WorldWideScience

Sample records for hts-squid nde system

  1. Robot-arm-based mobile HTS SQUID system for NDE of structures

    Energy Technology Data Exchange (ETDEWEB)

    Yotsugi, K; Hatsukade, Y; Tanaka, S [Department of Ecological Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tenpaku-cho, Toyohashi, Aichi 441-8580 (Japan)], E-mail: hatukade@eco.tut.ac.jp

    2008-02-01

    A robot-arm-based mobile HTS SQUID system was developed for NDE of fixed targets. To realize the system, active magnetic shielding technique using fluxgate as reference sensor for ambient field was applied to a cryocooler-based HTS SQUID gradiometer that was mounted on commercial robot-arm. In this technique, ambient field noise and pulse noise of 550 nT from robot were measured by the fluxgate near the SQUID, and then the fluxgate output was negatively fed back to generate compensation field around the SQUID and fluxgate. The noise from robot was reduced by a factor of about 20 and the shielding technique enabled the HTS SQUID to move in unshielded environment by the robot-arm without flux-trapping or unlocking at 10 mm/s. System noise measurement and inspection of hidden cracks in multi-layer composite-metal structure were demonstrated using the mobile SQUID-NDE system.

  2. Mobile HTS-SQUID NDE system with robot arm and active shielding using fluxgate

    Energy Technology Data Exchange (ETDEWEB)

    Hatsukade, Y. [Department of Ecological Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi 441-8580 (Japan)], E-mail: hatukade@eco.tut.ac.jp; Yotsugi, K.; Tanaka, S. [Department of Ecological Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi 441-8580 (Japan)

    2008-09-15

    A robot-arm-based mobile HTS-SQUID NDE system was developed for inspection of advanced structures such as hydrogen fuel cell tanks. In order to realize stable operation of HTS-SQUID exposed in Earth's field and robot arm's noise without flux trapping, flux jumping and unlocking during motion, a new active magnetic shielding (AMS) technique using fluxgate was introduced. The high sensitive fluxgate, which could measure magnetic field of up to several 10 {mu}T, was mounted near an HTS-SQUID gradiometer on the robot arm to measure the ambient noise and feed back its output to a compensation coil, which surrounded both SQUID and fluxgate to cancel the ambient noise around them. The AMS technique successfully enabled the HTS-SQUID gradiometer to be moved at 10 mm/s by the robot arm in unshielded environment without flux trapping, jumping and unlocking. Detection of hidden slots in multi-layer composite-metal structures imitating the fuel cell tank was demonstrated.

  3. HTS-SQUID NDE Technique for Pipes based on Ultrasonic Guided Wave

    International Nuclear Information System (INIS)

    Hatsukade, Y; Masutani, N; Teranishi, S; Masamoto, K; Kanenaga, S; Adachi, S; Tanabe, K

    2017-01-01

    This article describes research on the novel high-temperature superconductor (HTS) superconducting quantum interference device (SQUID) non-destructive evaluation (NDE) technique for metallic pipes based on ultrasonic guided waves. We constructed HTS-SQUID NDE system for pipes based on ultrasonic guided waves, which were generated and received by means of the magnetostrictive effects. Using the system, we measured magnetic signals due to T (0, 1) mode ultrasonic guided waves that transmitted on aluminium pipe, and investigated influences of measurement parameters to the magnetic signals, such as direction of a HTS-SQUID gradiometer, lift-off distance, and intensity and frequency of input current fed to a magnetostrictive transmitter. With the gradiometer oriented parallel to the pipe axis, more than 10 times larger signals were measured compared with that oriented perpendicular to the pipe axis. Magnetic signals measured by the gradiometer were inverse proportional to the power of the list- off distance, and proportional to the intensity of the input current up to 1 A pp . Relation between the frequency of the input current and the measured signal was shown and discussed. (paper)

  4. HTS-SQUID NDE Technique for Pipes based on Ultrasonic Guided Wave

    Science.gov (United States)

    Hatsukade, Y.; Masutani, N.; Teranishi, S.; Masamoto, K.; Kanenaga, S.; Adachi, S.; Tanabe, K.

    2017-07-01

    This article describes research on the novel high-temperature superconductor (HTS) superconducting quantum interference device (SQUID) non-destructive evaluation (NDE) technique for metallic pipes based on ultrasonic guided waves. We constructed HTS-SQUID NDE system for pipes based on ultrasonic guided waves, which were generated and received by means of the magnetostrictive effects. Using the system, we measured magnetic signals due to T (0, 1) mode ultrasonic guided waves that transmitted on aluminium pipe, and investigated influences of measurement parameters to the magnetic signals, such as direction of a HTS-SQUID gradiometer, lift-off distance, and intensity and frequency of input current fed to a magnetostrictive transmitter. With the gradiometer oriented parallel to the pipe axis, more than 10 times larger signals were measured compared with that oriented perpendicular to the pipe axis. Magnetic signals measured by the gradiometer were inverse proportional to the power of the list- off distance, and proportional to the intensity of the input current up to 1 App. Relation between the frequency of the input current and the measured signal was shown and discussed.

  5. Characteristics of an HTS-SQUID gradiometer with ramp-edge Josephson junctions and its application on robot-based 3D-mobile compact SQUID NDE system

    Energy Technology Data Exchange (ETDEWEB)

    Hatsukade, Y., E-mail: hatukade@ens.tut.ac.jp [Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi 441-8580 (Japan); Hayashi, K.; Shinyama, Y.; Kobayashi, Y. [Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi 441-8580 (Japan); Adachi, S.; Tanabe, K. [International Superconductivity Technology Center/Superconductivity Research Laboratory, 10-13, Shinonome 1-chome, Koto-ku, Tokyo 135-0062 (Japan); Tanaka, S. [Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi 441-8580 (Japan)

    2011-11-15

    We investigated behavior of HTS-dc-SQUID gradiometers with ramp-edge Josephson junctions (JJs) in ac and dc magnetic fields. In the both fields, the gradiometers show higher durability against entry of flux vortices than SQUIDs with bicrystal JJs. A robot-based SQUID NDE system utilizing the gradiometer was developed in an unshielded environment. Detectability of the system to detect non-through cracks in double-layer structures was demonstrated. A new excitation coil was applied to detect cracks that oriented vertical and parallel to the baseline of the gradiometer. In this paper, we investigated detailed behavior of novel HTS-dc-SQUID gradiometers with ramp-edge Josephson junctions (JJs) in both an ac magnetic field and a dc magnetic field. In the both fields, the novel gradiometers shows the superior performance to the conventional YBa{sub 2}Cu{sub 3}O{sub 7-x} (YBCO) HTS-dc-SQUID gradiometer and a bare HTS-dc-SQUID ring with bicrystal JJs concerning durability against entry and hopping of flux vortices, probably due to their differential pickup coils without a grain boundary and multilayer structure of the ramp-edge JJs. A robot-based compact HTS-SQUID NDE system utilizing the novel gradiometer was reviewed, and detectability of the system to detect non-through cracks in a carbon fiber reinforced plastic (CFRP)/Al double-layer structure was demonstrated. A new excitation coil in which the supplied currents flowed in the orthogonal directions was applied to detect cracks that oriented vertical and parallel to the baseline of the gradiometer.

  6. Development of non-destructive evaluation system using an HTS-SQUID gradiometer for magnetized materials

    Science.gov (United States)

    Kawano, J.; Tsukamoto, A.; Adachi, S.; Oshikubo, Y.; Hato, T.; Tanabe, K.; Okamura, T.

    We have developed a new eddy-current non-destructive evaluation (NDE) system using an HTS SQUID gradiometer with the aim of applying it to practical materials with magnetization. The new NDE system employs a LN2-cooled external Cu pickup coil and an HTS SQUID chip placed in a magnetic shield made of HTS material. The HTS SQUID chip consists of an HTS planar gradiometer manufactured by using a ramp-edge junction technology and a multi-turn HTS thin film input coil coupled with the flip-chip configuration. The first-order coaxial gradiometric Cu pickup coil with a diameter of 16 mm and the baseline of 5.6 mm was used in the present NDE experiments. By using this NDE system, we could observe defect-induced magnetic signals without an appreciable influence of magnetization up to 10 mT. We also examined the ability of detecting deep-lying defects and compared with the results obtained using our previous NDE system.

  7. Prospects on the application of HTS SQUID magnetometry to nondestructive evaluation (NDE)

    Science.gov (United States)

    Weinstock, H.

    1993-04-01

    In light of recent advances in the fabrication of low-noise HTS SQUIDs, a review is presented on the use of LTS SQUID magnetometry for nondestructive evaluation (NDE). Examples are given on applications relating to defects in steel, subsurface cracks in aircraft frames, and voids in non-metallic structures. HTS SQUIDs may make a significant difference in the acceptance of these applications because sensing coils will be closer to a sample under test, there will be greater instrument portability and the problem of bringing liquid helium to remote locations will be eliminated.

  8. Nondestructive evaluation of braided carbon fiber composites with artificial defect using HTS-SQUID gradiometer

    International Nuclear Information System (INIS)

    Shinyama, Y.; Yamaji, T.; Hatsukade, Y.; Takai, Y.; Aly-Hassan, M.S.; Nakai, A.; Hamada, H.; Tanaka, S.

    2011-01-01

    We applied a current-injection-based NDE method using a HTS-SQUID gradiometer to a braided CFRP with artificial cracks. Current distributions in the braided CFRP were estimated from measured field gradient distributions. A small crack, in which a few carbon-fiber bundles were cut, was well detected from the current distributions. A cross-section of the CFRP showed that a density of the bundles at edges is higher than the other part. The experimental results demonstrated the capability of the method to detect sub-mm cracks. Braided carbon fiber reinforced plastics (CFRPs) are one of multifunctional materials with superior properties such as mechanical strength to normal CFRPs since the braided CFRPs have continuous fiber bundles. In this paper, we applied the current-injection-based nondestructive evaluation (NDE) method using a HTS-SQUID gradiometer to the braided CFRP for the detection of the breakage of the bundles. We prepared planar braided CFRP samples with and without artificial cracks of 1 and 2 mm lengths, and measured the current density distribution above the samples using the NDE method. In the measurement results, not only a few completely-cut bundles but also the additional partially-cut bundles were detected from decrease in the measured current density along the cut bundle around the cracks. From these results, we showed that it is possible to inspect a few partially-cut bundles in the braided CFRPs by the NDE method.

  9. Development of a highly sensitive current and position monitor with HTS squids and an HTS magnetic shield

    International Nuclear Information System (INIS)

    Watanabe, T.; Ikeda, T.; Kase, M.; Yano, Y.; Watanabe, S.; Sasaki, Y.; Kawaguchi, T.

    2005-01-01

    A highly sensitive current and position monitor with HTS (High-Temperature Superconducting) SQUIDs (Superconducting QUantum Interference Device) and an HTS magnetic shield for the measurement of the intensity of faint beams, such as a radioisotope beam, has been developed for the RIKEN RI beam factory project. The HTS magnetic shield and the HTS current sensor including the HTS SQUID are cooled by a low-vibration pulse-tube refrigerator. Both the HTS magnetic shield and the HTS current sensor were fabricated by dip-coating a thin Bi 2 -Sr 2 -Ca 2 -Cu 3 -O x (Bi-2223) layer on 99.9% MgO ceramic substrates. The HTS technology enables us to develop a system equipped with a downsized and highly sensitive current monitor. Recently, a prototype system was completed and installed in the beam transport line of the RIKEN Ring Cyclotron to measure the DC-current of high-energy heavy-ion beams. As a result, we succeeded in measuring the intensity of the 600 nA 40 Ar 17+ beam (95 MeV/u). We describe the present status of the monitor system and the results of the beam measurements. (author)

  10. Non-destructive inspection using HTS-SQUID on aluminum liner covered by CFRP

    International Nuclear Information System (INIS)

    Hatsukade, Y.; Yotsugi, K.; Sakaguchi, Y.; Tanaka, S.

    2007-01-01

    An eddy-current-based SQUID non-destructive inspection (NDI) system to detect deep-lying cracks in multi-layer composite-Al vessels was developed taking advantage of the uncontested sensitivity of HTS-SQUID in low-frequency range. An HTS-SQUID gradiometer was mounted in a pulse tube cryocooler. A pair of differential coils with C-shaped ferrite cores was employed to induce an enhanced eddy current in an Al vessel wrapped in a carbon fiber reinforced plastic (CFRP) cover. Ellipsoidal dome-shaped Al liners containing through cracks, which were made by pressure cycle tests, in the CFRP covers with total thickness of 6 mm (CFPR 3 mm, and Al 3 mm) were inspected by the system. While inducing eddy currents in the vessels with excitation fields at 100 Hz or 7 kHz, the vessels were rotated under the HTS-SQUID. Above the cracks, anomalous signals due to the cracks were clearly detected at both frequencies. These results suggested the SQUID-NDI technique would be a possible candidate for inspection of high-pressure multi-layer composite-Al vessels

  11. Non-destructive inspection using HTS-SQUID on aluminum liner covered by CFRP

    Energy Technology Data Exchange (ETDEWEB)

    Hatsukade, Y. [Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi 441-8580 (Japan)], E-mail: hatukade@eco.tut.ac.jp; Yotsugi, K. [Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi 441-8580 (Japan); Sakaguchi, Y. [SAMTECH Corporation, 1000-18 Enmyo-cho, Kashiwara City, Osaka 582-0027 (Japan); Tanaka, S. [Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi 441-8580 (Japan)

    2007-10-01

    An eddy-current-based SQUID non-destructive inspection (NDI) system to detect deep-lying cracks in multi-layer composite-Al vessels was developed taking advantage of the uncontested sensitivity of HTS-SQUID in low-frequency range. An HTS-SQUID gradiometer was mounted in a pulse tube cryocooler. A pair of differential coils with C-shaped ferrite cores was employed to induce an enhanced eddy current in an Al vessel wrapped in a carbon fiber reinforced plastic (CFRP) cover. Ellipsoidal dome-shaped Al liners containing through cracks, which were made by pressure cycle tests, in the CFRP covers with total thickness of 6 mm (CFPR 3 mm, and Al 3 mm) were inspected by the system. While inducing eddy currents in the vessels with excitation fields at 100 Hz or 7 kHz, the vessels were rotated under the HTS-SQUID. Above the cracks, anomalous signals due to the cracks were clearly detected at both frequencies. These results suggested the SQUID-NDI technique would be a possible candidate for inspection of high-pressure multi-layer composite-Al vessels.

  12. Magnetic evaluation of a solar panel using HTS-SQUID

    Energy Technology Data Exchange (ETDEWEB)

    Kiwa, Toshihiko, E-mail: kiwa@okayama-u.ac.jp; Fukudome, Yohei; Miyazaki, Shingo; Saari, Mohd Mawardi; Sakai, Kenji; Tsukada, Keiji

    2013-11-15

    Highlights: •The magnetic evaluation system of a solar panel using HTS-SQUID has been developed. •The electric circuits made by the discrete devices on the circuit board were visualized. •The electric properties of the commercial solar panels were demonstrated. -- Abstract: The magnetic evaluation system of a solar panel using HTS-SQUID has been proposed and developed. A normal pick-up coil was applied to detect the tangential magnetic field to the panel surface. Since the detected field could be related to the currents of the solar panels, the electric properties of the solar panels could be evaluated. In this work, the evaluation of the electric properties of the commercial solar panels as well as the electric circuits made by the discrete devices on the circuit board was visualized.

  13. Magnetic evaluation of a solar panel using HTS-SQUID

    International Nuclear Information System (INIS)

    Kiwa, Toshihiko; Fukudome, Yohei; Miyazaki, Shingo; Saari, Mohd Mawardi; Sakai, Kenji; Tsukada, Keiji

    2013-01-01

    Highlights: •The magnetic evaluation system of a solar panel using HTS-SQUID has been developed. •The electric circuits made by the discrete devices on the circuit board were visualized. •The electric properties of the commercial solar panels were demonstrated. -- Abstract: The magnetic evaluation system of a solar panel using HTS-SQUID has been proposed and developed. A normal pick-up coil was applied to detect the tangential magnetic field to the panel surface. Since the detected field could be related to the currents of the solar panels, the electric properties of the solar panels could be evaluated. In this work, the evaluation of the electric properties of the commercial solar panels as well as the electric circuits made by the discrete devices on the circuit board was visualized

  14. ULF-NMR system using HTS-SQUID and permanent magnet

    Energy Technology Data Exchange (ETDEWEB)

    Fukumoto, Shohei, E-mail: hatukade@ens.tut.ac.jp [Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi 441-8580 (Japan); Tsunaki, Shingo; Chigasaki, Takumi; Hatsukade, Yoshimi; Tanaka, Saburo [Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi 441-8580 (Japan)

    2013-01-15

    Highlights: ► A permanent magnet was introduced into a ULF SQUID-NMR system for polarization. ► An instrument to transfer a sample in the magnet to under a SQUID was implemented. ► An AC pulse coil was also introduced to apply a π/2 pulse to obtain an NMR signal. ► A {sup 1}H NMR signal was measured while applying a static field of 45 μT. ► The signal to noise ratio of the {sup 1}H NMR signal was about 100. -- Abstract: We have constructed an ultra-low field (ULF) nuclear magnetic resonance (NMR)/magnetic resonance imaging (MRI) system using an HTS-rf-SQUID and room-temperature electromagnets in a magnetically shielded room (MSR). In this study, in order to improve the signal to noise ratio (S/N) of the system, we introduced a permanent magnet instead of the electromagnet for pre-polarizing the sample to enhance the pre-polarizing field (B{sub p}). The cylindrical permanent magnet of 270 mT was used to magnetize a water sample for several seconds outside the MSR and about 1.5 m away from the SQUID. We constructed an instrument to transfer the magnetized sample from the permanent magnet to under the SQUID in 0.5 s. Since the non-adiabatic condition cannot be kept in such sample transfer scheme, an AC pulse coil to apply an AC pulse field B{sub AC} to rotate the magnetization moments for π/2 was introduced to measure a free induction decay (FID) signal from the sample. By this system, we obtained an NMR signal from the water sample of 10 ml while applying a static field of 45 μT and π/2 pulse after the transfer. The S/N of the NMR spectrum was about 100 by a single shot, which was 10 times larger than that obtained with the electromagnet of 32 mT. In addition, we demonstrated the measurements of the longitudinal relaxation time (T{sub 1}) and the spin echo signal of the water sample by the system.

  15. Image processing for HTS SQUID probe microscope

    International Nuclear Information System (INIS)

    Hayashi, T.; Koetitz, R.; Itozaki, H.; Ishikawa, T.; Kawabe, U.

    2005-01-01

    An HTS SQUID probe microscope has been developed using a high-permeability needle to enable high spatial resolution measurement of samples in air even at room temperature. Image processing techniques have also been developed to improve the magnetic field images obtained from the microscope. Artifacts in the data occur due to electromagnetic interference from electric power lines, line drift and flux trapping. The electromagnetic interference could successfully be removed by eliminating the noise peaks from the power spectrum of fast Fourier transforms of line scans of the image. The drift between lines was removed by interpolating the mean field value of each scan line. Artifacts in line scans occurring due to flux trapping or unexpected noise were removed by the detection of a sharp drift and interpolation using the line data of neighboring lines. Highly detailed magnetic field images were obtained from the HTS SQUID probe microscope by the application of these image processing techniques

  16. Issues relating to airborne applications of HTS SQUIDs

    International Nuclear Information System (INIS)

    Foley, C P; Leslie, K E; Binks, R A; Lam, S H K; Du, J; Tilbrook, D L; Mitchell, E E; Macfarlane, J C; Lee, J B; Turner, R; Downey, M; Maddever, A

    2002-01-01

    Airborne application of HTS SQUIDs is the most difficult environment for their successful deployment. In order to operate with the sensitivity required for a particular application, there are many issues to be addressed such as the need for very wide dynamic range electronics, motion noise elimination, immunity to large changing magnetic fields and cultural noise sources. This paper reviews what is necessary to achieve an airborne system giving examples in geophysical mineral exploration. It will consider issues relating to device design and fabrication, electronics, dewar design, suspension system requirements and noise elimination methods

  17. Issues relating to airborne applications of HTS SQUIDs

    CERN Document Server

    Foley, C P; Binks, R A; Lam, S H K; Du, J; Tilbrook, D L; Mitchell, E E; MacFarlane, J C; Lee, J B; Turner, R; Downey, M; Maddever, A

    2002-01-01

    Airborne application of HTS SQUIDs is the most difficult environment for their successful deployment. In order to operate with the sensitivity required for a particular application, there are many issues to be addressed such as the need for very wide dynamic range electronics, motion noise elimination, immunity to large changing magnetic fields and cultural noise sources. This paper reviews what is necessary to achieve an airborne system giving examples in geophysical mineral exploration. It will consider issues relating to device design and fabrication, electronics, dewar design, suspension system requirements and noise elimination methods.

  18. Magnetic shield effect simulation of superconducting film shield covering directly coupled HTS dc-SQUID magnetometer

    International Nuclear Information System (INIS)

    Terauchi, N.; Noguchi, S.; Igarashi, H.

    2011-01-01

    A superconducting film shield over a SQUID ring improves the robustness of the SQUID with respect to magnetic noise. Supercurrent in the SQUID magnetometer and the superconducting film shield were simulated. The superconducting film shield reduces the influence of the external magnetic field on the SQUID ring. An HTS SQUID is a high sensitive magnetic sensor. In recent years, the HTS SQUID is widely used in various applications. In some applications, high robustness with respect to magnetic noise is required to realize stable operation at outside of a magnetic shielding room. The target of this paper is a directly coupled HTS dc-SQUID magnetometer. To enhance the robustness of the SQUID magnetometer, use of a superconducting thin film shield has been proposed. The magnetic field directly penetrating the SQUID ring causes the change of the critical current of Josephson junction, and then the SQUID magnetometer transitions into inoperative state. In order to confirm the magnetic shield effect of the superconducting film shield, electromagnetic field simulation with 3D edge finite element method was performed. To simulate the high temperature superconductor, E-J characteristics and c-axis anisotropy are considered. To evaluate the effect of the superconducting film shield, an external magnetic field which is supposed to be a magnetic noise is applied. From the simulation results, the time transition of the magnetic flux penetrating the SQUID ring is investigated and the effect of the superconducting film shield is confirmed. The amplitude of the magnetic flux penetrating the SQUID ring can be reduced to about one-sixth since the superconducting film shield prevents the magnetic noise from directly penetrating the SQUID ring.

  19. Robotic 3D SQUID imaging system for practical nondestructive evaluation applications

    International Nuclear Information System (INIS)

    Isawa, K.; Nakayama, S.; Ikeda, M.; Takagi, S.; Tosaka, S.; Kasai, N.

    2005-01-01

    A robotic three-dimensional (3D) scanning superconducting quantum interference device (SQUID) imaging system was developed for practical nondestructive evaluation (NDE) applications. The major feature of this SQUID-NDE system is that the SQUID sensor itself scans in 3D by traveling over the surface of an object during testing without the need for magnetic shielding. This imaging system consists of (i) DC-SQUID gradiometer for effective movement of the sensor, (ii) SQUID sensor manipulator utilizing an articulated-type robot used in industry, (iii) laser charge-coupled-device (CCD) displacement sensor to measure the 3D coordinates of points on the surface of the object, and (iv) computer-aided numerical interpolation scheme for 3D surface reconstruction of the object. The applicability of this system for NDE was demonstrated by successfully detecting artificial damage of cylindrical-shaped steel tubes

  20. Inductance-dependent characteristics of HTS dc-SQUID amplifiers

    International Nuclear Information System (INIS)

    Mitchell, E.E.; Tilbrook, D.L.; Foley, C.P.; MacFarlane, J.

    2002-01-01

    Full text: We have experimentally determined the transfer function V Φ and noise S Φ of several high temperature superconducting (HTS) dc SQUIDs of increasing loop size, while they were operated (without input flux transformer) in a small-signal-amplifier (open-loop) mode. A primary aim of our investigation was to provide reliable inductance data to aid our design of subsequent magnetometer devices. Flux was induced by means of current injection via a well-defined stripline directly into the SQUID loop. The loop size was systematically incremented in a range of otherwise similar SQUIDs. For each SQUID, the ratio between the induced flux and the injection current (which we define as the coupling inductance of the device, L c ) was measured as a function of the injection path length and the SQUID loop dimensions. Both L c and the derived SQUID self-inductance, L sq , were then compared with theoretical values, and contributions due to kinetic inductance and junction inductance were estimated. Correlations between the inductance data and our measured values of transfer function V Φ and noise S Φ were compared with previous results. Guidelines for optimisation of gradiometer SQUIDs were established, and in particular, the importance of achieving a large value transfer function together with a relatively small inductance was demonstrated. The strong influence of an enhanced transfer function was further emphasised when an order-of-magnitude reduction in noise was achieved by subjecting one of our SQUIDs to an in-house 'ion-beam trimming' process

  1. Current distribution evaluation of dye-sensitized solar cell using HTS-SQUID-based magnetic measurement system

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, Kenji, E-mail: Sakai-k@okayama-u.ac.jp; Tanaka, Kohei; Kiwa, Toshihiko; Tsukada, Keiji

    2016-11-15

    Highlights: • Current distribution and direction of dye-sensitized solar cell (DSSC) was measured. • Electrical current flowing in the indium tin oxide (ITO) glass substrate was uniform. • The distribution of electrical current depended on I–V characteristic. • Current direction changed when the performance of DSSC is low. - Abstract: The current flowing inside a dye-sensitized solar cell (DSSC) was measured using a high-temperature superconductor superconducting quantum interference device (HTS-SQUID)-based magnetic measurement system. Further, a new evaluation method of the DSSC, which is difficult to measure using the conventional method, was investigated to improve the characteristics of the DSSC. The tangential components of the magnetic field generated from the DSSC were measured using two HTS-SQUIDs, and the intensity and direction related to the electrical current were obtained by the measured magnetic field. The DSSCs prepared with different dyes and catalytic substances showed different current-intensity mapping. The current direction was different for the DSSC with low performance. In addition, the current flowing in the ITO layer of the ITO glass substrate was also measured and the results confirmed that it had uniform distribution. These results show that the current mapping and the direction of the electrical current depend on the internal factors of the DSSC, and the detection of the magnetic field distribution generated from it is expected to lead to its new evaluation method.

  2. Scanning high-Tc SQUID imaging system for magnetocardiography

    International Nuclear Information System (INIS)

    Yang, H-C; Wu, T-Y; Horng, H-E; Wu, C-C; Yang, S Y; Liao, S-H; Wu, C-H; Jeng, J T; Chen, J C; Chen, Kuen-Lin; Chen, M J

    2006-01-01

    A scanning magnetocardiography (MCG) system constructed from SQUID sensors offers potential to basic or clinical research in biomagnetism. In this work, we study a first order scanning electronic high-T c (HTS) SQUID MCG system for biomagnetic signals. The scanning MCG system was equipped with an x-y translation bed powered by step motors. Using noise cancellation and μ-metal shielding, we reduced the noise level substantially. The established scanning HTS MCG system was used to study the magnetophysiology of hypercholesterolaemic (HC) rabbits. The MCG data of HC rabbits were analysed. The MCG contour map of HC rabbits provides experimental models for the interpretation of human cardiac patterns

  3. DC current distribution mapping system of the solar panels using a HTS-SQUID gradiometer

    International Nuclear Information System (INIS)

    Miyazaki, Shingo; Kasuya, Syohei; Saari, Mohd Mawardi; Sakai, Kenji; Kiwa, Toshihiko; Tsukada, Keiji; Tsukamoto, Akira; Adachi, Seiji; Tanabe, Keiichi

    2014-01-01

    Solar panels are expected to play a major role as a source of sustainable energy. In order to evaluate solar panels, non-destructive tests, such as defect inspections and response property evaluations, are necessary. We developed a DC current distribution mapping system of the solar panels using a High Critical Temperature Superconductor Superconducting Quantum Interference Device (HTS-SQUID) gradiometer with ramp edge type Josephson junctions. Two independent components of the magnetic fields perpendicular to the panel surface (∂Bz/∂x, ∂Bz/∂y) were detected. The direct current of the solar panel is visualized by calculating the composition of the two signal components, the phase angle, and mapping the DC current vector. The developed system can evaluate the uniformity of DC current distributions precisely and may be applicable for defect detection of solar panels.

  4. SQUID application research in Japan

    International Nuclear Information System (INIS)

    Itozaki, Hideo

    2003-01-01

    Japanese research activities using SQUIDs are reviewed in this paper. Low-T c SQUIDs are applied to multi-channel systems for magnetoencephalogram (MEG) and magnetocardiogram (MCG). High-T c SQUIDs are applied to MCG, nondestructive evaluation (NDE), SQUID microscopy, biological testing using fine magnetic markers, geological surveying, food inspection, large-scale integration (LSI) defect analysis and SQUID-NQR (nuclear quadrupole resonance). These applications of SQUIDs are being researched and developed actively and some of them are expected to be in the commercial market in the near future

  5. High temperature superconducting devices for SQUIDs, HF- and FIR-applications. Subproject: Thin-film heterostructures for devices and loss mechanisms in HTS. Final report

    International Nuclear Information System (INIS)

    Froehlich, O.

    1994-06-01

    The successful use of electronic devices fabricated from the High Temperature Superconductors (HTS) in SQUID systems as well as HF- and FIR-applications requires the development of a suitable thin-film and device technology. Within the present research project we successfully established the technological base for the deposition and patterning of epitaxial HTS thin-films (YBaCuO, NdCeCuO) and heterostructures of HTS and insulating materials (e.g. NdGaO 3 ). YBaCuO/NdCeCuO superlattices could be successfully fabricated such that both components of the hterostructure were in a superconducting state. This allows for the fabrication and study of superconducting p-n structures. With respect to the fabrication of single grain boundary Josephson junctions based on the bicrystal technique we could establish an international leadership. The small spread of the junction parameters (∝20%) allowed the controllable fabrication of simple devices such as SQUIDs or flux-flow transistors. By the development of a new measuring technique the homogeneity of the critical current density distribution in grain-boundary junctions could be investigated on a sub-μm-scale. Within this project we also could establish a good understanding of the physical background of the transport phenomena in the mixed state of HTS in the presence of a temperature gradient. (orig./MM) [de

  6. Technology for SQUID systems for the application in magnetically disturbed environment. Final report

    International Nuclear Information System (INIS)

    Schultze, V.; Fritzsch, L.; Thrum, F.; Stolz, R.; Chwala, A.

    1996-06-01

    International available SQUID systems, as used for example in biomagnetic research, obtain high sensitivities for magnetic fields or magnetic fieldgradients. However, these systems were optimised for operation in magnetically shielded rooms. Goal of this project was to develop SQUIDs suppressing the external noise and therefore are able to operate without external shielding in normal environments. As a consequence, the required Nb/AlO x /Nb technology has also been developed. The resulting planar SQUID gradiometers as produced at the IPHT, reached a suppression of homogeneous fields up to 5 x 10 4 for a magnetic field sensitivity c , project. SQUID gradiometers, produced using YBCO technology, were successfully operated in non shielded eddy current NDE measurements in the lab. (orig.) [de

  7. HTS planar gradiometer consisting of SQUID with multi-turn input coil and large pickup coil made of GdBCO coated conductor

    International Nuclear Information System (INIS)

    Tsukamoto, Akira; Adachi, Seiji; Oshikubo, Yasuo; Hato, Tsunehiro; Enpuku, Keiji; Sugisaki, Masaki; Arai, Eiichi; Tanabe, Keiichi

    2013-01-01

    Highlights: ► We fabricated a large HTS gradiometer with 350-mm-long baseline. ► A 6-turn gradiometric planar pickup was made of a HTS coated conductor. ► A 26-turn HTS input coil chip was stacked on a HTS thin film gradiometer chip. ► A mechanical balancing structure was also implemented. ► The fabricated gradiometer showed a gradient field noise of 0.8 fT/cm Hz 1/2 . -- Abstract: We have investigated the fabrication of a high-temperature superconducting (HTS) gradiometer with long baseline for geophysical applications. The proof-of-concept gradiometer using a 1-turn pickup coil made of a GdBa 2 Cu 3 O y coated conductor (GCC) and 5.5-turn input coil integrated on a SQUID was fabricated in our previous work. In this study, we have optimized the device structure to improve the frequency response, gradient field sensitivity and gradiometer balance. The fabricated flux transformer consists of a 6-turn planar gradiometric pickup coil and a 26-turn input coil made of an HTS thin film. A low-melting-point alloy was used to connect polished Ag surfaces of the CGG pickup coil and Au pads of the input coil. An HTS SQUID was formed on another substrate and stacked on the input coil. A mechanical balancing structure using three pieces of GCC as a superconducting shield was also implemented. The fabricated gradiometer showed a gradient field noise of 0.8 fT/cm Hz 1/2 in the white noise regions, a gradiometer balance of 1/142, and a cutoff frequency of 9 Hz corresponding to a 2 mΩ contact resistance between the pickup coil and the input coil

  8. Development of Contaminant Detection System using HTS SQUIDs

    International Nuclear Information System (INIS)

    Ohtani, T.; Tanaka, S.; Narita, Y.; Ariyoshi, S.; Suzuki, S.

    2015-01-01

    In terms of food safety, mixture of contaminants in food is a serious problem for not only consumers but also manufacturers. In general, the target size of the metallic contaminant to be removed is 0.5 mm. However, it is a difficult task for manufacturers to achieve this target, because of lower system sensitivity. Therefore, we developed a food contaminant detection system based on high-Tc RF superconducting quantum interference devices (SQUIDs), which are highly sensitive magnetic sensors. This study aims to improve the signal to noise ratio (SNR) of the system and detect a 0.5 mm diameter steel ball. Using a real time digital signal processing technique along with analog band-pass filters, we improved the SNR of the system. Owing to the improved SNR, a steel ball with a diameter as small as 0.3 mm, with stand-off distance of 117 mm was successfully detected. These results suggest that the proposed system is a promising candidate for the detection of metallic contaminants in food products

  9. Detection of fine magnetic particles coated on a thread using an HTS-SQUID

    International Nuclear Information System (INIS)

    Kawagishi, K.; Itozaki, H.; Kondo, T.; Komori, K.; Koetitz, R.

    2004-01-01

    Polymer-coated magnetic particles, which contain superparamagnetic ferrite nanoparticles, were attached to a nylon thread of 0.35 mm in diameter and were detected by an HTS-SQUID. The length of the sample attached into the thread was within 3 mm and its interval was 30 mm. The particles were magnetized by a coil applied dc field or by a magnet of 1.4 T. The thread ran 2 mm under the SQUID with 20-100 mm/s of the rate. Signals of magnetic beads were detected and the peak-to-peak amplitude of the signals was directly proportional to the applied field and the weight of the magnetic particles. Obtained peak-to-peak amplitude for 20 ng of magnetite particles was 350 pT at 0.25 mT of applied dc field with noise of 18 pT, and estimated detection limit was 10 ng. S/N ratio was improved by the remanence measurement using the magnet and 5.8 ng of detection limit was obtained. This measurement has been proved to be promising for the continuous analysis of ultra dilute DNA solution

  10. Non-destructive testing (NDT) of metal cracks using a high Tc rf-SQUID and eddy current method

    Energy Technology Data Exchange (ETDEWEB)

    Lu, D.F.; Fan, C.; Ruan, J.Z. [Midwest Superconductivity Inc., Lawrence, KS (United States)] [and others

    1994-12-31

    A SQUID is the most sensitive device to detect change in magnetic field. A non-destructive testing (NDT) device using high temperature SQUIDs and eddy current method will be much more sensitive than those currently used eddy current systems, yet much cheaper than one with low temperature SQUIDs. In this paper, we present our study of such a NDT device using a high temperature superconducting rf-SQUID as a gradiometer sensor. The result clearly demonstrates the expected sensitivity of the system, and indicates the feasibility of building a portable HTS SQUID NDT device with the help from cryocooler industry. Such a NDT device will have a significant impact on metal corrosion or crack detection technology.

  11. Non-destructive testing (NDT) of metal cracks using a high Tc rf-SQUID and eddy current method

    International Nuclear Information System (INIS)

    Lu, D.F.; Fan, C.; Ruan, J.Z.

    1994-01-01

    A SQUID is the most sensitive device to detect change in magnetic field. A non-destructive testing (NDT) device using high temperature SQUIDs and eddy current method will be much more sensitive than those currently used eddy current systems, yet much cheaper than one with low temperature SQUIDs. In this paper, we present our study of such a NDT device using a high temperature superconducting rf-SQUID as a gradiometer sensor. The result clearly demonstrates the expected sensitivity of the system, and indicates the feasibility of building a portable HTS SQUID NDT device with the help from cryocooler industry. Such a NDT device will have a significant impact on metal corrosion or crack detection technology

  12. Highly balanced gradiometer systems based on HTS-SQUIDs for the use in magnetically unshielded environment

    NARCIS (Netherlands)

    Borgmann, H.J.R.; Rijpma, A.P.; ter Brake, Hermanus J.M.; Rogalla, Horst; David, P.

    1999-01-01

    Two different concepts for gradiometer formation were tested applying high-temperature rf SQUIDs operated at 77 K in liquid nitrogen. All gradiometer systems are fully based on magnetometers. The first concept applies a compensating magnetometer at different positions to actively cancel the magnetic

  13. Cryogenic cooling system for HTS cable

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Shigeru [Taiyo Nippon Sanso, Tsukuba (Japan)

    2017-06-15

    Recently, Research and development activity of HTS (High Temperature Superconducting) power application is very progressive worldwide. Especially, HTS cable system and HTSFCL (HTS Fault current limiter) system are proceeding to practical stages. In such system and equipment, cryogenic cooling system, which makes HTS equipment cooled lower than critical temperature, is one of crucial components. In this article, cryogenic cooling system for HTS application, mainly cable, is reviewed. Cryogenic cooling system can be categorized into conduction cooling system and immersion cooling system. In practical HTS power application area, immersion cooling system with sub-cooled liquid nitrogen is preferred. The immersion cooling system is besides grouped into open cycle system and closed cycle system. Turbo-Brayton refrigerator is a key component for closed cycle system. Those two cooling systems are focused in this article. And, each design and component of the cooling system is explained.

  14. Development of contaminant detection system based on ultra-low field SQUID-NMR/MRI

    International Nuclear Information System (INIS)

    Tsunaki, S; Yamamoto, M; Hatta, J; Hatsukade, Y; Tanaka, S

    2014-01-01

    We have developed an ultra-low field (ULF) NMR/MRI system using an HTS-rf-SQUID and evaluated performance of the system as a contaminant detection system for foods and drinks. In this work, we measured 1D MRIs from water samples with or without various contaminants, such as aluminum and glass balls using the system. In the 1D MRIs, changes of the MRI spectra were detected, corresponding to positions of the contaminants. We measured 2D MRIs from food samples with and without a hole. In the 2D MRIs, the hole position in the sample was well visualized. These results show that the feasibility of the system to detect and localize contaminants in foods and drinks.

  15. Theory and application of high temperature superconducting eddy current probes for nondestructive evaluation

    Science.gov (United States)

    Claycomb, James Ronald

    1998-10-01

    Several High-T c Superconducting (HTS) eddy current probes have been developed for applications in electromagnetic nondestructive evaluation (NDE) of conducting materials. The probes utilize high-T c SUperconducting Quantum Interference Device (SQUID) magnetometers to detect the fields produced by the perturbation of induced eddy currents resulting from subsurface flaws. Localized HTS shields are incorporated to selectively screen out environmental electromagnetic interference and enable movement of the instrument in the Earth's magnetic field. High permeability magnetic shields are employed to focus flux into, and thereby increase the eddy current density in the metallic test samples. NDE test results are presented, in which machined flaws in aluminum alloy are detected by probes of different design. A novel current injection technique performing NDE of wires using SQUIDs is also discussed. The HTS and high permeability shields are designed based on analytical and numerical finite element method (FEM) calculations presented here. Superconducting and high permeability magnetic shields are modeled in uniform noise fields and in the presence of dipole fields characteristic of flaw signals. Several shield designs are characterized in terms of (1) their ability to screen out uniform background noise fields; (2) the resultant improvement in signal-to-noise ratio and (3) the extent to which dipole source fields are distorted. An analysis of eddy current induction is then presented for low frequency SQUID NDE. Analytical expressions are developed for the induced eddy currents and resulting magnetic fields produced by excitation sources above conducting plates of varying thickness. The expressions derived here are used to model the SQUID's response to material thinning. An analytical defect model is also developed, taking into account the attenuation of the defect field through the conducting material, as well as the current flow around the edges of the flaw. Time harmonic

  16. Commercialization of Medium Voltage HTS Triax TM Cable Systems

    Energy Technology Data Exchange (ETDEWEB)

    Knoll, David

    2012-12-31

    The original project scope that was established in 2007 aimed to install a 1,700 meter (1.1 mile) medium voltage HTS Triax{TM} cable system into the utility grid in New Orleans, LA. In 2010, however, the utility partner withdrew from the project, so the 1,700 meter cable installation was cancelled and the scope of work was reduced. The work then concentrated on the specific barriers to commercialization of HTS cable technology. The modified scope included long-length HTS cable design and testing, high voltage factory test development, optimized cooling system development, and HTS cable life-cycle analysis. In 2012, Southwire again analyzed the market for HTS cables and deemed the near term market acceptance to be low. The scope of work was further reduced to the completion of tasks already started and to testing of the existing HTS cable system in Columbus, OH. The work completed under the project included: • Long-length cable modeling and analysis • HTS wire evaluation and testing • Cable testing for AC losses • Optimized cooling system design • Life cycle testing of the HTS cable in Columbus, OH • Project management. The 200 meter long HTS Triax{TM} cable in Columbus, OH was incorporated into the project under the initial scope changes as a test bed for life cycle testing as well as the site for an optimized HTS cable cooling system. The Columbus cable utilizes the HTS TriaxTM design, so it provided an economical tool for these of the project tasks.

  17. Development of toroid-type HTS DC reactor series for HVDC system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kwangmin, E-mail: kwangmin81@gmail.com [Changwon National University, 55306 Sarim-dong, Changwon 641-773 (Korea, Republic of); Go, Byeong-Soo; Park, Hea-chul; Kim, Sung-kyu; Kim, Seokho [Changwon National University, 55306 Sarim-dong, Changwon 641-773 (Korea, Republic of); Lee, Sangjin [Uiduk University, Gyeongju 780-713 (Korea, Republic of); Oh, Yunsang [Vector Fields Korea Inc., Pohang 790-834 (Korea, Republic of); Park, Minwon; Yu, In-Keun [Changwon National University, 55306 Sarim-dong, Changwon 641-773 (Korea, Republic of)

    2015-11-15

    Highlights: • The authors developed the 400 mH, 400 A class toroid-type HTS DC reactor system. • The target temperature, inductance and operating current are under 20 K at magnet, 400 mH and 400 A, respectively. All target performances of the HTS DC reactor were achieved. • The HTS DC reactor was conducted through the interconnection operation with a LCC type HVDC system. • Now, the authors are studying the 400 mH, 1500 A class toroid-type HTS DC reactor for the next phase HTS DC reactor. - Abstract: This paper describes design specifications and performance of a toroid-type high-temperature superconducting (HTS) DC reactor. The first phase operation targets of the HTS DC reactor were 400 mH and 400 A. The authors have developed a real HTS DC reactor system during the last three years. The HTS DC reactor was designed using 2G GdBCO HTS wires. The HTS coils of the toroid-type DC reactor magnet were made in the form of a D-shape. The electromagnetic performance of the toroid-type HTS DC reactor magnet was analyzed using the finite element method program. A conduction cooling method was adopted for reactor magnet cooling. The total system has been successfully developed and tested in connection with LCC type HVDC system. Now, the authors are studying a 400 mH, kA class toroid-type HTS DC reactor for the next phase research. The 1500 A class DC reactor system was designed using layered 13 mm GdBCO 2G HTS wire. The expected operating temperature is under 30 K. These fundamental data obtained through both works will usefully be applied to design a real toroid-type HTS DC reactor for grid application.

  18. Development of toroid-type HTS DC reactor series for HVDC system

    International Nuclear Information System (INIS)

    Kim, Kwangmin; Go, Byeong-Soo; Park, Hea-chul; Kim, Sung-kyu; Kim, Seokho; Lee, Sangjin; Oh, Yunsang; Park, Minwon; Yu, In-Keun

    2015-01-01

    Highlights: • The authors developed the 400 mH, 400 A class toroid-type HTS DC reactor system. • The target temperature, inductance and operating current are under 20 K at magnet, 400 mH and 400 A, respectively. All target performances of the HTS DC reactor were achieved. • The HTS DC reactor was conducted through the interconnection operation with a LCC type HVDC system. • Now, the authors are studying the 400 mH, 1500 A class toroid-type HTS DC reactor for the next phase HTS DC reactor. - Abstract: This paper describes design specifications and performance of a toroid-type high-temperature superconducting (HTS) DC reactor. The first phase operation targets of the HTS DC reactor were 400 mH and 400 A. The authors have developed a real HTS DC reactor system during the last three years. The HTS DC reactor was designed using 2G GdBCO HTS wires. The HTS coils of the toroid-type DC reactor magnet were made in the form of a D-shape. The electromagnetic performance of the toroid-type HTS DC reactor magnet was analyzed using the finite element method program. A conduction cooling method was adopted for reactor magnet cooling. The total system has been successfully developed and tested in connection with LCC type HVDC system. Now, the authors are studying a 400 mH, kA class toroid-type HTS DC reactor for the next phase research. The 1500 A class DC reactor system was designed using layered 13 mm GdBCO 2G HTS wire. The expected operating temperature is under 30 K. These fundamental data obtained through both works will usefully be applied to design a real toroid-type HTS DC reactor for grid application.

  19. Development of toroid-type HTS DC reactor series for HVDC system

    Science.gov (United States)

    Kim, Kwangmin; Go, Byeong-Soo; Park, Hea-chul; Kim, Sung-kyu; Kim, Seokho; Lee, Sangjin; Oh, Yunsang; Park, Minwon; Yu, In-Keun

    2015-11-01

    This paper describes design specifications and performance of a toroid-type high-temperature superconducting (HTS) DC reactor. The first phase operation targets of the HTS DC reactor were 400 mH and 400 A. The authors have developed a real HTS DC reactor system during the last three years. The HTS DC reactor was designed using 2G GdBCO HTS wires. The HTS coils of the toroid-type DC reactor magnet were made in the form of a D-shape. The electromagnetic performance of the toroid-type HTS DC reactor magnet was analyzed using the finite element method program. A conduction cooling method was adopted for reactor magnet cooling. The total system has been successfully developed and tested in connection with LCC type HVDC system. Now, the authors are studying a 400 mH, kA class toroid-type HTS DC reactor for the next phase research. The 1500 A class DC reactor system was designed using layered 13 mm GdBCO 2G HTS wire. The expected operating temperature is under 30 K. These fundamental data obtained through both works will usefully be applied to design a real toroid-type HTS DC reactor for grid application.

  20. Nb nanoSQUIDs for detection of small spin systems

    Energy Technology Data Exchange (ETDEWEB)

    Woelbing, R.; Nagel, J.; Kemmler, M.; Kleiner, R.; Koelle, D. [Physikalisches Institut, Universitaet Tuebingen (Germany); Kieler, O.; Weimann, T.; Kohlmann, J.; Zorin, A. [Fachbereich 2.4 ' ' Quantenelektronik' ' , PTB Braunschweig (Germany); Buchter, A.; Xue, F.; Poggio, M. [Department of Physics, University of Basel (Switzerland); Rueffer, D.; Russo-Averchi, E.; Fontcuberta i Morral, A. [Laboratoire des Materiaux Semiconducteurs, EPF Lausanne (Switzerland); Huber, R.; Berberich, P. [Physik-Department E10, Technische Universitaet Muenchen (Germany); Grundler, D. [Laboratoire des Materiaux Semiconducteurs, EPF Lausanne (Switzerland); Physik-Department E10, Technische Universitaet Muenchen (Germany)

    2013-07-01

    We report on the realization of highly sensitive dc nanoSQUIDs for the investigation of small spin systems in moderate magnetic fields. The Nb SQUIDs are based on normal metal Josephson junctions made of HfTi and patterned by e-beam lithography. We demonstrate stable operation up to B = ± 50 mT without degradation of rms flux noise (S{sub Φ}{sup 1/2} ≤ 280 nΦ{sub 0}/√(Hz)). We also present a multifunctional system combining a Nb nanoSQUID and a low-temperature magnetic force microscope (LTMFM) with a Ni nanotube as a scanning tip. This system allows for magnetization measurements of the Ni tube by using both, LTMFM and SQUID readout. Furthermore, the measurement of magnetic flux Φ vs. position of the particle provides an experimental determination of the coupling factor φ{sub μ} = Φ/μ between SQUID and Ni tube with magnetic moment μ. The results confirm our predictions from numerical simulations, taking into account the SQUID geometry.

  1. Detecting damage in steel with scanning SQUID microscopy

    International Nuclear Information System (INIS)

    Lee, Tae-Kyu; Clatterbuck, D.M.; Morris, J.W. Jr.; Shaw, T.J.; Lee, Seungkyun; Clarke, John

    2002-01-01

    A 'Holy Grail' of NDE research is a non-destructive method for measuring fatigue damage prior to crack initiation. High-Tc scanning SQUID microscopy may be a useful tool. Because of the exceptional magnetic sensitivity of this technique, fatigue damage can be detected well before microcrack initiation, and in the absence of other obvious microstructure or property changes. Given the spatial resolution of the technique, undamaged material can be located and used to set internal standards

  2. Detecting damage in steel with scanning SQUID microscopy

    International Nuclear Information System (INIS)

    Lee, Tae-Kyu; Clatterbuck, David; Morris Jr., J.W.; Shaw, T.J.; McDermott R.; Clarke, John

    2001-01-01

    A ''Holy Grail'' of NDE research is a non-destructive method for measuring fatigue damage prior to crack initiation. High-Tc scanning SQUID microscopy may be a useful tool. Because of the exceptional magnetic sensitivity of this technique, fatigue damage can be detected well before microcrack initiation, and in the absence of other obvious microstructure or property changes. Given the spatial resolution of the technique, undamaged material can be located and used to set internal standards

  3. Magnetic properties of thin Ni films measured by a dc SQUID-based magnetic microscope

    DEFF Research Database (Denmark)

    Snigirev, O.V.; Andreev, K.E.; Tishin, A.M.

    1997-01-01

    We have applied a scanning HTS (high-temperature superconductor) de SQUID (superconducting quantum interference device) -based magnetic microscope to study the magnetic properties of Au/Ni/Si(100) films in the thickness range from 8 to 200 Angstrom at T = 77 K. A one-domain structure with in...

  4. Thermal analysis of the conduction cooling system for HTS SMES system of 600 kJ class

    International Nuclear Information System (INIS)

    Hong, Yong Ju; Yeom, Han Kil; Park, Seong Je; Kim, Hyo Bong; Koh, Deuk Yong

    2007-01-01

    SMES systems need cryogenic cooling systems. Conduction cooling system has more effective, compact structure than cryogen. In general, 2 stage GM cryocoolers are used for conduction cooling of HTS SMES system. 1st stages of cryocoolers are used for the cooling of current leads and radiation shields, and 2nd stages of cryocoolers for HTS coil. For the effective conduction cooling of the HTS SMES system, the temperature difference between the cryocooler and HTS coil should be minimized. In this paper, a cryogenic conduction cooling system for HTS SMES is analyzed to evaluate the performance of the cooling system. The analysis is carried out for the steady state with the heat generation of the HTS coil and effects of the thermal contact resistance. The results show the effects of the heat generation and thermal contact resistance on the temperature distribution

  5. Development of an image processing system in splendid squid quality classification

    Science.gov (United States)

    Masunee, Niyada; Chaiprapat, Supapan; Waiyagan, Kriangkrai

    2013-07-01

    Agricultural products typically exhibit high variance in quality characteristics. To assure customer satisfaction and control manufacturing productivity, quality classification is necessary to screen off defective items and to grade the products. This article presents an application of image processing techniques on squid grading and defect discrimination. A preliminary study indicated that surface color was an efficient determinant to justify quality of splendid squids. In this study, a computer vision system (CVS) was developed to examine the characteristics of splendid squids. Using image processing techniques, squids could be classified into three different quality grades as in accordance with an industry standard. The developed system first sifted through squid images to reject ones with black marks. Qualified squids were graded on a proportion of white, pink, and red regions appearing on their bodies by using fuzzy logic. The system was evaluated on 100 images of squids at different quality levels. It was found that accuracy obtained by the proposed technique was 95% compared with sensory evaluation of an expert.

  6. Ultra-Low Field SQUID-NMR using LN2 Cooled Cu Polarizing Field coil

    Science.gov (United States)

    Demachi, K.; Kawagoe, S.; Ariyoshi, S.; Tanaka, S.

    2017-07-01

    We are developing an Ultra-Low Field (ULF) Magnetic Resonance Imaging (MRI) system using a High-Temperature Superconductor superconducting quantum interference device (HTS rf-SQUID) for food inspection. The advantages of the ULF-NMR (Nuclear Magnetic Resonance) / MRI as compared with a conventional high field MRI are that they are compact and of low cost. In this study, we developed a ULF SQUID-NMR system using a polarizing coil to measure fat of which relaxation time T1 is shorter. The handmade polarizing coil was cooled by liquid nitrogen to reduce the resistance and accordingly increase the allowable current. The measured decay time of the polarizing field was 40 ms. The measurement system consisted of the liquid nitrogen cooled polarizing coil, a SQUID, a Cu wound flux transformer, a measurement field coil for the field of 47 μT, and an AC pulse coil for a 90°pulse field. The NMR measurements were performed in a magnetically shielded room to reduce the environmental magnetic field. The size of the sample was ϕ35 mm × L80 mm. After applying a polarizing field and a 90°pulse, an NMR signal was detected by the SQUID through the flux transformer. As a result, the NMR spectra of fat samples were obtained at 2.0 kHz corresponding to the measurement field Bm of 47 μT. The T1 relaxation time of the mineral oil measured in Bm was 45 ms. These results suggested that the ULF-NMR/MRI system has potential for food inspection.

  7. Transient analysis of an HTS DC power cable with an HVDC system

    International Nuclear Information System (INIS)

    Dinh, Minh-Chau; Ju, Chang-Hyeon; Kim, Jin-Geun; Park, Minwon; Yu, In-Keun; Yang, Byeongmo

    2013-01-01

    Highlights: •A model of an HTS DC power cable was developed using real time digital simulator. •The simulations of the HTS DC power cable in connection with an HVDC system were performed. •The transient analysis results of the HTS DC power cable were presented. -- Abstract: The operational characteristics of a superconducting DC power cable connected to a highvoltage direct current (HVDC) system are mainly concerned with the HVDC control and protection system. To confirm how the cable operates with the HVDC system, verifications using simulation tools are needed. This paper presents a transient analysis of a high temperature superconducting (HTS) DC power cable in connection with an HVDC system. The study was conducted via the simulation of the HVDC system and a developed model of the HTS DC power cable using a real time digital simulator (RTDS). The simulation was performed with some cases of short circuits that may have caused system damage. The simulation results show that during the faults, the quench did not happen with the HTS DC power cable because the HVDC controller reduced some degree of the fault current. These results could provide useful data for the protection design of a practical HVDC and HTS DC power cable system

  8. Transient analysis of an HTS DC power cable with an HVDC system

    Energy Technology Data Exchange (ETDEWEB)

    Dinh, Minh-Chau, E-mail: thanchau7787@gmail.com [Department of Electrical Engineering, Changwon National University, 9 Sarim-Dong, Changwon 641-773 (Korea, Republic of); Ju, Chang-Hyeon; Kim, Jin-Geun; Park, Minwon [Department of Electrical Engineering, Changwon National University, 9 Sarim-Dong, Changwon 641-773 (Korea, Republic of); Yu, In-Keun, E-mail: yuik@cwnu.ac.kr [Department of Electrical Engineering, Changwon National University, 9 Sarim-Dong, Changwon 641-773 (Korea, Republic of); Yang, Byeongmo [Korea Electric Power Research Institute, 105 Munji-Ro, Yuseong-Gu, Daejon 305-760 (Korea, Republic of)

    2013-11-15

    Highlights: •A model of an HTS DC power cable was developed using real time digital simulator. •The simulations of the HTS DC power cable in connection with an HVDC system were performed. •The transient analysis results of the HTS DC power cable were presented. -- Abstract: The operational characteristics of a superconducting DC power cable connected to a highvoltage direct current (HVDC) system are mainly concerned with the HVDC control and protection system. To confirm how the cable operates with the HVDC system, verifications using simulation tools are needed. This paper presents a transient analysis of a high temperature superconducting (HTS) DC power cable in connection with an HVDC system. The study was conducted via the simulation of the HVDC system and a developed model of the HTS DC power cable using a real time digital simulator (RTDS). The simulation was performed with some cases of short circuits that may have caused system damage. The simulation results show that during the faults, the quench did not happen with the HTS DC power cable because the HVDC controller reduced some degree of the fault current. These results could provide useful data for the protection design of a practical HVDC and HTS DC power cable system.

  9. Electromagnetic Performance Calculation of HTS Linear Induction Motor for Rail Systems

    Science.gov (United States)

    Liu, Bin; Fang, Jin; Cao, Junci; Chen, Jie; Shu, Hang; Sheng, Long

    2017-07-01

    According to a high temperature superconducting (HTS) linear induction motor (LIM) designed for rail systems, the influence of electromagnetic parameters and mechanical structure parameters on the electromagnetic horizontal thrust, vertical force of HTS LIM and the maximum vertical magnetic field of HTS windings are analyzed. Through the research on the vertical field of HTS windings, the development regularity of the HTS LIM maximum input current with different stator frequency and different thickness value of the secondary conductive plate is obtained. The theoretical results are of great significance to analyze the stability of HTS LIM. Finally, based on theory analysis, HTS LIM test platform was built and the experiment was carried out with load. The experimental results show that the theoretical analysis is correct and reasonable.

  10. Electromagnetic Performance Calculation of HTS Linear Induction Motor for Rail Systems

    International Nuclear Information System (INIS)

    Liu, Bin; Fang, Jin; Cao, Junci; Chen, Jie; Shu, Hang; Sheng, Long

    2017-01-01

    According to a high temperature superconducting (HTS) linear induction motor (LIM) designed for rail systems, the influence of electromagnetic parameters and mechanical structure parameters on the electromagnetic horizontal thrust, vertical force of HTS LIM and the maximum vertical magnetic field of HTS windings are analyzed. Through the research on the vertical field of HTS windings, the development regularity of the HTS LIM maximum input current with different stator frequency and different thickness value of the secondary conductive plate is obtained. The theoretical results are of great significance to analyze the stability of HTS LIM. Finally, based on theory analysis, HTS LIM test platform was built and the experiment was carried out with load. The experimental results show that the theoretical analysis is correct and reasonable. (paper)

  11. Ultra-sensitive sensors for weak electromagnetic fields using high-Tc SQUIDS for biomagnetism, NDE, and corrosion currents

    International Nuclear Information System (INIS)

    Kraus, R.H. Jr.; Flynn, E.R.; Espy, M.; Jia, Q.X.; Wu, X.D.; Reagor, D.

    1998-01-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The research has directly contributed to a new DOE supported project, three patents (one granted and two submitted), and several potential opportunities for new program funding at the Laboratory. The authors report significant developments extending from basic understanding of and fabrication techniques for high critical-temperature (high-T c ) SQUID devices to the development of high-level applications such as the SQUID Microscope. The development of ramp edge geometry and silver-doped YBa 2 Cu 3 O 7-x (YBCO) electrodes has tremendously improved the performance of high-T c SQUIDS. Recent experiments have proven and quantified the LANL-patented superconducting imaging plane gradiometry concept. A SQUID microscope, developed largely under this project, has recently acquired data that demonstrated exceptional sensitivity and resolution. New techniques for background noise suppression, needed to use the extraordinarily sensitive SQUID sensors in unshielded environments, have also been developed. Finally, initial investigations to use SQUIDs in a basic physics experiment to measure the electric dipole moment of the neutron were very successful

  12. HTS thin films: Passive microwave components and systems integration issues

    International Nuclear Information System (INIS)

    Miranda, F.A.; Chorey, C.M.; Bhasin, K.B.

    1994-01-01

    The excellent microwave properties of the High-Temperature-Superconductors (HTS) have been amply demonstrated in the laboratory by techniques such as resonant cavity, power transmission and microstrip resonator measurements. The low loss and high Q passive structures made possible with HTS, present attractive options for applications in commercial, military and space-based systems. However, to readily insert HTS into these systems improvement is needed in such areas as repeatability in the deposition and processing of the HTS films, metal-contact formation, wire bonding, and overall film endurance to fabrication and assembly procedures. In this paper we present data compiled in our lab which illustrate many of the problems associated with these issues. Much of this data were obtained in the production of a space qualified hybrid receiver-downconverter module for the Naval Research Laboratory's High Temperature Superconductivity Space Experiment II (HTSSE-II). Examples of variations observed in starting films and finished circuits will be presented. It is shown that under identical processing the properties of the HTS films can degrade to varying extents. Finally, we present data on ohmic contacts and factors affecting their adhesion to HTS films, strength of wire bonds made to such contacts, and aging effects

  13. Status of integration of small computers into NDE systems

    International Nuclear Information System (INIS)

    Dau, G.J.; Behravesh, M.M.

    1988-01-01

    Introduction of computers in nondestructive evaluations (NDE) has enabled data acquisition devices to provide a more thorough and complete coverage in the scanning process, and has aided human inspectors in their data analysis and decision making efforts. The price and size/weight of small computers, coupled with recent increases in processing and storage capacity, have made small personal computers (PC's) the most viable platform for NDE equipment. Several NDE systems using minicomputers and newer PC-based systems, capable of automatic data acquisition, and knowledge-based analysis of the test data, have been field tested in the nuclear power plant environment and are currently available through commercial sources. While computers have been in common use for several NDE methods during the last few years, their greatest impact, however, has been on ultrasonic testing. This paper discusses the evolution of small computers and their integration into the ultrasonic testing process

  14. Two-stage SQUID systems and transducers development for MiniGRAIL

    International Nuclear Information System (INIS)

    Gottardi, L; Podt, M; Bassan, M; Flokstra, J; Karbalai-Sadegh, A; Minenkov, Y; Reinke, W; Shumack, A; Srinivas, S; Waard, A de; Frossati, G

    2004-01-01

    We present measurements on a two-stage SQUID system based on a dc-SQUID as a sensor and a DROS as an amplifier. We measured the intrinsic noise of the dc-SQUID at 4.2 K. A new dc-SQUID has been fabricated. It was specially designed to be used with MiniGRAIL transducers. Cooling fins have been added in order to improve the cooling of the SQUID and the design is optimized to achieve the quantum limit of the sensor SQUID at temperatures above 100 mK. In this paper we also report the effect of the deposition of a Nb film on the quality factor of a small mass Al5056 resonator. Finally, the results of Q-factor measurements on a capacitive transducer for the current MiniGRAIL run are presented

  15. HTS thin films: Passive microwave components and systems integration issues

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, F.A.; Chorey, C.M.; Bhasin, K.B. [National Aeronautics and Space Administration, Cleveland, OH (United States)

    1994-12-31

    The excellent microwave properties of the High-Temperature-Superconductors (HTS) have been amply demonstrated in the laboratory by techniques such as resonant cavity, power transmission and microstrip resonator measurements. The low loss and high Q passive structures made possible with HTS, present attractive options for applications in commercial, military and space-based systems. However, to readily insert HTS into these systems improvement is needed in such areas as repeatability in the deposition and processing of the HTS films, metal-contact formation, wire bonding, and overall film endurance to fabrication and assembly procedures. In this paper we present data compiled in our lab which illustrate many of the problems associated with these issues. Much of this data were obtained in the production of a space qualified hybrid receiver-downconverter module for the Naval Research Laboratory`s High Temperature Superconductivity Space Experiment II (HTSSE-II). Examples of variations observed in starting films and finished circuits will be presented. It is shown that under identical processing the properties of the HTS films can degrade to varying extents. Finally, we present data on ohmic contacts and factors affecting their adhesion to HTS films, strength of wire bonds made to such contacts, and aging effects.

  16. Analysis and experimental validation of an HTS linear synchronous propulsion prototype with HTS magnetic suspension

    International Nuclear Information System (INIS)

    Jin Jianxun; Zheng Luhai; Guo Youguang; Xu Wei; Zhu Jianguo

    2011-01-01

    An HTS linear synchronous propulsion prototype with an HTSLSM drive is developed. The feasibility of combining an HTSLSM with an HTS magnetic suspension system has been verified. Three different PMGs are studied by ECS method and experiment verification to obtain an optimal one. The prototype has been tested to obtain the performance and thrust characteristics of the HTSLSM. The measurement results benefit the optimal design and control scheme development for an HTSLSM. A high temperature superconducting (HTS) linear propulsion system composed of a single-sided HTS linear synchronous motor (HTSLSM) in its middle and HTS magnetic suspension sub-systems on both sides has been developed. The HTSLSM uses an HTS bulk magnet array on the moving secondary, and the field-trapped characteristics of the HTS bulk using different magnetized methods have been measured and compared to identify their magnetization capability. In order to generate a large levitation force for the system, three different types of permanent magnet guideways (PMGs) have been numerically analyzed and experimentally verified to obtain an optimal PMG. Based on comprehensive experimental prototype tests, the results show that the HTS linear propulsion system can run with stable magnetic suspension having a constant air-gap length, and the thrust characteristics versus the exciting current, working frequency and the air-gap length have also been obtained. This work forms the basis for developing a practical HTS linear propulsion system by using HTS bulks both for propulsion and suspension.

  17. Research of a 600 kJ HTS-SMES system

    International Nuclear Information System (INIS)

    Seong, K.C.; Kim, H.J.; Kim, S.H.; Park, S.J.; Woo, M.H.; Hahn, S.Y.

    2007-01-01

    This paper describes an overview of researches on a 600 kJ high temperature superconducting magnetic energy storage (HTS-SMES) system in Korea. This project is scheduled to be conducted over three years from September 2004 to August 2007, supported by the Ministry of Commerce, Industry and Energy (MOCIE) of Korea. This project is built based on collaboration among industries, universities, and laboratories. This paper describes current status of the 600 kJ HTS-SMES system in Korea

  18. Low noise SQUIDS

    International Nuclear Information System (INIS)

    Waal, V.J. de.

    1983-01-01

    The design, fabrication and limitations of very sensitive SQUID magnetometers are described. The SQUID magnetometer is based on the Josephson effect. A very low-noise niobium SQUID is described. It is fabricated with ultra-small niobium junctions with an overlapping area smaller than 1 μm 2 . The photolithographic technique developed for its fabrication, is described. Also an integrated system with a SQUID and a first-order gradiometer on a single substrate is presented. Calculations of the resolution of a dc SQUID containing ideal Josephson junctions according to the RSJ model are presented including a parasitic capacitance. The usefulness of the fabricated SQUIDS as well as some remarks on their performance is considered. (Auth.)

  19. Transient analysis of an HTS DC power cable with an HVDC system

    Science.gov (United States)

    Dinh, Minh-Chau; Ju, Chang-Hyeon; Kim, Jin-Geun; Park, Minwon; Yu, In-Keun; Yang, Byeongmo

    2013-11-01

    The operational characteristics of a superconducting DC power cable connected to a highvoltage direct current (HVDC) system are mainly concerned with the HVDC control and protection system. To confirm how the cable operates with the HVDC system, verifications using simulation tools are needed. This paper presents a transient analysis of a high temperature superconducting (HTS) DC power cable in connection with an HVDC system. The study was conducted via the simulation of the HVDC system and a developed model of the HTS DC power cable using a real time digital simulator (RTDS). The simulation was performed with some cases of short circuits that may have caused system damage. The simulation results show that during the faults, the quench did not happen with the HTS DC power cable because the HVDC controller reduced some degree of the fault current. These results could provide useful data for the protection design of a practical HVDC and HTS DC power cable system.

  20. Recent advancements in the SQUID magnetospinogram system

    Science.gov (United States)

    Adachi, Yoshiaki; Kawai, Jun; Haruta, Yasuhiro; Miyamoto, Masakazu; Kawabata, Shigenori; Sekihara, Kensuke; Uehara, Gen

    2017-06-01

    In this study, a new superconducting quantum interference device (SQUID) biomagnetic measurement system known as magnetospinogram (MSG) is developed. The MSG system is used for observation of a weak magnetic field distribution induced by the neural activity of the spinal cord over the body surface. The current source reconstruction for the observed magnetic field distribution provides noninvasive functional imaging of the spinal cord, which enables medical personnel to diagnose spinal cord diseases more accurately. The MSG system is equipped with a uniquely shaped cryostat and a sensor array of vector-type SQUID gradiometers that are designed to detect the magnetic field from deep sources across a narrow observation area over the body surface of supine subjects. The latest prototype of the MSG system is already applied in clinical studies to develop a diagnosis protocol for spinal cord diseases. Advancements in hardware and software for MSG signal processing and cryogenic components aid in effectively suppressing external magnetic field noise and reducing the cost of liquid helium that act as barriers with respect to the introduction of the MSG system to hospitals. The application of the MSG system is extended to various biomagnetic applications in addition to spinal cord functional imaging given the advantages of the MSG system for investigating deep sources. The study also includes a report on the recent advancements of the SQUID MSG system including its peripheral technologies and wide-spread applications.

