass segregation and tidal stripping via interactions with Milky Way potential.

  17. HUBBLE CLICKS IMAGES OF IO SWEEPING ACROSS JUPITER

    Science.gov (United States)

    2002-01-01

    While hunting for volcanic plumes on Io, NASA's Hubble Space Telescope captured these images of the volatile moon sweeping across the giant face of Jupiter. Only a few weeks before these dramatic images were taken, the orbiting telescope snapped a portrait of one of Io's volcanoes spewing sulfur dioxide 'snow.' These stunning images of the planetary duo are being released to commemorate the ninth anniversary of the Hubble telescope's launch on April 24, 1990. All of these images were taken with the Wide Field and Planetary Camera 2. The three overlapping snapshots show in crisp detail Io passing above Jupiter's turbulent clouds. The close-up picture of Io (bottom right) reveal a 120-mile-high (200-kilometer) plume of sulfur dioxide 'snow' emanating from Pillan, one of the moon's active volcanoes. 'Other observations have inferred sulfur dioxide 'snow' in Io's plumes, but this image offers direct observational evidence for sulfur dioxide 'snow' in an Io plume,' explains John R. Spencer of Lowell Observatory in Flagstaff, Ariz. A Trip Around Jupiter The three snapshots of the volcanic moon rounding Jupiter were taken over a 1.8-hour time span. Io is roughly the size of Earth's moon but 2,000 times farther away. In two of the images, Io appears to be skimming Jupiter's cloud tops, but it's actually 310,000 miles (500,000 kilometers) away. Io zips around Jupiter in 1.8 days, whereas the moon circles Earth every 28 days. The conspicuous black spot on Jupiter is Io's shadow and is about the size of the moon itself (2,262 miles or 3,640 kilometers across). This shadow sails across the face of Jupiter at 38,000 mph (17 kilometers per second). The smallest details visible on Io and Jupiter measure 93 miles (150 kilometers) across, or about the size of Connecticut. These images were further sharpened through image reconstruction techniques. The view is so crisp that one would have to stand on Io to see this much detail on Jupiter with the naked eye. The bright patches on Io

  18. Observational constraints on holographic dark energy with varying gravitational constant

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Jianbo; Xu, Lixin [Institute of Theoretical Physics, School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian, 116024 (China); Saridakis, Emmanuel N. [College of Mathematics and Physics, Chongqing University of Posts and Telecommunications, Chongqing, 400065 (China); Setare, M.R., E-mail: lvjianbo819@163.com, E-mail: msaridak@phys.uoa.gr, E-mail: rezakord@ipm.ir, E-mail: lxxu@dlut.edu.cn [Department of Science of Bijar, University of Kurdistan, Bijar (Iran, Islamic Republic of)

    2010-03-01

    We use observational data from Type Ia Supernovae (SN), Baryon Acoustic Oscillations (BAO), Cosmic Microwave Background (CMB) and observational Hubble data (OHD), and the Markov Chain Monte Carlo (MCMC) method, to constrain the cosmological scenario of holographic dark energy with varying gravitational constant. We consider both flat and non-flat background geometry, and we present the corresponding constraints and contour-plots of the model parameters. We conclude that the scenario is compatible with observations. In 1σ we find Ω{sub Λ0} = 0.72{sup +0.03}{sub −0.03}, Ω{sub k0} = −0.0013{sup +0.0130}{sub −0.0040}, c = 0.80{sup +0.19}{sub −0.14} and Δ{sub G}≡G'/G = −0.0025{sup +0.0080}{sub −0.0050}, while for the present value of the dark energy equation-of-state parameter we obtain w{sub 0} = −1.04{sup +0.15}{sub −0.20}.

  19. Cryptography in constant parallel time

    CERN Document Server

    Applebaum, Benny

    2013-01-01

    Locally computable (NC0) functions are 'simple' functions for which every bit of the output can be computed by reading a small number of bits of their input. The study of locally computable cryptography attempts to construct cryptographic functions that achieve this strong notion of simplicity and simultaneously provide a high level of security. Such constructions are highly parallelizable and they can be realized by Boolean circuits of constant depth.This book establishes, for the first time, the possibility of local implementations for many basic cryptographic primitives such as one-way func

  20. Low power constant fraction discriminator

    International Nuclear Information System (INIS)

    Krishnan, Shanti; Raut, S.M.; Mukhopadhyay, P.K.

    2001-01-01

    This paper describes the design of a low power ultrafast constant fraction discriminator, which significantly reduces the power consumption. A conventional fast discriminator consumes about 1250 MW of power whereas this low power version consumes about 440 MW. In a multi detector system, where the number of discriminators is very large, reduction of power is of utmost importance. This low power discriminator is being designed for GRACE (Gamma Ray Atmospheric Cerenkov Experiments) telescope where 1000 channels of discriminators are required. A novel method of decreasing power consumption has been described. (author)

  1. Can coupling constants be related

    International Nuclear Information System (INIS)

    Nandi, Satyanarayan; Ng, Wing-Chiu.

    1978-06-01

    We analyze the conditions under which several coupling constants in field theory can be related to each other. When the relation is independent of the renormalization point, the relation between any g and g' must satisfy a differential equation as follows from the renormalization group equations. Using this differential equation, we investigate the criteria for the feasibility of a power-series relation for various theories, especially the Weinberg-Salam type (including Higgs bosons) with an arbitrary number of quark and lepton flavors. (orig./WL) [de

  2. Exact constants in approximation theory

    CERN Document Server

    Korneichuk, N

    1991-01-01

    This book is intended as a self-contained introduction for non-specialists, or as a reference work for experts, to the particular area of approximation theory that is concerned with exact constants. The results apply mainly to extremal problems in approximation theory, which in turn are closely related to numerical analysis and optimization. The book encompasses a wide range of questions and problems: best approximation by polynomials and splines; linear approximation methods, such as spline-approximation; optimal reconstruction of functions and linear functionals. Many of the results are base

  3. Hydrodynamic constants from cosmic censorship

    International Nuclear Information System (INIS)

    Nakamura, Shin

    2008-01-01

    We study a gravity dual of Bjorken flow of N=4 SYM-theory plasma. We point out that the cosmic censorship hypothesis may explain why the regularity of the dual geometry constrains the hydrodynamic constants. We also investigate the apparent horizon of the dual geometry. We find that the dual geometry constructed on Fefferman-Graham (FG) coordinates is not appropriate for examination of the apparent horizon since the coordinates do not cover the trapped region. However, the preliminary analysis on FG coordinates suggests that the location of the apparent horizon is very sensitive to the hydrodynamic parameters. (author)

  4. Value of the Cosmological Constant in Emergent Quantum Gravity

    Energy Technology Data Exchange (ETDEWEB)

    Hogan, Craig [Fermilab

    2018-03-30

    It is suggested that the exact value of the cosmological constant could be derived from first principles, based on entanglement of the Standard Model field vacuum with emergent holographic quantum geometry. For the observed value of the cosmological constant, geometrical information is shown to agree closely with the spatial information density of the QCD vacuum, estimated in a free-field approximation. The comparison is motivated by a model of exotic rotational fluctuations in the inertial frame that can be precisely tested in laboratory experiments. Cosmic acceleration in this model is always positive, but fluctuates with characteristic coherence length $\\approx 100$km and bandwidth $\\approx 3000$ Hz.

  5. Crew of Hubble Space Telescope servicing mission visits Europe

    Science.gov (United States)

    1994-01-01

    The Hubble Space telescope servicing mission in December (STS-61) was a great success and the fully refurbished orbiting telescope produced absolutely remarkable first results just two weeks ago. The 7-member crew who carried out the mission will soon be in Europe to share their experience with the Press, ESA space specialists and the European space community. Public conferences will also be held in Switzerland, the home country of ESA astronaut Claude Nicollier. The visit of the STS-61 crew is scheduled as follows: Friday 11 February, 1994 - ESA Paris, France Presentation and Press Conference Location: ESA, 8/10 Rue Mario Nikis, 75015 Paris time: 16:00 hrs - 17:30 hrs contact: ESA, Public Relations Office Tel. (+33) 1 42 73 71 55 Fax. (+33) 1 42 73 76 90 Monday 14 February, 1994 - British Aerospace, Bristol, United Kingdom Presentation and Press Conference Location: British Aerospace, FPC 333, Filton, Bristol BS12 7QW time: 10:00 hrs - 12:00 hrs contact: BAe, Public Relations Tel. (+44) 272 36 33 69 Tel. (+44) 272 36 33 68 Tuesday 15 February, 1994 - ESA/ESTEC, Noordwijk, the Netherlands Presentation and Press Conference Location: Noordwijk Space Expo, Keplerlaan 3, 2201 AZ Noordwijk, the Netherlands time: 09:30 hrs - 12:00 hrs contact: ESTEC Public Relations Office Tel. (+31) 1719 8 3006 Fax. (+31) 1719 17 400 Wednesday 16 February, 1944 - ESO, Garching - Munich, Germany Presentation and Press Conference Location: European Southern Observatory, Karl- Schwarzschild-Str. 2, 85748 Garching -Munich, Germany time: to be decided contact: ESO Information Service Tel. (+49) 89 32 006 276 Fax. (+49) 89 320 23 62 Thursday 17 February, 1994 - Bern, Switzerland a. Presentation and Press Conference Location: Hotel Bern, Zeughausgasse 9, 3001 Bern, Switzerland time: 09:30 hrs contact: Press & Information Service of the Federal Dept. for Education & Sciences Tel. (+41) 31 322 80 34 Fax. (+41) 31 312 30 15 b. Public conference Location: University of Bern, Institute of Physics

  6. Launch-Off-Need Shuttle Hubble Rescue Mission: Medical Issues

    Science.gov (United States)

    Hamilton, Douglas; Gillis, David; Ilcus, Linda; Perchonok, Michele; Polk, James; Brandt, Keith; Powers, Edward; Stepaniak, Phillip

    2008-01-01

    The Space Shuttle Hubble repair mission (STS-125) is unique in that a rescue mission (STS-400) has to be ready to launch before STS-125 life support runs out should the vehicle become stranded. The shuttle uses electrical power derived from fuel cells that use cryogenic oxygen and hydrogen (CRYO) to run all subsystems including the Environmental Control System. If the STS-125 crew cannot return to Earth due to failure of a critical subsystem, they must power down all nonessential systems and wait to be rescued by STS-400. This power down will cause the cabin temperature to be 60 F or less and freeze the rest of the vehicle, preventing it from attempting a reentry. After an emergency has been declared, STS-125 must wait at least 7 days to power down since that is the earliest that STS-400 can be launched. Problem The delayed power down of STS-125 causes CYRO to be consumed at high rates and limits the survival time after STS-400 launches to 10 days or less. CRYO will run out sooner every day that the STS-400 launch is delayed (weather at launch, technical issues etc.). To preserve CRYO and lithium hydroxide (LiOH - carbon dioxide removal) the crew will perform no exercise to reduce their metabolic rates, yet each deconditioned STS-125 crewmember must perform an EVA to rescue himself. The cabin may be cold for 10 days, which may cause shivering, increasing the metabolic rate of the STS-125 crew. Solution To preserve LiOH, the STS-125 manifest includes nutrition bars with low carbohydrate content to maintain crew respiratory quotient (RQ) below 0.85 as opposed to the usual shuttle galley food which is rich in carbohydrates and keeps the RQ at approximately 0.95. To keep the crew more comfortable in the cold vehicle warm clothing also has been included. However, with no exercise and limited diet, the deconditioned STS-125 crew returning on STS-400 may not be able to egress the vehicle autonomously requiring a supplemented crash-and-rescue capability.

  7. WHITE DWARF-RED DWARF SYSTEMS RESOLVED WITH THE HUBBLE SPACE TELESCOPE. II. FULL SNAPSHOT SURVEY RESULTS

    International Nuclear Information System (INIS)

    Farihi, J.; Hoard, D. W.; Wachter, S.

    2010-01-01

    Results are presented for a Hubble Space Telescope Advanced Camera for Surveys high-resolution imaging campaign of 90 white dwarfs with known or suspected low-mass stellar and substellar companions. Of the 72 targets that remain candidate and confirmed white dwarfs with near-infrared excess, 43 are spatially resolved into two or more components, and a total of 12 systems are potentially triples. For 68 systems where a comparison is possible, 50% have significant photometric distance mismatches between their white dwarf and M dwarf components, suggesting that white dwarf parameters derived spectroscopically are often biased due to the cool companion. Interestingly, 9 of the 30 binaries known to have emission lines are found to be visual pairs and hence widely separated, indicating an intrinsically active cool star and not irradiation from the white dwarf. There is a possible, slight deficit of earlier spectral types (bluer colors) among the spatially unresolved companions, exactly the opposite of expectations if significant mass is transferred to the companion during the common envelope phase. Using the best available distance estimates, the low-mass companions to white dwarfs exhibit a bimodal distribution in projected separation. This result supports the hypothesis that during the giant phases of the white dwarf progenitor, any unevolved companions either migrate inward to short periods of hours to days, or outward to periods of hundreds to thousands of years. No intermediate projected separations of a few to several AU are found among these pairs. However, a few double M dwarfs (within triples) are spatially resolved in this range, empirically demonstrating that such separations were readily detectable among the binaries with white dwarfs. A straightforward and testable prediction emerges: all spatially unresolved, low-mass stellar and substellar companions to white dwarfs should be in short-period orbits. This result has implications for substellar companion and

  8. Relaxing a large cosmological constant

    International Nuclear Information System (INIS)

    Bauer, Florian; Sola, Joan; Stefancic, Hrvoje

    2009-01-01

    The cosmological constant (CC) problem is the biggest enigma of theoretical physics ever. In recent times, it has been rephrased as the dark energy (DE) problem in order to encompass a wider spectrum of possibilities. It is, in any case, a polyhedric puzzle with many faces, including the cosmic coincidence problem, i.e. why the density of matter ρ m is presently so close to the CC density ρ Λ . However, the oldest, toughest and most intriguing face of this polyhedron is the big CC problem, namely why the measured value of ρ Λ at present is so small as compared to any typical density scale existing in high energy physics, especially taking into account the many phase transitions that our Universe has undergone since the early times, including inflation. In this Letter, we propose to extend the field equations of General Relativity by including a class of invariant terms that automatically relax the value of the CC irrespective of the initial size of the vacuum energy in the early epochs. We show that, at late times, the Universe enters an eternal de Sitter stage mimicking a tiny positive cosmological constant. Thus, these models could be able to solve the big CC problem without fine-tuning and have also a bearing on the cosmic coincidence problem. Remarkably, they mimic the ΛCDM model to a large extent, but they still leave some characteristic imprints that should be testable in the next generation of experiments.

  9. Formas estructurales de fuerza constante

    Directory of Open Access Journals (Sweden)

    Zalewski, Waclaw

    1963-05-01

    Full Text Available The author seeks to prove the need to obtain the most essential form in the various types of structures by applying a number of rational principles, of which the constant stress principle is one of the most decisive. The structural form should be a logical consequence of all its functional circumstances, and this requires a clear understanding of the general behaviour of each part of the structure, and also of the main stresses which operate on it, considered as a unitary whole. To complete his theoretical argument, the author gives some examples, in the design of which the criterion of constant stress has been adopted. The author considers the various aspects which are involved in obtaining a structural design that satisfies given functional and aesthetic requirements. In doing so he refers to his personal experience within Poland, and infers technical principles of general validity which should determine the rational design of the form, as an integrated aspect of the structural pattern. The projects which illustrate this paper are Polish designs of undoubted constructive significance, in which the principle of constant stress has been applied. Finally the author condenses his whole theory in a simple and straightforward practical formula, which should be followed if a truly rational form is to be achieved: the constancy of stress in the various structural elements.El autor se esfuerza en mostrar la necesidad de llegar a la forma real en las distintas estructuras siguiendo una serie de principios racionales, entre los que domina el criterio de la fuerza constante. La forma ha de ser una consecuencia lógica en todos sus aspectos, y esto exige un claro conocimiento del comportamiento general de cada una de las partes de la estructura, y de los esfuerzos generales que dominan en la misma al considerarla como un todo. Para completar la exposición de orden teórico, el autor presenta algunos ejemplos en cuyo proyecto se ha seguido el criterio de

  10. Constant Proportion Debt Obligations (CPDOs)

    DEFF Research Database (Denmark)

    Cont, Rama; Jessen, Cathrine

    2012-01-01

    be made arbitrarily small—and thus the credit rating arbitrarily high—by increasing leverage, but the ratings obtained strongly depend on assumptions on the credit environment (high spread or low spread). More importantly, CPDO loss distributions are found to exhibit a wide range of tail risk measures......Constant Proportion Debt Obligations (CPDOs) are structured credit derivatives that generate high coupon payments by dynamically leveraging a position in an underlying portfolio of investment-grade index default swaps. CPDO coupons and principal notes received high initial credit ratings from...... the major rating agencies, based on complex models for the joint transition of ratings and spreads for all names in the underlying portfolio. We propose a parsimonious model for analysing the performance of CPDO strategies using a top-down approach that captures the essential risk factors of the CPDO. Our...

  11. Energy, stability and cosmological constant

    International Nuclear Information System (INIS)

    Deser, S.

    1982-01-01

    The definition of energy and its use in studying stability in general relativity are extended to the case when there is a nonvanishing cosmological constant Λ. Existence of energy is first demonstrated for any model (with arbitrary Λ). It is defined with respect to sets of solutions tending asymptotically to any background space possessing timelike Killing symmetry, and is both conserved and of flux integral form. When Λ O, small excitations about De Sitter space are stable inside the event horizon. Outside excitations can contribute negatively due to the Killing vector's flip at the horizon. This is a universal phenomenon associated with the possibility of Hawking radiation. Apart from this effect, the Λ>O theory appears to be stable, also at the semi-classical level. (author)

  12. Filament instability under constant loads

    Science.gov (United States)

    Monastra, A. G.; Carusela, M. F.; D’Angelo, M. V.; Bruno, L.

    2018-04-01

    Buckling of semi-flexible filaments appears in different systems and scales. Some examples are: fibers in geophysical applications, microtubules in the cytoplasm of eukaryotic cells and deformation of polymers freely suspended in a flow. In these examples, instabilities arise when a system’s parameter exceeds a critical value, being the Euler force the most known. However, the complete time evolution and wavelength of buckling processes are not fully understood. In this work we solve analytically the time evolution of a filament under a constant compressive force in the small amplitude approximation. This gives an insight into the variable force scenario in terms of normal modes. The evolution is highly sensitive to the initial configuration and to the magnitude of the compressive load. This model can be a suitable approach to many different real situations.

  13. Evolution of the solar 'constant'

    Energy Technology Data Exchange (ETDEWEB)

    Newman, M J

    1980-06-01

    Variations in solar luminosity over geological time are discussed in light of the effect of the solar constant on the evolution of life on earth. Consideration is given to long-term (5 - 7% in a billion years) increases in luminosity due to the conversion of hydrogen into helium in the solar interior, temporary enhancements to solar luminosity due to the accretion of matter from the interstellar medium at intervals on the order of 100 million years, and small-amplitude rapid fluctuations of luminosity due to the stochastic nature of convection on the solar surface. It is noted that encounters with dense interstellar clouds could have had serious consequences for life on earth due to the peaking of the accretion-induced luminosity variation at short wavelengths.

  14. Asympotics with positive cosmological constant

    Science.gov (United States)

    Bonga, Beatrice; Ashtekar, Abhay; Kesavan, Aruna

    2014-03-01

    Since observations to date imply that our universe has a positive cosmological constant, one needs an extension of the theory of isolated systems and gravitational radiation in full general relativity from the asymptotically flat to asymptotically de Sitter space-times. In current definitions, one mimics the boundary conditions used in asymptotically AdS context to conclude that the asymptotic symmetry group is the de Sitter group. However, these conditions severely restricts radiation and in fact rules out non-zero flux of energy, momentum and angular momentum carried by gravitational waves. Therefore, these formulations of asymptotically de Sitter space-times are uninteresting beyond non-radiative spacetimes. The situation is compared and contrasted with conserved charges and fluxes at null infinity in asymptotically flat space-times.

  15. The fundamental constants a mystery of physics

    CERN Document Server

    Fritzsch, Harald

    2009-01-01

    The speed of light, the fine structure constant, and Newton's constant of gravity — these are just three among the many physical constants that define our picture of the world. Where do they come from? Are they constant in time and across space? In this book, physicist and author Harald Fritzsch invites the reader to explore the mystery of the fundamental constants of physics in the company of Isaac Newton, Albert Einstein, and a modern-day physicist

  16. The Hubble Legacy Archive: Data Processing in the Era of AstroDrizzle

    Science.gov (United States)

    Strolger, Louis-Gregory; Hubble Legacy Archive Team, The Hubble Source Catalog Team

    2015-01-01

    The Hubble Legacy Archive (HLA) expands the utility of Hubble Space Telescope wide-field imaging data by providing high-level composite images and source lists, perusable and immediately available online. The latest HLA data release (DR8.0) marks a fundamental change in how these image combinations are produced, using DrizzlePac tools and Astrodrizzle to reduce geometric distortion and provide improved source catalogs for all publicly available data. We detail the HLA data processing and source list schemas, what products are newly updated and available for WFC3 and ACS, and how these data products are further utilized in the production of the Hubble Source Catalog. We also discuss plans for future development, including updates to WFPC2 products and field mosaics.

  17. Planck intermediate results XXIV. Constraints on variations in fundamental constants

    DEFF Research Database (Denmark)

    Ade, P. A. R.; Aghanim, N.; Arnaud, M.

    2015-01-01

    cosmological probes. We conclude that independent time variations of the fine structure constant and of the mass of the electron are constrained by Planck to Δ Α/Α = (3.6±3.7) x 10-3 and Δ me/me = (4 ±11) x 10-3 at the 68% confidence level. We also investigate the possibility of a spatial variation of the fine...

  18. The Carnegie Hubble Program: The Leavitt Law at 3.6 microns and 4.5 microns in the Large Magellanic Cloud

    Science.gov (United States)

    Scowcroft, Victoria; Freedman, Wendy L.; Madore, Barry F.; Monson, Andrew J.; Persson, S. E.; Seibert, Mark; Rigby, Jane R.; Sturch, Laura

    2011-01-01

    The Carnegie Hubble Program (CHP) is designed to improve the extragalactic distance scale using data from the post-cryogenic era of Spitzer. The ultimate goal is a determination of the Hubble constant to an accuracy of 2%. This paper is the first in a series on the Cepheid population of the Large Magellanic Cloud, and focuses on the period-luminosity relations (Leavitt laws) that will be used, in conjunction with observations of Milky Way Cepheids, to set the slope and zero-point of the Cepheid distance scale in the mid-infrared. To this end, we have obtained uniformly-sampled light curves for 85 LMC Cepheids, having periods between 6 and 140 days. Period- luminosity and period-color relations are presented in the 3.6 micron and 4.5 micron bands. We demonstrate that the 3.6 micron band is a superb distance indicator. The cyclical variation of the [3.6]-[4.5] color has been measured for the first time. We attribute the amplitude and phase of the color curves to the dissociation and recombination of CO molecules in the Cepheid s atmosphere. The CO affects only the 4.5 micron flux making it a potential metallicity indicator.

  19. THE CARNEGIE HUBBLE PROGRAM: THE LEAVITT LAW AT 3.6 μm AND 4.5 μm IN THE LARGE MAGELLANIC CLOUD

    International Nuclear Information System (INIS)

    Scowcroft, Victoria; Freedman, Wendy L.; Madore, Barry F.; Monson, Andrew J.; Persson, S. E.; Seibert, Mark; Rigby, Jane R.; Sturch, Laura

    2011-01-01

    The Carnegie Hubble Program is designed to improve the extragalactic distance scale using data from the post-cryogenic era of Spitzer. The ultimate goal is a determination of the Hubble constant to an accuracy of 2%. This paper is the first in a series on the Cepheid population of the Large Magellanic Cloud, and focusses on the period-luminosity (PL) relations (Leavitt laws) that will be used, in conjunction with observations of Milky Way Cepheids, to set the slope and zero point of the Cepheid distance scale in the mid-infrared. To this end, we have obtained uniformly sampled light curves for 85 LMC Cepheids, having periods between 6 and 140 days. PL and period-color relations are presented in the 3.6 μm and 4.5 μm bands. We demonstrate that the 3.6 μm band is a superb distance indicator. The cyclical variation of the [3.6]–[4.5] color has been measured for the first time. We attribute the amplitude and phase of the color curves to the dissociation and recombination of CO molecules in the Cepheid's atmosphere. The CO affects only the 4.5 μm flux making it a potential metallicity indicator.

  20. Precise Estimates of the Physical Parameters for the Exoplanet System HD 17156 Enabled by Hubble Space Telescope Fine Guidance Sensor Transit and Asteroseismic Observations

    DEFF Research Database (Denmark)

    Nutzman, Philip; Gilliland, Ronald L.; McCullough, Peter R.

    2011-01-01

    We present observations of three distinct transits of HD 17156b obtained with the Fine Guidance Sensors on board the Hubble Space Telescope. We analyzed both the transit photometry and previously published radial velocities to find the planet-star radius ratio Rp /R sstarf = 0.07454 ± 0.00035, in......We present observations of three distinct transits of HD 17156b obtained with the Fine Guidance Sensors on board the Hubble Space Telescope. We analyzed both the transit photometry and previously published radial velocities to find the planet-star radius ratio Rp /R sstarf = 0.07454 ± 0......-composition gas giant of the same mass and equilibrium temperature. For the three transits, we determine the times of mid-transit to a precision of 6.2 s, 7.6 s, and 6.9 s, and the transit times for HD 17156 do not show any significant departures from a constant period. The joint analysis of transit photometry...

  1. Synthetic Strategies for High Dielectric Constant Silicone Elastomers

    DEFF Research Database (Denmark)

    Madsen, Frederikke Bahrt

    synthetic strategies were developed in this Ph.D. thesis, in order to create silicone elastomers with high dielectric constants and thereby higher energy densities. The work focused on maintaining important properties such as dielectric loss, electrical breakdown strength and elastic modulus....... The methodology therefore involved chemically grafting high dielectric constant chemical groups onto the elastomer network, as this would potentially provide a stable elastomer system upon continued activation of the material. The first synthetic strategy involved the synthesis of a new type of cross...... extender’ that allowed for chemical modifications such as Cu- AAC. This route was promising for one-pot elastomer preparation and as a high dielectric constant additive to commercial silicone systems. The second approach used the borane-catalysed Piers-Rubinsztajn reaction to form spatially well...

  2. Hubble Space Telescope - Scientific, Technological and Social Contributions to the Public Discourse on Science

    Science.gov (United States)

    Wiseman, Jennifer

    2012-01-01

    The Hubble Space Telescope has unified the world with a sense of awe and wonder for 2 I years and is currently more scientifically powerful than ever. I will present highlights of discoveries made with the Hubble Space Telescope, including details of planetary weather, star formation, extra-solar planets, colliding galaxies, and a universe expanding with the acceleration of dark energy. I will also present the unique technical challenges and triumphs of this phenomenal observatory, and discuss how our discoveries in the cosmos affect our sense of human unity, significance, and wonder.

  3. 3D-HST: A WIDE-FIELD GRISM SPECTROSCOPIC SURVEY WITH THE HUBBLE SPACE TELESCOPE

    International Nuclear Information System (INIS)

    Brammer, Gabriel B.; Van Dokkum, Pieter G.; Skelton, Rosalind E.; Nelson, Erica; Bezanson, Rachel; Leja, Joel; Lundgren, Britt; Franx, Marijn; Fumagalli, Mattia; Patel, Shannon; Labbé, Ivo; Rix, Hans-Walter; Schmidt, Kasper B.; Da Cunha, Elisabete; Kriek, Mariska; Erb, Dawn K.; Fan, Xiaohui; Förster Schreiber, Natascha; Illingworth, Garth D.; Magee, Dan

    2012-01-01

    We present 3D-HST, a near-infrared spectroscopic Treasury program with the Hubble Space Telescope for studying the physical processes that shape galaxies in the distant universe. 3D-HST provides rest-frame optical spectra for a sample of ∼7000 galaxies at 1 2 ) of the CANDELS Treasury survey area with two orbits of primary WFC3/G141 grism coverage and two to four orbits with the ACS/G800L grism in parallel. In the IR, these exposure times yield a continuum signal-to-noise ratio of ∼5 per resolution element at H 140 ∼ 23.1 and a 5σ emission-line sensitivity of ∼5 × 10 –17 erg s –1 cm –2 for typical objects, improving by a factor of ∼2 for compact sources in images with low sky background levels. The WFC3/G141 spectra provide continuous wavelength coverage from 1.1 to 1.6 μm at a spatial resolution of ∼0.''13, which, combined with their depth, makes them a unique resource for studying galaxy evolution. We present an overview of the preliminary reduction and analysis of the grism observations, including emission-line and redshift measurements from combined fits to the extracted grism spectra and photometry from ancillary multi-wavelength catalogs. The present analysis yields redshift estimates with a precision of σ(z) = 0.0034(1 + z), or σ(v) ≈ 1000 km s –1 . We illustrate how the generalized nature of the survey yields near-infrared spectra of remarkable quality for many different types of objects, including a quasar at z = 4.7, quiescent galaxies at z ∼ 2, and the most distant T-type brown dwarf star known. The combination of the CANDELS and 3D-HST surveys will provide the definitive imaging and spectroscopic data set for studies of the 1 < z < 3.5 universe until the launch of the James Webb Space Telescope.

  4. Capacitive Cells for Dielectric Constant Measurement

    Science.gov (United States)

    Aguilar, Horacio Munguía; Maldonado, Rigoberto Franco

    2015-01-01

    A simple capacitive cell for dielectric constant measurement in liquids is presented. As an illustrative application, the cell is used for measuring the degradation of overheated edible oil through the evaluation of their dielectric constant.

  5. The Dielectric Constant of Lubrication Oils

    National Research Council Canada - National Science Library

    Carey, A

    1998-01-01

    The values of the dielectric constant of simple molecules is discussed first, along with the relationship between the dielectric constant and other physical properties such as boiling point, melting...

  6. Globally Coupled Chaotic Maps with Constant Force

    International Nuclear Information System (INIS)

    Li Jinghui

    2008-01-01

    We investigate the motion of the globally coupled maps (logistic map) with a constant force. It is shown that the constant force can cause multi-synchronization for the globally coupled chaotic maps studied by us.

  7. STABILITY CONSTANT OF THE TRISGLYCINATO METAL ...

    African Journals Online (AJOL)

    DR. AMINU

    overall stability constants of the complexes were found to be similar. Keywords: Glycinato, titration ... +. −. = 1 where Ka = dissociation constant of the amino acid. [ ]+. H = concentration of the .... Synthesis and techniques in inorganic chemistry.

  8. Observations of the Hubble Deep Field with the Infrared Space Observatory .2. Source detection and photometry

    DEFF Research Database (Denmark)

    Goldschmidt, P.; Oliver, S.J.; Serjeant, S.B.G.

    1997-01-01

    We present positions and fluxes of point sources found in the Infrared Space Observatory (ISO) images of the Hubble Deep Field (HDF) at 6.7 and 15 mu m. We have constructed algorithmically selected 'complete' flux-limited samples of 19 sources in the 15-mu m image, and seven sources in the 6.7-mu m...

  9. Discovery of Hubble's Law as a Series of Type III Errors

    Science.gov (United States)

    Belenkiy, Ari

    2015-01-01

    Recently much attention has been paid to the history of the discovery of Hubble's law--the linear relation between the rate of recession of the remote galaxies and distance to them from Earth. Though historians of cosmology now mention several names associated with this law instead of just one, the motivation of each actor of that remarkable…

  10. A guide to hubble space telescope objects their selection, location, and significance

    CERN Document Server

    Chen, James L

    2015-01-01

    From the authors of "How to Find the Apollo Landing Sites," this is a guide to connecting the view above with the history of recent scientific discoveries from the Hubble Space Telescope. Each selected HST photo is shown with a sky map and a photograph or drawing to illustrate where to find it and how it should appear from a backyard telescope. Here is the casual observer's chance to locate the deep space objects visually, and appreciate the historic Hubble photos in comparison to what is visible from a backyard telescope. HST objects of all types are addressed, from Messier objects, Caldwell objects, and NGC objects, and are arranged in terms of what can be seen during the seasons. Additionally, the reader is given an historical perspective on the work of Edwin Hubble, while locating and viewing the deep space objects that changed astronomy forever.  Countless people have seen the amazing photographs taken by the Hubble Space Telescope. But how many people can actually point out where in the sky ...

  11. The Great Attractor: At the Limits of Hubble's Law of the Expanding Universe.

    Science.gov (United States)

    Murdin, Paul

    1991-01-01

    Presents the origin and mathematics of Hubble's Law of the expanding universe. Discusses limitations to this law and the related concepts of standard candles, elliptical galaxies, and streaming motions, which are conspicuous deviations from the law. The third of three models proposed as explanations for streaming motions is designated: The Great…

  12. Directional effects in transitional resonance spectra and group constants

    International Nuclear Information System (INIS)

    Hill, R.N.; Oh, K.O.; Rhodes, J.D.

