WorldWideScience

Sample records for httr core components

  1. Construction of the HTTR in-core components

    International Nuclear Information System (INIS)

    Maruyama, S.; Saikusa, A.; Shiozawa, S.; Tsuji, N.; Jinza, K.; Miki, T.

    1996-01-01

    The reactor internals of HTTR consist of graphite and metallic core support structures and shielding blocks and are designed to support core elements and to shield neutron fluence. They also have functions to restrict by-pass flow for ensuring the core cooling performance and to maintain the temperature of metallic core support structures within their design limits. The detailed design of the HTTR core support structure was approved by the government through safety review, 1990-1991. Machining of all graphite components, which consist of about 150 large blocks, was finished in September 1994 successfully. Machining and fabricating of the metallic components were also finished in September. Prior to their installation in the reactor pressure vessel (RPV), the assembly test of actual reactor internals was performed at the works to confirm above mentioned functions. The assembly test was conducted by examining fabricating precision of each component and alignment of piled-up structures, measuring circumferential coolant velocity profile in the passage between the RPV and reactor internals as well as under the core support plates with respect to structural integrity, and measuring by-pass flow rate through gaps between graphite components which may degrade core performance. The another purpose of the assembly test was to confirm the installation procedure of those components. All components were assembled at the works according to the planned procedure, and the tests were executed while assembling. As a result of the tests, measured level difference and gap width between reactor internals were negligible from core thermal and hydraulic performance point of view. Coolant flows uniformly in circumferential direction at any axial level in the RPV. By-pass flow rate was found to be suppressed sufficiently and far less than the design limit. (J.P.N.)

  2. Study on practical of eddy current testing of core and core support graphite components in HTTR

    International Nuclear Information System (INIS)

    Ishihara, Masahiro; Iyoku, Tatsuo; Ooka, Norikazu; Shindo, Yoshihisa; Kawae, Hidetoshi; Hayashi, Motomitsu; Kambe, Mamoru; Takahashi, Masaaki; Ide, Akira.

    1994-01-01

    Core and core support graphite components in the HTTR (High Temperature Engineering Test Reactor) are mainly made of nuclear-grade IG-110 and PGX graphites. Nondestructive inspection with Eddy Current Testing (ECT) is planned to be applied to these components. The method of ECT has been already established for metallic components, however, cannot be applied directly to the graphite ones, because the characteristics of graphite are quite different in micro-structure from those of metals. Therefore, ECT method and condition were studied for the application of the ECT to the graphite components. This paper describes the study on practical method and conditions of ECT for above mentioned graphite structures. (author)

  3. PIE technology on mechanical tests for HTTR core component and structural materials developed at Research Hot Laboratory

    International Nuclear Information System (INIS)

    Kizaki, Minoru; Honda, Junichi; Usami, Kouji; Ouchi, Asao; Oeda, Etsuro; Matsumoto, Seiichiro

    2001-02-01

    The high temperature engineering test reactor (HTTR) with the target operation temperature of 950degC established the first criticality on November, 1998 based on a large amount of R and D results on fuel and materials. In such R and D works, the development of reactor materials are one of the key issues from the view point of reactor environments such as extremely high temperature, neutron irradiation and so on for the HTTR. The Research Hot Laboratory (RHL) had carried out much kind of post irradiation examinations (PIEs) on core component and pressure vessel materials for during more than a quarter century. And obtained data played an important role in development, characterization and licensing of those materials for the HTTR. This paper describes the PIE technology developed at RHL and typical results on mechanical tests such as elevated temperature tensile and creep rupture tests for Hasteloy-X, Incolloy 800H and so on, and Charpy impact, J IC fracture toughness, K Id fracture toughness and small punch tests for normalized and tempered 2 1/4Cr-1Mo steel from historical view. In addition, an electrochemical test technique established for investigating the irradiation embrittlement mechanism on 2 1/4Cr-1Mo steel is also mentioned. (author)

  4. Acceptance test for graphite components and construction status of HTTR

    International Nuclear Information System (INIS)

    Iyoku, T.; Ishihara, M.; Maruyama, S.; Shiozawa, S.; Tsuji, N.; Miki, T.

    1996-01-01

    In March, 1991, the Japan Atomic Energy Research Institute (JAERI) started to constructed the High Temperature engineering Test Reactor(HTTR) which is a 30-MW(thermal) helium gas-cooled reactor with a core composed of prismatic graphite blocks piled on the core support graphite structures. Two types of graphite materials are used in the HTTR. One is the garde IG-110, isotropic fine grain graphite, another is the grade PGX, medium-to-fine grained molded graphite. These materials were selected on the basis of the appropriate properties required by the HTTR reactor design. Industry-wide standards for an acceptance test of graphite materials used as main components of a nuclear reactor had not been established. The acceptance standard for graphite components of the HTTR, therefore, was drafted by JAERI and reviewed by specialists outside JAERI. The acceptance standard consists of the material testing, non-destructive examination such as the ultrasonic and eddy current testings, dimensional and visual inspections and assembly test. Ultrasonic and eddy current testings are applied to graphite logs to detect an internal flaw and to graphite components to detect a surface flaw, respectively. The assembly test is performed at the works, prior to their installation in the reactor pressure vessel, to examine fabricating precision of each component and alignment of piled-up structures. The graphite components of the HTTR had been tested on the basis of the acceptance standard. It was confirmed that the graphite manufacturing process was well controlled and high quality graphite components were provided to the HTTR. All graphite components except for the fuel graphite blocks are to be installed in the reactor pressure vessel of the HTTR in September 1995. The paper describes the construction status of the HTTR focusing on the graphite components. The acceptance test results are also presented in this paper. (author). Figs

  5. Characteristic test of initial HTTR core

    International Nuclear Information System (INIS)

    Nojiri, Naoki; Shimakawa, Satoshi; Fujimoto, Nozomu; Goto, Minoru

    2004-01-01

    This paper describes the results of core physics test in start-up and power-up of the HTTR. The tests were conducted in order to ensure performance and safety of the high temperature gas cooled reactor, and was carried out to measure the critical approach, the excess reactivity, the shutdown margin, the control rod worth, the reactivity coefficient, the neutron flux distribution and the power distribution. The expected core performance and the required reactor safety characteristics were verified from the results of measurements and calculations

  6. Characteristics of first loaded IG-110 graphite in HTTR core

    International Nuclear Information System (INIS)

    Sumita, Junya; Shibata, Taiju; Iyoku, Tatsuo; Sawa, Kazuhiro; Hanawa, Satoshi; Ishihara, Masahiro

    2006-10-01

    IG-110 graphite is a fine-grained isotropic and nuclear-grade graphite with excellent resistivity on both irradiation and corrosion and with high strength. The IG-110 graphite is used for the graphite components of High Temperature Engineering Test Reactor (HTTR) such as fuel and control rod guide blocks and support posts. In order to design and fabricate the graphite components in the HTTR, the Japan Atomic Energy Research Institute (the Japan Atomic Energy Agency at present) had established the graphite structural design code and design data on the basis of former research results. After the design code establishment, the IG-110 graphite components were fabricated and loaded in the HTTR core. This report summarized the characteristics of the first loaded IG-110 graphite as basic data for surveillance test, measuring material characteristics changed by neutron irradiation and oxidation. By comparing the design data, it was shown that the first loaded IG-110 graphite had excellent strength properties and enough safety margins to the stress limits in the design code. (author)

  7. Study on in-service visual inspection using TV camera for core support graphite components in the HTTR

    International Nuclear Information System (INIS)

    Ishihara, Masahiro; Shibata, Taiju; Kikuchi, Takayuki; Mogi, Haruyoshi

    1999-01-01

    To maintain the structural integrity of graphite components during plant operation a visual inspection using a TV camera as an in-service inspection is planned in the High Temperature Engineering Test Reactor. In order to verify the in-service inspection method a preliminary analytical and experimental studies were performed. In the analytical study the harmful flaw size was determined from a viewpoint of structural integrity based on the fracture mechanics approach. Furthermore, the visible flaw size was determined by the TV camera performance test with graphite test specimens having several kinds of artificial flaws. This paper presents the analytical result on the harmful flaw size and the experimental result on the visible flaw size. From both results the applicability on the visual inspection by the TV camera as the in-service inspection is discussed in this paper. (author)

  8. Structural integrity of graphite core support structures of HTTR

    International Nuclear Information System (INIS)

    Inagaki, Yoshiyuki; Iyoku, Tatsuo; Toyota, Junji; Sato, Sadao; Shiozawa, Shusaku

    1990-02-01

    The graphite core support structures (GCSSs) of the HTTR (High Temperature Engineering Test Reactor) are an arrangement of graphite blocks and posts that support the core and provide a lower plenum and a hot-leg path for the primary coolant. The GCSSs are designed not to be replaced by new items during plant life time (about twenty years). To maintain structural integrity of the GCSSs, conservative design has been made sufficiently on the basis of structural tests. The present study confirmed that reactor safety was still maintained even if failure and destruction of the GCSSs is supposed to occur. The GCSSs are fabricated under strict quality control and the observation and surveillance programs are planed to examine the structual integrity of the GCSSs during an operation. This paper describes the concept of design and quality control and summarizes structural tests, observation and surveillance programs. (author)

  9. Development of visual inspection technology for HTTR core support graphite structure

    International Nuclear Information System (INIS)

    Maruyama, So; Iyoku, Tatsuo; Inagaki, Yoshiyuki; Shiozawa, Shusaku; Masuma, Yoshitaka; Miki, Toshiya.

    1996-01-01

    The Japan Atomic Energy Research Institute is now constructing the High Temperature Engineering Test Reactor (HTTR), which employs a visual inspection of core support graphite structure, as an inservice inspection (ISI). In this inspection, TV camera will be used to investigate the alignment and integrity of the structure. Therefore, the ISI system, a combination of radiation tolerant TV camera and graphic processing system, is developed and examined its detectability and viewing angles using a simulated hot plenum of HTTR, which has artificial defects. As a result of a series of tests, it was confirmed that this system satisfied the requirements and was quite applicable for the ISI system of HTTR core support graphite structure. In addition, further improvement of the system, like a remote control procedure, will be investigated. (author)

  10. Evaluation of aseismic integrity in HTTR core-bottom structure. Pt. 1. Aseismic test for core-bottom structure

    International Nuclear Information System (INIS)

    Iyoku, T.; Futakawa, M.; Ishihara, M.

    1994-01-01

    The aseismic tests were carried out using (1)/(5)-scale and (1)/(3)-scale models of the core-bottom structure of the HTTR to quantitatively evaluate the response of acceleration, strain, impact load etc. The following conclusions are obtained. (i) The frequency response of the keyway strain is correlative with that of the impact acceleration on the hot plenum block. (ii) It was confirmed through (1)/(5)-scale and (1)/(3)-scale model tests that the applied similarity law is valid to evaluate the seismic response characteristics of the core-bottom structure. (ii) The stress of graphite components estimated from the scale model test using S 2 -earthquake excitation was sufficiently lower than the allowable stress used as the design criterion. ((orig.))

  11. Evaluation of local power distribution with fine-mesh core model for the HTTR

    International Nuclear Information System (INIS)

    Murata, Isao; Yamashita, Kiyonobu; Maruyama, So; Shindo, Ryuichi; Fujimoto, Nozomu; Sudo, Yukio; Nakata, Tetsuo.

    1991-01-01

    An evaluation method of the local power distribution was developed considering the radial and axial heterogeneity caused by fuel rods, BP rods and block end graphite for the High Temperature Engineering Test Reactor (HTTR) in Japan Atomic Energy Research Institute (JAERI). The evaluation method was verified through the analyses of critical assembly experiments. A good agreement was obtained between calculations and measurements and the difference was less than 3 % on the power distribution. This method was applied to the core design for the HTTR to evaluate the maximum fuel temperature. From these results, it was confirmed that this evaluation method has an enough accuracy and is able to predict the detailed power distribution of the HTTR. (author)

  12. Application of new design methodologies to very high-temperature metallic components of the HTTR

    International Nuclear Information System (INIS)

    Hada, Kazuhiko; Ohkubo, Minoru; Baba, Osamu

    1991-01-01

    The high-temperature piping and helium-to-helium intermediate heat exchanger of the High-Temperature Engineering Test Reactor (HTTR) are designed to be operating at very high temperatures of about 900deg C among the class 1 components of the HTTR. At such a high temperature, mechanical strength of heat-resistant metallic materials is very low and thermal expansions of structural members are large. Therefore, innovative design methodologies are needed to reduce both mechanical and thermal loads acting on these components. To the HTTR, the design methodologies which can separate the heat-resistant function from the pressure-retaining functions and allow them to expand freely are applied to reduce pressure and thermal loads. Since these design methodologies need to verify their applicability, the Japan Atomic Energy Research Institute (JAERI) has been performing many design and research works on their verifications. The details of the design methodologies and their verifications are given in this paper. (orig.)

  13. Study on system layout and component design in the HTTR hydrogen production system. Contract research

    International Nuclear Information System (INIS)

    Nishihara, Tetsuo; Shimizu, Akira; Uchida, Shoji

    2003-01-01

    The global warming becomes a significant issue in the world so that it needs to reduce the CO 2 emission. It is expected that hydrogen is in place of the fossil fuels such as coal and oil, and plays the important role to resolve the global warming. There are several hydrogen making processes such as water electrolysis and steam reforming of hydrocarbon. Steam reforming of hydrocarbon is a major hydrogen making process because of economy in industry. It utilizes the fossil fuels as process heat for chemical reaction and results in a large CO 2 emission. New steam reforming system without fossil fuel can contribute to resolve the global warming. High temperature gas-cooled reactor (HTGR) has a unique feature to be able to supply a hot helium gas whose temperature is approximately 950degC at the reactor outlet. This makes HTGR possible to utilize for not only power generation but also process heat utilization. JAERI constructed the high temperature engineering test reactor (HTTR) that is a sort of HTGR in Oarai establishment and starts operation. Nuclear heat utilization is one of the R and D items of the HTTR. The steam reforming system coupling to the HTTR for hydrogen production has been designed. This report represents the system layout and design specification of key components in HTTR steam reforming system. (author)

  14. Study on system layout and component design in the HTTR hydrogen production system. Contract research

    Energy Technology Data Exchange (ETDEWEB)

    Nishihara, Tetsuo; Shimizu, Akira [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment; Tanihira, Masanori [Mitsubishi Heavy Industries Ltd., Tokyo (Japan); Uchida, Shoji [Advanced Reactor Technology Co., Ltd., Tokyo (Japan)

    2003-01-01

    The global warming becomes a significant issue in the world so that it needs to reduce the CO{sub 2} emission. It is expected that hydrogen is in place of the fossil fuels such as coal and oil, and plays the important role to resolve the global warming. There are several hydrogen making processes such as water electrolysis and steam reforming of hydrocarbon. Steam reforming of hydrocarbon is a major hydrogen making process because of economy in industry. It utilizes the fossil fuels as process heat for chemical reaction and results in a large CO{sub 2} emission. New steam reforming system without fossil fuel can contribute to resolve the global warming. High temperature gas-cooled reactor (HTGR) has a unique feature to be able to supply a hot helium gas whose temperature is approximately 950degC at the reactor outlet. This makes HTGR possible to utilize for not only power generation but also process heat utilization. JAERI constructed the high temperature engineering test reactor (HTTR) that is a sort of HTGR in Oarai establishment and starts operation. Nuclear heat utilization is one of the R and D items of the HTTR. The steam reforming system coupling to the HTTR for hydrogen production has been designed. This report represents the system layout and design specification of key components in HTTR steam reforming system. (author)

  15. Core dynamics analysis for reactivity insertion and loss of coolant flow tests using the HTTR

    International Nuclear Information System (INIS)

    Takamatsu, Kuniyoshi; Nakagawa, Shigeaki; Takeda, Tetsuaki

    2007-01-01

    The High Temperature engineering Test Reactor (HTTR) is a graphite-moderated and a gas-cooled reactor with a thermal power of 30 MW and a reactor outlet coolant temperature of 950degC (SAITO, 1994). Safety demonstration tests using the HTTR are in progress to verify its inherent safety features and improve the safety technology and design methodology for High-Temperature Gas-cooled Reactors (HTGRs) (TACHIBANA 2002) (NAKAGAWA 2004). The reactivity insertion test is one of the safety demonstration tests for the HTTR. This test simulates the rapid increase in the reactor power by withdrawing the control rod without operating the reactor power control system. In addition, the loss of coolant flow tests has been conducted to simulate the rapid decrease in the reactor power by tripping one, two or all out of three gas circulators. The experimental results have revealed the inherent safety features of HTGRs, such as the negative reactivity feedback effect. The numerical analysis code, which was named ACCORD (TAKAMATSU 2006), was developed to analyze the reactor dynamics including the flow behavior in the HTTR core. We used a conventional method, namely, a one-dimensional flow channel model and reactor kinetics model with a single temperature coefficient, taking into account the temperature changes in the core. However, a slight difference between the analytical and experimental results was observed. Therefore, we have modified this code to use a model with four parallel channels and twenty temperature coefficients in the core. Furthermore, we added another analytical model of the core for calculating the heat conduction between the fuel channels and the core in the case of the loss of coolant flow tests. This paper describes the validation results for the newly developed code using the experimental results of the reactivity insertion test as well as the loss of coolant flow tests by tripping one or two out of three gas circulators. Finally, the pre-analytical result of

  16. An explication of the Graphite Structural Design Code of core components for the High Temperature Engineering Test Reactor

    International Nuclear Information System (INIS)

    Iyoku, Tatsuo; Ishihara, Masahiro; Toyota, Junji; Shiozawa, Shusaku

    1991-05-01

    The integrity evaluation of the core graphite components for the High Temperature Engineering Test Reactor (HTTR) will be carried out based upon the Graphite Structural Design Code for core components. In the application of this design code, it is necessary to make clear the basic concept to evaluate the integrity of core components of HTTR. Therefore, considering the detailed design of core graphite structures such as fuel graphite blocks, etc. of HTTR, this report explicates the design code in detail about the concepts of stress and fatigue limits, integrity evaluation method of oxidized graphite components and thermal irradiation stress analysis method etc. (author)

  17. Basic data for surveillance test on core support graphite structures for the high temperature engineering test reactor (HTTR)

    International Nuclear Information System (INIS)

    Sumita, Junya; Shibata, Taiju; Kikuchi, Takayuki; Iyoku, Tatsuo; Fujimoto, Nozomu; Ishihara, Masahiro; Sawa, Kazuhiro

    2007-02-01

    Both of the visual inspection by a TV camera and the measurement of material properties by surveillance test on core support graphite structures are planned for the High Temperature Engineering Test Reactor (HTTR) to confirm their structural integrity and characteristics. The surveillance test is aimed to investigate the change of material properties by aging effects such as fast neutron irradiation and oxidation. The obtained data will be used not only for evaluating the structural integrity of the core support graphite structures of the HTTR but also for design of advanced Very High Temperature Reactor (VHTR) discussed at generation IV international forum. This report describes the initial material properties of surveillance specimens before installation and installed position of surveillance specimens in the HTTR. (author)

  18. Analysis of the European results on the HTTR's core physics benchmarks

    International Nuclear Information System (INIS)

    Raepsaet, X.; Damian, F.; Ohlig, U.A.; Brockmann, H.J.; Haas, J.B.M. de; Wallerboss, E.M.

    2002-01-01

    Within the frame of the European contract HTR-N1 calculations are performed on the benchmark problems of the HTTR's start-up core physics experiments initially proposed by the IAEA in a Co-ordinated Research Programme. Three European partners, the FZJ in Germany, NRG and IRI in the Netherlands, and CEA in France, have joined this work package with the aim to validate their calculational methods. Pre-test and post-test calculational results, obtained by the partners, are compared with each other and with the experiment. Parts of the discrepancies between experiment and pre-test predictions are analysed and tackled by different treatments. In the case of the Monte Carlo code TRIPOLI4, used by CEA, the discrepancy between measurement and calculation at the first criticality is reduced to Δk/k∼0.85%, when considering the revised data of the HTTR benchmark. In the case of the diffusion codes, this discrepancy is reduced to: Δk/k∼0.8% (FZJ) and 2.7 or 1.8% (CEA). (author)

  19. Cause and countermeasure for heat up of HTTR core support plate at power rise tests

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto, Nozomu; Takada, Eiji; Nakagawa, Shigeaki; Tachibana, Yukio; Kawasaki, Kozo; Saikusa, Akio; Kojima, Takao; Iyoku, Tatuo [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment

    2002-01-01

    HTTR has carried out many kinds of tests as power rise tests in which reactor power rises step by step after attained the first criticality. In the tests, temperature of a core support plate reached higher than expected at each power level, the temperature was expected to be higher than the maximum working temperature at 100% power level. Therefore, tests under the high temperature test operation mode, in which the core flow rate was different, were carried out to predict the temperature at 100% power precisely, and investigate the cause of the temperature rise. From the investigation, it was clear that the cause was gap flow in the core support structure. Furthermore, it was estimated that the temperature of the core support plate rose locally due to change in gap width between the core support plate and a seal plate due to change in core pressure drop. The maximum working temperature of the core support plate was revised. The integrity of core support plate under the revised maximum working temperature condition was confirmed by stress analyses. (author)

  20. Development of in-service inspection system for core support graphite structures in the high temperature engineering test reactor (HTTR)

    Energy Technology Data Exchange (ETDEWEB)

    Sumita, Junya; Hanawa, Satoshi; Kikuchi, Takayuki; Ishihara, Masahiro [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment

    2003-03-01

    Visual inspection of core support graphite structures using TV camera as in-service inspection and measurement of material characteristics using surveillance test specimens are planned in the High Temperature Engineering Test Reactor (HTTR) to confirm structural integrity of the core support graphite structures. For the visual inspection, in-service inspection system developed from September 1996 to June 1998, and pre-service inspection using the system was carried out. As the result of the pre-service inspection, it was validated that high quality of visual inspection with TV camera can be carried out, and also structural integrity of the core support graphite structures at the initial stage of the HTTR operation was confirmed. (author)

  1. Current status of HTTR project at JAERI

    International Nuclear Information System (INIS)

    Saito, Shinzo; Sudo, Yukio; Tanaka, Toshiyuki; Baba, Osamu

    1992-01-01

    The HTTR is a high temperature gas cooled test reactor with thermal output of 30 MW, outlet coolant temperatures of 850degC at rated operation and 950degC at high temperature test operation and primary coolant pressure of 4 MPa. The HTTR consists of a reactor pressure vessel with a prismatic core in it, a primary cooling loop with an intermediate helium-helium heat exchanger and a pressurized water cooler in parallel, an auxiliary cooling system, a reactor vessel cooling system and related components. The HTTR is utilized for establishing and upgrading the technology bases for advanced HTGRs including irradiation tests for fuels and materials, safety demonstration tests for HTGRs and nuclear heat application and for carrying out various kinds of innovative basic researches on high temperature technologies. Since 1969, the JAERI has carried out research and development works on block type fuel, high temperature materials, high temperature in-core instrumentations, high temperature components, reactor physics, heat transfer and fluid dynamics, plate-out of fission products etc., in order to construct the HTTR which can supply high temperature coolant of 950degC to the outside of the pressure vessel for the nuclear heat application, for the first time in the world. In November 1990, the installation permit was issued by the Government through about 20 month safety review by the Science and Technology Agency and Nuclear Safety Commission. The construction of the HTTR facility was initiated on the site in the Oarai Research Establishment, JAERI in March 1991. The excavation of ground is now finished at the HTTR site. It will take about six years for the completion of the HTTR facility and the first criticality will be attained in 1996. (author)

  2. Determination of hot spot factors for calculation of the maximum fuel temperatures in the core thermal and hydraulic design of HTTR

    International Nuclear Information System (INIS)

    Maruyama, Soh; Yamashita, Kiyonobu; Fujimoto, Nozomu; Murata, Isao; Shindo, Ryuichi; Sudo, Yukio

    1988-12-01

    The Japan Atomic Energy Research Institute (JAERI) has been designing the High Temperature Engineering Test Reactor (HTTR), which is 30 MW in thermal power, 950deg C in reactor outlet coolant temperature and 40 kg/cm 2 G in primary coolant pressure. This report summarizes the hot spot factors and their estimated values used in the evaluation of the maximum fuel temperature which is one of the major items in the core thermal and hydraulic design of the HTTR. The hot spot factors consist of systematic factors and random factors. They were identified and their values adopted in the thermal and hydraulic design were determined considering the features of the HTTR. (author)

  3. Evaluation of heat exchange performance for the auxiliary component cooling water system cooling tower in HTTR

    International Nuclear Information System (INIS)

    Tochio, Daisuke; Kameyama, Yasuhiko; Shimizu, Atsushi; Inoi, Hiroyuki; Yamazaki, Kazunori; Shimizu, Yasunori; Aragaki, Etsushi; Ota, Yukimaru; Fujimoto, Nozomu

    2006-09-01

    The auxiliary component cooling water system (ACCWS) is one of the cooling system in High Temperature Engineering Test Reactor (HTTR). The ACCWS has main two features, many facilities cooling, and heat sink of the vessel cooling system which is one of the engineering safety features. Therefore, the ACCWS is required to satisfy the design criteria of heat removal performance. In this report, heat exchange performance data of the rise-to-power-up test and the in-service operation for the ACCWS cooling tower was evaluated. Moreover, the evaluated values were compared with the design values, and it is confirmed that ACCWS cooling tower has the required heat exchange performance in the design. (author)

  4. Evaluation of parameters effect on the maximum fuel temperature in the core thermal and hydraulic design of HTTR

    International Nuclear Information System (INIS)

    Fujimoto, Nozomu; Maruyama, Soh; Sudo, Yukio; Fujii, Sadao; Niguma, Yoshinori.

    1988-10-01

    This report presents the results of quantitative evaluation on the effects of the dominant parameters on the maximum fuel temperature in the core thermal hydraulic design of the High Temperature Engineering Test Reactor(HTTR) of 30 MW in thermal power, 950 deg C in reactor outlet coolant temperature and 40 kg/cm 2 G in coolant pressure. The dominant parameters investigated are 1) Gap conductance. 2) Effect of eccertricity of fuel compacts in graphite sleeve. 3) Effect of spacer ribs on heat transfer coefficients. 4) Contact probability of fuel compact and graphite sleeve. 5) Validity of uniform radial power density in the fuel compacts. 6) Effect of impurity gas on gap conductance. 7) Effect of FP gas on gap conductance. The effects of these items on the maximum fuel temperature were quantitalively identified as hot spot factors. A probability of the appearance of the maximum fuel temperature was also evaluated in this report. (author)

  5. Replaceable LMFBR core components

    International Nuclear Information System (INIS)

    Evans, E.A.; Cunningham, G.W.

    1976-01-01

    Much progress has been made in understanding material and component performance in the high temperature, fast neutron environment of the LMFBR. Current data have provided strong assurance that the initial core component lifetime objectives of FFTF and CRBR can be met. At the same time, this knowledge translates directly into the need for improved core designs that utilize improved materials and advanced fuels required to meet objectives of low doubling times and extended core component lifetimes. An industrial base for the manufacture of quality core components has been developed in the US, and all procurements for the first two core equivalents for FFTF will be completed this year. However, the problem of fabricating recycled plutonium while dramatically reducing fabrication costs, minimizing personnel exposure, and protecting public health and safety must be addressed

  6. Test programmes of HTTR for future generation HTGRs

    International Nuclear Information System (INIS)

    Kunitomi, K.; Tachibana, Y.; Takeda, T.; Saikusa, A.; Shiozawa, S.

    1997-01-01

    Test programs of the High Temperature Engineering Test Reactor (HTTR) for future generation High Temperature Gas-Cooled Reactors (HTGRs) have been established considering design and development status of HTGRs in Japan and the world. Test programs are divided into six categories, thermal hydraulics, fuel, safety, high temperature components, core physics and control-instrumentations. All programs are related to the technology of future generation HTGRs and will be submitted to a new Coordinated Research Program (CRP) so that all participants from the world in test programs of the HTTR can use measured data for their future generation.HTGRs. This paper describes test programs of the HTTR for the development of future generation HTGRs after explanation of a future generation HTGR in Japan. (author)

  7. Results of assembly test of HTTR reactor internals

    International Nuclear Information System (INIS)

    Maruyama, S.; Saikusa, A.; Shiozawa, S.; Tsuji, N.; Miki, T.

    1996-01-01

    The assembly test of the HTTR actual reactor internals had been carried out at the works, prior to their installation in the actual reactor pressure vessel(RPV) at the construction site. The assembly test consists of several items such as examining fabricating precision of each component and alignment of piled-up structures, measuring circumferential coolant velocity profile in the passage between the simulated RPV and the reactor internals as well as under the support plates, measuring by-pass flow rate through gaps between the reactor internals, and measuring the binding force of the core restraint mechanism. Results of the test showed good performance of the HTTR reactor internals. Installation of the reactor internals in the actual RPV was started at the construction site of HTTR in April, 1995. In the installation process, main items of the assembly test at the works were repeated to investigate the reproducibility of installation. (author). 5 refs, 11 figs

  8. Spontaneous stabilization of HTGRs without reactor scram and core cooling—Safety demonstration tests using the HTTR: Loss of reactivity control and core cooling

    Energy Technology Data Exchange (ETDEWEB)

    Takamatsu, Kuniyoshi, E-mail: takamatsu.kuniyoshi@jaea.go.jp; Yan, Xing L.; Nakagawa, Shigeaki; Sakaba, Nariaki; Kunitomi, Kazuhiko

    2014-05-01

    It is well known that a High-Temperature Gas-cooled Reactor (HTGR) has superior safety characteristics; for example, an HTGR has a self-control system that uses only physical phenomena against various accidents. Moreover, the large heat capacity and low power density of the core result in very slow temperature transients. Therefore, an HTGR serves inherently safety features against loss of core cooling accidents such as the Tokyo Electric Power Co., Inc. (TEPCO)’s Fukushima Daiichi Nuclear Power Station (NPS) disaster. Herein we would like to demonstrate the inherent safety features using the High-Temperature Engineering Test Reactor (HTTR). The HTTR is the first HTGR in Japan with a thermal power of 30 MW and a maximum reactor outlet coolant temperature of 950 °C; it was built at the Oarai Research and Development Center of Japan Atomic Energy Agency (JAEA). In this study, an all-gas-circulator trip test was analyzed as a loss of forced cooling (LOFC) test with an initial reactor power of 9 MW to demonstrate LOFC accidents. The analytical results indicate that reactor power decreases from 9 MW to 0 MW owing to the negative reactivity feedback effect of the core, even if the reactor shutdown system is not activated. The total reactivity decreases for 2–3 h and then gradually increases in proportion to xenon reactivity; therefore, the HTTR achieves recritical after an elapsed time of 6–7 h, which is different from the elapsed time at reactor power peak occurrence. After the reactor power peak occurs, the total reactivity oscillates several times because of the negative reactivity feedback effect and gradually decreases to zero. Moreover, the new conclusions are as follows: the greater the amount of residual heat removed from the reactor core, the larger the stable reactor power after recriticality owing to the heat balance of the reactor system. The minimum reactor power and the reactor power peak occurrence are affected by the neutron source. The greater the

  9. Verification of in-core thermal and hydraulic analysis code FLOWNET/TRUMP for the high temperature engineering test reactor (HTTR) at JAERI

    International Nuclear Information System (INIS)

    Maruyama, Soh; Sudo, Yukio; Saito, Shinzo; Kiso, Yoshihiro; Hayakawa, Hitoshi

    1989-01-01

    The FLOWNET/TRUMP code consists of a flow network analysis code 'FLOWNET' for calculations of coolant flow distribution and coolant temperature distribution in the core with a thermal conduction analysis code 'TRUMP' for calculation of temperature distribution in solid structures. The verification of FLOWNET/TRUMP was made by the comparison of the analytical results with the results of steady state experiments by the HENDEL multichannel test rig, T1-M, which consisted of twelve simulated fuel rods heated electrically and eleven hexagonal graphite fuel blocks. The T1-M simulated the one fuel column in the core. The analytical results agreed well with the results of the experiment in which the HTTR operating conditions were simulated. (orig.)

  10. Design and safety consideration in the High-Temperature Engineering Test Reactor (HTTR)

    International Nuclear Information System (INIS)

    Saito, Shinzo; Tanaka, Toshiuki; Sudo, Yukio; Baba, Osamu; Shiozawa, Shusaku; Okubo, Minoru

    1990-01-01

    The budget for construction of the High-Temperature Engineering Test Reactor (HTTR) was recently committed by the Government in Japan. The HTTR is a test reactor with thermal output of 30 MW and reactor outlet coolant temperature of 950 deg. C at high temperature test operation. The HTTR plant uses a pin-in-block design core and will be used as an experience leading to high temperature applications. Several major important safety considerations are adopted in the design of the HTTR. These are as follows: 1) A coated particle fuel must not be failed during a normal reactor operation and an anticipated operational occurrence; 2) Two independent and diverse reactor shut-down systems are provided in order to shut down the reactor safely and reliably in any condition; 3) Back-up reactor cooling systems which are safety ones are provided in order to remove residual heat of reactor in any condition; 4) Multiple barriers and countermeasures are provided to contain fission products such as a containment, pressure gradient between the primary and secondary cooling circuit and so on, though coated particle fuels contain fission products with high reliability; 5) The functions of materials used in the primary cooling circuit are separated to be pressure-resisting and heat-resisting in order to resolve material problems and maintain high reliability. The detailed design of the HTTR was completed with extensive accumulation of material data and component tests. (author)

  11. Present status of high-temperature engineering test reactor (HTTR) program

    International Nuclear Information System (INIS)

    Tanaka, Toshiyuki; Baba, Osamu; Shiozawa, Shusaku; Okubo, Minoru; Tobioka, Toshiaki

    1994-01-01

    The 30MWt HTTR is a high-temperature gas-cooled reactor (HTGR), with a maximum helium coolant temperature of 950degC at the reactor outlet. The construction of the HTTR started in March 1991, with first criticality to be followed in 1998 after commissioning testing. At present the HTTR reactor building (underground part) and its containment vessel have been almost completed and its main components, such as a reactor pressure vessel (RPV), an intermediate heat exchanger, hot gas pipings and graphite core structures, are now manufacturing at their factories at the target of their installation starting in 1994. The project is intended to establish and upgrade the technology basis necessary for HTGR developments. Japan Atomic Energy Research Institute (JAERI) also plans to conduct material and fuel irradiation tests as an innovative basic research after attaining rated power and coolant temperature. Innovative basic researches are now in great request. The paper describes major features of HTTR, present status of its construction and research and test using HTTR. (author)

  12. Present status of High-Temperature engineering Test Reactor (HTTR) program

    International Nuclear Information System (INIS)

    Tanaka, Toshiyuki; Baba, Osamu; Shiozawa, Shusaku; Okubo, Minoru; Tobioka, Toshiaki

    1993-01-01

    The 30MWt HTTR is a high-temperature gas-cooled reactor (HTGR), with a maximum helium coolant temperature of 950 deg C at the reactor outlet. The construction of the HTTR started in March 1991, with first criticality to be followed in 1998 after commissioning testing. At present the HTTR reactor building (underground part) and its containment vessel have been almost completed and its main components, such as a reactor pressure vessel (RPV), an intermediate heat exchanger, hot gas pipings and graphite core structures, are now manufacturing at their factories at the target of their installation starting in 1994. The project is intended to establish and upgrade the technology basis necessary for HTGR developments. Japan Atomic Energy Research Institute (JAERI) also plans to conduct material and fuel irradiation tests as an innovative basic research after attaining rated power and coolant temperature. Innovative basic researches are now in great request. The paper describes major features of HTTR, present status of its construction and research and test plan using HTTR. (author)

  13. Investigation on structural integrity of graphite component during high temperature 950degC continuous operation of HTTR

    International Nuclear Information System (INIS)

    Sumita, Junya; Shimazaki, Yosuke; Shibata, Taiju

    2014-01-01

    Graphite material is used for internal structures in high temperature gas-cooled reactor. The core components and graphite core support structures are so designed as to maintain the structural integrity to keep core cooling capability. To confirm that the core components and graphite core support structures satisfy the design requirements, the temperatures of the reactor internals are measured during the reactor operation. Surveillance test of graphite specimens and in-service inspection using TV camera are planned in conjunction with the refueling. This paper describes the evaluation results of the integrity of the core components and graphite core support structures during the high temperature 950degC continuous operation, a high temperature continuous operation with reactor outlet temperature of 950degC for 50 days, in high temperature engineering test reactor. The design requirements of the core components and graphite core support structures were satisfied during the high temperature 950degC continuous operation. The dimensional change of graphite which directly influences the temperature of coolant was estimated considering the temperature profiles of fuel block. The magnitude of irradiation-induced dimensional change considering temperature profiles was about 1.2 times larger than that under constant irradiation temperature of 1000degC. In addition, the programs of surveillance test and ISI using TV camera were introduced. (author)

  14. Evaluation of aseismic integrity in the HTTR core-bottom structure. V. On the static and dynamic behavior of graphite HTTR key-keyway structures

    International Nuclear Information System (INIS)

    Futakawa, M.; Iyoku, T.

    1996-01-01

    For pt.IV see ibid., vol.154, p.83-95, 1995. The graphite components in high temperature gas-cooled reactors are connected to each other through a key-keyway structure that has gaps between the key and the keyway to accommodate thermal expansion. Because a dynamic load concentrates on the key-keyway structure during earthquakes, it is considered to be a crucial element for assessing the integrity of the graphite components. A combination of experiments and analyses was employed to investigate the dynamic behavior of the key-keyway structure, i.e. the equivalent stiffness associated with vibrational characteristics of the graphite components and the stress distribution under dynamic loading. The experiments were performed using a graphite scale model and a dynamic photo-elastic method. The analysis was carried out using the finite element method (FEM) code ABAQUS, taking account of the contact behavior between the key and the keyway. The following conclusions were derived. (1) The equivalent stiffness of the key-keyway structure shows nonlinearity, owing to the contact deformation. (2) The equivalent stiffness evaluated by the FEM analysis, taking account of the non-linear contact deformation, is applicable for predicting the vibrational characteristics of the key-keyway structure. (3) The stress concentration under dynamic loading is lower than or nearly equal to that under static loading. The maximum stress concentration of the seismic load can be sufficiently evaluated under static loading conditions. (orig.)

  15. Operation, test, research and development of the high temperature engineering test reactor (HTTR). FY1999-2001

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-05-01

    The HTTR (High Temperature Engineering Test Reactor) with the thermal power of 30 MW and the reactor outlet coolant temperature of 850/950 degC is the first high temperature gas-cooled reactor (HTGR) in Japan, which uses coated fuel particle, graphite for core components, and helium gas for primary coolant. The HTTR, which locates at the south-west area of 50,000 m{sup 2} in the Oarai Research Establishment, had been constructed since 1991 before accomplishing the first criticality on November 10, 1998. Rise to power tests of the HTTR started in September, 1999 and the rated thermal power of 30 MW and the reactor outlet coolant temperature of 850 degC was attained in December 2001. JAERI received the certificate of pre-operation test, that is, the commissioning license for the HTTR in March 2002. This report summarizes operation, tests, maintenance, radiation control, and construction of components and facilities for the HTTR as well as R and Ds on HTGRs from FY1999 to 2001. (author)

  16. Present status and prospects of high-temperature engineering test reactor (HTTR) program

    International Nuclear Information System (INIS)

    Tanaka, Toshiyuki; Baba, Osamu; Shiozawa, Shusaku; Okubo, Minoru; Tobioka, Toshiaki

    1995-01-01

    It is essentially important in Japan, which has limited amount of natural resources, to make efforts to obtain more reliable and stable energy supply by extended use of nuclear energy including high temperature heat from nuclear reactors. Hence, efforts are to be continuously devoted to establish and upgrade High Temperature Gas-cooled Reactor (HTGR) technologies and to make much of research resources accumulated so far. It is also expected that making basic researches at high temperature using HTGR will contribute to innovative basic research in future. Then, the construction of High Temperature engineering Test Reactor (HTTR), which is an HTGR with a maximum helium coolant temperature of 950degC at the reactor outlet, was decided by the Japanese Atomic Energy Commission (JAEC) in 1987 and is now under way by the Japan Atomic Energy Research Institute (JAERI). The construction of the HTTR started in March 1991, with first criticality in 1998 to be followed after commissioning testing. At present the HTTR reactor building and its containment vessel have been nearly completed and its main components, such as a reactor pressure vessel, an intermediate heat exchanger, hot gas pipings and core support structures, have been manufactured at their factories and delivered to the Oarai Research Establishment of the JAERI for their installation in the middle of 1994. Fuel fabrication will be started as well. The project is intended to establish and upgrade the technology basis necessary for HTGR developments. The IAEA Coordinated Research Programme on Design and Evaluation of Heat Utilization Systems for the HTTR, such as steam reforming of methane and thermochemical water splitting for hydrogen production, was launched successfully in January 1994. Some heat utilization system is planned to be connected to the HTTR and demonstrated at the former stage of the second core. At present, steam-reforming of methane is the first candidate. The JAERI also plans to conduct material

  17. Draft of standard for graphite core components in high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Shibata, Taiju; Sawa, Kazuhiro; Eto, Motokuni; Kunimoto, Eiji; Shiozawa, Shusaku; Oku, Tatsuo; Maruyama, Tadashi

    2010-01-01

    For the design of the graphite components in the High Temperature Engineering Test Reactor (HTTR), the graphite structural design code for the HTTR etc. were applied. However, general standard systems for the High Temperature Gas-cooled Reactor (HTGR) have not been established yet. The authors had studied on the technical issues which is necessary for the establishment of a general standard system for the graphite components in the HTGR. The results of the study were documented and discussed at a 'Special committee on research on preparation for codes for graphite components in HTGR' at Atomic Energy Society of Japan (AESJ). As a result, 'Draft of Standard for Graphite Core Components in High Temperature Gas-cooled Reactor.' was established. In the draft standard, the graphite components are classified three categories (A, B and C) in the standpoints of safety functions and possibility of replacement. For the components in the each class, design standard, material and product standards, and in-service inspection and maintenance standard are determined. As an appendix of the design standard, the graphical expressions of material property data of 1G-110 graphite as a function of fast neutron fluence are expressed. The graphical expressions were determined through the interpolation and extrapolation of the irradiated data. (author)

  18. Validation of JENDL-3.3 for the HTTR criticality

    International Nuclear Information System (INIS)

    Goto, Minoru; Nojiri, Naoki; Shimakawa, Satoshi

    2004-01-01

    Validation of JENDL-3.3 has been performed for the HTTR criticality using the MVP code with a ''lattice-cell'' of infinite models and a ''whole-core'' of finite models. It was found that the keff values calculated with JENDL-3.3 was decreased about 0.2-0.4%Δk from one with JENDL-3.2. The criticality prediction was closed to the experimental data in the critical approach situation of the HTTR. (author)

  19. Water chemistry control in HTTR

    International Nuclear Information System (INIS)

    Sekita, Kenji; Furusawa, Takayuki; Emori, Koichi; Kuroha, Misao; Hayakawa, Masato; Ohuchi, Hiroshi; Ishii, Taro

    2008-08-01

    A carbon steel is used for the main material for the components and pipings of the pressurized water cooling system etc. that are the reactor cooling system of the HTTR. Water quality is managed by using the hydrazine in the coolant of the water cooling system to prevent corrosion of the components and deoxidize the coolant. Also, regular analysis is carried out for the confirmation of the water quality. The following results were obtained through the water quality analysis. (1) In the pressurized water cooling system, the coolant temperature rises higher due to the heat removal of the primary coolant. So, the ammonia was formed in the thermal decomposition of the hydrazine. The electric conductivity increased, while the concentration of the hydrazine decreased, there was no problem as the plan it. (2) Thermal decomposition of the hydrazine was not occurred in the auxiliary water cooling system and vessel cooling system because of the coolant temperature was low. (3) An indistinct procedure is clarified and procedure of water quality analysis was established in the HTTR. (4) It is assumed that the corrosion of the components in these water cooling system hardly occurred from measurement results of dissolved oxide and chloride ion. Thus, the water quality was managed enough. (author)

  20. Status of HTTR and Technology Developments for Near Term Deployment of Nuclear Process Heat Applications in Japan

    International Nuclear Information System (INIS)

    Yan, Xing L.

    2017-01-01

    JAEA's High Temperature Engineering Test Reactor: Main features: Thermal power 30 MWt; Fuel SiC TRISO UO2 coated particle fuel, pin in block; Design type Prismatic core; Coolant Helium; Temperature 950 °C (Max.); Pressure 4 MPa. Proven quality of HTTR coated particle fuel - 50-day 950°C operation test in HTTR (2009): • Proved fuel production quality in commercial-scale facility - Fabricated 2 core loads of fuel for HTTR (2 t of U used); - Failure fraction: 2 orders of magnitude < licensed limits • Demonstrated fuel integrity in HTTR operation and extended burnup test: an order of magnitude < licensed limit

  1. Development program on HTTR heat application systems at JAERI

    International Nuclear Information System (INIS)

    Ogawa, M.; Inagaki, Y.; Nishihara, T.; Shimizu, S.; Shiozawa, S.; Miyamoto, Y.

    2000-01-01

    The High Temperature Engineering Test Reactor (HTTR), which is a Japanese High Temperature Gas-cooled Reactor (HTGR) with 30 MW thermal output at 950 deg. C of the coolant outlet temperature, was constructed at Oarai Research Establishment of Japan Atomic Energy Research Institute (JAERI). The HTTR has attained the first criticality on November 1998. In JAERI, a hydrogen production system was selected as a heat utilization system of the HTTR. The development program on the HTTR hydrogen production system consists of two parts: one is to establish technologies connecting the hydrogen production system with the HTTR, the other is to establish technologies producing hydrogen from water by using nuclear heat. Finally, hydrogen can be produced from water by using nuclear heat supplied by the HTTR. In the hydrogen production system connected to the HTTR at first, JAERI selected a steam reforming process because its technology had matured. The HTTR hydrogen production system adopting the steam reforming process is being designed to produce hydrogen of about 3800 Nm 3 /hr by using nuclear heat (10MW, 905 deg. C) supplied from the HTTR. The safety principle and criteria are also being investigated for the HTTR hydrogen production system. A facility for an out-of-pile test prior to the demonstration test with the HTTR hydrogen production system is under manufacturing to carry out tests of safety, controllability and performance. The out-of-pile test facility simulates key components downstream an intermediate heat exchanger of the HTTR hydrogen production system on a scale of 1 to 30. The tests will be started in 2001 and continued for 4 years or longer. In parallel to the tests, a hydrogen/tritium permeation test and a corrosion test of a catalyst tube of a steam reformer are being carried out to obtain data necessary for the design of the HTTR hydrogen production system. A kind of thermochemical method called IS process is under studying to produce hydrogen from water by

  2. Stress analysis of two-dimensional C/C composite components for HTGR's core restraint techanism

    International Nuclear Information System (INIS)

    Satoshi Hanawa; Taiju Shibata; Jyunya Sumita; Masahiro Ishihara; Tatsuo Iyoku; Kazuhiro Sawa

    2005-01-01

    Carbon fiber reinforced carbon matrix composite (C/C composite) is one of the most promising materials for HTGRs core components due to their high strength as well as high temperature resistibility. One of the most attractive applications of C/C composite is the core restraint mechanism. The core restraint mechanism is located around the reflector block and it works to tighten reactor core blocks so as to restrict un-supposition flow pass of coolant gas (bypass flow) in the core. The restriction of bypass flow reads to the high efficiency of coolant flow rate inside of the reactor core. For the future HTGRs and VHTR (Very High Temperature Reactor), it is important to develop the core restraint mechanism with C/C composite substitute for metallic materials as used for HTTR. For the application of C/C composite to core restraint mechanism, it is important to investigate the applicability of C/C composite in viewpoint of structural integrity. In the present study, supposing the application of 2D-C/C composite to core restraint mechanism, thermal stress behavior was analyzed by considering the thickness of the C/C composite and the gap between reflector block and core restraint. It was shown from the thermal stress analysis that the circumferential stress decreases with increasing the gap and that the restraint force increases with increasing the thickness. By optimizing the thickness of C/C composite and gap between reflector block and core restraint, the C/C composite is applicable to the core restraint mechanism. (authors)

  3. Study on control characteristics for HTTR hydrogen production system with mock-up test facility

    International Nuclear Information System (INIS)

    Inaba, Yoshitomo; Ohashi, Hirofumi; Nishihara, Tetsuo; Sato, Hiroyuki; Inagaki, Yoshiyuki; Takeda, Tetsuaki; Hayashi, Koji; Takada, Shoji

    2005-01-01

    The Japan Atomic Energy Research Institute has a demonstration test plan of a hydrogen production system by steam reforming of methane coupling with the High-Temperature Engineering Test Reactor (HTTR). Prior to the coupling of a hydrogen production plant with the HTTR, simulation tests with a mock-up test facility of the HTTR hydrogen production system (HTTR-H2) is underway. The test facility is a 1/30-scale of the HTTR-H2 and simulates key components downstream from an intermediate heat exchanger of the HTTR. The main objective of the simulation tests is the establishment and demonstration of control technology, focusing on the mitigation of a thermal disturbance to the reactor by a steam generator (SG) and on the controllability of the pressure difference between the helium and process gases at the reaction tube in a steam reformer (SR). It was confirmed that the fluctuation of the outlet helium gas temperature at the SG and the pressure difference in the SR can be controlled within the allowable range for the HTTR-H2 in the case of the system controllability test for the fluctuation of chemical reaction. In addition, a dynamic simulation code for the HTTR-H2 was verified with the obtained test data

  4. Characteristics of HTTR's startup physics tests

    International Nuclear Information System (INIS)

    Nojiri, N.; Nakano, M.; Takeuchi, M.; Pohl, P.; Yamashita, K.

    1997-01-01

    The High Temperature Engineering Test Reactor (HTTR) which is under construction by Japan Atomic Energy Research Institute (JAERI) is a graphite-moderated and helium gas-cooled reactor with an outlet temperature of 950 deg. C and a thermal output of 30MW. The first criticality is expected at the end of October 1997. The start-up physics tests (SPTs) are planned in the period from mid 1997 to the end of 1998. Characteristic items of the SPTs are: 1) Criticality approach; 2) Tests on a preliminary annual core; 3) Measurement of scram reactivity; 4) Excess reactivity test; 5) Measurements along with a 2-step-scram reactor shutdown procedure. (author)

  5. Surveillance test of the JMTR core components

    International Nuclear Information System (INIS)

    Takeda, Takashi; Amezawa, Hiroo; Tobita, Kenji

    1986-02-01

    Surveillance test for the core components of Japan Materials Testing Reactor (JMTR) was started in 1966, and completed in 1985 without one capsule. Most of capsules in the program, except one beryllium specimens, were removed from the core, and carred out the post-irradiation tests at the JMTR Hot Laboratory. The data is applied to review of JMTR core components management plan. JMTR surveillance test was carried out with several kind of materials of JMTR core components, Berylium as the reflector, Hafnium as the neutron absorber of control rod, 17-4PH stainless steel as a roller spring of the control rod, and 304 stainless steel as the grid plate. Results are described in this report. (author)

  6. Modular core component support for nuclear reactor

    International Nuclear Information System (INIS)

    Finch, L.M.; Anthony, A.J.

    1975-01-01

    The core of a nuclear reactor is made up of a plurality of support modules for containing components such as fuel elements, reflectors and control rods. Each module includes a component support portion located above a grid plate in a low-pressure coolant zone and a coolant inlet portion disposed within a module receptacle which depends from the grid plate into a zone of high-pressure coolant. Coolant enters the module through aligned openings within the receptacle and module inlet portion and flows upward into contact with the core components. The modules are hydraulically balanced within the receptacles to prevent expulsion by the upward coolant forces. (U.S.)

  7. Research and development of HTTR hydrogen production systems

    International Nuclear Information System (INIS)

    Shiozawa, Shusaku; Ogawa, Masuro; Inagaki, Yoshiyuki; Onuki, Kaoru; Takeda, Tetsuaki; Nishihara, Tetsuo; Hayashi, Koji; Kubo, Shinji; Inaba, Yoshitomo; Ohashi, Hirofumi

    2002-01-01

    The Japan Atomic Energy Research Institute (JAERI) has constructed the High Temperature Engineering Test Reactor (HTTR) with a thermal output of 30MW and a reactor out let coolant temper at ure of 950 .deg. C. There search and development (R and D) program on nuclear production of hydrogen was started on January in 1997 as a study consigned by Ministry of Education, Culture, Sports, Science and Technology. A hydrogen production system connected to the HTTR is being designed to be able to produce hydrogen of about 4000m 3 /h by steam reforming of natural gas, using a nuclear heat of 10MW supplied by the HTTR hydrogen production system. In order to confirm controllability, safety and performance of key components in the HTTR hydrogen production system, the facility for the out-of-pile test was constructed on the scale of approximately 1/30 of the HTTR hydrogen production system. In parallel to the out-of-pile test, the following tests as essential problem, a corrosion test of a reforming tube, a permeation test of hydrogen isotopes through heat exchanger and reforming tubes, and an integrity test of a high-temperature isolation valve are carried out to obtain detailed data for safety review and development of analytical codes. Other basis studies on the hydrogen production technology of thermochemical water splitting called an iodine sulfur (IS) process, has been carried out for more effective and various uses of nuclear heat. This paper describes the present status and a future plan on the R and D of the HTTR hydrogen production systems in JAERI

  8. Development of irradiation rig in HTTR and dosimetry method. I-I type irradiation equipment

    Energy Technology Data Exchange (ETDEWEB)

    Shibata, Taiju; Kikuchi, Takayuki [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment; Miyamoto, Satoshi; Ogura, Kazutomo [Japan Atomic Power Co., Tokyo (Japan)

    2002-12-01

    The High Temperature Engineering Test Reactor (HTTR) is a graphite-moderated, helium gas-cooled test reactor with a maximum power of 30 MW. The HTTR aims not only to establish and upgrade the technological basis for the HTGRs but also to perform the innovative basic research on high temperature engineering with high temperature irradiation fields. It is planned that the HTTR is used to perform various engineering tests such as the safety demonstration test, high temperature test operation and irradiation test with large irradiation fields at high temperatures. This paper describes the design of the I-I type irradiation equipment developed as the first irradiation rig for the HTTR and does the planned dosimetry method at the first irradiation test. It was developed to perform in-pile creep test on a stainless steel with large standard size specimens in the HTTR. It can give great loads on the specimens stably and can control the irradiation temperature precisely. The in-core creep properties on the specimens are measured by newly developed differential transformers and the irradiation condition in the core is monitored by thermocouples and self-powered neutron detectors (SPNDs), continuously. The irradiated neutron fluence is assessed by neutron fluence monitors of small metallic wires after the irradiation. The obtained data at the first irradiation test can strongly be contributed to upgrade the technological basis for the HTGRs, since it is the first direct measurement of the in-core irradiation environments of the HTTR. (author)

  9. Reconstitution of fuel assemblies and core components

    Energy Technology Data Exchange (ETDEWEB)

    Hummel, Wolfgang; Langenberger, Jan [AREVA NP GmbH (Germany)

    2012-11-01

    Due to AREVA's experience and big portfolio of techniques, reconstitution of fuel assemblies and core components at light water reactors is possible within a reasonable timeframe and with interesting cost benefit. Customer feedback indicates the sustainability of such reconstitutions. As a result, a long-term maintenance of value can be assured and early waste disposal can be avoided. (orig.)

  10. Test plan using the HTTR for commercialization of GTHTR300C

    International Nuclear Information System (INIS)

    Tachibana, Yukio; Sakaba, Nariaki; Ohashi, Hirofumi; Sato, Hiroyuki; Ueta, Shohei; Aihara, Jun; Goto, Minoru; Sumita, Junya; Shibata, Taiju; Takamatsu, Kuniyoshi; Inagaki, Yoshiyuki; Kunitomi, Kazuhiko; Nishihara, Tetsuo; Hamamoto, Shimpei; Iyoku, Tatsuo

    2010-02-01

    The High Temperature Engineering Test Reactor (HTTR) is the first High Temperature Gas-cooled Reactor (HTGR) built at the Oarai Research and Development Center of JAEA with thermal power of 30 MW and the maximum reactor outlet coolant temperature of 950degC. The HTTR achieved the first criticality in 1998, the reactor outlet coolant temperature of 950degC in 2004, and 30 days continuous operation in 2007. Since 2002, safety demonstration tests including reactivity insertion tests and coolant flow reduction tests have been conducted to show inherent safety features of the HTGRs by using the HTTR. This report describes full scope of the future feasible test plan mainly using the HTTR. The test items cover fuel performance and radionuclide transport, core physics, reactor thermal hydraulics and plant dynamics, and reactor operations, maintenance, control, etc. The test results will be utilized for realization of Japan's commercial Very High Temperature Reactor (VHTR) system, GTHTR300C. (author)

  11. Preliminary safety analysis of the HTTR-IS nuclear hydrogen production system

    International Nuclear Information System (INIS)

    Sato, Hiroyuki; Ohashi, Hirofumi; Tazawa, Yujiro; Tachibana, Yukio; Sakaba, Nariaki

    2010-06-01

    Japan Atomic Energy Agency is planning to demonstrate hydrogen production by thermochemical water-splitting IS process utilizing heat from the high-temperature gas-cooled reactor HTTR (HTTR-IS system). The previous study identified that the HTTR modification due to the coupling of hydrogen production plant requires an additional safety review since the scenario and quantitative values of the evaluation items would be altered from the original HTTR safety review. Hence, preliminary safety analyses are conducted by using the system analysis code. Calculation results showed that evaluation items such as a coolant pressure, temperatures of heat transfer tubes at the pressure boundary, etc., did not exceed allowable values. Also, the peak fuel temperature did not exceed allowable value and therefore the reactor core was not damaged and cooled sufficiently. This report compiles calculation conditions, event scenarios and the calculation results of the preliminary safety analysis. (author)

  12. Operating experiences since rise-to-power test in high temperature engineering test reactor (HTTR)

    International Nuclear Information System (INIS)

    Tochio, Daisuke; Watanabe, Shuji; Motegi, Toshihiro; Kawano, Shuichi; Kameyama, Yasuhiko; Sekita, Kenji; Kawasaki, Kozo

    2007-03-01

    The rise-to-power test of the High Temperature Engineering Test Reactor (HTTR) was actually started in April 2000. The rated thermal power of 30MW and the rated reactor outlet coolant temperature of 850degC were achieved in the middle of Dec. 2001. After that, the reactor thermal power of 30MW and the reactor outlet coolant temperature of 950degC were achieved in the final rise-to-power test in April 2004. After receiving the operation licensing at 850degC, the safety demonstration tests have conducted to demonstrate inherent safety features of the HTGRs as well as to obtain the core and plant transient data for validation of safety analysis codes and for establishment of safety design and evaluation technologies. This paper summarizes the HTTR operating experiences for six years from start of the rise-to-power test that are categorized into (1) Operating experiences related to advanced gas-cooled reactor design, (2) Operating experiences for improvement of the performance, (3) Operating experiences due to fail of system and components. (author)

  13. Demonstration tests for HTGR fuel elements and core components with test sections in HENDEL

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, Yoshiaki; Hino, Ryutaro; Inagaki, Yoshiyuki [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment] [and others

    1995-03-01

    In the fuel stack test section (T{sub 1}) of the Helium Engineering Demonstration Loop (HENDEL), thermal and hydraulic performances of helium gas flows through a fuel rod channel and a fuel stack have been investigated for the High-Temperature Engineering Test Reactor (HTTR) core thermal design. The test data showed that the turbulent characteristics appearing in the Reynolds number above 2000: no typical behavior in the transition zone, and friction factors and heat transfer coefficients in the fuel channel were found to be higher than those in a smooth annular channel. Heat transfer behavior of gas flow in a fuel element channel with blockage and cross-flow through a gap between upper and lower fuel elements stacked was revealed using the mock-up models. On the other hand, demonstration tests have been performed to verify thermal and hydraulic characteristics and structural integrity related to the core bottom structure using a full-scale test facility named as the in-core structure test section (T{sub 2}). The sealing performance test revealed that the leakage of low-temperature helium gas through gaps between the permanent reflector blocks to the core was very low level compared with the HTTR design value and no change of the leakage flow rate were observed after a long term operation. The heat transfer tests including thermal transient at shutdown of gas circulators verified good insulating performance of core insulation structures in the core bottom structure and the hot gas duct; the temperature of the metal portion of these structure was below the design value. Examination of the thermal mixing characteristics indicated that the mixing of the hot helium gas started at a hot plenum and finished completely at downstream of the outlet hot gas duct. The present results obtained from these demonstration tests have been practically applied to the detailed design works and licensing procedures of the HTTR. (J.P.N.) 92 refs.

  14. Out-of-pile demonstration test of hydrogen production system coupling with HTTR

    Energy Technology Data Exchange (ETDEWEB)

    Inagaki, Yoshiyuki; Nishihara, Tetsuo; Takeda, Tetsuaki; Hada, Kazuhiko; Hayashi, Koji [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment

    1999-07-01

    In Japan Atomic Energy Research Institute, a hydrogen production system is being designed to produce hydrogen by means of a steam reforming process of natural gas using nuclear heat (10 MW, 905degC) supplied by the High Temperature Engineering Test Reactor (HTTR). The safety principle and criteria are also being investigated in the HTTR hydrogen production system. Prior to coupling of the steam reforming system with the HTTR, an out-of-pile demonstration test was planned to confirm safety, controllability and performance of the steam reforming system under simulated operational conditions of the HTTR hydrogen production system. The out-of-pile test facility simulates key components downstream an intermediate heat exchanger of the HTTR hydrogen production system on a scale of 1 to 30 has a hydrogen production capacity of 110 Nm{sup 3}/h using an electric heater as a reactor substitute. The test facility is under manufacturing aiming at completion in 2000 and followed by the test till 2004. In parallel to this, a hydrogen permeation test and a corrosion test of a catalyst tube of a steam reformer are being carried out to obtain data necessary for the design of the system. This report describes outline of the out-of-pile hydrogen production facility and demonstration test program for the HTTR hydrogen production system at present status. (author)

  15. Out-of-pile demonstration test of hydrogen production system coupling with HTTR

    International Nuclear Information System (INIS)

    Inagaki, Yoshiyuki; Nishihara, Tetsuo; Takeda, Tetsuaki; Hada, Kazuhiko; Hayashi, Koji

    1999-01-01

    In Japan Atomic Energy Research Institute, a hydrogen production system is being designed to produce hydrogen by means of a steam reforming process of natural gas using nuclear heat (10 MW, 905degC) supplied by the High Temperature Engineering Test Reactor (HTTR). The safety principle and criteria are also being investigated in the HTTR hydrogen production system. Prior to coupling of the steam reforming system with the HTTR, an out-of-pile demonstration test was planned to confirm safety, controllability and performance of the steam reforming system under simulated operational conditions of the HTTR hydrogen production system. The out-of-pile test facility simulates key components downstream an intermediate heat exchanger of the HTTR hydrogen production system on a scale of 1 to 30 has a hydrogen production capacity of 110 Nm 3 /h using an electric heater as a reactor substitute. The test facility is under manufacturing aiming at completion in 2000 and followed by the test till 2004. In parallel to this, a hydrogen permeation test and a corrosion test of a catalyst tube of a steam reformer are being carried out to obtain data necessary for the design of the system. This report describes outline of the out-of-pile hydrogen production facility and demonstration test program for the HTTR hydrogen production system at present status. (author)

  16. Design of a steam reforming system to be connected to the HTTR

    International Nuclear Information System (INIS)

    Hada, K.; Nishihara, T.; Shibata, T.; Shiozawa, S.

    1996-01-01

    Top priority objective for developing the first heat utilization system to be connected to the HTTR is to demonstrate technical feasibility of a nuclear process heat utilization system for production of hydrogen for the first time in the world. Major issues to be resolved for coupling the heat utilization system to the HTTR are 1)to develop safety philosophy for reasonably and reliably ensuring safety of the nuclear reactor, 2)to develop control design concept for the total system of the nuclear reactor and heat utilization system because thermal dynamics of endothermic chemical reactor to be heated by nuclear heat is much different from the nuclear reactor, 3)to develop helium-heated components and 4)to develop enhanced hydrogen production technologies for achieving competitiveness to a fossil-fired plant. A steam reforming hydrogen production system was studied as one of the first priority candidates for an HTTR-heat utilization system due to matured technology in fossil-fired plants and since technical solutions demonstrated by the coupling of the steam reforming system to the HTTR will contribute to all other hydrogen production systems. Basic design philosophy for the HTTR-steam reforming system is that the steam reforming plant downstream of an intermediate secondary helium loop is designed at the same safety level as fossil-fired plants and therefore the secondary helium loop was selected as a safety barrier to the HTTR nuclear reactor. (J.P.N.)

  17. Refurbishment of Cirus in-core components

    International Nuclear Information System (INIS)

    Bhatnagar, A.; Sahu, A.K.; Rathore, K.K.; Subudhi, D.; Kharpate, A.V.; Tikku, A.C.