  1. Micro- and nano-NDE systems for aircraft: great things in small packages

    Science.gov (United States)

    Malas, James C.; Kropas-Hughes, Claudia V.; Blackshire, James L.; Moran, Thomas; Peeler, Deborah; Frazier, W. G.; Parker, Danny

    2003-07-01

    Recent advancements in small, microscopic NDE sensor technologies will revolutionize how aircraft maintenance is done, and will significantly improve the reliability and airworthiness of current and future aircraft systems. A variety of micro/nano systems and concepts are being developed that will enable whole new capabilities for detecting and tracking structural integrity damage. For aging aircraft systems, the impact of micro-NDE sensor technologies will be felt immediately, with dramatic reductions in labor for maintenance, and extended useable life of critical components being two of the primary benefits. For the fleet management of future aircraft systems, a comprehensive evaluation and tracking of vehicle health throughout its entire life cycle will be needed. Indeed, micro/nano NDE systems will be instrumental in realizing this futuristic vision. Several major challenges will need to be addressed, however, before micro- and nano-NDE systems can effectively be implemented, and this will require interdisciplinary research approaches, and a systematic engineering integration of the new technologies into real systems. Future research will need to emphasize systems engineering approaches for designing materials and structures with in-situ inspection and prognostic capabilities. Recent advances in 1) embedded / add-on micro-sensors, 2) computer modeling of nondestructive evaluation responses, and 3) wireless communications are important steps toward this goal, and will ultimately provide previously unimagined opportunities for realizing whole new integrated vehicle health monitoring capabilities. The future use of micro/nano NDE technologies as vehicle health monitoring tools will have profound implications, and will provide a revolutionary way of doing NDE in the near and distant future.

  2. Ultraviolet Laser SQUID Microscope for GaN Blue Light Emitting Diode Testing

    International Nuclear Information System (INIS)

    Daibo, M; Kamiwano, D; Kurosawa, T; Yoshizawa, M; Tayama, N

    2006-01-01

    We carried out non-contacting measurements of photocurrent distributions in GaN blue light emitting diode (LED) chips using our newly developed ultraviolet (UV) laser SQUID microscope. The UV light generates the photocurrent, and then the photocurrent induces small magnetic fields around the chip. An off-axis arranged HTS-SQUID magnetometer is employed to detect a vector magnetic field whose typical amplitude is several hundred femto-tesla. Generally, it is difficult to obtain Ohmic contacts for p-type GaN because of the low hole concentration in the p-type epitaxial layer and the lack of any available metal with a higher work function compared with the p-type GaN. Therefore, a traditional probecontacted electrical test is difficult to conduct for wide band gap semiconductors without an adequately annealed electrode. Using the UV-laser SQUID microscope, the photocurrent can be measured without any electrical contact. We show the photocurrent vector map which was reconstructed from measured magnetic fields data. We also demonstrate how we found the position of a defect of the electrical short circuits in the LED chip

  3. The insulation coordination and surge arrester design for HTS cable system in Icheon substation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hansang, E-mail: Hansang80@korea.ac.kr [School of Railway and Electrical Engineering, Kyungil University, Hayang-eup, Gyeongsan-si, Gyeongsangbuk-do 712-701 (Korea, Republic of); Yoon, Dong-Hee [Department of New and Renewable Energy, Kyungil University, Hayang-eup, Gyeongsan-si, Gyeongsangbuk-do 712-701 (Korea, Republic of); Lee, Seung-Ryul [Korea Electrotechnology Research Institute, Naeson-dong, Uiwang-si, Gyeonggi-do 437-080 (Korea, Republic of); Yang, Byeong-Mo [Korea Electric Power Research Institute, Munji-dong, Yuseong-gu, Daejeon 305-760 (Korea, Republic of); Jang, Gilsoo, E-mail: gjang@korea.ac.kr [School of Electrical Engineering, Korea University, Anam-dong 5-ga, Seongbuk-gu, Seoul 136-713 (Korea, Republic of)

    2013-01-15

    Highlights: ► It is necessary to study lightning response of the HTS cable. ► The analytic model has been developed for the HTS cable in the Icheon substation. ► Well-designed surge arrester has been verified through PSCAD/EMTDC simulations. -- Abstract: This paper proposes an insulation coordination and surge arrester design for HTS (High-Temperature Superconducting) cable system in Icheon substation in Korea. In the aspect of the economic analysis, since the HTS cable is very expensive, the insulation coordination to prevent the dielectric breakdown caused by the lightning surge should be considered carefully. Also, in the aspect of the power system reliability, since the HTS cable has much more capacity compared than conventional power cables and the ripple effect from the HTS cable failure may lead to the wide area blackout, an intensive study for insulation coordination from lightning surge is one of the most important considerations. In this paper, the insulation coordination for lightning surge is verified using HTS cable and power equipment models and the design of the proper surge arrester is proposed.

  4. A novel HTS magnetic levitation dining table

    Science.gov (United States)

    Lu, Yiyun; Huang, Huiying

    2018-05-01

    High temperature superconducting (HTS) bulk can levitate above or suspend below a permanent magnet stably. Many magnificent potential applications of HTS bulk are proposed by researchers. Until now, few reports have been found for real applications of HTS bulk. A complete set of small-scale HTS magnetic levitation table is proposed in the paper. The HTS magnetic levitation table includes an annular HTS magnetic levitation system which is composed of an annular HTS bulk array and an annular permanent magnet guideway (PMG). The annular PMG and the annular cryogenics vessel which used to maintain low temperature environment of the HTS bulk array are designed. 62 YBCO bulks are used to locate at the bottom of the annular vessel. A 3D-model finite element numerical method is used to design the HTS bulk magnetic levitation system. Equivalent magnetic levitation and guidance forces calculation rules are proposed aimed at the annular HTS magnetic levitation system stability. Based on the proposed method, levitation and guidance forces curves of the one YBCO bulk magnetic above PMG could be obtained. This method also can use to assist PMG design to check whether the designed PMG could reach the basic demand of the HTS magnetic levitation table.

  5. NDE for Ablative Thermal Protection Systems, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This program addresses the need for non-destructive evaluation (NDE) methods for quality assessment and defect evaluation of thermal protection systems (TPS),...

  6. Results of KEPCO HTS cable system tests and design of hybrid cryogenic system

    International Nuclear Information System (INIS)

    Lim, J.H.; Sohn, S.H.; Yang, H.S.; Hwang, S.D.; Kim, D.L.; Ryoo, H.S.; Choi, H.O.

    2010-01-01

    In order to investigate the compatibility as a power utility facility, Korea Electric Power Corporation (KEPCO) had installed a 22.9 kV, 1250 A, 100 m long high temperature superconducting (HTS) power cable system. Using the HTS cable, various tests have been performed to investigate electrical and thermo-mechanical properties. Since 2005, a series of thermal cycle tests between liquid nitrogen (LN 2 ) and ambient temperatures have been conducted using a vacuum-pump driven open-loop cryogenic system with a capacity of 3 kW. In the tests, although the open-loop cryogenic system was reliable to operate the HTS cable system, it was not effective in economic view point because LN 2 consumption was larger than expected. In order to secure against unexpected emergencies and solve the problem of LN 2 consumption, a hybrid cryogenic system was designed and installed. A stirling cryocooler was employed and combined with the open-loop cryogenic system. Considering the average heat load at rated condition, the cooling capacity of the cryocooler was determined to 4 kW at 77 K. In this paper, results of performance tests and the design of the hybrid cooling system are presented.

  7. NDE for Ablative Thermal Protection Systems, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — This program addresses the need for non-destructive evaluation (NDE) methods for quality assessment and defect evaluation of thermal protection systems (TPS). Novel...

  8. The SQUID Handbook

    CERN Document Server

    Braginski, Alex I

    2006-01-01

    This two-volume handbook offers a comprehensive and well coordinated presentation of SQUIDs (Superconducting Quantum Interference Devices), including device fundamentals, design, technology, system construction and multiple applications. It is intended to bridge the gap between fundamentals and applications, and will be a valuable textbook reference for graduate students and for professionals engaged in SQUID research and engineering. It will also be of use to specialists in multiple fields of practical SQUID applications, from human brain research and heart diagnostics to airplane and nuclear

  9. Influence of radius of cylinder HTS bulk on guidance force in a maglev vehicle system

    Science.gov (United States)

    Longcai, Zhang

    2014-07-01

    Bulk superconductors had great potential for various engineering applications, especially in a high-temperature superconducting (HTS) maglev vehicle system. In such a system, the HTS bulks were always exposed to AC external magnetic field, which was generated by the inhomogeneous surface magnetic field of the NdFeB guideway. In our previous work, it was observed that the guidance force of the YBCO bulk over the NdFeB guideway used in the HTS maglev vehicle system was decayed by the application of the AC external magnetic field. In this paper, we investigated the influence of the radius of the cylinder HTS bulk exposed to an AC magnetic field perturbation on the guidance force in the maglev vehicle system. From the results, it was found that the guidance force was stronger for the bulk with bigger radius and the guidance force decay rates of the bulks were approximately equal despite of the different radius in the maglev vehicle system. Therefore, in order to obtain higher guidance force in the maglev vehicle system, we could use the cylinder HTS bulks with the bigger radius.

  10. Dc-SQUID sensor system for multichannel neuromagnetometry

    Energy Technology Data Exchange (ETDEWEB)

    Houwman, E.P.; Veldhuis, D.; Flokstra, ter Brake, H.J.M.; Jaszczuk, W.; Rogalla, H. (Univ. of Twente, Faculty of Applied Physics, P.O. Box 217, 7500 AE Enschede (NL)); Martinez, A. (Universidad de Zaragoza, E.T.S.I.I. Maria Zambrano 50, 50015 Zaragoza (ES))

    1991-03-01

    This paper reports on various DC-SQUID sensor configurations developed for use in the authors' 19-channel neuromagetometer. Apart from the standard type, resistively and indictively shunted SQUIDs were made, allowing for a large screening factor {beta} ({gt}1). In this way signal coupling from the pick-up coil to the SQUID is facilitated and capactive coupling between the input coil and the SQUID washer can be decreased. The number of turns of the input coil is decreased further by allowing for an inductance mismatch in the input circuit. Although theoretically both measures give rise to an increased field noise of the sensor, they may lead to a reduction of the excess noise and the noise balance may become positive.

  11. Operational characteristics analysis of a 8 mH class HTS DC reactor for an LCC type HVDC system

    International Nuclear Information System (INIS)

    Kim, S. K.; Go, B. S.; Dinh, M. C.; Park, M.; Yu, I. K.; Kim, J. H.

    2015-01-01

    Many kinds of high temperature superconducting (HTS) devices are being developed due to its several advantages. In particular, the advantages of HTS devices are maximized under the DC condition. A line commutated converter (LCC) type high voltage direct current (HVDC) transmission system requires large capacity of DC reactors to protect the converters from faults. However, conventional DC reactor made of copper causes a lot of electrical losses. Thus, it is being attempted to apply the HTS DC reactor to an HVDC transmission system. The authors have developed a 8 mH class HTS DC reactor and a model-sized LCC type HVDC system. The HTS DC reactor was operated to analyze its operational characteristics in connection with the HVDC system. The voltage at both ends of the HTS DC reactor was measured to investigate the stability of the reactor. The voltages and currents at the AC and DC side of the system were measured to confirm the influence of the HTS DC reactor on the system. Two 5 mH copper DC reactors were connected to the HVDC system and investigated to compare the operational characteristics. In this paper, the operational characteristics of the HVDC system with the HTS DC reactor according to firing angle are described. The voltage and current characteristics of the system according to the types of DC reactors and harmonic characteristics are analyzed. Through the results, the applicability of an HTS DC reactor in an HVDC system is confirmed

  12. Operational characteristics analysis of a 8 mH class HTS DC reactor for an LCC type HVDC system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S. K.; Go, B. S.; Dinh, M. C.; Park, M.; Yu, I. K. [Changwon National University, Changwon (Korea, Republic of); Kim, J. H. [Daejeon University, Daejeon (Korea, Republic of)

    2015-03-15

    Many kinds of high temperature superconducting (HTS) devices are being developed due to its several advantages. In particular, the advantages of HTS devices are maximized under the DC condition. A line commutated converter (LCC) type high voltage direct current (HVDC) transmission system requires large capacity of DC reactors to protect the converters from faults. However, conventional DC reactor made of copper causes a lot of electrical losses. Thus, it is being attempted to apply the HTS DC reactor to an HVDC transmission system. The authors have developed a 8 mH class HTS DC reactor and a model-sized LCC type HVDC system. The HTS DC reactor was operated to analyze its operational characteristics in connection with the HVDC system. The voltage at both ends of the HTS DC reactor was measured to investigate the stability of the reactor. The voltages and currents at the AC and DC side of the system were measured to confirm the influence of the HTS DC reactor on the system. Two 5 mH copper DC reactors were connected to the HVDC system and investigated to compare the operational characteristics. In this paper, the operational characteristics of the HVDC system with the HTS DC reactor according to firing angle are described. The voltage and current characteristics of the system according to the types of DC reactors and harmonic characteristics are analyzed. Through the results, the applicability of an HTS DC reactor in an HVDC system is confirmed.

  13. NDE reliability and advanced NDE technology validation

    International Nuclear Information System (INIS)

    Doctor, S.R.; Deffenbaugh, J.D.; Good, M.S.; Green, E.R.; Heasler, P.G.; Hutton, P.H.; Reid, L.D.; Simonen, F.A.; Spanner, J.C.; Vo, T.V.

    1989-01-01

    This paper reports on progress for three programs: (1) evaluation and improvement in nondestructive examination reliability for inservice inspection of light water reactors (LWR) (NDE Reliability Program), (2) field validation acceptance, and training for advanced NDE technology, and (3) evaluation of computer-based NDE techniques and regional support of inspection activities. The NDE Reliability Program objectives are to quantify the reliability of inservice inspection techniques for LWR primary system components through independent research and establish means for obtaining improvements in the reliability of inservice inspections. The areas of significant progress will be described concerning ASME Code activities, re-analysis of the PISC-II data, the equipment interaction matrix study, new inspection criteria, and PISC-III. The objectives of the second program are to develop field procedures for the AE and SAFT-UT techniques, perform field validation testing of these techniques, provide training in the techniques for NRC headquarters and regional staff, and work with the ASME Code for the use of these advanced technologies. The final program's objective is to evaluate the reliability and accuracy of interpretation of results from computer-based ultrasonic inservice inspection systems, and to develop guidelines for NRC staff to monitor and evaluate the effectiveness of inservice inspections conducted on nuclear power reactors. This program started in the last quarter of FY89, and the extent of the program was to prepare a work plan for presentation to and approval from a technical advisory group of NRC staff

  14. Trophic niche of squids: Insights from isotopic data in marine systems worldwide

    Science.gov (United States)

    Navarro, Joan; Coll, Marta; Somes, Christoper J.; Olson, Robert J.

    2013-10-01

    Cephalopods are an important prey resource for fishes, seabirds, and marine mammals, and are also voracious predators on crustaceans, fishes, squid and zooplankton. Because of their high feeding rates and abundance, squids have the potential to exert control on the recruitment of commercially important fishes. In this review, we synthesize the available information for two intrinsic markers (δ15N and δ13C isotopic values) in squids for all oceans and several types of ecosystems to obtain a global view of the trophic niches of squids in marine ecosystems. In particular, we aimed to examine whether the trophic positions and trophic widths of squid species vary among oceans and ecosystem types. To correctly compare across systems, we adjusted squid δ15N values for the isotopic variability of phytoplankton at the base of the food web provided by an ocean circulation-biogeochemistry-isotope model. Studies that focused on the trophic ecology of squids using isotopic techniques were few, and most of the information on squids was from studies on their predators. Our results showed that squids occupy a large range of trophic positions and exploit a large range of trophic resources, reflecting the versatility of their feeding behavior and confirming conclusions from food-web models. Clear differences in both trophic position and trophic width were found among oceans and ecosystem types. The study also reinforces the importance of considering the natural variation in isotopic values when comparing the isotopic values of consumers inhabiting different ecosystems.

  15. Research on Intelligent Control System of DC SQUID Magnetometer Parameters for Multi-channel System

    Science.gov (United States)

    Chen, Hua; Yang, Kang; Lu, Li; Kong, Xiangyan; Wang, Hai; Wu, Jun; Wang, Yongliang

    2018-03-01

    In a multi-channel SQUID measurement system, adjusting device parameters to optimal condition for all channels is time-consuming. In this paper, an intelligent control system is presented to determine the optimal working point of devices which is automatic and more efficient comparing to the manual one. An optimal working point searching algorithm is introduced as the core component of the control system. In this algorithm, the bias voltage V_bias is step scanned to obtain the maximal value of the peak-to-peak current value I_pp of the SQUID magnetometer modulation curve. We choose this point as the optimal one. Using the above control system, more than 30 weakly damped SQUID magnetometers with area of 5 × 5 mm^2 or 10 × 10 mm^2 are adjusted and a 36-channel magnetocardiography system perfectly worked in a magnetically shielded room. The average white flux noise is 15 μΦ_0/Hz^{1/2}.

  16. A compactly integrated cooling system of a combination dual 1.5-MW HTS motors for electric propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Le, T. D.; Kim, J. H.; Hyeon, C. J.; Kim, H. M.; Kim, D. K. [Jeju National University, Jeju (Korea, Republic of); Kim, Y. S. [Shin Ansan University, Ansan (Korea, Republic of); Lee, J.; Park, Y. G.; Jeon, H. [Yonsei University, Seoul (Korea, Republic of); Quach, H. L. [Electronic and Telecommunication Engineering, Can Tho University of Technology, Can Tho (Viet Nam)

    2016-12-15

    The high temperature superconducting (HTS) contra-rotating propulsion (CRP) systems comprise two coaxial propellers sited on behind the other and rotate in opposite directions. They have the hydrodynamic advantage of recovering the slipstream rotational energy which would otherwise be lost to a conventional single-screw system. However, the cooling systems used for HTS CRP system need a high cooling power enough to maintain a low temperature of 2G HTS material operating at liquid neon (LNe) temperature (24.5 - 27 K). In this paper, a single thermo-syphon cooling approach using a Gifford-McMahon (G-M) cryo-cooler is presented. First, an optimal thermal design of a 1.5 MW HTS motor was conducted varying to different types of commercial 2G HTS tapes. Then, a mono-cryogenic cooling system for an integration of two 1.5 MW HTS motors will be designed and analyzed. Finally, the 3D finite element analysis (FEA) simulation of thermal characteristics was also performed.

  17. Principle and analysis of a linear motor driving system for HTS levitation applications

    International Nuclear Information System (INIS)

    Jin, Jian X.; Guo, You G.; Zhu, Jian G.

    2007-01-01

    High temperature superconductor (HTS) high levitation force density with passive and self-stabilizing features allows a number of special applications to be developed. Linear motor driving systems are commonly required for those applications such as levitated transport systems. In this paper a prototype linear motor driving system with HTS is analyzed with calculation details including its magnetic fields and driving forces presented in the paper

  18. Combining NDE and fracture mechanics by artifical intelligence expert systems techniques

    International Nuclear Information System (INIS)

    Mucciardi, A.N.; Riccardella, P.C.

    1986-01-01

    This paper reports on the development of a PC-based expert system for non-destructive evaluation. Software tools from the expert systems subfield of artificial intelligence are being used to combine both NDE and fracture mechanics algorithms into one, unified package. The system incorporates elements of computer-enhanced ultrasonic signal processing, featuring artificial intelligence learning capability, state-of-the-art fracture mechanics analytical tools, and all relevant metallurgical and design data necessary to emulate the decisions of the panel(s) of experts typically involved in generating and dispositioning NDE data

  19. Ultra-low field MRI food inspection system prototype

    Energy Technology Data Exchange (ETDEWEB)

    Kawagoe, Satoshi, E-mail: s133413@edu.tut.ac.jp; Toyota, Hirotomo; Hatta, Junichi; Ariyoshi, Seiichiro; Tanaka, Saburo, E-mail: tanakas@ens.tut.ac.jp

    2016-11-15

    Highlights: • We have developed a ULF-MRI system using HTS-SQUID for food inspection. • We developed a compact magnetically shielded box to attenuate environmental noise. • The 2D-MR image was reconstructed from the grid processing data using 2D-FFT method. • The 2D-MR images of a disk-shaped and a multiple cell water sample were obtained. • The results showed the possibility of applying the ULF-MRI system to food inspection. - Abstract: We develop an ultra-low field (ULF) magnetic resonance imaging (MRI) system using a high-temperature superconducting quantum interference device (HTS-SQUID) for food inspection. A two-dimensional (2D)-MR image is reconstructed from the grid processing raw data using the 2D fast Fourier transform method. In a previous study, we combined an LC resonator with the ULF-MRI system to improve the detection area of the HTS-SQUID. The sensitivity was improved, but since the experiments were performed in a semi-open magnetically shielded room (MSR), external noise was a problem. In this study, we develop a compact magnetically shielded box (CMSB), which has a small open window for transfer of a pre-polarized sample. Experiments were performed in the CMSB and 2D-MR images were compared with images taken in the semi-open MSR. A clear image of a disk-shaped water sample is obtained, with an outer dimension closer to that of the real sample than in the image taken in the semi-open MSR. Furthermore, the 2D-MR image of a multiple cell water sample is clearly reconstructed. These results show the applicability of the ULF-MRI system in food inspection.

  20. Potential aerospace applications of high temperature superconductors

    Science.gov (United States)

    Selim, Raouf

    1994-01-01

    The recent discovery of High Temperature Superconductors (HTS) with superconducting transition temperature, T(sub c), above the boiling point of liquid nitrogen has opened the door for using these materials in new and practical applications. These materials have zero resistance to electric current, have the capability of carrying large currents and as such have the potential to be used in high magnetic field applications. One of the space applications that can use superconductors is electromagnetic launch of payloads to low-earth-orbit. An electromagnetic gun-type launcher can be used in small payload systems that are launched at very high velocity, while sled-type magnetically levitated launcher can be used to launch larger payloads at smaller velocities. Both types of launchers are being studied by NASA and the aerospace industry. The use of superconductors will be essential in any of these types of launchers in order to produce the large magnetic fields required to obtain large thrust forces. Low Temperature Superconductor (LTS) technology is mature enough and can be easily integrated in such systems. As for the HTS, many leading companies are currently producing HTS coils and magnets that potentially can be mass-produced for these launchers. It seems that designing and building a small-scale electromagnetic launcher is the next logical step toward seriously considering this method for launching payloads into low-earth-orbit. A second potential application is the use of HTS to build sensitive portable devices for the use in Non Destructive Evaluation (NDE). Superconducting Quantum Interference Devices (SQUID's) are the most sensitive instruments for measuring changes in magnetic flux. By using HTS in SQUID's, one will be able to design a portable unit that uses liquid nitrogen or a cryocooler pump to explore the use of gradiometers or magnetometers to detect deep cracks or corrosion in structures. A third use is the replacement of Infra-Red (IR) sensor leads on

  1. The thermal relay design to improve power system security for the HTS cables in Icheon substation

    International Nuclear Information System (INIS)

    Lee, Hansang; Yang, Byeong-Mo; Jang, Gilsoo

    2013-01-01

    Highlights: •It is important to study thermal characteristics of the HTS cable. •The thermal relay in the Icheon substation has been developed. •Well-designed thermal relay has been verified through PSCAD/EMTDC simulations. -- Abstract: This paper proposes a model for thermal protection relay for the high temperature superconducting (HTS) cables and thermal protection scheme in Icheon substation in Korea. The thermal protection is one of the most important factors to guarantee the reliability of the HTS cable as well as power system security. The superconductivity of the HTS cables, which can be guaranteed by the liquid nitrogen near 70 K, can be threatened by the large fault current. To avoid the overheating in HTS cable and to secure the power system operation with the HTS cable, the thermal protection relay should be considered. To find the optimal thermal-protection scheme, the model for the superconducting power system has been achieved in Icheon substation and the thermal protection scheme has been verified through PSCAD/EMTDC simulation

  2. The thermal relay design to improve power system security for the HTS cables in Icheon substation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hansang, E-mail: hslee80@kiu.ac.kr [School of Railway and Electrical Engineering, Kyungil University, Hayang-eup, Gyeongsan-si, Gyeongsangbuk-do 712-701 (Korea, Republic of); Yang, Byeong-Mo [Korea Electric Power Research Institute, Munji-dong, Yuseong-gu, Daejeon 305-760 (Korea, Republic of); Jang, Gilsoo, E-mail: gjang@korea.ac.kr [School of Electrical Engineering, Korea University, Anam-dong 5-ga, Seongbuk-gu, Seoul 136-713 (Korea, Republic of)

    2013-11-15

    Highlights: •It is important to study thermal characteristics of the HTS cable. •The thermal relay in the Icheon substation has been developed. •Well-designed thermal relay has been verified through PSCAD/EMTDC simulations. -- Abstract: This paper proposes a model for thermal protection relay for the high temperature superconducting (HTS) cables and thermal protection scheme in Icheon substation in Korea. The thermal protection is one of the most important factors to guarantee the reliability of the HTS cable as well as power system security. The superconductivity of the HTS cables, which can be guaranteed by the liquid nitrogen near 70 K, can be threatened by the large fault current. To avoid the overheating in HTS cable and to secure the power system operation with the HTS cable, the thermal protection relay should be considered. To find the optimal thermal-protection scheme, the model for the superconducting power system has been achieved in Icheon substation and the thermal protection scheme has been verified through PSCAD/EMTDC simulation.

  3. US effort on HTS power transformers

    Energy Technology Data Exchange (ETDEWEB)

    Mehta, S., E-mail: shirish.pmehta@spx.com [Waukesha Electric Systems, 400 S. Praire Avenue, Waukesha, WI 53186 (United States)

    2011-11-15

    Fault Current Limiting HTS Transformer development program plan is presented. Benefits of FCL HTS Transformers for power delivery system. Independent program review process is described. Transformer specifications, site requirement described. Waukesha Electric Systems has been working in HTS power transformers development program under the auspices of US Government Department of Energy since 1994. This presentation will describe various milestones for this program and program history along with the lessons learned along the way. Our motivations for working on this development program based on man benefits offered by HTS power transformers to power delivery systems will be discussed. Based on various issues encountered during execution of many HTS projects, DOE has set up an independent program review process that is lead by team of experts. This team reviews are integral part of all DOE HTS projects. Success of all projects would be greatly enhanced by identifying critical issues early in the program. Requiring appropriate actions to mitigate the issues before processing further will lead to proactive interrogation and incorporation of expert's ideas in the project plans. Working of this review process will be also described in this presentation. Waukesha Electric Systems team including: Superpower-Inc, Oak Ridge National Laboratory, University of Houston Center for Superconductivity and Southern California Edison company was awarded a cost share grant by US Government in 2010 for development of a fault current limiting HTS power transformer. This multi year's program will require design, manufacture, installation, and monitoring of a 28 MVA tree phase transformer installed at Irvine CA. Smart Grid demonstration site. Transformer specifications along with requirements for fault current limiting and site requirement will be discussed. Design and development of various sub systems in support of this program including: HTS conductor performance specification

  4. US effort on HTS power transformers

    International Nuclear Information System (INIS)

    Mehta, S.

    2011-01-01

    Fault Current Limiting HTS Transformer development program plan is presented. Benefits of FCL HTS Transformers for power delivery system. Independent program review process is described. Transformer specifications, site requirement described. Waukesha Electric Systems has been working in HTS power transformers development program under the auspices of US Government Department of Energy since 1994. This presentation will describe various milestones for this program and program history along with the lessons learned along the way. Our motivations for working on this development program based on man benefits offered by HTS power transformers to power delivery systems will be discussed. Based on various issues encountered during execution of many HTS projects, DOE has set up an independent program review process that is lead by team of experts. This team reviews are integral part of all DOE HTS projects. Success of all projects would be greatly enhanced by identifying critical issues early in the program. Requiring appropriate actions to mitigate the issues before processing further will lead to proactive interrogation and incorporation of expert's ideas in the project plans. Working of this review process will be also described in this presentation. Waukesha Electric Systems team including: Superpower-Inc, Oak Ridge National Laboratory, University of Houston Center for Superconductivity and Southern California Edison company was awarded a cost share grant by US Government in 2010 for development of a fault current limiting HTS power transformer. This multi year's program will require design, manufacture, installation, and monitoring of a 28 MVA tree phase transformer installed at Irvine CA. Smart Grid demonstration site. Transformer specifications along with requirements for fault current limiting and site requirement will be discussed. Design and development of various sub systems in support of this program including: HTS conductor performance specification

  5. Structural design of the toroidal configuration of the HTS SMES cooling system

    International Nuclear Information System (INIS)

    Yeom, H.K.; Koh, D.Y.; Ko, J.S.; Kim, H.B.; Hong, Y.J.; Kim, S.H.; Seong, K.C.

    2011-01-01

    The superconducting magnetic energy storage (SMES) system is working on around 30 K, because the magnet is made of high temperature superconductor. To maintain the cryogenic temperature, the superconducting coil is cooled by cryogen, helium gas or liquid neon. But there are some weak points in the cryogen cooling system. For example periodic charge of the cryogen and size is big and so on. So, we have designed the conduction cooling system for toroidal configuration HTS SMES. The toroidal type HTS SMES has some merits, so it is very small magnetic field leakage, and magnetic field applied perpendicular to the tape surface can be reduced. Our system has 28 numbers of HTS double pancake coils and they are arrayed toroidal configuration. The toroidal inner radius is 162 mm, and outer radius is 599 mm, and height is about 162 mm. In this study, we have designed the cooling structure and analyzed temperature distribution of cooling path, thermal stress and deformation of the cooling structure.

  6. Performance of a novel SQUID-based superconducting imaging-surface magnetoencephalography system

    Science.gov (United States)

    Kraus, R. H.; Volegov, P.; Maharajh, K.; Espy, M. A.; Matlashov, A. N.; Flynn, E. R.

    2002-03-01

    Performance for a recently completed whole-head magnetoencephalography system using a superconducting imaging surface (SIS) surrounding an array of 150 SQUID magnetometers is reported. The helmet-like SIS is hemispherical in shape with a brim. Conceptually, the SIS images nearby sources onto the SQUIDs while shielding sensors from distant “noise” sources. A finite element method (FEM) description using the as-built geometry was developed to describe the SIS effect on source fields by imposing B⊥( surface)=0 . Sensors consist of 8×8 mm 2 SQUID magnetometers with 0.84 nT/ Φ0 sensitivity and positions and orientations was found. Good agreement was found between modeled and measured shielding of the SQUIDs from sources external to the array showing significant frequency-independent shielding. Phantom localization precision was better than 0.5 mm at all locations with a mean of better than 0.3 mm.

  7. Development of a HTS transceiver sub-system for 3G mobile communication TD-SCDMA base station

    Science.gov (United States)

    Zhang, Xueqiang; He, Xiaofeng; Wang, Yuehui; Duan, Tao; Wang, Guizhen; Zhang, Yan; Li, Chunguang; Zhang, Qiang; Li, Hong; He, Yusheng

    2010-02-01

    A prototype of a high temperature superconducting (HTS) transceiver sub-system for applications in a TD-SCDMA, one of the third generation (3G) communication standards, base station has been developed. Both the HTS sub-system and the conventional counterpart have been implemented into a TD-SCDMA commercial communication network and comparison test studies were carried out. The measured results showed that the HTS sub-system could remarkably improve the RF performance of both transmitting and receiving chains.

  8. Development of a HTS transceiver sub-system for 3G mobile communication TD-SCDMA base station

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Xueqiang; He Xiaofeng; Wang Yuehui; Li Chunguang; Zhang Qiang; Li Hong; He Yusheng [National Laboratory for Superconductivity, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Duan Tao; Wang Guizhen; Zhang Yan [Datang Mobile Communications Equipment Co., Ltd, Beijing 100190 (China)

    2010-02-15

    A prototype of a high temperature superconducting (HTS) transceiver sub-system for applications in a TD-SCDMA, one of the third generation (3G) communication standards, base station has been developed. Both the HTS sub-system and the conventional counterpart have been implemented into a TD-SCDMA commercial communication network and comparison test studies were carried out. The measured results showed that the HTS sub-system could remarkably improve the RF performance of both transmitting and receiving chains.

  9. Development of a HTS transceiver sub-system for 3G mobile communication TD-SCDMA base station

    International Nuclear Information System (INIS)

    Zhang Xueqiang; He Xiaofeng; Wang Yuehui; Li Chunguang; Zhang Qiang; Li Hong; He Yusheng; Duan Tao; Wang Guizhen; Zhang Yan

    2010-01-01

    A prototype of a high temperature superconducting (HTS) transceiver sub-system for applications in a TD-SCDMA, one of the third generation (3G) communication standards, base station has been developed. Both the HTS sub-system and the conventional counterpart have been implemented into a TD-SCDMA commercial communication network and comparison test studies were carried out. The measured results showed that the HTS sub-system could remarkably improve the RF performance of both transmitting and receiving chains.

  10. Design study on 50 kJ HTS SMES for simulated dynamic experiment of electric power systems

    International Nuclear Information System (INIS)

    Dai Taozhen; Fan Zeyang; Li Jingdong; Tang Yuejin; Cheng Shijie; Pan Yuan; Wang Jingrong

    2004-01-01

    We conducted a study in order to determine a suitable design for a 50 kJ class high temperature superconducting (HTS) SMES. Magnet size and volume are expected to be reduced by using the HTS since the HTS wire keeps better properties at high magnetic field than does LTS wire. In this paper, both the electromagnetic and mechanical design objects are considered when optimizing the magnet volume of a 50 kJ/10 kW grid model HTS-SMES system with finite element analysis method and simulated annealing algorithm. We carried out parameter surveys of the magnetic fields and circumference stress applied to the HTS-SMES magnets and studied a suitable magnet dimension with low inductance and high current. 2-3.5 T maximum magnetic field applied to the magnet and a low inductance and high current design for a 50 kJ HTS magnet are suitable for improving the dynamic response of system

  11. Design of a hysteretic SQUID as the readout for a dc SQUID

    International Nuclear Information System (INIS)

    Gershenson, M.

    1991-01-01

    This paper present a design for an optimal hysteretic SQUID readout circuit for a DC SQUID, thus eliminating the need for bulky output transformers or resonance matching circuits. The hysteretic readout system, which is based in part on standard sampling theory, is compared to another similar system and shown to be superior in terms of slew rate and immunity of electromagnetic interference. The circuit will be useful in optimizing the performance of biomagnetic systems

  12. A SQUID magnetometry system for a cryogenic neutron electric dipole moment experiment

    Energy Technology Data Exchange (ETDEWEB)

    Henry, S., E-mail: s.henry@physics.ox.ac.uk; Clarke, C.; Cottle, A.; Lynch, A.; Pipe, M.

    2014-11-01

    Precision magnetometry is an essential component of any neutron electric dipole moment experiment in order to correct shifts in the neutron precession frequency due to changes in the magnetic field. We have developed a magnetometry system using 12 SQUID sensors, designed to operate in 0.5 K superfluid helium. The pick-up loops located near the neutron cell are connected to the SQUID sensors by ∼2 m twisted wire pairs. The SQUID readout cables are run via an intermediate stage at 4.2 K. The system has been installed and tested in the cryoEDM apparatus at the ILL, Grenoble, and used to characterise the magnetic environment. Further tests in a suitable low noise environment confirm it meets our requirements.

  13. Static and dynamic stability of the guidance force in a side-suspended HTS maglev system

    Science.gov (United States)

    Zhou, Dajin; Cui, Chenyu; Zhao, Lifeng; Zhang, Yong; Wang, Xiqing; Zhao, Yong

    2017-02-01

    The static and dynamic stability of the guidance force in a side-suspended HTS-PMG (permanent magnetic guideway) system were studied theoretically and experimentally. It is found that there are two types of guidance force that exist in the HTS-PMG system, which are sensitive to the levitation gap and the arrangement of YBCO bulks around the central axis of the PMG. An optimized YBCO array was used to stabilize the system, which enabled a side-suspended HTS-PMG maglev vehicle to run stably at 102 km h-1 on a circular test track with 6.5 m in diameter.

  14. Development of REBCO HTS Magnet of Magnetic Bearing for Large Capacity Flywheel Energy Storage System

    Science.gov (United States)

    Mukoyama, Shinichi; Matsuoka, Taro; Furukawa, Makoto; Nakao, Kengo; Nagashima, Ken; Ogata, Masafumi; Yamashita, Tomohisa; Hasegawa, Hitoshi; Yoshizawa, Kazuhiro; Arai, Yuuki; Miyazaki, Kazuki; Horiuchi, Shinichi; Maeda, Tadakazu; Shimizu, Hideki

    A flywheel energy storage system (FESS) is a promising electrical storage system that moderates fluctuation of electrical power from renewable energy sources. The FESS can charge and discharge the surplus electrical power repetitively with the rotating energy. Particularly, the FESS that utilizes a high temperature superconducting magnetic bearing (HTS bearing) is lower loss than conventional FESS that has mechanical bearing, and has property of longer life operation than secondary batteries. The HTS bearing consists of a HTS bulk and double-pancake coils used 2nd generation REBCO wires. In the development, the HTS double-pancake coils were fabricated and were provided for a levitation test to verify the possibility of the HTS bearing. We successfully confirmed the magnetic field was achieved to design value, and levitation force in the configuration of one YBCO bulk and five double pan-cake coils was obtained to a satisfactory force of 39.2 kN (4 tons).

  15. Application of Automated NDE Data Evaluation to Missile and Aircraft Systems

    National Research Council Canada - National Science Library

    Hildreth, Joseph

    1996-01-01

    ... from the inspection of solid rocket motors during fabrication. The computerized system, called the Automated NDE Data Evaluation System or ANDES, was developed under contract to Martin Marietta...

  16. Influence of radius of cylinder HTS bulk on guidance force in a maglev vehicle system

    International Nuclear Information System (INIS)

    Longcai, Zhang

    2014-01-01

    Highlights: • The guidance force was decayed by the application of the AC external magnetic field. • The guidance force was higher for the bulk with bigger radius. • The guidance force decay rates of the bulks were approximately equal despite of the different radius in the maglev vehicle system. - Abstract: Bulk superconductors had great potential for various engineering applications, especially in a high-temperature superconducting (HTS) maglev vehicle system. In such a system, the HTS bulks were always exposed to AC external magnetic field, which was generated by the inhomogeneous surface magnetic field of the NdFeB guideway. In our previous work, it was observed that the guidance force of the YBCO bulk over the NdFeB guideway used in the HTS maglev vehicle system was decayed by the application of the AC external magnetic field. In this paper, we investigated the influence of the radius of the cylinder HTS bulk exposed to an AC magnetic field perturbation on the guidance force in the maglev vehicle system. From the results, it was found that the guidance force was stronger for the bulk with bigger radius and the guidance force decay rates of the bulks were approximately equal despite of the different radius in the maglev vehicle system. Therefore, in order to obtain higher guidance force in the maglev vehicle system, we could use the cylinder HTS bulks with the bigger radius

  17. Influence of radius of cylinder HTS bulk on guidance force in a maglev vehicle system

    Energy Technology Data Exchange (ETDEWEB)

    Longcai, Zhang, E-mail: zhlcai2000@163.com

    2014-07-15

    Highlights: • The guidance force was decayed by the application of the AC external magnetic field. • The guidance force was higher for the bulk with bigger radius. • The guidance force decay rates of the bulks were approximately equal despite of the different radius in the maglev vehicle system. - Abstract: Bulk superconductors had great potential for various engineering applications, especially in a high-temperature superconducting (HTS) maglev vehicle system. In such a system, the HTS bulks were always exposed to AC external magnetic field, which was generated by the inhomogeneous surface magnetic field of the NdFeB guideway. In our previous work, it was observed that the guidance force of the YBCO bulk over the NdFeB guideway used in the HTS maglev vehicle system was decayed by the application of the AC external magnetic field. In this paper, we investigated the influence of the radius of the cylinder HTS bulk exposed to an AC magnetic field perturbation on the guidance force in the maglev vehicle system. From the results, it was found that the guidance force was stronger for the bulk with bigger radius and the guidance force decay rates of the bulks were approximately equal despite of the different radius in the maglev vehicle system. Therefore, in order to obtain higher guidance force in the maglev vehicle system, we could use the cylinder HTS bulks with the bigger radius.

  18. Operating characteristic analysis of a 400 mH class HTS DC reactor in connection with a laboratory scale LCC type HVDC system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung-Kyu, E-mail: power@changwon.ac.kr [Changwon National University, 55306 Sarim-dong, Changwon 641-773 (Korea, Republic of); Kim, Kwangmin; Park, Minwon [Changwon National University, 55306 Sarim-dong, Changwon 641-773 (Korea, Republic of); Yu, In-Keun, E-mail: yuik@changwon.ac.kr [Changwon National University, 55306 Sarim-dong, Changwon 641-773 (Korea, Republic of); Lee, Sangjin [Uiduk University, Gyeongju 780-713 (Korea, Republic of)

    2015-11-15

    Highlights: • A 400 mH class HTS DC reactor and a laboratory scale test-bed for line-commutated converter type HVDC transmission system. • The 400 mH class HTS DC reactor was connected to real power network via the HVDC system. • The DC current flowed in HTS DC reactor has several harmonic components and it was analyzed using FFT. - Abstract: High temperature superconducting (HTS) devices are being developed due to their advantages. Most line commutated converter based high voltage direct current (HVDC) transmission systems for long-distance transmission require large inductance of DC reactor; however, generally, copper-based reactors cause a lot of electrical losses during the system operation. This is driving researchers to develop a new type of DC reactor using HTS wire. The authors have developed a 400 mH class HTS DC reactor and a laboratory scale test-bed for line-commutated converter type HVDC system and applied the HTS DC reactor to the HVDC system to investigate their operating characteristics. The 400 mH class HTS DC reactor is designed using a toroid type magnet. The HVDC system is designed in the form of a mono-pole system with thyristor-based 12-pulse power converters. In this paper, the investigation results of the HTS DC reactor in connection with the HVDC system are described. The operating characteristics of the HTS DC reactor are analyzed under various operating conditions of the system. Through the results, applicability of an HTS DC reactor in an HVDC system is discussed in detail.

  19. Operating characteristic analysis of a 400 mH class HTS DC reactor in connection with a laboratory scale LCC type HVDC system

    International Nuclear Information System (INIS)

    Kim, Sung-Kyu; Kim, Kwangmin; Park, Minwon; Yu, In-Keun; Lee, Sangjin

    2015-01-01

    Highlights: • A 400 mH class HTS DC reactor and a laboratory scale test-bed for line-commutated converter type HVDC transmission system. • The 400 mH class HTS DC reactor was connected to real power network via the HVDC system. • The DC current flowed in HTS DC reactor has several harmonic components and it was analyzed using FFT. - Abstract: High temperature superconducting (HTS) devices are being developed due to their advantages. Most line commutated converter based high voltage direct current (HVDC) transmission systems for long-distance transmission require large inductance of DC reactor; however, generally, copper-based reactors cause a lot of electrical losses during the system operation. This is driving researchers to develop a new type of DC reactor using HTS wire. The authors have developed a 400 mH class HTS DC reactor and a laboratory scale test-bed for line-commutated converter type HVDC system and applied the HTS DC reactor to the HVDC system to investigate their operating characteristics. The 400 mH class HTS DC reactor is designed using a toroid type magnet. The HVDC system is designed in the form of a mono-pole system with thyristor-based 12-pulse power converters. In this paper, the investigation results of the HTS DC reactor in connection with the HVDC system are described. The operating characteristics of the HTS DC reactor are analyzed under various operating conditions of the system. Through the results, applicability of an HTS DC reactor in an HVDC system is discussed in detail.

  20. SQUID-based measuring systems

    Indian Academy of Sciences (India)

    field produced by a given two-dimensional current density distribution is inverted using the Fourier transform technique. Keywords ... Superconducting quantum interference devices (SQUIDs) are the most sensitive detectors for measurement of ... omagnetic prospecting, detection of gravity waves etc. Judging the importance ...

  1. Development of a single-phase 30 m HTS power cable

    Science.gov (United States)

    Cho, Jeonwook; Bae, Joon-Han; Kim, Hae-Jong; Sim, Ki-Deok; Kim, Seokho; Jang, Hyun-Man; Lee, Chang-Young; Kim, Dong-Wook

    2006-05-01

    HTS power transmission cables appear to be the replacement and retrofitting of underground cables in urban areas and HTS power transmission cable offers a number of technical and economic merits compared to the normal conductor cable system. A 30 m long, single-phase 22.9 kV class HTS power transmission cable system has been developed by Korea Electrotechnology Research Institute (KERI), LS Cable Ltd., and Korea Institute of Machinery and Materials (KIMM), which is one of the 21st century frontier project in Korea since 2001. The HTS power cable has been developed, cooled down and tested to obtain realistic thermal and electrical data on HTS power cable system. The evaluation results clarified such good performance of HTS cable that DC critical current of the HTS cable was 3.6 kA and AC loss was 0.98 W/m at 1260 Arms and shield current was 1000 Arms. These results proved the basic properties for 22.9 kV HTS power cable. As a next step, we have been developing a 30 m, three-phase 22.9 kV, 50 MV A HTS power cable system and long term evaluation is in progress now.

  2. Characterization and demonstration results of a SQUID magnetometer system developed for geomagnetic field measurements

    Science.gov (United States)

    Kawai, J.; Miyamoto, M.; Kawabata, M.; Nosé, M.; Haruta, Y.; Uehara, G.

    2017-08-01

    We characterized a low temperature superconducting quantum interference device (SQUID) magnetometer system developed for high-sensitivity geomagnetic field measurement, and demonstrated the detection of weak geomagnetic signals. The SQUID magnetometer system is comprised of three-axis SQUID magnetometers housed in a glass fiber reinforced plastic cryostat, readout electronics with flux locked loop (FLL), a 24-bit data logger with a global positioning system and batteries. The system noise was approximately 0.2 pT √Hz- 1/2 in the 1-50 Hz frequency range. This performance was determined by including the thermal noise and the shielding effect of the copper shield, which covered the SQUID magnetometers to eliminate high-frequency interference. The temperature drift of the system was ˜0.8 pT °C- 1 in an FLL operation. The system operated for a month using 33 l liquid helium. Using this system, we performed the measurements of geomagnetic field in the open-air, far away from the city. The system could detect weak geomagnetic signals such as the Schumann resonance with sixth harmonics, and the ionospheric Alfvén resonance appearing at night, for the north-south and east-west components of the geomagnetic field. We confirm that the system was capable of high-sensitivity measurement of the weak geomagnetic activities.

  3. Progress in American Superconductor’s HTS wire and optimization for fault current limiting systems

    Energy Technology Data Exchange (ETDEWEB)

    Malozemoff, Alexis P., E-mail: amalozemoff@amsc.com

    2016-11-15

    Highlights: • AMSC HTS wire critical current needed for rotating machinery is doubled by 16 MeV Au irradiation. • Nonuniformity of HTS wires in power devices causes hot spot formation during power system faults. • Lower normal-state resistivity and critical current lower HTS wire hot spot heating during faults. • HTS wire hot spot heating in HTS cables during faults must stay below lN{sub 2} bubble nucleation point. • HTS wire can be designed to meet hot spot heating limits in fault current limiting cables. - Abstract: American Superconductor has developed composite coated conductor tape-shaped wires using high temperature superconductor (HTS) on a flexible substrate with laminated metal stabilizer. Such wires enable many applications, each requiring specific optimization. For example, coils for HTS rotating machinery require increased current density J at 25–50 K. A collaboration with Argonne, Brookhaven and Los Alamos National Laboratories and several universities has increased J using an optimized combination of precipitates and ion irradiation defects in the HTS. Major commercial opportunities also exist to enhance electric power grid resiliency by linking substations with distribution-voltage HTS power cables [10]. Such links provide alternative power sources if one substation's transmission-voltage power is compromised. But they must also limit fault currents which would otherwise be increased by such distribution-level links. This can be done in an HTS cable, exploiting the superconductor-to-resistive transition when current exceeds the wires’ critical J. A key insight is that such transitions are usually nonuniform; so the wire must be designed to prevent localized hot spots from damaging the wire or even generating gas bubbles in the cable causing dielectric breakdown. Analysis shows that local heating can be minimized by increasing the composite tape's total thickness, decreasing its total resistance in the normal state and

  4. NDE training activities at the EPRI NDE Center

    International Nuclear Information System (INIS)

    Pherigo, G.L.

    1988-01-01

    The three principal categories of training activity at the EPRI NDE Center are in-service inspection (ISI) training, technical skills training, and human resource development. The ISI training category, which addresses recently developed NDE technologies that are ready for field application, is divided into two areas. One area provides ongoing training and qualification service to boiling water reactor (BWR) utilities in accordance with the Coordination Plan for NRC/EPRI/BWROG Training and Qualification Activities of NDE Personnel. This plan specifically addresses the detection and sizing of intergranular stress corrosion cracking (IGSCC). The second area includes training activities for other recently developed NDE technologies. Courses in this area include weld overlay examination and advanced eddy current data analysis. The technical skills training is developed and offered to support the basic NDE technology needs of the utilities, with emphasis on utility applications. These programs are provided in direct response to generic or specific needs identified by the utility NDE community. The human resource development activities are focused on long-term utility needs through awareness programs for high schools, technical schools, and universities. These training programs are described

  5. Operating characteristic analysis of a 400 mH class HTS DC reactor in connection with a laboratory scale LCC type HVDC system

    Science.gov (United States)

    Kim, Sung-Kyu; Kim, Kwangmin; Park, Minwon; Yu, In-Keun; Lee, Sangjin

    2015-11-01

    High temperature superconducting (HTS) devices are being developed due to their advantages. Most line commutated converter based high voltage direct current (HVDC) transmission systems for long-distance transmission require large inductance of DC reactor; however, generally, copper-based reactors cause a lot of electrical losses during the system operation. This is driving researchers to develop a new type of DC reactor using HTS wire. The authors have developed a 400 mH class HTS DC reactor and a laboratory scale test-bed for line-commutated converter type HVDC system and applied the HTS DC reactor to the HVDC system to investigate their operating characteristics. The 400 mH class HTS DC reactor is designed using a toroid type magnet. The HVDC system is designed in the form of a mono-pole system with thyristor-based 12-pulse power converters. In this paper, the investigation results of the HTS DC reactor in connection with the HVDC system are described. The operating characteristics of the HTS DC reactor are analyzed under various operating conditions of the system. Through the results, applicability of an HTS DC reactor in an HVDC system is discussed in detail.

  6. Thermodynamics of a closed-cycle gas flow system for cooling a HTc dc-SQUID magnetometer

    NARCIS (Netherlands)

    van den Bosch, P.J.; van den Bosch, P.J.; ter Brake, Hermanus J.M.; van den Eijkel, G.C.; Boelens, J.P.; Holland, Herman J.; Verberne, J.F.C.; Rogalla, Horst

    1994-01-01

    A multichannel high-Tc dc-SQUID based heart-magnetometer is currently under development in our laboratory. The system is cooled by a cooler that, due to its magnetic interference, has to be separated from the SQUID unit. In the present prototype system a closed-cycle gas flow was chosen as the

  7. A compact 3 T all HTS cryogen-free MRI system

    Science.gov (United States)

    Parkinson, B. J.; Bouloukakis, K.; Slade, R. A.

    2017-12-01

    We have designed and built a passively shielded, cryogen-free 3 T 160 mm bore bismuth strontium calcium copper oxide HTS magnet with shielded gradient coils suitable for use in small animal imaging applications. The magnet is cooled to approximately 16 K using a two-stage cryocooler and is operated at 200 A. The magnet has been passively shimmed so as to achieve ±10 parts per million (ppm) homogeneity over a 60 mm diameter imaging volume. We have demonstrated that B 0 temporal stability is fit-for-purpose despite the magnet operating in the driven mode. The system has produced good quality spin-echo and gradient echo images. This compact HTS-MRI system is emerging as a true alternative to conventional low temperature superconductor based cryogen-free MRI systems, with much more efficient cryogenics since it operates entirely from a single phase alternating current electrical supply.

  8. Large-scale HTS bulks for magnetic application

    International Nuclear Information System (INIS)

    Werfel, Frank N.; Floegel-Delor, Uta; Riedel, Thomas; Goebel, Bernd; Rothfeld, Rolf; Schirrmeister, Peter; Wippich, Dieter

    2013-01-01

    Highlights: ► ATZ Company has constructed about 130 HTS magnet systems. ► Multi-seeded YBCO bulks joint the way for large-scale application. ► Levitation platforms demonstrate “superconductivity” to a great public audience (100 years anniversary). ► HTS magnetic bearings show forces up to 1 t. ► Modular HTS maglev vacuum cryostats are tested for train demonstrators in Brazil, China and Germany. -- Abstract: ATZ Company has constructed about 130 HTS magnet systems using high-Tc bulk magnets. A key feature in scaling-up is the fabrication of YBCO melts textured multi-seeded large bulks with three to eight seeds. Except of levitation, magnetization, trapped field and hysteresis, we review system engineering parameters of HTS magnetic linear and rotational bearings like compactness, cryogenics, power density, efficiency and robust construction. We examine mobile compact YBCO bulk magnet platforms cooled with LN 2 and Stirling cryo-cooler for demonstrator use. Compact cryostats for Maglev train operation contain 24 pieces of 3-seed bulks and can levitate 2500–3000 N at 10 mm above a permanent magnet (PM) track. The effective magnetic distance of the thermally insulated bulks is 2 mm only; the stored 2.5 l LN 2 allows more than 24 h operation without refilling. 34 HTS Maglev vacuum cryostats are manufactured tested and operate in Germany, China and Brazil. The magnetic levitation load to weight ratio is more than 15, and by group assembling the HTS cryostats under vehicles up to 5 t total loads levitated above a magnetic track is achieved

  9. Large-scale HTS bulks for magnetic application

    Energy Technology Data Exchange (ETDEWEB)

    Werfel, Frank N., E-mail: werfel@t-online.de [Adelwitz Technologiezentrum GmbH (ATZ), Rittergut Adelwitz 16, 04886 Arzberg-Adelwitz (Germany); Floegel-Delor, Uta; Riedel, Thomas; Goebel, Bernd; Rothfeld, Rolf; Schirrmeister, Peter; Wippich, Dieter [Adelwitz Technologiezentrum GmbH (ATZ), Rittergut Adelwitz 16, 04886 Arzberg-Adelwitz (Germany)

    2013-01-15

    Highlights: ► ATZ Company has constructed about 130 HTS magnet systems. ► Multi-seeded YBCO bulks joint the way for large-scale application. ► Levitation platforms demonstrate “superconductivity” to a great public audience (100 years anniversary). ► HTS magnetic bearings show forces up to 1 t. ► Modular HTS maglev vacuum cryostats are tested for train demonstrators in Brazil, China and Germany. -- Abstract: ATZ Company has constructed about 130 HTS magnet systems using high-Tc bulk magnets. A key feature in scaling-up is the fabrication of YBCO melts textured multi-seeded large bulks with three to eight seeds. Except of levitation, magnetization, trapped field and hysteresis, we review system engineering parameters of HTS magnetic linear and rotational bearings like compactness, cryogenics, power density, efficiency and robust construction. We examine mobile compact YBCO bulk magnet platforms cooled with LN{sub 2} and Stirling cryo-cooler for demonstrator use. Compact cryostats for Maglev train operation contain 24 pieces of 3-seed bulks and can levitate 2500–3000 N at 10 mm above a permanent magnet (PM) track. The effective magnetic distance of the thermally insulated bulks is 2 mm only; the stored 2.5 l LN{sub 2} allows more than 24 h operation without refilling. 34 HTS Maglev vacuum cryostats are manufactured tested and operate in Germany, China and Brazil. The magnetic levitation load to weight ratio is more than 15, and by group assembling the HTS cryostats under vehicles up to 5 t total loads levitated above a magnetic track is achieved.

  10. Electronics for a Next-Generation SQUID-Based Time-Domain Multiplexing System

    International Nuclear Information System (INIS)

    Reintsema, C. D.; Doriese, W. R.; Hilton, G. C.; Irwin, K. D.; Krinsky, J. W.; Adams, J. S.; Baker, R.; Bandler, S. R.; Kelly, R. L.; Kilbourne, C. A.; Porter, F. S.; Figueroa-Feliciano, E.; Wikus, P.

    2009-01-01

    A decade has elapsed since the design, development and realization of a SQUID-based time-division multiplexer at NIST. During this time the system has been used extensively for low-temperature-detector-array measurements. Concurrently, there have been substantial advancements both in detector array and commercial electronic component technology. The relevance and applicability of the technology has blossomed as well, often accompanied by more demanding measurement requirements. These factors have motivated a complete redesign of the NIST room-temperature read-out electronics. The redesign has leveraged advancements in component technology to achieve new capabilities better suited to the SQUID multiplexers and detector arrays being realized today. As examples of specific performance enhancements, the overall system bandwidth has been increased by a factor of four (a row switching rate of 6.24 MHz), the compactness has been increased by over a factor of two (a higher number of detector columns and rows per circuit board), and there are two high speed outputs per column (allowing fast switching of SQUID offsets in addition to digital feedback). The system architecture, design implementations, and performance advantages of the new system will be discussed. As an application example, the science chain flight electronics for the Micro-X High Resolution Microcalorimeter X-ray Imaging Rocket will be described as both a motivation for, and a direct implementation of the new system.

  11. SQUID technology for geophysical exploration

    International Nuclear Information System (INIS)

    Meyer, Hans-Georg; Stolz, R.; Chwala, A.; Schulz, M.

    2005-01-01

    We report on successful tests of planar LTS SQUID gradiometers on airborne platforms such as helicopter and aircraft. The system works stable and allows profile work without any constraints. In mobile applications the gradient resolution at low frequencies is dominated by motion noise, since the parasitic areas of the SQUID gradiometer lead to strong disturbances if the gradiometer is tilted in the homogenous Earth's magnetic field. The balance can be improved further by software using data of a SQUID magnetometer triple. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  12. Review of progress in quantitative NDE. [Nondestructive Evaluation (NDE)

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-01

    This booklet is composed of abstracts from papers submitted at a meeting on quantitative NDE. A multitude of topics are discussed including analysis of composite materials, NMR uses, x-ray instruments and techniques, manufacturing uses, neural networks, eddy currents, stress measurements, magnetic materials, adhesive bonds, signal processing, NDE of mechanical structures, tomography,defect sizing, NDE of plastics and ceramics, new techniques, optical and electromagnetic techniques, and nonlinear techniques. (GHH)

  13. Low noise SQUIDs

    Science.gov (United States)

    de Waal, V. J.

    1983-02-01

    The present investigation deals with the design, fabrication, and limitations of very sensitive SQUID (Superconducting Quantum Interference Device) magnetometers. The SQUID magnetometer is based on a utilization of the Josephson effect. A description of the theoretical background is provided, and high performance DC SQUIDs with submicron niobium Josephson junctions are discussed, taking into account design considerations, fabrication, junction characterization, the performance of the SQUID and input coil, and the gradiometer performance. The simulation and optimization of a DC SQUID with finite capacitance is considered, giving attention to the implementation of a simulation procedure on a hybrid computer.

  14. Low noise SQUIDs

    Energy Technology Data Exchange (ETDEWEB)

    De Waal, V.J.

    1983-01-01

    The present investigation deals with the design, fabrication, and limitations of very sensitive SQUID (Superconducting Quantum Interference Device) magnetometers. The SQUID magnetometer is based on a utilization of the Josephson effect. A description of the theoretical background is provided, and high performance DC SQUIDs with submicron niobium Josephson junctions are discussed, taking into account design considerations, fabrication, junction characterization, the performance of the SQUID and input coil, and the gradiometer performance. The simulation and optimization of a DC SQUID with finite capacitance is considered, giving attention to the implementation of a simulation procedure on a hybrid computer. 129 references.

  15. Differential conductivity mapping of solar panels using a high-TC superconductor SQUID

    International Nuclear Information System (INIS)

    Kiwa, T.; Maeda, S.; Miyake, K.; Kataoka, N.; Tsukamoto, A.; Adachi, S.; Tanabe, K.; Kandori, A.; Tsukada, K.

    2011-01-01

    To visualise the distribution of the electric property of solar cells, we developed a differential conductivity mapping system using high-T C (HTS-) superconductor SQUID with a normal conducting pick-up coil. The bias ac voltage with an offset voltage was applied to a solar panel made from amorphous silicon, and the normal component of the generated magnetic field was lock-in-detected. Thus the measured signal was converted to dB/dV properties, which are inverse-proportional to the differential resistivity, as the function of the offset voltage. By scanning the pick-up coil across the panel surface, we obtained the distribution of dB/dV properties across the solar panel was obtained by scanning the pick-up coil across the panel surface. The distribution of dB/dV on the panel differed between when the light source was on and when it was off. This result suggests that the proposed system is a potential tool for diagnosing the electric properties of solar cells.

  16. Cryogenic system with the sub-cooled liquid nitrogen for cooling HTS power cable

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Y.F. [Chinese Academy of Sciences, Beijing (China). Technical Institute of Physics and Chemistry; Graduate School of Chinese Academy of Sciences, Beijing (China); Gong, L.H.; Xu, X.D.; Li, L.F.; Zhang, L. [Chinese Academy of Sciences, Beijing (China). Technical Institute of Physics and Chemistry; Xiao, L.Y. [Chinese Academy of Sciences, Beijing (China). Institute of Electrical Engineering

    2005-04-01

    A 10 m long, three-phase AC high-temperature superconducting (HTS) power cable had been fabricated and tested in China August 2003. The sub-cooled liquid nitrogen (LN{sub 2}) was used to cool the HTS cable. The sub-cooled LN{sub 2} circulation was built by means of a centrifugal pump through a heat exchanger in the sub-cooler, the three-phase HTS cable cryostats and a LN{sub 2} gas-liquid separator. The LN{sub 2} was cooled down to 65 K by means of decompressing, and the maximum cooling capacity was about 3.3 kW and the amount of consumed LN{sub 2} was about 72 L/h at 1500 A. Cryogenic system design, test and some experimental results would be presented in this paper. (author)

  17. An HTS machine laboratory prototype

    DEFF Research Database (Denmark)

    Mijatovic, Nenad; Jensen, Bogi Bech; Træholt, Chresten

    2012-01-01

    This paper describes Superwind HTS machine laboratory setup which is a small scale HTS machine designed and build as a part of the efforts to identify and tackle some of the challenges the HTS machine design may face. One of the challenges of HTS machines is a Torque Transfer Element (TTE) which...... conduction compared to a shaft. The HTS machine was successfully cooled to 77K and tests have been performed. The IV curves of the HTS field winding employing 6 HTS coils indicate that two of the coils had been damaged. The maximal value of the torque during experiments of 78Nm was recorded. Loaded with 33...

  18. Sensitive YBCO nanoSQUIDs for the investigation of small spin systems

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Benedikt; Schwarz, Tobias; Woelbing, Roman; Martinez-Perez, Maria Jose; Kleiner, Reinhold; Koelle, Dieter [Tuebingen Univ. (Germany). Physikalisches Inst. and Center for Collective Quantum Phenomena in LISA+; Reiche, Christopher F.; Muehl, Thomas; Buechner, Bernd [Leibniz Institute for Solid State and Materials Research IFW Dresden (Germany)

    2015-07-01

    We report on advances in the realization of dc YBCO nanoSQUIDs for continuous measurement of magnetic nanoparticle magnetization loops in strong magnetic fields up to the Tesla range, applied in the plane of the SQUID loop at temperatures of 4 K and below. Our grain boundary junction based YBCO SQUIDs are patterned by focused ion beam milling and feature a constriction next to the SQUID loop, allowing for on-chip SQUID modulation and bias reversal readout schemes. Using numerical simulations based on London theory, the spin sensitivity S{sub μ}{sup 1/2} = S{sub Φ}{sup 1/2} / φ{sub μ} was improved by optimizing both the flux noise S{sub Φ}{sup 1/2} and the coupling factor φ{sub μ} = Φ / μ (Φ is the magnetic flux coupled into the SQUID loop by a particle with magnetic moment μ). For optimized experimental devices, flux noise levels down to 50 nΦ{sub 0} / Hz{sup 1/2} in the white noise limit have been achieved, corresponding to a calculated spin sensitivity of only a few μ{sub B} / Hz{sup 1/2}. Further, the magnetization reversal of a Fe filled carbon nanotube attached to a YBCO nanoSQUID was traced out.

  19. A new approach for AC loss reduction in HTS transformer using auxiliary windings, case study: 25 kA HTS current injection transformer

    Science.gov (United States)

    Heydari, Hossein; Faghihi, Faramarz; Aligholizadeh, Reza

    2008-01-01

    AC loss is one of the important parameters in HTS (high temperature superconducting) AC devices. Among the HTS AC power devices, the transformer is an essential part in the electrical power system. The AC losses in an HTS tape depend on the magnetic field. One of the techniques usually adopted to mitigate the unwanted magnetic field is using a system of coils that produce a magnetic field opposite to the incident one, reducing the total magnetic field. In this paper adding two auxiliary windings to the HTS transformer to produce this opposite magnetic field is proposed. The proper use of these auxiliary windings could reduce the leakage flux and, therefore, the AC loss. A mathematical model is used to describe the behaviour of a transformer operating with auxiliary windings, based on the theory of electromagnetic coupled circuits. The influence of the auxiliary windings on the leakage field is studied by the finite element method (FEM) and the AC loss of an HTS transformer was calculated. Also, the simulation results show that employing auxiliary windings will improve the HTS transformer efficiency.

  20. A new approach for AC loss reduction in HTS transformer using auxiliary windings, case study: 25 kA HTS current injection transformer

    International Nuclear Information System (INIS)

    Heydari, Hossein; Faghihi, Faramarz; Aligholizadeh, Reza

    2008-01-01

    AC loss is one of the important parameters in HTS (high temperature superconducting) AC devices. Among the HTS AC power devices, the transformer is an essential part in the electrical power system. The AC losses in an HTS tape depend on the magnetic field. One of the techniques usually adopted to mitigate the unwanted magnetic field is using a system of coils that produce a magnetic field opposite to the incident one, reducing the total magnetic field. In this paper adding two auxiliary windings to the HTS transformer to produce this opposite magnetic field is proposed. The proper use of these auxiliary windings could reduce the leakage flux and, therefore, the AC loss. A mathematical model is used to describe the behaviour of a transformer operating with auxiliary windings, based on the theory of electromagnetic coupled circuits. The influence of the auxiliary windings on the leakage field is studied by the finite element method (FEM) and the AC loss of an HTS transformer was calculated. Also, the simulation results show that employing auxiliary windings will improve the HTS transformer efficiency

  1. A new approach for AC loss reduction in HTS transformer using auxiliary windings, case study: 25 kA HTS current injection transformer

    Energy Technology Data Exchange (ETDEWEB)

    Heydari, Hossein; Faghihi, Faramarz; Aligholizadeh, Reza [Center of Excellence for Power System Automation and Operation, Electrical Engineering Department, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of)

    2008-01-15

    AC loss is one of the important parameters in HTS (high temperature superconducting) AC devices. Among the HTS AC power devices, the transformer is an essential part in the electrical power system. The AC losses in an HTS tape depend on the magnetic field. One of the techniques usually adopted to mitigate the unwanted magnetic field is using a system of coils that produce a magnetic field opposite to the incident one, reducing the total magnetic field. In this paper adding two auxiliary windings to the HTS transformer to produce this opposite magnetic field is proposed. The proper use of these auxiliary windings could reduce the leakage flux and, therefore, the AC loss. A mathematical model is used to describe the behaviour of a transformer operating with auxiliary windings, based on the theory of electromagnetic coupled circuits. The influence of the auxiliary windings on the leakage field is studied by the finite element method (FEM) and the AC loss of an HTS transformer was calculated. Also, the simulation results show that employing auxiliary windings will improve the HTS transformer efficiency.

  2. rf SQUID system as tunable flux qubit

    Energy Technology Data Exchange (ETDEWEB)

    Ruggiero, B. [Istituto di Cibernetica ' E. Caianiello' del Consiglio Nazionale delle Ricerche, I-80078 Pozzuoli (Italy)]. E-mail: b.ruggiero@cib.na.cnr.it; Granata, C. [Istituto di Cibernetica ' E. Caianiello' del Consiglio Nazionale delle Ricerche, I-80078 Pozzuoli (Italy); Vettoliere, A. [Istituto di Cibernetica ' E. Caianiello' del Consiglio Nazionale delle Ricerche, I-80078 Pozzuoli (Italy); Rombetto, S. [Istituto di Cibernetica ' E. Caianiello' del Consiglio Nazionale delle Ricerche, I-80078 Pozzuoli (Italy); Russo, R. [Istituto di Cibernetica ' E. Caianiello' del Consiglio Nazionale delle Ricerche, I-80078 Pozzuoli (Italy); Russo, M. [Istituto di Cibernetica ' E. Caianiello' del Consiglio Nazionale delle Ricerche, I-80078 Pozzuoli (Italy); Corato, V. [Dipartimento di Ingegneria dell' Informazione, Seconda Universita di Napoli, I-81031 Aversa (Italy); Istituto di Cibernetica ' E. Caianiello' del Consiglio Nazionale delle Ricerche, I-80078 Pozzuoli (Italy); Silvestrini, P. [Dipartimento di Ingegneria dell' Informazione, Seconda Universita di Napoli, I-81031 Aversa (Italy); Istituto di Cibernetica ' E. Caianiello' del Consiglio Nazionale delle Ricerche, I-80078 Pozzuoli (Italy)

    2006-08-21

    We present a fully integrated rf SQUID-based system as flux qubit with a high control of the flux transfer function of the superconducting transformer modulating the coupling between the flux qubit and the readout system. The control of the system is possible by including into the superconducting flux transformer a vertical two-Josephson-junctions interferometer (VJI) in which the Josephson current is precisely modulated from a maximum to zero by a transversal magnetic field parallel to the flux transformer plane. The proposed system can be also used in a more general configuration to control the off-diagonal terms in the Hamiltonian of the flux qubit and to turn on and off the coupling between two or more qubits.