    1989-01-01

    Analytical exploratory investigations indicate that transition effects such as streaming cause a considerable spatial variation in the neutron spectra across resonances; streaming leads to opposite effects in the forward and backward directions. The neglect of this coupled spatial/angular variations of the transitory resonance spectra is an approximation that is common to all current group constant generation methodologies. This paper presents a description of the spatial/angular coupling of the neutron flux across isolated resonances. It appears to be necessary to differentiate between forward-and backward-directed neutron flux components or even to consider components in narrower angular cones. The effects are illustrated for an isolated actinide resonance in a simplified fast reactor blanket problem. The resonance spectra of the directional flux components φ + and φ - , and even more so the 90-deg cone components, are shown to deviate significantly from the infinite medium approximation, and the differences increase with penetration. The charges in φ + lead to a decreasing scattering group constant that enhances neutron transmission; the changes in φ - lead to an increasing group constant inhibiting backward scattering. Therefore, the changes in the forward-and backward-directed spectra both lead to increased neutron transmission. Conversely, the flux (φ = φ + +φ - ) is shown to agree closely with the infinite medium approximation both in the analytical formulas and in the numerical solution. The directional effect cancel in the summation. The forward-and backward-directed flux components are used as weighting spectra to illustrate the group constant changes for a single resonance

  13. Spatial Operations

    Directory of Open Access Journals (Sweden)

    Anda VELICANU

    2010-09-01

    Full Text Available This paper contains a brief description of the most important operations that can be performed on spatial data such as spatial queries, create, update, insert, delete operations, conversions, operations on the map or analysis on grid cells. Each operation has a graphical example and some of them have code examples in Oracle and PostgreSQL.

  14. Spatializing Time

    DEFF Research Database (Denmark)

    Thomsen, Bodil Marie Stavning

    2011-01-01

    The article analyses some of artist Søren Lose's photographic installations in which time, history and narration is reflected in the creation of allegoric, spatial relations.......The article analyses some of artist Søren Lose's photographic installations in which time, history and narration is reflected in the creation of allegoric, spatial relations....

  15. Spatial Computation

    Science.gov (United States)

    2003-12-01

    Computation and today’s microprocessors with the approach to operating system architecture, and the controversy between microkernels and monolithic kernels...Both Spatial Computation and microkernels break away a relatively monolithic architecture into in- dividual lightweight pieces, well specialized...for their particular functionality. Spatial Computation removes global signals and control, in the same way microkernels remove the global address

  16. HUBBLE TARANTULA TREASURY PROJECT. III. PHOTOMETRIC CATALOG AND RESULTING CONSTRAINTS ON THE PROGRESSION OF STAR FORMATION IN THE 30 DORADUS REGION

    Energy Technology Data Exchange (ETDEWEB)

    Sabbi, E.; Anderson, J.; Cignoni, M.; Marel, R. P. van der; Panagia, N.; Sana, H.; Aloisi, A.; Arab, H.; Gordon, K. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD, 21218 (United States); Lennon, D. J. [ESA—European Space Astronomy Center, Apdo. de Correo 78, E-28691 Associate Villanueva de la Cañada, Madrid (Spain); Zaritsky, D. [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Marchi, G. De [Space Science Department, European Space Agency, Keplerlaan 1, 2200 AG Noordwijk (Netherlands); Gouliermis, D. A. [Zentrum für Astronomie der Universität Heidelberg, Institut für Theoretische Astrophysik, Albert-Ueberle-Str. 2, D-69120 Heidelberg (Germany); Grebel, E. K. [Astronomisches Rechen-Institut, Zentrum für Astronomie der Universität Heidelberg, Mönchhofstr. 12-14, D-69120 Heidelberg (Germany); III, J. S. Gallagher [Department of Astronomy, University of Wisconsin, 475 North Charter Street, Madison, WI 53706 (United States); Smith, L. J. [ESA/STScI, 3700 San Martin Drive, Baltimore, MD, 21218 (United States); Tosi, M. [Istituto Nazionale di Astrofisica, Osservatorio Astronomico di Bologna, Via Ranzani 1, I-40127 Bologna (Italy); Evans, C. J. [UK Astronomy Technology Center, Royal Observatory Edinburgh, Blackford Hill, Edinburgh, EH9 3HJ (United Kingdom); Boyer, M. [Observational Cosmology Lab, Code 665, NASA, Goddard Space Flight Center, Greenbelt, MD, 20771 (United States); Mink, S. E. de, E-mail: sabbi@stsci.edu [Astronomical Institute “Anton Pannekoek,”University of Amsterdam, P.O. Box 94249, NL-1090 GE Amsterdam (Netherlands); and others

    2016-01-15

    We present and describe the astro-photometric catalog of more than 800,000 sources found in the Hubble Tarantula Treasury Project (HTTP). HTTP is a Hubble Space Telescope Treasury program designed to image the entire 30 Doradus region down to the sub-solar (∼0.5 M{sub ⊙}) mass regime using the Wide Field Camera 3 and the Advanced Camera for Surveys. We observed 30 Doradus in the near-ultraviolet (F275W, F336W), optical (F555W, F658N, F775W), and near-infrared (F110W, F160W) wavelengths. The stellar photometry was measured using point-spread function fitting across all bands simultaneously. The relative astrometric accuracy of the catalog is 0.4 mas. The astro-photometric catalog, results from artificial star experiments, and the mosaics for all the filters are available for download. Color–magnitude diagrams are presented showing the spatial distributions and ages of stars within 30 Dor as well as in the surrounding fields. HTTP provides the first rich and statistically significant sample of intermediate- and low-mass pre-main sequence candidates and allows us to trace how star formation has been developing through the region. The depth and high spatial resolution of our analysis highlight the dual role of stellar feedback in quenching and triggering star formation on the giant H ii region scale. Our results are consistent with stellar sub-clustering in a partially filled gaseous nebula that is offset toward our side of the Large Magellanic Cloud.

  17. CODATA recommended values of the fundamental constants

    International Nuclear Information System (INIS)

    Mohr, Peter J.; Taylor, Barry N.

    2000-01-01

    A review is given of the latest Committee on Data for Science and Technology (CODATA) adjustment of the values of the fundamental constants. The new set of constants, referred to as the 1998 values, replaces the values recommended for international use by CODATA in 1986. The values of the constants, and particularly the Rydberg constant, are of relevance to the calculation of precise atomic spectra. The standard uncertainty (estimated standard deviation) of the new recommended value of the Rydberg constant, which is based on precision frequency metrology and a detailed analysis of the theory, is approximately 1/160 times the uncertainty of the 1986 value. The new set of recommended values as well as a searchable bibliographic database that gives citations to the relevant literature is available on the World Wide Web at physics.nist.gov/constants and physics.nist.gov/constantsbib, respectively

  18. Distance constant of the Risø cup anemometer

    DEFF Research Database (Denmark)

    Kristensen, L.; Frost Hansen, O.

    2002-01-01

    The theory for cup-anemometer dynamics is presented in some detail and two methods of obtaining the distance constant lo are discussed. The first method is based on wind tunnel measurements: with a constant wind speed the cup anemometer is released from alocked position of the rotor...... and the increasing rotation rate recorded. It is concluded that the rapid increase in rotation rate makes the method very inaccurate. The second method consists of an analysis of turbulent, atmospheric of wind speed asmeasured by the cup anemometer and a fast-responding sonic anemometer with a spatial eddy...... resolution which is significantly better than that which can be obtained by a cup anemometer. The ratio between the measured power spectra of the horizontal windspeed by the two instruments contains the necessary information for determining the response characteristics of the cup anemometer and thereby lo...

  19. Stability constants of scandium complexes, 1

    International Nuclear Information System (INIS)

    Itoh, Hisako; Itoh, Naomi; Suzuki, Yasuo

    1984-01-01

    The stability constants of scandium complexes with some carboxylate ligands were determined potentiometrically at 25.0 and 40.0 0 C and at an ionic strength of 0.10 with potassium nitrate as supporting electrolyte. The constants of the scandium complexes were appreciably greater than those of the corresponding lanthanoid complexes, as expected. The changes in free energy, enthalpy, and entropy for the formation of the scandium complexes were calculated from the stability constants at two temperatures. (author)

  20. Constant exposure technique in industrial radiography

    International Nuclear Information System (INIS)

    Domanus, J.C.

    1983-08-01

    The principles and advantages of the constant exposure technique are explained. Choice of exposure factors is analyzed. Film, paper and intensifying screens used throughout the investigation and film and paper processing are described. Exposure technique and the use of image quality indicators are given. Methods of determining of radiographic image quality are presented. Conclusions about the use of constant exposure vs. constant kilovoltage technique are formulated. (author)

  1. Dose rate constants for new dose quantities

    International Nuclear Information System (INIS)

    Tschurlovits, M.; Daverda, G.; Leitner, A.

    1992-01-01

    Conceptual changes and new quantities made is necessary to reassess dose rate quantities. Calculations of the dose rate constant were done for air kerma, ambient dose equivalent and directional dose equivalent. The number of radionuclides is more than 200. The threshold energy is selected as 20 keV for the dose equivalent constants. The dose rate constant for the photon equivalent dose as used mainly in German speaking countries as a temporary quantity is also included. (Author)

  2. WHEN THE DISTURBANCES ARE SPATIALLY CORRELATED

    African Journals Online (AJOL)

    correlation, spatial error process. INTRODUCTION. Consider the linear regression model for spatial correlation y=XB +u, u=Ce, (1) where y is a Txl observable random vector, X is a Txk matrix of known constants with full column rank k, B is a k xl vector of unknown parameters,. :2 is a Txl random vector with expectation zero ...

  3. Spatial Theography

    OpenAIRE

    van Noppen, Jean Pierre

    1995-01-01

    Descriptive theology («theography») frequently resorts to metaphorical modes of meaning. Among these metaphors, the spatial language of localization and orientation plays an important role to delineate tentative insights into the relationship between the human and the divine. These spatial metaphors are presumably based on the universal human experience of interaction between the body and its environment. It is dangerous, however, to postulate universal agreement on meanings associated with s...

  4. A natural cosmological constant from chameleons

    International Nuclear Information System (INIS)

    Nastase, Horatiu; Weltman, Amanda

    2015-01-01

    We present a simple model where the effective cosmological constant appears from chameleon scalar fields. For a Kachru–Kallosh–Linde–Trivedi (KKLT)-inspired form of the potential and a particular chameleon coupling to the local density, patches of approximately constant scalar field potential cluster around regions of matter with density above a certain value, generating the effect of a cosmological constant on large scales. This construction addresses both the cosmological constant problem (why Λ is so small, yet nonzero) and the coincidence problem (why Λ is comparable to the matter density now)

  5. A natural cosmological constant from chameleons

    Directory of Open Access Journals (Sweden)

    Horatiu Nastase

    2015-07-01

    Full Text Available We present a simple model where the effective cosmological constant appears from chameleon scalar fields. For a Kachru–Kallosh–Linde–Trivedi (KKLT-inspired form of the potential and a particular chameleon coupling to the local density, patches of approximately constant scalar field potential cluster around regions of matter with density above a certain value, generating the effect of a cosmological constant on large scales. This construction addresses both the cosmological constant problem (why Λ is so small, yet nonzero and the coincidence problem (why Λ is comparable to the matter density now.

  6. A natural cosmological constant from chameleons

    Energy Technology Data Exchange (ETDEWEB)

    Nastase, Horatiu, E-mail: nastase@ift.unesp.br [Instituto de Física Teórica, UNESP-Universidade Estadual Paulista, R. Dr. Bento T. Ferraz 271, Bl. II, Sao Paulo 01140-070, SP (Brazil); Weltman, Amanda, E-mail: amanda.weltman@uct.ac.za [Astrophysics, Cosmology & Gravity Center, Department of Mathematics and Applied Mathematics, University of Cape Town, Private Bag, Rondebosch 7700 (South Africa)

    2015-07-30

    We present a simple model where the effective cosmological constant appears from chameleon scalar fields. For a Kachru–Kallosh–Linde–Trivedi (KKLT)-inspired form of the potential and a particular chameleon coupling to the local density, patches of approximately constant scalar field potential cluster around regions of matter with density above a certain value, generating the effect of a cosmological constant on large scales. This construction addresses both the cosmological constant problem (why Λ is so small, yet nonzero) and the coincidence problem (why Λ is comparable to the matter density now)

  7. The Hubble Space Telescope: UV, Visible, and Near-Infrared Pursuits

    Science.gov (United States)

    Wiseman, Jennifer

    2010-01-01

    The Hubble Space Telescope continues to push the limits on world-class astrophysics. Cameras including the Advanced Camera for Surveys and the new panchromatic Wide Field Camera 3 which was installed nu last year's successful servicing mission S2N4,o{fer imaging from near-infrared through ultraviolet wavelengths. Spectroscopic studies of sources from black holes to exoplanet atmospheres are making great advances through the versatile use of STIS, the Space Telescope Imaging Spectrograph. The new Cosmic Origins Spectrograph, also installed last year, is the most sensitive UV spectrograph to fly io space and is uniquely suited to address particular scientific questions on galaxy halos, the intergalactic medium, and the cosmic web. With these outstanding capabilities on HST come complex needs for laboratory astrophysics support including atomic and line identification data. I will provide an overview of Hubble's current capabilities and the scientific programs and goals that particularly benefit from the studies of laboratory astrophysics.

  8. The ESA Hubble 15th Anniversary Campaign: A Trans-European collaboration project

    Science.gov (United States)

    Zoulias, Manolis; Christensen, Lars Lindberg; Kornmesser, Martin

    2006-08-01

    On April 24th 2005, NASA/ESA Hubble Space Telescope had been in orbit for 15 years. The anniversary was celebrated by ESA with the production of an 83 min. scientific movie and a 120 pages book, both titled ``Hubble, 15 years of discovery''. In order to cross language and distribution barriers a network of 16 translators and 22 partners from more than 10 countries was established. The DVD was distributed in approximately 700,000 copies throughout Europe. The project was amongst the largest of its kind with respect to collaboration, distribution and audience impact. It clearly demonstrated how international collaboration can produce effective cross-cultural educational and outreach products for astronomy.

  9. Asteroseismology of the Transiting Exoplanet Host HD 17156 with Hubble Space Telescope Fine Guidance Sensor

    DEFF Research Database (Denmark)

    Gilliland, Ronald L.; McCullough, Peter R.; Nelan, Edmund P.

    2011-01-01

    light curve. Using the density constraint from asteroseismology, and stellar evolution modeling results in M * = 1.285 ± 0.026 M sun, R * = 1.507 ± 0.012 R sun, and a stellar age of 3.2 ± 0.3 Gyr. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science......Observations conducted with the Fine Guidance Sensor on the Hubble Space Telescope (HST) providing high cadence and precision time-series photometry were obtained over 10 consecutive days in 2008 December on the host star of the transiting exoplanet HD 17156b. During this time, 1.0 × 1012 photons...... Institute, which is operated by AURA, Inc., under NASA contract NAS 5-26555....

  10. Charge retention test experiences on Hubble Space Telescope nickel-hydrogen battery cells

    Science.gov (United States)

    Nawrocki, Dave E.; Driscoll, J. R.; Armantrout, J. D.; Baker, R. C.; Wajsgras, H.

    1993-01-01

    The Hubble Space Telescope (HST) nickel-hydrogen battery module was designed by Lockheed Missile & Space Co (LMSC) and manufactured by Eagle-Picher Ind. (EPI) for the Marshall Space Flight Center (MSFC) as an Orbital Replacement Unit (ORU) for the nickel-cadmium batteries originally selected for this low earth orbit mission. The design features of the HST nickel hydrogen battery are described and the results of an extended charge retention test are summarized.

  11. A knowledge-based system for monitoring the electrical power system of the Hubble Space Telescope

    Science.gov (United States)

    Eddy, Pat

    1987-01-01

    The design and the prototype for the expert system for the Hubble Space Telescope's electrical power system are discussed. This prototype demonstrated the capability to use real time data from a 32k telemetry stream and to perform operational health and safety status monitoring, detect trends such as battery degradation, and detect anomalies such as solar array failures. This prototype, along with the pointing control system and data management system expert systems, forms the initial Telemetry Analysis for Lockheed Operated Spacecraft (TALOS) capability.

  12. Distance to M33 determined from magnitude corrections to Hubble's original cepheid photometry

    International Nuclear Information System (INIS)

    Sandage, A.

    1983-01-01

    New photoelectric photometry in Selected Area 45, and transfers from a faint photoelectric sequence adjacent to the south-preceding arm in M33 have been made to the comparison stars for Hubble's Cepheids in M33. Progressive magnitude corrections are required to Hubble's M33 scales, reaching 2.8 mag at the limit of the Mount Wilson 2.5-m Hooker reflector. Hubble's Cepheid light curves have been corrected to the B photoelectric system, and new photometric parameters are given for 35 of his variables. The P-L relation agrees in zero point to within 0.2 mag of the P-L relation from independent data by Sandage and Carlson for 12 new Cepheids in an outlying region of M33. Application of an adopted absolute P-L relation, calibrated by Martin, Warren, and Feast, to these data gives an apparent blue modulus of (m-M)/sup AB//sub M33/ = 25.35, which is 0.67 mag fainter than a previously adopted value, and represents a factor of 4.2 increase of Hubble's earliest distance. Three consequences of this larger apparent distance modulus are (1) the mean absolute magnitude of the first three brightest red supergiants is M/sup max//sub left-angle-bracketV/(3)> = -8.7 rather than approx.-8.0 in M33, complicating but not destroying use of red supergiants as distance indicators, (2) the mean absolute magnitude of the two brightest blue irregular supergiant variables is M/sub left-angle-bracketB/(2)> = -9.95, which is close to the value for the brightest known supergiants in the galaxy, and (3) the absolute magnitude of M33 itself is brighter than heretofore assumed

  13. Enhancing Hubble's vision service missions that expanded our view of the universe

    CERN Document Server

    Shayler, David J

    2016-01-01

    After a 20-year struggle to place a large, sophisticated optical telescope in orbit the Hubble Space Telescope was finally launched in 1990, though its primary mirror was soon found to be flawed. A dramatic mission in 1993 installed corrective optics so that the intended science program could finally begin. Those events are related in a companion to this book, The Hubble Space Telescope: From Concept to Success.   Enhancing Hubble’s Vision: Service Missions That Expanded Our View of the Universe tells the story of the four missions between 1997 and 2009 that repaired, serviced and upgraded the instruments on the telescope to maintain its state-of-the-art capabilities. It draws on first hand interviews with those closely involved in the project. The spacewalking skills and experiences gained from maintaining and upgrading Hubble had direct application to the construction of the International Space Station and help with its maintenance. These skills can be applied to future human and robotic satellite servic...

  14. Making Data Mobile: The Hubble Deep Field Academy iPad app

    Science.gov (United States)

    Eisenhamer, Bonnie; Cordes, K.; Davis, S.; Eisenhamer, J.

    2013-01-01

    Many school districts are purchasing iPads for educators and students to use as learning tools in the classroom. Educators often prefer these devices to desktop and laptop computers because they offer portability and an intuitive design, while having a larger screen size when compared to smart phones. As a result, we began investigating the potential of adapting online activities for use on Apple’s iPad to enhance the dissemination and usage of these activities in instructional settings while continuing to meet educators’ needs. As a pilot effort, we are developing an iPad app for the “Hubble Deep Field Academy” - an activity that is currently available online and commonly used by middle school educators. The Hubble Deep Field Academy app features the HDF-North image while centering on the theme of how scientists use light to explore and study the universe. It also includes features such as embedded links to vocabulary, images and videos, teacher background materials, and readings about Hubble’s other deep field surveys. It is our goal is to impact students’ engagement in STEM-related activities, while enhancing educators’ usage of NASA data via new and innovative mediums. We also hope to develop and share lessons learned with the E/PO community that can be used to support similar projects. We plan to test the Hubble Deep Field Academy app during the school year to determine if this new activity format is beneficial to the education community.

  15. UVUDF: Ultraviolet Imaging of the Hubble Ultra Deep Field with Wide-Field Camera 3

    Science.gov (United States)

    Teplitz, Harry I.; Rafelski, Marc; Kurczynski, Peter; Bond, Nicholas A.; Grogin, Norman; Koekemoer, Anton M.; Atek, Hakim; Brown, Thomas M.; Coe, Dan; Colbert, James W.; Ferguson, Henry C.; Finkelstein, Steven L.; Gardner, Jonathan P.; Gawiser, Eric; Giavalisco, Mauro; Gronwall, Caryl; Hanish, Daniel J.; Lee, Kyoung-Soo; de Mello, Duilia F.; Ravindranath, Swara; Ryan, Russell E.; Siana, Brian D.; Scarlata, Claudia; Soto, Emmaris; Voyer, Elysse N.; Wolfe, Arthur M.

    2013-12-01

    We present an overview of a 90 orbit Hubble Space Telescope treasury program to obtain near-ultraviolet imaging of the Hubble Ultra Deep Field using the Wide Field Camera 3 UVIS detector with the F225W, F275W, and F336W filters. This survey is designed to: (1) investigate the episode of peak star formation activity in galaxies at 1 dropouts at redshifts 1.7, 2.1, and 2.7 is largely consistent with the number predicted by published luminosity functions. We also confirm that the image mosaics have sufficient sensitivity and resolution to support the analysis of the evolution of star-forming clumps, reaching 28-29th magnitude depth at 5σ in a 0.''2 radius aperture depending on filter and observing epoch. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are #12534.

  16. Constraining dark energy with Hubble parameter measurements: an analysis including future redshift-drift observations

    International Nuclear Information System (INIS)

    Guo, Rui-Yun; Zhang, Xin

    2016-01-01

    The nature of dark energy affects the Hubble expansion rate (namely, the expansion history) H(z) by an integral over w(z). However, the usual observables are the luminosity distances or the angular diameter distances, which measure the distance.redshift relation. Actually, the property of dark energy affects the distances (and the growth factor) by a further integration over functions of H(z). Thus, the direct measurements of the Hubble parameter H(z) at different redshifts are of great importance for constraining the properties of dark energy. In this paper, we show how the typical dark energy models, for example, the ΛCDM, wCDM, CPL, and holographic dark energy models, can be constrained by the current direct measurements of H(z) (31 data used in total in this paper, covering the redshift range of z @ element of [0.07, 2.34]). In fact, the future redshift-drift observations (also referred to as the Sandage-Loeb test) can also directly measure H(z) at higher redshifts, covering the range of z @ element of [2, 5]. We thus discuss what role the redshift-drift observations can play in constraining dark energy with the Hubble parameter measurements. We show that the constraints on dark energy can be improved greatly with the H(z) data from only a 10-year observation of redshift drift. (orig.)

  17. Studying Galaxy Formation with the Hubble, Spitzer and James Webb Space Telescopes

    Science.gov (United States)

    Gardner, Jonathan P.

    2009-01-01

    The deepest optical to infrared observations of the universe include the Hubble Deep Fields, the Great Observatories Origins Deep Survey and the recent Hubble Ultra-Deep Field. Galaxies are seen in these surveys at redshifts z greater than 6, less than 1 Gyr after the Big Bang, at the end of a period when light from the galaxies has reionized Hydrogen in the inter-galactic medium. These observations, combined with theoretical understanding, indicate that the first stars and galaxies formed at z greater than 10, beyond the reach of the Hubble and Spitzer Space Telescopes. To observe the first galaxies, NASA is planning the James Webb Space Telescope (JWST), a large (6.5m), cold (less than 50K), infrared-optimized observatory to be launched early in the next decade into orbit around the second Earth-Sun Lagrange point. JWST will have four instruments: The Near-Infrared Camera, the Near-Infrared multi-object Spectrograph, and the Tunable Filter Imager will cover the wavelength range 0.6 to 5 microns, while the Mid-Infrared Instrument will do both imaging and spectroscopy from 5 to 28.5 microns. In addition to JWST's ability to study the formation and evolution of galaxies, I will also briefly review its expected contributions to studies of the formation of stars and planetary systems, and discuss recent progress in constructing the observatory.

  18. One hundred years of the cosmological constant: from "superfluous stunt" to dark energy

    Science.gov (United States)

    O'Raifeartaigh, Cormac; O'Keeffe, Michael; Nahm, Werner; Mitton, Simon

    2018-05-01

    We present a centennial review of the history of the term known as the cosmological constant. First introduced to the general theory of relativity by Einstein in 1917 in order to describe a universe that was assumed to be static, the term fell from favour in the wake of the discovery of the expanding universe, only to make a dramatic return in recent times. We consider historical and philosophical aspects of the cosmological constant over four main epochs; (i) the use of the term in static cosmologies (both Newtonian and relativistic): (ii) the marginalization of the term following the discovery of cosmic expansion: (iii) the use of the term to address specific cosmic puzzles such as the timespan of expansion, the formation of galaxies and the redshifts of the quasars: (iv) the re-emergence of the term in today's Λ-CDM cosmology. We find that the cosmological constant was never truly banished from theoretical models of the universe, but was marginalized by astronomers for reasons of convenience. We also find that the return of the term to the forefront of modern cosmology did not occur as an abrupt paradigm shift due to one particular set of observations, but as the result of a number of empirical advances such as the measurement of present cosmic expansion using the Hubble Space Telescope, the measurement of past expansion using type SN Ia supernovae as standard candles, and the measurement of perturbations in the cosmic microwave background by balloon and satellite. We give a brief overview of contemporary interpretations of the physics underlying the cosmic constant and conclude with a synopsis of the famous cosmological constant problem.

  19. One hundred years of the cosmological constant: from "superfluous stunt" to dark energy

    Science.gov (United States)

    O'Raifeartaigh, Cormac; O'Keeffe, Michael; Nahm, Werner; Mitton, Simon

    2018-03-01

    We present a centennial review of the history of the term known as the cosmological constant. First introduced to the general theory of relativity by Einstein in 1917 in order to describe a universe that was assumed to be static, the term fell from favour in the wake of the discovery of the expanding universe, only to make a dramatic return in recent times. We consider historical and philosophical aspects of the cosmological constant over four main epochs; (i) the use of the term in static cosmologies (both Newtonian and relativistic): (ii) the marginalization of the term following the discovery of cosmic expansion: (iii) the use of the term to address specific cosmic puzzles such as the timespan of expansion, the formation of galaxies and the redshifts of the quasars: (iv) the re-emergence of the term in today's Λ-CDM cosmology. We find that the cosmological constant was never truly banished from theoretical models of the universe, but was marginalized by astronomers for reasons of convenience. We also find that the return of the term to the forefront of modern cosmology did not occur as an abrupt paradigm shift due to one particular set of observations, but as the result of a number of empirical advances such as the measurement of present cosmic expansion using the Hubble Space Telescope, the measurement of past expansion using type SN Ia supernovae as standard candles, and the measurement of perturbations in the cosmic microwave background by balloon and satellite. We give a brief overview of contemporary interpretations of the physics underlying the cosmic constant and conclude with a synopsis of the famous cosmological constant problem.

  20. Equilibrium-constant expressions for aqueous plutonium

    International Nuclear Information System (INIS)

    Silver, G.L.

    2010-01-01

    Equilibrium-constant expressions for Pu disproportionation reactions traditionally contain three or four terms representing the concentrations or fractions of the oxidation states. The expressions can be rewritten so that one of the oxidation states is replaced by a term containing the oxidation number of the plutonium. Experimental estimations of the numerical values of the constants can then be checked in several ways. (author)

  1. A null test of the cosmological constant

    International Nuclear Information System (INIS)

    Chiba, Takeshi; Nakamura, Takashi

    2007-01-01

    We provide a consistency relation between cosmological observables in general relativity with the cosmological constant. Breaking of this relation at any redshift would imply the breakdown of the hypothesis of the cosmological constant as an explanation of the current acceleration of the universe. (author)

  2. A stringy nature needs just two constants

    International Nuclear Information System (INIS)

    Veneziano, G.

    1986-01-01

    Dual string theories of everything, being purely geometrical, contain only two fundamental constants: c, for relativistic invariance, and a length lambda, for quantization. Planck's and Newton's constants appear only through Planck's length, a ''calculable'' fraction of lambda. Only the existence of a light sector breaks a ''reciprocity'' principle and unification at lambda, which is also the theory's cut-off

  3. On special relativity with cosmological constant

    International Nuclear Information System (INIS)

    Guo Hanying; Huang Chaoguang; Xu Zhan; Zhou Bin

    2004-01-01

    Based on the principle of relativity and the postulate of invariant speed and length, we propose the theory of special relativity with cosmological constant SRc,R, in which the cosmological constant is linked with the invariant length. Its relation with the doubly special relativity is briefly mentioned

  4. DETERMINATION OF STABILITY CONSTANTS OF MANGANESE (II ...

    African Journals Online (AJOL)

    DR. AMINU

    Keywords: Amino acids, dissociation constant, potentiometry, stability constant. INTRODUCTION. Acids – base titration involves the gradual addition or removal of protons for example using the deprotic form of glycine. The plot has two distinct stages corresponding to the deprotonation of the two different groups on glycine.

  5. Shapley Value for Constant-sum Games

    NARCIS (Netherlands)

    Khmelnitskaya, A.B.

    2002-01-01

    It is proved that Young's axiomatization for the Shapley value by marginalism, efficiency, and symmetry is still valid for the Shapley value defined on the class of nonnegative constant-sum games and on the entire class of constant-sum games as well. To support an interest to study the class of

  6. Constant Width Planar Computation Characterizes ACC0

    DEFF Research Database (Denmark)

    Hansen, Kristoffer Arnsfelt

    2006-01-01

    We obtain a characterization of ACC0 in terms of a natural class of constant width circuits, namely in terms of constant width polynomial size planar circuits. This is shown via a characterization of the class of acyclic digraphs which can be embedded on a cylinder surface in such a way that all...

  7. Experimental Determination of the Avogadro Constant

    Indian Academy of Sciences (India)

    mental physical constant such as charge of an electron or the. Boltzmann constant ... ideas was that the number of particles or molecules in a gas of given volume could not ... knowledge of at least one property of a single molecule. Loschmidt ...

  8. The time constant of the somatogravic illusion.

    Science.gov (United States)

    Correia Grácio, B J; de Winkel, K N; Groen, E L; Wentink, M; Bos, J E

    2013-02-01

    Without visual feedback, humans perceive tilt when experiencing a sustained linear acceleration. This tilt illusion is commonly referred to as the somatogravic illusion. Although the physiological basis of the illusion seems to be well understood, the dynamic behavior is still subject to discussion. In this study, the dynamic behavior of the illusion was measured experimentally for three motion profiles with different frequency content. Subjects were exposed to pure centripetal accelerations in the lateral direction and were asked to indicate their tilt percept by means of a joystick. Variable-radius centrifugation during constant angular rotation was used to generate these motion profiles. Two self-motion perception models were fitted to the experimental data and were used to obtain the time constant of the somatogravic illusion. Results showed that the time constant of the somatogravic illusion was on the order of two seconds, in contrast to the higher time constant found in fixed-radius centrifugation studies. Furthermore, the time constant was significantly affected by the frequency content of the motion profiles. Motion profiles with higher frequency content revealed shorter time constants which cannot be explained by self-motion perception models that assume a fixed time constant. Therefore, these models need to be improved with a mechanism that deals with this variable time constant. Apart from the fundamental importance, these results also have practical consequences for the simulation of sustained accelerations in motion simulators.

  9. Zero cosmological constant from normalized general relativity

    International Nuclear Information System (INIS)

    Davidson, Aharon; Rubin, Shimon

    2009-01-01

    Normalizing the Einstein-Hilbert action by the volume functional makes the theory invariant under constant shifts in the Lagrangian. The associated field equations then resemble unimodular gravity whose otherwise arbitrary cosmological constant is now determined as a Machian universal average. We prove that an empty space-time is necessarily Ricci tensor flat, and demonstrate the vanishing of the cosmological constant within the scalar field paradigm. The cosmological analysis, carried out at the mini-superspace level, reveals a vanishing cosmological constant for a universe which cannot be closed as long as gravity is attractive. Finally, we give an example of a normalized theory of gravity which does give rise to a non-zero cosmological constant.

  10. Graviton fluctuations erase the cosmological constant

    Science.gov (United States)

    Wetterich, C.

    2017-10-01

    Graviton fluctuations induce strong non-perturbative infrared renormalization effects for the cosmological constant. The functional renormalization flow drives a positive cosmological constant towards zero, solving the cosmological constant problem without the need to tune parameters. We propose a simple computation of the graviton contribution to the flow of the effective potential for scalar fields. Within variable gravity, with effective Planck mass proportional to the scalar field, we find that the potential increases asymptotically at most quadratically with the scalar field. The solutions of the derived cosmological equations lead to an asymptotically vanishing cosmological "constant" in the infinite future, providing for dynamical dark energy in the present cosmological epoch. Beyond a solution of the cosmological constant problem, our simplified computation also entails a sizeable positive graviton-induced anomalous dimension for the quartic Higgs coupling in the ultraviolet regime, substantiating the successful prediction of the Higgs boson mass within the asymptotic safety scenario for quantum gravity.

  11. Solar constant values for estimating solar radiation

    International Nuclear Information System (INIS)

    Li, Huashan; Lian, Yongwang; Wang, Xianlong; Ma, Weibin; Zhao, Liang

    2011-01-01

    There are many solar constant values given and adopted by researchers, leading to confusion in estimating solar radiation. In this study, some solar constant values collected from literature for estimating solar radiation with the Angstroem-Prescott correlation are tested in China using the measured data between 1971 and 2000. According to the ranking method based on the t-statistic, a strategy to select the best solar constant value for estimating the monthly average daily global solar radiation with the Angstroem-Prescott correlation is proposed. -- Research highlights: → The effect of the solar constant on estimating solar radiation is investigated. → The investigation covers a diverse range of climate and geography in China. → A strategy to select the best solar constant for estimating radiation is proposed.