    2006-01-01

    Circus is a 40- MWt vertical tank type research reactor with natural uranium as fuel, demineralised light water as coolant, heavy water as moderator and graphite as reflector. The reactor was commissioned in the year 1960 and operated at an overage availability factor of over 70% till early nineties, when various systems, structures and components (SSCs) started showing signs of ageing. Detailed ageing studies were therefore carried out to assess the condition of various SSCs and refurbishing requirements were finalized towards extending the life of the reactor. In-core components, being non-replaceable generally, were critically examined to the extent possible. Detailed visual examination of a few reactor vessel (RV) tubes, made of aluminium, was carried out using micro video camera and in addition all the RV tubes were inspected using eddy current testing method. RV shell, also made of aluminium, was similarly visually inspected with micro video camera. To assess the effect of irradiation on the RV material, samples of similar tubes irradiated to comparable neutron fluence were tested. Towards assessment of fatigue life of RV expansion joint, made of aluminium, a finite element analysis using NISA computer code was performed. Theoretical assessment for stored Wigner energy in graphite reflector was carried out. Graphite block samples were also removed from the reactor and stored energy levels were measured to plan for any in-situ graphite annealing, if required. Visual inspection of approachable portions of steel and aluminium thermal shields was also carried out. These water-cooled thermal shields provided above and below the RV were hydro tested. The weld joint between coolant inlet pipe and top plate of upper aluminium shield showed minor leakage. A special metallic hollow plug was developed and remotely installed in the leaky pipe to isolate the leaky portion while maintaining the coolant flow in the pipe. Helium leak was found from flange joints located on

  18. Preliminary test results for post irradiation examination on the HTTR fuel

    International Nuclear Information System (INIS)

    Ueta, Shohei; Umeda, Masayuki; Sawa, Kazuhiro; Sozawa, Shizuo; Shimizu, Michio; Ishigaki, Yoshinobu; Obata, Hiroyuki

    2007-01-01

    The future post-irradiation program for the first-loading fuel of the HTTR is scheduled using the HTTR fuel handling facilities and the Hot Laboratory in the Japan Materials Testing Reactor (JMTR) to confirm its irradiation resistance and to obtain data on its irradiation characteristics in the core. This report describes the preliminary test results and the future plan for a post-irradiation examination for the HTTR fuel. In the preliminary test, fuel compacts made with the same SiC-coated fuel particle as the first loading fuel were used. In the preliminary test, dimension, weight, fuel failure fraction, and burnup were measured, and X-ray radiograph, SEM, and EPMA observations were carried out. Finally, it was confirmed that the first-loading fuel of the HTTR showed good quality under an irradiation condition. The future plan for the post-irradiation tests was described to confirm its irradiation performance and to obtain data on its irradiation characteristics in the HTTR core. (author)

  19. A simplified 2D HTTR benchmark problem

    International Nuclear Information System (INIS)

    Zhang, Z.; Rahnema, F.; Pounders, J. M.; Zhang, D.; Ougouag, A.

    2009-01-01

    To access the accuracy of diffusion or transport methods for reactor calculations, it is desirable to create heterogeneous benchmark problems that are typical of relevant whole core configurations. In this paper we have created a numerical benchmark problem in 2D configuration typical of a high temperature gas cooled prismatic core. This problem was derived from the HTTR start-up experiment. For code-to-code verification, complex details of geometry and material specification of the physical experiments are not necessary. To this end, the benchmark problem presented here is derived by simplifications that remove the unnecessary details while retaining the heterogeneity and major physics properties from the neutronics viewpoint. Also included here is a six-group material (macroscopic) cross section library for the benchmark problem. This library was generated using the lattice depletion code HELIOS. Using this library, benchmark quality Monte Carlo solutions are provided for three different configurations (all-rods-in, partially-controlled and all-rods-out). The reference solutions include the core eigenvalue, block (assembly) averaged fuel pin fission density distributions, and absorption rate in absorbers (burnable poison and control rods). (authors)

  20. Design of high temperature Engineering Test Reactor (HTTR)

    International Nuclear Information System (INIS)

    Saito, Shinzo; Tanaka, Toshiyuki; Sudo, Yukio

    1994-09-01

    Construction of High Temperature Engineering Test Reactor (HTTR) is now underway to establish and upgrade basic technologies for HTGRs and to conduct innovative basic research at high temperatures. The HTTR is a graphite-moderated and helium gas-cooled reactor with 30 MW in thermal output and outlet coolant temperature of 850degC for rated operation and 950degC for high temperature test operation. It is planned to conduct various irradiation tests for fuels and materials, safety demonstration tests and nuclear heat application tests. JAERI received construction permit of HTTR reactor facility in February 1990 after 22 months of safety review. This report summarizes evaluation of nuclear and thermal-hydraulic characteristics, design outline of major systems and components, and also includes relating R and D result and safety evaluation. Criteria for judgment, selection of postulated events, major analytical conditions for anticipated operational occurrences and accidents, computer codes used in safety analysis and evaluation of each event are presented in the safety evaluation. (author)

  1. R and D on thermal hydraulics of core and core-bottom structure

    International Nuclear Information System (INIS)

    Inagaki, Yoshiyuki; Hino, Ryutaro; Kunitomi, Kazuhiko; Takase, Kazuyuki; Ioka, Ikuo; Maruyama, So

    2004-01-01

    Thermal hydraulic tests on the core and core-bottom structure of the high-temperature engineering test reactor (HTTR) were carried out with the helium engineering demonstration loop (HENDEL) under simulated reactor operating conditions. The HENDEL was composed of helium gas circulation loops, mother sections (M 1 and M 2 ) and adaptor section (A), and two test sections, i.e. the fuel stack test section (T 1 ) and in-core structure test section (T 2 ). In the T 1 test section simulating a fuel stack of the core, thermal and hydraulic performances of helium gas flowing through a fuel block were investigated for thermal design of the HTTR core. In the T 2 test section simulating the core-bottom structure, demonstration tests were performed to verify the structural integrity of graphite and metal components, seal performance against helium gas leakage among the graphite permanent blocks and thermal mixing performance of helium gas. The above test results in the T 1 and T 2 test sections were applied to the detailed design and licensing works of the HTTR and the HENDEL-loop was dismantled in 1999

  2. Post irradiation examinations on HTTR materials

    International Nuclear Information System (INIS)

    Sakai, Haruyuki; Ohmi, Masao; Eto, Motokuni; Watanabe, Katsutoshi

    1995-01-01

    The HTTR (High Temperature engineering Test Reactor) is being constructed at Oarai Research Establishment of the Japan Atomic Energy Research Institute. In order to develop necessary materials for the HTTR, after irradiations in the JMTR, PIEs are being carried out on these materials in the JMTRHL (JMTR Hot Laboratory). Impact test, tensile test, fatigue test, creep test, metallography and so on were performed for irradiated 2 1/4Cr 1Mo steel as the pressure vessel material and Alloy 800H as the cladding material of the control rod. A fatigue testing machine and four creep testing machines newly designed were fabricated and installed in the steel cells in order to evaluate the integrity of the HTTR materials. The development process and PIE results obtained with these machines are given in this paper

  3. Status of the HTTR project in Japan

    International Nuclear Information System (INIS)

    Sanokawa, K.

    1989-01-01

    In June 1987, the Japanese Atomic Energy Commission issued the revision of the Long-Term Program for Development and Utilization of Nuclear Energy, recommending that Japan should proceed with the development of more advanced new technologies for the future, parallel to the existing nuclear systems. It also emphasizes that the HTGR is one of the most promising reactors with high efficiency and inherent safety, therefore it should be explored for the broader use of nuclear energy, not only for power production. Then the early construction of a High-Temperature engineering Test Reactor (HTTR) by JAERI was proposed. Based on this program, JAERI has changed the ''VHTR program'' for ''HTTR program'' to establish the HTGR technology basis and upgrade them. The permission of the HTTR construction was made by the Science and Technology Agency (STA) in February 1989. 3 figs, 2 tabs

  4. Core component vibration monitoring in BWRs using neutron noise

    International Nuclear Information System (INIS)

    Fry, D.N.; Robinson, J.C.; Kryter, R.C.; Cole, O.C.

    1975-01-01

    Neutron noise from in-core fission detectors in a BWR was investigated to determine its effectiveness as a monitor of mechanical vibrations of core components. In this study the general properties of BWR neutron noise were characterized, and a signal enhancement method was implemented to improve the measurement sensitivity. (auth)

  5. Operation, test, research and development of the high temperature engineering test reactor (HTTR). FY2003

    International Nuclear Information System (INIS)

    2005-03-01

    The High Temperature Engineering Test Reactor (HTTR) constructed at the Oarai Research Establishment of The Japan Atomic Energy Research Institute (JAERI) is the first high-temperature gas-cooled reactor (HTGR) in Japan, which is a graphite-moderated and helium gas-cooled reactor with 30MW of thermal power. Coolant of helium-gas circulates under the pressure of about 4Mpa, and the reactor inlet and outlet temperature are 395degC and 950degC (maximum), respectively coated particle fuel is used as fuel, and the HTTR core is composed of graphite prismatic blocks. The full power operation of 30MW was attained in December, 2001, and then JAERI received the commissioning license for the HTTR in March, 2002. Since 2002, we have been carrying out rated power operation, safety demonstration tests and several R and Ds, etc., and conducted the high-temperature test operation of 950degC in April, 2004. This report summarizes activities and test results on HTTR operation and maintenance as well as safety demonstration tests and several R and Ds, which were carried out in the fiscal year of 2003 before the high temperature test operation of 950degC. (author)

  6. Preliminary analyses for HTTR`s start-up physics tests by Monte Carlo code MVP

    Energy Technology Data Exchange (ETDEWEB)

    Nojiri, Naoki [Science and Technology Agency, Tokyo (Japan); Nakano, Masaaki; Ando, Hiroei; Fujimoto, Nozomu; Takeuchi, Mitsuo; Fujisaki, Shingo; Yamashita, Kiyonobu

    1998-08-01

    Analyses of start-up physics tests for High Temperature Engineering Test Reactor (HTTR) have been carried out by Monte Carlo code MVP based on continuous energy method. Heterogeneous core structures were modified precisely, such as the fuel compacts, fuel rods, coolant channels, burnable poisons, control rods, control rod insertion holes, reserved shutdown pellet insertion holes, gaps between graphite blocks, etc. Such precise modification of the core structures was difficult with diffusion calculation. From the analytical results, the followings were confirmed; The first criticality will be achieved around 16 fuel columns loaded. The reactivity at the first criticality can be controlled by only one control rod located at the center of the core with other fifteen control rods fully withdrawn. The excess reactivity, reactor shutdown margin and control rod criticality positions have been evaluated. These results were used for planning of the start-up physics tests. This report presents analyses of start-up physics tests for HTTR by MVP code. (author)

  7. Preliminary analyses for HTTR's start-up physics tests by Monte Carlo code MVP

    International Nuclear Information System (INIS)

    Nojiri, Naoki; Nakano, Masaaki; Ando, Hiroei; Fujimoto, Nozomu; Takeuchi, Mitsuo; Fujisaki, Shingo; Yamashita, Kiyonobu

    1998-08-01

    Analyses of start-up physics tests for High Temperature Engineering Test Reactor (HTTR) have been carried out by Monte Carlo code MVP based on continuous energy method. Heterogeneous core structures were modified precisely, such as the fuel compacts, fuel rods, coolant channels, burnable poisons, control rods, control rod insertion holes, reserved shutdown pellet insertion holes, gaps between graphite blocks, etc. Such precise modification of the core structures was difficult with diffusion calculation. From the analytical results, the followings were confirmed; The first criticality will be achieved around 16 fuel columns loaded. The reactivity at the first criticality can be controlled by only one control rod located at the center of the core with other fifteen control rods fully withdrawn. The excess reactivity, reactor shutdown margin and control rod criticality positions have been evaluated. These results were used for planning of the start-up physics tests. This report presents analyses of start-up physics tests for HTTR by MVP code. (author)

  8. Fuel temperature analysis method for channel-blockage accident in HTTR

    International Nuclear Information System (INIS)

    Maruyama, So; Fujimoto, Nozomu; Sudo, Yukio; Kiso, Yoshihiro; Hayakawa, Hitoshi

    1994-01-01

    During operation of the High Temperature Engineering Test Reactor (HTTR), coolability must be maintained without core damage under all postulated accident conditions. Channel blockage of a fuel element was selected as one of the design-basis accidents in the safety evaluation of the reactor. The maximum fuel temperature for such a scenario has been evaluated in the safety analysis and is compared to the core damage limits.For the design of the HTTR, an in-core thermal and hydraulic analysis code ppercase[flownet/trump] was developed. This code calculates fuel temperature distribution, not only for a channel blockage accident but also for transient conditions. The validation of ppercase[flownet/trump] code was made by comparison of the analytical results with the results of thermal and hydraulic tests by the Helium Engineering Demonstration Loop (HENDEL) multi-channel test rig (T 1-M ), which simulated one fuel column in the core. The analytical results agreed well with the experiments in which the HTTR operating conditions were simulated.The maximum fuel temperature during a channel blockage accident is 1653 C. Therefore, it is confirmed that the integrity of the core is maintained during a channel blockage accident. ((orig.))

  9. Turbine component casting core with high resolution region

    Science.gov (United States)

    Kamel, Ahmed; Merrill, Gary B.

    2014-08-26

    A hollow turbine engine component with complex internal features can include a first region and a second, high resolution region. The first region can be defined by a first ceramic core piece formed by any conventional process, such as by injection molding or transfer molding. The second region can be defined by a second ceramic core piece formed separately by a method effective to produce high resolution features, such as tomo lithographic molding. The first core piece and the second core piece can be joined by interlocking engagement that once subjected to an intermediate thermal heat treatment process thermally deform to form a three dimensional interlocking joint between the first and second core pieces by allowing thermal creep to irreversibly interlock the first and second core pieces together such that the joint becomes physically locked together providing joint stability through thermal processing.

  10. Inherent safety features of the HTTR revealed in the accident condition

    International Nuclear Information System (INIS)

    Kunitomi, K.; Shinozaki, M.; Baba, O.; Saito, S.

    1992-01-01

    The High Temperature Engineering Test Reactor (HTTR) being constructed by JAERI (Japan Atomic Energy Research Institute) is a graphite-moderated and helium-cooled reactor with an outlet gas temperature of 950degC. The inherent safety characteristics in the HTTR prevent temperature increase of reactor fuels and fission product release from the reactor core in postulated accident conditions. The reactor core can be cooled by a Vessel Cooling System (VCS) indirectly, even in the case that no forced cooling is expected during the accident such as primary pipe break. The VCS consists of independent water cooling loop and cooling panel around the reactor pressure vessel. The cooling panel whose temperature of 60-90degC cools the reactor pressure vessel by radiation and removes the decay heat from the core indirectly. Furthermore, even if failure of VCS is assumed during this accident as a severe accident, the reactor core is remained safe despite the temperature increase of biological concrete shield around the reactor pressure vessel. This paper describes the inherent safety features of the HTTR specially focused on the accident condition without forced cooling. The detailed analytical results of such an accident are described together with clarifying the role of the VCS. (author)

  11. Refractory metal component technology for in-core sensor design

    International Nuclear Information System (INIS)

    Cannon, C.P.

    1986-02-01

    Within recent years, an increasing concern over reactor safety has prompted tests that characterize reactor core environments during transient conditions. Such tests include the Loss-of-Fluid-Tests (Idaho National Engineering Lab (INEL)), Severe Fuel Damage Tests (INEL), Core Debris Rubble Tests (Sandia National Laboratories (SNL)), and similar tests performed by foreign nations. The in-core sensors for these tests require refractory metal components to be compatible with electrical insulator materials as well as materials comprising highly corrosive service mediums. This paper presents the refractory metal technology utilized to provide basic sensor designs in the above mentioned reactor tests

  12. Investigation of water content in primary upper shield of high temperature engineering test reactor (HTTR)

    International Nuclear Information System (INIS)

    Sumita, Junya; Sawa, Kazuhiro; Mogi, Haruyoshi; Itahashi, Shuuji; Kitami, Toshiyuki; Akutu, Youichi; Fuchita, Yasuhiro; Kawaguchi, Toru; Moriya, Masahiro

    1999-09-01

    A primary upper shield of the High Temperature Engineering Test Reactor (HTTR) is composed of concrete (grout) which is packed into iron frames. The main function of the primary upper shield is to attenuate neutron and gamma ray from the core, that leads to satisfy dose equivalent rate limit of operating floor and stand-pipe room. Water content in the concrete is one of the most important things because it strongly affects neutron-shielding ability. Then, we carried out out-of-pile experiments to investigate relationship between temperature and water content in the concrete. Based on the experimental results, a hydrolysis-diffusion model was developed to investigate water release behavior from the concrete. The model showed that water content used for shielding design in the primary upper shield of the HTTR will be maintained if temperature during operating life is under 110degC. (author)

  13. Steady state HTTR model in the RELAP5-3D

    Energy Technology Data Exchange (ETDEWEB)

    Scari, Maria E.; Reis, Patrícia A. L.; Costa, Antonella L.; Pereira, Claubia; Veloso, Maria A. F., E-mail: melizabethscari@yahoo.com, E-mail: patricialire@yahoo.com.br, E-mail: antonella@nuclear.ufmg.br, E-mail: claubia@nuclear.ufmg.br, E-mail: dora@nuclear.ufmg.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear; Instituto Nacional de Ciências e Tecnologia de Reatores Nucleares Inovadores/CNPQ (Brazil)

    2017-07-01

    The HTTR (High Temperature Engineering Test Reactor) is a high temperature gas-cooled reactor (HTGR). It is a helium-cooled and graphite-moderated with a thermal power of 30 MW, developed and operated by the Japan Atomic Energy Research Institute (JAERI). In a previous work, a thermal model for the HTTR has been developed using the RELAP5-3D code. In the present work, additional thermal analyses have been presented. Studies about the core neutronic simulation were also initiated and are described here. The code WIMSD-5B was used to generate the cross sections and the group constants necessary to the NESTLE neutron kinetic code incorporated in the RELAP5-3D. (author)

  14. Control rod position and temperature coefficients in HTTR power-rise tests. Interim report

    International Nuclear Information System (INIS)

    Fujimoto, Nozomu; Nojiri, Naoki; Takada, Eiji; Saito, Kenji; Kobayashi, Shoichi; Sawahata, Hiroaki; Kokusen, Sigeru

    2001-03-01

    Power-rise tests of the High Temperature Engineering Test Reactor (HTTR) have been carried out aiming to achieve 100% power. So far, 50% of power operation and many tests have been carried out. In the HTTR, temperature change in core is so large to achieve the outlet coolant temperature of 950degC. To improve the calculation accuracy of the HTTR reactor physics characteristics, control rod positions at criticality and temperature coefficients were measured at each step to achieve 50% power level. The calculations were carried out using Monte Carlo code and diffusion theory with temperature distributions in the core obtained by reciprocal calculation of thermo-hydraulic code and diffusion theory. Control rod positions and temperature coefficients were calculated by diffusion theory and Monte Carlo method. The test results were compared to calculation results. The control rod positions at criticality showed good agreement with calculation results by Monte Carlo method with error of 50 mm. The control position at criticality at 100% was predicted around 2900mm. Temperature coefficients showed good agreement with calculation results by diffusion theory. The improvement of calculation will be carried out comparing the measured results up to 100% power level. (author)

  15. Evaluation of the HTTR criticality and burnup calculations with continuous-energy and multigroup cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, Min-Han; Wang, Jui-Yu [Institute of Nuclear Engineering and Science, National Tsing Hua University, 101, Section 2, Kung-Fu Road, Hsinchu 30013, Taiwan (China); Sheu, Rong-Jiun, E-mail: rjsheu@mx.nthu.edu.tw [Institute of Nuclear Engineering and Science, National Tsing Hua University, 101, Section 2, Kung-Fu Road, Hsinchu 30013, Taiwan (China); Department of Engineering System and Science, National Tsing Hua University, 101, Section 2, Kung-Fu Road, Hsinchu 30013, Taiwan (China); Liu, Yen-Wan Hsueh [Institute of Nuclear Engineering and Science, National Tsing Hua University, 101, Section 2, Kung-Fu Road, Hsinchu 30013, Taiwan (China); Department of Engineering System and Science, National Tsing Hua University, 101, Section 2, Kung-Fu Road, Hsinchu 30013, Taiwan (China)

    2014-05-01

    The High Temperature Engineering Test Reactor (HTTR) in Japan is a helium-cooled graphite-moderated reactor designed and operated for the future development of high-temperature gas-cooled reactors. Two detailed full-core models of HTTR have been established by using SCALE6 and MCNP5/X, respectively, to study its neutronic properties. Several benchmark problems were repeated first to validate the calculation models. Careful code-to-code comparisons were made to ensure that two calculation models are both correct and equivalent. Compared with experimental data, the two models show a consistent bias of approximately 20–30 mk overestimation in effective multiplication factor for a wide range of core states. Most of the bias could be related to the ENDF/B-VII.0 cross-section library or incomplete modeling of impurities in graphite. After that, a series of systematic analyses was performed to investigate the effects of cross sections on the HTTR criticality and burnup calculations, with special interest in the comparison between continuous-energy and multigroup results. Multigroup calculations in this study were carried out in 238-group structure and adopted the SCALE double-heterogeneity treatment for resonance self-shielding. The results show that multigroup calculations tend to underestimate the system eigenvalue by a constant amount of ∼5 mk compared to their continuous-energy counterparts. Further sensitivity studies suggest the differences between multigroup and continuous-energy results appear to be temperature independent and also insensitive to burnup effects.

  16. Evaluation of the HTTR criticality and burnup calculations with continuous-energy and multigroup cross sections

    International Nuclear Information System (INIS)

    Chiang, Min-Han; Wang, Jui-Yu; Sheu, Rong-Jiun; Liu, Yen-Wan Hsueh

    2014-01-01

    The High Temperature Engineering Test Reactor (HTTR) in Japan is a helium-cooled graphite-moderated reactor designed and operated for the future development of high-temperature gas-cooled reactors. Two detailed full-core models of HTTR have been established by using SCALE6 and MCNP5/X, respectively, to study its neutronic properties. Several benchmark problems were repeated first to validate the calculation models. Careful code-to-code comparisons were made to ensure that two calculation models are both correct and equivalent. Compared with experimental data, the two models show a consistent bias of approximately 20–30 mk overestimation in effective multiplication factor for a wide range of core states. Most of the bias could be related to the ENDF/B-VII.0 cross-section library or incomplete modeling of impurities in graphite. After that, a series of systematic analyses was performed to investigate the effects of cross sections on the HTTR criticality and burnup calculations, with special interest in the comparison between continuous-energy and multigroup results. Multigroup calculations in this study were carried out in 238-group structure and adopted the SCALE double-heterogeneity treatment for resonance self-shielding. The results show that multigroup calculations tend to underestimate the system eigenvalue by a constant amount of ∼5 mk compared to their continuous-energy counterparts. Further sensitivity studies suggest the differences between multigroup and continuous-energy results appear to be temperature independent and also insensitive to burnup effects

  17. HTTR workshop (workshop on hydrogen production technology)

    International Nuclear Information System (INIS)

    Shiina, Yasuaki; Takizuka, Takakazu

    2004-12-01

    Various research and development efforts have been performed to solve the global energy and environmental problems caused by large consumption of fossil fuels. Research activities on advanced hydrogen production technology by the use of nuclear heat from high temperature gas cooled reactors, for example, have been flourished in universities, research institutes and companies in many countries. The Department of HTTR Project and the Department of Advanced Nuclear Heat Technology of JAERI held the HTTR Workshop (Workshop on Hydrogen Production Technology) on July 5 and 6, 2004 to grasp the present status of R and D about the technology of HTGR and the nuclear hydrogen production in the world and to discuss about necessity of the nuclear hydrogen production and technical problems for the future development of the technology. More than 110 participants attended the Workshop including foreign participants from USA, France, Korea, Germany, Canada and United Kingdom. In the Workshop, the presentations were made on such topics as R and D programs for nuclear energy and hydrogen production technologies by thermo-chemical or other processes. Also, the possibility of the nuclear hydrogen production in the future society was discussed. The workshop showed that the R and D for the hydrogen production by the thermo-chemical process has been performed in many countries. The workshop affirmed that nuclear hydrogen production could be one of the competitive supplier of hydrogen in the future. The second HTTR Workshop will be held in the autumn next year. (author)

  18. Development of operation and maintenance technology for HTGRs by using HTTR (High Temperature engineering Test Reactor)

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, Atsushi, E-mail: shimizu.atsushi35@jaea.go.jp [HTTR Operation Section, Department of HTTR, Oarai Research and Development Center, Japan Atomic Energy Agency, 4002 Narita-cho, Oarai-machi, Higashiibaraki-gun, Ibaraki 311-1393 (Japan); Kawamoto, Taiki [HTTR Operation Section, Department of HTTR, Oarai Research and Development Center, Japan Atomic Energy Agency, 4002 Narita-cho, Oarai-machi, Higashiibaraki-gun, Ibaraki 311-1393 (Japan); Tochio, Daisuke [HTTR Reactor Engineering Section, Department of HTTR, Oarai Research and Development Center, Japan Atomic Energy Agency, 4002 Narita-cho, Oarai-machi, Higashiibaraki-gun, Ibaraki 311-1393 (Japan); Saito, Kenji; Sawahata, Hiroaki; Honma, Fumitaka; Furusawa, Takayuki; Saikusa, Akio [HTTR Operation Section, Department of HTTR, Oarai Research and Development Center, Japan Atomic Energy Agency, 4002 Narita-cho, Oarai-machi, Higashiibaraki-gun, Ibaraki 311-1393 (Japan); Takada, Shoji [HTTR Reactor Engineering Section, Department of HTTR, Oarai Research and Development Center, Japan Atomic Energy Agency, 4002 Narita-cho, Oarai-machi, Higashiibaraki-gun, Ibaraki 311-1393 (Japan); Shinozaki, Masayuki [HTTR Operation Section, Department of HTTR, Oarai Research and Development Center, Japan Atomic Energy Agency, 4002 Narita-cho, Oarai-machi, Higashiibaraki-gun, Ibaraki 311-1393 (Japan)

    2014-05-01

    To establish the technical basis of HTGR (High Temperature Gas cooled Reactor), the long term high temperature operation using HTTR was carried out in the high temperature test operation mode during 50-day since January till March, 2010. It is necessary to establish the technical basis of operation and maintenance by demonstrating the stability of plant during long-term operation and the reliability of components and facilities special to HTGRs, in order to attain the stable supply of the high temperature heat to the planned heat utilization system of HTTR. Test data obtained in the operation were evaluated for the technical issues which were extracted before the operation. As the results, it was confirmed that the temperatures and flow rate of primary and secondary coolant were well controlled within sufficiently small deviation against the disturbance by the atmospheric temperature variation in daily. Stability and reliability of the components and facility special to HTGRs was demonstrated through the long term high temperature operation by evaluating the heat transfer performance of high temperature components, the stability performance of pressure control to compensate helium gas leak, the reliability of the dynamic components such as helium gas circulators, the performance of heat-up protection of radiation shielding. Through the long term high temperature operation of HTTR, the technical basis for the operation and maintenance technology of HTGRs was established.

  19. Development of operation and maintenance technology for HTGRs by using HTTR (High Temperature engineering Test Reactor)

    International Nuclear Information System (INIS)

    Shimizu, Atsushi; Kawamoto, Taiki; Tochio, Daisuke; Saito, Kenji; Sawahata, Hiroaki; Honma, Fumitaka; Furusawa, Takayuki; Saikusa, Akio; Takada, Shoji; Shinozaki, Masayuki

    2014-01-01

    To establish the technical basis of HTGR (High Temperature Gas cooled Reactor), the long term high temperature operation using HTTR was carried out in the high temperature test operation mode during 50-day since January till March, 2010. It is necessary to establish the technical basis of operation and maintenance by demonstrating the stability of plant during long-term operation and the reliability of components and facilities special to HTGRs, in order to attain the stable supply of the high temperature heat to the planned heat utilization system of HTTR. Test data obtained in the operation were evaluated for the technical issues which were extracted before the operation. As the results, it was confirmed that the temperatures and flow rate of primary and secondary coolant were well controlled within sufficiently small deviation against the disturbance by the atmospheric temperature variation in daily. Stability and reliability of the components and facility special to HTGRs was demonstrated through the long term high temperature operation by evaluating the heat transfer performance of high temperature components, the stability performance of pressure control to compensate helium gas leak, the reliability of the dynamic components such as helium gas circulators, the performance of heat-up protection of radiation shielding. Through the long term high temperature operation of HTTR, the technical basis for the operation and maintenance technology of HTGRs was established

  20. Improvement of calculation method for temperature coefficient of HTTR by neutronics calculation code based on diffusion theory. Analysis for temperature coefficient by SRAC code system

    International Nuclear Information System (INIS)

    Goto, Minoru; Takamatsu, Kuniyoshi

    2007-03-01

    The HTTR temperature coefficients required for the core dynamics calculations had been calculated from the HTTR core calculation results by the diffusion code with which the corrections had been performed using the core calculation results by the Monte-Carlo code MVP. This calculation method for the temperature coefficients was considered to have some issues to be improved. Then, the calculation method was improved to obtain the temperature coefficients in which the corrections by the Monte-Carlo code were not required. Specifically, from the point of view of neutron spectrum calculated by lattice calculations, the lattice model was revised which had been used for the calculations of the temperature coefficients. The HTTR core calculations were performed by the diffusion code with the group constants which were generated by the lattice calculations with the improved lattice model. The core calculations and the lattice calculations were performed by the SRAC code system. The HTTR core dynamics calculation was performed with the temperature coefficient obtained from the core calculation results. In consequence, the core dynamics calculation result showed good agreement with the experimental data and the valid temperature coefficient could be calculated only by the diffusion code without the corrections by Monte-Carlo code. (author)

  1. Improvement in oil seal performance of gas compressor in HTTR

    International Nuclear Information System (INIS)

    Oyama, Sunao; Hamamoto, Shimpei; Nemoto, Takahiro; Sekita, Kenji; Isozaki, Minoru; Emori, Kouichi; Ohta, Yukimaru; Mizushima, Toshihiko; Kaneshiro, Noriyuki; Ito, Yoshiteru; Yamamoto, Hideo

    2007-08-01

    High-Temperature engineering Test Reactor (HTTR) built by Japan Atomic Energy Agency (JAEA) has reciprocating compressor commonly used to extract and discharge helium gas into primary/secondary coolant helium loop from helium purification system. Piston rod seal of the compressor consist of several components to prevent coolant leak. However, rod seal system has weak reliability during long term operation due to repeated leakage of seal oil in operation. As a result of investigations, leakage's root is found in that seal were used in a range beyond limit sliding properties of seal material. For this reason, a lip of the seal was worn and transformed itself and was not able to sustain a seal function. Therefore, through tests using facility actual equipment for endurance of candidate materials, one seal material were chosen for long term operation. (author)

  2. Replacement of core components in the Advanced Test Reactor

    International Nuclear Information System (INIS)

    Durney, J.L.; Croucher, D.W.

    1990-01-01

    The core internals of the Advanced Test Reactor are subjected to very high neutron fluences resulting in significant aging. The most irradiated components have been replaced on several occasions as a result of the neutron damage. The surveillance program to monitor the aging developed the needed criteria to establish replacement schedules and maximize the use of the reactor. The methods to complete the replacements with minimum radiation exposures to workers have been developed using the experience gained from each replacement. The original design of the reactor core and associated components allows replacements to be completed without special equipment. The plant has operated for about 20 years and is expected to continue operation for at least and additional 25 years. Aging evaluations are in progress to address additional replacements that may be needed during this period

  3. Replacement of core components in the Advanced Test Reactor

    International Nuclear Information System (INIS)

    Durney, J.L.; Croucher, D.W.

    1989-01-01

    The core internals of the Advanced Test Reactor are subjected to very high neutron fluences resulting in significant aging. The most irradiated components have been replaced on several occasions as a result of the neutron damage. The surveillance program to monitor the aging developed the needed criteria to establish replacement schedules and maximize the use of the reactor. Methods to complete the replacements with minimum radiation exposures to workers have been developed using the experience gained from each replacement. The original design of the reactor core and associated components allows replacements to be completed without special equipment. The plant has operated for about 20 years and will continue operation for perhaps another 20 years. Aging evaluations are in program to address additional replacements that may be needed during this extended time period. 3 figs

  4. Simplified two and three dimensional HTTR benchmark problems

    International Nuclear Information System (INIS)

    Zhang Zhan; Rahnema, Farzad; Zhang Dingkang; Pounders, Justin M.; Ougouag, Abderrafi M.

    2011-01-01

    To assess the accuracy of diffusion or transport methods for reactor calculations, it is desirable to create heterogeneous benchmark problems that are typical of whole core configurations. In this paper we have created two and three dimensional numerical benchmark problems typical of high temperature gas cooled prismatic cores. Additionally, a single cell and single block benchmark problems are also included. These problems were derived from the HTTR start-up experiment. Since the primary utility of the benchmark problems is in code-to-code verification, minor details regarding geometry and material specification of the original experiment have been simplified while retaining the heterogeneity and the major physics properties of the core from a neutronics viewpoint. A six-group material (macroscopic) cross section library has been generated for the benchmark problems using the lattice depletion code HELIOS. Using this library, Monte Carlo solutions are presented for three configurations (all-rods-in, partially-controlled and all-rods-out) for both the 2D and 3D problems. These solutions include the core eigenvalues, the block (assembly) averaged fission densities, local peaking factors, the absorption densities in the burnable poison and control rods, and pin fission density distribution for selected blocks. Also included are the solutions for the single cell and single block problems.

  5. Under sodium reliability tests on core components and in-core instrumentation

    International Nuclear Information System (INIS)

    Ruppert, E.; Stehle, H.; Vinzens, K.

    1977-01-01

    A sodium test facility for fast breeder core components (AKB), built by INTERATOM at Bensberg, has been operating since 1971 to test fuel dummies and blanket elements as well as absorber elements under simulated normal and extreme reactor conditions. Individual full-scale fuel or blanket elements and arrays of seven elements, modelling a section of the SNR-300 reactor core, have been tested under a wide range of sodium mass flow and isothermal test conditions up to 925K as well as under cyclic changed temperature transients. Besides endurance testing of the core components a special sodium and high-temperature instrumentation is provided to investigate thermohydraulic and vibrational behaviour of the test objects. During all test periods the main subassembly characteristics could be reproduced and the reliability of the instrumentation could be proven. (orig.) [de

  6. Design of helium-gas supplying facility of out-of-pile demonstration test for HTTR heat utilization system

    Energy Technology Data Exchange (ETDEWEB)

    Hino, Ryutaro; Fujisaki, Katsuo; Kobayashi, Toshiaki [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment] [and others

    1996-09-01

    One of the objectives of the High-Temperature Engineering Test Reactor (HTTR) is to demonstrate effectiveness of high-temperature heat utilization. Prior to connect a heat utilization system to the HTTR, a series of out-of-pile demonstration test is indispensable to improve components` performance, to demonstrate operation, control and safety technologies and to verify analysis codes for design and safety evaluation. After critical review and discussion on the out-of-pile demonstration test, a test facility have been designed. In this report, a helium-gas supplying facility simulated the HTTR system was described in detail, which supplies High-temperature helium-gas of 900degC to a steam reforming facility mocking-up the HTTR heat utilization system. Components of the Helium Engineering Demonstration Loop (HENDEL) were selected to reuse in the helium-gas supplying facility in order to decrease construction cost. Structures and specifications of new components such as a high-temperature heater and a preheater were decided after evaluation of thermal and hydraulic performance and strength. (author)

  7. Design Basis of Core Components and their Realization in the frame of the EPR'sTM Core Component Development

    International Nuclear Information System (INIS)

    Schebitz, Florian; Mekmouche, Abdelhalim

    2008-01-01

    Rod Cluster Control Assemblies (RCCAs), Thimble Plug Assemblies (TPAs), Primary Neutron Sources (PNS) and Secondary Neutron Sources (SNS) are essential for the operation of a Nuclear Power Plant. Different functional requirements ask for different components and geometries. Therefore three different core components are used within the primary circuit: - The RCCA, which contains the absorber materials, is used to regulate and shut down the nuclear chain reaction. Under these demanding conditions different effects are determining the lifetime of the RCCA and in particular of the control rods. Several improvements like ion-nitriding of the cladding, lengthening of the bottom end plug, helium backfilling and reduction of the absorber diameter in the bottom part, which have already been introduced with the HARMONI TM RCCA, show a real improvement in terms of lifetime. - The TPAs are used at positions without RCCAs and neutron sources to limit the by-pass flow-rate in the fuel assembly guide tubes. The advanced TPA design results from a perfect combination of French and German design experience feedback. Benefits like homogenized hydraulic flow and improved manageability in terms of handling tools show the joined experience. - The neutron sources are used to enhance the flux level when the core is sub-critical so as to facilitate the core start-up control by the neutron flux detectors. Primary and secondary neutron sources are designed in a common way with reviewed and improved methodology. As there are different ways and conditions to operate core components, several designs are available. For the EPR TM , the best methods and products have been chosen. All chosen components contribute to an optimized and safe operation of the EPR TM . (authors)

  8. Examination of core components removed from CANDU reactors

    International Nuclear Information System (INIS)

    Cheadle, B.A.; Coleman, C.E.; Rodgers, D.K.; Davies, P.H.; Chow, C.K.; Griffiths, M.

    1988-11-01

    Components in the core of a nuclear reactor degrade because the environment is severe. For example, in CANDU reactors the pressure tubes must contend with the effects of hot pressurised water and damage by a flux of fast neutrons. To evaluate any deterioration of components and determine the cause of the occasional failure, we have developed a wide range of remote-handling techniques to examine radioactive materials. As well as pressure tubes, we have examined calandria tubes, garter springs, end fittings, liquid-zone control units and flux detectors. The results from these examinations have produced solutions to problems and continually provide information to help understand the processes that may limit the lifetime of a component

  9. Test results of HTTR control system

    International Nuclear Information System (INIS)

    Motegi, Toshihiro; Iigaki, Kazuhiko; Saito, Kenji; Sawahata, Hiroaki; Hirato, Yoji; Kondo, Makoto; Shibutani, Hideki; Ogawa, Satoru; Shinozaki, Masayuki; Mizushima, Toshihiko; Kawasaki, Kozo

    2006-06-01

    The plant control performance of the IHX helium flow rate control system, the PPWC helium flow rate control system, the secondary helium flow rate control system, the inlet temperature control system, the reactor power control system and the outlet temperature control system of the HTTR are obtained through function tests and power-up tests. As the test results, the control systems show stable control response under transient condition. Both of inlet temperature control system and reactor power control system shows stable operation from 30% to 100%, respectively. This report describes the outline of control systems and test results. (author)

  10. HTTR plant dynamic simulation using a hybrid computer

    International Nuclear Information System (INIS)

    Shimazaki, Junya; Suzuki, Katsuo; Nabeshima, Kunihiko; Watanabe, Koichi; Shinohara, Yoshikuni; Nakagawa, Shigeaki.

    1990-01-01

    A plant dynamic simulation of High-Temperature Engineering Test Reactor has been made using a new-type hybrid computer. This report describes a dynamic simulation model of HTTR, a hybrid simulation method for SIMSTAR and some results obtained from dynamics analysis of HTTR simulation. It concludes that the hybrid plant simulation is useful for on-line simulation on account of its capability of computation at high speed, compared with that of all digital computer simulation. With sufficient accuracy, 40 times faster computation than real time was reached only by changing an analog time scale for HTTR simulation. (author)

  11. Demonstration of inherent safety features of HTGRs using the HTTR

    International Nuclear Information System (INIS)

    Tachibana, Yukio; Nakagawa, Shigeaki; Nakazawa, Toshio; Iyoku, Tatsuo

    2004-01-01

    Safety demonstration tests using the High Temperature Engineering Test Reactor (HTTR) are conducted for the purpose of demonstrating inherent safety features of High Temperature Gas-cooled Reactors (HTGRs) quantitatively as well as providing the core and plant transient data for validation of HTGR analysis codes for safety evaluation. The safety demonstration test are divided to the first phase and second phase tests. In the first phase tests, simulation tests of anticipated operational occurrences and anticipated transients without scram (ATWS) are conducted. The second phase tests will simulate accidents such as a depressurization accident (loss of coolant accident). The first phase test simulating reactivity insertion events and coolant flow reduction events stared in FY 2002. Post-test analyses have been conducted to reproduced the test results by using the core and plant dynamics analysis code, ACCORD and Monte Carlo code, MVP. The analysis results agreed fairly well with the test results of a control rod withdrawal test simulating reactivity insertion, and gas circulators trip test simulating coolant flow reduction, at power levels of 50% and 30% of the rated power, respectively. It is shown that improvement of the ACCORD code by taking into consideration vertical and horizontal temperature distribution gives better analysis results in the control rod withdrawal test. The fist phase safety demonstration tests will continue until FY 2005, and the second phase tests are planned to be started in FY 2006. (author)

  12. Experience with lifetime limits for EBR-II core components

    International Nuclear Information System (INIS)

    Lambert, J.D.B.; Smith, R.N.; Golden, G.H.

    1987-01-01

    The Experimental Breeder Reactor No. 2 (EBR-II) is operated for the US Department of Energy by Argonne National Laboratory and is located on the Idaho National Engineering Laboratory where most types of American reactor were originally tested. EBR-II is a complete electricity-producing power plant now in its twenty-fourth year of successful operation. During this long history the reactor has had several concurrent missions, such as demonstration of a closed Liquid-Metal Reactor (LMR) fuel cycle (1964-69); as a steady-state irradiation facility for fuels and materials (1970 onwards); for investigating effects of operational transients on fuel elements (from 1981); for research into the inherent safety aspects of metal-fueled LMR's (from 1983); and, most recently, for demonstration of the Integral Fast Reactor (IFR) concept using U-Pu-Zr fuels. This paper describes experience gained at EBR-II in defining lifetime limits for LMR core components, particularly fuel elements

  13. Innovative and basic researches for high temperature technologies at HTTR

    International Nuclear Information System (INIS)

    Shiozawa, Shusaku

    1995-01-01

    The HTTR is the first HTGR which is under construction at JAERI. The objectives of the HTTR are to establish basic technologies for HTGRs, to upgrade technologies for HTGRs and to conduct innovative and basic researches for high temperature technologies. The first two are concerned with HTGR developments. The last one is not necessarily for HTGR developments, but for future innovative researches which are expected to be applied to various technologies. (author)

  14. HTTR criticality calculations with SCALE6: Studies of various geometric and unit-cell options in modeling

    Energy Technology Data Exchange (ETDEWEB)

    Wang, J. Y.; Chiang, M. H.; Sheu, R. J.; Liu, Y. W. H. [Inst. of Nuclear Engineering and Science, National Tsing Hua Univ., Hsinchu 30013, Taiwan (China)

    2012-07-01

    The fuel element of the High Temperature Engineering Test Reactor (HTTR) presents a doubly heterogeneous geometry, where tiny TRISO fuel particles dispersed in a graphite matrix form the fuel region of a cylindrical fuel rod, and a number of fuel rods together with moderator or reflector then constitute the lattice design of the core. In this study, a series of full-core HTTR criticality calculations were performed with the SCALE6 code system using various geometric and unit-cell options in order to systematically investigate their effects on neutronic analysis. Two geometric descriptions (ARRAY or HOLE) in SCALE6 can be used to construct a complicated and repeated model. The result shows that eliminating the use of HOLE in the HTTR geometric model can save the computation time by a factor of 4. Four unit-cell treatments for resonance self-shielding corrections in SCALE6 were tested to create problem-specific multigroup cross sections for the HTTR core model. Based on the same ENDF/B-VII cross-section library, their results were evaluated by comparing with continuous-energy calculations. The comparison indicates that the INFHOMMEDIUM result overestimates the system multiplication factor (k{sub eff}) by 55 mk, whereas the LATTICECELL and MULTIREGION treatments predict the k{sub eff} values with similar biases of approximately 10 mk overestimation. The DOUBLEHET result shows a more satisfactory agreement, about 4.2 mk underestimation in the k{sub eff} value. In addition, using cell-weighted cross sections instead of an explicit modeling of TRISO particles in fuel region can further reduce the computation time by a factor of 5 without sacrificing accuracy. (authors)

  15. Development of Structural Core Components for Breeder Reactors

    International Nuclear Information System (INIS)

    Saibaba, N.

    2013-01-01

    Core structural materials: • The desire is to have only fuel in the core, structural material form 25% of the total core: – To support and to retain the fuel in position; – Provide necessary ducts to make coolant flow through & transfer/remove heat. • For 500 MWe FBR with Oxide fuel (Peak Linear Power 450 W/cm), total fuel pins required in the core are of the order 39277 pins (both inner & outer core Fuel SA); • Considering 217 pins/Fuel SA there are 181 Fuel SA wrapper tubes • These structural materials see hostile core with max temperature and neutron flux

  16. Prediction of Fission Product Release during the LOFC Experiments at the HTTR

    International Nuclear Information System (INIS)

    Shi, D.; Xhonneux, A.; Verfondern, K.; Ueta, S.; Allelein, H.-J.

    2014-01-01

    Demonstration tests were conducted using the High Temperature Engineering Test Reactor (HTTR) in Oarai, Japan, to confirm the safety of HTGR technologies and assure the expected physical phenomena to occur under given conditions. As part of the OECD directed LOFC (“loss of forced cooling”) project, a series of three tests at the HTTR has been planned with tripping of all gas circulators while deactivating all reactor reactivity control to disallow reactor scram due to abnormal reduction of primary coolant flow rate. The tests fall into anticipated transient without scram (ATWS) with occurrence of reactor recriticality. They serve the important purpose to provide a valuable data base for the validation of computer models regarding neutronics, heat transfer and fluid dynamics, fuel performance and fission product transport and release behavior in HTGRs. The Source Term Analysis Code System (STACY) is a new code development at the Research Center Jülich encompassing the original verified and validated computer models for simulating fission product transport and release. For verification of the modernized and extended version, it was assured that results obtained with the original tools could be reproduced. One of the new features of STACY is its ability to also treat fuel compacts of (full) cylindrical or annular shape and a complete prismatic block reactor core, respectively, supposed sufficient input data be available. The paper will describe the new STACY tool and present the results of fission product behavior in the HTTR core under the LOFC test conditions. Calculations are based on time-dependent neutronics and fluid dynamics results obtained with the Serpent and MGT models. (author)

  17. Exploring cosmic origins with CORE: B-mode component separation

    Science.gov (United States)

    Remazeilles, M.; Banday, A. J.; Baccigalupi, C.; Basak, S.; Bonaldi, A.; De Zotti, G.; Delabrouille, J.; Dickinson, C.; Eriksen, H. K.; Errard, J.; Fernandez-Cobos, R.; Fuskeland, U.; Hervías-Caimapo, C.; López-Caniego, M.; Martinez-González, E.; Roman, M.; Vielva, P.; Wehus, I.; Achucarro, A.; Ade, P.; Allison, R.; Ashdown, M.; Ballardini, M.; Banerji, R.; Bartlett, J.; Bartolo, N.; Baumann, D.; Bersanelli, M.; Bonato, M.; Borrill, J.; Bouchet, F.; Boulanger, F.; Brinckmann, T.; Bucher, M.; Burigana, C.; Buzzelli, A.; Cai, Z.-Y.; Calvo, M.; Carvalho, C.-S.; Castellano, G.; Challinor, A.; Chluba, J.; Clesse, S.; Colantoni, I.; Coppolecchia, A.; Crook, M.; D'Alessandro, G.; de Bernardis, P.; de Gasperis, G.; Diego, J.-M.; Di Valentino, E.; Feeney, S.; Ferraro, S.; Finelli, F.; Forastieri, F.; Galli, S.; Genova-Santos, R.; Gerbino, M.; González-Nuevo, J.; Grandis, S.; Greenslade, J.; Hagstotz, S.; Hanany, S.; Handley, W.; Hernandez-Monteagudo, C.; Hills, M.; Hivon, E.; Kiiveri, K.; Kisner, T.; Kitching, T.; Kunz, M.; Kurki-Suonio, H.; Lamagna, L.; Lasenby, A.; Lattanzi, M.; Lesgourgues, J.; Lewis, A.; Liguori, M.; Lindholm, V.; Luzzi, G.; Maffei, B.; Martins, C. J. A. P.; Masi, S.; Matarrese, S.; McCarthy, D.; Melin, J.-B.; Melchiorri, A.; Molinari, D.; Monfardini, A.; Natoli, P.; Negrello, M.; Notari, A.; Paiella, A.; Paoletti, D.; Patanchon, G.; Piat, M.; Pisano, G.; Polastri, L.; Polenta, G.; Pollo, A.; Poulin, V.; Quartin, M.; Rubino-Martin, J.-A.; Salvati, L.; Tartari, A.; Tomasi, M.; Tramonte, D.; Trappe, N.; Trombetti, T.; Tucker, C.; Valiviita, J.; Van de Weijgaert, R.; van Tent, B.; Vennin, V.; Vittorio, N.; Young, K.; Zannoni, M.

    2018-04-01

    We demonstrate that, for the baseline design of the CORE satellite mission, the polarized foregrounds can be controlled at the level required to allow the detection of the primordial cosmic microwave background (CMB) B-mode polarization with the desired accuracy at both reionization and recombination scales, for tensor-to-scalar ratio values of rgtrsim 5× 10‑3. We consider detailed sky simulations based on state-of-the-art CMB observations that consist of CMB polarization with τ=0.055 and tensor-to-scalar values ranging from r=10‑2 to 10‑3, Galactic synchrotron, and thermal dust polarization with variable spectral indices over the sky, polarized anomalous microwave emission, polarized infrared and radio sources, and gravitational lensing effects. Using both parametric and blind approaches, we perform full component separation and likelihood analysis of the simulations, allowing us to quantify both uncertainties and biases on the reconstructed primordial B-modes. Under the assumption of perfect control of lensing effects, CORE would measure an unbiased estimate of r=(5 ± 0.4)× 10‑3 after foreground cleaning. In the presence of both gravitational lensing effects and astrophysical foregrounds, the significance of the detection is lowered, with CORE achieving a 4σ-measurement of r=5× 10‑3 after foreground cleaning and 60% delensing. For lower tensor-to-scalar ratios (r=10‑3) the overall uncertainty on r is dominated by foreground residuals, not by the 40% residual of lensing cosmic variance. Moreover, the residual contribution of unprocessed polarized point-sources can be the dominant foreground contamination to primordial B-modes at this r level, even on relatively large angular scales, l ~ 50. Finally, we report two sources of potential bias for the detection of the primordial B-modes by future CMB experiments: (i) the use of incorrect foreground models, e.g. a modelling error of Δβs = 0.02 on the synchrotron spectral indices may result in an

  18. Two-component Superfluid Hydrodynamics of Neutron Star Cores

    Energy Technology Data Exchange (ETDEWEB)

    Kobyakov, D. N. [Institute of Applied Physics of the Russian Academy of Sciences, 603950 Nizhny Novgorod (Russian Federation); Pethick, C. J., E-mail: dmitry.kobyakov@appl.sci-nnov.ru, E-mail: pethick@nbi.dk [The Niels Bohr International Academy, The Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, DK-2100 Copenhagen Ø (Denmark)

    2017-02-20

    We consider the hydrodynamics of the outer core of a neutron star under conditions when both neutrons and protons are superfluid. Starting from the equation of motion for the phases of the wave functions of the condensates of neutron pairs and proton pairs, we derive the generalization of the Euler equation for a one-component fluid. These equations are supplemented by the conditions for conservation of neutron number and proton number. Of particular interest is the effect of entrainment, the fact that the current of one nucleon species depends on the momenta per nucleon of both condensates. We find that the nonlinear terms in the Euler-like equation contain contributions that have not always been taken into account in previous applications of superfluid hydrodynamics. We apply the formalism to determine the frequency of oscillations about a state with stationary condensates and states with a spatially uniform counterflow of neutrons and protons. The velocities of the coupled sound-like modes of neutrons and protons are calculated from properties of uniform neutron star matter evaluated on the basis of chiral effective field theory. We also derive the condition for the two-stream instability to occur.

  19. Structural integrity assessment of intermediate heat exchanger in the HTTR. Based on results of rise-to-power test

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, Takeshi; Tachibana, Yukio; Nakagawa, Shigeaki [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment

    2002-12-01

    A helium/helium intermediate heat exchanger (IHX) in the high temperature engineering test reactor (HTTR) is an essential component for demonstration of future nuclear process heat utilization of high temperature gas-cooled reactor (HTGR). The IHX with a heat capacity of 10 MW has 96 helically-coiled heat transfer tubes. Structural design for the IHX had been conducted through elastic-creep analysis of superalloy Hastelloy XR components such as heat transfer tubes and center pipe. In the HTTR rise-to-power test, it was clarified that temperature of the coolant in the IHX at the reactor scrams changes more rapidly than expected in the design. Effects of the IHX coolant temperature change, at anticipated reactor scram from the full power of 30 MW at high temperature test operation, on structural integrity of the heat transfer tubes and the lower reducer of the center pipe were investigated analytically based on the coolant temperature data obtained from the rise-to-power test. As results of the assessment, it was confirmed that cumulative principal creep strain, cumulative creep and fatigue damage factor of the IHX components during 10{sup 5} h of the HTTR lifetime should be below the allowable limits, which are established in the high-temperature structural design code for the HTGR Class 1 components. (author)

  20. Analytical estimation of control rod shadowing effect for excess reactivity measurement of HTTR

    International Nuclear Information System (INIS)

    Nakano, Masaaki; Fujimoto, Nozomu; Yamashita, Kiyonobu

    1999-01-01

    The fuel addition method is generally used for the excess reactivity measurement of the initial core. The control rod shadowing effect for the excess reactivity measurement has been estimated analytically for High Temperature Engineering Test Reactor (HTTR). 3-dimensional whole core analyses were carried out. The movements of control rods in measurements were simulated in the calculation. It was made clear that the value of excess reactivity strongly depend on combinations of measuring control rods and compensating control rods. The differences in excess reactivity between combinations come from the control rod shadowing effect. The shadowing effect is reduced by the use of plural number of measuring and compensating control rods to prevent deep insertion of them into the core. The measured excess reactivity in the experiments is, however, smaller than the estimated value with shadowing effect. (author)

  1. Incentives and opportunities for reducing the cobalt content in reactor core components

    International Nuclear Information System (INIS)

    Ocken, H.

    1985-01-01

    Cobalt in core components contributes to radiation field buildup on out-of-core surfaces. Core components containing cobalt-base alloys and cobalt as an impurity are identified. The use of cobalt-free wear-resistant alloys and construction materials with lower impurity levels of cobalt is disused. It is argued that such measures are cost effective. Lower radiation fields and disposal costs will offset higher raw material costs. Component performance will not be affected. (author)

  2. Preliminary design of steam reformer in out-pile demonstration test facility for HTTR heat utilization system

    Energy Technology Data Exchange (ETDEWEB)

    Haga, Katsuhiro; Hino, Ryutaro; Inagaki, Yosiyuki; Hata, Kazuhiko; Aita, Hideki; Sekita, Kenji; Nishihara, Tetsuo; Sudo, Yukio [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment; Yamada, Seiya

    1996-11-01

    One of the key objectives of HTTR is to demonstrate effectiveness of high-temperature nuclear heat utilization system. Prior to connecting a heat utilization system to HTTR, an out-pile demonstration test is indispensable for the development of experimental apparatuses, operational control and safety technology, and verification of the analysis code of safety assessment. For the first heat utilization system of HTTR, design of the hydrogen production system by steam reforming is going on. We have proposed the out-pile demonstration test plan of the heat utilization system and conducted preliminary design of the test facility. In this report, design of the steam reformer, which is the principal component of the test facility, is described. In the course of the design, two types of reformers are considered. The one reformer contains three reactor tubes and the other contains one reactor tube to reduce the construction cost of the test facility. We have selected the steam reformer operational conditions and structural specifications by analyzing the steam reforming characteristics and component structural strength for each type of reformer. (author)

  3. Out-of-pile demonstration test of HTTR hydrogen production system structure and fabrication technology of steam reformer. Contract research

    Energy Technology Data Exchange (ETDEWEB)

    Inagaki, Yoshiyuki; Ouchi, Yoshihiro; Fujisaki, Katsuo; Kato, Michio; Uno, Hisao; Hayashi, Koji; Aita, Hideki [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment

    1999-10-01

    A hydrogen production system by steam reforming of natural gas, chemical reaction; CH{sub 4}+H{sub 2}O = 3H{sub 2}+CO, is to be the first heat utilization system of the HTTR. Prior to coupling of the steam reforming system with the HTTR, an out-of-pile test facility is presently under construction in order to confirm safety, controllability and performance of the steam reforming system under simulated operational conditions of the HTTR hydrogen production system. The out-of-pile test facility, using an electric heater as a reactor substitute, simulates key components downstream an intermediate heat exchanger of the HTTR hydrogen production system on a scale of 1 to 30 with a hydrogen production rate of 110 Nm{sup 3}/h. A steam reformer (SR) is a key component to produce hydrogen by steam reforming of natural gas. A bayonet-type catalyst tube was applied to the SR of the out-of-pile test facility in order to enhance the heat utilization rate. Also to promote heat transfer, the thickness of the catalyst tube should be decreased to 10 mm while augmenting heat transfer by fins formed on the outer surface of the catalyst tube. Therefore, the catalyst tube was designed on the basis of pressure difference between helium and process gases instead of total pressure of them. This design method was authorized for the first time in Japan. Furthermore, a function of explosion proof was applied to the SR because it contains inflammable gas and electric heater. This report describes the structure of the SR as well as the authorization both of the design method of the catalyst tube and the explosion proof function of the SR. (author)

  4. Out-of-pile demonstration test of HTTR hydrogen production system structure and fabrication technology of steam reformer. Contract research

    International Nuclear Information System (INIS)

    Inagaki, Yoshiyuki; Ouchi, Yoshihiro; Fujisaki, Katsuo; Kato, Michio; Uno, Hisao; Hayashi, Koji; Aita, Hideki

    1999-10-01

    A hydrogen production system by steam reforming of natural gas, chemical reaction; CH 4 +H 2 O = 3H 2 +CO, is to be the first heat utilization system of the HTTR. Prior to coupling of the steam reforming system with the HTTR, an out-of-pile test facility is presently under construction in order to confirm safety, controllability and performance of the steam reforming system under simulated operational conditions of the HTTR hydrogen production system. The out-of-pile test facility, using an electric heater as a reactor substitute, simulates key components downstream an intermediate heat exchanger of the HTTR hydrogen production system on a scale of 1 to 30 with a hydrogen production rate of 110 Nm 3 /h. A steam reformer (SR) is a key component to produce hydrogen by steam reforming of natural gas. A bayonet-type catalyst tube was applied to the SR of the out-of-pile test facility in order to enhance the heat utilization rate. Also to promote heat transfer, the thickness of the catalyst tube should be decreased to 10 mm while augmenting heat transfer by fins formed on the outer surface of the catalyst tube. Therefore, the catalyst tube was designed on the basis of pressure difference between helium and process gases instead of total pressure of them. This design method was authorized for the first time in Japan. Furthermore, a function of explosion proof was applied to the SR because it contains inflammable gas and electric heater. This report describes the structure of the SR as well as the authorization both of the design method of the catalyst tube and the explosion proof function of the SR. (author)

  5. Fabrication of HTTR first loading fuel

    International Nuclear Information System (INIS)

    Kato, S.; Yoshimuta, S.; Hasumi, T.; Sato, K.; Sawa, K.; Suzuki, S.; Mogi, H.; Shiozawa, S.; Tanaka, T.

    2001-01-01

    This paper summarizes the fabrication of the first loading fuel for HTTR, High Temperature engineering Test Reactor constructed by JAERI, Japan Atomic Energy Research Institute. The fuel fabrication started at the HTR fuel facility of NFI, Nuclear Fuel Industries, Ltd., June 1995. 4,770 fuel rods were fabricated through the fuel kernel, coated fuel particle and fuel compaction process, then 150 fuel elements were assembled in the reactor building December 1997. Fabrication technology for the fuel was established through a lot of R and D activities and fabrication experience of irradiation examination samples spread over about 30 years. Most of all, very high quality and production efficiency of fuel were achieved by the development of the fuel kernel process using the vibration dropping technology, the continuous 4-layer coating process and the automatic compaction process. As for the inspection technology, the development of the automatic measurement equipment for coated layer thickness of a coated fuel particle and uranium content of a fuel compact contributed to the higher reliability and rationalization of the inspection process. The data processing system for the fabrication and quality control, which was originally developed by NFI, made possible not only quick feedback of statistical quality data to the fabrication processes, but also automatic document preparation, such as inspection certificates and accountability control reports. The quality of the first loading fuel fully satisfied the design specifications for the fuel. In particular, average bare uranium fraction and SiC defective fraction of fuel compacts were 2x10 -6 and 8x10 -5 , respectively. According to the preceding irradiation examinations being performed at JMTR, Japan Materials Testing Reactor of JAERI, the specimen sampled from the first loading fuel shows good irradiation performance. (author)

  6. Seismic scrammability of HTTR control rods

    International Nuclear Information System (INIS)

    Nishiguchi, I.; Iyoku, T.; Ito, N.; Watanabe, Y.; Araki, T.; Katagiri, S.

    1990-01-01

    Scrammability tests on HTTR (High-Temperature Engineering Test Reactor) control rods under seismic conditions have been carried out and seismic conditions influences on scram time as well as functional integrity were examined. A control rod drive located in a stand-pipe at the top of a reactor vessel, raises and lowers a pair of control rods by suspension cables. Each flexible control rod consists of 10 neutron absorber sections held together by a metal spine passing through the center. It falls into a hole in graphite blocks due to gravity at scram. In the tests, a full scale control rod drive and a pair of control rods were employed with a column of graphite blocks in which holes for rods were formed. Blocks misalignment and contact with the hole surface during earthquakes were considered as major causes of disturbance in scram time. Therefore, the following parameters were set up in the tests: excitation direction, combination or horizontal and vertical excitation, acceleration, frequency and block to block gaps. Main results obtained from tests are as follow. 1) Every scram time obtained under the design conditions was within 6 seconds. On the contrary, the scram times were 5.2 seconds when there were no vibration. Therefore, it was concluded that the seismic effects on scram time were not significant. 2) Scram time became longer with increase in both acceleration and horizontal excitation frequency, and control rods fell very smoothly without any jerkiness. This suggests that collision between control rods and hole surface is the main disturbing factor of falling motion. 3) Mechanical and functional integrity of control rod drive mechanism, control rods and graphite blocks was confirmed after 140 seismic scrammability tests. (author). 10 figs, 1 tab

  7. Production process and quality control for the HTTR fuel

    International Nuclear Information System (INIS)

    Yoshimuta, S.; Suzuki, N.; Kaneko, M.; Fukuda, K.

    1991-01-01

    Development of the production and inspection technology for High Temperature Engineering Test Reactor (HTTR) fuel has been carried out by cooperative work between Japan Atomic Energy Research Institute (JAERI) and Nuclear Fuel Industries, Ltd (NFI). The performance and the quality level of the developed fuel are well established to meet the design requirements of the HTTR. For the commercial scale production of the fuel, statistical quality control and quality assurance must be carefully considered in order to assure the safety of the HTTR. It is also important to produce the fuel under well controlled process condition. To meet these requirements in the production of the HTTR fuel, a new production process and quality control system is to be introduced in the new facilities. The main feature of the system is a computer integrated control system. Process control data at each production stage of products and semi-products are all gathered by terminal computers and processed by a host computer. The processed information is effectively used for the production, quality and accountancy control. With the aid of this system, all the products will be easily traceable from starting materials to final stages and the statistical evaluation of the quality of products becomes more reliable. (author). 8 figs

  8. HTTR demonstration test plan for industrial utilization of nuclear heat

    International Nuclear Information System (INIS)

    Sato, Hiroyuki; Ohashi, Hirofumi; Yan, Xing L.; Kubo, Shinji; Nishihara, Tetsuo; Tachibana, Yukio; Inagaki, Yoshiyuki

    2014-09-01

    Japan Atomic Energy Agency has been conducting research and development with a central focus on the utilization of High Temperature engineering Test Reactor (HTTR), the first High Temperature Gas-cooled Reactor (HTGR) in Japan, towards the realization of industrial use of nuclear heat. Several studies have made on the integration of the HTTR with thermochemical iodine-sulfur process and steam methane reforming hydrogen production plant (H 2 plant) as well as helium gas turbine power conversion system. In addition, safety standards for coupling a H 2 plant to a nuclear facility has been investigated. Based on the past design information, the present study identified test items to be validated in the HTTR demonstration test to accomplish a formulation of safety requirement and design consideration for coupling a H 2 plant to a nuclear facility as well as confirmation of overall performance of helium gas turbine system. In addition, plant concepts for the heat utilization system to be connected with the HTTR are investigated. (author)

  9. HTTR demonstration program for nuclear cogeneration of hydrogen and electricity

    International Nuclear Information System (INIS)

    Sato, Hiroyuki; Sumita, Junya; Terada, Atsuhiko; Ohashi, Hirofumi; Yan, Xing L.; Nishihara, Tetsuo; Tachibana, Yukio; Inagaki, Yoshiyuki

    2015-01-01

    Japan Atomic Energy Agency initiated a High Temperature Engineering Test Reactor (HTTR) demonstration program in accordance with recommendations of a task force established by Ministry of Education, Culture, Sports, Science and Technology according to the Strategic Energy Plan as of April 2014. The demonstration program is designed to complete helium gas turbine and hydrogen production system technologies aiming at commercial plant deployment in 2030s. The program begins with coupling a helium gas turbine in the secondary loop of the HTTR and expands by adding the H 2 plant to a tertiary loop to enable hydrogen cogeneration. Safety standards for coupling the helium gas turbine and H 2 plant to the nuclear reactor will be established through safety review in licensing. A system design and its control method are planned to be validated with a series of test operations using the HTTR-GT/H 2 plant. This paper explains the outline of HTTR demonstration program with a plant concept of the heat application system directed at establishing an HTGR cogeneration system with 950°C reactor outlet temperature for production of power and hydrogen as recommended by the task force. Commercial deployment strategy including a development plan for the helium gas turbine is also presented. (author)

  10. Core Stability in Chain-Component Additive Games

    NARCIS (Netherlands)

    van Velzen, S.; Hamers, H.J.M.; Solymosi, T.