  3. Use of computerized data acquisition system to auralize NDE data for improved inspection capability

    International Nuclear Information System (INIS)

    Light, Glenn M.; Holt, Amos E.; Polk, Kent D.; Clayton, William T.

    2004-01-01

    Southwest Research Institute has developed computer-aided technology for converting electronic signals generated by conventional nondestructive evaluation (NDE) equipment (i.e., ultrasonic, eddy current, and acoustic emission) into audible information so that the inspector can make use of both the conventional NDE signals (which are often confusing) and the audible information to make a flaw/nonflaw decision. One objective of this work was to develop a computerized data acquisition system that could collect ultrasonic data, perform time dilation of the ultrasonic data, and help develop algorithms. The aural technology has been applied to composite impact damage, composite delamination detection, and corrosion detection. In addition, the aural technology was used to detect and discriminate intergranular stress corrosion cracking. Examples of application of aural NDE technology are described. (author)

  4. Flywheel Challenge: HTS Magnetic Bearing

    International Nuclear Information System (INIS)

    Werfel, F N; Floegel-Delor, U; Riedel, T; Rothfeld, R; Wippich, D; Goebel, B

    2006-01-01

    A 200 mm cylindrical engineering prototype high temperature superconducting (HTS) was designed and fabricated. Measurements show that the 17 kg PM rotor can suspend safely 1000 kg in axial direction and 470 kg radially. The rationale for the bearing performance is to stabilize a 400 kg rotor of a new compact 5 kWh/280 kW flywheel energy storage system (COM - FESS). Measurements of the magnetic bearing force, stiffness and drag-torque are presented indicated the successful targeting a milestone in the HTS bearing technology. The influence of the PM configuration and the YBCO temperature on the bearing performance was experimentally studied, providing high-force or high-stiffness behaviour. The axial stiffness 5 kN/mm at 0.5 mm displacement is the highest value of a HTS bearing we know

  5. NDE training activities at the EPRI NDE center

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    The need for an industry-wide qualification for NDE personnel is becoming more evident in both in-service inspection and technical skills training. ASME Section XI requirements for the qualification and certification of visual, ultrasonic, and eddy current examines is one of the major areas being supported by training at the Center. The other major thrust is in response to the Boiling Water Reactor Owners Group and its recognition of the importance of the UT operator's accurately detecting, discriminating, and sizing intergranular stress corrosion cracks (IGSCC) in piping, and inspecting weld overlay repairs of these cracked pipes. In addition, the pressurized water reactor (PWR) utilities have recognized the importance of improved eddy current data analysis of steam generator tubing. The overall intent of the Center's training is to meet the most critical utility needs with quality training that can be used by the trainee's employer as a part of its certification of that individual. To do this, the Center has organized and activated a carefully maintained documentation and records system built around the Continuing Education Unit (CEU). To address the problem of the small supply of entry-level NDE personnel available to the utilities, the Center has developed, through its Human Resource Development, academic and utility co-op programs to generate guidelines and NDE teaching materials for high schools, technical schools, and universities

  6. SQUID use for Geophysics: finding billions of dollars

    Science.gov (United States)

    Foley, Catherine

    2014-03-01

    Soon after their discovery, Jim Zimmerman saw the potential of using Superconducting Quantum Interference Devices, SQUIDs, for the study of Geophysics and undertook experiments to understand the magnetic phenomena of the Earth. However his early experiments were not successful. Nevertheless up to the early 1980's, some research effort in the use of SQUIDs for geophysics continued and many ideas of how you could use SQUIDs evolved. Their use was not adopted by the mining industry at that time for a range of reasons. The discovery of high temperature superconductors started a reinvigoration in the interest to use SQUIDs for mineral exploration. Several groups around the world worked with mining companies to develop both liquid helium and nitrogen cooled systems. The realisation of the achievable sensitivity that contributed to successful mineral discoveries and delineation led to real financial returns for miners. By the mid 2000's, SQUID systems for geophysics were finally being offered for sale by several start-up companies. This talk will tell the story of SQUID use in geophysics. It will start with the early work of the SQUID pioneers including that of Jim Zimmerman and John Clarke and will also cover the development since the early 1990's up to today of a number of magnetometers and gradiometers that have been successfully commercialised and used to create significant impact in the global resources industry. The talk will also cover some of the critical technical challenges that had to be overcome to succeed. It will focus mostly on magnetically unshielded systems used in the field although some laboratory-based systems will be discussed.

  7. Analysis and experimental study of wireless power transfer with HTS coil and copper coil as the intermediate resonators system

    International Nuclear Information System (INIS)

    Wang, Xiufang; Nie, Xinyi; Liang, Yilang; Lu, Falong; Yan, Zhongming; Wang, Yu

    2017-01-01

    Highlights: • We investigated a kind of system architecture with three coils which the repeater is copper coil or HTS coil. • We simulated the different repeater system and obtained the magnetic field distribution at different distance. • We used helical coil instead of pancake coil which does not use capacitors. • HTS intermediate coil has significant effect on improving the transmission efficiency and lengthening transmission distance than copper intermediate coil. - Abstract: Intermediate resonator (repeater) between transmitter and receiver can significantly increase the distance of wireless power transfer (WPT) and the efficiency of wireless power transfer. The wireless power transfer via strongly coupled magnetic resonances with an high temperature superconducting (HTS) coil and copper coil as intermediate resonators was presented in this paper. The electromagnetic experiment system under different conditions with different repeating coils were simulated by finite element software. The spatial distribution patterns of magnetic induction intensity at different distances were plotted. In this paper, we examined transfer characteristics with HTS repeating coil and copper repeating coil at 77 K and 300 K, respectively. Simulation and experimental results show that HTS and copper repeating coil can effectively enhance the space magnetic induction intensity, which has significant effect on improving the transmission efficiency and lengthening transmission distance. We found that the efficiency and the distance of wireless power transfer system with an HTS coil as repeater is much higher by using of copper coil as repeater.

  8. Analysis and experimental study of wireless power transfer with HTS coil and copper coil as the intermediate resonators system

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiufang [School of Electrical Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); School of Physics and Technology, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Nie, Xinyi [School of Electrical Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Liang, Yilang [School of Physics and Technology, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Lu, Falong [School of Electrical Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Yan, Zhongming, E-mail: wangxiufanghappy@163.com [School of Electrical Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Wang, Yu [School of Electrical Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China)

    2017-01-15

    Highlights: • We investigated a kind of system architecture with three coils which the repeater is copper coil or HTS coil. • We simulated the different repeater system and obtained the magnetic field distribution at different distance. • We used helical coil instead of pancake coil which does not use capacitors. • HTS intermediate coil has significant effect on improving the transmission efficiency and lengthening transmission distance than copper intermediate coil. - Abstract: Intermediate resonator (repeater) between transmitter and receiver can significantly increase the distance of wireless power transfer (WPT) and the efficiency of wireless power transfer. The wireless power transfer via strongly coupled magnetic resonances with an high temperature superconducting (HTS) coil and copper coil as intermediate resonators was presented in this paper. The electromagnetic experiment system under different conditions with different repeating coils were simulated by finite element software. The spatial distribution patterns of magnetic induction intensity at different distances were plotted. In this paper, we examined transfer characteristics with HTS repeating coil and copper repeating coil at 77 K and 300 K, respectively. Simulation and experimental results show that HTS and copper repeating coil can effectively enhance the space magnetic induction intensity, which has significant effect on improving the transmission efficiency and lengthening transmission distance. We found that the efficiency and the distance of wireless power transfer system with an HTS coil as repeater is much higher by using of copper coil as repeater.

  9. Long-term test of the 22.9kV HTS power cable system in LS Cable Ltd

    International Nuclear Information System (INIS)

    Jang, Hyun Man; Lee, Chang Young; Kim, Choon Dong; Kim, Do Hyung; Park, In Son; Ji, Bong Ki; Kim, Dong Wook; Cho, Jeonwook

    2006-01-01

    Since 2001, LS cable Ltd. has been developing the design, manufacturing and evaluation technologies for high temperature superconducting (HTS) power cable system as a member of DAPAS (Dream for Advanced Power system by Applied Superconductivity technology) program in Korea. The 30 m HTS cable system that is rated at 22.9 kV and 1.2 kA giving a rated capacity of 50 MVA had been developed and tested. The cable was designed as a cold dielectric type employing Bi-2223 HTS tapes and polypropylene (PP) laminated paper as the conductor and electrical insulation, respectively. The cable is cooled with sub-cooled liquid nitrogen at temperature from 75 to 77 K. The manufacturing and the installation of the cable system were completed in 2004. Long-term performance test of the cable system has been conducted for six months to verify its electric and mechanical properties in 2005

  10. New facility for testing LHC HTS power leads

    CERN Document Server

    Rabehl, Roger Jon; Fehér, S; Huang, Y; Orris, D; Pischalnikov, Y; Sylvester, C D; Tartaglia, M

    2005-01-01

    A new facility for testing HTS power leads at the Fermilab Magnet Test Facility has been designed and operated. The facility has successfully tested 19 pairs of HTS power leads, which are to be integrated into the Large Hadron Collider Interaction Region cryogenic feed boxes. This paper describes the design and operation of the cryogenics, process controls, data acquisition, and quench management systems. HTS power lead test results from the commissioning phase of the project are also presented.

  11. Thermal and structural analysis of a cryogenic conduction cooling system for a HTS NMR magnet

    Energy Technology Data Exchange (ETDEWEB)

    In, Se Hwan; Hong, Yong Jun; Yeom, Han Kil; Ko, Hyo Bong; Park, Seong Je [Korea Institute of Machinery and Materials, Daejeon (Korea, Republic of)

    2016-03-15

    The superconducting NMR magnets have used cryogen such as liquid helium for their cooling. The conduction cooling method using cryocoolers, however, makes the cryogenic cooling system for NMR magnets more compact and user-friendly than the cryogen cooling method. This paper describes the thermal and structural analysis of a cryogenic conduction cooling system for a 400 MHz HTS NMR magnet, focusing on the magnet assembly. The highly thermo-conductive cooling plates between HTS double pancake coils are used to transfer the heat generated in coils, namely Joule heating at lap splice joints, to thermal link blocks and finally the cryocooler. The conduction cooling structure of the HTS magnet assembly preliminarily designed is verified by thermal and structural analysis. The orthotropic thermal properties of the HTS coil, thermal contact resistance and radiation heat load are considered in the thermal analysis. The thermal analysis confirms the uniform temperature distribution for the present thermal design of the NMR magnet within 0.2 K. The mechanical stress and the displacement by the electromagnetic force and the thermal contraction are checked to verify structural stability. The structural analysis indicates that the mechanical stress on each component of the magnet is less than its material yield strength and the displacement is acceptable in comparison with the magnet dimension.

  12. Design, construction and performance of an EMS-based HTS maglev vehicle

    International Nuclear Information System (INIS)

    Gu Chen; Liu Menglin; Xing Huawei; Zhou, Tong; Yin Wensheng; Zong Jun; Han Zhenghe

    2005-01-01

    A laboratory-scale EMS-based HTS maglev vehicle operating over a 1.5 m guideway has been successfully constructed. The fully integrated system consists of a vehicle chassis, four dependent magnetic circuits, four distance sensors, and control and power amplification circuits. As key component of the system, each magnetic circuit includes a U-shape iron core with one HTS coil forming each pole. Eight HTS coils made of Bi-2223 multi-filamentary tape were used to provide the magnetic motive force. Several questions relating to the unique characteristics of the HTS material in a controlled magnetic circuit are discussed. The most important consideration for such applications is that the anisotropic critical current of the Bi-2223/Ag tape depends strongly on the magnetic field. The commercially available FEA software ANSYS was used to simulate the field distribution along the magnetic circuit and HTS coil winding, and thereby identify how the magnetic circuit alters the field distribution in the coil winding and therefore also the critical current. A general optimization process is described for finding the best position in the U-shape iron core to hold the HTS coils. In this process the critical current of the HTS tape and the force-current characteristic of the magnetic circuit are considered synthetically. The results demonstrate the feasibility and stability of HTS material in a typical maglev system and other similar controllability applications

  13. Design, construction and performance of an EMS-based HTS maglev vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Gu Chen [Applied Superconductivity Research Center, Department of Physics, Building LiZhai, Room 102, Tsinghua University, Beijing 100084 (China)]. E-mail: guchen@mail.tsinghua.edu.cn; Liu Menglin [Applied Superconductivity Research Center, Department of Physics, Building LiZhai, Room 102, Tsinghua University, Beijing 100084 (China); Xing Huawei [Department of Automation, Tsinghua University, Beijing 100084 (China); Zhou, Tong [Department of Automation, Tsinghua University, Beijing 100084 (China); Yin Wensheng [Department of Precision Instruments and Mechanology, Tsinghua University, Beijing 100084 (China); Zong Jun [Innova Superconductor Technology Co., Ltd., Beijing 100176 (China); Han Zhenghe [Applied Superconductivity Research Center, Department of Physics, Building LiZhai, Room 102, Tsinghua University, Beijing 100084 (China)

    2005-06-15

    A laboratory-scale EMS-based HTS maglev vehicle operating over a 1.5 m guideway has been successfully constructed. The fully integrated system consists of a vehicle chassis, four dependent magnetic circuits, four distance sensors, and control and power amplification circuits. As key component of the system, each magnetic circuit includes a U-shape iron core with one HTS coil forming each pole. Eight HTS coils made of Bi-2223 multi-filamentary tape were used to provide the magnetic motive force. Several questions relating to the unique characteristics of the HTS material in a controlled magnetic circuit are discussed. The most important consideration for such applications is that the anisotropic critical current of the Bi-2223/Ag tape depends strongly on the magnetic field. The commercially available FEA software ANSYS was used to simulate the field distribution along the magnetic circuit and HTS coil winding, and thereby identify how the magnetic circuit alters the field distribution in the coil winding and therefore also the critical current. A general optimization process is described for finding the best position in the U-shape iron core to hold the HTS coils. In this process the critical current of the HTS tape and the force-current characteristic of the magnetic circuit are considered synthetically. The results demonstrate the feasibility and stability of HTS material in a typical maglev system and other similar controllability applications.

  14. Automated NDE Flaw Mapping System, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA's Aircraft Aging and Durability Project (AADP) aims to ensure the safety of both commercial and military aviation aircraft. Non-destructive evaluation (NDE)...

  15. Armature reaction effects on HTS field winding in HTS machine

    DEFF Research Database (Denmark)

    Mijatovic, Nenad; Jensen, Bogi Bech

    2013-01-01

    sensitivity to both armature reaction intensity and angular position with respect to the HTS coils. Furthermore, the characterization of the HTS feld winding has been correlated to the electromagnetic torque of the machine where the maximal Ic reduction of 21% has been observed for the maximum torque....

  16. Current-phase relations and noise in rf biased SQUIDS

    International Nuclear Information System (INIS)

    Jackel, L.D.; Clark, T.D.; Buhrman, R.A.

    1975-01-01

    An investigation was made of the effect of the weak link current-phase relation on noise in rf biased SQUIDs. Non-sinusoidal current-phase relations were observed in various weak links, and these non-sinusoidal relations were correlated with significantly increased intrinsic noise in the SQUID ring. The current-phase relation was also found to affect the amplitude of the rf SQUID ring dissipation. The result of an rf SQUID system noise analysis shows that, due to increased intrinsic noise and reduced ring dissipation, the minimum attainable noise for a SQUID ring having a very non-sinusoidal current-phase relation is considerably greater than for a ring with a sinusoidal relation

  17. Controller design and test results for a four axis HTS coil based Maglev system

    International Nuclear Information System (INIS)

    Zhou Tong; Xing Huawei

    2007-01-01

    Controller design and experimental results are reported in this paper for a four axis high temperature superconductivity (HTS) coil based electromagnetic levitation (Maglev) system. The HTS coils are made of Bi2223/Ag multifilamentary tapes. It has been experimentally proved that the designed controller works satisfactorily, although the physical parameters of a HTS coil based electromagnet (HTSEM) vary significantly with the frequency of the input voltage. A performance comparison has also been made between the classical lead-lag compensator and the modern H ∼ loop-shaping controller. It becomes clear that robust control theories are capable of providing a controller with better performances, which is in a good agreement with numerical simulations. Moreover, it implies that the particular parameter variation characteristics can be simply dealt with by the available robust control theories that are naturally existent in a HTSEM

  18. Controller design and test results for a four axis HTS coil based Maglev system

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Tong [Department of Automation, Tsinghua University, Beijing 100084 (China)]. E-mail: tzhou@mail.tsinghua.edu.cn; Xing Huawei [Department of Automation, Tsinghua University, Beijing 100084 (China)

    2007-04-15

    Controller design and experimental results are reported in this paper for a four axis high temperature superconductivity (HTS) coil based electromagnetic levitation (Maglev) system. The HTS coils are made of Bi2223/Ag multifilamentary tapes. It has been experimentally proved that the designed controller works satisfactorily, although the physical parameters of a HTS coil based electromagnet (HTSEM) vary significantly with the frequency of the input voltage. A performance comparison has also been made between the classical lead-lag compensator and the modern H{sub {approx}} loop-shaping controller. It becomes clear that robust control theories are capable of providing a controller with better performances, which is in a good agreement with numerical simulations. Moreover, it implies that the particular parameter variation characteristics can be simply dealt with by the available robust control theories that are naturally existent in a HTSEM.

  19. Study of electromagnetic interference on quench detecting system of HTS current leads for EAST

    International Nuclear Information System (INIS)

    Hu, Yanlan; Li, Jiangang; Ji, Zhenshan; Zhu, C.M.; Zhen, L.G.; Xiao, Y.Z.

    2013-01-01

    Highlights: • EAST HTS superconducting magnet system shall be operating in a very noisy environment. • Voltage taps will have a lot of inductive voltage induced on them which makes quench detection very difficult. • The noise comes from the coupling between rapid pulsed poloidal coils, and radiation coupling interference associated with EAST heating systems;. • A series of related electromagnetic compatibility simulation tests have been carried out. • Electromagnetic noises are well restrained by choosing proper anti-interference means. -- Abstract: High temperature superconducting (HTS) material B-2223/Ag-Au has been used for EAST poloidal field (PF) coil current leads for reducing construction and operation cost of cryogenic system. The quench propagation velocity of HTS superconducting material is several orders of magnitude lower than that of normal low temperature current leads. It is difficult to detect weak signal of quench which is easily influenced by strong electromagnetic interference (EMI). In this paper, the sources of EMI from quench detecting system of high temperature current leads have been introduced. And we have chosen reasonable methods for good transformation and protection on the basis of electromagnetic compatibility simulation diagnosis experiments. Recent experimental results showed that the restraint of EMI has been achieved and has met the requirements of experiment

  20. Levitation force relaxation under reloading in a HTS Maglev system

    International Nuclear Information System (INIS)

    He Qingyong; Wang Jiasu; Wang Suyu; Wang Jiansi; Dong Hao; Wang Yuxin; Shao Senhao

    2009-01-01

    The loading capacity of the high-temperature superconducting (HTS) Maglev vehicle is an important parameter in the practical application. It is closely related to the levitation force of the HTS bulk. Many papers reported that the levitation force showed the relaxation characteristic. Because different loads cause different levitation gaps and different applied magnetic fields, the levitation force relaxations under the different loads are not the same. In terms of cylindrical YBCO bulk levitated over the permanent magnetic guideway, the relationship between the levitation force relaxation and the reloading is investigated experimentally in this paper. The decrement, the decrement rate and the relaxation rate of the levitation force are calculated, respectively. This work might be helpful for studying the loading capacity of the HTS Maglev vehicle

  1. Levitation force relaxation under reloading in a HTS Maglev system

    Energy Technology Data Exchange (ETDEWEB)

    He Qingyong [Applied Superconductivity Laboratory, M/S 152, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China)], E-mail: hedoubling@gmail.com; Wang Jiasu; Wang Suyu; Wang Jiansi; Dong Hao; Wang Yuxin; Shao Senhao [Applied Superconductivity Laboratory, M/S 152, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China)

    2009-02-01

    The loading capacity of the high-temperature superconducting (HTS) Maglev vehicle is an important parameter in the practical application. It is closely related to the levitation force of the HTS bulk. Many papers reported that the levitation force showed the relaxation characteristic. Because different loads cause different levitation gaps and different applied magnetic fields, the levitation force relaxations under the different loads are not the same. In terms of cylindrical YBCO bulk levitated over the permanent magnetic guideway, the relationship between the levitation force relaxation and the reloading is investigated experimentally in this paper. The decrement, the decrement rate and the relaxation rate of the levitation force are calculated, respectively. This work might be helpful for studying the loading capacity of the HTS Maglev vehicle.

  2. Automated NDE Flaw Mapping System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The prevailing approach to non-destructive evaluation (NDE) of aircraft components is to set an inspection schedule based on what is generally known about the...

  3. Progress in development of high capacity magnetic HTS bearings

    International Nuclear Information System (INIS)

    Kummeth, P.; Nick, W.; Neumueller, H.-W.

    2005-01-01

    HTS magnetic bearings are inherently stable without an active feedback system. They provide low frictional losses, no wear and allow operation at high rotational speed without lubrication. So they are very promising for use in motors, generators and turbines. We designed and constructed an HTS radial bearing for use with a 400 kW HTS motor. It consists of alternating axially magnetized permanent magnet rings on the rotor and a segmented YBCO stator. Stator cooling is performed by liquid nitrogen, the temperature of the stator can be adjusted by varying the pressure in the cryogenic vessel. At 68 K maximum radial forces of more than 3.7 kN were found. These results range within the highest radial bearing capacities reported worldwide. The encouraging results lead us to develop a large heavy load HTS radial bearing. Currently a high magnetic gradient HTS bearing for a 4 MVA synchronous HTS generator is under construction

  4. The low fault HTSL-SQUID cooling system. Final report; Stoerarmes HTSL-SQUID-Kuehlsystem. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Binneberg, A.; Spoerl, G.; Buschmann, H.

    1997-03-01

    In the context of the research project, work was done for HTSL-SQUID on (1) the development of a thermo-siphon cooler (low fault and continuously working) and (2) the development of a latent storage cooler (low fault and discontinuously working). Two development versions of the latent storage cooler were followed up, the development of a spherical latent storage cooler and the development of an annular vessel latent storage cooler. A further precondition for the construction of the cooler was the use of split Stirling refrigerators as units producing the cold. The experimental sample was built up with refrigerators which could produce a nominal cooling output of 1.2 W at 80 K. Two samples of the thermo-siphon cooler were built, tested and improved. The second sample was developed further as a demonstration model, introduced at meetings and prepared for testing the cooling of HTSL-SQUIDs. The thermo-siphon cooler can be designed for cooling output up to about 2 W at 80 K and can be used controlled for a temperature range of 90 K to 66 K. (orig./MM) [Deutsch] Im Rahmen des Forschungsvorhabens wurde fuer HTSL-SQUID`s an der (1) Entwicklung eines Thermosiphon-Kuehlers (stoerarm und kontinuierlich arbeitend) und (2) Entwicklung eines Latentspeicher-Kuehlers (stoerfrei und diskontinuierlich arbeitend) gearbeitet. Bei dem Latentspeicher-Kuehler wurden zwei Entwicklungsversionen verfolgt, und zwar Entwicklung eines Kugel-Latentspeicher-Kuehlers und Entwicklung eines Ringgefaess-Latentspeicher-Kuehlers. Eine weitere Praemisse zum Aufbau der Kuehler war der Einsatz von Split-Stirling-Kaeltemaschinen als kaelteerzeugende Baugruppe. Die Versuchsmuster wurden mit Kaeltemaschinen aufgebaut, die eine Nennkuehlleistung von 1,2 W bei 80 K erzeugen konnten. Der Thermosiphon-Kuehler wurde in zwei Musterexemplaren aufgebaut, erprobt und verbessert. Das Zweitmuster wurde als Demonstrator weiterentwickelt, zu Fachtagungen vorgestellt und zur Testung der Kuehlung von HTSL-SQUIDs

  5. Design and development of 500 m long HTS cable system in the KEPCO power grid, Korea

    Science.gov (United States)

    Sohn, S. H.; Lim, J. H.; Yang, B. M.; Lee, S. K.; Jang, H. M.; Kim, Y. H.; Yang, H. S.; Kim, D. L.; Kim, H. R.; Yim, S. W.; Won, Y. J.; Hwang, S. D.

    2010-11-01

    In Korea, two long-term field demonstrations for high temperature superconducting (HTS) cable have been carried out for several years; Korea Electric Power Corporation (KEPCO) and LS Cable Ltd. (LSC) independently. Encouraged at the result of the projects performed in parallel, a new project targeting the real grid operation was launched in the fourth quarter of 2008 with the Korean government's financial support. KEPCO and LSC are jointly collaborating in the selection of substation, determination of cable specification, design of cryogenic system, and the scheme of protection coordination. A three phase 500 m long HTS cable at a distribution level voltage of 22.9 kV is to be built at 154/22.9 kV Icheon substation located in near Seoul. A hybrid cryogenic system reflecting the contingency plan is being designed including cryocoolers. The HTS cable system will be installed in the second quarter of 2010, being commissioned by the fall of 2010. This paper describes the objectives of the project and design issues of the cable and cryogenic system in detail.

  6. Trophic relationships between the jumbo squid (Dosidicus gigas and the lightfish (Vinciguerria lucetia in the Humboldt Current System off Peru

    Directory of Open Access Journals (Sweden)

    Rigoberto Rosas-Luis

    2011-04-01

    Full Text Available Acoustic surveys for assessing the biomass and distribution of the jumbo squid (Dosidicus gigas and the lightfish (Vinciguerria lucetia were carried out in the Humboldt Current System of Peru in 2007 and 2008. At the same time, 937 jumbo squid were caught and their stomach contents analyzed. The diet of the jumbo squid was dominated by mesopelagic fish. The first component of their fish diet was V. lucetia and the second component was the myctophid fish Diogenichthys laternatus. Acoustic biomass estimates of these species show that V. lucetia is an important component in aggregative structures in the Humboldt Current System of Peru and its distribution and movements are closely related to the migratory movements of the jumbo squid. The trophic relationship observed between D. gigas and V. lucetia promotes an increase in jumbo squid biomass and, has a positive trophic effect on the ocean ecosystem.

  7. Coil Optimization for HTS Machines

    DEFF Research Database (Denmark)

    Mijatovic, Nenad; Jensen, Bogi Bech; Abrahamsen, Asger Bech

    An optimization approach of HTS coils in HTS synchronous machines (SM) is presented. The optimization is aimed at high power SM suitable for direct driven wind turbines applications. The optimization process was applied to a general radial flux machine with a peak air gap flux density of ~3T...... is suitable for which coil segment is presented. Thus, the performed study gives valuable input for the coil design of HTS machines ensuring optimal usage of HTS tapes....

  8. Efficient growth of HTS films with volatile elements

    Energy Technology Data Exchange (ETDEWEB)

    Siegal, M.P.; Overmyer, D.L.; Dominguez, F.

    1998-12-22

    A system is disclosed for applying a volatile element-HTS layer, such as Tl-HTS, to a substrate in a multiple zone furnace, said method includes heating at higher temperature, in one zone of the furnace, a substrate and adjacent first source of Tl-HTS material, to sublimate Tl-oxide from the source to the substrate; and heating at lower temperature, in a separate zone of the furnace, a second source of Tl-oxide to replenish the first source of Tl-oxide from the second source. 3 figs.

  9. Waste water purification by magnetic separation technique using HTS bulk magnet system

    International Nuclear Information System (INIS)

    Oka, T.; Kanayama, H.; Tanaka, K.; Fukui, S.; Ogawa, J.; Sato, T.; Ooizumi, M.; Terasawa, T.; Itoh, Y.; Yabuno, R.

    2009-01-01

    We have investigated the feasibility of strong magnetic field generators composed of the high temperature superconducting (HTS) bulk magnet systems to the magnetic separation techniques for the waste water including thin emulsion bearing the cutting oil. Two types of the strong field generators were prepared by the face-to-face HTS bulk magnet systems, which emit the magnetic field density of 1 and 2 T in the open spaces between the magnetic poles activated by the pulsed field magnetization and the field cooling methods, respectively. A couple of water channels containing iron balls were settled in the strong field to trap the magnetized flocks in the waste water. The separation ratios of flocks containing 200 ppm magnetite powder were evaluated with respect to the flow rates of the waste water. The performances of bulk magnet system have kept showing values of around 100% until the flowing rate reached up to 18 l/min. This suggests that the magnetic separation by using bulk magnets is effective for the practical water purification systems.

  10. Mobile conduction-cooled HTS SMES

    International Nuclear Information System (INIS)

    Ren, L.; Tang, Y.; Li, J.; Shi, J.; Chen, L.; Guo, F.; Fang, J.; Wen, J.

    2010-01-01

    An immovable 35 kJ/7 kW high-T c superconducting magnetic energy storage (HTS SMES) system had been developed in the Electric Power System Dynamic Simulation Laboratory, Huazhong University of Science and Technology in 2005. In order to adapt for on-site experimental conditions, the mechanical configuration of the magnet is reinforced and the SMES system is assembled in a special container to be freighted to the actual power system for the feasibility study on different applications at different sites. The mobile HTS SMES system had withstood various kinds of poor road surfaces and then arrived at the experimental site on August 18, 2009. In this paper, the reconstructed configuration and the shock absorption of the magnet are presented. The field test results show that the mobile SMES system can operate on the power network at different locations and suppress effectively power fluctuation of the generator terminal.

  11. NDE for the 21st century: industry 4.0 requires NDE 4.0 (Conference Presentation)

    Science.gov (United States)

    Meyendorf, Norbert G.

    2017-04-01

    Industry 4.0 stands for the fourth industrial revolution that is ongoing at present. Industry 4.0 is a terminology preferred used in Europe to characterize the integration of production and communication technologies, the so called "smart factory". The first industrial revolution was the mechanization of work. The second was mass production and the assembly line. While the third revolution was the computer integrated manufacturing. Industry 4.0 encompasses the complete networking of all industrial areas. Lowering costs and efficient in-time production will be possible also for low numbers of very unique parts for example by additive manufacturing (3D printing). A significant aspect is also quality and maintainability of these sometimes unique structures and components. NDE has to follow these trends, not only by adapting NDE techniques to the new technologies, but also introducing the capability of cyber systems into the inspection and maintenance processes. The requirements and challenges for this new technological area will be discussed. Chances for applications of new technologies and systems for NDE will be demonstrated online.

  12. Large-scale HTS bulks for magnetic application

    Science.gov (United States)

    Werfel, Frank N.; Floegel-Delor, Uta; Riedel, Thomas; Goebel, Bernd; Rothfeld, Rolf; Schirrmeister, Peter; Wippich, Dieter

    2013-01-01

    ATZ Company has constructed about 130 HTS magnet systems using high-Tc bulk magnets. A key feature in scaling-up is the fabrication of YBCO melts textured multi-seeded large bulks with three to eight seeds. Except of levitation, magnetization, trapped field and hysteresis, we review system engineering parameters of HTS magnetic linear and rotational bearings like compactness, cryogenics, power density, efficiency and robust construction. We examine mobile compact YBCO bulk magnet platforms cooled with LN2 and Stirling cryo-cooler for demonstrator use. Compact cryostats for Maglev train operation contain 24 pieces of 3-seed bulks and can levitate 2500-3000 N at 10 mm above a permanent magnet (PM) track. The effective magnetic distance of the thermally insulated bulks is 2 mm only; the stored 2.5 l LN2 allows more than 24 h operation without refilling. 34 HTS Maglev vacuum cryostats are manufactured tested and operate in Germany, China and Brazil. The magnetic levitation load to weight ratio is more than 15, and by group assembling the HTS cryostats under vehicles up to 5 t total loads levitated above a magnetic track is achieved.

  13. Review of SQUID Sensors for Measuring Magnetocardiography

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y. H.; Kim, J. M.; Yu, K. K.; Kim, K.; Kwon, H. [Brain and Cognition Measurement Lab, Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of)

    2011-08-15

    Measurement of magnetic signals generated from electric activity of myocardium provides useful information for the functional diagnosis of heart diseases. Key technical component of the magnetocardiography (MCG) technology is SQUID. To measure MCG signals with high signal-to-noise ratio, sensitive SQUID magnetic field sensors are needed. Present magnetic field sensors based on Nb SQUIDs have field sensitivity good enough to measure most of MCG signals. However, for accurate measurement of fine signal pattern or detection of local atrial fibrillation signals, we may need higher field sensitivity. In addition to field sensitivity, economic aspect of the SQUID system is also important. To simplify the SQUID readout electronics, the output voltage or flux-to-voltage transfer of SQUID should be large enough so that direct measurement of SQUID output can be done using room-temperature preamplifiers. Double relaxation oscillation SQUID (DROS), having about 10 times larger flux-to-voltage transfers than those of DC-SQUIDs, was shown to be a good choice to make the electronics compact. For effective cancellation of external noise inside a thin economic shielded room, first-order axial gradiometer with high balance, simple structure and long-baseline is needed. We developed a technology to make the axial gradiometer compact using direct bonding of superconductive wires between pickup coil and input coil. Conventional insert has mechanical support to hold the gradiometer array, and the dewar neck has equal diameter with the dewar bottom. Boiling of the liquid He can generate mechanical vibrations in the gradiometer array due to mechanical connection structure. Elimination of the mechanical support, and direct mounting of the gradiometer array into the dewar bottom can reduce the dewar neck diameter, resulting in the reduction of liquid He consumption.

  14. Nuclear magnetic resonance experiments with dc SQUID amplifiers

    International Nuclear Information System (INIS)

    Heaney, M.B.

    1990-11-01

    The development and fabrication of dc SQUIDs (Superconducting QUantum Interference Devices) with Nb/Al 2 O 3 /Nb Josephson junctions is described. A theory of the dc SQUID as a radio-frequency amplifier is presented, with an optimization strategy that accounts for the loading and noise contributions of the postamplifier and maximizes the signal-to-noise ratio of the total system. The high sensitivity of the dc SQUID is extended to high field NMR. A dc SQUID is used as a tuned radio-frequency amplifier to detect pulsed nuclear magnetic resonance at 32 MHz from a metal film in a 3.5 Tesla static field. A total system noise temperature of 11 K has been achieved, at a bath temperature of 4.2 K. The minimum number of nuclear Bohr magnetons observable from a free precession signal after a single pulse is about 2 x 10 17 in a bandwidth of 25 kHz. In a separate experiment, a dc SQUID is used as a rf amplifier in a NQR experiment to observe a new resonance response mechanism. The net electric polarization of a NaClO 3 crystal due to the precessing electric quadrupole moments of the Cl nuclei is detected at 30 MHz. The sensitivity of NMR and NQR spectrometers using dc SQUID amplifiers is compared to the sensitivity of spectrometers using conventional rf amplifiers. A SQUID-based spectrometer has a voltage sensitivity which is comparable to the best achieved by a FET-based spectrometer, at these temperatures and operating frequencies

  15. Training activities at the EPRI NDE Center

    International Nuclear Information System (INIS)

    Pherigo, G.

    1986-01-01

    The Electric Power Research Institute (EPRI), through its Nondestructive Examination (NDE) Center in Charlotte, North Carolina, has identified two specific categories of NDE training to best serve the industry's need for enhanced personnel qualification programs. These categories include in-service inspection (ISI) training and technical skills training. The ISI training provides operator training in new NDE technology areas that are ready for field application. The technical skills training is developed as part of a long-range plan to support all basic NDE methods typical to the electric power industry. The need for specific training and better documentation of NDE personnel qualifications is becoming more evident. ASME Section XI requirements for the qualification and certification of visual examiners and the recognition by the US Nuclear Regulatory Commission (NRC) of the importance of the ultrasonic (UT) operator in finding intergranular stress corrosion cracking (IGSCC) are two of the major issues being addressed by the training task of the EPRI NDE Center. The overall intent of the center's training is to meet the most critical utility needs with quality training that can be used by the trainee's employer as a part of their certification of that individual. To do this, the center has organized and activated a carefully maintained documentation and records systems built around the continuing education unit

  16. Analysis and experimental study of wireless power transfer with HTS coil and copper coil as the intermediate resonators system

    Science.gov (United States)

    Wang, Xiufang; Nie, Xinyi; Liang, Yilang; Lu, Falong; Yan, Zhongming; Wang, Yu

    2017-01-01

    Intermediate resonator (repeater) between transmitter and receiver can significantly increase the distance of wireless power transfer (WPT) and the efficiency of wireless power transfer. The wireless power transfer via strongly coupled magnetic resonances with an high temperature superconducting (HTS) coil and copper coil as intermediate resonators was presented in this paper. The electromagnetic experiment system under different conditions with different repeating coils were simulated by finite element software. The spatial distribution patterns of magnetic induction intensity at different distances were plotted. In this paper, we examined transfer characteristics with HTS repeating coil and copper repeating coil at 77 K and 300 K, respectively. Simulation and experimental results show that HTS and copper repeating coil can effectively enhance the space magnetic induction intensity, which has significant effect on improving the transmission efficiency and lengthening transmission distance. We found that the efficiency and the distance of wireless power transfer system with an HTS coil as repeater is much higher by using of copper coil as repeater.

  17. Development of quench protection system for HTS coils by active power method

    International Nuclear Information System (INIS)

    Nanato, N.; Tsumiyama, Y.; Kim, S.B.; Murase, S.; Seong, K.-C.; Kim, H.-J.

    2007-01-01

    Recently, HTS coils have been developed for electric power apparatuses. In superconducting coils, local and excessive joule heating may give damage to the superconducting windings when a quench occurs and therefore it is essential that the quench is detected quickly and precisely so that the coils can be safely discharged. Resistive voltage measurement method is universally used for the quench detection, however, it is vulnerable to an electromagnetic noise which causes insufficient quench detection and at least needs a central voltage tap in windings. In a large superconducting coil, a lead-wire from the central voltage tap may cause a short-circuit when high voltage will be applied. In this paper, we present a quench protection system based on the active power method which detects a quench by measuring the instantaneous active power generated in a superconducting coil. The protection system based on this method is very strong against to the noise and no more needs a central voltage tap. The performance of system developed by us is confirmed by using test coil wound with Bi-2223 HTS tapes

  18. Characteristics on electodynamic suspension simulator with HTS levitation magnet

    International Nuclear Information System (INIS)

    Lee, J.; Bae, D.K.; Sim, K.; Chung, Y.D.; Lee, Y.-S.

    2009-01-01

    High-T c superconducting (HTSC) electrodynamic suspension (EDS) system basically consists of the HTSC levitation magnet and the ground conductor. The levitation force of EDS system is forms by the interaction between the moving magnetic field produced by the onboard levitation magnet and the induced magnetic field produced by eddy current in the ground conductor. This paper deals with the characteristics of the EDS simulators with high-T c superconducting (HTS) levitation magnet. Two EDS simulator systems, rotating type EDS simulator and static type EDS simulator, were studied in this paper. The rotating type EDS simulator consists of a HTS levitation magnet and a 1.5 m diameter rotating ground conductor, a motor, the supporting structure and force measuring devices. In the static type EDS simulator, instead of moving magnetic field, AC current was applied to the fixed HTS levitation magnet to induce the eddy current. The static type EDS simulator consists of a HTS levitation magnet, a ground conductor, force measuring devices and supporting structure. The double-pancake type HTSC levitation magnet was designed, manufactured and tested in the EDS simulator.

  19. Characteristics on electodynamic suspension simulator with HTS levitation magnet

    Science.gov (United States)

    Lee, J.; Bae, D. K.; Sim, K.; Chung, Y. D.; Lee, Y.-S.

    2009-10-01

    High- Tc superconducting (HTSC) electrodynamic suspension (EDS) system basically consists of the HTSC levitation magnet and the ground conductor. The levitation force of EDS system is forms by the interaction between the moving magnetic field produced by the onboard levitation magnet and the induced magnetic field produced by eddy current in the ground conductor. This paper deals with the characteristics of the EDS simulators with high- Tc superconducting (HTS) levitation magnet. Two EDS simulator systems, rotating type EDS simulator and static type EDS simulator, were studied in this paper. The rotating type EDS simulator consists of a HTS levitation magnet and a 1.5 m diameter rotating ground conductor, a motor, the supporting structure and force measuring devices. In the static type EDS simulator, instead of moving magnetic field, AC current was applied to the fixed HTS levitation magnet to induce the eddy current. The static type EDS simulator consists of a HTS levitation magnet, a ground conductor, force measuring devices and supporting structure. The double-pancake type HTSC levitation magnet was designed, manufactured and tested in the EDS simulator.

  20. NanoSQUIDs: Basics & recent advances

    Science.gov (United States)

    José Martínez-Pérez, Maria; Koelle, Dieter

    2017-08-01

    Superconducting Quantum Interference Devices (SQUIDs) are one of the most popular devices in superconducting electronics. They combine the Josephson effect with the quantization of magnetic flux in superconductors. This gives rise to one of the most beautiful manifestations of macroscopic quantum coherence in the solid state. In addition, SQUIDs are extremely sensitive sensors allowing us to transduce magnetic flux into measurable electric signals. As a consequence, any physical observable that can be converted into magnetic flux, e.g., current, magnetization, magnetic field or position, becomes easily accessible to SQUID sensors. In the late 1980s it became clear that downsizing the dimensions of SQUIDs to the nanometric scale would encompass an enormous increase of their sensitivity to localized tiny magnetic signals. Indeed, nanoSQUIDs opened the way to the investigation of, e.g., individual magnetic nanoparticles or surface magnetic states with unprecedented sensitivities. The purpose of this chapter is to present a detailed survey of microscopic and nanoscopic SQUID sensors. We will start by discussing the principle of operation of SQUIDs, placing the emphasis on their application as ultrasensitive detectors for small localized magnetic signals. We will continue by reviewing a number of existing devices based on different kinds of Josephson junctions and materials, focusing on their advantages and drawbacks. The last sections are left for applications of nanoSQUIDs in the fields of scanning SQUID microscopy and magnetic particle characterization, placing special stress on the investigation of individual magnetic nanoparticles.

  1. Visualization of flowing current in braided carbon fiber reinforced plastics using SQUID gradiometer for nondestructive evaluation

    International Nuclear Information System (INIS)

    Hatsukade, Y; Yoshida, K; Kage, T; Tanaka, S; Takai, Y; Aly-Hassan, M S; Hamada, H; Nakai, A

    2013-01-01

    In this paper, visualization of flowing current in various braided carbon fiber reinforced plastics (CFRPs) was demonstrated using high-temperature superconductor (HTS) superconducting quantum interference device (SQUID) gradiometer, in order to study electrical properties and integrity of the braided CFRP samples. Step-by-step tensile loading was also applied to the samples, in order to study their mechanical properties and destructive mechanism. Experimental results indicated that the addition of carbon nano fibers and middle-end carbon fiber bundles attributed to modify not only the mechanical properties, but also the electrical properties of the samples. Combining the results by the both methods, a scenario of the destructive mechanism of one sample was estimated.

  2. Vortex electronis and squids

    CERN Document Server

    2003-01-01

    Understanding the nature of vortices in high-Tc superconductors is a crucial subject for research on superconductive electronics, especially for superconducting interference devices (SQUIDs), it is also a fundamental problem in condensed-matter physics. Recent technological progress in methods for both direct and indirect observation of vortices, e.g. scanning SQUID, terahertz imaging, and microwave excitation, has led to new insights into vortex physics, the dynamic behavior of vortices in junctions and related questions of noise. This book presents the current status of research activity and provides new information on the applications of SQUIDs, including magnetocardiography, immunoassays, and laser-SQUID microscopes, all of which are close to being commercially available.

  3. Fault Management of a Cold Dielectric HTS Power Transmission Cable

    International Nuclear Information System (INIS)

    Maguire, J; Allais, A; Yuan, J; Schmidt, F; Hamber, F; Welsh, Tom

    2006-01-01

    High temperature superconductor (HTS) power transmission cables offer significant advantages in power density over conventional copper-based cables. As with conventional cables, HTS cables must be safe and reliable when abnormal conditions, such as local and through faults, occur in the power grid. Due to the unique characteristics of HTS power cables, the fault management of an HTS cable is different from that of a conventional cable. Issues, such as nitrogen bubble formation within lapped dielectric material, need to be addressed. This paper reviews the efforts that have been performed to study the fault conditions of a cold dielectric HTS power cable. As a result of the efforts, a fault management scheme has been developed, which provides both local and through faults system protection. Details of the fault management scheme with examples are presented

  4. Utilization of process TEG for fabrication of HTS circuits

    International Nuclear Information System (INIS)

    Hato, T.; Okada, Y.; Maruyama, M.; Suzuki, H.; Wakana, H.; Adachi, S.; Kawabe, U.; Tanabe, K.

    2006-01-01

    We improved the fabrication process of high-temperature superconducting (HTS) sampler circuits with multilayer structures by utilizing a test elements group (TEG). Among a lot of difficulties in the HTS circuit fabrication process, loss of oxygen is one of the most significant problems. Since the film transition temperature (T c ) has a strong relationship with the resistance at room temperature, we fabricated a test pattern on the same wafer of the circuits and measured the resistance at room temperature by using a prober to estimate the T c of each layer. By introducing the measurement of the normal resistance after each process, we found better process conditions without a T c drop. Moreover, we constructed a low-temperature probing system, in which we can measure the junction TEG. The system enabled feedback of the fabrication condition soon after the junction process. The utilization of the process TEG contributed to reproducible fabrication of HTS circuits and that is a promising advance of the HTS circuit technology

  5. Parameter tolerance of the SQUID bootstrap circuit

    International Nuclear Information System (INIS)

    Zhang Guofeng; Dong Hui; Xie Xiaoming; Jiang Mianheng; Zhang Yi; Krause, Hans-Joachim; Braginski, Alex I; Offenhäusser, Andreas

    2012-01-01

    We recently demonstrated and analysed the voltage-biased SQUID bootstrap circuit (SBC) conceived to suppress the preamplifier noise contribution in the absence of flux modulation readout. Our scheme contains both the additional voltage and current feedbacks. In this study, we analysed the tolerance of the SBC noise suppression performance to spreads in SQUID and SBC circuit parameters. Analytical results were confirmed by experiments. A one-time adjustable current feedback can be used to extend the tolerance to spreads such as those caused by the integrated circuit fabrication process. This should help to improve the fabrication yield of SBC devices integrated on one chip—as required for multi-channel SQUID systems.

  6. Recent Progress in Electrical Insulation Techniques for HTS Power Apparatus

    Science.gov (United States)

    Hayakawa, Naoki; Kojima, Hiroki; Hanai, Masahiro; Okubo, Hitoshi

    This paper describes the electrical insulation techniques at cryogenic temperatures, i.e. Cryodielectrics, for HTS power apparatus, e.g. HTS power transmission cables, transformers, fault current limiters and SMES. Breakdown and partial discharge characteristics are discussed for different electrical insulation configurations of LN2, sub-cooled LN2, solid, vacuum and their composite insulation systems. Dynamic and static insulation performances with and without taking account of quench in HTS materials are also introduced.

  7. Theoretical and FEM analysis of suspension and propulsion system with HTS hybrid electromagnets in an EMS Maglev model

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Y.D., E-mail: ydchung@suwon.ac.kr [Department of Electrical Engineering, Suwon University, Bongdang Eup, Hwaseong Si 445-743 (Korea, Republic of); Lee, C.Y. [Korea Railroad Research Institute, Woram Dong, Uiwang Si 437-757 (Korea, Republic of); Jang, J.Y. [Department of Electrical Engineering, Ansan College of Technology, Choji-Dong, Ansan Si 425-792 (Korea, Republic of); Yoon, Y.S. [Department of Electrical and Electronic Engineering, Yonsei University, Sinchon-dong, Seoul 120-749 (Korea, Republic of); Ko, T.K. [Department of Electrical Engineering, Ansan College of Technology, Choji-Dong, Ansan Si 425-792 (Korea, Republic of)

    2011-11-15

    We examine levitation and propulsion forces of the proto-type maglev vehicle system based on 3D FEM. The levitation force increases over 15% due to AC current of the guideway. The levitation force by HTS electromagnet (EM) and AC current is larger over 30% than that of only HTS EM. We have been constructed a proto-type electromagnetic suspension (EMS) based maglev vehicle system. The maglev concept utilizes magnetic forces for noncontact suspension, guidance and propulsion. The suspension system with high temperature superconducting (HTS) hybrid electromagnet (EM) is composed of HTS coils and normal coils, which consume little power to keep large suspension gap. The magnetic forces realize to guide the vehicle, propel the vehicle along the guide-way and assist in braking action. The proto-type EMS-based Maglev model is designed to keep the suspension gap of 20 mm. This paper presents the theoretical analysis of the maglev vehicle based on the EMS model to obtain the designing parameters for levitation and propulsion forces. The magnetic field distributions of the electromagnetic forces with hybrid EM and propulsion stator coils are analyzed based on three dimension (3D) finite element method (FEM) analysis. From the simulation results, appropriately design parameters of the suspension, guidance and propulsion were obtained.

  8. Theoretical and FEM analysis of suspension and propulsion system with HTS hybrid electromagnets in an EMS Maglev model

    International Nuclear Information System (INIS)

    Chung, Y.D.; Lee, C.Y.; Jang, J.Y.; Yoon, Y.S.; Ko, T.K.

    2011-01-01

    We examine levitation and propulsion forces of the proto-type maglev vehicle system based on 3D FEM. The levitation force increases over 15% due to AC current of the guideway. The levitation force by HTS electromagnet (EM) and AC current is larger over 30% than that of only HTS EM. We have been constructed a proto-type electromagnetic suspension (EMS) based maglev vehicle system. The maglev concept utilizes magnetic forces for noncontact suspension, guidance and propulsion. The suspension system with high temperature superconducting (HTS) hybrid electromagnet (EM) is composed of HTS coils and normal coils, which consume little power to keep large suspension gap. The magnetic forces realize to guide the vehicle, propel the vehicle along the guide-way and assist in braking action. The proto-type EMS-based Maglev model is designed to keep the suspension gap of 20 mm. This paper presents the theoretical analysis of the maglev vehicle based on the EMS model to obtain the designing parameters for levitation and propulsion forces. The magnetic field distributions of the electromagnetic forces with hybrid EM and propulsion stator coils are analyzed based on three dimension (3D) finite element method (FEM) analysis. From the simulation results, appropriately design parameters of the suspension, guidance and propulsion were obtained.

  9. Performance and analysis of wireless power charging system from room temperature to HTS magnet via strong resonance coupling method

    International Nuclear Information System (INIS)

    Chung, Y. D.; Lee, S. Y.; Lee, T. W.; Kim, J. S.; Lee, C. Y.

    2016-01-01

    The technology of supplying the electric power by wireless power transfer (WPT) is expected for the next generation power feeding system since it can supply the power to portable devices without any connectors through large air gap. As such a technology based on strongly coupled electromagnetic resonators is possible to deliver the large power and recharge them seamlessly; it has been considered as a noble option to wireless power charging system in the various power applications. Recently, various HTS wires have now been manufactured for demonstrations of transmission cables, motors, MAGLEV, and other electrical power components. However, since the HTS magnets have a lower index n value intrinsically, they are required to be charged from external power system through leads or internal power system. The portable area is limited as well as the cryogen system is bulkier. Thus, we proposed a novel design of wireless power charging system for superconducting HTS magnet (WPC4SM) based on resonance coupling method. As the novel system makes possible a wireless power charging using copper resonance coupled coils, it enables to portable charging conveniently in the superconducting applications. This paper presented the conceptual design and operating characteristics of WPC4SM using different shapes' copper resonance coil. The proposed system consists of four components; RF generator of 370 kHz, copper resonance coupling coils, impedance matching (IM) subsystem and HTS magnet including rectifier system

  10. Performance and analysis of wireless power charging system from room temperature to HTS magnet via strong resonance coupling method

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Y. D.; Lee, S. Y.; Lee, T. W.; Kim, J. S. [Suwon Science College, Suwon (Korea, Republic of); Lee, C. Y. [Korea Railroad Institute, Uiwang (Korea, Republic of)

    2016-03-15

    The technology of supplying the electric power by wireless power transfer (WPT) is expected for the next generation power feeding system since it can supply the power to portable devices without any connectors through large air gap. As such a technology based on strongly coupled electromagnetic resonators is possible to deliver the large power and recharge them seamlessly; it has been considered as a noble option to wireless power charging system in the various power applications. Recently, various HTS wires have now been manufactured for demonstrations of transmission cables, motors, MAGLEV, and other electrical power components. However, since the HTS magnets have a lower index n value intrinsically, they are required to be charged from external power system through leads or internal power system. The portable area is limited as well as the cryogen system is bulkier. Thus, we proposed a novel design of wireless power charging system for superconducting HTS magnet (WPC4SM) based on resonance coupling method. As the novel system makes possible a wireless power charging using copper resonance coupled coils, it enables to portable charging conveniently in the superconducting applications. This paper presented the conceptual design and operating characteristics of WPC4SM using different shapes' copper resonance coil. The proposed system consists of four components; RF generator of 370 kHz, copper resonance coupling coils, impedance matching (IM) subsystem and HTS magnet including rectifier system.

  11. Re-inventing NDE as science — How student ideas will help adapt NDE to the new ecosystem of science and technology

    Science.gov (United States)

    Meyendorf, Norbert

    2018-04-01

    Industry 4.0 stands for the fourth industrial revolution that is ongoing at present. Industry 4.0 is a terminology generally used in Europe to characterize the integration of production and communication technologies, the so called "smart factory". Lowering costs and efficient in-time production will be possible for low numbers of unique parts, for example by additive manufacturing (3D printing). A significant aspect is also quality and maintainability of these sometimes unique structures and components. NDE has to follow these trends, but introduce the capability of cyber systems into the inspection and maintenance processes. The author initiated in his NDE introductory class student projects where small groups of students had to identify everyday problems that can be solved by NDE techniques and suggest technical solutions based on today's technology. The results where exiting. After discussing the ecosystem and the present situation of NDE as a science, several of these ideas were presented. Let us listen to the ideas and needs of the young generation to re-invent NDE!

  12. YBCO nanoSQUIDs applied to the investigation of small spin systems

    Energy Technology Data Exchange (ETDEWEB)

    Martinez Perez, Maria Jose; Schwarz, Tobias; Woelbing, Roman; Mueller, Benedikt; Kleiner, Reinhold; Koelle, Dieter [Physikalisches Institut and Center for Collective Quantum Phenomena in LISA" +, Universitaet Tuebingen (Germany); Reiche, Christopher F.; Muehl, Thomas; Buechner, Bernd [Leibniz Institute for Solid State and Materials Research IFW Dresden (Germany); Sese, Javier [Instituto de Nanociencia de Aragon and Advanced Microscopy Laboratory, Zaragoza (Spain)

    2015-07-01

    We present the realization of ultra-sensitive YBCO nanoSQUIDs based on submicron grain boundary junctions patterned by focused ion beam milling. White flux noise down to ∝ 50nΦ{sub 0}/Hz{sup 1/2} has been achieved, yielding spin sensitivities of down to a few μ{sub B}/Hz{sup 1/2} at T=4.2 K. Moreover, we demonstrate that magnetic fields up to the tesla range can be applied, fulfilling a fundamental condition for the study of small spin systems. As a proof-of-principle we present the successful deposition of a Fe-filled carbon nanotube (∝ 40 nm in diameter and ∝ 14 μm in length) and an individual Co nanopillar (base diameter of ∝ 50 nm and height ∝ 10 nm) close to the nanoSQUID loop. We show that sub-micrometric control over the particle position lead to large magnetic coupling factors between the nano-loop and the spin system. Together with the possibility of applying large magnetic fields, the latter has allowed us to directly observe the magnetization reversal of these spin systems at different temperatures.

  13. Development of a 600 kJ HTS SMES

    International Nuclear Information System (INIS)

    Seong, K.C.; Kim, H.J.; Kim, S.H.; Sim, K.D.; Sohn, M.H.; Lee, E.Y.; Park, S.J.; Hahn, S.Y.; Park, M.W.

    2008-01-01

    This paper describes an overview of development on a 600 kJ high-temperature superconducting magnetic energy storage (HTS SMES). Our final goal will be the commercialization of MJ class HTS SMES system for the increase of power quality within 5 years. Hence, for this purpose, we have developed the research and development in 3 years. The purpose of this research is to develop a pilot system, which can protect the sensitivity loads from a momentary power interruption or a voltage sag

  14. Review of Magneto cardiography Technology based on SQUID

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y. H.; Kwon, H.; Kim, J. M.; Kim, K.; Yu, K. K.; Park, Y. K. [Brain and Cognition Measurement Lab, Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of)

    2012-04-15

    Electric activity of cardiac muscles generates magnetic fields. Magnetocardiography (or MCG) technology, measuring these magnetic signals, can provide useful information for the diagnosis of heart diseases. It is already about 40 years ago that the first measurement of MCG signals was done by D. Cohen using SQUID (superconducting quantum interference device) sensor inside a magnetically shielded room. In the early period of MCG history, bulky point-contact RF-SQUID was used as the magnetic sensor. Thanks to the development of Nb-based Josephson junction technology in mid 1980s and new design of tightly-coupled DC-SQUID, low-noise SQUID sensors could be developed in late 1980s. In around 1990, several groups developed multi-channel MCG systems and started clinical study. However, it is quite recent years that the true usefulness of MCG was verified in clinical practice, for example, in the diagnosis of coronary artery disease. For the practical MCG system, technical elements of MCG system should be optimized in terms of performance, fabrication cost and operation cost. In this review, development history, technical issue, and future development direction of MCG technology are described.

  15. Integration of fracture mechanics and NDE

    International Nuclear Information System (INIS)

    Njo, D.H.; McDonald, N.R.; Nichols, R.W.

    1991-01-01

    This paper addresses issues concerning the effective assessment of the structural integrity of safety related components, principally the primary system, in operating nuclear power plants. The failure mode of greatest safety concern is fracture and this is usually assessed by fracture mechanics (FM) procedures. These require the choice and application of an appropriate analytical method based on a knowledge of the materials, loading and environmental conditions, and characteristics of such defects as have been identified by non destructive examination (NDE). The paper focuses on capabilities and limitations of the NDE procedures, FM methods and other input information which must be taken into account in practical circumstances as well as some problems encountered. It concludes that an integral approach requiring mutual understanding, dialogue and cooperation among the materials, FM and NDE experts is essential for effective and reliable structural integrity assessments

  16. Enhancements to a Superconducting Quantum Interference Device (SQUID) Multiplexer Readout and Control System

    Science.gov (United States)

    Forgione, J.; Benford, D. J.; Buchanan, E. D.; Moseley, S. H.; Rebar, J.; Shafer, R. A.

    2004-01-01

    Far-infrared detector arrays such as the 16x32 superconducting bolometer array for the SAFIRE instrument (flying on the SOFIA airborne observatory) require systems of readout and control electronics to provide translation between a user-driven, digital PC and the cold, analog world of the cryogenic detector. In 2001, the National Institute of Standards and Technology (NIST) developed their Mark III electronics for purposes of control and readout of their 1x32 SQUID Multiplexer chips. We at NASA s Goddard Space Flight Center acquired a Mark 111 system and subsequently designed upgrades to suit our and our collaborators purposes. We developed an arbitrary, programmable multiplexing system that allows the user to cycle through rows in a SQUID array in an infinite number of combinations. We provided hooks in the Mark III system to allow readout of signals from outside the Mark 111 system, such as telescope status information. Finally, we augmented the heart of the system with a new feedback algorithm implementation, flexible diagnostic tools, and informative telemetry.

  17. Nondestructive examination (NDE) Reliability for Inservice Inspection of Light Water Reactors

    International Nuclear Information System (INIS)

    Doctor, S.R.; Good, M.S.; Heasler, P.G.; Hockey, R.L.; Simonen, F.A.; Spanner, J.C.; Taylor, T.T.; Vo, T.V.

    1992-07-01

    The Evaluation and Improvement of NDE reliability for Inservice Inspection of Light Water Reactors (NDE Reliability) Program at the Pacific Northwest Laboratory was established by the Nuclear Regulatory Commission to determine the reliability of current inservice inspection (ISI) techniques and to develop recommendations that will ensure a suitably high inspection reliability. The objectives of this program include determining the reliability of ISI performed on the primary systems of commercial light-water reactors (LWRs); using probabilistic fracture mechanics analysis to determine the impact of NDE unreliability on system safety; and evaluating reliability improvements that can be achieved with improved and advanced technology. A final objective is to formulate recommended revisions to the Regulatory and ASME Code requirements, based on material properties, service conditions, and NDE uncertainties

  18. The interaction of NDE and failure analysis

    International Nuclear Information System (INIS)

    Nichols, R.W.

    1988-01-01

    This paper deals with the use of Non-Destructive Examination (NDE) and failure analysis for the assessment of the structural integrity. It appears that failure analysis enables to know whether NDE is required or not, and can help to direct NDE into the most useful directions by identifying the areas where it is most important that defects are absent. It also appears that failure analysis can help the operator to decide which NDE method is best suited to the component studied and provides detailed specifications for this NDE method. The interaction between failure analysis and NDE is then described. (TEC)

  19. The interaction of NDE and failure analysis

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, R W

    1988-12-31

    This paper deals with the use of Non-Destructive Examination (NDE) and failure analysis for the assessment of the structural integrity. It appears that failure analysis enables to know whether NDE is required or not, and can help to direct NDE into the most useful directions by identifying the areas where it is most important that defects are absent. It also appears that failure analysis can help the operator to decide which NDE method is best suited to the component studied and provides detailed specifications for this NDE method. The interaction between failure analysis and NDE is then described. (TEC).

  20. Reduction of Thermal Loss in HTS Windings by Using Magnetic Flux Deflection

    Science.gov (United States)

    Tsuzuki, K.; Miki, M.; Felder, B.; Koshiba, Y.; Izumi, M.; Umemoto, K.; Aizawa, K.; Yanamoto, T.

    Efforts on the generation of intensified magnetic flux have been made for the optimized shape of HTS winding applications. This contributes to the high efficiency of the rotating machines using HTS windings. Heat generation from the HTS windings requires to be suppressed as much as possible, when those coils are under operation with either direct or alternative currents. Presently, the reduction of such thermal loss generated by the applied currents on the HTS coils is reported with a magnetic flux deflection system. The HTS coils are fixed together with flattened magnetic materials to realize a kind of redirection of the flux pathway. Eventually, the magnetic flux density perpendicular to the tape surface (equivalent to the a-b plane) of the HTS tape materials is reduced to the proximity of the HTS coil. To verify the new geometry of the surroundings of the HTS coils with magnetic materials, a comparative study of the DC coil voltage was done for different applied currents in prototype field-pole coils of a ship propulsion motor.

  1. Extending the Use of HTS to Feeders in Superconducting Magnet Systems

    CERN Document Server

    Ballarino, A; Taylor, T

    2008-01-01

    Following the successful adoption of high temperature superconductors (HTS) in over a thousand current leads that will feed 3 MA from warm to cold in the Large Hadron Collider (LHC), the use of HTS has been generally accepted as suitable technology for the design of efficient leads feeding cryo-magnets. We now consider the extension of the technology to the interconnection of strings of superconducting magnets and their connection to feed-boxes through which the excitation current is fed. It is proposed to use HTS material for this application instead of low-temperature superconductor or normal-conducting material. The implications of adopting this technology are discussed with regard to the choice of materials, highlighting the differences with more conventional schemes. Examples are given of how this approach could be applied to the consolidation and upgrade of the LHC.

  2. Ultrasonic system for NDE of fruits and vegetables

    International Nuclear Information System (INIS)

    Jhang, Kyung Young; Jung, Gyoo Hong; Kim, Man Soo

    1999-01-01

    The nondestructive internal quality evaluation of agricultural products has been strongly required from the needs for individual inspection. In recent, ultrasonic wave has been considered as a solution for this problem. This study is to construct the ultrasonic inspection system for fruits and vegetables on the basis of pre-knowledge that general frequency band(higher than 100 kHz) ultrasonic waves do not transmitted well due to severe attenuation. Our system includes ultrasonic pulser and receiver, transducers(50 kHz), acoustic hem, pneumatic controller and signal processing units (PC). In order to confirm the performance, several samples (apple, pear, persimmon, kiwi fruit, potato and radish) were tested, and the results showed sufficient possibility to apply to NDE of fruits and vegetables.

  3. Quench detection/protection of an HTS coil by AE signals

    International Nuclear Information System (INIS)

    Yoneda, M.; Nanato, N.; Aoki, D.; Kato, T.; Murase, S.

    2011-01-01

    A quench detection/protection system based on measuring AE signals was developed. The system was tested for a Bi2223 coil. Temperature rise after a quench occurrence was restrained at very low value. The normal zone propagation velocities in high T c superconductors are slow at high operation temperature and therefore local and excessive temperature rise generates at quench occurrence, and then the superconductors are degraded or burned. Therefore it is essential to detect the temperature rise in high T c superconducting (HTS) coils as soon as possible and protect them. The authors have presented a quench detection method for HTS coils by time-frequency visualization of AE signals and have shown its usefulness for a HTS coil with height and outer diameter of 40-50 mm. In this paper, the authors present a quench detection/protection system based on superior method in quench detection time to the previous method and show its usefulness for a larger HTS coil (height and outer diameter: 160-190 mm) than the previous coil.

  4. Symposium on applications of superconducting quantum interference devices (SQUIDS)

    International Nuclear Information System (INIS)

    1978-01-01

    The abstracts are given of thirteen papers presented at a ''SQUID Symposium'' organized by the Division of Materials Sciences of the U.S. Department of Energy and held March 23--25, 1978, at the University of Virginia. Since SQUID systems have already been utilized in feasibility demonstration in geothermal reservoir exploration, it was recognized that these devices also hold great potential for many other important scientific measurements. Many of these are energy-related, and others include forefront investigations in a diverse group of scientific areas, from biomedical to earthquake monitoring. Research in SQUIDs has advanced so rapidly in recent years that it was felt that a symposium to review the current status and future prospects of the devices would be timely. The abstracts given present an overview of work in this area and hopefully provide an opportunity to increase awareness among basic and applied scientists of the inherent implications of the extreme measurement sensitivity in advanced SQUID systems

  5. Materials processing and machine applications of bulk HTS

    Science.gov (United States)

    Miki, M.; Felder, B.; Tsuzuki, K.; Xu, Y.; Deng, Z.; Izumi, M.; Hayakawa, H.; Morita, M.; Teshima, H.

    2010-12-01

    We report a refrigeration system for rotating machines associated with the enhancement of the trapped magnetic flux of bulk high-temperature superconductor (HTS) field poles. A novel cryogenic system was designed and fabricated. It is composed of a low-loss rotary joint connecting the rotor and a closed-cycle thermosiphon under a GM cryocooler using a refrigerant. Condensed neon gas was adopted as a suitable cryogen for the operation of HTS rotating machines with field poles composed of RE-Ba-Cu-O family materials, where RE is a rare-earth metal. Regarding the materials processing of the bulks HTS, thanks to the addition of magnetic particles to GdBa2Cu3O7 - d (Gd123) bulk superconductors an increase of more than 20% in the trapped magnetic flux density was achieved at liquid nitrogen temperature. Field-pole Gd123 bulks up to 46 mm in diameter were synthesized with the addition of Fe-B alloy magnetic particles and assembled into the synchronous machine rotor to be tested. Successful cooling of the magnetized rotor field poles down to 35 K and low-output-power rotating operation was achieved up to 720 rpm in the test machine with eight field-pole bulks. The present results show a substantial basis for making a prototype system of rotating machinery of applied HTS bulks.

  6. Materials processing and machine applications of bulk HTS

    Energy Technology Data Exchange (ETDEWEB)

    Miki, M; Felder, B; Tsuzuki, K; Xu, Y; Deng, Z; Izumi, M [Department of Marine Electronics and Mechanical Engineering, Tokyo University of Marine Science and Technology, 2-1-6, Etchu-jima, Koto-ku, Tokyo 135-8533 (Japan); Hayakawa, H [Kitano Seiki Co. Ltd, 7-17-3, Chuo, Ohta-ku, Tokyo 143-0024 (Japan); Morita, M; Teshima, H, E-mail: d082025@kaiyodai.ac.j [Nippon Steel Co. Ltd, 20-1, Shintomi, Huttsu-shi, Chiba 293-8511 (Japan)

    2010-12-15

    We report a refrigeration system for rotating machines associated with the enhancement of the trapped magnetic flux of bulk high-temperature superconductor (HTS) field poles. A novel cryogenic system was designed and fabricated. It is composed of a low-loss rotary joint connecting the rotor and a closed-cycle thermosiphon under a GM cryocooler using a refrigerant. Condensed neon gas was adopted as a suitable cryogen for the operation of HTS rotating machines with field poles composed of RE-Ba-Cu-O family materials, where RE is a rare-earth metal. Regarding the materials processing of the bulks HTS, thanks to the addition of magnetic particles to GdBa{sub 2}Cu{sub 3}O{sub 7-d} (Gd123) bulk superconductors an increase of more than 20% in the trapped magnetic flux density was achieved at liquid nitrogen temperature. Field-pole Gd123 bulks up to 46 mm in diameter were synthesized with the addition of Fe-B alloy magnetic particles and assembled into the synchronous machine rotor to be tested. Successful cooling of the magnetized rotor field poles down to 35 K and low-output-power rotating operation was achieved up to 720 rpm in the test machine with eight field-pole bulks. The present results show a substantial basis for making a prototype system of rotating machinery of applied HTS bulks.