  12. The star formation histories of local group dwarf galaxies. I. Hubble space telescope/wide field planetary camera 2 observations

    Energy Technology Data Exchange (ETDEWEB)

    Weisz, Daniel R. [Department of Astronomy, University of California at Santa Cruz, 1156 High Street, Santa Cruz, CA 95064 (United States); Dolphin, Andrew E. [Raytheon Company, 1151 East Hermans Road, Tucson, AZ 85756 (United States); Skillman, Evan D. [Minnesota Institute for Astrophysics, University of Minnesota, 116 Church Street SE, Minneapolis, MN 55455 (United States); Holtzman, Jon [Department of Astronomy, New Mexico State University, Box 30001, 1320 Frenger Street, Las Cruces, NM 88003 (United States); Gilbert, Karoline M.; Dalcanton, Julianne J.; Williams, Benjamin F., E-mail: drw@ucsc.edu [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States)

    2014-07-10

    We present uniformly measured star formation histories (SFHs) of 40 Local Group (LG) dwarf galaxies based on color-magnitude diagram (CMD) analysis from archival Hubble Space Telescope imaging. We demonstrate that accurate SFHs can be recovered from CMDs that do not reach the oldest main sequence turn-off (MSTO), but emphasize that the oldest MSTO is critical for precisely constraining the earliest epochs of star formation. We find that: (1) the average lifetime SFHs of dwarf spheroidals (dSphs) can be approximated by an exponentially declining SFH with τ ∼ 5 Gyr; (2) lower luminosity dSphs are less likely to have extended SFHs than more luminous dSphs; (3) the average SFHs of dwarf irregulars (dIrrs), transition dwarfs, and dwarf ellipticals can be approximated by the combination of an exponentially declining SFH (τ ∼ 3-4 Gyr) for lookback ages >10-12 Gyr ago and a constant SFH thereafter; (4) the observed fraction of stellar mass formed prior to z = 2 ranges considerably (80% for galaxies with M < 10{sup 5} M{sub ☉} to 30% for galaxies with M > 10{sup 7} M{sub ☉}) and is largely explained by environment; (5) the distinction between 'ultra-faint' and 'classical' dSphs is arbitrary; (6) LG dIrrs formed a significantly higher fraction of stellar mass prior to z = 2 than the Sloan Digital Sky Survey galaxies from Leitner and the SFHs from the abundance matching models of Behroozi et al. This may indicate higher than expected star formation efficiencies at early times in low mass galaxies. Finally, we provide all the SFHs in tabulated electronic format for use by the community.

  13. The star formation histories of local group dwarf galaxies. I. Hubble space telescope/wide field planetary camera 2 observations

    International Nuclear Information System (INIS)

    Weisz, Daniel R.; Dolphin, Andrew E.; Skillman, Evan D.; Holtzman, Jon; Gilbert, Karoline M.; Dalcanton, Julianne J.; Williams, Benjamin F.

    2014-01-01

    We present uniformly measured star formation histories (SFHs) of 40 Local Group (LG) dwarf galaxies based on color-magnitude diagram (CMD) analysis from archival Hubble Space Telescope imaging. We demonstrate that accurate SFHs can be recovered from CMDs that do not reach the oldest main sequence turn-off (MSTO), but emphasize that the oldest MSTO is critical for precisely constraining the earliest epochs of star formation. We find that: (1) the average lifetime SFHs of dwarf spheroidals (dSphs) can be approximated by an exponentially declining SFH with τ ∼ 5 Gyr; (2) lower luminosity dSphs are less likely to have extended SFHs than more luminous dSphs; (3) the average SFHs of dwarf irregulars (dIrrs), transition dwarfs, and dwarf ellipticals can be approximated by the combination of an exponentially declining SFH (τ ∼ 3-4 Gyr) for lookback ages >10-12 Gyr ago and a constant SFH thereafter; (4) the observed fraction of stellar mass formed prior to z = 2 ranges considerably (80% for galaxies with M < 10 5 M ☉ to 30% for galaxies with M > 10 7 M ☉ ) and is largely explained by environment; (5) the distinction between 'ultra-faint' and 'classical' dSphs is arbitrary; (6) LG dIrrs formed a significantly higher fraction of stellar mass prior to z = 2 than the Sloan Digital Sky Survey galaxies from Leitner and the SFHs from the abundance matching models of Behroozi et al. This may indicate higher than expected star formation efficiencies at early times in low mass galaxies. Finally, we provide all the SFHs in tabulated electronic format for use by the community.

  14. EVOLUTION OF THE SIZES OF GALAXIES OVER 7 < z < 12 REVEALED BY THE 2012 HUBBLE ULTRA DEEP FIELD CAMPAIGN

    Energy Technology Data Exchange (ETDEWEB)

    Ono, Yoshiaki; Ouchi, Masami [Institute for Cosmic Ray Research, The University of Tokyo, Kashiwa 277-8582 (Japan); Curtis-Lake, Emma; McLure, Ross J.; Dunlop, James S.; Bowler, Rebecca A. A.; Rogers, Alexander B.; Cirasuolo, Michele [Institute for Astronomy, University of Edinburgh, Royal Observatory, Edinburgh EH9 3HJ (United Kingdom); Schenker, Matthew A.; Ellis, Richard S. [Department of Astrophysics, California Institute of Technology, MS 249-17, Pasadena, CA 91125 (United States); Robertson, Brant E.; Schneider, Evan; Stark, Daniel P. [Department of Astronomy and Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States); Koekemoer, Anton M. [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Charlot, Stephane [UPMC-CNRS, UMR7095, Institut d' Astrophysique, F-75014 Paris (France); Shimasaku, Kazuhiro [Department of Astronomy, Graduate School of Science, The University of Tokyo, Tokyo 113-0033 (Japan); Furlanetto, Steven R., E-mail: ono@icrr.u-tokyo.ac.jp [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States)

    2013-11-10

    We analyze the redshift- and luminosity-dependent sizes of dropout galaxy candidates in the redshift range z ∼ 7-12 using deep images from the 2012 Hubble Ultra Deep Field (UDF12) campaign, which offers two advantages over that used in earlier work. First, we utilize the increased signal-to-noise ratio offered by the UDF12 imaging to provide improved measurements for known galaxies at z ≅ 6.5-8 in the HUDF. Second, because the UDF12 data have allowed the construction of the first robust galaxy sample in the HUDF at z > 8, we have been able to extend the measurement of average galaxy size out to higher redshifts. Restricting our measurements to sources detected at >15σ, we confirm earlier indications that the average half-light radii of z ∼ 7-12 galaxies are extremely small, 0.3-0.4 kpc, comparable to the sizes of giant molecular associations in local star-forming galaxies. We also confirm that there is a clear trend of decreasing half-light radius with increasing redshift, and provide the first evidence that this trend continues beyond z ≅ 8. Modeling the evolution of the average half-light radius as a power law, ∝(1 + z) {sup s}, we obtain a best-fit index of s=-1.30{sup +0.12}{sub -0.14} over z ∼ 4-12. A clear size-luminosity relation is evident in our dropout samples. This relation can be interpreted in terms of a constant surface density of star formation over a range in luminosity of 0.05-1.0 L{sub z=3}. The average star formation surface density in dropout galaxies is 2-3 orders of magnitude lower than that found in extreme starburst galaxies, but is comparable to that seen today in the centers of normal disk galaxies.

  15. EVOLUTION OF THE SIZES OF GALAXIES OVER 7 < z < 12 REVEALED BY THE 2012 HUBBLE ULTRA DEEP FIELD CAMPAIGN

    International Nuclear Information System (INIS)

    Ono, Yoshiaki; Ouchi, Masami; Curtis-Lake, Emma; McLure, Ross J.; Dunlop, James S.; Bowler, Rebecca A. A.; Rogers, Alexander B.; Cirasuolo, Michele; Schenker, Matthew A.; Ellis, Richard S.; Robertson, Brant E.; Schneider, Evan; Stark, Daniel P.; Koekemoer, Anton M.; Charlot, Stephane; Shimasaku, Kazuhiro; Furlanetto, Steven R.

    2013-01-01

    We analyze the redshift- and luminosity-dependent sizes of dropout galaxy candidates in the redshift range z ∼ 7-12 using deep images from the 2012 Hubble Ultra Deep Field (UDF12) campaign, which offers two advantages over that used in earlier work. First, we utilize the increased signal-to-noise ratio offered by the UDF12 imaging to provide improved measurements for known galaxies at z ≅ 6.5-8 in the HUDF. Second, because the UDF12 data have allowed the construction of the first robust galaxy sample in the HUDF at z > 8, we have been able to extend the measurement of average galaxy size out to higher redshifts. Restricting our measurements to sources detected at >15σ, we confirm earlier indications that the average half-light radii of z ∼ 7-12 galaxies are extremely small, 0.3-0.4 kpc, comparable to the sizes of giant molecular associations in local star-forming galaxies. We also confirm that there is a clear trend of decreasing half-light radius with increasing redshift, and provide the first evidence that this trend continues beyond z ≅ 8. Modeling the evolution of the average half-light radius as a power law, ∝(1 + z) s , we obtain a best-fit index of s=-1.30 +0.12 -0.14 over z ∼ 4-12. A clear size-luminosity relation is evident in our dropout samples. This relation can be interpreted in terms of a constant surface density of star formation over a range in luminosity of 0.05-1.0 L z=3 . The average star formation surface density in dropout galaxies is 2-3 orders of magnitude lower than that found in extreme starburst galaxies, but is comparable to that seen today in the centers of normal disk galaxies

  16. Statistical orientation fluctuations: constant angular momentum versus constant rotational frequency constraints

    Energy Technology Data Exchange (ETDEWEB)

    Goodman, A L [Tulane Univ., New Orleans, LA (United States)

    1992-08-01

    Statistical orientation fluctuations are calculated with two alternative assumptions: the rotational frequency remains constant as the shape orientation fluctuates; and, the average angular momentum remains constant as the shape orientation fluctuates. (author). 2 refs., 3 figs.

  17. On the constants for some Sobolev imbeddings

    Directory of Open Access Journals (Sweden)

    Pizzocchero Livio

    2001-01-01

    Full Text Available We consider the imbedding inequality is the Sobolev space (or Bessel potential space of type and (integer or fractional order . We write down upper bounds for the constants , using an argument previously applied in the literature in particular cases. We prove that the upper bounds computed in this way are in fact the sharp constants if , , and exhibit the maximising functions. Furthermore, using convenient trial functions, we derive lower bounds on for in many cases these are close to the previous upper bounds, as illustrated by a number of examples, thus characterizing the sharp constants with little uncertainty.

  18. On the constant-roll inflation

    Science.gov (United States)

    Yi, Zhu; Gong, Yungui

    2018-03-01

    The primordial power spectra of scalar and tensor perturbations during slow-roll inflation are usually calculated with the method of Bessel function approximation. For constant-roll or ultra slow-roll inflation, the method of Bessel function approximation may be invalid. We compare the numerical results with the analytical results derived from the Bessel function approximation, and we find that they differ significantly on super-horizon scales if the constant slow-roll parameter ηH is not small. More accurate method is needed for calculating the primordial power spectrum for constant-roll inflation.

  19. Scalar-tensor cosmology with cosmological constant

    International Nuclear Information System (INIS)

    Maslanka, K.

    1983-01-01

    The equations of scalar-tensor theory of gravitation with cosmological constant in the case of homogeneous and isotropic cosmological model can be reduced to dynamical system of three differential equations with unknown functions H=R/R, THETA=phi/phi, S=e/phi. When new variables are introduced the system becomes more symmetrical and cosmological solutions R(t), phi(t), e(t) are found. It is shown that when cosmological constant is introduced large class of solutions which depend also on Dicke-Brans parameter can be obtained. Investigations of these solutions give general limits for cosmological constant and mean density of matter in plane model. (author)

  20. Cosmological constant and advanced gravitational wave detectors

    International Nuclear Information System (INIS)

    Wang, Y.; Turner, E.L.

    1997-01-01

    Interferometric gravitational wave detectors could measure the frequency sweep of a binary inspiral (characterized by its chirp mass) to high accuracy. The observed chirp mass is the intrinsic chirp mass of the binary source multiplied by (1+z), where z is the redshift of the source. Assuming a nonzero cosmological constant, we compute the expected redshift distribution of observed events for an advanced LIGO detector. We find that the redshift distribution has a robust and sizable dependence on the cosmological constant; the data from advanced LIGO detectors could provide an independent measurement of the cosmological constant. copyright 1997 The American Physical Society

  1. Constant strength fuel-fuel cell

    International Nuclear Information System (INIS)

    Vaseen, V.A.

    1980-01-01

    A fuel cell is an electrochemical apparatus composed of both a nonconsumable anode and cathode; and electrolyte, fuel oxidant and controls. This invention guarantees the constant transfer of hydrogen atoms and their respective electrons, thus a constant flow of power by submergence of the negative electrode in a constant strength hydrogen furnishing fuel; when said fuel is an aqueous absorbed hydrocarbon, such as and similar to ethanol or methnol. The objective is accomplished by recirculation of the liquid fuel, as depleted in the cell through specific type membranes which pass water molecules and reject the fuel molecules; thus concentrating them for recycle use

  2. Reactor group constants and benchmark test

    Energy Technology Data Exchange (ETDEWEB)

    Takano, Hideki [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-08-01

    The evaluated nuclear data files such as JENDL, ENDF/B-VI and JEF-2 are validated by analyzing critical mock-up experiments for various type reactors and assessing applicability for nuclear characteristics such as criticality, reaction rates, reactivities, etc. This is called Benchmark Testing. In the nuclear calculations, the diffusion and transport codes use the group constant library which is generated by processing the nuclear data files. In this paper, the calculation methods of the reactor group constants and benchmark test are described. Finally, a new group constants scheme is proposed. (author)

  3. Spatial networks

    Science.gov (United States)

    Barthélemy, Marc

    2011-02-01

    Complex systems are very often organized under the form of networks where nodes and edges are embedded in space. Transportation and mobility networks, Internet, mobile phone networks, power grids, social and contact networks, and neural networks, are all examples where space is relevant and where topology alone does not contain all the information. Characterizing and understanding the structure and the evolution of spatial networks is thus crucial for many different fields, ranging from urbanism to epidemiology. An important consequence of space on networks is that there is a cost associated with the length of edges which in turn has dramatic effects on the topological structure of these networks. We will thoroughly explain the current state of our understanding of how the spatial constraints affect the structure and properties of these networks. We will review the most recent empirical observations and the most important models of spatial networks. We will also discuss various processes which take place on these spatial networks, such as phase transitions, random walks, synchronization, navigation, resilience, and disease spread.

  4. Spatial interpolation

    NARCIS (Netherlands)

    Stein, A.

    1991-01-01

    The theory and practical application of techniques of statistical interpolation are studied in this thesis, and new developments in multivariate spatial interpolation and the design of sampling plans are discussed. Several applications to studies in soil science are

  5. EXTINCTION AND DUST GEOMETRY IN M83 H II REGIONS: AN HUBBLE SPACE TELESCOPE/WFC3 STUDY

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Guilin; Calzetti, Daniela; Hong, Sungryong [Astronomy Department, University of Massachusetts, Amherst, MA 01003 (United States); Whitmore, Bradley [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Chandar, Rupali [Department of Physics and Astronomy, University of Toledo, Toledo, OH 43606 (United States); O' Connell, Robert W. [Astronomy Department, University of Virginia, P.O. Box 3818, Charlottesville, VA 22903 (United States); Blair, William P. [Center for Astrophysical Sciences, Johns Hopkins University, Baltimore, MD 21218 (United States); Cohen, Seth H.; Kim, Hwihyun [School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287 (United States); Frogel, Jay A., E-mail: liu@pha.jhu.edu [Galaxies Unlimited, Lutherville, MD 21093 (United States)

    2013-12-01

    We present Hubble Space Telescope/WFC3 narrow-band imaging of the starburst galaxy M83 targeting the hydrogen recombination lines (Hβ, Hα, and Paβ), which we use to investigate the dust extinction in the H II regions. We derive extinction maps with 6 pc spatial resolution from two combinations of hydrogen lines (Hα/Hβ and Hα/Paβ), and show that the longer wavelengths probe larger optical depths, with A{sub V} values larger by ≳1 mag than those derived from the shorter wavelengths. This difference leads to a factor ≳2 discrepancy in the extinction-corrected Hα luminosity, a significant effect when studying extragalactic H II regions. By comparing these observations to a series of simple models, we conclude that a large diversity of absorber/emitter geometric configurations can account for the data, implying a more complex physical structure than the classical foreground ''dust screen'' assumption. However, most data points are bracketed by the foreground screen and a model where dust and emitters are uniformly mixed. When averaged over large (≳100-200 pc) scales, the extinction becomes consistent with a ''dust screen'', suggesting that other geometries tend to be restricted to more local scales. Moreover, the extinction in any region can be described by a combination of the foreground screen and the uniform mixture model with weights of 1/3 and 2/3 in the center (≲2 kpc), respectively, and 2/3 and 1/3 for the rest of the disk. This simple prescription significantly improves the accuracy of the dust extinction corrections and can be especially useful for pixel-based analyses of galaxies similar to M83.

  6. Far-ultraviolet Spectroscopy of Recent Comets with the Cosmic Origins Spectrograph on the Hubble Space Telescope

    Science.gov (United States)

    Feldman, Paul D.; Weaver, Harold A.; A’Hearn, Michael F.; Combi, Michael R.; Dello Russo, Neil

    2018-05-01

    Since its launch in 1990, the Hubble Space Telescope (HST) has served as a platform with unique capabilities for remote observations of comets in the far-ultraviolet region of the spectrum. Successive generations of imagers and spectrographs have seen large advances in sensitivity and spectral resolution enabling observations of the diverse properties of a representative number of comets during the past 25 years. To date, four comets have been observed in the far-ultraviolet by the Cosmic Origins Spectrograph (COS), the last spectrograph to be installed in HST, in 2009: 103P/Hartley 2, C/2009 P1 (Garradd), C/2012 S1 (ISON), and C/2014 Q2 (Lovejoy). COS has unprecedented sensitivity, but limited spatial information in its 2.″5 diameter circular aperture, and our objective was to determine the CO production rates from measurements of the CO Fourth Positive system in the spectral range of 1400–1700 Å. In the two brightest comets, 19 bands of this system were clearly identified. The water production rates were derived from nearly concurrent observations of the OH (0,0) band at 3085 Å by the Space Telescope Imaging Spectrograph. The derived CO/{{{H}}}2{{O}} production rate ratio ranged from ∼0.3% for Hartley 2 to ∼22% for Garradd. In addition, strong partially resolved emission features due to multiplets of S I, centered at 1429 Å and 1479 Å, and of C I at 1561 Å and 1657 Å, were observed in all four comets. Weak emission from several lines of the {{{H}}}2 Lyman band system, excited by solar Lyα and Lyβ pumped fluorescence, were detected in comet Lovejoy.

  7. INVESTIGATING THE CORE MORPHOLOGY-SEYFERT CLASS RELATIONSHIP WITH HUBBLE SPACE TELESCOPE ARCHIVAL IMAGES OF LOCAL SEYFERT GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Rutkowski, M. J.; Hegel, P. R.; Kim, Hwihyun; Windhorst, R. A. [School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287-1404 (United States); Tamura, Kazuyuki [Naruto University of Education, Nakashima, Takashima, Naruto-cho, Naruto-shi 772-8502 (Japan)

    2013-07-01

    The unified model of active galactic nuclei (AGNs) has provided a successful explanation for the observed diversity of AGNs in the local universe. However, recent analysis of multi-wavelength spectral and image data suggests that the unified model is only a partial theory of AGNs, and may need to be augmented to remain consistent with all observations. Recent studies using high spatial resolution ground- and space-based observations of local AGNs show that Seyfert class and the ''core'' (r {approx}< 1 kpc) host-galaxy morphology are correlated. Currently, this relationship has only been established qualitatively, by visual inspection of the core morphologies of low-redshift (z < 0.035) Seyfert host galaxies. We re-establish this empirical relationship in Hubble Space Telescope optical imaging by visual inspection of a catalog of 85 local (D < 63 Mpc) Seyfert galaxies. We also attempt to re-establish the core morphology-Seyfert class relationship using an automated, non-parametric technique that combines both existing classification parameter methods (the adapted CAS and G-M {sub 20}) and a new method which implements the Source Extractor software for feature detection in unsharp-mask images. This new method is designed explicitly to detect dust features in the images. We use our automated approach to classify the morphology of the AGN cores and determine that Sy2 galaxies visually appear, on average, to have more dust features than Sy1. With the exception of this ''dustiness'' however, we do not measure a strong correlation between the dust morphology and the Seyfert class of the host galaxy using quantitative techniques. We discuss the implications of these results in the context of the unified model.

  8. Accelerating Sequential Gaussian Simulation with a constant path

    Science.gov (United States)

    Nussbaumer, Raphaël; Mariethoz, Grégoire; Gravey, Mathieu; Gloaguen, Erwan; Holliger, Klaus

    2018-03-01

    Sequential Gaussian Simulation (SGS) is a stochastic simulation technique commonly employed for generating realizations of Gaussian random fields. Arguably, the main limitation of this technique is the high computational cost associated with determining the kriging weights. This problem is compounded by the fact that often many realizations are required to allow for an adequate uncertainty assessment. A seemingly simple way to address this problem is to keep the same simulation path for all realizations. This results in identical neighbourhood configurations and hence the kriging weights only need to be determined once and can then be re-used in all subsequent realizations. This approach is generally not recommended because it is expected to result in correlation between the realizations. Here, we challenge this common preconception and make the case for the use of a constant path approach in SGS by systematically evaluating the associated benefits and limitations. We present a detailed implementation, particularly regarding parallelization and memory requirements. Extensive numerical tests demonstrate that using a constant path allows for substantial computational gains with very limited loss of simulation accuracy. This is especially the case for a constant multi-grid path. The computational savings can be used to increase the neighbourhood size, thus allowing for a better reproduction of the spatial statistics. The outcome of this study is a recommendation for an optimal implementation of SGS that maximizes accurate reproduction of the covariance structure as well as computational efficiency.

  9. Relationship between electrophilicity index, Hammett constant and ...

    Indian Academy of Sciences (India)

    Unknown

    Inter-relationships between the electrophilicity index (ω), Hammett constant (óp) and nucleus- independent chemical ... cess of DFT is that it provides simple working equa- tions to elucidate ... compasses both the ability of an electrophile to ac-.

  10. Canonoid transformations and constants of motion

    International Nuclear Information System (INIS)

    Negri, L.J.; Oliveira, L.C.; Teixeira, J.M.

    1986-01-01

    The necessary and sufficient conditions for a canonoid transformation with respect to a given Hamiltonian are obtained in terms of the Lagrange brackets of the trasformation. The relation of these conditions with the constants of motion is discussed. (Author) [pt

  11. An improved dosimeter having constant flow pump

    International Nuclear Information System (INIS)

    Baker, W.B.

    1980-01-01

    A dosemeter designed for individual use which can be used to monitor toxic radon gas and toxic related products of radon gas in mines and which incorporates a constant air stream flowing through the dosimeter is described. (U.K.)

  12. Interacting universes and the cosmological constant

    International Nuclear Information System (INIS)

    Alonso-Serrano, A.; Bastos, C.; Bertolami, O.; Robles-Pérez, S.

    2013-01-01

    In this Letter it is studied the effects that an interaction scheme among universes can have in the values of their cosmological constants. In the case of two interacting universes, the value of the cosmological constant of one of the universes becomes very close to zero at the expense of an increasing value of the cosmological constant of the partner universe. In the more general case of a chain of N interacting universes with periodic boundary conditions, the spectrum of the Hamiltonian splits into a large number of levels, each of them associated with a particular value of the cosmological constant, that can be occupied by single universes revealing a collective behavior that plainly shows that the multiverse is much more than the mere sum of its parts

  13. Interacting universes and the cosmological constant

    Energy Technology Data Exchange (ETDEWEB)

    Alonso-Serrano, A. [Centro de Física “Miguel Catalán”, Instituto de Física Fundamental, Consejo Superior de Investigaciones Científicas, Serrano 121, 28006 Madrid (Spain); Estación Ecológica de Biocosmología, Pedro de Alvarado 14, 06411 Medellín (Spain); Bastos, C. [Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Avenida Rovisco Pais 1, 1049-001 Lisboa (Portugal); Bertolami, O. [Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Avenida Rovisco Pais 1, 1049-001 Lisboa (Portugal); Departamento de Física e Astronomia, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal); Robles-Pérez, S., E-mail: salvarp@imaff.cfmac.csic.es [Centro de Física “Miguel Catalán”, Instituto de Física Fundamental, Consejo Superior de Investigaciones Científicas, Serrano 121, 28006 Madrid (Spain); Estación Ecológica de Biocosmología, Pedro de Alvarado 14, 06411 Medellín (Spain); Física Teórica, Universidad del País Vasco, Apartado 644, 48080 Bilbao (Spain)

    2013-02-12

    In this Letter it is studied the effects that an interaction scheme among universes can have in the values of their cosmological constants. In the case of two interacting universes, the value of the cosmological constant of one of the universes becomes very close to zero at the expense of an increasing value of the cosmological constant of the partner universe. In the more general case of a chain of N interacting universes with periodic boundary conditions, the spectrum of the Hamiltonian splits into a large number of levels, each of them associated with a particular value of the cosmological constant, that can be occupied by single universes revealing a collective behavior that plainly shows that the multiverse is much more than the mere sum of its parts.

  14. Constant conditional entropy and related hypotheses

    International Nuclear Information System (INIS)

    Ferrer-i-Cancho, Ramon; Dębowski, Łukasz; Moscoso del Prado Martín, Fermín

    2013-01-01

    Constant entropy rate (conditional entropies must remain constant as the sequence length increases) and uniform information density (conditional probabilities must remain constant as the sequence length increases) are two information theoretic principles that are argued to underlie a wide range of linguistic phenomena. Here we revise the predictions of these principles in the light of Hilberg’s law on the scaling of conditional entropy in language and related laws. We show that constant entropy rate (CER) and two interpretations for uniform information density (UID), full UID and strong UID, are inconsistent with these laws. Strong UID implies CER but the reverse is not true. Full UID, a particular case of UID, leads to costly uncorrelated sequences that are totally unrealistic. We conclude that CER and its particular cases are incomplete hypotheses about the scaling of conditional entropies. (letter)

  15. New perspectives on constant-roll inflation

    Science.gov (United States)

    Cicciarella, Francesco; Mabillard, Joel; Pieroni, Mauro

    2018-01-01

    We study constant-roll inflation using the β-function formalism. We show that the constant rate of the inflaton roll is translated into a first order differential equation for the β-function which can be solved easily. The solutions to this equation correspond to the usual constant-roll models. We then construct, by perturbing these exact solutions, more general classes of models that satisfy the constant-roll equation asymptotically. In the case of an asymptotic power law solution, these corrections naturally provide an end to the inflationary phase. Interestingly, while from a theoretical point of view (in particular in terms of the holographic interpretation) these models are intrinsically different from standard slow-roll inflation, they may have phenomenological predictions in good agreement with present cosmological data.

  16. Hydrolysis and formation constants at 250C

    International Nuclear Information System (INIS)

    Phillips, S.L.

    1982-05-01

    A database consisting of hydrolysis and formation constants for about 20 metals associated with the disposal of nuclear waste is given. Complexing ligands for the various ionic species of these metals include OH, F, Cl, SO 4 , PO 4 and CO 3 . Table 1 consists of tabulated calculated and experimental values of log K/sub xy/, mainly at 25 0 C and various ionic strengths together with references to the origin of the data. Table 2 consists of a column of recommended stability constants at 25 0 C and zero ionic strength tabulated in the column headed log K/sub xy/(0); other columns contain coefficients for an extended Debye-Huckel equation to permit calculations of stability constants up to 3 ionic strength, and up to 0.7 ionic strength using the Davies equation. Selected stability constants calculated with these coefficients for various ionic strengths agree to an average of +- 2% when compared with published experimental and calculated values

  17. Wormholes and the cosmological constant problem.

    Science.gov (United States)

    Klebanov, I.

    The author reviews the cosmological constant problem and the recently proposed wormhole mechanism for its solution. Summation over wormholes in the Euclidean path integral for gravity turns all the coupling parameters into dynamical variables, sampled from a probability distribution. A formal saddle point analysis results in a distribution with a sharp peak at the cosmological constant equal to zero, which appears to solve the cosmological constant problem. He discusses the instabilities of the gravitational Euclidean path integral and the difficulties with its interpretation. He presents an alternate formalism for baby universes, based on the "third quantization" of the Wheeler-De Witt equation. This approach is analyzed in a minisuperspace model for quantum gravity, where it reduces to simple quantum mechanics. Once again, the coupling parameters become dynamical. Unfortunately, the a priori probability distribution for the cosmological constant and other parameters is typically a smooth function, with no sharp peaks.

  18. Building evolutionary architectures support constant change

    CERN Document Server

    Ford, Neal; Kua, Patrick

    2017-01-01

    The software development ecosystem is constantly changing, providing a constant stream of new tools, frameworks, techniques, and paradigms. Over the past few years, incremental developments in core engineering practices for software development have created the foundations for rethinking how architecture changes over time, along with ways to protect important architectural characteristics as it evolves. This practical guide ties those parts together with a new way to think about architecture and time.

  19. Nuclei quadrupole coupling constants in diatomic molecule

    International Nuclear Information System (INIS)

    Ivanov, A.I.; Rebane, T.K.

    1993-01-01

    An approximate relationship between the constants of quadrupole interaction of nuclei in a two-atom molecule is found. It enabled to establish proportionality of oscillatory-rotation corrections to these constants for both nuclei in the molecule. Similar results were obtained for the factors of electrical dipole-quadrupole screening of nuclei. Applicability of these relationships is proven by the example of lithium deuteride molecule. 4 refs., 1 tab

  20. A model for solar constant secular changes

    Science.gov (United States)

    Schatten, Kenneth H.

    1988-01-01

    In this paper, contrast models for solar active region and global photospheric features are used to reproduce the observed Active Cavity Radiometer and Earth Radiation Budget secular trends in reasonably good fashion. A prediction for the next decade of solar constant variations is made using the model. Secular trends in the solar constant obtained from the present model support the view that the Maunder Minimum may be related to the Little Ice Age of the 17th century.

  1. A quadri-constant fraction discriminator

    International Nuclear Information System (INIS)

    Wang Wei; Gu Zhongdao

    1992-01-01

    A quad Constant Fraction (Amplitude and Rise Time Compensation) Discriminator Circuit is described, which is based on the ECL high-speed dual comparator AD 9687. The CFD (ARCD) is of the constant fraction timing type (the amplitude and rise time compensation timing type) employing a leading edge discriminator to eliminate error triggers caused by noises. A timing walk measurement indicates a timing walk of less than +- 150 ps from -50 mV to -5 V

  2. Renormalization group equations with multiple coupling constants

    International Nuclear Information System (INIS)

    Ghika, G.; Visinescu, M.

    1975-01-01

    The main purpose of this paper is to study the renormalization group equations of a renormalizable field theory with multiple coupling constants. A method for the investigation of the asymptotic stability is presented. This method is applied to a gauge theory with Yukawa and self-quartic couplings of scalar mesons in order to find the domains of asymptotic freedom. An asymptotic expansion for the solutions which tend to the origin of the coupling constants is given

  3. Inflation with a constant rate of roll

    International Nuclear Information System (INIS)

    Motohashi, Hayato; Starobinsky, Alexei A.; Yokoyama, Jun'ichi

    2015-01-01

    We consider an inflationary scenario where the rate of inflaton roll defined by ·· φ/H φ-dot remains constant. The rate of roll is small for slow-roll inflation, while a generic rate of roll leads to the interesting case of 'constant-roll' inflation. We find a general exact solution for the inflaton potential required for such inflaton behaviour. In this model, due to non-slow evolution of background, the would-be decaying mode of linear scalar (curvature) perturbations may not be neglected. It can even grow for some values of the model parameter, while the other mode always remains constant. However, this always occurs for unstable solutions which are not attractors for the given potential. The most interesting particular cases of constant-roll inflation remaining viable with the most recent observational data are quadratic hilltop inflation (with cutoff) and natural inflation (with an additional negative cosmological constant). In these cases even-order slow-roll parameters approach non-negligible constants while the odd ones are asymptotically vanishing in the quasi-de Sitter regime

  4. RNA structure and scalar coupling constants

    Energy Technology Data Exchange (ETDEWEB)

    Tinoco, I. Jr.; Cai, Z.; Hines, J.V.; Landry, S.M.; SantaLucia, J. Jr.; Shen, L.X.; Varani, G. [Univ. of California, Berkeley, CA (United States)

    1994-12-01

    Signs and magnitudes of scalar coupling constants-spin-spin splittings-comprise a very large amount of data that can be used to establish the conformations of RNA molecules. Proton-proton and proton-phosphorus splittings have been used the most, but the availability of {sup 13}C-and {sup 15}N-labeled molecules allow many more coupling constants to be used for determining conformation. We will systematically consider the torsion angles that characterize a nucleotide unit and the coupling constants that depend on the values of these torsion angles. Karplus-type equations have been established relating many three-bond coupling constants to torsion angles. However, one- and two-bond coupling constants can also depend on conformation. Serianni and coworkers measured carbon-proton coupling constants in ribonucleosides and have calculated their values as a function of conformation. The signs of two-bond coupling can be very useful because it is easier to measure a sign than an accurate magnitude.

  5. Hubble Space Telescope Wide Field Planetary Camera 2 Observations of Neptune

    Science.gov (United States)

    1995-01-01

    across the planet's disk, revealing wind speeds as large as 325 meters per second (730 miles per hour). The largest of the giant, dark storm systems, called the 'Great Dark Spot', received special attention because it resembled Jupiter's Great Red Spot, a storm that has persisted for more than three centuries. The lifetime of Neptune's Great Dark Spot could not be determined from the Voyager data alone, however, because the encounter was too brief. Its evolution was impossible to monitor with ground-based telescopes, because it could not be resolved on Neptune's tiny disk, and its contribution to the disk-integrated brightness of Neptune confused by the presence of a rapidly-varying bright cloud feature, called the 'Bright Companion' that usually accompanied the Great Dark spot.The repaired Hubble Space Telescope provides new opportunities to monitor these and other phenomena in the atmosphere of the most distant planet. Images taken with WFPC-2's Planetary Camera (PC) can resolve Neptune's disk as well as most ground-based telescopes can resolve the disk of Jupiter. The spatial resolution of the HST WFPC-2 images is not as high as that obtained by the Voyager-2 Narrow-Angle Camera during that spacecraft's closest approach to Neptune, but they have a number of other assets that enhance their scientific value, including improved ultra-violet and infrared sensitivity, better signal-to-noise, and, and greater photometric accuracy.The images of Neptune acquired by the WFPC-2 Science team in late June clearly demonstrate these capabilities. The side of the planet facing the Earth at the start of the program (11:36 Universal Time on July 27) was imaged in color filters spanning the ultraviolet (255 and 300-nm), visible (467, 588, 620, and 673- nm), and near-infrared (890-nm) parts of the spectrum. The planet then rotated 180 degrees in longitude, and the opposite hemisphere was imaged in a subset of these colors (300, 467, 588, 620, and 673-nm). The HST/WFPC-2 program more

  6. Spatial distribution

    DEFF Research Database (Denmark)

    Borregaard, Michael Krabbe; Hendrichsen, Ditte Katrine; Nachman, Gøsta Støger

    2008-01-01

    , depending on the nature of intraspecific interactions between them: while the individuals of some species repel each other and partition the available area, others form groups of varying size, determined by the fitness of each group member. The spatial distribution pattern of individuals again strongly......Living organisms are distributed over the entire surface of the planet. The distribution of the individuals of each species is not random; on the contrary, they are strongly dependent on the biology and ecology of the species, and vary over different spatial scale. The structure of whole...... populations reflects the location and fragmentation pattern of the habitat types preferred by the species, and the complex dynamics of migration, colonization, and population growth taking place over the landscape. Within these, individuals are distributed among each other in regular or clumped patterns...