    2004-01-01

    Chain-component additive games are graph-restricted superadditive games, where an exogenously given line-graph determines the cooperative possibilities of the players.These games can model various multi-agent decision situations, such as strictly hierarchical organisations or sequencing / scheduling

  11. Evaluation of heat exchange performance for primary pressurized water cooler in HTTR

    International Nuclear Information System (INIS)

    Tochio, Daisuke; Nakagawa, Shigeaki

    2006-01-01

    In High Temperature Engineering Test Reactor (HTTR), the rated thermal power of 30 MW, the generated heat at reactor core is finally dissipated at the air-cooler by way of the heat exchangers of the primary cooling system, such as the primary pressurized water cooler (PPWC) and the intermediate heat exchanger (IHX). The heat exchangers in the primary cooling system are required the heat exchange performance to remove reactor generated heat 30 MW under the condition of reactor coolant outlet temperature 850degC/950degC. Therefore, the heat exchanges are required to satisfy the design criteria of heat exchange performance. In this report, heat exchange performance data of the rise-to-power-up test and the in-service operation for the PPWC in the main cooling system was evaluated. Moreover, the evaluated values were compared with the design values, and it is confirmed that PPWC has the required heat exchange performance in the design. (author)

  12. Evaluation of heat exchange performance for secondary pressurized water cooler in HTTR

    International Nuclear Information System (INIS)

    Tochio, Daisuke; Watanabe, Syuji; Saikusa, Akio; Oyama, Sunao; Nemoto, Takahiro; Hamamoto, Shinpei; Shinohara, Masanori; Isozaki, Minoru; Nakagawa, Shigeaki

    2006-02-01

    In High Temperature Engineering Test Reactor (HTTR), the rated thermal power of 30MW, the generated heat at reactor core is finally dissipated at the air-cooler by way of the heat exchangers of the primary cooling system, such as the intermediate heat exchanger (IHX) and the secondary pressurized water cooler (SPWC). The heat exchangers in the main cooling system are required the heat exchange performance to remove the reactor-generated-heat of 30MW under the condition of reactor coolant outlet temperature of 850degC/950degC. Therefore, the heat exchanges are required to satisfy the design criteria of heat exchange performance. In this report, heat exchange performance of the SPWC in the main cooling system was evaluated with the rise-to-power-up test and the in-service operation data. Moreover, evaluated value is compared with designed one, it is confirmed that the SPWC has required heat exchange performance. (author)

  13. Proceedings of the international conference on irradiation behaviour of metallic materials for fast reactor core components

    International Nuclear Information System (INIS)

    Poirier, J.; Dupouy, J.M.

    Radiation effects on metals or alloys used in fast reactor core components are examined in the papers presented at this conference, the accent being put on swelling and irradiation creep of steels and nickel alloys

  14. Electrical Core Transformer for Grid Improvement Incorporating Wire Magnetic Components

    Energy Technology Data Exchange (ETDEWEB)

    Harrie R. Buswell, PhD; Dennis Jacobs, PhD; Steve Meng

    2012-03-26

    The research reported herein adds to the understanding of oil-immersed distribution transformers by exploring and demonstrating potential improvements in efficiency and cost utilizing the unique Buswell approach wherein the unit is redesigned, replacing magnetic sheet with wire allowing for improvements in configuration and increased simplicity in the build process. Exploration of new designs is a critical component in our drive to assure reduction of energy waste, adequate delivery to the citizenry, and the robustness of U.S. manufacturing. By moving that conversation forward, this exploration adds greatly to our base of knowledge and clearly outlines an important avenue for further exploration. This final report shows several advantages of this new transformer type (outlined in a report signed by all of our collaborating partners and included in this document). Although materials development is required to achieve commercial potential, the clear benefits of the technology if that development were a given is established. Exploration of new transformer types and further work on the Buswell design approach is in the best interest of the public, industry, and the United States. Public benefits accrue from design alternatives that reduce the overall use of energy, but it must be acknowledged that new DOE energy efficiency standards have provided some assurance in that regard. Nonetheless the burden of achieving these new standards has been largely shifted to the manufacturers of oil-immersed distribution transformers with cost increasing up to 20% of some units versus 2006 when this investigation was started. Further, rising costs have forced the industry to look closely are far more expensive technologies which may threaten U.S. competitiveness in the distribution transformer market. This concern is coupled with the realization that many units in the nation's grid are beyond their optimal life which suggests that the nation may be headed for an infrastructure

  15. Investigation on cause of outage of Wide Range Monitor (WRM) in High Temperature engineering Test Reactor (HTTR). Transport operation toward investigation for cause of outage

    International Nuclear Information System (INIS)

    Shinohara, Masanori; Sawahata, Hiroaki; Kawamoto, Taiki; Saito, Kenji; Takada, Shoji; Yoshida, Naoaki; Isozaki, Ryosuke; Katsuyama, Kozo; Motegi, Toshihiro

    2012-08-01

    An event, in which one of WRMs were disabled to detect the neutron flux in the reactor core, occurred during the period of reactor shut down of HTTR in March, 2010. The actual life time of WRM was unexpectedly shorter than the past developed life time. Investigation of the cause of the outage of WRM toward the recovery of the life time up to the developed life is one of the issues to develop the technology basis of High Temperature Gas cooled Reactor (HTGR). Then, a post irradiation examination was planned to specify the damaged part causing the event in the WRM was also planned. For the investigation, the X-ray computed tomography scanner in Fuels Monitoring Facility (FMF). This report describes the preliminary investigation on the cause of outage of the WRM. The results of study for transportation method of the irradiated WRM from HTTR to FMF is also reported with the record to complete the transport operation. (author)

  16. Electrosprayed core-shell polymer-lipid nanoparticles for active component delivery

    Science.gov (United States)

    Eltayeb, Megdi; Stride, Eleanor; Edirisinghe, Mohan

    2013-11-01

    A key challenge in the production of multicomponent nanoparticles for healthcare applications is obtaining reproducible monodisperse nanoparticles with the minimum number of preparation steps. This paper focus on the use of electrohydrodynamic (EHD) techniques to produce core-shell polymer-lipid structures with a narrow size distribution in a single step process. These nanoparticles are composed of a hydrophilic core for active component encapsulation and a lipid shell. It was found that core-shell nanoparticles with a tunable size range between 30 and 90 nm and a narrow size distribution could be reproducibly manufactured. The results indicate that the lipid component (stearic acid) stabilizes the nanoparticles against collapse and aggregation and improves entrapment of active components, in this case vanillin, ethylmaltol and maltol. The overall structure of the nanoparticles produced was examined by multiple methods, including transmission electron microscopy and differential scanning calorimetry, to confirm that they were of core-shell form.

  17. Conceptual design of the HTTR-IS hydrogen production system

    International Nuclear Information System (INIS)

    Sakaba, Nariaki; Sato, Hiroyuki; Hara, Teruo; Kato, Ryoma; Ohashi, Kazutaka; Nishihara, Tetsuo; Kunitomi, Kazuhiko

    2007-08-01

    Since hydrogen produced by nuclear should be economically competitive compared with other methods in a hydrogen society, it is important to build hydrogen production system to be coupled with the reactor as a conventional chemical plant. Japan Atomic Energy Agency started the safety study to establish a new safety philosophy to meet safety requirements for non-nuclear grade hydrogen production system. Also, structural concepts with integrating functions for the Bunsen reactor and sulphuric acid decomposer were proposed to reduce construction cost of the IS process hydrogen production system. In addition, HI decomposer which enables the process condition to be eased consisting of conventional materials and technologies was studied. Moreover, technical feasibility of the HTTR-IS system in which the hydrogen production rate of 1,000 Nm 3 /h by using the supplied heat of 10 MW from the intermediate heat exchanger of the HTTR was confirmed. This paper describes the conceptual design of the HTTR-IS hydrogen production system. (author)

  18. Endogenous and exogenous components in the circadian variation of core body temperature in humans

    NARCIS (Netherlands)

    Hiddinga, AE; Beersma, DGM; VandenHoofdakker, RH

    Core body temperature is predominantly modulated by endogenous and exogenous components. In the present study we tested whether these two components can be reliably assessed in a protocol which lasts for only 120 h. In this so-called forced desynchrony protocol, 12 healthy male subjects (age 23.7

  19. Understanding susceptibility of in-core components to irradiation-assisted stress corrosion cracking

    International Nuclear Information System (INIS)

    Chung, H.M.; Ruther, W.E.; Sanecki, J.E.; Kassner, T.F.

    1991-03-01

    As nuclear plants age and accumulated fluences of core structural components increase, susceptibility of the components to irradiation-assisted stress corrosion cracking (IASCC) is also expected to increase. Irradiation-induced sensitization, commonly associated with an IASCC failure, was investigated in this study to provide a better understanding of long-term structural integrity of safety-significant in-core components. Irradiation-induced sensitization of high- and commercial-purity Type 304 stainless steels irradiated in BWRs was analyzed. 7 refs., 8 figs

  20. Design Basis of Core Components and their Realization in the frame of the EPR's{sup TM} Core Component Development

    Energy Technology Data Exchange (ETDEWEB)

    Schebitz, Florian [AREVA NP GmbH, Paul-Gossen-Str. 100, 91052 Erlangen (Germany); Mekmouche, Abdelhalim [AREVA NP SAS, 10 rue Juliette Recamier, 69456 Lyon Cedex 06 (France)

    2008-07-01

    Rod Cluster Control Assemblies (RCCAs), Thimble Plug Assemblies (TPAs), Primary Neutron Sources (PNS) and Secondary Neutron Sources (SNS) are essential for the operation of a Nuclear Power Plant. Different functional requirements ask for different components and geometries. Therefore three different core components are used within the primary circuit: - The RCCA, which contains the absorber materials, is used to regulate and shut down the nuclear chain reaction. Under these demanding conditions different effects are determining the lifetime of the RCCA and in particular of the control rods. Several improvements like ion-nitriding of the cladding, lengthening of the bottom end plug, helium backfilling and reduction of the absorber diameter in the bottom part, which have already been introduced with the HARMONI{sup TM} RCCA, show a real improvement in terms of lifetime. - The TPAs are used at positions without RCCAs and neutron sources to limit the by-pass flow-rate in the fuel assembly guide tubes. The advanced TPA design results from a perfect combination of French and German design experience feedback. Benefits like homogenized hydraulic flow and improved manageability in terms of handling tools show the joined experience. - The neutron sources are used to enhance the flux level when the core is sub-critical so as to facilitate the core start-up control by the neutron flux detectors. Primary and secondary neutron sources are designed in a common way with reviewed and improved methodology. As there are different ways and conditions to operate core components, several designs are available. For the EPR{sup TM}, the best methods and products have been chosen. All chosen components contribute to an optimized and safe operation of the EPR{sup TM}. (authors)

  1. Evaluation of nuclear power plant component failure probability and core damage probability using simplified PSA model

    International Nuclear Information System (INIS)

    Shimada, Yoshio

    2000-01-01

    It is anticipated that the change of frequency of surveillance tests, preventive maintenance or parts replacement of safety related components may cause the change of component failure probability and result in the change of core damage probability. It is also anticipated that the change is different depending on the initiating event frequency or the component types. This study assessed the change of core damage probability using simplified PSA model capable of calculating core damage probability in a short time period, which is developed by the US NRC to process accident sequence precursors, when various component's failure probability is changed between 0 and 1, or Japanese or American initiating event frequency data are used. As a result of the analysis, (1) It was clarified that frequency of surveillance test, preventive maintenance or parts replacement of motor driven pumps (high pressure injection pumps, residual heat removal pumps, auxiliary feedwater pumps) should be carefully changed, since the core damage probability's change is large, when the base failure probability changes toward increasing direction. (2) Core damage probability change is insensitive to surveillance test frequency change, since the core damage probability change is small, when motor operated valves and turbine driven auxiliary feed water pump failure probability changes around one figure. (3) Core damage probability change is small, when Japanese failure probability data are applied to emergency diesel generator, even if failure probability changes one figure from the base value. On the other hand, when American failure probability data is applied, core damage probability increase is large, even if failure probability changes toward increasing direction. Therefore, when Japanese failure probability data is applied, core damage probability change is insensitive to surveillance tests frequency change etc. (author)

  2. Electron spin resonance characterization of radical components in irradiated black pepper skin and core

    International Nuclear Information System (INIS)

    Yamaoki, Rumi; Kimura, Shojiro; Ohta, Masatoshi

    2011-01-01

    Characteristics of free radical components of irradiated black pepper fruit (skin) and the pepper seed (core) were analyzed using electron spin resonance. A weak signal near g=2.005 was observed in black pepper before irradiation. Complex spectra near g=2.005 with three lines (the skin) or seven lines (the core) were observed in irradiated black pepper (both end line width; ca. 6.8 mT). The spectral intensities decreased considerably at 30 days after irradiation, and continued to decrease steadily thereafter. The spectra simulated on the basis of the content and the stability of radical components derived from plant constituents, including fiber, starch, polyphenol, mono- and disaccharide, were in good agreement with the observed spectra. Analysis showed that the signal intensities derived from fiber in the skin for an absorbed dose were higher, and the rates of decrease were lower, than that in the core. In particular, the cellulose radical component in the skin was highly stable. - Highlights: → We identified the radical components in irradiated black pepper skin and core. → The ESR spectra near g=2.005 with 3-7 lines were emerged after irradiation. → Spectra simulated basing on the content and the stability of radical from the plant constituents. → Cellulose radical component in black pepper skin was highly stable. → Single signal near g=2.005 was the most stable in black pepper core.

  3. Performance test results of mock-up model test facility with a full-scale reaction tube for HTTR hydrogen production system. Contract research

    Energy Technology Data Exchange (ETDEWEB)

    Inagaki, Yoshiyuki; Hayashi, Koji; Kato, Michio [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment] [and others

    2003-03-01

    Research on a hydrogen production system by steam reforming of methane, chemical reaction; CH{sub 4} + H{sub 2}O {yields} 3H{sub 2}O + CO, has been carried out to couple with the HTTR for establishment of high-temperature nuclear heat utilization technology and contribution to hydrogen energy society in future. The mock-up test facility with a full-scale reaction tube test facility, a model simulating one reaction tube of a steam reformer of the HTTR hydrogen production system in full scale, was fabricated to perform tests on controllability, hydrogen production performance etc. under the same pressure and temperature conditions as those of the HTTR hydrogen production system. The design and fabrication of the test facility started from 1997, and the all components were installed until September in 2001. In a performance test conducted from October in 2001 to February in 2002, performance of each component was examined and hydrogen of 120m{sup 3}{sub N}/h was successfully produced with high-temperature helium gas. This report describes the performance test results on components performance, hydrogen production characteristics etc., and main troubles and countermeasures. (author)

  4. Performance test results of mock-up model test facility with a full-scale reaction tube for HTTR hydrogen production system. Contract research

    International Nuclear Information System (INIS)

    Inagaki, Yoshiyuki; Hayashi, Koji; Kato, Michio

    2003-03-01

    Research on a hydrogen production system by steam reforming of methane, chemical reaction; CH 4 + H 2 O → 3H 2 O + CO, has been carried out to couple with the HTTR for establishment of high-temperature nuclear heat utilization technology and contribution to hydrogen energy society in future. The mock-up test facility with a full-scale reaction tube test facility, a model simulating one reaction tube of a steam reformer of the HTTR hydrogen production system in full scale, was fabricated to perform tests on controllability, hydrogen production performance etc. under the same pressure and temperature conditions as those of the HTTR hydrogen production system. The design and fabrication of the test facility started from 1997, and the all components were installed until September in 2001. In a performance test conducted from October in 2001 to February in 2002, performance of each component was examined and hydrogen of 120m 3 N /h was successfully produced with high-temperature helium gas. This report describes the performance test results on components performance, hydrogen production characteristics etc., and main troubles and countermeasures. (author)

  5. A Delphi study to identify the core components of nurse to nurse handoff.

    Science.gov (United States)

    O'Rourke, Jennifer; Abraham, Joanna; Riesenberg, Lee Ann; Matson, Jeff; Lopez, Karen Dunn

    2018-03-08

    The aim of this study was to identify the core components of nurse-nurse handoffs. Patient handoffs involve a process of passing information, responsibility and control from one caregiver to the next during care transitions. Around the globe, ineffective handoffs have serious consequences resulting in wrong treatments, delays in diagnosis, longer stays, medication errors, patient falls and patient deaths. To date, the core components of nurse-nurse handoff have not been identified. This lack of identification is a significant gap in moving towards a standardized approach for nurse-nurse handoff. Mixed methods design using the Delphi technique. From May 2016 - October 2016, using a series of iterative steps, a panel of handoff experts gave feedback on the nurse-nurse handoff core components and the content in each component to be passed from one nurse to the next during a typical unit-based shift handoff. Consensus was defined as 80% agreement or higher. After three rounds of participant review, 17 handoff experts with backgrounds in clinical nursing practice, academia and handoff research came to consensus on the core components of handoff: patient summary, action plan and nurse-nurse synthesis. This is the first study to identify the core components of nurse-nurse handoff. Subsequent testing of the core components will involve evaluating the handoff approach in a simulated and then actual patient care environment. Our long-term goal is to improve patient safety outcomes by validating an evidence-based handoff framework and handoff curriculum for pre-licensure nursing programmes that strengthen the quality of their handoff communication as they enter clinical practice. © 2018 John Wiley & Sons Ltd.

  6. Identification of the key parameters defining the life of graphite core components

    International Nuclear Information System (INIS)

    Mitchell, M.N.

    2005-01-01

    The Core Structures of a Pebble Bed rector core comprise graphite reflectors constructed from blocks. These blocks are subject to high flux and temperatures as well as significant gradients in flux and temperature. This loading combined with the behaviour of graphite under irradiation gives rise to complex stress states within the reflector blocks. At some point, the stress state will reach a critical level and cracks will initiate within the blocks. The point of crack initiation is a useful point to define as the end of the part's life. The life of these graphite reflector parts in a pebble bed reactor (PBR) core determines the service life of the Core Structures. The replacement of the Core Structures' components will be a costly and time consuming. It is important that the components of the Core Structures be designed for the best life possible. As part of the conceptual design of the Pebble Bed Modular Reactor (PBMR), the assessment of the life of these components was examined. To facilitate the understanding of the parameters that influence the design life of the PBMR, a study has been completed into the effect of various design parameters on the design life of a typical side reflector block. Parameters investigated include: block geometry, material property variations, and load variations. The results of this study are to be presented. (author)

  7. Evaluation on materials performance of Hastelloy Alloy XR for HTTR uses-5 (Creep properties of base metal and weldment in air)

    International Nuclear Information System (INIS)

    Watanabe, Katsutoshi; Nakajima, Hajime; Koikegami, Hajime; Higuchi, Makoto; Nakanishi, Tsuneo; Saitoh, Teiichiro; Takatsu, Tamao.

    1994-01-01

    Creep properties of weldment made from Hastelloy Alloy XR base metals and filler metals for the High Temperature Engineering Test Reactor (HTTR) components were examined by means of creep and creep rupture tests at 900 and 950degC in air. The results obtained are as follows: creep rupture strength was nearly equal or higher than that of Hastelloy Alloy XR master curve and was much higher than design creep rupture strength [S R ]. Furthermore, creep rupture strength and ductility of the present filler metal was in the data band in comparison with those of the previous filler metals. It is concluded from these reasons that this filler metal has fully favorable properties for HTTR uses. (author)

  8. Advanced BWR core component designs and the implications for SFD analysis

    International Nuclear Information System (INIS)

    Ott, L.J.

    1997-01-01

    Prior to the DF-4 boiling water reactor (BWR) severe fuel damage (SFD) experiment conducted at the Sandia National Laboratories in 1986, no experimental data base existed for guidance in modeling core component behavior under postulated severe accident conditions in commercial BWRs. This paper will present the lessons learned from the DF-4 experiment (and subsequent German CORA BWR SFD tests) and the impact on core models in the current generation of SFD codes. The DF-4 and CORA BWR test assemblies were modeled on the core component designs circa 1985; that is, the 8 x 8 fuel assembly with two water rods and a cruciform control blade constructed of B 4 C-filled tubelets. Within the past ten years, the state-of-the-art with respect to BWR core component development has out-distanced the current SFD experimental data base and SFD code capabilities. For example, modern BWR control blade design includes hafnium at the tips and top of each control blade wing for longer blade operating lifetimes; also water rods have been replaced by larger water channels for better neutronics economy; and fuel assemblies now contain partial-length fuel rods, again for better neutronics economy. This paper will also discuss the implications of these advanced fuel assembly and core component designs on severe accident progression and on the current SFD code capabilities

  9. Effect of crosstalk on component savings in multi-core fiber networks

    DEFF Research Database (Denmark)

    Nooruzzaman, Md; Morioka, Toshio

    2017-01-01

    We estimate potential component savings in MCF-based networks by using shortest path traffic routing and compare them with the current SCF-based systems. We also investigate the potential impact of various inter-core crosstalk values on the number of needed transponders in MCF networks.......We estimate potential component savings in MCF-based networks by using shortest path traffic routing and compare them with the current SCF-based systems. We also investigate the potential impact of various inter-core crosstalk values on the number of needed transponders in MCF networks....

  10. Mechanical design of core components for a high performance light water reactor with a three pass core

    International Nuclear Information System (INIS)

    Fischer, Kai; Schneider, Tobias; Redon, Thomas; Schulenberg, Thomas; Starflinger, Joerg

    2007-01-01

    Nuclear reactors using supercritical water as coolant can achieve more than 500 deg. C core outlet temperature, if the coolant is heated up in three steps with intermediate mixing to avoid hot streaks. This method reduces the peak cladding temperatures significantly compared with a single heat up. The paper presents an innovative mechanical design which has been developed recently for such a High Performance Light Water Reactor. The core is built with square assemblies of 40 fuel pins each, using wire wraps as grid spacers. Nine of these assemblies are combined to a cluster having a common head piece and a common foot piece. A downward flow of additional moderator water, separated from the coolant, is provided in gaps between the assemblies and in a water box inside each assembly. The cluster head and foot pieces and mixing chambers, which are key components for this design, are explained in detail. (authors)

  11. Determination of the temperature coefficients and the kinetic parameters for the HTTR safety analysis

    International Nuclear Information System (INIS)

    Tokuhara, K.; Nakata, T.; Murata, I.; Yamashita, K.; Shindo, R.

    1991-01-01

    This report describes the calculational methods which were employed to determine the temperature coefficients and the kinetic parameters for the safety analysis in the HTTR (High Temperature Engineering Test Reactor). The temperature coefficients (doppler, moderator temperature) and the kinetic parameters (prompt neutron life time; l, effective delayed neutron fraction; β eff) are important for the point model core dynamic analysis and should be evaluated properly. The temperature coefficients were calculated by the whole core model. Doppler coefficient was evaluated under the conditions of all control rods withdrawn and the uniform change of fuel temperature. The minimum and the maximum value of the evaluated doppler coefficients in a burnup cycle are -4.6x10 -5 and -1.5x10 -5 ΔK/K/deg. C respectively. The moderator temperature coefficient was evaluated under the conditions of all control rods withdrawn and the uniform change of moderator temperature. The minimum and the maximum value of the evaluated moderator temperature coefficients in a burnup cycle are -17.1x10 -5 and 0.99x10 -5 ΔK/K/deg. C respectively. In spite of positive moderator temperature coefficient, the power coefficient is always negative. Therefore the HTTR possesses inherent power-suppressing feed back characteristic in all operating condition. We surveyed the effects of the Xe existence, the control rods existence, the fuel temperature and the region in which the temperature was changed on the moderator temperature coefficients. The kinetic parameters were calculated by the perturbation method with the whole core model. The minimum and the maximum value of the evaluated effective delayed neutron fraction (β eff) are 0.0047 and 0.0065 respectively. These of the evaluated prompt neutron life time (l) are 0.67 and 0.78 ms respectively. We have surveyed the effects of the fuel depletion and the core power level on these parameters, and considered these effects on the kinetic parameters. From

  12. Investigation of the loss of forced cooling test by using the high temperature engineering test reactor (HTTR) (Contract research)

    International Nuclear Information System (INIS)

    Nakagawa, Shigeaki; Takamatsu, Kuniyoshi; Inaba, Yoshitomo; Goto, Minoru; Tochio, Daisuke

    2007-09-01

    The three gas circulators trip test and the vessel cooling system stop test as the safety demonstration test by using the High Temperature engineering Test Reactor (HTTR) are under planning to demonstrate inherent safety features of High Temperature Gas-cooled Reactor. All three gas circulators to circulate the helium gas as the coolant are stopped to simulate the loss of forced cooling in the three gas circulators trip test. The stop of the vessel cooling system located outside the reactor pressure vessel to remove the residual heat of the reactor core follows the stop of all three gas circulators in the vessel cooling system stop test. The analysis of the reactor transient for such tests and abnormal events postulated during the test was performed. From the result of analysis, it was confirmed that the three gas circulators trip test and the vessel cooling system stop test can be performed within the region of the normal operation in the HTTR and the safety of the reactor facility is ensured even if the abnormal events would occur. (author)

  13. Prospects of HTGR process heat application and role of HTTR

    International Nuclear Information System (INIS)

    Shiozawa, S.; Miyamoto, Y.

    2000-01-01

    At Japan Atomic Energy Research Institute, an effort on development of process heat application with high temperature gas cooled reactor (HTGR) has been continued for providing a future clean alternative to the burning of fossil energy for the production of industrial process heat. The project is named 'HTTR Heat Utilization Project', which includes a demonstration of hydrogen production using the first Japanese HTGR of High Temperature Engineering Test Reactor (HTTR). In the meantime, some countries, such as China, Indonesia, Russia and South Africa are trying to explore the HTGR process heat application for industrial use. One of the key issues for this application is economy. It has been recognized for a long time and still now that the HTGR heat application system is not economically competitive to the current fossil ones, because of the high cost of the HTGR itself. However, the recent movement on the HTGR development, as represented by South Africa Pebble Beds Modular Reactor (SA-PBMR) Project, has revealed that the HTGRs are well economically competitive in electricity production to fossil fuel energy supply under a certain condition. This suggests that the HTGR process heat application will also possibly get economical in the near future. In the present paper, following a brief introduction describing the necessity of the HTGRs for the future process heat application, Japanese activities and prospect of the development on the process heat application with the HTGRs are described in relation with the HTTR Project. In conclusion, the process heat application system with HTGRs is thought technically and economically to be one of the most promising applications to solve the global environmental issues and energy shortage which may happen in the future. However, the commercialization for the hydrogen production system from water, which is the final goal of the HTGR process heat application, must await the technology development to be completed in 2030's at the

  14. Fabrication development of full-sized components for GCFR core assemblies

    International Nuclear Information System (INIS)

    Lindgren, J.R.; Flynn, P.W.; Foster, L.C.

    1980-05-01

    This paper presents the status of the development of full-sized components for gas-cooled fast reactor (GCFR) core assemblies. Methods for ribbing of the fuel rod cladding, fabrication of grid spacers of two different designs, drawing of assembly flow ducts, and fabrication of fission gas collection manifolds by several methods are discussed

  15. Measuring the Core Components of Maladaptive Personality: Severity Indices of Personality Problems (SIPP-118)

    NARCIS (Netherlands)

    H. Andrea (Helene); R. Verheul (Roel); C.C. Berghout (Casper); C. Dolan (Conor); P.J.A. van der Kroft (Petra); A.W. Bateman (Anthony); P. Fonagy (Peter); J.J. van Busschbach (Jan)

    2007-01-01

    textabstractThis report describes a series of studies among 2231 subjects on the development of the Severity Indices for Personality Problems (SIPP), a self-report questionnaire measuring the core components of (mal)adaptive personality functioning. Results show that the 16 facets have good

  16. Eddy current testing on structures of nuclear-grade IG-110 graphite for acceptance test in HTTR

    International Nuclear Information System (INIS)

    Ishihara, Masahiro; Saikusa, Akio; Iyoku, Tatsuo

    1993-09-01

    Core and core support graphite structures in the HTTR are mainly made of IG-110 graphite which is fine-grained isotropic and nuclear-grade. Nondestructive inspection with eddy current testing is planned to be applied to these graphite structures. Eddy current testing is widely applied to metallic structures and its testing method has been already established. On the other hand, the characteristics of graphite are quite different in micro-structure from these of metals. Therefore, the eddy current testing method provided for metallic structures can not be applied directly to graphite structures. Thus the eddy current testing method and condition were established for the graphite structures made of IG-110 graphite. (author)

  17. Analytical method and result of radiation exposure for depressurization accident of HTTR

    International Nuclear Information System (INIS)

    Sawa, K.; Shiozawa, S.; Mikami, H.

    1990-01-01

    The Japan Atomic Energy Research Institute (JAERI) is now proceeding with the construction design of the High Temperature Engineering Test Reactor (HTTR). Since the HTTR has some characteristics different from LWRs, analytical method of radiation exposure in accidents provided for LWRs can not be applied directly. This paper describes the analytical method of radiation exposure developed by JAERI for the depressurization accident, which is the severest accident in respect to radiation exposure among the design basis accidents of the HTTR. The result is also described in this paper

  18. Outline of operation and control system and analytical investigation of transient behavior of an out-of-pile hydrogen production system for HTTR heat utilization system

    International Nuclear Information System (INIS)

    Inagaki, Yoshiyuki; Hada, Kazuhiko; Nishihara, Tetsuo; Takeda, Tetsuaki; Haga, Katsuhiro; Hino, Ryutaro.

    1997-10-01

    The hydrogen production system by steam reforming of natural gas is to be constructed to demonstrate effectiveness of high-temperature nuclear heat utilization systems with the HTTR. Prior to coupling of the steam reforming system with the HTTR, an out-of-pile test system is planned to investigate the system characteristics, to develop high-temperature components such as a reformer, a high-temperature isolation valve and so on, and to verify operation and control technologies and safety technology at accidents. This paper presents outline of operation and control systems and analytical review of transient behavior of the out-of-pile hydrogen production system. Main function of the operation and control systems is made not to give disturbance to the HTTR at transient state under start-up and stop operations. The operation modes are separated into two ones, namely normal and accident operation modes, and operation sequences are made for each operation mode. The normal operation sequence includes start-up, steady operation and stop of the out-of-pile system. The accident one deals with accident conditions at which supply of feed gas is stopped and helium gas is cooled passively by the steam generator. Transient behavior of the out-of-pile system was analyzed numerically according as the operation sequences. As the results, it was confirmed that the designed operation and control systems are adequate to the out-of-pile system. (author)

  19. An approach to development of structural design criteria for highly irradiated core components

    International Nuclear Information System (INIS)

    Nelson, D.V.

    1980-01-01

    The advent of the fast breeder reactor presents novel challenges in structural design and materials engineering. For instance, the core components of these reactors experience high energy neutron irradiation at elevated temperature, which causes significant time-dependent changes in material behaviour, such as a progressive loss of ductility. New structural design criteria are needed to extend elevated temperature design-by-analysis to account for these changes. Alloys best able to cope with the demands of the core operating environment are being explored and their structural behaviour characterized. The purpose of this paper is to illustrate an approach used in the development of core component structural design criteria. To do this, several design rules, plus brief rationale, from draft RDT Standards F9-7, -8 and -9 will be presented. These recently completed standards ('Structural Design Guidelines for Breeder Reactor Core Components') were prepared for the U.S. Department of Energy and represent a consensus among most organizations participating in the U.S. breeder program. (author)

  20. Status report: Intergranular stress corrosion cracking of BWR core shrouds and other internal components

    International Nuclear Information System (INIS)

    1996-03-01

    On July 25, 1994, the US Nuclear Regulatory Commission (NRC) issued Generic Letter (GL) 94-03 to obtain information needed to assess compliance with regulatory requirements regarding the structural integrity of core shrouds in domestic boiling water reactors (BWRs). This report begins with a brief description of the safety significance of intergranular stress corrosion cracking (IGSCC) as it relates to the design and function of BWR core shrouds and other internal components. It then presents a brief history of shroud cracking events both in the US and abroad, followed by an indepth summary of the industry actions to address the issue of IGSCC in BWR core shrouds and other internal components. This report summarizes the staff's basis for issuing GL 94-03, as well as the staff's assessment of plant-specific responses to GL 94-03. The staff is continually evaluating the licensee inspection programs and the results from examinations of BWR core shrouds and other internal components. This report is representative of submittals to and evaluations by the staff as of September 30, 1995. An update of this report will be issued at a later date

  1. Evaluation of in-core measurements by means of principal components method

    International Nuclear Information System (INIS)

    Makai, M.; Temesvari, E.

    1996-01-01

    Surveillance of a nuclear reactor core comprehends determination of assemblies' three-dimensional (3D) power distribution. Derived from other assemblies' measured values, power of non-measured assembly is calculated for every assembly with the help of principal components method (PCM) which is also presented. The measured values are interpolated for different geometrical coverings of the WWER-440 core. Different procedures have been elaborated and investigated, among them the most successful methods are discussed. Each method offers self consistent means to determine numerical errors of the interpolated values. (author). 13 refs, 7 figs, 2 tabs

  2. Evaluation of hydrogen production system coupling with HTTR using dynamic analysis code

    International Nuclear Information System (INIS)

    Sato, Hiroyuki; Ohashi, Hirofumi; Inaba, Yoshitomo; Nishihara, Tetsuo; Hayashi, Koji; Inagaki, Yoshiyuki

    2006-01-01

    The Japan Atomic Energy Agency (JAEA) was entrusted 'Development of Nuclear Heat Utilization Technology' by Ministry of Education, Culture, Sports, Science and Technology. In this development, the JAEA investigated the system integration technology to couple the hydrogen production system by steam reforming with the High Temperature Engineering Test Reactor (HTTR). Prior to the construction of the hydrogen production system coupling with the HTTR, a dynamic analysis code had to be developed to evaluate the system transient behaviour of the hydrogen production system because there are no examples of chemical facilities coupled with nuclear reactor in the world. This report describes the evaluation of the hydrogen production system coupling with HTTR using analysis code, N-HYPAC, which can estimate transient behaviour of the hydrogen production system by steam reforming. The results of this investigation provide that the influence of the thermal disturbance caused by the hydrogen production system on the HTTR can be estimated well. (author)

  3. Nonlinear seismic analysis of a reactor structure with impact between core components

    International Nuclear Information System (INIS)

    Hill, R.G.

    1975-01-01

    The seismic analysis of the FFTF-PIOTA (Fast Flux Test Facility-Postirradiation Open Test Assembly), subjected to a horizontal DBE (Design Base Earthquake) is presented. The PIOTA is the first in a set of open test assemblies to be designed for the FFTF. Employing the direct method of transient analysis, the governing differential equations describing the motion of the system are set up directly and are implicitly integrated numerically in time. A simple lumped-mass beam model of the FFTF which includes small clearances between core components is used as a ''driver'' for a fine mesh model of the PIOTA. The nonlinear forces due to the impact of the core components and their effect on the PIOTA are computed. 6 references

  4. Uncertainties in calculations of nuclear design code system for the high temperature engineering test reactor (HTTR)

    International Nuclear Information System (INIS)

    Shindo, R.; Yamashita, K.; Murata, I.

    1991-01-01

    The nuclear design code system for the HTTR consists of one dimensional cell burnup computer code, developed in JAERI and the TWOTRAN-2 transport code. In order to satisfy related design criteria, uncertainty of the calculation was investigated by comparing the calculated and experimental results. The experiments were performed with a graphite moderated critical assembly. It was confirmed that discrepancies between calculations and experiments were small enough to be allowed in the nuclear design of HTTR. 8 refs, 6 figs

  5. Nondestructive testing on graphite structures for high temperature engineering test reactor (HTTR)

    International Nuclear Information System (INIS)

    Ishihara, Masahiro; Kambe, Mamoru; Tsuji, Nobumasa.

    1994-01-01

    The application of ultrasonic (for internal defects) and eddy current testing (for surface defects) were investigated on the structures of nuclear-grade IG-110 and PGX graphite for the HTTR. The equipment were developed in order to detect the specific configuration of graphite blocks and the testing conditions were defined as the practical testing methods. The established testing methods are being used for the acceptance tests of graphite structures in the HTTR. (author)

  6. Radiation monitoring for the HTTR rise-to-power test (1) and (2)'

    Energy Technology Data Exchange (ETDEWEB)

    Nakazawa, Takashi; Yoshino, Toshiaki; Yasu, Katsuji; Ashikagaya, Yoshinobu; Kikuchi, Toshiki [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment

    2001-02-01

    The High Temperature Engineering Test Reactor (HTTR) is the first high temperature gas-cooled research reactor in Japan. This reactor is a helium-gas-cooled and graphite-moderated reactor with a thermal output of 30 MW. The rated operation temperature of the outlet coolant is 850degC. (During high temperature test operation, this reaches 950degC). The first criticality of the HTTR was attained in November 1998. The single loaded, parallel loaded operation with a thermal output of 9 MW (called the HTTR Rise-to-Power Test (1)) was completed between September 16, 1999 and July 8, 2000. The single loaded, parallel loaded continuous operation with a thermal output of 20 MW (called the HTTR Rise-to-Power Test (2)) has also been carried out, but it was shutdown at the halfway stage by a single from the reactor, when the thermal output was 16.5 MW and the reactor outlet coolant temperature was 500degC. This report describes the radiation monitoring carried out during the HTTR Rise-to-Power Tests (1) and (2)'. The data measured by the various radiation monitors is also reported. These data will be used for the estimation of radiation levels (such as the radiation dose equivalent rate, the radioactive concentration in effluents, etc.) for the next HTTR Rise-to-Power Test, and for periodic inspections. (author)

  7. Operation, test, research and development of the High Temperature Engineering Test Reactor (HTTR). FY2013

    International Nuclear Information System (INIS)

    2014-12-01

    The High Temperature Engineering Test Reactor (HTTR), a graphite-moderated and helium gas-cooled reactor with 30MW of thermal power, constructed at the Oarai Research and Development Center of the Japan Atomic Energy Agency (JAEA) is the first high-temperature gas-cooled reactor (HTGR) in Japan. The HTTR was attained at the full power operation of 30MW in December 2001 and achieved the 950degC of outlet coolant temperature at the outside the reactor pressure vessel in June 2004. To establish and upgrade basic technologies for HTGRs, we have obtained demonstration test data necessary for several R and Ds, and accumulated operation and maintenance experience of HTGRs throughout the HTTR's operation such as rated power operations, safety demonstration tests and long-term high temperature operations, and so on. In fiscal year 2013, we started to prepare the application document of reactor installation license for the HTTR to prove conformity with the new research reactor's safety regulatory requirements taken effect from December 2013. We had been making effort to restart the HTTR which was stopped since the 2011 when the Pacific coast of Tohoku Earthquake (2011.3.11) occurred. This report summarizes activities and results of HTTR operation, maintenance, and several R and Ds, which were carried out in the fiscal year 2013. (author)

  8. Operation, test, research and development of the High Temperature Engineering Test Reactor (HTTR). FY2014

    International Nuclear Information System (INIS)

    2016-02-01

    The High Temperature Engineering Test Reactor (HTTR), a graphite-moderated and helium gas-cooled reactor with 30 MW of thermal power, constructed at the Oarai Research and Development Center of the Japan Atomic Energy Agency is the first high-temperature gas-cooled reactor (HTGR) in Japan. The HTTR was attained at the full power operation of 30 MW in December 2001 and achieved the 950degC of coolant outlet temperature at outside of the reactor pressure vessel in June 2004. To establish and upgrade basic technologies for HTGRs, we have obtained demonstration test data necessary for several R and Ds, and accumulated operation and maintenance experience of HTGRs throughout the HTTR's operation such as rated power operations, safety demonstration tests and long-term high temperature operations, and so on. In fiscal year 2014, we started to apply the application document of reactor installation license for the HTTR to prove conformity with the new research reactor's safety regulatory requirements taken effect from December 2013. We had been making effort to restart the HTTR which was stopped since the 2011 by the Pacific coast of Tohoku Earthquake. This report summarizes activities and results of HTTR operation, maintenance, and several R and Ds, which were carried out in the fiscal year 2014. (author)

  9. The Assessment Of High Temperature Reactor Fuel (Characteristics Of HTTR Fuel)

    International Nuclear Information System (INIS)

    Dewita, Erlan; Tuka, Veronica; Gunandjar

    1996-01-01

    HTTR is one of the reactor type with Helium coolant and outlet coolant temperature of 950 o C. One possibility of HTTR application is the coo generation of steam in high temperature and electric power for supply energy to industry in the future. Considering to the high operating temperature of HTTR, therefore it is needed the reactor fuel which have good mechanical, chemical and physical stability to the high temperature, and stable to the influence of fission fragment and neutron during irradiation. This assessment of the HTTR fuel characteristic based on the experiment data to find information of HTTR operation feasibility. Result of the assessment indicated that fission gas release at burn-up of 3.6 % FIMA which was the same as the maximum burn up in the HTTR design was fairly lower than the maximum release estimated in the design (5 x 10 - 4), which is R/B from the fuel fabricated by the prismatic block fuel method would be low (between 10 - 9 dan 10 - 8)

  10. Evaluation for the models of neutron diffusion theory in terms of power density distributions of the HTTR

    International Nuclear Information System (INIS)

    Takamatsu, Kuniyoshi; Shimakawa, Satoshi; Nojiri, Naoki; Fujimoto, Nozomu

    2003-10-01

    In the case of evaluations for the highest temperature of the fuels in the HTTR, it is very important to expect the power density distributions accurately; therefore, it is necessary to improve the analytical model with the neutron diffusion and the burn-up theory. The power density distributions are analyzed in terms of two models, the one mixing the fuels and the burnable poisons homogeneously and the other modeling them heterogeneously. Moreover these analytical power density distributions are compared with the ones derived from the gross gamma-ray measurements and the Monte Carlo calculational code with continuous energy. As a result the homogeneous mixed model isn't enough to expect the power density distributions of the core in the axial direction; on the other hand, the heterogeneous model improves the accuracy. (author)

  11. Haploinsufficiency for Core Exon Junction Complex Components Disrupts Embryonic Neurogenesis and Causes p53-Mediated Microcephaly.

    Directory of Open Access Journals (Sweden)

    Hanqian Mao

    2016-09-01

    Full Text Available The exon junction complex (EJC is an RNA binding complex comprised of the core components Magoh, Rbm8a, and Eif4a3. Human mutations in EJC components cause neurodevelopmental pathologies. Further, mice heterozygous for either Magoh or Rbm8a exhibit aberrant neurogenesis and microcephaly. Yet despite the requirement of these genes for neurodevelopment, the pathogenic mechanisms linking EJC dysfunction to microcephaly remain poorly understood. Here we employ mouse genetics, transcriptomic and proteomic analyses to demonstrate that haploinsufficiency for each of the 3 core EJC components causes microcephaly via converging regulation of p53 signaling. Using a new conditional allele, we first show that Eif4a3 haploinsufficiency phenocopies aberrant neurogenesis and microcephaly of Magoh and Rbm8a mutant mice. Transcriptomic and proteomic analyses of embryonic brains at the onset of neurogenesis identifies common pathways altered in each of the 3 EJC mutants, including ribosome, proteasome, and p53 signaling components. We further demonstrate all 3 mutants exhibit defective splicing of RNA regulatory proteins, implying an EJC dependent RNA regulatory network that fine-tunes gene expression. Finally, we show that genetic ablation of one downstream pathway, p53, significantly rescues microcephaly of all 3 EJC mutants. This implicates p53 activation as a major node of neurodevelopmental pathogenesis following EJC impairment. Altogether our study reveals new mechanisms to help explain how EJC mutations influence neurogenesis and underlie neurodevelopmental disease.

  12. Safety demonstration test (SR-1/S1C-1) plan of HTTR (Contract research)

    Energy Technology Data Exchange (ETDEWEB)

    Nakagawa, Shigeaki; Sakaba, Nariaki; Takada, Eiji; Tachibana, Yukio; Saito, Kenji; Furusawa, Takayuki; Sawa, Kazuhiro [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment

    2003-03-01

    Safety demonstration tests in the HTTR (High Temperature Engineering Test Reactor) will be carried out in order to verify inherent safety features of the HTGR (High Temperature Gas-cooled Reactor). The first phase of the safety demonstration tests includes the reactivity insertion test by the control rod withdrawal and the coolant flow reduction test by the circulator trip. In the second phase, accident simulation tests will be conducted. By comparison of their experimental and analytical results, the prediction capability of the safety evaluation codes such as the core and the plant dynamics codes will be improved and verified, which will contribute to establish the safety design and the safety evaluation technologies of the HTGRs. The results obtained through its safety demonstration tests will be also utilised for the establishment of the safety design guideline, the safety evaluation guideline, etc. This paper describes the test program of the overall safety demonstration tests and the test method, the test conditions and the results of the pre-test analysis of the reactivity insertion test and the partial gas circulator trip test planned in March 2003. (author)

  13. Implication of irradiation effects on materials data for the design of near core components

    International Nuclear Information System (INIS)

    Dietz, W.; Breitling, H.

    1995-01-01

    For LWR's strict regulations exist for the consideration of irradiation in the design and surveillance of the reactor pressure vessel in the various codes (ASME, RCC-M, KTA) but less for near core components. For FBR's no firm rules exist either for the vessel nor the reactor internals. In this paper the German design practices for the loop type SNR-300 will be presented, and also some information from the surveillance programme of the KNK-reactor. Austenitic stainless steels have been mainly selected for the near core components. For some special applications Ni-alloys and a stabilized 2 1/4 Cr 1 Mo-alloy were specified. Considerations of the irradiation effects on material properties will be made for the various temperature and fluence levels around the core. The surveillance programmes will be described. Both, the consideration of irradiation effects in the elastic and inelastic analysis and the surveillance programmes had been a part of the licensing process for SNR-300. (author). 8 figs, 4 tabs

  14. Analysis of Hydrogen Cyanide Hyperfine Spectral Components towards Star Forming Cores

    Directory of Open Access Journals (Sweden)

    Loughnane R. M.

    2011-12-01

    Full Text Available Although hydrogen cyanide has become quite a common molecular tracing species for a variety of astrophysical sources, it, however, exhibits dramatic non-LTE behaviour in its hyperfine line structure. Individual hyperfine components can be strongly boosted or suppressed. If these so-called hyperfine line anomalies are present in the HCN rotational spectra towards low or high mass cores, this will affect the interpretation of various physical properties such as the line opacity and excitation temperature in the case of low mass objects and infall velocities in the case of their higher mass counterparts. Anomalous line ratios are present either through the relative strengths of neighboring hyperfine lines or through the varying widths of hyperfine lines belonging to a particular rotational line. This work involves the first observational investigation of these anomalies in two HCN rotational transitions, J=1→0 and J=3→2, towards both low mass starless cores and high mass protostellar objects. The degree of anomaly in these two rotational transitions is considered by computing the ratios of neighboring hyperfine lines in individual spectra. Results indicate some degree of anomaly is present in all cores considered in our survey, the most likely cause being line overlap effects among hyperfine components in higher rotational transitions.

  15. Mechanical design philosophy for the graphite components of the core structure of an HTGR

    International Nuclear Information System (INIS)

    Bodmann, E.

    1987-01-01

    Parallel to the layout and design of the graphite components for THTRs and the succeeding high temperature reactor projects, the design methods for graphite components have been improved over the years. The aim of this works is to develop the design methods which take into account both the particular properties of graphite and the particular functions of the components. Because of the close relation ship between materials and design codes, this development work has progressed with the development, testing and qualification of German reactor graphite. In this paper, the experience in this field of Hochtemperatur Reaktorbau GmbH and the results of the work and approach to the design problems are reported. The example of a HTR 500 design for a 550 MWe power station is taken up, and the core structure is explained. The graphite components are divided into three classes according to the stress limits. The loading of these components is reviewed. The aim of the design is not the complete avoidance of failure, but to avoid the failure of a single component from leading to a disadvantageous consequence which is not allowable. The classification of loading events, Weibull statistics and maximum allowable stress, the formation of the permissible stress, the assessment of stress due to multiaxial loading and so on are described. (Kako, I.)

  16. Modeling Stress Strain Relationships and Predicting Failure Probabilities For Graphite Core Components

    Energy Technology Data Exchange (ETDEWEB)

    Duffy, Stephen [Cleveland State Univ., Cleveland, OH (United States)

    2013-09-09

    This project will implement inelastic constitutive models that will yield the requisite stress-strain information necessary for graphite component design. Accurate knowledge of stress states (both elastic and inelastic) is required to assess how close a nuclear core component is to failure. Strain states are needed to assess deformations in order to ascertain serviceability issues relating to failure, e.g., whether too much shrinkage has taken place for the core to function properly. Failure probabilities, as opposed to safety factors, are required in order to capture the bariability in failure strength in tensile regimes. The current stress state is used to predict the probability of failure. Stochastic failure models will be developed that can accommodate possible material anisotropy. This work will also model material damage (i.e., degradation of mechanical properties) due to radiation exposure. The team will design tools for components fabricated from nuclear graphite. These tools must readily interact with finite element software--in particular, COMSOL, the software algorithm currently being utilized by the Idaho National Laboratory. For the eleastic response of graphite, the team will adopt anisotropic stress-strain relationships available in COMSO. Data from the literature will be utilized to characterize the appropriate elastic material constants.

  17. Modeling Stress Strain Relationships and Predicting Failure Probabilities For Graphite Core Components

    International Nuclear Information System (INIS)

    Duffy, Stephen

    2013-01-01

    This project will implement inelastic constitutive models that will yield the requisite stress-strain information necessary for graphite component design. Accurate knowledge of stress states (both elastic and inelastic) is required to assess how close a nuclear core component is to failure. Strain states are needed to assess deformations in order to ascertain serviceability issues relating to failure, e.g., whether too much shrinkage has taken place for the core to function properly. Failure probabilities, as opposed to safety factors, are required in order to capture the bariability in failure strength in tensile regimes. The current stress state is used to predict the probability of failure. Stochastic failure models will be developed that can accommodate possible material anisotropy. This work will also model material damage (i.e., degradation of mechanical properties) due to radiation exposure. The team will design tools for components fabricated from nuclear graphite. These tools must readily interact with finite element software--in particular, COMSOL, the software algorithm currently being utilized by the Idaho National Laboratory. For the eleastic response of graphite, the team will adopt anisotropic stress-strain relationships available in COMSO. Data from the literature will be utilized to characterize the appropriate elastic material constants.

  18. Failure Predictions for VHTR Core Components using a Probabilistic Contiuum Damage Mechanics Model

    Energy Technology Data Exchange (ETDEWEB)

    Fok, Alex

    2013-10-30

    The proposed work addresses the key research need for the development of constitutive models and overall failure models for graphite and high temperature structural materials, with the long-term goal being to maximize the design life of the Next Generation Nuclear Plant (NGNP). To this end, the capability of a Continuum Damage Mechanics (CDM) model, which has been used successfully for modeling fracture of virgin graphite, will be extended as a predictive and design tool for the core components of the very high- temperature reactor (VHTR). Specifically, irradiation and environmental effects pertinent to the VHTR will be incorporated into the model to allow fracture of graphite and ceramic components under in-reactor conditions to be modeled explicitly using the finite element method. The model uses a combined stress-based and fracture mechanics-based failure criterion, so it can simulate both the initiation and propagation of cracks. Modern imaging techniques, such as x-ray computed tomography and digital image correlation, will be used during material testing to help define the baseline material damage parameters. Monte Carlo analysis will be performed to address inherent variations in material properties, the aim being to reduce the arbitrariness and uncertainties associated with the current statistical approach. The results can potentially contribute to the current development of American Society of Mechanical Engineers (ASME) codes for the design and construction of VHTR core components.

  19. Three-dimensional NDE of VHTR core components via simulation-based testing. Final report

    International Nuclear Information System (INIS)

    Guzina, Bojan; Kunerth, Dennis

    2014-01-01

    A next generation, simulation-driven-and-enabled testing platform is developed for the 3D detection and characterization of defects and damage in nuclear graphite and composite structures in Very High Temperature Reactors (VHTRs). The proposed work addresses the critical need for the development of high-fidelity Non-Destructive Examination (NDE) technologies for as-manufactured and replaceable in-service VHTR components. Centered around the novel use of elastic (sonic and ultrasonic) waves, this project deploys a robust, non-iterative inverse solution for the 3D defect reconstruction together with a non-contact, laser-based approach to the measurement of experimental waveforms in VHTR core components. In particular, this research (1) deploys three-dimensional Scanning Laser Doppler Vibrometry (3D SLDV) as a means to accurately and remotely measure 3D displacement waveforms over the accessible surface of a VHTR core component excited by mechanical vibratory source; (2) implements a powerful new inverse technique, based on the concept of Topological Sensitivity (TS), for non-iterative elastic waveform tomography of internal defects - that permits robust 3D detection, reconstruction and characterization of discrete damage (e.g. holes and fractures) in nuclear graphite from limited-aperture NDE measurements; (3) implements state-of-the art computational (finite element) model that caters for accurately simulating elastic wave propagation in 3D blocks of nuclear graphite; (4) integrates the SLDV testing methodology with the TS imaging algorithm into a non-contact, high-fidelity NDE platform for the 3D reconstruction and characterization of defects and damage in VHTR core components; and (5) applies the proposed methodology to VHTR core component samples (both two- and three-dimensional) with a priori induced, discrete damage in the form of holes and fractures. Overall, the newly established SLDV-TS testing platform represents a next-generation NDE tool that surpasses

  20. Three-dimensional NDE of VHTR core components via simulation-based testing. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Guzina, Bojan [Univ. of Minnesota, Minneapolis, MN (United States); Kunerth, Dennis [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-09-30

    A next generation, simulation-driven-and-enabled testing platform is developed for the 3D detection and characterization of defects and damage in nuclear graphite and composite structures in Very High Temperature Reactors (VHTRs). The proposed work addresses the critical need for the development of high-fidelity Non-Destructive Examination (NDE) technologies for as-manufactured and replaceable in-service VHTR components. Centered around the novel use of elastic (sonic and ultrasonic) waves, this project deploys a robust, non-iterative inverse solution for the 3D defect reconstruction together with a non-contact, laser-based approach to the measurement of experimental waveforms in VHTR core components. In particular, this research (1) deploys three-dimensional Scanning Laser Doppler Vibrometry (3D SLDV) as a means to accurately and remotely measure 3D displacement waveforms over the accessible surface of a VHTR core component excited by mechanical vibratory source; (2) implements a powerful new inverse technique, based on the concept of Topological Sensitivity (TS), for non-iterative elastic waveform tomography of internal defects - that permits robust 3D detection, reconstruction and characterization of discrete damage (e.g. holes and fractures) in nuclear graphite from limited-aperture NDE measurements; (3) implements state-of-the art computational (finite element) model that caters for accurately simulating elastic wave propagation in 3D blocks of nuclear graphite; (4) integrates the SLDV testing methodology with the TS imaging algorithm into a non-contact, high-fidelity NDE platform for the 3D reconstruction and characterization of defects and damage in VHTR core components; and (5) applies the proposed methodology to VHTR core component samples (both two- and three-dimensional) with a priori induced, discrete damage in the form of holes and fractures. Overall, the newly established SLDV-TS testing platform represents a next-generation NDE tool that surpasses

  1. System analysis for HTTR-GT/H2 plant. Safety analysis of HTTR for coupling helium gas turbine and H2 plant

    International Nuclear Information System (INIS)

    Sato, Hiroyuki; Yan, Xing L.; Ohashi, Hirofumi

    2017-08-01

    High Temperature Gas-cooled Reactor (HTGR) is expected to extend the use of nuclear heat to a wider spectrum of industrial applications because of the high temperature heat supply capability and inherently safe characteristics. Japan Atomic Energy Agency initiated a nuclear cogeneration demonstration project with helium gas turbine power generation and thermochemical hydrogen production utilizing the High Temperature engineering Test Reactor (HTTR), the first HTGR in Japan. This study carries out safety evaluation for the HTTR gas turbine hydrogen cogeneration test plant (HTTR-GT/H 2 plant). The evaluation was conducted for the events newly identified corresponding to the coupling of helium gas turbine and hydrogen production plant to the HTTR. The results showed that loss of load event does not have impact on temperature of fuel and reactor coolant pressure boundary. In addition, reactor coolant pressure does not exceed the evaluation criteria. Furthermore, it was shown that reactor operation can be maintained against temperature transients induced by abnormal events in hydrogen production plant. (author)

  2. Reciprocal and dynamic polarization of planar cell polarity core components and myosin

    Science.gov (United States)

    Newman-Smith, Erin; Kourakis, Matthew J; Reeves, Wendy; Veeman, Michael; Smith, William C

    2015-01-01

    The Ciona notochord displays planar cell polarity (PCP), with anterior localization of Prickle (Pk) and Strabismus (Stbm). We report that a myosin is polarized anteriorly in these cells and strongly colocalizes with Stbm. Disruption of the actin/myosin machinery with cytochalasin or blebbistatin disrupts polarization of Pk and Stbm, but not of myosin complexes, suggesting a PCP-independent aspect of myosin localization. Wash out of cytochalasin restored Pk polarization, but not if done in the presence of blebbistatin, suggesting an active role for myosin in core PCP protein localization. On the other hand, in the pk mutant line, aimless, myosin polarization is disrupted in approximately one third of the cells, indicating a reciprocal action of core PCP signaling on myosin localization. Our results indicate a complex relationship between the actomyosin cytoskeleton and core PCP components in which myosin is not simply a downstream target of PCP signaling, but also required for PCP protein localization. DOI: http://dx.doi.org/10.7554/eLife.05361.001 PMID:25866928

  3. Evolution of microstructure in zirconium alloy core components of nuclear reactors during service

    International Nuclear Information System (INIS)

    Griffiths, M.; Coleman, C.E.; Holt, R.A.; Sagat, S.; Urbanic, V.F.; Chow, C.K.

    1993-03-01

    X-ray diffraction and analytical electron microscopy have been used to characterise microstructural and microchemical changes produced by neutron irradiation of Zr-2.5Nb, Zircaloy-2 and Zircaloy-4 nuclear reactor core components. In many cases there is a clear relationship between the radiation damage microstructure and the physical properties of in-service core components. For example, the difference in delayed hydride cracking velocity between the inlet and outlet ends of Zr-2.5Nb pressure tubes in pressurised heavy water reactors can be directly correlated with variations in a-dislocation density and β-Zr phase decomposition. For the same tubes, the variation of fracture toughness has the same fluence dependence as dislocation loop density and improvements in corrosion behaviour can be linked with decreases in the Nb concentration in the α-Zr matrix due to Nb precipitation during irradiation. For pressurised water reactors and boiling water reactors the onset of 'breakaway' growth in Zircaloy-4 guide tubes can be directly correlated with the appearance of basal plane dislocation loops in the microstructure. (author). 37 refs., 28 figs., 4 tabs

  4. Transcript specificity in yeast pre-mRNA splicing revealed by mutations in core spliceosomal components.

    Directory of Open Access Journals (Sweden)

    Jeffrey A Pleiss

    2007-04-01

    Full Text Available Appropriate expression of most eukaryotic genes requires the removal of introns from their pre-messenger RNAs (pre-mRNAs, a process catalyzed by the spliceosome. In higher eukaryotes a large family of auxiliary factors known as SR proteins can improve the splicing efficiency of transcripts containing suboptimal splice sites by interacting with distinct sequences present in those pre-mRNAs. The yeast Saccharomyces cerevisiae lacks functional equivalents of most of these factors; thus, it has been unclear whether the spliceosome could effectively distinguish among transcripts. To address this question, we have used a microarray-based approach to examine the effects of mutations in 18 highly conserved core components of the spliceosomal machinery. The kinetic profiles reveal clear differences in the splicing defects of particular pre-mRNA substrates. Most notably, the behaviors of ribosomal protein gene transcripts are generally distinct from other intron-containing transcripts in response to several spliceosomal mutations. However, dramatically different behaviors can be seen for some pairs of transcripts encoding ribosomal protein gene paralogs, suggesting that the spliceosome can readily distinguish between otherwise highly similar pre-mRNAs. The ability of the spliceosome to distinguish among its different substrates may therefore offer an important opportunity for yeast to regulate gene expression in a transcript-dependent fashion. Given the high level of conservation of core spliceosomal components across eukaryotes, we expect that these results will significantly impact our understanding of how regulated splicing is controlled in higher eukaryotes as well.

  5. Design/licensing of on-site package for core component

    International Nuclear Information System (INIS)

    Ogasawara, K.; Chohzuka, T.; Shimura, T.; Kikuchi, T.; Fujiwara, R.; Karigome, S.; Takani, M.

    1993-01-01

    For storage of used core components which are produced from reactors, Tohoku EPCO decided to construct a site bunker at Onagawa site. It was also decided to develop and fabricate one packaging to transport core components from the reactor buildings to the site bunker. The packaging will be used within the power station; therefore, it shall comply with 'The Law for the Business of Electric Power' and relevant Notification. The main requirements of the packaging are as follows: 1) The number of contents, such as channel boxes and control rods, shall be as large as possible. 2) The weight and the outer dimensions of the packaging shall be within the limitation of the reactor building and the site bunker. 3) Materials shall be selected from those which have been already applied for existing packagings and utilized without any problems. 4) It shall be considered during design of trunnions that handling equipment, such as lifting beam, can be used for not only this packaging but also for existing spent fuel packagings. The design of the packaging is completed and has been licensed. The packaging is scheduled to be utilized from November, 1993. (J.P.N.)

  6. Evolution of microstructure in zirconium alloy core components of nuclear reactors during service

    Energy Technology Data Exchange (ETDEWEB)

    Griffiths, M; Coleman, C E; Holt, R A; Sagat, S; Urbanic, V F [Atomic Energy of Canada Ltd., Chalk River, ON (Canada). Chalk River Nuclear Labs.; Chow, C K [Atomic Energy of Canada Ltd., Pinawa, MB (Canada). Whiteshell Nuclear Research Establishment

    1993-03-01

    X-ray diffraction and analytical electron microscopy have been used to characterise microstructural and microchemical changes produced by neutron irradiation of Zr-2.5Nb, Zircaloy-2 and Zircaloy-4 nuclear reactor core components. In many cases there is a clear relationship between the radiation damage microstructure and the physical properties of in-service core components. For example, the difference in delayed hydride cracking velocity between the inlet and outlet ends of Zr-2.5Nb pressure tubes in pressurised heavy water reactors can be directly correlated with variations in a-dislocation density and {beta}-Zr phase decomposition. For the same tubes, the variation of fracture toughness has the same fluence dependence as dislocation loop density and improvements in corrosion behaviour can be linked with decreases in the Nb concentration in the {alpha}-Zr matrix due to Nb precipitation during irradiation. For pressurised water reactors and boiling water reactors the onset of `breakaway` growth in Zircaloy-4 guide tubes can be directly correlated with the appearance of basal plane dislocation loops in the microstructure. (author). 37 refs., 28 figs., 4 tabs.