  7. Temperature dependence of levitation force and its relaxation in a HTS levitation system

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Jun; Zhang Xingyi [Key Laboratory of Mechanics on Western Disaster and Environment, Department of Mechanics and Engineering Science, College of Civil Engineering and Mechanics, Lanzhou University, Lanzhou, Gansu 730000 (China); Zhou Youhe, E-mail: zhouyh@lzu.edu.c [Key Laboratory of Mechanics on Western Disaster and Environment, Department of Mechanics and Engineering Science, College of Civil Engineering and Mechanics, Lanzhou University, Lanzhou, Gansu 730000 (China)

    2010-03-01

    Using a modified Gifford-McMahon refrigerator to cool the cylindrical bulk YBaCuO superconductor within the region of 100-10 K, and using an updated high-temperature superconductor (HTS) maglev measurement system, the levitation force and its time relaxation at different temperatures between a YBaCuO bulk superconductor and a permanent magnet (PM) have been measured under zero-field cooling. It is found that decrease the cooling temperature of HTS can decrease the hysteresis of magnetization and increase the maximum levitation force of each hysteresis loop. For the relaxation of levitation force, if the temperature is continually lowered to 10 K after the relaxation measurement at given cooling temperature is performed for 600 s, the levitation force will continue to decrease sharply with the lowering of temperature even though it will get stable if the temperature is not lowered. Our results shown in this work are a benefit to the understanding of levitation systems.

  8. A space-qualified experiment integrating HTS digital circuits and small cryocoolers

    International Nuclear Information System (INIS)

    Silver, A.; Akerling, G.; Auten, R.

    1996-01-01

    High temperature superconductors (HTS) promise to achieve electrical performance superior to that of conventional electronics. For application in space systems, HTS systems must simultaneously achieve lower power, weight, and volume than conventional electronics, and meet stringent space qualification and reliability requirements. Most effort to date has focused on passive RF/microwave applications. However, incorporation of active microwave components such as amplifiers, mixers, and phase shifters, and on-board high data rate digital signal processing is limited by the power and weight of their spacecraft electronic and support modules. Absence of data on active HTS components will prevent their utilization in space. To validate the feasibility in space of HTS circuits and components based on Josephson junctions, one needs to demonstrate HTS circuits and critical supporting technologies, such as space-qualified packaging and interconnects, closed-cycle cryocooling, and interface electronics. This paper describes the packaging, performance, and space test plan of an integrated, space-qualified experimental package consisting of HTS Josephson junction circuits and all the supporting components for NRL's high temperature superconductor space experiment (HTSSE-II). Most of the technical challenges and approaches are equally applicable to passive and active RF/microwave and digital electronic components, and this experiment will provide valuable validation data

  9. Detection of Local Temperature Change on HTS Cables via Time-Frequency Domain Reflectometry

    Science.gov (United States)

    Bang, Su Sik; Lee, Geon Seok; Kwon, Gu-Young; Lee, Yeong Ho; Ji, Gyeong Hwan; Sohn, Songho; Park, Kijun; Shin, Yong-June

    2017-07-01

    High temperature superconducting (HTS) cables are drawing attention as transmission and distribution cables in future grid, and related researches on HTS cables have been conducted actively. As HTS cables have come to the demonstration stage, failures of cooling systems inducing quench phenomenon of the HTS cables have become significant. Several diagnosis of the HTS cables have been developed but there are still some limitations of the experimental setup. In this paper, a non-destructive diagnostic technique for the detection of the local temperature change point is proposed. Also, a simulation model of HTS cables with a local temperature change point is suggested to verify the proposed diagnosis. The performance of the diagnosis is checked by comparative analysis between the proposed simulation results and experiment results of a real-world HTS cable. It is expected that the suggested simulation model and diagnosis will contribute to the commercialization of HTS cables in the power grid.

  10. SQUID in NDT

    International Nuclear Information System (INIS)

    Rashdi Shah Ahmad

    2001-01-01

    Superconducting Quantum Interference Device (SQUID) is the most sensitive magnetic flux sensor. It has been used to map the magnetic field on the scalp of human being generated by the brain activity. Currently, a number of groups have tried using SQUID for some special NDT application. This paper reviews some of these work. (Author)

  11. HTS machine laboratory prototype

    DEFF Research Database (Denmark)

    machine. The machine comprises six stationary HTS field windings wound from both YBCO and BiSCOO tape operated at liquid nitrogen temperature and enclosed in a cryostat, and a three phase armature winding spinning at up to 300 rpm. This design has full functionality of HTS synchronous machines. The design...

  12. Assessment of High Temperature Superconducting (HTS) electric motors for rotorcraft propulsion

    Science.gov (United States)

    Doernbach, Jay

    1990-01-01

    The successful development of high temperature superconductors (HTS) could have a major impact on future aeronautical propulsion and aeronautical flight vehicle systems. Applications of high temperature superconductors have been envisioned for several classes of aeronautical systems, including subsonic and supersonic transports, hypersonic aircraft, V/STOL aircraft, rotorcraft and solar powered aircraft. The potential of HTS electric motors and generators for providing primary shaft power for rotorcraft propulsion is examined. Three different sized production helicopters were investigated; namely, the Bell Jet Ranger, the Sikorsky Black Hawk and the Sikorsky Super Stallion. These rotorcraft have nominal horsepower ratings of 500, 3600, and 13400 respectively. Preliminary results indicated that an all-electric HTS drive system produces an improvement in rotorcraft Takeoff Gross Weight (TOGW) for those rotorcraft with power ratings above 2000 horsepower. The predicted TOGW improvements are up to 9 percent for the medium-sized Sikorsky Black Hawk and up to 20 percent for the large-sized Sikorsky Super Stallion. The small-sized Bell Jet Ranger, however, experienced a penalty in TOGW with the all-electric HTS drive system.

  13. Development of a Flow-Through SQUID System for Non-Destructive Evaluation of MRI Wire

    National Research Council Canada - National Science Library

    Wellstood, Frederick C

    2007-01-01

    ...) superconducting quantum interference device (SQUID) system. The ability to detect small defects in km-long sections of NbTi magnet wire could improve the production yield of high-field magnets for power and medical applications...

  14. Macroscopic quantum tunneling in a dc SQUID

    International Nuclear Information System (INIS)

    Chen, Y.C.

    1986-01-01

    The theory of macroscopic quantum tunneling is applied to a current-biased dc SQUID whose dynamics can be described by a two-dimensional mechanical system with a dissipative environment. Based on the phenomenological model proposed by Caldeira and Leggett, the dissipative environment is represented by a set of harmonic oscillators coupling to the system. After integrating out the environmental degrees of freedom, an effective Euclidean action is found for the two-dimensional system. The action is used to provide the quantum tunneling rate formalism for the dc SQUID. Under certain conditions, the tunneling rate reduces to that of a single current-biased Josephson junction with an adjustable effective critical current

  15. Closed-cycle gas flow system for cooling a HTc dc-SQUID magnetometer

    NARCIS (Netherlands)

    Bosch, van den P.J.; Holland, H.J.; Brake, ter H.J.M.; Rogalla, H.

    1994-01-01

    A closed-cycle gas flow system for cooling a high-crit. temp. d.c.-superconducting quantum interference device (SQUID) magnetometer by means of a cryocooler has been designed, constructed and tested. The magnetometer is aimed to measure heart signals with a sensitivity of 0.1 pT/Hz1/2. The required

  16. Design and manufacture of a D-shape coil-based toroid-type HTS DC reactor using 2nd generation HTS wire

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kwangmin, E-mail: kwangmin81@gmail.com [Changwon National University, 55306 Sarim-dong, Changwon 641-773 (Korea, Republic of); Go, Byeong-Soo; Sung, Hae-Jin; Park, Hea-chul; Kim, Seokho [Changwon National University, 55306 Sarim-dong, Changwon 641-773 (Korea, Republic of); Lee, Sangjin [Uiduk University, Gyeongju 780-713 (Korea, Republic of); Jin, Yoon-Su; Oh, Yunsang [Vector Fields Korea Inc., Pohang 790-834 (Korea, Republic of); Park, Minwon [Changwon National University, 55306 Sarim-dong, Changwon 641-773 (Korea, Republic of); Yu, In-Keun, E-mail: yuik@changwon.ac.kr [Changwon National University, 55306 Sarim-dong, Changwon 641-773 (Korea, Republic of)

    2014-09-15

    Highlights: • The authors designed and fabricated a D-shape coil based toroid-type HTS DC reactor using 2G GdBCO HTS wires. • The toroid-type magnet consisted of 30 D-shape double pancake coil (DDC)s. The total length of the wire was 2.32 km. • The conduction cooling method was adopted for reactor magnet cooling. • The maximum cooling temperature of reactor magnet is 5.5 K. • The inductance was 408 mH in the steady-state condition (300 A operating). - Abstract: This paper describes the design specifications and performance of a real toroid-type high temperature superconducting (HTS) DC reactor. The HTS DC reactor was designed using 2G HTS wires. The HTS coils of the toroid-type DC reactor magnet were made in the form of a D-shape. The target inductance of the HTS DC reactor was 400 mH. The expected operating temperature was under 20 K. The electromagnetic performance of the toroid-type HTS DC reactor magnet was analyzed using the finite element method program. A conduction cooling method was adopted for reactor magnet cooling. Performances of the toroid-type HTS DC reactor were analyzed through experiments conducted under the steady-state and charge conditions. The fundamental design specifications and the data obtained from this research will be applied to the design of a commercial-type HTS DC reactor.

  17. Optimization of a condensed-neon cooling system for a HTS synchronous motor with Gd-bulk HTS field-pole magnets

    Energy Technology Data Exchange (ETDEWEB)

    Felder, B; Miki, M; Tsuzuki, K; Izumi, M [Department of Marine Electronics and Mechanical Engineering, Tokyo University of Marine Science and Technology, 2-1-6, Etchujima, Koto-ku, Tokyo 135-8533 (Japan); Hayakawa, H, E-mail: d082028@kaiyodai.ac.j [Kitano Seiki Co. Ltd., 7-17-3, Chuo, Ota-ku, Tokyo 143-0024 (Japan)

    2010-06-01

    The axial-gap synchronous machine developed in our laboratory is based on Gd-bulk HTS field-pole magnets, able to trap a part of the magnetic flux they are submitted to when cooled down below T{sub c}. At the liquid nitrogen temperature, by the Pulsed-Field Magnetization (PFM), 1.04 T was trapped in 60 mm-diameter and 20 mm-thickness magnets, leading to an output power of the motor of 10 kW at 720 rpm. To enhance this performance, we have to increase the total amount of trapped flux in the bulk, the shortest way being to decrease the temperature of the bulk HTS. Thus, we focused on the improvement of the condensed-neon cooling system, a closed-cycle thermosyphon, so that it provided enough cooling power to lead the rotor plate enclosing the magnets to a low temperature. The present study implied coming out with a new fin-oriented design of the condensation chamber; hence, the numeric calculations and FEM software (ANSYS) heat transfer simulations were conducted for various shapes and positions of the fins. The trapezoidal design offering the best efficiency was then manufactured for testing in a heat-load test configuration, leading to cooling times divided by three and a maximum heat load endured of 55 W.

  18. Optimization of a condensed-neon cooling system for a HTS synchronous motor with Gd-bulk HTS field-pole magnets

    Science.gov (United States)

    Felder, B.; Miki, M.; Tsuzuki, K.; Izumi, M.; Hayakawa, H.

    2010-06-01

    The axial-gap synchronous machine developed in our laboratory is based on Gd-bulk HTS field-pole magnets, able to trap a part of the magnetic flux they are submitted to when cooled down below Tc. At the liquid nitrogen temperature, by the Pulsed-Field Magnetization (PFM), 1.04 T was trapped in 60 mm-diameter and 20 mm-thickness magnets, leading to an output power of the motor of 10 kW at 720 rpm. To enhance this performance, we have to increase the total amount of trapped flux in the bulk, the shortest way being to decrease the temperature of the bulk HTS. Thus, we focused on the improvement of the condensed-neon cooling system, a closed-cycle thermosyphon, so that it provided enough cooling power to lead the rotor plate enclosing the magnets to a low temperature. The present study implied coming out with a new fin-oriented design of the condensation chamber; hence, the numeric calculations and FEM software (ANSYS) heat transfer simulations were conducted for various shapes and positions of the fins. The trapezoidal design offering the best efficiency was then manufactured for testing in a heat-load test configuration, leading to cooling times divided by three and a maximum heat load endured of 55 W.

  19. Nondestructive examination (NDE) reliability for inservice inspection of light water reactors

    International Nuclear Information System (INIS)

    Doctor, S.R.; Deffenbaugh, J.D.; Good, M.S.; Green, E.R.; Heasler, P.G.; Simonen, F.A.; Spanner, J.C.; Taylor, T.T.

    1989-10-01

    The Evaluation and Improvement of NDE Reliability for Inservice Inspection of Light Water Reactors (NDE Reliability) Program at the Pacific Northwest Laboratory was established by the Nuclear Regulatory Commission to determine the reliability of current inservice inspection (ISI) techniques and to develop recommendations that will ensure a suitably high inspection reliability. The objectives of this program include determining the reliability of ISI performed on the primary systems of commercial light-water reactors (LWRs); using probabilistic fracture mechanics analysis to determine the impact of NDE unreliability on system safety; and evaluating reliability improvement that can be achieved with improved and advanced technology. A final objective is to formulate recommended revisions to ASME Code and Regulatory requirements based on material properties, service conditions, and NDE capabilities and uncertainties. The program scope is limited to ISI of the primary systems including the piping, vessel, and other inspected components. This is a progress report covering the programmatic work from October 1987 through March 1988. 21 refs., 28 figs., 2 tabs

  20. Nondestructive examination (NDE) reliability for inservice inspection of light waters reactors

    International Nuclear Information System (INIS)

    Doctor, S.R.; Deffenbaugh, J.D.; Good, M.S.; Green, E.R.; Heasler, P.G.; Simonen, F.A.; Spanner, J.C.; Taylor, T.T.

    1989-11-01

    Evaluation and Improvement of NDE Reliability for Inservice Inspection of Light Water Reactors (NDE Reliability) Program at the Pacific Northwest Laboratory was established by the Nuclear Regulatory Commission to determine the reliability of current inservice inspection (ISI) techniques and to develop recommendations that will ensure a suitably high inspection reliability. The objectives of this program include determining the reliability of ISI performed on the primary systems of commercial light-water reactors (LWRs); using probabilistic fracture mechanics analysis to determine the impact of NDE unreliability on system safety; and evaluating reliability improvements that can be achieved with improved and advanced technology. A final objective is to formulate recommended revisions to ASME Code and Regulatory requirements, based on material properties, service conditions, and NDE uncertainties. The program scope is limited to ISI of the primary systems including the piping, vessel, and other inspected components. This is a progress report covering the programmatic work from April 1988 through September 1988. 33 refs., 70 figs., 12 tabs

  1. Nondestructive Examination (NDE) Reliability for Inservice Inspection of Light Water Reactors

    International Nuclear Information System (INIS)

    Doctor, S.R.; Diaz, A.A.; Friley, J.R.

    1993-09-01

    The Evaluation and Improvement of NDE Reliability for Inservice Inspection of Light Water Reactors (NDE Reliability) Program at the Pacific Northwest Laboratory was established by the Nuclear Regulatory Commission to determine the reliability of current inservice inspection (ISI) techniques and to develop recommendations that will ensure a suitably high inspection reliability. The objectives of this program include determining the reliability of ISI performed on the primary systems of commercial light-water reactors (LWRs); using probabilistic fracture mechanics analysis to determine the impact of NDE unreliability on system safety; and evaluating reliability improvements that can be achieved with improved and advanced technology. A final objective is to formulate recommended revisions to ASME Code and Regulatory requirements, based on material properties, service conditions, and NDE uncertainties. The program scope is limited to ISI of the primary systems including the piping, vessel, and other components inspected in accordance with Section XI of the ASME Code. This is a progress report covering the programmatic work from October 1991 through March 1992

  2. Detection of AE signals from a HTS tape during quenching in a solid cryogen-cooling system

    International Nuclear Information System (INIS)

    Kim, K.J.; Song, J.B.; Kim, J.H.; Lee, J.H.; Kim, H.M.; Kim, W.S.; Na, J.B.; Ko, T.K.; Lee, H.G.

    2010-01-01

    The acoustic emission (AE) technique is suitable for detecting the presence of thermal and mechanical stress in superconductors, which have adverse effects on the stability of their application systems. However, the detection of AE signals from a HTS tape in a bath of liquid cryogen (such as liquid nitrogen, LN 2 ) has not been reported because of its low signal to noise ratio due to the noise from the boiling liquid cryogen. In order to obtain the AE signals from the HTS tapes during quenching, this study carried out repetitive quench tests for YBCO coated conductor (CC) tapes in a cooling system using solid nitrogen (SN 2 ). This paper examined the performance of the AE sensor in terms of the amplitudes of the AE signals in the SN 2 cooling system.

  3. Characterisation of micro and nano SQUIDs at variable temperature and magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Koehn, Claudia; Storm, Jan-Hendrik; Bechstein, Sylke; Schurig, Thomas [Physikalisch-Technische Bundesanstalt, Abbestrasse 2-12, 10587 Berlin (Germany)

    2015-07-01

    SQUIDs are highly suited to investigate the magnetic properties of samples with small dimensions, such as nanoparticles, or to read out nanoelectromechanical systems (NEMS). Due to the small sample size, SQUIDs with dimensions in the μm or nm regime are desirable. These micro or nano SQUIDs should have a low noise and no hysteresis in the current-voltage-characteristic, even when operated in high magnetic fields of up to several 100 mT. To investigate such SQUID, we developed measurement setups which can simulate the measurement conditions of the intended SQUID application. The design and performance of two measurement setups will be shown and compared. One setup uses a dipstick that is immersed in liquid helium and can be evacuated to provide SQUID temperatures between 4.5 K and 10 K. The other one uses an evaporation cryostat so that the temperature can be varied from 2 K to 60 K. Both setups are equipped with coils to enable SQUID operation in variable magnetic field. To minimize noise, the output of the SQUID under test is preamplified by a SQUID series array which is operated at 4.2 K. First results of the characterisation of micro and nano SQUIDs will be presented.

  4. The bases for the development of high-temperature integrated squid-systems

    International Nuclear Information System (INIS)

    Polushkin, V.N.

    1992-01-01

    The current state of high-Tc superconducting thinfilm Josepson junctions and SQUIDs developing is reviewed. The prospects of application of new devices in supersensitive measurement apparatus are analyzed. It is shown that high T c SQUIDs are able seriously to influence further development of information and measurement engineering as on their base the series of microelectronic elements and devices of new generation can be built. 84 refs.; 16 figs.; 3 tabs

  5. Design of an HTS motor

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Y; Pei, R; Hong, Z; Jiang, Q; Coombs, T A [Cambridge University engineering Department, Trumpington Street, Cambridge CB2 1PZ (United Kingdom)], E-mail: yj222@cam.ac.uk

    2008-02-01

    This paper gives a detailed description of the design of a high temperature superconducting (HTS) motor. The stator of the motor consists of six air cored HTS racetrack windings, together with an iron shield. The rotor is made of 80 superconducting YBCO pucks, which can be magnetized and equates to a four-pole permanent magnet. The whole HTS motor is cooled by liquid nitrogen to 77K, and acts as a permanent magnet synchronous motor with the power rate of 15.7 kW.

  6. The bases for the development of high-temperature integrated SQUID-systems

    International Nuclear Information System (INIS)

    Polushkin, V.N.

    1992-01-01

    The current state of high-T c superconducting thin-film Josephson junctions and SQUIDs developing is reviewed. The prospects of application of new devices in supersensitive measurement apparatus are analyzed. It is shown that high T c SQUIDs are able seriously to influence further development of information and measurement engineering as on their base the series of microelectronic elements and devices of new generation can be built. 55 refs.; 7 figs.; 2 tabs

  7. Development of 1 MW-class HTS motor for podded ship propulsion system

    Energy Technology Data Exchange (ETDEWEB)

    Umemoto, K; Aizawa, K; Yokoyama, M; Yoshikawa, K [Kawasaki Heavy Industries LTD., 673-8666, Hyogo (Japan); Kimura, Y; Izumi, M [Tokyo University of Marine Science Technology, 135-8533, Tokyo (Japan); Ohashi, K; Numano, M [National Maritime Research Institute, 181-0004, Tokyo (Japan); Okumura, K; Yamaguchi, M; Gocho, Y; Kosuge, E, E-mail: umemoto@ati.khi.co.j [Japan Super-conductivity Organization Co. LTD., 135-8533, Tokyo (Japan)

    2010-06-01

    To reduce fuel consumption and lead to a major reduction of pollution from NOx, SOx and CO{sub 2}, the electric ship propulsion system is one of the most prospective substitutes for conventional ship propulsion systems. In order to spread it, innovative technologies for the improvement of the power transmission are required. The high temperature superconducting technology has the possibility for a drastic reduction of power transmission loss. Recently, electric podded propulsions have become popular for large cruise vessels, icebreakers and chemical tankers because of the flexibility of the equipment arrangement and the stern hull design, and better maneuverability in harbour, etc. In this paper, a 1 MW-class High temperature superconducting (HTS) motor with high efficiency, smaller size and simple structure, which is designed and manufactured for podded propulsion, is reported. For the case of a coastal ship driven by the optimized podded propulsion in which the 1MW HTS motor is equipped, the reductions of fluid dynamic resistance and power transmission losses are demonstrated. The present research and development has been supported by the New Energy and Industrial Technology Development Organization (NEDO).

  8. STM-SQUID probe microscope

    International Nuclear Information System (INIS)

    Hayashi, Tadayuki; Tachiki, Minoru; Itozaki, Hideo

    2007-01-01

    We have developed a STM-SQUID probe microscope. A high T C SQUID probe microscope was combined with a scanning tunneling microscope for investigation of samples at room temperature in air. A high permeability probe needle was used as a magnetic flux guide to improve the spatial resolution. The probe with tip radius of less than 100 nm was prepared by microelectropolishing. The probe was also used as a scanning tunneling microscope tip. Topography of the sample surface could be measured by the scanning tunneling microscope with high spatial resolution prior to observation by SQUID microscopy. The SQUID probe microscope image could be observed while keeping the distance from the sample surface to the probe tip constant. We observed a topographic image and a magnetic image of Ni fine pattern and also a magnetically recorded hard disk. Furthermore we have investigated a sample vibration method of the static magnetic field emanating from a sample with the aim of achieving a higher signal-to-noise (S/N) ratio

  9. High-Tc SQUIDs: Noise and applications

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Hsiao-Mei [Univ. of Houston, TX (United States)

    2001-08-01

    A major challenge in the design and operation of high transition temperature (Tc ) Superconducting Quantum Interference Devices (SQUIDs) is their potential to exhibit substantially higher levels of noise at low frequency f when exposed to earth’s magnetic field. To investigate this problem, we studied the noise of high-Tc SQUIDs, directly coupled magnetometers and multilayer magnetometers in both static and changing magnetic fields. The directly coupled magnetometer consists of a dc SQUID connected to a large area pickup loop in parallel. The multilayer magnetometer involves a multiturn flux transformer inductively coupled to a dc SQUID on a separate substrate. All the devices are made of thin films of the high-Tc superconductor YBa2Cu3O7-δ, patterned into 4 μm linewidths. After cooling in a magnetic field, the devices showed no increase in 1/f noise for fields up to threshold values well above the earth’s magnetic field. The devices were also cooled in a magnetic field that was subsequently turned off. The 1/f noise of bare SQUIDs was unchanged for fields up to 12 μT. The addition of the flux transformer containing flux dams increased the sensitivity to magnetic field by a factor of 43 while reducing the threshold field only moderately, to 5 μT. This result implies that the multilayer magnetometer can be rotated in the earth’s magnetic field through an angle of up to 26o without increasing the low frequency noise. The results of these studies were incorporated into a 5-channel high-Tc magnetocardiography system involving two first-derivative SQUID gradiometers and three reference SQUIDs. Each planar gradiometer consists of a directly coupled SQUID magnetometer inductively coupled to the smaller coil of an asymmetric, two-loop flux transformer. The reference SQUIDs are patterned into 4 μm lines. The outputs of the five channels were subtracted in software to form a second-derivative gradiometer. Its

  10. Nondestructive Examination (NDE) Reliability for Inservice Inspection of Light Water Reactors

    International Nuclear Information System (INIS)

    Doctor, S.R.; Diaz, A.A.; Friley, J.R.; Good, M.S.; Greenwood, M.S.; Heasler, P.G.; Hockey, R.L.; Kurtz, R.J.; Simonen, F.A.; Spanner, J.C.; Taylor, T.T.; Vo, T.V.

    1992-07-01

    The Evaluation and Improvement of NDE Reliability for Inservice Inspection of Light Water Reactors (NDE Reliability) Program at the Pacific Northwest Laboratory was established by the Nuclear Regulatory Commission to determine the reliability of current inservice inspection (ISI) techniques and to develop recommendations that will ensure a suitably high inspection reliability. The objectives of this program include determining the reliability of ISI performed on the primary systems of commercial light-water reactors (LWR's); using probabilistic fracture mechanics analysis to determine the impact of NDE unreliability on system safety; and evaluating reliability improvements that can be achieved with improved and advanced technology. A final objective is to formulate recommended revisions to the Regulatory and ASME Code requirements, based on material properties, service conditions, and NDE uncertainties. The program scope is limited to ISI of the primary systems including the piping, vessel, and other components inspected in accordance with Section XI of the ASME Code. This is a progress report covering the programmatic work from April 1991 through September 1991

  11. Nondestructive Examination (NDE) Reliability for Inservice Inspection of Light Water Reactors

    International Nuclear Information System (INIS)

    Doctor, S.R.; Diaz, A.A.; Friley, J.R.; Greenwood, M.S.; Heasler, P.G.; Kurtz, R.J.; Simonen, F.A.; Spanner, J.C.; Vo, T.V.

    1993-11-01

    The Evaluation and Improvement of NDE Reliability for Inservice inspection of Light Water Reactors (NDE Reliability) Program at the Pacific Northwest Laboratory was established by the Nuclear Regulatory Commission to determine the reliability of current inservice inspection (ISI) techniques and to develop recommendations that will ensure a suitably high inspection reliability. The objectives of this program include determining the reliability of ISI performed on the primary systems of commercial light-water reactors (LWRs);using probabilistic fracture mechanics analysis to determine the impact of NDE unreliability on system safety; and evaluating reliability improvements that can be achieved with improved and advanced technology. A final objective is to formulate recommended revisions to the Regulatory and ASME Code requirements, based on material properties, service conditions, and NDE uncertainties. The program scope is limited to ISI of the primary systems including the piping, vessel and other components inspected in accordance with Section XI of the ASME Code. This is a programs report covering the programmatic work from April 1992 through September 1992

  12. Nondestructive examination (NDE) reliability for inservice inspection of light water reactors

    International Nuclear Information System (INIS)

    Doctor, S.R.; Good, M.S.; Green, E.R.; Heasler, P.G.; Simonen, F.A.; Spanner, J.C.; Taylor, T.T.; Vo, T.V.

    1991-08-01

    The Evaluation and Improvement of NDE Reliability for Inservice Inspection of Light Water Reactors (NDE Reliability) Program at the Pacific Northwest Laboratory was established by the Nuclear Regulatory Commission to determine the reliability of current inservice inspection (ISI) techniques and to develop recommendations that will ensure a suitably high inspection reliability. The objectives of this program include determining the reliability of ISI performed on the primary systems of commercial light-water reactors (LWRs); using probabilistic fracture mechanics analysis to determine the impact of NDE unreliability on system safety; and evaluating reliability improvements that can be achieved with improved and advanced technology. A final objective is to formulate recommended revisions to ASME Code and Regulatory requirements, based on material properties, service conditions, and NDE uncertainties. The program scope is limited to ISI of the primary systems including the piping, vessel, and other components inspected in accordance with Section 6 of the ASME Code. This is a progress report covering the pro grammatic work from April 1989 through September 1989. 12 refs., 4 figs. 5 tabs

  13. Coherent arrays of planar dc-SQUIDS based on thin-film Josephson microbridges

    International Nuclear Information System (INIS)

    Hansen, J.B.

    1982-01-01

    Phase-locking and voltage-locking in systems consisting of two planar dc-SQUIDs located close together in the same superconducting film have been investigated. The locking strength was found to be strongly dependent on the fluxoid state of both SQUIDs. A simple model for the inductive coupling between two such dc-SQUIDs is presented and the prediction of the model is compared with the experimental results. (Auth.)

  14. The Stationary SQUID

    Science.gov (United States)

    Berger, Jorge

    2018-06-01

    In the customary mode of operation of a SQUID, the electromagnetic field in the SQUID is an oscillatory function of time. In this situation, electromagnetic radiation is emitted and couples to the sample. This is a back action that can alter the state that we intend to measure. A circuit that could perform as a stationary SQUID consists of a loop of superconducting material that encloses the magnetic flux, connected to a superconducting and to a normal electrode. This circuit does not contain Josephson junctions, or any other miniature feature. We study the evolution of the order parameter and of the electrochemical potential in this circuit; they converge to a stationary regime, and the voltage between the electrodes depends on the enclosed flux. We obtain expressions for the power dissipation and for the heat transported by the electric current; the validity of these expressions does not rely on a particular evolution model for the order parameter. We evaluate the influence of fluctuations. For a SQUID perimeter of the order of 1μ m and temperature 0.9T_c, we obtain a flux resolution of the order of 10^{-5}Φ _0/Hz^{1/2}; the resolution is expected to improve as the temperature is lowered.

  15. Paleomagnetic Analysis Using SQUID Microscopy

    Science.gov (United States)

    Weiss, Benjamin P.; Lima, Eduardo A.; Fong, Luis E.; Baudenbacher, Franz J.

    2007-01-01

    Superconducting quantum interference device (SQUID) microscopes are a new generation of instruments that map magnetic fields with unprecedented spatial resolution and moment sensitivity. Unlike standard rock magnetometers, SQUID microscopes map magnetic fields rather than measuring magnetic moments such that the sample magnetization pattern must be retrieved from source model fits to the measured field data. In this paper, we presented the first direct comparison between paleomagnetic analyses on natural samples using joint measurements from SQUID microscopy and moment magnetometry. We demonstrated that in combination with apriori geologic and petrographic data, SQUID microscopy can accurately characterize the magnetization of lunar glass spherules and Hawaiian basalt. The bulk moment magnitude and direction of these samples inferred from inversions of SQUID microscopy data match direct measurements on the same samples using moment magnetometry. In addition, these inversions provide unique constraints on the magnetization distribution within the sample. These measurements are among the most sensitive and highest resolution quantitative paleomagnetic studies of natural remanent magnetization to date. We expect that this technique will be able to extend many other standard paleomagnetic techniques to previously inaccessible microscale samples.

  16. Suppression of guidance force decay of HTS bulk exposed to AC magnetic field perturbation in a maglev vehicle system

    International Nuclear Information System (INIS)

    Zhang Longcai; Wang Suyu; Wang Jiasu

    2009-01-01

    Superconducting maglev vehicle was one of the most promising applications of HTS bulks. In such a system, the HTS bulks were always exposed to AC external magnetic field, which was generated by the inhomogeneous surface magnetic field of the NdFeB guideway. In our previous work, it was observed that the guidance force of the YBCO bulk over the NdFdB guideway used in the high-temperature superconducting maglev vehicle system was decayed by the application of the AC external magnetic field. In this paper, we adopted a method to suppress the decay by altering the field-cooled height of the bulk. From the experimental results, it was found that the decay rate of the guidance force was smaller at lower field-cooled height. So we could suppress the guidance force decay of HTS bulk exposed to AC external magnetic field perturbation in the maglev vehicle system by reducing the field-cooled height of the bulk. Furthermore, all the experimental results in this paper were explained based on Bean critical-state model.

  17. Suppression of guidance force decay of HTS bulk exposed to AC magnetic field perturbation in a maglev vehicle system

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Longcai, E-mail: zhlcai2000@163.co [College of Air Traffic Management, Civil Aviation Flight University of China, Guanghan, Sichuan 618307 (China); Wang Suyu; Wang Jiasu [Applied Superconductivity Laboratory, Southwest Jiaotong University, P.O. Box 152, Chengdu, Sichuan 610031 (China)

    2009-07-01

    Superconducting maglev vehicle was one of the most promising applications of HTS bulks. In such a system, the HTS bulks were always exposed to AC external magnetic field, which was generated by the inhomogeneous surface magnetic field of the NdFeB guideway. In our previous work, it was observed that the guidance force of the YBCO bulk over the NdFdB guideway used in the high-temperature superconducting maglev vehicle system was decayed by the application of the AC external magnetic field. In this paper, we adopted a method to suppress the decay by altering the field-cooled height of the bulk. From the experimental results, it was found that the decay rate of the guidance force was smaller at lower field-cooled height. So we could suppress the guidance force decay of HTS bulk exposed to AC external magnetic field perturbation in the maglev vehicle system by reducing the field-cooled height of the bulk. Furthermore, all the experimental results in this paper were explained based on Bean critical-state model.

  18. Development of a compact HTS lead unit for the SC correction coils of the SuperKEKB final focusing magnet system

    Energy Technology Data Exchange (ETDEWEB)

    Zong, Zhanguo, E-mail: zhanguo.zong@kek.jp; Ohuchi, Norihito; Tsuchiya, Kiyosumi; Arimoto, Yasushi

    2016-09-11

    Forty-three superconducting (SC) correction coils with maximum currents of about 60 A are installed in the SuperKEKB final focusing magnet system. Current leads to energize the SC correction coils should have an affordable heat load and fit the spatial constraints in the service cryostat where the current leads are installed. To address the requirements, design optimization of individual lead was performed with vapor cooled current lead made of a brass material, and a compact unit was designed to accommodate eight current leads together in order to be installed with one port in the service cryostat. The 2nd generation high temperature SC (HTS) tape was adopted and soldered at the cold end of the brass current lead to form a hybrid HTS lead structure. A prototype of the compact lead unit with HTS tape was constructed and tested with liquid helium (LHe) environment. This paper presents a cryogenic measurement system to simulate the real operation conditions in the service cryostat, and analysis of the experimental results. The measured results showed excellent agreement with the theoretical analysis and numerical simulation. In total, 11 sets of the compact HTS lead units were constructed for the 43 SC correction coils at KEK. One set from the mass production was tested in cryogenic conditions, and exhibited the same performance as the prototype. The compact HTS lead unit can feed currents to four SC correction coils simultaneously with the simple requirement of controlling and monitoring helium vapor flow, and has a heat load of about 0.762 L/h in terms of LHe consumption. - Highlights: • The requirements of the SC correction coils on current leads are introduced. • The optimum design of the brass vapor cooled current lead is described. • The compact structure of eight leads with HTS tape is presented. • The theoretical, numerical, and experimental results are compared. • The current lead heat load is evaluated for cryogenic system.

  19. Directed Design of Experiments for Validating Probability of Detection Capability of NDE Systems (DOEPOD)

    Science.gov (United States)

    Generazio, Edward R.

    2015-01-01

    Directed Design of Experiments for Validating Probability of Detection Capability of NDE Systems (DOEPOD) Manual v.1.2 The capability of an inspection system is established by applications of various methodologies to determine the probability of detection (POD). One accepted metric of an adequate inspection system is that there is 95% confidence that the POD is greater than 90% (90/95 POD). Design of experiments for validating probability of detection capability of nondestructive evaluation (NDE) systems (DOEPOD) is a methodology that is implemented via software to serve as a diagnostic tool providing detailed analysis of POD test data, guidance on establishing data distribution requirements, and resolving test issues. DOEPOD demands utilization of observance of occurrences. The DOEPOD capability has been developed to provide an efficient and accurate methodology that yields observed POD and confidence bounds for both Hit-Miss or signal amplitude testing. DOEPOD does not assume prescribed POD logarithmic or similar functions with assumed adequacy over a wide range of flaw sizes and inspection system technologies, so that multi-parameter curve fitting or model optimization approaches to generate a POD curve are not required. DOEPOD applications for supporting inspector qualifications is included.

  20. HTS Insert Magnet Design Study

    CERN Document Server

    Devaux, M; Fleiter, J; Fazilleau, P; Lécrevisse, T; Pes, C; Rey, J-M; Rifflet, J-M; Sorbi, M; Stenvall, A; Tixador, P; Volpini, G

    2011-01-01

    Future accelerator magnets will need to reach higher field in the range of 20 T. This field level is very difficult to reach using only Low Temperature Superconductor materials whereas High Temperature Superconductors (HTS) provide interesting opportunities. High current densities and stress levels are needed to design such magnets. YBCO superconductor indeed carries large current densities under high magnetic field and provides good mechanical properties especially when produced using the IBAD approach. The HFM EUCARD program studies the design and the realization of an HTS insert of 6 T inside a Nb$_{3}$Sn dipole of 13T at 4.2 K. In the2HTS insert, engineering current densities higher than 250 MA/m under 19 T are required to fulfill the specifications. The stress level is also very severe. YBCO IBAD tapes theoretically meet these challenges from presented measurements. The insert protection is also a critical because HTS materials show low quench propagation velocities and the coupling with the Nb$_{3}$Sn m...

  1. Second order gradiometer and dc SQUID integrated on a planar substrate

    Science.gov (United States)

    van Nieuwenhuyzen, G. J.; de Waal, V. J.

    1985-02-01

    An integrated system of a thin-film niobium dc superconducting quantum interference device (SQUID) and a second order gradiometer on a planar substrate is described. The system consists of a dc SQUID with eight loops in parallel, each sensitive to the second derivative ∂2Bz/∂x2 of the magnetic field. The calculated SQUID inductance is 1.3 nH. With an overall size of 16×16.5 mm2 a sensitivity of 1.5×10-9 Tm-2 Hz-1/2 is obtained. The measured transfer function for uniform fields perpendicular to the plane of the gradiometer is 2.1×10-7 T Φ-10.

  2. Design of high–order HTS dual–band bandpass filters with receiver subsystem for future mobile communication systems

    Energy Technology Data Exchange (ETDEWEB)

    Sekiya, N., E-mail: nsekiya@yamanashi.ac.jp

    2016-08-15

    Highlights: • We have developed two high-order HTS dual-band BPFs with a receiver subsystem for future mobile communication systems. • We developed a method for flexibly adjusting the coupling coefficient for the two passbands. • We demonstrated an HTS dual-band BPF receiver subsystem that uses a pulse tube cryocooler and a wideband LNA. • The proposed BPF is evaluated by simulation and measurement with good agreement. - Abstract: We have developed two high-order high-temperature superconducting (HTS) dual-band bandpass filters (BPFs) with a receiver subsystem for future mobile communication systems. They feature stub-loaded hair-pin resonators with two types of microstrip lines between them. One has a six-pole design, and the other has an eight-pole design. Both were designed to operate at 2.15 GHz with a 43-MHz (2%) bandwidth for the lower passband and at 3.50 GHz with a 70-MHz (2%) bandwidth for the upper one. They were fabricated using YBa{sub 2}Cu{sub 3}O{sub y} thin film on a CeO{sub 2}-bufferd r-Al{sub 2}O{sub 3} substrate. The measured results for both filters agree well with the simulated ones. The HTS dual-band BPF receiver subsystem uses a pulse tube cryocooler and a wideband low noise amplifier (LNA). We measured the frequency response of the six-pole dual-band BPF with and without a wideband LNA with a gain of 10 dB. The measured return losses were close.

  3. SQUIDs in biomagnetism: a roadmap towards improved healthcare

    Science.gov (United States)

    Körber, Rainer; Storm, Jan-Hendrik; Seton, Hugh; Mäkelä, Jyrki P.; Paetau, Ritva; Parkkonen, Lauri; Pfeiffer, Christoph; Riaz, Bushra; Schneiderman, Justin F.; Dong, Hui; Hwang, Seong-min; You, Lixing; Inglis, Ben; Clarke, John; Espy, Michelle A.; Ilmoniemi, Risto J.; Magnelind, Per E.; Matlashov, Andrei N.; Nieminen, Jaakko O.; Volegov, Petr L.; Zevenhoven, Koos C. J.; Höfner, Nora; Burghoff, Martin; Enpuku, Keiji; Yang, S. Y.; Chieh, Jen-Jei; Knuutila, Jukka; Laine, Petteri; Nenonen, Jukka

    2016-11-01

    separated by a tunnel barrier or other weak link. A tiny electric current is able to flow between the superconductors as a supercurrent, without developing a voltage across them. At currents above the ‘critical current’ (maximum supercurrent), however, a voltage is developed. In 1964, Jaklevic et al (1964 Phys. Rev. Lett. 12 159-60) observed quantum interference between two Josephson junctions connected in series on a superconducting loop, giving birth to the dc SQUID. The essential property of the SQUID is that a steady increase in the magnetic flux threading the loop causes the critical current to oscillate with a period of one flux quantum. In today’s SQUIDs, using conventional semiconductor readout electronics, one can typically detect a change in Φ corresponding to 10-6 Φ0 in one second. Although early practical SQUIDs were usually made from bulk superconductors, for example, niobium or Pb-Sn solder blobs, today’s devices are invariably made from thin superconducting films patterned with photolithography or even electron lithography. An extensive description of SQUIDs and their applications can be found in the SQUID Handbooks (Clarke and Braginski 2004 Fundamentals and Technology of SQUIDs and SQUID Systems vol I (Weinheim, Germany: Wiley-VCH), Clarke and Braginski 2006 Applications of SQUIDs and SQUID Systems vol II (Weinheim, Germany: Wiley-VCH)). The roadmap begins (chapter 1) with a brief review of the state-of-the-art of SQUID-based magnetometers and gradiometers for biomagnetic measurements. The magnetic field noise referred to the pick-up loop is typically a few fT Hz-1/2, often limited by noise in the metallized thermal insulation of the dewar rather than by intrinsic SQUID noise. The authors describe a pathway to achieve an intrinsic magnetic field noise as low as 0.1 fT Hz-1/2, approximately the Nyquist noise of the human body. They also descibe a technology to defeat dewar noise. Chapter 2 reviews the neuroscientific and clinical use of

  4. Review of progress in quantitative NDE

    International Nuclear Information System (INIS)

    1991-01-01

    This booklet is composed of abstracts from papers submitted at a meeting on quantitative NDE. A multitude of topics are discussed including analysis of composite materials, NMR uses, x-ray instruments and techniques, manufacturing uses, neural networks, eddy currents, stress measurements, magnetic materials, adhesive bonds, signal processing, NDE of mechanical structures, tomography,defect sizing, NDE of plastics and ceramics, new techniques, optical and electromagnetic techniques, and nonlinear techniques

  5. NDE and plant life extension

    International Nuclear Information System (INIS)

    Liu, S.N.; Ammirato, F.V.; Nottingham, L.D.

    1991-01-01

    Component life extension is the process of making run-repair-replace decisions for plant components and includes a thorough analysis of the capability of the component to perform throughout the projected lifetime. For many critical plant components, nondestructive evaluation (NDE) is essential in determining whether the component can be operated safely and economically in the extended life period and to help utilities determine safe and economic inspection intervals. NDE technology is required for not only detecting defects that could grow to a size of concern during extended lifetimes, but also will be called upon to measure and monitor accumulating material degradation that strongly affects component reliability. This paper discusses the role of NDE in life extension by reviewing three examples--a reactor pressure vessel, steam turbine-generator rotors, and generator retaining rings. In each example, the contribution of NDE to life extension decisions is described. (author)

  6. Inhomogeneity of surface magnetic field over a NdFeB guideway and its influence on levitation force of the HTS bulk maglev system

    International Nuclear Information System (INIS)

    Zhang, Longcai; Wang Jiasu; He Qingyong; Zhang Jianghua; Wang Suyu

    2007-01-01

    Superconducting maglev vehicle system was one of the most promising applications of HTS bulks. The NdFeB guideway in this system was composed of many NdFeB permanent magnets and screws, so the air gaps (airgaps) between two permanent magnets and the screws would result in the inhomogeneity of the surface magnetic field. In this paper, we studied the magnetic inhomogeneity over the permanent magnet guideway (PMG) used in high-temperature superconducting (HTS) maglev vehicle system and its influence on the levitation force of the HTS bulk. Firstly, we measured the transverse magnetic field above the airgap, the screw and the place under where there was no airgap and screw. It was found that the magnetic field 10 mm above the guideway was roughly uniform. Secondly, we investigated the influence of the magnetic inhomogeneity of the PMG on levitation force of the bulk superconductor. From the experiment results, we found that the influence was very small, and would be ignored. Therefore, we could conclude that the PMG made by this method satisfied the requirements of the HTS maglev vehicle system in a quasi-static state

  7. Inhomogeneity of surface magnetic field over a NdFeB guideway and its influence on levitation force of the HTS bulk maglev system

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Longcai [Applied Superconductivity Laboratory, Southwest Jiaotong University, P.O. Box 152, Chengdu 610031 (China)]. E-mail: zhlcai2000@163.com; Wang Jiasu [Applied Superconductivity Laboratory, Southwest Jiaotong University, P.O. Box 152, Chengdu 610031 (China); He Qingyong [Applied Superconductivity Laboratory, Southwest Jiaotong University, P.O. Box 152, Chengdu 610031 (China); Zhang Jianghua [Applied Superconductivity Laboratory, Southwest Jiaotong University, P.O. Box 152, Chengdu 610031 (China); Wang Suyu [Applied Superconductivity Laboratory, Southwest Jiaotong University, P.O. Box 152, Chengdu 610031 (China)

    2007-08-01

    Superconducting maglev vehicle system was one of the most promising applications of HTS bulks. The NdFeB guideway in this system was composed of many NdFeB permanent magnets and screws, so the air gaps (airgaps) between two permanent magnets and the screws would result in the inhomogeneity of the surface magnetic field. In this paper, we studied the magnetic inhomogeneity over the permanent magnet guideway (PMG) used in high-temperature superconducting (HTS) maglev vehicle system and its influence on the levitation force of the HTS bulk. Firstly, we measured the transverse magnetic field above the airgap, the screw and the place under where there was no airgap and screw. It was found that the magnetic field 10 mm above the guideway was roughly uniform. Secondly, we investigated the influence of the magnetic inhomogeneity of the PMG on levitation force of the bulk superconductor. From the experiment results, we found that the influence was very small, and would be ignored. Therefore, we could conclude that the PMG made by this method satisfied the requirements of the HTS maglev vehicle system in a quasi-static state.

  8. Identification of four squid species by quantitative real-time polymerase chain reaction.

    Science.gov (United States)

    Ye, Jian; Feng, Junli; Liu, Shasha; Zhang, Yanping; Jiang, Xiaona; Dai, Zhiyuan

    2016-02-01

    Squids are distributed worldwide, including many species of commercial importance, and they are often made into varieties of flavor foods. The rapid identification methods for squid species especially their processed products, however, have not been well developed. In this study, quantitative real-time PCR (qPCR) systems based on specific primers and TaqMan probes have been established for rapid and accurate identification of four common squid species (Ommastrephes bartramii, Dosidicus gigas, Illex argentinus, Todarodes pacificus) in Chinese domestic market. After analyzing mitochondrial genes reported in GenBank, the mitochondrial cytochrome b (Cytb) gene was selected for O. bartramii detection, cytochrome c oxidase subunit I (COI) gene for D. gigas and T. Pacificus detection, ATPase subunit 6 (ATPase 6) gene for I. Argentinus detection, and 12S ribosomal RNA (12S rDNA) gene for designing Ommastrephidae-specific primers and probe. As a result, all the TaqMan systems are of good performance, and efficiency of each reaction was calculated by making standard curves. This method could detect target species either in single or mixed squid specimen, and it was applied to identify 12 squid processed products successfully. Thus, it would play an important role in fulfilling labeling regulations and squid fishery control. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. HTS Transmission Cable System for installation in the Long Island Power Grid

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Frank [American Superconductor Corporation, Devens, MA (United States); Durand, Fabien [American Superconductor Corporation, Devens, MA (United States); Maguire, James [American Superconductor Corporation, Devens, MA (United States)

    2015-10-05

    Department of Energy (DOE) Award DE-FC26-07NT43240 was issued on October 1, 2007. Referred to as LIPA2, the principal objectives of the project were to develop key components required to deploy and demonstrate second-generation (2G) high temperature superconductor (HTS) cables in a 600 meter (2000 feet) underground segment of a 138kV three-phase transmission circuit of the Long Island Power Authority (LIPA) power grid. A previous effort under DOE Award DE-FC36-03GO13032 (referred to as LIPA1) resulted in installation (and subsequent successful operation) of first-generation (1G) HTS cables at the LIPA site. As with LIPA1, American Superconductor (AMSC) led the effort for LIPA2 and was responsible for overall management of the project and producing sufficient 2G wire to fabricate the required cable. Nexans' tasks included design/manufacture/installation of the cable, joint (splice), cable terminations and field repairable cryostat; while work by Air Liquide involved engineering and installation support for the refrigeration system modifications.

  10. Steam generator tubing NDE performance

    International Nuclear Information System (INIS)

    Henry, G.; Welty, C.S. Jr.

    1997-01-01

    Steam generator (SG) non-destructive examination (NDE) is a fundamental element in the broader SG in-service inspection (ISI) process, a cornerstone in the management of PWR steam generators. Based on objective performance measures (tube leak forced outages and SG-related capacity factor loss), ISI performance has shown a continually improving trend over the years. Performance of the NDE element is a function of the fundamental capability of the technique, and the ability of the analysis portion of the process in field implementation of the technique. The technology continues to improve in several areas, e.g. system sensitivity, data collection rates, probe/coil design, and data analysis software. With these improvements comes the attendant requirement for qualification of the technique on the damage form(s) to which it will be applied, and for training and qualification of the data analysis element of the ISI process on the field implementation of the technique. The introduction of data transfer via fiber optic line allows for remote data acquisition and analysis, thus improving the efficiency of analysis for a limited pool of data analysts. This paper provides an overview of the current status of SG NDE, and identifies several important issues to be addressed

  11. Development and construction of an HTS rotor for ship propulsion application

    Energy Technology Data Exchange (ETDEWEB)

    Nick, W; Frank, M; Kummeth, P; Rabbers, J J; Wilke, M; Schleicher, K, E-mail: wolfgang.nick@siemens.co [Siemens AG, CT PS 3, Guenther-Scharowsky-Str. 1, D-91050 Erlangen (Germany)

    2010-06-01

    A low-speed high-torque HTS machine is being developed at Siemens on the basis of previous steps (400kW demonstrator, 4MVA generator). The goal of the programme is to utilize the characteristic advantages offered by electrical machines with HTS-excited rotor, such as efficiency, compact size, and dynamic performance. To be able to address future markets, requirements from ship classification as well as potential customers have to be met. Electromagnetic design cannot be focused on nominal operation only, but has to deal with failure modes like short circuit too. Utilization of superconductor requires to consider margins taking into account that the windings have to operate reliably not only in 'clean' laboratory conditions, but in rough environment with the stator connected to a power converter. Extensive quality control is needed to ensure homogenous performance (current capacity, electrical insulation, dimensions) for the large quantity of HTS (45 km). The next step was to set up and operate a small-scale 'industrial' manufacturing process to produce HTS windings in a reproducible way, including tests at operating conditions. A HTS rotor includes many more components compared to a conventional one, so tough geometric tolerances must be met to ensure robust performance of the system. All this gives a challenging task, which will be concluded by cold testing of the rotor in a test facility. Then the rotor will be delivered for assembly to the stator. In following machine tests the performance of the innovative HTS drive system will be demonstrated.

  12. Status of the technology development of large scale HTS generators for wind turbine

    Energy Technology Data Exchange (ETDEWEB)

    Le, T. D.; Kim, J. H.; Kim, D. J.; Boo, C. J.; Kim, H. M. [Jeju National University, Jeju (Korea, Republic of)

    2015-06-15

    Large wind turbine generators with high temperature superconductors (HTS) are in incessant development because of their advantages such as weight and volume reduction and the increased efficiency compared with conventional technologies. In addition, nowadays the wind turbine market is growing in a function of time, increasing the capacity and energy production of the wind farms installed and increasing the electrical power for the electrical generators installed. As a consequence, it is raising the wind power energy contribution for the global electricity demand. In this study, a forecast of wind energy development will be firstly emphasized, then it continue presenting a recent status of the technology development of large scale HTSG for wind power followed by an explanation of HTS wire trend, cryogenics cooling systems concept, HTS magnets field coil stability and other technological parts for optimization of HTS generator design-operating temperature, design topology, field coil shape and level cost of energy, as well. Finally, the most relevant projects and designs of HTS generators specifically for offshore wind power systems are also mentioned in this study.

  13. Status of the technology development of large scale HTS generators for wind turbine

    International Nuclear Information System (INIS)

    Le, T. D.; Kim, J. H.; Kim, D. J.; Boo, C. J.; Kim, H. M.

    2015-01-01

    Large wind turbine generators with high temperature superconductors (HTS) are in incessant development because of their advantages such as weight and volume reduction and the increased efficiency compared with conventional technologies. In addition, nowadays the wind turbine market is growing in a function of time, increasing the capacity and energy production of the wind farms installed and increasing the electrical power for the electrical generators installed. As a consequence, it is raising the wind power energy contribution for the global electricity demand. In this study, a forecast of wind energy development will be firstly emphasized, then it continue presenting a recent status of the technology development of large scale HTSG for wind power followed by an explanation of HTS wire trend, cryogenics cooling systems concept, HTS magnets field coil stability and other technological parts for optimization of HTS generator design-operating temperature, design topology, field coil shape and level cost of energy, as well. Finally, the most relevant projects and designs of HTS generators specifically for offshore wind power systems are also mentioned in this study

  14. Study of HTS Wires at High Magnetic Fields

    Energy Technology Data Exchange (ETDEWEB)

    Turrioni, D.; Barzi, E.; Lamm, M.J.; Yamada, R.; Zlobin, A.V.; Kikuchi, A.; /Fermilab

    2009-01-01

    Fermilab is working on the development of high field magnet systems for ionization cooling of muon beams. The use of high temperature superconducting (HTS) materials is being considered for these magnets using Helium refrigeration. Critical current (I{sub c}) measurements of HTS conductors were performed at FNAL and at NIMS up to 28 T under magnetic fields at zero to 90 degree with respect to the sample face. A description of the test setups and results on a BSCCO-2223 tape and second generation (2G) coated conductors are presented.

  15. Analysis of an HTS coil for large scale superconducting magnetic energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ji Young; Lee, Se Yeon; Choi, Kyeong Dal; Park, Sang Ho; Hong, Gye Won; Kim, Sung Soo; Kim, Woo Seok [Korea Polytechnic University, Siheung (Korea, Republic of); Lee, Ji Kwang [Woosuk University, Wanju (Korea, Republic of)

    2015-06-15

    It has been well known that a toroid is the inevitable shape for a high temperature superconducting (HTS) coil as a component of a large scale superconducting magnetic energy storage system (SMES) because it is the best option to minimize a magnetic field intensity applied perpendicularly to the HTS wires. Even though a perfect toroid coil does not have a perpendicular magnetic field, for a practical toroid coil composed of many HTS pancake coils, some type of perpendicular magnetic field cannot be avoided, which is a major cause of degradation of the HTS wires. In order to suggest an optimum design solution for an HTS SMES system, we need an accurate, fast, and effective calculation for the magnetic field, mechanical stresses, and stored energy. As a calculation method for these criteria, a numerical calculation such as an finite element method (FEM) has usually been adopted. However, a 3-dimensional FEM can involve complicated calculation and can be relatively time consuming, which leads to very inefficient iterations for an optimal design process. In this paper, we suggested an intuitive and effective way to determine the maximum magnetic field intensity in the HTS coil by using an analytic and statistical calculation method. We were able to achieve a remarkable reduction of the calculation time by using this method. The calculation results using this method for sample model coils were compared with those obtained by conventional numerical method to verify the accuracy and availability of this proposed method. After the successful substitution of this calculation method for the proposed design program, a similar method of determining the maximum mechanical stress in the HTS coil will also be studied as a future work.

  16. Analysis of an HTS coil for large scale superconducting magnetic energy storage

    International Nuclear Information System (INIS)

    Lee, Ji Young; Lee, Se Yeon; Choi, Kyeong Dal; Park, Sang Ho; Hong, Gye Won; Kim, Sung Soo; Kim, Woo Seok; Lee, Ji Kwang

    2015-01-01

    It has been well known that a toroid is the inevitable shape for a high temperature superconducting (HTS) coil as a component of a large scale superconducting magnetic energy storage system (SMES) because it is the best option to minimize a magnetic field intensity applied perpendicularly to the HTS wires. Even though a perfect toroid coil does not have a perpendicular magnetic field, for a practical toroid coil composed of many HTS pancake coils, some type of perpendicular magnetic field cannot be avoided, which is a major cause of degradation of the HTS wires. In order to suggest an optimum design solution for an HTS SMES system, we need an accurate, fast, and effective calculation for the magnetic field, mechanical stresses, and stored energy. As a calculation method for these criteria, a numerical calculation such as an finite element method (FEM) has usually been adopted. However, a 3-dimensional FEM can involve complicated calculation and can be relatively time consuming, which leads to very inefficient iterations for an optimal design process. In this paper, we suggested an intuitive and effective way to determine the maximum magnetic field intensity in the HTS coil by using an analytic and statistical calculation method. We were able to achieve a remarkable reduction of the calculation time by using this method. The calculation results using this method for sample model coils were compared with those obtained by conventional numerical method to verify the accuracy and availability of this proposed method. After the successful substitution of this calculation method for the proposed design program, a similar method of determining the maximum mechanical stress in the HTS coil will also be studied as a future work

  17. HTS power lead testing at the Fermilab magnet test facility

    Energy Technology Data Exchange (ETDEWEB)

    Rabehl, R.; Carcagno, R.; Feher, S.; Huang, Y.; Orris, D.; Pischalnikov, Y.; Sylvester, C.; Tartaglia, M.; /Fermilab

    2005-08-01

    The Fermilab Magnet Test Facility has tested high-temperature superconductor (HTS) power leads for cryogenic feed boxes to be placed at the Large Hadron Collider (LHC) interaction regions and at the new BTeV C0 interaction region of the Fermilab Tevatron. A new test facility was designed and operated, successfully testing 20 pairs of HTS power leads for the LHC and 2 pairs of HTS power leads for the BTeV experiment. This paper describes the design and operation of the cryogenics, process controls, data acquisition, and quench management systems. Results from the facility commissioning are included, as is the performance of a new insulation method to prevent frost accumulation on the warm ends of the power leads.

  18. HTS power lead testing at the Fermilab magnet test facility

    International Nuclear Information System (INIS)

    Rabehl, R.; Carcagno, R.; Feher, S.; Huang, Y.; Orris, D.; Pischalnikov, Y.; Sylvester, C.; Tartaglia, M.

    2005-01-01

    The Fermilab Magnet Test Facility has tested high-temperature superconductor (HTS) power leads for cryogenic feed boxes to be placed at the Large Hadron Collider (LHC) interaction regions and at the new BTeV CO interaction region of the Fermilab Tevatron. A new test facility was designed and operated, successfully testing 20 pairs of HTS power leads for the LHC and 2 pairs of HTS power leads for the BTeV experiment. This paper describes the design and operation of the cryogenics, process controls, data acquisition, and quench management systems. Results from the facility commissioning are included, as is the performance of a new insulation method to prevent frost accumulation on the warm ends of the power leads

  19. Evaluation and improvement in nondestructive examination (NDE) reliability for in-service inspection of light water reactors

    International Nuclear Information System (INIS)

    Deffenbaugh, J.D.; Good, M.S.; Green, E.R.; Heasler, P.G.; Simonen, F.A.; Spanner, J.C.; Taylor, T.T.

    1988-01-01

    The evaluation and improvement of NDE Reliability for In-service Inspection (ISI) of Light Water Reactors (NDE Reliability) Program at Pacific Northwest Laboratory (PNL) was established to determine the reliability of current ISI techniques and to develop recommendations that will ensure a suitably high inspection reliability. The objectives of this NRC program are to: determine the reliability of ultrasonic ISI performed on commercial light-water reactor (LWR) primary systems; determine the impact of NDE unreliability on system safety and determine the level of inspection reliability required to ensure a suitably low failure probability using probabilistic fracture mechanics analysis; evaluate the degree of reliability improvement that could be achieved using improved and advanced NDE technique; and recommend revisions to ASME Code, Section XI, and Regulatory Requirements, based on material properties, service conditions, and NDE uncertainties, that will ensure suitably low failure probabilities. The program consists of three basic tasks: a Piping task, a Pressure Vessel task, and an Evaluation and Improvement in NDE Reliability task. The major efforts were concentrated in the Piping task and the Evaluation and Improvement in NDE Reliability task

  20. A 100-W grade closed-cycle thermosyphon cooling system used in HTS rotating machines

    Science.gov (United States)

    Felder, Brice; Miki, Motohiro; Tsuzuki, Keita; Shinohara, Nobuyuki; Hayakawa, Hironao; Izumi, Mitsuru

    2012-06-01

    The cooling systems used for rotating High-Temperature Superconducting (HTS) machines need a cooling power high enough to ensure a low temperature during various utilization states. Radiation, torque tube or current leads represent hundreds of watts of invasive heat. The architecture also has to allow the rotation of the refrigerant. In this paper, a free-convection thermosyphon using two Gifford-McMahon (GM) cryocoolers is presented. The cryogen is mainly neon but helium can be added for an increase of the heat transfer coefficient. The design of the heat exchangers was first optimized with FEM thermal analysis. After manufacture, they were assembled for preliminary experiments and the necessity of annealing was studied for the copper parts. A single evaporator was installed to evaluate the thermal properties of such a heat syphon. The maximum bearable static heat load was also investigated, but was not reached even at 150 W of load. Finally, this cooling system was tested in the cooling down of a 100-kW range HTS rotating machine containing 12 Bi-2223 double-pancake coils (DPC).

  1. An integrated low-voltage rated HTS DC power system with multifunctions to suit smart grids

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Jian Xun, E-mail: jxjin@uestc.edu.cn [Center of Applied Superconductivity, School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072 (China); Center of Applied Superconductivity and Electrical Engineering, School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 611731 (China); Chen, Xiao Yuan [School of Engineering, Sichuan Normal University, Chengdu 610101 (China); Qu, Ronghai; Fang, Hai Yang [School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Xin, Ying [Center of Applied Superconductivity, School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072 (China)

    2015-03-15

    Highlights: • A novel LVDC HTS power transmission network is presented. • An integrated power system is achieved by using HTS DC cable and SMES. • DC superconducting cable is verified to achieve self-acting fault current limitation. • SMES is verified to achieve fast-response buffering effect under a power fluctuation. • SMES is verified to achieve favorable load voltage protection effect under a fault. - Abstract: A low-voltage rated DC power transmission network integrated with superconducting cables (SCs) and superconducting magnetic energy storage (SMES) devices has been studied with analytic results presented. In addition to the properties of loss-less and high current transportation capacity, the effectively integrated system is formed with a self-acting fault current limitation feature of the SC and a buffering effect of the SMES to power fluctuations. The results obtained show that the integrated system can achieve high-quality power transmission under common power fluctuation conditions with an advanced self-protection feature under short circuit conditions, which is identified to suit especially the smart grid applications.

  2. Rotor compound concept for designing an industrial HTS synchronous motor

    Science.gov (United States)

    Kashani, M.; Hosseina, M.; Sarrafan, K.; Darabi, A.

    2013-06-01

    Recently, producing power with smaller amount of losses become as a goal in our daily life. Today, large amount of energy waste in power networks all around the world. The main reason is “resistive electric equipments” of power networks. Since early 1980s, simultaneous with the development of high temperature superconductive (HTS) technology, superconductors gently attracted the mankind attentions. Using superconductive equipments instead of conventional resistive ones are result in salient electric loss reduction in power systems. Especially to reduce losses in power networks superconductive industrial rotating machines can potentially perform a significant role. In early recent century, first generation of HTS rotating machines was born. But unfortunately they have long way to penetrate the commercial markets yet. In HTS rotating machines the conventional copper made windings are replaced with the HTS superconductors. In this paper an industrial HTS synchronous motor with YBCO coated conductor field windings was designed. As a new approach, model was equipped with a compound rotor that includes both magnetic and non-magnetic materials. So, large amount of heavy iron made part was replaced by light non-magnetic material such as G-10 fiberglass. Furthermore, in this structure iron loss in rotor could be reduced to its lowest value. Also less weight and more air gap energy density were the additional advantages. Regarding zero electric loss production in field windings and less iron loss in rotor construction, this model potentially is more effective than the other iron made HTS motors.

  3. Protection of HTS magnets

    International Nuclear Information System (INIS)

    Iwasa, Yukikazu

    2005-01-01

    The paper discusses protection issues for HTS magnet. For protection, the HTS magnet must rely on an active technique. Closed-form expressions of the matrix metal operating current density based on overheating and internal voltage criteria for protection, under very simplifying assumptions, are presented. Perhaps the most important conclusions of these criteria are that: (1) HTS (and LTS) magnets must be wound with composite conductor having a significant portion of its overall cross section occupied by normal metal generally of high electrical conductivity and (2) HTS windings must possess 'high' NZP velocities to make the resistive zone occupy as large a fraction of the winding volume as possible. The paper also derives an analytical expression, under another set of simplifying assumptions, to determine the minimum resistive voltage level, dictated by the maximum hot-spot temperature set at 150 K, required to initiate an active protection process. Remarkably, this minimum detection voltage is nearly independent of the matrix metal current density, I op /A m . For a set of operating parameters used in a numerical example, a computed minimum detection voltage, at I op /A m = 5 x 10 4 A/cm 2 , is ∼30 mV, which, considering it must be discerned in the presence of extraneous voltage signals likely to be present in real world operating conditions, would be non-trivial. To satisfy the overheating criterion at a level of I op /A m , which keeps the winding overall current density 'viable' and at the same time to raise the minimum detection resistive voltage, the winding volume occupied by the resistive state must be expanded. The paper concludes with discussion of challenging new areas of research for protection of HTS magnets

  4. High-Tc SQUID Application for Roll to Roll Metallic Contaminant Detector

    International Nuclear Information System (INIS)

    Tanaka, S.; Kitamura, Y.; Uchida, Y.; Hatsukade, Y.; Ohtani, T.; Suzuki, S.

    2012-01-01

    A sensitive eight-channel high-Tc Superconducting Interference Device (SQUID) detection system for magnetic contaminant in a lithium ion battery anode was developed. Finding ultra-small metallic foreign matter is an important issue for a manufacturer because metallic contaminants carry the risk of an internal short. When contamination occurs, the manufacturer of the product suffers a great loss from recalling the tainted product. Metallic particles with outer dimensions smaller than 100 microns cannot be detected using a conventional X-ray imaging system. Therefore, a highly sensitive detection system for small foreign matter is required. We have already developed a detection system based on a single-channel SQUID gradiometer and horizontal magnetization. For practical use, the detection width of the system should be increased to at least 65 mm by employing multiple sensors. In this paper, we present an 8-ch high-Tc SQUID roll-to-roll system for inspecting a lithium-ion battery anode with a width of 65 mm. A special microscopic type of a cryostat was developed upon which eight SQUID gradiometers were mounted. As a result, small iron particles of 35 microns on a real lithium-ion battery anode with a width of 70 mm were successfully detected. This system is practical for the detection of contaminants in a lithium ion battery anode sheet.

  5. Compact integrated dc SQUID gradiometer

    Science.gov (United States)

    de Waal, V. J.; Klapwijk, T. M.

    1982-10-01

    An all-niobium integrated system of first-order gradiometer and dc suprconducting quantum interference device (SQUID) has been developed. It is relatively simple to fabricate, has an overall size of 17×12 mm and a sensitivity of 3.5×10-12 T m-1 Hz-1/2.