  7. Spatial Culture

    DEFF Research Database (Denmark)

    Reeh, Henrik

    2012-01-01

    Spatial Culture – A Humanities Perspective Abstract of introductory essay by Henrik Reeh Secured by alliances between socio-political development and cultural practices, a new field of humanistic studies in spatial culture has developed since the 1990s. To focus on links between urban culture...... and modern society is, however, an intellectual practice which has a much longer history. Already in the 1980s, the debate on the modern and the postmodern cited Paris and Los Angeles as spatio-cultural illustrations of these major philosophical concepts. Earlier, in the history of critical studies, the work...... Foucault considered a constitutive feature of 20th-century thinking and one that continues to occupy intellectual and cultural debates in the third millennium. A conceptual framework is, nevertheless, necessary, if the humanities are to adequa-tely address city and space – themes that have long been...

  8. VizieR Online Data Catalog: Hubble Source Catalog (V1 and V2) (Whitmore+, 2016)

    Science.gov (United States)

    Whitmore, B. C.; Allam, S. S.; Budavari, T.; Casertano, S.; Downes, R. A.; Donaldson, T.; Fall, S. M.; Lubow, S. H.; Quick, L.; Strolger, L.-G.; Wallace, G.; White, R. L.

    2016-10-01

    The HSC v1 contains members of the WFPC2, ACS/WFC, WFC3/UVIS and WFC3/IR Source Extractor source lists from HLA version DR8 (data release 8). The crossmatching process involves adjusting the relative astrometry of overlapping images so as to minimize positional offsets between closely aligned sources in different images. After correction, the astrometric residuals of crossmatched sources are significantly reduced, to typically less than 10mas. The relative astrometry is supported by using Pan-STARRS, SDSS, and 2MASS as the astrometric backbone for initial corrections. In addition, the catalog includes source nondetections. The crossmatching algorithms and the properties of the initial (Beta 0.1) catalog are described in Budavari & Lubow (2012ApJ...761..188B). The HSC v2 contains members of the WFPC2, ACS/WFC, WFC3/UVIS and WFC3/IR Source Extractor source lists from HLA version DR9.1 (data release 9.1). The crossmatching process involves adjusting the relative astrometry of overlapping images so as to minimize positional offsets between closely aligned sources in different images. After correction, the astrometric residuals of crossmatched sources are significantly reduced, to typically less than 10mas. The relative astrometry is supported by using Pan-STARRS, SDSS, and 2MASS as the astrometric backbone for initial corrections. In addition, the catalog includes source nondetections. The crossmatching algorithms and the properties of the initial (Beta 0.1) catalog are described in Budavari & Lubow (2012ApJ...761..188B). Hubble Source Catalog Acknowledgement: Based on observations made with the NASA/ESA Hubble Space Telescope, and obtained from the Hubble Legacy Archive, which is a collaboration between the Space Telescope Science Institute (STScI/NASA), the Space Telescope European Coordinating Facility (ST-ECF/ESAC/ESA) and the Canadian Astronomy Data Centre (CADC/NRC/CSA). (2 data files).

  9. Theoretical colours and isochrones for some Hubble Space Telescope colour systems

    Science.gov (United States)

    Edvardsson, B.; Bell, R. A.

    1989-01-01

    Synthetic spectra for effective temperatures of 4000-7250 K, logarithmic surface gravities typical of dwarfs and subgiants, and metallicities from solar values to 0.001 of the solar metallicity were used to derive a grid of synthetic surface brightness magnitudes for 21 of the Hubble Space Telescope Wide Field Camera (WFC) band passes. The absolute magnitudes of these 21 band passes are also obtained for a set of globular cluster isochrones with different helium abundances, metallicities, oxygen abundances, and ages. The usefulness and efficiency of different sets of broad and intermediate bandwidth WFC colors for determining ages and metallicities for globular clusters are evaluated.

  10. HUBBLE provides multiple views of how to feed a black hole

    Science.gov (United States)

    1998-05-01

    Although the cause-and-effect relationships are not yet clear, the views provided by complementary images from two instruments aboard the Hubble Space Telescope are giving astronomers new insights into the powerful forces being exerted in this complex maelstrom. Researchers believe these forces may even have shifted the axis of the massive black hole from its expected orientation. The Hubble wide-field camera visible image of the merged Centaurus A galaxy, also called NGC 5128, shows in sharp clarity a dramatic dark lane of dust girdling the galaxy. Blue clusters of newborn stars are clearly resolved, and silhouettes of dust filaments are interspersed with blazing orange-glowing gas. Located only 10 million light-years away, this peculiar-looking galaxy contains the closest active galactic nucleus to Earth and has long been considered an example of an elliptical galaxy disrupted by a recent collision with a smaller companion spiral galaxy. Using the infrared vision of Hubble, astronomers have penetrated this wall of dust for the first time to see a twisted disk of hot gas swept up in the black hole's gravitational whirlpool. The suspected black hole is so dense it contains the mass of perhaps a billion stars, compacted into a small region of space not much larger than our Solar System. Resolving features as small as seven light-years across, Hubble has shown astronomers that the hot gas disk is tilted in a different direction from the black hole's axis -- like a wobbly wheel around an axle. The black hole's axis is identified by the orientation of a high-speed jet of material, glowing in X-rays and radio frequencies, blasted from the black hole at 1/100th the speed of light. This gas disk presumably fueling the black hole may have formed so recently it is not yet aligned to the black hole's spin axis, or it may simply be influenced more by the galaxy's gravitational tug than by the black hole's. "This black hole is doing its own thing. Aside from receiving fresh

  11. Dwarf Galaxies with Gentle Star Formation and the Counts of Galaxies in the Hubble Deep Field

    OpenAIRE

    Campos, Ana

    1997-01-01

    In this paper the counts and colors of the faint galaxies observed in the Hubble Deep Field are fitted by means of simple luminosity evolution models that incorporate a numerous population of fading dwarfs. The observed color distribution of the very faint galaxies now allows us to put constraints on the star formation history in dwarfs. It is shown that the star-forming activity in these small systems has to proceed in a gentle way, i.e., through episodes where each one lasts much longer tha...

  12. Artificial neural network for the determination of Hubble Space Telescope aberration from stellar images

    Science.gov (United States)

    Barrett, Todd K.; Sandler, David G.

    1993-01-01

    An artificial-neural-network method, first developed for the measurement and control of atmospheric phase distortion, using stellar images, was used to estimate the optical aberration of the Hubble Space Telescope. A total of 26 estimates of distortion was obtained from 23 stellar images acquired at several secondary-mirror axial positions. The results were expressed as coefficients of eight orthogonal Zernike polynomials: focus through third-order spherical. For all modes other than spherical the measured aberration was small. The average spherical aberration of the estimates was -0.299 micron rms, which is in good agreement with predictions obtained when iterative phase-retrieval algorithms were used.

  13. New Cosmic Horizons: Space Astronomy from the V2 to the Hubble Space Telescope

    Science.gov (United States)

    Leverington, David

    2001-02-01

    Preface; 1. The sounding rocket era; 2. The start of the space race; 3. Initial exploration of the Solar System; 4. Lunar exploration; 5. Mars and Venus; early results; 6. Mars and Venus; the middle period; 7. Venus, Mars and cometary spacecraft post-1980; 8. Early missions to the outer planets; 9. The Voyager missions to the outer planets; 10. The Sun; 11. Early spacecraft observations of non-solar system sources; 12. A period of rapid growth; 13. The high energy astronomy observatory programme; 14. IUE, IRAS and Exosat - spacecraft for the early 1980s; 15. Hiatus; 16. Business as usual; 17. The Hubble Space Telescope.

  14. Infrared observations of giant elliptical galaxies: (V-K) colors and the infrared Hubble diagram

    International Nuclear Information System (INIS)

    Grasdalen, G.L.

    1980-01-01

    The (V-K) colors of giant elliptical galaxies as a function of redshift are discussed. Present data are consistent with mild color evolution at z approximately 0.45. An infrared Hubble (redshift-magnitude) diagram is given. Cosmological models with q 0 =0 and no luminosity evolution are clearly excluded by the present data. A wide variety of models including those with q 0 =0 are permissible if luminosity evolution is included. Instrumental and programmatic implications of these results are summarized. (Auth.)

  15. Gravity waves as a probe of the Hubble expansion rate during an electroweak scale phase transition

    International Nuclear Information System (INIS)

    Chung, Daniel J. H.; Zhou Peng

    2010-01-01

    Just as big bang nucleosynthesis allows us to probe the expansion rate when the temperature of the Universe was around 1 MeV, the measurement of gravity waves from electroweak scale first order phase transitions may allow us to probe the expansion rate when the temperature of the Universe was at the electroweak scale. We compute the simple transformation rule for the gravity wave spectrum under the scaling transformation of the Hubble expansion rate. We then apply this directly to the scenario of quintessence kination domination and show how gravity wave spectra would shift relative to Laser Interferometer Space Antenna and Big Bang Observer projected sensitivities.

  16. NASA Astrophysics E/PO: A Quarter Century of Discovery and Inspiration with the Hubble Space Telescope

    Science.gov (United States)

    Jirdeh, Hussein; Straughn, Amber; Smith, Denise Anne; Eisenhamer, Bonnie

    2015-08-01

    April 24, 2015 marked the 25th anniversary of the launch of the Hubble Space Telescope. In its quarter-century in orbit, the Hubble Space Telescope has transformed the way we understand the Universe, helped us find our place among the stars, and paved the way to incredible advancements in science and technology.In this presentation, we explain how NASA and ESA, including the Space Telescope Science Institute (STScI) and partners, is using the 25th anniversary of Hubble’s launch as a unique opportunity to communicate to students, educators, and the public the significance of the past quarter-century of discovery with the Hubble Space Telescope. We describe the various programs, resources, and experiences we are utilizing to enhancethe public understanding of Hubble’s many contributions to the scientific world. These include educator professional development opportunities, exhibits, events, traditional and social media, and resources for educators (formal k-12, informal, and higher education). We also highlight how we are capitalizing on Hubble’s cultural popularity to make the scientific connection to NASA’s next Great Observatory, the James Webb Space Telescope.This presentation highlights many of the opportunities by which students, educators, and the public are joining in the anniversary activities, both in-person and online. Find out more at hubble25th.org and follow #Hubble25 on social media.

  17. A five-dimensional model of varying fine structure constant

    Indian Academy of Sciences (India)

    an effective theory, under the form of an improved version of the 5D Kaluza-Klein theory. 1. Introduction ... where Н = Н( ) denotes the self-interaction potential of and В its source term. ... expansion rate (Hubble parameter),. = (Ш) is the scale ...

  18. Cosmological constant is a conserved charge

    Science.gov (United States)

    Chernyavsky, Dmitry; Hajian, Kamal

    2018-06-01

    Cosmological constant can always be considered as the on-shell value of a top form in gravitational theories. The top form is the field strength of a gauge field, and the theory enjoys a gauge symmetry. We show that cosmological constant is the charge of the global part of the gauge symmetry, and is conserved irrespective of the dynamics of the metric and other fields. In addition, we introduce its conjugate chemical potential, and prove the generalized first law of thermodynamics which includes variation of cosmological constant as a conserved charge. We discuss how our new term in the first law is related to the volume–pressure term. In parallel with the seminal Wald entropy, this analysis suggests that pressure can also be considered as a conserved charge.

  19. Fast optimization algorithms and the cosmological constant

    Science.gov (United States)

    Bao, Ning; Bousso, Raphael; Jordan, Stephen; Lackey, Brad

    2017-11-01

    Denef and Douglas have observed that in certain landscape models the problem of finding small values of the cosmological constant is a large instance of a problem that is hard for the complexity class NP (Nondeterministic Polynomial-time). The number of elementary operations (quantum gates) needed to solve this problem by brute force search exceeds the estimated computational capacity of the observable Universe. Here we describe a way out of this puzzling circumstance: despite being NP-hard, the problem of finding a small cosmological constant can be attacked by more sophisticated algorithms whose performance vastly exceeds brute force search. In fact, in some parameter regimes the average-case complexity is polynomial. We demonstrate this by explicitly finding a cosmological constant of order 10-120 in a randomly generated 1 09-dimensional Arkani-Hamed-Dimopoulos-Kachru landscape.

  20. Conformally invariant braneworld and the cosmological constant

    International Nuclear Information System (INIS)

    Guendelman, E.I.

    2004-01-01

    A six-dimensional braneworld scenario based on a model describing the interaction of gravity, gauge fields and 3+1 branes in a conformally invariant way is described. The action of the model is defined using a measure of integration built of degrees of freedom independent of the metric. There is no need to fine tune any bulk cosmological constant or the tension of the two (in the scenario described here) parallel branes to obtain zero cosmological constant, the only solutions are those with zero 4D cosmological constant. The two extra dimensions are compactified in a 'football' fashion and the branes lie on the two opposite poles of the compact 'football-shaped' sphere

  1. Vanishing cosmological constant in elementary particles theory

    International Nuclear Information System (INIS)

    Pisano, F.; Tonasse, M.D.

    1997-01-01

    The quest of a vanishing cosmological constant is considered in the simplest anomaly-free chiral gauge extension of the electroweak standard model where the new physics is limited to a well defined additional flavordynamics above the Fermi scale, namely up to a few TeVs by matching the gauge coupling constants at the electroweak scale, and with an extended Higgs structure. In contrast to the electroweak standard model, it is shown how the extended scalar sector of the theory allows a vanishing or a very small cosmological constant. the details of the cancellation mechanism are presented. At accessible energies the theory is indistinguishable from the standard model of elementary particles and it is in agreement with all existing data. (author). 32 refs

  2. Stability constants for silicate adsorbed to ferrihydrite

    DEFF Research Database (Denmark)

    Hansen, Hans Christian Bruun; Wetche, T.P.; Raulund-Rasmussen, Karsten

    1994-01-01

    Intrinsic surface acidity constants (K(a1)intr, K(a2)intr) and surface complexation constant for adsorption of orthosilicate onto synthetic ferrihydrite (K(Si) for the complex = FeOSi(OH)3) have been determined from acid/base titrations in 0.001-0.1 m NaClO4 electrolytes and silicate adsorption...... experiments in 0.01 m NaNO3 electrolyte (pH 3-6). The surface equilibrium constants were calculated according to the two-layer model by Dzombak & Morel (1990). Near equilibrium between protons/hydroxyls in solution and the ferrihydrite surface was obtained within minutes while equilibration with silicate...

  3. Derivation of the optical constants of anisotropic

    Science.gov (United States)

    Aronson, J. R.; Emslie, A. G.; Smith, E. M.; Strong, P. F.

    1985-07-01

    This report concerns the development of methods for obtaining the optical constants of anisotropic crystals of the triclinic and monoclinic systems. The principal method used, classical dispersion theory, is adapted to these crystal systems by extending the Lorentz line parameters to include the angles characterizing the individual resonances, and by replacing the dielectric constant by a dielectric tensor. The sample crystals are gypsium, orthoclase and chalcanthite. The derived optical constants are shown to be suitable for modeling the optical properties of particulate media in the infrared spectral region. For those materials where suitable size single crystals are not available, an extension of a previously used method is applied to alabaster, a polycrystalline material of the monoclinic crystal system.

  4. Effects of quantum entropy on bag constant

    International Nuclear Information System (INIS)

    Miller, D.E.; Tawfik, A.

    2012-01-01

    The effects of quantum entropy on the bag constant are studied at low temperatures and for small chemical potentials. The inclusion of the quantum entropy of the quarks in the equation of state provides the hadronic bag with an additional heat which causes a decrease in the effective latent heat inside the bag. We have considered two types of baryonic bags, Δ and Ω - . In both cases we have found that the bag constant without the quantum entropy almost does not change with temperature and quark chemical potential. The contribution from the quantum entropy to the equation of state clearly decreases the value of the bag constant. Furthermore, we construct states densities for quarks using the 'Thomas Fermi model' and take into consideration a thermal potential for the interaction. (author)

  5. The Cosmological Constant Problem (1/2)

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    I will review the cosmological constant problem as a serious challenge to our notion of naturalness in Physics. Weinberg’s no go theorem is worked through in detail. I review a number of proposals possibly including Linde's universe multiplication, Coleman's wormholes, the fat graviton, and SLED, to name a few. Large distance modifications of gravity are also discussed, with causality considerations pointing towards a global modification as being the most sensible option. The global nature of the cosmological constant problem is also emphasized, and as a result, the sequestering scenario is reviewed in some detail, demonstrating the cancellation of the Standard Model vacuum energy through a global modification of General Relativity.

  6. The Cosmological Constant Problem (2/2)

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    I will review the cosmological constant problem as a serious challenge to our notion of naturalness in Physics. Weinberg’s no go theorem is worked through in detail. I review a number of proposals possibly including Linde's universe multiplication, Coleman's wormholes, the fat graviton, and SLED, to name a few. Large distance modifications of gravity are also discussed, with causality considerations pointing towards a global modification as being the most sensible option. The global nature of the cosmological constant problem is also emphasized, and as a result, the sequestering scenario is reviewed in some detail, demonstrating the cancellation of the Standard Model vacuum energy through a global modification of General Relativity.

  7. Atomic weights: no longer constants of nature

    Science.gov (United States)

    Coplen, Tyler B.; Holden, Norman E.

    2011-01-01

    Many of us were taught that the standard atomic weights we found in the back of our chemistry textbooks or on the Periodic Table of the Chemical Elements hanging on the wall of our chemistry classroom are constants of nature. This was common knowledge for more than a century and a half, but not anymore. The following text explains how advances in chemical instrumentation and isotopic analysis have changed the way we view atomic weights and why they are no longer constants of nature

  8. Mimicking the cosmological constant: Constant curvature spherical solutions in a nonminimally coupled model

    International Nuclear Information System (INIS)

    Bertolami, Orfeu; Paramos, Jorge

    2011-01-01

    The purpose of this study is to describe a perfect fluid matter distribution that leads to a constant curvature region, thanks to the effect of a nonminimal coupling. This distribution exhibits a density profile within the range found in the interstellar medium and an adequate matching of the metric components at its boundary. By identifying this constant curvature with the value of the cosmological constant and superimposing the spherical distributions arising from different matter sources throughout the universe, one is able to mimic a large-scale homogeneous cosmological constant solution.

  9. Spatial filtring and thermocouple spatial filter

    International Nuclear Information System (INIS)

    Han Bing; Tong Yunxian

    1989-12-01

    The design and study on thermocouple spatial filter have been conducted for the flow measurement of integrated reactor coolant. The fundamental principle of spatial filtring, mathematical descriptions and analyses of thermocouple spatial filter are given

  10. Panchromatic Hubble Andromeda Treasury. IX. A photometric survey of planetary nebulae in M31

    Energy Technology Data Exchange (ETDEWEB)

    Veyette, Mark J.; Williams, Benjamin F.; Dalcanton, Julianne J.; Balick, Bruce; Fouesneau, Morgan [Department of Astronomy, University of Washington, P.O. Box 351580, Seattle, WA 98195 (United States); Caldwell, Nelson [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Girardi, Léo [Osservatorio Astronomico di Padova—INAF, Vicolo dell' Osservatorio 5, I-35122 Padova (Italy); Gordon, Karl D.; Kalirai, Jason [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Rosenfield, Philip [Department of Physics and Astronomy G. Galilei, University of Padova, Vicolo dell' Osservatorio 3, I-35122 Padova (Italy); Seth, Anil C., E-mail: mveyette@uw.edu [Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112 (United States)

    2014-09-10

    We search the Hubble Space Telescope (HST) Advanced Camera for Surveys and Wide Field Camera 3 broadband imaging data from the Panchromatic Hubble Andromeda Treasury (PHAT) survey to identify detections of cataloged planetary nebulae (PNs). Of the 711 PNs currently in the literature within the PHAT footprint, we find 467 detected in the broadband. For these 467, we are able to refine their astrometric accuracy from ∼0.''3 to 0.''05. Using the resolution of the HST, we are able to show that 152 objects currently in the catalogs are definitively not PNs, and we show that 32 objects thought to be extended in ground-based images are actually point-like and therefore good PN candidates. We also find one PN candidate that is marginally resolved. If this is a PN, it is up to 0.7 pc in diameter. With our new photometric data, we develop a method of measuring the level of excitation in individual PNs by comparing broadband and narrowband imaging and describe the effects of excitation on a PN's photometric signature. Using the photometric properties of the known PNs in the PHAT catalogs, we search for more PNs, but do not find any new candidates, suggesting that ground-based emission-line surveys are complete in the PHAT footprint to F475W ≅ 24.

  11. Hubble 3D: A Science and Hollywood Collaboration Made (Nearly) in Heaven

    Science.gov (United States)

    Showstack, Randy

    2010-04-01

    Just 2 days after the 2010 Academy Awards® ceremony in early March bestowed Oscars® for motion picture achievements, NASA deputy administrator Lori Garver touted a new film about the Hubble Space Telescope, Hubble 3D, for best drama, special effects, screenplay, actors and actress, and director and producer. The 43-minute IMAX and Warner Brothers Pictures production, which opened in theaters on 19 March, is an example of the ability of Hollywood and the science community to partner in providing a dynamic educational and entertaining product, according to a number of people associated with the film. Sharing the red carpet at the Smithsonian National Air and Space Museum in Washington, D. C., with astronauts and others to mark the world premiere, Garver said the film shows the drama of the astronauts’ efforts to repair the telescope while traveling 17,000 miles per hour and performing grueling space walks (see Figure 1). “We have literally opened our eyes on the universe through this telescope,” she said. “This is a taxpayer-funded agency, and we are giving back to the public the very story that they paid for.”

  12. HUBBLE TARANTULA TREASURY PROJECT. V. THE STAR CLUSTER HODGE 301: THE OLD FACE OF 30 DORADUS

    Energy Technology Data Exchange (ETDEWEB)

    Cignoni, M. [Department of Physics—University of Pisa, Largo Pontecorvo, 3 Pisa, I-56127 (Italy); Sabbi, E.; Marel, R. P. van der; Aloisi, A.; Panagia, N. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD, 21218 (United States); Lennon, D. J. [European Space Astronomy Centre, Apdo. de Correo 78, E-28691 Villanueva de la Canada, Madrid (Spain); Tosi, M. [INAF-Osservatorio Astronomico di Bologna, Via Ranzani 1, I-40127 Bologna (Italy); Grebel, E. K. [Astronomisches Rechen-Institut, Zentrum für Astronomie der Universität Heidelberg, Mönchhofstr. 12-14, D-69120 Heidelberg (Germany); Gallagher, J. S. III [Department of Astronomy, University of Wisconsin-Madison, WI 53706 (United States); Marchi, G. de [European Space Research and Technology Centre, Keplerlaan 1, NL-2200 AG Noordwijk (Netherlands); Gouliermis, D. A. [Zentrum für Astronomie der Universität Heidelberg, Institut für Theoretische Astrophysik, Albert-Ueberle-Str. 2, D-69120 Heidelberg (Germany); Larsen, S. [Department of Astrophysics, Radboud University, P.O. Box 9010, NL-6500 GL Nijmegen (Netherlands); Smith, L. J., E-mail: michele.cignoni@unipi.it [European Space Agency and Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States)

    2016-12-20

    Based on color–magnitude diagrams (CMDs) from the Hubble Space Telescope  Hubble Tarantula Treasury Project (HTTP) survey, we present the star formation history of Hodge 301, the oldest star cluster in the Tarantula Nebula. The HTTP photometry extends faint enough to reach, for the first time, the cluster pre-main sequence (PMS) turn-on, where the PMS joins the main sequence. Using the location of this feature, along with synthetic CMDs generated with the latest PARSEC models, we find that Hodge 301 is older than previously thought, with an age between 26.5 and 31.5 Myr. From this age, we also estimate that between 38 and 61 Type II supernovae exploded in the region. The same age is derived from the main sequence turn-off, whereas the age derived from the post-main sequence stars is younger and between 20 and 25 Myr. Other relevant parameters are a total stellar mass of ≈8800 ± 800  M {sub ⊙} and average reddening E ( B − V ) ≈ 0.22–0.24 mag, with a differential reddening δE ( B − V ) ≈ 0.04 mag.

  13. A HUBBLE DIAGRAM FROM TYPE II SUPERNOVAE BASED SOLELY ON PHOTOMETRY: THE PHOTOMETRIC COLOR METHOD

    International Nuclear Information System (INIS)

    De Jaeger, T.; González-Gaitán, S.; Galbany, L.; Hamuy, M.; Gutiérrez, C. P.; Kuncarayakti, H.; Anderson, J. P.; Phillips, M. M.; Campillay, A.; Castellón, S.; Hsiao, E. Y.; Morrell, N.; Stritzinger, M. D.; Contreras, C.; Bolt, L.; Burns, C. R.; Folatelli, G.; Freedman, W. L.; Krisciunas, K.; Krzeminski, W.

    2015-01-01

    We present a Hubble diagram of SNe II using corrected magnitudes derived only from photometry, with no input of spectral information. We use a data set from the Carnegie Supernovae Project I for which optical and near-infrared light curves were obtained. The apparent magnitude is corrected by two observables, one corresponding to the slope of the plateau in the V band and the second a color term. We obtain a dispersion of 0.44 mag using a combination of the (V − i) color and the r band and we are able to reduce the dispersion to 0.39 mag using our golden sample. A comparison of our photometric color method (PCM) with the standardized candle method (SCM) is also performed. The dispersion obtained for the SCM (which uses both photometric and spectroscopic information) is 0.29 mag, which compares with 0.43 mag from the PCM for the same SN sample. The construction of a photometric Hubble diagram is of high importance in the coming era of large photometric wide-field surveys, which will increase the detection rate of supernovae by orders of magnitude. Such numbers will prohibit spectroscopic follow up in the vast majority of cases, and hence methods must be deployed which can proceed using solely photometric data

  14. A HUBBLE DIAGRAM FROM TYPE II SUPERNOVAE BASED SOLELY ON PHOTOMETRY: THE PHOTOMETRIC COLOR METHOD

    Energy Technology Data Exchange (ETDEWEB)

    De Jaeger, T.; González-Gaitán, S.; Galbany, L.; Hamuy, M.; Gutiérrez, C. P.; Kuncarayakti, H. [Millennium Institute of Astrophysics, Santiago (Chile); Anderson, J. P. [European Southern Observatory, Alonso de Córdova 3107, Casilla 19, Santiago (Chile); Phillips, M. M.; Campillay, A.; Castellón, S.; Hsiao, E. Y.; Morrell, N. [Las Campanas Observatory, Carnegie Observatories, Casilla 601, La Serena (Chile); Stritzinger, M. D.; Contreras, C. [Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark); Bolt, L. [Argelander Institut für Astronomie, Universität Bonn, Auf dem Hgel 71, D-53111 Bonn (Germany); Burns, C. R. [Observatories of the Carnegie Institution for Science, Pasadena, CA 91101 (United States); Folatelli, G. [Instituto de Astrofísica de La Plata, CONICET, Paseo del Bosque S/N, B1900FWA, La Plata (Argentina); Freedman, W. L. [Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 60637 (United States); Krisciunas, K. [George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, Department of Physics and Astronomy, Texas A and M University, College Station, TX 77843 (United States); Krzeminski, W., E-mail: dthomas@das.uchile.cl [N. Copernicus Astronomical Center, ul. Bartycka 18, 00-716 Warszawa (Poland); and others

    2015-12-20

    We present a Hubble diagram of SNe II using corrected magnitudes derived only from photometry, with no input of spectral information. We use a data set from the Carnegie Supernovae Project I for which optical and near-infrared light curves were obtained. The apparent magnitude is corrected by two observables, one corresponding to the slope of the plateau in the V band and the second a color term. We obtain a dispersion of 0.44 mag using a combination of the (V − i) color and the r band and we are able to reduce the dispersion to 0.39 mag using our golden sample. A comparison of our photometric color method (PCM) with the standardized candle method (SCM) is also performed. The dispersion obtained for the SCM (which uses both photometric and spectroscopic information) is 0.29 mag, which compares with 0.43 mag from the PCM for the same SN sample. The construction of a photometric Hubble diagram is of high importance in the coming era of large photometric wide-field surveys, which will increase the detection rate of supernovae by orders of magnitude. Such numbers will prohibit spectroscopic follow up in the vast majority of cases, and hence methods must be deployed which can proceed using solely photometric data.

  15. HUBBLE'S ULTRAVIOLET VIEWS OF NEARBY GALAXIES YIELD CLUES TO EARLY UNIVERSE

    Science.gov (United States)

    2002-01-01

    Astronomers are using these three NASA Hubble Space Telescope images to help tackle the question of why distant galaxies have such odd shapes, appearing markedly different from the typical elliptical and spiral galaxies seen in the nearby universe. Do faraway galaxies look weird because they are truly weird? Or, are they actually normal galaxies that look like oddballs, because astronomers are getting an incomplete picture of them, seeing only the brightest pieces? Light from these galaxies travels great distances (billions of light-years) to reach Earth. During its journey, the light is 'stretched' due to the expansion of space. As a result, the light is no longer visible, but has been shifted to the infrared where present instruments are less sensitive. About the only light astronomers can see comes from regions where hot, young stars reside. These stars emit mostly ultraviolet light. But this light is stretched, appearing as visible light by the time it reaches Earth. Studying these distant galaxies is like trying to put together a puzzle with some of the pieces missing. What, then, do distant galaxies really look like? Astronomers studied 37 nearby galaxies to find out. By viewing these galaxies in ultraviolet light, astronomers can compare their shapes with those of their distant relatives. These three Hubble telescope pictures, taken with the Wide Field and Planetary Camera 2, represent a sampling from that survey. Astronomers observed the galaxies in ultraviolet and visible light to study all the stars that make up these 'cities of stars.' The results of their survey support the idea that astronomers are detecting the 'tip of the iceberg' of very distant galaxies. Based on these Hubble ultraviolet images, not all the faraway galaxies necessarily possess intrinsically odd shapes. The results are being presented today at the 197th meeting of the American Astronomical Society in San Diego, CA. The central region of the 'star-burst' spiral galaxy at far left

  16. Time constant of logarithmic creep and relaxation

    CSIR Research Space (South Africa)

    Nabarro, FRN

    2001-07-15

    Full Text Available length and hardness which vary logarithmically with time. For dimensional reasons, a logarithmic variation must involve a time constant tau characteristic of the process, so that the deformation is proportional to ln(t/tau). Two distinct mechanisms...

  17. The Nature of the Cosmological Constant Problem

    Science.gov (United States)

    Maia, M. D.; Capistrano, A. J. S.; Monte, E. M.

    General relativity postulates the Minkowski space-time as the standard (flat) geometry against which we compare all curved space-times and also as the gravitational ground state where particles, quantum fields and their vacua are defined. On the other hand, experimental evidences tell that there exists a non-zero cosmological constant, which implies in a deSitter ground state, which not compatible with the assumed Minkowski structure. Such inconsistency is an evidence of the missing standard of curvature in Riemann's geometry, which in general relativity manifests itself in the form of the cosmological constant problem. We show how the lack of a curvature standard in Riemann's geometry can be fixed by Nash's theorem on metric perturbations. The resulting higher dimensional gravitational theory is more general than general relativity, similar to brane-world gravity, but where the propagation of the gravitational field along the extra dimensions is a mathematical necessity, rather than a postulate. After a brief introduction to Nash's theorem, we show that the vacuum energy density must remain confined to four-dimensional space-times, but the cosmological constant resulting from the contracted Bianchi identity represents a gravitational term which is not confined. In this case, the comparison between the vacuum energy and the cosmological constant in general relativity does not make sense. Instead, the geometrical fix provided by Nash's theorem suggests that the vacuum energy density contributes to the perturbations of the gravitational field.

  18. A Memorandum Report: Physical Constants of MCE

    Science.gov (United States)

    2016-08-01

    the density and surface tension. In effect, this constant is a corrected molar volume = P = MS / = S / where P = Parachor M = molar volume ...3 3. Vapor Pressure of MCE Calculated from the Experimental Data by Method of Least Squares...values were obtained by averaging the determinations for each sample separately, and then averaging those values. **No average was calculated due to

  19. Study on electromagnetic constants of rotational bands

    International Nuclear Information System (INIS)

    Abdurazakov, A.A.; Adib, Yu.Sh.; Karakhodzhaev, A.K.

    1991-01-01

    Values of electromagnetic constant S and rotation bands of odd nuclei with Z=64-70 within the mass number change interval A=153-173 are determined. Values of γ-transition mixing parameter with M1+E2 multipolarity are presented. ρ parameter dependence on mass number A is discussed

  20. Dissociative electron attachment to ozone: rate constant

    International Nuclear Information System (INIS)

    Skalny, J.D.; Cicman, P.; Maerk, T.D.