  7. Performance test results of mock-up test facility of HTTR hydrogen production system

    International Nuclear Information System (INIS)

    Ohashi, Hirofumi; Inaba, Yoshitomo; Nishihara, Tetsuo

    2004-01-01

    For the purpose to demonstrate effectiveness of high-temperature nuclear heat utilization, Japan Atomic Energy Research Institute has been developing a hydrogen production system and has planned to connect the hydrogen production system to High Temperature Engineering Test Reactor (HTTR). Prior to construction of a HTTR hydrogen production system, a mock-up test facility was constructed to investigate transient behavior of the hydrogen production system and to establish system controllability. The Mock-up test facility with a full-scale reaction tube is an approximately 1/30-scale model of the HTTR hydrogen production system and an electric heater is used as a heat source instead of a reactor. After its construction, a performance test of the test facility was carried out in the same pressure and temperature conditions as those of the HTTR hydrogen production system to investigate its performance such as hydrogen production ability, controllability and so on. It was confirmed that hydrogen was stably produced with a hot helium gas about 120m 3 /h, which satisfy the design value, and thermal disturbance of helium gas during the start-up could be mitigated within the design value by using a steam generator. The mock-up test of the HTTR hydrogen production system using this facility will continue until 2004. (author)

  8. Development of control technology for HTTR hydrogen production system with mock-up test facility

    International Nuclear Information System (INIS)

    Ohashi, Hirofumi; Inaba, Yoshitomo; Nishihara, Tetsuo; Takeda, Tetsuaki; Hayashi, Koji; Takada, Shoji; Inagaki, Yoshiyuki

    2006-01-01

    The Japan Atomic Energy Agency has been planning the demonstration test of hydrogen production with the High Temperature Engineering Test Reactor (HTTR). In a HTTR hydrogen production system (HTTR-H2), it is required to control a primary helium temperature within an allowable value at a reactor inlet to prevent a reactor scram. A cooling system for a secondary helium with a steam generator (SG) and a radiator is installed at the downstream of a chemical rector in a secondary helium loop in order to mitigate the thermal disturbance caused by the hydrogen production system. Prior to HTTR-H2, the simulation test with a mock-up test facility has been carried out to establish the controllability on the helium temperature using the cooling system against the loss of chemical reaction. It was confirmed that the fluctuations of the helium temperature at chemical reactor outlet, more than 200 K, at the loss of chemical reaction could be successfully mitigated within the target of ±10 K at SG outlet. A dynamic simulation code of the cooling system for HTTR-H2 was verified with the obtained test data

  9. Principle design and data of graphite components

    International Nuclear Information System (INIS)

    Ishihara, Masahiro; Sumita, Junya; Shibata, Taiju; Iyoku, Tatsuo; Oku, Tatsuo

    2004-01-01

    The High Temperature Engineering Test Reactor (HTTR) constructed by Japan Atomic Energy Research Institute (JAERI) is a graphite-moderated and helium-gas-cooled reactor with prismatic fuel elements of hexagonal blocks. The reactor internal structures of the HTTR are mainly made up of graphite components. As well known, the graphite is a brittle material and there were no available design criteria for brittle materials. Therefore, JAERI had to develop the design criteria taking account of the brittle fracture behavior. In this paper, concept and key specification of the developed graphite design criteria is described, and also an outline of the quality control specified in the design criteria is mentioned

  10. EXPERIMENTAL DETERMINATION OF LONGITUDINAL COMPONENT OF MAGNETIC FLUX IN FERROMAGNETIC WIRE OF SINGLE-CORE POWER CABLE ARMOUR

    Directory of Open Access Journals (Sweden)

    I.A. Kostiukov

    2014-12-01

    Full Text Available A problem of determination of effective longitudinal magnetic permeability of single core power cable armour is defined. A technique for experimental determination of longitudinal component of magnetic flux in armour spiral ferromagnetic wire is proposed.

  11. Analysis of the HTTR with Monte-Carlo and diffusion theory. An IRI-ECN intercomparison

    International Nuclear Information System (INIS)

    De Haas, J.B.M.; Wallerbos, E.J.M.

    2000-09-01

    In the framework of the IAEA Co-ordinated Research Program (CRP) 'Evaluation of HTGR Performance' for the start-up core physics benchmark of the High Temperature Engineering Test Reactor (HTTR) two-group cross section data for a fuel compact lattice and for a two-dimensional R-Z model have been generated for comparison purposes. For this comparison, 5.2% enriched uranium was selected. Furthermore, a simplified core configuration utilising only the selected type of fuel has been analysed with both the Monte Carlo code KENO and with the diffusion theory codes BOLD VENTURE and PANTHER. With a very detailed KENO model of this simplified core, k eff was calculated to be 1.1278±0.0005. Homogenisation of the core region was seen to increase k eff by 0.0340 which can be attributed to streaming of neutrons in the detailed model. The difference in k eff between the homogenised models of KENO and BOLD VENTURE amounts then only,Δk =0.0025. The PANTHER result for this core is k eff = 1. 1251, which is in good agreement with the KENO result. The fully loaded core configuration, with a range of enrichments, has also been analysed with both KENO and BOLD VENTURE. In this case the homogenisation was seen to increase k eff by 0.0375 (streaming effect). In BOLD VENTURE the critical state could be reached by the insertion of the control rods through adding an effective 10 B density over the insertion depth while the streaming of neutrons was accounted for by adjustment of the diffusion coefficient. The generation time and the effective fraction of delayed neutrons in the critical state have been calculated to be 1.11 ms and 0.705 %, respectively. This yields a prompt decay constant at critical of 6.9 s -1 . The analysis with PANTHER resulted in a k eff =1.1595 and a critical control rod setting of 244.5 cm compared to the detailed KENO results of: k eff = 1.1600 and 234.5 cm, again an excellent agreement. 5 refs

  12. Analysis of the HTTR with Monte-Carlo and diffusion theory. An IRI-ECN intercomparison

    Energy Technology Data Exchange (ETDEWEB)

    De Haas, J.B.M. [Nuclear Research and Consultancy Group NRG, Petten (Netherlands); Wallerbos, E.J.M. [Interfaculty Reactor Institute IRI, Delft University of Technology, Delft (Netherlands)

    2000-09-01

    In the framework of the IAEA Co-ordinated Research Program (CRP) 'Evaluation of HTGR Performance' for the start-up core physics benchmark of the High Temperature Engineering Test Reactor (HTTR) two-group cross section data for a fuel compact lattice and for a two-dimensional R-Z model have been generated for comparison purposes. For this comparison, 5.2% enriched uranium was selected. Furthermore, a simplified core configuration utilising only the selected type of fuel has been analysed with both the Monte Carlo code KENO and with the diffusion theory codes BOLD VENTURE and PANTHER. With a very detailed KENO model of this simplified core, k{sub eff} was calculated to be 1.1278{+-}0.0005. Homogenisation of the core region was seen to increase k{sub eff} by 0.0340 which can be attributed to streaming of neutrons in the detailed model. The difference in k{sub eff} between the homogenised models of KENO and BOLD VENTURE amounts then only,{delta}k =0.0025. The PANTHER result for this core is k{sub eff} = 1. 1251, which is in good agreement with the KENO result. The fully loaded core configuration, with a range of enrichments, has also been analysed with both KENO and BOLD VENTURE. In this case the homogenisation was seen to increase k{sub eff} by 0.0375 (streaming effect). In BOLD VENTURE the critical state could be reached by the insertion of the control rods through adding an effective {sup 10}B density over the insertion depth while the streaming of neutrons was accounted for by adjustment of the diffusion coefficient. The generation time and the effective fraction of delayed neutrons in the critical state have been calculated to be 1.11 ms and 0.705 %, respectively. This yields a prompt decay constant at critical of 6.9 s{sup -1}. The analysis with PANTHER resulted in a k{sub eff} =1.1595 and a critical control rod setting of 244.5 cm compared to the detailed KENO results of: k{sub eff} = 1.1600 and 234.5 cm, again an excellent agreement. 5 refs.

  13. DETERMINATION OF CRYSTALLINITY INDEX OF CARBOHYDRATE COMPONENTS IN HEMP (CANNABIS SATIVA L. WOODY CORE BY MEANS OF FT-IR SPECTROSCOPY

    Directory of Open Access Journals (Sweden)

    Esat Gümüşkaya

    2005-04-01

    Full Text Available In this study; it was investigated chemical compositions of hemp woody core and changes in crystallinity index of its carbohydrate components by using FT-IR spectroscopy was investigated. It was determined that carbohyrate components ratio in hemp woody core were similar to that in hard wood, but lignin content in hemp woody core was higher than in hard wood. Crystallinity index of carbohydrate components in hemp woody core increased by removing amorphous components. It was designated that monoclinic structure in hemp woody core and its carbohydrate components was dominant, but triclinic ratio increased by treated chemical isolation of carbohydrate from hemp woody core.

  14. Design and evaluation of heat utilization systems for the HTTR through international cooperation

    Energy Technology Data Exchange (ETDEWEB)

    Lewkowicz, I. [International Atomic Energy Agency, Vienna (Austria)

    1996-07-01

    The International Atomic Energy Agency (IAEA) has the statutory function to `foster the exchange of scientific and technical information`, and `encourage and assist research on, and development and practical application of, atomic energy for peaceful uses throughout the world`. The IAEA Co-ordinated Research Programmes (CRPs) are effective vehicles for implementing the above. The CRP on Design and Evaluation of Heat Utilization Systems for HTTR has started in September 1994 and is aimed at promoting international co-operation to identify the most promising heat utilization system(s) to be demonstrated at the HTTR, for the benefit of current operators and future designers and constructors of HTGRs. Participating Member States are collaborating by exchanging existing technical information on the technology of heat utilization systems, by developing design concepts and by performing evaluations of candidate systems for potential demonstration with the HTTR. In this report, the systems are reviewed. (J.P.N.)

  15. Assessment of damage domains of the High-Temperature Engineering Test Reactor (HTTR)

    International Nuclear Information System (INIS)

    Flores, Alain; Izquierdo, José María; Tuček, Kamil; Gallego, Eduardo

    2014-01-01

    Highlights: • We developed an adequate model for the identification of damage domains of the HTTR. • We analysed an anticipated operational transient, using the HTTR5+/GASTEMP code. • We simulated several transients of the same sequence. • We identified the corresponding damage domains using two methods. • We calculated exceedance frequency using the two methods. - Abstract: This paper presents an assessment analysis of damage domains of the 30 MW th prototype High-Temperature Engineering Test Reactor (HTTR) operated by the Japan Atomic Energy Agency (JAEA). For this purpose, an in-house deterministic risk assessment computational tool was developed based on the Theory of Stimulated Dynamics (TSD). To illustrate the methodology and applicability of the developed modelling approach, assessment results of a control rod (CR) withdrawal accident during subcritical conditions are presented and compared with those obtained by the JAEA

  16. Design and evaluation of heat utilization systems for the HTTR through international cooperation

    International Nuclear Information System (INIS)

    Lewkowicz, I.

    1996-01-01

    The International Atomic Energy Agency (IAEA) has the statutory function to 'foster the exchange of scientific and technical information', and 'encourage and assist research on, and development and practical application of, atomic energy for peaceful uses throughout the world'. The IAEA Co-ordinated Research Programmes (CRPs) are effective vehicles for implementing the above. The CRP on Design and Evaluation of Heat Utilization Systems for HTTR has started in September 1994 and is aimed at promoting international co-operation to identify the most promising heat utilization system(s) to be demonstrated at the HTTR, for the benefit of current operators and future designers and constructors of HTGRs. Participating Member States are collaborating by exchanging existing technical information on the technology of heat utilization systems, by developing design concepts and by performing evaluations of candidate systems for potential demonstration with the HTTR. In this report, the systems are reviewed. (J.P.N.)

  17. Evaluation of hot spot factors for thermal and hydraulic design of HTTR

    International Nuclear Information System (INIS)

    Maruyama, So; Yamashita, Kiyonobu; Fujimoto, Nozomu; Murata, Isao; Sudo, Yukio; Murakami, Tomoyuki; Fujii, Sadao.

    1993-01-01

    High Temperature Engineering Test Reactor (HTTR) is a graphite-moderated and helium gas-cooled reactor with 30 MW in thermal power and 950degC in reactor outlet coolant temperature. One of the major items in thermal and hydraulic design of the HTTR is to evaluate the maximum fuel temperature with a sufficient margin from a viewpoint of integrity of coated fuel particles. Hot spot factors are considered in the thermal and hydraulic design to evaluate the fuel temperature not only under the normal operation condition but also under any transient condition conservatively. This report summarizes the items of hot spot factors selected in the thermal and hydraulic design and their estimated values, and also presents evaluation results of the thermal and hydraulic characteristics of the HTTR briefly. (author)

  18. Casting core for a cooling arrangement for a gas turbine component

    Science.gov (United States)

    Lee, Ching-Pang; Heneveld, Benjamin E

    2015-01-20

    A ceramic casting core, including: a plurality of rows (162, 166, 168) of gaps (164), each gap (164) defining an airfoil shape; interstitial core material (172) that defines and separates adjacent gaps (164) in each row (162, 166, 168); and connecting core material (178) that connects adjacent rows (170, 174, 176) of interstitial core material (172). Ends of interstitial core material (172) in one row (170, 174, 176) align with ends of interstitial core material (172) in an adjacent row (170, 174, 176) to form a plurality of continuous and serpentine shaped structures each including interstitial core material (172) from at least two adjacent rows (170, 174, 176) and connecting core material (178).

  19. Core components of a comprehensive quality assurance program in anatomic pathology.

    Science.gov (United States)

    Nakhleh, Raouf E

    2009-11-01

    In this article the core components of a comprehensive quality assurance and improvement plan are outlined. Quality anatomic pathology work comes with focus on accurate, timely, and complete reports. A commitment to continuous quality improvement and a systems approach with a persistent effort helps to achieve this end. Departments should have a quality assurance and improvement plan that includes a risk assessment of real and potential problems facing the laboratory. The plan should also list the individuals responsible for carrying out the program with adequate resources, a defined timetable, and annual assessment for progress and future directions. Quality assurance monitors should address regulatory requirements and be organized by laboratory division (surgical pathology, cytology, etc) as well as 5 segments (preanalytic, analytic, postanalytic phases of the test cycle, turn-around-time, and customer satisfaction). Quality assurance data can also be used to evaluate individual pathologists using multiple parameters with peer group comparison.

  20. Developing an OMERACT Core Outcome Set for Assessing Safety Components in Rheumatology Trials

    DEFF Research Database (Denmark)

    Klokker, Louise; Tugwell, Peter; Furst, Daniel E

    2016-01-01

    in such COS. The Outcome Measures in Rheumatology (OMERACT) Filter 2.0 emphasizes the importance of measuring harms. The Safety Working Group was reestablished at the OMERACT 2016 with the objective to develop a COS for assessing safety components in trials across rheumatologic conditions. METHODS: The safety......OBJECTIVE: Failure to report harmful outcomes in clinical research can introduce bias favoring a potentially harmful intervention. While core outcome sets (COS) are available for benefits in randomized controlled trials in many rheumatic conditions, less attention has been paid to safety...... that patients consider relevant so that they will be able to make informed decisions. CONCLUSION: The OMERACT Safety Working Group will advance the work previously done within OMERACT using a new patient-driven approach....

  1. Performance tests of the reactor containment structures of HTTR

    International Nuclear Information System (INIS)

    Sakaba, Nariaki; Iigaki, Kazuhiko; Kawaji, Satoshi; Iyoku, Tatsuo

    1998-03-01

    The containment structures of the HTTR consist of the reactor containment vessel (CV), service area (SA) and emergency air purification system, which minimize the release of FPs in the postulated accidents with FP release from the reactor facilities. The CV is designed to withstand the temperature and pressure transients and to be leak-tight within the specified leakage limit even in the case of a rupture of the primary concentric hot gas duct. The pressure of inside of the SA should be maintained slightly lower than that of atmosphere by the emergency air purification system. The radioactive materials are released from the stack to environment via the emergency air purification system under the accident condition. Then the emergency air purification system should remove airborne radio-activities and should maintain proper pressure in the SA. We established the method to measure leak rate of the CV with closed reactor coolant pressure boundary although it is normally measured under opened reactor coolant pressure boundary as employed in LWRs. The CV leak rate test was carried out by the newly developed method and the expected performance was obtained. The SA and emergency air purification system were also confirmed by the performance test. We concluded that the reactor containment structures were fabricated to minimize the release of FPs in the postulated accidents with FP release from the reactor facilities. (author)

  2. Helium leak and chemical impurities control technology in HTTR

    International Nuclear Information System (INIS)

    Tochio, Daisuke; Shimizu, Atsushi; Hamamoto, Shimpei; Sakaba, Nariaki

    2014-01-01

    Japan Atomic Energy Agency (JAEA) has designed and developed high-temperature gas-cooled reactor (HTGR) hydrogen cogeneration system named gas turbine high-temperature reactor (GTHTR300C) as a commercial HTGR. Helium gas is used as the primary coolant in HTGR. Helium gas is easy to leak, and the primary helium leakage should be controlled tightly from the viewpoint of preventing the release of radioactive materials to the environment. Moreover from the viewpoint of preventing the oxidization of graphite and metallic material, the helium coolant chemistry should be controlled tightly. The primary helium leakage and the helium coolant chemistry during the operation is the major factor in the HTGR for commercialization of HTGR system. This paper shows the design concept and the obtained operational experience on the primary helium leakage control and primary helium impurity control in the high-temperature engineering test reactor (HTTR) of JAEA. Moreover, the future plan to obtain operational experience of these controls for commercialization of HTGR system is shown. (author)

  3. Plant data evaluation of performance confirmation test in HTTR after Tohoku-Pacific Ocean Earthquake

    International Nuclear Information System (INIS)

    Ono, Masato; Tochio, Daisuke; Shinohara, Masanori; Shimazaki, Yosuke; Yanagi, Shunki; Iigaki, Kazuhiko

    2012-03-01

    Tohoku-Pacific Ocean Earthquake occurred on March 11th 2011 and the earthquake intensity of an upper 5 on the Japanese scale was observed in Oarai town. HTTR conducted the confirmation test on cold state in order to ensure the facilities/instruments of reactor building operate normally. In this test, the plant data in the facilities/instruments start-up phase and continue steady operation phase were measured and compared with the previous operation data, and the soundness of facilities/instruments is evaluated. As a result, in after the earthquake, the facilities/instruments operate normally and the reactor cooling function of the HTTR were ensured. (author)

  4. Plant data evaluation of performance confirmation test in HTTR after Tohoku-Pacific Ocean Earthquake

    International Nuclear Information System (INIS)

    Ono, Masato; Tochio, Daisuke; Shinohara, Masanori; Shimazaki, Yosuke; Yanagi, Shunki; Iigaki, Kazuhiko

    2012-01-01

    Tohoku-Pacific Ocean Earthquake occurred on March 11th 2011 and the earthquake intensity of an upper 5 on the Japanese scale was observed in Oarai town. HTTR conducted the confirmation test on cold state in order to ensure the facilities/instruments of reactor building operate normally. In this test, the plant data in the facilities/instruments start-up phase and continue steady operation phase were measured and compared with the previous operation data, and the soundness of facilities/instruments is evaluated. As a result, in after the earthquake, the facilities/instruments operate normally and the reactor cooling function of the HTTR were ensured. (author)

  5. Nonspecific Organelle-Targeting Strategy with Core-Shell Nanoparticles of Varied Lipid Components/Ratios.

    Science.gov (United States)

    Zhang, Lu; Sun, Jiashu; Wang, Yilian; Wang, Jiancheng; Shi, Xinghua; Hu, Guoqing

    2016-07-19

    We report a nonspecific organelle-targeting strategy through one-step microfluidic fabrication and screening of a library of surface charge- and lipid components/ratios-varied lipid shell-polymer core nanoparticles. Different from the common strategy relying on the use of organelle-targeted moieties conjugated onto the surface of nanoparticles, here, we program the distribution of hybrid nanoparticles in lysosomes or mitochondria by tuning the lipid components/ratios in shell. Hybrid nanoparticles with 60% 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) and 20% 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) can intracellularly target mitochondria in both in vitro and in vivo models. While replacing DOPE with the same amount of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), the nanoparticles do not show mitochondrial targeting, indicating an incremental effect of cationic and fusogenic lipids on lysosomal escape which is further studied by molecular dynamics simulations. This work unveils the lipid-regulated subcellular distribution of hybrid nanoparticles in which target moieties and complex synthetic steps are avoided.

  6. Core Components for a Clinically Integrated mHealth App for Asthma Symptom Monitoring.

    Science.gov (United States)

    Rudin, Robert S; Fanta, Christopher H; Predmore, Zachary; Kron, Kevin; Edelen, Maria O; Landman, Adam B; Zimlichman, Eyal; Bates, David W

    2017-10-01

    Background mHealth apps may be useful tools for supporting chronic disease management. Objective Our aim was to apply user-centered design principles to efficiently identify core components for an mHealth-based asthma symptom–monitoring intervention using patient-reported outcomes (PROs). Methods We iteratively combined principles of qualitative research, user-centered design, and “gamification” to understand patients' and providers' needs, develop and refine intervention components, develop prototypes, and create a usable mobile app to integrate with clinical workflows. We identified anticipated benefits and burdens for stakeholders. Results We conducted 19 individual design sessions with nine adult patients and seven clinicians from an academic medical center (some were included multiple times). We identified four core intervention components: (1) Invitation—patients are invited by their physicians. (2) Symptom checks—patients receive weekly five-item questionnaires via the app with 48 hours to respond. Depending on symptoms, patients may be given the option to request a call from a nurse or receive one automatically. (3) Patient review—in the app, patients can view their self-reported data graphically. (4) In-person visit—physicians have access to patient-reported symptoms in the electronic health record (EHR) where they can review them before in-person visits. As there is currently no location in the EHR where physicians would consistently notice these data, recording a recent note was the best option. Benefits to patients may include helping decide when to call their provider and facilitating shared decision making. Benefits to providers may include saving time discussing symptoms. Provider organizations may need to pay nurses extra, but those costs may be offset by reduced visits and hospitalizations. Conclusion Recent systematic reviews show inconsistent outcomes and little insight into functionalities required for mHealth asthma

  7. Characteristics of DC electrical braking method of the gas circulator to limit the temperature rise at the heat transfer pipes in the HTTR

    International Nuclear Information System (INIS)

    Kawasaki, K.; Saito, K.; Iyoku, T.

    2001-01-01

    In the safety evaluation of a High Temperature Engineering Test Reactor (HTTR), it must be confirmed that the core has no chance to be damaged and the barrier against the FP release is designed properly not to be affecting the influence of radiation around the reactor site. Especially the maximum temperature of the reactor pressure boundary such as the heat transfer pipes of pressurized water cooler (PWC) must not exceed the permissible values under an anticipated accident such as pipe of rupture in PWC. A requirement for the gas circulator which circulates helium gas in the primary cooling line and the secondary cooling line, is to be braked within 10 seconds by an electrical braking method after the HTTR reactor has scrammed under the accident in PWC. The reason is that the temperature rise of the heat transfer pipe at PWC has to be suppressed when the gas circulator has stopped, the revolution of the gas circulator decreases like the free coast down so that it takes about 90 seconds to be zero and the temperature rise of the pipe in the PWC exceeds the permissible value. By braking within 10 secs., the temperature of the pipe in the PWC reaches about 368 deg. C, less than the permissible value. Using a simplified equivalent circuit of an induction motor, braking time analysis was performed with obtained electrical resistance and inductance. The obtained braking time is about 10 secs., showing close agreement with analysis values. (author)

  8. Treatment of core components from nuclear power plants with PWR and BWR reactors - 16043

    International Nuclear Information System (INIS)

    Viermann, Joerg; Friske, Andreas; Radzuweit, Joerg

    2009-01-01

    During operation of a Nuclear Power Plant components inside the RPV get irradiated. Irradiation has an effect on physical properties of these components. Some components have to be replaced after certain neutron doses or respectively after a certain operating time of the plant. Such components are for instance water channels and control rods from Boiling Water Reactors (BWR) or control elements, poisoning elements and flow restrictors from Pressurized Water Reactors (PWR). Most of these components are stored in the fuel pool for a certain time after replacement. Then they have to be packaged for further treatment or for disposal. More than 25 years ago GNS developed a system for disposal of irradiated core components which was based on a waste container suitable for transport, storage and disposal of Intermediate Level Waste (ILW), the so-called MOSAIK R cask. The MOSAIK R family of casks is subject of a separate presentation at the ICEM 09 conference. Besides the MOSAIK R cask the treatment system developed by GNS comprised underwater shears to cut the components to size as well as different types of equipment to handle the components, the shears and the MOSAIK R casks in the fuel pool. Over a decade of experience it showed that this system although effective needed improvement for BWR plants where many water channels and control rods had to be replaced after a certain operating time. Because of the large numbers of components the time period needed to cut the components in the pool had a too big influence on other operational work like rearranging of fuel assemblies in the pool. The system was therefore further developed and again a suitable cask was the heart of the solution. GNS developed the type MOSAIK R 80 T, a cask that is capable to ship the unsegmented components with a length of approx. 4.5 m from the Power plants to an external treatment centre. This treatment centre consisting of a hot cell installation with a scrap shear, super-compactor and a heavy

  9. State of Art Report for the OECD-NEA Loss-of-Forced Cooling (LOFC) Test Project using HTTR Reactor

    International Nuclear Information System (INIS)

    Jun, Ji Su

    2011-05-01

    The OECD/NEA Project is planned to perform the LOFC (Loss Of Forced Cooling) test using the HTTR (High Temperature engineering Test Reactor) in Japan from 31 March 2011 to 31 March 2013 in order to obtain the data for the code validation of the VHTR safety analysis. Based on the Project Agreement Document, this report gives a description of the HTTR-LOFC test, HTTR test facility, project schedule and deliverable items as the technical state art of the project, and appends the full translation of the project agreement articles on the project management

  10. Simulation of the thermalhydraulic behavior of a molten core within a structure, with the three dimensions three components TOLBIAC code

    Energy Technology Data Exchange (ETDEWEB)

    Spindler, B.; Moreau, G.M.; Pigny S. [Centre d`Etudes Nucleaires de Grenoble (France)

    1995-09-01

    The TOLBIAC code is devoted to the simulation of the behavior of a molten core within a structure (pressure vessel of core catcher), taking into account the relative position of the core components, the wall ablation and the crust formation. The code is briefly described: 3D model, physical properties and constitutive laws. wall ablation and crust model. Two results are presented: the simulation of the COPO experiment (natural convection with water in a 1/2 scale elliptic pressure vessel), and the simulation of the behavior of a corium in a PWR pressure vessel, with ablation and crust formation.

  11. Japanese HTTR program for demonstration of high temperature applications of nuclear energy

    International Nuclear Information System (INIS)

    Nishihara, T.; Hada, K.; Shiozawa, S.

    1997-01-01

    Construction works of the HTTR started in March 1991 in order to establish and upgrade the HTGR technology basis, to carry out innovative basic researches on high temperature engineering and to demonstrate high temperature heat utilization and application of nuclear heat. This report describes the demonstration program of high temperature heat utilization and application. (author). 2 refs, 4 figs, 3 tabs

  12. Mutations in SNRPB, encoding components of the core splicing machinery, cause cerebro-costo-mandibular syndrome.

    Science.gov (United States)

    Bacrot, Séverine; Doyard, Mathilde; Huber, Céline; Alibeu, Olivier; Feldhahn, Niklas; Lehalle, Daphné; Lacombe, Didier; Marlin, Sandrine; Nitschke, Patrick; Petit, Florence; Vazquez, Marie-Paule; Munnich, Arnold; Cormier-Daire, Valérie

    2015-02-01

    Cerebro-costo-mandibular syndrome (CCMS) is a developmental disorder characterized by the association of Pierre Robin sequence and posterior rib defects. Exome sequencing and Sanger sequencing in five unrelated CCMS patients revealed five heterozygous variants in the small nuclear ribonucleoprotein polypeptides B and B1 (SNRPB) gene. This gene includes three transcripts, namely transcripts 1 and 2, encoding components of the core spliceosomal machinery (SmB' and SmB) and transcript 3 undergoing nonsense-mediated mRNA decay. All variants were located in the premature termination codon (PTC)-introducing alternative exon of transcript 3. Quantitative RT-PCR analysis revealed a significant increase in transcript 3 levels in leukocytes of CCMS individuals compared to controls. We conclude that CCMS is due to heterozygous mutations in SNRPB, enhancing inclusion of a SNRPB PTC-introducing alternative exon, and show that this developmental disease is caused by defects in the splicing machinery. Our finding confirms the report of SNRPB mutations in CCMS patients by Lynch et al. (2014) and further extends the clinical and molecular observations. © 2014 WILEY PERIODICALS, INC.

  13. Core components for effective infection prevention and control programmes: new WHO evidence-based recommendations

    Directory of Open Access Journals (Sweden)

    Julie Storr

    2017-01-01

    Full Text Available Abstract Health care-associated infections (HAI are a major public health problem with a significant impact on morbidity, mortality and quality of life. They represent also an important economic burden to health systems worldwide. However, a large proportion of HAI are preventable through effective infection prevention and control (IPC measures. Improvements in IPC at the national and facility level are critical for the successful containment of antimicrobial resistance and the prevention of HAI, including outbreaks of highly transmissible diseases through high quality care within the context of universal health coverage. Given the limited availability of IPC evidence-based guidance and standards, the World Health Organization (WHO decided to prioritize the development of global recommendations on the core components of effective IPC programmes both at the national and acute health care facility level, based on systematic literature reviews and expert consensus. The aim of the guideline development process was to identify the evidence and evaluate its quality, consider patient values and preferences, resource implications, and the feasibility and acceptability of the recommendations. As a result, 11 recommendations and three good practice statements are presented here, including a summary of the supporting evidence, and form the substance of a new WHO IPC guideline.

  14. Assessing Fidelity of Core Components in a Mindfulness and Yoga Intervention for Urban Youth: Applying the CORE Process

    Science.gov (United States)

    Gould, Laura Feagans; Mendelson, Tamar; Dariotis, Jacinda K.; Ancona, Matthew; Smith, Ali S. R.; Gonzalez, Andres A.; Smith, Atman A.; Greenberg, Mark T.

    2014-01-01

    In the past years, the number of mindfulness-based intervention and prevention programs has increased steadily. In order to achieve the intended program outcomes, program implementers need to understand the essential and indispensable components that define a program's success. This chapter describes the complex process of identifying the core…

  15. Full integrated system of real-time monitoring based on distributed architecture for the high temperature engineering test reactor (HTTR)

    International Nuclear Information System (INIS)

    Subekti, Muhammad; Ohno, Tomio; Kudo, Kazuhiko; Takamatsu, Kuniyoshi; Nabeshima, Kunihiko

    2005-01-01

    A new monitoring system scheme based on distributed architecture for the High Temperature Engineering Test Reactor (HTTR) is proposed to assure consistency of the real-time process of expanded system. A distributed monitoring task on client PCs as an alternative architecture maximizes the throughput and capabilities of the system even if the monitoring tasks suffer a shortage of bandwidth. The prototype of the on-line monitoring system has been developed successfully and will be tested at the actual HTTR site. (author)

  16. Cruise report on geotechnical core processing; Cruise: ATLAS-84, ISHTE Component Test, R/V Melville Sept.-Oct., 1984

    International Nuclear Information System (INIS)

    Silva, A.J.; Lipkin, J.; Brandes, H.

    1986-01-01

    The primary objectives of the geotechnical core processing program on the component test cruise were to: a) obtain additional base line physical property data of the ISHTE site sediments in MPG-I; b) compare strengths determined in the cored sediments to those obtained in situ with the In Situ Vane (ISV) system; and c) obtain samples for detailed laboratory analysis. Original plans called for processing of at least four cores obtained with the 10.2 cm APL hydrostatic corer (HLC) and at least one core obtained with the 20.3 cm WHOI corer (GC). If possible it was also planned to process one of the HLC cores at dockside in an attempt to assess the effects of ship motions on shear strength measurements. Shipboard laboratory facilities were set up for geotechnical processing with the URI sampling gear. Sandia Laboratory supplied a laboratory miniature vane device and apparatus for conducting thermal conductivity tests. Shipboard measurements included shear strength (miniature vane and Torvane) and thermal conductivity. Sampling included disturbed samples for water content, bulk density and classification tests and undisturbed samples for consolidation, permeability, strength, creep and fabric analyses. Unfortunately no GC cores were obtained. Three HLC cores, obtained on two lowerings of the large platform, were processed in considerable detail. In addition it was decided to process three of the box cores recovered by the SIO biology group. Therefore, a total of six cores were processed for geotechnical purposes. The dockside processing plan was deleted because of uncertainties caused by recovery procedures and the fact that only three HLC cores were available. Results are summarized

  17. Method for a reliable activation calculation of core components; Methode zur zuverlaessigen Berechnung von Aktivierungen in Kernbauteilen

    Energy Technology Data Exchange (ETDEWEB)

    Mispagel, T.; Phlippen, P.W.; Rose, J. [Wissenschaftlich-Technische Ingenieurberatung GmbH (WTI), Juelich (Germany)

    2013-07-01

    During nuclear power plant operation components and materials are exposed to the neutron flux from the reactor core and radionuclides are produced. After removal of the fuel elements the radioactivity of these radionuclides in the reactor pressure vessel and the core internals provide more than 99% of the activity of the power plant. For the transport, the interim storage and the final disposal of these radioactive components the radioactive inventories have to be decoded with respect to radiation and nuclides. The declaration of the nuclide and activity inventories requires a reliable calculation of neutron induced activation of reactor components. These activation calculations describe the pile-up of nuclides due to irradiation and due to the decay of nuclides. For an optimum usage of the activity capacities of the repository Konrad it is necessary to have a qualified calculation procedure that keeps the conservatism as low as possible.

  18. Safety demonstration test (SR-3/S1C-3/S2C-3/SF-2) plan using the HTTR. Contract research

    International Nuclear Information System (INIS)

    Nakagawa, Shigeaki; Sakaba, Nariaki; Takamatsu, Kuniyoshi; Takada, Eiji; Tochio, Daisuke; Ohwada, Hiroyuki

    2005-03-01

    Safety demonstration tests using the HTTR are to be conducted from the FY2002 to verify the inherent safety features and to improve the safety design and evaluation technologies for HTGRs, as well as to contribute to not only the commercial HTGRs but also the research and development for the VHTR that is one of the Generation IV reactor candidates. This paper describes the reactivity insertion test (SR-3), the coolant flow reduction test by tripping of gas circulators (S1C-3, S2C-3), and the partial flow loss of coolant test (SF-2) planned in March 2005 with their detailed test method, procedure and results of pre-test analysis. From the analytical results, it was verified that the negative reactivity feedback effect of the core brings the reactor power safely to a stable level without a reactor scram. (author)

  19. Analysis of the methodical component of core power density field calculation error on the basis of Mochovce-1 commissioning tests

    International Nuclear Information System (INIS)

    Brik, A.

    2009-01-01

    In the first decade of June 2008, during the power commissioning of the reactor at the Mochovce NPP unit 1, the experiment with reducing the thermal power of core almost to the balance-of-plant (BOP) needs was performed. After the reactor has operated for seven hours at low power (about 200 220 MW (thermal)), its power was increased (at a rate of about 0.25% of N nom /min) to the initial level, close to 107% (1471 MW). During the experiment, core parameters, which were subsequently used for comparing the measured data with the results of experiment simulation calculations, were recorded in the reactor in-core monitoring system database. Calculated and measured levels of critical concentrations of boric acid were compared, along with power density distributions by fuel elements and assemblies obtained both by the KRUIZ in-core monitoring system and on the basis of calculations simulating reactor operation in accordance with the given core power variation schedule. The final stage consisted of assessing the methodical component of power density micro- and macro-fields calculation error in the core of Mochovce-1 reactor operating with varying load. (author)

  20. Analysis of the methodical component of core power density field calculation error on the basis of Mochovce-1 commissioning tests

    International Nuclear Information System (INIS)

    Brik, A.

    2009-01-01

    In the first decade of June 2008, during the power commissioning of the reactor at Mochovce NPP unit 1, the experiment with reducing the thermal power of core almost to the balance-of-plant needs was performed. After the reactor has operated for seven hours at low power (about 200 220 MW (thermal)), its power was increased (at a rate of about 0.25% of N nom /min) to the initial level, close to 107% (1471 MW). During the experiment, core parameters, which were subsequently used for comparing the measured data with the results of experiment simulation calculations, were recorded in the reactor in-core monitoring system's database. Calculated and measured levels of critical concentrations of boric acid were compared, along with power density distributions by fuel elements and assemblies obtained both by the KRUIZ in-core monitoring system and on the basis of calculations simulating reactor operation in accordance with the given core power variation schedule. The final stage consisted of assessing the methodical component of power density micro- and macro-fields' calculation error in the core of Mochovce-1 reactor operating with varying load. (Authors)

  1. Fundamental philosophy on the safety design of the HTTR-IS hydrogen production system

    International Nuclear Information System (INIS)

    Ohashi, Kazutaka; Nishihara, Tetsuo; Kunitomi, Kazuhiko

    2007-01-01

    Japan Atomic Energy Agency (JAEA) has been conducting an R and D work on the VHTR reactor system and IS hydrogen production system to realize hydrogen production using nuclear heat. As a part of this activity, JAEA is planning to connect an IS test system to the High Temperature Engineering Test Reactor (HTTR) to demonstrate its technical feasibility. This paper proposes a fundamental philosophy on the safety design of the HTTR-IS hydrogen production system including the methodology to select postulated abnormal events and its event sequences and to define safety functions of the IS system to ensure the reactor safety. Also the measure to clarify the IS system as non-reactor system is proposed. (author)

  2. Reaction- and melting behaviour of LWR-core components UO2, Zircaloy and steel during the meltdown period

    International Nuclear Information System (INIS)

    Hofmann, P.

    1976-07-01

    The reaction behaviour of the UO 2 , Zircaloy-4 and austenitic steel core components was investigated as a function of temperature (till melting temperatures) under inert and oxidizing conditions. Component concentrations varied between that of Corium-A (65 wt.% UO 2 , 18% Zry, 17% steel) and that of Corium-E (35 wt.% UO 2 , 10% Zry, 55% steel). In addition, Zircaloy and stainless steel were used with different degrees of oxidation. The paper describes systematically the phases that arise during heating and melting. The integral composition of the melts and the qualitative as well as quantitative analysis of the phases present in solidified corium are given. In some cases melting points have been determined. The reaction and melting behaviour of the corium specimens strongly depends on the concentration and on the degree of oxidation of the core components. First liquid phases are formed at the Zry-steel interface at about 1,350 0 C. The maximum temperatures of about 2,500 0 C for the complete melting of the corium-specimens are well below the UO 2 melting point. Depending on the steel content and/or degree of oxidation of Zry and steel, a homogeneous metallic or oxide melt or two immiscible melts - one oxide and the other metallic - are obtained. During the melting experiments performed under inert gas conditions the chemical composition of the molten specimens generally change by evaporation losses of single elements, especially of uranium, zirconium and oxygen. The total weight losses go up to 30%; under oxidizing conditions they are substantially smaller due to the occurrence of different phases. In air or water vapor, the occurrence of the phases and the melting behaviour of the core components are strongly influenced by the oxidation rate and the oxygen supply to the surface of the melt. In the case of the hypothetical core melting accident, a heterogeneous melt (oxide and metallic) is probable after the meltdown period. (orig./RW) [de

  3. Hydrogen production system coupled with high-temperature gas-cooled reactor (HTTR)

    International Nuclear Information System (INIS)

    Shiozawa, Shusaku

    2003-01-01

    On the HTTR program, R and D on nuclear reactor technology and R and D on thermal application technology such as hydrogen production and so on, are advanced. When carrying out power generation and thermal application such as hydrogen production and so on, it is, at first, necessary to supply nuclear heat safely, stably and in low cost, JAERI carries out some R and Ds on nuclear reactor technology using HTTR. In parallel to this, JAERI also carries out R and D for jointing nuclear reactor system with thermal application systems because of no experience in the world on high temperature heat of about 1,000 centigrade supplied by nuclear reactor except power generation, and R and D on thermochemical decomposition method IS process for producing hydrogen from water without exhaust of carbon dioxide. Here were described summaries on R and D on nuclear reactor technology, R and D on jointing technology using HTTR hydrogen production system, R and D on IS process hydrogen production, and comparison hydrogen production with other processes. (G.K.)

  4. HTTR operation monitoring with neural network in 30 days operation at 850degC

    International Nuclear Information System (INIS)

    Shimizu, Atsushi; Nabeshima, Kunihiko; Nakagawa, Shigeaki

    2009-01-01

    The High temperature engineering test reactor (HTTR) executed the rated power operation for 30days of the first time (850degC in temperature of the nuclear reactor outlet coolant) until March, 27th through April, 26th, 2007. In this operation, HTTR was observed according to the operation monitoring model with the neural network, and the detection performance of neural network was verified during slight changes of reactor state at rated power. The neural network used for the operation monitoring was an auto-associative network, where 31 input 31 outputs and the hidden layers were connected with 20 units by the hierarchy of three layer structure. Back-propagation algorithm was used for study rule. The operation monitoring model in initial study was constructed by using the power up data between 30% and rated power, which were randomly studied. The adjustment study during the operation monitoring changes the internal structure of the initial study model to follow the changes of reactor status, such as the burn-up of the nuclear fuel for the rated power operation. As a monitoring result, slight changes of reactor state by the control system operation were correctly detected, and the on-line application to an early anomaly diagnosis for HTTR facilities will be expected. (author)

  5. Operation, test, research and development of the high temperature engineering test reactor (HTTR). (FY2005)

    International Nuclear Information System (INIS)

    2007-03-01

    The High Temperature Engineering Test Reactor (HTTR) constructed at the Oarai Research and Development Center of the Japan Atomic Energy Agency (JAEA) is the first high-temperature gas-cooled reactor (HTGR) in Japan, which is a graphite-moderated and helium gas-cooled reactor with 30 MW of thermal power. The full power operation of 30 MW was attained in December, 2001, and then JAERI (JAEA) received the commissioning license for the HTTR in March, 2002. Since 2002, we have been carrying out rated power operation, safety demonstration tests and several R and Ds, etc., and conducted the high-temperature test operation of 950degC in April, 2004. In fiscal 2005 year, periodical inspection and overhaul of reactivity control system were conducted, and safety demonstration tests were promoted. This report summarizes activities and test results on HTTR operation and maintenance as well as safety demonstration tests and several R and Ds, which were carried out in the fiscal year of 2005. (author)

  6. Component mode synthesis methods applied to 3D heterogeneous core calculations, using the mixed dual finite element solver MINOS

    Energy Technology Data Exchange (ETDEWEB)

    Guerin, P.; Baudron, A. M.; Lautard, J. J. [Commissariat a l' Energie Atomique, DEN/DANS/DM2S/SERMA/LENR, CEA Saclay, 91191 Gif sur Yvette (France)

    2006-07-01

    This paper describes a new technique for determining the pin power in heterogeneous core calculations. It is based on a domain decomposition with overlapping sub-domains and a component mode synthesis technique for the global flux determination. Local basis functions are used to span a discrete space that allows fundamental global mode approximation through a Galerkin technique. Two approaches are given to obtain these local basis functions: in the first one (Component Mode Synthesis method), the first few spatial eigenfunctions are computed on each sub-domain, using periodic boundary conditions. In the second one (Factorized Component Mode Synthesis method), only the fundamental mode is computed, and we use a factorization principle for the flux in order to replace the higher order Eigenmodes. These different local spatial functions are extended to the global domain by defining them as zero outside the sub-domain. These methods are well-fitted for heterogeneous core calculations because the spatial interface modes are taken into account in the domain decomposition. Although these methods could be applied to higher order angular approximations - particularly easily to a SPN approximation - the numerical results we provide are obtained using a diffusion model. We show the methods' accuracy for reactor cores loaded with UOX and MOX assemblies, for which standard reconstruction techniques are known to perform poorly. Furthermore, we show that our methods are highly and easily parallelizable. (authors)

  7. Component mode synthesis methods applied to 3D heterogeneous core calculations, using the mixed dual finite element solver MINOS

    International Nuclear Information System (INIS)

    Guerin, P.; Baudron, A. M.; Lautard, J. J.

    2006-01-01

    This paper describes a new technique for determining the pin power in heterogeneous core calculations. It is based on a domain decomposition with overlapping sub-domains and a component mode synthesis technique for the global flux determination. Local basis functions are used to span a discrete space that allows fundamental global mode approximation through a Galerkin technique. Two approaches are given to obtain these local basis functions: in the first one (Component Mode Synthesis method), the first few spatial eigenfunctions are computed on each sub-domain, using periodic boundary conditions. In the second one (Factorized Component Mode Synthesis method), only the fundamental mode is computed, and we use a factorization principle for the flux in order to replace the higher order Eigenmodes. These different local spatial functions are extended to the global domain by defining them as zero outside the sub-domain. These methods are well-fitted for heterogeneous core calculations because the spatial interface modes are taken into account in the domain decomposition. Although these methods could be applied to higher order angular approximations - particularly easily to a SPN approximation - the numerical results we provide are obtained using a diffusion model. We show the methods' accuracy for reactor cores loaded with UOX and MOX assemblies, for which standard reconstruction techniques are known to perform poorly. Furthermore, we show that our methods are highly and easily parallelizable. (authors)

  8. The Promises and Challenges of Teaching from an Intersectional Perspective: Core Components and Applied Strategies

    Science.gov (United States)

    Jones, Susan R.; Wijeyesinghe, Charmaine L.

    2011-01-01

    This chapter explores how the framework of intersectionality can be used by faculty in course development and classroom teaching. An overview of intersectionality, highlighting core assumptions and tenets of the framework, is presented first. These assumptions and tenets are then applied to classroom dynamics and the practice of teaching in…

  9. Rules for design of nuclear graphite core components - some considerations and approaches

    International Nuclear Information System (INIS)

    Svalbonas, V.; Stilwell, T.C.; Zudans, Z.

    1978-01-01

    The use of graphite as a structural element presents unusual problems both for the designer and stress analysist. When the structure happens to be a nuclear reactor core, these problems are significantly magnified both by the environment and the attendant safety requirements. In the high temperature gas reactor (HTGR) core a large number of elements are constructed of nuclear graphite. This paper discusses the attendant difficulties, and presents some approaches, for ASME code safety-consistent design and analysis. The statistical scatter of material properties, which complicates even the definitions of allowable stress, as well as the brittle, anisotropic, inhomogeneous nature of the graphite was considered. The study of this subject was undertaken under contract to the U.S. Nuclear Regulatory Commission. (Auth.)

  10. Lower core body temperature and greater body fat are components of a human thrifty phenotype.

    Science.gov (United States)

    Reinhardt, M; Schlögl, M; Bonfiglio, S; Votruba, S B; Krakoff, J; Thearle, M S

    2016-05-01

    In small studies, a thrifty human phenotype, defined by a greater 24-hour energy expenditure (EE) decrease with fasting, is associated with less weight loss during caloric restriction. In rodents, models of diet-induced obesity often have a phenotype including a reduced EE and decreased core body temperature. We assessed whether a thrifty human phenotype associates with differences in core body temperature or body composition. Data for this cross-sectional analysis were obtained from 77 individuals participating in one of two normal physiology studies while housed on our clinical research unit. Twenty-four-hour EE using a whole-room indirect calorimeter and 24-h core body temperature were measured during 24 h each of fasting and 200% overfeeding with a diet consisting of 50% carbohydrates, 20% protein and 30% fat. Body composition was measured by dual X-ray absorptiometry. To account for the effects of body size on EE, changes in EE were expressed as a percentage change from 24-hour EE (%EE) during energy balance. A greater %EE decrease with fasting correlated with a smaller %EE increase with overfeeding (r=0.27, P=0.02). The %EE decrease with fasting was associated with both fat mass and abdominal fat mass, even after accounting for covariates (β=-0.16 (95% CI: -0.26, -0.06) %EE per kg fat mass, P=0.003; β=-0.0004 (-0.0007, -0.00004) %EE kg(-1) abdominal fat mass, P=0.03). In men, a greater %EE decrease in response to fasting was associated with a lower 24- h core body temperature, even after adjusting for covariates (β=1.43 (0.72, 2.15) %EE per 0.1 °C, P=0.0003). Thrifty individuals, as defined by a larger EE decrease with fasting, were more likely to have greater overall and abdominal adiposity as well as lower core body temperature consistent with a more efficient metabolism.

  11. A core MRB1 complex component is indispensable for RNA editing in insect and human infective stages of Trypanosoma brucei.

    Directory of Open Access Journals (Sweden)

    Michelle L Ammerman

    Full Text Available Uridine insertion/deletion RNA editing is a unique and vital process in kinetoplastids, required for creation of translatable open reading frames in most mitochondrially-encoded RNAs. Emerging as a key player in this process is the mitochondrial RNA binding 1 (MRB1 complex. MRB1 comprises an RNA-independent core complex of at least six proteins, including the GAP1/2 guide RNA (gRNA binding proteins. The core interacts in an RNA-enhanced or -dependent manner with imprecisely defined TbRGG2 subcomplexes, Armadillo protein MRB10130, and additional factors that comprise the dynamic MRB1 complex. Towards understanding MRB1 complex function in RNA editing, we present here functional characterization of the pentein domain-containing MRB1 core protein, MRB11870. Inducible RNAi studies demonstrate that MRB11870 is essential for proliferation of both insect vector and human infective stage T. brucei. MRB11870 ablation causes a massive defect in RNA editing, affecting both pan-edited and minimally edited mRNAs, but does not substantially affect mitochondrial RNA stability or processing of precursor transcripts. The editing defect in MRB1-depleted cells occurs at the initiation stage of editing, as pre-edited mRNAs accumulate. However, the gRNAs that direct editing remain abundant in the knockdown cells. To examine the contribution of MRB11870 to MRB1 macromolecular interactions, we tagged core complexes and analyzed their composition and associated proteins in the presence and absence of MRB11870. These studies demonstrated that MRB11870 is essential for association of GAP1/2 with the core, as well as for interaction of the core with other proteins and subcomplexes. Together, these data support a model in which the MRB1 core mediates functional interaction of gRNAs with the editing machinery, having GAP1/2 as its gRNA binding constituents. MRB11870 is a critical component of the core, essential for its structure and function.

  12. Damping of the radial impulsive motion of LMFBR core components separated by fluid squeeze films

    International Nuclear Information System (INIS)

    Liebe, R.; Zehlein, H.

    1977-01-01

    The core deformation of a liquid metal cooled fast breeder reactor (LMFBR) due to local pressure propagation from rapid energy releases is a complex three-dimensional fluid-structure-interaction problem. High pressure transients of short duration cause structural deformation of the closely spaced fuel elements, which are surrounded by the flowing coolant. Corresponding relative displacements give rise to squeezing fluid motion in the thin layers between the subassemblies. Therefore significant backpressures are produced and the resulting time and space dependent fluid forces are acting on the structure as additional non-conservative external loads. Realistic LMFBR safety analysis of several clustered fuel elements have to account for such flow induced forces. Several idealized models have been proposed to study some aspects of the complex problem. As part of the core mechanics activities at GfK Karlsruhe this paper describes two fluid flow models (model A, model B), which are shown to be suitable for physically coupled fluid-structure analyses. Important assumptions are discussed in both cases and basic equations are derived for one- and two-dimensional incompressible flow fields. The interface of corresponing computer codes FLUF (model A) and FLOWAX (model B) with structural dynamics programs is outlined. Finally fluid-structure interaction problems relevant to LMFBR design are analyzed; parametric studies indicate a significant cushioning effect, energy dissipation and a strongly nonlinear as well as timedependent damping of the structural response. (Auth.)

  13. Motor and drive integration with passive components realised using the stator core

    Energy Technology Data Exchange (ETDEWEB)

    Garvey, S.D. [M. D. of Insight M Ltd., Aston Science Park, and Reader in Dynamics at Aston Univ. (United Kingdom)

    2000-07-01

    There is an inevitable trade-off between overall energy efficiency of any motor-drive pair and net capital cost. If the marginal cost of certain necessary components can be reduced, greater expenditure is possible in other areas with the potential of increased efficiency for a given cost. This paper investigates just such a proposition. (orig.)

  14. French R&D on Materials for the Core Components of SFRs

    International Nuclear Information System (INIS)

    Le Flem, M.; Séran, J.L.; Blat-Yrieix, M.; Garat, V.

    2013-01-01

    ASTRID demonstrator 480-700°C, 110 dpa. • Use of reference materials benefiniting from a large feed-back from the previous French SFRs (Rapsodie, Phénix, SuperPhénix) • Austenitic steels (cladding), Martensitic steels (wrapper tube), B4C (absorbers). • Improving the description of their behavior (swelling, high temperature) • Qualifying the materials regarding the specificities of ASTRID core. Future SFRs 530-750, 180 dpa. • Use of advanced materials with improved properties • ODS ferritic/martensitic steels (cladding), Other metallic solutions as V alloys (cladding), SiC/SiC composites (wrapper tube), Innovative absorbers and reflectors. • R&D to develop/fabricate suitable grades • Qualifying these materials in ASTRID

  15. Development of C/C composite for the core component of the high temperature gas cooled reactor

    Energy Technology Data Exchange (ETDEWEB)

    Park, J. Y.; Kim, W. J.; Ryu, W. S.; Jang, J. H

    2005-01-15

    This report reviewed a state of the art on development of C/C composite for the core components for VHTR and described the followings items. The fabrication methods of C/C composites. Summary on the JAERI report (JAERI-Res 2002-026) on the process screening test for the selection of a proper C/C composite material. Review of the proceedings presented at the GEN-IV VHTR material PMB meeting. A status of the domestic commercial C/C composite. The published property data and the characteristics of the commercial C/C composite.

  16. Development of C/C composite for the core component of the high temperature gas cooled reactor

    International Nuclear Information System (INIS)

    Park, J. Y.; Kim, W. J.; Ryu, W. S.; Jang, J. H.

    2005-01-01

    This report reviewed a state of the art on development of C/C composite for the core components for VHTR and described the followings items. The fabrication methods of C/C composites. Summary on the JAERI report (JAERI-Res 2002-026) on the process screening test for the selection of a proper C/C composite material. Review of the proceedings presented at the GEN-IV VHTR material PMB meeting. A status of the domestic commercial C/C composite. The published property data and the characteristics of the commercial C/C composite

  17. Can the periphery achieve core? The case of the automobile components industry in Spain

    OpenAIRE

    Lampón, Jesús F.; Lago-Peñas, Santiago; Cabanelas, Pablo

    2013-01-01

    The paper analyses changes experienced by Spain, as a European Peripheral region, in the spatial concentration of value-added and high-skill activities, and generation of technology in the automobile components industry. The analysis of plants set up (investments) and relocated (divestments) by multinationals (MNEs) between 2001 and 2010 show that Spain is no longer a place for labour-intensive activities and standardized processes using simple technologies in comparison to other peripheral r...

  18. The reduced kinome of Ostreococcus tauri: core eukaryotic signalling components in a tractable model species.

    Science.gov (United States)

    Hindle, Matthew M; Martin, Sarah F; Noordally, Zeenat B; van Ooijen, Gerben; Barrios-Llerena, Martin E; Simpson, T Ian; Le Bihan, Thierry; Millar, Andrew J

    2014-08-02

    The current knowledge of eukaryote signalling originates from phenotypically diverse organisms. There is a pressing need to identify conserved signalling components among eukaryotes, which will lead to the transfer of knowledge across kingdoms. Two useful properties of a eukaryote model for signalling are (1) reduced signalling complexity, and (2) conservation of signalling components. The alga Ostreococcus tauri is described as the smallest free-living eukaryote. With less than 8,000 genes, it represents a highly constrained genomic palette. Our survey revealed 133 protein kinases and 34 protein phosphatases (1.7% and 0.4% of the proteome). We conducted phosphoproteomic experiments and constructed domain structures and phylogenies for the catalytic protein-kinases. For each of the major kinases families we review the completeness and divergence of O. tauri representatives in comparison to the well-studied kinomes of the laboratory models Arabidopsis thaliana and Saccharomyces cerevisiae, and of Homo sapiens. Many kinase clades in O. tauri were reduced to a single member, in preference to the loss of family diversity, whereas TKL and ABC1 clades were expanded. We also identified kinases that have been lost in A. thaliana but retained in O. tauri. For three, contrasting eukaryotic pathways - TOR, MAPK, and the circadian clock - we established the subset of conserved components and demonstrate conserved sites of substrate phosphorylation and kinase motifs. We conclude that O. tauri satisfies our two central requirements. Several of its kinases are more closely related to H. sapiens orthologs than S. cerevisiae is to H. sapiens. The greatly reduced kinome of O. tauri is therefore a suitable model for signalling in free-living eukaryotes.

  19. Temperature analysis of the control rods at the scram shutdown of the HTTR. Evaluation by using measurement data at scram test of HTTR

    Energy Technology Data Exchange (ETDEWEB)

    Takada, Eiji; Fujimoto, Nozomu; Nakagawa, Shigeaki [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment; Matsuda, Atsuko [Toshiba Co., Tokyo (Japan)

    2003-03-01

    In the High Temperature Engineering Test Reactor (HTTR), since the primary coolant temperature become 950 degrees centigrade at the high temperature test operation, the special alloy Alloy800H is used for cladding tubes and spines of the control rods to endure the high temperature. The temperature limitation of control rod is 900 degrees centigrade according to the strength data of Alloy800H. The scram shutdown by loss of off-site electric power at the high temperature test operation was assumed as an transient of the temperature of the control rods cladding might exceed 900 degrees centigrade. In this report, the temperature of the control rods is analyzed by using the measurement data of the rise-to-power test. From the result of this analysis, it was confirmed that the control rod temperature does not exceed the limit even at the transient of the loss of off-site electric power from the high temperature test operation. (author)

  20. Constitutive modeling and finite element procedure development for stress analysis of prismatic high temperature gas cooled reactor graphite core components

    International Nuclear Information System (INIS)

    Mohanty, Subhasish; Majumdar, Saurindranath; Srinivasan, Makuteswara

    2013-01-01

    Highlights: • Finite element procedure developed for stress analysis of HTGR graphite component. • Realistic fluence profile and reflector brick shape considered for the simulation. • Also realistic H-451 grade material properties considered for simulation. • Typical outer reflector of a GT-MHR type reactor considered for numerical study. • Based on the simulation results replacement of graphite bricks can be scheduled. -- Abstract: High temperature gas cooled reactors, such as prismatic and pebble bed reactors, are increasingly becoming popular because of their inherent safety, high temperature process heat output, and high efficiency in nuclear power generation. In prismatic reactors, hexagonal graphite bricks are used as reflectors and fuel bricks. In the reactor environment, graphite bricks experience high temperature and neutron dose. This leads to dimensional changes (swelling and or shrinkage) of these bricks. Irradiation dimensional changes may affect the structural integrity of the individual bricks as well as of the overall core. The present paper presents a generic procedure for stress analysis of prismatic core graphite components using graphite reflector as an example. The procedure is demonstrated through commercially available ABAQUS finite element software using the option of user material subroutine (UMAT). This paper considers General Atomics Gas Turbine-Modular Helium Reactor (GT-MHR) as a bench mark design to perform the time integrated stress analysis of a typical reflector brick considering realistic geometry, flux distribution and realistic irradiation material properties of transversely isotropic H-451 grade graphite

  1. Work-related musculoskeletal disorders (WMDs) risk assessment at core assembly production of electronic components manufacturing company

    Science.gov (United States)

    Yahya, N. M.; Zahid, M. N. O.

    2018-03-01

    This study conducted to assess the work-related musculoskeletal disorders (WMDs) among the workers at core assembly production in an electronic components manufacturing company located in Pekan, Pahang, Malaysia. The study is to identify the WMDs risk factor and risk level. A set of questionnaires survey based on modified Nordic Musculoskeletal Disorder Questionnaires have been distributed to respective workers to acquire the WMDs risk factor identification. Then, postural analysis was conducted in order to measure the respective WMDs risk level. The analysis were based on two ergonomics assessment tools; Rapid Upper Limb Assessment (RULA) and Rapid Entire Body Assessment (REBA). The study found that 30 respondents out of 36 respondents suffered from WMDs especially at shoulder, wrists and lower back. The WMDs risk have been identified from unloading process, pressing process and winding process. In term of the WMDs risk level, REBA and RULA assessment tools have indicated high risk level to unloading and pressing process. Thus, this study had established the WMDs risk factor and risk level of core assembly production in an electronic components manufacturing company at Malaysia environment.

  2. Constitutive modeling and finite element procedure development for stress analysis of prismatic high temperature gas cooled reactor graphite core components

    Energy Technology Data Exchange (ETDEWEB)

    Mohanty, Subhasish, E-mail: smohanty@anl.gov [Argonne National Laboratory, South Cass Avenue, Argonne, IL 60439 (United States); Majumdar, Saurindranath [Argonne National Laboratory, South Cass Avenue, Argonne, IL 60439 (United States); Srinivasan, Makuteswara [U.S. Nuclear Regulatory Commission, Washington, DC 20555 (United States)

    2013-07-15

    Highlights: • Finite element procedure developed for stress analysis of HTGR graphite component. • Realistic fluence profile and reflector brick shape considered for the simulation. • Also realistic H-451 grade material properties considered for simulation. • Typical outer reflector of a GT-MHR type reactor considered for numerical study. • Based on the simulation results replacement of graphite bricks can be scheduled. -- Abstract: High temperature gas cooled reactors, such as prismatic and pebble bed reactors, are increasingly becoming popular because of their inherent safety, high temperature process heat output, and high efficiency in nuclear power generation. In prismatic reactors, hexagonal graphite bricks are used as reflectors and fuel bricks. In the reactor environment, graphite bricks experience high temperature and neutron dose. This leads to dimensional changes (swelling and or shrinkage) of these bricks. Irradiation dimensional changes may affect the structural integrity of the individual bricks as well as of the overall core. The present paper presents a generic procedure for stress analysis of prismatic core graphite components using graphite reflector as an example. The procedure is demonstrated through commercially available ABAQUS finite element software using the option of user material subroutine (UMAT). This paper considers General Atomics Gas Turbine-Modular Helium Reactor (GT-MHR) as a bench mark design to perform the time integrated stress analysis of a typical reflector brick considering realistic geometry, flux distribution and realistic irradiation material properties of transversely isotropic H-451 grade graphite.

  3. Soil-structure interaction analysis of HTTR building by a simplified model

    International Nuclear Information System (INIS)

    Yagishita, F.; Suzuki, H.; Yamagishi, Y.

    1990-01-01

    For the evaluation of the design seismic forces of the embedded High-Temperature-Testing-Reactor (HTTR) structure, a sway-rocking model considering the embedment of the structure is used. As for the composition of this model; the structure is modeled into beams with lumped masses, and the soil into the horizontal side springs and the horizontal and rotational bottom springs. At the same time, the input motion to the structure which has the form of multiple excitation is calculated based on one dimensional wave propagation theory. This paper presents the concept of this modelling and evaluated results. (author). 9 refs, 11 figs

  4. MCNP qualification on the HTR critical configurations: HTTR, HTR10 and PROTEUS results

    Energy Technology Data Exchange (ETDEWEB)

    TRAKAS, Christos; STOVEN, Gilles [AREVA NP, Tour Areva, 92084 Paris La Defence Cedex (France)

    2008-07-01

    Recent critical experiments, including PROTEUS, HTTR and HTR-10 provide a reliable qualification base for HTR criticality predictions. The fuel tested in these experiments, be it hexagonal block or pebble type, is irradiated in a spectrum comparable to that of the HTR planned by AREVA NP. The neutron spectrum is comparable in all three cases; the mean C/M value for all critical cases is less than +350 pcm (JEF2.2), +250 pcm (JEFF3.1) and +60 pcm (ENDF BVI). The C/M obtained for the rods worth, the reaction rates and the isothermal coefficient are very satisfactory. (authors)

  5. Modeling of fuel performance and fission product release behavior during HTTR normal operation. A comparative study of the FZJ and JAERI modeling approach

    International Nuclear Information System (INIS)

    Verfondern, Karl; Sumita, Junya; Ueta, Shohei; Sawa, Kazuhiro

    2001-03-01

    For the prediction of fuel performance and fission product release behavior in the High Temperature Engineering Test Reactor, HTTR of the Japan Atomic Energy Research Institute(JAERI), during its normal operation, calculation tools were applied as have been used at the Research Center Juelich (FZJ) in safety analyses for pebble-bed HTGR designs. Calculations were made assuming the HTTR operation with a nominal operation time of 660 efpd including a 110 efpd period with elevated fuel temperatures. Fuel performance calculations by the PANAMA code with given fuel temperature distribution in the core have shown that the additional failure level of about 5x10 -6 is expected which is about twice as much as the as-fabricated through-coatings failure level. Under the extreme safety design conditions, the predicted particle failure fraction in the core increases to about 1x10 -3 in maximum. The diffusive release of metallic fission products from the fuel primarily occurs in the core layer with the maximum fuel temperature (layer 3) whereas there is hardly any contribution from layer 1 except for the recoil fraction. Silver most easily escapes the fuel; the predicted release fractions from the fuel compacts are 10% (expected) and 50% (safety design). The figures for strontium (expected: 1.5x10 -3 ), safety design: 3.1x10 -2 ) and cesium (5.6x10 -4 , 2.9x10 -2 ) reveal as well a significant fraction to originate already from intact particles. Comparison with the calculation based on JAERI's diffusion model for cesium shows a good agreement for the release behavior from the particles. The differences in the results can be explained mainly by the different diffusion coefficients applied. The release into the coolant can not modelled because of the influence of the gap between compact and graphite sleeve lowering the release by a factor of 3 to 10. For the prediction of performance and fission product release behavior of advanced ZrC TRISO particles, more experimental work is

  6. Core components of clinical education: a qualitative study with attending physicians and their residents

    Directory of Open Access Journals (Sweden)

    ALIREZA ESTEGHAMATI

    2016-04-01

    residents’ learning by means of appropriate workplace planning and by considering the components involved in clinical learning.

  7. LINE retrotransposon RNA is an essential structural and functional epigenetic component of a core neocentromeric chromatin.