  6. SQUID sensor application for small metallic particle detection

    International Nuclear Information System (INIS)

    Tanaka, Saburo; Hatsukade, Yoshimi; Ohtani, Takeyoshi; Suzuki, Shuichi

    2009-01-01

    High-Tc superconducting quantum interference device (SQUID) is an ultra-sensitive magnetic sensor. Since the performance of the SQUID is improved and stabilized, now it is ready for application. One strong candidate for application is a detection system of magnetic foreign matters in industrial products or beverages. There is a possibility that ultra-small metallic foreign matter has been accidentally mixed with industrial products such as lithium ion batteries. If this happens, the manufacturer of the product suffers a great loss recalling products. The outer dimension of metallic particles less than 100 μm cannot be detected by an X-ray imaging, which is commonly used for the inspection. Ionization of the material is also a big issue for beverages in the case of the X-ray imaging. Therefore a highly sensitive and safety detection system for small foreign matters is required. We developed detection systems based on high-Tc SQUID with a high-performance magnetic shield. We could successfully measure small iron particles of 100 μm on a belt conveyer and stainless steel balls of 300 μm in water. These detection levels were hard to be achieved by a conventional X-ray detection or other methods

  7. Quench Detection and Protection of an HTS Coil

    Science.gov (United States)

    Sheehan, Evan; Pfotenhauer, John; Miller, Franklin; Christianson, Owen

    2017-12-01

    A pulsed, modular HTS magnet for energy storage applications was constructed and tested. Charge and discharge pulses were accomplished in about 1 second. A recuperative cryogenic cooling system supplies 42 to 80 Kelvin helium gas to the magnet. A practical solution to overvoltage and overcurrent protection has been implemented digitally using LabVIEW. Voltages as little as 46 μV greater than the expected value trigger the protection system, which stops the pulse profile and begins an immediate current ramp down to zero over 1 second. The protection system has displayed its effectiveness in HTS transition detection and damage prevention. Experimentation has demonstrated that current pulses on the order of seconds with amplitudes of up to 110 Amps can be achieved for extended periods. Higher currents produce joint heating in excess of the available cooling from the existing cryogenic system.

  8. NDE Big Data Framework, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NDE data has become "Big Data", and is overwhelming the abilities of NDE technicians and commercially available tools to deal with it. In the current state of the...

  9. Final report on the development of a disturbanceless NDE compact cooling device; Abschlussbericht zur Entwicklung einer stoerarmen maschinellen NDE-Kompaktkuehlung

    Energy Technology Data Exchange (ETDEWEB)

    Kaiser, G.

    2002-08-13

    The project comprised the following aspects: 1. Development of a disturbance-free, mechanized compact cooling system for a NDE measuring system on the basis of a commercial SL200-10 split stirling cooling system of AEG Infrarotmodule GmbH, Heilbronn; 2. Support of the development work at the HTSL/Hall magnetometer of Friedrich-Schiller University, Jena; 3. Measurements of HTSL/Hall magnetometer samples and thermal characterisation. [German] Im Rahmen dieses Vorhabens wurden die folgenden Aufgabenstellungen behandelt: 1. Entwicklung einer stoerarmen, maschinellen Kompaktkuehlung fuer ein NDE-Messsystem auf der Basis eines kommerziellen Split-Stirlingkuehlers SL200-10 der Firma AEG Infrarotmodule GmbH, Heilbronn, 2. Unterstuetzung der Entwicklungsarbeiten am HTSL/Hall-Magnetometer, die bei der Friedrich-Schiller-Universitaet in Jena durchgefuehrt wurden, 3. Messungen an HTSL/Hall-Magnetometer-Proben zu deren thermischer Charakterisierung. (orig.)

  10. Application of squids in the Iwate create project

    International Nuclear Information System (INIS)

    Yoshizawa, M.; He, D.F.; Nakai, K.; Kobayashi, K.; Nakamura, Y.; Yaegashi, M.; Ito, M.; Yashiro, H.; Daibo, M.; Simizu, T.; Uchikawa, Y.; Noto, K.

    2005-01-01

    We have developed a 64-channel magnetocardiograph (MCG) system for the diagnosis of heart disease. The MCG is characterized by its display of a unique three-dimensional image of bio-currents flowing inside the human body. The outline of the heart can be displayed without use of MRI. A mobile SQUID-based non-distractive evaluation apparatus was realized by the active shielding technique. The system can offer information from beneath the surface of the specimen by using a saw-wave excitation method. This mobile technology enables us to inspect ferromagnetic materials, whose high magnetic field rules out the use of a conventional SQUID apparatus near them

  11. SQUIDs for the readout of metallic magnetic calorimeters

    Energy Technology Data Exchange (ETDEWEB)

    Ferring, Anna; Wegner, Mathias; Fleischmann, Andreas; Gastaldo, Loredana; Kempf, Sebastian; Enss, Christian [Kirchhoff-Institute for Physics, Heidelberg University (Germany)

    2015-07-01

    Superconducting quantum interference devices (SQUIDs) are the devices of choice to read out metallic magnetic calorimeters (MMCs). Here, the temperature change of the detector upon the absorption of an energetic particle is measured as a magnetization change of a paramagnetic temperature sensor that is situated in a weak magnetic field. Driven by the need for devices that allow for the readout of large-scale detector arrays with hundreds or even thousands of individual detectors as well as of single channel detectors with sub-eV energy resolution, we have recently started the development of low-T{sub c} current-sensing SQUIDs. In particular, we are developing cryogenic frequency-domain multiplexers based on non-hysteretic rf-SQUIDs for detector array readout as well as dc-SQUIDs for single channel detector readout. We discuss our SQUID designs and the performance of prototype SQUIDs. We particularly focus on the frequency and temperature dependence of the SQUID noise as well as the reliability of our SQUID fabrication process for Nb/Al-AlO{sub x}/Nb Josephson junctions. Additionally, we demonstrate experimentally that state-of-the-art MMCs can successfully be read out with our current devices. Finally, we discuss different strategies to improve the SQUID and detector performance aiming to reach sub-eV energy resolution for individual detectors as well as for detector arrays.

  12. Degradation characteristics of 2G HTS tapes with respect to an electrical breakdown

    International Nuclear Information System (INIS)

    Kang, Jong O; Lee, On You; Mo, Young Kyu; Kim, Jun Il; Bang, Seung Min; Lee, Hong Seok; Kang, Hyoung Ku; Lee, Jae Hun; Jang, Cheol Yeong

    2015-01-01

    The electrical insulation design for a superconducting coil system is important for developing high voltage superconducting apparatuses. Also, the degraded characteristics of superconducting tapes due to an electrical breakdown should be considered for superconducting coils design. In this study, the degradation characteristics of 2G high temperature superconducting (HTS) tapes were studied with respect to electrical breakdown tests. The degradation tests of 2G HTS tapes were performed with various stabilizer materials. The degradation characteristics of 2G HTS tapes such as critical current(Ic) and index number were observed by performing electrical breakdown tests. It was found that the characteristics such as Ic and index number can be degraded by an electrical breakdown. Moreover, it was concluded that the degradation characteristics of 2G HTS tapes were affected by a stabilizer material and applied breakdown voltage. The cross sectional view of 2G HTS tapes was observed by using a scanning electron microscope (SEM). As results, it is found that the degradation characteristics of 2G HTS tapes are concerned with hardness and electrical resistivity of stabilizer layers

  13. Synchronous motor with HTS-2G wires

    Science.gov (United States)

    Dezhin, D.; Ilyasov, R.; Kozub, S.; Kovalev, K.; Verzhbitsky, L.

    2014-05-01

    One of the applications of new high-temperature superconductor materials (HTS) is field coils for synchronous electrical machines. The use of YBCO 2G HTS tapes (HTS-2G) allows increasing of magnetic flux density in the air gap, which will increase the output power and reduce the dimensions of the motor. Such motors with improved characteristics can be successfully used in transportation as traction motor. In MAI-based "Center of Superconducting machines and devices" with the support of "Rosatom" has been designed and tested a prototype of the 50 kW synchronous motor with radial magnetic flux from a field-coils based on HTS-2G tapes. The experimental and theoretical results are presented.

  14. Terahertz NDE application for corrosion detection and evaluation under Shuttle tiles

    Science.gov (United States)

    Anastasi, Robert F.; Madaras, Eric I.; Seebo, Jeffrey P.; Smith, Stephen W.; Lomness, Janice K.; Hintze, Paul E.; Kammerer, Catherine C.; Winfree, William P.; Russell, Richard W.

    2007-04-01

    Pulsed Terahertz NDE is being examined as a method to inspect for possible corrosion under Space Shuttle Tiles. Other methods such as ultrasonics, infrared, eddy current and microwave technologies have demonstrable shortcomings for tile NDE. This work applies Terahertz NDE, in the frequency range between 50 GHz and 1 THz, for the inspection of manufactured corrosion samples. The samples consist of induced corrosion spots that range in diameter (2.54 to 15.2 mm) and depth (0.036 to 0.787 mm) in an aluminum substrate material covered with tiles. Results of these measurements are presented for known corrosion flaws both covered and uncovered and for blind tests with unknown corrosion flaws covered with attached tiles. The Terahertz NDE system is shown to detect all artificially manufactured corrosion regions under a Shuttle tile with a depth greater than 0.13 mm.

  15. HTS axial flux induction motor with analytic and FEA modeling

    Energy Technology Data Exchange (ETDEWEB)

    Li, S., E-mail: alexlee.zn@gmail.com; Fan, Y.; Fang, J.; Qin, W.; Lv, G.; Li, J.H.

    2013-11-15

    Highlights: •A high temperature superconductor axial flux induction motor and a novel maglev scheme are presented. •Analytic method and finite element method have been adopted to model the motor and to calculate the force. •Magnetic field distribution in HTS coil is calculated by analytic method. •An effective method to improve the critical current of HTS coil is presented. •AC losses of HTS coils in the HTS axial flux induction motor are estimated and tested. -- Abstract: This paper presents a high-temperature superconductor (HTS) axial-flux induction motor, which can output levitation force and torque simultaneously. In order to analyze the character of the force, analytic method and finite element method are adopted to model the motor. To make sure the HTS can carry sufficiently large current and work well, the magnetic field distribution in HTS coil is calculated. An effective method to improve the critical current of HTS coil is presented. Then, AC losses in HTS windings in the motor are estimated and tested.

  16. HTS axial flux induction motor with analytic and FEA modeling

    International Nuclear Information System (INIS)

    Li, S.; Fan, Y.; Fang, J.; Qin, W.; Lv, G.; Li, J.H.

    2013-01-01

    Highlights: •A high temperature superconductor axial flux induction motor and a novel maglev scheme are presented. •Analytic method and finite element method have been adopted to model the motor and to calculate the force. •Magnetic field distribution in HTS coil is calculated by analytic method. •An effective method to improve the critical current of HTS coil is presented. •AC losses of HTS coils in the HTS axial flux induction motor are estimated and tested. -- Abstract: This paper presents a high-temperature superconductor (HTS) axial-flux induction motor, which can output levitation force and torque simultaneously. In order to analyze the character of the force, analytic method and finite element method are adopted to model the motor. To make sure the HTS can carry sufficiently large current and work well, the magnetic field distribution in HTS coil is calculated. An effective method to improve the critical current of HTS coil is presented. Then, AC losses in HTS windings in the motor are estimated and tested

  17. HTS flywheel energy storage system with rotor shaft stabilized by feed-back control of armature currents of motor-generator

    International Nuclear Information System (INIS)

    Tsukamoto, O.; Utsunomiya, A.

    2007-01-01

    We propose an HTS bulk bearing flywheel energy system (FWES) with rotor shaft stabilization system using feed-back control of the armature currents of the motor-generator. In the proposed system the rotor shift has a pivot bearing at one end of the shaft and an HTS bulk bearing (SMB) at the other end. The fluctuation of the rotor shaft with SMB is damped by feed-back control of the armature currents of the motor-generator sensing the position of the rotor shaft. The method has merits that the fluctuations are damped without active control magnet bearings and extra devices which may deteriorate the energy storage efficiency and need additional costs. The principle of the method was demonstrated by an experiment using a model permanent magnet motor

  18. HTS flywheel energy storage system with rotor shaft stabilized by feed-back control of armature currents of motor-generator

    Science.gov (United States)

    Tsukamoto, O.; Utsunomiya, A.

    2007-10-01

    We propose an HTS bulk bearing flywheel energy system (FWES) with rotor shaft stabilization system using feed-back control of the armature currents of the motor-generator. In the proposed system the rotor shift has a pivot bearing at one end of the shaft and an HTS bulk bearing (SMB) at the other end. The fluctuation of the rotor shaft with SMB is damped by feed-back control of the armature currents of the motor-generator sensing the position of the rotor shaft. The method has merits that the fluctuations are damped without active control magnet bearings and extra devices which may deteriorate the energy storage efficiency and need additional costs. The principle of the method was demonstrated by an experiment using a model permanent magnet motor.

  19. Second order gradiometer and dc SQUID integrated on a planar substrate

    Energy Technology Data Exchange (ETDEWEB)

    van Nieuwenhuyzen, G.J.; de Waal, V.J.

    1985-02-15

    An integrated system of a thin-film niobium dc superconducting quantum interference device (SQUID) and a second order gradiometer on a planar substrate is described. The system consists of a dc SQUID with eight loops in parallel, each sensitive to the second derivative partial/sup 2/B/sub z//partialx/sup 2/ of the magnetic field. The calculated SQUID inductance is 1.3 nH. With an overall size of 16 x 16.5 mm/sup 2/ a sensitivity of 1.5 x 10/sup -9/ Tm/sup -2/ Hz/sup -1//sup ///sup 2/ is obtained. The measured transfer function for uniform fields perpendicular to the plane of the gradiometer is 2.1 x 10/sup -7/ T Phi/sup -1//sub 0/.

  20. Direct readout flux locked loop circuit with automatic tuning of bias current and bias flux for high-Tc SQUID

    International Nuclear Information System (INIS)

    Hirano, T.; Nagaishi, T.; Itozaki, H.

    1999-01-01

    Measurement of high-frequency magnetic signals has been required from some SQUID applications. We fabricated a high-T c SQUID magnetic sensor system that can treat high-frequency signals. This system is composed of a SQUID, a preamplifier circuit, a flux locked loop (FLL) circuit with I/O and a personal computer and a PC card. We used the FLL circuit with no modulation to treat the high-frequency signal and to simplify the circuit. This system can treat a signal from dc to 1 MHz. All the sequence from tuning the SQUID to data acquisition can be done by a personal computer. This system successfully realized easy operation of SQUID measurement. (author)

  1. Compact integrated dc SQUID gradiometer

    Energy Technology Data Exchange (ETDEWEB)

    de Waal, V.J.; Klapwijk, T.M.

    1982-10-01

    An all-niobium integrated system of first-order gradiometer and dc suprconducting quantum interference device (SQUID) has been developed. It is relatively simple to fabricate, has an overall size of 17 x 12 mm and a sensitivity of 3.5 x 10/sup -12/ T m/sup -1/ Hz/sup -1/2/.

  2. Archives: HTS Teologiese Studies / Theological Studies

    African Journals Online (AJOL)

    Items 1 - 50 of 120 ... Archives: HTS Teologiese Studies / Theological Studies. Journal Home > Archives: HTS Teologiese Studies / Theological Studies. Log in or Register to get access to full text downloads. Username, Password, Remember me, or Register · Journal Home · ABOUT THIS JOURNAL · Advanced Search ...

  3. Squids: principles and basic applications in experimental physics

    International Nuclear Information System (INIS)

    Ocio, M.

    1990-01-01

    The basic principles and the description of the technical aspects of SQUIDs (Superconducting Quantum Interference Devices) are described. The applications of SQUIDs in experimental researches and low temperature physics experiments are given. The concepts of fluxoid quantization in a superconductor and Josephson tunnelling are reviewed. The principles, the operation, the noise and the different configurations of r.f. and direct current bias SQUIDs are summarized. The principal characteristics of several SQUIDs are reported

  4. NDE reliability and probability of detection (POD) evolution and paradigm shift

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Surendra [NDE Engineering, Materials and Process Engineering, Honeywell Aerospace, Phoenix, AZ 85034 (United States)

    2014-02-18

    The subject of NDE Reliability and POD has gone through multiple phases since its humble beginning in the late 1960s. This was followed by several programs including the important one nicknamed “Have Cracks – Will Travel” or in short “Have Cracks” by Lockheed Georgia Company for US Air Force during 1974–1978. This and other studies ultimately led to a series of developments in the field of reliability and POD starting from the introduction of fracture mechanics and Damaged Tolerant Design (DTD) to statistical framework by Bernes and Hovey in 1981 for POD estimation to MIL-STD HDBK 1823 (1999) and 1823A (2009). During the last decade, various groups and researchers have further studied the reliability and POD using Model Assisted POD (MAPOD), Simulation Assisted POD (SAPOD), and applying Bayesian Statistics. All and each of these developments had one objective, i.e., improving accuracy of life prediction in components that to a large extent depends on the reliability and capability of NDE methods. Therefore, it is essential to have a reliable detection and sizing of large flaws in components. Currently, POD is used for studying reliability and capability of NDE methods, though POD data offers no absolute truth regarding NDE reliability, i.e., system capability, effects of flaw morphology, and quantifying the human factors. Furthermore, reliability and POD have been reported alike in meaning but POD is not NDE reliability. POD is a subset of the reliability that consists of six phases: 1) samples selection using DOE, 2) NDE equipment setup and calibration, 3) System Measurement Evaluation (SME) including Gage Repeatability and Reproducibility (Gage R and R) and Analysis Of Variance (ANOVA), 4) NDE system capability and electronic and physical saturation, 5) acquiring and fitting data to a model, and data analysis, and 6) POD estimation. This paper provides an overview of all major POD milestones for the last several decades and discuss rationale for using

  5. NDE Studies on CRDMs Removed From Service

    International Nuclear Information System (INIS)

    Doctor, Steven R.; Cumblidge, Stephen E.; Schuster, George J.; Hockey, Ronald L.; Abrefah, John

    2005-01-01

    Studies being conducted at the Pacific Northwest National Laboratory (PNNL) in Richland, Washington are focused on assessing the effectiveness of NDE inspections of control rod drive mechanism (CRDM) nozzles and J-groove weldments. The primary objective of this work is to provide information to the United States Nuclear Regulatory Commission (US NRC) on the effectiveness of ultrasonic testing (UT) and eddy current testing (ET) as related to the in-service inspection of CRDM nozzles and J-groove weldments, and to enhance the knowledge base of primary water stress corrosion cracking (PWSCC) through destructive characterization of the CRDM assemblies. In describing two CRDM assemblies removed from service, decontaminated, and then used in a series of NDE measurements, this paper will address the following questions: (1) What did each technique detect?, (2) What did each technique miss?, (3) How accurately did each technique characterize the detected flaws? Two CRDM assemblies including the CRDM nozzle, the J-groove weld, buttering, and a portion of the ferritic head material were selected for this study. One contained suspected PWSCC, based on in-service inspection data; the other contained evidence suggesting through-wall leakage, but this was unconfirmed. The selected NDE measurements follow standard industry techniques for conducting in-service inspections of CRDM nozzles and the crown of the J-groove welds and buttering. In addition, laboratory based NDE methods will be employed to conduct inspections of the CRDM assemblies, with particular emphasis on inspecting the J-groove weld and buttering. This paper will also describe the NDE methods used and discuss the NDE results. Future work will involve using the results from these NDE studies to guide the development of a destructive characterization plan to reveal the crack morphology, to be compared with NDE responses

  6. Analysis of stability and quench in HTS devices-New approaches

    International Nuclear Information System (INIS)

    Vysotsky, V.S.; Sytnikov, V.E.; Rakhmanov, A.L.; Ilyin, Y.

    2006-01-01

    R and D of HTS devices are in their full steam-more magnets and devices are developed with larger sizes. But analysis of their stability and quench was still old fashioned, based on normal zone determination, analysis of its appearance and propagation. Some peculiarities of HTS make this traditional, quite impractical and inconvenient approach to consideration of HTS devices stability and quench development using normal zone origination and propagation analysis. The novel approaches were developed that consider the HTS device as a cooled medium with non-linear parameters with no mentioning of 'superconductivity' in the analysis. The approach showed its effectiveness and convenience to analyze the stability and quench development in HTS devices. In this paper the analysis of difference between HTS and LTS quench, dependent on index n and specific heat comparison, is followed by the short approach descriptions and by the consequences from it for the HTS devices design. The further development of the method is presented for the analysis of long HTS objects where 'blow-up' regimes may happen. This is important for design and analysis of HTS power cables operations under overloading conditions

  7. Computer model for noise in the dc Squid

    International Nuclear Information System (INIS)

    Tesche, C.D.; Clarke, J.

    1976-08-01

    A computer model for the dc SQUID is described which predicts signal and noise as a function of various SQUID parameters. Differential equations for the voltage across the SQUID including the Johnson noise in the shunted junctions are integrated stepwise in time

  8. Overcurrent experiments on HTS tape and cable conductor

    DEFF Research Database (Denmark)

    Tønnesen, Ole; Jensen, Kim Høj; Træholt, Chresten

    2001-01-01

    their critical current. In this light, it is important to investigate the response of HTS tapes and cable conductors to overcurrents several times the critical current. A number of experiments have been performed on HTS tapes and cable conductors, with currents up to 20 times the critical current. During...... overcurrent experiments, the voltage, and the temperature were measured as functions of time in order to investigate the dynamic behavior of the HTS tape and cable conductor. After each experiment, damage to the superconductors was assessed by measuring the critical current. Preliminary results show...... that within seconds an HTS tape (critical current=17 A) heats above room temperature with an overcurrent larger than 140 A. Similar overcurrent experiments showed that a HTS cable conductor could sustain damage with overcurrents exceeding 10 times the critical current of the cable conductor....

  9. High-Tc SQUID gradiometer system for magnetocardiography in an unshielded environment

    International Nuclear Information System (INIS)

    Liao, S H; Hsu, S C; Lin, C C; Horng, H E; Chen, J C; Chen, M J; Wu, C H; Yang, H C

    2003-01-01

    We set up an electronic gradiometer for magnetocardiography (MCG) in an unshielded environment. The electronically balanced gradiometer consists of high-temperature radio-frequency superconducting quantum interference device (rf SQUID) magnetometers. The rf SQUID magnetometers are arranged to form the electronic first-order, four-vector gradiometer, or second-order gradiometer. The output of the MCG signal was filtered by a band pass (1-30 Hz) and power line filters. We can reduce the noise to ∼1 pT Hz -1/2 at 1 Hz for second-order or four-vector gradiometers. Two-dimensional MCG imaging is demonstrated. The results are discussed with data measured in the moderate magnetically shielded environment

  10. YBCO SQUIDs with unconventional current phase relation

    International Nuclear Information System (INIS)

    Bauch, T.; Johansson, J.; Cedergren, K.; Lindstroem, T.; Lombardi, F.

    2007-01-01

    We have studied the dynamics of YBa 2 Cu 3 O 7-δ (YBCO) dc sperconducting quantum interference devices (SQUIDs) characterized by an unconventional Josephson current phase relation (CPR). We have focused on SQUID configurations with Josephson junctions where the lobe of the order parameter in one electrode is facing a node in the other electrode. This order parameter arrangement should enhance the appearance of a sin(2φ) term in the CPR. The response of the critical current of the dc SQUID, under the effect of an external magnetic field, has been measured in temperature, down to 20 mK. Our experimental data have been compared with numerical simulations of the SQUIDs dynamics by considering a CPR of a single junction of the form I(φ) = I I sin(φ) - I II sin(2φ) where I I and I II are, respectively, the first and second harmonic component. In our devices the values of the sin(2φ) term are such that the fundamental state of the SQUID is naturally double degenerate. This is of great relevance for applications of d-wave SQUIDs in quantum information processing

  11. Miniaturized hand held microwave interference scanning system for NDE of dielectric armor and armor systems

    International Nuclear Information System (INIS)

    Schmidt, Karl F.; Little, Jack R.; Ellingson, William A.; Meitzler, Thomas J.; Green, William

    2011-01-01

    Inspection of ceramic-based armor has advanced through development of a microwave-based, portable, non-contact NDE system. Recently, this system was miniaturized and made wireless for maximum utility in field applications. The electronic components and functionality of the laboratory system are retained, with alternative means of position input for creation of scan images. Validation of the detection capability was recently demonstrated using specially fabricated surrogates and ballistic impact-damaged specimens. The microwave data results have been compared to data from laboratory-based microwave interferometry systems and digital x-ray imaging. The microwave interference scanning has been shown to reliably detect cracks, laminar features and material property variations. The authors present details of the system operation, descriptions of the test samples used and recent results obtained.

  12. Antioxidant and antimicrobial activities of squid ink powder

    OpenAIRE

    Fatimah Zaharah, M.Y.; Rabeta, M.S.

    2017-01-01

    Economic development in Malaysia has led to increasing quantity and complexity of generated waste or by-product. The main objective of this study is to investigate the antioxidant and antimicrobial activities of squid ink powder. The squid ink was collected from fresh squid and dried using freeze dryer before it was ground into powder. The yield of squid ink was 22.82% after freeze-drying which was 69.37g in amount. Proximate composition analysis as well as two total antioxidant activity assa...

  13. NDE research at NASA Langley Research Center

    International Nuclear Information System (INIS)

    Heyman, J.S.

    1989-01-01

    The Nondestructive Measurement Science Branch at NASA Langley is the Agency's lead Center for NDE research. The focus of the laboratory is to improve the science base for NDE, evolve a more quantitative, interpretable technology to insure safety and reliability, and transfer that technology to the commercial sector. To address the broad needs of the Agency, the program has developed expertise in many areas, some of which are in ultrasonics, nonlinear acoustics, nano and microstructure characterization, thermal NDE, x-ray tomography, optical fiber sensors, magnetic probing, process monitoring sensors, and image/signal processing. The authors laboratory has recently dedicated its new 20,000 square foot research facility bringing the lab space to 30,000 square feet. The new facility includes a high bay for the x-ray CAT scanner, a revolutionary new concept in materials measurement. The CAT scanner is called QUEST, for quantitative experimental stress tomography lab. This system combines for the first time a microfocus x-ray source and detector with a fatigue load frame. Three dimensional imaging of density/geometry of the tested sample is thus possible during tension/compression loading. This system provides the first 3-D view of crack initiation, crack growth, phase transformation, bonded surface failure, creep-all with a density sensitivity of 0.1% and a resolution of about 25 microns (detectability of about 1 micron)

  14. Cooling concepts for HTS components

    International Nuclear Information System (INIS)

    Binneberg, A.; Buschmann, H.; Neubert, J.

    1993-01-01

    HTS components require that low-cost, reliable cooling systems be used. There are no general solutions to such systems. Any cooling concept has to be tailored to the specific requirements of a system. The following has to he taken into consideration when designing cooling concepts: - cooling temperature - constancy and controllability of the cooling temperature - cooling load and refrigerating capacity - continuous or discontinuous mode - degree of automation - full serviceability or availability before evacuation -malfunctions caused by microphonic, thermal or electromagnetic effects -stationary or mobile application - investment and operating costs (orig.)

  15. Conceptual Design of a Single Phase 33 MVA HTS Transformer with a Tertiary Winding

    International Nuclear Information System (INIS)

    Lee, S. W.; Kim, W. S.; Hahn, S. Y.; Hwang, Y. I.; Choi, K. D.

    2006-01-01

    We have proposed a 3 phase, 100 MVA, 154 kV class HTS transformer substituting for a 60 MVA conventional transformer. The power transformer of 154 kV class has a tertiary winding besides primary and secondary windings. So the HTS transformer should have the 3rd superconducting winding. In this paper, we designed conceptually the structure of the superconducting windings of a single phase 33 MVA transformer. The electrical characteristics of the HTS transformer such as % impedance and AC loss vary with the arrangement of the windings and gaps between windings. We analyzed the effects of the winding parameters, evaluated the cost of each design, and proposed a suitable HTS transformer model for future power distribution system.

  16. Simulation of magnetization and levitation characteristics of HTS tape stacks

    Science.gov (United States)

    Anischenko, I. V.; Pokrovskii, S. V.; Mineev, N. A.

    2017-12-01

    In this work it is presented a computational model of a magnetic levitation system based on stacks of high-temperature second generation superconducting tapes (HTS) GdBa2Cu3O7-x. Calculated magnetic field and the current distributions in the system for different stacks geometries in the zero-field cooling mode are also presented. The magnetization curves of the stacks in the external field of a permanent NdFeB magnet and the levitation force dependence on the gap between the magnet and the HTS tapes stack were obtained. A model of the magnetic system, oriented to levitation application, is given. Results of modeling were compared with the experimental data.

  17. Explorer-II: Wireless Self-Powered Visual and NDE Robotic Inspection System for Live Gas Distribution Mains

    Energy Technology Data Exchange (ETDEWEB)

    Carnegie Mellon University

    2008-09-30

    Carnegie Mellon University (CMU) under contract from Department of Energy/National Energy Technology Laboratory (DoE/NETL) and co-funding from the Northeast Gas Association (NGA), has completed the overall system design, field-trial and Magnetic Flux Leakage (MFL) sensor evaluation program for the next-generation Explorer-II (X-II) live gas main Non-destructive Evaluation (NDE) and visual inspection robot platform. The design is based on the Explorer-I prototype which was built and field-tested under a prior (also DoE- and NGA co-funded) program, and served as the validation that self-powered robots under wireless control could access and navigate live natural gas distribution mains. The X-II system design ({approx}8 ft. and 66 lbs.) was heavily based on the X-I design, yet was substantially expanded to allow the addition of NDE sensor systems (while retaining its visual inspection capability), making it a modular system, and expanding its ability to operate at pressures up to 750 psig (high-pressure and unpiggable steel-pipe distribution mains). A new electronics architecture and on-board software kernel were added to again improve system performance. A locating sonde system was integrated to allow for absolute position-referencing during inspection (coupled with external differential GPS) and emergency-locating. The power system was upgraded to utilize lithium-based battery-cells for an increase in mission-time. The resulting robot-train system with CAD renderings of the individual modules. The system architecture now relies on a dual set of end camera-modules to house the 32-bit processors (Single-Board Computer or SBC) as well as the imaging and wireless (off-board) and CAN-based (on-board) communication hardware and software systems (as well as the sonde-coil and -electronics). The drive-module (2 ea.) are still responsible for bracing (and centering) to drive in push/pull fashion the robot train into and through the pipes and obstacles. The steering modules

  18. AC losses in horizontally parallel HTS tapes for possible wireless power transfer applications

    Science.gov (United States)

    Shen, Boyang; Geng, Jianzhao; Zhang, Xiuchang; Fu, Lin; Li, Chao; Zhang, Heng; Dong, Qihuan; Ma, Jun; Gawith, James; Coombs, T. A.

    2017-12-01

    This paper presents the concept of using horizontally parallel HTS tapes with AC loss study, and the investigation on possible wireless power transfer (WPT) applications. An example of three parallel HTS tapes was proposed, whose AC loss study was carried out both from experiment using electrical method; and simulation using 2D H-formulation on the FEM platform of COMSOL Multiphysics. The electromagnetic induction around the three parallel tapes was monitored using COMSOL simulation. The electromagnetic induction and AC losses generated by a conventional three turn coil was simulated as well, and then compared to the case of three parallel tapes with the same AC transport current. The analysis demonstrates that HTS parallel tapes could be potentially used into wireless power transfer systems, which could have lower total AC losses than conventional HTS coils.

  19. Development and testing of high temperature-vector-SQUID conductor-magnetometers for the electro-magnetic exploration of our deposits. Final report; SQUID-Anwendungen - Entwicklung und Erprobung von Hochtemperatur-Vektor-Supraleiter SQUID-Magnetometern fuer die elektromagnetische Exploration von Lagerstaetten. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Matzander, U.; Friedrichs, B.

    2000-03-01

    Aim of the was the development of a prototype of a 3 axis HTc SQUID magnetometer for the geophysical exploration. The prototype was tested during the project in Germany and in China. Metronix task was the supervision of the development with the direction that the sensor can be used for field measurements and that the manufacturing costs will be acceptable. For magnetotelluric measurements (MT/CSAMT) further development is required to enhance the drift and noise properties of the sensor. The advantages in the geophysical TEM exploration are: greater sounding depth and good conductors (ore bodies) can be penetrated completely; the thickness of the resource can be estimated this way. At the same time the measuring time can be reduced tremendously because of the better signal to noise ratio. The productivity of the measuring campaign increases. If due to further developments coils systems can be replaced in total by the SQUID, SQUID systems will dominate the TEM market. (orig.) [German] Ziel des Projektes war es, einen Prototyp eines 3-achsigen HTc SQUIDS zur Verfuegung zu haben, welcher die Anforderungen fuer geophysikalische Messungen erfuellt. Dieser Prototyp wurde im Laufe des Projektes in Deutschland und China getestet. Die Rolle der Firma Metronix in diesem Projekt war die Einflussnahme auf die Entwicklung in der Form, dass zum einen die aus der Feldmesstechnik resultierenden Anforderungen beruecksichtigt werden, zum anderen auf eine spaetere kostenguenstige Herstellung geachtet wird. Bei magnetotellurischen Messungen (MT/CSAMT) besteht weiterer Bedarf an Verbesserungen hinsichtlich der Drift- und Rauscheigenschaften des Sensors. Fuer die geophysikalische Exploration in der TEM ergeben sich folgende Vorteile: die Erkundungstiefe ist groesser und gute Leiter (Erzkoerper) koennen vollstaendig durchteuft werden; damit kann die Maechtigkeit des Vorkommens bestimmt werden. Gleichzeitig kann auf Grund des besseren Signal / Rauschverhaeltnisses die Messzeit deutlich

  20. Engineering development of an HTS floating coil for the Mini-RT project

    International Nuclear Information System (INIS)

    Yanagi, Nagato; Mito, Toshiyuki; Morikawa, Junji

    2004-01-01

    A magnetically-levitated superconducting coil device, Mini-RT, has been constructed using a high temperature superconductor (HTS) for the purpose of examining a new magnetic confinement scheme of high-beta non-neutral plasmas. The floating coil is wound with silver-sheathed Bi-2223 tapes, and it is operated in the temperature range of 20-40 K. A number of studies and experiments were carried out in order to realize the necessary system. One of them was to demonstrate magnetic levitation using a miniature HTS floating coil having a diameter of 80 mm. The coil was fabricated using Bi-2223/Ag tapes of 12 m and excited by field cooling with liquid nitrogen. The magnetic levitation was examined using a real-time feedback control system with laser displacement gauges. Additionally, a persistent current switch (PCS) has been developed using Bi-2223/Ag tapes of 21 m, and a prototype HTS-PCS was tested in a cryostat. After construction of the floating coil and HTS-PCS for the Mini-RT device was completed, excitation tests were carried out in the cryostat and the basic properties up to the nominal operation condition were examined. (author)

  1. High speed non-latching squid binary ripple counter

    International Nuclear Information System (INIS)

    Silver, A.H.; Phillips, R.R.; Sandell, R.D.

    1985-01-01

    High speed, single flux quantum (SFQ) binary scalers are important components in superconducting analog-to-digital converters (ADC). This paper reviews the concept for a SQUID ADC and the design of an SFQ binary ripple counter, and reports the simulation of key components, and fabrication and performance of non-latching SQUID scalers and SFQ binary ripple counters. The SQUIDs were fabricated with Nb/Nb 2 O 5 /PbIn junctions and interconnected by monolithic superconducting transmission lines and isolation resistors. Each SQUID functioned as a bistable flip-flop with the input connected to the center of the device and the output across one junction. All junctions were critically damped to optimize the pulse response. Operation was verified by observing the dc I-V curves of successive SQUIDs driven by a cw pulse train generated on the same chip. Each SQUID exhibited constant-voltage current steps at 1/2 the voltage of the preceding device as expected from the Josephson voltage-to-frequency relation. Steps were observed only for the same voltage polarity of successive devices and for proper phase bias of the SQUID. Binary frequency division was recorded up to 40GHz for devices designed to operate to 28GHz

  2. Antioxidant and antimicrobial activities of squid ink powder

    Directory of Open Access Journals (Sweden)

    Fatimah Zaharah, M.Y.

    2017-10-01

    Full Text Available Economic development in Malaysia has led to increasing quantity and complexity of generated waste or by-product. The main objective of this study is to investigate the antioxidant and antimicrobial activities of squid ink powder. The squid ink was collected from fresh squid and dried using freeze dryer before it was ground into powder. The yield of squid ink was 22.82% after freeze-drying which was 69.37g in amount. Proximate composition analysis as well as two total antioxidant activity assays named 2,2-diphenyl-1-picrylhydrazyl (DPPH assay and Ferric Reducing Antioxidant Power (FRAP assay, and antimicrobial analysis were done on the powdered squid ink. The proximate results of squid ink powder were 4.43 ± 0.29% moisture, 62.46 ± 0.62% protein, 3.96 ± 0.08% fat, and 9.29 ± 0.05% ash. Results of DPPH assay showed that water extraction of squid ink powder has the highest 94.87 ± 4.87%, followed by ethanol 67.57 ± 7.55%, and hexane extract 2.10 ± 1.18%. FRAP assay result presented the same trend with water extraction had the highest value of 929.67 ± 2.31 μmol Fe (II / g of sample extract, followed by ethanol extract 201.00 ± 26.29 μmol Fe (II per gram sample and hexane 79.67 ± 12.66 μmol Fe (II / g of sample extract. Both water and ethanol extract showed antimicrobial properties with inhibition range of 7 to 15 mm, respectively. Fresh squid ink had 1.254 × 103 colony forming unit per gram of sample of microbial content. Squid ink powder had protein as major compound and microbial content was below from standard value of fisheries products as stated in Food Act 1983 and Regulation 1985.

  3. Cold SQUIDs and hot samples

    Energy Technology Data Exchange (ETDEWEB)

    Lee, T.S.C. [Univ. of California, Berkeley, CA (United States). Dept. of Physics]|[Lawrence Berkeley national Lab., CA (United States). Materials Sciences Div.

    1997-05-01

    Low transition temperature (low-{Tc}) and high-{Tc} Superconducting QUantum Interference Devices (SQUIDs) have been used to perform high-resolution magnetic measurements on samples whose temperatures are much higher than the operating temperatures of the devices. Part 1 of this work focuses on measurements of the rigidity of flux vortices in high-{Tc} superconductors using two low-{Tc} SQUIDs, one on either side of a thermally-insulated sample. The correlation between the signals of the SQUIDs is a direct measure of the extent of correlation between the movements of opposite ends of vortices. These measurements were conducted under the previously-unexplored experimental conditions of nominally-zero applied magnetic field, such that vortex-vortex interactions were unimportant, and with zero external current. At specific temperatures, the authors observed highly-correlated noise sources, suggesting that the vortices moved as rigid rods. At other temperatures, the noise was mostly uncorrelated, suggesting that the relevant vortices were pinned at more than one point along their length. Part 2 describes the design, construction, performance, and applications of a scanning high-{Tc} SQUID microscope optimized for imaging room-temperature objects with very high spatial resolution and magnetic source sensitivity.

  4. Cold SQUIDs and hot samples

    International Nuclear Information System (INIS)

    Lee, T.S.C.; Lawrence Berkeley national Lab., CA

    1997-05-01

    Low transition temperature (low-T c ) and high-T c Superconducting QUantum Interference Devices (SQUIDs) have been used to perform high-resolution magnetic measurements on samples whose temperatures are much higher than the operating temperatures of the devices. Part 1 of this work focuses on measurements of the rigidity of flux vortices in high-T c superconductors using two low-T c SQUIDs, one on either side of a thermally-insulated sample. The correlation between the signals of the SQUIDs is a direct measure of the extent of correlation between the movements of opposite ends of vortices. These measurements were conducted under the previously-unexplored experimental conditions of nominally-zero applied magnetic field, such that vortex-vortex interactions were unimportant, and with zero external current. At specific temperatures, the authors observed highly-correlated noise sources, suggesting that the vortices moved as rigid rods. At other temperatures, the noise was mostly uncorrelated, suggesting that the relevant vortices were pinned at more than one point along their length. Part 2 describes the design, construction, performance, and applications of a scanning high-T c SQUID microscope optimized for imaging room-temperature objects with very high spatial resolution and magnetic source sensitivity

  5. Evaluation and improvement in nondestructive examination (NDE) reliability for inservice inspection of light water reactors

    International Nuclear Information System (INIS)

    Doctor, S.R.; Deffenbaugh, J.D.; Good, M.S.; Green, E.R.; Heasler, P.G.; Simonen, F.A.; Spanner, J.C.; Taylor, T.T.

    1988-01-01

    The Evaluation and Improvement of NDE Reliability for Inservice Inspection of Light Water Reactors (NDE Reliability) program at the Pacific Northwest Laboratory was established by the NRC to determine the reliability of current inservice inspection (ISI) techniques and to develop recommendations that will ensure a suitably high inspection reliability. The objectives of this program include determining the reliability of ISI performed on the primary systems of commercial light-water reactors (LWRs); using probabilistic fracture mechanics analysis to determine the impact of NDE unreliability on system safety; and evaluating reliability improvements that can be achieved with improved and advanced technology. A final objective is to formulate recommended revisions to ASME Code and Regulatory requirements, based on material properties, service conditions and NDE uncertainties. The program scope is limited to ISI of the primary systems including the piping, vessel, and other inspected components. This is a progress report covering the programmatic work from October 1986 through September 1987. (author)

  6. Evaluation and improvement in nondestructive examination (NDE) reliability for inservice inspection of light water reactors

    International Nuclear Information System (INIS)

    Doctor, S.R.; Deffenbaugh, J.D.; Good, M.S.; Green, E.R.; Heasler, P.G.; Simonen, F.A.; Spanner, J.C.; Taylor, T.T.

    1988-01-01

    The Evaluation and Improvement of NDE Reliability for Inservice Inspection of Light Water Reactor (NDE Reliability) program at the Pacific Northwest Laboratory was established by the NRC to determine the reliability of current inservice inspection (ISI) techniques and to develop recommendations that will ensure a suitably high inspection reliability. The objectives of this program include determining the reliability of ISI performed on the primary systems of commercial light-water reactors (LWRs); using probabilistic fracture mechanics analysis to determine the impact of NDE unreliability on system safety; and evaluating reliability improvements that can be achieved with improved and advanced technology. A final objective is to formulate recommended revisions to ASME Code and Regulatory requirements, based on material properties, service conditions, and NDE uncertainties. The program scope is limited to ISI of the primary systems including the piping, vessel, and other inspected components. This is a progress report covering the programmatic work from October 1986 through September 1987

  7. Characteristics of joint resistance with different kinds of HTS tapes for heater trigger switch

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Je Yull; Park, Young Gun; Lee, Woo Seung; Jo, Hyun Chul; Ko, Tae Kuk [Yonsei University, Seoul (Korea, Republic of); Yoon, Yong Soo [Shin Ansan University, Ansan (Korea, Republic of)

    2014-03-15

    Recently, many researches on the system of superconducting power supply and superconducting magnetic energy storage (SMES) using high temperature superconducting (HTS) tapes has been progressed. Those kinds of superconducting devices use the heater trigger switches that have a control delay problem at moments of heating up and cooling down. One way to reduce the time delay is using a different HTS tape at trigger part. For example, HTS tape having lower critical temperature can reduce time delay of heating up and heating down stage for heater trigger operation. This paper deals with resistances joint with different kinds of HTS tapes which have different properties to verify usefulness of the suggested method. Three kinds of commercial HTS tapes with different specifications are selected as samples and two kinds of solders are used for comparison. Joint is performed with temperature and pressure controllable joint machine and the joint characteristics are analyzed under the repeatable conditions.

  8. High transition-temperature SQUID magnetometers and practical applications

    International Nuclear Information System (INIS)

    Dantsker, E.; Lawrence Berkeley National Lab., CA

    1997-05-01

    The design, fabrication and performance of SQUID magnetometers based on thin films of the high-transition temperature superconductor YBa 2 Cu 3 O 7-x (YBCO) are described. Essential to the achieving high magnetic field resolution at low frequencies is the elimination of 1/f flux noise due to thermally activated hopping of flux vortices between pinning sites in the superconducting films. Through improvements in processing, 1/f noise in single layer YBCO thin films and YBCO-SrTiO 3 -YBCO trilayers was systematically reduced to allow fabrication of sensitive SQUID magnetometers. Both single-layer directly coupled SQUID magnetometers and multilayer magnetometers were fabricated, based on the dc SQUID with bicrystal grain boundary Josephson junctions. Multilayer magnetometers had a lower magnetic field noise for a given physical size due to greater effective sensing areas. A magnetometer consisting of a SQUID inductively coupled to the multiturn input coil of a flux transformer in a flip-chip arrangement had a field noise of 27 fT Hz -1/2 at 1 Hz and 8.5 fT Hz -1/2 at 1 kHz. A multiloop multilayer SQUID magnetometer had a field noise of 37 fT Hz -1/2 at 1 Hz and 18 fT Hz -1/2 at 1 kHz. A three-axis SQUID magnetometer for geophysical applications was constructed and operated in the field in the presence of 60 Hz and radiofrequency noise. Clinical quality magnetocardiograms were measured using multilayer SQUID magnetometers in a magnetically shielded room

  9. Dipole location using SQUID based measurements: Application to magnetocardiography

    Science.gov (United States)

    Mariyappa, N.; Parasakthi, C.; Sengottuvel, S.; Gireesan, K.; Patel, Rajesh; Janawadkar, M. P.; Sundar, C. S.; Radhakrishnan, T. S.

    2012-07-01

    We report a method of inferring the dipole location using iterative nonlinear least square optimization based on Levenberg-Marquardt algorithm, wherein, we use different sets of pseudo-random numbers as initial parameter values. The method has been applied to (i) the simulated data representing the calculated magnetic field distribution produced by a point dipole placed at a known position, (ii) the experimental data from SQUID based measurements of the magnetic field distribution produced by a source coil carrying current, and (iii) the actual experimentally measured magnetocardiograms of human subjects using a SQUID based system.

  10. Chronic Treatment with Squid Phosphatidylserine Activates Glucose Uptake and Ameliorates TMT-Induced Cognitive Deficit in Rats via Activation of Cholinergic Systems

    Directory of Open Access Journals (Sweden)

    Hyun-Jung Park

    2012-01-01

    Full Text Available The present study examined the effects of squid phosphatidylserine (Squid-PS on the learning and memory function and the neural activity in rats with TMT-induced memory deficits. The rats were administered saline or squid derived Squid-PS (Squid-PS 50 mg kg−1, p.o. daily for 21 days. The cognitive improving efficacy of Squid-PS on the amnesic rats, which was induced by TMT, was investigated by assessing the passive avoidance task and by performing choline acetyltransferase (ChAT and acetylcholinesterase (AchE immunohistochemistry. 18F-Fluorodeoxyglucose and performed a positron emission tomography (PET scan was also performed. In the passive avoidance test, the control group which were injected with TMT showed a markedly lower latency time than the non-treated normal group (P<0.05. However, treatment of Squid-PS significantly recovered the impairment of memory compared to the control group (P<0.05. Consistent with the behavioral data, Squid-PS significantly alleviated the loss of ChAT immunoreactive neurons in the hippocampal CA3 compared to that of the control group (P<0.01. Also, Squid-PS significantly increased the AchE positive neurons in the hippocampal CA1 and CA3. In the PET analysis, Squid-PS treatment increased the glucose uptake more than twofold in the frontal lobe and the hippocampus (P<0.05, resp.. These results suggest that Squid-PS may be useful for improving the cognitive function via regulation of cholinergic enzyme activity and neural activity.

  11. Numerical and experimental comparison of electromechanical properties and efficiency of HTS and ferromagnetic hysteresis motors

    International Nuclear Information System (INIS)

    Inacio, D; Inacio, S; Pina, J; Goncalves, A; Neves, M Ventim; Rodrigues, A Leao

    2008-01-01

    Hysteresis motors are very attractive in a wide range of fractional power applications, due to its torque-speed characteristics and simplicity of construction. This motor's performance is expected to improve when HTS rotors are used, and in fact, hysteresis motors have shown to be probably the most viable electrical machines using HTS materials. While these motors, either conventional or HTS, are both hysteresis motors, they base their operation on different physical phenomena: hysteretic behaviour in conventional ferromagnetic materials is due to the material's non-linear magnetic properties, while in HTS materials the hysteresis has an ohmic nature and is related with vortices' dynamics. In this paper, theoretical aspects of both conventional and HTS hysteresis motors are discussed, its operation principles are highlighted, and the characteristics of both motors are presented. The characteristics, obtained both by experimental tests and numerical simulation (made with commercial software), are compared, in order to evaluate not only the motor's electromechanical performances but also the overall systems efficiency, including cryogenics for the HTS device

  12. Radio frequency interference noise reduction using a field programmable gate array for SQUID applications

    International Nuclear Information System (INIS)

    Sakuta, K; Narita, Y; Itozaki, H

    2007-01-01

    It is important to remove large environmental noise in superconducting quantum interference device (SQUID) measurement without magnetic shielding. Active noise control (ANC) is one of the effective methods to reduce environmental noise. Recently, SQUIDs have been used in various applications at high frequencies, such as nuclear quadrupole resonance (NQR). The NQR frequency from explosives is in the range 0.5-5 MHz. In this case, an NQR sensor is exposed to AM radio frequency interference (RFI). The feasibility of the ANC system for RFI that used digital signal processing was studied. Our investigation showed that this digital ANC system can be applied to SQUID measurements for RFI suppression

  13. Thermal conductivity measurement of HTS tapes and stacks for current lead applications

    International Nuclear Information System (INIS)

    Schwarz, Michael; Weiss, Klaus-Peter; Heller, Reinhard; Fietz, Walter H.

    2009-01-01

    The use of high-temperature-superconductors (HTS) within current leads offers a high potential to save cooling-power. The principle of HTS current leads is well established, e.g. for particle accelerators (LHC-CERN) but also on the commercial sector, which offer HTS current leads ready for use in small scale magnets and magnets systems. Future fusion machines currently under construction like ITER, W7-X or JT-60SA also will use HTS current leads. At the moment the standard material for HTS current leads is a Bi 2 Sr 2 Ca 2 Cu 3 O x (BSCCO)-AgAu composite tape. The common way to receive high current capacity current leads is to form stacks by sintering or soldering these tapes together. The solder changes the thermal conductivity of the stacks compared to the single tape in the temperature range from 4 K to 60 K. To estimate the heat flux from the warm environment to the cold application the measurement of the thermal conductivity of the soldered stack is mandatory. Therefore the thermal conductivity of stacks with different number of tapes is investigated. To measure the thermal conduction in the current flow direction, the axial heat flow method is used. Combining these results with FEM simulations gives the possibility to estimate the thermal conductivity normal to the flat tape plane. The resulting anisotropic thermal conductivity can be used to model the behaviour of the HTS tape under thermal disturbances more accurately.

  14. NDE Technology Development Program for Non-Visual Volumetric Inspection Technology; Sensor Effectiveness Testing Report

    Energy Technology Data Exchange (ETDEWEB)

    Moran, Traci L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Larche, Michael R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Denslow, Kayte M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Glass, Samuel W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-08-31

    The Pacific Northwest National Laboratory (PNNL) located in Richland, Washington, hosted and administered Sensor Effectiveness Testing that allowed four different participants to demonstrate the NDE volumetric inspection technologies that were previously demonstrated during the Technology Screening session. This document provides a Sensor Effectiveness Testing report for the final part of Phase I of a three-phase NDE Technology Development Program designed to identify and mature a system or set of non-visual volumetric NDE technologies for Hanford DST primary liner bottom inspection. Phase I of the program will baseline the performance of current or emerging non-visual volumetric NDE technologies for their ability to detect and characterize primary liner bottom flaws, and identify candidate technologies for adaptation and maturation for Phase II of the program.

  15. Study on AC loss measurements of HTS power cable for standardizing

    Science.gov (United States)

    Mukoyama, Shinichi; Amemiya, Naoyuki; Watanabe, Kazuo; Iijima, Yasuhiro; Mido, Nobuhiro; Masuda, Takao; Morimura, Toshiya; Oya, Masayoshi; Nakano, Tetsutaro; Yamamoto, Kiyoshi

    2017-09-01

    High-temperature superconducting power cables (HTS cables) have been developed for more than 20 years. In addition of the cable developments, the test methods of the HTS cables have been discussed and proposed in many laboratories and companies. Recently the test methods of the HTS cables is required to standardize and to common in the world. CIGRE made the working group (B1-31) for the discussion of the test methods of the HTS cables as a power cable, and published the recommendation of the test method. Additionally, IEC TC20 submitted the New Work Item Proposal (NP) based on the recommendation of CIGRE this year, IEC TC20 and IEC TC90 started the standardization work on Testing of HTS AC cables. However, the individual test method that used to measure a performance of HTS cables hasn’t been established as world’s common methods. The AC loss is one of the most important properties to disseminate low loss and economical efficient HTS cables in the world. We regard to establish the method of the AC loss measurements in rational and in high accuracy. Japan is at a leading position in the AC loss study, because Japanese researchers have studied on the AC loss technically and scientifically, and also developed the effective technologies for the AC loss reduction. The JP domestic commission of TC90 made a working team to discussion the methods of the AC loss measurements for aiming an international standard finally. This paper reports about the AC loss measurement of two type of the HTS conductors, such as a HTS conductor without a HTS shield and a HTS conductor with a HTS shield. The AC loss measurement method is suggested by the electrical method..

  16. Accelerating the introduction of HTS products for a broad range of electric power and industrial applications

    Science.gov (United States)

    Eaton, Russell

    2002-01-01

    The Department of Energy (DOE), as part of its Superconductivity Program for Electric Systems, is successfully pursuing the development of electric power and industrial devices, incorporating significant high-temperature superconducting (HTS) components or subsystems, through its innovative Superconducting Partnership Initiative (SPI). The objective of the SPI is to accelerate the commercial introduction of the HTS products for a broad range of electric power and industrial applications. DOE's approach to accomplishing the SPI objective is to support cost shared projects carried out by industry led teams. DOE will fund projects to develop HTS devices that are either in (1) the research and development stage (Phase 1), (2) the pre-commercialization stage (Phase II), or (3) the commercial entry stage (Phase III). DOE's industry partners must contribute at least half a project's costs. These teams will include capabilities needed to develop the device as well as to develop the business plan for the commercial product introduction. DOE's partners consist of vertically integrated teams consisting of equipment manufacturers, HTS wire and coil suppliers, national laboratories, and end users, primarily utilities. These partners carry out the multi-year technology development efforts, consisting generally of design, construction, and testing of the HTS system. Finally, commercialization of HTS products will be discussed primarily in terms of benefits these products will have over competing products based upon conventional conductors and the critical need for affordable, practical HTS materials and conductors for these applications. .

  17. Influence of experimental methods on crossing in magnetic force-gap hysteresis curve of HTS maglev system

    Energy Technology Data Exchange (ETDEWEB)

    Lu Yiyun, E-mail: luyiyun6666@vip.sohu.co [Luoyang Institute of Science and Technology, Luoyang, Henan 471023 (China); Qin Yujie; Dang Qiaohong [Luoyang Institute of Science and Technology, Luoyang, Henan 471023 (China); Wang Jiasu [Applied Superconductivity Laboratory, Southwest Jiaotong University, P.O. Box 152, Chengdu, Sichuan 610031 (China)

    2010-12-01

    The crossing in magnetic levitation force-gap hysteresis curve of melt high-temperature superconductor (HTS) vs. NdFeB permanent magnet (PM) was experimentally studied. One HTS bulk and PM was used in the experiments. Four experimental methods were employed combining of high/low speed of movement of PM with/without heat insulation materials (HIM) enclosed respectively. Experimental results show that crossing of the levitation force-gap curve is related to experimental methods. A crossing occurs in the magnetic force-gap curve while the PM moves approaching to and departing from the sample with high or low speed of movement without HIM enclosed. When the PM is enclosed with HIM during the measurement procedures, there is no crossing in the force-gap curve no matter high speed or low speed of movement of the PM. It was found experimentally that, with the increase of the moving speed of the PM, the maximum magnitude of levitation force of the HTS increases also. The results are interpreted based on Maxwell theories and flux flow-creep models of HTS.

  18. Influence of experimental methods on crossing in magnetic force-gap hysteresis curve of HTS maglev system

    International Nuclear Information System (INIS)

    Lu Yiyun; Qin Yujie; Dang Qiaohong; Wang Jiasu

    2010-01-01

    The crossing in magnetic levitation force-gap hysteresis curve of melt high-temperature superconductor (HTS) vs. NdFeB permanent magnet (PM) was experimentally studied. One HTS bulk and PM was used in the experiments. Four experimental methods were employed combining of high/low speed of movement of PM with/without heat insulation materials (HIM) enclosed respectively. Experimental results show that crossing of the levitation force-gap curve is related to experimental methods. A crossing occurs in the magnetic force-gap curve while the PM moves approaching to and departing from the sample with high or low speed of movement without HIM enclosed. When the PM is enclosed with HIM during the measurement procedures, there is no crossing in the force-gap curve no matter high speed or low speed of movement of the PM. It was found experimentally that, with the increase of the moving speed of the PM, the maximum magnitude of levitation force of the HTS increases also. The results are interpreted based on Maxwell theories and flux flow-creep models of HTS.

  19. High transition-temperature SQUID magnetometers and practical applications

    Energy Technology Data Exchange (ETDEWEB)

    Dantsker, Eugene [Univ. of California, Berkeley, CA (United States). Dept. of Physics

    1997-05-01

    The design, fabrication and performance of SQUID magnetometers based on thin films of the high-transition temperature superconductor YBa2Cu3O7-x (YBCO) are described. Essential to the achieving high magnetic field resolution at low frequencies is the elimination of 1/f flux noise due to thermally activated hopping of flux vortices between pinning sites in the superconducting films. Through improvements in processing, 1/f noise in single layer YBCO thin films and YBCO-SrTiO3-YBCO trilayers was systematically reduced to allow fabrication of sensitive SQUID magnetometers. Both single-layer directly coupled SQUID magnetometers and multilayer magnetometers were fabricated, based on the dc SQUID with bicrystal grain boundary Josephson junctions. Multilayer magnetometers had a lower magnetic field noise for a given physical size due to greater effective sensing areas. A magnetometer consisting of a SQUID inductively coupled to the multiturn input coil of a flux transformer in a flip-chip arrangement had a field noise of 27 fT Hz-1/2 at 1 Hz and 8.5 fT Hz-1/2 at 1 kHz. A multiloop multilayer SQUID magnetometer had a field noise of 37 fT Hz-1/2 at 1 Hz and 18 fT Hz-1/2 at 1 kHz. A three-axis SQUID magnetometer for geophysical applications was constructed and operated in the field in the presence of 60 Hz and radiofrequency noise. Clinical quality magnetocardiograms were measured using multilayer SQUID magnetometers in a magnetically shielded room.

  20. NASA DOE POD NDE Capabilities Data Book

    Science.gov (United States)

    Generazio, Edward R.

    2015-01-01

    This data book contains the Directed Design of Experiments for Validating Probability of Detection (POD) Capability of NDE Systems (DOEPOD) analyses of the nondestructive inspection data presented in the NTIAC, Nondestructive Evaluation (NDE) Capabilities Data Book, 3rd ed., NTIAC DB-97-02. DOEPOD is designed as a decision support system to validate inspection system, personnel, and protocol demonstrating 0.90 POD with 95% confidence at critical flaw sizes, a90/95. The test methodology used in DOEPOD is based on the field of statistical sequential analysis founded by Abraham Wald. Sequential analysis is a method of statistical inference whose characteristic feature is that the number of observations required by the procedure is not determined in advance of the experiment. The decision to terminate the experiment depends, at each stage, on the results of the observations previously made. A merit of the sequential method, as applied to testing statistical hypotheses, is that test procedures can be constructed which require, on average, a substantially smaller number of observations than equally reliable test procedures based on a predetermined number of observations.

  1. Radiation detection from phase-locked serial dc SQUID arrays

    DEFF Research Database (Denmark)

    Kaplunenko, V. K.; Mygind, Jesper; Pedersen, Niels Falsig

    1993-01-01

    We report on synchronous operation of series arrays of inductively coupled superconducting quantum interference devices (SQUIDs). Each array consisted of N=3 or 11 dc SQUIDs with common inductances providing a strong interaction between neighboring cells. Externally shunted (betac[approximately-e......We report on synchronous operation of series arrays of inductively coupled superconducting quantum interference devices (SQUIDs). Each array consisted of N=3 or 11 dc SQUIDs with common inductances providing a strong interaction between neighboring cells. Externally shunted (betac...

  2. The electrical characteristics of solid insulators for 154 kV class HTS transformer

    International Nuclear Information System (INIS)

    Cheon, H.G.; Choi, J.H.; Pang, M.S.; Kim, W.J.; Kim, S.H.

    2011-01-01

    HTS transformer, without any loss of insulation lifetime due to the reduction in terms of size and weight, can increase the overload capacity, and have some benefits such as the improvement in efficiency, minimization of environmental pollution, and convenient spatial arrangement, which contribute a lot to electric power system operation. However, for practical insulation design of the HTS transformer, it is necessary to establish the research on electrical properties LN 2 as well as solid insulators. These solid insulators have been used as main insulations for HTS transformer. In this paper, we discussed breakdown and V-t characteristics of glass fiber reinforced plastics (GFRP) and pressboard in LN 2 .

  3. Apparatus and method for detecting a magnetic anomaly contiguous to remote location by SQUID gradiometer and magnetometer systems

    Science.gov (United States)

    Overton, W.C. Jr.; Steyert, W.A. Jr.

    1981-05-22

    A superconducting quantum interference device (SQUID) magnetic detection apparatus detects magnetic fields, signals, and anomalies at remote locations. Two remotely rotatable SQUID gradiometers may be housed in a cryogenic environment to search for and locate unambiguously magnetic anomalies. The SQUID magnetic detection apparatus can be used to determine the azimuth of a hydrofracture by first flooding the hydrofracture with a ferrofluid to create an artificial magnetic anomaly therein.

  4. Reduction of environmental MHz noise for SQUID application

    Energy Technology Data Exchange (ETDEWEB)

    Araya, T. [Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531 (Japan)]. E-mail: araya@sup.ee.es.osaka-u.ac.jp; Kitamura, Y. [Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531 (Japan); Kamishiro, M. [Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531 (Japan); Sakuta, K. [Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531 (Japan); Itozaki, H. [Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531 (Japan)]. E-mail: itozaki@ee.es.osaka-u.ac.jp

    2006-10-01

    It is important to remove large environmental noise in measurement using SQUIDs without magnetic shielding. Active noise control (ANC) is an effective method to remove the environmental noise. The environmental noise has been reduced by the ANC system in the radio frequency region around MHz. The anti-phase waves of the environmental noise should be generated by this system. The ANC system including the phase and amplitude control circuit was developed to make the anti-phase waves in the MHz region. In this paper, sinusoidal waves with a MHz frequency were used as the environmental noise. When a coil antenna was used for a receiver antenna, this ANC system suppressed these sinusoidal waves to the white noise level about 40 dB. When we used a SQUID as a receiver antenna, we also cancelled sinusoidal waves to the white noise level by this system. This shows that the ANC system is useful to reduce an environmental noise when this ANC system is developed to cancel multi-frequency noise.

  5. Reduction of environmental MHz noise for SQUID application

    International Nuclear Information System (INIS)

    Araya, T.; Kitamura, Y.; Kamishiro, M.; Sakuta, K.; Itozaki, H.

    2006-01-01

    It is important to remove large environmental noise in measurement using SQUIDs without magnetic shielding. Active noise control (ANC) is an effective method to remove the environmental noise. The environmental noise has been reduced by the ANC system in the radio frequency region around MHz. The anti-phase waves of the environmental noise should be generated by this system. The ANC system including the phase and amplitude control circuit was developed to make the anti-phase waves in the MHz region. In this paper, sinusoidal waves with a MHz frequency were used as the environmental noise. When a coil antenna was used for a receiver antenna, this ANC system suppressed these sinusoidal waves to the white noise level about 40 dB. When we used a SQUID as a receiver antenna, we also cancelled sinusoidal waves to the white noise level by this system. This shows that the ANC system is useful to reduce an environmental noise when this ANC system is developed to cancel multi-frequency noise

  6. Fault-Tolerant NDE Data Reduction Framework, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A distributed fault tolerant nondestructive evaluation (NDE) data reduction framework is proposed in which large NDE datasets are mapped to thousands to millions of...

  7. Allometry indicates giant eyes of giant squid are not exceptional.

    Science.gov (United States)

    Schmitz, Lars; Motani, Ryosuke; Oufiero, Christopher E; Martin, Christopher H; McGee, Matthew D; Gamarra, Ashlee R; Lee, Johanna J; Wainwright, Peter C

    2013-02-18

    The eyes of giant and colossal squid are among the largest eyes in the history of life. It was recently proposed that sperm whale predation is the main driver of eye size evolution in giant squid, on the basis of an optical model that suggested optimal performance in detecting large luminous visual targets such as whales in the deep sea. However, it is poorly understood how the eye size of giant and colossal squid compares to that of other aquatic organisms when scaling effects are considered. We performed a large-scale comparative study that included 87 squid species and 237 species of acanthomorph fish. While squid have larger eyes than most acanthomorphs, a comparison of relative eye size among squid suggests that giant and colossal squid do not have unusually large eyes. After revising constants used in a previous model we found that large eyes perform equally well in detecting point targets and large luminous targets in the deep sea. The eyes of giant and colossal squid do not appear exceptionally large when allometric effects are considered. It is probable that the giant eyes of giant squid result from a phylogenetically conserved developmental pattern manifested in very large animals. Whatever the cause of large eyes, they appear to have several advantages for vision in the reduced light of the deep mesopelagic zone.

  8. IVA Ultrasonic and Eddy Current NDE for ISS

    Data.gov (United States)

    National Aeronautics and Space Administration — The project intends to develop a combined Ultrasonic and Eddy Current nondestructive evaluation (NDE) instrument for IVA use on ISS. A suite of IVA and EVA NDE...

  9. The investigation of rf-squids at liquid nitrogen temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Polushkin, V N; Vasiliev, B V [Joint Inst. for Nuclear Research, Dubna (USSR)

    1989-12-01

    One- and two-hole YBCO ceramic rf-squids operating at liquid nitrogen temperatures have been developed. The main squid parameters: self-inductance, white noise level and magnetic flux resolution were measured. The directly measured external field sensitivity for one-hole squid was at the level of 100 fT/{radical}Hz. (orig.).

  10. Piping inspection activities at the EPRI NDE Center

    International Nuclear Information System (INIS)

    Ammirato, F.V.

    1988-01-01

    Intergranular stress corrosion cracking (IGSCC) in the primary system of boiling water reactors (BWRs) has been a major reliability issue in recent years. BWR pipe cracking was first reported in 1974 with a low percentage of only small-diameter lines affected. However, with increased plant operating time, the number of reported cracking incidents has risen significantly and in 1982 and 1983 included the large-diameter recirculation lines. With the advent of cracking in large-diameter piping, innovative repair remedies were developed, such as weld overlay for repair (WOR). Although these remedies are effective in extending the service life of piping, they also present challenging NDE problems. The EPRI program for improving piping examination has aimed at systematically resolving the difficulties by optimizing techniques and procedures as well as by developing field-qualified automated examination equipment. The EPRI NDE Center's role has been the evaluation and transfer of the technology necessary to address the current piping examination problems of the nuclear utility industry. These activities normally include the following: technology assessment and improvement; validation through demonstrations and field trials; technology transfer reports, workshops, training, and qualification testing; and acquisition of relevant samples. The activities of the NDE Center are discussed

  11. Superconducting Electric Machine with Permanent Magnets and Bulk HTS Elements

    Science.gov (United States)

    Levin, A. V.; Vasich, P. S.; Dezhin, D. S.; Kovalev, L. K.; Kovalev, K. L.; Poltavets, V. N.; Penkin, V. T.

    Theoretical methods of calculating of two-dimensional magnetic fields, inductive parameters and output characteristics of the new type of high-temperature superconducting (HTS) synchronous motors with a composite rotor are presented. The composite rotor has the structure containing HTS flat elements, permanent magnets and ferromagnetic materials. The developed calculation model takes into account the concentrations and physical properties of these rotor elements. The simulation results of experimental HTS motor with a composite rotor are presented. The application of new type of HTS motor in different constructions of industrial high dynamic drivers is discussed.

  12. Race-track coils for a 3 MW HTS ship motor

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, E., E-mail: ueno-eisaku@sei.co.jp; Kato, T.; Hayashi, K.

    2014-09-15

    Highlights: • Sumitomo Electric manufactured the HTS field coils for a 3 MW HTS ship motor. • The motor was developed and successfully passed the loading test by Kawasaki Heavy. • We tested and obtained the basic data to evaluate the 20-year durability of coils. - Abstract: Since the discovery of high-temperature superconductivity (HTS), Sumitomo Electric has been developing silver-sheathed Bi2223 superconducting wire and products. Ship propulsion motors are one of the most promising applications of HTS. Sumitomo Electric Industries, Ltd. (SEI) has recently manufactured 24 large racetrack coils, using 70 km long DI-BSCCO wires, for use in a 3 MW HTS motor developed by Kawasaki Heavy Industries, Ltd. (KHI). The 3 MW HTS motor, using our newly developed racetrack coils, has successfully passed the loading test. It is particularly important that the HTS field coils used in ship propulsion motors can withstand the expansive forces repeatedly applied to them. As racetrack type coils have straight sections, the support mechanism they require to withstand expansive forces is very different from that of circular coils. Therefore, we ran tests and obtained the basic data to evaluate the 20-year durability of racetrack coils against the repeatedly applied expansive forces expected in domestic ship propulsion motors.

  13. Routine clinical heart examinations using SQUID magnetocardiography at University of Tsukuba Hospital

    Science.gov (United States)

    Inaba, T.; Nakazawa, Y.; Yoshida, K.; Kato, Y.; Hattori, A.; Kimura, T.; Hoshi, T.; Ishizu, T.; Seo, Y.; Sato, A.; Sekiguchi, Y.; Nogami, A.; Watanabe, S.; Horigome, H.; Kawakami, Y.; Aonuma, K.