    2002-01-01

    The rate constant for dissociative electron attachment to ozone has been derived over the energy range of 0-10 eV by using previously measured cross section data revisited here in regards to discrimination effect occurring during the extraction of ions. The obtained data for both possible channels exhibit the maximum at mean electron energies close to 1 eV. (author)

  1. Running coupling constants of the Luttinger liquid

    International Nuclear Information System (INIS)

    Boose, D.; Jacquot, J.L.; Polonyi, J.

    2005-01-01

    We compute the one-loop expressions of two running coupling constants of the Luttinger model. The obtained expressions have a nontrivial momentum dependence with Landau poles. The reason for the discrepancy between our results and those of other studies, which find that the scaling laws are trivial, is explained

  2. Constant force linear permanent magnet actuators

    NARCIS (Netherlands)

    Paulides, J.J.H.; Encica, L.; Meessen, K.J.; Lomonova, E.A.

    2009-01-01

    In applications, such as vibration isolation, gravity compensation, pick-and-place machines, etc., there is a need for (long-stroke) passive constant force actuators combined with tubular permanent magnet actuators to minimize the power consumption, hence, passively counteract the gravitational

  3. Lifetime of titanium filament at constant current

    International Nuclear Information System (INIS)

    Chou, T.S.; Lanni, C.

    1981-01-01

    Titanium Sublimation Pump (TSP) represents the most efficient and the least expensive method to produce Ultra High Vacuum (UHV) in storage rings. In ISABELLE, a proton storage accelerator under construction at Brookhaven National Laboratory, for example, TSP provides a pumping speed for hydrogen of > 2 x 10 6 l/s. Due to the finite life of titanium filaments, new filaments have to be switched in before the end of filament burn out, to ensure smooth operation of the accelerator. Therefore, several operational modes that can be used to activate the TSP were studied. The constant current mode is a convenient way of maintaining constant evaporating rate by increasing the power input while the filament diameter decreases as titanium evaporates. The filaments used in this experiment were standard Varian 916-0024 filaments made of Ti 85%, Mo 15% alloy. During their lifetime at a constant current of 48 amperes, the evaporation rate rose to a maximum at about 10% of their life and then flattened out to a constant value, 0.25 g/hr. The maximum evaporation rate occurs coincidently with the recrystallization of 74% Ti 26% Mo 2 from microstructure crystalline at higher titanium concentration to macrostructure crystalline at lower titanium concentration. As the macrocrystal grows, the slip plane develops at the grain boundary resulting in high resistance at the slip plane which will eventually cause the filament burn out due to local heating

  4. Derivation of the fine-structure constant

    International Nuclear Information System (INIS)

    Samec, A.

    1980-01-01

    The fine-structure constant is derived as a dynamical property of quantum electrodynamics. Single-particle solutions of the coupled Maxwell and Dirac equations have a physical charge spectrum. The solutions are used to construct lepton-and quark-like particles. The strong, weak, electromagnetic, and gravitational forces are described as the interactions of complex charges in multiple combinations

  5. The Spatial Politics of Spatial Representation

    DEFF Research Database (Denmark)

    Olesen, Kristian; Richardson, Tim

    2011-01-01

    spatial planning in Denmark reveals how fuzzy spatial representations and relational spatial concepts are being used to depoliticise strategic spatial planning processes and to camouflage spatial politics. The paper concludes that, while relational geography might play an important role in building......This paper explores the interplay between the spatial politics of new governance landscapes and innovations in the use of spatial representations in planning. The central premise is that planning experiments with new relational approaches become enmeshed in spatial politics. The case of strategic...

  6. Quasar Host Galaxies/Neptune Rotation/Galaxy Building Blocks/Hubble Deep Field/Saturn Storm

    Science.gov (United States)

    2001-01-01

    Computerized animations simulate a quasar erupting in the core of a normal spiral galaxy, the collision of two interacting galaxies, and the evolution of the universe. Hubble Space Telescope (HST) images show six quasars' host galaxies (including spirals, ellipticals, and colliding galaxies) and six clumps of galaxies approximately 11 billion light years away. A false color time lapse movie of Neptune displays the planet's 16-hour rotation, and the evolution of a storm on Saturn is seen though a video of the planet's rotation. A zoom sequence starts with a ground-based image of the constellation Ursa major and ends with the Hubble Deep Field through progressively narrower and deeper views.

  7. Hubble Diagram Test of Expanding and Static Cosmological Models: The Case for a Slowly Expanding Flat Universe

    Directory of Open Access Journals (Sweden)

    Laszlo A. Marosi

    2013-01-01

    Full Text Available We present a new redshift (RS versus photon travel time ( test including 171 supernovae RS data points. We extended the Hubble diagram to a range of z = 0,0141–8.1 in the hope that at high RSs, the fitting of the calculated RS/ diagrams to the observed RS data would, as predicted by different cosmological models, set constraints on alternative cosmological models. The Lambda cold dark matter (ΛCDM, the static universe model, and the case for a slowly expanding flat universe (SEU are considered. We show that on the basis of the Hubble diagram test, the static and the slowly expanding models are favored.

  8. Construction of Lines of Constant Density and Constant Refractive Index for Ternary Liquid Mixtures.

    Science.gov (United States)

    Tasic, Aleksandar Z.; Djordjevic, Bojan D.

    1983-01-01

    Demonstrates construction of density constant and refractive index constant lines in triangular coordinate system on basis of systematic experimental determinations of density and refractive index for both homogeneous (single-phase) ternary liquid mixtures (of known composition) and the corresponding binary compositions. Background information,…

  9. Correction factor for the experimental prompt neutron decay constant

    International Nuclear Information System (INIS)

    Talamo, Alberto; Gohar, Y.; Sadovich, S.; Kiyavitskaya, H.; Bournos, V.; Fokov, Y.; Routkovskaya, C.

    2013-01-01

    Highlights: • Definition of a spatial correction factor for the experimental prompt neutron decay constant. • Introduction of a MCNP6 calculation methodology to simulate Rossi-alpha distribution for pulsed neutron sources. • Comparison of MCNP6 results with experimental data for count rate, Rossi-alpha, and Feynman-alpha distributions. • Improvement of the comparison between numerical and experimental results by taking into account the dead-time effect. - Abstract: This study introduces a new correction factor to obtain the experimental effective multiplication factor of subcritical assemblies by the point kinetics formulation. The correction factor is defined as the ratio between the MCNP6 prompt neutron decay constant obtained in criticality mode and the one obtained in source mode. The correction factor mainly takes into account the longer neutron lifetime in the reflector region and the effects of the external neutron source. For the YALINA Thermal facility, the comparison between the experimental and computational effective multiplication factors noticeably improves after the application of the correction factor. The accuracy of the MCNP6 computational model of the YALINA Thermal subcritical assembly has been verified by reproducing the neutron count rate, Rossi-α, and Feynman-α distributions obtained from the experimental data

  10. Nonlinear quantum gravity on the constant mean curvature foliation

    International Nuclear Information System (INIS)

    Wang, Charles H-T

    2005-01-01

    A new approach to quantum gravity is presented based on a nonlinear quantization scheme for canonical field theories with an implicitly defined Hamiltonian. The constant mean curvature foliation is employed to eliminate the momentum constraints in canonical general relativity. It is, however, argued that the Hamiltonian constraint may be advantageously retained in the reduced classical system to be quantized. This permits the Hamiltonian constraint equation to be consistently turned into an expectation value equation on quantization that describes the scale factor on each spatial hypersurface characterized by a constant mean exterior curvature. This expectation value equation augments the dynamical quantum evolution of the unconstrained conformal three-geometry with a transverse traceless momentum tensor density. The resulting quantum theory is inherently nonlinear. Nonetheless, it is unitary and free from a nonlocal and implicit description of the Hamiltonian operator. Finally, by imposing additional homogeneity symmetries, a broad class of Bianchi cosmological models are analysed as nonlinear quantum minisuperspaces in the context of the proposed theory

  11. Black Holes and Quantum Theory: The Fine Structure Constant Connection

    Directory of Open Access Journals (Sweden)

    Cahill R. T.

    2006-10-01

    Full Text Available The new dynamical theory of space is further confirmed by showing that the effective “black hole” masses M BH in 19 spherical star systems, from globular clusters to galaxies, with masses M , satisfy the prediction that M BH = α 2 M , where α is the fine structure constant. As well the necessary and unique generalisations of the Schr ̈ odinger and Dirac equations permit the first derivation of gravity from a deeper theory, showing that gravity is a quantum effect of quantum matter interacting with the dynamical space. As well the necessary generalisation of Maxwell’s equations displays the observed light bending effects. Finally it is shown from the generalised Dirac equation where the spacetime mathematical formalism, and the accompanying geodesic prescription for matter trajectories, comes from. The new theory of space is non-local and we see many parallels between this and quantum theory, in addition to the fine structure constant manifesting in both, so supporting the argument that space is a quantum foam system, as implied by the deeper information-theoretic theory known as Process Physics. The spatial dynamics also provides an explanation for the “dark matter” effect and as well the non-locality of the dynamics provides a mechanism for generating the uniformity of the universe, so explaining the cosmological horizon problem.

  12. Molecular equilibrium structures from experimental rotational constants and calculated vibration-rotation interaction constants

    DEFF Research Database (Denmark)

    Pawlowski, F; Jorgensen, P; Olsen, Jeppe

    2002-01-01

    A detailed study is carried out of the accuracy of molecular equilibrium geometries obtained from least-squares fits involving experimental rotational constants B(0) and sums of ab initio vibration-rotation interaction constants alpha(r)(B). The vibration-rotation interaction constants have been...... calculated for 18 single-configuration dominated molecules containing hydrogen and first-row atoms at various standard levels of ab initio theory. Comparisons with the experimental data and tests for the internal consistency of the calculations show that the equilibrium structures generated using Hartree......-Fock vibration-rotation interaction constants have an accuracy similar to that obtained by a direct minimization of the CCSD(T) energy. The most accurate vibration-rotation interaction constants are those calculated at the CCSD(T)/cc-pVQZ level. The equilibrium bond distances determined from these interaction...

  13. Kinematic scaling relations of CALIFA galaxies: A dynamical mass proxy for galaxies across the Hubble sequence.

    Science.gov (United States)

    Aquino-Ortíz, E.; Valenzuela, O.; Sánchez, S. F.; Hernández-Toledo, H.; Ávila-Reese, V.; van de Ven, G.; Rodríguez-Puebla, A.; Zhu, L.; Mancillas, B.; Cano-Díaz, M.; García-Benito, R.

    2018-06-01

    We used ionized gas and stellar kinematics for 667 spatially resolved galaxies publicly available from the Calar Alto Legacy Integral Field Area survey (CALIFA) 3rd Data Release with the aim of studying kinematic scaling relations as the Tully & Fisher (TF) relation using rotation velocity, Vrot, the Faber & Jackson (FJ) relation using velocity dispersion, σ, and also a combination of Vrot and σ through the SK parameter defined as SK^2 = KV_{rot}^2 + σ ^2 with constant K. Late-type and early-type galaxies reproduce the TF and FJ relations. Some early-type galaxies also follow the TF relation and some late-type galaxies the FJ relation, but always with larger scatter. On the contrary, when we use the SK parameter, all galaxies, regardless of the morphological type, lie on the same scaling relation, showing a tight correlation with the total stellar mass, M⋆. Indeed, we find that the scatter in this relation is smaller or equal to that of the TF and FJ relations. We explore different values of the K parameter without significant differences (slope and scatter) in our final results with respect the case K = 0.5 besides than a small change in the zero point. We calibrate the kinematic SK^2 dynamical mass proxy in order to make it consistent with sophisticated published dynamical models within 0.15 dex. We show that the SK proxy is able to reproduce the relation between the dynamical mass and the stellar mass in the inner regions of galaxies. Our result may be useful in order to produce fast estimations of the central dynamical mass in galaxies and to study correlations in large galaxy surveys.

  14. INFRARED TRANSMISSION SPECTROSCOPY OF THE EXOPLANETS HD 209458b AND XO-1b USING THE WIDE FIELD CAMERA-3 ON THE HUBBLE SPACE TELESCOPE

    Energy Technology Data Exchange (ETDEWEB)

    Deming, Drake; Wilkins, Ashlee [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); McCullough, Peter; Crouzet, Nicolas [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Burrows, Adam [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544-1001 (United States); Fortney, Jonathan J. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Agol, Eric; Dobbs-Dixon, Ian [NASA Astrobiology Institute' s Virtual Planetary Laboratory (United States); Madhusudhan, Nikku [Yale Center for Astronomy and Astrophysics, Yale University, New Haven, CT 06511 (United States); Desert, Jean-Michel; Knutson, Heather A.; Line, Michael [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 (United States); Gilliland, Ronald L. [Center for Exoplanets and Habitable Worlds, The Pennsylvania State University, University Park, PA 16802 (United States); Haynes, Korey [Department of Physics and Astronomy, George Mason University, Fairfax, VA 22030 (United States); Magic, Zazralt [Max-Planck-Institut fuer Astrophysik, D-85741 Garching (Germany); Mandell, Avi M.; Clampin, Mark [NASA' s Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Ranjan, Sukrit; Charbonneau, David [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Seager, Sara, E-mail: ddeming@astro.umd.edu [Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); and others

    2013-09-10

    Exoplanetary transmission spectroscopy in the near-infrared using the Hubble Space Telescope (HST) NICMOS is currently ambiguous because different observational groups claim different results from the same data, depending on their analysis methodologies. Spatial scanning with HST/WFC3 provides an opportunity to resolve this ambiguity. We here report WFC3 spectroscopy of the giant planets HD 209458b and XO-1b in transit, using spatial scanning mode for maximum photon-collecting efficiency. We introduce an analysis technique that derives the exoplanetary transmission spectrum without the necessity of explicitly decorrelating instrumental effects, and achieves nearly photon-limited precision even at the high flux levels collected in spatial scan mode. Our errors are within 6% (XO-1) and 26% (HD 209458b) of the photon-limit at a resolving power of {lambda}/{delta}{lambda} {approx} 70, and are better than 0.01% per spectral channel. Both planets exhibit water absorption of approximately 200 ppm at the water peak near 1.38 {mu}m. Our result for XO-1b contradicts the much larger absorption derived from NICMOS spectroscopy. The weak water absorption we measure for HD 209458b is reminiscent of the weakness of sodium absorption in the first transmission spectroscopy of an exoplanet atmosphere by Charbonneau et al. Model atmospheres having uniformly distributed extra opacity of 0.012 cm{sup 2} g{sup -1} account approximately for both our water measurement and the sodium absorption. Our results for HD 209458b support the picture advocated by Pont et al. in which weak molecular absorptions are superposed on a transmission spectrum that is dominated by continuous opacity due to haze and/or dust. However, the extra opacity needed for HD 209458b is grayer than for HD 189733b, with a weaker Rayleigh component.

  15. Construcción de un diagrama de Hubble: Una herramienta para la Enseñanza de la Astronomía

    Directory of Open Access Journals (Sweden)

    Giovanni Cardona Rodriguez

    2016-06-01

    Full Text Available Se presenta una actividad que puede apoyar el trabajo de los docentes que dirigen  clubes de Astronomía y quieren abordar el tema de evolución del Universo, ya que   se  reconstruye  la ley de Hubble  a partir de la construcción de un Diagrama de Hubble con  datos  tomados del Sloan Digital Sky Survey   (SDSS ,  del  cual se obtiene el valor del parámetro de Hubble y se infiere la expansión del Universo. Esta actividad  didáctica permite a los profesores orientar a sus estudiantes por el camino que siguió Hubble  para determinar su ley, en este sentido se exponen algunas implicaciones de aplicación de la misma en el contexto de la formación de profesores de física y de los clubes de Astronomía.  Construction of a Hubble Diagram: A tool for teaching astronomy This article presents the construction and analysis of an activity that can support the work of teachers who run Astronomy clubs and want to address the issue of evolution of the Universe. Here Hubble's law is reconstructed by reproducing a Hubble diagram with Sloan Digital Sky Survey's (SDSS data, from which the Hubble parameter value is obtained and the expansion of the Universe is inferred. This educational activity allows teachers to guide their students along the path followed by Hubble to determine his law. In this sense some implications of applying the latter are discussed in the context of teacher's training in Physics and Astronomy clubs. Construção de um diagrama de Hubble: Uma ferramenta para ensino de astronomía Se apresenta uma actividade que pode apoiar o trabalho dos professores que dirigem clubes de Astronomia e querem abordar a questão da evolução do Universo, como a lei de Hubble é reconstruída a partir da reprodução de um diagrama de Hubble com os dados tomados do Sloan digital Sky Survey (SDSS, é achado o parâmetro de Hubble e inferida a expansão do universo. Esta actividade educativa permite aos professores orientar seus alunos ao

  16. Preparation of small group constants for calculation of shielding

    International Nuclear Information System (INIS)

    Khokhlov, V.F.; Shejno, I.N.; Tkachev, V.D.

    1979-01-01

    Studied is the effect of the shielding calculation error connected with neglect of the angular and spatial neutron flux dependences while determining the small-group constants on the basis of the many-group ones. The economical method allowing for dependences is proposed. The spatial dependence is substituted by the average value according to the zones singled out in the limits of the zones of the same content; the angular cross section dependence is substituted by the average values in the half-ranges of the angular variable. To solve the transfer equation the ALGOL-ROSA-M program using the method of characteristic interpolation and trial run method is developed. The program regards correctly for nonscattered and single scattered radiations. Compared are the calculation results of neutron transmission (10.5 MeV-0.01 eV) in the 21-group approximation with the 3-group calculations for water (the layer thickness is 30 cm) and 5-group calculations for heterogeneous shielding of alternating stainless steel layers (3 layers, each of the 16 cm thickness) and graphite layers (2 layers, each of the 20 cm thickness). The analysis shows that the method proposed permits to obtain rather accurate results in the course of preparation of the small-group cross sections, decreasing considerably the number of the groups (from 21 to 3-5) and saving the machine time

  17. Probing the z > 6 Universe with the First Hubble Frontier Fields Cluster A2744

    Science.gov (United States)

    Atek, Hakim; Richard, Johan; Kneib, Jean-Paul; Clement, Benjamin; Egami, Eiichi; Ebeling, Harald; Jauzac, Mathilde; Jullo, Eric; Laporte, Nicolas; Limousin, Marceau; Natarajan, Priyamvada

    2014-05-01

    The Hubble Frontier Fields program combines the capabilities of the Hubble Space Telescope (HST) with the gravitational lensing of massive galaxy clusters to probe the distant universe to an unprecedented depth. Here, we present the results of the first combined HST and Spitzer observations of the cluster A-2744. We combine the full near-infrared data with ancillary optical images to search for gravitationally lensed high-redshift (z >~ 6) galaxies. We report the detection of 15 I 814 dropout candidates at z ~ 6-7 and one Y 105 dropout at z ~ 8 in a total survey area of 1.43 arcmin2 in the source plane. The predictions of our lens model also allow us to identify five multiply imaged systems lying at redshifts between z ~ 6 and z ~ 8. Thanks to constraints from the mass distribution in the cluster, we were able to estimate the effective survey volume corrected for completeness and magnification effects. This was in turn used to estimate the rest-frame ultraviolet luminosity function (LF) at z ~ 6-8. Our LF results are generally in agreement with the most recent blank field estimates, confirming the feasibility of surveys through lensing clusters. Although based on a shallower observations than what will be achieved in the final data set including the full Advanced Camera for Survey observations, the LF presented here goes down to M UV ~-18.5, corresponding to 0.2L sstarf at z ~ 7 with one identified object at M UV ~-15 thanks to the highly magnified survey areas. This early study forecasts the power of using massive galaxy clusters as cosmic telescopes and its complementarity to blank fields. Based on observations made with the NASA/ESA Hubble Space Telescope (HST), which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with programs 13495 and 11689. Based in part on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory

  18. Hartmann wavefront sensing of the corrective optics for the Hubble Space Telescope

    Science.gov (United States)

    Davila, Pam S.; Eichhorn, William L.; Wilson, Mark E.

    1994-06-01

    There is no doubt that astronomy with the `new, improved' Hubble Space Telescope will significantly advance our knowledge and understanding of the universe for years to come. The Corrective Optics Space Telescope Axial Replacement (COSTAR) was designed to restore the image quality to nearly diffraction limited performance for three of the first generation instruments; the faint object camera, the faint object spectrograph, and the Goddard high resolution spectrograph. Spectacular images have been obtained from the faint object camera after the installation of the corrective optics during the first servicing mission in December of 1993. About 85% of the light in the central core of the corrected image is contained within a circle with a diameter of 0.2 arcsec. This is a vast improvement over the previous 15 to 17% encircled energies obtained before COSTAR. Clearly COSTAR is a success. One reason for the overwhelming success of COSTAR was the ambitious and comprehensive test program conducted by various groups throughout the program. For optical testing of COSTAR on the ground, engineers at Ball Aerospace designed and built the refractive Hubble simulator to produce known amounts of spherical aberration and astigmatism at specific points in the field of view. The design goal for this refractive aberrated simulator (RAS) was to match the aberrations of the Hubble Space Telescope to within (lambda) /20 rms over the field at a wavelength of 632.8 nm. When the COSTAR optics were combined with the RAS optics, the corrected COSTAR output images were produced. These COSTAR images were recorded with a high resolution 1024 by 1024 array CCD camera, the Ball image analyzer (BIA). The image quality criteria used for assessment of COSTAR performance was encircled energy in the COSTAR focal plane. This test with the BIA was very important because it was a direct measurement of the point spread function. But it was difficult with this test to say anything quantitative about the

  19. Constant force extensional rheometry of polymer solutions

    DEFF Research Database (Denmark)

    Szabo, Peter; McKinley, Gareth H.; Clasen, Christian

    2012-01-01

    We revisit the rapid stretching of a liquid filament under the action of a constant imposed tensile force, a problem which was first considered by Matta and Tytus [J. Non-Newton. Fluid Mech. 35 (1990) 215–229]. A liquid bridge formed from a viscous Newtonian fluid or from a dilute polymer solution...... is first established between two cylindrical disks. The upper disk is held fixed and may be connected to a force transducer while the lower cylinder falls due to gravity. By varying the mass of the falling cylinder and measuring its resulting acceleration, the viscoelastic nature of the elongating fluid...... filament can be probed. In particular, we show that with this constant force pull (CFP) technique it is possible to readily impose very large material strains and strain rates so that the maximum extensibility of the polymer molecules may be quantified. This unique characteristic of the experiment...

  20. f(R) constant-roll inflation

    Energy Technology Data Exchange (ETDEWEB)

    Motohashi, Hayato [Universidad de Valencia-CSIC, Instituto de Fisica Corpuscular (IFIC), Valencia (Spain); Starobinsky, Alexei A. [L.D. Landau Institute for Theoretical Physics, RAS, Moscow (Russian Federation); National Research University Higher School of Economics, Moscow (Russian Federation)

    2017-08-15

    The previously introduced class of two-parametric phenomenological inflationary models in general relativity in which the slow-roll assumption is replaced by the more general, constant-roll condition is generalized to the case of f(R) gravity. A simple constant-roll condition is defined in the original Jordan frame, and exact expressions for a scalaron potential in the Einstein frame, for a function f(R) (in the parametric form) and for inflationary dynamics are obtained. The region of the model parameters permitted by the latest observational constraints on the scalar spectral index and the tensor-to-scalar ratio of primordial metric perturbations generated during inflation is determined. (orig.)

  1. Benjamin Constant. Libertad, democracia y pluralismo

    Directory of Open Access Journals (Sweden)

    Claudia Patricia Fonnegra Osorio

    2015-12-01

    Full Text Available A partir de un enfoque interpretativo, en este artículo se aborda por qué para Benjamin Constant la democracia solo puede darse en donde se presenta una relación necesaria entre la libertad entendida como defensa de los derechos individuales -libertad como independencia o negativa- y la libertad concebida como principio de la participación pública -libertad como autonomía o positiva-. Asimismo, se presenta la importancia que atribuye el autor a las tradiciones que dan vida a la configuración del universo cultural de un pueblo. Se concluye que en la obra de Constant se encuentra una clara defensa del Estado de derecho y del pluralismo, la cual puede iluminar la comprensión de los problemas políticos de la contemporaneidad.

  2. Varying constants, black holes, and quantum gravity

    International Nuclear Information System (INIS)

    Carlip, S.

    2003-01-01

    Tentative observations and theoretical considerations have recently led to renewed interest in models of fundamental physics in which certain 'constants' vary in time. Assuming fixed black hole mass and the standard form of the Bekenstein-Hawking entropy, Davies, Davis and Lineweaver have argued that the laws of black hole thermodynamics disfavor models in which the fundamental electric charge e changes. I show that with these assumptions, similar considerations severely constrain 'varying speed of light' models, unless we are prepared to abandon cherished assumptions about quantum gravity. Relaxation of these assumptions permits sensible theories of quantum gravity with ''varying constants,'' but also eliminates the thermodynamic constraints, though the black hole mass spectrum may still provide some restrictions on the range of allowable models

  3. Cosmological constant in the quantum multiverse

    International Nuclear Information System (INIS)

    Larsen, Grant; Nomura, Yasunori; Roberts, Hannes L. L.

    2011-01-01

    Recently, a new framework for describing the multiverse has been proposed which is based on the principles of quantum mechanics. The framework allows for well-defined predictions, both regarding global properties of the universe and outcomes of particular experiments, according to a single probability formula. This provides complete unification of the eternally inflating multiverse and many worlds in quantum mechanics. In this paper, we elucidate how cosmological parameters can be calculated in this framework, and study the probability distribution for the value of the cosmological constant. We consider both positive and negative values, and find that the observed value is consistent with the calculated distribution at an order of magnitude level. In particular, in contrast to the case of earlier measure proposals, our framework prefers a positive cosmological constant over a negative one. These results depend only moderately on how we model galaxy formation and life evolution therein.

  4. On determining dose rate constants spectroscopically

    International Nuclear Information System (INIS)

    Rodriguez, M.; Rogers, D. W. O.

    2013-01-01

    Purpose: To investigate several aspects of the Chen and Nath spectroscopic method of determining the dose rate constants of 125 I and 103 Pd seeds [Z. Chen and R. Nath, Phys. Med. Biol. 55, 6089–6104 (2010)] including the accuracy of using a line or dual-point source approximation as done in their method, and the accuracy of ignoring the effects of the scattered photons in the spectra. Additionally, the authors investigate the accuracy of the literature's many different spectra for bare, i.e., unencapsulated 125 I and 103 Pd sources. Methods: Spectra generated by 14 125 I and 6 103 Pd seeds were calculated in vacuo at 10 cm from the source in a 2.7 × 2.7 × 0.05 cm 3 voxel using the EGSnrc BrachyDose Monte Carlo code. Calculated spectra used the initial photon spectra recommended by AAPM's TG-43U1 and NCRP (National Council of Radiation Protection and Measurements) Report 58 for the 125 I seeds, or TG-43U1 and NNDC(2000) (National Nuclear Data Center, 2000) for 103 Pd seeds. The emitted spectra were treated as coming from a line or dual-point source in a Monte Carlo simulation to calculate the dose rate constant. The TG-43U1 definition of the dose rate constant was used. These calculations were performed using the full spectrum including scattered photons or using only the main peaks in the spectrum as done experimentally. Statistical uncertainties on the air kerma/history and the dose rate/history were ⩽0.2%. The dose rate constants were also calculated using Monte Carlo simulations of the full seed model. Results: The ratio of the intensity of the 31 keV line relative to that of the main peak in 125 I spectra is, on average, 6.8% higher when calculated with the NCRP Report 58 initial spectrum vs that calculated with TG-43U1 initial spectrum. The 103 Pd spectra exhibit an average 6.2% decrease in the 22.9 keV line relative to the main peak when calculated with the TG-43U1 rather than the NNDC(2000) initial spectrum. The measured values from three different

  5. Some Dynamical Effects of the Cosmological Constant

    Science.gov (United States)

    Axenides, M.; Floratos, E. G.; Perivolaropoulos, L.

    Newton's law gets modified in the presence of a cosmological constant by a small repulsive term (antigravity) that is proportional to the distance. Assuming a value of the cosmological constant consistent with the recent SnIa data (Λ~=10-52 m-2), we investigate the significance of this term on various astrophysical scales. We find that on galactic scales or smaller (less than a few tens of kpc), the dynamical effects of the vacuum energy are negligible by several orders of magnitude. On scales of 1 Mpc or larger however we find that the vacuum energy can significantly affect the dynamics. For example we show that the velocity data in the local group of galaxies correspond to galactic masses increased by 35% in the presence of vacuum energy. The effect is even more important on larger low density systems like clusters of galaxies or superclusters.

  6. Daylight calculations using constant luminance curves

    Energy Technology Data Exchange (ETDEWEB)

    Betman, E. [CRICYT, Mendoza (Argentina). Laboratorio de Ambiente Humano y Vivienda

    2005-02-01

    This paper presents a simple method to manually estimate daylight availability and to make daylight calculations using constant luminance curves calculated with local illuminance and irradiance data and the all-weather model for sky luminance distribution developed in the Atmospheric Science Research Center of the University of New York (ARSC) by Richard Perez et al. Work with constant luminance curves has the advantage that daylight calculations include the problem's directionality and preserve the information of the luminous climate of the place. This permits accurate knowledge of the resource and a strong basis to establish conclusions concerning topics related to the energy efficiency and comfort in buildings. The characteristics of the proposed method are compared with the method that uses the daylight factor. (author)

  7. Understanding fine structure constants and three generations

    International Nuclear Information System (INIS)

    Bennett, D.L.; Nielsen, H.B.

    1988-02-01

    We put forward a model inspired by random dynamics that relates the smallness of the gauge coupling constants to the number of generations being 'large'. The new element in the present version of our model is the appearance of a free parameter χ that is a measure of the (presumably relatively minor) importance of a term in the plaquette action proportional to the trace in the (1/6, 2, 3) representation of the Standard Model. Calling N gen the number of generations, the sets of allowed (N gen , χN gen )-pairs obtained by imposing the three measured coupling constant values of the Standard Model form three lines. In addition to finding that these lines cross at a single point (as needed for a consistent fit), the intersection occurs with surprising accuracy at the integer N gen = 3 (thereby predicting exactly three generations). It is also encouraging that the parameter χ turns out to be small and positive as expected. (orig.)

  8. Bardeen-Cooper-Schrieffer universal constants generalized

    International Nuclear Information System (INIS)

    Hazaimeh, A.H.

    1992-01-01

    Weak- and moderate-coupling BCS superconductivity theory is shown to admit a more general T c formula, wherein T c approaches zero somewhat faster than with the familiar BCS T c -formula. This theory leads to a departure from the universal behavior of the gap-to-T c ratio and is consistent with some recent empirical values for exotic superconductors. This ratio is smaller than the universal BCS value of 3.53 in a way which is consistent with weak electron-boson coupling. Similarly, other universal constants related to specific heat and critical magnetic field are modified. In this dissertation, The author investigates the latter constants for weak-coupling and moderate-coupling and carry out detailed comparisons with experimental data for the cuprates and with the corresponding predictions of strong-coupling theory. This effort is to elucidate the nature of these superconductors with regards to coupling strength within an electron-boson mechanism

  9. Multiphoton amplitude in a constant background field

    Science.gov (United States)

    Ahmad, Aftab; Ahmadiniaz, Naser; Corradini, Olindo; Kim, Sang Pyo; Schubert, Christian

    2018-01-01

    In this contribution, we present our recent compact master formulas for the multiphoton amplitudes of a scalar propagator in a constant background field using the worldline fomulation of quantum field theory. The constant field has been included nonperturbatively, which is crucial for strong external fields. A possible application is the scattering of photons by electrons in a strong magnetic field, a process that has been a subject of great interest since the discovery of astrophysical objects like radio pulsars, which provide evidence that magnetic fields of the order of 1012G are present in nature. The presence of a strong external field leads to a strong deviation from the classical scattering amplitudes. We explicitly work out the Compton scattering amplitude in a magnetic field, which is a process of potential relevance for astrophysics. Our final result is compact and suitable for numerical integration.

  10. Piezooptical constants of Rochelle salt crystals

    OpenAIRE

    V.Yo. Stadnyk; M.O. Romanyuk; V.Yu. Kurlyak; V.F.Vachulovych

    2000-01-01

    The influence of uniaxial mechanical pressure applied along the principal axes and the corresponding bisectors on the birefringent properties of Rochelle salt (RS) crystals are studied. The temperature (77-300 K) and spectral (300-700 nm) dependencies of the effective and absolute piezooptical constants of the RS crystals are calculated. The intercept of dispersion curves of is revealed in the region of the birefringence sign inversion. This testifies that the anizotropy of the piezooptical ...

  11. Simulated annealing with constant thermodynamic speed

    International Nuclear Information System (INIS)

    Salamon, P.; Ruppeiner, G.; Liao, L.; Pedersen, J.

    1987-01-01

    Arguments are presented to the effect that the optimal annealing schedule for simulated annealing proceeds with constant thermodynamic speed, i.e., with dT/dt = -(v T)/(ε-√C), where T is the temperature, ε- is the relaxation time, C ist the heat capacity, t is the time, and v is the thermodynamic speed. Experimental results consistent with this conjecture are presented from simulated annealing on graph partitioning problems. (orig.)

  12. A noteworthy dimensionless constant in gravitation theory

    International Nuclear Information System (INIS)

    Fayos, F.; Lobo, J.A.; Llanta, E.

    1986-01-01

    A simple problem of gravitation is studied classically and in the Schwarzchild framework. A relationship is found between the parameters that define the trajectories of two particles (the first in radial motion and the second in a circular orbit) which are initially together and meet again after one revolution of particle 2. Dimensional analysis is the clue to explain the appearance of a dimensionless constant in the Newtonian case. (author)

  13. Electromagnetic corrections to pseudoscalar decay constants

    Energy Technology Data Exchange (ETDEWEB)

    Glaessle, Benjamin Simon

    2017-03-06

    First principles Lattice quantum chromodynamics (LQCD) calculations enable the determination of low energy hadronic amplitudes. Precision LQCD calculations with relative errors smaller than approximately 1% require the inclusion of electromagnetic effects. We demonstrate that including (quenched) quantum electrodynamics effects in the LQCD calculation effects the values obtained for pseudoscalar decay constants in the per mille range. The importance of systematic effects, including finite volume effects and the charge dependence of renormalization and improvement coefficients, is highlighted.