    Directory of Open Access Journals (Sweden)

    Anderly C Chueh

    2009-01-01

    Full Text Available We have previously identified and characterized the phenomenon of ectopic human centromeres, known as neocentromeres. Human neocentromeres form epigenetically at euchromatic chromosomal sites and are structurally and functionally similar to normal human centromeres. Recent studies have indicated that neocentromere formation provides a major mechanism for centromere repositioning, karyotype evolution, and speciation. Using a marker chromosome mardel(10 containing a neocentromere formed at the normal chromosomal 10q25 region, we have previously mapped a 330-kb CENP-A-binding domain and described an increased prevalence of L1 retrotransposons in the underlying DNA sequences of the CENP-A-binding clusters. Here, we investigated the potential role of the L1 retrotransposons in the regulation of neocentromere activity. Determination of the transcriptional activity of a panel of full-length L1s (FL-L1s across a 6-Mb region spanning the 10q25 neocentromere chromatin identified one of the FL-L1 retrotransposons, designated FL-L1b and residing centrally within the CENP-A-binding clusters, to be transcriptionally active. We demonstrated the direct incorporation of the FL-L1b RNA transcripts into the CENP-A-associated chromatin. RNAi-mediated knockdown of the FL-L1b RNA transcripts led to a reduction in CENP-A binding and an impaired mitotic function of the 10q25 neocentromere. These results indicate that LINE retrotransposon RNA is a previously undescribed essential structural and functional component of the neocentromeric chromatin and that retrotransposable elements may serve as a critical epigenetic determinant in the chromatin remodelling events leading to neocentromere formation.

  8. HTTR hydrogen production system. Structure and main specifications of mock-up test facility (Contract research)

    International Nuclear Information System (INIS)

    Kato, Michio; Aita, Hideki; Inagaki, Yoshiyuki; Hayashi, Koji; Ohashi, Hirofumi; Sato, Hiroyuki; Iwatsuki, Jin; Takada, Shoji; Inaba, Yoshitomo

    2007-03-01

    The mock-up test facility was fabricated to investigate performance of the steam generator for mitigation of the temperature fluctuation of helium gas and transient behavior of the hydrogen production system for HTTR and to obtain experimental data for verification of a dynamic analysis code. The test facility has an approximate hydrogen production capacity of 120Nm 3 /h and the steam reforming process of methane; CH 4 +H 2 O=3H 2 +CO, was used for hydrogen production of the test facility. An electric heater was used as a heat source instead of the reactor in order to heat helium gas up to 880degC (4MPa) at the chemical reactor inlet which is the same temperature as the HTTR hydrogen production system. Fabrication of the test facility was completed in February in 2002, and seven cycle operations were carried out from March in 2002 to December in 2004. This report describes the structure and main specifications of the test facility. (author)

  9. The HTTR project as the world leader of HTGR research and development

    International Nuclear Information System (INIS)

    Shiozawa, Shusaku; Komori, Yoshihiro; Ogawa, Masuro

    2005-01-01

    As a next generation type nuclear system which will expand nuclear energy use area with high temperature nuclear heat utilization and improve economic competitiveness greatly, High Temperature Gas-cooled Reactor (HTGR) has become the R and D item of prime importance at home as well as abroad to establish hydrogen society to cope with global environmental problems. JAERI has conducted R and D on HTGR as the world leader such as to achieve a reactor outlet coolant temperature of 950 degC in the HTTR (High Temperature Engineering Test Reactor) in April 2004 as the world's first and also to succeed in continuous hydrogen production with a bench-scale apparatus of closed cycle iodine-sulfur (IS) process for six and half hours in August 2003 as the world's first. Overview and present status of HTTR program were presented in details with background and main R and D results as well as international trend of HTGR development and future program on pilot tests facilities for hydrogen production demonstration in Japan. (T. Tanaka)

  10. Study on flow-induced vibration of the fuel rod in HTTR

    International Nuclear Information System (INIS)

    Takase, Kazuyuki

    1988-03-01

    This study was performed in order to investigate flow-induced vibration characteristics of a fuel rod in HTTR (High Temperature engineering Test Reactor) from both an experiment and a numerical simulation. Two kinds of fuel rods were used in this experiment: one was a graphite rod which simulated a specification of the HTTR's fuel rod and the other was an aluminum rod whose weight was a half of the graphite one. The experiment was carried out up to Re = 31000 using air at room temperature and pressure. Air flowed downstream in an annular passage which consisted of the fuel rod and the graphite channel. Numerical simulations by fluid and frequency equations were also carried out. Numerical and experimental results were then compared. The following conclusions were drived: (1) The fuel rod amplitudes increase with the flow rate and with a decrease of the fuel rod weight. (2) The fuel rod amplitudes are obtained by δ/De = 2.22 x 10 -10 Re 1.43 , 9000 ≤ Re ≤ 31000, where δ is a vibration amplitude, De is a hydraulic diameter and Reis Reynolds number. (3) The fuel rod frequencies shift from lower natural frequency to higher as the flow rate increases. (4) The flow-induced vibration behavior of the fuel rod can simulate well by simultaneous equations which used the turbulence model for fluid and the mass model for vibration of the fuel rod. (author)

  11. Component mode synthesis methods for 3-D heterogeneous core calculations applied to the mixed-dual finite element solver MINOS

    International Nuclear Information System (INIS)

    Guerin, P.; Baudron, A.M.; Lautard, J.J.; Van Criekingen, S.

    2007-01-01

    This paper describes a new technique for determining the pin power in heterogeneous three-dimensional calculations. It is based on a domain decomposition with overlapping sub-domains and a component mode synthesis (CMS) technique for the global flux determination. Local basis functions are used to span a discrete space that allows fundamental global mode approximation through a Galerkin technique. Two approaches are given to obtain these local basis functions. In the first one (the CMS method), the first few spatial eigenfunctions are computed on each sub-domain, using periodic boundary conditions. In the second one (factorized CMS method), only the fundamental mode is computed, and we use a factorization principle for the flux in order to replace the higher-order Eigenmodes. These different local spatial functions are extended to the global domain by defining them as zero outside the sub-domain. These methods are well fitted for heterogeneous core calculations because the spatial interface modes are taken into account in the domain decomposition. Although these methods could be applied to higher-order angular approximations-particularly easily to an SPN approximation-the numerical results we provide are obtained using a diffusion model. We show the methods' accuracy for reactor cores loaded with uranium dioxide and mixed oxide assemblies, for which standard reconstruction techniques are known to perform poorly. Furthermore, we show that our methods are highly and easily parallelizable. (authors)

  12. DotU and VgrG, core components of type VI secretion systems, are essential for Francisella LVS pathogenicity.

    Directory of Open Access Journals (Sweden)

    Jeanette E Bröms

    Full Text Available The Gram-negative bacterium Francisella tularensis causes tularemia, a disease which requires bacterial escape from phagosomes of infected macrophages. Once in the cytosol, the bacterium rapidly multiplies, inhibits activation of the inflammasome and ultimately causes death of the host cell. Of importance for these processes is a 33-kb gene cluster, the Francisella pathogenicity island (FPI, which is believed to encode a type VI secretion system (T6SS. In this study, we analyzed the role of the FPI-encoded proteins VgrG and DotU, which are conserved components of type VI secretion (T6S clusters. We demonstrate that in F. tularensis LVS, VgrG was shown to form multimers, consistent with its suggested role as a trimeric membrane puncturing device in T6SSs, while the inner membrane protein DotU was shown to stabilize PdpB/IcmF, another T6SS core component. Upon infection of J774 cells, both ΔvgrG and ΔdotU mutants did not escape from phagosomes, and subsequently, did not multiply or cause cytopathogenicity. They also showed impaired activation of the inflammasome and marked attenuation in the mouse model. Moreover, all of the DotU-dependent functions investigated here required the presence of three residues that are essentially conserved among all DotU homologues. Thus, in agreement with a core function in T6S clusters, VgrG and DotU play key roles for modulation of the intracellular host response as well as for the virulence of F. tularensis.

  13. Case study on chemical plant accidents for flow-sheet design of the HTTR-IS system

    International Nuclear Information System (INIS)

    Homma, Hiroyuki; Sato, Hiroyuki; Kasahara, Seiji; Hara, Teruo; Kato, Ryoma; Sakaba, Nariaki; Ohashi, Hirofumi

    2007-02-01

    At the present time, we are alarmed by depletion of fossil energy and adverse effect of rapid increase in fossil fuel burning on environment such as climate changes and acid rain, because our lives depend still heavily upon fossil energy. It is thus widely recognized that hydrogen is one of important future energy carriers in which it is used without emission of carbon dioxide greenhouse gas and atmospheric pollutants and that hydrogen demand will increase greatly as fuel cells are developed and applied widely in the near future. To meet massive demand of hydrogen, hydrogen production from water utilizing nuclear, especially by thermochemical water-splitting Iodine-Sulphur (IS) process utilizing heat from High-Temperature Gas-cooled Reactors (HTGRs), offers one of the most attractive zero-emission energy strategies and the only one practical on a substantial scale. However, to establish a technology based for the HTGR hydrogen production by the IS process, we should close several technology gaps through R and D with the High-Temperature Engineering Test Reactor (HTTR), which is the only Japanese HTGR built and operated at the Oarai Research and Development Centre of Japan Atomic Energy Agency (JAEA). We have launched design studies of the IS process hydrogen production system coupled with the HTTR (HTTR-IS system) to demonstrate HTGR hydrogen production. In designing the HTTR-IS system, it is necessary to consider preventive and breakdown maintenance against accidents occurred in the IS process as a chemical plant. This report describes case study on chemical plant accidents relating to the IS process plant and shows a proposal of accident protection measures based on above case study, which is necessary for flow-sheet design of the HTTR-IS system. (author)

  14. Developing an OMERACT Core Outcome Set for Assessing Safety Components in Rheumatology Trials: The OMERACT Safety Working Group.

    Science.gov (United States)

    Klokker, Louise; Tugwell, Peter; Furst, Daniel E; Devoe, Dan; Williamson, Paula; Terwee, Caroline B; Suarez-Almazor, Maria E; Strand, Vibeke; Woodworth, Thasia; Leong, Amye L; Goel, Niti; Boers, Maarten; Brooks, Peter M; Simon, Lee S; Christensen, Robin

    2017-12-01

    Failure to report harmful outcomes in clinical research can introduce bias favoring a potentially harmful intervention. While core outcome sets (COS) are available for benefits in randomized controlled trials in many rheumatic conditions, less attention has been paid to safety in such COS. The Outcome Measures in Rheumatology (OMERACT) Filter 2.0 emphasizes the importance of measuring harms. The Safety Working Group was reestablished at the OMERACT 2016 with the objective to develop a COS for assessing safety components in trials across rheumatologic conditions. The safety issue has previously been discussed at OMERACT, but without a consistent approach to ensure harms were included in COS. Our methods include (1) identifying harmful outcomes in trials of interventions studied in patients with rheumatic diseases by a systematic literature review, (2) identifying components of safety that should be measured in such trials by use of a patient-driven approach including qualitative data collection and statistical organization of data, and (3) developing a COS through consensus processes including everyone involved. Members of OMERACT including patients, clinicians, researchers, methodologists, and industry representatives reached consensus on the need to continue the efforts on developing a COS for safety in rheumatology trials. There was a general agreement about the need to identify safety-related outcomes that are meaningful to patients, framed in terms that patients consider relevant so that they will be able to make informed decisions. The OMERACT Safety Working Group will advance the work previously done within OMERACT using a new patient-driven approach.

  15. Improvement of the abnormal diagnosis technology by the development of an abnormal parts assignment system for the engineered safety features actuating system of the HTTR

    International Nuclear Information System (INIS)

    Hirato, Yoji; Kozawa, Takayuki; Saito, Kenji

    2015-01-01

    The safety protection sequence panel of HTTR is a control panel to actuate an engineering safety system for protecting the reactor core, reactor coolant pressure boundary, and containment vessel boundary at the time of an accident of the nuclear reactor facilities. The safety code stipulates that the control panel should receive safety check at a frequency of once a month during reactor operation. When abnormality has been found, it is required to eliminate its causes and restore normal operation as soon as possible. However, since this control panel is composed of a complex control circuit, the cause check during abnormality requires the confirmation by a knowledgeable person spending quite a lot of time for chart checking, which leads to a delay of restoration. To achieve a rapid restoration, the abnormal part assignment system (APAS), which can specify abnormality instantaneously even by a common operator, was developed. It has been confirmed that with this system, rapid initial response and prompt restoration can be effectively made. (A.O.)

  16. Investigation on cause of outage of Wide Range Monitor (WRM) in High Temperature engineering Test Reactor (HTTR). Post Irradiation Examination (PIE) toward investigation of the cause

    International Nuclear Information System (INIS)

    Shinohara, Masanori; Saito, Kenji; Takada, Shoji; Ishimi, Akihiro; Katsuyama, Kozo; Motegi, Toshihiro

    2012-08-01

    An event, in which one of WRMs were disabled to detect the neutron flux in the reactor core, occurred during the period of reactor shut down of HTTR in March, 2010. The actual life time of WRM was unexpectedly shorter than the past developed life time. Investigation of the cause of the outage of WRM toward the recovery of the life time up to the past developed life is one of the issues to develop the technology basis of High Temperature Gas cooled Reactor (HTGR). Then, two experimental investigations were carried out to reveal the cause of the outage by specifying the damaged part causing the event in the WRM. The one is a post irradiation examination using the X-ray computed tomography scanner in Fuels Monitoring Facility (FMF) to specify the damaged part in the WRM. The other is an experiment using a mock-up simulating the WRM fabricated by the fabricator. The characteristic impedance of the damaged WRM was measured by Time Domain Reflectometry, which was compared with that of the mock-up, which could narrow down the damaged part in the WRM. This report summarized the results of the PIE and the experimental investigation using the mock-up to reveal the cause of outage of WRM. (author)

  17. Investigation on cause of malfunction of wide range monitor (WRM) in high temperature engineering test reactor (HTTR). Sample tests and destructive tests

    International Nuclear Information System (INIS)

    Shinohara, Masanori; Saito, Kenji; Haga, Hiroyuki; Sasaki, Shinji; Katsuyama, Kozo; Motegi, Toshihiro; Takada, Kiyoshi; Higashimura, Keisuke; Fujii, Junichi; Ukai, Takayuki; Moriguchi, Yusuke

    2012-11-01

    An event, in which one of WRMs were disabled to detect the neutron flux in the reactor core, occurred during the period of reactor shut down of HTTR in March, 2010. The actual life time of WRM was unexpectedly shorter than the past developed life time. Investigation of the cause of the outage of WRM toward the recovery of the life time up to the past developed life is one of the issues to develop the technology basis of High Temperature Gas cooled Reactor (HTGR). Then, two experimental investigations were carried out to reveal the cause of the malfunction by specifying the damaged part causing the event in the WRM. One is an experiment using a mock-up sample test which strength degradation at assembly process and heat cycle to specify the damaged part in the WRM. The other is a destructive test in Fuels Monitoring Facility (FMF) to specify the damaged part in the WRM. This report summarized the results of the destructive test and the experimental investigation using the mock-up to reveal the cause of malfunction of WRM. (author)

  18. Analysis of irradiation-induced stresses in coating layers of coated fuel particles for the High Temperature Engineering Test Reactor (HTTR)

    International Nuclear Information System (INIS)

    Hayashi, Kimio; Kikuchi, Teruo; Fukuda, Kousaku; Sato, Sadao; Toyota, Junji; Shiozawa, Shusaku; Sawa, Kazuhiro; Kashimura, Satoru.

    1991-07-01

    Irradiation-induced stresses in coating layers of coated fuel particles were analyzed by the MICROS-2 code for the fuels of the High Temperature Engineering Test Reactor (HTTR) under its operating conditions. The analyses were made on the standard core fuel (A-type) and the test fuels comprising the advanced SiC-coated particle fuel (B-1 type) and the ZrC-coated particle fuel (B-2 type). For the B-1 type fuel, the stresses were relieved due to the thicker buffer and SiC layers than for the A type fuel. The slightly decreased thickness of the fourth layer for the B-1 type than for the A type fuel had no significant effect on the stresses. As for the B-2 type fuel, almost the same results as for the B-1 type were obtained under an assumption that the ZrC layer as well as the SiC layer undergoes negligible dimension change within the analysis conditions. The obtained results indicated that the B-1 and B-2 type fuels are better than the A type fuel in terms of integrity against the irradiation-induced stresses. Finally, research subjects for development of the analysis code on the fuel behavior are discussed. (author)

  19. Test program for NIS calibration to reactor thermal output in HTTR

    International Nuclear Information System (INIS)

    Nakagawa, Shigeaki; Shinozaki, Masayuki; Tachibana, Yukio; Kunitomi, Kazuhiko

    2000-03-01

    Rise-to-power test program for reactor thermal output measurement has been established to calibrate a neutron instrumentation system taking account of the characteristics of the High Temperature Engineering Test Reactor (HTTR). An error of reactor thermal output measurement was evaluated taking account of a configuration of instrumentation system. And the expected dispersion of measurement in the full power operation was evaluated from non-nuclear heat-up of primary coolant up to 213degC. From the evaluation, it was found that an error of reactor thermal output measurement would be less than ±2.0% at the rated power. This report presents the detailed program of rise-to-power test for reactor thermal output measurement and discusses its measurement error. (author)

  20. The approaches of safety design and safety evaluation at HTTR (High Temperature Engineering Test Reactor)

    International Nuclear Information System (INIS)

    Iigaki, Kazuhiko; Saikusa, Akio; Sawahata, Hiroaki; Shinozaki, Masayuki; Tochio, Daisuke; Honma, Fumitaka; Tachibana, Yukio; Iyoku, Tatsuo; Kawasaki, Kozo; Baba, Osamu

    2006-06-01

    Gas Cooled Reactor has long history of nuclear development, and High Temperature Gas Cooled Reactor (HTGR) has been expected that it can be supply high temperature energy to chemical industry and to power generation from the points of view of the safety, the efficiency, the environment and the economy. The HTGR design is tried to installed passive safety equipment. The current licensing review guideline was made for a Low Water Reactor (LWR) on safety evaluation therefore if it would be directly utilized in the HTGR it needs the special consideration for the HTGR. This paper describes that investigation result of the safety design and the safety evaluation traditions for the HTGR, comparison the safety design and safety evaluation feature for the HTGT with it's the LWR, and reflection for next HTGR based on HTTR operational experiment. (author)

  1. STRIP1, a core component of STRIPAK complexes, is essential for normal mesoderm migration in the mouse embryo.

    Science.gov (United States)

    Bazzi, Hisham; Soroka, Ekaterina; Alcorn, Heather L; Anderson, Kathryn V

    2017-12-19

    Regulated mesoderm migration is necessary for the proper morphogenesis and organ formation during embryonic development. Cell migration and its dependence on the cytoskeleton and signaling machines have been studied extensively in cultured cells; in contrast, remarkably little is known about the mechanisms that regulate mesoderm cell migration in vivo. Here, we report the identification and characterization of a mouse mutation in striatin-interacting protein 1 ( Strip1 ) that disrupts migration of the mesoderm after the gastrulation epithelial-to-mesenchymal transition (EMT). STRIP1 is a core component of the biochemically defined mammalian striatin-interacting phosphatases and kinase (STRIPAK) complexes that appear to act through regulation of protein phosphatase 2A (PP2A), but their functions in mammals in vivo have not been examined. Strip1 -null mutants arrest development at midgestation with profound disruptions in the organization of the mesoderm and its derivatives, including a complete failure of the anterior extension of axial mesoderm. Analysis of cultured mesoderm explants and mouse embryonic fibroblasts from null mutants shows that the mesoderm migration defect is correlated with decreased cell spreading, abnormal focal adhesions, changes in the organization of the actin cytoskeleton, and decreased velocity of cell migration. The results show that STRIPAK complexes are essential for cell migration and tissue morphogenesis in vivo. Copyright © 2017 the Author(s). Published by PNAS.

  2. A theoretical analysis of the response of an air-cored eddy current coil for remote oxide thickness measurements on reactor components

    International Nuclear Information System (INIS)

    Wilson, R.

    1979-10-01

    It is shown how the impedance of an air-cored eddy current coil in close proximity to an oxidised steel component may be calculated. Representative values were selected for the oxide thickness, lift off, operating frequency, conductivities and permeabilities of the oxide coating and steel base. The values of these parameters in the calculations were allowed to vary between suitable limits to quantify the effect of each one on coil impedance. The results of the calculations are used to determine the most suitable conditions for the measurement of oxide thickness on steel components using an air-cored eddy current probe. (author)

  3. Radiation monitoring data on the power-up test of HTTR. Results up to 20 MW operation

    International Nuclear Information System (INIS)

    Ashikagaya, Yoshinobu; Nakazawa, Takashi; Yoshino, Toshiaki; Yasu, Katsuji

    2002-01-01

    The High Temperature Engineering Test Reactor (HTTR) have completed the Power-up test of 9 MW (the single and parallel loaded operation) in the rated operation mode. After that the Power-up test in the rated operation mode and the high-temperature test operation mode with a thermal output of 20 MW (the single and parallel loaded operation) were performed between January 16, 2001 and June 10, 2001. This report describes the radiation monitoring data carried out during the HTTR Power-up test in the rated operation mode and the high-temperature test operation mode with a thermal output of 20 MW. The followings were concluded from these radiation monitoring data. The monitoring of radioactive gaseous effluents and the radiation protection for the works will be easy to do and the exposure dose of the workers will be kept the low level. (author)

  4. A preliminary study on radiation damage effect in ceramics composite materials as innovative basic research using the HTTR

    International Nuclear Information System (INIS)

    Ishihara, Masahiro; Baba, Shinichi; Aihara, Jun; Arai, T.; Hayashi, K.; Ishino, S.

    1999-01-01

    An innovative basic research concerning with the basic science and applied technology is planned using the High Temperature Engineering Test Reactor (HTTR), which provides the advantage of not only a high temperature irradiation field above 400degC but also a large irradiation space. The first irradiation experiment is to be performed in 2001. Many research themes with a wide variety of scientific and technological interests are proposed as the innovative basic research. For the purpose of demonstration of scientific feasibility and advantages in the HTTR irradiation, several research themes have been being conducted as the preliminary studies. In this paper the outline of the innovative basic research is described, and the preliminary study on the radiation damage mechanism of ceramic composite materials is presented. (author)

  5. Ultrasonic test results for the reactor pressure vessel of the HTTR. Longitudinal welding line of bottom dome

    International Nuclear Information System (INIS)

    Nojiri, Naoki; Ohwada, Hiroyuki; Kato, Yasushi

    2008-06-01

    This paper describes the inspection method, the measured area, etc. of the ultrasonic test of the in-service inspection (ISI) for welding lines of the reactor pressure vessel of the HTTR and the inspection results of the longitudinal welding line of the bottom dome. The pre-service inspection (PSI) results for estimation of occurrence and progression of defects to compare the ISI results is described also. (author)

  6. Diagnose Test-Taker's Profile in Terms of Core Profile Patterns: Principal Component (PC) vs. Profile Analysis via MDS (PAMS) Approaches.

    Science.gov (United States)

    Kim, Se-Kang; Davison, Mark L.

    A study was conducted to examine how principal components analysis (PCA) and Profile Analysis via Multidimensional Scaling (PAMS) can be used to diagnose individuals observed score profiles in terms of core profile patterns identified by each method. The standardization sample from the Wechsler Intelligence Scale for Children, Third Edition…

  7. High temperature continuous operation in the HTTR (HP-11). Summary of the test results in the high temperature operation mode

    International Nuclear Information System (INIS)

    Takamatsu, Kuniyoshi; Ueta, Shohei; Sumita, Junya; Goto, Minoru; Nakagawa, Shigeaki; Hamamoto, Shimpei; Tochio, Daisuke

    2010-11-01

    A high temperature (950 degrees C) continuous operation has been performed for 50 days on the HTTR from January to March in 2010, and the potential to supply stable heat of high temperature for hydrogen production for a long time was demonstrated for the first time in the world. JAEA has evaluated the experimental data obtained by this operation and past rated continuous one, and built the database necessary for commercial HTGRs. According to the results, the concentration of FP released from the fuels in the HTTR was a single through triple-digit lower than that in the foreign HTGRs. It became apparent that the fuels used in the HTTR are the best quality in the world. This successful operation could establish technological basis of HTGRs and show potential of nuclear energy as heat source for innovative thermo-chemical-based hydrogen production, emitting greenhouse gases on a 'low-carbon path' for the first time in the world. We have a plan to progress R and D for practical use of hydrogen production system with HTGRs in the future. (author)

  8. PHISICS/RELAP5-3D Adaptive Time-Step Method Demonstrated for the HTTR LOFC#1 Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Baker, Robin Ivey [Idaho National Lab. (INL), Idaho Falls, ID (United States); Balestra, Paolo [Univ. of Rome (Italy); Strydom, Gerhard [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-05-01

    A collaborative effort between Japan Atomic Energy Agency (JAEA) and Idaho National Laboratory (INL) as part of the Civil Nuclear Energy Working Group is underway to model the high temperature engineering test reactor (HTTR) loss of forced cooling (LOFC) transient that was performed in December 2010. The coupled version of RELAP5-3D, a thermal fluids code, and PHISICS, a neutronics code, were used to model the transient. The focus of this report is to summarize the changes made to the PHISICS-RELAP5-3D code for implementing an adaptive time step methodology into the code for the first time, and to test it using the full HTTR PHISICS/RELAP5-3D model developed by JAEA and INL and the LOFC simulation. Various adaptive schemes are available based on flux or power convergence criteria that allow significantly larger time steps to be taken by the neutronics module. The report includes a description of the HTTR and the associated PHISICS/RELAP5-3D model test results as well as the University of Rome sub-contractor report documenting the adaptive time step theory and methodology implemented in PHISICS/RELAP5-3D. Two versions of the HTTR model were tested using 8 and 26 energy groups. It was found that most of the new adaptive methods lead to significant improvements in the LOFC simulation time required without significant accuracy penalties in the prediction of the fission power and the fuel temperature. In the best performing 8 group model scenarios, a LOFC simulation of 20 hours could be completed in real-time, or even less than real-time, compared with the previous version of the code that completed the same transient 3-8 times slower than real-time. A few of the user choice combinations between the methodologies available and the tolerance settings did however result in unacceptably high errors or insignificant gains in simulation time. The study is concluded with recommendations on which methods to use for this HTTR model. An important caveat is that these findings

  9. A comparative transcriptomic analysis reveals the core genetic components of salt and osmotic stress responses in Braya humilis.

    Directory of Open Access Journals (Sweden)

    Pengshan Zhao

    Full Text Available Braya humilis is a member of the Euclidieae tribe within the family Brassicaceae. This species exhibits a broad range of adaptations to different climatic zones and latitudes as it has a distribution that ranges from northern Asia to the arctic-alpine regions of northern North America. In China, B. humilis is mainly found on the Qinghai-Tibetan Plateau (QTP and in adjacent arid regions. In this study, we sequenced a sample from an arid region adjacent to the QTP using the Illumina platform generating a total of 46,485 highly accurate unigenes, of which 78.41% were annotated by BLASTing versus public protein databases. The B. humilis transcriptome is characterized by a high level of sequence conservation compared with its close relative, Arabidopsis thaliana. We also used reciprocal blast to identify shared orthologous genes between B. humilis and four other sequenced Brassicaceae species (i.e. A. thaliana, A. lyrata, Capsella rubella, and Thellungiella parvula. To enable precise characterization of orthologous genes, the early-diverging basal angiosperm Amborella trichopoda was also included. A total of 6,689 orthologous genes were identified before stricter criteria for the determination of e-values, amino acid hit lengths, and identity values was applied to further reduce this list. This led to a final list of 381 core orthologous genes for B. humilis; 39 out of these genes are involved in salt and osmotic stress responses and estimations of nonsynonymous/synonymous substitution ratios for this species and A. thaliana orthologs show that these genes are under purifying selection in B. humilis. Expression of six genes was detected in B. humilis seedlings under salt and osmotic stress treatments. Comparable expression patterns to their counterparts in Arabidopsis suggest that these orthologous genes are both sequence and functional conservation. The results of this study demonstrate that the environmental adaptations of B. humilis are mainly the

  10. Properties of polyurethane foam/coconut coir fiber as a core material and as a sandwich composites component

    Science.gov (United States)

    Azmi, M. A.; Abdullah, H. Z.; Idris, M. I.

    2013-12-01

    This research focuses on the fabrication and characterization of sandwich composite panels using glass fiber composite skin and polyurethane foam reinforced coconut coir fiber core. The main objectives are to characterize the physical and mechanical properties and to elucidate the effect of coconut coir fibers in polyurethane foam cores and sandwich composite panels. Coconut coir fibers were used as reinforcement in polyurethane foams in which later were applied as the core in sandwich composites ranged from 5 wt% to 20 wt%. The physical and mechanical properties found to be significant at 5 wt% coconut coir fiber in polyurethane foam cores as well as in sandwich composites. It was found that composites properties serve better in sandwich composites construction.

  11. Properties of polyurethane foam/coconut coir fiber as a core material and as a sandwich composites component

    International Nuclear Information System (INIS)

    Azmi, M A; Abdullah, H Z; Idris, M I

    2013-01-01

    This research focuses on the fabrication and characterization of sandwich composite panels using glass fiber composite skin and polyurethane foam reinforced coconut coir fiber core. The main objectives are to characterize the physical and mechanical properties and to elucidate the effect of coconut coir fibers in polyurethane foam cores and sandwich composite panels. Coconut coir fibers were used as reinforcement in polyurethane foams in which later were applied as the core in sandwich composites ranged from 5 wt% to 20 wt%. The physical and mechanical properties found to be significant at 5 wt% coconut coir fiber in polyurethane foam cores as well as in sandwich composites. It was found that composites properties serve better in sandwich composites construction

  12. Theoretical and experimental methods to determine the properties of molten core components and reaction products. Pt. 2

    International Nuclear Information System (INIS)

    Nazare, S.; Ondracek, G.; Schulz, B.

    1975-10-01

    In the course of a loss of coolant accident, a sequence of events would be initiated that ultimately could lead to core melting. The course of these events and the consequences of core meltdown would in part be determined by the properties of the core materials and the products of their interaction. On the basis of available theoretical and experimental results, the report attempts an estimation of properties such as: 1) work of adhesion between UO 2 - and (U,Zr) liquid phase, 2) heat of fusion of some melts, 3) heat capacity of liquid reaction products, 4) viscosity of liquid reaction products, 5) thermal conductivity of liquid reaction products. Experimental work is suggested for those cases, where the estimates need to be improved or verified. (orig.) [de

  13. Nucleoporins as components of the nuclear pore complex core structure and Tpr as the architectural element of the nuclear basket.

    Science.gov (United States)

    Krull, Sandra; Thyberg, Johan; Björkroth, Birgitta; Rackwitz, Hans-Richard; Cordes, Volker C

    2004-09-01

    The vertebrate nuclear pore complex (NPC) is a macromolecular assembly of protein subcomplexes forming a structure of eightfold radial symmetry. The NPC core consists of globular subunits sandwiched between two coaxial ring-like structures of which the ring facing the nuclear interior is capped by a fibrous structure called the nuclear basket. By postembedding immunoelectron microscopy, we have mapped the positions of several human NPC proteins relative to the NPC core and its associated basket, including Nup93, Nup96, Nup98, Nup107, Nup153, Nup205, and the coiled coil-dominated 267-kDa protein Tpr. To further assess their contributions to NPC and basket architecture, the genes encoding Nup93, Nup96, Nup107, and Nup205 were posttranscriptionally silenced by RNA interference (RNAi) in HeLa cells, complementing recent RNAi experiments on Nup153 and Tpr. We show that Nup96 and Nup107 are core elements of the NPC proper that are essential for NPC assembly and docking of Nup153 and Tpr to the NPC. Nup93 and Nup205 are other NPC core elements that are important for long-term maintenance of NPCs but initially dispensable for the anchoring of Nup153 and Tpr. Immunogold-labeling for Nup98 also results in preferential labeling of NPC core regions, whereas Nup153 is shown to bind via its amino-terminal domain to the nuclear coaxial ring linking the NPC core structures and Tpr. The position of Tpr in turn is shown to coincide with that of the nuclear basket, with different Tpr protein domains corresponding to distinct basket segments. We propose a model in which Tpr constitutes the central architectural element that forms the scaffold of the nuclear basket.

  14. Thermal response of core and central-cavity components of a high-temperature gas-cooled reactor in the absence of forced convection coolant flow

    International Nuclear Information System (INIS)

    Whaley, R.L.; Sanders, J.P.

    1976-09-01

    A means of determining the thermal responses of the core and the components of a high-temperature gas-cooled reactor after loss of forced coolant flow is discussed. A computer program, using a finite-difference technique, is presented together with a solution of the confined natural convection. The results obtained are reasonable and demonstrate that the computer program adequately represents the confined natural convection

  15. Leak-tightness characteristics concerning the containment structures of the HTTR

    International Nuclear Information System (INIS)

    Sakaba, Nariaki; Iigaki, Kazuhiko; Kondo, Masaaki; Emori, Koichi

    2004-01-01

    The containment structures of the HTTR consist of the reactor containment vessel, the service area, and the emergency air purification system, which minimise the release of fission products in postulated accidents, which lead to fission product release from the reactor facilities. The reactor containment vessel is designed to withstand the temperature and pressure transients and to be leak-tight in the case of a rupture of the primary concentric hot-gas duct, etc. The pressure inside the service area is maintained at a negative pressure by the emergency air purification system. The emergency air purification system will also remove airborne radioactivity and will maintain a correct pressure in the service area. The leak-tightness characteristics of the containment structures are described in this paper. The measured leakage rates of the reactor containment vessel were enough less than the specified leakage limit of 0.1%/d confirmed during the commissioning tests and annual inspections. The service area was kept in a way that the design pressure becomes well below its allowable limitation by the emergency air purification system, which filters efficiency of particle removal and iodine removal well over the limited values. The obtained data demonstrate that the reactor containment structures were fabricated to minimise the release of fission products in the postulated accidents with fission product release from the reactor facilities

  16. Soundness confirmation through cold test of the system equipment of HTTR

    International Nuclear Information System (INIS)

    Ono, Masato; Shinohara, Masanori; Iigaki, Kazuhiko; Tochio, Daisuke; Nakagawa, Shigeaki; Shimazaki, Yosuke

    2014-01-01

    HTTR was established at the Oarai Research and Development Center of Japan Atomic Energy Agency, for the purpose of the establishment and upgrading of high-temperature gas-cooled reactor technology infrastructure. Currently, it performs a safety demonstration test in order to demonstrate the safety inherent in high-temperature gas-cooled reactor. After the Great East Japan Earthquake, it conducted confirmation test for the purpose of soundness survey of facilities and equipment, and it confirmed that the soundness of the equipment was maintained. After two years from the confirmation test, it has not been confirmed whether the function of dynamic equipment and the soundness such as the airtightness of pipes and containers are maintained after receiving the influence of damage or deterioration caused by aftershocks generated during two years or aging. To confirm the soundness of these facilities, operation under cold state was conducted, and the obtained plant data was compared with confirmation test data to evaluate the presence of abnormality. In addition, in order to confirm through cold test the damage due to aftershocks and degradation due to aging, the plant data to compare was supposed to be the confirmation test data, and the evaluation on abnormality of the plant data of machine starting time and normal operation data was performed. (A.O.)

  17. Construction of the HTTR and its testing program for advanced HTGR development

    International Nuclear Information System (INIS)

    Tanaka, T.; Baba, O.; Shiozawa, S.; Okubo, M.; Kunitomi, K.

    1996-01-01

    Concerning about global warming due to emission of greenhouse effect gas like CO 2 , it is essentially important to make efforts to obtain more reliable and stable energy supply by extended use of nuclear energy including high temperature heat from nuclear reactors, because it can supply a large amount of energy and its plants emit only little amount of CO 2 during their lifetime. Hence, efforts are to be continuously devoted to establish and upgrade technologies of High Temperature Gas-cooled Reactor (HTGR) which can supply high-temperature heat with high thermal efficiency as well as high heat-utilizing efficiency. It is also expected that making basic researches at high temperature using HTGR will contribute to innovative basic research in future. Then, the construction of High Temperature engineering Test Reactor (HTTR), which is an HTGR with a maximum helium coolant temperature of 950 deg. C at the reactor outlet, was decided by the Japanese Atomic Energy Commission (JAEC) in 1987 and is now under way by the Japan Atomic Energy Research Institute (JAERI). 2 refs, 2 figs, 1 tab., 2 photos

  18. Measures ensuring safety of the High Temperature Engineering Test Reactor (HTTR)

    International Nuclear Information System (INIS)

    1998-04-01

    JAERI has conducted research and development of an HTGR type reactor since 1969 under the project of the multi-purpose high-temperate gas-cooled experimental reactor, whose design was changed to the HTTR in 1985. The reactor license was granted by the Government in 1990 and the construction started next year. Various functions and performances have been tested since 1996 and the initial criticality achieved in 1998. This document consists of six chapters, describing safety matters examined in several development phases. The first chapter deals with succession of the multi-purpose experimental reactor technology and its exchange between JAERI and domestic industries. Chapter 2 reviews new technical findings after the licensing which were reflected to the current safety assessment. These technical items are given in the table form of extensive pages. Chapter 3 and 4 describe the performance tests and the criticality access, respectively. Chapter 5 and 6 deal with the detection of fuel failures and helium gas leaks, respectively. (H.Y.)

  19. A Mercury-like component of early Earth yields uranium in the core and high mantle (142)Nd.

    Science.gov (United States)

    Wohlers, Anke; Wood, Bernard J

    2015-04-16

    Recent (142)Nd isotope data indicate that the silicate Earth (its crust plus the mantle) has a samarium to neodymium elemental ratio (Sm/Nd) that is greater than that of the supposed chondritic building blocks of the planet. This elevated Sm/Nd has been ascribed either to a 'hidden' reservoir in the Earth or to loss of an early-formed terrestrial crust by impact ablation. Since removal of crust by ablation would also remove the heat-producing elements--potassium, uranium and thorium--such removal would make it extremely difficult to balance terrestrial heat production with the observed heat flow. In the 'hidden' reservoir alternative, a complementary low-Sm/Nd layer is usually considered to reside unobserved in the silicate lower mantle. We have previously shown, however, that the core is a likely reservoir for some lithophile elements such as niobium. We therefore address the question of whether core formation could have fractionated Nd from Sm and also acted as a sink for heat-producing elements. We show here that addition of a reduced Mercury-like body (or, alternatively, an enstatite-chondrite-like body) rich in sulfur to the early Earth would generate a superchondritic Sm/Nd in the mantle and an (142)Nd/(144)Nd anomaly of approximately +14 parts per million relative to chondrite. In addition, the sulfur-rich core would partition uranium strongly and thorium slightly, supplying a substantial part of the 'missing' heat source for the geodynamo.

  20. Development of In-Service Inspection system for heat transfer tubes in the primary pressurized water cooler in the HTTR

    Energy Technology Data Exchange (ETDEWEB)

    Shinozaki, Masayuki; Furusawa, Takayuki [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment; Wada, Shigeyuki

    1999-08-01

    The ISI (In-Service Inspection) system has been developed so as to maintain the structural integrity of heat transfer tubes in the primary pressurized water cooler in the HTTR (High Temperature Engineering Test Reactor). This system consists of eddy current probes, ultra-sonic probes, insertion and extraction units, positioning unit and so on. Verification and performance tests of the developed ISI system were carried out using mock-up heat transfer tubes in the primary pressurized water cooler. The constitution of the system, R and D results of the inspection probes, and verification and performance test results of the ISI system for heat transfer tubes are described in this paper. (author)

  1. Core component integration tests for the back-end software sub-system in the ATLAS data acquisition and event filter prototype -1 project

    International Nuclear Information System (INIS)

    Badescu, E.; Caprini, M.; Niculescu, M.; Radu, A.

    2000-01-01

    The ATLAS data acquisition (DAQ) and Event Filter (EF) prototype -1 project was intended to produce a prototype system for evaluating candidate technologies and architectures for the final ATLAS DAQ system on the LHC accelerator at CERN. Within the prototype project, the back-end sub-system encompasses the software for configuring, controlling and monitoring the DAQ. The back-end sub-system includes core components and detector integration components. The core components provide the basic functionality and had priority in terms of time-scale for development in order to have a baseline sub-system that can be used for integration with the data-flow sub-system and event filter. The following components are considered to be the core of the back-end sub-system: - Configuration databases, describe a large number of parameters of the DAQ system architecture, hardware and software components, running modes and status; - Message reporting system (MRS), allows all software components to report messages to other components in the distributed environment; - Information service (IS) allows the information exchange for software components; - Process manager (PMG), performs basic job control of software components (start, stop, monitoring the status); - Run control (RC), controls the data taking activities by coordinating the operations of the DAQ sub-systems, back-end software and external systems. Performance and scalability tests have been made for individual components. The back-end subsystem integration tests bring together all the core components and several trigger/DAQ/detector integration components to simulate the control and configuration of data taking sessions. For back-end integration tests a test plan was provided. The tests have been done using a shell script that goes through different phases as follows: - starting the back-end server processes to initialize communication services and PMG; - launching configuration specific processes via DAQ supervisor as

  2. A Study on Dielectric Properties of Cadmium Sulfide-Zinc Sulfide Core-Shell Nanocomposites for Application as Nanoelectronic Filter Component in the Microwave Domain

    Science.gov (United States)

    Devi, Jutika; Datta, Pranayee

    2018-03-01

    Complex permittivities of cadmium sulfide (CdS), zinc sulfide (ZnS), and of cadmium sulfide-zinc sulfide (CdS/ZnS) core-shell nanoparticles embedded in a polyvinyl alcohol matrix (PVA) were measured in liquid phase using a VectorNetwork Analyzer in the frequency range of 500 MHz-10 GHz. These nanocomposites are modeled as an embedded capacitor, and their electric field distribution and polarization have been studied using COMSOL Multiphysics software. By varying the thickness of the shell and the number of inclusions, the capacitance values were estimated. It was observed that CdS, ZnS and CdS/ZnS core-shell nanoparticles embedded in a polyvinyl alcohol matrix show capacitive behavior. There is a strong influence of the dielectric properties in the capacitive behavior of the embedded nanocapacitor. The capping matrix, position and filling factors of nanoinclusions all affect the capacitive behavior of the tested nanocomposites. Application of the CdS, ZnS and CdS/ZnS core-shell nanocomposite as the passive low-pass filter circuit has also been investigated. From the present study, it has been found that CdS/ZnS core-shell nanoparticles embedded in PVA matrix are potential structures for application as nanoelectronic filter components in different areas of communication.

  3. Valuation of the safety concept of the combined nuclear/chemical complex for hydrogen production with HTTR

    International Nuclear Information System (INIS)

    Verfondern, K.; Nishihara, T.

    2004-06-01

    The high-temperature engineering test reactor (HTTR) in Oarai, Japan, will be worldwide the first plant to demonstrate the production of hydrogen by applying the steam reforming process and using nuclear process heat as primary energy. Particular safety aspects for such a combined nuclear/chemical complex have to be investigated to further detail. One of these special aspects is the fire and explosion hazard associated with the presence of flammable gases including a large LNG storage tank in close vicinity to the reactor building. A special focus is laid upon the conceivable development of a detonation pressure wave and its damaging effect on the reactor building. A literature study has shown that methane is a comparatively slow reacting gas and that a methane vapor cloud in the open atmosphere or partially obstructed areas is highly unlikely to result in a detonation if inadvertently released and ignited. Various theoretical assessments and experimental studies, which have been conducted in the past and which are of significance for the HTTR-steam reforming system, include the spreading and combustion behavior of cryogenic liquids and flammable gas mixtures providing the basis of a comprehensive safety analysis of the combined nuclear/chemical facility. (orig.)

  4. Modeling and analysis of the disk MHD generator component of a gas core reactor/MHD Rankine cycle space power system

    International Nuclear Information System (INIS)

    Welch, G.E.; Dugan, E.T.; Lear, W.E. Jr.; Appelbaum, J.G.

    1990-01-01

    A gas core nuclear reactor (GCR)/disk magnetohydrodynamic (MHD) generator direct closed Rankine space power system concept is described. The GCR/disk MHD generator marriage facilitates efficient high electric power density system performance at relatively high operating temperatures. The system concept promises high specific power levels, on the order of 1 kW e /kg. An overview of the disk MHD generator component magnetofluiddynamic and plasma physics theoretical modeling is provided. Results from a parametric design analysis of the disk MHD generator are presented and discussed

  5. The nebular spectra of the transitional Type Ia Supernovae 2007on and 2011iv: broad, multiple components indicate aspherical explosion cores

    Science.gov (United States)

    Mazzali, P. A.; Ashall, C.; Pian, E.; Stritzinger, M. D.; Gall, C.; Phillips, M. M.; Höflich, P.; Hsiao, E.

    2018-05-01

    The nebular-epoch spectrum of the rapidly declining, `transitional' Type Ia supernova (SN) 2007on showed double emission peaks, which have been interpreted as indicating that the SN was the result of the direct collision of two white dwarfs. The spectrum can be reproduced using two distinct emission components, one redshifted and one blueshifted. These components are similar in mass but have slightly different degrees of ionization. They recede from one another at a line-of-sight speed larger than the sum of the combined expansion velocities of their emitting cores, thereby acting as two independent nebulae. While this configuration appears to be consistent with the scenario of two white dwarfs colliding, it may also indicate an off-centre delayed detonation explosion of a near-Chandrasekhar-mass white dwarf. In either case, broad emission line widths and a rapidly evolving light curve can be expected for the bolometric luminosity of the SN. This is the case for both SNe 2007on and 2011iv, also a transitional SN Ia that exploded in the same elliptical galaxy, NGC 1404. Although SN 2011iv does not show double-peaked emission line profiles, the width of its emission lines is such that a two-component model yields somewhat better results than a single-component model. Most of the mass ejected is in one component, however, which suggests that SN 2011iv was the result of the off-centre ignition of a Chandrasekhar-mass white dwarf.

  6. Identification of core components and transient interactors of the peroxisomal importomer by dual-track stable isotope labeling with amino acids in cell culture analysis.

    Science.gov (United States)

    Oeljeklaus, Silke; Reinartz, Benedikt S; Wolf, Janina; Wiese, Sebastian; Tonillo, Jason; Podwojski, Katharina; Kuhlmann, Katja; Stephan, Christian; Meyer, Helmut E; Schliebs, Wolfgang; Brocard, Cécile; Erdmann, Ralf; Warscheid, Bettina

    2012-04-06

    The importomer complex plays an essential role in the biogenesis of peroxisomes by mediating the translocation of matrix proteins across the organellar membrane. A central part of this highly dynamic import machinery is the docking complex consisting of Pex14p, Pex13p, and Pex17p that is linked to the RING finger complex (Pex2p, Pex10p, Pex12p) via Pex8p. To gain detailed knowledge on the molecular players governing peroxisomal matrix protein import and, thus, the integrity and functionality of peroxisomes, we aimed at a most comprehensive investigation of stable and transient interaction partners of Pex14p, the central component of the importomer. To this end, we performed a thorough quantitative proteomics study based on epitope tagging of Pex14p combined with dual-track stable isotope labeling with amino acids in cell culture-mass spectrometry (SILAC-MS) analysis of affinity-purified Pex14p complexes and statistics. The results led to the establishment of the so far most extensive Pex14p interactome, comprising 9 core and further 12 transient components. We confirmed virtually all known Pex14p interaction partners including the core constituents of the importomer as well as Pex5p, Pex11p, Pex15p, and Dyn2p. More importantly, we identified new transient interaction partners (Pex25p, Hrr25p, Esl2p, prohibitin) that provide a valuable resource for future investigations on the functionality, dynamics, and regulation of the peroxisomal importomer.

  7. HTR core physics analysis at NRG

    International Nuclear Information System (INIS)

    Kuijper, J.C.; Haas, J.B.M. de; Oppe, J.

    2002-01-01

    Since a number of years NRG is developing the HTR reactor physics code system PANTHERMIX. In PANTHERMIX the 3-D steady-state and transient core physics code PANTHER has been interfaced with the HTR thermal hydraulics code THERMIX to enable core follow and transient analyses on both pebble bed and block type HTR systems. Recently the capabilities of PANTHERMIX have been extended with the possibility to simulate the flow of pebbles through the core cavity and the (re)loading of pebbles on top of the core.The PANTHERMIX code system is being applied for the benchmark exercises for the Chinese HTR-10 and Japanese HTTR first criticality, calculating the critical loading, control rod worth and the isothermal temperature coefficients at zero power conditions. Also core physics calculations have been performed on an early version the South African PBMR design. The reactor physics properties of the reactor at equilibrium core loading have been studied as well as a selected run-in scenario, starting form fresh fuel. The recently developed reload option of PANTHERMIX was used extensively in these analyses. The examples shown demonstrate the capabilities of PANTHERMIX for performing steady-state and transient HTR core physics analyses. However, additional validation, especially for transient analyses, remains desirable. (author)

  8. Development of monitoring system using acoustic emission for detection of helium gas leakage for primary cooling system and flow-induced vibration for heat transfer tube of heat exchangers for the High Temperature Engineering Test Reactor (HTTR)

    International Nuclear Information System (INIS)

    Tachibana, Yukio; Kunitomi, Kazuhiko; Furusawa, Takayuki; Shinozaki, Masayuki; Satoh, Yoshiyuki; Yanagibashi, Minoru

    1998-10-01

    The High Temperature Engineering Test Reactor (HTTR) uses helium gas for its primary coolant, whose leakage inside reactor containment vessel is considered in design of the HTTR. It is necessary to detect leakage of helium gas at an early stage so that total amount of the leakage should be as small as possible. On the other hand, heat transfer tubes of heat exchangers of the HTTR are designed not to vibrate at normal operation, but the flow-induced vibration is to be monitored to provide against an emergency. Thus monitoring system of acoustic emission for detection of primary coolant leakage and vibration of heat transfer tubes was developed and applied to the HTTR. Before the application to the HTTR, leakage detection test was performed using 1/4 scaled model of outer tube of primary concentric hot gas duct. Result of the test covers detectable minimum leakage rate and effect of difference in gas, pressure, shape of leakage path and distance from the leaking point. Detectable minimum leakage rate was about 5 Ncc/sec. The monitoring system is promising in leakage detection, though countermeasure to noise is to be needed after the HTTR starts operating. (author)

  9. Profiling of volatile fragrant components in a mini-core collection of mango germplasms from seven countries.

    Directory of Open Access Journals (Sweden)

    Li Li

    Full Text Available Aroma is important in assessing the quality of fresh fruit and their processed products, and could provide good indicators for the development of local cultivars in the mango industry. In this study, the volatile diversity of 25 mango cultivars from China, America, Thailand, India, Cuba, Indonesia, and the Philippines was investigated. The volatile compositions, their relative contents, and the intervarietal differences were detected with headspace solid phase microextraction tandem gas chromatography-mass spectrometer methods. The similarities were also evaluated with a cluster analysis and correlation analysis of the volatiles. The differences in mango volatiles in different districts are also discussed. Our results show significant differences in the volatile compositions and their relative contents among the individual cultivars and regions. In total, 127 volatiles were found in all the cultivars, belonging to various chemical classes. The highest and lowest qualitative abundances of volatiles were detected in 'Zihua' and 'Mallika' cultivars, respectively. Based on the cumulative occurrence of members of the classes of volatiles, the cultivars were grouped into monoterpenes (16 cultivars, proportion and balanced (eight cultivars, and nonterpene groups (one cultivars. Terpene hydrocarbons were the major volatiles in these cultivars, with terpinolene, 3-carene, caryophyllene and α-Pinene the dominant components depending on the cultivars. Monoterpenes, some of the primary volatile components, were the most abundant aroma compounds, whereas aldehydes were the least abundant in the mango pulp. β-Myrcene, a major terpene, accounted for 58.93% of the total flavor volatile compounds in 'Xiaofei' (Philippens. γ-Octanoic lactone was the only ester in the total flavor volatile compounds, with its highest concentration in 'Guiya' (China. Hexamethyl cyclotrisiloxane was the most abundant volatile compound in 'Magovar' (India, accounting for 46.66% of

  10. Lithium Coatings on NSTX Plasma Facing Components and Its Effects On Boundary Control, Core Plasma Performance, and Operation

    Energy Technology Data Exchange (ETDEWEB)

    H.W.Kugel, M.G.Bell, H.Schneider, J.P.Allain, R.E.Bell, R Kaita, J.Kallman, S. Kaye, B.P. LeBlanc, D. Mansfield, R.E. Nygen, R. Maingi, J. Menard, D. Mueller, M. Ono, S. Paul, S.Gerhardt, R.Raman, S.Sabbagh, C.H.Skinner, V.Soukhanovskii, J.Timberlake, L.E.Zakharov, and the NSTX Research Team

    2010-01-25

    NSTX high-power divertor plasma experiments have used in succession lithium pellet injection (LPI), evaporated lithium, and injected lithium powder to apply lithium coatings to graphite plasma facing components. In 2005, following wall conditioning and LPI, discharges exhibited edge density reduction and performance improvements. Since 2006, first one, and now two lithium evaporators have been used routinely to evaporate lithium onto the lower divertor region at total rates of 10-70 mg/min for periods 5-10 min between discharges. Prior to each discharge, the evaporators are withdrawn behind shutters. Significant improvements in the performance of NBI heated divertor discharges resulting from these lithium depositions were observed. These evaporators are now used for more than 80% of NSTX discharges. Initial work with injecting fine lithium powder into the edge of NBI heated deuterium discharges yielded comparable changes in performance. Several operational issues encountered with lithium wall conditions, and the special procedures needed for vessel entry are discussed. The next step in this work is installation of a Liquid Lithium Divertor surface on the outer part of the lower divertor.

  11. Lithium coatings on NSTX plasma facing components and its effects on boundary control, core plasma performance, and operation

    Energy Technology Data Exchange (ETDEWEB)

    Kugel, H.W., E-mail: hkugel@pppl.gov [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543 (United States); Bell, M.G.; Schneider, H. [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543 (United States); Allain, J.P. [Purdue University, School of Nuclear Engineering, West Lafayette, IN 47907 (United States); Bell, R.E.; Kaita, R.; Kallman, J.; Kaye, S.; LeBlanc, B.P.; Mansfield, D. [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543 (United States); Nygren, R.E. [Sandia National Laboratories, Albuquerque, NM 87185 (United States); Maingi, R. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Menard, J.; Mueller, D.; Ono, M.; Paul, S.; Gerhardt, S. [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543 (United States); Raman, R. [University of Washington, Seattle, WA 98195 (United States); Sabbagh, S. [Columbia University, New York, NY 10027 (United States); Skinner, C.H. [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543 (United States)

    2010-11-15

    NSTX high power divertor plasma experiments have used in succession lithium pellet injection (LPI), evaporated lithium, and injected lithium powder to apply lithium coatings to graphite plasma facing components. In 2005, following the wall conditioning and LPI, discharges exhibited edge density reduction and performance improvements. Since 2006, first one, and now two lithium evaporators have been used routinely to evaporate lithium onto the lower divertor region at total rates of 10-70 mg/min for periods 5-10 min between discharges. Prior to each discharge, the evaporators are withdrawn behind shutters. Significant improvements in the performance of NBI heated divertor discharges resulting from these lithium depositions were observed. These evaporators are now used for more than 80% of NSTX discharges. Initial work with injecting fine lithium powder into the edge of NBI heated deuterium discharges yielded comparable changes in performance. Several operational issues encountered with lithium wall conditions, and the special procedures needed for vessel entry are discussed. The next step in this work is installation of a liquid lithium divertor surface on the outer part of the lower divertor.

  12. Lithium Coatings on NSTX Plasma Facing Components and Its Effects On Boundary Control, Core Plasma Performance, and Operation

    International Nuclear Information System (INIS)

    Kugel, H.W.; Bell, M.G.; Schneider, H.; Allain, J.P.; Bell, R.E.; Kaita, R.; Kallman, J.; Kaye, S.; LeBlanc, B.P.; Mansfield, D.; Nygen, R.E.; Maingi, R.; Menard, J.; Mueller, D.; Ono, M.; Paul, S.; Gerhardt, S.; Raman, R.; Sabbagh, S.; Skinner, C.H.; Soukhanovskii, V.; Timberlake, J.; Zakharov, L.E.; NSTX Research Team

    2010-01-01

    NSTX high-power divertor plasma experiments have used in succession lithium pellet injection (LPI), evaporated lithium, and injected lithium powder to apply lithium coatings to graphite plasma facing components. In 2005, following wall conditioning and LPI, discharges exhibited edge density reduction and performance improvements. Since 2006, first one, and now two lithium evaporators have been used routinely to evaporate lithium onto the lower divertor region at total rates of 10-70 mg/min for periods 5-10 min between discharges. Prior to each discharge, the evaporators are withdrawn behind shutters. Significant improvements in the performance of NBI heated divertor discharges resulting from these lithium depositions were observed. These evaporators are now used for more than 80% of NSTX discharges. Initial work with injecting fine lithium powder into the edge of NBI heated deuterium discharges yielded comparable changes in performance. Several operational issues encountered with lithium wall conditions, and the special procedures needed for vessel entry are discussed. The next step in this work is installation of a Liquid Lithium Divertor surface on the outer part of the lower divertor.

  13. Outlines and verifications of the codes used in the safety analysis of High Temperature Engineering Test Reactor (HTTR)

    International Nuclear Information System (INIS)

    Shiina, Yasuaki; Kunitomi, Kazuhiko; Maruyama, Soh; Fujita, Shigeki; Nakagawa, Shigeaki; Iyoku, Tatsuo; Shindoh, Masami; Sudo, Yukio; Hirano, Masashi.

    1990-03-01

    This paper presents brief description of the computer codes used in the safety analysis of High Temperature Engineering Test Reactor. The list of the codes is: 1. BLOOST-J2 2. THYDE-HTGR 3. TAC-NC 4. RATSAM6 5. COMPARE-MOD1 6. GRACE 7. OXIDE-3F 8. FLOWNET/TRUMP. Of described above, 1, 3, 4, 5, 6 and 7 were developed for the multi-hole type gas cooled reactor and improved for HTTR and 2 was originated by THYDE-codes which were developed to treat the transient thermo-hydraulics during LOCA of LWR. Each code adopted the models and properties which yield conservative analytical results. Adequacy of each code was verified by the comparison with the experimental results and/or the analytical results obtained from the other codes which were already proven. (author)

  14. Artificial neural networks for dynamic monitoring of simulated-operating parameters of high temperature gas cooled engineering test reactor (HTTR)

    International Nuclear Information System (INIS)

    Seker, Serhat; Tuerkcan, Erdinc; Ayaz, Emine; Barutcu, Burak

    2003-01-01

    This paper addresses to the problem of utilisation of the artificial neural networks (ANNs) for detecting anomalies as well as physical parameters of a nuclear power plant during power operation in real time. Three different types of neural network algorithms were used namely, feed-forward neural network (back-propagation, BP) and two types of recurrent neural networks (RNN). The data used in this paper were gathered from the simulation of the power operation of the Japan's High Temperature Engineering Testing Reactor (HTTR). For the wide range of power operation, 56 signals were generated by the reactor dynamic simulation code for several hours of normal power operation at different power ramps between 30 and 100% nominal power. Paper will compare the outcomes of different neural networks and presents the neural network system and the determination of physical parameters from the simulated operating data

  15. Neutron Fluence, Dosimetry and Damage Response Determination in In-Core/Ex-Core Components of the VENUS CEN/SCK LWR Using 3-D Monte Carlo Simulations: NEA's VENUS-3 Benchmark

    International Nuclear Information System (INIS)

    Perlado, J. Manuel; Marian, Jaime; Sanz, Jesus Garcia

    2000-01-01

    Validating state-of-the-art methods used to predict fluence exposure to reactor pressure vessels (RPVs) has become an important issue in identifying the sources of uncertainty in the estimated RPV fluence for pressurized water reactors. This is a very important aspect in evaluating irradiation damage leading to the hardening and embrittlement of such structural components. One of the major benchmark experiments carried out to test three-dimensional methodologies is the VENUS-3 Benchmark Experiment in which three-dimensional Monte Carlo and S n codes have proved more efficient than synthesis methods. At the Instituto de Fusion Nuclear (DENIM) at the Universidad Politecnica de Madrid, a detailed full three-dimensional model of the Venus Critical Facility has been developed making use of the Monte Carlo transport code MCNP4B. The problem geometry and source modeling are described, and results, including calculated versus experimental (C/E) ratios as well as additional studies, are presented. Evidence was found that the great majority of C/E values fell within the 10% tolerance and most within 5%. Tolerance limits are discussed on the basis of evaluated data library and fission spectra sensitivity, where a value ranging between 10 to 15% should be accepted. Also, a calculation of the atomic displacement rate has been carried out in various locations throughout the reactor, finding that values of 0.0001 displacements per atom in external components such as the core barrel are representative of this type of reactor during a 30-yr time span

  16. Survey report on high temperature irradiation experiment programs for new ceramic materials in the HTTR (High Temperature Engineering Test Reactor). 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-02-01

    A survey research on status of research activities on new ceramic materials in Japan was carried out under contract between Japan Atomic Energy Research Institute and Atomic Energy Society of Japan. The purpose of the survey is to provide information to prioritize prospective experiments and tests in the HTTR. The HTTR as a high temperature gas cooled reactor has a unique and superior capability to irradiate large-volumed specimen at high temperature up to approximately 800degC. The survey was focused on mainly the activities of functional ceramics and heat resisting ceramics as a kind of structural ceramics. As the result, the report recommends that the irradiation experiment of functional ceramics is feasible to date. (K. Itami)

  17. IAEA Coordinated Research Project on the Establishment of a Material Properties Database for Irradiated Core Structural Components for Continued Safe Operation and Lifetime Extension of Ageing Research Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Borio Di Tigliole, A.; Schaaf, Van Der; Barnea, Y.; Bradley, E.; Morris, C.; Rao, D. V. H. [Research Reactor Section, Vianna (Australia); Shokr, A. [Research Reactor Safety Section, Vienna (Australia); Zeman, A. [International Atomic Energy Agency, Vienna (Australia)

    2013-07-01

    Today more than 50% of operating Research Reactors (RRs) are over 45 years old. Thus, ageing management is one of the most important issues to face in order to ensure availability (including life extension), reliability and safe operation of these facilities for the future. Management of the ageing process requires, amongst others, the predictions for the behavior of structural materials of primary components subjected to irradiation such as reactor vessel and core support structures, many of which are extremely difficult or impossible to replace. In fact, age-related material degradation mechanisms resulted in high profile, unplanned and lengthy shutdowns and unique regulatory processes of relicensing the facilities in recent years. These could likely have been prevented by utilizing available data for the implementation of appropriate maintenance and surveillance programmes. This IAEA Coordinated Research Project (CRP) will provide an international forum to establish a material properties Database for irradiated core structural materials and components. It is expected that this Database will be used by research reactor operators and regulators to help predict ageing related degradation. This would be useful to minimize unpredicted outages due to ageing processes of primary components and to mitigate lengthy and costly shutdowns. The Database will be a compilation of data from RRs operators' inputs, comprehensive literature reviews and experimental data from RRs. Moreover, the CRP will specify further activities needed to be addressed in order to bridge the gaps in the new created Database, for potential follow-on activities. As per today, 13 Member States (MS) confirmed their agreement to contribute to the development of the Database, covering a wide number of materials and properties. The present publication incorporates two parts: the first part includes details on the pre-CRP Questionnaire, including the conclusions drawn from the answers received from

  18. IAEA Coordinated Research Project on the Establishment of a Material Properties Database for Irradiated Core Structural Components for Continued Safe Operation and Lifetime Extension of Ageing Research Reactors

    International Nuclear Information System (INIS)

    Borio Di Tigliole, A.; Schaaf, Van Der; Barnea, Y.; Bradley, E.; Morris, C.; Rao, D. V. H.; Shokr, A.; Zeman, A.

    2013-01-01

    Today more than 50% of operating Research Reactors (RRs) are over 45 years old. Thus, ageing management is one of the most important issues to face in order to ensure availability (including life extension), reliability and safe operation of these facilities for the future. Management of the ageing process requires, amongst others, the predictions for the behavior of structural materials of primary components subjected to irradiation such as reactor vessel and core support structures, many of which are extremely difficult or impossible to replace. In fact, age-related material degradation mechanisms resulted in high profile, unplanned and lengthy shutdowns and unique regulatory processes of relicensing the facilities in recent years. These could likely have been prevented by utilizing available data for the implementation of appropriate maintenance and surveillance programmes. This IAEA Coordinated Research Project (CRP) will provide an international forum to establish a material properties Database for irradiated core structural materials and components. It is expected that this Database will be used by research reactor operators and regulators to help predict ageing related degradation. This would be useful to minimize unpredicted outages due to ageing processes of primary components and to mitigate lengthy and costly shutdowns. The Database will be a compilation of data from RRs operators' inputs, comprehensive literature reviews and experimental data from RRs. Moreover, the CRP will specify further activities needed to be addressed in order to bridge the gaps in the new created Database, for potential follow-on activities. As per today, 13 Member States (MS) confirmed their agreement to contribute to the development of the Database, covering a wide number of materials and properties. The present publication incorporates two parts: the first part includes details on the pre-CRP Questionnaire, including the conclusions drawn from the answers received from the MS

  19. Hydrogen production by high-temperature gas-cooled reactor. Conceptual design of advanced process heat exchangers of the HTTR-IS hydrogen production system

    International Nuclear Information System (INIS)

    Sakaba, Nariaki; Ohashi, Hirofumi; Sato, Hiroyuki; Hara, Teruo; Kato, Ryoma; Kunitomi, Kazuhiko

    2008-01-01

    Nuclear hydrogen production is necessary in an anticipated hydrogen society that demands a massive quantity of hydrogen without economic disadvantage. Japan Atomic Energy Agency (JAEA) has launched the conceptual design study of a hydrogen production system with a near-term plan to connect it to Japan's first high-temperature gas-cooled reactor HTTR. The candidate hydrogen production system is based on the thermochemical water-splitting iodine sulphur (IS) process.The heat of 10 MWth at approximately 900degC, which can be provided by the secondary helium from the intermediate heat exchanger of the HTTR, is the energy input to the hydrogen production system. In this paper, we describe the recent progresses made in the conceptual design of advanced process heat exchangers of the HTTR-IS hydrogen production system. A new concept of sulphuric acid decomposer is proposed. This involves the integration of three separate functions of sulphuric acid decomposer, sulphur trioxide decomposer, and process heat exchanger. A new mixer-settler type of Bunsen reactor is also designed. This integrates three separate functions of Bunsen reactor, phase separator, and pump. The new concepts are expected to result in improved economics through construction and operation cost reductions because the number of process equipment and complicated connections between the equipment has been substantially reduced. (author)

  20. The dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component AM3 of the GFDL global coupled model CM3

    Science.gov (United States)

    Donner, L.J.; Wyman, B.L.; Hemler, R.S.; Horowitz, L.W.; Ming, Y.; Zhao, M.; Golaz, J.-C.; Ginoux, P.; Lin, S.-J.; Schwarzkopf, M.D.; Austin, J.; Alaka, G.; Cooke, W.F.; Delworth, T.L.; Freidenreich, S.M.; Gordon, C.T.; Griffies, S.M.; Held, I.M.; Hurlin, W.J.; Klein, S.A.; Knutson, T.R.; Langenhorst, A.R.; Lee, H.-C.; Lin, Y.; Magi, B.I.; Malyshev, S.L.; Milly, P.C.D.; Naik, V.; Nath, M.J.; Pincus, R.; Ploshay, J.J.; Ramaswamy, V.; Seman, C.J.; Shevliakova, E.; Sirutis, J.J.; Stern, W.F.; Stouffer, R.J.; Wilson, R.J.; Winton, M.; Wittenberg, A.T.; Zeng, F.