    2017-11-01

    A 64-channel Nb-based DC-SQUID magnetocardiography (MCG) system was installed at the University of Tsukuba Hospital (UTH) in March 2007 after obtaining Japanese pharmaceutical approval and insurance reimbursement approval. In the period between 2008 and 2016, the total number of patients was 10 085. The heart diseases diagnosed in fetuses as well as adults are mainly atrial arrhythmia, abnormal repolarization, ventricular arrhythmia, and fetal arrhythmia. In most cases of insufficient diagnostic accuracy with electrocardiography, SQUID MCG precisely revealed these heart diseases as an abnormal electrical current distribution. Based on success in routine examinations, SQUID MCG is now an indispensable clinical instrument with diagnostic software tuned up during routine use at UTH.

  14. The levitation characteristics of the magnetic substances using trapped HTS bulk annuli with various magnetic field distributions

    International Nuclear Information System (INIS)

    Kim, S.B.; Ikegami, T.; Matsunaga, J.; Fujii, Y.; Onodera, H.

    2013-01-01

    Highlights: •The spherical solenoid magnet can make a various magnetic field distributions. •We generated a large magnetic gradient at inner space of HTS bulks. •The levitation height of samples was improved by the reapplied field method. •The levitation height depends on the variation rate of magnetic field gradient. -- Abstract: We have been investigating the levitation system without any mechanical contact which is composed of a field-cooled ring-shaped high temperature superconducting (HTS) bulks [1]. In this proposed levitation system, the trapped magnetic field distributions of stacked HTS bulk are very important. In this paper, the spherical solenoid magnet composed of seven solenoid coils with different inner and outer diameters was designed and fabricated as a new magnetic source. The fabricated spherical solenoid magnet can easily make a homogeneous and various magnetic field distributions in inner space of stacked HTS bulk annuli by controlling the emerging currents of each coil. By using this spherical solenoid magnet, we tried to make a large magnetic field gradient in inner space of HTS bulk annuli, and it is very important on the levitation of magnetic substances. In order to improve the levitation properties of magnetic substances with various sizes, the external fields were reapplied to the initially trapped HTS bulk magnets. We could generate a large magnetic field gradient along the axial direction in inner space of HTS bulk annuli, and obtain the improved levitation height of samples by the proposed reapplied field method

  15. Development of magnetic drug delivery system using HTS bulk magnet

    International Nuclear Information System (INIS)

    Terada, T.; Fukui, S.; Mishima, F.; Akiyama, Y.; Izumi, Y.; Nishijima, S.

    2008-01-01

    Magnetic drug delivery system (MDDS) is the method which the magnetic seeded drug is injected into a blood vessel and then controlled and accumulated by a magnet located outside of the human body. A high accumulation efficiency of the drug to a local diseased part and reduction in side-effects to normal organs are expected by using MDDS. The most important element in MDDS is a magnetic field generator. The high temperature superconducting (HTS) bulk magnet which can generate high magnetic field and magnetic field gradient extending to a point distant from the magnet in several ten millimeters is necessary to achieve the MDDS. In this study, the computer simulation and model experiment were conducted in order to confirm the applicability of MDDS to ovary of the cow body

  16. Temperature-dependent performance of all-NbN DC-SQUID magnetometers

    Science.gov (United States)

    Liu, Quansheng; Wang, Huiwu; Zhang, Qiyu; Wang, Hai; Peng, Wei; Wang, Zhen

    2017-05-01

    Integrated NbN direct current superconducting quantum interference device (DC-SQUID) magnetometers were developed based on high-quality epitaxial NbN/AlN/NbN Josephson junctions for SQUID applications operating at high temperatures. We report the current-voltage and voltage-flux characteristics and the noise performance of the NbN DC-SQUIDs for temperatures ranging from 4.2 to 9 K. The critical current and voltage swing of the DC-SQUIDs decreased by 15% and 25%, respectively, as the temperature was increased from 4.2 to 9 K. The white flux noise of the DC-SQUID magnetometer at 1 kHz increased from 3.9 μΦ0/Hz1/2 at 4.2 K to 4.8 μΦ0/Hz1/2 at 9 K with 23% increase, corresponding to the magnetic field noise of 6.6 and 8.1 fT/Hz1/2, respectively. The results show that NbN DC-SQUIDs improve the tolerance of the operating temperatures and temperature fluctuations in SQUID applications.

  17. Toward automated interpretation of integrated information: Managing "big data" for NDE

    Science.gov (United States)

    Gregory, Elizabeth; Lesthaeghe, Tyler; Holland, Stephen

    2015-03-01

    Large scale automation of NDE processes is rapidly maturing, thanks to recent improvements in robotics and the rapid growth of computer power over the last twenty years. It is fairly straightforward to automate NDE data collection itself, but the process of NDE remains largely manual. We will discuss three threads of technological needs that must be addressed before we are able to perform automated NDE. Spatial context, the first thread, means that each NDE measurement taken is accompanied by metadata that locates the measurement with respect to the 3D physical geometry of the specimen. In this way, the geometry of the specimen acts as a database key. Data context, the second thread, means that we record why the data was taken and how it was measured in addition to the NDE data itself. We will present our software tool that helps users interact with data in context, Databrowse. Condition estimation, the third thread, is maintaining the best possible knowledge of the condition (serviceability, degradation, etc.) of an object or part. In the NDE context, we can prospectively use Bayes' Theorem to integrate the data from each new NDE measurement with prior knowledge. These tools, combined with robotic measurements and automated defect analysis, will provide the information needed to make high-level life predictions and focus NDE measurements where they are needed most.

  18. Three-phase AC synchronous motor with high-temperature superconductor (HTS) rotor windings and HTS bearings. Final report

    International Nuclear Information System (INIS)

    Neumueller, H.W.; Nick, W.; Frank, M.; Massek, P.; Hasselt, P. van; Thummes, G.; Haefner, H.U.; Kummeth, P.; Werfel, F.; Frauenhofer, J.; Senger, R.; Schmidt, W.

    2003-06-01

    The project involved the design, construction and testing of a 3000 kW converter-fed synchronous motor as a development prototype with - HTS rotor windings, - closed-circuit cooling system, - stator air-gap winding and - high-gradient HTS magnetic bearing. The project objective was to create the conditions necessary for the construction of an application-oriented model(∼2 MW) that would be suitable for field tests and provide a starting point for subsequent series expansion. The main focus was fixed on feasibility and function issues relating to the various components, particularly during operation of the overall system in the test bay. These ambitious targets were achieved within the scope of project-based cooperation. This has been demonstrated especially in test bed operation of the machine since spring 2001, in the course of which the motor produced a maximum continuous rating of 450 kW - significantly above the specified value - while the short-time rating could be increased up to 600 kW. Throughout testing the motor demonstrated excellent performance characteristics that are markedly indifferent to load fluctuations and indicative of important operating advantages to subsequent users of such HTS motors. Loss calculations showed that, in terms of efficiency, this prototype already represents an approximately 1% improvement over the conventional motors or generators currently available. The robustness of the cooling concept developed as part of the project was also convincingly demonstrated during the comprehensive test phase, which has been ongoing since spring 2001. The innovative pulse-tube coolers developed by our partner companies Leybold and TransMIT promise further advantages over current commercial GM-coolers. Despite considerable problems with materials the team successfully built and operated a contactless HTS magnet bearing (based on YBCO stator cylinders from partner company ATZ) that is currently one of the world's largest in terms of bearing

  19. Rotor compound concept for designing an industrial HTS synchronous motor

    International Nuclear Information System (INIS)

    Kashani, M.; Hosseina, M.; Sarrafan, K.; Darabi, A.

    2013-01-01

    Highlights: • The superconducting tapes are used in the industrial synchronous motor winding due to their electrical characteristics. • The high magnetic field with no electric loss is obtainable by using the superconducting rotor coils. • The rotor core can be replaced by light non-magnetic materials which drops the rotor total weight up to 50%. • Decreasing the rotor weight was verified by FEM analyses for a sample motor. -- Abstract: Recently, producing power with smaller amount of losses become as a goal in our daily life. Today, large amount of energy waste in power networks all around the world. The main reason is “resistive electric equipments” of power networks. Since early 1980s, simultaneous with the development of high temperature superconductive (HTS) technology, superconductors gently attracted the mankind attentions. Using superconductive equipments instead of conventional resistive ones are result in salient electric loss reduction in power systems. Especially to reduce losses in power networks superconductive industrial rotating machines can potentially perform a significant role. In early recent century, first generation of HTS rotating machines was born. But unfortunately they have long way to penetrate the commercial markets yet. In HTS rotating machines the conventional copper made windings are replaced with the HTS superconductors. In this paper an industrial HTS synchronous motor with YBCO coated conductor field windings was designed. As a new approach, model was equipped with a compound rotor that includes both magnetic and non-magnetic materials. So, large amount of heavy iron made part was replaced by light non-magnetic material such as G-10 fiberglass. Furthermore, in this structure iron loss in rotor could be reduced to its lowest value. Also less weight and more air gap energy density were the additional advantages. Regarding zero electric loss production in field windings and less iron loss in rotor construction, this model

  20. Position-controlled data acquisition embedded system for magnetic NDE of bridge stay cables.

    Science.gov (United States)

    Maldonado-Lopez, Rocio; Christen, Rouven

    2011-01-01

    This work presents a custom-tailored sensing and data acquisition embedded system, designed to be integrated in a new magnetic NDE inspection device under development at Empa, a device intended for routine testing of large diameter bridge stay cables. The data acquisition (DAQ) system fulfills the speed and resolution requirements of the application and is able to continuously capture and store up to 2 GB of data at a sampling rate of 27 kS/s, with 12-bit resolution. This paper describes the DAQ system in detail, including both hardware and software implementation, as well as the key design challenges and the techniques employed to meet the specifications. Experimental results showing the performance of the system are also presented.

  1. Study on ac losses of HTS coil carrying ac transport current

    International Nuclear Information System (INIS)

    Dai Taozhen; Tang Yuejin; Li Jingdong; Zhou Yusheng; Cheng Shijie; Pan Yuan

    2005-01-01

    Ac loss has an important influence on the thermal performances of HTS coil. It is necessary to quantify ac loss to ascertain its impact on coil stability and for sizing the coil refrigeration system. In this paper, we analyzed in detail the ac loss components, hysteresis loss, eddy loss and flux flow loss in the pancake HTS coil carrying ac transport current by finite element method. We also investigated the distribution of the ac losses in the coil to study the effects of magnetic field distribution on ac losses

  2. Tracking Electromagnetic Energy With SQUIDs

    Science.gov (United States)

    2005-01-01

    A superconducting quantum interference device (SQUID) is a gadget used to measure extremely weak signals, specifically magnetic flux. It can detect subtle changes in energy, up to 100 billion times weaker than the electromagnetic energy required to move a compass needle. SQUIDs are used for a variety of testing procedures where extreme sensitivity is required and where the test instrument need not come into direct contact with the test subject. NASA uses SQUIDs for remote, noncontact sensing in a variety of venues, including monitoring the Earth s magnetic field and tracking brain activity of pilots. Scientists at NASA s Goddard Space Flight Center have been making extensive use of this technology, from astrophysical research, to tracking the navigational paths of bees in flight to determine if they are using internal compasses. These very sensitive measurement devices have a wide variety of uses within NASA and even more uses within the commercial realm.

  3. The EPRI NDE center after five years

    International Nuclear Information System (INIS)

    Dau, G.J.; Nemzek, T.A.

    1985-01-01

    In 1979, the Electric Power Research Institute (EPRI) established a Nondestructive Evaluation (NDE) Center. The purpose of the Center is to provide the electric utility industry with a dedicated NDE development and field-use-qualification capability. Later, the scope of activities at the NDE Center was expanded. Beginning in 1980, the BWR Owners Group (IGSCC) provided funding necessary to operate the BWR Pipe Remedy Demonstration and Training Facility. In 1984, the Maintenance Equipment Applications Center was established by EPRI. Both functions are co-located within the NDE Center. All three functions share common objectives of providing the electric utility industry with a capability dedicated to assuring reduction to practice of new or improved technology, proof testing, qualification for field use, and obtaining code and regulatory acceptance of qualified methods and training. The purpose of this paper is to describe typical activities of the Center and some of the benefits that have accrued. The next section describes the Center organization, operation, and facility, while the remaining sections discuss the technology transfer thrust and benefits

  4. A new integrated microwave SQUID circuit design

    International Nuclear Information System (INIS)

    Erne, S.N.; Finnegan, T.F.

    1980-01-01

    In this paper we consider the design and operation of a planar thin-film rf-SQUID circuit which can be realized via microwave-integrated-circuit (MIC) techniques and which differs substantially from pervious microwave SQUID configurations involving either mechanical point-contact or cylindrical thin-film micro-bridge geometries. (orig.)

  5. High Tc Josephson Junctions, SQUIDs and magnetometers

    International Nuclear Information System (INIS)

    Clarke, J.

    1991-01-01

    There has recently been considerable progress in the state-of-the-art of high-T c magnetometers based on dc SQUIDs (Superconducting Quantum Interference Devices). This progress is due partly to the development of more manufacturable Josephson junctions, making SQUIDs easier to fabricate, and partly to the development of multiturn flux transformers that convert the high sensitivity of SQUIDs to magnetic flux to a correspondingly high sensitivity to magnetic field. Needless to say, today's high-T c SQUIDs are still considerably less sensitive than their low-T c counterparts, particularly at low frequencies (f) where their level of 1/f noise remains high. Nonetheless, the performance of the high-T c devices has now reached the point where they are adequate for a number of the less demanding applications; furthermore, as we shall see, at least modest improvements in performance are expected in the near future. In this article, the author outlines these various developments. This is far from a comprehensive review of the field, however, and, apart from Sec. 2, he describes largely his own work. He begins in Sec. 2 with an overview of the various types of Josephson junctions that have been investigated, and in Sec. 3, he describes some of the SQUIDs that have been tested, and assess their performance. Section 4 discuss the development of the multilayer structures essential for an interconnect technology, and, in particular, for crossovers and vias. Section 5 shows how this technology enables one to fabricate multiturn flux transformers which, in turn, can be coupled to SQUIDs to make magnetometers. The performance and possible future improvements in these magnetometers are assessed, and some applications mentioned

  6. Low noise niobium dc SQUID with a planar input coil

    Science.gov (United States)

    de Waal, V. J.; van den Hamer, P.; Klapwijk, T. M.

    1983-02-01

    A practical all-niobium dc superconducting quantum interference device (SQUID) with a niobium spiral input coil has been developed. The SQUID utilizes submicron Josephson junctions. The best intrinsic energy resolution obtained with a 1-nH SQUID is 4×10-32 J/Hz. A 20-turn 1.2-μH input coil is coupled to a 2.3-nH SQUID with an efficiency of 0.5. The energy resolution with respect to the coil is 1×10-30 J/Hz.

  7. NDE Assessment of PWSCC in Control Rod Drive Mechanism Housings

    International Nuclear Information System (INIS)

    Doctor, Steven R.; Cumblidge, Stephen E.; Schuster, George J.; Harris, Rob V.; Crawford, Susan L.

    2006-01-01

    Studies being conducted at the Pacific Northwest National Laboratory (PNNL) in Richland, Washington are focused on assessing the effectiveness of Nondestructive examination (NDE) techniques for inspecting control rod drive mechanism (CRDM) nozzles and J-groove weldments. The primary objective of this work is to provide information to the United States Nuclear Regulatory Commission (US NRC) on the effectiveness of NDE methods as related to the in-service inspection of CRDM nozzles and J-groove weldments, and to enhance the knowledge base of primary water stress corrosion cracking (PWSCC) through destructive characterization of the CRDM assemblies. In describing two CRDM assemblies removed from service, decontaminated, and then used in a series of NDE measurements, this paper will address the following questions: (1) What did each technique detect?, (2) What did each technique miss?, (3) How accurately did each technique characterize the detected flaws? Two CRDM assemblies including the CRDM nozzle, the J-groove weld, buttering, and a portion of the ferritic head material were selected for this study. One contained suspected PWSCC, based on in-service inspection data and through-wall leakage; the other contained evidence suggesting through-wall leakage, but this was unconfirmed. The selected NDE measurements follow standard industry techniques for conducting in-service inspections of CRDM nozzles and the crown of the J-groove welds and buttering. In addition, laboratory based NDE methods were employed to conduct inspections of the CRDM assemblies, with particular emphasis on inspecting the J-groove weld and buttering. This paper will also describe the NDE methods used and discuss the NDE results. Future work will involve using the results from these NDE studies to guide the development of a destructive characterization plan to reveal the crack morphology and a comparison of the degradation found by the destructive evaluation with the recorded NDE responses.

  8. Critical current studies of a HTS rectangular coil

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Z. [Department of Engineering, University of Cambridge (United Kingdom); Chudy, M., E-mail: Michal.chudy@stuba.sk [Graduate School of Technology Management, University of Pretoria (South Africa); Institute of Power and Applied Electrical Engineering, Slovak University of Technology in Bratislava (Slovakia); Ruiz, H.S. [Department of Engineering, University of Leicester, Leicester LE1 7RH (United Kingdom); Zhang, X.; Coombs, T. [Department of Engineering, University of Cambridge (United Kingdom)

    2017-05-15

    Highlights: • Unique square pancake coil was manufactured. • Measurements in relatively high magnetic field were performed. • Different sections of the coil were characterized. • Parts of the coil which are limiting critical current were identified. - Abstract: Nowadays, superconducting high field magnets are used in numerous applications due to their superior properties. High temperature superconductors (HTS) are usually used for production of circular pancake or racetrack coils. However different geometries of HTS coils might be required for some specific applications. In this study, the HTS coil wound on a rectangular frame was fully characterized in homogeneous DC background field. The study contains measurements of critical current angular dependencies. The critical current of the entire coil and two selected strands under different magnitudes and orientations of external magnetic fields are measured. The critical regions of the coil in different angular regimes are determined. This study brings better understanding of the in- field performance of HTS coils wound on frames with right-angles.

  9. The status of commercial and developmental HTS wires

    Energy Technology Data Exchange (ETDEWEB)

    Masur, L.J.; Buczek, D.; Harley, E.; Kodenkandath, T.; Li, X.; Lynch, J.; Nguyen, N.; Rupich, M.; Schoop, U.; Scudiere, J.; Siegal, E.; Thieme, C.; Verebelyi, D.; Zhang, W.; Kellers, J

    2003-10-15

    This paper provides an update on the development, performance and application of first and second generation high temperature superconductor (HTS) wires fabricated at American Superconductor (AMSC). First generation, multifilamentary composite wire is available commercially today in different viable product forms. This conductor carries 140 x the current of copper of the same cross-section, and is robust enough to stand tough industrial requirements. Second generation HTS wires, having a coated conductor composite architecture, are under development today and achieved substantial progress recently. AMSC's first generation wire will continue as the workhorse of the industry for the next 3-4 years while AMSC's second generation coated conductor wire is on track to be reproducible, uniform, scalable, and low cost. This paper provides a product differentiation with a view on the application of HTS wire in the electric power sector. Basic engineering data is reviewed that shall aid the engineer in the selection of the HTS wire product.

  10. Obituary: Gordon Donaldson Obituary: Gordon Donaldson

    Science.gov (United States)

    Pegrum, Colin; Campbell, Archie; Hampshire, Damian

    2013-07-01

    Gordon Donaldson died in Glasgow on 28 November 2012 at the age of 71. He was born in Edinburgh and brought up and educated in Glasgow, which was his home city for much of his life. He was educated first at Glasgow Academy, and then with a scholarship at Christ's College Cambridge. Here he read Natural Sciences, finishing with first class honors in Physics. He then did a PhD on tunneling in superconductors in the Mond Laboratory, supervised by John Adkins. These were interesting times, since type II superconductors had only recently been identified, and the Mond was a leading player in the physics of vortices and other quantum effects. It was headed by Pippard and Shoenberg, and colleagues around that time were Brian Josephson, John Clarke, Colin Gough and John Waldram. On finishing his PhD in 1966 Gordon went straight to a lectureship at the University of Lancaster. In 1975 during a sabbatical at the University of California, Berkeley, with John Clarke's group, Gordon co-invented thin-film gradiometers with integrated DC SQUIDs. He then moved back to Glasgow, to the Department of Applied Physics at Strathclyde University, where he founded a new research group to make and use superconducting devices, especially SQUIDs and gradiometers. From modest beginnings the group grew steadily, acquiring new facilities and members, until in the 1990s it had over 20 members and a host of collaborators from elsewhere in Glasgow and abroad. With funding from the Wellcome Trust, Gordon and colleagues at Glasgow University and the Southern General Hospital in Glasgow set up a new biomagnetism facility in 1998 on the hospital campus to use SQUID gradiometers made at Strathclyde for measurements on patients and volunteers. Another of his main research interests was the use of SQUIDs for nondestructive evaluation (NDE). This started in the days before high temperature superconductors (HTS) with wire-wound gradiometers and niobium SQUIDs, soon moving on to miniature thin-film niobium

  11. Operational Prediction of the Habitat Suitability Index (HSI) Distribution for Neon Flying Squid in Central North Pacific by Using FORA Dataset and a New Data Assimilation System SKUIDS

    Science.gov (United States)

    Igarashi, H.; Ishikawa, Y.; Wakamatsu, T.; Tanaka, Y.; Nishikawa, S.; Nishikawa, H.; Kamachi, M.; Kuragano, T.; Takatsuki, Y.; Fujii, Y.; Usui, N.; Toyoda, T.; Hirose, N.; Sakai, M.; Saitoh, S. I.; Imamura, Y.

    2016-02-01

    The neon flying squid (Ommastrephes bartramii) has a wide-spread distribution in subtropical and temperate waters in the North Pacific, which plays an important role in the pelagic ecosystem and is one of the major targets in Japanese squid fisheries. The main fishing areas for Japanese commercial vessels are located in the central North Pacific (35-45N, around the date line) in summer. In this study, we have developed several kinds of habitat suitability index (HSI) models of the neon flying squid for investigating the relationship between its potential habitat and the ocean state variations in the target area. For developing HSI models, we have used a new ocean reanalysis dataset FORA (4-dimensional variational Ocean Re-Analysis) produced by JAMSTEC/CEIST and MRI-JMA. The horizontal resolution is 0.1*0.1 degree of latitude and longitude with 54 vertical levels, which can provide realistic fields of 3-dimensional ocean circulation and environmental structures including meso-scale eddies. In addition, we have developed a new 4D-VAR (4-dimensional variational) ocean data assimilation system for predicting ocean environmental changes in the main fishing grounds. We call this system "SKUIDS" (Scalable Kit of Under-sea Information Delivery System). By using these prediction fields of temperature, salinity, sea surface height, horizontal current velocity, we produced daily HSI maps of the neon flying squid, and provided them to the Japanese commercial vessels in operation. Squid fishermen can access the web site for delivering the information of ocean environments in the fishing ground by using Inmarsat satellite communication on board, and show the predicted fields of subsurface temperatures and HSI. Here, we present the details of SKUIDS and the web-delivery system for squid fishery, and some preliminary results of the operational prediction.

  12. Levitation characteristics of HTS tape stacks

    Energy Technology Data Exchange (ETDEWEB)

    Pokrovskiy, S. V.; Ermolaev, Y. S.; Rudnev, I. A. [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow (Russian Federation)

    2015-03-15

    Due to the considerable development of the technology of second generation high-temperature superconductors and a significant improvement in their mechanical and transport properties in the last few years it is possible to use HTS tapes in the magnetic levitation systems. The advantages of tapes on a metal substrate as compared with bulk YBCO material primarily in the strength, and the possibility of optimizing the convenience of manufacturing elements of levitation systems. In the present report presents the results of the magnetic levitation force measurements between the stack of HTS tapes containing of tapes and NdFeB permanent magnet in the FC and ZFC regimes. It was found a non- linear dependence of the levitation force from the height of the array of stack in both modes: linear growth at small thickness gives way to flattening and constant at large number of tapes in the stack. Established that the levitation force of stacks comparable to that of bulk samples. The numerical calculations using finite element method showed that without the screening of the applied field the levitation force of the bulk superconductor and the layered superconductor stack with a critical current of tapes increased by the filling factor is exactly the same, and taking into account the screening force slightly different.

  13. Bi2212 HTS Tubular Bulk with Conical Shape for Current Lead

    International Nuclear Information System (INIS)

    Tamura, H; Mito, T; Yamada, Y; Watanabe, M; Ohkubo, J; Heller, R

    2006-01-01

    Current leads using HTS material have been developed for application in a large scale superconducting magnet system. Tokai University and NIFS have developed Bi2212 tubular bulk which was prepared by a diffusion process. 8 kA of maximum transport current was achieved by a tubular bulk with a cylindrical shape. The maximum current was estimated to be 2 kA at 50 K for this tubular bulk. A current lead can be designed with this bulk the warm end of the HTS part being at 50 K and the cold end at 4.2 K. Under this condition, the cross section of the cold end of the bulk can be reduced. This type of HTS bulk has a great potential for flexible design since the Bi2212 layer can be reacted on the surface of any shapes of substrate. If a conical shaped HTS bulk was made, it could be an advantage for heat leakage to the cold end. To confirm this effect, we have made two types of conical bulk. The transport current of the specimen exceeds 7 kA at 4.2 K and 4 kA of stable current flow was achieved with a warm end temperature of 50 K

  14. The use of (double) relaxation oscillation SQUIDs as a sensor

    NARCIS (Netherlands)

    van Duuren, M.J.; Brons, G.C.S.; Kattouw, H.; Flokstra, Jakob; Rogalla, Horst

    1997-01-01

    Relaxation Oscillation SQUIDs (ROSs) and Double Relaxation Oscillation SQUIDs (DROSs) are based on relaxation oscillations that are induced in hysteretic dc SQUIDs by an external L-R shunt. The relaxation frequency of a ROS varies with the applied flux Φ, whereas the output of a DROS is a dc

  15. Low noise niobium dc SQUID with a planar input coil

    Energy Technology Data Exchange (ETDEWEB)

    de Waal, V.J.; van den Hamer, P.; Klapwijk, T.M.

    1983-02-15

    A practical all-niobium dc superconducting quantum interference device (SQUID) with a niobium spiral input coil has been developed. The SQUID utilizes submicron Josephson junctions. The best intrinsic energy resolution obtained with a 1-nH SQUID is 4 x 10/sup -32/ J/Hz. A 20-turn 1.2-..mu..H input coil is coupled to a 2.3-nH SQUID with an efficiency of 0.5. The energy resolution with respect to the coil is 1 x 10/sup -30/ J/Hz.

  16. Standard compliance - NDE performance demonstration/inspection in the CANDU industry

    International Nuclear Information System (INIS)

    Choi, E.

    2011-01-01

    CANDU nuclear power plants are operated in 3 provinces in Canada for electric power generation. A table in the paper will show the built and operating plants in Ontario, Quebec, New Brunswick and overseas. The regulator for nuclear power in Canada is the Canadian Nuclear Safety Commission (CNSC). The CNSC holds the plant licensees accountable for compliance to CSA N285.4 for periodic inspections. The Standard basically specifies the 'what, when, where, how, how much and how frequently' NDE is to be done on pressure retaining systems and components in CANDU nuclear power plants. In inspection methods, the Standard specifies they must be non-destructive. The NDE methods were grouped into visual, dimensional, surface, volumetric and integrative. The Standard also specifies that the licensees are responsible for the performance demonstration (PD) of the adequacy of the procedures and the proficiency of the personnel. This paper describes the Standard's requirement in NDE qualification and presents a joint project participated by Canadian and overseas CANDU owners. The sub-project for NDE included providing evidence and technical justification on the adequacy of the procedures and the proficiency of the personnel. The paper describes the qualification methodology followed by the participants. This will be followed by how the participants produced Inspection Specification, tools and procedures, personnel training and qualification programs, test and qualification samples, independent peer reviews and Technical Justification. (author)

  17. Prospects for HTS applications

    International Nuclear Information System (INIS)

    Gamble, B.B.; Snitchler, G.L.; Schwall, R.E.

    1996-01-01

    High temperature superconductor (HTS) wire is rapidly maturing into a working material being produced in ever larger quantities and being used in more significant demonstrations and prototypes. Conductor is now produced routinely in several hundred meter lengths with reproducible results. Current density has progressed to a level suitable for demonstration of many applications. Wire strength has improved and large prototypes fabricated or under consideration using HTS include Superconducting Magnetic Energy Storage (SMES), rotating electrical machines including synchronous ac and dc homopolar motors and drives, generators and condensers, underground transmission cables, utility distribution equipment such as transformers and current limiters, commercial processing applications such as magnetic separation, and specialty magnets such as high field inserts. In this paper the requirements, progress toward these requirements, and the prospects for the future are reviewed

  18. Design consideration for dc SQUIDs fabricated in deep sub-micron technology

    International Nuclear Information System (INIS)

    Ketchen, M.B.

    1991-01-01

    Design rules for scaling dc SQUID junctions to optimize SQUID performance have been well known for over a decade, and verified down to the sub-micron regime. Practical SQUIDs having well coupled input coils of usable inductance have generally been fabricated at the 2-5 μm level of lithography. Other technologies, silicon in particular, are now routinely practiced at the 0.5 μm level of lithography with impressive demonstrations at the 0.1-0.25 μm level not uncommon. In this paper the implications of applying such fabrication capability to advance dc SQUID technology are explored. In particular the issues of scaling practical dc SQUIDs down to the 0.1-0.25 μm regime are examined, using as a prototype design the basic washer SQUID with a spiral input coil

  19. Development of a Remotely Operated NDE System for Inspection of Hanford's Double Shell Waste Tank Knuckle Regions

    International Nuclear Information System (INIS)

    Pardini, Allan F; Alzheimer, James M; Crawford, Susan L; Diaz, Aaron A; Gervais, Kevin L; Harris, Robert V; Riechers, Douglas M; Samuel, Todd J; Schuster, George J; Tucker, Joseph C

    2001-01-01

    This report documents work performed at the PNNL in FY01 to support development of a Remotely Operated NDE (RONDE) system capable of inspecting the knuckle region of Hanford's DSTs. The development effort utilized commercial off-the-shelf (COTS) technology wherever possible and provided a transport and scanning device for implementing the SAFT and T-SAFT techniques

  20. Qualification of NDE personnel in the nuclear industry

    International Nuclear Information System (INIS)

    Epps, T.N.

    1984-01-01

    There has been evidence of ineffective programs for certifying nondestructive examination (NDE) personnel who conduct periodic inservice examinations in nuclear power plants under ASME Section XI Code requirements. This was brought to the attention of a group from the electric utility industry, the Electric Power Research Institute (EPRI), some NDE consultants and representatives from the American Society of Mechanical Engineers (ASME) by the Nuclear Regulatory Commission (NRC) in a May, 1982 meeting in Bethesda, Maryland. One problem pointed out by the NRC was the lack of a clear definition of qualification requirements for certification of NDE personnel who conduct ASME Section XI Inservice Inspection work in nuclear power plants. The NRC requested that the nuclear industry resolve this problem by formulating definitive qualification requirements for personnel certification that could be made an industry requirement. In June, 1982 the EPRI NDE Subcommittee held a general meeting for utility representatives to discuss the results of the May, 1982 meeting to develop a plan for industry response to the issue. The consensus was that an Ad Hoc Committee of utility representatives be convened to develop a document outlining qualification requirements for vertification of NDE personnel. The Ad Hoc Committee was formally convened on September 29, 1982

  1. High-performance DC SQUIDs with submicrometer niobium Josephson junctions

    Energy Technology Data Exchange (ETDEWEB)

    de Waal, V.J.; Klapwijk, T.M.; van den Hamer, P.

    1983-11-01

    We report on the fabrication and performance of low-noise, all-niobium, thin-film planar dc SQUIDs with submicrometer Josephson junctions. The junctions are evaporated obliquely through a metal shadow evaporation mask, which is made using optical lithography with 0.5 ..mu..m tolerance. The Josephson junction barrier is formed by evaporating a thin silicon film and with a subsequent oxidation in a glow discharge. The junction parameters can be reproduced within a factor of two. Typical critical currents of the SQUIDs are about 3 ..mu..A and the resistances are about 100 ..cap omega... With SQUIDs having an inductance of 1 nH the voltage modulation is a least 60 ..mu..V. An intrinsic energy resolution of 4 x 10/sup -32/ J/Hz has been reached. The SQUIDs are coupled to wire-wound input coils or with thin-film input coils. The thin-film input coil consists of a niobium spiral of 20 turns on a separate substrate. In both cases the coil is glued onto a 2-nH SQUID with a coupling efficiency of at least 0.5. Referred to the thin-film input coil, the best coupled energy resolution achieved is 1.2 x 10/sup -30/ J/Hz measured in a flux-locked loop at frequencies above 10 Hz. As far as we know, this is the best figure achieved with an all-refractory-metal thin-film SQUID. The fabrication technique used is suited for making circuits with SQUID and pickup coil on the same substrate. We describe a compact, planar, first-order gradiometer integrated with a SQUID on a single substrate. The gradient noise of this device is 3 x 10/sup -12/ Tm/sup -1/. The gradiometer has a size of 12 mm x 17 mm, is simple to fabricate, an is suitable for biomedical applications.

  2. High-performance dc SQUIDs with submicrometer niobium Josephson junctions

    Science.gov (United States)

    de Waal, V. J.; Klapwijk, T. M.; van den Hamer, P.

    1983-11-01

    We report on the fabrication and performance of low-noise, all-niobium, thin-film planar dc SQUIDs with submicrometer Josephson junctions. The junctions are evaporated obliquely through a metal shadow evaporation mask, which is made using optical lithography with 0.5 µm tolerance. The Josephson junction barrier is formed by evaporating a thin silicon film and with a subsequent oxidation in a glow discharge. The junction parameters can be reproduced within a factor of two. Typical critical currents of the SQUIDs are about 3 µA and the resistances are about 100 Ω. With SQUIDs having an inductance of 1 nH the voltage modulation is at least 60 µV. An intrinsic energy resolution of 4×10-32 J/Hz has been reached. The SQUIDs are coupled to wire-wound input coils or with thin-film input coils. The thin-film input coil consists of a niobium spiral of 20 turns on a separate substrate. In both cases the coil is glued onto a 2-nH SQUID with a coupling efficiency of at least 0.5. Referred to the thin-film input coil, the best coupled energy resolution achieved is 1.2×10-30 J/Hz measured in a flux-locked loop at frequencies above 10 Hz. As far as we know, this is the best figure achieved with an all-refractory-metal thin-film SQUID. The fabrication technique used is suited for making circuits with SQUID and pickup coil on the same substrate. We describe a compact, planar, first-order gradiometer integrated with a SQUID on a single substrate. The gradient noise of this device is 3×10-12 T m-1. The gradiometer has a size of 12 mm×17 mm, is simple to fabricate, and is suitable for biomedical applications.

  3. SQUID magnetometry from nanometer to centimeter length scales

    International Nuclear Information System (INIS)

    Hatridge, Michael J.

    2010-01-01

    The development of Superconducting QUantum Interference Device (SQUID)-based magnetometer for two applications, in vivo prepolarized, ultra-low field MRI of humans and dispersive readout of SQUIDs for micro- and nano-scale magnetometery, are the focus of this thesis.

  4. SQUID magnetometry from nanometer to centimeter length scales

    Energy Technology Data Exchange (ETDEWEB)

    Hatridge, Michael J. [Univ. of California, Berkeley, CA (United States)

    2010-06-01

    The development of Superconducting QUantum Interference Device (SQUID)-based magnetometer for two applications, in vivo prepolarized, ultra-low field MRI of humans and dispersive readout of SQUIDs for micro- and nano-scale magnetometery, are the focus of this thesis.

  5. Computer Aided Feature Extraction, Classification and Acceptance Processing of Digital NDE Data

    National Research Council Canada - National Science Library

    Hildreth, Joseph

    1996-01-01

    ... from the inspection of solid rocket motors during fabrication. The computerized system, called the Automated NDE Data Evaluation System or ANDES, was developed under contract to Martin Marietta, now Lockheed Martin...

  6. SQUID readout multiplexers for transition-edge sensor arrays

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Adrian T. [Physics Department, University of California, Berkeley, CA 94720 (United States) and Physics Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)]. E-mail: atl@physics.berkeley.edu

    2006-04-15

    Two classes of SQUID multiplexer are being developed for large arrays of cryogenic sensors, distinguished by their operation in either the time domain or frequency domain. Several systems optimized for use with Transition-Edge Sensors (TES) are reaching a high level of maturity, and will be deployed on funded astrophysics experiments in the next several years. A useful technical figure of merit is the product of the number of detectors multplexed multipled by the bandwidth of the detectors, which can be termed the 'total signal bandwidth' of a multiplexer system. This figure of merit is comparable within a factor of two for the mature systems. Several new concepts for increasing the total bandwidth are being developed in the broad class of frequency domain multiplexers. Another notable area of progress is in the level of integration of muliplexer and detector array. The time domain system for SCUBA-II is a sophisticated bump-bonded sandwich structure, and the Jena/MPI group is integrating detectors and a time domain multiplexer on one substrate. Finally, the Kinetic Inductance Detectors (KID)/HEMT (non-SQUID) detector/multiplexer system, will be discussed briefly.

  7. Flux-coherent series SQUID array magnetometers operating above 77 K with superior white flux noise than single-SQUIDs at 4.2 K

    Science.gov (United States)

    Chesca, Boris; John, Daniel; Mellor, Christopher J.

    2015-10-01

    A very promising direction to improve the sensitivity of magnetometers based on superconducting quantum interference devices (SQUIDs) is to build a series-array of N non-interacting SQUIDs operating flux-coherently, because in this case their voltage modulation depth, ΔV, linearly scales with N whereas the white flux noise SΦ1/2 decreases as 1/N1/2. Here, we report the realization of both these improvements in an advanced layout of very large SQUID arrays made of YBa2Cu3O7. Specially designed with large area narrow flux focusers for increased field sensitivity and improved flux-coherency, our arrays have extremely low values for SΦ1/2 between (0.25 and 0.44) μΦ0/Hz1/2 for temperatures in the range (77-83) K. In this respect, they outperform niobium/aluminium trilayer technology-based single-SQUIDs operating at 4.2 K. Moreover, with values for ΔV and transimpedance in the range of (10-17) mV and (0.3-2.5) kΩ, respectively, a direct connection to a low-noise room temperature amplifier is allowed, while matching for such readout is simplified and the available bandwidth is greatly increased. These landmark performances suggest such series SQUID arrays are ideal candidates to replace single-SQUIDs operating at 4.2 K in many applications.

  8. Numerical assessment of efficiency and control stability of an HTS synchronous motor

    Energy Technology Data Exchange (ETDEWEB)

    Xian Wei; Yuan Weijia; Coombs, T A, E-mail: wx210@cam.ac.u [Electronic, Power and Energy Conversion Group, Engineering Department, Cambridge University, 9 JJ Thomson Avenue, Cambridge CB3 0FA (United Kingdom)

    2010-06-01

    A high temperature superconducting (HTS) permanent magnet synchronous motor (PMSM) is designed and developed in Cambridge University. It is expected to become cost competitive with the conventional PMSM owing to its high efficiency, high power density, high torque density, etc. The structure and parameters of HTS PMSM are detailed. Both AC losses by transport current and applied filed in stator armature winding of HTS PMSM are also analyzed. Computed and simulated results of the characteristics of the HTS PMSM and conventional PMSM are compared. The improvement on stability of direct torque control (DTC) on the HTS PMSM is estimated, and proved by simulation on Matlab/Simulink.

  9. HTS power leads for the BTEV interaction region

    Energy Technology Data Exchange (ETDEWEB)

    Feher, S.; Carcagno, R.; Orris, D.; Page, T.; Pischalnikov, Y.; Rabehl, R.; Sylvester, C.; Tartaglia, M.; Tompkins, J.C.; /Fermilab

    2005-05-01

    A new Interaction Region (IR) for the BTEV experiment was planned to be built at Fermilab. This IR would have required new superconducting quadrupole magnets and many additional power circuits for their operation. The new ''low beta'' quadrupole magnet design was based upon the Fermilab LHC quadrupole design, and would have operated at 9.56 kA in 4.5 K liquid helium. The use of conventional power leads for these circuits would have required substantially more helium for cooling than is available from the cryogenic plant, which is already operating close to its limit. To decrease the heat load and helium cooling demands, the use of HTS power leads was necessary. In developing specifications for HTS leads for the BTEV interaction region, several 6 kA HTS leads produced by American Superconductor Corporation (ASC) have been tested at over-current conditions. Final design requirements were to be based on these test results. This paper summarizes the test results and describes the design requirements for the 9.65 kA HTS power leads.

  10. HTS power leads for the BTEV interaction region

    International Nuclear Information System (INIS)

    Feher, S.; Carcagno, R.; Orris, D.; Page, T.; Pischalnikov, Y.; Rabehl, R.; Sylvester, C.; Tartaglia, M.; Tompkins, J.C.

    2005-01-01

    A new Interaction Region (IR) for the BTEV experiment was planned to be built at Fermilab. This IR would have required new superconducting quadrupole magnets and many additional power circuits for their operation. The new ''low beta'' quadrupole magnet design was based upon the Fermilab LHC quadrupole design, and would have operated at 9.56 kA in 4.5 K liquid helium. The use of conventional power leads for these circuits would have required substantially more helium for cooling than is available from the cryogenic plant, which is already operating close to its limit. To decrease the heat load and helium cooling demands, the use of HTS power leads was necessary. In developing specifications for HTS leads for the BTEV interaction region, several 6 kA HTS leads produced by American Superconductor Corporation (ASC) have been tested at over-current conditions. Final design requirements were to be based on these test results. This paper summarizes the test results and describes the design requirements for the 9.65 kA HTS power leads

  11. Invariance algorithms for processing NDE signals

    Science.gov (United States)

    Mandayam, Shreekanth; Udpa, Lalita; Udpa, Satish S.; Lord, William

    1996-11-01

    Signals that are obtained in a variety of nondestructive evaluation (NDE) processes capture information not only about the characteristics of the flaw, but also reflect variations in the specimen's material properties. Such signal changes may be viewed as anomalies that could obscure defect related information. An example of this situation occurs during in-line inspection of gas transmission pipelines. The magnetic flux leakage (MFL) method is used to conduct noninvasive measurements of the integrity of the pipe-wall. The MFL signals contain information both about the permeability of the pipe-wall and the dimensions of the flaw. Similar operational effects can be found in other NDE processes. This paper presents algorithms to render NDE signals invariant to selected test parameters, while retaining defect related information. Wavelet transform based neural network techniques are employed to develop the invariance algorithms. The invariance transformation is shown to be a necessary pre-processing step for subsequent defect characterization and visualization schemes. Results demonstrating the successful application of the method are presented.

  12. Development of 66 kV/6.9 kV 2 MV A prototype HTS power transformer

    International Nuclear Information System (INIS)

    Bohno, T.; Tomioka, A.; Imaizumi, M.; Sanuki, Y.; Yamamoto, T.; Yasukawa, Y.; Ono, H.; Yagi, Y.; Iwadate, K.

    2005-01-01

    We have developed the technology of the producing a HTS magnet for the power transformer. Three subjects have been mainly studied, high voltage technologies, large current and low AC loss technologies and sub-cooling system technologies to establish the technology of 66 kV/6.9 kV 10 MV A class HTS power transformer. In order to verify the validity of elemental technologies, such as high voltage technologies, large current and low AC loss technologies and sub-cooling system technologies, single-phase 2 MV A class 66 kV/6.9 kV prototype HTS transformer was manufactured and tested. In the load loss (AC loss) measurement, it was obtained that the measured value of 633 W was almost corresponding to the calculated value of 576 W at the rated operation of 2 MV A. Moreover, the breakdown was not found all voltage withstand test. These test results indicate that elemental technologies were established for the development of 66 kV/6.9 kV 10 MV A class HTS power transformer

  13. Feasibility of low-cost magnetic rail designs by integrating ferrite magnets and NdFeB magnets for HTS Maglev systems

    Science.gov (United States)

    Sun, R. X.; Deng, Z. G.; Gou, Y. F.; Li, Y. J.; Zheng, J.; Wang, S. Y.; Wang, J. S.

    2015-09-01

    Permanent magnet guideway (PMG) is an indispensable part of high temperature superconducting (HTS) Maglev systems. Present PMGs are made of NdFeB magnets with excellent performance and cost much. As another permanent magnet material, the ferrite magnet is weak at magnetic energy product and coercive force, but inexpensive. So, it is a possible way to integrate the ferrite and NdFeB magnets for cutting down the cost of present PMGs. In the paper, the equivalent on magnetic field intensity between ferrite magnets and NdFeB magnets was evaluated by finite element simulation. According to the calculation results, the magnetic field of the PMG integrating ferrite magnets and NdFeB magnets can be increased remarkably comparing with the pure ferrite PMG. It indicates that low-cost PMG designs by integrating the two permanent magnet materials are feasible for the practical HTS Maglev system.

  14. Design, manufacture and performance evaluation of HTS electromagnets for the hybrid magnetic levitation system

    International Nuclear Information System (INIS)

    Chu, S.Y.; Hwang, Y.J.; Choi, S.; Na, J.B.; Kim, Y.J.; Chang, K.S.; Bae, D.K.; Lee, C.Y.; Ko, T.K.

    2011-01-01

    A high speed electromagnetic suspension (EMS) maglev has emerged as the solution to speed limit problem that conventional high-speed railroad has. In the EMS maglev, small levitation gap needs uniform guide-way which leads to increase the construction cost. The large levitation gap can reduce the construction cost. However it is hard for normal conducting electromagnet to produce larger magneto-motive force (MMF) for generating levitation force as increased levitation gap. This is because normal conductors have limited rating current to their specific volume. Therefore, the superconducting electromagnet can be one of the solutions for producing both large levitation gap and sufficient MMF. The superconducting electromagnets have incomparably high allowable current density than what normal conductors have. In this paper, the prototype of high temperature superconducting (HTS) electromagnets were designed and manufactured applicable to hybrid electromagnetic suspension system (H-EMS). The H-EMS consists of control coils for levitation control and superconducting coils for producing MMF for levitation. The required MMF for generating given levitation force was calculated by both equations of ideal U-core magnet and magnetic field analysis using the finite element method (FEM). The HTS electromagnets were designed as double pancakes with Bi-2223/Ag tapes. Experiments to confirm its operating performance were performed in liquid nitrogen (LN 2 ).

  15. Design, manufacture and performance evaluation of HTS electromagnets for the hybrid magnetic levitation system

    Science.gov (United States)

    Chu, S. Y.; Hwang, Y. J.; Choi, S.; Na, J. B.; Kim, Y. J.; Chang, K. S.; Bae, D. K.; Lee, C. Y.; Ko, T. K.

    2011-11-01

    A high speed electromagnetic suspension (EMS) maglev has emerged as the solution to speed limit problem that conventional high-speed railroad has. In the EMS maglev, small levitation gap needs uniform guide-way which leads to increase the construction cost. The large levitation gap can reduce the construction cost. However it is hard for normal conducting electromagnet to produce larger magneto-motive force (MMF) for generating levitation force as increased levitation gap. This is because normal conductors have limited rating current to their specific volume. Therefore, the superconducting electromagnet can be one of the solutions for producing both large levitation gap and sufficient MMF. The superconducting electromagnets have incomparably high allowable current density than what normal conductors have. In this paper, the prototype of high temperature superconducting (HTS) electromagnets were designed and manufactured applicable to hybrid electromagnetic suspension system (H-EMS). The H-EMS consists of control coils for levitation control and superconducting coils for producing MMF for levitation. The required MMF for generating given levitation force was calculated by both equations of ideal U-core magnet and magnetic field analysis using the finite element method (FEM). The HTS electromagnets were designed as double pancakes with Bi-2223/Ag tapes. Experiments to confirm its operating performance were performed in liquid nitrogen (LN2).

  16. Design, manufacture and performance evaluation of HTS electromagnets for the hybrid magnetic levitation system

    Energy Technology Data Exchange (ETDEWEB)

    Chu, S.Y.; Hwang, Y.J.; Choi, S.; Na, J.B.; Kim, Y.J.; Chang, K.S. [School of Electrical and Electronic Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Bae, D.K. [Chungju National University, Chungju 380-702 (Korea, Republic of); Lee, C.Y. [Ultra High-Speed Train Research Department, Korea Railroad Research Institute, Uiwang-Si 437-757 (Korea, Republic of); Ko, T.K., E-mail: tkko@yonsei.ac.kr [School of Electrical and Electronic Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of)

    2011-11-15

    A high speed electromagnetic suspension (EMS) maglev has emerged as the solution to speed limit problem that conventional high-speed railroad has. In the EMS maglev, small levitation gap needs uniform guide-way which leads to increase the construction cost. The large levitation gap can reduce the construction cost. However it is hard for normal conducting electromagnet to produce larger magneto-motive force (MMF) for generating levitation force as increased levitation gap. This is because normal conductors have limited rating current to their specific volume. Therefore, the superconducting electromagnet can be one of the solutions for producing both large levitation gap and sufficient MMF. The superconducting electromagnets have incomparably high allowable current density than what normal conductors have. In this paper, the prototype of high temperature superconducting (HTS) electromagnets were designed and manufactured applicable to hybrid electromagnetic suspension system (H-EMS). The H-EMS consists of control coils for levitation control and superconducting coils for producing MMF for levitation. The required MMF for generating given levitation force was calculated by both equations of ideal U-core magnet and magnetic field analysis using the finite element method (FEM). The HTS electromagnets were designed as double pancakes with Bi-2223/Ag tapes. Experiments to confirm its operating performance were performed in liquid nitrogen (LN{sub 2}).

  17. SQUID-Detected Magnetic Resonance Imaging in MicroteslaFields

    Energy Technology Data Exchange (ETDEWEB)

    Moessle, Michael; Hatridge, Michael; Clarke, John

    2006-08-14

    amplitude in MRI using laser polarized noble gases such as {sup 3}He or {sup 129}Xe (10-12). Hyperpolarized gases were used successfully to image the human lung in fields on the order of several mT (13-15). To overcome the sensitivity loss of Faraday detection at low frequencies, ultrasensitive magnetometers based on the Superconducting QUantum Interference Device (SQUID) (16) are used to detect NMR and MRI signals (17-24). Recently, SQUID-based MRI systems capable of acquiring in vivo images have appeared. For example, in the 10-mT system of Seton et al. (18) signals are coupled to a SQUID via a superconducting tuned circuit, while Clarke and coworkers (22, 25, 26) developed a system at 132 {micro}T with an untuned input circuit coupled to a SQUID. In a quite different approach, atomic magnetometers have been used recently to detect the magnetization (27) and NMR signal (28) of hyperpolarized gases. This technique could potentially be used for low-field MRI in the future. The goal of this review is to summarize the current state-of-the-art of MRI in microtesla fields detected with SQUIDs. The principles of SQUIDs and NMR are briefly reviewed. We show that very narrow NMR linewidths can be achieved in low magnetic fields that are quite inhomogeneous, with illustrative examples from spectroscopy. After describing our ultralow-field MRI system, we present a variety of images. We demonstrate that in microtesla fields the longitudinal relaxation T{sub 1} is much more material dependent than is the case in high fields; this results in a substantial improvement in 'T{sub 1}-weighted contrast imaging'. After outlining the first attempts to combine microtesla NMR with magnetoencephalography (MEG) (29), we conclude with a discussion of future directions.

  18. Preliminary report on the PIXE analysis of the squid statoliths

    International Nuclear Information System (INIS)

    Ikeda, Yuzuru; Arai, Nobuaki; Sakamoto, Wataru; Murayama, Tatsuro; Maeda, Kuniko; Yoshida, Koji.

    1996-01-01

    Micro trace elements in the squid statolith, a calcareous stone which acts as a balancer and hearing, was analyzed with Particle Induced X-ray Emission (PIXE) for the Japanese common squid for the first time. Calcium is the main component of the squid statoliths, which means that squid statolith is the pure calcified structure similar to the fish otolith. Beside Ca, Sr was detected with strong dosage, and some other elements as Mn, Fe, Cu, Zn and As were also detected. Possible assumption of intake of microelements to the statoliths and the suitability of PIXE for statoliths analysis are discussed. (author)

  19. SISTEM OTENTIKASI UNTUK SQUID BERBASIS WEB

    Directory of Open Access Journals (Sweden)

    Febriliyan Samopa

    2006-07-01

    Full Text Available Dalam sebuah jaringan komputer terdapat bermacam-macam tipe user dengan berbagi tingkatan yang berbeda yang juga dibutuhkan perlakuan yang berbeda pada tiap user yang disesuaikan dengan kebutuhan dalam menggunakan akses web, baik berupa http, ftp, gopher, dan lain-lain. Dimana masing-masing user memiliki skala prioritas dalam penggunaan bandwidth, jumlah koneksi maksimum, waktu koneksi, ukuran file maksimum, situs yang tidak boleh diakses dan lain-lain. Tujuan dari penelitian ini adalah membuat sebuah perangkat lunak yang dapat melakukan otentikasi user berdasarkan data konfigurasi yang disimpan dalam basisdata. Selain itu, perangkat lunak yang dibuat dapat memproses request dari client berdasarkan data konfigurasi dengan lebih cepat. Permasalahan yang mucul adalah bagaimana merancang dan membuat suatu perangkat lunak yang dapat melakukan otentikasi user berdasarkan data konfigurasi yang diambil dari basisdata, serta dapat memproses request dari client dengan lebih cepat berdasarkan hak akses yang dimilikinya.Dalam penelitian ini didesain dan diimplementasikan suatu sistem otentikasi user dengan mengambil data user yang tersimpan dalam basisdata MySQL. Disamping itu, dilakukan rekayasa pada beberapa rutin proses yang terdapat dalam squid proxy, supaya proses-proses dapat melakukan pengambilan data konfigurasi yang dialihkan dan disimpan dalam basisdata MySQL. Data konfigurasi ini didasarkan pada pembagian hak akses yang dimiliki oleh masing-masing grup user. Antarmuka berbasis web digunakan sebagai salah satu layanan bagi admin untuk mempermudah pengelolaan dan pengolahan data konfigurasi yang dibuat.Berdasarkan uji coba yang telah dilakukan, terbukti sistem yang dibuat dapat bekerja dengan baik dan tidak melenceng dari fungsi asli sebelum dilakukan perubahan. Bahkan pada penanganan request client yang berukuran besar, kinerja squid mengalami peningkatan dalam hal kecepatan proses yang dibutuhkan. Sebagai contoh, request client pada  file

  20. Negative inductance SQUID qubit operating in a quantum regime

    Science.gov (United States)

    Liu, W. Y.; Su, F. F.; Xu, H. K.; Li, Z. Y.; Tian, Ye; Zhu, X. B.; Lu, Li; Han, Siyuan; Zhao, S. P.

    2018-04-01

    Two-junction SQUIDs with negative mutual inductance between their two arms, called nSQUIDs, have been proposed for significantly improving quantum information transfer but their quantum nature has not been experimentally demonstrated. We have designed, fabricated, and characterized superconducting nSQUID qubits. Our results provide clear evidence of the quantum coherence of the device, whose properties are well described by theoretical calculations using parameters determined from spectroscopic measurement. In addition to their future application for fast quantum information transfer, the nSQUID qubits exhibit rich characteristics in their tunable two-dimensional (2D) potentials, energy levels, wave function symmetries, and dipole matrix elements, which are essential to the study of a wide variety of macroscopic quantum phenomena such as tunneling in 2D potential landscapes.

  1. Static Measurements on HTS Coils of Fully Superconducting AC Electric Machines for Aircraft Electric Propulsion System

    Science.gov (United States)

    Choi, Benjamin B.; Hunker, Keith R.; Hartwig, Jason; Brown, Gerald V.

    2017-01-01

    The NASA Glenn Research Center (GRC) has been developing the high efficiency and high-power density superconducting (SC) electric machines in full support of electrified aircraft propulsion (EAP) systems for a future electric aircraft. A SC coil test rig has been designed and built to perform static and AC measurements on BSCCO, (RE)BCO, and YBCO high temperature superconducting (HTS) wire and coils at liquid nitrogen (LN2) temperature. In this paper, DC measurements on five SC coil configurations of various geometry in zero external magnetic field are measured to develop good measurement technique and to determine the critical current (Ic) and the sharpness (n value) of the super-to-normal transition. Also, standard procedures for coil design, fabrication, coil mounting, micro-volt measurement, cryogenic testing, current control, and data acquisition technique were established. Experimentally measured critical currents are compared with theoretical predicted values based on an electric-field criterion (Ec). Data here are essential to quantify the SC electric machine operation limits where the SC begins to exhibit non-zero resistance. All test data will be utilized to assess the feasibility of using HTS coils for the fully superconducting AC electric machine development for an aircraft electric propulsion system.

  2. Drag force and jet propulsion investigation of a swimming squid

    Directory of Open Access Journals (Sweden)

    Tabatabaei Mahdi

    2015-01-01

    Full Text Available In this study, CAD model of a squid was obtained by taking computer tomography images of a real squid. The model later placed into a computational domain to calculate drag force and performance of jet propulsion. The drag study was performed on the CAD model so that drag force subjected to real squid was revealed at squid’s different swimming speeds and comparison has been made with other underwater creatures (e.g., a dolphin, sea lion and penguin. The drag coefficient (referenced to total wetted surface area of squid is 0.0042 at Reynolds number 1.6x106 that is a %4.5 difference from Gentoo penguin. Besides, jet flow of squid was simulated to observe the flow region generated in the 2D domain utilizing dynamic mesh method to mimic the movement of squid’s mantle cavity.

  3. SQUID-based noise thermometer for sub-Millikelvin refrigerators

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Marco; Beyer, Joern; Klemm, Monique [Physikalisch-Technische Bundesanstalt, Abbestrasse 2-12, 10587 Berlin (Germany); Alivaliollahi, Sassan; Barthelmess, Henry [Magnicon GmbH, Barkhausenweg 11, 22339 Hamburg (Germany)

    2015-07-01

    The magnetic field fluctuation thermometer (MFFT) is a high-accuracy SQUID-based noise thermometer suitable for sub-Kelvin thermometry. A highly sensitive low-Tc SQUID magnetometer detects inductively the magnetic field fluctuation above a metal surface. The fluctuations are generated by the thermal activated noise currents inside the metal body that is thermally anchored to the temperature stage to be measured. The spectral shape is independent of temperature as the electrical conductivity is constant and the geometry is fixed. The magnetic noise power spectral amplitudes at any frequencies are directly proportional to temperature. Hence, only one reference measurement at a known temperature is required for calibration. A complete MFFT thermometer system for the temperature range of ca. 4 K down to <10 mK is commercially available. We have now developed an integrated MFFT with an extended range of operation down to <1 mK. For this purpose the sensitivity of the SQUID sensor has been increased, the metal body geometry modified and the magnetic shielding of the MFFT module improved. These modifications make it possible to obtain a thermometer noise temperature of <10 μK. We discuss the rationale for our MFFT configuration and present numerical simulations and experimental results.

  4. Hysteresis and reluctance electric machines with bulk HTS elements. Recent results and future development

    International Nuclear Information System (INIS)

    Kovalev, L.K.; Ilushin, K.V.; Penkin, V.T.; Kovalev, K.L.; Koneev, S.M.-A.; Poltavets, V.N.; Larionoff, A.E.; Modestov, K.A.; Larionoff, S.A.; Gawalek, W.; Habisreuther, T.; Oswald, B.; Best, K.-J.; Strasser, T.

    2000-01-01

    Two new types of HTS electric machine are considered. The first type is hysteresis motors and generators with cylindrical and disc rotors containing bulk HTS elements. The second type is reluctance motors with compound HTS-ferromagnetic rotors. The compound HTS-ferromagnetic rotors, consisting of joined alternating bulk HTS (YBCO) and ferromagnetic (iron) plates, provide a new active material for electromechanical purposes. Such rotors have anisotropic properties (ferromagnetic in one direction and diamagnetic in the perpendicular one). Theoretical and experimental results for HTS hysteresis and reluctance motors are presented. A series of hysteresis HTS motors with output power rating from 1 kW (at 50 Hz) up to 4 kW (at 400 Hz) and a series of reluctance HTS motors with output power 2-18.5 kW (at 50 Hz) were constructed and successfully tested. It was shown that HTS reluctance motors could reach two to five times better overall dimensions and specific power than conventional asynchronous motors of the same size and will have higher values of power factor (cos φ≥0.7 to 0.8). (author)

  5. Well coupled, low noise, dc SQUIDS

    International Nuclear Information System (INIS)

    Muhlfelder, B.; Beall, J.A.; Cromar, M.W.; Johnson, W.W.; Ono, R.H.

    1985-01-01

    The authors have designed, fabricated, and tested a Double Transformer (DT) coupled dc SQUID (Superconducting Quantum Interference Device) with low noise, an input inductance of 1μH and a smooth input-output characteristic. A transmission line model is presented to explain a resonance in the input-output characteristic of early versions of this device. Guided by the results of numerical simulations a new version of this device has been built and tested. Experimental results are presented that show that the resonance can be moved to a higher voltage by reducing the area of the SQUID loop. The voltage-external flux characteristic of some of these new devices agrees to within 10% with computer simulations. The minimum detectable energy per unit bandwidth (MDE) referred to the SQUID loop, is 10h, where h is Planck's constant. Computer simulations indicate an MDE of 6h

  6. SQUIDs in thermal detectors of weakly interacting particles

    International Nuclear Information System (INIS)

    Trofimov, V.N.

    1991-01-01

    The application of four different types of SQUID-assisted thermometers for cryogenic thermal detectors of weakly interacting particles is analyzed with two of them for the first time. The classic resistive thermometer is considered as well for the comparison. Original results of testing the detector with working temperature of 1K and thermocouple thermometer with SQUID are given. The conclusion is made that temperature resolution of 10 -10 kHz -1/2 or energy sensitivity of 1-10 eV per 1 kg of detector mass can be achieved when using the SQUID-assisted thermometers. 12 refs.; 7 figs.; 1 tab

  7. Design and Development of a 100 MVA HTS Generator for Commercial Entry

    Energy Technology Data Exchange (ETDEWEB)

    None

    2007-06-07

    In 2002, General Electric and the US Department of Energy (DOE) entered into a cooperative agreement for the development of a commercialized 100 MVA generator using high temperature superconductors (HTS) in the field winding. The intent of the program was to: (1) identify and develop technologies that would be needed for such a generator; (2) develop conceptual designs for generators with ratings of 100 MVA and higher using HTS technology; (3) perform proof of concept tests at the 1.5 MW level for GE's proprietary warm iron rotor HTS generator concept; and (4) design, build, and test a prototype of a commercially viable 100 MVA generator that could be placed on the power grid. This report summarizes work performed during the program and is provided as one of the final program deliverables. The design for the HTS generator was based on GE's warm iron rotor concept in which a cold HTS coil is wound around a warm magnetic iron pole. This approach for rotating HTS electrical machinery provides the efficiency benefits of the HTS technology while addressing the two most important considerations for power generators in utility applications: cost and reliability. The warm iron rotor concept uses the least amount of expensive HTS wire compared to competing concepts and builds on the very high reliability of conventional iron core stators and armature windings.

  8. Optimization of a digital SQUID magnetometer in terms of noise and distortion

    International Nuclear Information System (INIS)

    Haverkamp, I; Toepfer, H; Wetzstein, O; Kunert, J; Stolz, R; Meyer, H-G; Ortlepp, T

    2012-01-01

    The digital SQUID magnetometer takes advantage of flux quantization in a superconducting loop in order to measure magnetic fields. The core element of the digital SQUID is a Josephson comparator with a superconducting antenna loop attached to one of its junctions. Evaluation of the circuit from the system’s point of view requires an analysis in the frequency domain. In order to obtain a high-resolution fast Fourier transform, large datasets are necessary which are difficult to generate with transient simulation tools. In this work we derive a behavioural model for the digital SQUID in order to overcome restrictions imposed by transient simulation. By means of this model the influence of the comparator grey zone and the input loop inductance on the system performance was analysed. In order to assess the system, evaluation criteria based on the power spectral density were applied, which are commonly used for characterization of semiconductor analogue to digital converters. As a result of this study, design guidelines for an optimum antenna inductance depending on the comparator grey zone are derived, allowing us to achieve an optimum system performance in terms of noise and distortion. (paper)

  9. SQUID-based Nondestructive Testing Instrument of Dished Niobium Sheets for SRF Cavities

    International Nuclear Information System (INIS)

    Q. S. Shu; I. Ben-Zvi; G. Cheng; I. M. Phipps; J. T. Susta; P. Kneisel; G. Myneni; J. Mast; R. Selim

    2007-01-01

    Currently available technology can only inspect flat sheets and allow the elimination of defective flat sheets before the expensive forming and machining of the SRF cavity half-cells, but it does not eliminate the problem of remaining or uncovered surface impurities after partial chemical etching of the half-cells, nor does it detect any defects that may have been added during the fabrication of the half-cells. AMAC has developed a SQUID scanning system based on eddy current technique that allows the scanning of curved Nb samples that are welded to make superconducting RF cavity half-cells. AMAC SQUID scanning system successfully located the defects (Ta macro particles about 100 mm diameter) in a flat Nb sample (top side) and was able to also locate the defects in a cylindrical surface sample (top side). It is more significant that the system successfully located the defects on the backside of the flat sample and curved sample or 3-mm from the top surface. The 3-D SQUID-based Nondestructive instrument will be further optimized and improved in making SRF cavities and allow inspection and detection during cavity manufacturing for achieving highest accelerating fields

  10. Levitation or suspension: Which one is better for the heavy-load HTS maglev transportation

    Science.gov (United States)

    Liu, Wei; Kang, Dong; Yang, X. F.; Wang, Fei; Peng, G. H.; Zheng, Jun; Ma, G. T.; Wang, J. S.

    2015-09-01

    Because of the limitation of permanent magnet (PM), the efficient of bulk high-Tc superconductor (HTSC) in a high-Tc superconducting (HTS) maglev system is not very high. It is better to magnetize the bulk HTSC with a high trapped field to increase the force density. The different application type of magnetized bulk HTSC in a maglev system, namely, levitation or suspension type, will bring quite different operation performance. This paper discusses the influence of application type on operation performance of magnetized bulk HTSC by experiments and simulations. From the discussion, it can be found which application type is better for the heavy-load HTS maglev system.

  11. Universal mechanisms of decoherence of qubit states in a SQUID

    Science.gov (United States)

    Kuklov, A. B.; Chudnovsky, E. M.

    2003-03-01

    Fundamental conservation laws mandate parameter-free generic mechanisms of decoherence of quantum oscillations of the superconducting current in a SQUID [1]. The very fact that the current flows with respect to the ion lattice is shown to result in a decoherence via emission of the transverse sound at the oscillation frequency. For SQUIDs larger than the wavelength of the phonons, this effect can significantly limit the quality factor. The decohering effects of the external mechanical and magnetic noise are shown to be proportional to the total magnetic moment of the SQUID, making small SQUIDs less susceptible to the noise than large SQUIDs. Decoherence due to the emission of photons into the open space and in the presence of the metal shielding has been studied as well. Suggestions of experimental setups with low decoherence have been made. [1] E. M. Chudnovsky and A. B. Kuklov, arXiv:cond-mat/0211246.

  12. Production LHC HTS power lead test results

    CERN Document Server

    Tartaglia, M; Fehér, S; Huang, Y; Orris, D F; Pischalnikov, Y; Rabehl, Roger Jon; Sylvester, C D; Zbasnik, J

    2005-01-01

    The Fermilab Magnet test facility has built and operated a test stand to characterize the performance of HTS power leads. We report here the results of production tests of 20 pairs of 7.5 kA HTS power leads manufactured by industry for installation in feed boxes for the LHC Interaction Region quadrupole strings. Included are discussions of the thermal, electrical, and quench characteristics under "standard" and "extreme" operating conditions, and the stability of performance across thermal cycles.

  13. Production LHC HTS power lead test results

    International Nuclear Information System (INIS)

    Tartaglia, M.A.; Carcagno, R.H.; Feher, S.; Huang, Y.; Orris, D.F.; Pischalnikov, Y.; Rabehl, R.J.; Sylvester, C.; Zbasnik, J.

    2004-01-01

    The Fermilab Magnet test facility has built and operated a test stand to characterize the performance of HTS power leads. We report here the results of production tests of 20 pairs of 7.5 kA HTS power leads manufactured by industry for installation in feed boxes for the LHC Interaction Region quadrupole strings. Included are discussions of the thermal, electrical, and quench characteristics under ''standard'' and ''extreme'' operating conditions, and the stability of performance across thermal cycles

  14. Hypoxia tolerance and antioxidant defense system of juvenile jumbo squids in oxygen minimum zones

    Science.gov (United States)

    Trübenbach, Katja; Teixeira, Tatiana; Diniz, Mário; Rosa, Rui

    2013-10-01

    Jumbo squid (Dosidicus gigas) is a large oceanic squid endemic off the Eastern Tropical Pacific that undertakes diel vertical migrations into mesopelagic oxygen minimum zones. One of the expected physiological effects of such migration is the generation of reactive oxygen species (ROS) at the surface, promoted by the transition between hypoxia and reoxygenation states. The aim of this study was to investigate the energy expenditure rates and the antioxidant stress strategies of juvenile D. gigas under normoxia and hypoxia, namely by quantifying oxygen consumption rates, antioxidant enzyme activities [including superoxide dismutase (SOD), catalase (CAT) and glutathione-S-transferase (GST)], heat shock protein expression (Hsp70/Hsc70), and lipid peroxidation [malondialdehyde (MDA) levels]. A high significant decrease (68%) in squid's metabolic rates was observed during hypoxia (p0.05), with the latter indicating no enhancement of lipid peroxidation (i.e. cellular damage) at the warmer and normoxic surface waters. The understanding of such physiological strategies that are linked to oxygen deprivation and reoxygenation phases may provide valuable information about how this species is quickly responding to the impacts of environmental stressors coupled with global climate change.