  14. Cosmological Constant and the Final Anthropic Hypothesis

    OpenAIRE

    Cirkovic, Milan M.; Bostrom, Nick

    1999-01-01

    The influence of recent detections of a finite vacuum energy ("cosmological constant") on our formulation of anthropic conjectures, particularly the so-called Final Anthropic Principle is investigated. It is shown that non-zero vacuum energy implies the onset of a quasi-exponential expansion of our causally connected domain ("the universe") at some point in the future, a stage similar to the inflationary expansion at the very beginning of time. The transition to this future inflationary phase...

  15. Singlet axial constant from QCD sum rules

    International Nuclear Information System (INIS)

    Belitskij, A.V.; Teryaev, O.V.

    1995-01-01

    We analyze the singlet axial form factor of the proton for small momentum transferred in the framework of QCD sum rules using the interpolating nucleon current which explicitly accounts for the gluonic degrees of freedom. As the result we come to the quantitative prediction of the singlet axial constant. It is shown that the bilocal power corrections play the most important role in the analysis. 21 refs., 3 figs

  16. Lattice Paths and the Constant Term

    International Nuclear Information System (INIS)

    Brak, R; Essam, J; Osborn, J; Owczarek, A L; Rechnitzer, A

    2006-01-01

    We firstly review the constant term method (CTM), illustrating its combinatorial connections and show how it can be used to solve a certain class of lattice path problems. We show the connection between the CTM, the transfer matrix method (eigenvectors and eigenvalues), partial difference equations, the Bethe Ansatz and orthogonal polynomials. Secondly, we solve a lattice path problem first posed in 1971. The model stated in 1971 was only solved for a special case - we solve the full model

  17. HUBBLE SPACE TELESCOPE PIXEL ANALYSIS OF THE INTERACTING FACE-ON SPIRAL GALAXY NGC 5194 (M51A)

    International Nuclear Information System (INIS)

    Lee, Joon Hyeop; Kim, Sang Chul; Park, Hong Soo; Ree, Chang Hee; Kyeong, Jaemann; Chung, Jiwon

    2011-01-01

    A pixel analysis is carried out on the interacting face-on spiral galaxy NGC 5194 (M51A), using the Hubble Space Telescope (HST)/Advanced Camera for Surveys (ACS) images in the F435W, F555W, and F814W (BVI) bands. After 4 x 4 binning of the HST/ACS images to secure a sufficient signal-to-noise ratio for each pixel, we derive several quantities describing the pixel color-magnitude diagram (pCMD) of NGC 5194: blue/red color cut, red pixel sequence parameters, blue pixel sequence parameters, and blue-to-red pixel ratio. The red sequence pixels are mostly older than 1 Gyr, while the blue sequence pixels are mostly younger than 1 Gyr, in their luminosity-weighted mean stellar ages. The color variation in the red pixel sequence from V = 20 mag arcsec -2 to V = 17 mag arcsec -2 corresponds to a metallicity variation of Δ[Fe/H] ∼2 or an optical depth variation of Δτ V ∼ 4 by dust, but the actual sequence is thought to originate from the combination of those two effects. At V -2 , the color variation in the blue pixel sequence corresponds to an age variation from 5 Myr to 300 Myr under the assumption of solar metallicity and τ V = 1. To investigate the spatial distributions of stellar populations, we divide pixel stellar populations using the pixel color-color diagram and population synthesis models. As a result, we find that the pixel population distributions across the spiral arms agree with a compressing process by spiral density waves: dense dust → newly formed stars. The tidal interaction between NGC 5194 and NGC 5195 appears to enhance the star formation at the tidal bridge connecting the two galaxies. We find that the pixels corresponding to the central active galactic nucleus (AGN) area of NGC 5194 show a tight sequence at the bright-end of the pCMD, which are in the region of R ∼ 100 pc and may be a photometric indicator of AGN properties.

  18. Elastic constants from microscopic strain fluctuations

    Science.gov (United States)

    Sengupta; Nielaba; Rao; Binder

    2000-02-01

    Fluctuations of the instantaneous local Lagrangian strain epsilon(ij)(r,t), measured with respect to a static "reference" lattice, are used to obtain accurate estimates of the elastic constants of model solids from atomistic computer simulations. The measured strains are systematically coarse-grained by averaging them within subsystems (of size L(b)) of a system (of total size L) in the canonical ensemble. Using a simple finite size scaling theory we predict the behavior of the fluctuations as a function of L(b)/L and extract elastic constants of the system in the thermodynamic limit at nonzero temperature. Our method is simple to implement, efficient, and general enough to be able to handle a wide class of model systems, including those with singular potentials without any essential modification. We illustrate the technique by computing isothermal elastic constants of "hard" and "soft" disk triangular solids in two dimensions from Monte Carlo and molecular dynamics simulations. We compare our results with those from earlier simulations and theory.

  19. Emergent gravity in spaces of constant curvature

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez, Orlando; Haddad, Matthew [Department of Physics, University of Miami,1320 Campo Sano Ave, Coral Gables, FL 33146 (United States)

    2017-03-07

    In physical theories where the energy (action) is localized near a submanifold of a constant curvature space, there is a universal expression for the energy (or the action). We derive a multipole expansion for the energy that has a finite number of terms, and depends on intrinsic geometric invariants of the submanifold and extrinsic invariants of the embedding of the submanifold. This is the second of a pair of articles in which we try to develop a theory of emergent gravity arising from the embedding of a submanifold into an ambient space equipped with a quantum field theory. Our theoretical method requires a generalization of a formula due to by Hermann Weyl. While the first paper discussed the framework in Euclidean (Minkowski) space, here we discuss how this framework generalizes to spaces of constant sectional curvature. We focus primarily on anti de Sitter space. We then discuss how such a theory can give rise to a cosmological constant and Planck mass that are within reasonable bounds of the experimental values.

  20. Planck Constant Determination from Power Equivalence

    Science.gov (United States)

    Newell, David B.

    2000-04-01

    Equating mechanical to electrical power links the kilogram, the meter, and the second to the practical realizations of the ohm and the volt derived from the quantum Hall and the Josephson effects, yielding an SI determination of the Planck constant. The NIST watt balance uses this power equivalence principle, and in 1998 measured the Planck constant with a combined relative standard uncertainty of 8.7 x 10-8, the most accurate determination to date. The next generation of the NIST watt balance is now being assembled. Modification to the experimental facilities have been made to reduce the uncertainty components from vibrations and electromagnetic interference. A vacuum chamber has been installed to reduce the uncertainty components associated with performing the experiment in air. Most of the apparatus is in place and diagnostic testing of the balance should begin this year. Once a combined relative standard uncertainty of one part in 10-8 has been reached, the power equivalence principle can be used to monitor the possible drift in the artifact mass standard, the kilogram, and provide an accurate alternative definition of mass in terms of fundamental constants. *Electricity Division, Electronics and Electrical Engineering Laboratory, Technology Administration, U.S. Department of Commerce. Contribution of the National Institute of Standards and Technology, not subject to copyright in the U.S.

  1. Constant leverage and constant cost of capital : A common knowledge half-truth

    OpenAIRE

    Vélez Pareja, Ignacio; Ibragimov, Rauf; Tham , Joseph

    2008-01-01

    Un enfoque típico para valorar flujos de caja finitos es suponer que el endeudamiento es constante (generalmente como un endeudamiento objetivo o deseado) y que por tanto, el costo del patrimonio, Ke y el costo promedio ponderado de capital CPPC, también son constantes. Para los flujos de caja perpetuos, y con el costo de la deuda, Kd como la tasa de descuento para el ahorro en impuestos o escudo fiscal, Ke y el CPPC aplicado al flujo de caja libre FCL son constantes si el endeudamiento es co...

  2. Gravity with free initial conditions: A solution to the cosmological constant problem testable by CMB B -mode polarization

    Science.gov (United States)

    Totani, Tomonori

    2017-10-01

    In standard general relativity the universe cannot be started with arbitrary initial conditions, because four of the ten components of the Einstein's field equations (EFE) are constraints on initial conditions. In the previous work it was proposed to extend the gravity theory to allow free initial conditions, with a motivation to solve the cosmological constant problem. This was done by setting four constraints on metric variations in the action principle, which is reasonable because the gravity's physical degrees of freedom are at most six. However, there are two problems about this theory; the three constraints in addition to the unimodular condition were introduced without clear physical meanings, and the flat Minkowski spacetime is unstable against perturbations. Here a new set of gravitational field equations is derived by replacing the three constraints with new ones requiring that geodesic paths remain geodesic against metric variations. The instability problem is then naturally solved. Implications for the cosmological constant Λ are unchanged; the theory converges into EFE with nonzero Λ by inflation, but Λ varies on scales much larger than the present Hubble horizon. Then galaxies are formed only in small Λ regions, and the cosmological constant problem is solved by the anthropic argument. Because of the increased degrees of freedom in metric dynamics, the theory predicts new non-oscillatory modes of metric anisotropy generated by quantum fluctuation during inflation, and CMB B -mode polarization would be observed differently from the standard predictions by general relativity.

  3. Multi-Epoch Hubble Space Telescope Observations of IZw18 : Characterization of Variable Stars at Ultra-Low Metallicities

    NARCIS (Netherlands)

    Fiorentino, G.; Ramos, R. Contreras; Clementini, G.; Marconi, M.; Musella, I.; Aloisi, A.; Annibali, F.; Saha, A.; Tosi, M.; van der Marel, R. P.

    2010-01-01

    Variable stars have been identified for the first time in the very metal-poor blue compact dwarf galaxy IZw18, using deep multi-band (F606W, F814W) time-series photometry obtained with the Advanced Camera for Surveys on board the Hubble Space Telescope. We detected 34 candidate variable stars in the

  4. STS 31 PAYLOAD HUBBLE SPACE TELESCOPE ENCLOSED IN AN AIR-TIGHT PLASTIC BAG FOR PROTECTION IN VERTICA

    Science.gov (United States)

    1989-01-01

    Preparations are made to enclose the Hubble Space Telescope [HST] inside an air-tight plastic bag in the VPF. Processing of the 94- inch primary mirror telescope for launch on the Discovery in March 1990, involves working within strict controls to prevent contamination.

  5. The Prevalence of Tobacco, Hubble-Bubble, Alcoholic Drinks, Drugs, and Stimulants among High-School Students

    Directory of Open Access Journals (Sweden)

    Roghayeh Alaee

    2011-08-01

    Full Text Available Introduction: The purpose of the present study was to investigate the prevalence of tobacco, hubble-bubble, alcoholic drinks, and other drugs among Karaj high-school students in 2011. Methods: The research method was a descriptive-sectional study. Participants of this study were 447 girl and boy high-school students of Karaj that were selected by clustering random sampling. For data gathering, drug abuse questionnaire, and risk and protective factors inventory were administered among selected sample. Results: According to the results, 57% of students in this study said that they have had experiences with a kind of drug including tobacco, hubble-bubble, alcoholic drinks, and other drugs at least once in their lives. The study showed the prevalence for soft drugs: hubble-bubble, tobacco, and alcoholic drinks, and for hard drugs ecstasy, opium, hashish, meth, crack, and heroin respectively. Conclusion: Soft drugs including hubble-bubble, tobacco, and alcoholic drinks, are the most common among Karaj high-school students. The prevalence of hard drugs among them is rather low.

  6. A natural language query system for Hubble Space Telescope proposal selection

    Science.gov (United States)

    Hornick, Thomas; Cohen, William; Miller, Glenn

    1987-01-01

    The proposal selection process for the Hubble Space Telescope is assisted by a robust and easy to use query program (TACOS). The system parses an English subset language sentence regardless of the order of the keyword phases, allowing the user a greater flexibility than a standard command query language. Capabilities for macro and procedure definition are also integrated. The system was designed for flexibility in both use and maintenance. In addition, TACOS can be applied to any knowledge domain that can be expressed in terms of a single reaction. The system was implemented mostly in Common LISP. The TACOS design is described in detail, with particular attention given to the implementation methods of sentence processing.

  7. Long term trending of engineering data for the Hubble Space Telescope

    Science.gov (United States)

    Cox, Ross M.

    1993-01-01

    A major goal in spacecraft engineering analysis is the detection of component failures before the fact. Trending is the process of monitoring subsystem states to discern unusual behaviors. This involves reducing vast amounts of data about a component or subsystem into a form that helps humans discern underlying patterns and correlations. A long term trending system has been developed for the Hubble Space Telescope. Besides processing the data for 988 distinct telemetry measurements each day, it produces plots of 477 important parameters for the entire 24 hours. Daily updates to the trend files also produce 339 thirty day trend plots each month. The total system combines command procedures to control the execution of the C-based data processing program, user-written FORTRAN routines, and commercial off-the-shelf plotting software. This paper includes a discussion the performance of the trending system and of its limitations.

  8. The Evolution of the Observed Hubble Sequence over the past 6Gyr

    Science.gov (United States)

    Delgado-Serrano, R.; Hammer, F.; Yang, Y. B.; Puech, M.; Flores, H.; Rodrigues, M.

    2011-10-01

    During the past years we have confronted serious problems of methodology concerning the morphological and kinematic classification of distant galaxies. This has forced us to create a new simple and effective morphological classification methodology, in order to guarantee a morpho-kinematic correlation, make the reproducibility easier and restrict the classification subjectivity. Giving the characteristic of our morphological classification, we have thus been able to apply the same methodology, using equivalent observations, to representative samples of local and distant galaxies. It has allowed us to derive, for the first time, the distant Hubble sequence (~6 Gyr ago), and determine a morphological evolution of galaxies over the past 6 Gyr. Our results strongly suggest that more than half of the present-day spirals had peculiar morphologies, 6 Gyr ago.

  9. The white dwarf mass-radius relation with Gaia, Hubble and FUSE

    Science.gov (United States)

    Joyce, Simon R. G.; Barstow, Martin A.; Casewell, Sarah L.; Holberg, Jay B.; Bond, Howard E.

    2018-04-01

    White dwarfs are becoming useful tools for many areas of astronomy. They can be used as accurate chronometers over Gyr timescales. They are also clues to the history of star formation in our galaxy. Many of these studies require accurate estimates of the mass of the white dwarf. The theoretical mass-radius relation is often invoked to provide these mass estimates. While the theoretical mass-radius relation is well developed, observational tests of this relation show a much larger scatter in the results than expected. High precision observational tests to confirm this relation are required. Gaia is providing distance measurements which will remove one of the main source of uncertainty affecting most previous observations. We combine Gaia distances with spectra from the Hubble and FUSE satelites to make precise tests of the white dwarf mass-radius relation.

  10. Large-q correlations from a Hubble-type pion source

    International Nuclear Information System (INIS)

    Barghouty, A.F.; Miller, J.; Frankel, K.A.

    1993-01-01

    In two-pion correlation measurements from relativistic nuclear collisions, the correlation function, C 2 (q), appears to exhibit an oscillatory structure at large (q ≥100 MeV/c) relative momentum. If real, this structure may have consequences for the determination of the space-time extent of the pion source. A qualitatively similar feature is seen in cellular automaton simulations of a Lorentz gas. It has been argued phenomenologically that the q-dependent oscillations can arise from an interplay between successive scattering probabilities and density variations of an exploding pion source. To further illustrate this interplay we consider a Hubble-type free expansion model for the source in which the density is time-folded from an initial Gaussian. This allows the source expansion to enter as a dynamical variable in the source density p[r(t); t] and thus C 2 , along with any signature of the interplay between scattering and source density

  11. Science from a glimpse: Hubble SNAPshot observations of massive galaxy clusters

    Science.gov (United States)

    Repp, A.; Ebeling, H.

    2018-06-01

    Hubble Space Telescope SNAPshot surveys of 86 X-ray selected galaxy clusters at 0.3 0.3. Examining the evolution of the slope of the cluster red sequence, we observe at best a slight decrease with redshift, indicating minimal age contribution since z ˜ 1. Congruent to previous studies' findings, we note that the two BCGs which are significantly bluer (≥5σ) than their clusters' red sequences reside in relaxed clusters and exhibit pronounced internal structure. Thanks to our targets' high X-ray luminosity, the subset of our sample observed with Chandra adds valuable leverage to the X-ray luminosity-optical richness relation, which, albeit with substantial scatter, is now clearly established from groups to extremely massive clusters of galaxies. We conclude that SNAPshot observations of MACS clusters stand to continue to play a vital pathfinder role for astrophysical investigations across the entire electromagnetic spectrum.

  12. Update on the Status of the Space Telescope Imaging Spectrograph onboard the Hubble Space Telescope

    Science.gov (United States)

    Hernandez, Svea; Aloisi, A.; Bostroem, K. A.; Cox, C.; Debes, J. H.; DiFelice, A.; Roman-Duval, J.; Hodge, P.; Holland, S.; Lindsay, K.; Lockwood, S. A.; Mason, E.; Oliveira, C. M.; Penton, S. V.; Proffitt, C. R.; Sonnentrucker, P.; Taylor, J. M.; Wheeler, T.

    2013-06-01

    The Space Telescope Imaging Spectrograph (STIS) has been on orbit for approximately 16 years as one of the 2nd generation instruments on the Hubble Space Telescope (HST). Its operations were interrupted by an electronics failure in 2004, but STIS was successfully repaired in May 2009 during Service Mission 4 (SM4) allowing it to resume science observations. The Instrument team continues to monitor its performance and work towards improving the quality of its products. Here we present updated information on the status of the FUV and NUV MAMA and the CCD detectors onboard STIS and describe recent changes to the STIS calibration pipeline. We also discuss the status of efforts to apply a pixel-based correction for charge transfer inefficiency (CTI) effects to STIS CCD data. These techniques show promise for ameliorating the effects of ongoing radiation damage on the quality of STIS CCD data.

  13. Variability search in M 31 using principal component analysis and the Hubble Source Catalogue

    Science.gov (United States)

    Moretti, M. I.; Hatzidimitriou, D.; Karampelas, A.; Sokolovsky, K. V.; Bonanos, A. Z.; Gavras, P.; Yang, M.

    2018-06-01

    Principal component analysis (PCA) is being extensively used in Astronomy but not yet exhaustively exploited for variability search. The aim of this work is to investigate the effectiveness of using the PCA as a method to search for variable stars in large photometric data sets. We apply PCA to variability indices computed for light curves of 18 152 stars in three fields in M 31 extracted from the Hubble Source Catalogue. The projection of the data into the principal components is used as a stellar variability detection and classification tool, capable of distinguishing between RR Lyrae stars, long-period variables (LPVs) and non-variables. This projection recovered more than 90 per cent of the known variables and revealed 38 previously unknown variable stars (about 30 per cent more), all LPVs except for one object of uncertain variability type. We conclude that this methodology can indeed successfully identify candidate variable stars.

  14. Dynamic auroral storms on Saturn as observed by the Hubble Space Telescope.

    Science.gov (United States)

    Nichols, J D; Badman, S V; Baines, K H; Brown, R H; Bunce, E J; Clarke, J T; Cowley, S W H; Crary, F J; Dougherty, M K; Gérard, J-C; Grocott, A; Grodent, D; Kurth, W S; Melin, H; Mitchell, D G; Pryor, W R; Stallard, T S

    2014-05-28

    We present observations of significant dynamics within two UV auroral storms observed on Saturn using the Hubble Space Telescope in April/May 2013. Specifically, we discuss bursts of auroral emission observed at the poleward boundary of a solar wind-induced auroral storm, propagating at ∼330% rigid corotation from near ∼01 h LT toward ∼08 h LT. We suggest that these are indicative of ongoing, bursty reconnection of lobe flux in the magnetotail, providing strong evidence that Saturn's auroral storms are caused by large-scale flux closure. We also discuss the later evolution of a similar storm and show that the emission maps to the trailing region of an energetic neutral atom enhancement. We thus identify the auroral form with the upward field-aligned continuity currents flowing into the associated partial ring current.

  15. Hubble space telescope: The GO and GTO observing programs, version 3.0

    Science.gov (United States)

    Downes, Ron

    1992-01-01

    A portion of the observing time with the Hubble Space Telescope (HST) was awarded by NASA to scientists involved in the development of the HST and its instruments. These scientists are the Guaranteed Time Observers (GTO's). Observing time was also awarded to General Observers (GO's) on the basis of the proposal reviews in 1989 and 1991. The majority of the 1989 programs have been completed during 'Cycle 1', while the 1991 programs will be completed during 'Cycle 2', nominally a 12-month period beginning July 1992. This document presents abstracts of these GO and GTO programs, and detailed listings of the specific targets and exposures contained in them. These programs and exposures are protected by NASA policy, as detailed in the HST Call for Proposals (CP), and are not to be duplicated by new programs.

  16. Atmospheric and Fundamental Parameters of Stars in Hubble's Next Generation Spectral Library

    Science.gov (United States)

    Heap, Sally

    2010-01-01

    Hubble's Next Generation Spectral Library (NGSL) consists of R approximately 1000 spectra of 374 stars of assorted temperature, gravity, and metallicity. We are presently working to determine the atmospheric and fundamental parameters of the stars from the NGSL spectra themselves via full-spectrum fitting of model spectra to the observed (extinction-corrected) spectrum over the full wavelength range, 0.2-1.0 micron. We use two grids of model spectra for this purpose: the very low-resolution spectral grid from Castelli-Kurucz (2004), and the grid from MARCS (2008). Both the observed spectrum and the MARCS spectra are first degraded in resolution to match the very low resolution of the Castelli-Kurucz models, so that our fitting technique is the same for both model grids. We will present our preliminary results with a comparison with those from the Sloan/Segue Stellar Parameter Pipeline, ELODIE, and MILES, etc.

  17. Gravitational Contraction and Fusion Plasma Burn. Universal Expansion and the Hubble Law

    International Nuclear Information System (INIS)

    Wilhelmsson, Hans

    2002-01-01

    A dynamic approach is developed for the two principle phases of (i) gravitational condensation, and (ii) burning fusion plasma evolution. Comparison is made with conceptual descriptions of star formation and of subsequent decay towards red giant stars, white dwarfs, and other condensed core objects like neutron stars and black holes. The possibility of treating the expansion of the Universe by means of a similar approach is also discussed. The concept of negative diffusion is introduced for the contraction phase of star formation. The coefficients of defining the nonlinear diffusion are determined uniquely by physical conditions and for the case of the expansion of the universe, by the observation of the Hubble law. The contraction and evolution of large scale 3-D stars and 2-D galactic systems can thus be dynamically surveyed. In particular the time-scales can be determined

  18. Hubble Space Telescope Ultraviolet Light Curves Reveal Interesting Properties of CC Sculptoris and RZ Leonis

    Energy Technology Data Exchange (ETDEWEB)

    Szkody, Paula; Mukadam, Anjum S. [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States); Toloza, Odette; Gänsicke, Boris T.; Pala, Anna F. [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom); Dai, Zhibin [Yunnan Observatories, Chinese Academy of Sciences, 396 Yangfangwang, Guandu District, Kunming, 650216 (China); Waagen, Elizabeth O. [AAVSO, 48 Bay State Rd, Cambridge, MA 02138 (United States); Godon, Patrick; Sion, Edward M., E-mail: szkody@astro.washington.edu [Department of Astrophysics and Planetary Science, Villanova University, Villanova, PA 19085 (United States)

    2017-03-01

    Time-tag ultraviolet data obtained on the Hubble Space Telescope in 2013 reveal interesting variability related to the white dwarf spin in the two cataclysmic variables RZ Leo and CC Scl. RZ Leo shows a period at 220 s and its harmonic at 110 s, thus identifying it as a likely Intermediate Polar (IP). The spin signal is not visible in a short single night of ground-based data in 2016, but the shorter exposures in that data set indicate a possible partial eclipse. The much larger UV amplitude of the spin signal in the known IP CC Scl allows the spin of 389 s, previously only seen at outburst, to be visible at quiescence. Spectra created from the peaks and troughs of the spin times indicate a hotter temperature of several thousand degrees during the peak phases, with multiple components contributing to the UV light.

  19. Hubble Space Telescope Photometry of Hodge 301: An ``Old'' Star Cluster in 30 Doradus

    Science.gov (United States)

    Grebel, Eva K.; Chu, You-Hua

    2000-02-01

    We present Hubble Space Telescope Planetary Camera UVI data for Hodge 301, the little-studied cluster 3' northwest of the central ionizing cluster R136 in 30 Doradus. The average reddening of Hodge 301 is found to be =0.28+/-0.05 mag from published infrared and ultraviolet photometry. Using two different sets of evolutionary models, we derive an age of about 20-25 Myr for Hodge 301, which makes it roughly 10 times as old as R136. Hodge 301 is the most prominent representative of the oldest population in the 30 Dor starburst region, a region that has undergone multiple star formation events. This range of ages is an important consideration for the modeling of starburst regions. Hodge 301 shows a widened upper main sequence largely caused by Be stars. We present a list of Be star candidates. The slope of the initial mass function for intermediate-mass, main-sequence stars ranging from 10 to 1.3 Msolar is found to be Γ=-1.4+/-0.1, in good agreement with a Salpeter law. There is no indication for a truncation or change of slope of the initial mass function (IMF) within this mass range. In accordance with the age of Hodge 301, no obvious pre-main-sequence stars are seen down to about 1 Msolar. We estimate that up to 41+/-7 stars with masses more than 12 Msolar may have turned into supernovae since the formation of the cluster. Multiple supernova explosions are the most likely origin of the extremely violent gas motions and the diffuse X-ray emission observed in the cluster surroundings. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc. under NASA contract NAS5-26555.

  20. Proper Motions of Dwarf Spheroidal Galaxies from Hubble Space Telescope Imaging. IV. Measurement for Sculptor

    Science.gov (United States)

    Piatek, Slawomir; Pryor, Carlton; Bristow, Paul; Olszewski, Edward W.; Harris, Hugh C.; Mateo, Mario; Minniti, Dante; Tinney, Christopher G.

    2006-03-01

    This article presents a measurement of the proper motion of the Sculptor dwarf spheroidal galaxy determined from images taken with the Hubble Space Telescope using the Space Telescope Imaging Spectrograph in the imaging mode. Each of two distinct fields contains a quasi-stellar object that serves as the ``reference point.'' The measured proper motion of Sculptor, expressed in the equatorial coordinate system, is (μα, μδ)=(9+/-13, 2+/-13) mas century-1. Removing the contributions from the motion of the Sun and the motion of the local standard of rest produces the proper motion in the Galactic rest frame: (μGrfα, μGrfδ)=(-23+/-13, 45+/-13) mas century-1. The implied space velocity with respect to the Galactic center has a radial component of Vr=79+/-6 km s-1 and a tangential component of Vt=198+/-50 km s-1. Integrating the motion of Sculptor in a realistic potential for the Milky Way produces orbital elements. The perigalacticon and apogalacticon are 68 (31, 83) and 122 (97, 313) kpc, respectively, where the values in the parentheses represent the 95% confidence interval derived from Monte Carlo experiments. The eccentricity of the orbit is 0.29 (0.26, 0.60), and the orbital period is 2.2 (1.5, 4.9) Gyr. Sculptor is on a polar orbit around the Milky Way: the angle of inclination is 86° (83°, 90°). Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555.

  1. NASA and ESA astronauts visit ESO. Hubble repair team meets European astronomers in Garching.

    Science.gov (United States)

    1994-02-01

    On Wednesday, February 16, 1994, seven NASA and ESA astronauts and their spouses will spend a day at the Headquarters of the European Southern Observatory. They are the members of the STS-61 crew that successfully repaired the Hubble Space Telescope during a Space Shuttle mission in December 1993. This will be the only stop in Germany during their current tour of various European countries. ESO houses the Space Telescope European Coordinating Facility (ST/ECF), a joint venture by the European Space Agency and ESO. This group of astronomers and computer specialists provide all services needed by European astronomers for observations with the Space Telescope. Currently, the European share is about 20 of the total time available at this telescope. During this visit, a Press Conference will be held on Wednesday, February 16, 11:45 - 12:30 at the ESO Headquarters Karl-Schwarzschild-Strasse 2 D-85748 Garching bei Munchen. Please note that participation in this Press Conference is by invitation only. Media representatives may obtain invitations from Mrs. E. Volk, ESO Information Service at this address (Tel.: +49-89-32006276; Fax.: +49-89-3202362), until Friday, February 11, 1994. After the Press Conference, between 12:30 - 14:00, a light refreshment will be served at the ESO Headquarters to all participants. >From 14:00 - 15:30, the astronauts will meet with students and teachers from the many scientific institutes in Garching in the course of an open presentation at the large lecture hall of the Physics Department of the Technical University. It is a 10 minute walk from ESO to the hall. Later the same day, the astronauts will be back at ESO for a private discussion of various space astronomy issues with their astronomer colleagues, many of whom are users of the Hubble Space Telescope, as well as ground-based telescopes at the ESO La Silla Observatory and elsewhere. The astronauts continue to Switzerland in the evening.

  2. UVUDF: Ultraviolet imaging of the Hubble ultra deep field with wide-field camera 3

    Energy Technology Data Exchange (ETDEWEB)

    Teplitz, Harry I.; Rafelski, Marc; Colbert, James W.; Hanish, Daniel J. [Infrared Processing and Analysis Center, MS 100-22, Caltech, Pasadena, CA 91125 (United States); Kurczynski, Peter; Gawiser, Eric [Department of Physics and Astronomy, Rutgers University, Piscataway, NJ 08854 (United States); Bond, Nicholas A.; Gardner, Jonathan P.; De Mello, Duilia F. [Laboratory for Observational Cosmology, Astrophysics Science Division, Code 665, Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Grogin, Norman; Koekemoer, Anton M.; Brown, Thomas M.; Coe, Dan; Ferguson, Henry C. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Atek, Hakim [Laboratoire d' Astrophysique, École Polytechnique Fédérale de Lausanne (EPFL), Observatoire, CH-1290 Sauverny (Switzerland); Finkelstein, Steven L. [Department of Astronomy, The University of Texas at Austin, Austin, TX 78712 (United States); Giavalisco, Mauro [Astronomy Department, University of Massachusetts, Amherst, MA 01003 (United States); Gronwall, Caryl [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States); Lee, Kyoung-Soo [Department of Physics, Purdue University, 525 Northwestern Avenue, West Lafayette, IN 47907 (United States); Ravindranath, Swara, E-mail: hit@ipac.caltech.edu [Inter-University Centre for Astronomy and Astrophysics, Pune (India); and others

    2013-12-01

    We present an overview of a 90 orbit Hubble Space Telescope treasury program to obtain near-ultraviolet imaging of the Hubble Ultra Deep Field using the Wide Field Camera 3 UVIS detector with the F225W, F275W, and F336W filters. This survey is designed to: (1) investigate the episode of peak star formation activity in galaxies at 1 < z < 2.5; (2) probe the evolution of massive galaxies by resolving sub-galactic units (clumps); (3) examine the escape fraction of ionizing radiation from galaxies at z ∼ 2-3; (4) greatly improve the reliability of photometric redshift estimates; and (5) measure the star formation rate efficiency of neutral atomic-dominated hydrogen gas at z ∼ 1-3. In this overview paper, we describe the survey details and data reduction challenges, including both the necessity of specialized calibrations and the effects of charge transfer inefficiency. We provide a stark demonstration of the effects of charge transfer inefficiency on resultant data products, which when uncorrected, result in uncertain photometry, elongation of morphology in the readout direction, and loss of faint sources far from the readout. We agree with the STScI recommendation that future UVIS observations that require very sensitive measurements use the instrument's capability to add background light through a 'post-flash'. Preliminary results on number counts of UV-selected galaxies and morphology of galaxies at z ∼ 1 are presented. We find that the number density of UV dropouts at redshifts 1.7, 2.1, and 2.7 is largely consistent with the number predicted by published luminosity functions. We also confirm that the image mosaics have sufficient sensitivity and resolution to support the analysis of the evolution of star-forming clumps, reaching 28-29th magnitude depth at 5σ in a 0.''2 radius aperture depending on filter and observing epoch.

  3. Hubble Space Telescope Trigonometric Parallax of Polaris B, Companion of the Nearest Cepheid

    Science.gov (United States)

    Bond, Howard E.; Nelan, Edmund P.; Remage Evans, Nancy; Schaefer, Gail H.; Harmer, Dianne

    2018-01-01

    Polaris, the nearest and brightest Cepheid, is a potential anchor point for the Leavitt period–luminosity relation. However, its distance is a matter of contention, with recent advocacy for a parallax of ∼10 mas, in contrast with the Hipparcos measurement of 7.54 ± 0.11 mas. We report an independent trigonometric parallax determination, using the Fine Guidance Sensors (FGS) on the Hubble Space Telescope. Polaris itself is too bright for FGS, so we measured its eighth-magnitude companion Polaris B, relative to a network of background reference stars. We converted the FGS relative parallax to absolute, using estimated distances to the reference stars from ground-based photometry and spectral classification. Our result, 6.26 ± 0.24 mas, is even smaller than that found by Hipparcos. We note other objects for which Hipparcos appears to have overestimated parallaxes, including the well-established case of the Pleiades. We consider possible sources of systematic error in the FGS parallax, but find no evidence they are significant. If our “long” distance is correct, the high luminosity of Polaris indicates that it is pulsating in the second overtone of its fundamental mode. Our results raise several puzzles, including a long pulsation period for Polaris compared to second-overtone pulsators in the Magellanic Clouds, and a conflict between the isochrone age of Polaris B (∼2.1 Gyr) and the much younger age of Polaris A. We discuss possibilities that B is not a physical companion of A, in spite of the strong evidence that it is, or that one of the stars is a merger remnant. These issues may be resolved when Gaia provides parallaxes for both stars. Based in part on observations made with the NASA/ESA Hubble Space Telescope, obtained by the Space Telescope Science Institute. STScI is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555.