    2011-01-01

    The Geophysical Fluid Dynamics Laboratory (GFDL) has developed a coupled general circulation model (CM3) for the atmosphere, oceans, land, and sea ice. The goal of CM3 is to address emerging issues in climate change, including aerosol-cloud interactions, chemistry-climate interactions, and coupling between the troposphere and stratosphere. The model is also designed to serve as the physical system component of earth system models and models for decadal prediction in the near-term future-for example, through improved simulations in tropical land precipitation relative to earlier-generation GFDL models. This paper describes the dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component (AM3) of this model. Relative to GFDL AM2, AM3 includes new treatments of deep and shallow cumulus convection, cloud droplet activation by aerosols, subgrid variability of stratiform vertical velocities for droplet activation, and atmospheric chemistry driven by emissions with advective, convective, and turbulent transport. AM3 employs a cubed-sphere implementation of a finite-volume dynamical core and is coupled to LM3, a new land model with ecosystem dynamics and hydrology. Its horizontal resolution is approximately 200 km, and its vertical resolution ranges approximately from 70 m near the earth's surface to 1 to 1.5 km near the tropopause and 3 to 4 km in much of the stratosphere. Most basic circulation features in AM3 are simulated as realistically, or more so, as in AM2. In particular, dry biases have been reduced over South America. In coupled mode, the simulation of Arctic sea ice concentration has improved. AM3 aerosol optical depths, scattering properties, and surface clear-sky downward shortwave radiation are more realistic than in AM2. The simulation of marine stratocumulus decks remains problematic, as in AM2. The most intense 0.2% of precipitation rates occur less frequently in AM3 than observed. The last two decades of

  1. Equipment for the conditioning of core components in the fuel element storage pool with particular respect to the design required by the conditions for nuclear facilities in operation and the surveillance in accordance with atomic rules and regulations

    International Nuclear Information System (INIS)

    Dumpe, J.; Schwiertz, V.; Geiser, C.; Prucker, E.

    2001-01-01

    In nuclear power plants worn out and activated parts from the reactor core (core components) which are placed into the fuel element storage pool arise on a regular basis during the technical maintenance and the review. The disposal of these core components due to radiation protection aspects is only feasible within the fuel element storage pool during the operation of the NPP using techniques of the under water conditioning. Therefore, special GNS equipment is used for the conditioning, using under water conditioning equipment, such as UWS, BZ, and ZVA, a number of lifting and auxiliary equipment for mounting and dismantling purposes and the handling of the core components and the waste casks within the fuel element storage pool. These components must meet particular safety requirements with regard to their integrity and reliability. They are designed according to the requirements on nuclear components (KTA). The manipulating equipment must be partly redundant and the protection goals for nuclear accidents must be met. The Bavarian Ministry for Development and Environment tasked the TUeV Sueddeutschland with the surveillance and control. The conditioning equipment of GNS is therefore designed in co-ordination with the examiner of the Governmental Regulating Agency, in particular respect to all safety aspects. Furthermore the examiners perform reviews of the construction and the documentation during the design and construction phase. (orig.)

  2. Prismatic Core Coupled Transient Benchmark

    International Nuclear Information System (INIS)

    Ortensi, J.; Pope, M.A.; Strydom, G.; Sen, R.S.; DeHart, M.D.; Gougar, H.D.; Ellis, C.; Baxter, A.; Seker, V.; Downar, T.J.; Vierow, K.; Ivanov, K.

    2011-01-01

    The Prismatic Modular Reactor (PMR) is one of the High Temperature Reactor (HTR) design concepts that have existed for some time. Several prismatic units have operated in the world (DRAGON, Fort St. Vrain, Peach Bottom) and one unit is still in operation (HTTR). The deterministic neutronics and thermal-fluids transient analysis tools and methods currently available for the design and analysis of PMRs have lagged behind the state of the art compared to LWR reactor technologies. This has motivated the development of more accurate and efficient tools for the design and safety evaluations of the PMR. In addition to the work invested in new methods, it is essential to develop appropriate benchmarks to verify and validate the new methods in computer codes. The purpose of this benchmark is to establish a well-defined problem, based on a common given set of data, to compare methods and tools in core simulation and thermal hydraulics analysis with a specific focus on transient events. The benchmark-working group is currently seeking OECD/NEA sponsorship. This benchmark is being pursued and is heavily based on the success of the PBMR-400 exercise.

  3. Nuclear reactor core flow baffling

    International Nuclear Information System (INIS)

    Berringer, R.T.

    1979-01-01

    A flow baffling arrangement is disclosed for the core of a nuclear reactor. A plurality of core formers are aligned with the grids of the core fuel assemblies such that the high pressure drop areas in the core are at the same elevations as the high pressure drop areas about the core periphery. The arrangement minimizes core bypass flow, maintains cooling of the structure surrounding the core, and allows the utilization of alternative beneficial components such as neutron reflectors positioned near the core

  4. Spatial variation in diesel-related elemental and organic PM2.5 components during workweek hours across a downtown core.

    Science.gov (United States)

    Tunno, Brett J; Shmool, Jessie L C; Michanowicz, Drew R; Tripathy, Sheila; Chubb, Lauren G; Kinnee, Ellen; Cambal, Leah; Roper, Courtney; Clougherty, Jane E

    2016-12-15

    Capturing intra-urban variation in diesel-related pollution exposures remains a challenge, given its complex chemical mix, and relatively few well-characterized ambient-air tracers for the multiple diesel sources in densely-populated urban areas. To capture fine-scale spatial resolution (50×50m grid cells) in diesel-related pollution, we used geographic information systems (GIS) to systematically allocate 36 sampling sites across downtown Pittsburgh, PA, USA (2.8km 2 ), cross-stratifying to disentangle source impacts (i.e., truck density, bus route frequency, total traffic density). For buses, outbound and inbound trips per week were summed by route and a kernel density was calculated across sites. Programmable monitors collected fine particulate matter (PM 2.5 ) samples specific to workweek hours (Monday-Friday, 7 am-7 pm), summer and winter 2013. Integrated filters were analyzed for black carbon (BC), elemental carbon (EC), organic carbon (OC), elemental constituents, and diesel-related organic compounds [i.e., polycyclic aromatic hydrocarbons (PAHs), hopanes, steranes]. To our knowledge, no studies have collected this suite of pollutants with such high sampling density, with the ability to capture spatial patterns during specific hours of interest. We hypothesized that we would find substantial spatial variation for each pollutant and significant associations with key sources (e.g. diesel and gasoline vehicles), with higher concentrations near the center of this small downtown core. Using a forward stepwise approach, we developed seasonal land use regression (LUR) models for PM 2.5 , BC, total EC, OC, PAHs, hopanes, steranes, aluminum (Al), calcium (Ca), and iron (Fe). Within this small domain, greater concentration differences were observed in most pollutants across sites, on average, than between seasons. Higher PM 2.5 and BC concentrations were found in the downtown core compared to the boundaries. PAHs, hopanes, and steranes displayed different spatial

  5. Phase Equilibrium Experiments on Potential Lunar Core Compositions: Extension of Current Knowledge to Multi-Component (Fe-Ni-Si-S-C) Systems

    Science.gov (United States)

    Righter, K.; Pando, K.; Danielson, L.

    2014-01-01

    Numerous geophysical and geochemical studies have suggested the existence of a small metallic lunar core, but the composition of that core is not known. Knowledge of the composition can have a large impact on the thermal evolution of the core, its possible early dynamo creation, and its overall size and fraction of solid and liquid. Thermal models predict that the current temperature at the core-mantle boundary of the Moon is near 1650 K. Re-evaluation of Apollo seismic data has highlighted the need for new data in a broader range of bulk core compositions in the PT range of the lunar core. Geochemical measurements have suggested a more volatile-rich Moon than previously thought. And GRAIL mission data may allow much better constraints on the physical nature of the lunar core. All of these factors have led us to determine new phase equilibria experimental studies in the Fe-Ni-S-C-Si system in the relevant PT range of the lunar core that will help constrain the composition of Moon's core.

  6. Construction of In-core Structure Test Section in HENDEL, (1)

    International Nuclear Information System (INIS)

    Kunitomi, Kazuhiko; Inagaki, Yoshiyuki; Ioka, Ikuo; Kondoh, Yasuo; Nekoya, Shinichi; Miyamoto, Yoshiaki; Akisada, Toshihiro; Yamaguchi, Shigeru.

    1988-01-01

    An In-core Structure Test Section (T 2 ) in Helium Engineering Demonstration Loop (HENDEL) simulates a part of the core bottom structure with the same scale as that of a high temperature engineering test reactor (HTTR) designed in Japan Atomic Energy Research Institute. The design and construction of T 2 test section were started in March 1983, and completed in June 1986. The main objectives of the T 2 test section are to verify thermal-hydraulic performance and integrity of the core bottom structure. The report describes the general outline of T 2 test section, and experience gained from construction and preliminary test with regard to the simulated core bottom structure. (author)

  7. Randomized phase I trial HIV-CORE 003: Depletion of serum amyloid P component and immunogenicity of DNA vaccination against HIV-1.

    Science.gov (United States)

    Borthwick, Nicola J; Lane, Thirusha; Moyo, Nathifa; Crook, Alison; Shim, Jung Min; Baines, Ian; Wee, Edmund G; Hawkins, Philip N; Gillmore, Julian D; Hanke, Tomáš; Pepys, Mark B

    2018-01-01

    The failure of DNA vaccination in humans, in contrast to its efficacy in some species, is unexplained. Observational and interventional experimental evidence suggests that DNA immunogenicity may be prevented by binding of human serum amyloid P component (SAP). SAP is the single normal DNA binding protein in human plasma. The drug (R)-1-[6-[(R)-2-carboxypyrrolidin-1-yl]-6-oxo-hexanoyl]pyrrolidine-2-carboxylic acid (CPHPC, miridesap), developed for treatment of systemic amyloidosis and Alzheimer's disease, depletes circulating SAP by 95-99%. The proof-of-concept HIV-CORE 003 clinical trial tested whether SAP depletion by CPHPC would enhance the immune response in human volunteers to DNA vaccination delivering the HIVconsv immunogen derived from conserved sub-protein regions of HIV-1. Human volunteers received 3 intramuscular immunizations with an experimental DNA vaccine (DDD) expressing HIV-1-derived immunogen HIVconsv, with or without prior depletion of SAP by CPHPC. All subjects were subsequently boosted by simian (chimpanzee) adenovirus (C)- and poxvirus MVA (M)-vectored vaccines delivering the same immunogen. After administration of each vaccine modality, the peak total magnitudes, kinetics, functionality and memory subsets of the T-cell responses to HIVconsv were thoroughly characterized. No differences were observed between the CPHPC treated and control groups in any of the multiple quantitative and qualitative parameters of the T-cell responses to HIVconsv, except that after SAP depletion, there was a statistically significantly greater breadth of T-cell specificities, that is the number of recognized epitopes, following the DDDC vaccination. The protocol used here for SAP depletion by CPHPC prior to DNA vaccination produced only a very modest suggestion of enhanced immunogenicity. Further studies will be required to determine whether SAP depletion might have a practical value in DNA vaccination for other plasmid backbones and/or immunogens. Clinicaltrials

  8. Development of carbon/carbon composite control rod for HTTR. 2. Concept, specifications and mechanical test of materials

    International Nuclear Information System (INIS)

    Eto, Motokuni; Ishiyama, Shintaro; Fukaya, Kiyoshi; Saito, Tamotsu; Ishihara, Masahiro; Hanawa, Satoshi.

    1998-01-01

    A concept and specifications of carbon/carbon composite (C/C) control rod were proposed, aiming at the application of the material to the HTTR. The outer diameter and length of the control rod were kept as the same as those of the present control rod, i.e., 113 mm and 3094 mm, respectively. According to the concept, the rod consists of ten units which are connected in series using bolts. Then, the stresses generated by dead loads in the control rod elements were estimated and compared with the design strengths which were derived from the results of measurements of tensile, compressive, bending and shear strengths of two candidate materials, AC250 (Across Co.) and CX-270 (Toyo Tanso Co.). Design strength was preliminarily determined as one-third or one-fifth of the mean strength. Ratio of the design strength to generated stress for the AC250 (2D) was : Tensile stress in the outer sleeve tube, 66, tensile and shear stresses in the M16 bolt, 8.8 and 8.5, shear stress in the plug support bolt M8, 2.43. These results are believed to indicate the mechanical integrity of the control rod structure. Data available on the candidate materials were also compiled in the Appendix. (author)

  9. Research and development for the high-temperature helium-leak detection system (Joint research). Part 2. Development of temperature sensors using optical fibre for the HTTR

    Energy Technology Data Exchange (ETDEWEB)

    Sakaba, Nariaki; Nakazawa, Toshio; Kawasaki, Kozo [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment; Urakami, Masao; Saisyu, Sadanori [Japan Atomic Power Co., Tokyo (Japan)

    2003-03-01

    In the second stage of the research and development for a high-temperature helium-leak detection system, the temperature sensor using optical fibres was studied. The sensor detects the helium leakage by the temperature increase surrounded optical fibre with or without heat insulator. Moreover, the applicability of high temperature equipments as the HTTR system was studied. With the sensor we detected 5.0-20.0 cm{sup 3}/s helium leakages within 60 minutes. Also it was possible to detect earlier when the leakage level is at 20.0 cm {sup 3}/s. (author)

  10. Contribution of CRUST2.0 components to the tri-axiality of the Earth and equatorial flattening of the core

    Directory of Open Access Journals (Sweden)

    Sun Rong

    2013-08-01

    Full Text Available Equatorial flattening of the core were previously estimated to be 5 × 10−4 by using seismically derived density anomaly, and 1.7748280 × 10−5 by assuming that the ratio of polar flattening to equatorial flattening of the core is the same as that of the whole Earth. In this study, we attempted to explain the difference by applying a density-contrast stripping process to the crust in the second method. We use the CRUST2.0 model to estimate the inertia-moment contribution resulted from the density-contrast structure in the crust to a tri-axial Earth. The contribution of the density contrast in the crust was removed layer by layer. The layers include topography, bathymetry, ice, soft sediment, hard sediment, upper crust, middle crust, lower crust and the reference crust. For the boundaries of the topography and bathymetry layers, we used ETOPO5 values with a resolution of 5'. For boundaries of other layers, we used values from the CRUST2.0 model with a resolution of 2°. After the contribution of density contrast is stripped, the equatorial flattening of the core was found to be 6.544 × 10−5, which is still one order of magnitude smaller than the result given by the first method. This suggests that at least one of the methods is not correct. The influence of the uncertainty in the equatorial flattening of the core on the Free Core Nutation frequency is small, but its effect on the gravitational torque acting on the tri-axial inner core cannot be ignored. So an accurate determination of the equatorial flattening of the core is still necessary.

  11. A Student Selected Component (or Special Study Module) in Forensic and Legal Medicine: Design, delivery, assessment and evaluation of an optional module as an addition to the medical undergraduate core curriculum.

    Science.gov (United States)

    Kennedy, Kieran M; Wilkinson, Andrew

    2018-01-01

    The General Medical Council (United Kingdom) advocates development of non-core curriculum Student Selected Components and their inclusion in all undergraduate medical school curricula. This article describes a rationale for the design, delivery, assessment and evaluation of Student Selected Components in Forensic and Legal Medicine. Reference is made to the available evidence based literature pertinent to the delivery of undergraduate medical education in the subject area. A Student Selected Component represents an opportunity to highlight the importance of the legal aspects of medical practice, to raise the profile of the discipline of Forensic and Legal Medicine amongst undergraduate medical students and to introduce students to the possibility of a future career in the area. The authors refer to their experiences of design, delivery, assessment and evaluation of Student Selected Components in Forensic and Legal Medicine at their respective Universities in the Republic of Ireland (Galway) and in the United Kingdom (Oxford). Copyright © 2017. Published by Elsevier Ltd.

  12. Rod-shaped ion exchanger useful for purifying liquids or recovering components from liquids comprises a metal wire core surrounded by an ion-exchange resin

    NARCIS (Netherlands)

    Koopman, C.; Witkamp, G.J.

    2002-01-01

    Rod-shaped ion exchanger comprises a metal wire core surrounded by an ion-exchange resin. Independent claims are also included for: (1) a module comprising a housing with an inlet and outlet and one or more ion exchangers as above; (2) a process for producing an ion exchanger as above, comprising

  13. Development of carbon/carbon composite control rod for HTTR. 1. Preparation of elements and their fracture tests

    International Nuclear Information System (INIS)

    Eto, Motokuni; Ishiyama, Shintaro; Ugachi, Hirokazu

    1996-08-01

    For the High Temperature Engineering Test Reactor(HTTR) the control rod sleeve is made of Alloy 800H for which a particular process is imposed when the reactor needs to be scrammed. The less restricted operation of the reactor would be attained if there would be the control rod more resistant to high temperature and neutron irradiation. This report summarizes the results which have been obtained as of March 1996 in the course of the development of the C/C composite control rod. Materials used were pitch- or PAN-based fiber-reinforced 2-dimensional carbon composites, from which preforms of the elements of a control rod were fabricated. The preforms were carbonized at 1000degC after being impregnated with pitch. Then they were graphitized at 3000degC, followed by a purification treatment with halogen. The elements included the pellet holder, lace truck and pin. The pin was fabricated by the fiber laminating technique. A control rod is to consist of pellet holders which are connected by the lace trucks with pins. Various strength tests were carried out on these elements. An irradiation of the elements made of PAN-based material was performed in JRR-3 at 900±50degC to a neutron fluence of 1x10 25 n/m 2 (E>29fJ). As for the strength tests on the elements, there were some differences between PAN- and pitch-based composites: In general, elements made of PAN-based composite showed the more plastic behavior before they fractured, whereas those of pitch-based material behaved in the more brittle manner. Fracture tests of the irradiated elements showed that fracture load and fracture displacement enough for assuring the integrity of the control rod structure were maintained even after the irradiation. It was also found that if the applied load was parallel to the fiber felt plane both fracture load and strain increased, whereas the load increase and strain decrease were observed for the applied load against the plane. (J.P.N.)

  14. Development of carbon/carbon composite control rod for HTTR. 1. Preparation of elements and their fracture tests

    Energy Technology Data Exchange (ETDEWEB)

    Eto, Motokuni; Ishiyama, Shintaro; Ugachi, Hirokazu [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1996-08-01

    For the High Temperature Engineering Test Reactor(HTTR) the control rod sleeve is made of Alloy 800H for which a particular process is imposed when the reactor needs to be scrammed. The less restricted operation of the reactor would be attained if there would be the control rod more resistant to high temperature and neutron irradiation. This report summarizes the results which have been obtained as of March 1996 in the course of the development of the C/C composite control rod. Materials used were pitch- or PAN-based fiber-reinforced 2-dimensional carbon composites, from which preforms of the elements of a control rod were fabricated. The preforms were carbonized at 1000degC after being impregnated with pitch. Then they were graphitized at 3000degC, followed by a purification treatment with halogen. The elements included the pellet holder, lace truck and pin. The pin was fabricated by the fiber laminating technique. A control rod is to consist of pellet holders which are connected by the lace trucks with pins. Various strength tests were carried out on these elements. An irradiation of the elements made of PAN-based material was performed in JRR-3 at 900{+-}50degC to a neutron fluence of 1x10{sup 25} n/m{sup 2} (E>29fJ). As for the strength tests on the elements, there were some differences between PAN- and pitch-based composites: In general, elements made of PAN-based composite showed the more plastic behavior before they fractured, whereas those of pitch-based material behaved in the more brittle manner. Fracture tests of the irradiated elements showed that fracture load and fracture displacement enough for assuring the integrity of the control rod structure were maintained even after the irradiation. It was also found that if the applied load was parallel to the fiber felt plane both fracture load and strain increased, whereas the load increase and strain decrease were observed for the applied load against the plane. (J.P.N.)

  15. Rotary core drills

    Energy Technology Data Exchange (ETDEWEB)

    1967-11-30

    The design of a rotary core drill is described. Primary consideration is given to the following component parts of the drill: the inner and outer tube, the core bit, an adapter, and the core lifter. The adapter has the form of a downward-converging sleeve and is mounted to the lower end of the inner tube. The lifter, extending from the adapter, is split along each side so that it can be held open to permit movement of a core. It is possible to grip a core by allowing the lifter to assume a closed position.

  16. Computational model for a high temperature electrolyzer coupled to a HTTR for efficient nuclear hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, Daniel; Rojas, Leorlen; Rosales, Jesus; Castro, Landy; Gamez, Abel; Brayner, Carlos, E-mail: danielgonro@gmail.com [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil); Garcia, Lazaro; Garcia, Carlos; Torre, Raciel de la, E-mail: lgarcia@instec.cu [Instituto Superior de Tecnologias y Ciencias Aplicadas (InSTEC), La Habana (Cuba); Sanchez, Danny [Universidade Estadual de Santa Cruz (UESC), Ilheus, BA (Brazil)

    2015-07-01

    High temperature electrolysis process coupled to a very high temperature reactor (VHTR) is one of the most promising methods for hydrogen production using a nuclear reactor as the primary heat source. However there are not references in the scientific publications of a test facility that allow to evaluate the efficiency of the process and other physical parameters that has to be taken into consideration for its accurate application in the hydrogen economy as a massive production method. For this lack of experimental facilities, mathematical models are one of the most used tools to study this process and theirs flowsheets, in which the electrolyzer is the most important component because of its complexity and importance in the process. A computational fluid dynamic (CFD) model for the evaluation and optimization of the electrolyzer of a high temperature electrolysis hydrogen production process flowsheet was developed using ANSYS FLUENT®. Electrolyzer's operational and design parameters will be optimized in order to obtain the maximum hydrogen production and the higher efficiency in the module. This optimized model of the electrolyzer will be incorporated to a chemical process simulation (CPS) code to study the overall high temperature flowsheet coupled to a high temperature accelerator driven system (ADS) that offers advantages in the transmutation of the spent fuel. (author)

  17. Computational model for a high temperature electrolyzer coupled to a HTTR for efficient nuclear hydrogen production

    International Nuclear Information System (INIS)

    Gonzalez, Daniel; Rojas, Leorlen; Rosales, Jesus; Castro, Landy; Gamez, Abel; Brayner, Carlos; Garcia, Lazaro; Garcia, Carlos; Torre, Raciel de la; Sanchez, Danny

    2015-01-01

    High temperature electrolysis process coupled to a very high temperature reactor (VHTR) is one of the most promising methods for hydrogen production using a nuclear reactor as the primary heat source. However there are not references in the scientific publications of a test facility that allow to evaluate the efficiency of the process and other physical parameters that has to be taken into consideration for its accurate application in the hydrogen economy as a massive production method. For this lack of experimental facilities, mathematical models are one of the most used tools to study this process and theirs flowsheets, in which the electrolyzer is the most important component because of its complexity and importance in the process. A computational fluid dynamic (CFD) model for the evaluation and optimization of the electrolyzer of a high temperature electrolysis hydrogen production process flowsheet was developed using ANSYS FLUENT®. Electrolyzer's operational and design parameters will be optimized in order to obtain the maximum hydrogen production and the higher efficiency in the module. This optimized model of the electrolyzer will be incorporated to a chemical process simulation (CPS) code to study the overall high temperature flowsheet coupled to a high temperature accelerator driven system (ADS) that offers advantages in the transmutation of the spent fuel. (author)

  18. Improvement works report on mock-up model test facility with a full-scale reaction tube for HTTR hydrogen production system (Contract research)

    International Nuclear Information System (INIS)

    Sakaki, Akihiro; Kato, Michio; Hayashi, Koji; Fujisaki, Katsuo; Aita, Hideki; Ohashi, Hirofumi; Takada, Shoji; Shimizu, Akira; Morisaki, Norihiro; Maeda, Yukimasa; Sato, Hiroyuki; Hanawa, Hiromi; Yonekawa, Hideo; Inagaki, Yoshiyuki

    2005-04-01

    In order to establish the system integration technology to connect a hydrogen production system to a high temperature gas cooled reactor; the mock-up test facility with a full-scale reaction tube for the steam reforming HTTR hydrogen production system was constructed in fiscal year 2001 and its functional test operation was performed in the year. Seven experimental test operations were performed from fiscal year 2001 to 2004. On a period of each test operation, there happened some troubles. For each trouble, the cause was investigated and the countermeasures and the improvement works were performed to succeed the experiments. The tests were successfully achieved according to plan. This report describes the improvement works on the test facility performed from fiscal year 2001 to 2004. (author)

  19. Performance test results of helium gas circulator of mock-up test facility with full-scale reaction tube for HTTR hydrogen production system. Contract research

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, Akira; Kato, Michio; Hayashi, Koji [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment] [and others

    2003-03-01

    Hydrogen production system by steam reforming of methane will be connected to the High Temperature Engineering Test Reactor (HTTR) of the Japan Atomic Energy Research Institute (JAERI) against development of nuclear heat utilization system. To obtain design and safety database of the HTTR hydrogen production system, mock-up test facility with full-scale reaction was constructed in FY 2001 and hydrogen of 120m{sup 3}N{sub /}h was successfully produced in overall performance test. This report describes performance test results of a helium gas circulator in this facility. The circulator performance curves regarding to pressure-rise, input power and adiabatic thermal efficiency at standard revolution number were made based on the measured flow-rate, temperature and pressure data in overall performance test. The circulator performance prediction code was made based on these performance curves. The code can calculate revolution number, electric power and temperature-rise of the circulator using flow-rate, inlet temperature, inlet pressure and pressure-rise data. The verification of the code was carried out with the test data in FY 2002. Total pressure loss of the helium gas circulation loop was also evaluated. The circulator should be operated in conditions such as pressure from 2.7MPa to 4.0MPa and flow-rate from 250g/s to 400g/s and at maximum pressure-rise of 250 kPa in test operation. It was confirmed in above verification and evaluations that the circulator had performance to satisfy above conditions within operation limitation of the circulator such as maximum input-power of 150 kW and maximum revolution number of 12,000 rpm. (author)

  20. Insight to the interaction of the dihydrolipoamide acetyltransferase (E2) core with the peripheral components in the Escherichia coli pyruvate dehydrogenase complex via multifaceted structural approaches.

    Science.gov (United States)

    Chandrasekhar, Krishnamoorthy; Wang, Junjie; Arjunan, Palaniappa; Sax, Martin; Park, Yun-Hee; Nemeria, Natalia S; Kumaran, Sowmini; Song, Jaeyoung; Jordan, Frank; Furey, William

    2013-05-24

    Multifaceted structural approaches were undertaken to investigate interaction of the E2 component with E3 and E1 components from the Escherichia coli pyruvate dehydrogenase multienzyme complex (PDHc), as a representative of the PDHc from Gram-negative bacteria. The crystal structure of E3 at 2.5 Å resolution reveals similarity to other E3 structures and was an important starting point for understanding interaction surfaces between E3 and E2. Biochemical studies revealed that R129E-E2 and R150E-E2 substitutions in the peripheral subunit-binding domain (PSBD) of E2 greatly diminished PDHc activity, affected interactions with E3 and E1 components, and affected reductive acetylation of E2. Because crystal structures are unavailable for any complete E2-containing complexes, peptide-specific hydrogen/deuterium exchange mass spectrometry was used to identify loci of interactions between 3-lipoyl E2 and E3. Two peptides from the PSBD, including Arg-129, and three peptides from E3 displayed statistically significant reductions in deuterium uptake resulting from interaction between E3 and E2. Of the peptides identified on E3, two were from the catalytic site, and the third was from the interface domain, which for all known E3 structures is believed to interact with the PSBD. NMR clearly demonstrates that there is no change in the lipoyl domain structure on complexation with E3. This is the first instance where the entire wild-type E2 component was employed to understand interactions with E3. A model for PSBD-E3 binding was independently constructed and found to be consistent with the importance of Arg-129, as well as revealing other electrostatic interactions likely stabilizing this complex.

  1. Insight to the Interaction of the Dihydrolipoamide Acetyltransferase (E2) Core with the Peripheral Components in the Escherichia coli Pyruvate Dehydrogenase Complex via Multifaceted Structural Approaches*

    Science.gov (United States)

    Chandrasekhar, Krishnamoorthy; Wang, Junjie; Arjunan, Palaniappa; Sax, Martin; Park, Yun-Hee; Nemeria, Natalia S.; Kumaran, Sowmini; Song, Jaeyoung; Jordan, Frank; Furey, William

    2013-01-01

    Multifaceted structural approaches were undertaken to investigate interaction of the E2 component with E3 and E1 components from the Escherichia coli pyruvate dehydrogenase multienzyme complex (PDHc), as a representative of the PDHc from Gram-negative bacteria. The crystal structure of E3 at 2.5 Å resolution reveals similarity to other E3 structures and was an important starting point for understanding interaction surfaces between E3 and E2. Biochemical studies revealed that R129E-E2 and R150E-E2 substitutions in the peripheral subunit-binding domain (PSBD) of E2 greatly diminished PDHc activity, affected interactions with E3 and E1 components, and affected reductive acetylation of E2. Because crystal structures are unavailable for any complete E2-containing complexes, peptide-specific hydrogen/deuterium exchange mass spectrometry was used to identify loci of interactions between 3-lipoyl E2 and E3. Two peptides from the PSBD, including Arg-129, and three peptides from E3 displayed statistically significant reductions in deuterium uptake resulting from interaction between E3 and E2. Of the peptides identified on E3, two were from the catalytic site, and the third was from the interface domain, which for all known E3 structures is believed to interact with the PSBD. NMR clearly demonstrates that there is no change in the lipoyl domain structure on complexation with E3. This is the first instance where the entire wild-type E2 component was employed to understand interactions with E3. A model for PSBD-E3 binding was independently constructed and found to be consistent with the importance of Arg-129, as well as revealing other electrostatic interactions likely stabilizing this complex. PMID:23580650

  2. Proteomics Core

    Data.gov (United States)

    Federal Laboratory Consortium — Proteomics Core is the central resource for mass spectrometry based proteomics within the NHLBI. The Core staff help collaborators design proteomics experiments in a...

  3. Development of core technology for KNGR system design; development of quantitative reliability evaluation methodologies of KNGR digital I and C components

    Energy Technology Data Exchange (ETDEWEB)

    Seong, Poong Hyun; Choi, Jong Gyun; Kim, Ung Soo; Kim, Jong Hyun; Kim, Man Cheol; Lee, Seung Jun; Lee, Young Je; Ha, Jun Soo [Korea Advanced Institute of Science and Technology, Taejeon (Korea)

    2002-03-01

    For the digital systems to be applied to the nuclear industry, which has its unique conservertive to safety, reliability assessment of digital systems is a prerequisite. But, because digital systems show different failure modes from compared to existing analog systems, the existing reliability assessment method cannot be applied to digital systems. It means that a new reliability assessment method for digital systems should be developed. The goal of this study is development of reliability assessment method for digital systems on board level and related software tool. To achieve the goal, we have conducted researches on development of a database for hardware components for digital I and C systems, development of a reliability assessment model for the reliability prediction of digital systems on board level, and the applicability to KNGR digital I and C systems. We developed a database for reliability assessment of digital hardware components, a reliability assessment method for digital systems with consideration of software and hardware together, and a software tool for the reliability assessment of digital systems, which is named as RelPredic. We plan to apply the results of this study to the reliability assessment of digital systems in KNGR digital I and C systems. 13 refs., 71 figs., 31 tabs. (Author)

  4. Performance-based improvement of the leakage rate test program for the reactor containment of HTTR. Adoption of revised test programs containing 'Type A, Type B and Type C tests'

    International Nuclear Information System (INIS)

    Kondo, Masaaki; Emori, Koichi; Sekita, Kenji; Furusawa, Takayuki; Hayakawa, Masato; Kozawa, Takayuki; Aono, Tetsuya; Kuroha, Misao; Ouchi, Hiroshi; Kimishima, Satoru

    2008-10-01

    The reactor containment of HTTR is periodically tested to confirm leak-tight integrity by conducting overall integrated leakage rate tests, so-called 'Type A tests,' in accordance with a standard testing method provided in Japan Electric Association Code (JEAC) 4203. 'Type A test' is identified as a basic one for measuring whole leakage rates for reactor containments, it takes, however, much of cost and time of preparation, implementation and restoration of itself. Therefore, in order to upgrade the maintenance technology of HTTR, the containment leakage rate test program for HTTR was revised by adopting efficient and economical alternatives including Type B and Type C tests' which intend to measure leakage rates for containment penetrations and isolation valves, respectively. In JEAC4203-2004, following requirements are specified for adopting an alternative program: upward trend of the overall integrated leakage rate due to aging affection should not be recognized; performance criterion for combined leakage rate, that is a summation of local leakage rates evaluated by Type B and Type C tests and converted to whole leakage rates, should be established; the criterion of the combined leakage rate should be satisfied as well as of the overall integrated leakage rate; correlation between the overall integrated and combined leakage rates should be recognized. Considering the historical performances, policies of conforming to the forgoing requirements and of carrying out the revised test program were developed, which were accepted by the regulatory agency. This report presents an outline of the leakage rate tests for the reactor containment of HTTR, identifies practical issues of conventional Type A tests, and describes the conforming and implementing policies mentioned above. (author)

  5. Loss of nitrate reductases NIA1 and NIA2 impairs stomatal closure by altering genes of core ABA signaling components in Arabidopsis.

    Science.gov (United States)

    Zhao, Chenchen; Cai, Shengguan; Wang, Yizhou; Chen, Zhong-Hua

    2016-06-02

    Nitrate reductases NIA1 and NIA2 determine NO production in plants and are critical to abscisic acid (ABA)-induced stomatal closure. However, the role for NIA1 and NIA2 in ABA signaling has not been paid much attention in nitrate reductase loss-of-function mutant nia1nia2. Recently, we have demonstrated that ABA-inhibited K(+)in current and ABA-enhanced slow anion current were absent in nia1nia2. Exogenous NO restored regulation of these channels for stomatal closure in nia1nia2. In this study, we found that mutating NIA1 and NIA2 impaired nearly all the key components of guard cell ABA signaling pathway in Arabidopsis. We also propose a simplified model for ABA signaling in the nia1nia2 mutant.

  6. Heat transfer characteristics evaluation of heat exchangers of mock-up test facility with full-scale reaction tube for HTTR hydrogen production system (Contract research)

    International Nuclear Information System (INIS)

    Shimizu, Akira; Ohashi, Hirofumi; Kato, Michio; Hayashi, Koji; Aita, Hideki; Nishihara, Tetsuo; Inaba, Yoshitomo; Takada, Shoji; Morisaki, Norihiro; Sakaki, Akihiro; Maeda, Yukimasa; Sato, Hiroyuki; Inagaki, Yoshiyuki; Hanawa, Hiromi; Fujisaki, Katsuo; Yonekawa, Hideo

    2005-06-01

    Connection of hydrogen production system by steam reforming of methane to the High Temperature Engineering Test Reactor (HTTR) of the Japan Atomic Energy Research Institute (JAERI) has been surveyed until now. Mock-up test facility of this steam reforming system with full-scale reaction tube was constructed in FY 2001 and hydrogen of 120 Nm 3 /h was successfully produced in overall performance test. Totally 7 times operational tests were performed from March 2002 to December 2004. A lot of operational test data on heat exchanges were obtained in these tests. In this report specifications and structures of steam reformer, steam superheater, steam generator, condenser, helium gas cooler, feed gas heater and feed gas superheater were described. Heat transfer correlation equations for inside and outside tube were chosen from references. Spreadsheet programs were newly made to evaluate heat transfer characteristics from measured test data such as inlet and outlet temperature pressure and flow-rate. Overall heat-transfer coefficients obtained from the experimental data were compared and evaluated with the calculated values with heat transfer correlation equation. As a result, actual measurement values of all heat exchangers gave close agreement with the calculated values with correlation equations. Thermal efficiencies of the heat exchangers were adequate as they were well accorded with design value. (author)

  7. Evaluation of thermal displacement behavior of high temperature piping system in power-up test of HTTR. No. 1 results up to 20 MW operation

    International Nuclear Information System (INIS)

    Hanawa, Satoshi; Kojima, Takao; Sumita, Junya; Tachibana, Yukio

    2002-03-01

    Temperature of the primary cooling system of the High Temperature Engineering Test Reactor, HTTR, becomes very high because the coolant temperature at the reactor outlet reaches 950degC, and 400degC at inlet of the reactor. Therefore, it is important to confirm the thermal displacement behavior of the high temperature piping system in the primary cooling system from the viewpoint of the structural integrity. Moreover, newly designed 3-dimensional floating support system is adopted to the cooling system, it is meaningful to verify the thermal displacement behavior of the piping system applied the 3-dimensional floating support system. In the power-up test (up to 20 MW operation), thermal displacement behavior of the high temperature piping system was measured. This paper describes the experimental and analytical results of thermal displacement characteristics of the high temperature piping system. The results showed that the resistance force induced from the supporting system effects to the thermal displacement behavior of cooling system, and the analytical results have a good agreement with the experimental results by optimizing the resistant force of the floating support system. Additionally, structural integrity at the 30 MW operation was confirmed by the analysis. (author)

  8. HTTR(高温工学試験研究炉)の試験・運転と技術開発; 2010年度

    OpenAIRE

    高温工学試験研究炉部

    2011-01-01

    日本原子力研究開発機構大洗研究開発センターのHTTR(高温工学試験研究炉)は、熱出力30MWの黒鉛減速ヘリウムガス冷却型原子炉で、我が国初の高温ガス炉である。平成22年度は、熱出力9MWにおける安全性実証試験を行い、安全性に関するデータを取得・評価した。本報告書は、平成22年度(2010年)のHTTRの運転と保守及び各種技術開発の状況等について紹介する。

  9. Sprayed skin turbine component

    Science.gov (United States)

    Allen, David B

    2013-06-04

    Fabricating a turbine component (50) by casting a core structure (30), forming an array of pits (24) in an outer surface (32) of the core structure, depositing a transient liquid phase (TLP) material (40) on the outer surface of the core structure, the TLP containing a melting-point depressant, depositing a skin (42) on the outer surface of the core structure over the TLP material, and heating the assembly, thus forming both a diffusion bond and a mechanical interlock between the skin and the core structure. The heating diffuses the melting-point depressant away from the interface. Subsurface cooling channels (35) may be formed by forming grooves (34) in the outer surface of the core structure, filling the grooves with a fugitive filler (36), depositing and bonding the skin (42), then removing the fugitive material.

  10. Nuclear reactor core

    Energy Technology Data Exchange (ETDEWEB)

    Prescott, R F

    1974-07-11

    The core of the fast neutron reactor consisting, among other components, of fuel elements enriched in plutonium is divided into modules. Each module contains a bundle of four or six elongated components (fuel elements and control rods). In the arrangement with four components, one is kept rigid while the other three are elastically yielding inclined towards the center and lean against the rigid component. In the modules with six pieces, each component is elastically yielding inclined towards a central cavity. In this way, they form a circular arc. A control rod may be placed in the cavity. In order to counteract a relative lateral movement, the outer surfaces of the components which have hexagonal cross-sections have interlocking bearing cushions. The bearing cushions consist of keyway-type ribs or grooves with the wedges or ribs gripping in the grooves of the neighbouring components. In addition, the ribs have oblique entering surfaces.

  11. Annual report on experimental operation of mock-up model test facility with a full-scale reaction tube for HTTR hydrogen production system in 2001 fiscal year (Contract research)

    International Nuclear Information System (INIS)

    Hayashi, Koji; Inagaki, Yoshiyuki; Kato, Michio; Fujisaki, Katsuo; Aita, Hideki; Takeda, Tetsuaki; Nishihara, Tetsuo; Inaba, Yoshitomo; Ohashi, Hirofumi; Katanishi, Shoji; Takada, Shoji; Shimizu, Akira; Morisaki, Norihiro; Sakaki, Akihiro; Maeda, Yukimasa; Sato, Hiroyuki

    2005-06-01

    This is an annual report on the experimental operation of the mock-up test facility with a full-scale reaction tube for the HTTR hydrogen production system in 2001 fiscal year. The first experimental operation was performed during two weeks from March 1, 2002 to March 13, 2002 to test on the thermal hydraulic performance of the steam reformer and also to train the operators. The thermal hydraulic performance test of the steam reformer was performed to evaluate the heat transfer characteristics between helium gas and process gas in the steam reformer. This report is summarized with an overview of the test, the results and its operation records. (author)

  12. Control component retainer

    International Nuclear Information System (INIS)

    Walton, L.A.; King, R.A.

    1983-01-01

    An apparatus is described for retaining an undriven control component assembly disposed in a fuel assembly in a nuclear reactor of the type having a core grid plate. The first part of the mechanism involves a housing for the control component and the second part is a brace with a number of arms that reach under the grid plate. The brace and the housing are coupled together to firmly hold the control components in place even under strong flows of th coolant

  13. Transformer core

    NARCIS (Netherlands)

    Mehendale, A.; Hagedoorn, Wouter; Lötters, Joost Conrad

    2008-01-01

    A transformer core includes a stack of a plurality of planar core plates of a magnetically permeable material, which plates each consist of a first and a second sub-part that together enclose at least one opening. The sub-parts can be fitted together via contact faces that are located on either side

  14. Transformer core

    NARCIS (Netherlands)

    Mehendale, A.; Hagedoorn, Wouter; Lötters, Joost Conrad

    2010-01-01

    A transformer core includes a stack of a plurality of planar core plates of a magnetically permeable material, which plates each consist of a first and a second sub-part that together enclose at least one opening. The sub-parts can be fitted together via contact faces that are located on either side

  15. Nuclear core baffling apparatus

    International Nuclear Information System (INIS)

    Cooper, F.W. Jr.; Silverblatt, B.L.; Knight, C.B.; Berringer, R.T.

    1979-01-01

    An apparatus for baffling the flow of reactor coolant fluid into and about the core of a nuclear reactor is described. The apparatus includes a plurality of longitudinally aligned baffle plates with mating surfaces that allow longitudinal growth with temperature increases while alleviating both leakage through the aligned plates and stresses on the components supporting the plates

  16. Reactor core structure

    International Nuclear Information System (INIS)

    Higashinakagawa, Emiko; Sato, Kanemitsu.

    1992-01-01

    Taking notice on the fact that Fe based alloys and Ni based alloys are corrosion resistant in a special atmosphere of a nuclear reactor, Fe or Ni based alloys are applied to reactor core structural components such as fuel cladding tubes, fuel channels, spacers, etc. On the other hand, the neutron absorption cross section of zirconium is 0.18 barn while that of iron is 2.52 barn and that of nickel is 4.6 barn, which amounts to 14 to 25 times compared with that of zirconium. Accordingly, if the reactor core structural components are constituted by the Fe or Ni based alloys, neutron economy is lowered. Since it is desirable that neutrons contribute to uranium fission with least absorption to the reactor core structural components, the reactor core structural components are constituted with the Fe or Ni based alloys of good corrosion resistance only at a portion in contact with reactor water, that is, at a surface portion, while the main body is constituted with zircalloy in the present invention. Accordingly, corrosion resistnace can be kept while keeping small neutron absorption cross section. (T.M.)

  17. Core lifter

    Energy Technology Data Exchange (ETDEWEB)

    Pavlov, N G; Edel' man, Ya A

    1981-02-15

    A core lifter is suggested which contains a housing, core-clamping elements installed in the housing depressions in the form of semirings with projections on the outer surface restricting the rotation of the semirings in the housing depressions. In order to improve the strength and reliability of the core lifter, the semirings have a variable transverse section formed from the outside by the surface of the rotation body of the inner arc of the semiring aroung the rotation axis and from the inner a cylindrical surface which is concentric to the outer arc of the semiring. The core-clamping elements made in this manner have the possibility of freely rotating in the housing depressions under their own weight and from contact with the core sample. These semirings do not have weakened sections, have sufficient strength, are inserted into the limited ring section of the housing of the core lifter without reduction in its through opening and this improve the reliability of the core lifter in operation.

  18. Core mechanics and configuration behavior of advanced LMFBR core restraint concepts

    International Nuclear Information System (INIS)

    Fox, J.N.; Wei, B.C.

    1978-02-01

    Core restraint systems in LMFBRs maintain control of core mechanics and configuration behavior. Core restraint design is complex due to the close spacing between adjacent components, flux and temperature gradients, and irradiation-induced material property effects. Since the core assemblies interact with each other and transmit loads directly to the core restraint structural members, the core assemblies themselves are an integral part of the core restraint system. This paper presents an assessment of several advanced core restraint system and core assembly concepts relative to the expected performance of currently accepted designs. A recommended order for the development of the advanced concepts is also presented

  19. An integrated magnetics component

    DEFF Research Database (Denmark)

    2013-01-01

    The present invention relates to an integrated magnetics component comprising a magnetically permeable core comprising a base member extending in a horizontal plane and first, second, third and fourth legs protruding substantially perpendicularly from the base member. First, second, third...... and fourth output inductor windings are wound around the first, second, third and fourth legs, respectively. A first input conductor of the integrated magnetics component has a first conductor axis and extends in-between the first, second, third and fourth legs to induce a first magnetic flux through a first...... flux path of the magnetically permeable core. A second input conductor of the integrated magnetics component has a second coil axis extending substantially perpendicularly to the first conductor axis to induce a second magnetic flux through a second flux path of the magnetically permeable core...

  20. Core losses of a permanent magnet synchronous motor with an amorphous stator core under inverter and sinusoidal excitations

    Science.gov (United States)

    Yao, Atsushi; Sugimoto, Takaya; Odawara, Shunya; Fujisaki, Keisuke

    2018-05-01

    We report core loss properties of permanent magnet synchronous motors (PMSM) with amorphous magnetic materials (AMM) core under inverter and sinusoidal excitations. To discuss the core loss properties of AMM core, a comparison with non-oriented (NO) core is also performed. In addition, based on both experiments and numerical simulations, we estimate higher (time and space) harmonic components of the core losses under inverter and sinusoidal excitations. The core losses of PMSM are reduced by about 59% using AMM stator core instead of NO core under sinusoidal excitation. We show that the average decrease obtained by using AMM instead of NO in the stator core is about 94% in time harmonic components.

  1. Reactor core

    International Nuclear Information System (INIS)

    Azekura, Kazuo; Kurihara, Kunitoshi.

    1992-01-01

    In a BWR type reactor, a great number of pipes (spectral shift pipes) are disposed in the reactor core. Moderators having a small moderating cross section (heavy water) are circulated in the spectral shift pipes to suppress the excess reactivity while increasing the conversion ratio at an initial stage of the operation cycle. After the intermediate stage of the operation cycle in which the reactor core reactivity is lowered, reactivity is increased by circulating moderators having a great moderating cross section (light water) to extend the taken up burnup degree. Further, neutron absorbers such as boron are mixed to the moderator in the spectral shift pipe to control the concentration thereof. With such a constitution, control rods and driving mechanisms are no more necessary, to simplify the structure of the reactor core. This can increase the fuel conversion ratio and control great excess reactivity. Accordingly, a nuclear reactor core of high conversion and high burnup degree can be attained. (I.N.)

  2. Ice Cores

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Records of past temperature, precipitation, atmospheric trace gases, and other aspects of climate and environment derived from ice cores drilled on glaciers and ice...

  3. Investigation of EAS cores

    Directory of Open Access Journals (Sweden)

    Shaulov S.B.

    2017-01-01

    Full Text Available The development of nuclear-electromagnetic cascade models in air in the late forties have shown informational content of the study of cores of extensive air showers (EAS. These investigations were the main goal in different experiments which were carried out over many years by a variety of methods. Outcomes of such investigations obtained in the HADRON experiment using an X-ray emulsion chamber (XREC as a core detector are considered. The Ne spectrum of EAS associated with γ-ray families, spectra of γ-rays (hadrons in EAS cores and the Ne dependence of the muon number, ⟨Nμ⟩, in EAS with γ-ray families are obtained for the first time at energies of 1015–1017 eV with this method. A number of new effects were observed, namely, an abnormal scaling violation in hadron spectra which are fundamentally different from model predictions, an excess of muon number in EAS associated with γ-ray families, and the penetrating component in EAS cores. It is supposed that the abnormal behavior of γ-ray spectra and Ne dependence of the muon number are explained by the emergence of a penetrating component in the 1st PCR spectrum ‘knee’ range. Nuclear and astrophysical explanations of the origin of the penetrating component are discussed. The necessity of considering the contribution of a single close cosmic-ray source to explain the PCR spectrum in the knee range is noted.

  4. TMI-2 core examination

    International Nuclear Information System (INIS)

    Hobbins, R.R.; MacDonald, P.E.; Owen, D.E.

    1983-01-01

    The examination of the damaged core at the Three Mile Island Unit 2 (TMI-2) reactor is structured to address the following safety issues: fission product release, transport, and deposition; core coolability; containment integrity; and recriticality during severe accidents; as well as zircaloy cladding ballooning and oxidation during so-called design basis accidents. The numbers of TMI-2 components or samples to be examined, the priority of each examination, the safety issue addressed by each examination, the principal examination techniques to be employed, and the data to be obtained and the principal uses of the data are discussed in this paper

  5. Transcriptional regulation of SlPYL, SlPP2C, and SlSnRK2 gene families encoding ABA signal core components during tomato fruit development and drought stress.

    Science.gov (United States)

    Sun, Liang; Wang, Yan-Ping; Chen, Pei; Ren, Jie; Ji, Kai; Li, Qian; Li, Ping; Dai, Sheng-Jie; Leng, Ping

    2011-11-01

    In order to characterize the potential transcriptional regulation of core components of abscisic acid (ABA) signal transduction in tomato fruit development and drought stress, eight SlPYL (ABA receptor), seven SlPP2C (type 2C protein phosphatase), and eight SlSnRK2 (subfamily 2 of SNF1-related kinases) full-length cDNA sequences were isolated from the tomato nucleotide database of NCBI GenBank. All SlPYL, SlPP2C, and SlSnRK2 genes obtained are homologous to Arabidopsis AtPYL, AtPP2C, and AtSnRK2 genes, respectively. Based on phylogenetic analysis, SlPYLs and SlSnRK2s were clustered into three subfamilies/subclasses, and all SlPP2Cs belonged to PP2C group A. Within the SlPYL gene family, SlPYL1, SlPYL2, SlPYL3, and SlPYL6 were the major genes involved in the regulation of fruit development. Among them, SlPYL1 and SlPYL2 were expressed at high levels throughout the process of fruit development and ripening; SlPYL3 was strongly expressed at the immature green (IM) and mature green (MG) stages, while SlPYL6 was expressed strongly at the IM and red ripe (RR) stages. Within the SlPP2C gene family, the expression of SlPP2C, SlPP2C3, and SlPP2C4 increased after the MG stage; SlPP2C1 and SlPP2C5 peaked at the B3 stage, while SlPP2C2 and SlPP2C6 changed little during fruit development. Within the SlSnRK2 gene family, the expression of SlSnRK2.2, SlSnRK2.3, SlSnRK2.4, and SlSnRK2C was higher than that of other members during fruit development. Additionally, most SlPYL genes were down-regulated, while most SlPP2C and SlSnRK2 genes were up-regulated by dehydration in tomato leaf.

  6. Reactor core

    International Nuclear Information System (INIS)

    Matsuura, Tetsuaki; Nomura, Teiji; Tokunaga, Kensuke; Okuda, Shin-ichi

    1990-01-01

    Fuel assemblies in the portions where the gradient of fast neutron fluxes between two opposing faces of a channel box is great are kept loaded at the outermost peripheral position of the reactor core also in the second operation cycle in the order to prevent interference between a control rod and the channel box due to bending deformation of the channel box. Further, the fuel assemblies in the second row from the outer most periphery in the first operation cycle are also kept loaded at the second row in the second operation cycle. Since the gradient of the fast neutrons in the reactor core is especially great at the outer circumference of the reactor core, the channel box at the outer circumference is bent such that the surface facing to the center of the reactor core is convexed and the channel box in the second row is also bent to the identical direction, the insertion of the control rod is not interfered. Further, if the positions for the fuels at the outermost periphery and the fuels in the second row are not altered in the second operation cycle, the gaps are not reduced to prevent the interference between the control rod and the channel box. (N.H.)

  7. AGR core safety assessment methodologies

    International Nuclear Information System (INIS)

    McLachlan, N.; Reed, J.; Metcalfe, M.P.

    1996-01-01

    To demonstrate the safety of its gas-cooled graphite-moderated AGR reactors, nuclear safety assessments of the cores are based upon a methodology which demonstrates no component failures, geometrical stability of the structure and material properties bounded by a database. All AGRs continue to meet these three criteria. However, predictions of future core behaviour indicate that the safety case methodology will eventually need to be modified to deal with new phenomena. A new approach to the safety assessment of the cores is currently under development, which can take account of these factors while at the same time providing the same level of protection for the cores. This approach will be based on the functionality of the core: unhindered movement of control rods, continued adequate cooling of the fuel and the core, continued ability to charge and discharge fuel. (author). 5 figs

  8. Verification of thermal-irradiation stress analytical code VIENUS of graphite block

    International Nuclear Information System (INIS)

    Iyoku, Tatsuo; Ishihara, Masahiro; Shiozawa, Shusaku; Shirai, Hiroshi; Minato, Kazuo.

    1992-02-01

    The core graphite components of the High Temperature Engineering Test Reactor (HTTR) show both the dimensional change (irradiation shrinkage) and creep behavior due to fast neutron irradiation under the temperature and the fast neutron irradiation conditions of the HTTR. Therefore, thermal/irradiation stress analytical code, VIENUS, which treats these graphite irradiation behavior, is to be employed in order to design the core components such as fuel block etc. of the HTTR. The VIENUS is a two dimensional finite element viscoelastic stress analytical code to take account of changes in mechanical properties, thermal strain, irradiation-induced dimensional change and creep in the fast neutron irradiation environment. Verification analyses were carried out in order to prove the validity of this code based on the irradiation tests of the 8th OGL-1 fuel assembly and the fuel element of the Peach Bottom reactor. This report describes the outline of the VIENUS code and its verification analyses. (author)

  9. Annual report on experimental operations and maintenance of mock-up model test facility with a full-scale reaction tube for HTTR hydrogen production system in 2004 fiscal year (Contract research)

    International Nuclear Information System (INIS)

    Hayashi, Koji; Ohashi, Hirofumi; Morisaki, Norihiro; Kato, Michio; Aita, Hideki; Takeda, Tetsuaki; Nishihara, Tetsuo; Inaba, Yoshitomo; Takada, Shoji; Inagaki, Yoshiyuki

    2006-03-01

    This is annual report on the experimental test operations and maintenances of the mock-up test facility with a full-scale reaction tube for the HTTR hydrogen production system in 2004 fiscal year. The improvement work of catalyst dust filter in combustion system was performed in May 2004, and the performance was confirmed. The sixth experimental test operation was performed from June to July 2004. Periodic inspections on boiler equipment and high-pressure gas production facilities were performed from end of July to September 2004. The seventh experimental test operation was performed from October to December 2004 for chemical reaction shutdown test. From the results, a behavior of the helium-gas cooling system, consists of steam generator and radiator, during chemical reaction shutdown was confirmed. This report is summarized with the outline and the results of the test, maintenance works and inspections, and operation records in mentioned above. (author)

  10. Core trénink ve florbale

    OpenAIRE

    Mašková, Alžběta

    2014-01-01

    Title: Use of core training in floorball Objectives: Present an overview of research papers regarding core training and its possible use in floorball Tasks: First aim of this thesis is to provide description and explanation of the core training by using available literature, research papers, bachelor or magister thesis and also thesis of the coaching school. Second aim is to analyze the necessary components of floorball player's performance relative to the core training. This is followed by a...

  11. Core BPEL

    DEFF Research Database (Denmark)

    Hallwyl, Tim; Højsgaard, Espen

    The Web Services Business Process Execution Language (WS-BPEL) is a language for expressing business process behaviour based on web services. The language is intentionally not minimal but provides a rich set of constructs, allows omission of constructs by relying on defaults, and supports language......, does not allow omissions, and does not contain ignorable elements. We do so by identifying syntactic sugar, including default values, and ignorable elements in WS-BPEL. The analysis results in a translation from the full language to the core subset. Thus, we reduce the effort needed for working...

  12. IVA2 - a computer code for modelling of transient 3D-three phase three component flows using three velocity fields in cylindrical geometry with arbitrary internals including nuclear reactor PWR/BWR-core

    International Nuclear Information System (INIS)

    Kolev, N.I.

    1986-06-01

    This report contains a formal code description (description of the input data, contents of the COMMON blocks, functions of the IVA2/001 routines). In addition the nonformal description of the current IVA2/001 constitutive package and the reactor core model are given. (orig.) [de

  13. Other components

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    This chapter includes descriptions of electronic and mechanical components which do not merit a chapter to themselves. Other hardware requires mention because of particularly high tolerance or intolerance of exposure to radiation. A more systematic analysis of radiation responses of structures which are definable by material was given in section 3.8. The components discussed here are field effect transistors, transducers, temperature sensors, magnetic components, superconductors, mechanical sensors, and miscellaneous electronic components

  14. Insulating jacket for heat sensitive components

    International Nuclear Information System (INIS)

    Class, G.

    1980-01-01

    The insulating jacket for long core components of sodium-cooled reactors consists of several layers of austenitic steel, between which a woven wire mesh of the same material is fitted. It is wound in the form of a spiral bandage on the core component. (DG) [de

  15. Electronic components

    CERN Document Server

    Colwell, Morris A

    1976-01-01

    Electronic Components provides a basic grounding in the practical aspects of using and selecting electronics components. The book describes the basic requirements needed to start practical work on electronic equipment, resistors and potentiometers, capacitance, and inductors and transformers. The text discusses semiconductor devices such as diodes, thyristors and triacs, transistors and heat sinks, logic and linear integrated circuits (I.C.s) and electromechanical devices. Common abbreviations applied to components are provided. Constructors and electronics engineers will find the book useful

  16. Evaluation of core distortion in FBR

    International Nuclear Information System (INIS)

    Ikarimoto, I.; Tanaka, M.; Okubo, Y.

    1984-01-01

    The analyses of FBR's core distortion are mainly performed in order to evaluate the following items: 1) Change of reactivity; 2) Force at pads on core assemblies; 3) Withdrawal force at refueling; 4) Loading, refueling and residual deviations of wrapper tubes (core assemblies) at the top; 5) Bowing modes of guide tubes for control rods. The analysis of core distortion are performed by using computer program for two-dimensional row deformation analysis or three-dimensional core deformation if necessary, considering these evaluated items which become design conditions. This report shows the relationship between core deformation analysis and component design, a point of view of choosing an analysis program for design considering core characteristics, and computing examples of core deformation of prototype class reactor by the above code. (author)

  17. Side core lifter

    Energy Technology Data Exchange (ETDEWEB)

    Edelman, Ya A

    1982-01-01

    A side core lifter is proposed which contains a housing with guide slits and a removable core lifter with side projections on the support section connected to the core receiver. In order to preserve the structure of the rock in the core sample by means of guaranteeing rectilinear movement of the core lifter in the rock, the support and core receiver sections are hinged. The device is equipped with a spring for angular shift in the core-reception part.

  18. Conceptual design of small-sized HTGR system (3). Core thermal and hydraulic design

    International Nuclear Information System (INIS)

    Inaba, Yoshitomo; Sato, Hiroyuki; Goto, Minoru; Ohashi, Hirofumi; Tachibana, Yukio

    2012-06-01

    The Japan Atomic Energy Agency has started the conceptual designs of small-sized High Temperature Gas-cooled Reactor (HTGR) systems, aiming for the 2030s deployment into developing countries. The small-sized HTGR systems can provide power generation by steam turbine, high temperature steam for industry process and/or low temperature steam for district heating. As one of the conceptual designs in the first stage, the core thermal and hydraulic design of the power generation and steam supply small-sized HTGR system with a thermal power of 50 MW (HTR50S), which was a reference reactor system positioned as a first commercial or demonstration reactor system, was carried out. HTR50S in the first stage has the same coated particle fuel as HTTR. The purpose of the design is to make sure that the maximum fuel temperature in normal operation doesn't exceed the design target. Following the design, safety analysis assuming a depressurization accident was carried out. The fuel temperature in the normal operation and the fuel and reactor pressure vessel temperatures in the depressurization accident were evaluated. As a result, it was cleared that the thermal integrity of the fuel and the reactor coolant pressure boundary is not damaged. (author)

  19. Torsional Oscillations of the Earths's Core

    Science.gov (United States)

    Hide, Raymond; Boggs, Dale H.; Dickey, Jean O.

    1997-01-01

    Torsional oscillations of the Earth's liquid metallic outer core are investigated by diving the core into twenty imaginary e1qui-volume annuli coaxial with the axis of ratation of the Earth and determining temproal fluctuations in the axial component of angular memonetum of each annulus under the assumption of iso-rotation on cylindrical surfaces.

  20. Multi-core fiber undersea transmission systems

    DEFF Research Database (Denmark)

    Nooruzzaman, Md; Morioka, Toshio

    2017-01-01

    Various potential architectures of branching units for multi-core fiber undersea transmission systems are presented. It is also investigated how different architectures of branching unit influence the number of fibers and those of inline components.......Various potential architectures of branching units for multi-core fiber undersea transmission systems are presented. It is also investigated how different architectures of branching unit influence the number of fibers and those of inline components....

  1. Core losses of a permanent magnet synchronous motor with an amorphous stator core under inverter and sinusoidal excitations

    Directory of Open Access Journals (Sweden)

    Atsushi Yao

    2018-05-01

    Full Text Available We report core loss properties of permanent magnet synchronous motors (PMSM with amorphous magnetic materials (AMM core under inverter and sinusoidal excitations. To discuss the core loss properties of AMM core, a comparison with non-oriented (NO core is also performed. In addition, based on both experiments and numerical simulations, we estimate higher (time and space harmonic components of the core losses under inverter and sinusoidal excitations. The core losses of PMSM are reduced by about 59% using AMM stator core instead of NO core under sinusoidal excitation. We show that the average decrease obtained by using AMM instead of NO in the stator core is about 94% in time harmonic components.

  2. Animal MRI Core

    Data.gov (United States)

    Federal Laboratory Consortium — The Animal Magnetic Resonance Imaging (MRI) Core develops and optimizes MRI methods for cardiovascular imaging of mice and rats. The Core provides imaging expertise,...