  15. Evaluation and improvement in nondestructive examination (NDE) reliability for inservice inspection of light water reactors

    International Nuclear Information System (INIS)

    Doctor, S.R.; Andersen, E.S.; Bowey, R.E.; Diaz, A.A.; Good, M.S.; Heasler, P.G.; Hockey, R.L.; Simonen, F.A.; Spanner, J.C.; Taylor, T.T.; Vo, T.V.

    1991-01-01

    This program is intended to establish the effectiveness, reliability and adequacy of inservice inspection of reactor pressure vessels and primary piping systems and the impact of ISI reliability on system integrity. The objectives of the program include: (a) determine the effectiveness and reliability of ultrasonic inservice inspection (ISI) performed on commercial, light water reactor pressure vessels and piping; (b) recommend Code changes to the inspection procedures to improve the reliability of ISI; (c) using fracture mechanics analysis, determine the impact of NDE unreliability on system safety and determine the level of inspection reliability required to assure a suitably low failure probability; (d) evaluate the degree of reliability improvement which could be achieved using improved NDE techniques; and (e) based on importance of component to safety, material properties, service conditions, and NDE uncertainties, formulate improved inservice inspection criteria (including sampling plan, frequency, and reliability of inspection) for revisions to ASME Section XI and regulatory requirements needed to assure suitably low failure probabilities

  16. Tests of operating conditions for metrological application of HTS Josephson arrays

    International Nuclear Information System (INIS)

    Sosso, A; Lacquaniti, V; Andreone, D; Cerri, R; Klushin, A M

    2006-01-01

    We report on an experimental study of metrological properties of High Temperature Superconductor arrays, made of shunted bicrystal YBCO Josephson junctions, to assess their accuracy. A detailed analysis of measurement errors is presented, mainly based on a direct comparison of an HTS array against a low temperature array. Owing to the high sensitivity of the comparison, we were able to measure the changes in the HTS array voltage on a step at nanovolt level. A precise estimate of the dependence of the HTS array step width on operating conditions was obtained. Differences were observed with respect to the results provided by the usual, low sensitivity, techniques, confirming that the method we adopted is necessary in the study of HTS arrays for metrology. The high sensitivity analysis was applied in the derivation of the temperature dependence of the critical current as well, providing some insights on the behaviour of the HTS array

  17. Alternative Design Concepts for Multi-Circuit HTS Link Systems

    CERN Document Server

    Ballarino, A

    2011-01-01

    Superconducting cables for power transmission usually contain two conductors for DC application, or three conductors for AC, with high voltage insulation. In contrast, for some applications related to accelerators it is convenient to transfer high currents via superconducting links feeding a number of circuits at relatively low voltage, of the order of a kilovolt, over distances of up to a few hundred meters. For power transmission applications based on cooling via sub-cooled liquid nitrogen, suitable HTS conductors are only available in the form of tape, and a multi-layer variant can be envisaged for the multi-circuit links. However, where cooling to temperatures of the order of 20 K is feasible, MgB2 conductor, available in the form of both tape and wire, can also be envisaged and in the latter case used to assemble round cables. There are, therefore, two distinct topologies - based on the use of wires or tapes - that can be envisaged for use in applications to multi-circuit link systems. In this paper the ...

  18. NDE Acoustic Microscopy Research Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The purpose is to develop advanced, more effective high-resolution micro-NDE materials characterization methods using scanning acoustic microscopy. The laboratory's...

  19. Second-generation HTS conductors

    CERN Document Server

    2010-01-01

    The discovery of high temperature superconductors (HTS) in 1986 by two IBM scientists led to an unprecedented explosion of research and development efforts world-wide because of the significant potential for practical applications offered by these materials. However, the early euphoria created by the exciting prospects was dampened by the daunting task of fabricating these materials into useful forms with acceptable superconducting properties. Progress towards this goal has been hindered by many intrinsic materials problems, such as weak-links, flux-creep, and poor mechanical properties. The above problems led to the development of the Second-Generation of HTS wires. Three methods were invented to produce flexible metallic substrates, which were also crystallographically biaxially textured, and resembled a long, mosaic single crystal. The first method invented is the Ion-Beam-Assisted-Deposition (IBAD). The second method developed was the Inclined-Substrate-Deposition (ISD). The third method invented is calle...

  20. Market Squid Ecology Dataset

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains ecological information collected on the major adult spawning and juvenile habitats of market squid off California and the US Pacific Northwest....

  1. Market Squid Population Dynamics

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains population dynamics data on paralarvae, juvenile and adult market squid collected off California and the US Pacific Northwest. These data were...

  2. Iowa State University's undergraduate minor, online graduate certificate and resource center in NDE

    Science.gov (United States)

    Bowler, Nicola; Larson, Brian F.; Gray, Joseph N.

    2014-02-01

    Nondestructive evaluation is a `niche' subject that is not yet offered as an undergraduate or graduate major in the United States. The undergraduate minor in NDE offered within the College of Engineering at Iowa State University (ISU) provides a unique opportunity for undergraduate aspiring engineers to obtain a qualification in the multi-disciplinary subject of NDE. The minor requires 16 credits of course work within which a core course and laboratory in NDE are compulsory. The industrial sponsors of Iowa State's Center for Nondestructive Evaluation, and others, strongly support the NDE minor and actively recruit students from this pool. Since 2007 the program has graduated 10 students per year and enrollment is rising. In 2011, ISU's College of Engineering established an online graduate certificate in NDE, accessible not only to campus-based students but also to practicing engineers via the web. The certificate teaches the fundamentals of three major NDE techniques; eddy-current, ultrasonic and X-ray methods. This paper describes the structure of these programs and plans for development of an online, coursework-only, Master of Engineering in NDE and thesis-based Master of Science degrees in NDE.

  3. SQUIDs De-fluxing Using a Decaying AC Magnetic Field

    Energy Technology Data Exchange (ETDEWEB)

    Matlashov, Andrei Nikolaevich [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Semenov, Vasili Kirilovich [State Univ. of New York (SUNY), Plattsburgh, NY (United States); Anderson, Bill [Senior Scientific, LLC, Albuquerque, NM (United States)

    2016-06-08

    Flux trapping is the Achilles’ heel of all superconductor electronics. The most direct way to avoid flux trapping is a prevention of superconductor circuits from exposure to magnetic fields. Unfortunately this is not feasible if the circuits must be exposed to a strong DC magnetic field even for a short period of time. For example, such unavoidable exposures take place in superparamagnetic relaxation measurements (SPMR) and ultra-low field magnetic resonance imaging (ULF MRI) using unshielded thin-film SQUID-based gradiometers. Unshielded SQUIDs stop working after being exposed to DC magnetic fields of only a few Gauss in strength. In this paper we present experimental results with de-fluxing of planar thin-film LTS SQUID-based gradiometers using a strong decaying AC magnetic field. We used four commercial G136 gradiometers for SPMR measurements with up to a 10 mT magnetizing field. Strong 12.9 kHz decaying magnetic field pulses reliably return SQUIDs to normal operation 50 ms after zeroing the DC magnetizing field. This new AC de-fluxing method was also successfully tested with seven other different types of LTS SQUID sensors and has been shown to dissipate extremely low energy.

  4. NDE for Characterizing Oxidation Damage in Reinforced Carbon-Carbon

    Science.gov (United States)

    Roth, Don J.; Rauser, Richard W.; Jacobson, nathan S.; Wincheski, Russell A.; Walker, James L.; Cosgriff, Laura A.

    2009-01-01

    In this study, coated reinforced carbon-carbon (RCC) samples of similar structure and composition as that from the NASA space shuttle orbiter s thermal protection system were fabricated with slots in their coating simulating craze cracks. These specimens were used to study oxidation damage detection and characterization using NDE methods. These specimens were heat treated in air at 1143 and 1200 C to create cavities in the carbon substrate underneath the coating as oxygen reacted with the carbon and resulted in its consumption. The cavities varied in diameter from approximately 1 to 3 mm. Single-sided NDE methods were used since they might be practical for on-wing inspection, while x-ray micro-computed tomography (CT) was used to measure cavity sizes in order to validate oxidation models under development for carbon-carbon materials. An RCC sample having a naturally-cracked coating and subsequent oxidation damage was also studied with x-ray micro-CT. This effort is a follow-on study to one that characterized NDE methods for assessing oxidation damage in an RCC sample with drilled holes in the coating. The results of that study are briefly reviewed in this article as well. Additionally, a short discussion on the future role of simulation to aid in these studies is provided.

  5. Flux-coherent series SQUID array magnetometers operating above 77 K with superior white flux noise than single-SQUIDs at 4.2 K

    International Nuclear Information System (INIS)

    Chesca, Boris; John, Daniel; Mellor, Christopher J.

    2015-01-01

    A very promising direction to improve the sensitivity of magnetometers based on superconducting quantum interference devices (SQUIDs) is to build a series-array of N non-interacting SQUIDs operating flux-coherently, because in this case their voltage modulation depth, ΔV, linearly scales with N whereas the white flux noise S Φ 1/2 decreases as 1/N 1/2 . Here, we report the realization of both these improvements in an advanced layout of very large SQUID arrays made of YBa 2 Cu 3 O 7 . Specially designed with large area narrow flux focusers for increased field sensitivity and improved flux-coherency, our arrays have extremely low values for S Φ 1/2 between (0.25 and 0.44) μΦ 0 /Hz 1/2 for temperatures in the range (77–83) K. In this respect, they outperform niobium/aluminium trilayer technology-based single-SQUIDs operating at 4.2 K. Moreover, with values for ΔV and transimpedance in the range of (10–17) mV and (0.3–2.5) kΩ, respectively, a direct connection to a low-noise room temperature amplifier is allowed, while matching for such readout is simplified and the available bandwidth is greatly increased. These landmark performances suggest such series SQUID arrays are ideal candidates to replace single-SQUIDs operating at 4.2 K in many applications

  6. Mismatch between the eye and the optic lobe in the giant squid.

    Science.gov (United States)

    Liu, Yung-Chieh; Liu, Tsung-Han; Yu, Chun-Chieh; Su, Chia-Hao; Chiao, Chuan-Chin

    2017-07-01

    Giant squids ( Architeuthis ) are a legendary species among the cephalopods. They live in the deep sea and are well known for their enormous body and giant eyes. It has been suggested that their giant eyes are not adapted for the detection of either mates or prey at distance, but rather are best suited for monitoring very large predators, such as sperm whales, at distances exceeding 120 m and at a depth below 600 m (Nilsson et al. 2012 Curr. Biol. 22 , 683-688. (doi:10.1016/j.cub.2012.02.031)). However, it is not clear how the brain of giant squids processes visual information. In this study, the optic lobe of a giant squid ( Architeuthis dux , male, mantle length 89 cm), which was caught by local fishermen off the northeastern coast of Taiwan, was scanned using high-resolution magnetic resonance imaging in order to examine its internal structure. It was evident that the volume ratio of the optic lobe to the eye in the giant squid is much smaller than that in the oval squid ( Sepioteuthis lessoniana ) and the cuttlefish ( Sepia pharaonis ). Furthermore, the cell density in the cortex of the optic lobe is significantly higher in the giant squid than in oval squids and cuttlefish, with the relative thickness of the cortex being much larger in Architeuthis optic lobe than in cuttlefish. This indicates that the relative size of the medulla of the optic lobe in the giant squid is disproportionally smaller compared with these two cephalopod species. This morphological study of the giant squid brain, though limited only to the optic lobe, provides the first evidence to support that the optic lobe cortex, the visual information processing area in cephalopods, is well developed in the giant squid. In comparison, the optic lobe medulla, the visuomotor integration centre in cephalopods, is much less developed in the giant squid than other species. This finding suggests that, despite the giant eye and a full-fledged cortex within the optic lobe, the brain of giant

  7. Emulsifying and gelling properties of weakfish myofibrillar proteins as affected by squid mantle myofibrillar proteins in a model system

    Directory of Open Access Journals (Sweden)

    Daniela Mariel Suarez

    2014-03-01

    Full Text Available The aim of the present work was to investigate the physicochemical, biochemical and functional characteristics of both the myofibrils (MF and actomyosin (AM of squid mantle (Illex argentinus and weakfish (Cynoscion guatucupa muscles, and evaluate the influence of the addition of myofibrilar proteins from the squid mantle on the physicochemical and functional properties of those of the weakfish. After extraction, purification and characterization of the MF and AM of both species, emulsions of each protein fraction from each muscle were formulated. Mixtures of the MF or AM of both species were also analyzed. The emulsifying properties were monitoring using the Emulsifying Activity Index (EAI and Emulsion Stability (ES. In addition, gel pastes were formulated from the squid mantle, weakfish muscle and the mixture of both species, and the following functional properties of the gels assessed: water holding capacity, colour, textural profile analysis (TPA (hardness, elasticity, cohesiveness, gumminess and gel strength. The EAI values of emulsions formulated with the MF of the mantle were significantly (p<0.05 higher than those formulated from those of weakfish. The incorporation of squid MF in the mixture increased the EAI values. Conversely, the highest ES values were obtained with weakfish MF, and the incorporation of MF weakfish in the mixture increased the ES values. Similar EAI and ES behaviours were observed for the AM of the corresponding species. Irrespective of the thermal treatment, the gel strength of the gelled paste of squid muscle was significantly (p<0.05 lower than that of weakfish muscle and of those obtained with the different mixtures. The behaviours of the expressible moisture (EM from the gelled pastes were similar to those of gel strength. Irrespective of the thermal treatment, the pastes formulated with a high weakfish: mantle ratio showed less water loss. The gelled pastes of squid mantle showed the highest values for whiteness

  8. Synchronous Generator with HTS-2G field coils for Windmills with output power 1 MW

    Science.gov (United States)

    Kovalev, K.; Kovalev, L.; Poltavets, V.; Samsonovich, S.; Ilyasov, R.; Levin, A.; Surin, M.

    2014-05-01

    Nowadays synchronous generators for wind-mills are developed worldwide. The cost of the generator is determined by its size and weight. In this deal the implementation of HTS-2G generators is very perspective. The application of HTS 2G field coils in the rotor allows to reduce the size of the generator is 1.75 times. In this work the design 1 MW HTS-2G generator is considered. The designed 1 MW HTS-2G generator has the following parameters: rotor diameter 800 mm, active length 400 mm, phase voltage 690V, rotor speed 600 min-1 rotor field coils with HTS-2G tapes. HTS-2G field coils located in the rotating cryostat and cooled by liquid nitrogen. The simulation and optimization of HTS-2G field coils geometry allowed to increase feed DC current up to 50A. Copper stator windings are water cooled. Magnetic and electrical losses in 1 MW HTS-2G generator do not exceed 1.6% of the nominal output power. In the construction of HTS-2G generator the wave multiplier with ratio 1:40 is used. The latter allows to reduce the total mass of HTS-2G generator down to 1.5 tons. The small-scale model of HTS-2G generator with output power 50 kW was designed, manufactured and tested. The test results showed good agreement with calculation results. The manufacturing of 1 MW HTS-2G generator is planned in 2014. This work is done under support of Rosatom within the frames of Russian Project "Superconducting Industry".

  9. Passive radiative cooling of a HTS coil for attitude orbit control in micro-spacecraft

    Science.gov (United States)

    Inamori, Takaya; Ozaki, Naoya; Saisutjarit, Phongsatorn; Ohsaki, Hiroyuki

    2015-02-01

    This paper proposes a novel radiative cooling system for a high temperature superconducting (HTS) coil for an attitude orbit control system in nano- and micro-spacecraft missions. These days, nano-spacecraft (1-10 kg) and micro-spacecraft (10-100 kg) provide space access to a broader range of spacecraft developers and attract interest as space development applications. In planetary and high earth orbits, most previous standard-size spacecraft used thrusters for their attitude and orbit control, which are not available for nano- and micro-spacecraft missions because of the strict power consumption, space, and weight constraints. This paper considers orbit and attitude control methods that use a superconducting coil, which interacts with on-orbit space plasmas and creates a propulsion force. Because these spacecraft cannot use an active cooling system for the superconducting coil because of their mass and power consumption constraints, this paper proposes the utilization of a passive radiative cooling system, in which the superconducting coil is thermally connected to the 3 K cosmic background radiation of deep space, insulated from the heat generation using magnetic holders, and shielded from the sun. With this proposed cooling system, the HTS coil is cooled to 60 K in interplanetary orbits. Because the system does not use refrigerators for its cooling system, the spacecraft can achieve an HTS coil with low power consumption, small mass, and low cost.

  10. NDE and SHM Simulation for CFRP Composites

    Science.gov (United States)

    Leckey, Cara A. C.; Parker, F. Raymond

    2014-01-01

    Ultrasound-based nondestructive evaluation (NDE) is a common technique for damage detection in composite materials. There is a need for advanced NDE that goes beyond damage detection to damage quantification and characterization in order to enable data driven prognostics. The damage types that exist in carbon fiber-reinforced polymer (CFRP) composites include microcracking and delaminations, and can be initiated and grown via impact forces (due to ground vehicles, tool drops, bird strikes, etc), fatigue, and extreme environmental changes. X-ray microfocus computed tomography data, among other methods, have shown that these damage types often result in voids/discontinuities of a complex volumetric shape. The specific damage geometry and location within ply layers affect damage growth. Realistic threedimensional NDE and structural health monitoring (SHM) simulations can aid in the development and optimization of damage quantification and characterization techniques. This paper is an overview of ongoing work towards realistic NDE and SHM simulation tools for composites, and also discusses NASA's need for such simulation tools in aeronautics and spaceflight. The paper describes the development and implementation of a custom ultrasound simulation tool that is used to model ultrasonic wave interaction with realistic 3-dimensional damage in CFRP composites. The custom code uses elastodynamic finite integration technique and is parallelized to run efficiently on computing cluster or multicore machines.

  11. Temperature dependence of the effective sensing area of high-Tc dc SQUIDs

    International Nuclear Information System (INIS)

    Brake, H.J.M. ter; Aarnink, W.A.M.; Bosch, P.J. van den; Hilgenkamp, J.W.M.; Flokstra, J.; Rogalla, H.

    1997-01-01

    The effective sensing area of a high-T c dc SQUID depends on temperature. As a consequence, fluctuations in the operating temperature result in apparent magnetic field noise if the SQUID is placed in a background magnetic field. An analysis of this effect for two SQUID types, the square-washer 'Ketchen' type and the inductively shunted type, is performed. For magnetocardiography, the temperature fluctuations (peak to peak) of the latter SQUID type should be below w 0.3 mK at 77 K, and below 2 mK at 55 K, with an earth's field suppression of 40 dB. For the square-washer SQUID the requirements are about 8 times less stringent. (author)

  12. HTS Power Leads for the BTeV Interaction Region

    CERN Document Server

    Feher, Sandor; Orris, Darryl; Pishchalnikov, Yu M; Rabehl, Roger Jon; Sylvester, C D; Tartaglia, M; Tompkins, John

    2005-01-01

    A new Interaction Region for the BTEV experiment is planned to be built soon at Fermilab. This IR will require new superconducting quadrupole magnets and many additional power circuits for their operation. The new "low beta" quadupole magnet design is based upon the Fermilab LHC quadrupole design, and will operate at 9.56 kA in 4.5 K liquid helium. The use of conventional power leads for these circuits would require substantially more helium for cooling than is available from the cryogenic plant, which is already operating close to its limit. To decrease the heat load and helium cooling demands, the use of HTS power leads is necessary. Fermilab is in the process of procuring HTS leads for this new interaction region. Several 6 kA HTS leads produced by American Superconductor Corporation have been tested at over-current conditions. Based on the test results, design requirements are being developed for procuring the HTS current leads. This paper summarizes the test results and describes the design requirements ...

  13. Superconducting Quantum Interferometers for Nondestructive Evaluation

    Directory of Open Access Journals (Sweden)

    M. I. Faley

    2017-12-01

    Full Text Available We review stationary and mobile systems that are used for the nondestructive evaluation of room temperature objects and are based on superconducting quantum interference devices (SQUIDs. The systems are optimized for samples whose dimensions are between 10 micrometers and several meters. Stray magnetic fields from small samples (10 µm–10 cm are studied using a SQUID microscope equipped with a magnetic flux antenna, which is fed through the walls of liquid nitrogen cryostat and a hole in the SQUID’s pick-up loop and returned sidewards from the SQUID back to the sample. The SQUID microscope does not disturb the magnetization of the sample during image recording due to the decoupling of the magnetic flux antenna from the modulation and feedback coil. For larger samples, we use a hand-held mobile liquid nitrogen minicryostat with a first order planar gradiometric SQUID sensor. Low-Tc DC SQUID systems that are designed for NDE measurements of bio-objects are able to operate with sufficient resolution in a magnetically unshielded environment. High-Tc DC SQUID magnetometers that are operated in a magnetic shield demonstrate a magnetic field resolution of ~4 fT/√Hz at 77 K. This sensitivity is improved to ~2 fT/√Hz at 77 K by using a soft magnetic flux antenna.

  14. Fundamental characteristics of the QFP measured by the dc SQUID

    International Nuclear Information System (INIS)

    Shimizu, N.; Harada, Y.; Miyamoto, N.; Hosoya, M.; Goto, E.

    1989-01-01

    This paper describes the fundamental characteristics of the Quantum Flux Parametron (QFP) measured by a new method in which the output signals of the QFP are detected with a dc SQUID. The dc SQUID linearly and continuously converts the output current of the QFP to voltage, allowing the output signal of the QFP to be measured as the voltage of the dc SQUID. Thus, the fundamental characteristics of the QFP have been experimentally confirmed in detail

  15. Study and operating conditions of HTS Josephson arrays for metrological application

    International Nuclear Information System (INIS)

    Sosso, A.; Lacquaniti, V.; Andreone, D.; Cerri, R.; Klushin, A.M.

    2006-01-01

    We report an experimental study of metrological properties of high-temperature superconductor arrays, made of shunted bicrystal YBCO Josephson junctions. The work is mainly based on a direct comparison against a low temperature array. Owing to the high sensitivity of the measurements, we observed at nanovolt level the changes in the HTS array voltage on a step. A precise estimate of the dependence of the HTS array step width on operating conditions was obtained. Differences were observed with respect to the results of low sensitivity techniques, confirming that our method is necessary in the study of HTS arrays for metrology. The high sensitivity analysis was also applied in the derivation of the temperature dependence of the critical current, providing insights on the behavior of the HTS array

  16. A SQUID Bootstrap Circuit with a Large Parameter Tolerance

    International Nuclear Information System (INIS)

    Zhang Guo-Feng; Kong Xiang-Yan; Xie Xiao-Ming; Zhang Yi; Krause Hans-Joachim; Offenhäusser Andreas

    2013-01-01

    The voltage biased (SQUID) bootstrap circuit (SBC) was recently introduced as an effective means to reduce the preamplifier noise contribution. We analyze the tolerances of the SBC noise suppression performance to spreads in SQUID and SBC circuit parameters. It is found that the tolerance to spread mainly caused by the integrated circuit fabrication process could be extended by a one-time adjustable current feedback. A helium-cooled niobium SQUID with a loop inductance of 350 pH is employed to experimentally verify the analysis. From this work, design criteria for fully integrated SBC devices with a high yield can be derived

  17. Greatly improved cache update times for conditions data with Frontier/Squid

    International Nuclear Information System (INIS)

    Dykstra, Dave; Lueking, Lee

    2009-01-01

    The CMS detector project loads copies of conditions data to over 100,000 computer cores worldwide by using a software subsystem called Frontier. This subsystem translates database queries into HTTP, looks up the results in a central database at CERN, and caches the results in an industry-standard HTTP proxy/caching server called Squid. One of the most challenging aspects of any cache system is coherency, that is, ensuring that changes made to the underlying data get propagated out to all clients in a timely manner. Recently, the Frontier system was enhanced to drastically reduce the time for changes to be propagated everywhere without heavily loading servers. The propagation time is now as low as 15 minutes for some kinds of data and no more than 60 minutes for the rest of the data. This was accomplished by taking advantage of an HTTP and Squid feature called If-Modified-Since. In order to use this feature, the Frontier server sends a Last-Modified timestamp, but since modification times are not normally tracked by Oracle databases, a PL/SQL program was developed to track the modification times of database tables. We discuss the details of this caching scheme and the obstacles overcome including database and Squid bugs.

  18. Greatly improved cache update times for conditions data with Frontier/Squid

    Energy Technology Data Exchange (ETDEWEB)

    Dykstra, Dave; Lueking, Lee, E-mail: dwd@fnal.go [Computing Division, Fermilab, Batavia, IL (United States)

    2010-04-01

    The CMS detector project loads copies of conditions data to over 100,000 computer cores worldwide by using a software subsystem called Frontier. This subsystem translates database queries into HTTP, looks up the results in a central database at CERN, and caches the results in an industry-standard HTTP proxy/caching server called Squid. One of the most challenging aspects of any cache system is coherency, that is, ensuring that changes made to the underlying data get propagated out to all clients in a timely manner. Recently, the Frontier system was enhanced to drastically reduce the time for changes to be propagated everywhere without heavily loading servers. The propagation time is now as low as 15 minutes for some kinds of data and no more than 60 minutes for the rest of the data. This was accomplished by taking advantage of an HTTP and Squid feature called If-Modified-Since. In order to use this feature, the Frontier server sends a Last-Modified timestamp, but since modification times are not normally tracked by Oracle databases, a PL/SQL program was developed to track the modification times of database tables. We discuss the details of this caching scheme and the obstacles overcome including database and Squid bugs.

  19. Rapid Associative Learning and Stable Long-Term Memory in the Squid Euprymna scolopes.

    Science.gov (United States)

    Zepeda, Emily A; Veline, Robert J; Crook, Robyn J

    2017-06-01

    Learning and memory in cephalopod molluscs have received intensive study because of cephalopods' complex behavioral repertoire and relatively accessible nervous systems. While most of this research has been conducted using octopus and cuttlefish species, there has been relatively little work on squid. Euprymna scolopes Berry, 1913, a sepiolid squid, is a promising model for further exploration of cephalopod cognition. These small squid have been studied in detail for their symbiotic relationship with bioluminescent bacteria, and their short generation time and successful captive breeding through multiple generations make them appealing models for neurobiological research. However, little is known about their behavior or cognitive ability. Using the well-established "prawn-in-the-tube" assay of learning and memory, we show that within a single 10-min trial E. scolopes learns to inhibit its predatory behavior, and after three trials it can retain this memory for at least 12 d. Rapid learning and very long-term retention were apparent under two different training schedules. To our knowledge, this study is the first demonstration of learning and memory in this species as well as the first demonstration of associative learning in any squid.

  20. Measurements of the dynamic input impedance of a dc SQUID

    International Nuclear Information System (INIS)

    Hilbert, C.; Clarke, J.

    1985-01-01

    The impedance of a circuit coupled magnetically via a mutual inductance M/sub i/ to a dc SQUID of geometric inductance L is modified by the dynamic input impedance of the SQUID, which can be characterized by the flux-to-current transfer function J/sub Phi/approx. =partialJ/partialPhi; J is the current circulating in the SQUID loop and ∫ is the flux applied to the loop. At the same time, the SQUID is modified by the presence of the input circuit in the lumped circuit approximation, one expects its inductance to be reduced to L'(1-α/sub e/ 2 )L, where α/sub e/ is an effective coupling coefficient. Calculations of J/sub Phi/ using an analog simulator are described and presented in the form of a dynamic inductance L and a dynamic resistance R versus bias current I and Phi. Experimental measurements of L and R were made on a planar, thin-film SQUID tightly coupled to a spiral input coil that was connected in series with a capacitor C/sub i/ to form a resonant circuit. Thus, J/sub Phi/ was determined from the change in the resonant frequency and quality factor of this circuit as a function of I and Phi. At low bias currents (low Josephson frequencies) the measured values of L were in reasonable agreement with values simulated for the reduced SQUID, while at higher bias currents (higher Josephson frequencies) the measured values were in better agreement with values simulated for the unscreened SQUID. Similar conclusions were reached in the comparison of the experimental and simulated values of the flux-to-voltage transfer function V/sub Phi/

  1. A SQUID gradiometer module with wire-wound pickup antenna and integrated voltage feedback circuit

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Guofeng [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of Sciences (CAS), Shanghai 200050 (China); Peter Gruenberg Institute (PGI-8), Forschungszentrum Juelich (FZJ), D-52425 Juelich (Germany); Joint Research Laboratory on Superconductivity and Bioelectronics, Collaboration between CAS-Shanghai and FZJ, Shanghai 200050 (China); Graduate University of the Chinese Academy of Sciences, Beijing 100049 (China); Zhang, Yi, E-mail: y.zhang@fz-juelich.de [Peter Gruenberg Institute (PGI-8), Forschungszentrum Juelich (FZJ), D-52425 Juelich (Germany); Joint Research Laboratory on Superconductivity and Bioelectronics, Collaboration between CAS-Shanghai and FZJ, Shanghai 200050 (China); Zhang Shulin [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of Sciences (CAS), Shanghai 200050 (China); Joint Research Laboratory on Superconductivity and Bioelectronics, Collaboration between CAS-Shanghai and FZJ, Shanghai 200050 (China); Krause, Hans-Joachim [Peter Gruenberg Institute (PGI-8), Forschungszentrum Juelich (FZJ), D-52425 Juelich (Germany); Joint Research Laboratory on Superconductivity and Bioelectronics, Collaboration between CAS-Shanghai and FZJ, Shanghai 200050 (China); and others

    2012-10-15

    The performance of the direct readout schemes for dc SQUID, Additional Positive Feedback (APF), noise cancellation (NC) and SQUID bootstrap circuit (SBC), have been studied in conjunction with planar SQUID magnetometers. In this paper, we examine the NC technique applied to a niobium SQUID gradiometer module with an Nb wire-wound antenna connecting to a dual-loop SQUID chip with an integrated voltage feedback circuit for suppression of the preamplifier noise contribution. The sensitivity of the SQUID gradiometer module is measured to be about 1 fT/(cm {radical}Hz) in the white noise range in a magnetically shielded room. Using such gradiometer, both MCG and MEG signals are recorded.

  2. Flux-coherent series SQUID array magnetometers operating above 77 K with superior white flux noise than single-SQUIDs at 4.2 K

    Energy Technology Data Exchange (ETDEWEB)

    Chesca, Boris, E-mail: B.Chesca@lboro.ac.uk; John, Daniel [Department of Physics, Loughborough University, Loughborough LE11 3TU (United Kingdom); Mellor, Christopher J. [School of Physics and Astronomy, Nottingham University, Nottingham NG7 2RD (United Kingdom)

    2015-10-19

    A very promising direction to improve the sensitivity of magnetometers based on superconducting quantum interference devices (SQUIDs) is to build a series-array of N non-interacting SQUIDs operating flux-coherently, because in this case their voltage modulation depth, ΔV, linearly scales with N whereas the white flux noise S{sub Φ}{sup 1/2} decreases as 1/N{sup 1/2}. Here, we report the realization of both these improvements in an advanced layout of very large SQUID arrays made of YBa{sub 2}Cu{sub 3}O{sub 7}. Specially designed with large area narrow flux focusers for increased field sensitivity and improved flux-coherency, our arrays have extremely low values for S{sub Φ}{sup 1/2} between (0.25 and 0.44) μΦ{sub 0}/Hz{sup 1/2} for temperatures in the range (77–83) K. In this respect, they outperform niobium/aluminium trilayer technology-based single-SQUIDs operating at 4.2 K. Moreover, with values for ΔV and transimpedance in the range of (10–17) mV and (0.3–2.5) kΩ, respectively, a direct connection to a low-noise room temperature amplifier is allowed, while matching for such readout is simplified and the available bandwidth is greatly increased. These landmark performances suggest such series SQUID arrays are ideal candidates to replace single-SQUIDs operating at 4.2 K in many applications.

  3. Through the looking glass: The future for NDE?

    Science.gov (United States)

    Bond, Leonard J.

    2014-02-01

    Nondestructive testing (NDT) is a mature industry, with global equipment sales fast moving towards 2B. per year. The use of conventional NDT will grow in developing countries and in developed countries the challenges will include those associated with maintaining aging infrastructure. For some systems the future will move to structural health monitoring (SHM) and for others into integration of online measurements in manufacturing. Nondestructive Evaluation (NDE) is a multi-disciplinary area of endeavor that has its origins in materials science and NDT. It seeks to provide an adequate science base for NDT to become a quantitative science. It was seen to be necessary to better detect, size and type defects, improve the reliability of inspection, and probability of detection (POD). There is particular interest in estimating the potential defects could have on performance or potential for loss of structural integrity, under various loading or stressor conditions, and ultimately implement risk-based reliability assessments. NDE must be seen more as a part of the wide field of engineering, as an interdisciplinary endeavor, that brings together the expertise of materials science and metrology, together with the underlying physics for inspection methods, as well as statistics, computers, robotics and software. The adoption of advanced manufacturing, will require new metrology tools and methods to provide data for assessing new materials including powder metals, as used in additive manufacturing, and various composites. The lessons from the past proceedings of this conference series include that the problems faced today are harder than was expected during the first decade of quantitative NDE research. Even with new types of transducers and much improved A/D and powerful computers new approaches and more basic measurement physics being understood, new insights are needed to provide the data needed to solve many real-world NDE problems, to understand and measure early

  4. A method of background noise cancellation for SQUID applications

    International Nuclear Information System (INIS)

    He, D F; Yoshizawa, M

    2003-01-01

    When superconducting quantum inference devices (SQUIDs) operate in low-cost shielding or unshielded environments, the environmental background noise should be reduced to increase the signal-to-noise ratio. In this paper we present a background noise cancellation method based on a spectral subtraction algorithm. We first measure the background noise and estimate the noise spectrum using fast Fourier transform (FFT), then we subtract the spectrum of background noise from that of the observed noisy signal and the signal can be reconstructed by inverse FFT of the subtracted spectrum. With this method, the background noise, especially stationary inferences, can be suppressed well and the signal-to-noise ratio can be increased. Using high-T C radio-frequency SQUID gradiometer and magnetometer, we have measured the magnetic field produced by a watch, which was placed 35 cm under a SQUID. After noise cancellation, the signal-to-noise ratio could be greatly increased. We also used this method to eliminate the vibration noise of a cryocooler SQUID

  5. Cycle Design of Reverse Brayton Cryocooler for HTS Cable Cooling Using Exergy Analysis

    Science.gov (United States)

    Gupta, Sudeep Kumar; Ghosh, Parthasarathi

    2017-02-01

    The reliability and price of cryogenic refrigeration play an important role in the successful commercialization of High Temperature Superconducting (HTS) cables. For cooling HTS cable, sub-cooled liquid nitrogen (LN2) circulation system is used. One of the options to maintain LN2 in its sub-cooled state is by providing refrigeration with the help of Reverse Brayton Cryo-cooler (RBC). The refrigeration requirement is 10 kW for continuously sub-cooling LN2 from 72 K to 65 K for cooling 1 km length of HTS cable [1]. In this paper, a parametric evaluation of RBC for sub-cooling LN2 has been performed using helium as a process fluid. Exergy approach has been adopted for this analysis. A commercial process simulator, Aspen HYSYS® V8.6 has been used for this purpose. The critical components have been identified and their exergy destruction and exergy efficiency have been obtained for a given heat load condition.

  6. Scanning SQUID susceptometers with sub-micron spatial resolution

    Energy Technology Data Exchange (ETDEWEB)

    Kirtley, John R., E-mail: jkirtley@stanford.edu; Rosenberg, Aaron J.; Palmstrom, Johanna C.; Holland, Connor M.; Moler, Kathryn A. [Department of Applied Physics, Stanford University, Stanford, California 94305-4045 (United States); Paulius, Lisa [Department of Physics, Western Michigan University, Kalamazoo, Michigan 49008-5252 (United States); Spanton, Eric M. [Department of Physics, Stanford University, Stanford, California 94305-4045 (United States); Schiessl, Daniel [Attocube Systems AG, Königinstraße 11A, 80539 Munich (Germany); Jermain, Colin L.; Gibbons, Jonathan [Department of Physics, Cornell University, Cornell, Ithaca, New York 14853 (United States); Fung, Y.-K.K.; Gibson, Gerald W. [IBM Research Division, T. J. Watson Research Center, Yorktown Heights, New York 10598 (United States); Huber, Martin E. [Department of Physics, University of Colorado Denver, Denver, Colorado 80217-3364 (United States); Ralph, Daniel C. [Department of Physics, Cornell University, Cornell, Ithaca, New York 14853 (United States); Kavli Institute at Cornell, Ithaca, New York 14853 (United States); Ketchen, Mark B. [OcteVue, Hadley, Massachusetts 01035 (United States)

    2016-09-15

    Superconducting QUantum Interference Device (SQUID) microscopy has excellent magnetic field sensitivity, but suffers from modest spatial resolution when compared with other scanning probes. This spatial resolution is determined by both the size of the field sensitive area and the spacing between this area and the sample surface. In this paper we describe scanning SQUID susceptometers that achieve sub-micron spatial resolution while retaining a white noise floor flux sensitivity of ≈2μΦ{sub 0}/Hz{sup 1/2}. This high spatial resolution is accomplished by deep sub-micron feature sizes, well shielded pickup loops fabricated using a planarized process, and a deep etch step that minimizes the spacing between the sample surface and the SQUID pickup loop. We describe the design, modeling, fabrication, and testing of these sensors. Although sub-micron spatial resolution has been achieved previously in scanning SQUID sensors, our sensors not only achieve high spatial resolution but also have integrated modulation coils for flux feedback, integrated field coils for susceptibility measurements, and batch processing. They are therefore a generally applicable tool for imaging sample magnetization, currents, and susceptibilities with higher spatial resolution than previous susceptometers.

  7. Scanning SQUID susceptometers with sub-micron spatial resolution

    International Nuclear Information System (INIS)

    Kirtley, John R.; Rosenberg, Aaron J.; Palmstrom, Johanna C.; Holland, Connor M.; Moler, Kathryn A.; Paulius, Lisa; Spanton, Eric M.; Schiessl, Daniel; Jermain, Colin L.; Gibbons, Jonathan; Fung, Y.-K.K.; Gibson, Gerald W.; Huber, Martin E.; Ralph, Daniel C.; Ketchen, Mark B.

    2016-01-01

    Superconducting QUantum Interference Device (SQUID) microscopy has excellent magnetic field sensitivity, but suffers from modest spatial resolution when compared with other scanning probes. This spatial resolution is determined by both the size of the field sensitive area and the spacing between this area and the sample surface. In this paper we describe scanning SQUID susceptometers that achieve sub-micron spatial resolution while retaining a white noise floor flux sensitivity of ≈2μΦ_0/Hz"1"/"2. This high spatial resolution is accomplished by deep sub-micron feature sizes, well shielded pickup loops fabricated using a planarized process, and a deep etch step that minimizes the spacing between the sample surface and the SQUID pickup loop. We describe the design, modeling, fabrication, and testing of these sensors. Although sub-micron spatial resolution has been achieved previously in scanning SQUID sensors, our sensors not only achieve high spatial resolution but also have integrated modulation coils for flux feedback, integrated field coils for susceptibility measurements, and batch processing. They are therefore a generally applicable tool for imaging sample magnetization, currents, and susceptibilities with higher spatial resolution than previous susceptometers.

  8. Plan for SQUID microscope at ASRC: Vision, purposes and the present status

    International Nuclear Information System (INIS)

    Kadowaki, K.; Kakeya, I.; Suzuki, J.; Hata, Y.; Hojyo, K

    2001-01-01

    A new research plan to develop SQUID microscope and apply it to advanced science and technology research was started in the year of 2000 at the Advanced Science Research Center (ASRC) of JAERI (Japan Atomic Energy Research Institute). This plan was made to develop 'research of ultrafine magnetic structures with magnetic microscope' and is scheduled to continue five years. Principle of SQUID magnetic microscope is to observe changes of magnetic field in microscopic space using SQUID element as the magnetic probe. At present this type of instrument is fabricated by Seiko Instruments Inc. in Japan and is commercially available. Therefore, this plan is being promoted in collaboration with Seiko Instruments Inc. One of the main issues of the present plan is to raise the spatial resolution to the extremity. As of magnetic microscopes, 'magnetic force microscope' and 'scanning Hall probe microscope' also exist. They have different characteristics of their own. The present plan needs challenging technical developments in various fields. Supposed the spatial resolution be made very high, for example, by making very fine SQUID loop with ultrafine processing, critical technologies like sensitivity, electronics, quantum size effect and so on are to be solved at the same time. Characteristics of the existing instrument are being examined from various aspects. At present, the following three issues are taken up and being studied. (1) High resolution and related technical developments. (2) High sensitivity. (3) High performance of cooling system. Among them, the high resolution is the most serious problem. Completely new design of the SQUID system may be needed. By using the existing instrument, magnetic fluxes trapped on YBCO films are observed and the image quality is being examined. Some of the issues which are considered to be taken up now are listed as follows. (1) Magnetic domain structures on thin film magnetic materials. (2) Observation of structures of Josephson magnetic

  9. Reliably detectable flaw size for NDE methods that use calibration

    Science.gov (United States)

    Koshti, Ajay M.

    2017-04-01

    Probability of detection (POD) analysis is used in assessing reliably detectable flaw size in nondestructive evaluation (NDE). MIL-HDBK-1823 and associated mh18232 POD software gives most common methods of POD analysis. In this paper, POD analysis is applied to an NDE method, such as eddy current testing, where calibration is used. NDE calibration standards have known size artificial flaws such as electro-discharge machined (EDM) notches and flat bottom hole (FBH) reflectors which are used to set instrument sensitivity for detection of real flaws. Real flaws such as cracks and crack-like flaws are desired to be detected using these NDE methods. A reliably detectable crack size is required for safe life analysis of fracture critical parts. Therefore, it is important to correlate signal responses from real flaws with signal responses form artificial flaws used in calibration process to determine reliably detectable flaw size.

  10. The middle ground of the NDE R and D spectrum

    International Nuclear Information System (INIS)

    Burte, H.M.; Chimenti, D.E.; Thompson, D.O.; Thompson, R.B.

    1983-01-01

    This keynote talk attempts to call attention to the interdisciplinary nature of NDE (nondestructive evaluation) science and technology and introduce some approaches for fostering R and D in such a situation. The objectives of DARPA, the Air Force core program for developing a science base for NDE are described. Finally, several exploratory development programs are investigated. The needs addressed by NDE include performance demands, safety, conservation, productivity with quality, and minimization of life cycle costs. The science base for electromagnetic techniques includes eddy-current flaw interactions, inversion techniques, and probe figures-of-merit. The problem of inspection reliability is addressed, and an accept-reject methodology schematicized. A methodology for approaching the middle ground of the NDE R and D spectrum is outlined. Finally, future possibilities such as the characterization of flaws in ceramics, transducer understanding, new electromagnetic probes, and thermal wave imaging are also discussed

  11. Correlation between fluxgate and SQUID magnetometer data sets for geomagnetic storms

    Directory of Open Access Journals (Sweden)

    Matladi Thabang

    2014-01-01

    Full Text Available There has always been a need to monitor the near Earth's magnetic field, as this monitoring provides understanding and possible predictions of Space Weather events such as geomagnetic storms. Conventional magnetometers such as fluxgates have been used for decades for Space Weather research. The use of highly sensitive magnetometers such as Superconducting QUantum Interference Devices (SQUIDs, promise to give more insight into Space Weather. SQUIDs are relatively recent types of magnetometers that exploit the superconductive effects of flux quantization and Josephson tunneling to measure magnetic flux. SQUIDs have a very broad bandwidth compared to most conventional magnetometers and can measure magnetic flux as low as a few femtotesla. Since SQUIDs have never been used in Space Weather research, unshielded, it is necessary to investigate if they can be reliable Space Weather instruments. The validation is performed by comparing the frequency content of the SQUID and fluxgate magnetometers, as reported by Phiri.

  12. Noise characteristics of a dc SQUID with a resistively shunted inductance

    International Nuclear Information System (INIS)

    Enpuku, K.; Muta, T.; Yoshida, K.; Irie, F.

    1985-01-01

    Noise characteristics of a dc SQUID with an inductance shunted by a damping resistance are studied numerically. It is shown that the damping resistance improves considerably the resolution of the SQUID in the case of large β, where β = 2LI 0 /Phi 0 , I 0 is a critical current, L is a loop inductance and Phi 0 is the flux quantum. The energy resolutions for β = 4 and β = 10 are only about 2 and 4 times larger than that for β = 1, respectively. Furthermore, the ranges of both the bias current and the external flux, where good resolution is obtained, become very wide compared with the conventional SQUID. Therefore, the SQUID with the damping resistance can be used for large β (or L) without the significant degradation of the resolution, and will much improve the coupling properties between the SQUID and the input circuitry. The numerical simulation results are also compared with analytical ones, and a reasonable agreement is obtained

  13. RF SQUID in the nonhysteretic regime with k2Ql>1

    International Nuclear Information System (INIS)

    Dmitrenko, I.M.; Tsoi, G.M.; Shnyrkov, V.I.; Kartsovnik, V.V.

    1982-01-01

    Experimental measurements of current-voltage, current-phase, amplitude-frequency, phase-frequency, and signal characteristics of an rf SQUID operating at a frequency of 30 MHz in the nonhysteretic regime (1 = 2πL 0 I 0 /phi/sub o/ 2 Ql>1. Here I 0 is the critical current of the weak link, L 0 is the SQUID ring inductance, k is the coefficient of coupling of the SQUID ring to a resonant tank circuit of quality Q, and phi 0 is the magnetic flux quantum. A numerical analysis of the above characteristics for all relevant parameter values close to those occurring under experimental conditions was performed for qualitative comparison with theory. The main difference from the traditional nonhysteretic regime of SQUID operation (k 2 Q1 12 V/Wb for the single-valued region of the signal characteristics. The results suggest that considerable improvement of rf SQUID resolution is possible in the regime k 2 Ql>1

  14. Electrical performance analysis of HTS synchronous motor based on 3D FEM

    International Nuclear Information System (INIS)

    Baik, S.K.; Kwon, Y.K.; Kim, H.M.; Lee, J.D.; Kim, Y.C.; Park, G.S.

    2010-01-01

    A 1-MW class superconducting motor with High-Temperature Superconducting (HTS) field coil is analyzed and tested. This machine is a prototype to make sure applicability aimed at generator and industrial motor applications such as blowers, pumps and compressors installed in large plants. This machine has the HTS field coil made of Bi-2223 HTS wire and the conventional copper armature (stator) coils cooled by water. The 1-MW class HTS motor is analyzed by 3D electromagnetic Finite Element Method (FEM) to get magnetic field distribution, self and mutual inductance, and so forth. Especially excitation voltage (Back EMF) is estimated by using the mutual inductance between armature and field coils and compared with experimental result. Open and short circuit tests were conducted in generator mode while a 1.1-MW rated induction machine was rotating the HTS machine. Electrical parameters such as mutual inductance and synchronous inductance are deduced from these tests and also compared with the analysis results from FEM.

  15. Influence of the ramp angle on levitation characteristics of HTS maglev

    International Nuclear Information System (INIS)

    He Qingyong; Wang Jiasu; Zhang Longcai; Wang Suyu; Pan Siting

    2008-01-01

    The gradeability is one of the advantages of the high-temperature superconducting (HTS) maglev vehicle, and it is relative to the levitation characteristic of the maglev system on the ramp. The influence of the ramp angle on the levitation characteristics of the HTS maglev model was investigated. Some levitation characteristic parameters on the uphill guideway with different ramp angles were studied by the equivalent experiment, such as the levitation force, the levitation gap, the levitation stiffness and the guidance force. Compared with the experimental results on the horizontal guideway, it was found that the levitation gap increased, but the levitation force and the levitation stiffness decreased. The levitation gap and the levitation stiffness are considered as the main maglev characteristic parameters needed to be taken into account

  16. Development of the cryo-rotary joint for a HTS synchronous motor with Gd-bulk HTS field-pole magnets

    International Nuclear Information System (INIS)

    Miki, M; Felder, B; Tsuzuki, K; Izumi, M; Hayakawa, H

    2010-01-01

    We have studied a prototype of an axial-gap type synchronous motor with Gd-bulk HTS field-pole magnets since 2001. At the liquid nitrogen temperature, these bulks have trapped over 1 T inside the motor after being applied the pulsed field magnetization method. Increasing the flux of the field poles is the most straightforward way of improving the output power of the motor. Cooling down the bulk HTS magnets below the liquid nitrogen temperature provides an effective alternative to increase the magnetic flux trapping. In 2007, we exchanged the cryogen from liquid nitrogen to condensed neon. The key technology of this challenge is a rotary joint, introducing a fluid cryogen into the rotating body in the motor from the static reservoir. We have successfully developed a compact rotary joint which is smaller and lighter than the existent one (1/10 volume, 1/3 length and 1/12 weight). The present joint was manufactured and evaluated with liquid nitrogen and condensed neon. We presume a total heat loss of this rotary joint of less than 10 watts. Successful cooling and rotating tests of the bulk-HTS motor with this novel rotary joint are conducted.

  17. Development of the cryo-rotary joint for a HTS synchronous motor with Gd-bulk HTS field-pole magnets

    Energy Technology Data Exchange (ETDEWEB)

    Miki, M; Felder, B; Tsuzuki, K; Izumi, M [Department of Marine Electronics and Mechanical Engineering, Tokyo University of Marine Science and Technology, 2-1-6, Etchu-jima, Koto-ku, Tokyo 135-8533 (Japan); Hayakawa, H, E-mail: d082025@kaiyodai.ac.j [Kitano Seiki Co. Ltd., 7-17-3, Chuo, Ohta-ku, Tokyo 143-0024 (Japan)

    2010-06-01

    We have studied a prototype of an axial-gap type synchronous motor with Gd-bulk HTS field-pole magnets since 2001. At the liquid nitrogen temperature, these bulks have trapped over 1 T inside the motor after being applied the pulsed field magnetization method. Increasing the flux of the field poles is the most straightforward way of improving the output power of the motor. Cooling down the bulk HTS magnets below the liquid nitrogen temperature provides an effective alternative to increase the magnetic flux trapping. In 2007, we exchanged the cryogen from liquid nitrogen to condensed neon. The key technology of this challenge is a rotary joint, introducing a fluid cryogen into the rotating body in the motor from the static reservoir. We have successfully developed a compact rotary joint which is smaller and lighter than the existent one (1/10 volume, 1/3 length and 1/12 weight). The present joint was manufactured and evaluated with liquid nitrogen and condensed neon. We presume a total heat loss of this rotary joint of less than 10 watts. Successful cooling and rotating tests of the bulk-HTS motor with this novel rotary joint are conducted.

  18. Trends in NDE science and technology: proceedings of the fourteenth world conference on NDT. V. 1

    International Nuclear Information System (INIS)

    Krishnadas Nair, C.G.; Baldev Raj; Murthy, C.R.L.; Jayakumar, T.

    1996-01-01

    The multi volume proceedings of the 14th World Conference on Nondestructive Testing (NDT) cover the applications of Nondestructive Evaluation (NDE) in a wide range of industries, viz. aerospace, chemical, defence, manufacturing, nuclear etc. and for different materials. The major topics covered under it are NDE in nuclear industry, NDE of tubes and bars, non destructive evaluation of composites, NDE of concrete, non destructive evaluation of stresses, NDE of defects, condition monitoring, vibration monitoring, life prediction and NDE for medical applications. Papers relevant to INIS from this volume are indexed separately

  19. Trends in NDE science and technology: proceedings of the fourteenth world conference on NDT. V. 3

    International Nuclear Information System (INIS)

    Krishnadas Nair, C.G.; Baldev Raj; Murthy, C.R.L.; Jayakumar, T.

    1996-01-01

    The multi volume proceedings of the 14th World Conference on Nondestructive Testing (NDT) cover the applications of Non destructive Evaluation (NDE) in a wide range of industries, viz. aerospace, chemical, defence, manufacturing, nuclear etc. and for different materials. The major topics covered under it are NDE in nuclear industry, NDE of tubes and bars, non destructive evaluation of composites, NDE of concrete, non destructive evaluation of stresses, NDE of defects, condition monitoring, vibration monitoring, life prediction and NDE for medical applications. Papers relevant to INIS from this volume are indexed separately

  20. Trends in NDE science and technology: proceedings of the fourteenth world conference on NDT. V. 2

    International Nuclear Information System (INIS)

    Krishnadas Nair, C.G.; Baldev Raj; Murthy, C.R.L.; Jayakumar, T.

    1996-01-01

    The multi volume proceedings of the 14th World Conference on Nondestructive Testing (NDT) cover the applications of Nondestructive Evaluation (NDE) in a wide range of industries, viz. aerospace, chemical, defence, manufacturing, nuclear etc. and for different materials. The major topics covered under it are NDE in nuclear industry, NDE of tubes and bars, non destructive evaluation of composites, NDE of concrete, non destructive evaluation of stresses, NDE of defects, condition monitoring, vibration monitoring, life prediction and NDE for medical applications. Papers relevant to INIS from this volume are indexed separately

  1. Trends in NDE science and technology: proceedings of the fourteenth world conference on NDT. V. 4

    International Nuclear Information System (INIS)

    Krishnadas Nair, C.G.; Baldev Raj; Murthy, C.R.L.; Jayakumar, T.

    1996-01-01

    The multi volume proceedings of the 14th World Conference on Nondestructive Testing (NDT) cover the applications of Nondestructive Evaluation (NDE) in a wide range of industries, viz. aerospace, chemical, defence, manufacturing, nuclear etc. and for different materials. The major topics covered under it are NDE in nuclear industry, NDE of tubes and bars, non destructive evaluation of composites, NDE of concrete, non destructive evaluation of stresses, NDE of defects, condition monitoring, vibration monitoring, life prediction and NDE for medical applications. Papers relevant to INIS from this volume are indexed separately

  2. Trends in NDE science and technology: proceedings of the fourteenth world conference on NDT V. 5

    International Nuclear Information System (INIS)

    Krishnadas Nair, C.J.; Baldev Raj; Murthy, C.R.L.; Jayakumar, T.

    1996-01-01

    The multi volume proceedings of the 14th World Conference on Nondestructive Testing (NDT) cover the applications of Nondestructive Evaluation (NDE) in a wide range of industries, viz. aerospace, chemical, defence, manufacturing, nuclear etc. and for different materials. The major topics covered under it are NDE in nuclear industry, NDE of tubes and bars, non destructive evaluation of composites, NDE of concrete, non destructive evaluation of stresses, NDE of defects, condition monitoring, vibration monitoring, life prediction and NDE for medical applications. Papers relevant to INIS from this volume are indexed separately

  3. Analysis of Squid Net Fisheries Business Production

    Directory of Open Access Journals (Sweden)

    Herna Octivia Damayanti

    2017-03-01

    Full Text Available Squid net is one of alternatives to replace trawl net in Pati regency. The purposes of the research are 1 to determine the influence factors, 2 to analyze the return to scale, 3 to analyze cost and return.The research location in Juwana Subdistrict particularly Bakaran Kulon, Dukutalit, Bajomulyo and Bendar Villages. The research conducted on October 2015 to June 2016. The number of final samples was 36, while the formulation of management strategies used 15 samples by snowball sampling. Data analysis techniques used 1 Cobb Douglas production function, 2 revenue-cost ratio analysis. The results of the research are 1 significant inputs for production factor are long trip, Solar fuel, the number of crew and lights. 2 the return to scale of squid net bussiness in Juwana subdistrict Pati regency is -0.231 means decreasing to scale. 3 the R/C ratio of scenario II more profitable for squid net crews than  scenario I.

  4. Magnet design with 100-kA HTS STARS conductors for the helical fusion reactor

    Science.gov (United States)

    Yanagi, N.; Terazaki, Y.; Ito, S.; Tamura, H.; Hamaguchi, S.; Mito, T.; Hashizume, H.; Sagara, A.

    2016-12-01

    The high-temperature superconducting (HTS) option is employed for the conceptual design of the LHD-type helical fusion reactor FFHR-d1. The 100-kA-class STARS (Stacked Tapes Assembled in Rigid Structure) conductor is used for the magnet system including the continuously wound helical coils. Protection of the magnet system in case of a quench is a crucial issue and the hot-spot temperature during an emergency discharge is estimated based on the zero-dimensional and one-dimensional analyses. The number of division of the coil winding package is examined to limit the voltage generation. For cooling the HTS magnet, helium gas flow is considered and its feasibility is examined by simple analysis as a first step.

  5. 1 MVA HTS-2G Generator for Wind Turbines

    Science.gov (United States)

    Kovalev, K. L.; Poltavets, V. N.; Ilyasov, R. I.; Verzhbitsky, L. G.; Kozub, S. S.

    2017-10-01

    The calculation, design simulations and design performance of 1 MVA HTS-2G (second-generation high-temperature superconductor) Generator for Wind Turbines were done in 2013-2014 [1]. The results of manufacturing and testing of 1 MVA generator are presented in the article. HTS-2G field coils for the rotor were redesigned, fabricated and tested. The tests have shown critical current of the coils, 41-45 A (self field within the ferromagnetic core, T = 77 K), which corresponds to the current of short samples at self field. Application of the copper inner frame on the pole has improved internal cooling conditions of HTS coil windings and reduced the magnetic field in the area, thereby increased the critical current value. The original construction of the rotor with a rotating cryostat was developed, which decreases the thermal in-flow to the rotor. The stator of 1 MW HTS-2G generator has been manufactured. In order to improve the specific weight of the generator, the wave (harmonic drive) multiplier was used, which provides increasing RPM from 15 RPM up to 600 RPM. The total mass of the multiplier and generator is significantly smaller compared to traditional direct-drive wind turbines generators [2-7]. Parameters of the multiplier and generator were chosen based on the actual parameters of wind turbines, namely: 15 RPM, power is 1 MVA. The final test of the assembled synchronous generator with HTS-2G field coils for Wind Turbines with output power 1 MVA was completed during 2015.

  6. Sensitive quench detection of the HTS coil using a co-winding coil

    International Nuclear Information System (INIS)

    Takagi, Tomohiro; Ariyama, Takahiro; Takao, Tomoaki; Tsukamoto, Osami

    2017-01-01

    The authors have studied the co-winding coil method (CW method) using the co-wound coil electrically insulated from the HTS coil. In this method, the quench is detected by the voltage difference between the coil of the HTS tape (HTS coil) and the coil of the normal conductor (CW coil). The voltage induced in the CW coil caused by the change of the magnetic field is almost the same as that in the HTS coil because the coils are magnetically coupled close to each other. Therefore, it is expected that the induced voltage will be canceled with high accuracy and that the resistive voltage in the HTS coil will be detected with greater sensitivity compared to the bridge balance method, which is used commonly. In this study, quench detection applying the CW method is demonstrated using an experimental double-pancake coil. A tape with the copper layer deposited on the polymer substrate was used as the insulated conductor wire to form the CW coil. An additional pancake coil was used to expose the experimental double-pancake coil to the external magnetic field asymmetrically. It was shown that the CW method can detect the resistive voltage with greater sensitivity even when the HTS coil was exposed to the changing asymmetric external magnetic field. (author)

  7. Integration of HTS Cables in the Future Grid of the Netherlands

    Science.gov (United States)

    Zuijderduin, R.; Chevtchenko, O.; Smit, J. J.; Aanhaanen, G.; Melnik, I.; Geschiere, A.

    Due to increasing power demand, the electricity grid of the Netherlands is changing. The future transmission grid will obtain electrical power generated by decentralized renewable sources, together with large scale generation units located at the coastal region. In this way electrical power has to be distributed and transmitted over longer distances from generation to end user. Potential grid issues like: amount of distributed power, grid stability and electrical loss dissipation merit particular attention. High temperature superconductors (HTS) can play an important role in solving these grid problems. Advantages to integrate HTS components at transmission voltages are numerous: more transmittable power together with less emissions, intrinsic fault current limiting capability, lower ac loss, better control of power flow, reduced footprint, less magnetic field emissions, etc. The main obstacle at present is the relatively high price of HTS conductor. However as the price goes down, initial market penetration of several HTS components (e.g.: cables, fault current limiters) is expected by year 2015. In the full paper we present selected ways to integrate EHV AC HTS cables depending on a particular future grid scenario in the Netherlands.

  8. Ocean acidification responses in paralarval squid swimming behavior using a novel 3D tracking system

    KAUST Repository

    Zakroff, Casey J.

    2017-08-22

    Chronic embryonic exposure to ocean acidification (OA) has been shown to degrade the aragonitic statolith of paralarval squid, Doryteuthis pealeii, a key structure for their swimming behavior. This study examined if day-of-hatching paralarval D. pealeii from eggs reared under chronic OA demonstrated measurable impairments to swimming activity and control. This required the development of a novel, cost-effective, and robust method for 3D motion tracking and analysis. Squid eggs were reared in pCO2 levels in a dose-dependent manner ranging from 400 to 2200 ppm. Initial 2D experiments showed paralarvae in higher acidification environments spent more time at depth. In 3D experiments, velocity, particularly positive and negative vertical velocities, significantly decreased from 400 to 1000 ppm pCO2, but showed non-significant decreases at higher concentrations. Activity and horizontal velocity decreased linearly with increasing pCO2, indicating a subtle impact to paralarval energetics. Patterns may have been obscured by notable individual variability in the paralarvae. Responses were also seen to vary between trials on cohort or potentially annual scales. Overall, paralarval swimming appeared resilient to OA, with effects being slight. The newly developed 3D tracking system provides a powerful and accessible method for future studies to explore similar questions in the larvae of aquatic taxa.

  9. HTS dual-band bandpass filters using stub-loaded hair-pin resonators for mobile communication systems

    Energy Technology Data Exchange (ETDEWEB)

    Sekiya, N., E-mail: nsekiya@yamanashi.ac.jp; Sugiyama, S.

    2014-09-15

    Highlights: • We have developed a HTS five-pole dual-band bandpass filter using stub-loaded hair-pin resonators. • The proposed dual-band BPF can independently control of the center frequency. • Flexibly adjustment of the bandwidth can be achieved by the H-shaped waveguide. • The proposed BPF is evaluated by simulation and measurement with good agreement. - Abstract: A HTS dual-band bandpass filter is developed to obtain sharp-cut off characteristics for mobile communication systems. The filter is composed of five stub-loaded hair-pin resonators with H-shaped waveguides between them. The main advantage of the proposed filter is to allow independent control of the center frequency of the first and second bands. The bandwidths can be flexibly adjusted using the H-shaped waveguide. An electromagnetic simulator was used to design and analyze the filter, which have a 3.5-GHz center frequency and a 70-MHz (2%) bandwidth for the first band and a 5.0-GHz center frequency and a 100-MHz (2%) bandwidth for the second band. The filter was fabricated using YBa{sub 2}Cu{sub 3}O{sub y} thin film on an Al{sub 2}O{sub 3} substrate. Ground plane was fabricated using Au thin film. The measured frequency responses of the filter tally well with the simulated ones.

  10. Low Friction Cryostat for HTS Power Cable of Dutch Project

    NARCIS (Netherlands)

    Chevtchenko, O.; Zuijderduin, R.; Smit, J.; Willen, D.; Lentge, H.; Thidemann, C.; Traeholt, C.

    2012-01-01

    Particulars of 6 km long HTS AC power cable for Amsterdam project are: a cable has to fit in an annulus of 160 mm, with only two cooling stations at the cable ends [1]. Application of existing solutions for HTS cables would result in excessively high coolant pressure drop in the cable, possibly

  11. SQUIDs as detectors in a new experiment to measure the neutron electric dipole moment

    International Nuclear Information System (INIS)

    Espy, M.A.; Cooper, M.; Lamoreaux, S.; Kraus, R.H. Jr.; Matlachov, A.; Ruminer, P.

    1998-01-01

    A new experiment has been proposed at Los Alamos National Laboratory to measure the neutron electric dipole moment (EDM) to 4x10 -28 ecm, a factor of 250 times better than the current experimental limit. Such a measure of the neutron EDM would challenge the theories of supersymmetry and time reversal violation as the origin of the observed cosmological asymmetry in the ratio of baryons to antibaryons. One possible design for this new experiment includes the use of LTC SQUIDs coupled to large (∼100 cm 2 ) pick-up coils to measure the precision frequency of the spin-polarized 3 He atoms that act as polarizer, spin analyzer, detector, and magnetometer for the ultra-cold neutrons used in the experiment. The method of directly measuring the 3 He precession signal eliminates the need for very uniform magnetic fields (a major source of systematic error in these types of experiments). It is estimated that a flux of ∼2x10 -16 Tm 2 (0.1 Φ 0 ) will be coupled into the pick-up coils. To achieve the required signal-to-noise ratio one must have a flux resolution of dΦ SQ = 2x10 -6 Φ 0 /√Hz at 10 Hz. While this is close to the sensitivity available in commercial devices, the effects of coupling to such a large pick-up coil and flux noise from other sources in the experiment still need to be understood. To determine the feasibility of using SQUIDs in such an application the authors designed and built a superconducting test cell, which simulates major features of the proposed EDM experiment, and they developed a two-SQUID readout system that will reduce SQUID noise in the experiment. They present an overview of the EDM experiment with SQUIDs, estimations of required SQUID parameters and experimental considerations. The authors also present the measured performance of a single magnetometer in the test cell as well as the performance of the two SQUID readout technique

  12. Effect of thermal processing and canning on cadmium and lead levels in California market squid: the role of metallothioneins.

    Science.gov (United States)

    Galitsopoulou, A; Georgantelis, D; Kontominas, M G

    2013-01-01

    The effects of two common seafood preparation practices (roasting and industrial canning) on the heavy metal content--cadmium (Cd) and lead (Pb)--of various tissues of California market squid were studied. Emphasis was placed on the role of metallothioneins (MT) in Cd and Pb behaviour during processing. Cd and Pb analysis was conducted by a Zeeman GTA-AAS atomic absorption spectrometry system; MT analysis was performed by a mercury saturation assay. Results showed that Cd levels in the mantle and whole squid were considerably affected by both processing practices, reaching a 240% increase in mantle and a 40% increase in whole squid. Interestingly, Cd behaviour was associated with MT changes during squid processing. On the other hand, Pb content was not affected from either processing or associated with MT content in the raw or processed squid. Therefore, processing operations may affect Cd and Pb content differently due to the specific metal bioaccumulation and chemical features of each heavy metal type.

  13. Low-frequency nuclear quadrupole resonance with a dc SQUID

    International Nuclear Information System (INIS)

    Chang, J.W.

    1991-07-01

    Conventional pure nuclear quadrupole resonance (NQR) is a technique well suited for the study of very large quadrupolar interactions. Numerous nuclear magnetic resonance (NMR) techniques have been developed for the study of smaller quadrupolar interactions. However, there are many nuclei which have quadrupolar interactions of intermediate strength. Quadrupolar interactions in this region have traditionally been difficult or unfeasible to detect. This work describes the development and application of a SQUID NQR technique which is capable of measuring intermediate strength quadrupolar interactions, in the range of a few hundred kilohertz to several megahertz. In this technique, a dc SQUID (Superconducting QUantum Interference Device) is used to monitor the longitudinal sample magnetization, as opposed to the transverse magnetization, as a rf field is swept in frequency. This allows the detection of low-frequency nuclear quadrupole resonances over a very wide frequency range with high sensitivity. The theory of this NQR technique is discussed and a description of the dc SQUID system is given. In the following chapters, the spectrometer is discussed along with its application to the study of samples containing half-odd-integer spin quadrupolar nuclei, in particular boron-11 and aluminum-27. The feasibility of applying this NQR technique in the study of samples containing integer spin nuclei is discussed in the last chapter. 140 refs., 46 figs., 6 tabs

  14. Fabrication and characterization of hybrid Nb-YBCO dc SQUIDs

    International Nuclear Information System (INIS)

    Frack, E.K.; Drake, R.E.; Patt, R.; Radparvar, M.

    1991-01-01

    This paper reports on the fabrication of hybrid low T c /high T c dc SQUIDs of two flavors. The first kind utilizes niobium tunnel junctions and a YBCO film strip as the most inductive portion of the SQUID loop. This configuration allows a direct measurement of the inductance of the YBCO microstrip from which the effective penetration depth can be calculated. The successful fabrication of these SQUIDs has required 1. superconducting Nb-to-YBCO contacts, 2. deposition and patterning of an SiO 2 insulation layer over YBCO, and 3. selective patterning of niobium and SiO 2 relative to YBCO. All these process steps are pertinent to the eventual use of YBCO thin films in electronic devices

  15. Integrated de SQUID magnetometer with high dV/dB

    International Nuclear Information System (INIS)

    Drung, D.; Cantor, R.; Peters, M.; Ryhanen, T.; Kochi, H.