  4. HUBBLE STAYS ON TRAIL OF FADING GAMMA-RAY BURST FIREBALL

    Science.gov (United States)

    2002-01-01

    A Hubble Space Telescope image of the fading fireball from one of the universe's most mysterious phenomena, a gamma-ray burst. Though the visible component has faded to 1/500th its brightness (27.7 magnitude) from the time it was first discovered by ground- based telescopes last March (the actual gamma-ray burst took place on February 28), Hubble continues to clearly see the fireball and discriminated a surrounding nebulosity (at 25th magnitude) which is considered a host galaxy. The continued visibility of the burst, and the rate of its fading, support theories that the light from a gamma-ray burst is an expanding relativistic (moving near the speed of light) fireball, possibly produced by the collision of two dense objects, such as an orbiting pair of neutron stars. If the burst happened nearby, within our own galaxy, the resulting fireball should have had only enough energy to propel it into space for a month. The fact that this fireball is still visible after six months means the explosion was truly titanic and, to match the observed brightness, must have happened at the vast distances of galaxies. The energy released in a burst, which can last from a fraction of a second to a few hundred seconds, is equal to all of the Sun's energy generated over its 10 billion year lifetime. The false-color image was taken Sept. 5, 1997 with the Space Telescope Imaging Spectrograph. Credit: Andrew Fruchter (STScI), Elena Pian (ITSRE-CNR), and NASA

  5. A MULTIWAVELENGTH STUDY OF TADPOLE GALAXIES IN THE HUBBLE ULTRA DEEP FIELD

    International Nuclear Information System (INIS)

    Straughn, Amber N.; Eufrasio, Rafael T.; Gardner, Jonathan P.; Voyer, Elysse N.; Mello, Duilia de; Soto, Emmaris; Petty, Sara; Kassin, Susan; Ravindranath, Swara

    2015-01-01

    Multiwavelength data are essential in order to provide a complete picture of galaxy evolution and to inform studies of galaxies’ morphological properties across cosmic time. Here we present the results of a multiwavelength investigation of the morphologies of “tadpole” galaxies at intermediate redshift (0.314 < z < 3.175) in the Hubble Ultra Deep Field. These galaxies were previously selected from deep Hubble Space Telescope (HST) F775W data based on their distinct asymmetric knot-plus-tail morphologies. Here we use deep Wide Field Camera 3 near-infrared imaging in addition to the HST optical data in order to study the rest-frame UV/optical morphologies of these galaxies across the redshift range 0.3 < z < 3.2. This study reveals that the majority of these galaxies do retain their general asymmetric morphology in the rest-frame optical over this redshift range, if not the distinct “tadpole” shape. The average stellar mass of tadpole galaxies is lower than that of field galaxies, with the effect being slightly greater at higher redshift within the errors. Estimated from spectral energy distribution fits, the average age of tadpole galaxies is younger than that of field galaxies in the lower-redshift bin, and the average metallicity is lower (whereas the specific star formation rate for tadpoles is roughly the same as field galaxies across the redshift range probed here). These average effects combined support the conclusion that this subset of galaxies is in an active phase of assembly, either late-stage merging or cold gas accretion causing localized clumpy star formation

  6. Revisiting the stellar velocity ellipsoid-Hubble-type relation: observations versus simulations

    Science.gov (United States)

    Pinna, F.; Falcón-Barroso, J.; Martig, M.; Martínez-Valpuesta, I.; Méndez-Abreu, J.; van de Ven, G.; Leaman, R.; Lyubenova, M.

    2018-04-01

    The stellar velocity ellipsoid (SVE) in galaxies can provide important information on the processes that participate in the dynamical heating of their disc components (e.g. giant molecular clouds, mergers, spiral density waves, and bars). Earlier findings suggested a strong relation between the shape of the disc SVE and Hubble type, with later-type galaxies displaying more anisotropic ellipsoids and early types being more isotropic. In this paper, we revisit the strength of this relation using an exhaustive compilation of observational results from the literature on this issue. We find no clear correlation between the shape of the disc SVE and morphological type, and show that galaxies with the same Hubble type display a wide range of vertical-to-radial velocity dispersion ratios. The points are distributed around a mean value and scatter of σz/σR = 0.7 ± 0.2. With the aid of numerical simulations, we argue that different mechanisms might influence the shape of the SVE in the same manner and that the same process (e.g. mergers) does not have the same impact in all the galaxies. The complexity of the observational picture is confirmed by these simulations, which suggest that the vertical-to-radial axis ratio of the SVE is not a good indicator of the main source of disc heating. Our analysis of those simulations also indicates that the observed shape of the disc SVE may be affected by several processes simultaneously and that the signatures of some of them (e.g. mergers) fade over time.

  7. A MULTIWAVELENGTH STUDY OF TADPOLE GALAXIES IN THE HUBBLE ULTRA DEEP FIELD

    Energy Technology Data Exchange (ETDEWEB)

    Straughn, Amber N.; Eufrasio, Rafael T.; Gardner, Jonathan P. [Astrophysics Science Division, Goddard Space Flight Center, Code 665, Greenbelt, MD 20771 (United States); Voyer, Elysse N. [Randstad at Google, 1129 San Antonio Road, Palo Alto, CA (United States); Mello, Duilia de; Soto, Emmaris [Department of Physics, The Catholic University of America, Washington, DC 20064 (United States); Petty, Sara [Department of Physics, Virginia Tech, Blacksburg, VA 24061 (United States); Kassin, Susan; Ravindranath, Swara [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States)

    2015-12-01

    Multiwavelength data are essential in order to provide a complete picture of galaxy evolution and to inform studies of galaxies’ morphological properties across cosmic time. Here we present the results of a multiwavelength investigation of the morphologies of “tadpole” galaxies at intermediate redshift (0.314 < z < 3.175) in the Hubble Ultra Deep Field. These galaxies were previously selected from deep Hubble Space Telescope (HST) F775W data based on their distinct asymmetric knot-plus-tail morphologies. Here we use deep Wide Field Camera 3 near-infrared imaging in addition to the HST optical data in order to study the rest-frame UV/optical morphologies of these galaxies across the redshift range 0.3 < z < 3.2. This study reveals that the majority of these galaxies do retain their general asymmetric morphology in the rest-frame optical over this redshift range, if not the distinct “tadpole” shape. The average stellar mass of tadpole galaxies is lower than that of field galaxies, with the effect being slightly greater at higher redshift within the errors. Estimated from spectral energy distribution fits, the average age of tadpole galaxies is younger than that of field galaxies in the lower-redshift bin, and the average metallicity is lower (whereas the specific star formation rate for tadpoles is roughly the same as field galaxies across the redshift range probed here). These average effects combined support the conclusion that this subset of galaxies is in an active phase of assembly, either late-stage merging or cold gas accretion causing localized clumpy star formation.

  8. Probing the z > 6 universe with the first Hubble frontier fields cluster A2744

    International Nuclear Information System (INIS)

    Atek, Hakim; Kneib, Jean-Paul; Richard, Johan; Clement, Benjamin; Egami, Eiichi; Ebeling, Harald; Jauzac, Mathilde; Jullo, Eric; Limousin, Marceau; Laporte, Nicolas; Natarajan, Priyamvada

    2014-01-01

    The Hubble Frontier Fields program combines the capabilities of the Hubble Space Telescope (HST) with the gravitational lensing of massive galaxy clusters to probe the distant universe to an unprecedented depth. Here, we present the results of the first combined HST and Spitzer observations of the cluster A-2744. We combine the full near-infrared data with ancillary optical images to search for gravitationally lensed high-redshift (z ≳ 6) galaxies. We report the detection of 15 I 814 dropout candidates at z ∼ 6-7 and one Y 105 dropout at z ∼ 8 in a total survey area of 1.43 arcmin 2 in the source plane. The predictions of our lens model also allow us to identify five multiply imaged systems lying at redshifts between z ∼ 6 and z ∼ 8. Thanks to constraints from the mass distribution in the cluster, we were able to estimate the effective survey volume corrected for completeness and magnification effects. This was in turn used to estimate the rest-frame ultraviolet luminosity function (LF) at z ∼ 6-8. Our LF results are generally in agreement with the most recent blank field estimates, confirming the feasibility of surveys through lensing clusters. Although based on a shallower observations than what will be achieved in the final data set including the full Advanced Camera for Survey observations, the LF presented here goes down to M UV ∼–18.5, corresponding to 0.2L * at z ∼ 7 with one identified object at M UV ∼–15 thanks to the highly magnified survey areas. This early study forecasts the power of using massive galaxy clusters as cosmic telescopes and its complementarity to blank fields.

  9. Probing the z > 6 universe with the first Hubble frontier fields cluster A2744

    Energy Technology Data Exchange (ETDEWEB)

    Atek, Hakim; Kneib, Jean-Paul [Laboratoire d' Astrophysique, Ecole Polytechnique Fédérale de Lausanne, Observatoire de Sauverny, CH-1290 Versoix (Switzerland); Richard, Johan [CRAL, Observatoire de Lyon, Université Lyon 1, 9 Avenue Ch. André, 69561 Saint Genis Laval Cedex (France); Clement, Benjamin; Egami, Eiichi [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ, 85721 (United States); Ebeling, Harald [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, Hawaii 96822 (United States); Jauzac, Mathilde [Astrophysics and Cosmology Research Unit, School of Mathematical Sciences, University of KwaZulu-Natal, Durban, 4041 South Africa (South Africa); Jullo, Eric; Limousin, Marceau [Aix Marseille Université, CNRS, LAM (Laboratoire d' Astrophysique de Marseille) UMR 7326, 13388, Marseille (France); Laporte, Nicolas [Instituto de Astrofisica de Canarias (IAC), E-38200 La Laguna, Tenerife (Spain); Natarajan, Priyamvada [Department of Astronomy, Yale University, 260 Whitney Avenue, New Haven, CT 06511 (United States)

    2014-05-01

    The Hubble Frontier Fields program combines the capabilities of the Hubble Space Telescope (HST) with the gravitational lensing of massive galaxy clusters to probe the distant universe to an unprecedented depth. Here, we present the results of the first combined HST and Spitzer observations of the cluster A-2744. We combine the full near-infrared data with ancillary optical images to search for gravitationally lensed high-redshift (z ≳ 6) galaxies. We report the detection of 15 I {sub 814} dropout candidates at z ∼ 6-7 and one Y {sub 105} dropout at z ∼ 8 in a total survey area of 1.43 arcmin{sup 2} in the source plane. The predictions of our lens model also allow us to identify five multiply imaged systems lying at redshifts between z ∼ 6 and z ∼ 8. Thanks to constraints from the mass distribution in the cluster, we were able to estimate the effective survey volume corrected for completeness and magnification effects. This was in turn used to estimate the rest-frame ultraviolet luminosity function (LF) at z ∼ 6-8. Our LF results are generally in agreement with the most recent blank field estimates, confirming the feasibility of surveys through lensing clusters. Although based on a shallower observations than what will be achieved in the final data set including the full Advanced Camera for Survey observations, the LF presented here goes down to M {sub UV} ∼–18.5, corresponding to 0.2L {sup *} at z ∼ 7 with one identified object at M {sub UV} ∼–15 thanks to the highly magnified survey areas. This early study forecasts the power of using massive galaxy clusters as cosmic telescopes and its complementarity to blank fields.

  10. Hubble Space Telescope Snapshot Survey for Resolved Companions of Galactic Cepheids

    Science.gov (United States)

    Evans, Nancy Remage; Bond, Howard E.; Schaefer, Gail H.; Mason, Brian D.; Tingle, Evan; Karovska, Margarita; Pillitteri, Ignazio

    2016-05-01

    We have conducted an imaging survey with the Hubble Space Telescope Wide Field Camera 3 (WFC3) of 70 Galactic Cepheids, typically within 1 kpc, with the aim of finding resolved physical companions. The WFC3 field typically covers the 0.1 pc area where companions are expected. In this paper, we identify 39 Cepheids having candidate companions, based on their positions in color-magnitude diagrams, and having separations ⩾ 5'' from the Cepheids. We use follow-up observations of 14 of these candidates with XMM-Newton, and of one of them with ROSAT, to separate X-ray-active young stars (probable physical companions) from field stars (chance alignments). Our preliminary estimate, based on the optical and X-ray observations, is that only 3% of the Cepheids in the sample have wide companions. Our survey easily detects resolved main-sequence companions as faint as spectral type K. Thus the fact that the two most probable companions (those of FF Aql and RV Sco) are earlier than type K is not simply a function of the detection limit. We find no physical companions having separations larger than 4000 au in the X-ray survey. Two Cepheids are exceptions in that they do have young companions at significantly larger separations (δ Cep and S Nor), but both belong to a cluster or a loose association, so our working model is that they are not gravitationally bound binary members, but rather cluster/association members. All of these properties provide constraints on both star formation and subsequent dynamical evolution. The low frequency of true physical companions at separations > 5'' is confirmed by examination of the subset of the nearest Cepheids and also the density of the fields. Based on observations with the NASA/ESA Hubble Space Telescope obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555.

  11. Stellar bars and the spatial distribution of infrared luminosity

    International Nuclear Information System (INIS)

    Devereux, N.

    1987-01-01

    Ground-based 10 micron observations of the central region of over 100 infrared luminous galaxies are presented. A first order estimate of the spatial distribution of infrared emission in galaxies is obtained through a combination of ground-based and Infrared Astronomy Satellite (IRAS) data. The galaxies are nearby and primarily noninteracting, permitting an unbiased investigation of correlations with Hubble type. Approximately 40% of the early-type barred galaxies in this sample are associated with enhanced luminosity in the central (approximately 1 kpc diameter) region. The underlying luminosity source is attributed to both Seyfert and star formation activity. Late-type spirals are different in that the spatial distribution of infrared emission and the infrared luminoisty are not strongly dependent on barred morphology

  12. Determination of protonation constants of hydroquinone and stability constants of Th(IV) hydroquinone complex

    International Nuclear Information System (INIS)

    Sawant, R.M.; Ramakumar, K.L.; Sharma, R.S.

    2003-01-01

    Protonation constants of hydroquinone and stability constants of thorium hydroquinone complexes were determined in 1 M NaClO 4 medium at 25 ± 0.5 degC, by varying concentration of thorium, using pH titration technique. Protonation constants of hydroquinone (β 1H = [HQ]/[H][Q] and β 2H = [H 2 Q]/[H] 2 [Q]) were found to be β 1H = 11.404 ± 0.014 and β 2H = 21.402 ± 0.012. The analysis of titration data of thorium-hydroquinone system appears to indicate the formation of species Th(H 2 Q) 3 (OH) and Th(H 2 O) 4 (OH). Equilibrium constants obtained for these species are -log β 13-I = 48.51 ± 0.67 and -log β 14-1 64.86 ± 1.25 respectively which are not reported in the literature. (author)

  13. CHEERS Results from NGC 3393. II. Investigating the Extended Narrow-line Region Using Deep Chandra Observations and Hubble Space Telescope Narrow-line Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Maksym, W. Peter; Fabbiano, Giuseppina; Elvis, Martin; Karovska, Margarita; Paggi, Alessandro; Raymond, John [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Wang, Junfeng [Department of Astronomy, Physics Building, Xiamen University Xiamen, Fujian, 361005 (China); Storchi-Bergmann, Thaisa, E-mail: walter.maksym@cfa.harvard.edu [Departamento de Astronomia, Universidade Federal do Rio Grande do Sul, IF, CP 15051, 91501-970 Porto Alegre, RS (Brazil)

    2017-07-20

    The CHandra Extended Emission Line Region Survey (CHEERS) is an X-ray study of nearby active galactic nuclei (AGNs) designed to take full advantage of Chandra 's unique angular resolution by spatially resolving feedback signatures and effects. In the second paper of a series on CHEERS target NGC 3393, we examine deep high-resolution Chandra images and compare them with Hubble Space Telescope narrow-line images of [O iii], [S ii], and H α , as well as previously unpublished mid-ultraviolet (MUV) images. The X-rays provide unprecedented evidence that the S-shaped arms that envelope the nuclear radio outflows extend only ≲0.″2 (≲50 pc) across. The high-resolution multiwavelength data suggest that the extended narrow-line region is a complex multiphase structure in the circumnuclear interstellar medium (ISM). Its ionization structure is highly stratified with respect to outflow-driven bubbles in the bicone and varies dramatically on scales of ∼10 pc. Multiple findings show likely contributions from shocks to the feedback in regions where radio outflows from the AGN most directly influence the ISM. These findings include H α evidence for gas compression and extended MUV emission and are in agreement with existing STIS kinematics. Extended filamentary structure in the X-rays and optical suggests the presence of an undetected plasma component, whose existence could be tested with deeper radio observations.

  14. HUBBLE SPACE TELESCOPE PRE-PERIHELION ACS/WFC IMAGING POLARIMETRY OF COMET ISON (C/2012 S1) AT 3.81 AU

    Energy Technology Data Exchange (ETDEWEB)

    Hines, Dean C.; Mutchler, Max; Hammer, Derek [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Videen, Gorden; Sitko, Michael L.; Yanamandra-Fisher, Padmavati A. [Space Science Institute, 4750 Walnut Street, Suite 205, Boulder, CO 80301 (United States); Zubko, Evgenij; Muinonen, Karri [Department of Physics, P.O. Box 64, FI-00014 University of Helsinki (Finland); Shkuratov, Yuriy; Kaydash, Vadim G. [Astronomical Institute of V. N. Karazin University, Kharkov, 61058 (Ukraine); Knight, Matthew M. [Lowell Observatory, Flagstaff, AZ 86001 (United States); Lisse, Carey M. [Applied Physics Laboratory, Johns Hopkins University, Laurel, MD 20723 (United States)

    2014-01-10

    We present polarization images of Comet ISON (C/2012 S1) taken with the Hubble Space Telescope (HST) on UTC 2013 May 8 (r {sub h} = 3.81 AU, Δ = 4.34 AU), when the phase angle was α ≈ 12.°16. This phase angle is approximately centered in the negative polarization branch for cometary dust. The region beyond 1000 km (∼0.32 arcsec ≈ 6 pixels) from the nucleus shows a negative polarization amplitude of p% ∼ –1.6%. Within 1000 km of the nucleus, the polarization position angle rotates to be approximately perpendicular to the scattering plane, with an amplitude p% ∼ +2.5%. Such positive polarization has been observed previously as a characteristic feature of cometary jets, and we show that Comet ISON does indeed harbor a jet-like feature. These HST observations of Comet ISON represent the first visible light, imaging polarimetry with subarcsecond spatial resolution of a Nearly Isotropic Comet beyond 3.8 AU from the Sun at a small phase angle. The observations provide an early glimpse of the properties of the cometary dust preserved in this Oort-Cloud comet.

  15. CHEERS Results from NGC 3393. II. Investigating the Extended Narrow-line Region Using Deep Chandra Observations and Hubble Space Telescope Narrow-line Imaging

    Science.gov (United States)

    Maksym, W. Peter; Fabbiano, Giuseppina; Elvis, Martin; Karovska, Margarita; Paggi, Alessandro; Raymond, John; Wang, Junfeng; Storchi-Bergmann, Thaisa

    2017-07-01

    The CHandra Extended Emission Line Region Survey (CHEERS) is an X-ray study of nearby active galactic nuclei (AGNs) designed to take full advantage of Chandra's unique angular resolution by spatially resolving feedback signatures and effects. In the second paper of a series on CHEERS target NGC 3393, we examine deep high-resolution Chandra images and compare them with Hubble Space Telescope narrow-line images of [O III], [S II], and Hα, as well as previously unpublished mid-ultraviolet (MUV) images. The X-rays provide unprecedented evidence that the S-shaped arms that envelope the nuclear radio outflows extend only ≲0.″2 (≲50 pc) across. The high-resolution multiwavelength data suggest that the extended narrow-line region is a complex multiphase structure in the circumnuclear interstellar medium (ISM). Its ionization structure is highly stratified with respect to outflow-driven bubbles in the bicone and varies dramatically on scales of ˜10 pc. Multiple findings show likely contributions from shocks to the feedback in regions where radio outflows from the AGN most directly influence the ISM. These findings include Hα evidence for gas compression and extended MUV emission and are in agreement with existing STIS kinematics. Extended filamentary structure in the X-rays and optical suggests the presence of an undetected plasma component, whose existence could be tested with deeper radio observations.

  16. CHEERS Results from NGC 3393. II. Investigating the Extended Narrow-line Region Using Deep Chandra Observations and Hubble Space Telescope Narrow-line Imaging

    International Nuclear Information System (INIS)

    Maksym, W. Peter; Fabbiano, Giuseppina; Elvis, Martin; Karovska, Margarita; Paggi, Alessandro; Raymond, John; Wang, Junfeng; Storchi-Bergmann, Thaisa

    2017-01-01

    The CHandra Extended Emission Line Region Survey (CHEERS) is an X-ray study of nearby active galactic nuclei (AGNs) designed to take full advantage of Chandra 's unique angular resolution by spatially resolving feedback signatures and effects. In the second paper of a series on CHEERS target NGC 3393, we examine deep high-resolution Chandra images and compare them with Hubble Space Telescope narrow-line images of [O iii], [S ii], and H α , as well as previously unpublished mid-ultraviolet (MUV) images. The X-rays provide unprecedented evidence that the S-shaped arms that envelope the nuclear radio outflows extend only ≲0.″2 (≲50 pc) across. The high-resolution multiwavelength data suggest that the extended narrow-line region is a complex multiphase structure in the circumnuclear interstellar medium (ISM). Its ionization structure is highly stratified with respect to outflow-driven bubbles in the bicone and varies dramatically on scales of ∼10 pc. Multiple findings show likely contributions from shocks to the feedback in regions where radio outflows from the AGN most directly influence the ISM. These findings include H α evidence for gas compression and extended MUV emission and are in agreement with existing STIS kinematics. Extended filamentary structure in the X-rays and optical suggests the presence of an undetected plasma component, whose existence could be tested with deeper radio observations.

  17. Constant load and constant displacement stress corrosion in simulated water reactor environments

    International Nuclear Information System (INIS)

    Lloyd, G.J.

    1987-02-01

    The stress corrosion behaviour of selected water reactor constructional materials, as determined by constant load or constant displacement test techniques, is reviewed. Experimental results obtained using a very wide range of conditions have been collected in a form for easy reference. A discussion is given of some apparent trends in these data. The possible reasons for these trends are considered together with a discussion of how the observed discrepancies may be resolved. (author)

  18. Bounds on the possible evolution of the gravitational constant from cosmological type-Ia supernovae

    International Nuclear Information System (INIS)

    Gaztanaga, E.; Garcia-Berro, E.; Isern, J.; Bravo, E.; Dominguez, I.

    2002-01-01

    Recent high-redshift type-Ia supernovae results can be used to set new bounds on a possible variation of the gravitational constant G. If the local value of G at the space-time location of distant supernovae is different, it would change both the kinetic energy release and the amount of 56 Ni synthesized in the supernova outburst. Both effects are related to a change in the Chandrasekhar mass M Ch ∝G -3/2 . In addition, the integrated variation of G with time would also affect the cosmic evolution and therefore the luminosity distance relation. We show that the later effect in the magnitudes of type-Ia supernovae is typically several times smaller than the change produced by the corresponding variation of the Chandrasekhar mass. We investigate in a consistent way how a varying G could modify the Hubble diagram of type-Ia supernovae and how these results can be used to set upper bounds to a hypothetical variation of G. We find G/G 0 (less-or-similar sign)1.1 and G/G(less-or-similar sign)10 -11 yr -1 at redshifts z≅0.5. These new bounds extend the currently available constraints on the evolution of G all the way from solar and stellar distances to typical scales of Gpc/Gyr, i.e., by more than 15 orders of magnitude in time and distance

  19. CONSTANT LEVERAGE AND CONSTANT COST OF CAPITAL: A COMMON KNOWLEDGE HALF-TRUTH

    Directory of Open Access Journals (Sweden)

    IGNACIO VÉLEZ-PAREJA

    2008-01-01

    Full Text Available Un enfoque típico para valorar flujos de caja finitos es suponer que el endeudamiento es constante (generalmente como un endeudamiento objetivo o deseado y que por tanto, el costo del patrimonio, Ke y el costo promedio ponderado de capital CPPC, también son constantes. Para los flujos de caja perpetuos, y con el costo de la deuda, Kd como la tasa de descuento para el ahorro en impuestos o escudo fiscal, Ke y el CPPC aplicado al flujo de caja libre FCL son constantes si el endeudamiento es constante. Sin embargo esto no es verdad para los flujos de caja finitos. En este documento mostramos que para flujos de caja finitos, Ke y por lo tanto el CPPC dependen de la tasa de descuento que se utiliza para valorar el ahorro en impuestos, AI y según lo esperado, Ke y el CPPC no son constantes con Kd como la tasa de descuento para el ahorro en impuestos, aunque el endeudamiento sea constante. Ilustramos esta situación con un ejemplo simple. Analizamos cinco métodos: el flujo de caja descontado, FCD, usando APV, el FCD y la formulación tradicional y general del CPPC, el valor presente del flujo de caja del accionista, FCA más deuda y el flujo de caja de capital, FCC.

  20. Inflation with a smooth constant-roll to constant-roll era transition

    Science.gov (United States)

    Odintsov, S. D.; Oikonomou, V. K.

    2017-07-01

    In this paper, we study canonical scalar field models, with a varying second slow-roll parameter, that allow transitions between constant-roll eras. In the models with two constant-roll eras, it is possible to avoid fine-tunings in the initial conditions of the scalar field. We mainly focus on the stability of the resulting solutions, and we also investigate if these solutions are attractors of the cosmological system. We shall calculate the resulting scalar potential and, by using a numerical approach, we examine the stability and attractor properties of the solutions. As we show, the first constant-roll era is dynamically unstable towards linear perturbations, and the cosmological system is driven by the attractor solution to the final constant-roll era. As we demonstrate, it is possible to have a nearly scale-invariant power spectrum of primordial curvature perturbations in some cases; however, this is strongly model dependent and depends on the rate of the final constant-roll era. Finally, we present, in brief, the essential features of a model that allows oscillations between constant-roll eras.

  1. TASI Lectures on the cosmological constant

    Energy Technology Data Exchange (ETDEWEB)

    Bousso, Raphael; Bousso, Raphael

    2007-08-30

    The energy density of the vacuum, Lambda, is at least 60 orders of magnitude smaller than several known contributions to it. Approaches to this problem are tightly constrained by data ranging from elementary observations to precision experiments. Absent overwhelming evidence to the contrary, dark energy can only be interpreted as vacuum energy, so the venerable assumption that Lambda=0 conflicts with observation. The possibility remains that Lambda is fundamentally variable, though constant over large spacetime regions. This can explain the observed value, but only in a theory satisfying a number of restrictive kinematic and dynamical conditions. String theory offers a concrete realization through its landscape of metastable vacua.

  2. Theoretical isochrones with decreasing gravitational constant

    International Nuclear Information System (INIS)

    Vandenberg, D.A.

    1976-01-01

    Van Flandern has postulated a variation of the gravitational constant at the rate approximately -8 x 10 -11 /yr. This variation, consistent with Hoyle-Narlikar and Dirac cosmologies, has been assumed in the computation of a 5 x 10 9 yr theoretical isochrone. Present results show that, even for this age, theory predicts a cluster turn-off luminosity approximately 0.5 to 1.0 mag fainter than the observed turn-offs of globular clusters. Unsatisfactory agreement between theoretical and observed luminosity functions is also indicated. (author)

  3. Quantum black holes and Planck's constant

    International Nuclear Information System (INIS)

    Ross, D.K.

    1987-01-01

    It is shown that the Planck-scale black holes of quantum gravity must obey a consistency condition relating Planck's constant to the integral of the mass of the black holes over time, if the usual path integral formulation of quantum mechanics is to make sense on physical spacetime. It is also shown, using time-dependent perturbation theory in ordinary quantum mechanics, that a massless particle will not propagate on physical spacetime with the black holes present unless the same condition is met. (author)

  4. Constant displacement rate testing at elevated temperatures

    International Nuclear Information System (INIS)

    Pepe, J.J.; Gonyea, D.C.

    1989-01-01

    A short time test has been developed which is capable of determining the long time notch sensitivity tendencies of CrMoV rotor forging materials. This test is based on Constant Displacement Rate (CDR) testing of a specific notch bar specimen at 1200 0 F at 2 mils/in/hour displacement rate. These data were correlated to conventional smooth and notch bar rupture behavior for a series of CrMoV materials with varying long time ductility tendencies. The purpose of this paper is to describe the details of this new test procedure and some of the relevant mechanics of material information generated during its development

  5. Radiation balances and the solar constant

    Science.gov (United States)

    Crommelynck, D.

    1981-01-01

    The radiometric concepts are defined in order to consider various types of radiation balances and relate them to the diabetic form of the energy balance. Variability in space and time of the components of the radiation field are presented. A specific concept for sweeping which is tailored to the requirements is proposed. Finally, after establishing the truncated character of the present knowledge of the radiation balance. The results of the last observations of the solar constant are given. Ground and satellite measurement techniques are discussed.

  6. O(4) texture with a cosmological constant

    International Nuclear Information System (INIS)

    Cho, Inyong

    2002-01-01

    We investigate O(4) textures in a background with a positive cosmological constant. We find static solutions which comove with the expanding background. There exists a solution in which the scalar field is regular at the horizon. This solution has a noninteger winding number smaller than 1. There also exist solutions in which scalar-field derivatives are singular at the horizon. Such solutions can complete one winding within the horizon. If the winding number is larger than some critical value, static solutions including the regular one are unstable under perturbations

  7. Can the cosmological constant undergo abrupt changes?

    CERN Document Server

    Cabo-Montes de Oca, Alejandro; Rosabal, A; Cabo, Alejandro; Garcia-Chung, Alejandro; Rosabal, Alejandro

    2005-01-01

    The existence of a simple spherically symmetric and static solution of the Einstein equations in the presence of a cosmological constant vanishing outside a definite value of the radial distance is investigated. A particular succession of field configurations, which are solutions of the Einstein equations in the presence of the considered cosmological term and auxiliary external sources, is constructed. Then, it is shown that the associated succession of external sources tend to zero in the sense of the generalized functions. The type of weak solution that is found becomes the deSitter homogeneous space-time for the interior region, and the Schwartzschild space in the outside zone.

  8. The Boltzmann constant from a snifter

    International Nuclear Information System (INIS)

    Tyukodi, B; Sárközi, Zs; Néda, Z; Tunyagi, A; Györke, E

    2012-01-01

    Evaporation of a small glass of ethylic alcohol is studied both experimentally and through an elementary thermal physics approach. For a cylindrical beaker and no air flow in the room, a simple quadratic relation is found between the evaporation time and the mass of evaporated liquid. This problem and the obtained results offer excellent possibilities for simple student experiments and for testing basic principles of thermal physics. As an example, we use the obtained results for estimating the value of the Boltzmann constant from evaporation experiments. (paper)

  9. Asymptotics with a positive cosmological constant II

    Science.gov (United States)

    Kesavan, Aruna; Ashtekar, Abhay; Bonga, Beatrice

    2015-04-01

    The study of isolated systems has been vastly successful in the context of vanishing cosmological constant, Λ = 0 . However, there is no physically useful notion of asymptotics for the universe we inhabit with Λ > 0 . This means that presently there is no fundamental understanding of gravitational waves in our own universe. The full non-linear framework is still under development, but some interesting results at the linearized level have been obtained. In particular, I will discuss the quadrupole formula for gravitational radiation and its implications.

  10. New Constraints on ΩM, ΩΛ, and w from an Independent Set of 11 High-Redshift Supernovae Observed with the Hubble Space Telescope

    Science.gov (United States)

    Knop, R. A.; Aldering, G.; Amanullah, R.; Astier, P.; Blanc, G.; Burns, M. S.; Conley, A.; Deustua, S. E.; Doi, M.; Ellis, R.; Fabbro, S.; Folatelli, G.; Fruchter, A. S.; Garavini, G.; Garmond, S.; Garton, K.; Gibbons, R.; Goldhaber, G.; Goobar, A.; Groom, D. E.; Hardin, D.; Hook, I.; Howell, D. A.; Kim, A. G.; Lee, B. C.; Lidman, C.; Mendez, J.; Nobili, S.; Nugent, P. E.; Pain, R.; Panagia, N.; Pennypacker, C. R.; Perlmutter, S.; Quimby, R.; Raux, J.; Regnault, N.; Ruiz-Lapuente, P.; Sainton, G.; Schaefer, B.; Schahmaneche, K.; Smith, E.; Spadafora, A. L.; Stanishev, V.; Sullivan, M.; Walton, N. A.; Wang, L.; Wood-Vasey, W. M.; Yasuda, N.