  3. Annual report on experimental operations and maintenances of mock-up model test facility with a full-scale reaction tube for HTTR hydrogen production system in 2003 fiscal year (Contract research)

    International Nuclear Information System (INIS)

    Hayashi, Koji; Morisaki, Norihiro; Ohashi, Hirofumi; Kato, Michio; Aita, Hideki; Takeda, Tetsuaki; Nishihara, Tetsuo; Inaba, Yoshitomo; Takada, Shoji; Inagaki, Yoshiyuki

    2006-03-01

    This is a report on the experimental operations and maintenances of the mock-up test facility with a full-scale reaction tube for the HTTR hydrogen production system in 2003 fiscal year. The fourth and fifth experimental test operations were performed, from May to July and from October to December in 2003, for the following tests; (a) start-up and shutdown operation test, (b) process change test, (c) continuous hydrogen-production test and (d) chemical reaction shutdown test. From the results, a long time-range stability of the hydrogen production system was confirmed, a behavior of the helium-gas cooling system, consists of steam generator and radiator; during chemical reaction shutdown, was understood, and so on. Periodic inspections on boiler equipment and high-pressure gas production facilities were performed from end of July 2003. This report is summarized on outlines and results of the tests, outlines and results of the periodic inspections, and operation records of the mock-up test facility. (author)

  4. Annual report on experimental operations and maintenances of mock-up model test facility with a full-scale reaction tube for HTTR hydrogen production system in 2002 fiscal year (Contract research)

    International Nuclear Information System (INIS)

    Hayashi, Koji; Ohashi, Hirofumi; Inaba, Yoshitomo; Kato, Michio; Aita, Hideki; Morisaki, Norihiro; Takeda, Tetsuaki; Nishihara, Tetsuo; Takada, Shoji; Inagaki, Yoshiyuki

    2006-03-01

    This report describes 2002 fiscal-year experimental test operations of the mock-up test facility with a full-scale reaction tube for the HTTR hydrogen production system. The improvement works were performed in May 2002. The second experimental test operation was performed from June 2002 and the performances of the improved parts were confirmed. Periodic inspections on boiler equipment and high-pressure gas production facilities were performed from end of July 2002. The third experimental test operation was performed, from October 2002, for (a) start-up and shutdown test, (b) process change test, (c) chemical reaction shutdown test and (d) characteristics test on steam reformer. It was confirmed that the changes of helium gas temperature, caused at steam reformer, could be mitigated into the target range by the steam generator. Maintenance works of high-pressure gas production facilities were also performed in February 2003. This report is summarized with the outline and the results of the test, maintenance works and inspections, and operation records in mentioned above. (author)

  5. Principal components

    NARCIS (Netherlands)

    Hallin, M.; Hörmann, S.; Piegorsch, W.; El Shaarawi, A.

    2012-01-01

    Principal Components are probably the best known and most widely used of all multivariate analysis techniques. The essential idea consists in performing a linear transformation of the observed k-dimensional variables in such a way that the new variables are vectors of k mutually orthogonal

  6. Core cooling systems

    International Nuclear Information System (INIS)

    Hoeppner, G.

    1980-01-01

    The reactor cooling system transports the heat liberated in the reactor core to the component - heat exchanger, steam generator or turbine - where the energy is removed. This basic task can be performed with a variety of coolants circulating in appropriately designed cooling systems. The choice of any one system is governed by principles of economics and natural policies, the design is determined by the laws of nuclear physics, thermal-hydraulics and by the requirement of reliability and public safety. PWR- and BWR- reactors today generate the bulk of nuclear energy. Their primary cooling systems are discussed under the following aspects: 1. General design, nuclear physics constraints, energy transfer, hydraulics, thermodynamics. 2. Design and performance under conditions of steady state and mild transients; control systems. 3. Design and performance under conditions of severe transients and loss of coolant accidents; safety systems. (orig./RW)

  7. Core Hunter 3: flexible core subset selection.

    Science.gov (United States)

    De Beukelaer, Herman; Davenport, Guy F; Fack, Veerle

    2018-05-31

    Core collections provide genebank curators and plant breeders a way to reduce size of their collections and populations, while minimizing impact on genetic diversity and allele frequency. Many methods have been proposed to generate core collections, often using distance metrics to quantify the similarity of two accessions, based on genetic marker data or phenotypic traits. Core Hunter is a multi-purpose core subset selection tool that uses local search algorithms to generate subsets relying on one or more metrics, including several distance metrics and allelic richness. In version 3 of Core Hunter (CH3) we have incorporated two new, improved methods for summarizing distances to quantify diversity or representativeness of the core collection. A comparison of CH3 and Core Hunter 2 (CH2) showed that these new metrics can be effectively optimized with less complex algorithms, as compared to those used in CH2. CH3 is more effective at maximizing the improved diversity metric than CH2, still ensures a high average and minimum distance, and is faster for large datasets. Using CH3, a simple stochastic hill-climber is able to find highly diverse core collections, and the more advanced parallel tempering algorithm further increases the quality of the core and further reduces variability across independent samples. We also evaluate the ability of CH3 to simultaneously maximize diversity, and either representativeness or allelic richness, and compare the results with those of the GDOpt and SimEli methods. CH3 can sample equally representative cores as GDOpt, which was specifically designed for this purpose, and is able to construct cores that are simultaneously more diverse, and either are more representative or have higher allelic richness, than those obtained by SimEli. In version 3, Core Hunter has been updated to include two new core subset selection metrics that construct cores for representativeness or diversity, with improved performance. It combines and outperforms the

  8. A Framework for Managing Core Facilities within the Research Enterprise

    OpenAIRE

    Haley, Rand

    2009-01-01

    Core facilities represent increasingly important operational and strategic components of institutions' research enterprises, especially in biomolecular science and engineering disciplines. With this realization, many research institutions are placing more attention on effectively managing core facilities within the research enterprise. A framework is presented for organizing the questions, challenges, and opportunities facing core facilities and the academic units and institutions in which th...

  9. k-core covers and the core

    NARCIS (Netherlands)

    Sanchez-Rodriguez, E.; Borm, Peter; Estevez-Fernandez, A.; Fiestras-Janeiro, G.; Mosquera, M.A.

    This paper extends the notion of individual minimal rights for a transferable utility game (TU-game) to coalitional minimal rights using minimal balanced families of a specific type, thus defining a corresponding minimal rights game. It is shown that the core of a TU-game coincides with the core of

  10. Development of standard components for remote handling

    International Nuclear Information System (INIS)

    Taguchi, Kou; Kakudate, Satoshi; Nakahira, Masataka; Ito, Akira

    1998-01-01

    The core of Fusion Experimental Reactor consists of various components such as superconducting magnets and forced-cooled in-vessel components, which are remotely maintained due to intense of gamma radiation. Mechanical connectors such as cooling pipe connections, insulation joints and electrical connectors are commonly used for maintenance of these components and have to be standardized in terms of remote handling. This paper describes these mechanical connectors developed as the standard component compatible with remote handling and tolerable for radiation. (author)

  11. Development of standard components for remote handling

    Energy Technology Data Exchange (ETDEWEB)

    Taguchi, Kou; Kakudate, Satoshi; Nakahira, Masataka; Ito, Akira [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-04-01

    The core of Fusion Experimental Reactor consists of various components such as superconducting magnets and forced-cooled in-vessel components, which are remotely maintained due to intense of gamma radiation. Mechanical connectors such as cooling pipe connections, insulation joints and electrical connectors are commonly used for maintenance of these components and have to be standardized in terms of remote handling. This paper describes these mechanical connectors developed as the standard component compatible with remote handling and tolerable for radiation. (author)

  12. Statistics of Shared Components in Complex Component Systems

    Science.gov (United States)

    Mazzolini, Andrea; Gherardi, Marco; Caselle, Michele; Cosentino Lagomarsino, Marco; Osella, Matteo

    2018-04-01

    Many complex systems are modular. Such systems can be represented as "component systems," i.e., sets of elementary components, such as LEGO bricks in LEGO sets. The bricks found in a LEGO set reflect a target architecture, which can be built following a set-specific list of instructions. In other component systems, instead, the underlying functional design and constraints are not obvious a priori, and their detection is often a challenge of both scientific and practical importance, requiring a clear understanding of component statistics. Importantly, some quantitative invariants appear to be common to many component systems, most notably a common broad distribution of component abundances, which often resembles the well-known Zipf's law. Such "laws" affect in a general and nontrivial way the component statistics, potentially hindering the identification of system-specific functional constraints or generative processes. Here, we specifically focus on the statistics of shared components, i.e., the distribution of the number of components shared by different system realizations, such as the common bricks found in different LEGO sets. To account for the effects of component heterogeneity, we consider a simple null model, which builds system realizations by random draws from a universe of possible components. Under general assumptions on abundance heterogeneity, we provide analytical estimates of component occurrence, which quantify exhaustively the statistics of shared components. Surprisingly, this simple null model can positively explain important features of empirical component-occurrence distributions obtained from large-scale data on bacterial genomes, LEGO sets, and book chapters. Specific architectural features and functional constraints can be detected from occurrence patterns as deviations from these null predictions, as we show for the illustrative case of the "core" genome in bacteria.

  13. A review of PFR core distortion experience

    International Nuclear Information System (INIS)

    Brook, A.J.

    1984-01-01

    Neutron induced voidage (NIV) swelling and irradiation creep, acting together or individually, produce deformation in core components exposed to a fast neutron flux and can lead to mechanical interaction between them. Today the nature of these processes is reasonably well understood, and reactor designers have two options in attempting to accomodate them: either by employing a flexible free standing design in which contact loadings are low but in which distortion may be high, or more commonly, by some type of restrained core in which inter-component loadings are high, but where distortion is relatively small. The aims of this paper are: a. to describe briefly the various operational limits of core and core component distortion and how they arise, for which a brief description of reactor construction is necessary; b. to outline how the problems of inter-component contact loadings are overcome for the interactive core; c. to describe some other potential problems which arise either from absolute swelling, or from differential swelling between components; of particular relevance here is the problem of contact loadings between absorber rods and their guide tubes; d. to comment on the degree of agreement with, and the feedback provided by, PIE findings; e. to show how the results of the work influence reactor operators and the reload program

  14. Developing a Model Component

    Science.gov (United States)

    Fields, Christina M.

    2013-01-01

    The Spaceport Command and Control System (SCCS) Simulation Computer Software Configuration Item (CSCI) is responsible for providing simulations to support test and verification of SCCS hardware and software. The Universal Coolant Transporter System (UCTS) was a Space Shuttle Orbiter support piece of the Ground Servicing Equipment (GSE). The initial purpose of the UCTS was to provide two support services to the Space Shuttle Orbiter immediately after landing at the Shuttle Landing Facility. The UCTS is designed with the capability of servicing future space vehicles; including all Space Station Requirements necessary for the MPLM Modules. The Simulation uses GSE Models to stand in for the actual systems to support testing of SCCS systems during their development. As an intern at Kennedy Space Center (KSC), my assignment was to develop a model component for the UCTS. I was given a fluid component (dryer) to model in Simulink. I completed training for UNIX and Simulink. The dryer is a Catch All replaceable core type filter-dryer. The filter-dryer provides maximum protection for the thermostatic expansion valve and solenoid valve from dirt that may be in the system. The filter-dryer also protects the valves from freezing up. I researched fluid dynamics to understand the function of my component. The filter-dryer was modeled by determining affects it has on the pressure and velocity of the system. I used Bernoulli's Equation to calculate the pressure and velocity differential through the dryer. I created my filter-dryer model in Simulink and wrote the test script to test the component. I completed component testing and captured test data. The finalized model was sent for peer review for any improvements. I participated in Simulation meetings and was involved in the subsystem design process and team collaborations. I gained valuable work experience and insight into a career path as an engineer.

  15. Reactor core fuel management

    International Nuclear Information System (INIS)

    Silvennoinen, P.

    1976-01-01

    The subject is covered in chapters, entitled: concepts of reactor physics; neutron diffusion; core heat transfer; reactivity; reactor operation; variables of core management; computer code modules; alternative reactor concepts; methods of optimization; general system aspects. (U.K.)

  16. Nuclear reactor core catcher

    International Nuclear Information System (INIS)

    1977-01-01

    A nuclear reactor core catcher is described for containing debris resulting from an accident causing core meltdown and which incorporates a method of cooling the debris by the circulation of a liquid coolant. (U.K.)

  17. Seismic core shroud

    International Nuclear Information System (INIS)

    Puri, A.; Mullooly, J.F.

    1981-01-01

    A core shroud is provided, comprising: a coolant boundary, following the shape of the core boundary, for channeling the coolant through the fuel assemblies; a cylindrical band positioned inside the core barrel and surrounding the coolant boundary; and support members extending from the coolant boundary to the band, for transferring load from the coolant boundary to the band. The shroud may be assembled in parts using automated welding techniques, and it may be adjusted to fit the reactor core easily

  18. Core Values | NREL

    Science.gov (United States)

    Core Values Core Values NREL's core values are rooted in a safe and supportive work environment guide our everyday actions and efforts: Safe and supportive work environment Respect for the rights physical and social environment Integrity Maintain the highest standard of ethics, honesty, and integrity

  19. Sidewall coring shell

    Energy Technology Data Exchange (ETDEWEB)

    Edelman, Ya A; Konstantinov, L P; Martyshin, A N

    1966-12-12

    A sidewall coring shell consists of a housing and a detachable core catcher. The core lifter is provided with projections, the ends of which are situated in another plane, along the longitudinal axis of the lifter. The chamber has corresponding projections.

  20. Summary of facility and operating experience on helium engineering demonstration loop (HENDEL)

    Energy Technology Data Exchange (ETDEWEB)

    Ouchi, Yoshihiro; Fujisaki, Katsuo; Kobayashi, Toshiaki; Kato, Michio; Ota, Yukimaru; Watanabe, Syuji; Kobayashi, Hideki; Mogi, Haruyoshi [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment

    1996-07-01

    The HENDEL is a test facility to perform full scale demonstration tests on the core internals and high temperature components for the High Temperature Engineering Test Reactor(HTTR). The main systems consist of Mother(M) and Adapter(A), fuel stack Test(T{sub 1}) and in-core structure Test(T{sub 2}) sections. The (M+A) section can supply high temperature helium gas to the test section. The M+A section completed in March 1982 has been operated for about 22900 hours till February 1995. The T{sub 1} and T{sub 2} sections, completed in March 1983 and June 1986, have been operated for about 19400 and 16700 hours, respectively. In this period, a large number of tests have been conducted to verify the performance and safety features of the HTTR components. The results obtained from these tests have been effectively applied to the detailed design, licensing procedures and construction of the HTTR. The operating experience of the HENDEL for more than 10 years also brought us establishment of the technique of operation of a large scale helium gas loop, handling of helium gas and maintenance of high temperature facilities. The technique will be available for the operation of the HTTR. This paper mainly describes the summary of plant facirities, operating experience and maintenance on the HENDEL. (author)

  1. Consequences of pressure tube rupture on in-core components

    International Nuclear Information System (INIS)

    Hill, P.G.; Hauptmann, E.G.; Lee, V.

    1982-12-01

    An investigation has been made of the consequences of pressure tube rupture in calandria vessels of heavy water cooled and moderated reactors. The study included a review of previous experimental and analytical work, as well as supplementary investigations carried out to examine the validity of previous assumptions and findings. The central questions considered were: the possibility of a propagating pressure tube failure; damage to the calandria vessel; and damage to the shut-off-rod guide tubes of the reactor shut-down system. The results of the investigation do not indicate mechanisms of sufficient strength to cause propagating failure in a well-designed, well-operated reactor following a tube burst under normal operating conditions. However, not all the details of the physical processes involved in a tube burst have been revealed by existing experimental and analytical work

  2. Development and Demonstration of a Security Core Component

    Energy Technology Data Exchange (ETDEWEB)

    Turke, Andy

    2014-02-28

    In recent years, the convergence of a number of trends has resulted in Cyber Security becoming a much greater concern for electric utilities. A short list of these trends includes: · Industrial Control Systems (ICSs) have evolved from depending on proprietary hardware and operating software toward using standard off-the-shelf hardware and operating software. This has meant that these ICSs can no longer depend on “security through obscurity. · Similarly, these same systems have evolved toward using standard communications protocols, further reducing their ability to rely upon obscurity. · The rise of the Internet and the accompanying demand for more data about virtually everything has resulted in formerly isolated ICSs becoming at least partially accessible via Internet-connected networks. · “Cyber crime” has become commonplace, whether it be for industrial espionage, reconnaissance for a possible cyber attack, theft, or because some individual or group “has something to prove.” Electric utility system operators are experts at running the power grid. The reality is, especially at small and mid-sized utilities, these SCADA operators will by default be “on the front line” if and when a cyber attack occurs against their systems. These people are not computer software, networking, or cyber security experts, so they are ill-equipped to deal with a cyber security incident. Cyber Security Manager (CSM) was conceived, designed, and built so that it can be configured to know what a utility’s SCADA/EMS/DMS system looks like under normal conditions. To do this, CSM monitors log messages from any device that uses the syslog standard. It can also monitor a variety of statistics from the computers that make up the SCADA/EMS/DMS: outputs from host-based security tools, intrusion detection systems, SCADA alarms, and real-time SCADA values – even results from a SIEM (Security Information and Event Management) system. When the system deviates from “normal,” CSM can alert the operator in language that they understand that an incident may be occurring, provide actionable intelligence, and informing them what actions to take. These alarms may be viewed on CSM’s built-in user interface, sent to a SCADA alarm list, or communicated via email, phone, pager, or SMS message. In recognition of the fact that “real world” training for cyber security events is impractical, CSM has a built-in Operator Training Simulator capability. This can be used stand alone to create simulated event scenarios for training purposes. It may also be used in conjunction with the recipient’s SCADA/EMS/DMS Operator Training Simulator. In addition to providing cyber security situational awareness for electric utility operators, CSM also provides tools for analysts and support personnel; in fact, the majority of user interface displays are designed for use in analyzing current and past security events. CSM keeps security-related information in long-term storage, as well as writing any decisions it makes to a (syslog) log for use forensic or other post-event analysis.

  3. Making Management Skills a Core Component of Medical Education.

    Science.gov (United States)

    Myers, Christopher G; Pronovost, Peter J

    2017-05-01

    Physicians are being called upon to engage in greater leadership and management in increasingly complex and dynamic health care organizations. Yet, management skills are largely undeveloped in medical education. Without formal management training in the medical curriculum, physicians are left to cultivate their leadership and management abilities through a haphazard array of training programs or simply through trial and error, with consequences that may range from frustration among staff to reduced quality of care and increased risk of patient harm. To address this issue, the authors posit that medical education needs a more systematic focus on topics related to management and organization, such as individual decision making, interpersonal communication, team knowledge sharing, and organizational culture. They encourage medical schools to partner with business school faculty or other organizational scholars to offer a "Management 101" course in the medical curriculum to provide physicians-in-training with an understanding of these topics and raise the quality of physician leadership and management in modern health care organizations.

  4. HYDRATE CORE DRILLING TESTS

    Energy Technology Data Exchange (ETDEWEB)

    John H. Cohen; Thomas E. Williams; Ali G. Kadaster; Bill V. Liddell

    2002-11-01

    The ''Methane Hydrate Production from Alaskan Permafrost'' project is a three-year endeavor being conducted by Maurer Technology Inc. (MTI), Noble, and Anadarko Petroleum, in partnership with the U.S. DOE National Energy Technology Laboratory (NETL). The project's goal is to build on previous and ongoing R&D in the area of onshore hydrate deposition. The project team plans to design and implement a program to safely and economically drill, core and produce gas from arctic hydrates. The current work scope includes drilling and coring one well on Anadarko leases in FY 2003 during the winter drilling season. A specially built on-site core analysis laboratory will be used to determine some of the physical characteristics of the hydrates and surrounding rock. Prior to going to the field, the project team designed and conducted a controlled series of coring tests for simulating coring of hydrate formations. A variety of equipment and procedures were tested and modified to develop a practical solution for this special application. This Topical Report summarizes these coring tests. A special facility was designed and installed at MTI's Drilling Research Center (DRC) in Houston and used to conduct coring tests. Equipment and procedures were tested by cutting cores from frozen mixtures of sand and water supported by casing and designed to simulate hydrate formations. Tests were conducted with chilled drilling fluids. Tests showed that frozen core can be washed out and reduced in size by the action of the drilling fluid. Washing of the core by the drilling fluid caused a reduction in core diameter, making core recovery very difficult (if not impossible). One successful solution was to drill the last 6 inches of core dry (without fluid circulation). These tests demonstrated that it will be difficult to capture core when drilling in permafrost or hydrates without implementing certain safeguards. Among the coring tests was a simulated hydrate

  5. GCRA review and appraisal of HTGR reactor-core-design program

    International Nuclear Information System (INIS)

    1980-09-01

    The reactor-core-design program has as its principal objective and responsibility the design and resolution of major technical issues for the reactor core and core components on a schedule consistent with the plant licensing and construction program. The task covered in this review includes three major design areas: core physics, core thermal and hydraulic performance fuel element design, and in-core fuel performance evaluation

  6. Radio core dominance of Fermi blazars

    Science.gov (United States)

    Pei, Zhi-Yuan; Fan, Jun-Hui; Liu, Yi; Yuan, Yi-Hai; Cai, Wei; Xiao, Hu-Bing; Lin, Chao; Yang, Jiang-He

    2016-07-01

    During the first 4 years of mission, Fermi/LAT detected 1444 blazars (3FGL) (Ackermann et al. in Astrophys. J. 810:14, 2015). Fermi/LAT observations of blazars indicate that Fermi blazars are luminous and strongly variable with variability time scales, for some cases, as short as hours. Those observations suggest a strong beaming effect in Fermi/LAT blazars. In the present work, we will investigate the beaming effect in Fermi/LAT blazars using a core-dominance parameter, R = S_{core}/ S_{ext.}, where S_{core} is the core emission, while S_{ext.} is the extended emission. We compiled 1335 blazars with available core-dominance parameter, out of which 169 blazars have γ-ray emission (from 3FGL). We compared the core-dominance parameters, log R, between the 169 Fermi-detected blazars (FDBs) and the rest non-Fermi-detected blazars (non-FDBs), and we found that the averaged values are R+(2.25±0.10), suggesting that a source with larger log R has larger V.I. value. Thirdly, we compared the mean values of radio spectral index for FDBs and non-FDBs, and we obtained < α_{radio}rangle =0.06±0.35 for FDBs and < α_{radio}rangle =0.57±0.46 for non-FDBs. If γ-rays are composed of two components like radio emission (core and extended components), then we can expect a correlation between log R and the γ-ray spectral index. When we used the radio core-dominance parameter, log R, to investigate the relationship, we found that the spectral index for the core component is α_{γ}|_{core} = 1.11 (a photon spectral index of α_{γ}^{ph}|_{core} = 2.11) and that for the extended component is α_{γ}|_{ext.} = 0.70 (a photon spectral index of α_{γ}^{ph}|_{ext.} = 1.70). Some discussions are also presented.

  7. Iron snow in the Martian core?

    Science.gov (United States)

    Davies, Christopher J.; Pommier, Anne

    2018-01-01

    The decline of Mars' global magnetic field some 3.8-4.1 billion years ago is thought to reflect the demise of the dynamo that operated in its liquid core. The dynamo was probably powered by planetary cooling and so its termination is intimately tied to the thermochemical evolution and present-day physical state of the Martian core. Bottom-up growth of a solid inner core, the crystallization regime for Earth's core, has been found to produce a long-lived dynamo leading to the suggestion that the Martian core remains entirely liquid to this day. Motivated by the experimentally-determined increase in the Fe-S liquidus temperature with decreasing pressure at Martian core conditions, we investigate whether Mars' core could crystallize from the top down. We focus on the "iron snow" regime, where newly-formed solid consists of pure Fe and is therefore heavier than the liquid. We derive global energy and entropy equations that describe the long-timescale thermal and magnetic history of the core from a general theory for two-phase, two-component liquid mixtures, assuming that the snow zone is in phase equilibrium and that all solid falls out of the layer and remelts at each timestep. Formation of snow zones occurs for a wide range of interior and thermal properties and depends critically on the initial sulfur concentration, ξ0. Release of gravitational energy and latent heat during growth of the snow zone do not generate sufficient entropy to restart the dynamo unless the snow zone occupies at least 400 km of the core. Snow zones can be 1.5-2 Gyrs old, though thermal stratification of the uppermost core, not included in our model, likely delays onset. Models that match the available magnetic and geodetic constraints have ξ0 ≈ 10% and snow zones that occupy approximately the top 100 km of the present-day Martian core.

  8. The core paradox.

    Science.gov (United States)

    Kennedy, G. C.; Higgins, G. H.

    1973-01-01

    Rebuttal of suggestions from various critics attempting to provide an escape from the seeming paradox originated by Higgins and Kennedy's (1971) proposed possibility that the liquid in the outer core was thermally stably stratified and that this stratification might prove a powerful inhibitor to circulation of the outer core fluid of the kind postulated for the generation of the earth's magnetic field. These suggestions are examined and shown to provide no reasonable escape from the core paradox.

  9. Sediment Core Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Provides instrumentation and expertise for physical and geoacoustic characterization of marine sediments.DESCRIPTION: The multisensor core logger measures...

  10. Heat removal performance of auxiliary cooling system for the high temperature engineering test reactor during scrams

    International Nuclear Information System (INIS)

    Takeda, Takeshi; Tachibana, Yukio; Iyoku, Tatsuo; Takenaka, Satsuki

    2003-01-01

    The auxiliary cooling system of the high temperature engineering test reactor (HTTR) is employed for heat removal as an engineered safety feature when the reactor scrams in an accident when forced circulation can cool the core. The HTTR is the first high temperature gas-cooled reactor in Japan with reactor outlet gas temperature of 950 degree sign C and thermal power of 30 MW. The auxiliary cooling system should cool the core continuously avoiding excessive cold shock to core graphite components and water boiling of itself. Simulation tests on manual trip from 9 MW operation and on loss of off-site electric power from 15 MW operation were carried out in the rise-to-power test up to 20 MW of the HTTR. Heat removal characteristics of the auxiliary cooling system were examined by the tests. Empirical correlations of overall heat transfer coefficients were acquired for a helium/water heat exchanger and air cooler for the auxiliary cooling system. Temperatures of fluids in the auxiliary cooling system were predicted on a scram event from 30 MW operation at 950 degree sign C of the reactor outlet coolant temperature. Under the predicted helium condition of the auxiliary cooling system, integrity of fuel blocks among the core graphite components was investigated by stress analysis. Evaluation results showed that overcooling to the core graphite components and boiling of water in the auxiliary cooling system should be prevented where open area condition of louvers in the air cooler is the full open

  11. Can Psychiatric Rehabilitation Be Core to CORE?

    Science.gov (United States)

    Olney, Marjorie F.; Gill, Kenneth J.

    2016-01-01

    Purpose: In this article, we seek to determine whether psychiatric rehabilitation principles and practices have been more fully incorporated into the Council on Rehabilitation Education (CORE) standards, the extent to which they are covered in four rehabilitation counseling "foundations" textbooks, and how they are reflected in the…

  12. PWR core design calculations

    International Nuclear Information System (INIS)

    Trkov, A.; Ravnik, M.; Zeleznik, N.

    1992-01-01

    Functional description of the programme package Cord-2 for PWR core design calculations is presented. Programme package is briefly described. Use of the package and calculational procedures for typical core design problems are treated. Comparison of main results with experimental values is presented as part of the verification process. (author) [sl

  13. Lunar Core and Tides

    Science.gov (United States)

    Williams, J. G.; Boggs, D. H.; Ratcliff, J. T.

    2004-01-01

    Variations in rotation and orientation of the Moon are sensitive to solid-body tidal dissipation, dissipation due to relative motion at the fluid-core/solid-mantle boundary, and tidal Love number k2 [1,2]. There is weaker sensitivity to flattening of the core-mantle boundary (CMB) [2,3,4] and fluid core moment of inertia [1]. Accurate Lunar Laser Ranging (LLR) measurements of the distance from observatories on the Earth to four retroreflector arrays on the Moon are sensitive to lunar rotation and orientation variations and tidal displacements. Past solutions using the LLR data have given results for dissipation due to solid-body tides and fluid core [1] plus Love number [1-5]. Detection of CMB flattening, which in the past has been marginal but improving [3,4,5], now seems significant. Direct detection of the core moment has not yet been achieved.

  14. Internal core tightener

    International Nuclear Information System (INIS)

    Brynsvold, G.V.; Snyder, H.J. Jr.

    1976-01-01

    An internal core tightener is disclosed which is a linear actuated (vertical actuation motion) expanding device utilizing a minimum of moving parts to perform the lateral tightening function. The key features are: (1) large contact areas to transmit loads during reactor operation; (2) actuation cam surfaces loaded only during clamping and unclamping operation; (3) separation of the parts and internal operation involved in the holding function from those involved in the actuation function; and (4) preloaded pads with compliant travel at each face of the hexagonal assembly at the two clamping planes to accommodate thermal expansion and irradiation induced swelling. The latter feature enables use of a ''fixed'' outer core boundary, and thus eliminates the uncertainty in gross core dimensions, and potential for rapid core reactivity changes as a result of core dimensional change. 5 claims, 12 drawing figures

  15. Design and evaluation of heat utilization systems for the high temperature engineering test reactor

    International Nuclear Information System (INIS)

    2001-08-01

    The primary focus of this CRP was to perform detailed investigation of the high temperature industrial processes that are attainable through incorporation of an HTGR, and for their possible demonstration in the HTTR. The HTGR has the capability to achieve a core outlet temperature approaching 1,000 deg. C in a safe and effective manner. These attributes, coupled with the offer by JAERI to utilize the HTTR, resulted in the initiation of this CRP by the IAEA. High Temperature Engineering Test Reactor (HTTR) utilizes a 30 MW(th) HTGR comprised of 30 fuel columns of hexagonal pin-in-pin graphite block type fuel elements. The fuel consists of UO 2 TRISO coated particles with an enrichment of ∼ 6% wt. Relative to the demonstration of high temperature heat applications, the HTTR will be capable of producing 10 MW(th) of heat at 950 deg. C. However, the thermal power for these applications has the potential to be increased up to 30 MW(th) in the future, which may be required for demonstration of gas turbine system components. The HTTR reached initial criticality in November 1998. Initial operational plans includes a series of rise to power tests followed by tests to demonstrate the safety and operational characteristics of the HTTR. In addition to completion of the HTTR demonstration tests, it was recommended that the R and D be performed within the HTTR project. JAERI is encouraged to publicize the results of the HTTR tests and 'lessons learned' from their experiences including potential capabilities of the HTGR for heat applications. The next priority application was determined to be the generation of electricity through the use of the gas turbine. Application of the Brayton Cycle utilizing high temperature helium from a modular HTGR was chosen for development because of its projected benefits as an economic and efficient means for the production of electricity. Evaluation of the remaining high temperature heat utilization applications chosen for investigation resulted

  16. Data Acquisition Backbone Core DABC

    International Nuclear Information System (INIS)

    Adamczewski, J; Essel, H G; Kurz, N; Linev, S

    2008-01-01

    For the new experiments at FAIR new concepts of data acquisition systems have to be developed like the distribution of self-triggered, time stamped data streams over high performance networks for event building. The Data Acquisition Backbone Core (DABC) is a software package currently under development for FAIR detector tests, readout components test, and data flow investigations. All kinds of data channels (front-end systems) are connected by program plug-ins into functional components of DABC like data input, combiner, scheduler, event builder, analysis and storage components. After detailed simulations real tests of event building over a switched network (InfiniBand clusters with up to 110 nodes) have been performed. With the DABC software more than 900 MByte/s input and output per node can be achieved meeting the most demanding requirements. The software is ready for the implementation of various test beds needed for the final design of data acquisition systems at FAIR. The development of key components is supported by the FutureDAQ project of the European Union (FP6 I3HP JRA1)

  17. Earth's inner core: Innermost inner core or hemispherical variations?

    NARCIS (Netherlands)

    Lythgoe, K. H.; Deuss, A.|info:eu-repo/dai/nl/412396610; Rudge, J. F.; Neufeld, J. A.

    2014-01-01

    The structure of Earth's deep inner core has important implications for core evolution, since it is thought to be related to the early stages of core formation. Previous studies have suggested that there exists an innermost inner core with distinct anisotropy relative to the rest of the inner core.

  18. Dependence of Core and Extended Flux on Core Dominance ...

    Indian Academy of Sciences (India)

    Abstract. Based on two extragalactic radio source samples, the core dominance parameter is calculated, and the correlations between the core/extended flux density and core dominance parameter are investi- gated. When the core dominance parameter is lower than unity, it is linearly correlated with the core flux density, ...

  19. Korrelasjon mellom core styrke, core stabilitet og utholdende styrke i core

    OpenAIRE

    Berg-Olsen, Andrea Marie; Fugelsøy, Eivor; Maurstad, Ann-Louise

    2010-01-01

    Formålet med studien var å se hvilke korrelasjon det er mellom core styrke, core stabilitet og utholdende styrke i core. Testingen bestod av tre hoveddeler hvor vi testet core styrke, core stabilitet og utholdende styrke i core. Innenfor core styrke og utholdende styrke i core ble tre ulike tester utført. Ved måling av core stabilitet ble det gjennomført kun en test. I core styrke ble isometrisk abdominal fleksjon, isometrisk rygg ekstensjon og isometrisk lateral fleksjon testet. Sit-ups p...

  20. Windscale pile core surveys

    International Nuclear Information System (INIS)

    Curtis, R.F.; Mathews, R.F.

    1996-01-01

    The two Windscale Piles were closed down, defueled as far as possible and mothballed for thirty years following a fire in the core of Pile 1 in 1957 resulting from the spontaneous release of stored Wigner energy in the graphite moderator. Decommissioning of the reactors commenced in 1987 and has reached the stage where the condition of both cores needs to be determined. To this end, non-intrusive and intrusive surveys and sampling of the cores have been planned and partly implemented. The objectives for each Pile differ slightly. The location and quantity of fuel remaining in the damaged core of Pile 1 needed to be established, whereas the removal of all fuel from Pile 2 needed to be confirmed. In Pile 1, the possible existence of a void in the core is to be explored and in Pile 2, the level of Wigner energy remaining required to be quantified. Levels of radioactivity in both cores needed to be measured. The planning of the surveys is described including strategy, design, safety case preparation and the remote handling and viewing equipment required to carry out the inspection, sampling and monitoring work. The results from the completed non-intrusive survey of Pile 2 are summarised. They confirm that the core is empty and the graphite is in good condition. The survey of Pile 1 has just started. (UK)

  1. Core shroud corner joints

    Science.gov (United States)

    Gilmore, Charles B.; Forsyth, David R.

    2013-09-10

    A core shroud is provided, which includes a number of planar members, a number of unitary corners, and a number of subassemblies each comprising a combination of the planar members and the unitary corners. Each unitary corner comprises a unitary extrusion including a first planar portion and a second planar portion disposed perpendicularly with respect to the first planar portion. At least one of the subassemblies comprises a plurality of the unitary corners disposed side-by-side in an alternating opposing relationship. A plurality of the subassemblies can be combined to form a quarter perimeter segment of the core shroud. Four quarter perimeter segments join together to form the core shroud.

  2. IGCSE core mathematics

    CERN Document Server

    Wall, Terry

    2013-01-01

    Give your core level students the support and framework they require to get their best grades with this book dedicated to the core level content of the revised syllabus and written specifically to ensure a more appropriate pace. This title has been written for Core content of the revised Cambridge IGCSE Mathematics (0580) syllabus for first teaching from 2013. ? Gives students the practice they require to deepen their understanding through plenty of practice questions. ? Consolidates learning with unique digital resources on the CD, included free with every book. We are working with Cambridge

  3. Development of the prediction technology of cable disconnection of in-core neutron detector for the future high-temperature gas cooled reactors

    International Nuclear Information System (INIS)

    Shimazaki, Yosuke; Sawahata, Hiroaki; Kawamoto, Taiki; Suzuki, Hisashi; Shinohara, Masanori; Honda, Yuki; Katsuyama, Kozo; Takada, Shoji; Sawa, Kazuhiro

    2015-01-01

    Maintenance technologies for the reactor system have been developed by using the high-temperature engineering test reactor (HTTR). One of the important purposes of development is to accumulate the experiences and data to satisfy the availability of operation up to 90% by shortening the duration of the periodical maintenance for the future HTGRs by shifting from the time-based maintenance to condition-based maintenance. The technical issue of the maintenance of in-core neutron detector, wide range monitor (WRM), is to predict the malfunction caused by cable disconnection to plan the replacement schedule. This is because that it is difficult to observe directly inside of the WRM in detail. The electrical inspection method was proposed to detect and predict the cable disconnection of the WRM by remote monitoring from outside of the reactor by using the time domain reflectometry and so on. The disconnection position, which was specified by the electrical method, was identified by non-destructive and destructive inspection. The accumulated data is expected to be contributed for advanced maintenance of future HTGRs. (author)

  4. Stress wave nondestructive evaluation of Douglas-fir peeler cores

    Science.gov (United States)

    Robert J. Ross; John I. Zerbe; Xiping Wang; David W. Green; Roy F. Pellerin

    2005-01-01

    With the need for evaluating the utilization of veneer peeler log cores in higher value products and the increasing importance of utilizing round timbers in poles, posts, stakes, and building construction components, we conducted a cooperative project to verify the suitability of stress wave nondestructive evaluation techniques for assessing peeler cores and some...

  5. Heterogeneous gas core reactor

    International Nuclear Information System (INIS)

    Diaz, N.J.; Dugan, E.T.

    1983-01-01

    A heterogeneous gas core nuclear reactor is disclosed comprising a core barrel provided interiorly with an array of moderator-containing tubes and being otherwise filled with a fissile and/or fertile gaseous fuel medium. The fuel medium may be flowed through the chamber and through an external circuit in which heat is extracted. The moderator may be a fluid which is flowed through the tubes and through an external circuit in which heat is extracted. The moderator may be a solid which may be cooled by a fluid flowing within the tubes and through an external heat extraction circuit. The core barrel is surrounded by moderator/coolant material. Fissionable blanket material may be disposed inwardly or outwardly of the core barrel

  6. iPSC Core

    Data.gov (United States)

    Federal Laboratory Consortium — The induced Pluripotent Stem Cells (iPSC) Core was created in 2011 to accelerate stem cell research in the NHLBI by providing investigators consultation, technical...

  7. Core Flight Software

    Data.gov (United States)

    National Aeronautics and Space Administration — The AES Core Flight Software (CFS) project purpose is to analyze applicability, and evolve and extend the reusability of the CFS system originally developed by...

  8. PWR degraded core analysis

    International Nuclear Information System (INIS)

    Gittus, J.H.

    1982-04-01

    A review is presented of the various phenomena involved in degraded core accidents and the ensuing transport of fission products from the fuel to the primary circuit and the containment. The dominant accident sequences found in the PWR risk studies published to date are briefly described. Then chapters deal with the following topics: the condition and behaviour of water reactor fuel during normal operation and at the commencement of degraded core accidents; the generation of hydrogen from the Zircaloy-steam and the steel-steam reactions; the way in which the core deforms and finally melts following loss of coolant; debris relocation analysis; containment integrity; fission product behaviour during a degraded core accident. (U.K.)

  9. Restraint system for core elements of a reactor core

    International Nuclear Information System (INIS)

    Class, G.

    1975-01-01

    In a nuclear reactor, a core element bundle formed of a plurality of side-by-side arranged core elements is surrounded by restraining elements that exert a radially inwardly directly restraining force generating friction forces between the core elements in a restraining plane that is transverse to the core element axes. The adjoining core elements are in rolling contact with one another in the restraining plane by virtue of rolling-type bearing elements supported in the core elements. (Official Gazette)

  10. Heterogeneous gas core reactor

    International Nuclear Information System (INIS)

    Han, K.I.

    1977-01-01

    Preliminary investigations of a heterogeneous gas core reactor (HGCR) concept suggest that this potential power reactor offers distinct advantages over other existing or conceptual reactor power plants. One of the most favorable features of the HGCR is the flexibility of the power producing system which allows it to be efficiently designed to conform to a desired optimum condition without major conceptual changes. The arrangement of bundles of moderator/coolant channels in a fissionable gas or mixture of gases makes a truly heterogeneous nuclear reactor core. It is this full heterogeneity for a gas-fueled reactor core which accounts for the novelty of the heterogeneous gas core reactor concept and leads to noted significant advantages over previous gas core systems with respect to neutron and fuel economy, power density, and heat transfer characteristics. The purpose of this work is to provide an insight into the design, operating characteristics, and safety of a heterogeneous gas core reactor system. The studies consist mainly of neutronic, energetic and kinetic analyses of the power producing and conversion systems as a preliminary assessment of the heterogeneous gas core reactor concept and basic design. The results of the conducted research indicate a high potential for the heterogeneous gas core reactor system as an electrical power generating unit (either large or small), with an overall efficiency as high as 40 to 45%. The HGCR system is found to be stable and safe, under the conditions imposed upon the analyses conducted in this work, due to the inherent safety of ann expanding gaseous fuel and the intrinsic feedback effects of the gas and water coolant

  11. Representation of dislocation cores using Nye tensor distributions

    International Nuclear Information System (INIS)

    Hartley, Craig S.; Mishin, Y.

    2005-01-01

    This paper demonstrates how the cores of atomistically simulated dislocations in Cu and Al can be represented by a distribution of infinitesimal dislocations described by appropriate components of the Nye tensor. Components calculated from atomic positions in the dislocated crystal are displayed as contour plots on the plane normal to the dislocation line. The method provides an accurate and instructive means for characterizing dislocation core structures and calculating the total Burgers vector

  12. FBR type reactor core

    International Nuclear Information System (INIS)

    Tamiya, Tadashi; Kawashima, Katsuyuki; Fujimura, Koji; Murakami, Tomoko.

    1995-01-01

    Neutron reflectors are disposed at the periphery of a reactor core fuel region and a blanket region, and a neutron shielding region is disposed at the periphery of them. The neutron reflector has a hollow duct structure having a sealed upper portion, a lower portion opened to cooling water, in which a gas and coolants separately sealed in the inside thereof. A driving pressure of a primary recycling pump is lowered upon reduction of coolant flow rate, then the liquid level of coolants in the neutron reflector is lowered due to imbalance between the driving pressure and a gas pressure, so that coolants having an effect as a reflector are eliminated from the outer circumference of the reactor core. Therefore, the amount of neutrons leaking from the reactor core is increased, and negative reactivity is charged to the reactor core. The negative reactivity of the neutron reflector is made greater than a power compensation reactivity. Since this enables reactor scram by using an inherent performance of the reactor core, the reactor core safety of an LMFBR-type reactor can be improved. (I.N.)

  13. The earths innermost core

    International Nuclear Information System (INIS)

    Nanda, J.N.

    1989-01-01

    A new earth model is advanced with a solid innermost core at the centre of the Earth where elements heavier than iron, over and above what can be retained in solution in the iron core, are collected. The innermost core is separated from the solid iron-nickel core by a shell of liquid copper. The innermost core has a natural vibration measured on the earth's surface as the long period 26 seconds microseisms. The earth was formed initially as a liquid sphere with a relatively thin solid crust above the Byerly discontinuity. The trace elements that entered the innermost core amounted to only 0.925 ppm of the molten mass. Gravitational differentiation must have led to the separation of an explosive thickness of pure 235 U causing a fission explosion that could expel beyond the Roche limit a crustal scab which would form the centre piece of the moon. A reservoir of helium floats on the liquid copper. A small proportion of helium-3, a relic of the ancient fission explosion present there will spell the exciting magnetic field. The field is stable for thousands of years because of the presence of large quantity of helium-4 which accounts for most of the gaseous collisions that will not disturb the atomic spin of helium-3 atoms. This field is prone to sudden reversals after long periods of stability. (author). 14 refs

  14. First results from core-edge parallel composition in the FACETS project.

    Energy Technology Data Exchange (ETDEWEB)

    Cary, J. R.; Candy, J.; Cohen, R. H.; Krasheninnikov, S.; McCune, D. C.; Estep, D. J.; Larson, J.; Malony, A. D.; Pankin, A.; Worley, P. H.; Carlsson, J. A.; Hakim, A. H.; Hamill, P.; Kruger, S.; Miah, M.; Muzsala, S.; Pletzer, A.; Shasharina, S.; Wade-Stein, D.; Wang, N.; Balay, S.; McInnes, L.; Zhang, H.; Casper, T.; Diachin, L. (Mathematics and Computer Science); (Tech-X Corp.); (General Atomics); (LLNL); (Univ. of California at San Diego); (Princeton Plasma Physics Lab.); (Colorado State Univ.); (ParaTools Inc.); (Lehigh Univ.); (ORNL)

    2008-01-01

    FACETS (Framework Application for Core-Edge Transport Simulations), now in its second year, has achieved its first coupled core-edge transport simulations. In the process, a number of accompanying accomplishments were achieved. These include a new parallel core component, a new wall component, improvements in edge and source components, and the framework for coupling all of this together. These accomplishments were a result of an interdisciplinary collaboration among computational physics, computer scientists, and applied mathematicians on the team.

  15. First results from core-edge parallel composition in the FACETS project

    Energy Technology Data Exchange (ETDEWEB)

    Cary, J R; Carlsson, J A; Hakim, A H; Hamill, P; Kruger, S; Miah, M; Muzsala, S; Pletzer, A; Shasharina, S; Wade-Stein, D; Wang, N [Tech-X Corporation, Boulder, CO 80303 (United States); Candy, J [General Atomics, San Diego, CA 92186 (United States); Cohen, R H [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Krasheninnikov, S [University of California at San Diego, San Diego, CA 92093 (United States); McCune, D C [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Estep, D J [Colorado State University, Fort Collins, CO 80523 (United States); Larson, J [Argonne National Laboratory, Argonne, IL 60439 (United States); Malony, A D [ParaTools, Inc., Eugene, OR 97405 (United States); Pankin, A [Lehigh University, Bethlehem, PA 18015 (United States); Worley, P H [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)], E-mail: cary@txcorp.com (and others)

    2008-07-15

    FACETS (Framework Application for Core-Edge Transport Simulations), now in its second year, has achieved its first coupled core-edge transport simulations. In the process, a number of accompanying accomplishments were achieved. These include a new parallel core component, a new wall component, improvements in edge and source components, and the framework for coupling all of this together. These accomplishments were a result of an interdisciplinary collaboration among computational physics, computer scientists, and applied mathematicians on the team.

  16. First results from core-edge parallel composition in the FACETS project

    Energy Technology Data Exchange (ETDEWEB)

    Cary, John R. [Tech-X Corporation; Candy, Jeff [General Atomics; Cohen, Ronald H. [Lawrence Livermore National Laboratory (LLNL); Krasheninnikov, Sergei [University of California, San Diego; McCune, Douglas [Princeton Plasma Physics Laboratory (PPPL); Estep, Donald J [Colorado State University, Fort Collins; Larson, Jay [Argonne National Laboratory (ANL); Malony, Allen [University of Oregon; Pankin, A. [Lehigh University, Bethlehem, PA; Worley, Patrick H [ORNL; Carlsson, Johann [Tech-X Corporation; Hakim, A H [Tech-X Corporation; Hamill, P [Tech-X Corporation; Kruger, Scott [Tech-X Corporation; Miah, Mahmood [Tech-X Corporation; Muzsala, S [Tech-X Corporation; Pletzer, Alexander [Tech-X Corporation; Shasharina, Svetlana [Tech-X Corporation; Wade-Stein, D [Tech-X Corporation; Wang, N [Tech-X Corporation; Balay, Satish [Argonne National Laboratory (ANL); McInnes, Lois [Argonne National Laboratory (ANL); Zhang, Hong [Argonne National Laboratory (ANL); Casper, T. A. [Lawrence Livermore National Laboratory (LLNL); Diachin, Lori [Lawrence Livermore National Laboratory (LLNL); Epperly, Thomas [Lawrence Livermore National Laboratory (LLNL); Rognlien, T. D. [Lawrence Livermore National Laboratory (LLNL); Fahey, Mark R [ORNL; Cobb, John W [ORNL; Morris, A [University of Oregon; Shende, Sameer [University of Oregon; Hammett, Greg [Princeton Plasma Physics Laboratory (PPPL); Indireshkumar, K [Tech-X Corporation; Stotler, D. [Princeton Plasma Physics Laboratory (PPPL); Pigarov, A [University of California, San Diego

    2008-01-01

    FACETS (Framework Application for Core-Edge Transport Simulations), now in its second year, has achieved its first coupled core-edge transport simulations. In the process, a number of accompanying accomplishments were achieved. These include a new parallel core component, a new wall component, improvements in edge and source components, and the framework for coupling all of this together. These accomplishments were a result of an interdisciplinary collaboration among computational physics, computer scientists, and applied mathematicians on the team.

  17. Magnetohydrodynamic Convection in the Outer Core and its Geodynamic Consequences

    Science.gov (United States)

    Kuang, Weijia; Chao, Benjamin F.; Fang, Ming

    2004-01-01

    The Earth's fluid outer core is in vigorous convection through much of the Earth's history. In addition to generating and maintaining Earth s time-varying magnetic field (geodynamo), the core convection also generates mass redistribution in the core and a dynamical pressure field on the core-mantle boundary (CMB). All these shall result in various core-mantle interactions, and contribute to surface geodynamic observables. For example, electromagnetic core-mantle coupling arises from finite electrically conducting lower mantle; gravitational interaction occurs between the cores and the heterogeneous mantle; mechanical coupling may also occur when the CMB topography is aspherical. Besides changing the mantle rotation via the coupling torques, the mass-redistribution in the core shall produce a spatial-temporal gravity anomaly. Numerical modeling of the core dynamical processes contributes in several geophysical disciplines. It helps explain the physical causes of surface geodynamic observables via space geodetic techniques and other means, e.g. Earth's rotation variation on decadal time scales, and secular time-variable gravity. Conversely, identification of the sources of the observables can provide additional insights on the dynamics of the fluid core, leading to better constraints on the physics in the numerical modeling. In the past few years, our core dynamics modeling efforts, with respect to our MoSST model, have made significant progress in understanding individual geophysical consequences. However, integrated studies are desirable, not only because of more mature numerical core dynamics models, but also because of inter-correlation among the geophysical phenomena, e.g. mass redistribution in the outer core produces not only time-variable gravity, but also gravitational core-mantle coupling and thus the Earth's rotation variation. They are expected to further facilitate multidisciplinary studies of core dynamics and interactions of the core with other

  18. Inspection and repair of nuclear components

    International Nuclear Information System (INIS)

    Lahner, K.; Poetz, F.

    1993-01-01

    Despite careful design, manufacturing and operation, some of the important safety-relevant components show deterioration with time. Because of activation and contamination of these components, their inspection and repair has to be performed with manipulators. Some sophisticated manipulators are described, built by ABB Reaktor and used for inspection, maintenance and repair of PWR steam generators, fuel alignment pins, core baffle former bolts and reactor pressure vessel head penetrations. (Z.S.) 7 figs

  19. SMA millimeter observations of hot molecular cores

    Energy Technology Data Exchange (ETDEWEB)

    Hernández-Hernández, Vicente; Zapata, Luis; Kurtz, Stan [Centro de Radioastronomía y Astrofísica, Universidad Nacional Autónoma de México, Apdo. Postal 3-72 (Xangari), 58090 Morelia, Michoacán (Mexico); Garay, Guido, E-mail: v.hernandez@crya.unam.mx [Departamento de Astronomía, Universidad de Chile, Camino del Observatorio 1515, Las Condes, Santiago (Chile)

    2014-05-01

    We present Submillimeter Array observations in the 1.3 mm continuum and the CH{sub 3}CN (12 {sub K}-11 {sub K}) line of 17 hot molecular cores associated with young high-mass stars. The angular resolution of the observations ranges from 1.''0 to 4.''0. The continuum observations reveal large (>3500 AU) dusty structures with gas masses from 7 to 375 M {sub ☉}, which probably surround multiple young stars. The CH{sub 3}CN line emission is detected toward all the molecular cores at least up to the K = 6 component and is mostly associated with the emission peaks of the dusty objects. We used the multiple K-components of the CH{sub 3}CN and both the rotational diagram method and a simultaneous synthetic local thermodynamic equilibrium model with the XCLASS program to estimate the temperatures and column densities of the cores. For all sources, we obtained reasonable fits from XCLASS by using a model that combines two components: an extended and warm envelope and a compact hot core of molecular gas, suggesting internal heating by recently formed massive stars. The rotational temperatures lie in the range of 40-132 K and 122-485 K for the extended and compact components, respectively. From the continuum and CH{sub 3}CN results, we infer fractional abundances from 10{sup –9} to 10{sup –7} toward the compact inner components, which increase with the rotational temperature. Our results agree with a chemical scenario in which the CH{sub 3}CN molecule is efficiently formed in the gas phase above 100-300 K, and its abundance increases with temperature.

  20. Reactor core control device

    International Nuclear Information System (INIS)

    Sano, Hiroki

    1998-01-01

    The present invention provides a reactor core control device, in which switching from a manual operation to an automatic operation, and the control for the parameter of an automatic operation device are facilitated. Namely, the hysteresis of the control for the operation parameter by an manual operation input means is stored. The hysteresis of the control for the operation parameter is collected. The state of the reactor core simulated by an operation control to which the collected operation parameters are manually inputted is determined as an input of the reactor core state to the automatic input means. The record of operation upon manual operation is stored as a hysteresis of control for the operation parameter, but the hysteresis information is not only the result of manual operation of the operation parameter. This is results of operation conducted by a skilled operator who judge the state of the reactor core to be optimum. Accordingly, it involves information relevant to the reactor core state. Then, it is considered that the optimum automatic operation is not deviated greatly from the manual operation. (I.S.)

  1. Test model of WWER core

    International Nuclear Information System (INIS)

    Tikhomirov, A. V.; Gorokhov, A. K.

    2007-01-01

    The objective of this paper is creation of precision test model for WWER RP neutron-physics calculations. The model is considered as a tool for verification of deterministic computer codes that enables to reduce conservatism of design calculations and enhance WWER RP competitiveness. Precision calculations were performed using code MCNP5/1/ (Monte Carlo method). Engineering computer package Sapfir 9 5andRC V VER/2/ is used in comparative analysis of the results, it was certified for design calculations of WWER RU neutron-physics characteristic. The object of simulation is the first fuel loading of Volgodon NPP RP. Peculiarities of transition in calculation using MCNP5 from 2D geometry to 3D geometry are shown on the full-scale model. All core components as well as radial and face reflectors, automatic regulation in control and protection system control rod are represented in detail description according to the design. The first stage of application of the model is assessment of accuracy of calculation of the core power. At the second stage control and protection system control rod worth was assessed. Full scale RP representation in calculation using code MCNP5 is time consuming that calls for parallelization of computational problem on multiprocessing computer (Authors)

  2. Materials behaviour in PWRs core

    International Nuclear Information System (INIS)

    Barbu, A.; Massoud, J.P.

    2008-01-01

    Like in any industrial facility, the materials of PWR reactors are submitted to mechanical, thermal or chemical stresses during particularly long durations of operation: 40 years, and even 60 years. Materials closer to the nuclear fuel are submitted to intense bombardment of particles (mainly neutrons) coming from the nuclear reactions inside the core. In such conditions, the damages can be numerous and various: irradiation aging, thermal aging, friction wear, generalized corrosion, stress corrosion etc.. The understanding of the materials behaviour inside the cores of reactors in operation is a major concern for the nuclear industry and its long term forecast is a necessity. This article describes the main ways of materials degradation without and under irradiation, with the means used to foresee their behaviour using physics-based models. Content: 1 - structures, components and materials: structure materials, nuclear materials; 2 - main ways of degradation without irradiation: thermal aging, stress corrosion, wear; 3 - main ways of degradation under irradiation: microscopic damaging - point defects, dimensional alterations, evolution of mechanical characteristics under irradiation, irradiation-assisted stress corrosion cracking (IASCC), synergies; 4 - forecast of materials evolution under irradiation using physics-based models: primary damage - fast dynamics, primary damage annealing - slow kinetics microstructural evolution, impact of microstructural changes on the macroscopic behaviour, insight on modeling methods; 5 - materials change characterization techniques: microscopic techniques - direct defects observation, nuclear techniques using a particle beam, global measurements, mechanical characterizations; 6 - perspectives. (J.S.)

  3. Research on plasma core reactors

    International Nuclear Information System (INIS)

    Jarvis, G.A.; Barton, D.M.; Helmick, H.H.; Bernard, W.; White, R.H.

    1977-01-01

    Experiments and theoretical studies are being conducted for NASA on critical assemblies with 1-m-diam by 1-m-long low-density cores surrounded by a thick beryllium reflector. These assemblies make extensive use of existing nuclear propulsion reactor components, facilities, and instrumentation. Due to excessive porosity in the reflector, the initial critical mass was 19 kg U(93.2). Addition of a 17-cm-thick by 89-cm-diam beryllium flux trap in the cavity reduced the critical mass to 7 kg when all the uranium was in the zone just outside the flux trap. A mockup aluminum UF 6 container was placed inside the flux trap and fueled with uranium-graphite elements. Fission distributions and reactivity worths of fuel and structural materials were measured. Finally, an 85,000-cm 3 aluminum canister in the central region was fueled with UF 6 gas and fission density distributions determined. These results will be used to guide the design of a prototype plasma core reactor which will test energy removal by optical radiation

  4. Ranking related entities: components and analyses

    NARCIS (Netherlands)

    Bron, M.; Balog, K.; de Rijke, M.

    2010-01-01

    Related entity finding is the task of returning a ranked list of homepages of relevant entities of a specified type that need to engage in a given relationship with a given source entity. We propose a framework for addressing this task and perform a detailed analysis of four core components;

  5. Higher-Order Components for Grid Programming

    CERN Document Server

    Dünnweber, Jan

    2009-01-01

    Higher-Order Components were developed within the CoreGRID European Network of Excellence and have become an optional extension of the popular Globus middleware. This book provides the reader with hands-on experience, describing a collection of example applications from various fields of science and engineering, including biology and physics.

  6. The PWR cores management

    International Nuclear Information System (INIS)

    Barral, J.C.; Rippert, D.; Johner, J.

    2000-01-01

    During the meeting of the 25 january 2000, organized by the SFEN, scientists and plant operators in the domain of the PWR debated on the PWR cores management. The five first papers propose general and economic information on the PWR and also the fast neutron reactors chains in the electric power market: statistics on the electric power industry, nuclear plant unit management, the ITER project and the future of the thermonuclear fusion, the treasurer's and chairman's reports. A second part offers more technical papers concerning the PWR cores management: performance and optimization, in service load planning, the cores management in the other countries, impacts on the research and development programs. (A.L.B.)

  7. Molten core retention assembly

    International Nuclear Information System (INIS)

    Lampe, R.F.

    1976-01-01

    Molten fuel produced in a core overheating accident is caught by a molten core retention assembly consisting of a horizontal baffle plate having a plurality of openings therein, heat exchange tubes having flow holes near the top thereof mounted in the openings, and a cylindrical imperforate baffle attached to the plate and surrounding the tubes. The baffle assembly is supported from the core support plate of the reactor by a plurality of hanger rods which are welded to radial beams passing under the baffle plate and intermittently welded thereto. Preferably the upper end of the cylindrical baffle terminates in an outwardly facing lip to which are welded a plurality of bearings having slots therein adapted to accept the hanger rods

  8. Core status computing system

    International Nuclear Information System (INIS)

    Yoshida, Hiroyuki.

    1982-01-01

    Purpose: To calculate power distribution, flow rate and the like in the reactor core with high accuracy in a BWR type reactor. Constitution: Total flow rate signals, traverse incore probe (TIP) signals as the neutron detector signals, thermal power signals and pressure signals are inputted into a process computer, where the power distribution and the flow rate distribution in the reactor core are calculated. A function generator connected to the process computer calculates the absolute flow rate passing through optional fuel assemblies using, as variables, flow rate signals from the introduction part for fuel assembly flow rate signals, data signals from the introduction part for the geometrical configuration data at the flow rate measuring site of fuel assemblies, total flow rate signals for the reactor core and the signals from the process computer. Numerical values thus obtained are given to the process computer as correction signals to perform correction for the experimental data. (Moriyama, K.)

  9. Superconducting tin core fiber

    International Nuclear Information System (INIS)

    Homa, Daniel; Liang, Yongxuan; Hill, Cary; Kaur, Gurbinder; Pickrell, Gary

    2015-01-01

    In this study, we demonstrated superconductivity in a fiber with a tin core and fused silica cladding. The fibers were fabricated via a modified melt-draw technique and maintained core diameters ranging from 50-300 microns and overall diameters of 125-800 microns. Superconductivity of this fiber design was validated via the traditional four-probe test method in a bath of liquid helium at temperatures on the order of 3.8 K. The synthesis route and fiber design are perquisites to ongoing research dedicated all-fiber optoelectronics and the relationships between superconductivity and the material structures, as well as corresponding fabrication techniques. (orig.)

  10. LMFBR core design analysis

    International Nuclear Information System (INIS)

    Cho, M.; Yang, J.C.; Yoh, K.C.; Suk, S.D.; Soh, D.S.; Kim, Y.M.

    1980-01-01

    The design parameters of a commercial-scale fast breeder reactor which is currently under construction by regeneration of these data is preliminary analyzed. The analysis of nuclear and thermal characteristics as well as safety features of this reactor is emphasized. And the evaluation of the initial core mentioned in the system description is carried out in the areas of its kinetics and control system, and, at the same time, the flow distribution of sodium and temperature distribution of the initial FBR core system are calculated. (KAERI INIS Section)

  11. Nuclear core catchers

    International Nuclear Information System (INIS)

    Golden, M.P.; Tilbrook, R.W.; Heylmun, N.F.

    1976-01-01

    A receptacle is described for taking the molten fragments of a nuclear reactor during a reactor core fusion accident. The receptacle is placed under the reactor. It includes at least one receptacle for the reactor core fragments, with a dome shaped part to distribute the molten fragments and at least one outside layer of alumina bricks around the dome. The characteristic of this receptacle is that the outer layer of bricks contains neutron poison rods which pass through the bricks and protrude in relation to them [fr

  12. Organizing Core Tasks

    DEFF Research Database (Denmark)

    Boll, Karen

    has remained much the same within the last 10 years. However, how the core task has been organized has changed considerable under the influence of various “organizing devices”. The paper focusses on how organizing devices such as risk assessment, output-focus, effect orientation, and treatment...... projects influence the organization of core tasks within the tax administration. The paper shows that the organizational transformations based on the use of these devices have had consequences both for the overall collection of revenue and for the employees’ feeling of “making a difference”. All in all...

  13. GREEN CORE HOUSE

    Directory of Open Access Journals (Sweden)

    NECULAI Oana

    2017-05-01

    Full Text Available The Green Core House is a construction concept with low environmental impact, having as main central element a greenhouse. The greenhouse has the innovative role to use the biomass energy provided by plants to save energy. Although it is the central piece, the greenhouse is not the most innovative part of the Green Core House, but the whole building ensemble because it integrates many other sustainable systems as "waste purification systems", "transparent photovoltaic panels" or "double skin façades".

  14. PWR core design calculations

    Energy Technology Data Exchange (ETDEWEB)

    Trkov, A; Ravnik, M; Zeleznik, N [Inst. Jozef Stefan, Ljubljana (Slovenia)

    1992-07-01

    Functional description of the programme package Cord-2 for PWR core design calculations is presented. Programme package is briefly described. Use of the package and calculational procedures for typical core design problems are treated. Comparison of main results with experimental values is presented as part of the verification process. (author) [Slovenian] Opisali smo programski paket CORD-2, ki se uporablja pri projektnih izracunih sredice pri upravljanju tlacnovodnega reaktorja. Prikazana je uporaba paketa in racunskih postopkov za tipicne probleme, ki nastopajo pri projektiranju sredice. Primerjava glavnih rezultatov z eksperimentalnimi vrednostmi je predstavljena kot del preveritvenega procesa. (author)

  15. Maximum stellar iron core mass

    Indian Academy of Sciences (India)

    An analytical method of estimating the mass of a stellar iron core, just prior to core collapse, is described in this paper. The method employed depends, in part, upon an estimate of the true relativistic mass increase experienced by electrons within a highly compressed iron core, just prior to core collapse, and is significantly ...

  16. Status of HTTR development in Japan

    International Nuclear Information System (INIS)

    Sanokawa, K.

    1988-01-01

    The Japanese Atomic Energy Commission decided to construct a high-temperature engineering test reactor in order to promote innovative basic research on high-temperature engineering as well as advanced HTGR technology. The reactor design and the related R and D works carried out in reactor physics, fuel and materials are briefly presented in this report

  17. The Uncommon Core

    Science.gov (United States)

    Ohler, Jason

    2013-01-01

    This author contends that the United States neglects creativity in its education system. To see this, he states, one may look at the Common Core State Standards. If one searches the English Language Arts and Literacy standards for the words "creative," "innovative," and "original"--and any associated terms, one will…

  18. Utah's New Mathematics Core

    Science.gov (United States)

    Utah State Office of Education, 2011

    2011-01-01

    Utah has adopted more rigorous mathematics standards known as the Utah Mathematics Core Standards. They are the foundation of the mathematics curriculum for the State of Utah. The standards include the skills and understanding students need to succeed in college and careers. They include rigorous content and application of knowledge and reflect…

  19. Some Core Contested Concepts

    Science.gov (United States)

    Chomsky, Noam

    2015-01-01

    Core concepts of language are highly contested. In some cases this is legitimate: real empirical and conceptual issues arise. In other cases, it seems that controversies are based on misunderstanding. A number of crucial cases are reviewed, and an approach to language is outlined that appears to have strong conceptual and empirical motivation, and…

  20. Plutonium cores of zenith

    Energy Technology Data Exchange (ETDEWEB)

    Barclay, F R; Cameron, I R; Drageset, A; Freemantle, R G; Wilson, D J

    1965-03-15

    The report describes a series of experiments carried out with plutonium fuel in the heated zero power reactor ZENITH, with the aim of testing current theoretical methods, with particular reference to excess reactivity, temperature coefficients, differential spectrum and reaction rate distributions. Two cores of widely different fissile/moderator atom ratios were loaded in order to test the theory under significantly varied spectrum conditions.

  1. Core damage risk indicators

    International Nuclear Information System (INIS)

    Szikszai, T.