    1991-01-01

    This paper presents a directly coupled dc SQUID magnetometer with very simple feedback electronics. The magnetometer has been integrated on a 7.2 x 7.2 mm 2 chip and fabricated using a four-level Nb/Si x N v /Nb process. Eight pick-up loops are connected in parallel to directly form the SQUID inductance of about 0.4 nH which leads to a high sensitivity B/Φ = 0.47 nT/Φ. An Additional Positive Feedback (APF) circuit on the magnetometer chip has been used to increase the gradient of the V-μ characteristic to dV/dΦ ≅ 300 μV/Φ 0 at the SQUID operating point. The resulting gradient of the transfer function of dV/dB ≅ 640 μV/nT makes it possible to directly read out the SQUID without helium temperature impedance matching circuits or flux modulation techniques

  16. Loss analysis of a 1 MW class HTS synchronous motor

    International Nuclear Information System (INIS)

    Baik, S K; Kwon, Y K; Kim, H M; Lee, J D; Kim, Y C; Park, H J; Kwon, W S; Park, G S

    2009-01-01

    The HTS (High-Temperature Superconducting) synchronous motor has advantages over the conventional synchronous motor such as smaller size and higher efficiency. Higher efficiency is due to smaller loss than the conventional motor, so it is important to do loss analysis in order to develop a machine with higher efficiency. This paper deals with machine losses those are dissipated in each part of a HTS synchronous motor. These losses are analyzed theoretically and compared with loss data obtained from experimental results of a 1 MW class HTS synchronous motor. Each machine loss is measured based on IEEE 115 standard and the results are analyzed and considered based on the manufacturing of the test machine.

  17. AC Application of HTS Conductors in Highly Dynamic Electric Motors

    International Nuclear Information System (INIS)

    Oswald, B; Best, K-J; Setzer, M; Duffner, E; Soell, M; Gawalek, W; Kovalev, L K

    2006-01-01

    Based on recent investigations we design highly dynamic electric motors up to 400 kW and linear motors up to 120 kN linear force using HTS bulk material and HTS tapes. The introduction of HTS tapes into AC applications in electric motors needs fundamental studies on double pancake coils under transversal magnetic fields. First theoretical and experimental results on AC field distributions in double-pancake-coils and corresponding AC losses will be presented. Based on these results the simulation of the motor performance confirms extremely high power density and efficiency of both types of electric motors. Improved characteristics of rare earth permanent magnets used in our motors at low temperatures give an additional technological benefit

  18. Potential use of stable isotope and fatty acid analyses for traceability of geographic origins of jumbo squid (Dosidicus gigas).

    Science.gov (United States)

    Gong, Yi; Li, Yunkai; Chen, Xinjun; Chen, Ling

    2018-04-15

    Squid is an important seafood resource for Asian and European countries. With the continuous development of processed squid products, an effective traceability system has become increasingly prominent. Here, we attempt to trace the fishery products of the main target species, jumbo squid (Dosidicus gigas), by using biochemical tracers. Carbon and nitrogen isotope ratios (δ 13 C and δ 15 N values) and fatty acid profiles were identified in squid from three harvest locations in the eastern Pacific Ocean by isotope ratio mass spectrometry and gas chromatography/mass spectrometry, respectively. Comparative analysis was used to evaluate the geographic variations in tracers and to identify the suitable discriminatory variables among origins. Significant spatial variations were found in isotopic values and fatty acid profiles in squid muscle tissues, possibly because of different food availability and/or oceanographic conditions that each group experiences at a given location. The stepwise discriminant analysis indicated that δ 15 N, C16:1n7, C17:1n7, C18:2n6, C20:1 and C20:4n6 were effective variables at differentiating origin. Combined use of stable isotope ratios and fatty acid analyses could trace geographic origins of jumbo squid. This study provides an alternative approach for improving authenticity evaluation of commercial squid products. Copyright © 2018 John Wiley & Sons, Ltd.

  19. Step edge Josephson junctions and high temperature superconducting quantum interference device (SQUID) gradiometers

    International Nuclear Information System (INIS)

    Millar, Alasdair J.

    2002-01-01

    This thesis is concerned with the development of Superconducting Quantum Interference Device (SQUID) gradiometers based on the high temperature superconductor YBa 2 Cu 3 O 7-δ (YBCO). A step-edge Josephson junction fabrication process was developed to produce sufficiently steep (>60 deg) step-edges such that junctions exhibited RSJ-like current-voltage characteristics. The mean I C R N product of a sample of twenty step-edge junctions was 130μV. Step-edge dc SQUIDs with inductances between 67pH and 114pH were fabricated. Generally the SQUIDs had an intrinsic white flux noise in the 10-30μΦ 0 /√Hz range, with the best device, a 70pH SQUID, exhibiting a white flux noise of 5μΦ 0 /√Hz. Different first-order SQUID gradiometer designs were fabricated from single layers of YBCO. Two single-layer gradiometer (SLG) designs were fabricated on 10x10mm 2 substrates. The best balance and lowest gradient sensitivity measured for these devices were 1/300 and 308fT/cm√Hz (at 1 kHz) respectively. The larger baseline and larger flux capture area of the pick-up loops in a large area SLG design, fabricated on 30x10mm 2 substrates, resulted in significant improvements in the balance and gradient field sensitivity with 1/1000 and 50fT/cm√Hz (at 1kHz) measured respectively. To reduce the uniform field effective area of SLOs and therefore reduce the direct pick-up of environmental field noise when operated unshielded, a novel gradiometric SQUID (G-SQUID) device was developed. Fabricated from a single layer of YBCO, the G-SQUIDs with inductances of 67pH, had small uniform field effective areas of approximately 2μm 2 - more than two orders of magnitude smaller than the uniform field effective areas of conventional narrow linewidth SQUIDs of similar inductance. Two designs of G-SQUID were fabricated on 10x10mm 2 substrates. Due to their small effective areas, when cooled unshielded these devices showed no increase in their white flux noise. The best balance achieved for a G-SQUID

  20. The Effect of Magnetic Field on HTS Leads What Happens when thePower Fails at RAL?

    Energy Technology Data Exchange (ETDEWEB)

    Green, Michael A.

    2007-02-14

    The key to being able to operate the MICE superconducting solenoids on small coolers is the use of high temperature superconducting (HTS) leads between the first stage of the cooler and the magnet, which operates at around 4.2 K. Because MICE magnets are not shielded, all of the MICE magnets have a stray magnetic field in the region where the coolers and the HTS leads are located. The behavior of the HTS leads in a magnetic field depends strongly on the HTS material used for the leads and the temperature of the cooler first stage temperature. The HTS leads can be specified to operate at the maximum current for the magnet. This report shows how the HTS leads can be specified for use the MICE magnets. MICE magnets take from 1.3 hours (the tracker solenoids) to 3.7 hours (the coupling magnet) to charge to the highest projected operating currents. If the power fails, the cooler and the upper ends of the HTS leads warm up. The question is how one can discharge the magnet to protect the HTS leads without quenching the MICE magnets. This report describes a method that one can use to protect the HTS leads in the event of a power failure at the Rutherford Appleton Laboratory (RAL).

  1. HTS Teologiese Studies / Theological Studies

    African Journals Online (AJOL)

    HTS Teologiese Studies/Theological Studies is an acclaimed Open Access journal with broad coverage that promotes multidisciplinary, religious, and biblical aspects of studies in the international theological arena. The journal's publication criteria are based on high ethical standards and the rigor of the methodology and ...

  2. Evaluation of pipe weld NDE indications

    International Nuclear Information System (INIS)

    Brasse, M.

    2007-01-01

    This paper discusses the evaluation of non-destructive examination (NDE) indications in pipe welds. The evaluation procedure is described in a practical engineer's view and examples are also given. (author)

  3. Centrifuge advances using HTS magnetic bearings

    Science.gov (United States)

    Werfel, F. N.; Flögel-Delor, U.; Rothfeld, R.; Wippich, D.; Riedel, T.

    2001-05-01

    Passive magnetic bearings are of increasing technical interest. We performed experiments with centrifugal rotors to analyze gyroscopic forces in terms imbalance, rotor elasticity and damping. Centrifuge rotors need to be operated soft and stable without whirling the sediments. In order to evaluate optimal parameters critical and resonance behaviors are investigated. Eccentricities up 2 mm are safely passed by accelerating test wheels. In a simple model we describe the effect of passing critical rotational speeds. Measurements of bearing properties and wheel performance are presented. We have constructed a first prototype centrifuge designed with a HTS double bearing which operates a titanium rotor safely up to 30 000 rpm. A 15 W Stirling cooler serves cryogenics of the YBCO stators. From the experiments design guidelines for centrifugal applications with HTS bearings are given.

  4. Hot electron effect in the dc SQUID

    International Nuclear Information System (INIS)

    Wellstood, F.C.; Clarke, J.; Urbina, C.

    1989-01-01

    The authors have investigated the temperature dependence of the noise in thin-film dc Superconducting Quantum Interference Devices (SQUIDs) down to 20 mK. The white noise measured in the early versions of our SQUIDs did not decrease as the bath temperature was lowered below 150 mK. They have attributed this saturation to a hot electron effect in the thin-film AuCu resistors shunting the Josephson junctions. A theoretical investigation showed that the temperature of the electrons in the shunts should be given by T/sub e/ = (P/ΣΩ)/sup 1/5/, where P is the power dissipated in the shunts, Ω is the shunt volume, and Σ is a proportionality constant. Experimentally, the authors found Σ=(2.4+-0.6)X10/sup 9/WK/sup -5/m/sup -3/. They have redesigned the shunts, adding large thin-film cooling fins, to increase their volume substantially. This technique has reduced T/sub e/ to about 50 mK, with a corresponding improvement in the sensitivity of the SQUIDs

  5. Performance test of a 1 MW class HTS synchronous motor for industrial application

    International Nuclear Information System (INIS)

    Kwon, Y.K.; Kim, H.M.; Baik, S.K.; Lee, E.Y.; Lee, J.D.; Kim, Y.C.; Lee, S.H.; Hong, J.P.; Jo, Y.S.; Ryu, K.S.

    2008-01-01

    This paper deals with development activities of high temperature superconducting (HTS) synchronous motor at DOOSAN heavy industry and Korea Electrotechnology Research Institute (KERI) in Korea, and is sponsored by DAPAS program which is supported by Korean government. The final aim of the project is realization of HTS motor in the field of industry such as large driving pumps, fans and compressors for utility and industrial environments. At present time, 1 MW HTS motor is developed for the purpose to fully represent the design and manufacturing issues for the larger capacity machine. The number of pole and rotating speed of machine are 2 pole and 3600 rpm. The HTS field coil of the developed motor is cooled by way of neon thermosyphon mechanism and the stator coil is cooled by water through hollow copper conductor. This paper describes status of 1 MW HTS motor development, such as design, fabrication and performance test results, which was conducted at steady state in generator mode and motor mode

  6. Modelling, Construction, and Testing of a Simple HTS Machine Demonstrator

    DEFF Research Database (Denmark)

    Jensen, Bogi Bech; Abrahamsen, Asger Bech

    2011-01-01

    This paper describes the construction, modeling and experimental testing of a high temperature superconducting (HTS) machine prototype employing second generation (2G) coated conductors in the field winding. The prototype is constructed in a simple way, with the purpose of having an inexpensive way...... of validating finite element (FE) simulations and gaining a better understanding of HTS machines. 3D FE simulations of the machine are compared to measured current vs. voltage (IV) curves for the tape on its own. It is validated that this method can be used to predict the critical current of the HTS tape...... installed in the machine. The measured torque as a function of rotor position is also reproduced by the 3D FE model....

  7. Eddy current NDE performance demonstrations using simulation tools

    International Nuclear Information System (INIS)

    Maurice, L.; Costan, V.; Guillot, E.; Thomas, P.

    2013-01-01

    To carry out performance demonstrations of the Eddy-Current NDE processes applied on French nuclear power plants, EDF studies the possibility of using simulation tools as an alternative to measurements on steam generator tube mocks-up. This paper focuses on the strategy led by EDF to assess and use code C armel3D and Civa, on the case of Eddy-Current NDE on wears problem which may appear in the U-shape region of steam generator tubes due to the rubbing of anti-vibration bars.

  8. Directly coupled YBCO dc SQUID magnetometers

    International Nuclear Information System (INIS)

    Petersen, P.R.E.; Shen, Y.Q.; Holst, T.; Larsen, B.H.; Sager, M.P.; Bindslev Hansen, J.

    1999-01-01

    YBa 2 Cu 3 O 7- x magnetometers have been made on 10mmx10mm MgO substrates by directly coupling the magnetometer pick-up loop to a dc SQUID with narrow strip lines. The dc SQUIDs were made with YBa 2 Cu 3 O 7-x step-edge Josephson junctions. The layout of the magnetometer pick-up loop was chosen as a compromise between maximizing the loop effective area and minimizing the loop inductance. The SQUID was designed to have L S ∼100 pH in order to obtain β L =2I 0 L S /Φ 0 approx.= 1 with the single-junction critical current I 0 ∼10 μA. We have made magnetometers with white noise levels down to 55 fT Hz -1/2 and a 1/f knee at 1 Hz (ac biased). Noise measurements were made on a field-cooled magnetometer. The noise measured at 1 Hz when cooled in 'zero field' was 175 fT Hz -1/2 . When cooled in magnetic fields of B = 50 μT and B = 100 μT we measured the noise at 1 Hz to be 430 fT Hz -1 2 and 1.3 pT Hz -1/2 , respectively. (author)

  9. Heat loss analysis-based design of a 12 MW wind power generator module having an HTS flux pump exciter

    International Nuclear Information System (INIS)

    Sung, Hae-Jin; Go, Byeong-Soo; Jiang, Zhenan; Park, Minwon; Yu, In-Keun

    2016-01-01

    Highlights: • A large-scale HTS generator module has been suggested to avoid issues such as a huge vacuum vessel and higher reliability. • The challenging heat loss analysis of a large-scale HTS generator has successfully been performed, enabling the design of an optimal support structure having a total heat loss of 43 W/400 kW. • The results prove the potential of a large-scale superconducting wind-power generator to operate efficiently, and support further development of the concept. - Abstract: The development of an effective high-temperature superconducting (HTS) generator is currently a research focus; however, the reduction of heat loss of a large-scale HTS generator is a challenge. This study deals with a heat loss analysis-based design of a 12 MW wind power generator module having an HTS flux pump exciter. The generator module consists of an HTS rotor of the generator and an HTS flux pump exciter. The specifications of the module were described, and the detailed configuration of the module was illustrated. For the heat loss analysis of the module, the excitation loss of the flux pump exciter, eddy current loss of all of the structures in the module, radiation loss, and conduction loss of an HTS coil supporter were assessed using a 3D finite elements method program. In the case of the conduction loss, different types of the supporters were compared to find out the supporter of the lowest conduction loss in the module. The heat loss analysis results of the module were reflected in the design of the generator module and discussed in detail. The results will be applied to the design of large-scale superconducting generators for wind turbines including a cooling system.

  10. Heat loss analysis-based design of a 12 MW wind power generator module having an HTS flux pump exciter

    Energy Technology Data Exchange (ETDEWEB)

    Sung, Hae-Jin, E-mail: haejin0216@gmail.com [Changwon National University, 20 Changwondaehak-ro, Changwon, 641-773 (Korea, Republic of); Go, Byeong-Soo [Changwon National University, 20 Changwondaehak-ro, Changwon, 641-773 (Korea, Republic of); Jiang, Zhenan [Robinson Research Institute, Victoria University of Wellington, PO Box 33436 (New Zealand); Park, Minwon [Changwon National University, 20 Changwondaehak-ro, Changwon, 641-773 (Korea, Republic of); Yu, In-Keun, E-mail: yuik@changwon.ac.kr [Changwon National University, 20 Changwondaehak-ro, Changwon, 641-773 (Korea, Republic of)

    2016-11-15

    Highlights: • A large-scale HTS generator module has been suggested to avoid issues such as a huge vacuum vessel and higher reliability. • The challenging heat loss analysis of a large-scale HTS generator has successfully been performed, enabling the design of an optimal support structure having a total heat loss of 43 W/400 kW. • The results prove the potential of a large-scale superconducting wind-power generator to operate efficiently, and support further development of the concept. - Abstract: The development of an effective high-temperature superconducting (HTS) generator is currently a research focus; however, the reduction of heat loss of a large-scale HTS generator is a challenge. This study deals with a heat loss analysis-based design of a 12 MW wind power generator module having an HTS flux pump exciter. The generator module consists of an HTS rotor of the generator and an HTS flux pump exciter. The specifications of the module were described, and the detailed configuration of the module was illustrated. For the heat loss analysis of the module, the excitation loss of the flux pump exciter, eddy current loss of all of the structures in the module, radiation loss, and conduction loss of an HTS coil supporter were assessed using a 3D finite elements method program. In the case of the conduction loss, different types of the supporters were compared to find out the supporter of the lowest conduction loss in the module. The heat loss analysis results of the module were reflected in the design of the generator module and discussed in detail. The results will be applied to the design of large-scale superconducting generators for wind turbines including a cooling system.

  11. Development and characterization of magnetic HTS bearings for a 400 kW synchronous HTS motor

    International Nuclear Information System (INIS)

    Kummeth, P; Ries, G; Nick, W; Neumueller, H-W

    2004-01-01

    Promising results of static and dynamic investigations on various journal type test bearings encouraged us to develop a scaled-up HTS bearing, able to carry the HTS rotor of a 400 kW superconducting motor. The stator, a YBCO hollow cylinder of 203 mm inner diameter and 250 mm length, is cooled by liquid nitrogen. Permanent magnet rings with a diameter of 200 mm were mounted on a shaft with alternating polarity. Characterization of the bearing capacity was performed with three different YBCO stators at temperatures between 66 and 86 K in a test set-up. A significant influence of the temperature was found. At a stator temperature of 72 K and a rotation frequency of 25 Hz (corresponding to nominal motor speed) a radial bearing force of 2700 N was measured for the shaft at centre position. Under rotation of the shaft the bearing capacity is reduced. At present our results range within the highest radial bearing capacities reported world-wide

  12. 5 MJ flywheel based on bulk HTS magnetic suspension

    Science.gov (United States)

    Poltavets, V.; Kovalev, K.; Ilyasov, R.; Glazunov, A.; Maevsky, V.; Verzbitsky, L.; Akhmadyshev, V.; Shikov, A.

    2014-05-01

    Nowadays the flywheel energy storage systems (FES) are developed intensively as uninterruptible power supply (UPS) devices for on-land and transport (especially airborne) applications worldwide. This work is devoted to the FES with magnetic suspension on the base of bulk HTS YBCO elements and permanent magnets. The developed FES is intended to be used as UPS in Russian atomic industry in case of an emergency. For the successful design of the FES the following questions should be solved: design of the motor/generator, design of the rotor (flywheel), design of the bearing system, design of the control system and system of power load matching, design of the cooling system. The developed small-scale FES with the stored energy 0.5 MJ was used to solve these basic questions. The elaborated FES consists of the synchronous electric machine with permanent magnets, the solid flywheel with axial magnetic suspension on the base of YBCO bulks and permanent magnets, the system of control and power load matching, and the system of liquid nitrogen cooling. The results of theoretical modeling of different schematics of magnetic suspension and experimental investigations of the constructed FES are presented. The design of the future full-scale FES with the stored energy ~5 MJ and output power up to 100 kW is described. The test results of the flywheel rotor and HTS magnetic suspension of 5 MJ FES are presented. This work is done under support of Rosatom within the frames of Russian Project "Superconducting Industry"

  13. NANO-SQUIDs based on niobium Dayem bridges for nanoscale applications

    Energy Technology Data Exchange (ETDEWEB)

    Granata, C; Esposito, E; Nappi, C; Ruggiero, B; Russo, M [Istituto di Cibernetica ' E. Caianiello' del Consiglio Nazionale delle Ricerche, 80078 Pozzuoli (Napoli) (Italy); Vettoliere, A; Walke, P [Also Universita degli Studi di Napoli ' Federico II' , Napoli (Italy); Silvestrini, P, E-mail: c.granata@cib.na.cnr.i [Dipartimento di Ingegneria dell' Informazione, Seconda Universita degli Studi di Napoli, Aversa(Caserta) (Italy)

    2010-06-01

    We report on the design, the fabrication and the performance of an integrated magnetic nano-sensor based on niobium dc-SQUID (Superconducting QUantum Interference Device) for nanoscale applications is presented. The nano-sensors are based on nanometric niobium constrictions (Dayem bridges) inserted in a square loop having a side length of 200 nm. Measurements of voltage-flux characteristic, flux to voltage transfer factor and noise performances are reported. In small signal mode, the sensors have shown a magnetic flux noise spectral density of 1.5 {mu}{Phi}{sub 0}/Hz{sup 1/2} corresponding to a spin sensitivity in unit of Bohr magneton of 60 spin/Hz{sup 1/2}. Supercurrent decay measurements of these devices are also reported. Such measurements provide useful information for applications which employ the SQUID as a trigger where the sensor works on the zero voltage state. The experimental data, have shown an intrinsic current fluctuation less than 0.2% of the critical current at liquid helium temperature, corresponding to an intrinsic sensor magnetic flux resolution of a few m{Phi}{sub 0}. In view of the nano-SQUID employments in the detection of small spin populations, the authors calculated the spin sensitivity and the magnetic response relative to the single spin, as a function of its position within the SQUID hole. The results show that the SQUID response depends strongly on the spin position.

  14. Low-frequency flux noise in YBCO dc SQUIDs cooled in static magnetic fields

    International Nuclear Information System (INIS)

    Sager, M.P.; Bindslev Hansen, J.; Petersen, P.R.E.; Holst, T.; Shen, Y.Q.

    1999-01-01

    The low-frequency flux noise in bicrystal and step-edge YBa 2 Cu 3 O x dc SQUIDs has been investigated. The width, w, of the superconducting strips forming the SQUID frame was varied from 4 to 42 μm. The SQUIDs were cooled in static magnetic fields up to 150 μT. Two types of low-frequency noise dominated, namely 1/f-like noise and random telegraph noise giving a Lorentzian frequency spectrum. The 1/f noise performance of the w = 4, 6 and 7 μm SQUIDs was almost identical, while the SQUIDs with w = 22 and 42 μm showed an order of magnitude higher noise level. Our analysis of the data suggests an exponential increase of the 1/f noise versus the cooling field, exhibiting a characteristic magnetic field around 40 μT. (author)

  15. High temperature superconductor micro-superconducting-quantum-interference-device magnetometer for magnetization measurement of a microscale magnet.

    Science.gov (United States)

    Takeda, Keiji; Mori, Hatsumi; Yamaguchi, Akira; Ishimoto, Hidehiko; Nakamura, Takayoshi; Kuriki, Shinya; Hozumi, Toshiya; Ohkoshi, Shin-ichi

    2008-03-01

    We have developed a high temperature superconductor (HTS) micrometer-sized dc superconducting quantum interference device (SQUID) magnetometer for high field and high temperature operation. It was fabricated from YBa2Cu3O7-delta of 92 nm in thickness with photolithography techniques to have a hole of 4x9 microm2 and 2 microm wide grain boundary Josephson junctions. Combined with a three dimensional magnetic field coil system, the modulation patterns of critical current Ic were observed for three different field directions. They were successfully used to measure the magnetic properties of a molecular ferrimagnetic microcrystal (23x17x13 microm3), [Mn2(H2O)2(CH3COO)][W(CN)8]2H2O. The magnetization curve was obtained in magnetic field up to 0.12 T between 30 and 70 K. This is the first to measure the anisotropy of hysteresis curve in the field above 0.1 T with an accuracy of 10(-12) J T(-1) (10(-9) emu) with a HTS micro-SQUID magnetometer.

  16. A method to enhance the curve negotiation performance of HTS Maglev

    Science.gov (United States)

    Che, T.; Gou, Y. F.; Deng, Z. G.; Zheng, J.; Zheng, B. T.; Chen, P.

    2015-09-01

    High temperature superconducting (HTS) Maglev has attracted more and more attention due to its special self-stable characteristic, and much work has been done to achieve its actual application, but the research about the curve negotiation is not systematic and comprehensive. In this paper, we focused on the change of the lateral displacements of the Maglev vehicle when going through curves under different velocities, and studied the change of the electromagnetic forces through experimental methods. Experimental results show that setting an appropriate initial eccentric distance (ED), which is the distance between the center of the bulk unit and the center of the permanent magnet guideway (PMG), when cooling the bulks is favorable for the Maglev system’s curve negotiation. This work will provide some available suggestions for improving the curve negotiation performance of the HTS Maglev system.

  17. Proceedings: 20th Steam Generator NDE Workshop: Orlando, Florida, July 9-11, 2001

    International Nuclear Information System (INIS)

    2003-01-01

    The 2001 workshop took place in Orlando, Florida, from July 9 to 11, 2001. It covered one full day and two half-days of presentations. Attendees included representatives from domestic and overseas nuclear utilities, NSSS vendors, NDE service and equipment organizations, research laboratories, and regulatory bodies. This annual workshop serves as a forum for NDE specialists to gather and discuss current steam generator NDE issues and means for their resolution

  18. Application of X-ray NDE in treating with chemical weapons abandoned by Japan

    International Nuclear Information System (INIS)

    Wang Bairong; Zhang Guohua; Jiang Yishan

    2006-01-01

    According as need of treating with CW abandoned by Japan, this paper designs a X-ray NDE system for chemical weapons. It consist of X-ray shooting unit, control and identification unit and some assistant equipment. (authors)

  19. Rocket center Peenemünde — Personal memories

    Science.gov (United States)

    Dannenberg, Konrad; Stuhlinger, Ernst

    Von Braun built his first rockets as a young teenager. At 14, he started making plans for rockets for human travel to the Moon and Mars. The German Army began a rocket program in 1929. Two years later, Colonel (later General) Becker contacted von Braun who experimented with rockets in Berlin, gave him a contract in 1932, and, jointly with the Air Force, in 1936 built the rocket center Peenemünde where von Braun and his team developed the A-4 (V-2) rocket under Army auspices, while the Air Force developed the V-1 (buzz bomb), wire-guided bombs, and rocket planes. Albert Speer, impressed by the work of the rocketeers, allowed a modest growth of the Peenemünde project; this brought Dannenberg to the von Braun team in 1940. Hitler did not believe in rockets; he ignored the A-4 project until 1942 when he began to support it, expecting that it could turn the fortunes of war for him. He drastically increased the Peenemünde work force and allowed the transfer of soldiers from the front to Peenemünde; that was when Stuhlinger, in 1943, came to Peenemünde as a Pfc.-Ph.D. Later that year, Himmler wrenched the authority over A-4 production out of the Army's hands, put it under his command, and forced production of the immature rocket at Mittelwerk, and its military deployment against targets in France, Belgium, and England. Throughout the development of the A-4 rocket, von Braun was the undisputed leader of the project. Although still immature by the end of the war, the A-4 had proceeded to a status which made it the first successful long-range precision rocket, the prototype for a large number of military rockets built by numerous nations after the war, and for space rockets that launched satellites and traveled to the Moon and the planets.

  20. The role of NDE in maintaining and extending the life cycle of engineering components

    International Nuclear Information System (INIS)

    Doctor, S.R.

    1997-01-01

    A successful life cycle of engineering components begins during the design to select the best materials for a given application, designing for economical maintenance, and accommodating NDE inspections. NDE in the nuclear industry is part of the defense in depth to insure structural integrity of components. High reliability NDE is needed to reliably detect and accurately characterize the failure modes that have occurred in nuclear components. The move toward risk-informed inservice inspection programs focusses the NDE on the most safety significant components. The use of performance demonstration testing is leading to improved inservice inspections through screening out ineffective procedure/equipment/personnel. (orig.)

  1. Squid-derived chitin oligosaccharides are a chemotactic signal during colonization by Vibrio fischeri.

    Science.gov (United States)

    Mandel, Mark J; Schaefer, Amy L; Brennan, Caitlin A; Heath-Heckman, Elizabeth A C; Deloney-Marino, Cindy R; McFall-Ngai, Margaret J; Ruby, Edward G

    2012-07-01

    Chitin, a polymer of N-acetylglucosamine (GlcNAc), is noted as the second most abundant biopolymer in nature. Chitin serves many functions for marine bacteria in the family Vibrionaceae ("vibrios"), in some instances providing a physical attachment site, inducing natural genetic competence, and serving as an attractant for chemotaxis. The marine luminous bacterium Vibrio fischeri is the specific symbiont in the light-emitting organ of the Hawaiian bobtail squid, Euprymna scolopes. The bacterium provides the squid with luminescence that the animal uses in an antipredatory defense, while the squid supports the symbiont's nutritional requirements. V. fischeri cells are harvested from seawater during each host generation, and V. fischeri is the only species that can complete this process in nature. Furthermore, chitin is located in squid hemocytes and plays a nutritional role in the symbiosis. We demonstrate here that chitin oligosaccharides produced by the squid host serve as a chemotactic signal for colonizing bacteria. V. fischeri uses the gradient of host chitin to enter the squid light organ duct and colonize the animal. We provide evidence that chitin serves a novel function in an animal-bacterial mutualism, as an animal-produced bacterium-attracting synomone.

  2. Time-Domain Terahertz Computed Axial Tomography NDE System

    Science.gov (United States)

    Zimdars, David

    2012-01-01

    NASA has identified the need for advanced non-destructive evaluation (NDE) methods to characterize aging and durability in aircraft materials to improve the safety of the nation's airline fleet. 3D THz tomography can play a major role in detection and characterization of flaws and degradation in aircraft materials, including Kevlar-based composites and Kevlar and Zylon fabric covers for soft-shell fan containment where aging and durability issues are critical. A prototype computed tomography (CT) time-domain (TD) THz imaging system has been used to generate 3D images of several test objects including a TUFI tile (a thermal protection system tile used on the Space Shuttle and possibly the Orion or similar capsules). This TUFI tile had simulated impact damage that was located and the depth of damage determined. The CT motion control gan try was designed and constructed, and then integrated with a T-Ray 4000 control unit and motion controller to create a complete CT TD-THz imaging system prototype. A data collection software script was developed that takes multiple z-axis slices in sequence and saves the data for batch processing. The data collection software was integrated with the ability to batch process the slice data with the CT TD-THz image reconstruction software. The time required to take a single CT slice was decreased from six minutes to approximately one minute by replacing the 320 ps, 100-Hz waveform acquisition system with an 80 ps, 1,000-Hz waveform acquisition system. The TD-THZ computed tomography system was built from pre-existing commercial off-the-shelf subsystems. A CT motion control gantry was constructed from COTS components that can handle larger samples. The motion control gantry allows inspection of sample sizes of up to approximately one cubic foot (.0.03 cubic meters). The system reduced to practice a CT-TDTHz system incorporating a COTS 80- ps/l-kHz waveform scanner. The incorporation of this scanner in the system allows acquisition of 3D

  3. Observation of 45 GHz current waveforms using HTS sampler

    International Nuclear Information System (INIS)

    Maruyama, M.; Suzuki, H.; Hato, T.; Wakana, H.; Nakayama, K.; Ishimaru, Y.; Horibe, O.; Adachi, S.; Kamitani, A.; Suzuki, K.; Oshikubo, Y.; Tarutani, Y.; Tanabe, K.

    2005-01-01

    We succeeded in observing high-frequency current waveforms up to 45 GHz using a high-temperature superconducting (HTS) sampler. In this experiment, we used a sampler circuit with a superconducting pickup coil, which magnetically detects current signals flowing through a micro-strip line on a printed board placed outside the cryochamber. This type of measurement enables non-contact current-waveform observation that seems useful for analyses of EMI, defects in LSI, etc. Computer simulation reveals that one of our latest versions of HTS sampler circuits having Josephson transmission lines with optimized biases as buffers has a potential of sampling high-frequency signals with a bandwidth above 100 GHz. To realize the circuit parameters required in the simulations, we developed an HTS circuit fabrication process employing a lower ground plane structure with SrSnO 3 insulating layers. We consider that improvement of the circuit fabrication process and optimization of the pickup coil lead to much higher signal frequency observable by the sampler

  4. The Development and Demonstration of a 360m/10 kA HTS DC Power Cable

    Science.gov (United States)

    Xiao, Liye

    With the quick development of renewable energy, it is expected that the electric power from renewable energy would be the dominant one for the future power grid. Due to the specialty of the renewable energy, the HVDC power transmission would be very useful for the transmission of electric power from renewable energy. DC power cable made of High Tc Superconductor (HTS) would be a possible alternative for the construction of HVDC power transmission system. In this chapter, we report the development and demonstration of a 360 m/10 kA HTS DC power cable and the test results.

  5. Modelling and construction of a compact 500 kg HTS magnetic bearing

    International Nuclear Information System (INIS)

    Werfel, F N; Floegel-Delor, U; Rothfeld, R; Goebel, B; Wippich, D; Riedel, T

    2005-01-01

    The progress of heavy-load HTS bearings depends on improvements in design, material quality and reliable cooling. We have constructed, manufactured and tested a 200 mm HTS journal bearing with a thermally encapsulated YBCO ring. For maximum force the larger gap due to the bearing cryostat (>4 mm) requires adjustment of the magnetic excitation pole distance and the Fe collector shim thickness. HTS material progress is obtained by top-seeded single- or multiple-grain growth which increases the averaged trapped magnetic flux density. Successful YBCO ring growth with radial c axis distribution by seeding the inner ring surface has been performed. The encapsulation ensures a substantially reduced cryogenic effort and stabilizes bearing operation at 78-79 K

  6. An active homopolar magnetic bearing with high temperature superconductor (HTS) coils and ferromagnetic cores

    Science.gov (United States)

    Brown, G. V.; Dirusso, E.; Provenza, A. J.

    1995-01-01

    A proof-of-feasibility demonstration showed that high temperature superconductor (HTS) coils can be used in a high-load, active magnetic bearing in liquid nitrogen. A homopolar radial bearing with commercially wound HTS (Bi 2223) bias and control coils produced over 200 lb (890 N) radial load capacity (measured non-rotating) and supported a shaft to 14000 rpm. The goal was to show that HTS coils can operate stably with ferromagnetic cores in a feedback controlled system at a current density similar to that in Cu in liquid nitrogen. Design compromises permitted use of circular coils with rectangular cross section. Conductor improvements will eventually permit coil shape optimization, higher current density and higher bearing load capacity. The bias coil, wound with non-twisted, multifilament HTS conductor, required negligible power to carry its direct current. The control coils were wound with monofilament HTS sheathed in Ag. These dissipated negligible power for direct current (i.e. for steady radial load components). When an alternating current (AC) was added, the AC component dissipated power which increased rapidly with frequency and quadratically with AC amplitude. In fact at frequencies above about 2 hz, the effective resistance of the control coil conductor actually exceeds that of the silver which is in electrical parallel with the oxide superconductor. This is at least qualitatively understandable in the context of a Bean-type model of flux and current penetration into a Type II superconductor. Fortunately the dynamic currents required for bearing stability are of small amplitude. These results show that while twisted multifilament conductor is not needed for stable levitation, twisted multifilaments will be required to reduce control power for sizable dynamic loads, such as those due to unbalance.

  7. jSquid: a Java applet for graphical on-line network exploration.

    Science.gov (United States)

    Klammer, Martin; Roopra, Sanjit; Sonnhammer, Erik L L

    2008-06-15

    jSquid is a graph visualization tool for exploring graphs from protein-protein interaction or functional coupling networks. The tool was designed for the FunCoup web site, but can be used for any similar network exploring purpose. The program offers various visualization and graph manipulation techniques to increase the utility for the user. jSquid is available for direct usage and download at http://jSquid.sbc.su.se including source code under the GPLv3 license, and input examples. It requires Java version 5 or higher to run properly. erik.sonnhammer@sbc.su.se Supplementary data are available at Bioinformatics online.

  8. Properties of high temperature SQUIDS

    International Nuclear Information System (INIS)

    Falco, C.M.; Wu, C.T.

    1978-01-01

    A review is given of the present status of weak links and dc and rf biased SQUIDs made with high temperature superconductors. A method for producing reliable, reproducible devices using Nb 3 Sn is outlined, and comments are made on directions future work should take

  9. An overview of the NDE Center - The first decade

    International Nuclear Information System (INIS)

    Dau, G.J.

    1990-01-01

    The EPRI NDE Center was established in 1979 to provide the electrical utility industry with a dedicated NDE capability. The Center's role was defined as providing a bridge to transfer the research and development results generated by EPRI R and D programs (as well as other funding agencies) into qualified equipment and procedures in the shortest possible time. The mission is pursued through three distinct thrusts: technology transfer, training, and resource development. Technology transfer is usually accomplished by a combination of equipment and procedure evaluations and demonstrations. Specific training programs are developed to meet the specific needs of the utility industry. One feature of these programs is the reliance on realistic samples during the training programs. Resource development is oriented toward encouraging more people to pursue NDE as a career. This thrust is implemented by working with interested educational institutions to develop appropriate materials. Work in this project divides naturally into technology and training areas. NDE technology work is focused on improving the inspections applied to heat exchangers, piping, steam turbines, and heavy-section components such as the reactor pressure vessel. Training activities involve the provision of formal courses when a large number of people must become proficient in an improved technology. More details on each of these areas are given in sections that immediately follow

  10. Nondestructive evaluation of metallic structures using a SQUID magnetometer

    International Nuclear Information System (INIS)

    Weinstock, H.; Nisenoff, M.

    1985-01-01

    We present one of the first reports of the use of SQUID instrumentation for nondestructive evaluation of electrically conducting and ferromagnetic specimens. We report preliminary experiments on the use of SQUIDs for the detection of defects (such as cracks, holes, weld seams, variations in wall thickness, effects of corrosion, etc.) in the walls of a hollow pipe, and for monitoring the magnetic state of a ferromagnetic sample under stress-strain loading conditions. (orig./BUD)

  11. Squids: applications outside the laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Falco, C M

    1978-07-01

    Originally thought to be rather esoteric, SQUIDS (superconducting quantum interference devices) have moved from the realms of theory to practical application since 1962. The promise for the not-too-distant future is a superconducting computer, with 10/sup 5/ logic elements in a 1cm cube.

  12. Correlations Between Magnetic Flux and Levitation Force of HTS Bulk Above a Permanent Magnet Guideway

    Science.gov (United States)

    Huang, Huan; Zheng, Jun; Zheng, Botian; Qian, Nan; Li, Haitao; Li, Jipeng; Deng, Zigang

    2017-10-01

    In order to clarify the correlations between magnetic flux and levitation force of the high-temperature superconducting (HTS) bulk, we measured the magnetic flux density on bottom and top surfaces of a bulk superconductor while vertically moving above a permanent magnet guideway (PMG). The levitation force of the bulk superconductor was measured simultaneously. In this study, the HTS bulk was moved down and up for three times between field-cooling position and working position above the PMG, followed by a relaxation measurement of 300 s at the minimum height position. During the whole processes, the magnetic flux density and levitation force of the bulk superconductor were recorded and collected by a multipoint magnetic field measurement platform and a self-developed maglev measurement system, respectively. The magnetic flux density on the bottom surface reflected the induced field in the superconductor bulk, while on the top, it reveals the penetrated magnetic flux. The results show that the magnetic flux density and levitation force of the bulk superconductor are in direct correlation from the viewpoint of inner supercurrent. In general, this work is instructive for understanding the connection of the magnetic flux density, the inner current density and the levitation behavior of HTS bulk employed in a maglev system. Meanwhile, this magnetic flux density measurement method has enriched present experimental evaluation methods of maglev system.

  13. A nitrogen triple-point thermal storage unit for cooling a SQUID magnetometer

    NARCIS (Netherlands)

    Rijpma, A.P.; Meenderink, D.J.; Reincke, H.A.; Venhorst, G.C.F.; Holland, H.J.; Brake, ter H.J.M.

    2005-01-01

    In order to achieve turnkey operation, the use is planned of cryocoolers to cool a SQUID magnetometer system. To minimize the magnetical and mech. interference from the coolers, they are switched off during the actual measurements. Consequently, a thermal storage unit (TSU) is required with

  14. Impact of SQUIDs on functional imaging in neuroscience

    International Nuclear Information System (INIS)

    Penna, Stefania Della; Pizzella, Vittorio; Romani, Gian Luca

    2014-01-01

    This paper provides an overview on the basic principles and applications of magnetoencephalography (MEG), a technique that requires the use of many SQUIDs and thus represents one of the most important applications of superconducting electronics. Since the development of the first SQUID magnetometers, it was clear that these devices could be used to measure the ultra-low magnetic signals associated with the bioelectric activity of the neurons of the human brain. Forty years on from the first measurement of magnetic alpha rhythm by David Cohen, MEG has become a fundamental tool for the investigation of brain functions. The simple localization of cerebral sources activated by sensory stimulation performed in the early years has been successively expanded to the identification of the sequence of neuronal pool activations, thus decrypting information of the hierarchy underlying cerebral processing. This goal has been achieved thanks to the development of complex instrumentation, namely whole head MEG systems, allowing simultaneous measurement of magnetic fields all over the scalp with an exquisite time resolution. The latest trends in MEG, such as the study of brain networks, i.e. how the brain organizes itself in a coherent and stable way, are discussed. These sound applications together with the latest technological developments aimed at implementing systems able to record MEG signals and magnetic resonance imaging (MRI) of the head with the same set-up pave the way to high performance systems for brain functional investigation in the healthy and the sick population. (paper)

  15. An Integrated NDE and FEM Characterization of Composite Rotors

    Science.gov (United States)

    Abdul-Aziz, Ali; Baaklini, George Y.; Trudell, Jeffrey J.

    2000-01-01

    A structural assessment by integrating finite-element methods (FEM) and a nondestructive evaluation (NDE) of two flywheel rotor assemblies is presented. Composite rotor A is pancake like with a solid hub design, and composite rotor B is cylindrical with a hollow hub design. Detailed analyses under combined centrifugal and interference-fit loading are performed. Two- and three-dimensional stress analyses and two-dimensional fracture mechanics analyses are conducted. A comparison of the structural analysis results obtained with those extracted via NDE findings is reported. Contact effects due to press-fit conditions are evaluated. Stress results generated from the finite-element analyses were corroborated with the analytical solution. Cracks due to rotational loading up to 49 000 rpm for rotor A and 34 000 rpm for rotor B were successfully imaged with NDE and predicted with FEM and fracture mechanics analyses. A procedure that extends current structural analysis to a life prediction tool is also defined.

  16. An NDE Approach for Characterizing Quality Problems in Polymer Matrix Composites

    Science.gov (United States)

    Roth, Don J.; Baaklini, George Y.; Sutter, James K.; Bodis, James R.; Leonhardt, Todd A.; Crane, Elizabeth A.

    1994-01-01

    Polymer matrix composite (PMC) materials are periodically identified appearing optically uniform but containing a higher than normal level of global nonuniformity as indicated from preliminary ultrasonic scanning. One such panel was thoroughly examined by nondestructive (NDE) and destructive methods to quantitatively characterize the nonuniformity. The NDE analysis of the panel was complicated by the fact that the panel was not uniformly thick. Mapping of ultrasonic velocity across a region of the panel in conjunction with an error analysis was necessary to (1) characterize properly the porosity gradient that was discovered during destructive analyses and (2) account for the thickness variation effects. Based on this study, a plan for future NDE characterization of PMC's is presented to the PMC community.

  17. HTS Nested magnet wound with 12 mm GdBCO tape and 4.4 mm YBCO tape

    International Nuclear Information System (INIS)

    Kang, Myung Hun; Ku, Myung Hwan; Cha, Guee Soo; Lim, Hyoung Woo

    2015-01-01

    The properties of High Temperature Superconducting (HTS) tapes are progressing, as HTS tapes evolve from 1st generation to 2nd generation. This paper presents design and construction of a 2nd generation HTS magnet consisting of two nested GdBCO and YBCO pancake coils. Two HTS tapes of different widths were used to wind the HTS nested magnet. Considering that a higher magnetic field is applied to the inner magnet than to the outer magnet, 12 mm GdBCO tape was used for winding the inner magnet, which consisted of four single pancake windings. Eight double pancake windings wound with 4.4 mm YBCO tapes were used for the outer magnet. The test results show that the central magnetic field of the HTS nested magnet was 920 mT. The measured critical currents of the inner and outer magnet at 77K were 80.8 A and 32.6 A, respectively

  18. Test results of the 18 kA EDIPO HTS current leads

    International Nuclear Information System (INIS)

    Wesche, Rainer; Bagnasco, Maurizio; Bruzzone, Pierluigi; Felder, Roland; Guetg, Marc; Holenstein, Manuel; Jenni, Markus; March, Stephen; Roth, Felix; Vogel, Martin

    2011-01-01

    For the new test facility EDIPO (European DIPOle), to be hosted by CRPP, two 18 kA HTS current leads were manufactured and successfully tested. The HTS module, made of AgMgAu/Bi-2223 tapes, is cooled only by heat conduction to the cold end, while the copper part is cooled by forced flow helium gas. The current leads were tested at low voltage up to the maximum current of 18 kA. The helium mass flow rates required for stable operation at various currents were determined. In addition to the steady state operation, the transient behavior in the case of a loss of flow was studied experimentally. The test results provide an estimate of the operational limits of the EDIPO HTS current leads.

  19. Test results of the 18 kA EDIPO HTS current leads

    Energy Technology Data Exchange (ETDEWEB)

    Wesche, Rainer, E-mail: rainer.wesche@psi.ch [Ecole Polytechnique Federale de Lausanne (EPFL), Centre de Recherches en Physique des Plasmas (CRPP), Association Euratom - Confederation Suisse, 5232 Villigen PSI (Switzerland); Bagnasco, Maurizio; Bruzzone, Pierluigi; Felder, Roland; Guetg, Marc; Holenstein, Manuel; Jenni, Markus; March, Stephen; Roth, Felix; Vogel, Martin [Ecole Polytechnique Federale de Lausanne (EPFL), Centre de Recherches en Physique des Plasmas (CRPP), Association Euratom - Confederation Suisse, 5232 Villigen PSI (Switzerland)

    2011-10-15

    For the new test facility EDIPO (European DIPOle), to be hosted by CRPP, two 18 kA HTS current leads were manufactured and successfully tested. The HTS module, made of AgMgAu/Bi-2223 tapes, is cooled only by heat conduction to the cold end, while the copper part is cooled by forced flow helium gas. The current leads were tested at low voltage up to the maximum current of 18 kA. The helium mass flow rates required for stable operation at various currents were determined. In addition to the steady state operation, the transient behavior in the case of a loss of flow was studied experimentally. The test results provide an estimate of the operational limits of the EDIPO HTS current leads.

  20. The application of X-ray NDE in treating with chemical weapons abandoned by Japan

    International Nuclear Information System (INIS)

    Wang Bairong; Jiang Yishan; Zhang Guohua

    2003-01-01

    According as need of treating with CW abandoned by Japan, this paper designs a X-ray NDE system for chemical weapons, it consist of X-ray shooting unit, control and identification unit and some assistant equipments

  1. A simulation study on the variation of virtual NMR signals by winding, bobbin, spacer error of HTS magnet

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jun Seong; Lee, Woo Seung; Kim, Jin Sub; Song, Seung Hyun; Nam, Seok Ho; Jeon, Hae Ryong; Beak, Geon Woo; Ko, Tae Kuk [Yonsei University, Seoul (Korea, Republic of)

    2016-09-15

    Recently, production technique and property of the High-Temperature Superconductor (HTS) tape have been improved. Thus, the study on applying an HTS magnet to the high magnetic field application is rapidly increased. A Nuclear Magnetic Resonance (NMR) spectrometer requires high magnitude and homogeneous of central magnetic field. However, the HTS magnet has fabrication errors because shape of HTS is tape and HTS magnet is manufactured by winding HTS tape to the bobbin. The fabrication errors are winding error, bobbin diameter error, spacer thickness error and so on. The winding error occurs when HTS tape is departed from the arranged position on the bobbin. The bobbin diameter and spacer thickness error occur since the diameter of bobbin and spacer are inaccurate. These errors lead magnitude and homogeneity of central magnetic field to be different from its ideal design. The purpose of this paper is to investigate the effect of winding error, bobbin diameter error and spacer thickness error on the central field and field homogeneity of HTS magnet using the virtual NMR signals in MATLAB simulation.

  2. Electrical and thermal characteristics of Bi2212/Ag HTS coils for conduction-cooled SMES

    Science.gov (United States)

    Hayakawa, N.; Noguchi, S.; Kurupakorn, C.; Kojima, H.; Endo, F.; Hirano, N.; Nagaya, S.; Okubo, H.

    2006-06-01

    In this paper, we investigated the electrical and thermal performance of conduction-cooled Bi2212/Ag HTS coils with 4K-GM cryocooler system. First, we measured the critical current Ic for different ambient temperatures T0 at 4.2 K - 40 K. Experimental results revealed that Ic increased with the decrease in T0 and was saturated at T0 account of temperature dependence of specific heat and thermal conductivity of the materials. We also measured the temperature rise of Bi2212/Ag HTS coil for different continuous current levels at T0 = 4.8 K. Experimental results revealed the criterion of thermal runaway, which was discussed in terms of heat generation and propagation in the test coil.

  3. A nitrogen triple-point thermal storage unit for cooling a SQUID magnetometer

    NARCIS (Netherlands)

    Rijpma, A.P.; Meenderink, D.J.; Reincke, H.A.; Venhorst, G.C.F.; Venhorst, G.C.F.; Holland, Herman J.; ter Brake, Hermanus J.M.

    2005-01-01

    In order to achieve turnkey operation, we plan to use cryocoolers to cool a SQUID magnetometer system. To minimize the magnetical and mechanical interference from the coolers, we intend to switch them off during the actual measurements. Consequently, a thermal storage unit (TSU) is required with

  4. New version of toroidal SQUID sensor

    International Nuclear Information System (INIS)

    Zarembinski, S.; Kachniarz, J.

    1983-01-01

    A report is given on the design and fabrication of a mechanically stable and thermal shock resistant SQUID sensor. The sensor is vacuum sealed while the access to the adjustment of its point contact is left open

  5. Ocean acidification responses in paralarval squid swimming behavior using a novel 3D tracking system

    KAUST Repository

    Zakroff, Casey J.; Mooney, T. Aran; Wirth, Colin

    2017-01-01

    . pealeii from eggs reared under chronic OA demonstrated measurable impairments to swimming activity and control. This required the development of a novel, cost-effective, and robust method for 3D motion tracking and analysis. Squid eggs were reared in pCO2

  6. New Perspectives in HTS Transformer Design

    Energy Technology Data Exchange (ETDEWEB)

    Ariante, M [C.R.I.S, via Nuova delle Brecce 260, Naples (Italy); Formisano, A [D.I.I., Seconda Universita di Napoli, Aversa (CE) (Italy); Marignetti, F [D.A.E.I.M.I., Universita di Cassino, Cassino (France) (Italy); Martone, R [D.I.I., Seconda Universita di Napoli, Aversa (CE) (Italy); Masullo, G [C.R.I.S, via Nuova delle Brecce 260, Naples (Italy); Matrone, A [C.R.I.S, via Nuova delle Brecce 260, Naples (Italy); Quarantiello, R [C.R.I.S, via Nuova delle Brecce 260, Naples (Italy); Rubinacci, G [D.I.E, Universita di Napoli Federico II, Naples (Italy); Sangiorgi, F [GETRA S.p.A., Marcianise (CE) (Italy); Scarano, M [D.A.E.I.M.I., Universita di Cassino, Cassino (France), Italy; Silvestri, S [GETRA S.p.A., Marcianise (CE) (Italy); Villone, F [D.A.E.I.M.I., Universita di Cassino, Cassino (France), (taly); Zigon, M [GETRA S.p.A., Marcianise (CE) (Italy)

    2006-06-01

    Power transformers based on High Temperature Superconductors (HTS) technology are an appealing promise for several practical applications. The present designs still leave wide margins of possible improvement in terms of both layout optimisation and introduction of new technologies. In the framework of a technical-scientific cooperation among scientific and industrial subjects, a 10 kVA single-phase transformer was designed and manufactured, using copper for primary windings and BSCCO-2223 HTS tape for secondary windings. The layout has been optimized taking into account the particular characteristics of BSCCO tapes, in particular their AC losses, and the usual figures (stray flux, Joule and iron losses, weight and overall footprint) considered in transformers design. The prototype has then been realized and characterized, using general as well as specific tests. The performance of the device has been evaluated and compared with numerical calculation. In the paper, an overview of the device design and manufacturing will be presented, together with a critical comparison between computed and measured performance.

  7. Numerical evaluation of guidance force decay of HTS bulk exposed to AC magnetic field over a NdFeB guideway

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Longcai [P.O. Box 152, Applied Superconductivity Laboratory, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China)], E-mail: zhlcai2000@163.com; Wang Jiasu; Wang Suyu; Zheng Jun; He Qingyong [P.O. Box 152, Applied Superconductivity Laboratory, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China)

    2007-12-01

    The guidance force of the YBCO bulk over a NdFeB guideway used in the high-temperature superconducting maglev vehicle system was decayed by the application of the AC external magnetic field. In our previous work, we explained that the decay was due to the temperature rise of the HTS bulk caused by AC losses. In this paper, we adopted an analytic model to evaluate the decay of the critical current density of the bulk. And based on the analytic results and the Bean critical-state model, we calculated the guidance force as a function of times. Compared with the experimental results, the calculation results have almost the same trend and can qualitatively reveal the characteristics of guidance force of HTS bulk in this situation. Therefore, the guidance force decay of HTS bulk in the maglev vehicle system can be evaluated simply by this numerical method.

  8. Identifying Pelagic Habitat Hotspots of Neon Flying Squid in the Temperate Waters of the Central North Pacific.

    Science.gov (United States)

    Alabia, Irene D; Saitoh, Sei-Ichi; Mugo, Robinson; Igarashi, Hiromichi; Ishikawa, Yoichi; Usui, Norihisa; Kamachi, Masafumi; Awaji, Toshiyuki; Seito, Masaki

    2015-01-01

    We identified the pelagic habitat hotspots of the neon flying squid (Ommastrephes bartramii) in the central North Pacific from May to July and characterized the spatial patterns of squid aggregations in relation to oceanographic features such as mesoscale oceanic eddies and the Transition Zone Chlorophyll-a Front (TZCF). The data used for the habitat model construction and analyses were squid fishery information, remotely-sensed and numerical model-derived environmental data from May to July 1999-2010. Squid habitat hotspots were deduced from the monthly Maximum Entropy (MaxEnt) models and were identified as regions of persistent high suitable habitat across the 12-year period. The distribution of predicted squid habitat hotspots in central North Pacific revealed interesting spatial and temporal patterns likely linked with the presence and dynamics of oceanographic features in squid's putative foraging grounds from late spring to summer. From May to June, the inferred patches of squid habitat hotspots developed within the Kuroshio-Oyashio transition zone (KOTZ; 37-40°N) and further expanded north towards the subarctic frontal zone (SAFZ; 40-44°N) in July. The squid habitat hotspots within the KOTZ and areas west of the dateline (160°W-180°) were likely influenced and associated with the highly dynamic and transient oceanic eddies and could possibly account for lower squid suitable habitat persistence obtained from these regions. However, predicted squid habitat hotspots located in regions east of the dateline (180°-160°W) from June to July, showed predominantly higher squid habitat persistence presumably due to their proximity to the mean position of the seasonally-shifting TZCF and consequent utilization of the highly productive waters of the SAFZ.

  9. DISC1, PDE4B, and NDE1 at the centrosome and synapse

    International Nuclear Information System (INIS)

    Bradshaw, Nicholas J.; Ogawa, Fumiaki; Antolin-Fontes, Beatriz; Chubb, Jennifer E.; Carlyle, Becky C.; Christie, Sheila; Claessens, Antoine; Porteous, David J.; Millar, J. Kirsty

    2008-01-01

    Disrupted-In-Schizophrenia 1 (DISC1) is a risk factor for schizophrenia and other major mental illnesses. Its protein binding partners include the Nuclear Distribution Factor E Homologs (NDE1 and NDEL1), LIS1, and phosphodiesterases 4B and 4D (PDE4B and PDE4D). We demonstrate that NDE1, NDEL1 and LIS1, together with their binding partner dynein, associate with DISC1, PDE4B and PDE4D within the cell, and provide evidence that this complex is present at the centrosome. LIS1 and NDEL1 have been previously suggested to be synaptic, and we now demonstrate localisation of DISC1, NDE1, and PDE4B at synapses in cultured neurons. NDE1 is phosphorylated by cAMP-dependant Protein Kinase A (PKA), whose activity is, in turn, regulated by the cAMP hydrolysis activity of phosphodiesterases, including PDE4. We propose that DISC1 acts as an assembly scaffold for all of these proteins and that the NDE1/NDEL1/LIS1/dynein complex is modulated by cAMP levels via PKA and PDE4.

  10. SQUID Based Cryogenic Current Comparator for Measurements of the Dark Current of Superconducting Cavities

    CERN Document Server

    Vodel, W; Neubert, R; Nietzsche, S

    2005-01-01

    This contribution presents a LTS-SQUID based Cryogenic Current Comparator (CCC) for detecting dark currents, generated e.g. by superconducting cavities for the upcoming X-FEL project at DESY. To achieve the maximum possible energy the gradients of the superconducting RF cavities should be pushed close to the physical limit of 50 MV/m. The measurement of the undesired field emission of electrons (the so-called dark current) in correlation with the gradient will give a proper value to compare and classify the cavities. The main component of the CCC is a high performance LTS-DC SQUID system which is able to measure extremely low magnetic fields, e.g. caused by the extracted dark current. For this reason the input coil of the SQUID is connected across a special designed toroidal niobium pick-up coil (inner diameter: about 100 mm) for the passing electron beam. A noise limited current resolution of nearly 2 pA/√(Hz) with a measurement bandwidth of up to 70 kHz was achieved without the pick-up coil. Now, ...

  11. Design and Performance of the Multiplexed SQUID/TES Array at Ninety Gigahertz

    Science.gov (United States)

    Stanchfield, Sara; Ade, Peter; Aguirre, James; Brevik, Justus A.; Cho, Hsiao-Mei; Datta, Rahul; Devlin, Mark; Dicker, Simon R.; Dober, Bradley; Duff, Shannon M.; Egan, Dennis; Ford, Pam; Hilton, Gene; Hubmayr, Johannes; Irwin, Kent; Knowles, Kenda; Marganian, Paul; Mason, Brian Scott; Mates, John A. B.; McMahon, Jeff; Mello, Melinda; Mroczkowski, Tony; Romero, Charles; Sievers, Jonathon; Tucker, Carole; Vale, Leila R.; Vissers, Michael; White, Steven; Whitehead, Mark; Ullom, Joel; Young, Alexander

    2018-01-01

    We present the array performance and astronomical images from early science results from MUSTANG-2, a 90 GHz feedhorn-coupled, microwave SQUID-multiplexed TES bolometer array operating on the Robert C. Byrd Green Bank Telescope (GBT). MUSTANG-2 was installed on the GBT on December 2, 2016 and immediately began commissioning efforts, followed by science observations, which are expected to conclude June 2017. The feedhorn and waveguide-probe-coupled detector technology is a mature technology, which has been used on instrument including the South Pole Telescope, the Atacama Cosmology Telescope, and the Atacama B-mode Search telescope. The microwave SQUID readout system developed for MUSTANG-2 currently reads out 66 detectors with a single coaxial cable and will eventually allow thousands of detectors to be multiplexed. This microwave SQUID multiplexer combines the proven abilities of millimeterwave TES detectors with the multiplexing capabilities of KIDs with no degradation in noise performance of the detectors. Each multiplexing device is read out using warm electronics consisting of a commercially available ROACH board, a DAC/ADC card, and an Intermediate Frequency mixer circuit. The hardware was originally developed by the UC Berkeley Collaboration for Astronomy Signal Processing and Electronic Research (CASPER) group, whose primary goal is to develop scalable FPGA-based hardware with the flexibility to be used in a wide range of radio signal processing applications. MUSTANG-2 is the first on-sky instrument to use microwave SQUID multiplexing and is available as a shared-risk/PI instrument on the GBT. In MUSTANG-2's first season 7 separate proposals were awarded a total of 230 hours of telescope time.

  12. Levitation characteristics in an HTS maglev launch assist test vehicle

    International Nuclear Information System (INIS)

    Yang Wenjiang; Qiu Ming; Liu Yu; Wen Zheng; Duan Yi; Chen Xiaodong

    2007-01-01

    With the aim of finding a low-cost, safe, and reliable way to reduce costs of space launch, a maglev launch assist vehicle (Maglifter) is proposed. We present a permanent magnet-high temperature superconductor (PM-HTS) interaction maglev system for the Maglifter, which consists of a cryostat with multi-block YBaCuO bulks and a flux-collecting PM guideway. We obtain an optimum bulk arrangement by measuring and analysing the typical locations of HTSs above the PM guideway. We also measure the levitation abilities of the arrangement at different field cooled heights (FCHs) and different measuring distances (MDs), and find that the lower FCH and the lower MD both cause more magnetic flux to penetrate the HTSs, and then cause stronger lateral stability. A demonstration PM-HTS maglev test vehicle is built with four maglev units and two PM guideways with the length of 7 m. Its levitation characteristics in different FC and loading conditions are demonstrated. By analysing the maglev launch assist process, we assess that the low FC is useful for increasing the lateral stability of the Maglifter

  13. Experience of 12 kA / 16 V SMPS during the HTS Current Leads Test

    Science.gov (United States)

    Panchal, P.; Christian, D.; Panchal, R.; Sonara, D.; Purwar, G.; Garg, A.; Nimavat, H.; Singh, G.; Patel, J.; Tanna, V.; Pradhan, S.

    2017-04-01

    As a part of up gradation plans in SST-1 Tokamak, one pair of 3.3 kA rated prototype hybrid current leads were developed using Di-BSCCO as High Temperature Superconductors (HTS) and the copper heat exchanger. In order to validate the manufacturing procedure prior to go for series production of such current leads, it was recommended to test these current leads using dedicated and very reliable DC switch mode power supply (SMPS). As part of test facility, 12 kA, 16 VDC programmable SMPS was successfully installed, commissioned and tested. This power supply has special features such as modularity, N+1 redundancy, very low ripple voltage, precise current measurements with Direct Current Current Transformer, CC/CV modes with auto-crossover and auto-sequence programming. As a part of acceptance of this converter, A 5.8 mΩ water-cooled resistive dummy load and PLC based SCADA system is designed, developed for commissioning of power supply. The same power supply was used for the testing of the prototype HTS current leads. The paper describes the salient features and experience of state-of-art of power supply and results obtained from this converter during the HTS current leads test.

  14. Development and test of an axial flux type PM synchronous motor with liquid nitrogen cooled HTS armature windings

    International Nuclear Information System (INIS)

    Sugimoto, H; Morishita, T; Tsuda, T; Takeda, T; Togawa, H; Oota, T; Ohmatsu, K; Yoshida, S

    2008-01-01

    We developed an axial gap permanent magnet type superconducting synchronous motor cooled by liquid nitrogen (LN 2 ). The motor includes 8 poles and 6 armature windings. The armature windings are made from BSCCO wire operated at the temperature level between 66K∼70K. The design of the rated output is 400kW at 250rpm. Because HTS wires produce AC loss, there are few motors developed with a superconducting armature winding. In a large capacity motor, HTS windings need to be connected in parallel way. However, the parallel connection causes different current flowing to each HTS winding. To solve this problem, we connected a current distributor to the motor. As a result, not only the current difference can be suppressed, but also the current of each winding can be adjusted freely. The low frequency and less flux penetrating HTS wire because of current distributor contribute to low AC loss. This motor is an axial gap rotating-field one, the cooling parts are fixed. This directly leads to simple cooling system. The motor is also brushless. This paper presents the structure, the analysis of the motor and the tests

  15. Frequency dependence of magnetic shielding performance of HTS plates in mixed states

    International Nuclear Information System (INIS)

    Kamitani, Atsushi; Yokono, Takafumi; Yokono, Takafumi

    2000-01-01

    The magnetic shielding performance of the high-Tc superconducting (HTS) plate is investigated numerically. The behavior of the shielding current density in the HTS plate is expressed as the integral-differential equation with a normal component of the current vector potential as a dependent variable. The numerical code for solving the equation has been developed by using the combination of the Newton-Raphson method and the successive substitution method and, by use of the code, damping coefficients and shielding factors are evaluated for the various values of the frequency ω. The results of computations show that the HTS plate has a possibility of shielding the high-frequency magnetic field with ω > or approx. 1 kHz. (author)

  16. Frequency dependence of magnetic shielding performance of HTS plates in mixed states

    Energy Technology Data Exchange (ETDEWEB)

    Kamitani, Atsushi; Yokono, Takafumi [Yamagata Univ., Yonezawa (Japan). Faculty of Engineering; Yokono, Takafumi [Tsukuba Univ., Ibaraki (Japan). Inst. of Information Sciences and Electronics

    2000-06-01

    The magnetic shielding performance of the high-Tc superconducting (HTS) plate is investigated numerically. The behavior of the shielding current density in the HTS plate is expressed as the integral-differential equation with a normal component of the current vector potential as a dependent variable. The numerical code for solving the equation has been developed by using the combination of the Newton-Raphson method and the successive substitution method and, by use of the code, damping coefficients and shielding factors are evaluated for the various values of the frequency {omega}. The results of computations show that the HTS plate has a possibility of shielding the high-frequency magnetic field with {omega} > or approx. 1 kHz. (author)

  17. Low resistance splices for HTS devices and applications

    Science.gov (United States)

    Lalitha, S. L.

    2017-09-01

    This paper discusses the preparation methodology and performance evaluation of low resistance splices made of the second generation (2G) high-temperature superconductor (HTS). These splices are required in a broad spectrum of HTS devices including a large aperture, high-field solenoid built in the laboratory to demonstrate a superconducting magnetic energy storage (SMES) device. Several pancake coils are assembled in the form of a nested solenoid, and each coil requires a hundred meters or more of 2G (RE)BCO tape. However, commercial availability of this superconductor with a very uniform physical properties is currently limited to shorter piece lengths. This necessitates us having splices to inter-connect the tape pieces within a pancake coil, between adjacent pancake coils, and to attach HTS current leads to the magnet assembly. As a part of the optimization and qualification of splicing process, a systematic study was undertaken to analyze the electrical performance of splices in two different configurations suitable for this magnet assembly: lap joint and spiral joint. The electrical performance is quantified in terms of the resistance of splices estimated from the current-voltage characteristics. It has been demonstrated that a careful application of this splicing technique can generate lap joints with resistance less than 1 nΩ at 77 K.

  18. High-T /SUB c/ Superconducting integrated circuit: a dc SQUID with input coil

    International Nuclear Information System (INIS)

    Di Iorio, M.S.; Beasley, M.R.

    1985-01-01

    We have fabricated a high transition temperature superconducting integrated circuit consisting of a dc SQUID and an input coupling coil. The purpose is to ascertain the generic problems associated with constructing a high-T /SUB c/ circuit as well as to fabricate a high performance dc SQUID. The superconductor used for both the SQUID and the input coil is Nb 3 Sn which must be deposited at 800 0 C. Importantly, the insulator separating SQUID and input coil maintains its integrity at this elevated temperature. A hole in the insulator permits contact to the innermost winding of the coil. This contact has been achieved without significant degradation of the superconductivity. Consequently, the device operates over a wide temperature range, from below 4.2 K to near T /SUB c/

  19. EPRI steam turbine and generator NDE, life assessment, and maintenance workshop

    International Nuclear Information System (INIS)

    Nottingham, L.D.; Sabourin, P.F.

    1992-10-01

    On July 16--19, 1991, the EPRI NDE Center hosted the second EPRI Steam Turbine and Generator NDE, Life Assessment and Maintenance Workshop. This workshop was co-sponsored by the Nuclear Power and the Generation and Storage Divisions of EPRI. Attendees represented all sectors of the industry including utilities, equipment manufacturers, forging suppliers, service organizations, government organizations, insurancecarriers, and consultants from the United States and abroad. Domestic utility presence was again strong, with 105 representatives from 44 utilities in attendance. Australia, Canada, England, Finland, France, Germany, Italy, Japan, Korea, New Zealand, Spain, Sweden and Switzerland were represented in the international contingent. A key and integral part of the workshop was a vendor equipment fair, in which some 23 organizations displayed and demonstrated equipment and services that they offer. Formal presentation of 53 technical papers made up the technical portion of the agenda, which also included two breakout discussion sessions on topical subjects. To provide optimum opportunity for participants to hear all presentations on closely related topics, the sessions were set such that a NDE session ran parallel to the life assessment session. The first NDE session included turbine related topics while the first life assessment session addressed generator issues. The last sessions of the workshop were just reversed with turbine topics being addressed in the life assessment session while generator issues were presented in the NDE session. Presentations on maintenance topics and on monitoring and diagnostics topics were also presented in parallel sessions. These proceedings contain the texts of the papers presented at the workshop. Individual papers in indexed separately

  20. Cryostats for SQUID magnetometers

    International Nuclear Information System (INIS)

    Testard, O.A.; Locatelli, M.

    1982-05-01

    A non metallic and non magnetic cryostat, with a very low thermal budget and a container type autonomy was developed, to condition S.Q.U.I.D. magnetometers which maximum sensitivity reaches 10 -14 Tesla Hertzsup(-1/2). This instrumentation puts in hand new concepts of composite materials, thermal shock and vibration resistant, multilayer thermal radiative insulation also to the prouve of vibrations with thermal equivalent emissivity lower than 10 -3