    2003-11-01

    We report measurements of ΩM, ΩΛ, and w from 11 supernovae (SNe) at z=0.36-0.86 with high-quality light curves measured using WFPC2 on the Hubble Space Telescope (HST). This is an independent set of high-redshift SNe that confirms previous SN evidence for an accelerating universe. The high-quality light curves available from photometry on WFPC2 make it possible for these 11 SNe alone to provide measurements of the cosmological parameters comparable in statistical weight to the previous results. Combined with earlier Supernova Cosmology Project data, the new SNe yield a measurement of the mass density ΩM=0.25+0.07-0.06(statistical)+/-0.04 (identified systematics), or equivalently, a cosmological constant of ΩΛ=0.75+0.06-0.07(statistical)+/-0.04 (identified systematics), under the assumptions of a flat universe and that the dark energy equation-of-state parameter has a constant value w=-1. When the SN results are combined with independent flat-universe measurements of ΩM from cosmic microwave background and galaxy redshift distortion data, they provide a measurement of w=-1.05+0.15-0.20(statistical)+/-0.09 (identified systematic), if w is assumed to be constant in time. In addition to high-precision light-curve measurements, the new data offer greatly improved color measurements of the high-redshift SNe and hence improved host galaxy extinction estimates. These extinction measurements show no anomalous negative E(B-V) at high redshift. The precision of the measurements is such that it is possible to perform a host galaxy extinction correction directly for individual SNe without any assumptions or priors on the parent E(B-V) distribution. Our cosmological fits using full extinction corrections confirm that dark energy is required with P(ΩΛ>0)>0.99, a result consistent with previous and current SN analyses that rely on the identification of a low-extinction subset or prior assumptions concerning the intrinsic extinction distribution. Based in part on

  11. Positive Cosmological Constant and Quantum Theory

    Directory of Open Access Journals (Sweden)

    Felix M. Lev

    2010-11-01

    Full Text Available We argue that quantum theory should proceed not from a spacetime background but from a Lie algebra, which is treated as a symmetry algebra. Then the fact that the cosmological constant is positive means not that the spacetime background is curved but that the de Sitter (dS algebra as the symmetry algebra is more relevant than the Poincare or anti de Sitter ones. The physical interpretation of irreducible representations (IRs of the dS algebra is considerably different from that for the other two algebras. One IR of the dS algebra splits into independent IRs for a particle and its antiparticle only when Poincare approximation works with a high accuracy. Only in this case additive quantum numbers such as electric, baryon and lepton charges are conserved, while at early stages of the Universe they could not be conserved. Another property of IRs of the dS algebra is that only fermions can be elementary and there can be no neutral elementary particles. The cosmological repulsion is a simple kinematical consequence of dS symmetry on quantum level when quasiclassical approximation is valid. Therefore the cosmological constant problem does not exist and there is no need to involve dark energy or other fields for explaining this phenomenon (in agreement with a similar conclusion by Bianchi and Rovelli.

  12. Advances in constant-velocity Moessbauer instrumentation

    International Nuclear Information System (INIS)

    Veiga, A.; Martinez, N.; Zelis, P. Mendoza; Pasquevich, G. A.; Sanchez, F. H.

    2006-01-01

    A prototype of a programmable constant-velocity scaler is presented. This instrument allows the acquisition of partial Moessbauer spectra in selected energy regions using standard drivers and transducers. It can be fully operated by a remote application, thus data acquisition can be automated. The instrument consists of a programmable counter and a constant-velocity reference. The reference waveform generator is amplitude modulated with 13-bit resolution, and is programmable in a wide range of frequencies and waveforms in order to optimize the performance of the transducer. The counter is compatible with most standard SCA, and is configured as a rate-meter that provides counts per selectable time slice at the programmed velocity. As a demonstration of the instrument applications, a partial Moessbauer spectrum of a natural iron foil was taken. Only positive energies were studied in 512 channels, accumulating 20 s per channel. A line width of 0.20 mm/s was achieved, performing with an efficiency of 80%.

  13. Local Pain Dynamics during Constant Exhaustive Exercise.

    Directory of Open Access Journals (Sweden)

    Agne Slapsinskaite

    Full Text Available The purpose of this study was to delineate the topological dynamics of pain and discomfort during constant exercise performed until volitional exhaustion. Eleven physical education students were tested while cycling and running at a "hard" intensity level (e.g., corresponding to Borg's RPE (6-20 = 15. During the tests, participants reported their discomfort and pain on a body map every 15s. "Time on task" for each participant was divided into five equal non-overlapping temporal windows within which their ratings were considered for analysis. The analyses revealed that the number of body locations with perceived pain and discomfort increased throughout the five temporal windows until reaching the mean (± SE values of 4.2 ± 0.7 and 4.1 ± 0.6 in cycling and running, respectively. The dominant locations included the quadriceps and hamstrings during cycling and quadriceps and chest during running. In conclusion, pain seemed to spread throughout the body during constant cycling and running performed up to volitional exhaustion with differences between cycling and running in the upper body but not in the lower body dynamics.

  14. Ventricular fibrillation time constant for swine

    International Nuclear Information System (INIS)

    Wu, Jiun-Yan; Sun, Hongyu; Nimunkar, Amit J; Webster, John G; O'Rourke, Ann; Huebner, Shane; Will, James A

    2008-01-01

    The strength–duration curve for cardiac excitation can be modeled by a parallel resistor–capacitor circuit that has a time constant. Experiments on six pigs were performed by delivering current from the X26 Taser dart at a distance from the heart to cause ventricular fibrillation (VF). The X26 Taser is an electromuscular incapacitation device (EMD), which generates about 50 kV and delivers a pulse train of about 15–19 pulses s −1 with a pulse duration of about 150 µs and peak current about 2 A. Similarly a continuous 60 Hz alternating current of the amplitude required to cause VF was delivered from the same distance. The average current and duration of the current pulse were estimated in both sets of experiments. The strength–duration equation was solved to yield an average time constant of 2.87 ms ± 1.90 (SD). Results obtained may help in the development of safety standards for future electromuscular incapacitation devices (EMDs) without requiring additional animal tests

  15. Simple liquid models with corrected dielectric constants

    Science.gov (United States)

    Fennell, Christopher J.; Li, Libo; Dill, Ken A.

    2012-01-01

    Molecular simulations often use explicit-solvent models. Sometimes explicit-solvent models can give inaccurate values for basic liquid properties, such as the density, heat capacity, and permittivity, as well as inaccurate values for molecular transfer free energies. Such errors have motivated the development of more complex solvents, such as polarizable models. We describe an alternative here. We give new fixed-charge models of solvents for molecular simulations – water, carbon tetrachloride, chloroform and dichloromethane. Normally, such solvent models are parameterized to agree with experimental values of the neat liquid density and enthalpy of vaporization. Here, in addition to those properties, our parameters are chosen to give the correct dielectric constant. We find that these new parameterizations also happen to give better values for other properties, such as the self-diffusion coefficient. We believe that parameterizing fixed-charge solvent models to fit experimental dielectric constants may provide better and more efficient ways to treat solvents in computer simulations. PMID:22397577

  16. Holographic dark energy with cosmological constant

    Science.gov (United States)

    Hu, Yazhou; Li, Miao; Li, Nan; Zhang, Zhenhui

    2015-08-01

    Inspired by the multiverse scenario, we study a heterotic dark energy model in which there are two parts, the first being the cosmological constant and the second being the holographic dark energy, thus this model is named the ΛHDE model. By studying the ΛHDE model theoretically, we find that the parameters d and Ωhde are divided into a few domains in which the fate of the universe is quite different. We investigate dynamical behaviors of this model, and especially the future evolution of the universe. We perform fitting analysis on the cosmological parameters in the ΛHDE model by using the recent observational data. We find the model yields χ2min=426.27 when constrained by Planck+SNLS3+BAO+HST, comparable to the results of the HDE model (428.20) and the concordant ΛCDM model (431.35). At 68.3% CL, we obtain -0.07<ΩΛ0<0.68 and correspondingly 0.04<Ωhde0<0.79, implying at present there is considerable degeneracy between the holographic dark energy and cosmological constant components in the ΛHDE model.

  17. Holographic dark energy with cosmological constant

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Yazhou; Li, Nan; Zhang, Zhenhui [State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing, 100190 (China); Li, Miao, E-mail: asiahu@itp.ac.cn, E-mail: mli@itp.ac.cn, E-mail: linan@itp.ac.cn, E-mail: zhangzhh@mail.ustc.edu.cn [School of Astronomy and Space Science, Sun Yat-Sen University, Guangzhou 510275 (China)

    2015-08-01

    Inspired by the multiverse scenario, we study a heterotic dark energy model in which there are two parts, the first being the cosmological constant and the second being the holographic dark energy, thus this model is named the ΛHDE model. By studying the ΛHDE model theoretically, we find that the parameters d and Ω{sub hde} are divided into a few domains in which the fate of the universe is quite different. We investigate dynamical behaviors of this model, and especially the future evolution of the universe. We perform fitting analysis on the cosmological parameters in the ΛHDE model by using the recent observational data. We find the model yields χ{sup 2}{sub min}=426.27 when constrained by Planck+SNLS3+BAO+HST, comparable to the results of the HDE model (428.20) and the concordant ΛCDM model (431.35). At 68.3% CL, we obtain −0.07<Ω{sub Λ0}<0.68 and correspondingly 0.04<Ω{sub hde0}<0.79, implying at present there is considerable degeneracy between the holographic dark energy and cosmological constant components in the ΛHDE model.

  18. Holographic dark energy with cosmological constant

    International Nuclear Information System (INIS)

    Hu, Yazhou; Li, Nan; Zhang, Zhenhui; Li, Miao

    2015-01-01

    Inspired by the multiverse scenario, we study a heterotic dark energy model in which there are two parts, the first being the cosmological constant and the second being the holographic dark energy, thus this model is named the ΛHDE model. By studying the ΛHDE model theoretically, we find that the parameters d and Ω hde are divided into a few domains in which the fate of the universe is quite different. We investigate dynamical behaviors of this model, and especially the future evolution of the universe. We perform fitting analysis on the cosmological parameters in the ΛHDE model by using the recent observational data. We find the model yields χ 2 min =426.27 when constrained by Planck+SNLS3+BAO+HST, comparable to the results of the HDE model (428.20) and the concordant ΛCDM model (431.35). At 68.3% CL, we obtain −0.07<Ω Λ0 <0.68 and correspondingly 0.04<Ω hde0 <0.79, implying at present there is considerable degeneracy between the holographic dark energy and cosmological constant components in the ΛHDE model

  19. Modified large number theory with constant G

    International Nuclear Information System (INIS)

    Recami, E.

    1983-01-01

    The inspiring ''numerology'' uncovered by Dirac, Eddington, Weyl, et al. can be explained and derived when it is slightly modified so to connect the ''gravitational world'' (cosmos) with the ''strong world'' (hadron), rather than with the electromagnetic one. The aim of this note is to show the following. In the present approach to the ''Large Number Theory,'' cosmos and hadrons are considered to be (finite) similar systems, so that the ratio R-bar/r-bar of the cosmos typical length R-bar to the hadron typical length r-bar is constant in time (for instance, if both cosmos and hadrons undergo an expansion/contraction cycle: according to the ''cyclical big-bang'' hypothesis: then R-bar and r-bar can be chosen to be the maximum radii, or the average radii). As a consequence, then gravitational constant G results to be independent of time. The present note is based on work done in collaboration with P.Caldirola, G. D. Maccarrone, and M. Pavsic

  20. Lepton Collider Operation with Constant Currents

    CERN Document Server

    Wienands, Ulrich

    2005-01-01

    Traditionally, electron-positron colliders have been operating in a top-off-and-coast fashion with a cycle time depending on the beam life time, typically on the order of an hour. Each top-off involves ramping detector systems in addition to the actual filling time. The loss in accumulated luminosity is typically 20-50%. During the last year, both B-Factories have commissioned a continuous-injection mode of operation in which beam is injected without ramping the detector, thus raising luminosity integration by constant operation at peak luminosity. Constant beam currents reduce thermal drift and trips caused by change in beam loading. To achieve this level of operation, special efforts were made to reduce the injection losses and also to implement special gating procedures in the detectors, minimizing dead time. Bunch-injection control decides which bunch to inject into next while maintaining small charge variation between bunches. Beam collimation can reduce injection noise but also cause an increase in back...

  1. PREFACE: Fundamental Constants in Physics and Metrology

    Science.gov (United States)

    Klose, Volkmar; Kramer, Bernhard

    1986-01-01

    This volume contains the papers presented at the 70th PTB Seminar which, the second on the subject "Fundamental Constants in Physics and Metrology", was held at the Physikalisch-Technische Bundesanstalt in Braunschweig from October 21 to 22, 1985. About 100 participants from the universities and various research institutes of the Federal Republic of Germany participated in the meeting. Besides a number of review lectures on various broader subjects there was a poster session which contained a variety of topical contributed papers ranging from the theory of the quantum Hall effect to reports on the status of the metrological experiments at the PTB. In addition, the participants were also offered the possibility to visit the PTB laboratories during the course of the seminar. During the preparation of the meeting we noticed that even most of the general subjects which were going to be discussed in the lectures are of great importance in connection with metrological experiments and should be made accessible to the scientific community. This eventually resulted in the idea of the publication of the papers in a regular journal. We are grateful to the editor of Metrologia for providing this opportunity. We have included quite a number of papers from basic physical research. For example, certain aspects of high-energy physics and quantum optics, as well as the many-faceted role of Sommerfeld's fine-structure constant, are covered. We think that questions such as "What are the intrinsic fundamental parameters of nature?" or "What are we doing when we perform an experiment?" can shed new light on the art of metrology, and do, potentially, lead to new ideas. This appears to be especially necessary when we notice the increasing importance of the role of the fundamental constants and macroscopic quantum effects for the definition and the realization of the physical units. In some cases we have reached a point where the limitations of our knowledge of a fundamental constant and

  2. A Positive Cosmological Constant as Centrifugal Force in an Expanding Kantian Model of the Universe

    Science.gov (United States)

    Sternglass, E. J.

    1998-05-01

    Recent redshift measurements of distant Type Ia supernovae appear to indicate that cosmic expansion has speeded up since these distant stars exploded, rather than slowing down under the action of gravity. These results suggest the existence of a repulsive force as originally assumed by Einstein through the introduction of the lambda constant. Such a repulsive force arises naturally as centrifugal force in the evolution of a hierarchically organized cosmological model involving a series of rotating structures of increasing size as originally suggested by Kant in the 18th century when combined with the idea of Lemaitre, according to which the universe and the observed systems arose in the course of repeated divisions by two of a primeval atom. As described in the AIP Conference Proceedings 254,105 (1992), if this atom is assumed to be a highly relativistic form of positronium or "quarkonium" at the Planck density one avoids an initial singularity and requires no other particles. The division process takes place in 27 stages of 10 divisions each beginning with a lower mass excited state of the original Lemaitre atom that forms a central cluster in which a quarter of the particles are initially retained. One then arrives at a model in which all structures are laid down in the form of massive "cold dark matter" during a period of exponential growth or inflation before the Big Bang, leading to an ultimately stable, closed "flat" universe of finite mass that explains the masses, sizes, rotational and expansion velocities and thus the Hubble constants of the various systems as well as the age of the universe since the Big Bang in good agreement with observations, using only e, mo, c and h.

  3. Handbook of Spatial Statistics

    CERN Document Server

    Gelfand, Alan E

    2010-01-01

    Offers an introduction detailing the evolution of the field of spatial statistics. This title focuses on the three main branches of spatial statistics: continuous spatial variation (point referenced data); discrete spatial variation, including lattice and areal unit data; and, spatial point patterns.

  4. Sexual orientation and spatial memory.

    Science.gov (United States)

    Cánovas, Ma Rosa; Cimadevilla, José Manuel

    2011-11-01

    The present study aimed at determining the influence of sexual orientation in human spatial learning and memory. Participants performed the Boxes Room, a virtual reality version of the Holeboard. In Experiment I, a reference memory task, the position of the hidden rewards remained constant during the whole experiment. In Experiment II, a working memory task, the position of rewards changed between blocks. Each block consisted of two trials: One trial for acquisition and another for retrieval. The results of Experiment I showed that heterosexual men performed better than homosexual men and heterosexual women. They found the rewarded boxes faster. Moreover, homosexual participants committed more errors than heterosexuals. Experiment II showed that working memory abilities are the same in groups of different sexual orientation. These results suggest that sexual orientation is related to spatial navigation abilities, but mostly in men, and limited to reference memory, which depends more on the function of the hippocampal system.

  5. UV Luminosity Functions at z~4, 5, and 6 from the Hubble Ultra Deep Field and Other Deep Hubble Space Telescope ACS Fields: Evolution and Star Formation History

    Science.gov (United States)

    Bouwens, R. J.; Illingworth, G. D.; Franx, Marijn; Ford, Holland

    2007-12-01

    We use the ACS BViz data from the HUDF and all other deep HST ACS fields (including the GOODS fields) to find large samples of star-forming galaxies at z~4 and ~5 and to extend our previous z~6 sample. These samples contain 4671, 1416, and 627 B-, V-, and i-dropouts, respectively, and reach to extremely low luminosities [(0.01-0.04)L*z=3 or MUV~-16 to -17], allowing us to determine the rest-frame UV LF and faint-end slope α at z~4-6 to high accuracy. We find faint-end slopes α=-1.73+/-0.05, -1.66+/-0.09, and -1.74+/-0.16 at z~4, ~5, and ~6, respectively, suggesting that the faint-end slope is very steep and shows little evolution with cosmic time. We find that M*UV brightens considerably in the 0.7 Gyr from z~6 to ~4 (by ~0.7 mag from M*UV=-20.24+/-0.19 to -20.98+/-0.10). The observed increase in the characteristic luminosity over this range is almost identical to that expected for the halo mass function, suggesting that the observed evolution is likely due to the hierarchical coalescence and merging of galaxies. The evolution in φ* is not significant. The UV luminosity density at z~6 is modestly lower than (0.45+/-0.09 times) that at z~4 (integrated to -17.5 mag) although a larger change is seen in the dust-corrected SFR density. We thoroughly examine published LF results and assess the reasons for their wide dispersion. We argue that the results reported here are the most robust available. The extremely steep faint-end slopes α found here suggest that lower luminosity galaxies play a significant role in reionizing the universe. Finally, recent search results for galaxies at z~7-8 are used to extend our estimates of the evolution of M* from z~7-8 to z~4. Based on observations made with the NASA/ESA Hubble Space Telescope, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with programs 9425, 9575, 9803, 9978, 10189, 10339, 10340, and 10632.

  6. Induced cosmological constant in braneworlds with warped internal spaces

    International Nuclear Information System (INIS)

    Saharian, Aram A.

    2006-01-01

    We investigate the vacuum energy density induced by quantum fluctuations of a bulk scalar field with general curvature coupling parameter on two codimension one parallel branes in a (D + 1)-dimensional background spacetime AdS D1+1 x Σ with a warped internal space Σ. It is assumed that on the branes the field obeys Robin boundary conditions. Using the generalized zeta function technique in combination with contour integral representations, the surface energies on the branes are presented in the form of the sums of single brane and second brane induced parts. For the geometry of a single brane both regions, on the left (L-region) and on the right (R-region), of the brane are considered. The surface densities for separate L- and R-regions contain pole and finite contributions. For an infinitely thin brane taking these regions together, in odd spatial dimensions the pole parts cancel and the total surface energy is finite. The parts in the surface densities generated by the presence of the second brane are finite for all nonzero values of the interbrane separation. The contribution of the Kaluza-Klein modes along Σ is investigated in various limiting cases. It is shown that for large distances between the branes the induced surface densities give rise to an exponentially suppressed cosmological constant on the brane. In the higher dimensional generalization of the Randall-Sundrum braneworld model, for the interbrane distances solving the hierarchy problem, the cosmological constant generated on the visible brane is of the right order of magnitude with the value suggested by the cosmological observations. (author)

  7. Search for a Variation of Fundamental Constants

    Science.gov (United States)

    Ubachs, W.

    2013-06-01

    Since the days of Dirac scientists have speculated about the possibility that the laws of nature, and the fundamental constants appearing in those laws, are not rock-solid and eternal but may be subject to change in time or space. Such a scenario of evolving constants might provide an answer to the deepest puzzle of contemporary science, namely why the conditions in our local Universe allow for extreme complexity: the fine-tuning problem. In the past decade it has been established that spectral lines of atoms and molecules, which can currently be measured at ever-higher accuracies, form an ideal test ground for probing drifting constants. This has brought this subject from the realm of metaphysics to that of experimental science. In particular the spectra of molecules are sensitive for probing a variation of the proton-electron mass ratio μ, either on a cosmological time scale, or on a laboratory time scale. A comparison can be made between spectra of molecular hydrogen observed in the laboratory and at a high redshift (z=2-3), using the Very Large Telescope (Paranal, Chile) and the Keck telescope (Hawaii). This puts a constraint on a varying mass ratio Δμ/μ at the 10^{-5} level. The optical work can also be extended to include CO molecules. Further a novel direction will be discussed: it was discovered that molecules exhibiting hindered internal rotation have spectral lines in the radio-spectrum that are extremely sensitive to a varying proton-electron mass ratio. Such lines in the spectrum of methanol were recently observed with the radio-telescope in Effelsberg (Germany). F. van Weerdenburg, M.T. Murphy, A.L. Malec, L. Kaper, W. Ubachs, Phys. Rev. Lett. 106, 180802 (2011). A. Malec, R. Buning, M.T. Murphy, N. Milutinovic, S.L. Ellison, J.X. Prochaska, L. Kaper, J. Tumlinson, R.F. Carswell, W. Ubachs, Mon. Not. Roy. Astron. Soc. 403, 1541 (2010). E.J. Salumbides, M.L. Niu, J. Bagdonaite, N. de Oliveira, D. Joyeux, L. Nahon, W. Ubachs, Phys. Rev. A 86, 022510

  8. Eyes on the Universe: The Legacy of the Hubble Space Telescope and Looking to the Future with the James Webb Space Telescope

    Science.gov (United States)

    Straughn, Amber

    2011-01-01

    Over the past 20 years the Hubble Space Telescope has revolutionized our understanding of the Universe. Most recently, the complete refurbishment of Hubble in 2009 has given new life to the telescope and the new science instruments have already produced groundbreaking science results, revealing some of the most distant galaxy candidates ever discovered. Despite the remarkable advances in astrophysics that Hubble has provided, the new questions that have arisen demand a new space telescope with new technologies and capabilities. I will present the exciting new technology development and science goals of NASA's James Webb Space Telescope, which is currently being built and tested and will be launched this decade.

  9. Statistical Modelling of the Soil Dielectric Constant

    Science.gov (United States)

    Usowicz, Boguslaw; Marczewski, Wojciech; Bogdan Usowicz, Jerzy; Lipiec, Jerzy

    2010-05-01

    The dielectric constant of soil is the physical property being very sensitive on water content. It funds several electrical measurement techniques for determining the water content by means of direct (TDR, FDR, and others related to effects of electrical conductance and/or capacitance) and indirect RS (Remote Sensing) methods. The work is devoted to a particular statistical manner of modelling the dielectric constant as the property accounting a wide range of specific soil composition, porosity, and mass density, within the unsaturated water content. Usually, similar models are determined for few particular soil types, and changing the soil type one needs switching the model on another type or to adjust it by parametrization of soil compounds. Therefore, it is difficult comparing and referring results between models. The presented model was developed for a generic representation of soil being a hypothetical mixture of spheres, each representing a soil fraction, in its proper phase state. The model generates a serial-parallel mesh of conductive and capacitive paths, which is analysed for a total conductive or capacitive property. The model was firstly developed to determine the thermal conductivity property, and now it is extended on the dielectric constant by analysing the capacitive mesh. The analysis is provided by statistical means obeying physical laws related to the serial-parallel branching of the representative electrical mesh. Physical relevance of the analysis is established electrically, but the definition of the electrical mesh is controlled statistically by parametrization of compound fractions, by determining the number of representative spheres per unitary volume per fraction, and by determining the number of fractions. That way the model is capable covering properties of nearly all possible soil types, all phase states within recognition of the Lorenz and Knudsen conditions. In effect the model allows on generating a hypothetical representative of

  10. Development code for group constant processing

    International Nuclear Information System (INIS)

    Su'ud, Z.

    1997-01-01

    In this paper methods, formalism and algorithm related to group constant processing problem from basic library such as ENDF/B VI will be described. Basically the problems can be grouped as follows; the treatment of resolved resonance using NR approximation, the treatment of unresolved resonance using statistical method, the treatment of low lying resonance using intermediate resonance approximation, the treatment of thermal energy regions, and the treatment group transfer matrices cross sections. it is necessary to treat interference between resonance properly especially in the unresolved region. in this paper the resonance problems are treated based on Breit-wigner method, and doppler function is treated using Pade approximation for calculation efficiency. finally, some samples of calculational result for some nuclei, mainly for comparison between many methods are discussed in this paper

  11. Hawking temperature of constant curvature black holes

    International Nuclear Information System (INIS)

    Cai Ronggen; Myung, Yun Soo

    2011-01-01

    The constant curvature (CC) black holes are higher dimensional generalizations of Banados-Teitelboim-Zanelli black holes. It is known that these black holes have the unusual topology of M D-1 xS 1 , where D is the spacetime dimension and M D-1 stands for a conformal Minkowski spacetime in D-1 dimensions. The unusual topology and time-dependence for the exterior of these black holes cause some difficulties to derive their thermodynamic quantities. In this work, by using a globally embedding approach, we obtain the Hawking temperature of the CC black holes. We find that the Hawking temperature takes the same form when using both the static and global coordinates. Also, it is identical to the Gibbons-Hawking temperature of the boundary de Sitter spaces of these CC black holes.

  12. Dielectric Constant Measurements of Solid 4He

    Science.gov (United States)

    Yin, L.; Xia, J. S.; Huan, C.; Sullivan, N. S.; Chan, M. H. W.

    2011-03-01

    Careful measurements of the dielectric properties of solid 4He have been carried out down to 35 mK, considerably lower than the temperature range of previous studies. The sample was prepared from high purity gas with 3He concentrations of the order of 200 ppb and were formed by the blocked capillary method. The molar volume of the sample was 20.30 cm3. The dielectric constant of the samples was found to be independent of temperature down to 120 mK before showing a continuous increase with decreasing temperature and saturating below 50 mK. The total increase in ɛ is 2 parts in 10-5. The temperature dependence of ɛ mimics the increase in the resonant frequency found in the torsional oscillator studies and also the increase found in the shear modulus measurements.

  13. Parallel computational in nuclear group constant calculation

    International Nuclear Information System (INIS)

    Su'ud, Zaki; Rustandi, Yaddi K.; Kurniadi, Rizal

    2002-01-01

    In this paper parallel computational method in nuclear group constant calculation using collision probability method will be discuss. The main focus is on the calculation of collision matrix which need large amount of computational time. The geometry treated here is concentric cylinder. The calculation of collision probability matrix is carried out using semi analytic method using Beckley Naylor Function. To accelerate computation speed some computer parallel used to solve the problem. We used LINUX based parallelization using PVM software with C or fortran language. While in windows based we used socket programming using DELPHI or C builder. The calculation results shows the important of optimal weight for each processor in case there area many type of processor speed

  14. Cosmological constant and general isocurvature initial conditions

    International Nuclear Information System (INIS)

    Trotta, R.; Riazuelo, A.; Durrer, R.

    2003-01-01

    We investigate in detail the question of whether a nonvanishing cosmological constant is required by the present-day cosmic microwave background and large scale structure data when general isocurvature initial conditions are taken into account. We also discuss the differences between the usual Bayesian and the frequentist approaches in data analysis. We show that the Cosmic Background Explorer (COBE)-normalized matter power spectrum is dominated by the adiabatic mode and therefore breaks the degeneracy between initial conditions which is present in the cosmic microwave background anisotropies. We find that in a flat universe the Bayesian analysis requires Ω Λ =e0 to more than 3σ, while in the frequentist approach Ω Λ =0 is still within 3σ for a value of h≤0.48. Both conclusions hold regardless of the initial conditions

  15. Constant-parameter capture-recapture models

    Science.gov (United States)

    Brownie, C.; Hines, J.E.; Nichols, J.D.

    1986-01-01

    Jolly (1982, Biometrics 38, 301-321) presented modifications of the Jolly-Seber model for capture-recapture data, which assume constant survival and/or capture rates. Where appropriate, because of the reduced number of parameters, these models lead to more efficient estimators than the Jolly-Seber model. The tests to compare models given by Jolly do not make complete use of the data, and we present here the appropriate modifications, and also indicate how to carry out goodness-of-fit tests which utilize individual capture history information. We also describe analogous models for the case where young and adult animals are tagged. The availability of computer programs to perform the analysis is noted, and examples are given using output from these programs.

  16. Lepton Collider Operation With Constant Currents

    International Nuclear Information System (INIS)

    Wienands, U.

    2006-01-01

    Electron-positron colliders have been operating in a top-up-and-coast fashion with a cycle time depending on the beam life time, typically one or more hours. Each top-up involves ramping detector systems in addition to the actual filling time. The loss in accumulated luminosity may be 20-50%. During the last year, both B-Factories have commissioned a continuous-injection mode of operation in which beam is injected without ramping the detector, thus raising luminosity integration by always operating at peak luminosity. Constant beam currents also reduce thermal drift and trips caused by change in beam loading. To achieve this level of operation, special efforts were made to reduce the injection losses and also to implement gating procedures in the detectors, minimizing dead time. Beam collimation can reduce injection noise but also cause an increase in background rates. A challenge can be determining beam lifetime, important to maintain tuning of the beams

  17. Higgs inflation and the cosmological constant

    Energy Technology Data Exchange (ETDEWEB)

    Jegerlehner, Fred [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)

    2014-02-15

    The Higgs not only induces the masses of all SM particles, the Higgs, given its special mass value, is the natural candidate for the inflaton and in fact is ruling the evolution of the early universe, by providing the necessary dark energy which remains the dominant energy density. SM running couplings not only allow us to extrapolate SM physics up to the Planck scale, but equally important they are triggering the Higgs mechanism. This is possible by the fact that the bare mass term in the Higgs potential changes sign at about μ{sub 0}≅1.40 x 10{sup 16} GeV and in the symmetric phase is enhanced by quadratic terms in the Planck mass. Such a huge Higgs mass term is able to play a key role in triggering inflation in the early universe. In this article we extend our previous investigation by working out the details of a Higgs inflation scenario. We show how different terms contributing to the Higgs Lagrangian are affecting inflation. Given the SM and its extrapolation to scales μ>μ{sub 0} we find a calculable cosmological constant V(0) which is weakly scale dependent and actually remains large during inflation. This is different to the Higgs fluctuation field dependent ΔV(φ), which decays exponentially during inflation, and actually would not provide a sufficient amount of inflation. The fluctuation field has a different effective mass which shifts the bare Higgs transition point to a lower value μ'{sub 0} ≅7.7 x 10{sup 14} GeV. The vacuum energy V(0) being proportional to M{sub Pl}{sup 4} has a coefficient which vanishes near the Higgs transition point, such that the bare and the renormalized cosmological constant match at this point. The role of the Higgs in reheating and baryogenesis is emphasized.

  18. Universal equations and constants of turbulent motion

    International Nuclear Information System (INIS)

    Baumert, H Z

    2013-01-01

    This paper presents a parameter-free theory of shear-generated turbulence at asymptotically high Reynolds numbers in incompressible fluids. It is based on a two-fluids concept. Both components are materially identical and inviscid. The first component is an ensemble of quasi-rigid dipole-vortex tubes (vortex filaments, excitations) as quasi-particles in chaotic motion. The second is a superfluid performing evasive motions between the tubes. The local dipole motions follow Helmholtz' law. The vortex radii scale with the energy-containing length scale. Collisions between quasi-particles lead either to annihilation (likewise rotation, turbulent dissipation) or to scattering (counterrotation, turbulent diffusion). There are analogies with birth and death processes of population dynamics and their master equations and with Landau's two-fluid theory of liquid helium. For free homogeneous decay the theory predicts the turbulent kinetic energy to follow t −1 . With an adiabatic wall condition it predicts the logarithmic law with von Kármán's constant as 1/√(2 π)= 0.399. Likewise rotating couples form localized dissipative patches almost at rest (→ intermittency) wherein under local quasi-steady conditions the spectrum evolves into an ‘Apollonian gear’ as discussed first by Herrmann (1990 Correlation and Connectivity (Dordrecht: Kluwer) pp 108–20). Dissipation happens exclusively at scale zero and at finite scales this system is frictionless and reminds of Prigogine's (1947 Etude Thermodynamique des Phenomenes Irreversibles (Liege: Desoer) p 143) law of minimum (here: zero) entropy production. The theory predicts further the prefactor of the 3D-wavenumber spectrum (a Kolmogorov constant) as 1/3 (4 π) 2/3 =1.802, well within the scatter range of observational, experimental and direct numerical simulation results. (paper)

  19. Universal equations and constants of turbulent motion

    Science.gov (United States)

    Baumert, H. Z.

    2013-07-01

    This paper presents a parameter-free theory of shear-generated turbulence at asymptotically high Reynolds numbers in incompressible fluids. It is based on a two-fluids concept. Both components are materially identical and inviscid. The first component is an ensemble of quasi-rigid dipole-vortex tubes (vortex filaments, excitations) as quasi-particles in chaotic motion. The second is a superfluid performing evasive motions between the tubes. The local dipole motions follow Helmholtz' law. The vortex radii scale with the energy-containing length scale. Collisions between quasi-particles lead either to annihilation (likewise rotation, turbulent dissipation) or to scattering (counterrotation, turbulent diffusion). There are analogies with birth and death processes of population dynamics and their master equations and with Landau's two-fluid theory of liquid helium. For free homogeneous decay the theory predicts the turbulent kinetic energy to follow t-1. With an adiabatic wall condition it predicts the logarithmic law with von Kármán's constant as 1/\\sqrt {2\\,\\pi }= 0.399 . Likewise rotating couples form localized dissipative patches almost at rest (→ intermittency) wherein under local quasi-steady conditions the spectrum evolves into an ‘Apollonian gear’ as discussed first by Herrmann (1990 Correlation and Connectivity (Dordrecht: Kluwer) pp 108-20). Dissipation happens exclusively at scale zero and at finite scales this system is frictionless and reminds of Prigogine's (1947 Etude Thermodynamique des Phenomenes Irreversibles (Liege: Desoer) p 143) law of minimum (here: zero) entropy production. The theory predicts further the prefactor of the 3D-wavenumber spectrum (a Kolmogorov constant) as \\frac {1}{3}(4\\,\\pi )^{2/3}=1.802 , well within the scatter range of observational, experimental and direct numerical simulation results.

  20. Spatial Management Areas

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Spatial management files combine all related and relevant spatial management files into an integrated fisheries management file. Overlaps of the redundant spatial...