    1994-01-01

    The purpose of this document is to show a method for the fast recalculation of the PSA. To avoid the information loose, it is necessary to simplify the PSA models, or at least reorganize them. The method, introduced in this document, require that preparation, so we try to show, how to do that. This document is an introduction. This is the starting point of the work related to the development of the risk indicators. In the future, with the application of this method, we are going to show an everyday use of the PSA results to produce the indicators of the core damage risk. There are two different indicators of the plant safety performance, related to the core damage risk. The first is the core damage frequency indicator (CDFI), and the second is the core damage probability indicator (CDPI). Of course, we cannot describe all of the possible ways to use these indicators, rather we will try to introduce the requirements to establish such an indicator system and the calculation process

  2. Core calculations of JMTR

    Energy Technology Data Exchange (ETDEWEB)

    Nagao, Yoshiharu [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment

    1998-03-01

    In material testing reactors like the JMTR (Japan Material Testing Reactor) of 50 MW in Japan Atomic Energy Research Institute, the neutron flux and neutron energy spectra of irradiated samples show complex distributions. It is necessary to assess the neutron flux and neutron energy spectra of an irradiation field by carrying out the nuclear calculation of the core for every operation cycle. In order to advance core calculation, in the JMTR, the application of MCNP to the assessment of core reactivity and neutron flux and spectra has been investigated. In this study, in order to reduce the time for calculation and variance, the comparison of the results of the calculations by the use of K code and fixed source and the use of Weight Window were investigated. As to the calculation method, the modeling of the total JMTR core, the conditions for calculation and the adopted variance reduction technique are explained. The results of calculation are shown. Significant difference was not observed in the results of neutron flux calculations according to the difference of the modeling of fuel region in the calculations by K code and fixed source. The method of assessing the results of neutron flux calculation is described. (K.I.)

  3. Emergency core cooling system

    International Nuclear Information System (INIS)

    Kato, Ken.

    1989-01-01

    In PWR type reactors, a cooling water spray portion of emergency core cooling pipelines incorporated into pipelines on high temperature side is protruded to the inside of an upper plenum. Upon rupture of primary pipelines, pressure in a pressure vessel is abruptly reduced to generate a great amount of steams in the reactor core, which are discharged at a high flow rate into the primary pipelines on high temperature side. However, since the inside of the upper plenum has a larger area and the steam flow is slow, as compared with that of the pipelines on the high temperature side, ECCS water can surely be supplied into the reactor core to promote the re-flooding of the reactor core and effectively cool the reactor. Since the nuclear reactor can effectively be cooled to enable the promotion of pressure reduction and effective supply of coolants during the period of pressure reduction upon LOCA, the capacity of the pressure accumulation vessel can be decreased. Further, the re-flooding time for the reactor is shortened to provide an effect contributing to the improvement of the safety and the reduction of the cost. (N.H.)

  4. Core reset system design for linear induction accelerator

    International Nuclear Information System (INIS)

    Durga Praveen Kumar, D.; Mitra, S.; Sharma, Archana; Nagesh, K.V.; Chakravarthy, D.P.

    2006-01-01

    A repetitive pulsed power system based Linear Induction Accelerator (LIA-200) is being developed at BARC to get an electron beam of 200keV, 5kA, 50ns, 10-100 Hz. Amorphous core is the heart of these accelerators. It serves various functions in different subsystems viz. pulse power modulator, pulse transformer, magnetic switches and induction cavities. One of the factors that make the magnetic components compact is utilization of the total flux swing available in the core. In the present system, magnetic switches, pulse transformers, and induction cavity are designed to avail the full flux swing available in the core. For achieving this objective, flux density in the core has to be kept at the reverse saturation, before the main pulse is applied. The electrical circuit which makes it possible is called the core reset system. In this paper the details of core reset system designed for LIA-200 are described. (author)

  5. Inflation targeting and core inflation

    OpenAIRE

    Julie Smith

    2005-01-01

    This paper examines the interaction of core inflation and inflation targeting as a monetary policy regime. Interest in core inflation has grown because of inflation targeting. Core inflation is defined in numerous ways giving rise to many potential measures; this paper defines core inflation as the best forecaster of inflation. A cross-country study finds before the start of inflation targeting, but not after, core inflation differs between non-inflation targeters and inflation targeters. Thr...

  6. CORE annual report 2006; CORE Jahresbericht 2006

    Energy Technology Data Exchange (ETDEWEB)

    Gut, A

    2007-04-15

    This annual report for the Swiss Federal Office of Energy (SFOE) summarises the activities of the Swiss Federal Commission on Energy Research CORE in 2006. The six main areas of work during the period 2004 - 2007 are examined, including a review of the SFOE's energy research programme, a road-map for the way towards the realisation of a 2000-watt society, the formulation of an energy research concept for 2008 - 2011, international co-operation, the dissemination of information and the assessment of existing and new instruments. International activities and Switzerland's involvement in energy research within the framework of the International Energy Agency IEA are discussed. New and existing projects are listed and the work done at the Competence Centre for Energy and Mobility noted. The Swiss Technology Award 2007 is presented. Information supplied to interested bodies to help improve knowledge on research work being done and to help make discussions on future energy supply more objective is discussed.

  7. Core design methods for advanced LMFBRs

    International Nuclear Information System (INIS)

    Chandler, J.C.; Marr, D.R.; McCurry, D.C.; Cantley, D.A.

    1977-05-01

    The multidiscipline approach to advanced LMFBR core design requires an iterative design procedure to obtain a closely-coupled design. HEDL's philosophy requires that the designs should be coupled to the extent that the design limiting fuel pin, the design limiting duct and the core reactivity lifetime should all be equal and should equal the fuel residence time. The design procedure consists of an iterative loop involving three stages of the design sequence. Stage 1 consists of general mechanical design and reactor physics scoping calculations to arrive at an initial core layout. Stage 2 consists of detailed reactor physics calculations for the core configuration arrived at in Stage 1. Based upon the detailed reactor physics results, a decision is made either to alter the design (Stage 1) or go to Stage 3. Stage 3 consists of core orificing and detailed component mechanical design calculations. At this point, an assessment is made regarding design adequacy. If the design is inadequate the entire procedure is repeated until the design is acceptable

  8. Mitigating component performance variation

    Science.gov (United States)

    Gara, Alan G.; Sylvester, Steve S.; Eastep, Jonathan M.; Nagappan, Ramkumar; Cantalupo, Christopher M.

    2018-01-09

    Apparatus and methods may provide for characterizing a plurality of similar components of a distributed computing system based on a maximum safe operation level associated with each component and storing characterization data in a database and allocating non-uniform power to each similar component based at least in part on the characterization data in the database to substantially equalize performance of the components.

  9. History and Systems of Psychology: A Course to Unite a Core Curriculum

    Science.gov (United States)

    Williams, Joshua L.; McCarley, Nancy; Kraft, John

    2013-01-01

    Core curricula are designed, in part, to help undergraduate students become intellectually well-rounded. To merge core curricula with the components of the scholarship of teaching and learning movement, students engaged in core curricula need capstone courses designed to aid them in retaining information over the long term and synthesizing…

  10. Ice cores and palaeoclimate

    International Nuclear Information System (INIS)

    Krogh Andersen, K.; Ditlevsen, P.; Steffensen, J.P.

    2001-01-01

    Ice cores from Greenland give testimony of a highly variable climate during the last glacial period. Dramatic climate warmings of 15 to 25 deg. C for the annual average temperature in less than a human lifetime have been documented. Several questions arise: Why is the Holocene so stable? Is climatic instability only a property of glacial periods? What is the mechanism behind the sudden climate changes? Are the increased temperatures in the past century man-made? And what happens in the future? The ice core community tries to attack some of these problems. The NGRIP ice core currently being drilled is analysed in very high detail, allowing for a very precise dating of climate events. It will be possible to study some of the fast changes on a year by year basis and from this we expect to find clues to the sequence of events during rapid changes. New techniques are hoped to allow for detection of annual layers as far back as 100,000 years and thus a much improved time scale over past climate changes. It is also hoped to find ice from the Eemian period. If the Eemian layers confirm the GRIP sequence, the Eemian was actually climatically unstable just as the glacial period. This would mean that the stability of the Holocene is unique. It would also mean, that if human made global warming indeed occurs, we could jeopardize the Holocene stability and create an unstable 'Eemian situation' which ultimately could start an ice age. Currenlty mankind is changing the composition of the atmosphere. Ice cores document significant increases in greenhouse gases, and due to increased emissions of sulfuric and nitric acid from fossil fuel burning, combustion engines and agriculture, modern Greenland snow is 3 - 5 times more acidic than pre-industrial snow (Mayewski et al., 1986). However, the magnitude and abruptness of the temperature changes of the past century do not exceed the magnitude of natural variability. It is from the ice core perspective thus not possible to attribute the

  11. Efforts for optimization of BWR core internals replacement

    International Nuclear Information System (INIS)

    Iizuka, N.

    2000-01-01

    The core internal components replacement of a BWR was successfully completed at Fukushima-Daiichi Unit 3 (1F3) of the Tokyo Electric Power Company (TEPCO) in 1998. The core shroud and the majority of the internal components made by type 304 stainless steel (SS) were replaced with the ones made of low carbon type 316L SS to improve Intergranular Stress Corrosion Cracking (IGSCC) resistance. Although this core internals replacement project was completed, several factors combined to result in a longer-than-expected period for the outage. It was partly because the removal work of the internal components was delayed. Learning a lesson from whole experience in this project, some methods were adopted for the next replacement project at Fukushima-Daiichi Unit 2 (1F2) to shorten the outage and reduce the total radiation exposure. Those are new removal processes and new welding machine and so on. The core internals replacement work was ended at 1F2 in 1999, and both the period of outage and the total radiation exposure were the same degree as expected previous to starting of this project. This result shows that the methods adopted in this project are basically applicable for the core internals replacement work and the whole works about the BWR core internals replacement were optimized. The outline of the core internals replacement project and applied technologies at 1F3 and 1F2 are discussed in this paper. (author)

  12. Emergency core cooling device

    International Nuclear Information System (INIS)

    Suzaki, Kiyoshi; Inoue, Akihiro.

    1979-01-01

    Purpose: To improve core cooling effect by making the operation region for a plurality of water injection pumps more broader. Constitution: An emergency reactor core cooling device actuated upon failure of recycling pipe ways is adapted to be fed with cooling water through a thermal sleeve by way of a plurality of water injection pump from pool water in a condensate storage tank and a pressure suppression chamber as water feed source. Exhaust pipes and suction pipes of each of the pumps are connected by way of switching valves and the valves are switched so that the pumps are set to a series operation if the pressure in the pressure vessel is high and the pumps are set to a parallel operation if the pressure in the pressure vessel is low. (Furukawa, Y.)

  13. Birefringent hollow core fibers

    DEFF Research Database (Denmark)

    Roberts, John

    2007-01-01

    Hollow core photonic crystal fiber (HC-PCF), fabricated according to a nominally non-birefringent design, shows a degree of un-controlled birefringence or polarization mode dispersion far in excess of conventional non polarization maintaining fibers. This can degrade the output pulse in many...... applications, and places emphasis on the development of polarization maintaining (PM) HC-PCF. The polarization cross-coupling characteristics of PM HC-PCF are very different from those of conventional PM fibers. The former fibers have the advantage of suffering far less from stress-field fluctuations...... and an increased overlap between the polarization modes at the glass interfaces. The interplay between these effects leads to a wavelength for optimum polarization maintenance, lambda(PM), which is detuned from the wavelength of highest birefringence. By a suitable fiber design involving antiresonance of the core...

  14. Plasma core reactor applications

    International Nuclear Information System (INIS)

    Latham, T.S.; Rodgers, R.J.

    1976-01-01

    Analytical and experimental investigations are being conducted to demonstrate the feasibility of fissioning uranium plasma core reactors and to characterize space and terrestrial applications for such reactors. Uranium hexafluoride (UF 6 ) fuel is injected into core cavities and confined away from the surface by argon buffer gas injected tangentially from the peripheral walls. Power, in the form of thermal radiation emitted from the high-temperature nuclear fuel, is transmitted through fused-silica transparent walls to working fluids which flow in axial channels embedded in segments of the cavity walls. Radiant heat transfer calculations were performed for a six-cavity reactor configuration; each cavity is approximately 1 m in diameter by 4.35 m in length. Axial working fluid channels are located along a fraction of each cavity peripheral wall

  15. Reactor core cooling device

    International Nuclear Information System (INIS)

    Kobayashi, Masahiro.

    1986-01-01

    Purpose: To safely and effectively cool down the reactor core after it has been shut down but is still hot due to after-heat. Constitution: Since the coolant extraction nozzle is situated at a location higher than the coolant injection nozzle, the coolant sprayed from the nozzle, is free from sucking immediately from the extraction nozzle and is therefore used effectively to cool the reactor core. As all the portions from the top to the bottom of the reactor are cooled simultaneously, the efficiency of the reactor cooling process is increased. Since the coolant extraction nozzle can be installed at a point considerably higher than the coolant injection nozzle, the distance from the coolant surface to the point of the coolant extraction nozzle can be made large, preventing cavitation near the coolant extraction nozzle. Therefore, without increasing the capacity of the heat exchanger, the reactor can be cooled down after a shutdown safely and efficiently. (Kawakami, Y.)

  16. Multiple age components in individual molybdenite grains

    Science.gov (United States)

    Aleinikoff, John N.; Creaser, Robert A.; Lowers, Heather; Magee, Charles W.; Grauch, Richard I.

    2012-01-01

    Re–Os geochronology of fractions composed of unsized, coarse, and fine molybdenite from a pod of unusual monazite–xenotime gneiss within a granulite facies paragneiss, Hudson Highlands, NY, yielded dates of 950.5 ± 2.5, 953.8 ± 2.6, and 941.2 ± 2.6 Ma, respectively. These dates are not recorded by co-existing zircon, monazite, or xenotime. SEM–BSE imagery of thin sections and separated grains reveals that most molybdenite grains are composed of core and rim plates that are approximately perpendicular. Rim material invaded cores, forming irregular contacts, probably reflecting dissolution/reprecipitation. EPMA and LA-ICP-MS analyses show that cores and rims have different trace element concentrations (for example, cores are relatively enriched in W). On the basis of inclusions of zircon with metamorphic overgrowths, we conclude that molybdenite cores and rims formed after high-grade regional metamorphism. The discovery of cores and rims in individual molybdenite grains is analogous to multi-component U-Pb geochronometers such as zircon, monazite, and titanite; thus, molybdenite should be carefully examined before dating to ensure that the requirement of age homogeneity is fulfilled.

  17. Some core contested concepts.

    Science.gov (United States)

    Chomsky, Noam

    2015-02-01

    Core concepts of language are highly contested. In some cases this is legitimate: real empirical and conceptual issues arise. In other cases, it seems that controversies are based on misunderstanding. A number of crucial cases are reviewed, and an approach to language is outlined that appears to have strong conceptual and empirical motivation, and to lead to conclusions about a number of significant issues that differ from some conventional beliefs.

  18. Schumpeter's core works revisited

    DEFF Research Database (Denmark)

    Andersen, Esben Sloth

    2012-01-01

    This paper organises Schumpeter’s core books in three groups: the programmatic duology,the evolutionaryeconomic duology,and the socioeconomic synthesis. By analysing these groups and their interconnections from the viewpoint of modern evolutionaryeconomics,the paper summarises resolved problems a...... and points at remaining challenges. Its analyses are based on distinctions between microevolution and macroevolution, between economic evolution and socioeconomic coevolution, and between Schumpeter’s three major evolutionary models (called Mark I, Mark II and Mark III)....

  19. BWR type reactor core

    International Nuclear Information System (INIS)

    Tatemichi, Shin-ichiro.

    1981-01-01

    Purpose: To eliminate the variation in the power distribution of a BWR type reactor core in the axial direction even if the flow rate is increased or decreased by providing a difference in the void coefficient between the upper part and the lower parts of the reactor core, and increasing the void coefficient at the lower part of the reactor core. Constitution: The void coefficient of the lower region from the center to the lower part along the axial direction of a nuclear fuel assembly is increased to decrease the dependence on the flow rate of the axial power distribution of the nuclear fuel assembly. That is, a water/fuel ratio is varied, the water in non-boiled region is increased or the neutron spectrum is varied so as to vary the void coefficient. In order to exemplify it, the rate of the internal pellets of the fuel rod of the nuclear fuel assembly or the shape of the channel box is varied. Accordingly, the power does not considerably vary even if the flow rate is altered since the power is varied in the power operation. (Yoshihara, H.)

  20. Emergency core cooling system

    International Nuclear Information System (INIS)

    Ando, Masaki.

    1987-01-01

    Purpose: To actuate an automatic pressure down system (ADS) and a low pressure emergency core cooling system (ECCS) upon water level reduction of a nuclear reactor other than loss of coolant accidents (LOCA). Constitution: ADS in a BWR type reactor is disposed for reducing the pressure in a reactor container thereby enabling coolant injection from a low pressure ECCS upon LOCA. That is, ADS has been actuated by AND signal for a reactor water level low signal and a dry well pressure high signal. In the present invention, ADS can be actuated further also by AND signal of the reactor water level low signal, the high pressure ECCS and not-operation signal of reactor isolation cooling system. In such an emergency core cooling system thus constituted, ADS operates in the same manner as usual upon LOCA and, further, ADS is operated also upon loss of feedwater accident in the reactor pressure vessel in the case where there is a necessity for actuating the low pressure ECCS, although other high pressure ECCS and reactor isolation cooling system are not operated. Accordingly, it is possible to improve the reliability upon reactor core accident and mitigate the operator burden. (Horiuchi, T.)

  1. Identifying Core Mobile Learning Faculty Competencies Based Integrated Approach: A Delphi Study

    Science.gov (United States)

    Elbarbary, Rafik Said

    2015-01-01

    This study is based on the integrated approach as a concept framework to identify, categorize, and rank a key component of mobile learning core competencies for Egyptian faculty members in higher education. The field investigation framework used four rounds Delphi technique to determine the importance rate of each component of core competencies…

  2. Integrated core-edge-divertor modeling studies

    International Nuclear Information System (INIS)

    Stacey, W.M.

    2001-01-01

    An integrated calculation model for simulating the interaction of physics phenomena taking place in the plasma core, in the plasma edge and in the SOL and divertor of tokamaks has been developed and applied to study such interactions. The model synthesises a combination of numerical calculations (1) the power and particle balances for the core plasma, using empirical confinement scaling laws and taking into account radiation losses (2), the particle, momentum and power balances in the SOL and divertor, taking into account the effects of radiation and recycling neutrals, (3) the transport of feeling and recycling neutrals, explicitly representing divertor and pumping geometry, and (4) edge pedestal gradient scale lengths and widths, evaluation of theoretical predictions (5) confinement degradation due to thermal instabilities in the edge pedestals, (6) detachment and divertor MARFE onset, (7) core MARFE onsets leading to a H-L transition, and (8) radiative collapse leading to a disruption and evaluation of empirical fits (9) power thresholds for the L-H and H-L transitions and (10) the width of the edge pedestals. The various components of the calculation model are coupled and must be iterated to a self-consistent convergence. The model was developed over several years for the purpose of interpreting various edge phenomena observed in DIII-D experiments and thereby, to some extent, has been benchmarked against experiment. Because the model treats the interactions of various phenomena in the core, edge and divertor, yet is computationally efficient, it lends itself to the investigation of the effects of different choices of various edge plasma operating conditions on overall divertor and core plasma performance. Studies of the effect of feeling location and rate, divertor geometry, plasma shape, pumping and over 'edge parameters' on core plasma properties (line average density, confinement, density limit, etc.) have been performed for DIII-D model problems. A

  3. Reusable Component Services

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Reusable Component Services (RCS) is a super-catalog of components, services, solutions and technologies that facilitates search, discovery and collaboration in...

  4. Molten salt reactors: reactor cores

    International Nuclear Information System (INIS)

    1983-01-01

    In this critical analysis of the MSBR I project are examined the problems concerning the reactor core. Advantages of breeding depend essentially upon solutions to technological problems like continuous reprocessing or graphite behavior under neutron irradiation. Graphite deformation, moderator unloading, control rods and core instrumentation require more studies. Neutronics of the core, influence of core geometry and salt composition, fuel evolution, and thermohydraulics are reviewed [fr

  5. WNP-2 core model upgrade

    International Nuclear Information System (INIS)

    Golightly, C.E.; Ravindranath, T.K.; Belblidia, L.A.; O'Farrell, D.; Andersen, P.S.

    2006-01-01

    The paper describes the core model upgrade of the WNP-2 training simulator and the reasons for the upgrade. The core model as well as the interface with the rest of the simulator are briefly described . The paper also describes the procedure that will be used by WNP-2 to update the simulator core data after future core reloads. Results from the fully integrated simulator are presented. (author)

  6. On-line core monitoring with CORE MASTER / PRESTO

    International Nuclear Information System (INIS)

    Lindahl, S.O.; Borresen, S.; Ovrum, S.

    1986-01-01

    Advanced calculational tools are instrumental in improving reactor plant capacity factors and fuel utilization. The computer code package CORE MASTER is an integrated system designed to achieve this objective. The system covers all main activities in the area of in-core fuel management for boiling water reactors; design, operation support, and on-line core monitoring. CORE MASTER operates on a common data base, which defines the reactor and documents the operating history of the core and of all fuel bundles ever used

  7. Software component quality evaluation

    Science.gov (United States)

    Clough, A. J.

    1991-01-01

    The paper describes a software inspection process that can be used to evaluate the quality of software components. Quality criteria, process application, independent testing of the process and proposed associated tool support are covered. Early results indicate that this technique is well suited for assessing software component quality in a standardized fashion. With automated machine assistance to facilitate both the evaluation and selection of software components, such a technique should promote effective reuse of software components.

  8. Thermal-hydraulic characteristics of double flat core HCLWR

    International Nuclear Information System (INIS)

    Sugimoto, Jun; Iwamura, Takamichi; Okubo, Tsutomu; Murao, Yoshio

    1989-02-01

    A thermal-hydraulic characteristics of double flat core high conversion light water reactor (HCLWR) is described. The concept of flat core proposed by Ishiguro et al. is to achieve negative void reactivity coefficient in tight lattice core, and at the same time, high conversion ratio and high burnup can be obtainable. The proposed double flat core HCLWR, based on these physical advantages and the consideration of safety assurance, aims at efficient use of the pressure vessel space to produce comparable thermal output as current 3-loop PWRs. The present work revealed the following items concerning the thermalhydraulic feasibility of the double flat core HCLWR: (1) Main thermal-hydraulic parameters of the plant can be almost the same as current PWRs, showing the use of PWR standard components without major modifications except in core region. (2) Heat removal from the fuel rod in a steady operational condition has enough margin to the critical heat flux (CHF) limit, which is evaluated with the existing CHF correlations. (3) The calculation by REFLA code shows that the maximum cladding temperature in LOCA-reflood is estimated to be far lower than the licensing criteria. It is therefore considered that the proposed double flat core HCLWR is feasible from the point of thermal-hydraulics. Since the available data base has certain applicational limit to the very short core as the present double flat core HCLWR, further detailed assessment is required. (author)

  9. Hollow-Core Fiber Lamp

    Science.gov (United States)

    Yi, Lin (Inventor); Tjoelker, Robert L. (Inventor); Burt, Eric A. (Inventor); Huang, Shouhua (Inventor)

    2016-01-01

    Hollow-core capillary discharge lamps on the millimeter or sub-millimeter scale are provided. The hollow-core capillary discharge lamps achieve an increased light intensity ratio between 194 millimeters (useful) and 254 millimeters (useless) light than conventional lamps. The capillary discharge lamps may include a cone to increase light output. Hollow-core photonic crystal fiber (HCPCF) may also be used.

  10. Dual-core Itanium Processor

    CERN Multimedia

    2006-01-01

    Intel’s first dual-core Itanium processor, code-named "Montecito" is a major release of Intel's Itanium 2 Processor Family, which implements the Intel Itanium architecture on a dual-core processor with two cores per die (integrated circuit). Itanium 2 is much more powerful than its predecessor. It has lower power consumption and thermal dissipation.

  11. Maximum stellar iron core mass

    Indian Academy of Sciences (India)

    60, No. 3. — journal of. March 2003 physics pp. 415–422. Maximum stellar iron core mass. F W GIACOBBE. Chicago Research Center/American Air Liquide ... iron core compression due to the weight of non-ferrous matter overlying the iron cores within large .... thermal equilibrium velocities will tend to be non-relativistic.

  12. Core TuLiP

    NARCIS (Netherlands)

    Czenko, M.R.; Etalle, Sandro

    2007-01-01

    We propose CoreTuLiP - the core of a trust management language based on Logic Programming. CoreTuLiP is based on a subset of moded logic programming, but enjoys the features of TM languages such as RT; in particular clauses are issued by different authorities and stored in a distributed manner. We

  13. Reactor component automatic grapple

    International Nuclear Information System (INIS)

    Greenaway, P.R.

    1982-01-01

    A grapple for handling nuclear reactor components in a medium such as liquid sodium which, upon proper seating and alignment of the grapple with the component as sensed by a mechanical logic integral to the grapple, automatically seizes the component. The mechanical logic system also precludes seizure in the absence of proper seating and alignment. (author)

  14. Repurposing learning object components

    NARCIS (Netherlands)

    Verbert, K.; Jovanovic, J.; Gasevic, D.; Duval, E.; Meersman, R.

    2005-01-01

    This paper presents an ontology-based framework for repurposing learning object components. Unlike the usual practice where learning object components are assembled manually, the proposed framework enables on-the-fly access and repurposing of learning object components. The framework supports two

  15. Automated Core Design

    International Nuclear Information System (INIS)

    Kobayashi, Yoko; Aiyoshi, Eitaro

    2005-01-01

    Multistate searching methods are a subfield of distributed artificial intelligence that aims to provide both principles for construction of complex systems involving multiple states and mechanisms for coordination of independent agents' actions. This paper proposes a multistate searching algorithm with reinforcement learning for the automatic core design of a boiling water reactor. The characteristics of this algorithm are that the coupling structure and the coupling operation suitable for the assigned problem are assumed and an optimal solution is obtained by mutual interference in multistate transitions using multiagents. Calculations in an actual plant confirmed that the proposed algorithm increased the convergence ability of the optimization process

  16. Ice Sheets & Ice Cores

    DEFF Research Database (Denmark)

    Mikkelsen, Troels Bøgeholm

    Since the discovery of the Ice Ages it has been evident that Earth’s climate is liable to undergo dramatic changes. The previous climatic period known as the Last Glacial saw large oscillations in the extent of ice sheets covering the Northern hemisphere. Understanding these oscillations known....... The first part concerns time series analysis of ice core data obtained from the Greenland Ice Sheet. We analyze parts of the time series where DO-events occur using the so-called transfer operator and compare the results with time series from a simple model capable of switching by either undergoing...

  17. Nuclear reactor core assembly

    International Nuclear Information System (INIS)

    Baxi, C.B.

    1978-01-01

    The object of the present invention is to provide a fast reactor core assembly design for use with a fluid coolant such as liquid sodium or carbon monoxide incorporating a method of increasing the percentage of coolant flow though the blanket elements relative to the total coolant flow through the blanket and fuel elements during shutdown conditions without using moving parts. It is claimed that deterioration due to reactor radiation or temperature conditions is avoided and ready modification or replacement is possible. (U.K.)

  18. Reload core safety verification

    International Nuclear Information System (INIS)

    Svetlik, M.; Minarcin, M.

    2003-01-01

    This paper presents a brief look at the process of reload core safety evaluation and verification in Slovak Republic. It gives an overview of experimental verification of selected nuclear parameters in the course of physics testing during reactor start-up. The comparison of IAEA recommendations and testing procedures at Slovak and European nuclear power plants of similar design is included. An introduction of two level criteria for evaluation of tests represents an effort to formulate the relation between safety evaluation and measured values (Authors)

  19. RB reactor benchmark cores

    International Nuclear Information System (INIS)

    Pesic, M.

    1998-01-01

    A selected set of the RB reactor benchmark cores is presented in this paper. The first results of validation of the well-known Monte Carlo MCNP TM code and adjoining neutron cross section libraries are given. They confirm the idea for the proposal of the new U-D 2 O criticality benchmark system and support the intention to include this system in the next edition of the recent OECD/NEA Project: International Handbook of Evaluated Criticality Safety Experiment, in near future. (author)

  20. How cores grow by pebble accretion. I. Direct core growth

    Science.gov (United States)

    Brouwers, M. G.; Vazan, A.; Ormel, C. W.

    2018-03-01

    Context. Planet formation by pebble accretion is an alternative to planetesimal-driven core accretion. In this scenario, planets grow by the accretion of cm- to m-sized pebbles instead of km-sized planetesimals. One of the main differences with planetesimal-driven core accretion is the increased thermal ablation experienced by pebbles. This can provide early enrichment to the planet's envelope, which influences its subsequent evolution and changes the process of core growth. Aims: We aim to predict core masses and envelope compositions of planets that form by pebble accretion and compare mass deposition of pebbles to planetesimals. Specifically, we calculate the core mass where pebbles completely evaporate and are absorbed before reaching the core, which signifies the end of direct core growth. Methods: We model the early growth of a protoplanet by calculating the structure of its envelope, taking into account the fate of impacting pebbles or planetesimals. The region where high-Z material can exist in vapor form is determined by the temperature-dependent vapor pressure. We include enrichment effects by locally modifying the mean molecular weight of the envelope. Results: In the pebble case, three phases of core growth can be identified. In the first phase (Mcore mixes outwards, slowing core growth. In the third phase (Mcore > 0.5M⊕), the high-Z inner region expands outwards, absorbing an increasing fraction of the ablated material as vapor. Rainout ends before the core mass reaches 0.6 M⊕, terminating direct core growth. In the case of icy H2O pebbles, this happens before 0.1 M⊕. Conclusions: Our results indicate that pebble accretion can directly form rocky cores up to only 0.6 M⊕, and is unable to form similarly sized icy cores. Subsequent core growth can proceed indirectly when the planet cools, provided it is able to retain its high-Z material.

  1. [caCORE: core architecture of bioinformation on cancer research in America].

    Science.gov (United States)

    Gao, Qin; Zhang, Yan-lei; Xie, Zhi-yun; Zhang, Qi-peng; Hu, Zhang-zhi

    2006-04-18

    A critical factor in the advancement of biomedical research is the ease with which data can be integrated, redistributed and analyzed both within and across domains. This paper summarizes the Biomedical Information Core Infrastructure built by National Cancer Institute Center for Bioinformatics in America (NCICB). The main product from the Core Infrastructure is caCORE--cancer Common Ontologic Reference Environment, which is the infrastructure backbone supporting data management and application development at NCICB. The paper explains the structure and function of caCORE: (1) Enterprise Vocabulary Services (EVS). They provide controlled vocabulary, dictionary and thesaurus services, and EVS produces the NCI Thesaurus and the NCI Metathesaurus; (2) The Cancer Data Standards Repository (caDSR). It provides a metadata registry for common data elements. (3) Cancer Bioinformatics Infrastructure Objects (caBIO). They provide Java, Simple Object Access Protocol and HTTP-XML application programming interfaces. The vision for caCORE is to provide a common data management framework that will support the consistency, clarity, and comparability of biomedical research data and information. In addition to providing facilities for data management and redistribution, caCORE helps solve problems of data integration. All NCICB-developed caCORE components are distributed under open-source licenses that support unrestricted usage by both non-profit and commercial entities, and caCORE has laid the foundation for a number of scientific and clinical applications. Based on it, the paper expounds caCORE-base applications simply in several NCI projects, of which one is CMAP (Cancer Molecular Analysis Project), and the other is caBIG (Cancer Biomedical Informatics Grid). In the end, the paper also gives good prospects of caCORE, and while caCORE was born out of the needs of the cancer research community, it is intended to serve as a general resource. Cancer research has historically

  2. TMI-2 core examination plan

    International Nuclear Information System (INIS)

    Owen, D.E.; MacDonald, P.E.; Hobbins, R.R.; Ploggr, S.A.

    1982-01-01

    The Three Mile Island (TMI-2) core examination is divided into four stages: (1) before removing the head; (2) before removing the plenum; (3) during defueling; and (4) offsite examinations. Core examinations recommended during the first three stages are primarily devoted to documenting the post-accident condition of the core. The detailed analysis of core damage structures will be performed during offsite examinations at government and commercial hot cell facilities. The primary objectives of these examinations are to enhance the understanding of the degraded core accident sequence, to develop the technical bases for reactor regulations, and to improve LWR design and operation

  3. Monitoring an electric cable core

    International Nuclear Information System (INIS)

    Bhattacharya, S.; Marris, A.

    1984-01-01

    A method of, and apparatus for, continuously monitoring an advancing core having a continuous covering comprises directing X-ray radiation laterally towards the advancing covered core; continuously forming an X-ray image pattern of the advancing covered core and translating the image pattern into a visible image pattern; continuously transforming the visible pattern into a digital bit pattern; and processing the digital bit pattern using a microprocessor with interfacing electronics to provide an image profile of the advancing covered core and/or to provide analogue and/or digital signals indicative of the overall diameter and eccentricity of the covered core and of the thickness of the covering. (author)

  4. Winning Cores in Parity Games

    DEFF Research Database (Denmark)

    Vester, Steen

    2016-01-01

    We introduce the novel notion of winning cores in parity games and develop a deterministic polynomial-time under-approximation algorithm for solving parity games based on winning core approximation. Underlying this algorithm are a number properties about winning cores which are interesting...... in their own right. In particular, we show that the winning core and the winning region for a player in a parity game are equivalently empty. Moreover, the winning core contains all fatal attractors but is not necessarily a dominion itself. Experimental results are very positive both with respect to quality...

  5. Initial charge reactor core

    International Nuclear Information System (INIS)

    Kiyono, Takeshi

    1984-01-01

    Purpose: To effectivity burn fuels and improve the economical performance in an inital charge reactor core of BWR type reactors or the likes. Constitution: In a reactor core constituted with a plurality of fuel assemblies which are to be partially replaced upon fuel replacement, the density of the fissionable materials and the moderator - fuel ratio of a fuel assembly is set corresponding to the period till that fuel assembly is replaced, in which the density of the nuclear fissionable materials is lowered and the moderator - fuel ratio is increased for the fuel assembly with a shorter period from the fueling to the fuel exchange and, while on the other hand, the density of the fissionable materials is increased and the moderator - fuel ratio is decreased for the fuel assembly with a longer period from the fueling to the replacement. Accordingly, since the moderator - fuel ratio is increased for the fuel assembly to be replaced in a shorter period, the neutrons moderating effect is increased to increase the reactivity. (Horiuchi, T.)

  6. Statistical core design

    International Nuclear Information System (INIS)

    Oelkers, E.; Heller, A.S.; Farnsworth, D.A.; Kearfott, K.J.

    1978-01-01

    The report describes the statistical analysis of DNBR thermal-hydraulic margin of a 3800 MWt, 205-FA core under design overpower conditions. The analysis used LYNX-generated data at predetermined values of the input variables whose uncertainties were to be statistically combined. LYNX data were used to construct an efficient response surface model in the region of interest; the statistical analysis was accomplished through the evaluation of core reliability; utilizing propagation of the uncertainty distributions of the inputs. The response surface model was implemented in both the analytical error propagation and Monte Carlo Techniques. The basic structural units relating to the acceptance criteria are fuel pins. Therefore, the statistical population of pins with minimum DNBR values smaller than specified values is determined. The specified values are designated relative to the most probable and maximum design DNBR values on the power limiting pin used in present design analysis, so that gains over the present design criteria could be assessed for specified probabilistic acceptance criteria. The results are equivalent to gains ranging from 1.2 to 4.8 percent of rated power dependent on the acceptance criterion. The corresponding acceptance criteria range from 95 percent confidence that no pin will be in DNB to 99.9 percent of the pins, which are expected to avoid DNB

  7. Nuclear reactor core

    International Nuclear Information System (INIS)

    Koyama, Jun-ichi; Aoyama, Motoo; Ishibashi, Yoko; Mochida, Takaaki; Haikawa, Katsumasa; Yamanaka, Akihiro.

    1995-01-01

    A reactor core is radially divided into an inner region, an outer region and an outermost region. As a fuel, three kinds of fuels, namely, a high enrichment degree fuel at 3.4%, a middle enrichment degree fuel at 2.3% and a low enrichment degree at 1.1% of a fuel average enrichment degree of fission product are used. Each of the fuels is bisected to upper and lower portions at an axial center thereof. The difference of average enrichment degrees between upper and lower portions is 0.1% for the high enrichment degree fuel, 0.3% for the middle enrichment degree fuel and 0.2% for the low enrichment degree fuel. In addition, the composition of fuels in each of radial regions comprises 100% of the low enrichment degree fuels in the outermost region, 91% of the higher enrichment degree fuels and 9% of the middle enrichment degree fuels in the outer region, and 34% of the high enrichment degree fuels and 30% of the middle enrichment degree fuels in the inner region. With such a constitution, fuel economy can be improved while maintaining the thermal margin in an initially loaded reactor core of a BWR type reactor. (I.N.)

  8. Fast Flux Test Facility core restraint system performance

    International Nuclear Information System (INIS)

    Hecht, S.L.; Trenchard, R.G.

    1990-02-01

    Characterizing Fast Flux Test Facility (FFTF) core restraint system performance has been ongoing since the first operating cycle. Characterization consists of prerun analysis for each core load, in-reactor and postirradiation measurements of subassembly withdrawal loads and deformations, and using measurement data to fine tune predictive models. Monitoring FFTF operations and performing trend analysis has made it possible to gain insight into core restraint system performance and head off refueling difficulties while maximizing component lifetimes. Additionally, valuable information for improved designs and operating methods has been obtained. Focus is on past operating experience, emphasizing performance improvements and avoidance of potential problems. 4 refs., 12 figs., 2 tabs

  9. Immobilization of Three-Mile Island core debris

    International Nuclear Information System (INIS)

    Welch, J.M.; Miller, R.L.; Flinn, J.E.

    1983-01-01

    The immobilization of Three-Mile Island core debris in iron-enriched basalt (IEB), a fused-cast nuclear waste form, was considered. The amount of zirconium clad UO 2 fuel assemblies that can be dissolved in IEB using the Zr to UO 2 ratio present in the core was bracketed between 25 and 30% at 1500 0 C. The factors controlling the rate of dissolution of fuel pellets and Inconel, a structural component of the core, were investigated. Since the UO 2 dissolved in IEB could be a valuable resource in the future, the recovery of uranium from IEB using conventional ore-dressing and leaching techniques was assessed

  10. The seismic assessment of fast reactor cores in the UK

    International Nuclear Information System (INIS)

    Duthie, J.C.; Dostal, M.

    1988-01-01

    The design of the UK Commercial Demonstration Fast Reactor (CDFR) has evolved over a number of years. The design has to meet two seismic requirements: (i) the reactor must cause no hazard to the public during or after the Safe Shutdown Earthquake (SSE); (ii) there must be no sudden reduction in safety for an earthquake exceeding the SSE. The core is a complicated component in the whole reactor. It is usually represented in a very simplified manner in the seismic assessment of the whole reactor station. From this calculation, a time history or response spectrum can be generated for the diagrid, which supports the core, and for the above core structure, which supports the main absorber rods. These data may then be used to perform a detailed assessment of the reactor core. A new simplified model of the core response may then be made and used in a further calculation of the whole reactor. The calculation of the core response only, is considered in the remainder of this paper. One important feature of the fast reactor core, compared with other reactors, is that the components are relatively thin and flexible to promote neutron economy and heat transfer. A further important feature is that there are very small gaps between the wrapper tubes. This leads to very strong fluid-coupling effects. These effects are likely to be beneficial, but adequate techniques to calculate them are only just being developed. 9 refs, figs

  11. Analysis of failed nuclear plant components

    Science.gov (United States)

    Diercks, D. R.

    1993-12-01

    Argonne National Laboratory has conducted analyses of failed components from nuclear power- gener-ating stations since 1974. The considerations involved in working with and analyzing radioactive compo-nents are reviewed here, and the decontamination of these components is discussed. Analyses of four failed components from nuclear plants are then described to illustrate the kinds of failures seen in serv-ice. The failures discussed are (1) intergranular stress- corrosion cracking of core spray injection piping in a boiling water reactor, (2) failure of canopy seal welds in adapter tube assemblies in the control rod drive head of a pressurized water reactor, (3) thermal fatigue of a recirculation pump shaft in a boiling water reactor, and (4) failure of pump seal wear rings by nickel leaching in a boiling water reactor.

  12. Analysis of failed nuclear plant components

    International Nuclear Information System (INIS)

    Diercks, D.R.

    1993-01-01

    Argonne National Laboratory has conducted analyses of failed components from nuclear power-generating stations since 1974. The considerations involved in working with an analyzing radioactive components are reviewed here, and the decontamination of these components is discussed. Analyses of four failed components from nuclear plants are then described to illustrate the kinds of failures seen in service. The failures discussed are (1) intergranular stress-corrosion cracking of core spray injection piping in a boiling water reactor, (2) failure of canopy seal welds in adapter tube assemblies in the control rod drive head of a pressurized water reactor, (3) thermal fatigue of a recirculation pump shaft in a boiling water reactor, and (4) failure of pump seal wear rings by nickel leaching in a boiling water reactor

  13. Analysis of failed nuclear plant components

    International Nuclear Information System (INIS)

    Diercks, D.R.

    1992-07-01

    Argonne National Laboratory has conducted analyses of failed components from nuclear power generating stations since 1974. The considerations involved in working with and analyzing radioactive components are reviewed here, and the decontamination of these components is discussed. Analyses of four failed components from nuclear plants are then described to illustrate the kinds of failures seen in service. The failures discussed are (a) intergranular stress corrosion cracking of core spray injection piping in a boiling water reactor, (b) failure of canopy seal welds in adapter tube assemblies in the control rod drive head of a pressure water reactor, (c) thermal fatigue of a recirculation pump shaft in a boiling water reactor, and (d) failure of pump seal wear rings by nickel leaching in a boiling water reactor

  14. Models of the earth's core

    Science.gov (United States)

    Stevenson, D. J.

    1981-01-01

    Combined inferences from seismology, high-pressure experiment and theory, geomagnetism, fluid dynamics, and current views of terrestrial planetary evolution lead to models of the earth's core with five basic properties. These are that core formation was contemporaneous with earth accretion; the core is not in chemical equilibrium with the mantle; the outer core is a fluid iron alloy containing significant quantities of lighter elements and is probably almost adiabatic and compositionally uniform; the more iron-rich inner solid core is a consequence of partial freezing of the outer core, and the energy release from this process sustains the earth's magnetic field; and the thermodynamic properties of the core are well constrained by the application of liquid-state theory to seismic and labroatory data.

  15. Waves in the core and mechanical core-mantle interactions

    DEFF Research Database (Denmark)

    Jault, D.; Finlay, Chris

    2015-01-01

    This Chapter focuses on time-dependent uid motions in the core interior, which can beconstrained by observations of the Earth's magnetic eld, on timescales which are shortcompared to the magnetic diusion time. This dynamics is strongly inuenced by the Earth's rapid rotation, which rigidies...... the motions in the direction parallel to the Earth'srotation axis. This property accounts for the signicance of the core-mantle topography.In addition, the stiening of the uid in the direction parallel to the rotation axis gives riseto a magnetic diusion layer attached to the core-mantle boundary, which would...... otherwisebe dispersed by Alfven waves. This Chapter complements the descriptions of large-scaleow in the core (8.04), of turbulence in the core (8.06) and of core-mantle interactions(8.12), which can all be found in this volume. We rely on basic magnetohydrodynamictheory, including the derivation...

  16. The true 'core' splitting

    International Nuclear Information System (INIS)

    Hallerbach, J.

    1978-01-01

    Massive unemployment and the fear of a barred future put at present the unions and civil initiative to the apparent alternatives; securing work places or securing life and future. How the 'atomic fight' is fought and its result can have considerable consequences for our society. This volume presents a dialogue: Firstly the situation and environment must be understood giving rise to the controversial arguments. Reports, analyses and interviews are presented on this as basic structure for the future discussion. The quality and direction of the technical progress are dealt with in the core of the discussion. Is atomic technology acceptable. Who should decide and whom does it serve. What is progress going to look like anyway. (orig.) [de

  17. Emergency core cooling systems

    International Nuclear Information System (INIS)

    Kubokoya, Takashi; Okataku, Yasukuni.

    1984-01-01

    Purpose: To maintain the fuel soundness upon loss of primary coolant accidents in a pressure tube type nuclear reactor by injecting cooling heavy water at an early stage, to suppress the temperature of fuel cans at a lower level. Constitution: When a thermometer detects the temperature rise and a pressure gauge detects that the pressure for the primary coolants is reduced slightly from that in the normal operation upon loss of coolant accidents in the vicinity of the primary coolant circuit, heavy water is caused to flow in the heavy water feed pipeway by a controller. This enables to inject the heavy water into the reactor core in a short time upon loss of the primary coolant accidents to suppress the temperature rise in the fuel can thereby maintain the fuel soundness. (Moriyama, K.)

  18. The core and cosmopolitans

    DEFF Research Database (Denmark)

    Dahlander, Linus; Frederiksen, Lars

    2012-01-01

    Users often interact and help each other solve problems in communities, but few scholars have explored how these relationships provide opportunities to innovate. We analyze the extent to which people positioned within the core of a community as well as people that are cosmopolitans positioned...... across multiple external communities affect innovation. Using a multimethod approach, including a survey, a complete database of interactions in an online community, content coding of interactions and contributions, and 36 interviews, we specify the types of positions that have the strongest effect...... on innovation. Our study shows that dispositional explanations for user innovation should be complemented by a relational view that emphasizes how these communities differ from other organizations, the types of behaviors this enables, and the effects on innovation....

  19. Adult educators' core competences

    DEFF Research Database (Denmark)

    Wahlgren, Bjarne

    2016-01-01

    ” requirements, organising them into four thematic subcategories: (1) communicating subject knowledge; (2) taking students’ prior learning into account; (3) supporting a learning environment; and (4) the adult educator’s reflection on his or her own performance. At the end of his analysis of different competence......Abstract Which competences do professional adult educators need? This research note discusses the topic from a comparative perspective, finding that adult educators’ required competences are wide-ranging, heterogeneous and complex. They are subject to context in terms of national and cultural...... environment as well as the kind of adult education concerned (e.g. basic education, work-related education etc.). However, it seems that it is possible to identify certain competence requirements which transcend national, cultural and functional boundaries. This research note summarises these common or “core...

  20. CORE annual report 2006

    International Nuclear Information System (INIS)

    Gut, A.

    2007-04-01

    This annual report for the Swiss Federal Office of Energy (SFOE) summarises the activities of the Swiss Federal Commission on Energy Research CORE in 2006. The six main areas of work during the period 2004 - 2007 are examined, including a review of the SFOE's energy research programme, a road-map for the way towards the realisation of a 2000-watt society, the formulation of an energy research concept for 2008 - 2011, international co-operation, the dissemination of information and the assessment of existing and new instruments. International activities and Switzerland's involvement in energy research within the framework of the International Energy Agency IEA are discussed. New and existing projects are listed and the work done at the Competence Centre for Energy and Mobility noted. The Swiss Technology Award 2007 is presented. Information supplied to interested bodies to help improve knowledge on research work being done and to help make discussions on future energy supply more objective is discussed

  1. IRIS core criticality calculations

    International Nuclear Information System (INIS)

    Jecmenica, R.; Trontl, K.; Pevec, D.; Grgic, D.

    2003-01-01

    Three-dimensional Monte Carlo computer code KENO-VI of CSAS26 sequence of SCALE-4.4 code system was applied for pin-by-pin calculations of the effective multiplication factor for the first cycle IRIS reactor core. The effective multiplication factors obtained by the above mentioned Monte Carlo calculations using 27-group ENDF/B-IV library and 238-group ENDF/B-V library have been compared with the effective multiplication factors achieved by HELIOS/NESTLE, CASMO/SIMULATE, and modified CORD-2 nodal calculations. The results of Monte Carlo calculations are found to be in good agreement with the results obtained by the nodal codes. The discrepancies in effective multiplication factor are typically within 1%. (author)

  2. Understanding core conductor fabrics

    International Nuclear Information System (INIS)

    Swenson, D E

    2011-01-01

    ESD Association standard test method ANSI/ESD STM2.1 - Garments (STM2.1), provides electrical resistance test procedures that are applicable for materials and garments that have surface conductive or surface dissipative properties. As has been reported in other papers over the past several years 1 fabrics are now used in many industries for electrostatic control purposes that do not have surface conductive properties and therefore cannot be evaluated using the procedures in STM2.1 2 . A study was conducted to compare surface conductive fabrics with samples of core conductor fibre based fabrics in order to determine differences and similarities with regards to various electrostatic properties. This work will be used to establish a new work item proposal within WG-2, Garments, in the ESD Association Standards Committee in the USA.

  3. Um mundo de cores

    Directory of Open Access Journals (Sweden)

    Elis Artz

    2016-08-01

    Full Text Available A pintura de Elis Artz é feita com muita alma e transborda alegria. A vitalidade de seu trabalho transparece nas cores fortes e nos traços simples e harmoniosos. Confira o trabalho da artista nesta edição da Revista Jangada. ELIS by ELIS Descobri meu talento artístisco e criativo há uns 25 anos. Nasci no Brasil e me mudei para os EUA 10 anos atrás por puro amor. Embora seja psicóloga de formação, o meu apreço pela pintura só cresceu e, com o passar dos anos, a paixão pelas tintas me direcionou a fazer cursos com artistas brasileiros renomados. Já morando nos EUA e com essa grande paixão adormecida, durante anos, decidi me entregar para as cores que sempre me trouxeram alegria e cor para os meus dias. Embora muitas de minhas pinturas tenham ido para minha família e amigos no Brasil, vendi inúmeras outras pelo país através de exposições em galerias de arte. Em 2014, fui uma das artistas em destaque no MTD ART nos Estados Unidos. Minha obra estava dentro de cada ônibus das cidades de Champaign e Urbana e exposta em destaque na Estação de Trem. Em maio de 2015, tive o prazer de ter outro trabalho meu nos outdoors da cidade, destacando a minha tela 'Frida' o ano inteiro e de expor em conjunto com alguns artistas locais no final de outubro. Desde então, tenho pintado cada vez mais e me interessado em divulgar o meu trabalho. E, como diria um amigo meu "Elis, você me mostrou que a vida não é só preto no branco". Ele estava certo.

  4. Growth outside the core.

    Science.gov (United States)

    Zook, Chris; Allen, James

    2003-12-01

    Growth in an adjacent market is tougher than it looks; three-quarters of the time, the effort fails. But companies can change those odds dramatically. Results from a five-year study of corporate growth conducted by Bain & Company reveal that adjacency expansion succeeds only when built around strong core businesses that have the potential to become market leaders. And the best place to look for adjacency opportunities is inside a company's strongest customers. The study also found that the most successful companies were able to consistently, profitably outgrow their rivals by developing a formula for pushing out the boundaries of their core businesses in predictable, repeatable ways. Companies use their repeatability formulas to expand into any number of adjacencies. Some companies make repeated geographic moves, as Vodafone has done in expanding from one geographic market to another over the past 13 years, building revenues from $1 billion in 1990 to $48 billion in 2003. Others apply a superior business model to new segments. Dell, for example, has repeatedly adapted its direct-to-customer model to new customer segments and new product categories. In other cases, companies develop hybrid approaches. Nike executed a series of different types of adjacency moves: it expanded into adjacent customer segments, introduced new products, developed new distribution channels, and then moved into adjacent geographic markets. The successful repeaters in the study had two common characteristics. First, they were extraordinarily disciplined, applying rigorous screens before they made an adjacency move. This discipline paid off in the form of learning curve benefits, increased speed, and lower complexity. And second, in almost all cases, they developed their repeatable formulas by studying their customers and their customers' economics very, very carefully.

  5. Core catcher for nuclear reactor core meltdown containment

    International Nuclear Information System (INIS)

    Driscoll, M.J.; Bowman, F.L.

    1978-01-01

    A bed of graphite particles is placed beneath a nuclear reactor core outside the pressure vessel but within the containment building to catch the core debris in the event of failure of the emergency core cooling system. Spray cooling of the debris and graphite particles together with draining and flooding of coolant fluid of the graphite bed is provided to prevent debris slump-through to the bottom of the bed

  6. Constraints on The Coupled Thermal Evolution of the Earth's Core and Mantle, The Age of The Inner Core, And The Origin of the 186Os/188Os Core(?) Signal in Plume-Derived Lavas

    Science.gov (United States)

    Lassiter, J. C.

    2005-12-01

    Thermal and chemical interaction between the core and mantle has played a critical role in the thermal and chemical evolution of the Earth's interior. Outer core convection is driven by core cooling and inner core crystallization. Core/mantle heat transfer also buffers mantle potential temperature, resulting in slower rates of mantle cooling (~50-100 K/Ga) than would be predicted from the discrepancy between current rates of surface heat loss (~44 TW) and internal radioactive heat production (~20 TW). Core/mantle heat transfer may also generate thermal mantle plumes responsible for ocean island volcanic chains such as the Hawaiian Islands. Several studies suggest that mantle plumes, in addition to transporting heat from the core/mantle boundary, also carry a chemical signature of core/mantle interaction. Elevated 186Os/188Os ratios in lavas from Hawaii, Gorgona, and in the 2.8 Ga Kostomuksha komatiites have been interpreted as reflecting incorporation of an outer core component with high time-integrated Pt/Os and Re/Os ( Brandon et al., 1999, 2003; Puchtel et al., 2005). Preferential partitioning of Os relative to Re and Pt into the inner core during inner core growth may generate elevated Re/Os and Pt/Os ratios in the residual outer core. Because of the long half-life of 190Pt (the parent of 186Os, t1/2 = 489 Ga), an elevated 186Os/188Os outer core signature in plume lavas requires that inner core crystallization began early in Earth history, most likely prior to 3.5 Ga. This in turn requires low time-averaged core/mantle heat flow (<~2.5 TW) or large quantities of heat-producing elements in the core. Core/mantle heat flow may be estimated using boundary-layer theory, by measuring the heat transported in mantle plumes, by estimating the heat transported along the outer core adiabat, or by comparing the rates of heat production, surface heat loss, and secular cooling of the mantle. All of these independent methods suggest time-averaged core/mantle heat flow of ~5

  7. Supply chain components

    OpenAIRE

    Vieraşu, T.; Bălăşescu, M.

    2011-01-01

    In this article I will go through three main logistics components, which are represented by: transportation, inventory and facilities, and the three secondary logistical components: information, production location, price and how they determine performance of any supply chain. I will discuss then how these components are used in the design, planning and operation of a supply chain. I will also talk about some obstacles a supply chain manager may encounter.

  8. Supply chain components

    Directory of Open Access Journals (Sweden)

    Vieraşu, T.

    2011-01-01

    Full Text Available In this article I will go through three main logistics components, which are represented by: transportation, inventory and facilities, and the three secondary logistical components: information, production location, price and how they determine performance of any supply chain. I will discuss then how these components are used in the design, planning and operation of a supply chain. I will also talk about some obstacles a supply chain manager may encounter.

  9. Enhanced Core Noise Modeling for Turbofan Engines

    Science.gov (United States)

    Stone, James R.; Krejsa, Eugene A.; Clark, Bruce J.

    2011-01-01

    This report describes work performed by MTC Technologies (MTCT) for NASA Glenn Research Center (GRC) under Contract NAS3-00178, Task Order No. 15. MTCT previously developed a first-generation empirical model that correlates the core/combustion noise of four GE engines, the CF6, CF34, CFM56, and GE90 for General Electric (GE) under Contract No. 200-1X-14W53048, in support of GRC Contract NAS3-01135. MTCT has demonstrated in earlier noise modeling efforts that the improvement of predictive modeling is greatly enhanced by an iterative approach, so in support of NASA's Quiet Aircraft Technology Project, GRC sponsored this effort to improve the model. Since the noise data available for correlation are total engine noise spectra, it is total engine noise that must be predicted. Since the scope of this effort was not sufficient to explore fan and turbine noise, the most meaningful comparisons must be restricted to frequencies below the blade passage frequency. Below the blade passage frequency and at relatively high power settings jet noise is expected to be the dominant source, and comparisons are shown that demonstrate the accuracy of the jet noise model recently developed by MTCT for NASA under Contract NAS3-00178, Task Order No. 10. At lower power settings the core noise became most apparent, and these data corrected for the contribution of jet noise were then used to establish the characteristics of core noise. There is clearly more than one spectral range where core noise is evident, so the spectral approach developed by von Glahn and Krejsa in 1982 wherein four spectral regions overlap, was used in the GE effort. Further analysis indicates that the two higher frequency components, which are often somewhat masked by turbomachinery noise, can be treated as one component, and it is on that basis that the current model is formulated. The frequency scaling relationships are improved and are now based on combustor and core nozzle geometries. In conjunction with the Task

  10. Component design for LMFBR's

    International Nuclear Information System (INIS)

    Fillnow, R.H.; France, L.L.; Zerinvary, M.C.; Fox, R.O.

    1975-01-01

    Just as FFTF has prototype components to confirm their design, FFTF is serving as a prototype for the design of the commercial LMFBR's. Design and manufacture of critical components for the FFTF system have been accomplished primarily using vendors with little or no previous experience in supplying components for high temperature sodium systems. The exposure of these suppliers, and through them a multitude of subcontractors, to the requirements of this program has been a necessary and significant step in preparing American industry for the task of supplying the large mechanical components required for commercial LMFBR's

  11. Hot gas path component

    Science.gov (United States)

    Lacy, Benjamin Paul; Kottilingam, Srikanth Chandrudu; Porter, Christopher Donald; Schick, David Edward

    2017-09-12

    Various embodiments of the disclosure include a turbomachine component. and methods of forming such a component. Some embodiments include a turbomachine component including: a first portion including at least one of a stainless steel or an alloy steel; and a second portion joined with the first portion, the second portion including a nickel alloy including an arced cooling feature extending therethrough, the second portion having a thermal expansion coefficient substantially similar to a thermal expansion coefficient of the first portion, wherein the arced cooling feature is located within the second portion to direct a portion of a coolant to a leakage area of the turbomachine component.

  12. Special fibres and components

    DEFF Research Database (Denmark)

    Bunge, C.-A.; Woyessa, Getinet; Bremer, K.

    2017-01-01

    In this chapter we present more specific fibre types for particular applications. Starting with the multi-core fibre, which can be used as a substitution for ordinary SI-POF transmission fibres, but with better bending losses, over the ever increasing range of micro-structured POF for diverse sen...

  13. Self-Healing Many-Core Architecture: Analysis and Evaluation

    Directory of Open Access Journals (Sweden)

    Arezoo Kamran

    2016-01-01

    Full Text Available More pronounced aging effects, more frequent early-life failures, and incomplete testing and verification processes due to time-to-market pressure in new fabrication technologies impose reliability challenges on forthcoming systems. A promising solution to these reliability challenges is self-test and self-reconfiguration with no or limited external control. In this work a scalable self-test mechanism for periodic online testing of many-core processor has been proposed. This test mechanism facilitates autonomous detection and omission of faulty cores and makes graceful degradation of the many-core architecture possible. Several test components are incorporated in the many-core architecture that distribute test stimuli, suspend normal operation of individual processing cores, apply test, and detect faulty cores. Test is performed concurrently with the system normal operation without any noticeable downtime at the application level. Experimental results show that the proposed test architecture is extensively scalable in terms of hardware overhead and performance overhead that makes it applicable to many-cores with more than a thousand processing cores.

  14. Spring unit especially intended for a nuclear reactor core

    International Nuclear Information System (INIS)

    Brown, S.J.; Gorholt, Wilhelm.

    1977-01-01

    This invention relates to a spring unit or a group of springs bearing up a sprung mass against an unsprung mass. For instance, a gas cooled high temperature nuclear reactor includes a core of relatively complex structure supported inside a casing or vessel forming a shielded cavity enclosing the reactor core. This core can be assembled from a large number of graphite blocks of different sizes and shapes joined together to form a column. The blocks of each column can be fixed together so as to form together a loose side support. Under the effect of thermal expansion and contraction, shrinkage resulting from irradiation, the effects of pressure and the contraction and creep of the reactor vessel, it is not possible to confine all the columns of the reactor core in a cylindrical rigid structure. Further, the working of the nuclear reactor requires that the reactivity monitoring components may be inserted at any time in the reactor core. A standard process consists in mounting this loosely assembled reactor core in a floating manner by keeping it away from the vessel enclosure around it by means of a number of springs fitted between the lateral surfaces of the core unit and the reactor vessel. The core may be considered as a spring supported mass whereas, relatively, the reactor vessel is a mass that is not flexibly supported [fr

  15. Sulfur in Earth's Mantle and Its Behavior During Core Formation

    Science.gov (United States)

    Chabot, Nancy L.; Righter,Kevin

    2006-01-01

    The density of Earth's outer core requires that about 5-10% of the outer core be composed of elements lighter than Fe-Ni; proposed choices for the "light element" component of Earth's core include H, C, O, Si, S, and combinations of these elements [e.g. 1]. Though samples of Earth's core are not available, mantle samples contain elemental signatures left behind from the formation of Earth's core. The abundances of siderophile (metal-loving) elements in Earth's mantle have been used to gain insight into the early accretion and differentiation history of Earth, the process by which the core and mantle formed, and the composition of the core [e.g. 2-4]. Similarly, the abundance of potential light elements in Earth's mantle could also provide constraints on Earth's evolution and core composition. The S abundance in Earth's mantle is 250 ( 50) ppm [5]. It has been suggested that 250 ppm S is too high to be due to equilibrium core formation in a high pressure, high temperature magma ocean on early Earth and that the addition of S to the mantle from the subsequent accretion of a late veneer is consequently required [6]. However, this earlier work of Li and Agee [6] did not parameterize the metalsilicate partitioning behavior of S as a function of thermodynamic variables, limiting the different pressure and temperature conditions during core formation that could be explored. Here, the question of explaining the mantle abundance of S is revisited, through parameterizing existing metal-silicate partitioning data for S and applying the parameterization to core formation in Earth.

  16. Do protostellar fountains shape the regional core mass function?

    International Nuclear Information System (INIS)

    Li Jin-Zeng; Huang Ya-Fang; Carlos Mallamaci Claudio; César Podestà Ricardo; Actis Vicente Eloy; Maria Pacheco Ana

    2013-01-01

    The emerging massive binary system associated with AFGL 961 signifies the latest generation of massive star and cluster formation in the Rosette Molecular Complex. We present the detection of a compact cluster of dusty cores toward the AFGL 961 region based on continuum imaging at 1.3 mm by the Submillimeter Array. The binary components of AFGL 961 are associated with the most intensive millimeter emission cores or envelopes, confirming that they are indeed in an early stage of evolution. The other massive cores, however, are found to congregate in the close vicinity of the central high-mass protostellar binary. They have no apparent infrared counterparts and are, in particular, well aligned transverse to the bipolar molecular outflows originating from AFGL 961. This provides evidence for a likely triggered origin of the massive cores. All 40 individual cores with masses ranging between 0.6 and 15 Msun were detected above a 3 σ level of 3.6 mJy beam −1 (or 0.4 Msun), based on which we derive a total core mass of 107 Msun in the AFGL 961 region. As compared to the stellar initial mass function, a shallow slope of 1.8 is, however, derived from the best fit to the mass spectrum of the millimeter cores with a prestellar and/or protostellar origin. The flatter core mass distribution in the AFGL 961 region is attributed here to dynamic perturbations from the massive molecular outflows that originated from the massive protostellar binary, which may have altered the otherwise more quiescent conditions of core or star formation, enhanced the formation of more massive cores and, as a result, influenced the core mass distribution in its close vicinity.

  17. Acquisitive Framatome nurtures its core businesses

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    For the past five years, Framatome's objective has been to be world leader in each of its core businesses. Whenever interesting opportunities become available, the company aims to develop through acquisition, which enables it either to penetrate growing market or to increase its existing market share. In the past 20 years, Framatome teams have designed, produced and installed 62 nuclear reactors with a combined generating capacity of 62000 MWe on 25 different sites in France and abroad (eg Belgium, South Africa, South Korea and China). Today, Framatome continues to build nuclear plants and manufacture big nuclear components, while adapting its activities to the new demands of the market. (Author)

  18. Overview of core disruptive accidents

    International Nuclear Information System (INIS)

    Marchaterre, J.F.

    1977-01-01

    An overview of the analysis of core-disruptive accidents is given. These analyses are for the purpose of understanding and predicting fast reactor behavior in severe low probability accident conditions, to establish the consequences of such conditions and to provide a basis for evaluating consequence limiting design features. The methods are used to analyze core-disruptive accidents from initiating event to complete core disruption, the effects of the accident on reactor structures and the resulting radiological consequences are described

  19. Components of Sexual Identity

    Science.gov (United States)

    Shively, Michael G.; DeCecco, John P.

    1977-01-01

    This paper examines the four components of sexual identity: biological sex, gender identity, social sex-role, and sexual orientation. Theories about the development of each component and how they combine and conflict to form the individual's sexual identity are discussed. (Author)

  20. Towards Cognitive Component Analysis

    DEFF Research Database (Denmark)

    Hansen, Lars Kai; Ahrendt, Peter; Larsen, Jan

    2005-01-01

    Cognitive component analysis (COCA) is here defined as the process of unsupervised grouping of data such that the ensuing group structure is well-aligned with that resulting from human cognitive activity. We have earlier demonstrated that independent components analysis is relevant for representing...